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Abstract

Novel additions have been made to the York time-averaged electron

diffractometer with a view to the study of low volatility and more exotic species.

The telefocus electron gun present in the apparatus has been improved and the

resulting beam width reduced from 0.76 to 0.40 mm. The existing data collection

system was fully tested and eventually replaced with a custom designed camera

assembly to improve data quality; this was further improved by the addition of a

liquid nitrogen cold trap.

For the study of lower-volatility compounds an air-heated nozzle assembly was

built, which, paired with the high intensity of electrons produced from the

telefocus gun and almost limitless data acquisition possible using the camera

assembly, allows diffraction patterns to be collected from a smaller target density

in the sample beam.

Molecular dynamics simulations have been performed using Newton-X to

provide vibrational corrections for refinements. These corrections allow a

better description for large-amplitude and anharmonic motions, which are badly

accounted for using current methods. These will be especially useful for the more

complex molecules the apparatus has been designed to study.

To extract and handle the diffraction data collected, custom software has

been developed and tested. This software, combined with the improvements

and additions to the apparatus, was used to refine the structure of

4-(dimethylamino)benzonitrile.

The combination of these improvements to the apparatus and the custom

software, will allow the structure determination of species such as carbon

suboxide (C3O2), and silyl chloride (SiH3Cl) dimers.
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Chapter 1: Introduction

1.1 Motivation for performing electron diffraction

experiments

Diffraction studies allow precise, direct observations of chemical structures to be

made, facilitating greater understanding of links between experimental results

and the molecular architectures responsible for them. Diffraction is, therefore,

of paramount importance in many areas of chemistry. For example, X-ray

diffraction is routinely used to characterise the structures of crystalline solids,

giving insights into novel properties such as single-molecule magnetism.1

X-rays, however, are a relatively inefficient probe of gas-phase structure due to

the low target density in a gaseous sample and the prohibitively high flux of

X-rays consequently required to observe diffraction. Electrons serve as a far

better diffraction probe for gas-phase samples: the high collision cross sections

of electrons relative to X-rays make diffraction more easily acquirable, while

their negative charges are scattered by nuclei rather than electron density as is

the case for X-rays.2 Electron diffraction can yield atomic positions with a high

degree of precision, independent of the electronic environment of the molecule.

Such gas-phase experimental structures are closely comparable to calculated

isolated molecule structures, as the distances between gaseous molecules allows

the assumption to be made of isolation from intermolecular forces.

Chemistry has always been driven forward through experimentation, with many

syntheses being perfected by multiple trial and error experiments. In recent years,

however, theoretical calculations have become a powerful tool, not only helping

chemists to optimise their experiments, when experimental data are unclear

or ambiguous, but also leading researchers towards more likely or profitable

synthetic routes. This is only possible if the calculations used are accurate and

realistic, which requires benchmarking with experimentally observed structural

data.

Continued development of the electron diffraction technique is required to
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1.1 Motivation for performing electron diffraction experiments

increase the variety of species that can be studied and, therefore, maintain

the significance of the discipline. To this end, improvements have been made

to the Gas Electron Diffraction (GED) apparatus in York as part of this PhD:

improved focussing of the electron gun has been achieved leading to better

spatial resolution; the choice of inlet system has been extended to include a

heated nozzle assembly paired with a cold trap; a new camera assembly has been

built; and novel extraction code has been written to allow data collected using

this detector to be manipulated for use in GED refinements.

1.1.1 History of GED

Thomas Young’s double-slit experiments, performed in the early nineteenth

century, used two parallel slits to diffract coherent light.3 Following diffraction,

the wave-like behaviour of the light leads to an interference pattern which can be

used to determine both the distance between, and the widths of, the slits. This is

the basis for all diffraction experiments, with the diffracting medium acting like

a series of slits producing interference patterns from the incoming waves.

In the early 1920s quantum theory described the basis of wave-particle duality,4

demonstrating that electrons could behave both as particles and as waves.

Diffracted electrons could, therefore, produce interference patterns just as the

light had done in Young’s experiments. Combined with the negative charges

of the electrons, which interact with charge gradients at the edges of nuclei; this

makes electrons a perfect diffraction probe for molecules. Diffraction occurs most

strongly when the probe wavelength is comparable to the width of the ’slit’. Each

of the atoms in a molecule acts as a slit, with each slit separated from the next by

some few Ångstrøms.

De Broglie related the wavelength, λ, to the momentum of an object, as shown in

Equation 1.1:4
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λ =
h

mv
, (1.1)

where h is the Planck constant and mv is the momentum of the electron.

Davisson and Germer, in the late 1920s,5 confirmed that diffraction of electrons

was possible by obtaining scattering patterns from crystalline solids that agreed

with Bragg’s laws of diffraction.6 Work by Debye, ten years earlier, to show that

X-rays could be diffracted using a gaseous sample,7 combined with the proof that

electrons could be used as a diffraction probe led to the work of Mark and Wierl,8

who collected the first gas electron diffraction patterns soon after the seminal

work of Davisson and Germer.

Figure 1.1 shows a diffraction pattern recorded during an experiment carried

out using the former Edinburgh time-averaged GED apparatus, which is now in

the University of Canterbury, Christchurch, New Zealand.9 The concentric rings

observed represent variations in intensity caused by constructive and destructive

interference of diffracted electrons, which have been made more uniform in

intensity through the use of a rotating sector (more details are given later). In

the early days of GED, data were interpreted using a visual estimation of those

raw intensities and ring spacing within the interference patterns. Unfortunately,

in these early experiments performed without a rotating sector, the intensities

in the diffraction pattern decreased sharply with distance from the centre of

the pattern.2 Moreover, the perception of intensity by the human eye is not

consistent, often correcting for the reduction in intensity of the pattern, leading

to inaccurate structures. Pauling and Brockway proposed measuring the optical

density of the photographic plate using a photometer to eliminate this problem.10

Unfortunately, the quality of the data at the time was insufficient for the

photometer method and so a visual interpretation of intensities persisted.
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1.1 Motivation for performing electron diffraction experiments

Figure 1.1 – Scanned photographic film, showing the GED diffraction

pattern of benzene. This image was collected using the former

Edinburgh GED apparatus that is now in New Zealand.

To reduce the impact of the sharply falling intensity and to acquire higher quality

data at wider scattering angles, a rotating sector (Figure 1.2)11 was independently

suggested by Finbak12 and Debye.13 A shaped metal disk is spun in front of the

photographic plate to alter exposure to electrons relative to the distance from the

centre of the pattern. In the 1950s the combination of the rotating sector and an

improved method for the use of a photometer, known as the sector-photometer

method, became commonplace.14, 15 Figure 1.1 is an example of a pattern obtained

using a rotating sector. Peaks and troughs in intensity can be observed to wider

scattering angles than would have been the case without a sector.

Figure 1.2 – Image of the rotating sector from the former Edinburgh

GED apparatus that is now in New Zealand.11
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GED often employs well-established and well-understood detection media such

as image plates16 or photographic film.17 This is due to their high dynamic ranges

and reproducibility, allowing high-quality data to be recorded. Unfortunately,

the number of images that can be acquired using these media is limited as they

must be present within the vacuum and breaking the vacuum to replace the

photographic media is time-consuming.

It is worth noting at this point that two distinct branches exist in GED:

time-averaged electron diffraction, in which a continuous electron beam is used

to acquire data over a relatively long time period, and time-resolved electron

diffraction, which uses pulses of electrons to study dynamics of molecules

through observation of structural changes over very short periods of time. The

two techniques can be understood using a photographic analogy. Time-averaged

ED yields results that are analogous to a camera with a slow shutter speed,

leading to a long exposure time, while time-resolved ED, is more like taking a

snapshot. Figure 1.3 shows two images of a dynamic subject; the time-averaged

image [Figure 1.3(a)] is blurred as it comprises all of the motion over the exposure

time. The time-resolved image [Figure 1.3(b)] is well resolved as the short

exposure time collects a near instantaneous image. The two techniques, and some

apparatus associated with them, are outlined further in Sections 2.2.1 and 2.2.2,

respectively.

Figure 1.3 – Images of a moving hand depicting (a) a long exposure

time and (b) a short exposure time.

Developments in modern electron diffraction, such as those described in this

thesis, aim to extend the reach of the time-averaged technique to a wider range
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1.1 Motivation for performing electron diffraction experiments

of samples or to move towards the use of electrons as a time-resolved probe to

view directly atomic movement during a chemical process. In order to obtain

high-quality data to validate these techniques, multiple diffraction images are

often required to improve the signal-to-noise ratio. The traditional photographic

media cannot easily be used in this way, as they must be removed from the

vacuum to be developed. A limited number of images can be recorded during

each experiment, and the quality of those images can only be checked after

the experiment has been finished. In the 1980s a new data collection method

was pioneered by Ewbank et al.,18 utilising a photodiode array paired with a

phosphor screen; images could then be viewed almost instantly on a computer.

Charge-coupled device (CCD) detectors have since replaced photodiodes in GED

applications as the the higher charge-to-voltage conversion makes CCD detectors

more suitable for low-light-level detection,19 acting just like a digital camera,

offering almost limitless data acquisition without the need to break vacuum

and allowing instant checking of data quality. A CCD, like the photodiode,

can only detect electromagnetic radiation, and so cannot detect the electrons

directly. Instead, a phosphor screen scintillates when an incident electron strikes

it producing light which is subsequently detected.

Advances have not only been made in the hardware for electron diffraction but

also in the theory of refinement of structures. Early experiments compared a

number of theoretical intensity curves (explained further in Section 1.2.2) against

the extracted data, with the closest fit revealing the final structure.2 Realistically,

limited numbers of theoretical structures can be compared, and a subjective

choice of the best fit introduces the potential for inaccuracy into the structure

determination.

The advent of digital computing allowed more sophisticated fitting procedures

to be undertaken. Initially computers were only used to calculate

molecular-intensity and radial-distribution curves;20, 21 however, from the late

1950s computers were used to perform least-squares refinements.22, 23 Generally

a computational model of the molecule of interest is constructed using a
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number of geometric parameters (e.g. bond lengths and angles) to describe the

three-dimensional structure of the molecule. These parameters are then varied

during the refinement process to achieve the best fit to the experimental data,

removing the subjective choice of theoretical curve and eliminating the reliance

on the visual quality of the fit. The refinement process, with examples, is

explained more fully in Section 1.2.2.

Increases in computational power available to research groups have led to

more accessible, reliable ab initio structures (explained further in Section 1.3).

These calculated structures were used in conjunction with GED data in the

molecular orbital constrained electron diffraction (MOCED) method,24 in which

structural features poorly described by GED (e.g. light atoms) were instead fixed

to calculated values. Including these ’supplementary data’ from theory allowed

larger, more complicated structures to be refined. However, fixing structural

parameters within a refinement does not allow variation in the value, so if

that value is incorrect, the structure obtained from the refinement will also be

incorrect. This was one of the problems with the MOCED approach; another was

that any refined structural parameters that are strongly correlated to the fixed

parameter will have artificially small associated uncertainties. This is due to the

implicit ’correctness’ of the calculated structure, which has an error of zero.25

SARACEN (Structural Analysis Restrained by ab initio Calculations for Electron

diffractioN)25 improves upon both of the problems associated with the MOCED

method. In SARACEN a series of calculations are performed using different

methods and basis sets, explained in Section 1.3. The variation in a given

structural parameter between calculations is then used as an approximate error.

During the refinement that parameter is then constrained using this error value

allowing a refined parameter, realistic error and reliable structure to be obtained.

Further information on the methods used to overcome the limited data available

from GED is given in Section 1.2.3.
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1.2 GED theory

1.2 GED theory

All gas electron diffractometers require three main components: a source of

well-collimated electrons, an inlet system for the introduction of samples, and

a detector to image the interference patterns of the diffracted electrons. It is

commonly these components, which tend to be custom-made due to the specialist

nature of the discipline, that dictate the experiments that can be undertaken. A

simple diagram of these components forming a GED set-up is shown in Figure

1.4.

Figure 1.4 – Schematic diagram showing a basic gas electron

diffraction set-up. The tungsten filament (A) produces a continuous

electron beam, intersecting a jet of gas from the effusive nozzle (B).

The scattered electrons form a diffraction pattern recorded at the

detector (C).

1.2.1 Diffraction of electrons

The incident beam consists of a number of electrons travelling with the same

velocity, with each incident electron travelling on trajectory, k0. The charge

gradients at the edges of the atomic nuclei act like the slits in Young’s

experiments, elastically scattering the electrons. After the scattering event the

33



Chapter 1: Introduction

trajectory of a given electron is termed k. The vector describing the change in

trajectory, s, is dependent upon the scattering angle, θ, and has magnitude, s.

The three vectors are shown schematically in Figure 1.5. The scattering event is

assumed to be elastic, with the magnitude (k) of vectors k and k0 equal to 2π
λ

. The

formula for the magnitude, s, of scattering vector, s, is given in Equation 1.2:

s =
4π sin( θ

2
)

λ
. (1.2)

The pattern obtained from Young’s experiment provided information on the

distances between the slits, and the same is true of the GED experiment, with

the diffraction pattern giving information on the interatomic distances in the

molecule.

Figure 1.5 – Schematic depiction of the scattering vector, s. The

incoming electron is described by wavevector k0, while the scattered

electron is described by wavevector k.

1.2.2 From data collection to structure determination

In this section, both the theory and procedure for determining the molecular

structure from the diffraction patterns will be discussed. All examples

have been taken from the structure determination of the bromine-containing

tetrasilylmethane derivative C(SiBrMe2)4 (Figure 1.6), performed during the first

year of my PhD.26 The scientific paper relating to the GED studies of this and

other related derivatives can be found in the associated publications section of

this thesis.
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1.2 GED theory

Figure 1.6 – Representation of the general structure of C(SiBrMe2)4

with atom numbering. Hydrogen atoms have been removed for

clarity.

Concentric rings are seen in GED diffraction patterns because molecules in the

gas phase are present in all possible orientations. As the image is circular, the

data in all directions from the centre of the image to the edge are equivalent, so

the intensities are averaged around the image to produce the final experimental

intensity curve.

The image acquired at the detector represents a combination of all diffraction

that has occurred. Interference of diffracted electrons gives information that is

useful for structure determination, but atoms can also scatter electrons that do

not interfere. No information about the structure of the molecule can be obtained

from these scattering events and so their removal from the pattern is necessary.

Atomic scattering is, fortunately, well understood and predictable.2

Each pair of atoms, if isolated, would lead to an intensity curve that is roughly

sinusoidal in form, with a series of peaks and troughs. The superposition of these

curves for every pair of atoms in the molecule produces the intensity pattern

observed after atomic scattering is removed. Atoms with larger nuclei have larger

scattering cross sections and, as a result, will scatter electrons more strongly.

The sine curves related to scattering from distances to these heavier atoms will
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contribute a greater proportion of the total intensities collected.2

The magnitude of the scattering vector, s, can be expressed as in Equation 1.3; this

is the same variable used in Equation 1.2 though the scattering angle, θ, is now

expressed in terms of the following apparatus-specific experimental variables:27

the wavelength of the incident electrons, λ, the nozzle-to-camera distance, rcam,

and the distance from the centre of the pattern, r. This is very important as, due

to the nature of the discipline, most diffractometers are custom-made creating a

wide variety in the variables present in Equation 1.3:

s =
4π

λ
sin

[
1

2
tan−1

(
r

rcam

)]
. (1.3)

The wavelength of electrons used is related to the s value obtained for each

data point as described in Equation 1.3. Precise knowledge of the wavelength

is, therefore, vitally important. But Equation 1.1 fails to describe electrons that

approach the speed of light, which will occur when using large accelerating

potentials. The mass of the electron will increase markedly when approaching

the speed of light, requiring a relativistic description. The rest mass of an electron,

me, is related to the wavelength, λ, by the accelerating potential, V , as shown in

Equation 1.4:

λ =
h√

2meV e
(

1 + V e
2mec2

) . (1.4)

Some typical diffraction patterns are shown in Figure 1.7. The one-dimensional

data, extracted from the centre to the edge of the diffraction pattern, are

represented as a graph of s against the intensity of scattered electrons detected.

This is referred to as a molecular intensity curve (MIC), with an example shown

in Figure 1.8.
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1.2 GED theory

Figure 1.7 – Scanned photographic films collected for C(SiBrMe2)4 at

(a) a long and (b) a short nozzle-to-camera distance.

Figure 1.8 – Experimental and difference

(experimental-minus-theoretical), molecular intensity curves for

C(SiBrMe2)4. The upper curve is collected at a short nozzle-to-camera

distance, while the lower curve is collected at a long nozzle-to-camera

distance.
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To maximise the data collected, images are recorded at different nozzle-to-camera

distances, which allows a larger s range to be sampled. The MICs for

different nozzle-to-camera distances overlap, allowing data quality to be checked.

Non-matching peaks within the MIC can be identified and poor quality data

near the edge of the pattern removed. Short nozzle-to-camera distances

(approximately 90 mm for 40 kV) provide data to wider scattering angles (larger

s values), while longer nozzle-to-camera distances (approximately 250 mm for

40 kV) sample the lower end of the s range. Figure 1.7 shows experimentally

collected diffraction patterns for C(SiBrMe2)4 at two separate nozzle-to-camera

distances.

Theoretical curves, against which the experimental data are compared, are

constructed using the scattering equations. The original ’Wierl equation’

(Equation 1.5) illustrates the relationship between the intensities and the bond

distances, rij ,8 which can be rewritten in terms of the scattering function for

each atom, Fi (Equation 1.7), shown in Equation 1.6.28 The scattering function

is defined as the atomic number, Zi, minus the X-ray scattering factor, fi.

I(s)apparent ≈
I(s)molecular
I(s)atomic

≈
N∑
i

N∑
i 6=j

ZiZj
sin srij
srij

(1.5)

I(s) =
N∑
i

N∑
j

Fi(s)Fj(s)
sin srij
srij

(1.6)

Fi(s) =
2(Zi − fi)
a0s2

(1.7)

The Wierl equation is useful as it allows the scattering equation to be written in

terms of s. For the purposes of any GED experiments carried out in this work,

and as is the case in the Wierl equation, only two-atom scattering is considered.

The probability of three-atom and higher-order scattering events occurring for a
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given electron is sufficiently small that they need not be considered in most cases.

Only in special cases, such as molecules containing both right angles between

bonds, and containing heavy atoms, does multiple scattering need to be taken

into account.29

As experimental data collection was improved with the sector-photometer

method,14, 15 it became clear that the Wierl equation was insufficient to fully

describe the electron diffraction experiment.30 The assumption within Equation

1.5 is of a static distance between the atoms equal to r. Vibrations in the molecule

fluctuate the interatomic distance requiring a probability function be introduced

to describe the probability, Pij(r), of the interatomic distance being equal to r.

A harmonic assumption of bond vibrations produces a Gaussian distribution

in Pij(r), using either a quantum-mechanical ground-state wavefunction or a

classical Boltzmann population. Simplifying Equation 1.8 to Equation 1.9 allows

the intensities to be written in terms of the root-mean-squared amplitudes of

vibration, uij :30

I(s) =
∑
i

∑
j

Fi(s)Fj(s)

∫
Pij(r)

sin srij
srij

, (1.8)

I(s) =
N∑
i

N∑
j

Fi(s)Fj(s) exp

(
−u2ij

s2

2

)
sin srij
srij

. (1.9)

Exceptions have been found that required a further improvement to the scattering

equation. Refinement of data collected for UF6 using Equation 1.9 incorrectly

proposes two separate U−F distances. The vast difference in nuclear charge

between fluorine and uranium atoms in UF6 causes a breakdown in the Born

approximation, contracting the wavelength of the electron as it approaches the

heavy atom and causing a shift in the electronic wavefunction.31 This shift is

taken into account in Equation 1.10, where ηi is the phase shift from atom i:
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I(s) =
N∑
i

N∑
j

|Fi(s)||Fj(s)| cos (ηi − ηj) exp

(
−u2ij

s2

2

)
sin srij
srij

. (1.10)

Equation 1.10 produces theoretical intensity curves for most diffraction

experiments very well, although it is based on the assumption of harmonicity

in intermolecular vibration. In reality, interatomic bonded distances exhibit a

more anharmonic vibration. A ground-state Morse oscillator, shown alongside

a harmonic curve in Figure 1.9, used as the basis of the
∫
Pij values, alters the

probability, as shown in Equation 1.11, allowing the anharmonicity of a bond

vibration to be taken into account:32

∫
Pij

sin sr

sr
dr ≈ exp

(
−u2ij

s2

2

)
sin [s (rij − κijs2)]

srij
, (1.11)

where

κij ≈
au4ij

6
. (1.12)

Figure 1.9 – Diagrammatic representation of potential energy curves

for (a) a harmonic oscillator and (b) a Morse potential.
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The asymmetry coefficient in Equation 1.12, a, is often replaced using a tabulated

value; for non-bonded distances the probability is assumed to be harmonic (a =

0), and to be approximately 20 nm−1 for bonded distances.

Other assumptions made in the treatment of data include: that there is a single

point of interaction between the sample beam and incident electrons, that all

molecules within the beam are at the same temperature, and that the beam is

considered a point, rather than the approximately 0.5 mm full width at half

maximum (FWHM) value, which it has in reality. If the beam was excessively

wide it would lead to broadening of peaks and a reduction in the spatial

resolution of the experiment.28

Although experiments are carried out in high-vacuum conditions (pressures

of 10−5 mbar or lower), gas molecules still exist in the vacuum chamber

and can scatter the beam, forming part of the background that is subtracted

from the collected data. This background consists not only of this extraneous

scattering, but also any light produced from the filament, as often the detector is

photosensitive.

Background patterns collected using the same beam intensity and duration as

the experiment are, therefore, subtracted from the data, as well as a correction

for any sector or filter used. The data now are a combination of the atomic and

molecular scattering. As mentioned previously, the molecular scattering is the

only information of interest, and therefore the atomic scattering is removed before

further analysis of the data.

1.2.2.1 Radial distribution curve

A Fourier transform of the MIC, from s to r, yields the radial distribution curve

(RDC), introduced by Pauling and Brockway in 1934.10 At that time, the data

quality was poor, leading to its use only as an indicator of starting geometry for

further refinement. As data quality improved, and alongside improvements in

the scattering equations, the RDC served as a useful visual interpretative tool.
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If the molecules were static, the transform of the MIC would yield a series of

sharp peaks, with each maximum representing an interatomic distance. Due to

the time-averaged nature of all diffraction experiments, molecular vibrations over

the course of the acquisition period vary the distances. As a result the output is a

number of broader peaks, yielding information about amplitudes of vibration for

pairs of atoms. The RDC serves as a visual tool, not only to allow understanding

of the MIC more easily, but also to show quickly which distances in the molecule

are poorly described when comparing the experimental and theoretical curves.2

Figure 1.10 – Experimental and difference

(experimental-minus-theoretical) radial distribution curves, P (r)/r,

from the GED refinement of C(SiBrMe2)4. Before Fourier inversion,

data were multiplied by s exp
(

−0.00002s2
(ZC−fC)(ZBr−fBr)

)
.

The experimental MIC exists over a finite range of approximately 30 to 250 nm−1

for both the apparatus formerly in Edinburgh and the apparatus in York. This

creates a problem in the Fourier transform which assumes a wave starting at

s = 0 nm−1 and extending infinitely. For the purposes of this work the MIC

is, therefore, supplemented by a dampening equation at s values below and

above the limits of the experiment, allowing a Fourier transform to be performed.

An example of the equation used to calculate the Fourier transform is shown in

Equation 1.13:
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1.2 GED theory

P (r)

r
= A

∫ ∞
0

sImol(s)

|F (s)|2 sin(sr)ds , (1.13)

where A is a scaling constant, and F (s) the weighted scattering factor.33 The

weighted scattering factor used for all refinements in this work is the combination

of scattering factors from the two most significant scatterers in the molecule. For

the refinement of C(SiBrMe2)4, those two atoms are carbon and bromine. This

choice does not affect the refinement of the structure, but changes the appearance

of the radial distribution curve.

The desired structure obtained from GED, or any other structural technique, is

the lowest energy structure, referred to as the equilibrium structure (re). Data

from time-averaged GED experiments give average positions of the atoms during

the experiment (ra). Unfortunately, due to the vibrations of the molecule these

distances are not equivalent and the correction to achieve re from ra cannot

be known exactly; only approximations to bring the refined structure as close

as possible to re can be made. Correcting this structure, to produce a good

approximation of the equilibrium form, requires vibrational corrections to be

applied; these are described further in Section 1.4.

The computational model mentioned earlier is written in Fortran, and refined

using customised software called ed@ed.34 Each parameter in the model, written

for the molecule of interest, is refined against the experimental data, in a stepwise

manner, until the best fit is achieved. The amplitudes of vibration for pairs of

atoms within the molecule can also be refined.

1.2.3 Complementary data and the SARACEN method

GED structure determination is, as we have already seen, limited by the amount

of data acquirable from the 1-D diffraction patterns yielded by experiment.

More complex, and less symmetric, molecules often require supplementary data

to be utilised to allow the structure to be fully refined. As the vibrations
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of the atoms during the refinement broaden the peaks seen in the RDC,

similar distances are found under the same peak and cannot all be individually

refined. To obtain the most accurate structure with the data available, a series

of simultaneous equations is employed. For example, in the refinement of

C(SiBrMe2)4 (see Figure 1.6 for atom numbering), the central carbon-to-silicon

bonded distance, C(1)−Si(2) (A) ≈ 191 pm, and silicon-to-methyl-carbon bonded

distance, Si(2)−C(12) (B) ≈ 186 pm are of a similar magnitude, and are found

under the same peak in the RDC (see Figure 1.10). The weighted average based

on the number of each type of distance, and the difference between the distances

was used to describe A and B in terms of two parameters; Equation 1.14 shows

the weighted average (p1) and difference (p2):

p1 ≈
2B

3
+
A

3
p2 = B − A . (1.14)

Distances A and B are then reconstructed as:

A = p1 −
2(p2)

3
and B = p1 +

p2
3

, (1.15)

respectively.

As mentioned in Section 1.1.1 ab initio calculations can be used as a source of

extra data. Optimised structures give a good estimate of the likely true structure

and can be used as a basis for the design of the refinement model. In addition to

this, the SARACEN (Structural Analysis Restrained by ab initio Calculations for

Electron diffractioN) method,25 briefly described in Section 1.1.1, can be used.

For the parameters in Equation 1.14 used in the example refinement, the

average value (p1) refines well from experimental data alone, while the difference

parameter (p2) requires a SARACEN restraint to be imposed, to prevent an

unrealistic value being found.
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Various sources of experimental data can also be included in GED structure

refinements. Previous examples have involved the use of data from X-ray

crystallography,35 liquid-crystal NMR,36 or rotational spectroscopy.37 The

combination of experimental electron diffraction data with data from other

experimental techniques is known as the STRADIVARIUS (STructure Analysis

using DIffraction and VARIoUS other data) method.37

Although useful for some classes of compounds, there are some problems

with the use of experimental data from other experiments. Rotational

spectroscopy, or microwave spectroscopy as it is sometimes known, can provide

accurate molecular structures for simple molecules. However, it only provides

information relating to three moments of inertia, restricting the ability to extract

detailed structural data without resorting to systematic isotopic substitution;

this can be laborious, as well as synthetically complicated. Meanwhile, X-ray

diffraction yields positions of high electron density and so cannot be directly

compared to electron diffraction, although it can often be of use after refinement

as a comparison of the differences between gas-phase and crystalline structures.

1.3 Ab initio quantum theory

The complementary relationship between calculated molecular properties and

experiment is increasingly important as the quality of calculated values

improves. This is only possible through the continued work on improving

theory, improvement of facilities to carry out calculations, and the continual

benchmarking of basis sets and theory against experimental data. The latter

is of great importance as it validates calculations and informs choices when

studying related compounds or structural features. GED, along with other

gas-phase techniques, provides reliable structures, against which calculations can

be compared, and is often used for such benchmarking.

The theory pertaining to the evaluation and understanding of ab initio
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calculations is briefly outlined in this section.

1.3.1 The Schrödinger equation

The derivation of molecular properties from first principles is the goal of ab

initio calculations, and this is done by solving the time-independent Schrödinger

equation (SE), shown in Equation 1.16:38

ĤΨ = EΨ , (1.16)

where E is the energy of the molecule, Ĥ is the Hamiltonian operator, and Ψ is

the wavefunction, which describes the quantum state of the molecule. The entire

molecule is represented by this single wavefunction. The solution of this equation

provides the molecular properties of interest.

Five separate terms comprise the operator: both the kinetic energies of the

nuclei (T̂n) and the electrons (T̂e) within the molecule, the potential energy of

the electronic repulsion (V̂ee), nuclear repulsion (V̂nn) and the nuclear-electronic

attraction (V̂ne). This is shown in Equation 1.17:

Ĥ = T̂e + T̂n + V̂ne + V̂nn + V̂ee . (1.17)

To solve this, for all but single electron systems, is impossible, requiring

approximations to be employed. The Born-Oppenheimer approximation states

that due to the difference in mass between nuclei and electrons, nuclei can

be considered stationary with respect to the electrons. The stationary nuclei

therefore have a kinetic energy of zero, and a constant potential energy between

the nuclei. The components of the resulting Hamiltonian operator are shown in

Equation 1.18.
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Ĥel = T̂e + V̂ne + V̂nn + V̂ee , (1.18)

After invoking the Born-Oppenheimer approximation, the system can still only

be solved for one-electron systems as the increase in complexity upon addition

of interelectronic effects does not allow an exact solution to be found. For it to

be possible to solve an approximation for multi-electron systems, it is assumed

that the electrons are independent of each other, allowing the combination of

one-electronic wavefunctions to create the full electronic wavefunction (Equation

1.19).39

Ψ(r1, r2, r3, . . . , rN) = ψ(r1)ψ(r2)ψ(r3) . . . ψ(rN) =
N∏
i=1

ΨN(ri) . (1.19)

The electrons do however interact, and failure to incorporate this into calculations

leads to vastly incorrect energies. Hartree-Fock theory is one method used to

account for this.

1.3.2 Hartree-Fock self-consistent field theory

The approximation central to Hartree-Fock theory (HF) is that the electrons exist

within an average electric field, with each electron feeling the effect of (n − 1)

electrons (n = number of electrons), allowing the SE for each electron to be solved

individually for the stationary nuclei.39

An approximate guess at the form of the wavefunction is computed and the result

is the input for the next calculation. This progresses iteratively until the result

of the calculation is sufficiently similar to the input wavefunction, at this point

the calculation is converged. Once this occurs the electrons are referred to as

self-consistent, leading to the alternative name for Hartree Fock: self-consistent

field theory. The nuclei are then moved and the calculations repeated; this process
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is continued until a potential minimum is found. One advantage of HF theory

is that it accounts exactly for the electron-exchange energy, which is caused by

the change in sign of the wavefunction of the electron when it is exchanged; this

change in sign is due to the fermionic properties of the electron. HF theory utilises

a Slater determinant to obtain this exactly.

HF theory can produce energy values to within about 1% of experimental values,

although this missing 1% is of vital importance. This lack of accuracy is due to

electronic interactions, which are not sufficiently described using a static field.

This is called electron correlation and becomes more pronounced within areas

of high electron density, where repulsion is far greater than is accounted for

in HF. A number of methods for obtaining structures and energies closer to

the true values exist, often referred to as post-HF methods. Coupled Cluster

(CC) theory, Complete Active Space Self-Consistent Field (CASSCF) theory,40 and

Møller Plesset (MP) perturbation theory41 are examples of these. Only MP is

discussed here as that is the theory utilised in this work.

1.3.3 Møller-Plesset perturbation theory

The work of Møller and Plesset proposed that HF was a zero-order

approximation of the exact solution, with an infinite number of terms in the series

required to reach the exact solution.41 Although this is obviously impossible to

carry out, each further term in the series should bring the calculated energy closer

to the exact value. Increasing the number of terms increases the accuracy of

the calculation, but also increases computational time. A compromise between

computational time available and degree of accuracy required will always be

needed; this is common to all computational techniques.

In this work MP242 (2 is the order of the perturbation) is used as this gave

the best compromise between speed and accuracy for the required calculations;

however, higher numbers of perturbations can also be used (e.g. MP343, MP444).

To reduce the computational time even further MP theory is often only performed
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upon valence electrons using a pseudopotential to approximate the effect of the

core orbitals. The electrons in these low-lying orbitals are not involved in any

chemistry, but failure to model them leads to a poor description of the more

important valence electrons as the electron-electron repulsions are neglected. To

model these core electrons explicitly a large number of orbitals would be needed

and this is computationally expensive. The pseudopotential considers all of the

core electrons collectively, rather than treating each electron explicitly, which will

still provide good results but at a reduced cost.39

1.3.4 Basis sets

A basis set is a set of functions used to create molecular orbitals (MO). A

MO describes the electronic behaviour within a molecule. This description

is complete if using an infinite number of functions, called a complete basis

set, which is impossible. However, for the purposes of any calculation an

approximate MO can be created using certain sets of functions. The selection

of basis set is dependent upon the atoms within the studied molecule, as well as

the accuracy required.

The majority of functions used to describe these atomic orbitals are Gaussian,

as these are computationally simple, and therefore aid in the reduction of

computational time. The combination of a number of different Gaussian peaks

is used to approximate each AO and ultimately the full MO.

Several different basis set types were used in this work, such as 6-311++G**,

LANL2DZ and aug-cc-pVDZ. Each has its own merits, as will be outlined below;

the basis sets chosen often depend on the system being studied.

1.3.4.1 Pople-type basis sets

Split-valence basis sets separate the orbitals into core and valence parts. This is

common to many basis-set types, but in Pople-type basis sets, the core orbitals
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are described by some number of basis functions, with the more important

valence orbitals described by other basis functions. 6-31G45, 46 is an example of

a Pople-type basis set, where one constructed Gaussian set is used to describe

the core orbitals, consisting of 6 Gaussians held at fixed ratios (contracted). The

valence orbitals are described by two different constructed Gaussians, one of 3

contracted Gaussians and the other of 1 contracted Gaussian.

The basis set 6-311+G*47, 48 has been used for molecular dynamics (MD)

simulations later in this work. The + sign denotes that diffuse functions are

included, increasing the volume of space considered in which electrons can exist.

This is especially useful when dealing with anions or electron-rich areas. The

* denotes polarisation, which is the addition of extra orbitals of higher angular

momentum.

1.3.4.2 Dunning-type basis sets

Mentioned earlier, aug-cc-pVDZ49, 50 is an example of a Dunning-type basis set.

These basis sets are more flexible than Pople-type ones due to the use of separate

exponents for the s and p orbitals, but are computationally more expensive

because of this. As with the Pople-type basis sets, the Dunning-type basis sets

are split-valence.39

These basis sets contain successive, increasing shells of polarisation functions,

resulting in the Hartree-Fock energy converging as the number functions

increases. For example, the minimum basis required to describe a 1s, 2s and 2p

orbital is five functions. A double zeta (DZ) basis set would use 10 functions, a

triple zeta (TZ), 15. This presents the opportunity to extrapolate to a theoretical

infinite basis set from calculations run at, for example, TZ,49, 50 QZ49, 51 and 5Z,52

representing 3, 4 and 5 times the number of functions in the minimum basis,

respectively.
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1.3.5 Density functional theory (DFT)

DFT utilises electron density as its main description of molecular structure. First

proposed by Hohenberg and Kohn in the early 1960s,53 it is dependent on three

spatial variables (x, y and z) describing the density of electrons. Compared to 3N

degrees of freedom in true ab initio calculations, the need to describe only three

parameters results in shorter computing times.

Theoretically, DFT should be able to produce exact representations of

ground-state parameters for any system by utilising a functional to describe the

electron density. However, this functional is not known and all DFT calculations

are based on approximations of the exchange-correlation potential. As a result,

DFT approximates electron correlation as well as electron exchange, which HF

theory obtains exactly. Luckily even simple approximations such as the Local

Density Approximation (LDA)53 will, for most cases, yield good results for this

exchange-correlation potential. Within LDA the Hamiltonian operator is replaced

by another operator, which involves the kinetic energy of a homogeneous gas

cloud. This is a good approximation for systems such as metals which contain a

sea of electrons.

For molecular systems, however, LDA does not give such good results. The

Generalised Gradient Approximation (GGA) provides a better fit. GGA

calculates an approximation from the density at the coordinate of interest, but

also considers the gradient of the density at that point.54, 55

1.3.5.1 Time-dependent density functional theory

Time-dependent DFT (TD-DFT)56 is a variation of DFT used to evaluate processes

occurring over time. A large proportion of spectroscopy involves exciting

molecules from their ground states, studying the absorption or emission of

radiation. The pathways of relaxation after excitation can be considered using

TD-DFT, evaluating the response of electron density to excitation over time. In
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Chapter 5 of this thesis, TD-DFT is used to study the dynamics of a system over

a few picoseconds.

1.3.5.2 Hybrid DFT

While the ability of DFT to reduce computational time is highly desirable, the

need to approximate electron exchange is a significant drawback. Similarly, while

the ability of HF theory to obtain electron exchange exactly is useful, it ignores

electron correlation. The combination of parts of both theories can provide a

best-of-both-worlds situation, where the computation time is comparable to that

of HF alone, but the results are more accurate than for pure DFT alone. These

combinations are known as hybrid DFT. Hybrid DFT combines weighted parts of

each of HF, LDA and GGA theories. The weightings are determined empirically

from sets of test molecules.

DFT is a semi-empirical method as the only way to test the effectiveness of

a functional is to compare to sets of test molecules already experimentally

determined. One method, for which this has been done extensively, is

B3LYP.57, 58, 59 An example of a hybrid DFT functional, B3LYP is the most used

functional, due to its relatively low computational cost; it has been benchmarked

so often that credible results are more likely.

1.3.6 Molecular dynamics

Atomic movement in molecules can be modelled using molecular dynamics

simulations. Propagating a molecule in set time increments, computing forces

at each step, allows molecular motion to be simulated.60

As described in Section 1.2 the gas electron diffraction data we collect are a

representation of the time-averaged structure of the molecule being studied.

Molecular dynamics (MD) simulations use Newtonian mechanics to determine

the positions of atoms within the molecule over time. The resulting trajectory can,
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therefore, be used to obtain time-averaged theoretical atomic positions which are

closely comparable to the results of GED experiments. The field of molecular

dynamics is varied and the approach taken is dependent upon both the size of

the species being studied, and the accuracy desired from the simulation. For

the purposes of this work, isolated molecules with a small number of atoms are

studied and so time-dependent density functional theory (TD-DFT) can be used.

At each time step a single-point energy calculation computes the forces acting

upon the atoms of the molecule. A separate molecular dynamics code propagates

the molecule over the defined time step based on these computed forces. This

idea is explored further in Chapter 5, where molecular dynamics simulations are

used to calculate distance corrections for GED experiments, allowing equilibrium

structures to be approximated.

1.3.7 Ab initio packages used

To be able to carry out the types of calculations mentioned, commercial quantum

chemical packages are used. Gaussian 0961 is used because it can perform a wide

range of calculation types (HF, DFT, CASSCF, etc.). In this PhD, Gaussian has

been used for all ab initio calculations. It has been used to identify lowest energy

conformations, to calculate frequencies of vibration of interatomic distances, and

to perform single-point TD-DFT calculations in conjunction with the molecular

dynamics package Newton-X.

1.4 Vibrational corrections

As already discussed, structural parameters from GED and from ab initio

calculations are not immediately comparable as electron diffraction gives a

time-averaged structure, while computational studies yield minima on the

potential-energy surface. In an equilibrium structure bond lengths often differ

from those observed in ED. The bond may be longer or shorter, depending on
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the nature of the bonding, and the complexity of the vibration.62, 63 In Figure 1.11

a ”shrinkage” of the bond distance can be seen for a linear triatomic molecule.

The equilibrium structure is a linear arrangement of the atoms; however, when

the molecule bends, the distance between the outermost atoms is shorter than

the sum of the two bonded distances. This is true in every instance apart from

when the molecule is linear. The average distance (ra) is therefore shorter than

the equilibrium distance (re).

Figure 1.11 – Apparent contraction of triatomic non-bonded distance.

For the symmetric bend shown, the interatomic distance between two

outside atoms is less than 2re for all points except when linear.

Resulting average non-bonded distance ra is shorter than re.

Corrections can be calculated and applied to the GED structure to produce an

approximate equilibrium structure from the experiment. Such corrections are

usually obtained using equations of motion coupled to force constants calculated

using ab initio methods. Although effective for the majority of species studied,

failings in the approach are found in the event of large-amplitude or anharmonic

vibrations, which are poorly described as they move far from equilibrium.64

Further discussion, as well as an alternative method of calculating vibrational

corrections utilising MD simulations, is covered in Chapter 5.
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1.5 Supersonic expansion

Traditional GED experiments study the structures of molecules at room

temperature or at the temperature to which the sample is heated. An effusive

nozzle, that is one with a Knudsen number > 1, is used. The Knudsen number

is the ratio between the mean-free path of the sample molecule to the orifice

diameter of the nozzle in this case. Introducing a sample through an effusive

nozzle does not appreciably impact the temperature of the sample, as relatively

few collisions occur as the sample travels through the nozzle orifice. Molecules

introduced in this way, unless they possess very strong intermolecular attraction

(> approximately 10 kJ mol−1), experience little-to-no force from surrounding

molecules. As relatively few collisions occur, the energetic spread of the

molecules is large, with a Boltzmann distribution of states.

Supersonic expansion, a schematic of which is shown in Figure 1.12, impacts the

temperature of the sample by adiabatic expansion from a relatively high-pressure

to a low-pressure environment.65 A small orifice, less than the mean free path of

the molecules, causes a large number of collisions thereby increasing the velocity

homogeneity of the molecules. Figure 1.13 shows the velocity distributions of

both an effusive and a supersonic beam. The increase in velocity is due to the

adiabatic expansion, with the collisions producing a translationally cooled beam.

This means that the molecules are moving in the same direction with similar

speeds. A skimmer, as shown in Figure 1.12 selects the central section of the

beam, to intersect with the probe, which in the case of GED is a beam of electrons.
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Figure 1.12 – Schematic diagram of a supersonic nozzle assembly.

Gas in the reservoir (A) has a Boltzmann distribution of velocities;

however, upon adiabatic expansion into a low-pressure environment

(B), through a small aperture, the translational temperature is

reduced and velocity distribution narrowed. The most translationally

cooled part of the beam is selected using the skimmer (C).

Figure 1.13 – Graph showing the velocity distributions of an effusive

beam (blue) and a supersonic expansion beam (red).
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2.1 Introduction

Although the work in this thesis is concerned with the study of samples using a

time-averaged gas electron diffraction apparatus, it is important to understand

the context of such equipment in the broader field of electron diffraction and in

the study of molecular structure in general.

As mentioned in Section 1.1, the majority of molecular structures determined

by chemists come from X-ray crystallography, where the large amount of data

that can be collected allows complicated structures to be determined using

experimental data alone. Gas-phase structure determination cannot match

this. The rigidity of the solid comes from intermolecular forces packing the

molecules in lattice structures allowing data collected at multiple orientations

to be combined (3-D data). Gases are ’free’ from these forces allowing the

assumption that each molecule exists independently. Although this allows for

greater comparison with ab initio structures, the lack of an orienting force leads

to free rotation of the molecules. Data from GED experiments are, therefore, only

one dimensional, requiring additional data to refine more complicated structures.

Some limitations of GED are due to the equipment used and, as such, the design

and implementation of apparatus is paramount to the discipline. The York

apparatus has been equipped with novel additions to increase the number and

variety of species that can be studied: a telefocus electron gun, heated effusive

nozzle assembly, supersonic nozzle assembly, and charge coupled device (CCD)

camera.

Each of these additions has been utilised in electron diffraction apparatus

previously, but not all in one apparatus. In this chapter an overview of the

features of the York GED apparatus will be given and compared to electron

diffraction apparatus in use by other groups. Improvements will also be

discussed that will lead to the results presented in the following chapters.
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2.2 GED apparatus

Electron diffraction experiments can generally be divided into two categories:

those that use continuous electron beams and those that use pulsed

electron beams. Continuous-beam experiments provide information on the

time-averaged structures of molecules. Pulsed electron beams, producing

bunches of electrons as short as tens of femtoseconds in duration, can be used to

take snapshots of molecular structures. Such time-resolved experiments provide

information on the dynamics of atoms within the molecules allowing ’molecular

movies’ to be pieced together.66

The University of York is unique in housing both a time-averaged and

time-resolved apparatus within the Wann group. Expertise in structure

determination from time-averaged experiments, as well as experience in

designing custom experimental apparatus within the group aided the design

and assembly of a time-resolved electron diffraction (TRED) apparatus as part of

another student’s PhD thesis.67 The two apparatus are complementary; samples

can be tested for suitability using the time-averaged ED apparatus, allowing

optimisation in terms of sample preparation and delivery, and the ground-state

structures of molecules of interest can be determined. In determining the

suitability of samples, the time-averaged electron gun, when operated at a low

beam current (0.1 µA), produces approximately 109 s−1 more electrons than the

time-resolved set-up. Samples of gas require high intensities of electrons to allow

sufficient scattering to quickly visualise a diffraction pattern. If a high-quality

image requires a long exposure time (∼ 20 s) using the time-averaged apparatus,

it could require a prohibitively lengthy data collection using the TRED apparatus.

This section presents a summary of the experimental apparatus being used

presently, as well as descriptions of past assemblies that have served to inform

alterations made to the York time-averaged apparatus. Worldwide, the main

centres of excellence in time-averaged electron diffraction are in Bielefeld,68

Christchurch,69 Ivanovo,70 and Moscow,71 and the apparatus used two of these
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groups are summarised here.

2.2.1 Time-averaged ED set-ups

The apparatus used in Bielefeld, Germany is the most closely comparable to

the York apparatus. It is a modernised Balzers Eldigraph KD-G2 gas electron

diffractometer (Figure 2.1),68 that was originally housed in Tübingen. A telefocus

electron gun is used as a source of electrons, and is similar in construction to

that used in this work. Gaseous samples are introduced using a heated nozzle

assembly, upon which the design for the nozzle built during this PhD, and

described in Section 2.3.3.2, is based. The nozzle assembly in York has had to be

made smaller to accommodate itself within a 2.75” flange translator used here.

The Bielefeld apparatus uses image plates as the detection medium, coupled

with a rotating sector. High-quality data have been routinely acquired on this

apparatus since it was modernised in 2010.16, 68

Figure 2.1 – Photograph of adapted Balzers Eldigraph KD-G2, gas

electron diffractometer in Bielefeld, Germany.68

The apparatus at the University of Canterbury, Christchurch, New Zealand
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(previously the Edinburgh GED apparatus),69 shown in Figure 2.2, is currently

being updated to include a CCD detector as well as the introduction of a

very-high-temperature nozzle to study the fragmentation of molecules. Coupling

the nozzle with a mass spectrometer allows data collected at the electron detector

to be refined with a comprehensive knowledge of the constituent parts of the

molecular beam.70 A similar pairing is possible in York as a mass spectrometer

is present alongside a supersonic nozzle assembly outlined in Section 2.3.3.1.

Electrons are produced from a tungsten filament, as in the York apparatus;

however, the well-collimated beam used for diffraction in Christchurch is

achieved using apertures, resulting in a loss of beam intensity. As described in

Section 2.3.1 the York apparatus uses a telefocus electron gun without apertures.

Figure 2.2 – Photograph of the gas electron diffractometer used at the

University of Canterbury, Christchurch, New Zealand.

2.2.1.1 GED of clusters

In Orsay, France, an apparatus was designed to probe the structure of clusters

produced from a supersonic nozzle using GED.72 Clusters of argon atoms were

produced within the cooled beam produced from the supersonic nozzle; the size

and structure of the clusters were determined. This apparatus is shown in Figure

2.3.
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Figure 2.3 – Simple schematic of gas electron diffractometer used in

Orsay, France.72

Other groups have carried out further experiments using supersonic expansion

nozzles, using the technique to study small-molecule clusters such as SF6 and

H2O.73 The group of Stein, after collecting data using photographic detection and

a rotating sector, altered their apparatus to utilise an electron-counting detector.74

Clusters produced from a supersonic nozzle often vary in size and structure

within the beam.73 Although control of experimental parameters, such as orifice

size or pressure behind the nozzle, can be used to tune the structures obtained,

the production of a consistent size or shape of cluster is unlikely. Park et al.,75

solved this problem using a Paul radio frequency (RF) trap. Mass selected within

the trap, a beam of consistently sized clusters can be produced, allowing far more

accurate structure determination.

Further to this work, the structures of metal clusters (e.g. Ag+
n ) have been

determined using an RF trap in Karlsruhe, Germany.76 Figure 2.4 shows a

schematic of the experimental set-up used. Ions created in the magnetron cluster
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source are steered into the ion trap, through which the electron beam travels.

Approximately 400 images are required, each of 30 s exposure time to produce

a high-quality diffraction pattern.77 The CCD camera behind a phosphor screen

allows this acquisition.

Figure 2.4 – Simple schematic of gas electron diffractometer used in

Karlsruhe, Germany.77

2.2.1.2 Alignment of molecules

As mentioned in Chapter 1.1, the data obtained from GED are 1-D because of the

free rotation of molecules in the gas phase. One solution to this problem is to

orient the molecules allowing 2-D data to be collected. Alignment of molecules

to maximise the available data has been performed by the Centurion group

in Nebraska.78 Femtosecond laser pulses are used to excite a superposition of

rotational states of the sample molecules. In the initial study CF3I was chosen;

a ’spinning top’ molecule, containing a heavy atom and three light atoms in a

carbon-centred tetrahedral structure. The orienting pulse aligns the molecules

along the axis through the central atom and heavy atom, allowing 2-D data to be

obtained. Pulses from the same laser are then used to produce packets of electrons

to probe the structure. The time delay between excitation and probe is varied
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until the most asymmetric pattern is obtained. An example of the diffraction

patterns obtained, and its theoretical counterpart is shown in Figure 2.5.

Figure 2.5 – Diffraction patterns for CF3I depicting (a) experimental

and (b) theoretical data, with an alignment of 60◦ relative to the

electron beam.78

Although carried out using a pulsed electron beam as the structure probe, the

output is a static image of the ground state of the molecule, more comparable

with traditional GED than a time-resolved experiment.

2.2.2 Time-resolved ED set-ups

Time-resolved electron diffraction (TRED) has evolved as a separate field,

motivated by a desire to understand the structures of molecules changing

over time. Initially, mechanical chopping of the beam was performed using

rotating blockers to produce shorter pulses from continuous electron sources.

This was superseded by a ’stroboscopic beam’ approach, where a continuous

electron beam was electromagnetically deflected to give microsecond pulses,

which were used to identify the trifluoromethyl (CF3) radical produced from

multiphoton photolysis of trifluoromethyliodide (CF3I).79 This technique became

unsatisfactory as shorter pulses were required; laser excitation has become

the standard approach to producing femtosecond electron bunches to probe

structure.80, 81
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Unlike experiments that use a continuous electron source, the goal of TRED

is the determination of ’snapshots’ of a molecular structure as it changes over

time. Combining such data together yields a ’molecular movie’ of the structural

dynamics. The dynamics of interest in the molecules are normally studied using

a pump-probe approach.82 A change in structure is initiated using a laser pulse

(pump), which is then probed using a pulse of electrons. By varying the delay

between the pump and the probe the structure at different points in time can be

studied.83

The work of Ahmed Zewail improved the time resolution of the technique from

the nanosecond to the femtosecond regime through the use of a number of

time-resolved diffractometers.84, 85 Figure 2.6 shows Zewail’s UED-3 apparatus.

Improvements were not only in the apparatus used, but also in the theory

underpinning TRED.86

The main benefit of TRED is that dynamics can be, after data refinement,

’observed’ rather than inferred as with spectroscopic techniques; the data

collected giving information on the movement of the atoms within the molecule.

Electron bunches of femtosecond duration can now be produced, presenting the

exciting possibility of viewing chemical reactions and the resulting structural

changes. For a more in-depth summary of time-resolved electron diffraction see

the review of Sciaini and Miller.66
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Figure 2.6 – Schematic of Zewail’s UED-3 apparatus, used to probe

structural changes on the femtosecond time scale.87

2.3 York gas electron diffractometer

The York time-averaged GED apparatus is described in this section. In addition to

more detail concerning the novel additions that have been mentioned previously,

a comprehensive outline of the apparatus as a whole is also provided. The work

presented here builds on that of previous PhD students who have contributed to

the apparatus.11, 88, 89

As mentioned earlier, the main purpose of adapting this apparatus is to increase

the variety of species that can be studied using the GED technique. The

electron gun in York produces a larger number of electrons, as a narrow

and well-collimated beam, than a conventional GED electron gun, as used in

Christchurch; because of this, more diffraction events occur for the same density

of sample molecules. The camera assembly, meanwhile, offers real-time and

almost limitless data acquisition, allowing quick optimisation of experimental

parameters, as well as the combination of multiple images which effectively
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2.3 York gas electron diffractometer

increases the dynamic range of the detection medium. Together these factors

allow a greater data output from low-target-density samples.

Two nozzle assemblies are used within the York apparatus. One allows the

introduction of samples with low vapour pressures (heated effusive nozzle),

while the other allows adiabatically cooled samples to be introduced (supersonic

nozzle). Both nozzles are described in more detail in Section 2.3.3. Using the

supersonic pulsed nozzle requires a carrier gas to achieve the necessary cooling

effect, meaning the sample of interest is often the minority constituent of the

molecular beam. The resulting low target density of gas requires a high flux

of electrons to enable an appreciable diffraction pattern to be collected. The

high-intensity electron beam produced using the York telefocus electron gun

should allow these sample beams to be probed more easily.

A schematic of the York apparatus is shown in Figure 2.7. The apparatus is

made up of four separate vacuum chambers, with approximate pressures of 10−6

mbar, 10−5 mbar, 10−7 mbar, and 10−7 mbar, for the electron gun (A), diffraction

chamber (B), and detector chambers (C and D), respectively. The detector can be

moved within chambers C and D to acquire different nozzle-to-camera distances.

Each of the chambers is pumped using a diffusion pump, with the pumps for

chambers A, C and D connected to N2(l) baffles to maintain an oil-free electron

beam path. The diffusion pump in the diffraction chamber lies far from the

beam line and so is attached to a water baffle. Chambers A-C are backed by

an Edwards E2M80 rotary pump, with D backed by an Edwards E2M30 rotary

pump. Between chambers C and D a gate valve allows the vacuum to be

maintained in A-C, when chamber D is at atmospheric pressure. The ability

to isolate different parts of the apparatus allowed the electron gun to be kept

under vacuum when working with the camera assemblies during the calibration

experiments described in Section 4.3.
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Chapter 2: Electron diffraction apparatus

Figure 2.7 – Schematic of the York time-averaged apparatus. Image

shows experimental assembly used for effusive sample introduction.

Separate chambers of the apparatus are labelled A-D.

2.3.1 Telefocus electron gun

The main components of the York telefocus electron gun are depicted and labelled

in Figure 2.8.

Figure 2.8 – Schematic of the main parts of the telefocus electron gun

in the York time-averaged apparatus, showing the tungsten filament

(A), the copper Wehnelt cap (B), the Wehnelt cylinder (C), and the

anode (D).

A tungsten filament (A; Siemens AGA052) is housed within an oxygen-free

copper Wehnelt cap (B). A current of 2.3 A causes thermionic emission of

electrons from the filament, which is held at potentials up to−40 kV; the electrons

are accelerated towards the grounded anode (D). To control the emission of

electrons, a bias potential is applied between the filament and the Wehnelt cap.
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2.3 York gas electron diffractometer

This potential can be varied from zero to 150 V, controlling the emission of

electrons. Figure 2.9 shows a triode system with a set-up comparable to that used

in our apparatus.

Figure 2.9 – An example of a triode telefocus electron gun. Image

redrawn from an image in the thesis of Stuart Hayes.11

The novel function of a telefocus gun is the focussing effect, which is achieved by

impinging upon the electric field between the cathode and anode with a specially

shaped Wehnelt cylinder (C in Figure 2.8).90 Figure 2.10 shows that the lines of

equipotential electric field (red) are affected by the Wehnelt cylinder resulting in

a lensing effect of the electron beam (blue).

The shape of the cylinder alters the electric field to produce an effect akin to the

optical focussing of light using shaped lenses. Varying the distances between

the filament, Wehnelt cap, and anode of the gun will alter the focussing effect.

This is different from a conventional electron gun, such as the one used in the

Christchurch apparatus or in an electron microscope, where magnetic lenses are

used to focus and steer electron beams; the beam quality is maintained through

the use of a number of pinhole apertures. The resultant beam from a telefocus

gun can, therefore, have a much greater intensity, with a similar beam size to that

generated in a gun using lenses and apertures.
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Chapter 2: Electron diffraction apparatus

Figure 2.10 – A simple schematic of the lensing effect of the Wehnelt

cylinder showing equipotential lines (red).90

After the anode of the electron gun is a series of steering plates, shown in Figure

2.11. Two plates are used to deflect the electron beam up and down, and a further

two are used to steer the beam left and right. The ability to control the trajectory of

the beam is important for the initial set-up of the gun, and subsequent calibration

explained in Section 4.2.1.
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2.3 York gas electron diffractometer

Figure 2.11 – Photograph of the telefocus electron gun used in the

York time-averaged apparatus.

During the course of this PhD the apparatus was moved from Edinburgh to York,

and the opportunity was taken to recalibrate the electron gun. The changes made

to the gun, and the resulting improvement in the beam quality, are outlined in

Section 4.2.

To allow easy alignment of the electron beam, and to aid in the beam profiling

reported in Section 4.2.1, a beam tube (shown in Figure 2.12) can be placed within

the diffraction chamber. The tube consists of two electrically isolated collars,

through which the electrons travel to reach the detector. By varying the voltage

applied across the steering plates, the electron beam can be diverted to hit either

the near or far collar, where a current is recorded. By aligning the beam to initially

strike the collar nearer to the gun, then to strike the far collar, and eventually to

pass through without any current being recorded, the beam is considered to be

aligned through the apparatus and the camera can be positioned accordingly.
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Chapter 2: Electron diffraction apparatus

Figure 2.12 – The brass beam tube used for electron beam alignment

in the York GED apparatus.

2.3.2 Cold trap

Although the focussing of the electrons leads to a well-collimated electron beam,

stray electrons are still produced, which can increase the detectable background.

As part of this PhD a simple cold trap was designed and built in-house (see

Figure 2.13). The trap doubles as both a clean-up aperture (5 mm diameter)

before the point of diffraction, and also acts as a surface onto which the sample

can condense. The trap acts to block all light and electrons from the filament

that is not travelling parallel to the main electron beam, reducing the observed

background at the detector. The light causes a problem at the detector as

the phosphor screen, used to convert incident electrons into photons, is not

sufficiently opaque to block background light from reaching the CCD chip.

The lower the light level in the apparatus, the better the signal-to-noise ratio,

increasing the chances of detecting sufficient electrons at a higher scattering

angle, which are rarer events.

The main function of the cold trap is to condense sample gas after the nozzle to

reduce the chance of multiple diffraction along the electron beam path due to gas

migration. This was suggested as a possible source of inaccurate data at extreme

values of s reported in a previous PhD student’s thesis.11 Background gas already

present in the chamber condenses as well as sample when the trap is cold, further

reducing the pressure in the chamber.
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2.3 York gas electron diffractometer

The trap consists of two main pieces: a copper end piece (A), and a stainless

steel reservoir (B), both shown in Figure 2.13. The copper end piece has four

holes in it. Two for the electron beam to pass through, and two along the axis

travelled by the sample gas jet. The ’sample’ hole is large enough for the heated

nozzle assembly to fit through, allowing the tip of the nozzle to be as close to the

point of diffraction as possible, maximising target density. The first ’electron’

hole is the 5 mm aperture mentioned previously, with a larger hole towards

the camera allowing both the undiffracted beam and the diffracted electrons to

proceed towards the detector.

Figure 2.13 – Photograph of the cold trap used in the York

time-averaged apparatus. The stainless steel reservoir (B) holds N2(l)

to cool the trap. The copper end piece (A), is the surface onto which

the sample condenses.

Liquid nitrogen, which acts as the coolant, is held in the stainless steel reservoir.

The reservoir is designed such that the vacuum present in the apparatus extends

to the top of the reservoir, insulating to some extent the body of the reservoir from

the main chamber of the apparatus. This is necessary so that metal contraction

does not occur at the knife edge of the vacuum seal.
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Chapter 2: Electron diffraction apparatus

The cold trap is in a fixed position, and fits closely to the heated nozzle, ensuring

that the point of diffraction is relatively fixed. As the calibration of the apparatus

required the precise knowledge of the nozzle-to-camera distance, the fixed point

of diffraction simplifies measurement.

2.3.3 Nozzles used in apparatus

Nozzles are required to deliver a beam of gaseous molecules to the point

where diffraction can occur. Many of the samples studied using GED do not

have significant vapour pressures under normal conditions; nozzles designed

to increase the vapour produced are, therefore, vitally important. An effusive

nozzle, with a diameter far greater than the mean free path of the molecule,

results in little or no collisional cooling.91 To a reasonable approximation the

temperature of the sample can be assumed to be the temperature at the tip of

the nozzle and so easily measured using a thermocouple. Our apparatus retains

the ability to perform GED using effusive nozzles, both at room temperature and

heated to more than 600 K. In addition to this, however, we have the capability

with this apparatus to introduce the sample seeded in a carrier gas as a supersonic

beam.

2.3.3.1 Pulsed supersonic nozzle

As described in Section 1.5, the expansion of gas from high pressure to relatively

low pressure through a small orifice results in a cooling effect. Collisions between

molecules reduce the translational, rotational and vibrational energy. Routinely

used in spectroscopy, where molecules are required in the vibrational ground

state, supersonic nozzles have until relatively recently only been used in the field

of GED in the study of clusters. Clusters form upon cooling as the energy of the

molecules is lowered such that weaker interactions can become significant.73

In York a General Valve pulsed nozzle has been combined with a skimmer
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box assembly to form the supersonic expansion set-up shown in Figure 2.14.

This is similar to a Campargue nozzle assembly, although only one skimmer

is employed.92 Work carried out by Bartell et al. suggested that, because of the

high sample density required, two skimmers would not be desirable in GED

experiments.91

Figure 2.14 – Simple schematic of the supersonic expansion nozzle

assembly. The main components are: the skimmer (A), housed within

the skimmer box (B) separating the main diffraction chamber from

the pulsed nozzle (C), and the beam tube (D), to which the box is also

mounted.

An approximation of the cooling possible in the York set-up has been calculated

previously, with approximate temperatures of 2 K translational, 20 K rotational

and 100 K vibrational determined.11

The skimmer box separates the diffraction chamber from the nozzle. The nozzle

chamber, behind the skimmer box, is pumped by a roots blower pump (Edwards

80, coupled to a mechanical booster) to remove the large quantity of gas that does

not pass through the skimmer. To ensure the correct alignment of electron and

sample beams, the skimmer box is connected to the beam tube through which

the electron beam passes.

The skimmer itself admits only those molecules travelling parallel to the nozzle

axis, selecting the most translationally cooled molecules. The velocity spread of

the resulting beam is far smaller than for a corresponding effusive beam. The
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pulsed beam reduces the amount of gas that has to be pumped away allowing

higher pressures to be achieved behind the valve, while maintaining a low

pressure within the skimmer box, and, as explained in Section 1.5, ultimately,

lower vibrational temperature of the sample. No significant changes have been

made to this assembly over that described in the theses of Fender and Hayes.11, 88

No experiments using the supersonic assembly have been carried out in this

work.

2.3.3.2 Heated nozzle

An effusive nozzle capable of heating samples to temperatures of 675 K, has

been designed and built in-house as part of this PhD. The nozzle is heated using

air passed through a threaded in-line heater [Sylvania 3/8” F038821; shown

in Figure 2.15(c)], while Figure 2.16 is a schematic diagram of the nozzle and

shows the direction of travel of the heated air. The hot air passes through the

space between pipes C and D, towards the copper tip (A) of the nozzle, before

passing back between pipes C and B and exiting out the back of the nozzle. A

temperature gradient of about 5 ◦C is maintained between the hotter tip and the

cooler exit point where the sample is attached. This is necessary to ensure no

sample condenses in the nozzle itself, or in the flow controlling valve.
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2.3 York gas electron diffractometer

Figure 2.15 – Schematic of the heating assembly used for the heated

nozzle. The photographs show (a) the PID controller, (b) the variable

resistor, (c) the inline heater, and (d) the heated nozzle.

Figure 2.16 – Schematic of the heated nozzle construction. Red

arrows denote the direction of air flow. Main components are nozzle

tip (A), sample tube [B, 1
8
” Stainless Steel (SS)], central tube (C, 3

8
” SS),

outer tube (D, 5
8
” SS), 2.75” flange (E, SS), air inlet (F, 1

4
” SS), metering

valve (G), and aluminium casing (H).
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The temperature of the air used to heat the nozzle, is controlled using a

combination of a proportional-integral-derivative (PID) controller and a large

variable resistor, shown in Figures 2.15(a) and 2.15(b), respectively. A separate

but identical heated air system is used to heat the sample vial, shown in

Figure 2.17, to give greater control over temperatures directly applied to the

samples of interest.93 This is crucial as we will often work with small amounts

of custom-made samples close to their decomposition temperatures to produce

the highest sample density possible. The separate PID controllers limit the

temperature of the tip of the nozzle and of the sample to± 5 K, while the resistors

provide a hard limit in-line heater temperature.

Heated air exiting the back of the pipe assembly of the nozzle is directed

using the casing, component H in Figure 2.15, to heat the valve controlling the

sample introduction. This casing also acts as the stabilising part of the assembly,

preventing excessive strain being applied to the sample vial, shown in Figure

2.17.

Figure 2.17 – Photograph of the sample vial used with the heated

nozzle.94

2.3.4 Camera assemblies

To collect data, our apparatus is equipped with a camera assembly capable

of being moved within the vacuum. Sealed in a vacuum-tight container, the

assembly is connected to an xyz translator; scanning in the x and y directions is
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performed as described in Section 4.2. In fact two different camera set-ups have

been used during this PhD and they are described below. Translating in the z

direction allows us to alter the nozzle-to-camera distance without changing the

nozzle position; this enables sampling of a sufficient s range. By maintaining the

point of diffraction, more complicated nozzle assemblies, as described previously,

can be used. Data collection can be performed at several nozzle-to-camera

distances; overlapping datasets, where the differences between nozzle-to-camera

distances are well known can be used to check data quality. By refining data

at these known differences, any problems with the experimental data can be

identified.

CCD cameras offer almost limitless data acquisition, instant data quality checking

and greater adaptability to the experiment of choice. As such it is preferred here

over other detection media, such as photographic films and image plates.

2.3.4.1 Rigaku camera

The camera used at the beginning of this PhD was a prototype of the Mercury

II detector, made by Rigaku. The Rigaku assembly is shown in Figure 2.18.

Cooled by room temperature water, using thermoelectric cooling, the CCD chip

can reach temperatures as low as −40 ◦C, reducing noise in the data obtained.

The camera is held within a vacuum-tight cylinder, that can be placed within the

vacuum of the apparatus. Mounted on a translator parallel to the electron beam

the camera can record data at many distances from the fixed point of diffraction.

In other apparatus data acquisition media often remain stationary, with the point

of diffraction changed. If using a more complicated assembly to introduce the

sample, this need to move the nozzle can be problematic.
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Figure 2.18 – Photograph of the Rigaku camera. The silver colour on

the face (A) is the aluminium coating of the phosphor screen. The

beam stop and holder (B) allow incident electron beam to be

measured down to picoamps. The assembly is housed within a

vacuum-tight tube (C), mounted on an xyz translator (D).

The CCD chip is a 1024 × 1024 pixel Kodak KAF-1001, with each square pixel

0.024 mm wide; the CCD chip is, therefore, 25 mm wide. For a complete

diffraction pattern to be collected a larger detection surface is needed. To achieve

this, the chip is connected to a phosphor screen via an optical taper. The value

of this taper is 3.17 allowing a circular detector face of radius 39 mm. Excess

electrons are carried to ground by an aluminium layer (50-70 nm) covering the

phosphor screen. To perform a similar job to a rotating sector, a radial apodising

filter, darker in the centre and lighter at the edges, is placed behind the phosphor

screen, limiting the intensities recorded at smaller scattering angles. This is

necessary to allow data to be collected at larger scattering angles.

2.3.4.2 Stingray camera

Due to complications with the electronics of the Rigaku camera set-up, that began

on moving from Edinburgh to York, a new camera assembly was designed and

built in-house (Figure 2.19). To maintain the ability to record data at multiple

nozzle-to-camera distances, this assembly was designed to be similar to the

Rigaku camera outlined previously. Figure 2.20 illustrates the assembly and

relative distances between components. A Stingray F-146B CCD camera (D),
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paired with a Schneider 17 mm focal length lens (E), sits at atmospheric pressure

within a vacuum tight cylinder (C) with 98 mm diameter glass viewport (B).

By placing the phosphor screen (A) 15 mm in front of the viewport, the image

recorded by the camera is of maximum diameter 105 mm. The camera and lens

are placed on a runner (G) so the camera-to-phosphor distance can be altered to

best focus the image.

Figure 2.19 – Photograph of Stingray camera assembly attached to the

xyz translator.

The new assembly differs from the Rigaku camera, in that the components are

separate and easily replaced if, for example, the high beam current from the

telefocus electron gun impacts directly on the phosphor screen. Unfortunately,

the Stingray camera used does not have the same low-light sensitivity as the

Rigaku camera, resulting in a larger intensity of electrons required to collect

refineable data. The new assembly is 30 mm shorter than the Rigaku assembly,

which can be a benefit when using the deep beam stop, shown in Figure 2.19. The

deep beam stop is required for high beam intensities, but its length prevented the

gate valve from being closed when used with the Rigaku assembly. An apodising

filter is also present in the Stingray camera assembly. Held behind the phosphor

screen, the filter can be removed or changed if needed for a particular experiment,

and performs the same function as for the Rigaku camera.

Alterations were required to the extraction code described in Chapter 3 to

accommodate the Stingray camera. This is because of the different number of

pixels as well as the change in pixel size compared to the Rigaku camera; the

81



Chapter 2: Electron diffraction apparatus

Figure 2.20 – Schematic of the Stingray camera assembly. The P22

phosphor screen (A), is held 15 mm in front of the glass window (B).

Within the vacuum tube (C), the CCD camera and lens (D and E,

respectively) sit on a holder (F), which is attached to a track (G) to

allow movement of the camera.

changes are explained in Chapter 3. Changes to the mask corrections were also

required due to the rectangular shape of the CCD chip and different intensity

variation within the acquired image, requiring new limits of exclusion of pixels

to be coded.

2.3.5 Overview of the apparatus

The temperatures reached using the heated nozzle are relatively low in

comparison to very-high temperature nozzle assemblies previously used to study

GED of salts,95 but will provide a consistent and easily controlled temperature for

samples that can be studied within this apparatus. This in conjunction with the

data acquisition possible using the CCD camera and the intense electron beam

will allow the study of particularly low vapour pressure samples.

The York apparatus with these novel additions presents an opportunity to

increase the range of compounds studied. Traditional GED structures can be

obtained for a number of species that previously lacked the necessary vapour

pressure, while the selection of specific states within molecules of interest should

now be possible. This could be achieved by combining the cooling of the
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supersonic expansion with an excitation laser, which could be incorporated into

the apparatus. Time-resolved structures obtained from other apparatus rely to

some extent on structures obtained from these time-averaged experiments and,

as such, both types of experiment performed in York are complementary.

This potential to both increase the variety of samples suitable for study, but

also the nature of the study will increase the continuing applicability of the

time-averaged GED technique to the study of structure.
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Extraction software
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3.1 Introduction

Once a diffraction pattern has been collected, a number of steps are taken to

convert the raw pattern to an intensity curve suitable for use in a refinement.

These steps are termed data extraction, and are different for each experimental

set-up; this is because of the custom nature of the GED apparatus. Different

experimental conditions, as well as different detection media, must be considered

when extracting the data, to allow both a refinement and datasets comparable

between experimental groups.

Extraction and treatment of data collected using the York time-averaged GED

apparatus is outlined in this chapter. Novel extraction code (EDSTRACT,

Appendix B) has been written and here I describe the code, as well as testing

and calibration that has been performed.

Frequently used extraction scripts that are described in the literature, such as

xpkg,9 are not suitable for use with the camera assemblies in York; the limitless

data acquisition and custom design of the cameras require an adapted code

that can be improved as the understanding of the apparatus and the different

techniques used becomes apparent. As outlined in Section 2.3.4, the camera

assemblies we have used contain apodising filters to perform a similar role to

a rotating sector, effectively reducing the scattering intensities at narrower angles

so that data at wider angles can be detected.

The xpkg code was used with the Edinburgh GED apparatus (now in New

Zealand), where the rotating sector is centred with respect to the scattering

pattern using a beam stop. The detected beam current, passing through a 0.1 mm

diameter aperture, is maximised giving the centre of the beam. The beam stop is

fixed at the centre of the rotating sector. In the York apparatus, the centring of the

beam stop relative to the optical filter presents a different problem as the filter is

fixed and the cup placed approximately over the centre of the camera. This is one

of the main apparatus-specific features in EDSTRACT, with the other being the
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need to treat malfunctioning pixels and to mask damage to the phosphor screen.

As well as using the Rigaku camera described in Section 2.3.4.1, the Stingray

designed camera assembly described in Section 2.3.4.2 has also been used to

acquire diffraction images. The required alterations to the code, to account for

the differences between the camera assemblies, are outlined in Section 3.2.2

Within this chapter calibration of EDSTRACT with data collected using the old

Edinburgh apparatus is performed. To prove the extracted data are of high

quality, suitable for refinement, and to illustrate the steps taken in the extraction

code, benzene data recorded using the Stingray camera assembly are used.

3.2 Data extraction

For data collected using the York apparatus to be of use they must be formatted

for input into the existing refinement software ed@ed.34 To reach this point

the data must first be treated as outlined in Figure 3.1.96 All of the extraction

software used was written in MATLAB and is presented in Appendix B. The

EDSTRACT software uses a central script which calls functions to carry out the

actions needed. The central script is called Extract_2.m, with the functions:

fOpenSSED.m (used with Rigaku camera), fExtract2array.m, fExtract2tot.m,

fMaskcorrector.m and fMaskCreator.m.

The central script also calls two small files, one containing a list of constants

(sConstants.m), such as the mass of an electron, and the other containing

information about the particular data being extracted (sExperimentalInfo.m). The

electron wavelength, nozzle-to-camera distance, limits of image from which to

extract data, and the pixel size of the camera can all be altered in this file.
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Figure 3.1 – Flowchart depicting the main functions of the extraction

software EDSTRACT.
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Three images are required to produce refinable data: an image of the diffraction

pattern of the sample studied [Figure 3.2(a)], a background image [Figure 3.2(b)],

and an argon scattering image [Figure 3.2(c)]. All three are collected using

the same exposure time and beam intensity. The argon data obtained are

used to perform a number of corrections that would usually be applied after

the extraction of data, as well as accounting for the misalignment and precise

correction for the optical filter.

Figure 3.2 – The three images required for extraction of experimental

data. The images are for (a) benzene, (b) no sample (background),

and (c) argon.

Experimental data for the sample of interest are recorded for an exposure time

which is dependent upon the volatility of the sample and the intensity of electron

beam being used. The light detected at the CCD camera is not all as a result of

diffraction from the gas sample; it also contains light from exposed ion gauge

filaments, and from the electron gun filament. Steps are taken to reduce this

background light, but it cannot be eradicated entirely. Stray electrons can also be

diverted from the central beam trajectory by background scattering with any gas

present in the vacuum, or any magnetic field that may be present. To account

for these anomalies a background image is used that is acquired under the

same conditions as the experimental data, though without sample gas present.

Subtracting the background image from the sample diffraction image produces

a ’data only’ image for refinement. The background-corrected sample image is

divided by the argon (minus background) intensities, pixel by pixel. The resulting

image (Figure 3.3) is used for the extraction of data.
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Figure 3.3 – Background-subtracted benzene divided by

background-subtracted argon image.

An approximate centre is chosen by visual inspection of the image, giving a

starting point for comparison. The centre is calculated first in the x direction

and then in the y direction. For the centre with respect to x, a rectangle of

pixels is considered with dimensions [9 (y) × 280 (x)], 320 pixels in the x

direction from the proposed centre. Comparison of the extracted intensities,

averaged over the 9 pixels, fitted with a second-order polynomial provides

the centre. The algorithm is run twice to find both the centre in the x and y

directions. The rectangle of pixels considered during the centring process can

be adapted depending on the species studied, where prominent rings closer to or

further from the centre can be used to produce a more reliable centre. The full

extraction of data using EDSTRACT completes in approximately 30 s, allowing

experimentation in the centring algorithm to obtain the best centre. Within

the code, the sample-divided-by-argon diffraction pattern can be extracted for

specific sectors rather than the whole pattern, which can be compared in a graph

of intensity vs. s value. If the extracted sectors match well, then a good centre has

been found.

Once the centre is found, each pixel is grouped in s steps of 2 nm−1, relative to

the centre, with the intensities of the pixels averaged over the number of pixels in

each group. Each data point is then multiplied by a value equal to 1.0 minus
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the corresponding scattering factor for argon at that s value. The scattering

factor accounts for the argon scattering in the collected argon image, levelling

the sample intensities collected, which is the format that the ed@ed refinement

code requires.

The argon scattering patterns are collected using the same experimental

conditions as the sample and, as such, can initially flatten the intensities so

as to reveal any data present, as well as correcting, in conjunction with the

known scattering factors for argon,97 for problems in the experiment. Corrections

applied to data collected using image plates or photographic film include a plate

flatness correction due to the detection media not being truly perpendicular to the

incident beam, a sector correction to account for the rotating sector employed, as

well as the possible misalignment of the centres of the beam and sector. The argon

data accounts for the problems seen in the intensities collected, such as badly

functioning pixels, or non-uniform phosphorescence from the phosphor screen;

however, any distortion to the scattering angle of the collected data features

would not be corrected this way. One of the errors that can cause small variations

in the s values collected is the camera face not being perpendicular to the incident

electron beam. The data collected using both Rigaku and Stingray camera set-ups

showed no improvement in the refinement goodness-of-fit R factors when a

plate-flatness correction was applied. As such it is not implemented in the code,

nor used for the refinements presented in Section 4.3.

The impact of the argon data and scattering factors are shown in Figure 3.4.

Data extracted from the benzene image alone [Figure 3.4(a)] show features

representing peaks and troughs in intensity; however, the relative intensities are

impacted by the drop off in intensity with scattering angle, despite the optical

filter limiting exposure at narrow scattering angles. The known scattering of

argon with respect to s is roughly an exponential decay, with no additional

features. The argon data collected [Figure 3.4(b)] using these camera assemblies

differ greatly from this, illustrating the effect of the optical filter. The final

multiplication by the scattering factors at particular s values produces the ’uphill
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curve’ suitable for reading into ed@ed, as shown in Figure 3.4(c).

Figure 3.4 – Extracted intensities for (a) a benzene image, (b) an argon

image, and (c) the fully corrected benzene intensities suitable for

refinement in ed@ed.

The pixels in a CCD camera vary in quality. The majority of imperfections are

corrected using the argon image and scattering factors, although some pixels lie

behind structural barriers, such as the beam stop, rendering their data useless, or

malfunctioning so badly as to be uncorrectable. These pixels must be removed

during the extraction process. An initial mask to denote pixels as either 1 (to be
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used) and 0 (not to be used), is created using the function fMaskCreator.m, before

running the EDSTRACT central script. Two images collected with a sufficiently

bright diffracted electron beam, in which the beam stop and arm can be clearly

seen, are tested to see whether the recorded intensities fall within set limits. If the

recorded pixel intensity lies outside of the set limits, the pixel is set to 0. During

subsequent extractions of data, this mask is updated using fMaskcorrector.m,

called within Extract_2.m. By comparing each pixel to its four neighbours, with

which it shares an edge, shown in Figure 3.5, the intensities of ’bad’ pixels can

be identified and removed for individual experiments. The intensities of the four

pixels are averaged and the standard deviation (σ) found. If the intensity of the

tested pixel lies outside of the average value ± σ, it is set to 0. These faulty pixels

are removed from all subsequent actions carried out in the extraction code.

Figure 3.5 – Diagram showing the pixels compared in

fMaskcorrector.m. The intensity of the central pixel (red) is compared

to four edge-sharing pixels. The values i and j are the indexing values

for the array of intensities in MATLAB.

Any contraction or stretching of the sample data due to an aberration in the

camera, or due to non-linear optical manipulation, as is the case for the Rigaku

camera’s optical taper (see Section 4.3.1), cannot be accounted for using these

argon corrections. The correction only allows for intensity variations between

pixels to be corrected, not to account for any manipulation of the electrons or light
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prior to detection. Incorrect s values are then obtained that show contraction of

the data at larger s values in the image. Corrections for this can be applied using

a different method as explained further in Section 4.3.

In the future, the optical taper could be fully described using a mask to cover

the camera face, with a large number of holes to allow radiation, or electrons, to

reach the phosphor screen and be detected. By comparing the acquired image

to the known mask, a correction could be applied to the data to correct for the

taper. Unfortunately, during the timescale of this work, this was not possible for

the Rigaku camera and, in any case, the problems with the internal electronics of

the Rigaku camera mean that it will probably not be used in the future.

3.2.1 Extraction software testing

Cyanuric chloride (Figure 3.6) was chosen as the test molecule for EDSTRACT.

Previously studied,64 the extracted intensities and resulting refinements can be

compared.

Figure 3.6 – Diagram of the structure of cyanuric chloride (C3N3Cl3).

To test the EDSTRACT code, an image recorded several years ago, of the

diffraction pattern of cyanuric chloride, using the former Edinburgh apparatus

was re-analysed. The EDSTRACT extracted intensities were compared with

the previously extracted intensities from xpkg.9 Intensities extracted using
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EDSTRACT matched those extracted using xpkg very well. Both extracted

intensities are shown in Figure 3.7.

Figure 3.7 – Comparison of data extracted using xpkg (black line) and

EDSTRACT (red line). Extracted intensities have been shifted in the y

direction to avoid overlap and aid comparison. Data are for cyanuric

chloride (C3N3Cl3).

The extracted data were then used to refine the structure using the ed@ed

refinement code, producing goodness-of-fit R values comparable to those

obtained from the original refinement using xpkg extracted data.64 This is further

evidence that the extraction of data using EDSTRACT is working correctly.

The comparison only accounts for the extraction of intensities in a sample image.

As data were recorded on a different apparatus using a different imaging process,

it does not deal with any of the physical problems associated with the two camera

assemblies used in York. The pixel size and the nozzle-to-camera distance were

already known for this sample image. For the York cameras these parameters

needed to be found; this work is described in Section 4.3.
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3.2.2 EDSTRACT for Stingray camera assembly

As described in Section 2.3.4.2 the Stingray camera assembly samples a larger

image, and the output images are rectangular of 1038× 1388 pixels. The Stingray

camera cannot output .raw images as are recorded using the Rigaku camera.

However, the bitmap images recorded can be manipulated for use in the same

way as the raw images, by combining the three colour layers of the bitmap image.

The pixel size used for the new camera assembly is 0.0501 × 0.0501 mm. These

values have been deduced from extractions performed in Section 4.3.2.1. This

pixel size is only correct for the current set-up of the camera assembly; any change

in camera position will require a new calibration.

Although the sensitivity of the Stingray camera at low-light conditions is poorer

than for the Rigaku camera, the intention of the apparatus remains the same.

Less volatile and seeded gas beams are the intended target for this apparatus,

and this and other commercially available cameras provide an alternative way

of maximising the data collected. Binning of the data increases the intensities

collected with an associated loss in spatial resolution. The intensities of four

neighbouring pixels are combined to create a ’super pixel’, shown in Figure 3.8.

This allows rare events, such as higher angle scattering, to be imaged over a

shorter period of time. The data for the studies reported here are collected in

2 nm−1 steps of s value; 2 × 2 binning would not adversely affect the resolution

of the experiment.

Binning of data is only required if the vapour pressure of the sample gas is too

low to produce a discernible diffraction image. None of the studies reported in

this work have required data binning as either the samples are already volatile

enough to allow a high-quality diffraction image to be collected without the need

for binning. Further investigations of less volatile compounds will be aided by

the use of binning, especially for samples that require heating to close to their

decomposition temperatures to attain the required vapour pressure.
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Figure 3.8 – Simple schematic of binning that could be used during

image collection in the Stingray camera.

3.2.3 Overview of EDSTRACT

The extraction code has been shown to provide comparable results to those

obtained from xpkg, allowing it to be used to obtain refinement quality data from

GED patterns. Other benefits of the new extraction code lie in the ’openness’ of

the code. It is not a black box and the removal or inclusion of specific scripts to

alter the handling of the data is relatively simple.

The extraction code tested and explained in this Chapter will not only serve as a

tool for the extraction of data from this apparatus, but also as a starting point for

extraction code further modified within the research group. The use of Matlab

allows a variety of inbuilt functions and a network of other users exchanging

scripts to be utilised. The availability and ease with which the code can be

experimented with and adapted will allow EDSTRACT to be applicable for not

only the time-averaged domain, but also the time-resolved experiments which

will be undertaken within the group.
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4.1 Introduction

The York GED apparatus has been part of three former PhD students work,11, 88, 89

with improvements made to the apparatus and characterisation performed at

each stage. Unfortunately, up to the start of this PhD, data of refineable

quality had not been routinely produced from the apparatus. Alterations to the

apparatus as part of this work, have aimed not only to improve data quality to

a point where data obtained were suitable for refinement, but also to include

the addition of custom nozzles, cameras and data-handling processes, such that

novel GED structures could be obtained. The changes made to the apparatus, as

outlined in Chapter 2, have been optimised and characterised, and are reported

here.

4.2 Electron gun optimisation

Initial work carried out, using a gun set-up equivalent to that described in the

theses of Hayes11 and Fender,88 resulted in beam widths of comparable size

to those measured in their work, where full-width at half-maximum (FWHM)

values of 0.76 and 0.96 mm were reported, respectively. For adequate resolution

of data for structure refinement, a FWHM of approximately 0.5 mm is desirable.28

This section explains the changes made to the gun, the justification for the

changes, and results in terms of the electron beam quality.

4.2.1 Beam optimisation

To improve the focus of the electron beam, small changes have been made to the

gun set-up. Several components within the gun can be moved to maximise the

focus of the beam. Without significant modifications to the gun assembly the

main variables are the distance between the cathode and anode (varied by the
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screw handle outside of the vacuum) and the distance between the cathode and

Wehnelt cap, which can be varied when assembling the gun.

At the start of this PhD the best focus was found to correspond to the limit of the

screw mechanism, bringing the cathode as close as possible to the anode, which

is fixed. Crucially, a global minimum in beam size was not achieved, suggesting

that a better quality beam could be achieved were the cathode assembly able to be

moved further forward. For this to be done the Mu-metal shield that surrounds

the gun, and on which the anode is mounted, would need to be reduced in

length. It was decided that this was impractical unless absolutely necessary

as it could be detrimental to the overall beam quality as well as increasing the

anode-to-detector distance. Other approaches to achieve a similar effect were

then considered. Moving the Wehnelt cap back, relative to the cylinder, would

move the point of greatest focus closer to the gun, as shown in Figure 4.1.90

A B C

Figure 4.1 – Equipotential lines present within a telefocus electron

gun, representing different distances between the Wehnelt cap and

the cylinder. Image redrawn from image in Ref.90

This was also not an option as the Wehnelt cap has already been moved as close
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as possible to the ceramic high-voltage insulator. The entire Wehnelt assembly

could be moved forward, relative to the feedthrough, although this would require

additional pieces to be made and tested. Instead, in an attempt to mimic the

effect of moving the Wehnelt cap backwards, the filament was moved back in

the Wehnelt cap leaving a distance of 0.2 mm between the filament tip and the

plane of the tip of the Wehnelt cap, an increase of 0.05 mm from the previous gun

set-up. This is a very small distance and can only be achieved approximately,

determined using trigonometry. When the filament is 0.2 mm below the plane of

the Wehnelt cap tip, it is obscured by the Wehnelt cap when viewed 300 mm from

the tip horizontally and 120 mm vertically, as shown in Figure 4.2.

Figure 4.2 – Diagram showing the trigonometry required to correctly

place the filament (green) within the Wehnelt cap (orange). All

distances are in mm.

Once in place, the distance of the filament from the Wehnelt cap can be

approximated by observing the bias potential (see Section 2.3.1). The further

back the filament, the lower the bias required to retard the electron beam. This

voltage is dependent, not only on the filament to Wehnelt cap distance, but

also the Wehnelt-assembly-to-anode distance and, therefore, is quoted after the

optimisation performed later in this Section.

After the filament was moved, an improvement was immediately observed with

the best focus at the camera (when at a nozzle-to-camera distance of 120 mm),
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being achieved nearer the midpoint of our variable anode-to-filament distance.

This provides a definitive minimum for this set-up, and a greater ability to

vary the focus for longer nozzle-to-camera distances, which are necessary to

obtain data to refine complicated structures. As the camera is retracted, thereby

increasing the nozzle-to-camera distance, the Wehnelt assembly is moved further

from the anode to maintain electron beam focus.

The beam tube described in Section 2.3.1 is used in the optimisation of the electron

beam. The presence of the collars allows the steering and alignment of the beam

to be performed more simply and quickly as any beam aligned through the tube

will be roughly positioned at the centre of the camera. Also, the full beam current

produced from the gun can be measured at the collar, and this value is needed

when calculating the FWHM of the electron beam reaching the detector.

The beam stop at the detector (Figure 4.3) functions as both a measure of the

current of the electron beam and as a shield for the camera. High beam currents,

of which this gun is capable, can damage the phosphor screen or obscure intensity

rings at wider scattering angles by high intensities of electrons saturating the

camera at narrow scattering angles. The beam stop, as its name suggests, stops

the beam from reaching the phosphor, thus preventing damage. The undiffracted

incident beam strikes a copper Faraday cup located in the centre of the beam stop.

Only the copper Faraday cup is electrically isolated from the rest of the beam

stop and by extension the earthed apparatus. Any electrons hitting this cup are

detectable as a current; a wire passing through a vacuum feedthrough carries

this current to a picoammeter (Keithley 610C), which detects the current reaching

the Faraday cup. By comparing the current at the Faraday cup to the full beam

current detected at the beam collar, the beam size is determined. A full schematic

and more in-depth description of the beam stop can be found in the thesis of

Hayes.11 A deep removable cup is placed in front of the Faraday cup, which

contains a 0.5 mm aperture. The deep cup allows greater beam intensities to be

used. High numbers of electrons can overwhelm the Faraday cup alone, resulting

in a larger background being detected, which thereby reduces data quality. The
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larger cup presents a larger surface area and volume preventing electrons from

escaping and being detected. Only electrons travelling straight through the

aperture can be detected as a current at the Faraday cup; any electrons striking

the aluminium cup will flow to earth.

Figure 4.3 – Photograph of the beam stop used to characterise the

electron beam within the time-averaged York GED apparatus. The

beam stop consists of a deep aluminium beam cup (A), a copper

Faraday cup within the beam stop (B) and a copper wire carrying the

collected current to be measured (C).

Maximising the ratio of the beam current detected at the Faraday cup to the

full beam current detected at the beam collar gives the optimum focussing. The

distance between the cathode and anode was varied using the screw focus, and

the beam stop scanned in a 2-D grid perpendicular to the beam to capture the

largest current at the Faraday cup. The distance that the Wehnelt assembly has

been moved relative to the anode was measured using callipers, and all distances

are relative to the maximum extent of the screw (minimum distance obtainable

between the anode and cathode).

At each distance the beam intensity was initially recorded at the beam collar,

using the steering plates to deviate the beam to strike the collar. The beam

collar has a sufficiently large area that the full electron beam can be detected.

The steering plates are then returned to the deflecting potentials where the beam

passes through the collar, allowing detection at the beam stop. Figures 4.4 and
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4.5 show the FWHM detected at each focus, for nozzle-to-camera distances of

120, 170, and 270 mm, at 0.1 µA and 1.0 µA, respectively.

Figure 4.4 – The standard deviation (σ) and FWHM of the 0.1 µA

electron beam recorded at nozzle-to-camera distances of 120, 170 and

270 mm.
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Figure 4.5 – The standard deviation (σ) and FWHM of the 1.0 µA

electron beam recorded at nozzle-to-camera distances of 120, 170 and

270 mm.

Figure 4.4 shows that the optimum focus FWHM is 0.53 mm for 0.1 µA at a

120 mm nozzle-to-camera distance; this was achieved at a distance, between

the Wehnelt assembly and anode, that was 3 mm shorter than the maximum

achievable distance. It is worth noting that this distance only applies to this

specific filament set-up, so changing the filament requires finding the optimum

focussing again. The bias potential required to produce 0.1 µA at the optimum

focus was 72 V, which should serve as a guide for future replacement of the

filament.

After beam focussing had been completed, the wire carrying current from the

Faraday cup to the ammeter was changed as the quality of the earth and the

presence of multiple joins had led to a leaking of charge, artificially reducing the

current detected. As the quality of the focus is determined by comparison of the

beam charge at the collar and charge detected through the aperture at beam stop,

the best focus is still valid; however, previous beam characterisation work11, 88

may have overestimated the FWHM.
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The calculation of a FWHM beam size is performed assuming that the beam

profile is Gaussian in shape, a valid assumption as shown in Figure 4.6. Beam

FWHMs have been determined for beam currents of 0.1, 1.0 and 10 µA, with

full beam profiles carried out at 0.1 and 1.0 µA, shown in Figures 4.7 and 4.8,

respectively. A full beam profile was not carried out for the 10 µA beam as even

a portion of that beam reaching the phosphor screen could cause damage. To

minimise damage to the phosphor screen during a data collection, the beam was

centred at the beam stop using a lower current and then turned up to the higher

currents.

Equation 4.1 describes the current that would be collected up to radius r when a

beam is Gaussian in shape. The standard deviation of the electron-beam intensity,

σ, is calculated using Equation 4.2:

I =
Itot

2πσ2
exp

(
− r2

2σ2

)
, (4.1)

σ = R

[
−2 log

(
1− I

Itot

)]− 1
2

, (4.2)

where I and Itot are the currents recorded at the Faraday cup and beam collar,

respectively. R is the size of the aperture, which was 0.5 mm in this work.

Equation 4.1 can be rewritten for when the ratio between I and Itot is equal to

0.5, in terms of σ and FWHM, shown in Equation 4.3:

I

Itot
=

1

2
= exp

(
−rHM

2

2σ2

)
= exp

(
− [FWHM

2
]2

2σ2

)
, (4.3)

where the final value of FWHM is:

FWHM = 2σ
√
−2 ln(0.5) = 2.355σ , (4.4)

107



Chapter 4: Apparatus calibration

and rHM is the radius at half the maximum intensity.

The beam collected shows a Gaussian distribution about the centre; the electron

beam is both small enough in space, and sufficiently symmetric for diffraction

experiments to be possible.

Figure 4.6 – A 2-D profile in the x direction of the 0.1 µA electron

beam at a nozzle-to-camera distance of 120 mm. A Gaussian curve

has been fitted to the data with a 99.6% fit. Beam intensities have been

normalised relative to the highest recorded intensity.

108



4.2 Electron gun optimisation

Figure 4.7 – A 3-D profile of the 0.1 µA electron beam at a

nozzle-to-camera distance of approximately 120 mm. Beam intensities

have been normalised relative to the highest recorded intensity.

Figure 4.8 – A 3-D profile of the 1.0 µA electron beam at a

nozzle-to-camera distance of approximately 120 mm. Beam intensities

have been normalised relative to the highest recorded intensity.
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Table 4.1 – FWHM values for beam currents at a nozzle-to-camera

distance of 120 mm, for a beam accelerating potential of 35 kV. Itot

and I are the current collected at the beam collar, and Faraday cup,

respectively.

Itot / µA I / µA FWHM / mm

0.1 0.066 0.401

1.0 0.643 0.410

10.0 5.61 0.459

Electrons, due to their negative charges, will repel one another when close in

space. As the intensity of an electron beam increases so will the charge density.

Larger charge densities accelerated over the same potential will result in larger

beam widths being observed at the point of diffraction. This can be seen in the

FWHM values recorded here. When carrying out experiments, the goal is to use

the minimum beam current to collect an acceptable diffraction pattern. Beam

currents as high as 10 µA can be produced whilst still maintaining an acceptable

beam width. Although this is not necessary for any of the experiments carried out

in this work, it provides the opportunity to study less volatile species introduced

through an effusive nozzle and also to study seeded gas beams, as used in

supersonic expansion nozzle assemblies, containing relatively low concentrations

of species of interest.

4.3 Camera testing

As explained in Section 2.3.4, two different camera assemblies have been used in

this work. Each has been tested to ensure that data collected are accurate and

suitable for refinement.
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4.3.1 Rigaku CCD assembly

Data collected by a previous PhD student, using the Rigaku CCD camera,11

showed an apparent contraction of the data at larger scattering angles. It was

initially believed that a failure in the experimental set-up was the cause of this

contraction, with excessive electron beam width, multiple scattering of sample

along the beam line, or unsuitable sample introduction cited as possible causes.

During my PhD work, all of these theories have been tested and found either to

have no appreciable effect, or that any improvement led to changes in data that

were distinct from the contraction observed.

After the optimisation of the electron beam, a return to a traditional nozzle set-up

as used in other GED apparatus, and the introduction of a cold trap, the data

collected with the Rigaku camera still showed the aforementioned contraction

at larger s values. The conclusion, therefore, was that the contraction must

be caused either by the camera assembly or by the extraction of data from the

diffraction images. As the extraction code has been shown to be functioning

correctly (Section 3.2.1) the error must come from the camera. The contraction of

the data could be due to either a physical misalignment between the phosphor

screen and CCD chip, or an incorrect set of camera parameters used in the

data extraction. Reported within this Section is the testing of the experimental

variables within the data extraction of images recorded using the Rigaku camera.

4.3.1.1 Pixel-size testing

The optical taper connecting the phosphor screen and CCD chip within the

camera has a published value of 3.17.11 This value denotes the multiplicative

increase in size of the observed pixel size from the CCD chip to the phosphor

screen. The CCD chip has a square pixel width of 0.024 mm, meaning an effective

pixel width of 0.076 mm at the phosphor screen. For the testing performed in

this chapter for the Rigaku camera has used data collected for tetrahedral carbon
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tetrachloride (CCl4). Data were extracted using a number of different assumed

pixel sizes and the resulting scattering intensity curves were refined using ed@ed

(Figure 4.9). For all of these extractions, the nozzle-to-camera distance was 130

mm, and the electron wavelength was 6.45 pm. Although a minimum is not

seen in Figure 4.9, the refined central carbon to chlorine (C−Cl) bond distance

decreased markedly in comparison to experimental values18 as the pixel size was

increased, as shown in Figure 4.10. The C−Cl bond length of 173.9(1) pm, from

the refinement at a pixel size of 0.0744 mm, is already far smaller than the electron

diffraction bond length of 176.4(2) pm.18 The goodness-of-fit R factors for the

refinements decrease as the pixel size is increased; however, even the best fit

achieved (pixel size of 0.0744 mm) shows significant contraction of the data at

larger s values. The molecular intensity curve for the best refinement is shown in

Figure 4.11.

Figure 4.9 – R factors obtained from refinement of experimental

intensities extracted using different assumed values of pixel size.

Data presented are for carbon tetrachloride (CCl4).
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Figure 4.10 – Variation in refined C−Cl bond length in CCl4 at

different pixel sizes.

Figure 4.11 – Experimental (red) and refined theoretical (blue)

molecular intensity curves for refined CCl4 data recorded using the

Rigaku camera. Extracted data intensities are for a pixel size of 0.0744

mm.
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4.3.1.2 Electron wavelength testing

The electron wavelength is the only variable investigated in this chapter that

scales linearly with the s value, as shown in Equation 1.3. Varying the wavelength

used in the data extraction did allow a more comparable MIC to be produced

and, as a result, a lower R factor to be obtained. Unfortunately, the change in

wavelength required to obtain the best fit was too long to be considered plausible.

If the electron wavelength is far from the theoretical value corresponding to

the accelerating potential displayed at the electron gun, then the use of another

camera as the data collection medium should also show the same contraction of

data; as explained later in Section 4.3.2, the Stingray camera assembly did not

show this.

4.3.1.3 Nozzle-to-camera distance testing

In addition to varying the pixel size, the nozzle-to-camera distance, which was

physically measured to be close to 120 mm for the data discussed earlier, was

also varied. Once again, although the R factors for the refinements decreased,

the data continued to look contracted, limiting the R factors to 0.15 and above.

When the nozzle-to-camera distance was varied in conjunction with the pixel size

the contraction remained; although a lower R factor was achieved, this was only

possible by extracting the data using unrealistic values for each parameter.

Following improvements made to the apparatus, and as a result of the testing

of the experimental variables that directly affect the molecular intensity curves

produced, it was decided that the source of the data contraction observed both

in this work, and in the work of Hayes,11 was a non-linear scaling between

the phosphor screen, upon which the electrons are incident, and the CCD chip

recording the scattering intensities. The magnitude of this discrepancy could not

be adequately resolved, and so a new camera assembly was designed and built.
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4.3.2 Custom Stingray CCD assembly

The original design of the Stingray camera assembly did not include an optical

filter to account for the rapid decrease in scattering intensity with diffraction

angle. It was instead hoped that the limitless data acquisition possible using the

camera would allow the stacking of images, revealing faint data at larger s values

without the saturation of the camera at smaller s values. Data were recorded at

a nozzle-to-camera distance of 140 mm. The images were recorded for 2 s as

the camera became saturated with longer exposure. To try and extract the data

to allow its use in a refinement and to display any data that could be present

in the image at larger scattering angles, 100 argon images were also recorded

with the same experimental conditions. The scattering intensities extracted from

the image (Shown in Figure 4.12), corrected using the stacked argon image and

associated scattering factors, were low quality at s values greater than 150 nm−1.

Figure 4.12 – Extracted scattering intensities for benzene, recorded

using the custom camera assembly without an optical filter.

Extraction carried out from a stacked image of 100, 2 s exposure

images.

Unfortunately stacking of n images of exposure time t does not produce the same

intensities as an image with exposure time n× t. As a result, for data of refineable
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quality to be recorded, the cumulative exposure time needs to be far longer. A

lens and CCD pairing has been shown to be less sensitive than an optical taper

and CCD pairing,98 and the same is seen here. The Stingray camera assembly is

approximately 20 times less sensitive than the Rigaku camera assembly, requiring

far longer exposure times to record a diffraction pattern. If this is compounded by

the need to record the hundreds of images necessary when not using an optical

filter, samples with limited availability, such as new compounds produced by

synthetic chemists, become unsuitable for study.

The images extracted from the Rigaku camera assembly, treated using an

argon image collected under the same experimental conditions, showed that

high-quality intensities could be collected using an optical filter, despite the other

problems faced by that camera. An optical filter was, therefore, added to the

custom camera assembly, and further data collected. Data are now recorded at

far larger s values, and are suitable for refinement. The argon data account well

for the optical filter, producing an uphill curve (Shown in Figure 4.13) comparable

to those seen from images acquired using the former Edinburgh apparatus. The

size of the new camera face is comparable to that of the Rigaku camera, and the

images, once extracted, do not appear to show the same contraction in the data, as

was the case for the Rigaku camera. The extracted uphill curve, containing both

molecular and atomic scattering, is compared with a theoretical MIC for benzene

in Figure 4.13. The extracted curve displays good agreement in terms of s value

with the theoretical MIC.
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Figure 4.13 – Comparison of the scattering intensities extracted from

data collected using the Stingray camera assembly with an optical

filter (red) and theoretical scattering intensities of benzene (black).

Experimental scattering intensities are corrected using an

experimental argon image and the associated scattering factors.

4.3.2.1 Pixel-size testing of Stingray camera assembly

The nature of the custom camera assembly is such that the pixel size can vary

depending upon the distance between the camera and the phosphor screen.

As shown in Figure 2.20, the camera can be moved on the runner within

the vacuum-tight tube, and was positioned so that the greatest amount of the

phosphor screen could be visualised. Rough calculations suggested that the pixel

size is approximately 0.05 mm. When comparison of the beam-stop size to the

size of the visible edge of the phosphor screen was carried out, the pixel size was

determined to be 0.048 mm. The measured nozzle-to-camera distance for all data

in this section is 145 mm. The pixel size was scaled until the best visual fit to

the theoretical benzene scattering was obtained. The pixel size that best fitted

the theoretical data was 0.0515 mm. This is larger than expected and suggested a

problem may exist in the data.
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4.3.3 Corrections for Stingray camera assembly

After the testing outlined previously, the images acquired were still insufficient

in quality for refinement. Data collected at nozzle-to-camera distances of

approximately 140 and 250 mm refined well individually, producing the

calibration benzene C−C bonded distance of 139.75 pm99 when data extracted

at nozzle-to-camera distances of 141.07 and 247.49 mm respectively. The

manipulator used to move the camera has an uncertainty in the distance of ± 0.1

mm, therefore the calibrated distance for each of these data collections should

be separated by 110 ± 0.2 mm if the data are correct. This is not the case,

confirming that a problem in the data exists. One possible reason for this has

been investigated, and is described in this Section.

The Stingray camera assembly utilises a CCD camera paired with a lens. This

lens, like all lenses, has a focal aberration, distorting the image. This is similar

to the failing in the Rigaku camera; however, testing of the lens to obtain an

acceptable correction is more easily performed for this assembly. The ability

to disassemble the components, removing parts of the assembly to more easily

image a known pattern, allows a correction to the camera assembly to be

obtained.

Figure 4.14 shows the known pattern used in the calibration process. Images

were recorded of this pattern placed in the same position as the phosphor screen.

An image was captured, with the centre of the calibration pattern kept as close

to the centre as possible [approximately pixel (706, 523)]. The comparison of the

captured image to the known image is shown in Figure 4.15. It can be seen that

the camera image is contracted at the extremes of the image. The pixel size was

then scaled in an attempt to match the two, but the patterns could not be matched

this way, confirming the presence of a barrel distortion.
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Figure 4.14 – The known pattern used to calibrate the Stingray

camera assembly.

A piece of custom code100 (Appendix B) was used to alter the collected image,

effectively flattening the barrel distortion. Correction 2 within the code yielded

the best match between the calibration and corrected images. Figure 4.16 shows

the calibration image overlaid with the corrected image. Correction 2 uses

Equation 4.5 to correct radially distorted images:

r1 = r

[
1

(1 + k) r2

]
, (4.5)

where r1 is the corrected distance from the centre of the image, produced from the

original distance, r. The k value was varied until the best fit to the data was seen.

The correction applied gave the best fit with k = 0.0125. This correction procedure

will need to be repeated every time the camera is moved in the assembly.
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Figure 4.15 – The image captured using the Stingray camera assembly

(black) overlaid with the known pattern (red).

Figure 4.16 – Comparison of the calibration image with the corrected

image. Corrected image (solid blue) overlaid with the calibration

image (light blue).
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Diffraction patterns for benzene were now re-extracted using EDSTRACT

including the barrel distortion correction and refined using ed@ed. The calibrated

distances are now 140.33 and 250.59 mm, very close to the 110.0 ± 0.2 mm

difference expected. The RDC from the refinement using two data sets is shown

in Figure 4.17. The final R factors for this refinement are RG = 0.18 (RD =

0.12), with a final bonded C−C distance of 139.6(1) pm. The disparity between

the refined distance here and the GED derived experimental values used to

calibrate, 139.75(1) pm,99 shows that the data quality is still not acceptable for

publishable refinement; however, the data are an improvement over previous

data recorded on this apparatus. Unfortunately, within the time scale of this

work, further improvement to the data quality was not possible, but the custom

camera assembly will yield high quality data, if calibration for the lens correction

can be improved using a better calibration image.

Figures 4.18 and 4.19 show the molecular intensity curves from the corrected

benzene refinements. Although the agreement between the theoretical and

experimental curves in terms of s value is good, the overall fit of the data is

not perfect. Experimental data collected at the longer nozzle-to-camera distance

appear slightly more stretched at the extremes of the camera, a result of the slight

failure in the correction applied. As the radius of the camera face is the same for

both the short and long nozzle-to-camera distances, the smaller s range sampled

in the long data set is affected to a greater extent by the lensing effect. Further data

acquisition with improvements to the data collection will improve this fit. The

data used in this refinement were collected over a short timescale with limited

ability to maximise the quality of the collected data.

As shown in Table 4.2, the C−C distance obtained from the refinement is only just

out with the calculated error and is a great improvement over the uncorrected

images. The problem that still persists is due to the calibration image used. The

large size of the squares makes comparison at a large number of points difficult;

appearing to fit when actually still incorrectly lensed.
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Figure 4.17 – Experimental (red), theoretical (blue), and difference

(experimental-minus-theoretical, black) radial distribution curves,

from the GED refinement of the corrected benzene data using the

Stingray camera assembly. Before Fourier inversion, data were

multiplied by s exp
(

−0.00002s2
(ZC−fC)(ZH−fH)

)
.
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Figure 4.18 – Experimental (red), theoretical (blue), and difference

(experimental-minus-theoretical, black) molecular intensity curves

collected at a nozzle-to-camera distance of 140.33 mm, using the

Stingray camera assembly and image correction.

Figure 4.19 – Experimental (red), theoretical (blue), and difference

(experimental-minus-theoretical, black) molecular intensity curves

collected at a nozzle-to-camera distance of 250.59 mm, using the

Stingray camera assembly and image correction.
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Table 4.2 – Experimental and reference geometric parameters for

benzene. Tabulated values are in picometers.

Parameter ra ra
99

C−C 139.6(1) 139.75(1)

C−H 110.8(8) 109.90(3)

Table 4.3 – Experimental and quantum-chemically calculated

geometric parameters and amplitudes of vibration, u, for benzene.

Calculated values obtained at the B3LYP/cc-pVTZ level. Tabulated

values are in picometers.

Amplitude ra u value Calculated u99

C−H 110.3(8) 9.3(14) 7.6

C−C 139.5(1) 4.5(4) 4.5

C. . .H ortho 216.9(6) 9.0(10) 9.8

C. . .C meta 241.6(2) 6.4(4) 5.4

C. . .C para 278.7(2) 8.8(7) 6.1

C. . .H meta 341.1(7) 11.4(7) 9.4

C. . .H para 388.7(8) 9.4(8) 9.3

The work of Hayes11 to calibrate the York time-averaged apparatus produced

refinements in which the bonded parameters were comparable to literature

values, but only when the amplitudes of vibration were around twice as large

as expected. As shown in Table 4.3, this is not seen in these refinements, where

the amplitudes of vibration are all close to calculated values and lie within 3

standard deviations. The full output from this benzene refinement can be found

in Appendix D.

124



Chapter 5

Ab initio molecular dynamics

vibrational corrections

125
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5.1 Introduction

To characterise fully a complex structure from GED data requires the combination

of both theoretical and experimental data. As explained in Section 1.4,

vibrational corrections are required to approximate an equilibrium structure

from GED data; this is routinely done using force constants calculated for the

equilibrium structure, extrapolated using a program called SHRINK.101 Without

the corrections, the experimental GED data yield a vibrationally averaged

structure, which cannot be meaningfully compared with theoretical structures

or with other experimentally derived structures.

In this Chapter I present an approach to calculating these distance corrections

using molecular dynamics (MD) to simulate the vibrations of the molecule.

By comparing these simulations to an ab initio calculation of the equilibrium

structure of the molecule, corrections can be applied to every internuclear

distance in the molecule. The motivation for this approach is the complete

sampling of the molecular motion, allowing applicable corrections to be

calculated for anharmonic motions that are badly described by the standard

approach using SHRINK. For most molecules studied the standard approach

works well; however, in the presence of large-amplitude or anharmonic motions,

such as the breathing modes of silsesquioxanes,17 the description becomes

unsatisfactory.

Previous attempts to use MD to produce vibrational corrections using classical

mechanics neglect quantum effects, particularly important in the consideration of

light atoms, resulting in an underestimation of distance corrections. Path-integral

molecular dynamics (PIMD),102, 103 was shown to not only provide high quality

corrections, but also to account for quantum effects,64 and is used as the

comparison here. The approach outlined in this Chapter, utilising Gaussian 0961

ab initio TD-DFT calculations to calculate the force constants at each time step,

coupled to the Newton-X MD package to propagate the molecular trajectory,

intends to provide comparable quality corrections to the PIMD approach but in a
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simpler to use and less computationally demanding way.

5.2 Vibrational corrections theory

As mentioned in Section 1.4, the desired structure obtained from any structural

technique is the equilibrium structure (re), a theoretical vibrationless state at the

minimum of the potential-energy surface (PES). This structure allows comparison

between different structural methods and experiments, as any structure is

independent of experimental variables such as temperature. It also means that

experimental structures are directly comparable to structures calculated using ab

initio methods.

To understand the nature of the corrections required, we must first understand

the structural distances measured. GED determined distances (ra), shown

in Equation 5.1, are vibrationally averaged over the time of the experiment.

Formally, ra is the inverse of the average inverse of the interatomic distance (r):

ra = 〈r−1〉−1 . (5.1)

As the intended distance is re, and the GED experimental distance is ra, the

correction can be expressed as the difference between these two distances, shown

in Equation 5.2. The Root-Mean-Squared (RMS) amplitude of vibration between

two atoms is denoted u, while k is the correction for a vibration perpendicular to

that interatomic bond vector, and is responsible for ’shrinkage’. The correction

for the centrifugal distortion due to the rotation of the molecule is δr, and δA is

the correction due to anharmonicity within the molecular vibration:

re − ra ≈
u2

ra
− k − δA− δr . (5.2)
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Equation 5.2 is only the approximate correction. For the full correction u would

be divided by re; but this is not known exactly. The distance ra is used as this is

comparable, and the variation between re and ra does not affect the correction to

any great extent.

The rh1 corrected distance is the best calculated correction based on a harmonic

oscillator. The variety of corrections that have been applied to GED data can

be categorised by which constituents of the correction are approximated, and

the approach to each correction. Equations 5.3 and 5.4 describe the process for

obtaining the vibrationally averaged distance (rg), and the distance obtained

by accounting for perpendicular vibrational corrections using a curvilinear

correction calculated using SHRINK (rh1), respectively:

rg = 〈r〉 ≈ ra +
u2

ra
, (5.3)

rh1 ≈ ra +
u2

ra
− kh1 . (5.4)

These distances are systematic improvements to the distance obtained from

GED data, requiring extrapolation from ab initio calculations of a stationary

equilibrium geometry and its associated vibrations. The majority of structures

refined in the last few years have been refined at the rh1 level, using a harmonic

approximation to provide a first-order curvilinear correction for the shrinkage

effect outlined in Section 1.4.

As mentioned earlier, to describe more accurately anharmonic movements from a

theoretical approach requires a calculation that takes into account anharmonicity

in vibration. A cubic frequency calculation needs to be performed. Unfortunately

this approach has a couple of drawbacks: scaling of the cubic calculation to

larger, more complex structures is poor, making calculations for many molecules
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prohibitively long, and only a small amount of anharmonicity along the bond can

be taken into account without the need for higher-order potentials to be used.

Molecular dynamics propagates molecular motion trajectories over a set time

period. This is directly comparable to a time-averaged GED experiment, which

probes the molecule throughout the data collection time, and so MD can be

used to calculate corrections to apply to experimental data to approximate an

equilibrium structure. As the MD simulation samples movement of the atoms

in the molecule, it can implicitly model all potential motion of the molecule

producing a more complete correction for the GED refinement.

5.3 Molecular dynamics in Newton-X

The freely available Newton-X104, 105 code has been developed to calculate

non-adiabatic molecular dynamics for excited-state species; however, standard

adiabatic approximation molecular dynamics of ground-state species can be

carried out as well, and is used here. For the vibrational corrections to be

applicable, a large number of steps in the ground state of the molecule must be

sampled with the average positions of the atoms calculated. Distances calculated

using these positions are a theoretical equivalent of ra and can be compared to

the equilibrium distances (re) determined from ab initio geometry optimisations

to determine a correction to be applied to each distance in the refinement. A

flowchart of the Newton-X molecular dynamics method is shown in Figure 5.1.
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Figure 5.1 – Simple flowchart to illustrate the steps used in Newton-X

to simulate molecular dynamics.

For the MD simulation a number of steps, N , is chosen to give a simulation

duration sufficient to sample movement of the molecule to support the

assumption that the time-averaged results of the simulation are equivalent to

an ensemble average. For the simulations in this work, a minimum of 5 ps is

sampled. The time-step chosen depends on the molecule being studied, and for

all simulation undertaken in this work is the default in Newton-X calculations,

0.5 fs; this was chosen as it is approximately 15 times shorter than the period of

the highest frequency interatomic vibration in this molecule.

Newton-X propagates the atoms using forces calculated in a single-point TD-DFT

calculation at each time-step. The movement of the atoms is treated classically,

a potential problem when treating low-mass, high-frequency vibrations such

as C−H bonded distances. The potential for quantum tunnelling to occur is

higher for these vibrations, having an appreciable effect on the distance correction

needing applied. This effect on interatomic distance is explained in further detail

in the work of Wann et al.17, 64 For the study outlined here, a rigid molecule

containing no light atoms is used to show the general applicability of the

Newton-X MD simulations as an alternative to SHRINK.

Any MD simulation requires a number of variables to be set, such as the

temperature (T ) and the time-step (δt). The temperature is set to the temperature

of the experiment for which it will become the comparison. MD at constant
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temperature is the intention; however, for a single isolated molecule there exists

nothing with which to collide to provide temperature to the system. Many

approaches have been used to tackle this problem: theoretical heated baths into

which the molecule is submerged so as to maintain the temperature, as well as

more local heating techniques.

One of the main advantages of the Newton-X MD approach is the

scaling in computational time for larger, more complex molecules. For

example, MD simulations have been run both for cyanuric chloride and

4-(dimethylamino)benzonitrile (DMABN), which are composed of 9 and 21

atoms, respectively. The calculations for DMABN took around three times as

long as those for cyanuric chloride using the same basis set and level of theory.

As the majority of molecules that will require a more anharmonic description of

their atomic movement are larger and more complex, the ability to sample their

movement and produce an adequate correction at lower computational cost is a

distinct advantage.

Although the method of MD differs from previous approaches, the method for

extrapolating the appropriate data is the same,64 and is only summarised here.

Equation 5.5 describes distance ra,ij as the inverse of the inverse of the vibrational

averaged distances. N is the number of steps from the simulation, while rij,k is

the distance between atoms i and j at time-step k:

ra,ij =

[
1

N

N∑
k=1

(rij,k)
−1

]−1
. (5.5)

An optimised geometry calculated using the same basis set and level of theory

as the MD simulation, provides the values for re. Subtracting re from ra for

each interatomic distance gives the distance correction to be used during a GED

refinement.

The amplitudes of vibration are extracted from the MD simulations using

Equation 5.6:
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uij =

[
1

NpNs

Np∑
p=1

Ns∑
n=1

(
rn,pij − 〈rpij〉

)2] 1
2

, (5.6)

where Np is the number of equivalent pairs in the molecule and Ns is the number

of steps in the simulation. The angle brackets denote the average value.

The distance corrections and amplitudes of vibration are extracted from

the Newton-X trajectory using MDSIM, which was also used with the MD

simulations carried out previously by Wann et al.29, 64, 106

5.4 Results and Discussion

All molecular dynamics mentioned in this Chapter concern cyanuric chloride

(C3N3Cl3), shown in Figure 5.2; this molecule has been used in previous

work in Edinburgh as a test case for vibrational corrections determined using

MD simulations.64 Comparison of the corrections calculated here with those

published values, and the use of these new corrections in a full structural

refinement will serve as a good estimate of their quality and, ultimately, the

suitability of vibrational corrections determined from Newton-X MD simulations.

5.4.1 Calculations

The Andersen Thermostat (AT)107 is used in this work, as it is the only thermostat

within Newton-X. It provides a local temperature rather than a global bath

temperature, as was used in the previous MD corrections work,64 resulting in

a faster equilibration of energy within the molecule. The kinetic energy of the

system is modulated using a series of stochastic collisions, and a mean collision

frequency is chosen, controlling the rate at which these collisions occur. An atom,

having experienced a collision, is assigned a new random kinetic energy from a
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Figure 5.2 – Schematic diagram of the cyanuric chloride structure.

Cyanuric chloride exhibits D3h symmetry and has nine unique

interatomic distances.

Boltzmann distribution of energies; the change in kinetic energy of the atoms is

instantaneous and does not affect any other atoms in the molecule.

The faster equilibration achieved means that the full movement profile of the

molecule can be sampled more quickly. The work mentioned previously, with

which the data here are compared, used a ”massive chain” of Nosé-Hoover

thermostats108, 109 as a temperature bath in the Car-Parrinello Molecular

Dynamics (CPMD) software.110, 111 The initial few picoseconds of the simulation

were discarded as this time was needed for the molecule to equilibrate. As shown

in Table 5.1, the equilibration time (denoted by the number of steps that must

be skipped) of the Newton-X simulations is far shorter. Variation between the

corrections calculated using the entire simulation (skipped steps = 0), and those

discarding the initial 500 fs (skipped steps = 1000) and 1 ps (skipped steps =

2000) is very small. As a result, an acceptable MD simulation, which samples

sufficiently the trajectory of the molecule, is shorter in length.
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Table 5.1 – Amplitudes of vibration, uNX, and distance corrections,

ra−rNX, obtained for different number of skipped steps, for C3N3Cl3.

Tabulated values are in picometers.

skipped steps = 0 skipped steps = 1000 skipped steps = 2000

atom pair uNX ra−rNX uNX ra−rNX uNX ra−rNX

C(1)−N(5) 3.2 0.1 3.2 0.1 3.2 0.1

C(1)−Cl(8) 4.4 2.8 4.4 2.8 4.3 2.6

C(1)· · ·C(2) 4.0 −0.3 4.0 −0.3 4.0 −0.4

N(4)· · ·N(5) 4.3 −0.2 4.2 −0.2 4.3 −0.2

N(4)· · ·Cl(7) 6.2 2.3 6.2 2.3 6.2 2.1

C(1)· · ·N(4) 4.9 −0.4 4.8 −0.5 4.8 −0.5

C(1)· · ·Cl(7) 6.2 1.6 6.2 1.6 6.2 1.3

N(4)· · ·Cl(8) 6.1 1.2 6.2 1.1 6.2 0.8

Cl(7)· · ·Cl(8) 9.2 2.9 9.1 2.8 9.2 2.3

For the corrections calculated using Newton-X MD simulations to be valid, they

must be tested against a reference. The reference chosen is the best correction

obtained by Wann et al.,64 using PIMD.

The frequency with which the kinetic energy is modulated using the AT impacts

the perturbation of the molecular motion and, as such, alters the corrections

obtained. Varying this frequency (ν) was tested and the results are shown in

Table 5.2. The comparison values from the PIMD simulation are shown,64 these

corrections were deemed the highest quality of those obtained in that work.
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Table 5.2 – Amplitudes of vibration, uNX, and distance corrections, ra−rNX, obtained for different collision frequencies,

for the MD simulations carried out in this work compared to the previous PIMD simulations for C3N3Cl3. All

calculations were performed using the B3LYP method and the 6-31G* basis set. Tabulated values are in picometers.

0.10 fs−1 0.15 fs−1 0.20 fs−1 D. A. Wann et al.64

atom pair uNX ra−rNX uNX ra−rNX uNX ra−rNX uPIMD ra−rPIMD

C(1)−N(5) 3.2 −0.1 3.2 0.0 3.2 0.1 4.6 0.6

C(1)−Cl(8) 4.3 2.6 4.4 2.7 4.3 2.6 5.2 0.9

C(1)· · ·C(2) 4.0 −0.5 4.0 −0.2 4.0 −0.4 5.3 0.7

N(4)· · ·N(5) 4.5 −0.4 4.5 −0.3 4.3 −0.2 5.5 0.8

N(4)· · ·Cl(7) 6.4 2.0 6.1 2.3 6.2 2.1 6.6 1.1

C(1)· · ·N(4) 5.2 −0.7 5.1 −0.4 4.8 −0.5 6.2 0.7

C(1)· · ·Cl(7) 6.1 1.2 6.1 1.7 6.2 1.3 6.6 0.8

N(4)· · ·Cl(8) 6.3 0.8 6.5 1.3 6.2 0.8 6.8 0.6

Cl(7)· · ·Cl(8) 9.8 2.3 9.1 3.0 9.2 2.3 8.5 0.8
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Increasing ν does not alter the amplitudes of vibration of the bonded and shorter

non-bonded pairs of atoms to any great extent; however, the longer non-bonded

amplitudes of vibrations, especially between two chlorine atoms, get smaller as

collision frequency increases. This reduction in the non-bonded amplitudes of

vibration brings them closer to the reference PIMD values, which were shown to

be good corrections for this molecule.64 The distance corrections, upon increase

in ν from 0.1 to 0.2 fs−1, also becomes closer to the PIMD values, although the

disparity between the corrections found and the PIMD values is still unacceptably

large.

The description of the dynamics of the molecule is dependent upon the forces

calculated at each time-step, so a better calculation should improve the quality of

the correction obtained. To that end, further MD simulations were run at B3LYP,

M06-2X and PBE1PBE levels of theory, also increasing the size of the basis set

used to describe the molecule from 6-31G* to 6-311+G*. The results are presented

in Table 5.3, as well as the reference PIMD values.64

Increasing in the size of the basis set, from 6-31G* to 6-311+G*, reduces the

amplitudes of vibration, especially in the case of atom pairs involving chlorine

atoms. Non-bonded distance to chlorine, both C· · ·Cl and Cl· · ·Cl, are reduced

by the most. The improvement in the description of the larger, more electronically

complex chlorine atoms by the increased basis set is most likely responsible for

this. A reduction in the values of the amplitudes of vibration is also observed

when the level of theory is changed to M06-2X, bringing these longer interactions

into better agreement with the rest of the atom pairs compared to the PIMD

values. All amplitudes of vibration are now smaller than or similar to the PIMD

derived values.
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Table 5.3 – Amplitudes of vibration, uNX, and distance corrections, ra−rNX, taken from Newton-X simulations using

different levels of theory and basis sets. These are compared to the previous PIMD simulations performed for C3N3Cl3

in Edinburgh. All simulations are run at 473.15 K, ν = 0.20 fs−1, and tabulated values are in picometers.

B3LYP/6-31G* B3LYP/6-311+G* M06-2X/6-311+G* MN12-SX/6-311+G* D. A. Wann et al.64

atom pair uNX ra − rNX uNX ra − rNX uNX ra − rNX uNX ra − rNX uPIMD ra − rPIMD

C(1)−N(5) 3.2 0.1 3.2 −0.3 3.2 −0.8 3.2 −0.7 4.6 0.6

C(1)−Cl(8) 4.3 2.6 4.5 2.6 4.2 1.1 3.9 0.3 5.2 0.9

C(1)· · ·C(2) 4.0 −0.4 3.9 −0.4 4.1 −1.6 4.0 −1.7 5.3 0.7

N(4)· · ·N(5) 4.3 −0.2 4.5 −1.3 4.2 −1.8 4.5 −1.4 5.5 0.8

N(4)· · ·Cl(7) 6.2 2.1 5.9 2.2 5.8 0.1 5.7 −0.6 6.6 1.1

C(1)· · ·N(4) 4.8 −0.5 5.0 −1.2 4.9 −2.1 5.1 −1.9 6.2 0.7

C(1)· · ·Cl(7) 6.2 1.3 5.8 1.5 6.0 −1.1 5.4 −2.0 6.6 0.8

N(4)· · ·Cl(8) 6.2 0.8 6.2 0.5 6.1 −1.8 5.8 −2.5 6.8 0.6

Cl(7)· · ·Cl(8) 9.2 2.3 8.0 2.8 8.5 −1.2 8.0 −2.5 8.5 0.8
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An increase in temperature in the MD simulation will likely increase all of

these amplitudes, increasing agreement with the PIMD values, especially for

the bonded distances. As the AT has been shown to overly perturb motion in

isolated molecule simulations,112 an artificial increase in temperature within the

simulation was tested to see if any improvement could be obtained. The resulting

amplitudes of vibration and distance corrections are shown in Table 5.4.

Table 5.4 – Amplitudes of vibration, uNX, and distance corrections,

ra−rNX, taken from Newton-X simulations using different

temperatures. These are compared to the previous PIMD simulations

performed for C3N3Cl3 in Edinburgh. All calculations are performed

using the B3LYP level of theory and the 6-31G* basis set with a

collision frequency of 0.2 fs−1. Tabulated values are in picometers.

473.15 K 673.15 K D. A. Wann et al.64

atom pair uNX ra−rNX uNX ra−rNX uPIMD ra−rPIMD

C(1)−N(5) 3.2 0.1 3.9 −0.8 4.6 0.6

C(1)−Cl(8) 4.3 2.6 5.1 −2.3 5.2 0.9

C(1)· · ·C(2) 4.0 −0.4 5.0 0.2 5.3 0.7

N(4)· · ·N(5) 4.3 −0.2 5.3 −3.0 5.5 0.8

N(4)· · ·Cl(7) 6.2 2.1 7.1 −1.7 6.6 1.1

C(1)· · ·N(4) 4.8 −0.5 6.2 −1.8 6.2 0.7

C(1)· · ·Cl(7) 6.2 1.3 7.1 −1.9 6.6 0.8

N(4)· · ·Cl(8) 6.2 0.8 7.4 −4.0 6.8 0.6

Cl(7)· · ·Cl(8) 9.2 2.3 11.0 −3.8 8.5 0.8

Increasing the simulation temperature by 200 K has, unsurprisingly, increased

all of the amplitudes of vibration. The longer non-bonded amplitudes are now

far larger than the PIMD values, but, as these simulation were, for reasons

of time constraint, run at the lower B3LYP level of theory, with the smaller

basis set 6-31G*, a reduction in these bonded distance would be expected upon

improvement of the simulation theory and basis set as shown in Table 5.3. The

138
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bonded and shorter non-bonded distances that have, for all simulations up to this

point, been consistently lower than the PIMD comparison, now show far better

agreement with the reference values. Therefore the likely best simulation requires

an artificial increase in temperature paired with an increase in collision frequency,

level of theory and basis set. A simulation was therefore run at M06-2X, with basis

set 6-311+G*, collision frequency of 0.25 fs−1, and temperature of 673.15 K. The

results are shown in Table 5.5.

Table 5.5 – Amplitudes of vibration, uNX, and distance corrections,

ra−rNX, taken from the best Newton-X simulation performed. These

are compared to the previous PIMD simulations performed for

C3N3Cl3 in Edinburgh. The simulation was performed using the

M06-2X level of theory and the 6-311+G* basis set with a collision

frequency of 0.25 fs−1 at 673.15 K. Tabulated values are in picometers.

Best simulation D. A. Wann et al.64

atom pair uNX ra−rNX uPIMD ra−rPIMD

C(1)−N(5) 3.8 −0.6 4.6 0.6

C(1)−Cl(8) 4.9 1.3 5.2 0.9

C(1)· · ·C(2) 4.5 −1.0 5.3 0.7

N(4)· · ·N(5) 4.9 −1.9 5.5 0.8

N(4)· · ·Cl(7) 6.8 0.7 6.6 1.1

C(1)· · ·N(4) 5.8 −1.8 6.2 0.7

C(1)· · ·Cl(7) 6.8 −0.5 6.6 0.8

N(4)· · ·Cl(8) 6.8 −1.6 6.8 0.6

Cl(7)· · ·Cl(8) 9.3 −0.4 8.5 0.8

The amplitudes of vibration are the closest to the PIMD reference values seen

for any of the simulations; however, the smallest amplitudes of vibration are

still lower than their equivalent values, and the Cl· · ·Cl amplitude is still

overestimated. This simulation represents the best compromise possible with

the current implementation of Newton-X. To reduce further the amplitude for
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Cl· · ·Cl, larger basis sets could be employed, but the increase in computational

time required to run these simulations makes them impracticable at this time.

5.4.2 Refinement of C3N3Cl3

Refinement of data collected for cyanuric chloride using vibrational corrections

calculated from PIMD simulations has been carried out in the literature.64 The

vibrational corrections obtained from the Newton-X simulation using basis set

6-311+G*, at the M06-2X level of theory, collision frequency of 0.25 fs−1, and

temperature of 673 K were used in a refinement of the previously collected data.

The goodness-of-fitRG factor of 0.076 is similar to the 0.079 reported for the PIMD

corrected refinement;106 the bonded distances obtained from the refinement agree

reasonably well with the PIMD corrected structure. The bonded distances from

the Newton-X derived corrected refinement are 169.90(9) and 133.22(6) pm for

the C−Cl and C−N distances, respectively, while the corresponding distances

from the PIMD simulations are 170.24(9) and 132.14(6) pm. The remaining

parameter used to describe the structure was ∠C−N−C, which was found to be

127.2(1)◦ from the Newton-X corrected refinement, and 127.04(9)◦ from the PIMD

corrected refinement. Comparing these values against a geometry optimisations

using MP2/6-311+G* which produced 126.86deg for ∠C−N−C, 171.2 pm for C−Cl

and 133.4 for C−N, both the C−Cl distance and ∠C−N−C are further from the

calculated values than the PIMD derived corrections. The C−N distance agrees

well with the calculations. Overall the agreement is relatively close between the

two methods, however the need to artificially increase the temperature for the

Newton-X simulations reduces their applicability.

5.4.3 Further improvements

In lieu of artificially increasing the temperature of each simulation, a better

approach to solving this problem is required as each molecule may require
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different changes in thermostat to produce adequate results, negating the

usefulness of the approach. The current implementation of Newton-X only

allows for the use of the AT, which we have shown is inadequate for use in our

work. The Andersen-Lowe thermostat (ALT)113 is currently being implemented

for the next release of Newton-X. It has been shown that the ALT does not perturb

molecular motion to the same extent as the AT, and so should allow adequate

corrections to be found without resorting to artificially increased temperature.112

While the ALT should be an improvement upon the AT, it is still most commonly

used in liquid or solid calculations and may still overly perturb the isolated

molecule. A more applicable thermostating method using a combination of the

ALT and a Nóse-Hoover could be the best approach to take.114 Unfortunately,

this is not available within the Newton-X package at present. As Newton-X

is open-source software, adaptation to include a relevant thermostat could be

undertaken within the group, if expertise existed.

After improvements to the temperature control of the isolated molecules,

further calculations involving a wider range of test molecules, containing highly

anharmonic or large-amplitude motions should be undertaken, for the Newton-X

MD approach to be considered an all purpose source of vibrational corrections.
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6.1 Introduction

The improvements to the York time-averaged GED apparatus, which were

described in Section 2.3, led to calibration experiments, described in Chapter

4 demonstrating the capability for the collection of high-quality experimental

data using this apparatus. In this Chapter, I report on the data collection,

data extraction and structural refinement for 4-(dimethylamino)benzonitrile

(DMABN).

DMABN displays dual fluorescence, the emission of light at two separate

wavelengths, with the longer lived decay process associated with intramolecular

charge transfer (ICT); it has been the subject of a number of studies: crystalline

structure determined using X-ray diffraction,115 dynamics and energies probed

using a variety of spectroscopic methods,115, 116 and theoretical calculations used

to describe structural changes.117, 118 Excitation to the second excited state can

result in a structural change facilitating ICT, which could be directly probed using

time-resolved electron diffraction. Not only would direct observation resolve the

time-scales involved but also the structural pathways that allow relaxation of the

molecule. This is of interest as the spectroscopic techniques have determined the

lifetimes of the excited states as well as the likely relaxation pathways; however,

without directly observing the structural change, a degree of uncertainty still

exists.

The two electron diffraction apparatus that are in York present an opportunity

to fully study the static and dynamic structures in tandem of DMABN and

other molecules of interest. The experiments carried out on the time-averaged

apparatus serve not only to provide a reliable structure for the ground state,

but also to test some of the experimental conditions required for DMABN to be

studied using the time-resolved apparatus.
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6.2 Experimental

6.2.1 GED experimental

All diffraction data were collected using the York time-averaged apparatus,

and the heated nozzle assembly described in Section 2.3.3.2. An accelerating

voltage of 35 kV was used, resulting in an electron wavelength of approximately

6.45 pm. All images were recorded using the Stingray camera assembly

described in Section 2.3.4.2. For all data collected the temperature of the heated

nozzle assembly was 463 K at the nozzle tip, and 458 K at the sample. Two

nozzle-to-camera distances were used, 140.33 mm (short) and 250.59 mm (long),

and data were extracted using the EDSTRACT software outlined in Chapter 3.

The beam current used for the short nozzle-to-camera distance was 1 µA; 0.5

µA used for the long nozzle-to-camera distance. Exposure times for all images

acquired were 67 s; the maximum exposure time possible with this camera set-up

for a single image. Data reduction and refinement were carried out using ed@ed

v3.0,34 using the scattering factors of Ross et al.97 Nozzle-to-camera distances

were determined using benzene at the same experimental conditions as those

used for the collection of DMABN data.

The diffraction pattern collected was corrected using data for argon collected

under the same experimental conditions; the corrected diffraction pattern is

shown in Figure 6.1. The extracted intensities from this image are shown in Figure

6.2

The collected images are subject to the lensing effect described in Section 4.3.2

as the DMABN data were collected under the same experimental conditions as

the benzene images used for the calibration of the lens distortion described in

Section 4.3.3. All images used for this data extraction (DMABN image, argon

image, background image) are treated in the same way as those corrected benzene

images before extraction of data.
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Chapter 6: Gas-phase structure of 4-(dimethylamino)benzonitrile

Figure 6.1 – Diffraction pattern for DMABN collected using the York

time-averaged GED apparatus, corrected using argon data collected

under the same experimental conditions.

Figure 6.2 – Argon-corrected DMABN data extract at a short

nozzle-to-camera distance of 140.33 mm.
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6.3 Refinement

6.3.1 Model description

Figure 6.3 shows the structure of DMABN, useful for understanding the model

used in the refinement. Atoms which are symmetrically equivalent are given the

same number with a prime. The hydrogen atoms are given the same number as

the atom to which they are bonded.

Figure 6.3 – Structure of DMABN with atom numbering. Hydrogen

atoms have been omitted for clarity but take the same number as the

heavy atoms to which they are bonded.

The model used in the refinement of DMABN consists of 14 parameters (pn, n

= 1−14), namely eight distances and six angles. χ denotes the angle between

the plane of the aromatic ring, and the plane made by the nitrogen and two

methyl carbons. Six of the bonded distances within DMABN lie under one peak

in the RDC. To allow refinement of these similar distances a collection of weighted

averages and differences have been used, shown in Equations 6.1−6.6:
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which are rearranged to give the distances in terms of the refineable parameters. These are shown in Equation 6.7−6.12:
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3
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The remaining distances are rN(1)C(2) (p7), the cyano group carbon-to-nitrogen

distance, and rC(8)H(8) (p8), the methyl carbon-to-hydrogen distance. All

hydrogen bond distances are based upon p8, with the aromatic hydrogen bond

distances from calculation only varying from the methyl hydrogen distance by

1.1 pm. As light atom parameters are described poorly by GED, the choice was

made to fix the aromatic hydrogen distances as (p8 − 1.1).

The six angle parameters are listed in Table 6.1.

Table 6.1 – List of angle parameters used in the refinement of DMABN.

parameter constituent angles

p9 ∠C(8)−N(7)−C(8’)

p10 χ

p11 ∠C(5)−N(6)−C(5’)

p12 ∠C(4)−N(3)−C(4’)

p13 [∠C(3)−C(4)−H(4) + ∠C(6)−C(5)−H(5)]/2

p14 ∠N(7)−C(8)−H(8)

The average of ∠C(3)−C(4)−H(4) and ∠C(6)−C(5)−H(5) is taken for p13 as the

variation between these angles is less than 1.0◦ at the B2PLYPD/aug-cc-pVTZ

level of theory.

6.3.2 Computational details

Initially, the intention was to use the MD simulations approach outlined in

Chapter 5 to provide the vibrational corrections for use in the refinement of

DMABN. This has not been carried out as the problems with thermostatting the

simulations, discussed in Section 5.4, require an artificial increase in temperature

to achieve comparable results to other methods. The required increase in

temperature used for C3N3Cl3, is not necessarily the same required for DMABN

and without a set of vibrational corrections produced from a trusted MD method

to compare, the decision taken was to only perform an rh1 refinement.
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Chapter 6: Gas-phase structure of 4-(dimethylamino)benzonitrile

Equilibrium structures have been determined using B3LYP, M06-2X, MN12-SX,119

B2PLYPD120 and MP2 levels of theory, with 6-31G* and aug-cc-pVTZ basis sets.

The series of calculations is needed to provide appropriate restraints during the

refinement of the structure as described in Section 1.2.3. SHRINK was used

to calculate vibrational corrections at the MN12-SX level of theory, using the

aug-cc-pVTZ basis set. This calculation was chosen as it yielded an equilibrium

structure similar to that calculated at the MP2 level of theory with the same basis

set, without the calculations of frequencies being prohibitively computationally

expensive, such as is the case for both B2PLYPD and MP2.

The refinement carried out here yielded goodness-of-fit values of 0.16 and 0.10

for the RG and RD, respectively. The RDC and MIC from this refinement are

shown in Figures 6.4 and 6.5, respectively. Selected structural parameters from

the refinement (rh1), as well as calculated values are shown in Table 6.2, which

also contains parameters relating to the published crystal structure.121
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Table 6.2 – Selected theoretical and GED experimental (rh1) structural parameters for DMABN. For all calculations

below the aug-cc-pVTZ basis set was used. Tabulated distances are in picometers and angles in degrees.

Crystallographic data collected at 293 K are shown where available.

B3LYP M06-2X MN12-SX B2PLYPD MP2 rh1 Crystallographic data121

rN(1)−C(2) 115.4 114.9 115.1 116.2 117.4 117.5(8) 114.5(3)

rC(2)−C(3) 142.4 143.0 142.3 142.6 142.8 144.9(9) 143.4(4)

rC(3)−C(4) 140.0 139.4 139.5 140.0 139.8 139.8(4) 138.1(3)

rC(4)−C(5) 138.0 137.8 137.6 138.3 138.7 139.0(6) 136.8(3)

rC(5)−C(6) 141.3 141.0 140.8 141.3 141.0 141.2(4) 139.6(3)

rC(6)−N(7) 136.6 136.6 137.1 137.3 138.0 140.1(10) 136.7(3)

rN(7)−C(8) 145.2 144.6 143.9 145.1 145.1 145.8(6) 145.7(3)

∠C(4)−C(3)−C(4’) 118.3 118.8 118.4 118.6 119.0 118.5(6) -

∠C(5)−C(6)−C(5’) 117.3 117.7 117.6 117.4 117.4 117.2(4) -

∠C(8)−N(7)−C(6) 120.3 119.9 119.9 119.4 117.9 118.0(8) 121.6(3)

∠C(8)−N(7)−C(8’) 119.4 120.1 119.4 118.5 116.7 123.8(18) 116.5(2)

χ 0.0 0.0 8.7 16.4 26.7 5(10) 10.8(2)
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Chapter 6: Gas-phase structure of 4-(dimethylamino)benzonitrile

Figure 6.4 – Experimental and difference (experimental−theoretical)

radial distribution curves, P (r)/r, from the GED refinement of

DMABN using vibrational corrections from SHRINK. Before Fourier

inversion, data were multiplied by s exp
(

−0.00002s2
(ZC−fC)(ZN−fN)

)
.

The refinement values and correlation matrices can be found in Appendix D.
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Figure 6.5 – Experimental and difference (experimental−theoretical),

molecular intensity curves for DMABN. The top curve is collected at

a short nozzle-to-camera distance, while the bottom curve is collected

at a long nozzle-to-camera distance.

6.4 Discussion

The crystal structure of DMABN has been previously characterised,121 showing

pyramidalisation of the amine group. The χ angle of 10.8(2)◦ is less

than the corresponding angle found using microwave spectroscopy of 15◦;122

unfortunately, this value was presented without an uncertainty, as the angle

was determined from fitting a small number of parameters to account for the

inertia defects. The disparity between the crystal structure and the microwave

spectroscopy determined structure is likely due to the crystal packing. The

refinement carried out here also finds pyramidalisation, with an angle of 5(10)◦.

The very large uncertainty on the value reflects the very flat potential energy

surface . Manually varying of the pyramidalisation angle from 0 to 30◦ showed

very little difference in the R factors obtained.

The size of the angle χ is highly sensitive to the level of theory used. B3LYP,
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as expected, poorly describes this angle, finding the benzene ring and the

heavy atoms of the amine group to be coplanar. M06-2X has been posited as

a replacement for general purpose calculations requiring the best compromise

between short computational time and accuracy; however, it also fails to describe

the angle between the planes, again giving a value of 0◦. Only when the level of

theory is increased to MN12-SX, MP2, or when dispersion is considered in DFT,

as in B2PLYPD, which employs the D2 correction of Grimme,123 does the angle

increase.

The quality of the data collected is an issue, as was seen for the benzene

refinement in Chapter 4; however, optimisation of data collection procedure,

which was not possible during the time of this thesis, and recalibration of the

camera to account for the lensing effect could be carried out relatively quickly.

This refinement was performed using the one viable image collected, but in future

multiple images could be stacked to improve the data quality.

From the refinement of benzene carried out in Chapter 4 the distances obtained

were within 3 standard deviations of the literature values. The same is seen for

DMABN relative to crystallographic and the highest level ab initio calculations

carried out (MP2/aug-cc-pVTZ).

The lack of quality in this data limits its application in full structure

determination, but the refined distances can also be used to inform us about

the problems with the camera. The distances are, for the most part, larger

than for any of the calculations, which could suggest that the nozzle-to-camera

distances used for this refinement were slightly shorter than in reality, further

demonstrating the failing in the current camera correction. An approach

to improving the correction and therefore increasing the quality of data for

refinement is outlined in Section 7.1.1.1. Once these have been carried out,

the refinement of newly collected data for DMABN would be beneficial in the

comparison to crystallography and microwave spectroscopy.
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7.1 Apparatus additions

During this PhD, improvements to the experimental set-up in York have

increased the applicability of the apparatus. Heating of samples can allow

lower volatility compounds to be studied, and the new camera assembly shows

promise, displaying no contraction of data as has been reported in the thesis of

Stuart Hayes.11

A skimmer box and the ability to pump away background carrier gas and sample

already exists within the York apparatus. The testing and refinement of this

in conjunction with an appropriate pulsed nozzle will allow novel experiments

to be carried out, and will increase comparability with the time-resolved GED

apparatus also present within the group. Samples deemed suitable for study in

the time-resolved apparatus can have their experimental viability checked in this

apparatus.

7.1.1 Camera improvements

To increase the intensity of photons produced from the electron impacts to the

phosphor screen a new phosphor could be tested. Two suggestions for a new

phosphor screen are P43 and P47, both of which display longer decay times

than the phosphor currently in use in this apparatus. The increased lifetime

of the scintillation allows a greater intensity to be recorded by the camera over

the course of the experiment. In time-resolved electron diffraction experiments,

where the number of incident electrons is low, these phosphors can greatly reduce

the required exposure time required for adequate quality diffraction images.124

For less volatile species, where low target density is a problem, the effect would

be the same.
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7.1.1.1 Improved camera calibration

The calibration used in Section 4.3.3 improved the lens problem encountered with

the Stingray custom camera assembly. However, the correction is not as good as

it could be, shown in the contraction still seen in the data acquired and refined for

benzene. The application of a more sophisticated image with which to calibrate

the camera should improve the correction applied to the extent that data recorded

using the Stingray camera assembly may in the future be used for publishable

structural refinements. This might involve the use of a pattern containing a series

of small dots at regularly spaced intervals, as opposed to the square grid used in

Section 4.3.3. The smaller size of the spots would allow inconsistencies between

the calibration and collected images to be more easily identified, and corrected.

7.2 Molecular dynamics improvements

The problems encountered in the MD simulations performed in Chapter 5

were due to the thermostatting of the simulations overly perturbing the atomic

movement due to the use of the Andersen thermostat. The need to artificially

increase the simulation temperature to produce useful corrections means that

these corrections are not currently useful.

Recent unpublished work elsewhere has involved performing MD for vibrational

corrections using GAMESS US,125, 126 controlling the temperature using a

Nosé-Hoover thermostat.127 The vibrational corrections are of a high quality,

suggesting that this may be a better approach to calculating corrections for the

more exotic species that the apparatus is intended to study.

The Newton-X derived corrections may be of use in the study of molecules

containing small numbers of atoms. Global bath thermostats struggle to partition

the potential and kinetic energies of these molecules.128, 129 The AT maintains

temperature using a local thermostat altering the velocity of single atoms
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randomly at a set rate. This would allow the thermostatting of these small

molecules. For this to be viable, an improved thermostat, such as the ALT is

needed.

As mentioned in Chapter 5, the molecules to which these MD-derived

vibrational corrections will be most applicable are those with anharmonic and

large-amplitude vibrations. For example, carbon suboxide (C3O2) vibrates far

from its equilibrium geometry and is, therefore, badly described by frequency

calculations based on that geometry. The same is true of non-covalent interactions

(NCI), both intra- and intermolecular, which, due to their relatively weak

interaction energies, have large amplitudes of vibration. As the apparatus

described in this thesis has the capability of introducing samples through a

supersonic expansion nozzle, the formation of weakly-bound species is possible.

The use of MD-derived corrections with the study of weakly bound species using

this apparatus could yield structural parameters important in many areas of

chemistry, such as medicinal drug interaction and macromolecular chemistry.

The data would be particularly useful for calibrating computational methods.

Some calculations have been carried out to determine the suitability of different

molecules for study using the supersonic expansion nozzle. For the molecules to

be suitable, at least in early experiments, an appreciable change in the proportion

of dimer or complementary pair in the beam being probed is needed upon cooling

in the supersonic expansion. Interactions with strong intermolecular forces are

already present as dimers in high proportion at room temperature, reducing the

impact cooling the sample would have. One possible sample to study is silyl

chloride (SiH3Cl). Based upon frequency calculations using MP2/6-311+G*, the

percentage of the molecules present as dimers increase by more than 10% when

sample cooled to 100 K, a temperature well within the range of this type of

supersonic nozzle.
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Appendix: associated publications

Work carried out during my PhD has led to the publication of one article,

published in a peer reviewed journal. For the aid of the examiners, this article

is appended here.

Publication:

Structures of Tetrasilylmethane Derivatives C(SiXMe2)4 (X = H, F, Cl, Br) in the Gas

Phase and their Dynamic Structures in Solution - D. A. Wann, S. Young, K. Bätz, S. L.

Masters, A. G. Avent, D. W. H. Rankin and P. D. Lickiss, Z. Naturforsch. B, 2014,

69, 1321-1332, DOI: 10.5560/ZNB.2014-4147
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The structures of the molecules C(SiXMe2)4 (X=H, F, Cl, Br) have been determined by gas elec-
tron diffraction (GED). Ab initio calculations revealed nine potential minima for each species, with
significant ranges of energies. For the H, F, Cl, and Br derivatives nine, seven, two, and two con-
formers were modelled, respectively, as they were quantum-chemically predicted to be present in
measurable quantities. Variable-temperature 1H and 29Si solution-phase NMR studies and, where
applicable, 13C NMR, 1H/29Si NMR shift-correlation, and 1H NMR saturation-transfer experiments
are reported for C(SiXMe2)4 (X=H, Cl, Br, and also I). At low temperature in solution two con-
formers (one C1-symmetric and one C2-symmetric) are observed for each of C(SiXMe2)4 (X=Cl,
Br, I), in agreement with the isolated molecule ab initio calculations carried out as part of this work
for X=Cl, Br. C(SiHMe2)4 is present as a single C1-symmetric conformer in solution at the temper-
atures at which the NMR experiments were performed.
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Introduction

The chemistry of tetrasilylmethane derivatives has
been studied extensively, with the severe steric con-
straints imposed by four Si-centred substituents at-
tached to a carbon atom often leading to unusual
reactivities and novel structural features [1 – 4]. The
most widely studied tetrasilylmethane derivatives have
the general structures (Me3Si)3CSiRR′X, (PhMe2Si)3
CSiRR′X, and (Me3Si)2C(SiXMe2)(SiR2Y) (where R
and R′ = Me, Et, Ph etc. and X, Y = H, halide, OAc
etc.) [1 – 4].

A range of related tetrasilylmethanes with four sub-
stituents of the same kind C(SiXMe2)4 (X = H [5 – 8],
Ph [9 – 11], OH [12, 13], OMe [6, 14], OEt [6, 14],

OAc [6], O2CCF3 [6], OSO2CF3 [15], OSO2-C6H4-
p-Me [15], F [6], Cl [6, 16, 17], Br [6], and I [6] are
known, although little of their chemistry has been ex-
plored. In contrast, the permethyl species, C(SiMe3)4,
has been the subject of numerous reports, using NMR
spectroscopy [18 – 22], X-ray diffraction [23 – 25],
gas electron diffraction (GED) [26, 27], quantum-
chemical calculations [28, 29], and vibrational spec-
troscopy [29].

Dynamic processes in bulky tetrasilylmethane
derivatives have been studied previously by NMR
spectroscopy in solution, for example, for C(SiMe3)2
(SiMePh2)(SiMe2ONO2) [30], C(SiMe3)2(SiClPh2)
(SiMe2OMe) [31], and (Me3Si)3CSiX3 (X=Cl, Br)
and (PhMe2Si)3SiCl3 [32]. (Me3Si)3CSiH3 was stud-

© 2014 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com



1322 D. A. Wann et al. · Tetrasilylmethane Derivatives C(SiXMe2)4 (X = H, F, Cl, Br)

ied using both NMR spectroscopy and GED [33],
while GED studies have also been carried out for
(Me3Si)3CSiCl3 [34], and for (HMe2Si)3CSiH3 [35],
which showed the presence of eleven distinct conform-
ers.

The work presented here comprises two main parts.
First, the multiconformer structures of C(SiXMe2)4
[X=H (1), F (2), Cl (3), Br (4)] have been determined
by GED experiments aided by ab initio calculations.
Secondly, an NMR spectroscopic investigation of the
dynamic processes occurring in C(SiXMe2)4 species
[this time including X= I (5)] in solution has been un-
dertaken.

Experimental Section

Syntheses of C(SiXMe2)4 (X = H, F, Cl, Br, I)

The syntheses of C(SiHMe2)4 (1) [5, 6], C(SiFMe2)4
(2) [6], C(SiClMe2)4 (3) [6], C(SiBrMe2)4 (4) [6], and
C(SiIMe2)4 (5) [6] were carried out using methods previ-
ously reported in the literature, and outlined in Scheme 1.
Yields were generally good, and the compounds were puri-
fied by sublimation.

NMR spectroscopy

The 1H, 13C, and 29Si NMR spectra were recorded
in CDCl3/CD2Cl2 or CDCl3/[D6]acetone solutions using
a Bruker AMX 500 spectrometer at 500, 126, and 99 MHz,
respectively, unless otherwise stated. The 29Si{1H} NMR
INEPT spectra were recorded using a Bruker AMX 500
NMR spectrometer at 99 MHz, while 29Si{1H} inverse-gated
NMR spectra were recorded on a Bruker Avance 600 spec-
trometer at 119.23 MHz. Chemical shifts for all NMR spec-
tra are reported in ppm relative to TMS.

Computational methods

With four SiXMe2 groups present in each of 1–4, rota-
tion about the C(1)–Si(2/3/4/5) bonds allows many possible
conformers to exist. The atom numbering used throughout

Scheme 1. Synthetic routes to C(SiXMe2)4 (X=H, F, Cl, Br,
I) compounds.

Fig. 1. Representation of the general structure of C(SiX-
Me2)4 with atom numbering. Hydrogen atoms have been re-
moved for clarity. For numbering of subsequent conformers,
[41× (n−1)] should be added, where n is the number of the
conformer.

this work is shown in Fig. 1. Before interpreting gas elec-
tron diffraction data it is important to identify all possible
minimum-energy structures and compare their energies, to
judge which will be present in observable amounts at the
experimental conditions. Experience suggests that molecules
such as 1–4 often have groups that are rotated by 15 – 20◦

from a perfectly staggered geometry, and that +20◦ and
−20◦ for any particular group may give different structures,
depending on the overall symmetry [36]. The four SiXMe2
groups for each of 1–4 were treated as two pairs [the groups
based on Si(2) and Si(3) were defined relative to one an-
other and, similarly the groups based on Si(4) and Si(5)
were paired], allowing dihedral angles to be uniquely de-
fined as X(14)–Si(2)–C(1)–Si(3), X(16)–Si(3)–C(1)–Si(2),
X(15)–Si(4)–C(1)–Si(5), and X(17)–Si(5)–C(1)–Si(4). Al-
lowing just one of the SiXMe2 groups to rotate with all others
fixed, a potential-energy scan was performed; this indicated
that each group could be present in three possible minimum-
energy orientations, with dihedral angles (as defined above)
of approximately −80, 160, and 40◦. With four SiXMe2
groups acting independently that gives a total of 34 (= 81)
possible conformations. Considering the negative sense of
each dihedral angle (i. e. 80, −160 and –40◦) gives an ad-
ditional 81 possible conformers.

Geometry optimisations and frequency calculations were
carried out to determine the free energies of all conformers.
All calculations utilised the GAUSSIAN 09 [37] suite of pro-
grams and were performed on the University of Edinburgh
ECDF cluster [38] or the UK National Service for Compu-
tational Chemistry Software clusters [39]. For comparison,
both the B3LYP [40 – 42] and M06-2X [43] methods with
6-31G(d) basis sets [44, 45] were used for these calculations.

For each species nine low-energy conformers were iden-
tified, and further geometry optimisations and frequency cal-
culations were then carried out. The B3LYP hybrid method
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with the aug-cc-pVDZ basis set [46, 47] was used for most
atom types, with the aug-cc-pVDZ-PP [48, 49] pseudopoten-
tial basis set used for the heavy bromine atoms in 4. Calcula-
tions were also performed using the M06-2X and MP2 meth-
ods [50] with the aug-cc-pVDZ(-PP) basis sets. All MP2 cal-
culations were performed with a frozen core.

For each of 1–4, force fields were calculated using an-
alytic second derivatives of the energy with respect to
the nuclear coordinates obtained at the M06-2X/aug-cc-
pVDZ(-PP) level. These were then used with the program
SHRINK [51, 52] to provide estimates of the amplitudes of
vibration (uh1) and curvilinear vibrational correction factors
(kh1) to internuclear distances required for the GED refine-
ments.

Gas electron diffraction (GED)

The GED data used for the refinements of each of
C(SiXMe2)4 (X=H, F, Cl, Br) (1–4) were collected using
the apparatus formerly housed in Edinburgh [53], from sam-
ples that were synthesised and characterised at Imperial Col-
lege London. Scattering intensities were recorded on Kodak
Electron Image film at two nozzle-to-film distances, max-
imising the scattering angles over which data were collected.
All nozzle-to-film distances and sample and nozzle temper-
atures are given in Table S1 in the Supporting Information
available online (see note at the end of the paper for avail-
ability).

The photographic films were scanned using an Ep-
son Expression 1680 Pro flatbed scanner using a routine
method described elsewhere [54]. The data reduction and
least-squares processes were carried out using the ED@ED

v3.0 program [55], with the scattering factors of Ross
et al. [56].

X-Ray crystallography

Several attempts were made to carry out single-crystal
X-ray diffraction structural analyses of C(SiHMe2)4 (1),
C(SiClMe2)4 (3) and C(SiBrMe2)4 (4) using an OD Xcalibur
3 diffractometer at 100 K in order to freeze out any dynamic
disorder. Single crystals of 1 proved difficult to grow and, al-
though the material diffracted, the quality of the diffraction
pattern obtained was too poor to yield a believable unit cell.
However, a highly symmetrical space group was suspected
based on the behaviour of the crystals under polarised light.
Both 3 and 4 were found to belong to the cubic space group
Pa3, with unit-cell dimensions of 12.46 and 12.53 Å, respec-
tively. This space group requires complete disorder of chlo-
rine and bromine positions along with at least two different
sets of silicon positions. The disorder present precluded the
identification of any specific conformers, and no model struc-
tures could be obtained for either 3 or 4. A similar problem

was noted previously for C(SiIMe2)4, which also crystallised
in a cubic unit cell [a = 12.982(1) Å] [57].

Results and Discussion

Gas-phase static structures

Nine conformers were identified for each of 1–4,
arising from geometry optimisations started from all
possible combinations of dihedral angle minima. Us-
ing the Boltzmann equation and the Gibbs free energy
for each conformer, the relative amounts of all con-
formers were determined at the temperatures of the
experiments. As is common practice, and to maintain
the data-to-parameter ratios, only conformers present
with more than approximately 5% abundance were in-
cluded in the model for refinement.

As an example, the free energies of all nine con-
formers of C(SiBrMe2)4 (4) are listed in Table 1. Sim-
ilar listings of energies for C(SiXMe2)4 (X=H, F, Cl)
are given in Tables S2 – 4, respectively. Also shown are
the relative amounts of each conformer that would be
present in the GED samples at the temperature of that
experiment. Because of the large energy differences
between the conformers, only two of the nine possible
conformers of 4 would likely be observed in the GED
experiment; these have been designated conformer 1
(C1 symmetry), and conformer 2 (C2 symmetry). The
molecular structure and numbering of C(SiBrMe2)4
can be seen in Fig. 1. The atomic numbering scheme is
the same for all four species (1–4) studied using GED.

Table 1. Total free energies and energy differences between
conformers of C(SiBrMe2)4 (4) calculated at the M06-2X/6-
31G(d) level.

Confor- Symme- Total free Relative Abundancec

mera try energy energyb (%)
(kJ mol−1) (kJ mol−1)

1 C1 −8336788.25 0.00 75.5
2 C2 −8336785.25 3.01 16.7
3∗ C1 −8336775.50 12.78 2.4
4∗ C1 −8336774.36 13.92 1.8
5∗ C1 −8336774.32 13.97 1.7
6∗ C2 −8336775.77 12.51 1.3
7∗ D2 −8336774.09 14.20 0.4
8∗ C1 −8336765.55 22.76 0.2
9∗ C2 −8336761.61 26.71 0.0

a Conformers marked with a star were not considered to be present
in sufficient quantities to be included in the GED refinement model;
b energy differences are relative to conformer 1, the lowest-energy
conformer; c calculated at the average temperature of the GED ex-
periment.
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GED studies

Experimental GED data were refined using pa-
rameterised models based on bond lengths, bond an-
gles, and dihedral angles, guided by calculations at
the MP2/aug-cc-pVDZ(-PP) level. The following de-
scription is for the Br derivative (4), but all models
are based upon similar sets of bond lengths and an-
gles, with the only significant differences being ad-
ditional dihedral angle parameters arising from the
number of conformers being modelled. Each species
is described by four distances, ten bond angles,
and two dihedral angles. Full lists of parameters
for each of 1–4 (Tables S5–S8) and the model de-
scriptions can be found in the Supporting Informa-
tion.

From geometry optimisations it was observed that
the four SiXMe2 groups exist in a near tetrahedral ge-
ometry, with only slight deviations from the ideal tetra-
hedral angles. These deviations, as well as many other
small deviations related to parameters used in the mod-
els, are taken into account using fixed (non-refinable)
differences in the models. Fixed differences were also
used to define small variations between the principal
conformer for each species and any higher-energy con-
formers.

On the basis of the data presented in Table 1 and
in Tables S2 – 4, the models were written to fit nine,
seven, two, and two conformers for the H, F, Cl, and
Br derivatives, respectively. For each of these species
the differences between conformers were shown by
MP2/aug-cc-pVDZ(-PP) calculations to be small. The
approach taken when writing the models was, there-
fore, to choose parameters that adequately described
the dominant conformer, and then to use fixed differ-
ences to describe the minor conformers.

The SARACEN [58 – 60] method was used for the
refinement of experimental data, with the required re-
straints based upon comparison of calculations at the
MP2, B3LYP and M06-2X levels of theory, and with
6-31G(d) and aug-cc-pVDZ basis sets (using aug-cc-
pVDZ-PP as a pseudopotential for Br in 4). Vibrational
corrections were based upon data from SHRINK [51,
52], calculated using force constants obtained from
GAUSSIAN.

As is common, because they are not particularly
well defined from the GED data, restraints were placed
upon the distance difference parameters, as well as
upon parameters associated with hydrogen atoms.

Many dihedral angles were also restrained during the
refinement process.

Amplitudes of vibration were grouped together, ex-
cluding those involving hydrogen, under their respec-
tive peaks in the radial distribution curves, with only
that with the greatest scattering intensity refining.
Other amplitudes under a given peak were allowed to
change according to their ratios with respect to the re-
fining value. Eleven amplitudes were refined for the Br
derivative. Full lists of interatomic distances and am-
plitudes of vibration for 1–4 can be found in Tables
S9 – 12, respectively.

All refinements were initially performed with the
proportion of each conformer fixed at predicted val-
ues. For species 4 the proportion of conformer 1 was
then stepped in increments of 0.05 either side of the
predicted amount and the R factor recorded to ascertain
the best fit. Fig. 2 shows this for 4, where the 95% con-
fidence limit is also marked to allow the uncertainty in
this measurement to be estimated [61]. The final pro-
portion of conformer 1 was almost identical to that cal-
culated, giving some reassurance that the Gibbs free
energies were accurate. For 1–3 such an experimental
determination was not possible. For 1 and 2 the pres-
ence of very many conformers with similar energies
means that a satisfactory way of fixing some propor-
tions and varying others could not be achieved. For 3
the quality of the experimental data are relatively poor
(see further discussion later), and varying the amount
of conformer 1 resulted in the R factor being lowest

Fig. 2. Variation in RG/RG(min.) with different amounts of
conformer 1 for species 4. The horizontal line denotes the
95% confidence limit, approximately equal to 2 σ .
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Fig. 3. Experimental and difference (experimental-minus-theoretical) radial distribution curves, P(r)/r, from the GED re-
finement of C(SiXMe2)4 [X=H (1), F (2), Cl (3), Br (4)]. Before Fourier inversion, data for 1 and 2 were multiplied by
s ·exp(−0.00002s2)/(ZC− fC)(ZSi− fSi), while data for 3 and 4 were multiplied by s ·exp(−0.00002s2)/(ZC− fC)(ZX− fX).

when the proportion of conformer 1 was 1.0; we do
not believe that this is a realistic estimate.

Experimental radial distribution curves and differ-
ence curves can be seen for all four species in Fig. 3,
illustrating the goodness of fits to the respective GED
data. The RG values obtained for X=H, F, Cl, Br were
8.4, 12.2, 11.0, and 12.5%, respectively, with RD val-
ues (ignoring off-diagonal elements of the weight ma-
trix) of 7.5, 5.1, 10.0, and 7.5%, respectively. A more
complete explanation of differences between RG and
RD can be found in ref. [62]. Figs. S1 – 4 show the
related molecular intensity scattering curves as well
as enlarged versions of the radial distribution curves
in Fig. 3. Tables S13 – 16 show the correlation matri-
ces for the refinements of each of 1 to 4, while Ta-
bles S17 – 20 give the refined atomic positions of all
conformers for the four species studied, and Tables
S21 – 24 the equivalent calculated coordinates.

As mentioned earlier, a visual inspection of radial
distribution curves for 3 indicates that the data were
rather noisy. However, the RG factor for the refinement
of 3 suggests that these data fit at least as well as is the
case for 2 and 4. We can conclude that there was some-

thing affecting the quality of the raw data in the case of
3, though we don’t believe that this significantly af-
fected the quality of the refinement.

Selected refined and calculated parameters for 1–4
are given in Tables 2 – 5. The bond lengths and angles
shown correspond to the most abundant conformer of
each species as this was the basis for the models, while
dihedral angles describing the relative positions of the
SiXMe2 groups for all conformers are shown as these
are individual to each conformer. Although each con-
former can have two (C2 symmetry) or four (C1 sym-
metry) different C(1)–Si distances for each conformer
of each of 1–4, the variation in the C(1)–Si distances is
small, with ranges of no more than 1 pm for a given
species. Only one distance of this type is therefore
shown in each of Tables 2 – 5.

For 1, agreement between calculations and exper-
imental data is seen for all bonded distances. Calcu-
lations at the B3LYP level (see Table 2) show a con-
sistent overestimation of distances in the molecule, al-
though the angles obtained are within 0.3◦ of the ex-
perimental values. Both MP2 and M06-2X level calcu-
lations for 1 give closer agreement to experimental data
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Table 2. Selected experimental (rh1) and quantum-chemically calculated (re) geometric parameters for 1a.

Parameter rh1 re B3LYP re M06-2X re MP2
rC(1)–Si(2) 189.4(4) 192.4 189.9 191.2
rSi(2)–C(12) 189.2(2) 189.9 188.9 189.9
rSi(2)–H(14) 149.9(8) 150.1 149.9 150.2
∠Si(2)–C(1)–Si(3) 108.3(1) 107.8 108.1 108.1
∠C(1)–Si(2)–C(12) 114.2(3) 114.1 113.2 113.3
∠C(1)–Si(2)–C(13) 114.2(3) 114.3 112.9 113.1
∠C(1)–Si(2)–H(14) 107.6(4) 107.4 108.0 107.8
∠C(10)–Si(4)–C(11) 106.9(10) 106.6 106.6 106.8
∠C(10)–Si(4)–H(15) 106.7(8) 106.9 107.8 107.7
φH(14)–Si(2)–C(1)–Si(4) −74.9(21) −71.5 −75.7 −74.6
φH(15)–Si(4)–C(1)–Si(2) 161.6(5) 162.1 163.4 161.6
φH(55)–Si(43)–C(42)–Si(44) 46.6(26) 49.6 47.0 47.5
φH(57)–Si(44)–C(42)–Si(43) 46.4(16) 47.7 46.1 46.6
φH(56)–Si(45)–C(42)–Si(46) 39.4(10) 39.6 40.1 39.4
φH(58)–Si(46)–C(42)–Si(45) −79.8(11) −79.5 −78.9 −79.7
φH(96)–Si(84)–C(83)–Si(85) 39.6(29) 42.6 39.8 40.3
φH(98)–Si(85)–C(83)–Si(84) 45.1(14) 46.3 44.8 45.3
φH(97)–Si(86)–C(83)–Si(87) 159.9(11) 159.7 160.8 160.0
φH(99)–Si(87)–C(83)–Si(86) −75.9(8) −75.2 −75.9 −75.9
φH(137)–Si(125)–C(124)–Si(126) 46.8(6) 47.4 46.9 46.9
φH(139)–Si(126)–C(124)–Si(125) 41.9(11) 41.8 42.4 41.9
φH(138)–Si(127)–C(124)–Si(128) 40.8(19) 41.6 40.5 41.0
φH(140)–Si(128)–C(124)–Si(127) 161.6(13) 162.6 161.7 161.7
φH(178)–Si(166)–C(165)–Si(168) −76.8(15) −74.7 −75.7 −76.3
φH(219)–Si(207)–C(206)–Si(208) 41.0(32) 44.2 41.3 42.0
φH(221)–Si(208)–C(206)–Si(207) 162.0(23) 164.1 161.6 162.2
φH(220)–Si(209)–C(206)–Si(210) 41.6(17) 40.7 42.5 41.7
φH(222)–Si(210)–C(206)–Si(209) −81.5(16) −80.5 −80.2 −81.3
φH(260)–Si(248)–C(247)–Si(249) 42.7(12) 43.2 43.6 42.8
φH(262)–Si(249)–C(247)–Si(248) 160.6(12) 161.5 160.3 160.6
φH(261)–Si(250)–C(247)–Si(251) −77.1(7) −76.5 −76.9 −77.1
φH(263)–Si(251)–C(247)–Si(250) 37.2(15) 36.9 38.1 37.3
φH(301)–Si(289)–C(288)–Si(290) 37.2(19) 36.8 38.4 37.3
φH(303)–Si(290)–C(288)–Si(289) 164.9(16) 166.1 164.9 165.0
φH(342)–Si(330)–C(329)–Si(332) −76.9(8) −76.3 −76.9 −76.9
φH(344)–Si(332)–C(329)–Si(330) 39.7(12) 39.8 40.6 39.8

a Distances (r) are in pm, angles (∠) and dihedral angles (φ ) are in degrees. Atom numbering is given
in Fig. 1. re values were calculated using the aug-cc-pVDZ basis set for each respective theory. The
estimated standard deviations shown in parentheses represent 1σ .

for bonded distances, but predict angles that lie further
from experiment. The experimentally determined dihe-
dral angles are consistently closer to MP2 values than
for the other two levels of theory, and MP2 provides
overall the best prediction of the structure.

For 1, MP2 consistently overestimates bonded dis-
tances, though by less than 1%, with the largest dis-
crepancy for the C(1)–Si(2/3/4/5) distance. For this
species it is notable that the experimental data show no
significant variations between the C(1)–Si(2/3/4/5)
distances and those in the HMe2Si groups. For 2, 3,
and 4 theory shows slight variations between the C–Si

bond lengths in these different environments, with the
difference increasing with the size of atom X.

For 2, 3 and 4 bonded distances, angles, and dihedral
angles calculated at the MP2 level were more consis-
tently in agreement with experimental values than were
the M06-2X and B3LYP levels of theory. The only ex-
ception to this occurs for bonded distances and bond
angles to atom X. All levels of theory considerably
overestimate these distances, and show variations in
angles from experimental by as much as 4◦. These de-
viations from the experimental values are due to insuf-
ficiently large basis sets to fully describe these atoms
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Table 3. Selected experimental (rh1) and quantum-chemically calculated (re) geometric parameters for 2a.

Parameter rh1 re B3LYP re M06-2X re MP2
rC(1)–Si(2) 189.3(2) 190.9 187.9 189.6
rSi(2)–C(12) 186.5(2) 187.9 186.6 187.7
rSi(2)–F(14) 160.6(1) 167.5 166.4 167.9
∠Si(2)–C(1)–Si(3) 109.5(3) 108.9 108.6 108.7
∠C(1)–Si(2)–C(12) 116.1(10) 116.4 115.2 115.6
∠C(1)–Si(2)–C(13) 112.9(12) 115.7 113.7 114.1
∠C(1)–Si(2)–F(14) 104.9(6) 104.3 104.6 104.7
∠C(10)–Si(4)–C(11) 109.1(10) 108.9 110.6 110.6
∠C(10)–Si(4)–F(15) 107.3(7) 105.7 107.1 106.8
φF(14)–Si(2)–C(1)–Si(3) 81.9(39) 79.7 83.8 83.2
φF(16)–Si(3)–C(1)–Si(2) −167.2(10) −166.4 −167.4 −167.2
φF(15)–Si(4)–C(1)–Si(2) −153.2(20) −151.3 −152.1 −152.4
φF(17)–Si(5)–C(1)–Si(2) −39.2(29) −40.8 −38.2 −39.4
φF(55)–Si(43)–C(42)–Si(44) 84.7(26) 86.4 85.3 85.8
φF(57)–Si(44)–C(42)–Si(43) −40.9(33) −41.4 −39.9 −40.2
φF(56)–Si(45)–C(42)–Si(43) −166.0(46) −166.4 −165.9 −166.1
φF(58)–Si(46)–C(42)–Si(43) 71.2(46) 71.5 72.7 71.9
φF(96)–Si(84)–C(83)–Si(85) 77.7(62) 73.4 80.0 79.8
φF(98)–Si(85)–C(83)–Si(84) −163.8(46) −162.2 −167.0 −163.8
φF(137)–Si(125)–C(124)–Si(126) 84.8(26) 87.3 87.2 85.7
φF(139)–Si(126)–C(124)–Si(125) −41.9(17) −42.2 −41.3 −41.3
φF(178)–Si(166)–C(165)–Si(167) 77.9(63) 73.4 79.3 77.3
φF(180)–Si(167)–C(165)–Si(166) 73.4(14) 74.0 72.9 73.4
φF(219)–Si(207)–C(206)–Si(208) 81.5(19) 80.5 82.5 81.7
φF(221)–Si(208)–C(206)–Si(207) −170.6(23) −170.1 −171.1 −170.7
φF(220)–Si(209)–C(206)–Si(207) 80.3(7) 81.1 80.4 80.3
φF(222)–Si(210)–C(206)–Si(207) −36.7(23) −38.7 −36.3 −36.8
φF(260)–Si(248)–C(247)–Si(249) 80.5(24) 78.1 80.5 80.6
φF(262)–Si(249)–C(247)–Si(248) −161.8(20) −161.5 −161.5 −161.7
φF(261)–Si(250)–C(247)–Si(248) −157.6(25) −157.4 −156.7 −157.5
φF(263)–Si(251)–C(247)–Si(248) 71.4(38) 71.5 71.6 71.4

a Distances (r) are in pm, angles (∠) and dihedral angles (φ ) are in degrees. Atom numbering is given
in Fig. 1. re values were calculated using the aug-cc-pVDZ basis set for each respective theory. The
estimated standard deviations shown in parentheses represent 1σ .

Table 4. Selected experimental (rh1) and quantum-chemically calculated (re) geometric parameters for 3a.

Parameter rh1 re B3LYP re M06-2X re MP2
rC(1)–Si(2) 192.0(4) 194.1 191.1 191.9
rSi(2)–C(12) 189.1(4) 188.0 186.9 187.9
rSi(2)–Cl(14) 209.1(2) 215.5 213.8 214.4
∠Si(2)–C(1)–Si(3) 110.3(4) 109.4 109.6 109.6
∠C(1)–Si(2)–C(12) 115.3(4) 116.8 116.7 116.4
∠C(1)–Si(2)–C(13) 113.8(4) 115.2 114.5 114.8
∠C(1)–Si(2)–Cl(14) 107.4(5) 107.6 106.8 106.2
∠C(10)–Si(4)–C(11) 107.0(20) 108.4 109.3 109.1
∠C(10)–Si(4)–Cl(15) 107.0(8) 104.1 104.6 104.7
φCl(14)–Si(2)–C(1)–Si(3) 39.9(4) 40.2 40.1 40.2
φCl(16)–Si(3)–C(1)–Si(2) 159.1(5) 159.2 159.3 159.4
φCl(15)–Si(4)–C(1)–Si(2) −74.9(11) −73.3 −73.1 −73.5
φCl(17)–Si(5)–C(1)–Si(2) 34.7(5) 35.9 35.8 35.8
φCl(56)–Si(45)–C(42)–Si(46) −75.3(6) −75.0 −74.7 −75.1
φCl(58)–Si(46)–C(42)–Si(44) 165.2(7) 165.6 165.8 165.6

a Distances (r) are in pm, angles (∠) and dihedral angles (φ ) are in degrees. Atom numbering is given
in Fig. 1. re values were calculated using the aug-cc-pVDZ basis set for each respective theory. The
estimated standard deviations shown in parentheses represent 1σ .
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Table 5. Selected experimental (rh1) and theoretical (re) geometric parameters for 4a.

Parameter rh1 re B3LYP re M06-2X re MP2
rC(1)–Si(2) 191.1(5) 194.9 191.9 192.2
rSi(2)–C(12) 186.2(3) 188.3 187.1 188.0
rSi(2)–Br(14) 227.6(1) 231.6 230.8 230.0
∠Si(2)–C(1)–Si(3) 108.4(2) 109.2 109.4 109.4
∠C(1)–Si(2)–C(12) 118.3(5) 116.4 116.7 116.8
∠C(1)–Si(2)–C(13) 116.4(5) 114.9 114.4 114.8
∠C(1)–Si(2)–Br(14) 107.6(3) 109.8 108.7 107.2
∠C(10)–Si(4)–C(11) 109.0(10) 108.3 109.2 109.1
∠C(10)–Si(4)–Br(15) 102.2(3) 103.5 104.0 104.1
φBr(14)–Si(2)–C(1)–Si(3) 39.6(8) 40.4 40.2 39.5
φBr(16)–Si(3)–C(1)–Si(2) 158.7(6) 159.2 159.3 158.7
φBr(15)–Si(4)–C(1)–Si(2) −72.7(11) −73.3 −72.6 −72.9
φBr(17)–Si(5)–C(1)–Si(2) 35.0(14) 36.4 35.6 34.8
φBr(55)–Si(43)–C(42)–Si(45) −80.6(11) −80.5 −81.3 −81.2
φBr(56)–Si(45)–C(42)–Si(43) 166.4(8) 166.3 166.4 166.3

a Distances (r) are in pm, angles (∠) and dihedral angles (φ ) are in degrees. Atom numbering is given in
Fig. 1. re values were calculated using the aug-cc-pVDZ(-PP) basis set for each respective theory. The
estimated standard deviations shown in parentheses represent 1σ .

(restrictions in available computational time made this
necessary). This is further justified below.

For species 2–4 the increasing size of the halogen
atom leads to the basis sets being used becoming insuf-
ficient for full descriptions. Table 6 shows the change
in Si–Cl bond length upon moving from the aug-cc-
pVDZ through to the aug-cc-pV5Z basis set when
calculating the structure of the much simpler H3SiCl
molecule. In order to achieve this set of calculations
the level of theory used was also limited to HF. These
calculations show clearly that lack of basis set conver-
gence must be at least part of the cause of the devia-
tions between experiment and theory described earlier.

Studies of similar compounds {(Me2HSi)3
CSiH3 [34] and (Me3Si)3CSiCl3 [35]} have been
carried out using GED, and comparisons can be drawn
with the structures presented in this paper. All four
species from this work, plus the two literature studies,
have Si–C bonds in common. The C(1)–Si(2/3/4/5)
bonds present in species 1–4 increase in length when
the size of atom X increases.

The GED structure of 1 can be directly com-
pared with the structure of (Me2HSi)3CSiH3, for

Table 6. Comparison of Si–Cl bond lengths in H3SiCl calcu-
lated using HF theory with increasing basis set sizea.

Parameter aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z
rSi–Cl 209.6 206.9 206.3 205.9

a Distances (r) are in pm.

which eleven conformers were modelled for the re-
finement [34]. Both contain Me2HSi groups, although
(Me2HSi)3CSiH3 has two distinct types of central C–
Si distances (those to the Me2HSi groups, and that to
SiH3), with these distances having values of approxi-
mately 190 and 188 pm, respectively. Unsurprisingly,
the C(1)–Si(2) distance for 1 [189.4(4) pm] agrees
well with those determined for the Me2HSi groups in
(Me2HSi)3CSiH3 [34]. In that species the angles be-
tween two silicon atoms connected through the central
carbon take values between 108.1 and 111.7◦ depend-
ing on the orientation of the arms. For 1 the compara-
ble angle [Si(2)–C(1)–Si(3)] is at the lower end of this
range (108.3◦) as the lack of a smaller SiH3 substituent
in 1 precludes the larger angles for steric reasons.

Molecule 3 from this study can be compared with
(Me3Si)3CSiCl3 in the literature [35], as both dis-
play chlorinated substituents, albeit in different en-
vironments. Despite similarities between the Me3Si
substituents in that species and Me2ClSi in 3, the
lack of the halogen atoms bonded directly to the cen-
tral carbon atom does alter the chemical environment.
The central C–Si distance to the SiCl3 substituent in
(Me3Si)3CSiCl3 is 189.1(8) pm, while the central C–
Si distance in 3 is very similar at 189.1(4) pm. In
(Me3Si)3CSiCl3 both the central C–Si distance for the
trimethylsilyl arms, 191.4(8) pm, and the Si–C dis-
tance to the methyl groups, 187.8(6) pm, are shorter
than their comparable bonds in 3, at 192.0(4) and
189.1(4) pm, respectively. This can be explained by the
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lack of electron-withdrawing halogen atoms, which act
to weaken the other bonds to silicon. The Si–Cl dis-
tance in the SiCl3 group is also shorter than that in
the Me2ClSi group in 3 by almost 6 pm. This is pre-
sumably due to the accumulative electron-withdrawing
effect of three chlorine atoms drawing more electron
density towards themselves.

Within the molecules studied here a noticeable dif-
ference can be found when contrasting the central C–Si
distances with the silicon-to-methyl carbon distances.
The electron- withdrawing nature of the halogen atoms
in 2–4 cause disparity between these distances within
the molecule, with the largest difference found in the
Br derivative. This compares favourably with the study
of (XMe2Si)2C(SiMe3)2 (X=H, Cl, Br) [36], where
the central C–Si distance is consistently longer than
that of the methyl carbon to the silicon distance when
X=Cl, Br.

Solution-phase dynamic structures

The 1H NMR spectrum of C(SiBrMe2)4 (4) shows,
as would be expected, a single broad resonance at room
temperature (see Fig. S9 in the Supporting Informa-
tion). However, on lowering the temperature a much
more complicated spectrum emerges (Fig. S9), and
at 213 K the spectrum (see Fig. 4) is consistent with

Fig. 4. 2D 1H/29Si NMR correlation spectrum of C(SiBr-
Me2)4 (4) in CDCl3/CD2Cl2 at 213 K. The labelling scheme
is explained in detail in the Supporting Information.

the presence of two different conformers. Four smaller
peaks (α , β , γ , and δ ) may be assigned to a C2 con-
former, and the eight larger peaks (A–H) are commen-
surate with the eight different methyl-group proton en-
vironments associated with a C1-symmetric conformer.
Integration of all signals leads to the conclusion that
the C1 conformer is the most abundant and makes up
ca. 85% of the conformer mixture, while the C2 con-
former gives rise to the remaining 15% of the con-
former mixture. Similarly, the 29Si{1H} NMR spec-
trum is a singlet at room temperature but at low tem-
perature the spectrum (see Fig. 4) shows two smaller
signals (1 and 2) associated with the C2 conformer 1H
signals, and four larger signals (I–IV) associated with
the C1-symmetric conformer. Full details of the multi-
nuclear NMR studies of the C(SiXMe2)4 (X=H, Cl,
Br, I) compounds are provided in the Supporting Infor-
mation.

The 1H and 29Si{1H} NMR spectra for
C(SiClMe2)4 (3), show similar, though less well
resolved, features to the spectra for the analogous
bromide (4). Again, sharp singlets at room temperature
give rise to much more complicated spectra at low
temperature (see Fig. S5) that are consistent with the
presence of a less abundant C2 and a more abundant
C1 conformer, as shown in Fig. 5. The conformers are
labelled as for Fig. 4.

Fig. 5. 2D 1H/29Si NMR shift correlation spectrum of
C(SiClMe2)4 (3) in CDCl3/CD2Cl2 at 201 K. The labelling
scheme is explained in detail in the Supporting Information.
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Fig. 6. 360 MHz 1H NMR spectrum of C(SiIMe2)4 (5) at
223 K. The labelling scheme is explained in detail in the Sup-
porting Information.

The NMR studies agree well with the single-
molecule ab initio calculations showing the two lowest
energy conformations possessing C1 and C2 symmetry,
with the relative proportions of the two conformers at
the temperature of experiment being ca. 82 and 18%
for the C1 and C2 conformer, respectively. Such pro-
portions were also used to fit the GED data and, despite
GED being performed in the gas phase rather than in
solution, the similarities in relative abundances are not
unexpected.

Although it was not possible to determine the gas-
phase structure of C(SiIMe2)4 (5), the solution 1H
NMR spectrum has been investigated. The 1H NMR
spectrum for 5 shows a broad signal at room tempera-
ture which, on lowering the temperature, rapidly splits
into twelve signals as shown in Fig. 6. This spectrum
shows two sets of peaks (A–H) and (α–δ ), as did the
spectra for the analogous chlorine and bromine com-
pounds, and it is thus reasonable to assume that similar
C1 and C2 conformers are present for the iodide as well.
Further details of the NMR spectra including satura-
tion transfer experiments are given in the Supporting
Information (Figs. S13 and S14).

The 1H and 29Si NMR spectra of the much less
bulky C(SiHMe2)4 showed no significant changes
when recorded over the range of 333 to 213 K, and
no evidence for restricted rotation or the presence of
different conformers was observed. For details see the
Supporting Information.

Supporting information

Additional details relating to the GED experiments (Ta-
ble S1); energies relating to all calculated conformers for
each species (Tables S2 – 4); details from the GED mod-
els and refinements (Tables S5 – 8), amplitudes of vibration
and curvilinear distance corrections (Tables S9 – 12); least-
squares correlation matrices (Tables S13 – 16); final GED co-
ordinates (Tables S17 – 20); calculated coordinates and en-
ergies (Tables S21 – 24); plots of molecular-scattering in-
tensity curves and corresponding radial distribution curves
(Figs. S1 – 4); details of NMR spectroscopic studies (Tables
S25 – 27; Figs. S5 – 16). This material (337 pages) is avail-
able online: DOI: 10.5560/ZNB.2014-4147.
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Abbreviations

ALT Andersen-Lowe Thermostat

AO Atomic Orbital

AT Andersen Thermostat

B3LYP Becke, 3-parameter, Lee-Yang-Parr

CASSCF Complete Active Space Self Consistent Field

CC Coupled Cluster

CCD Charge-Coupled Device

CPMD Car-Parrinello Molecular Dynamics

DFT Density Functional Theory

DZ/TZ/QZ/5Z Double Zeta/Triple Zeta/Quadruple Zeta/Quintuple Zeta

basis set sizes

ECP Effective Core Potential

ED Electron Diffraction

EDSTRACT Custom extraction software written for and used in this work

FWHM Full Width at Half Maximum

GED Gas Electron Diffraction

GGA Generalised Gradient Approximation

HF Hartree-Fock theory
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ICT Intermolecular Charge Transfer

LANL2DZ Los Alamos National Laboratory 2-Double-Zeta

LDA Local Density Approximation

MD Molecular Dynamics

MIC Molecular Intensity Curve

MO Molecular Orbital

MOCED Molecular Orbital Constrained Electron Diffraction

MP Møller-Plesset perturbation theory

MP2/3/4 2nd/3rd/4th order Møller-Plesset perturbation series

NCI Noncovalent interactions

NMR Nuclear Magnetic Resonance

PID Proportional-Integral-Derivative (controller)

PIMD Path Integral Molecular Dynamics

RDC Radial Distribution Curve

RF Radio Frequency

SARACEN Structural Analysis Restrained by ab initio Calculations for

ElectroN diffraction

SE Schrödinger Equation

SS Stainless Steel

STRADIVARIUS STructure Analysis using DIffraction and VARIoUS other

data

TD-DFT Time-Dependent Density Functional Theory
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TRED Time-Resolved Electron Diffraction

UED Ultrafast Electron Diffraction

xpkg Extraction software used for data collected using the former

Edinburgh ED apparatus

∠ Symbol for angle

RD Goodness-of-fit (ignoring correlation between parameters)

RG Goodness-of-fit (including correlation between parameters)

re True equilibrium distance

ra Raw distance from GED data

rg GED distance including vibrational averaged correction

rh0 GED distance with perpendicular corrections from ASYM

rh1 GED distance with perpendicular corrections from SHRINK

ra3,1 GED distance including perpendicular corrections calculated

from the third derivative of the energy, used to account for

anharmonicity
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