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Abstract 

The explosive 2,4,6-trinitrotoluene (TNT) is a persistent and toxic pollutant.  High levels of TNT 

and the water-mobile co-pollutant Royal Demolition Explosive (RDX) have accumulated at 

manufacturing waste sites and military training ranges.  Due to the scale of these sites, 

phytoremediation could be the most cost-effective and environmentally-friendly means of 

cleaning up the pollution.  Plant lines which are both tolerant to, and able to degrade 

explosives pollution, are therefore being developed. 

Prior to this PhD research, it was identified that Arabidopsis thaliana L. (Arabidopsis) plants 

deficient in MONODEHYDROASCORBATE REDUCTASE 6 (MDHAR6; At1g63940) have hugely 

enhanced TNT tolerance.  In Chapter 3, the means behind this enhanced TNT tolerance is 

investigated.  Enzymatic analysis identified that purified MDHAR6 reduces TNT by one 

electron, to a TNT nitro radical which autoxidises, generating superoxide.  Reactive superoxide 

can oxidise and damage protein, DNA and lipids.  This reaction could also be inhibitory to plant 

development, due to the futile use of NADH. 

In Chapter 4, the organelle-targeting of MDHAR6 is investigated; MDHAR6 is unusual in that 

dual targeting to mitochondria or plastids appears to be dependent on the transcription start 

site used.  A further understanding of MDHAR6 location would provide useful insight as to the 

endogenous role of this enzyme.  Preliminary experiments indicate that MDHAR6 is more 

highly expressed in roots than leaves, and that a previously undescribed third transcription 

start site is dominant, encoding plastid-targeted MDHAR6. 

The induction of detoxification genes following TNT treatment is explored in Chapter 5; the 

profile of detoxification genes induced following TNT treatment is similar to that following 

phytoprostane treatment, which requires class II TGACG-binding (TGA) factors.  It is identified 

that induction of detoxification genes following TNT treatment also requires class II TGA 

factors, but the induction is not mediated by phytoprostanes. 
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1 Introduction 

1.1 THE EXPLOSIVE 2,4,6-TRINITROTOLUENE (TNT) 

1.1.1 Chemical properties 

The synthetic compound TNT (Figure 1) is a common energetic component of explosives, 

produced by combining toluene with nitric and sulphuric acids.  The chemical properties of 

TNT are summarised in Table 1.  Upon detonation, TNT decomposes exothermically, yielding 

CO2, N2, H2, H2O and C (Scheme 1).  The activation energy required for these reactions is 

approximately 35 kcal.mol-1 in condensed phase, and 62 kcal.mol-1 in gas phase (Furman et al., 

2014). 

 

Figure 1: The chemical structure of TNT 

 

Table 1: The chemical properties of TNT 

Chemical Abstracts Service number 118-96-7.  Reference; US. EPA (2014a). 

Property Value 

Appearance at room temperature yellow, ordourless, crystalline solid 

Molecular weight 227.13 g/mol 

Melting point  80.1 °C 

Boiling point  240 °C 

Ignition temperature 300 °C 

Activation energy 34.18 kcal/mol 

Water solubility at 20 °C  130 mg/L 

Octanol-water partitioning coefficient (Log KOW) 1.6 (measured) 

Soil organic carbon-water partitioning coefficient (KOC) 300 (estimated) 

 

2 C7H5N3O6 → 3 N2 + 5 H2O + 7 CO + 7 C 

2 C7H5N3O6 → 3 N2 + 5 H2 + 12 CO + 2 C 

Scheme 1:  Decomposition reactions of TNT 

Reference; Furman et al. (2014). 
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1.1.2 History 

German chemist Joseph Wilbrand was the first to synthesise TNT, in 1863 (Akhavan, 2004).  

Before the explosive properties of TNT were appreciated, the aromatic was manufactured for 

use as a yellow dye (US EPA, 2012). 

Germany began using TNT in artillery shells instead of picric acid (2,4,6-trinitrophenol) in 1902 

(Akhavan, 2004).  This had great advantages; while picric acid is highly shock-sensitive, 

exploding upon impact, TNT is more stable, penetrating targets before explosion, hence having 

a greater destructive effect.  The low melting point and thermal stability of TNT, is also more 

amenable to casting into shells.  The US Army began using TNT in 1912, and by 1914, TNT was 

a standard explosive for all World War I armies (Akhavan, 2004). 

Today, TNT remains one of the most common bulk explosives, used in military ordinance, and 

in mining and quarrying operations (Pichtel, 2012).  As TNT does not contain enough oxygen to 

oxygenise all the carbon, it is commonly mixed with oxygen-rich compounds, to yield more 

explosive energy per kg than TNT alone.  Examples of compositions containing TNT are 

included in Table 2. 

 

Table 2: Compositions of military explosives containing TNT 

RDX; Royal Demolition Explosive, i.e. 1,3,5-trinitroperhydro-1,3,5-triazine.  HMX; High Melting 

Explosive, i.e. octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.  PETN; pentaerythitol 

tetranitrate.  References; Akhavan (2004) and Pichtel (2012). 

Name Composition 

Amatex TNT, ammonium nitrate, RDX 

Ammonal TNT, ammonium nitrate, RDX 

Anatols TNT, ammonium nitrate 

Baratol TNT, barium nitrate 

Composition B RDX (60 %), TNT (39 %), wax (1 %) 

Cyclotol RDX, TNT, wax 

HTA-3 HMX, TNT, aluminium 

Minol-2 TNT (40 %), ammonium nitrate (40 %), aluminium (20 %) 

Octol HMX (75 %), TNT (25 %) 

Pentolite PETN (50 %), TNT (50 %) 

Picratol Picric acid (52 %), TNT (48 %) 

Tetryol Tetryl (70 %), TNT (30 %) 

Torpex RDX (40 %), TNT (40 %), aluminium (18 %) 

Tritonal TNT (80 %), aluminium (20 %) 
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1.1.3 Detrimental effects 

Exposure to TNT has had toxic effects on all organisms tested, including earthworms (Lachance 

et al., 2004) and amphibians (Paden et al., 2011).  In soil, TNT decreases the density and 

diversity of microbial communities (George et al., 2008, 2009; Travis et al., 2008a, 2008b), and 

limits the establishment of vegetation (Travis et al., 2008b). 

Plants exhibit greatly stunted growth in the presence of low concentrations of TNT; on agar 

plates, roots of 7-day old Arabidopsis seedlings are approximately half as long in the presence 

of 2 μM TNT (Johnston et al., 2015).  On soil, 300 mg TNT.kg soil-1 is lethal to Arabidopsis 

(Johnston et al., 2015).  Generally, monocots are more tolerant to TNT than dicots (Gong et al., 

1999). 

The toxicity of TNT to people was discovered in World War I, during which time TNT poisoning 

was reported in >17,000 munitions factory workers, with >475 fatalities (US EPA, 2014a).  The 

main toxicity symptom of TNT is hepatitis, however TNT is also rated a class C carcinogen by 

the US Environmental Protection Agency (EPA), causes hyperplasia of bone marrow and 

induces cataract formation (ATSDR, 1995). 

Induction of neuronal damage following TNT exposure has also been reported in rats (Zitting et 

al., 1982).  Kumagai et al. (2004) attribute this to the one electron reduction of TNT by 

neuronal nitric oxide synthase.  This generates a TNT nitro radical, which autoxidises, 

producing superoxide.  This group also identified that bovine lens ζ-crystallin similarly reduces 

TNT by one electron, which could be the cause of TNT-induced cataracts (Kumagai et al., 2000). 

The cause of TNT toxicity to plants has been previously unknown. 
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1.2 EXPLOSIVES POLLUTION 

1.2.1 Co-pollutants with TNT 

As shown in Table 2, TNT is used in munitions in combination with other compounds, most 

commonly RDX.  Energetic compounds are categorised as primary, secondary or tertiary, 

depending on sensitivity to detonation; primary explosives (e.g. silver azide, lead styphnate, 

mercury fulminate) are highly sensitive to detonation, and are commonly used to initiate 

detonation of secondary explosives (e.g. TNT, RDX, HMX, PETN, Tetryl, ammonium picrate).  

Tertiary explosives (e.g. ammonium nitrate with fuel oil), require primary and secondary 

explosive ignition for detonation.  The structures of organic co-pollutants of TNT are shown in 

Figure 2.  Along with TNT, RDX and perchlorate are high priority targets for remediation.  

Royal Demolition Explosive (RDX) 

The explosive properties of RDX were recognised in 1920, and after a manufacturing route was 

established, RDX began to be added to TNT in munitions during World War II, to increase 

explosive power (Akhavan, 2004).  The nitramine has been found to cause convulsions 

(Burdette et al., 1988), is classified as a possible human carcinogen, and can damage the 

nervous system if inhaled or ingested (US EPA, 2014b).  Although RDX can be degraded and 

used as a nitrogen source by some bacterial species (Chong et al., 2014), high levels of 

pollution persist (Pichtel, 2012).  Unlike TNT, RDX has a low soil organic carbon-water 

partitioning coefficient (KOC 1.80), and can readily leach into groundwater and aquifers; RDX 

has already been detected in the Cape Cod Aquifer (the sole-source drinking water aquifer 

near the Camp Edwards Massachusetts Military Reservation, US), prompting a high level of 

regulatory and public scrutiny (Clausen et al., 2004).  This mobility makes RDX a high priority 

for explosives remediation (Rylott and Bruce, 2009).  

Perchlorate 

Perchlorate (ClO4-) is both a naturally occurring and man-made salt, which is commonly used as 

an oxidiser in munitions, fireworks and vehicle airbag initiators, and is also found in herbicides 

and disinfectants (US EPA, 2014c).  Perchlorate is used in >250 different munitions and >40 

missile systems used by the US Department of Defense (Trumpolt et al., 2005), and migrates 

quickly from soil to groundwater.  Perchlorate is now classed as a “persistent contaminant of 

concern” by the EPA (US EPA, 2014c), as perchlorate can disrupt thyroid function (ATSDR, 

2008).  Due to this, the US EPA has initiated a proposal for a national primary drinking water 

regulation for perchlorate (US EPA, 2014c). 
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Figure 2: The chemical structures of TNT co-pollutants  

PETN; pentaerythitol tetranitrate.  RDX; Royal Demolition Explosive, i.e. 1,3,5-trinitroperhydro-

1,3,5-triazine.  HMX; High Melting Explosive, i.e. octahydro-1,3,5,7-tetranitro-1,3,5,7-

tetrazocine.  Tetryl; trinitrophenylmethylnitramine. 
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1.2.2 Lifetime health advisory limits 

The US EPA publishes Soil Screening Levels for pollutants, as advisory target levels in clean-up 

programmes.  The recommended screening levels for TNT, RDX, HMX and perchlorates are 

shown in Table 3. 

 

Table 3: US EPA advisory screening levels for TNT and co-pollutants 

Reference; US EPA (2015a).  SSL; Soil Screening Level.  Screening levels for picric acid not 

available. 

Pollutant 
Industrial SSL 

(mg.kg soil-1) 

Residential SSL 

(mg.kg soil-1) 

Tap water screening 

level (μg.L-1) 

TNT 96 21 2.5 

RDX 28 6 0.7 

PETN 580 120 19 

Tetryl 1,600 120 39 

HMX 57,000 3,800 1,000 

Perchlorate and 

perchlorate salts 
820 55 14 
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1.2.3 Sites of contamination 

Pichtel (2012) provides a comprehensive review of explosives pollution at manufacturing 

waste sites, military training ranges, and former conflict zones.  Specific examples of polluted 

sites are provided in Table 4 and Table 5.  In the US, TNT is present at >30 sites on the EPA 

National Priorities List (US EPA, 2014a).  The presence of explosives pollution impedes the re-

sale of land for industrial or residential purposes, and in some cases, the further use of land for 

military training (Clausen et al., 2004; Pichtel, 2012). 

Historically, in many countries unlined lagoons were used for the disposal of wastewater from 

ordnance manufacturing and decommissioning (Pichtel, 2012).  High concentrations of 

explosives have now accumulated at these sites (Table 4). 

Military training ranges and former conflict zones are polluted with both unexploded 

ordinance (UXO) which malfunctioned upon firing, constituents of which can leak into the soil, 

and unexploded residues of ordinance which successfully detonated; for example, Taylor et al. 

(2004) estimate that up to 2 % of TNT in a high-order 155 mm howitzer round persists on soil 

after detonation.  In surface waters, TNT undergoes rapid photolysis to degradation products 

including 1,3,5-trinitrobenzene  (US EPA, 2014), however soil sampling at military live-fire 

ranges, which is often restricted to surface soils due to the risk of detonating UXO below 

ground, has identified TNT at high concentrations; in an extensive survey of energetic residue 

distribution across 27 military installations in the US and Canada, published by Pennington et 

al. (2006), the average concentration of TNT in soil was generally low (<2 mg.kg-1), with the 

exception of live-fire bombing range impact areas, and soil near or beneath sites of partial 

(low-order) artillery ordnance detonation, where TNT concentration regularly reached >1,000 

mg.kg-1 (Table 6). 

The US Department of Defense has used an estimated 10 million hectares of land for ordnance 

testing and military training (United States General Accountability Office, 2004).  Clean-up 

estimates for this land have ranged from $16 billion to $165 billion (United States General 

Accountability Office, 2004). 

Explosives pollution will continue to be an issue while manufacturing, training and use of 

ordnance in warfare is considered necessary. 
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Table 4: Examples of explosives-polluted waste sites from manufacturing operations 

Site Overview Reference 

Explosives 

Factory 

Maribyrnong, 

Victoria, 

Australia 

A survey of the factory waste lagoon concluded there to be an 

estimated 5 tonnes of TNT-contaminated soil, relatively 

unchanged since TNT production ceased in 1944.  The 

pollution included a near pure layer of TNT 10 – 15 cm below 

the soil surface, predicted to persist for 2,000 years. 

Martel et 

al. (2007) 

The Panex 

Plant, US 

The solid waste management unit at this site is contaminated 

with TNT, RDX and HMX, with concentrations highest at 10 m 

depth, continuing to depths of 85 m.  Contamination has also 

been detected offsite, threatening the Ogallala aquifer- the 

region’s primary source of drinking water.  

Pichtel 

(2012) 

WerkTanne, 

Clausthal-

Zellerfeld, 

Germany 

Concentration of TNT ranged from <0.05 to 5,525 mg/kg in 

soil, and <0.05 to 62 mg/L in soil water, which had genotoxic 

effects in laboratory studies. 

Eisentraeg

er et al. 

(2007) 

 

Table 5: Estimated scale of explosives pollution at former conflict zones  

Site Overview Reference 

Iraq 

An estimated 1,730 km2 of affected land, including 20 million 

mines, numerous UXO sites, and many abandoned munitions 

sites. 

Pichtel 

(2012) 

Vietnam 

An estimated 350,000 – 800,000 tonnes of ordnance 

contaminated soil, affecting approximately 7 – 8 % of the 

country. 

Pichtel 

(2012) 

Nagorno-

Karabakh 

Landmines and UXO are estimated to affect 37 million m2 of 

arable land and 35 million m2 of pasture, with 80,000 m2 of 

vineyards rendered unusable. 

Pichtel 

(2012) 
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Table 6: Distribution of TNT and RDX residues at live-fire military training ranges  

Average concentration of energetics in soil samples for 27 military installations in the US and 

Canada are provided by Pennington et al. (2006).  The minimum and maximum average values 

reported for TNT and RDX are shown in this table. 

Soil sample origin 

Average concentration for 

military installation 

minimum (mg.kg-1) 

Average concentration for 

military installation 

maximum (mg.kg-1) 

TNT RDX TNT RDX 

Hand grenade ranges <0.01 <0.01 36 51 

Adjacent to targets at anti-

tank rocket ranges 
0.04 <0.1 125 5.3 

Near artillery targets <0.001 <0.003 19 16 

Near low-order detonations at 

artillery targets 
<1 <1 143,000 678 

Below low order detonations 

at artillery ranges 
<0.001 <0.01 15,100 832 

Live-fire bombing range 

impact areas 
<0.01 <0.01 3,720 0.56 

Demolition ranges where C4 

used to detonate high order 

munitions 

<0.01 <0.03 11.6 60.2 
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1.3 REMEDIATION OF TNT FROM POLLUTED SITES 

Approaches to removing and destroying TNT pollution are presented below.  For remediation 

from groundwater, enhancement of TNT transformation by indigenous microbial communities 

is a promising approach.  For remediation from soil, the use of plants in situ could be the most 

cost-effective and environmentally-friendly solution. 

1.3.1 Ex situ granular activated carbon treatment of groundwater and 
wastewater 

Granular activated carbon adsorption is the most commonly used ex situ method for treating 

explosives-contaminated water in the US (US EPA, 2014a); water is pumped through vessels 

containing activated carbon, to which the dissolved organic contaminants adsorb, and are 

removed for disposal.  This is a method for TNT removal rather than destruction. 

1.3.2 In situ bioremediation in groundwater 

The capacity of anaerobic and aerobic bacteria to reduce TNT to hydroxylamino-dinitrotoluene 

(HADNT) and amino-dinitrotoluene (ADNT) appears to be relatively widespread (Rylott et al., 

2011b).  Some bacterial flavoproteins from the Old Yellow Enzyme family additionally 

transform TNT, by hydride addition to the aromatic ring, forming monohydride-Meisenheimer 

or dihydride-Meisenheimer complexes. The hydride-Meisenheimer complexes can condense 

with HADNT to form stable diarylamines (Rylott et al., 2011b).  It does not appear that TNT is 

mineralised by microbes; instead, the reduced TNT derivatives polymerise with each other and 

other organic compounds, to polymers with low solubility and toxicity (Pennington et al., 

1995). 

Considering that biodegradation of TNT may be limited by concentrations of substrates for co-

metabolism, a recent field study at the Picatinny Arsenal in New Jersey, US, implemented a 

groundwater extraction-reinjection system, to distribute and mix cheese whey into 

groundwater (Hatzinger and Lippincott, 2012).  Groundwater samples before the trial 

contained 5 – 190 μg/L TNT and 5 – 170 μg/L RDX.  Four cycles of extraction-reinjection were 

carried out, and groundwater samples one year later contained TNT and RDX at levels below 

the detection limit (0.25 μg/L).  This system appears to be a viable method for reducing levels 

of nitramine and nitroaromatic explosives in groundwater, utilising indigenous bacteria, at an 

estimated cost of $1.29 per gallon. 
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1.3.3 Ex situ incineration of soil 

Low concentrations of TNT in soil can be destroyed by incineration (US EPA, 2014a), including 

by hot gas (260 °C steam), or rotary kiln incineration (temperatures 427 – 649 °C; FRTR, 

2007a).  Incineration of soil is associated with high costs, due to the need to remove (with care 

for UXO) and transport the soil, and to fuel the high temperatures required.  Incineration also 

damages soil structure and microbial communities. 

1.3.4 Ex situ composting of soil 

Composting of soil and sludges to treat explosives pollution has been investigated by the US 

Department of Defense since the early 1980s (FRTR, 2007b).  Composting has the benefits of, 

unlike incineration, providing enriched product, which can sustain vegetation, and has been 

effective in transforming and degrading energetic pollutants (FRTR, 2007b).  As detailed 

earlier, TNT is not completely degraded by microbial communities; in a composting study with 

radiolabelled TNT by Pennington et al. (1995), over half of added radioactivity was recovered 

in the cellulose and humic fractions, and almost no radiolabelled CO2 was produced.  Similar to 

incineration, composting also shares the costs of removing and transporting soil. 

1.3.5 In situ landfarming of soil 

In landfarming, soil is excavated to specific plots, for periodical tilling to mix in nutrients, 

moisture and bacteria.  This has been used extensively to treat soil contaminated with 

persistent organic pollutants such as polycyclic aromatic hydrocarbons (FRTR, 2007b), however 

landfarming for removal of explosives has had limited success (FRTR, 2007b). 

1.3.6 In situ phytoremediation from soil and groundwater 

Phytoremediation is the use of plants to remove contaminants from soil and/or groundwater 

through phytodegradation (degradation in the plant), rhizodegradation (degradation by 

microbial communities in the rhizosphere), phytosequestration (pollutant containment, 

preventing access to groundwater) or phytovolatization (release into the atmosphere through 

transpiration).  Although TNT is phytotoxic, plants are able to detoxify TNT to a limited extent 

(discussed in 1.4.3), and pollutant-degrading capabilities can be enhanced by the use of 

genetic engineering to introduce specific combinations of transgenes, to appropriate plant 

species (Rylott et al., 2015). 

With regards to explosives remediation, resilient and fast-growing grasses, with extensive root 

networks, are appropriate for use on military ranges.   Poplar has been used previously to 

remediate groundwater pollution at US EPA Superfund sites (US EPA, 2015b), and could also 



Chapter 1: Introduction 

12 
 

be used at site perimeters.  Prior phytoremediation studies within Neil Bruce’s group have 

focused on introducing RDX-degrading capabilities to plants; Arabidopsis thaliana L. 

(Arabidopsis) plants expressing RDX-degrading cytochrome P450 XplA, and reductase XplB, 

from Rhodococcus rhodochrous strain 11Y, together with Enterobacter cloacae nitroreductase 

nfsl, successfully remove RDX (the primary remediation target) from soil leachate (Rylott et al., 

2011a).  These microbial genes have now been transferred to switchgrass (Panicum virgatum 

Alamo), a native species at many US training ranges (Rylott et al., 2015). 

The use of plants for in situ remediation is preferable to ex situ composting and incineration, as 

the high costs of soil removal are avoided, and military training operations could be continued 

on site while remediation is taking place.  Even without engineered explosive-degrading 

capabilities, explosive-tolerant plants could have a huge impact on contaminated sites; plants 

are important for soil stabilisation, and diverse plant communities promote microbial diversity 

and density (Lange et al., 2015).  Furthermore, there is extensive evidence that metabolites in 

root exudates promote microbial degradation of pollutants, either through stimulating 

microbial growth and diversity, and/or providing co-metabolites for degradation of organic 

pollutants (Singer et al., 2003). 
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1.4 DETOXIFICATION IN PLANTS 

Although TNT is phytotoxic, plants are able to detoxify the nitroaromatic to a limited extent.  

Understanding endogenous TNT detoxification pathways in plants, and the limiting steps, is 

important for the development of robust lines for phytoremediation.  The process of 

detoxification in plants, and TNT detoxification in Arabidopsis, is discussed below. 

1.4.1 The process of detoxification in plants 

The process of detoxifying xenobiotics (foreign compounds) and aberrant endogenous 

compounds in plants, can typically be categorised into three phases (Sandermann Jr., 1992). 

Phase I: Activation 

Functional groups are exposed or added to the xenobiotic, which allow progression into phase 

II.  These reactions are most commonly catalysed by cytochromes P450 (P450s; 244 genes and 

28 pseudogenes in Arabidopsis; Bak et al., 2011), carboxylesterases (20 genes in Arabidopsis; 

Marshall et al., 2003) and/or oxophytodienoate reductases (OPRs; 6 genes in Arabidopsis; 

Beynon et al., 2009). 

Phase II: Conjugation 

Polar metabolites are conjugated to the activated xenobiotic, which can increase solubility and 

stability, and decrease toxicity.  Common conjugates are glutathione, conjugated by 

glutathione S-transferases (GSTs; 55 genes in Arabidopsis; Dixon and Edwards, 2010), glucose, 

conjugated by uridine diphosphate-glycosyltransferases (UGTs; 107 genes in Arabidopsis; Ross 

et al., 2001) and malonate, conjugated by malonyltransferases (MTs; 4 genes in Arabidopsis; 

TAIR, 2015). 

Phase III: Sequestration 

Conjugated xenobiotics are recognised by transporters (most commonly ATP binding cassette 

transporters; 136 genes in Arabidopsis; Verrier et al., 2008), which import the conjugate into 

the cell vacuole, where further modifications may take place (Phase IV).  In some cases the 

xenobiotic may be exported to the apoplast, and become incorporated into cell wall 

components (Sandermann Jr., 1992).   
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1.4.2 Arabidopsis detoxification genes induced by TNT treatment 

In order to identify early TNT-response detoxification genes, the products of which may have a 

role in TNT detoxification, Lorenz (2007) used an Affymetrix GeneChip microarray.  Two-week 

old seedlings, in liquid ½ MS culture, were treated with 60 μM TNT or a control treatment 

(0.06 % DMF) for 6 h (full experimental details in 2.1.2).  The microarray experiment was 

published by Gandia‐Herrero et al. (2008). 

Prior to the array, Lorenz (2007) had carried out preliminary tests to establish the most 

practical method of TNT treatment, with minimised general stress responses.  Dosing seedlings 

in liquid culture was more practical than transferring seedlings to TNT-supplemented agar, as 

sterile conditions were more easily maintained, and the seedlings more evenly dosed.  Whole 

seedlings were snap frozen in liquid nitrogen, to avoid the additional stress of wounding while 

separating tissues. 

In a prior study by Ekman et al. (2003), two-week old seedlings growing in liquid ½ MS were 

treated with various concentrations of TNT (0, 5, 10, 15, 20, 25, 30 and 40 mg.L-1), and five 

days after treatment, 15 mg.L-1 (66 μM) TNT was judged to produce visual stress (leaf chlorosis 

and necrosis) without causing death, and considered an appropriate TNT concentration for 

studying transcriptome responses.  Ekman et al. (2003) then used Serial Analysis of Gene 

Expression (SAGE) to identify transcriptome changes in roots of the two-week old seedlings 

treated with TNT for 24 h; in this method, cDNA is biotin-tagged, captured on a streptavidin 

column, then cleaved, leaving “tags” of approximately 11 nucleotides, which are then 

sequenced and annotated.  Comparing the TNT treatment with a control treatment, Ekman et 

al. (2003) reported a five-fold increase in abundance of 242 tags, and a five-fold decrease of 

287 tags. 

Lorenz (2007) dosed two-week old seedlings in ½ MS with 60 μM TNT or a control treatment 

(0.06 % DMF) for 1, 2, 4, 6 or 24 h, and used semi-qPCR to measure the expression of seven of 

the TNT response genes identified by Ekman et al. (2003); a sucrose synthase (At5g20830), 

GSTU24 (At1g17170), a tolB-related protein (At4g01870), NAC102 (At5g63790), CYP81D11 

(At3g28740) and GSTU8 (At3g09270).  After 6 h 60 μM TNT treatment, induction of two of 

these genes (GSTU24 and CYP81D11) was observed, and the 6 h time point was chosen for 

studying early transcriptome changes in response to TNT treatment.  In response to 6 h 60 μM 

TNT treatment, Arabidopsis OPR, 12 P450, 15 UGT, 15 GST, 1 MT and 11 ABC transporter genes 

were induced over two-fold (Gandia‐Herrero et al., 2008; Figure 3).  The roles of the most 

upregulated OPRs, UGTs and GSTs in TNT detoxification have been investigated, as discussed 

below. 
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Figure 3: Phase I and II detoxification genes induced by 6 h 60 μM TNT treatment 

Detoxification genes with >2-fold higher transcript abundance in 6 h 60 μM TNT-treated seedlings compared with control-treated seedlings (Gandia-Herrero et al., 

2008).  Red bars; enzyme has since been found to have activity towards TNT or TNT derivatives.  Black bars; enzyme has been found not to have activity towards 

TNT or TNT derivatives.  Blue bars; activity towards TNT and derivatives not yet tested.  Where “&” between genes; microarray probe not specific to single gene. 

0

20

40

60

80

100

120

140

160

180
O

P
R

1
 &

 2

O
P

R
3

 &
 4

C
YP

81
D

1
1

C
YP

8
1

F2

C
YP

71
A

12

C
YP

71
B

15

C
YP

8
1

G
1

C
YP

70
7A

3

C
YP

89
A

2

C
YP

89
A

5

C
YP

72
A

13

C
YP

72
A

8

C
YP

71
B

23

C
YP

72
A

15

U
G

T7
3B

4

U
G

T7
4E

2

U
G

T7
3C

1

U
G

T7
3C

6

U
G

T7
3B

2

U
G

T7
3B

5

U
G

T7
5B

1

U
G

T8
72

A

U
G

T7
5D

1

U
G

T7
3B

1

U
G

T8
4A

3

U
G

T7
4D

1

U
G

T8
6A

1

U
G

T7
4F

2

U
G

T8
5A

2

G
ST

U
2

5

G
ST

U
2

4

G
ST

U
4

G
ST

U
3

G
ST

U
2

2

G
ST

U
1

G
ST

U
7

G
ST

U
1

2

G
ST

L1

G
ST

U
11

G
ST

U
8

G
ST

U
2

G
ST

U
9

G
ST

Z1

G
ST

F5
 &

 8

Tr
an

sc
ri

p
t 

ab
u

n
d

an
ce

: 
TN

T 
tr

e
at

m
e

n
t 

re
la

ti
ve

 t
o

 c
o

n
tr

o
l t

re
at

m
e

n
t 

P450s UGTs GSTs OPRs 



Chapter 1: Introduction 

16 
 

1.4.3 Detoxification of TNT in Arabidopsis 

Products of the most TNT-induced OPR, UGT and GST genes have been investigated for activity 

towards TNT. 

Phase I (Activation) TNT-detoxification reactions 

The enzymes OPR1, OPR2 and OPR3 reduce TNT to hydroxylaminodinitrotoluene (HADNT) and 

then aminodinitrotoluene (ADNT) in vitro, with OPR1 also generating hydride- and dihydride-

Meisenheimer complexes (Beynon et al., 2009).  These reactions are shown in Figure 4.  

Arabidopsis seedlings overexpressing OPR1 or OPR2 grow longer roots than wild type (WT) on 

2 μM TNT ½ MS(A), and have greater overall biomass than WT in liquid media containing 200 

μM TNT (Beynon et al., 2009).  

Phase II (Conjugation) TNT-detoxification reactions 

Six UGTs have been found to conjugate glucose to 2-HADNT and 4-HADNT (and to a lesser 

extent 2-ADNT and 4-ADNT) in vitro (Gandia-Herrero et al., 2008).  These conjugates are shown 

in Figure 5, and have been identified in plant extracts and growth media.  Increased levels of 

the conjugates were identified in extracts and growth media of both UGT73B4 and UGT73C1 

overexpression lines, and UGT73B4 overexpressing plants have increased root growth in the 

presence of TNT compared with WT (Gandia‐Herrero et al., 2008). 

The products of the two most TNT-induced GST genes, GSTU24 and GSTU25, conjugate 

glutathione to HADNT via the methyl group, and GSTU25 additionally conjugates glutathione 

directly to the aromatic ring of TNT, replacing a nitro group (Gunning et al., 2014).  These 

conjugates are shown in Figure 6.  Arabidopsis seedlings overexpressing GSTU24 or GSTU25 

have greater biomass than WT in the presence of TNT (Gunning et al., 2014). 

Phase III (Sequestration) TNT-detoxification reactions 

Conjugation of TNT derivatives to glucose and glutathione presumably promotes sequestration 

to cell vacuoles.  In a Phaseolus vulgaris L. (bushbean) cell fractionation study by Sens et al. 

(1998), approximately 50 % of [14C]-TNT was detected in cell wall fractions (mostly in lignin and 

hemicellulose fractions), with thin layer chromatography Rf values indicating covalent binding 

to cell wall components.  It therefore appears that TNT derivatives may be exported to the 

apoplast.  Schoenmuth and Pestemer (2004) assessed the uptake of [14C]-TNT by four-year old 

hybrid willow (Salix spec clone EW-20) and Norway spruce (Picea abies), and found after two 

months that 80 % of 14C was non-extractably bound in root, stem, leaf and needle tissue, with 

the majority remaining in root tissue. 
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Figure 4: Reduction of TNT in Arabidopsis by oxophytodienoate reductase enzymes 

Adapted from Beynon et al. (2009).  Reduction of the nitro group in position 2 shown.  The nitro group at position 4 can alternatively be reduced.  The OPR1 and 

OPR2 enzymes are cytosolic, while the OPR3 enzyme is peroxisomal (TAIR, 2015). 
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Figure 5: Glycosylation of TNT derivatives in Arabidopsis 

Adapted from Gandia‐Herrero et al. (2008).  UDP-G; uridine diphosphate-glucose.  Of the six 

UGTs which conjugate glucose to TNT, three are of unknown subcellular location, UGT73B4 is 

cytosolic, UGT73C1 is plastidial, and UGT73B5 is associated with endomembranes (TAIR, 2015).  
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Figure 6: Glutathionylation of TNT and TNT derivatives in Arabidopsis 

These conjugates were identified by Gunning et al. (2014).  GSH; reduced glutathione.  The 

GSTU24 and GSTU25 enzymes are cytosolic (TAIR, 2015).  
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1.5 REGULATION OF DETOXIFICATION GENES IN PLANTS 

1.5.1 Xenobiotic-response signalling in animal biology 

In animal biology, a number of Xenobiotic-Activated Receptors have been described, which 

interact directly with xenobiotics including drugs, and upon such interaction, are activated to 

directly induce detoxification gene expression (Ma, 2008; Pascussi et al., 2008; Tolson and 

Wang, 2010).  No homologues of these receptors have been identified in plants (Baker, 2005; 

Ramel et al., 2012). 

It is debated whether some synthetic compounds are sensed directly in planta, or whether 

plant responses synthetic compounds are ubiquitously secondary responses, to cellular 

perturbations induced by the xenobiotic.  Ramel et al. (2012) highlights that responses differ 

between xenobiotics (although these compounds could induce different cellular 

perturbations), and argues that the large-scale transcriptome changes following safener1 

treatment indicate a direct regulatory role.  It is likely to be of greater evolutionary advantage 

to respond to environmental stimuli before deleterious cellular perturbations are caused.  In 

support of this theory, plants have evolved receptors to detect Pathogen-Associated Molecular 

Patterns (PAMPs), and bacterial effector proteins which otherwise suppress plant immune 

responses (Zipfel, 2014; Cui et al., 2015).  These receptors are critical for early induction of 

defence responses, minimising the damage caused by infection. 

Little is known of the signalling involved in responses to synthetic compounds in plants. 

  

                                                           
1
 Safeners are agrochemicals used to induce detoxification genes in crops, for protection against 

subsequent herbicide application. 
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1.5.2 Defence signalling in plants 

Detoxification genes are induced following a range of stress treatments, to detoxify both 

endogenous and foreign compounds.  Activation pathways involve both stress-specific and 

shared components.  As will be discussed in 5.1.2, there is correlation between the 

detoxification genes induced by TNT treatment, and those induced by treatment with 

phytoprostanes, salicylic acid (SA) or jasmonate (JA).  This section therefore presents an 

overview of biotic stress and wound responses, of which SA, JA and possibly phytoprostanes 

are involved, with a focus on the role of redox changes in mediating stress responses, and class 

II TGACG-binding (TGA) factors.  The structures of the defence hormones discussed are 

included in Figure 7. 

 

 

 

Figure 7: Structure of defence signalling hormones 

The (-)-JA-L-Ile isoform of JA-Ile is shown.  
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Basal (or “non-host”) disease resistance 

Basal disease resistance is the induction of defences upon recognition of PAMPs (such as outer 

membrane lipopolysaccharide of Gram negative bacteria), or endogenous Damage-Associated 

Molecular Patterns (DAMPs, such as plant cell wall fragments released by microbial enzymes; 

Senthil-Kumar and Mysore, 2013). 

The response includes restriction of pathogen entry, for example through increased wax, 

callose and lignin deposition, and an increase in the production of antimicrobial compounds 

(Senthil-Kumar and Mysore, 2013). 

A small number of PAMP receptors have been identified; for example, FLAGELLIN SENSING 2 

(FLS2) detects the Flg22 protein of flagellin, inducing defence responses at nM concentrations 

of Flg22 (Gómez-Gómez and Boller, 2000).  The FLS2 protein is a receptor-like kinase (RLK), 

with an extracellular leucine-rich repeat (LRR) recognition domain, and an internal 

serine/threonine kinase domain (Gómez-Gómez and Boller, 2000).  Ethylene also has a role in 

basal disease resistance (Clay et al., 2009). 

Effector-mediated disease resistance (also known as “Resistance/R gene-mediated” or 

“gene-for-gene” resistance) 

Many strains of pathogen have evolved effector proteins, which enable the pathogen to evade 

or suppress basal disease resistance.  In response, some plant lines have evolved so-called R-

genes, the products of which recognise specific effectors or their activity, and trigger strong 

defence mechanisms (Dangl and Jones, 2001).  If recognised, effector proteins are termed 

“avirulence proteins”. 

Recognition is followed by calcium influx, alkalinisation of the extracellular space, kinase 

activation, production of Reactive Oxygen Species (ROS) and nitric oxide (NO), and 

transcriptome changes (Dangl and Jones, 2001). 

The oxidative burst and Hypersensitive Response (HR) 

Following pathogen recognition (basal or effector-mediated), rapid, transient, biphasic ROS 

accumulation occurs at the site of infection.  The first phase of ROS increase (and subsequent 

decrease) is a non-specific stress response, however the second, more pronounced and long-

lasting increase in ROS, correlates with the establishment of disease resistance (Stael et al., 

2015).  The increase in hydrogen peroxide level could have a role in disease resistance by (i) 

having a toxic effect on microbial membranes, (ii) catalysing bonds between expansins, 

strengthening cell walls, and/or (iii) through a signalling role; hydrogen peroxide is implicated 
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in increasing SA biosynthesis rate (Leon et al., 1995) and inducing kinase signalling via 

serine/threonine kinase OXI1 (Rentel et al., 2004).  Hydrogen peroxide is debated to be a 

threshold trigger for the Hypersensitive Response (HR)- programmed cell death, which limits 

the spread of biotrophic pathogen infection (Levine et al., 1994; Mur et al., 2005). 

There are upstream signalling components to this oxidative burst; the burst is abolished in 

double mutants of the NADPH oxidase homologues respiratory burst oxidaseD and F (Torres et 

al., 2002), and in ethylene-insensitive mutants (Mersmann et al., 2010), in response to 

pathogen infection and Flg22 treatment, respectively. 

Systemic Acquired Resistance (SAR) following biotic pathogen recognition 

Following pathogen recognition, a state of potentiated defences against a broad range of 

infection types is established, which decreases the severity of subsequent infections; this is 

termed Systemic Acquired Resistance (SAR; Ross, 1961), and is associated with activation of 

PATHOGENSIS-RELATED (PR) genes (van Loon et al., 2006).  Of the PR genes, regulation of PR-1 

(encoding an antifungal agent) has been most studied.  Salicylic acid (SA) induces and is 

required for SAR (White, 1979; Gaffney et al., 1993). 

The ankirin repeat protein NON-EXPRESSOR OF PR1 (NPR1) is a requirement for SAR, 

downstream of SA accumulation (Cao et al., 1994).  S-nitrosylation oligomerises NPR1 in the 

cytosol, however following SA treatment, thioredoxins catalyse the monomerisation of NPR1, 

which then accumulates in the nucleus and activates PR-1 (Tada et al., 2008).  Interaction of 

NPR1 with class II TGA factors appears to be important for inducing SAR; these basic/leucine 

zipper (bZIP) transcription factors (TFs) interact with NPR1 in yeast one hybrid assays (Lam and 

Lam, 1995; Zhang et al., 1999; Fan and Dong, 2002), and triple tga2 tga5 tga6 mutants do not 

exhibit SAR (Zhang et al., 2003).  The TGA factors of Arabidopsis are discussed further in 0. 

To investigate whether increased oxidative state is involved in SA signalling, Garretón et al. 

(2002) treated tobacco leaves with antioxidants dimethylthiourea (DMTU) or butylated 

hydroxyanisole (BHA) before SA treatment, and found protein binding to as-1 and expression 

from as-1 to be reduced following these antioxidant treatments. 

In the npr1 background, a suppressor of the npr1 phenotype has also been identified, in which 

INA2-mediated PR-1 induction is re-established (sni1; Li et al., 1999), indicating that NPR1-

mediated regulation of PR-1 functions via SNI1 inactivation. 

                                                           
2
 INA (2,6-dichloroisonicotinic acid) is a homologue of SA, which is often used in SA-response studies, as 

SA can be toxic to some mutants. 
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Blanco et al. (2005, 2009) analysed early transcriptome responses to SA more broadly, and 

found that while SA-responsive signal transduction genes (e.g. protein kinases and 

transcription factors) are induced NPR1-dependently, induction of detoxification genes (UGTs 

and GSTs) in response to SA, is generally NPR1-independent.  As discussed in 1.4.2, 

detoxification genes such as UGTs and GSTs are highly induced by TNT treatment. 

Jasmonates and responses to herbivory and necrotrophic pathogens 

Jasmonic acid (JA) is derived enzymatically from the lipid linolenic acid (Wasternack and Hause, 

2013).  In addition to roles in plant growth and development (Wasternack and Hause, 2013), 

the JA-isoleucine conjugate (JA-Ile) is an important mediator of responses to herbivorous 

insects (e.g. induction of the anti-insect acid phosphatase VEGETATIVE STORAGE PROTEIN 2; 

Liu et al., 2005), and nectrotrophic pathogens (e.g. induction of PLANT DEFENSIN1.2; PDF1.2), 

which involves cross-talk with abscisic acid (ABA) and ethylene (Wasternack and Hause, 2013). 

The JA-Ile receptor CORONATINE INSENSITIVE1 (COI1) is an F-box protein, which functions as 

part of an E3 ubiquitin ligase.  Binding of JA-Ile to COI1 promotes ubiquitination of jasmonate 

ZIM domain (JAZ) proteins, which are repressors of jasmonate-response genes.  Ubiquitination 

and degradation of JAZ proteins enables MYC basic Helix Loop Helix (bHLH) TFs to promote 

transcription of JA-response genes (Wasternack and Hause, 2013).  

The ethylene-activated APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription 

factor OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF protein domain59 (ORA59) is an 

activator of PDF1.2, and is also repressed by JAZ proteins (Wasternack and Hause, 2013). 

Antagonism between SA and JA 

While activation of the JA pathway suppresses SA biosynthesis (Zheng et al., 2012), induction 

of VSP2 and PDF1.2 following JA treatment is suppressed by SA (Koornneef et al., 2008), 

downstream of COI1 (Does et al., 2013).  Zander et al. (2014), report that the SA-mediated 

suppression is abolished in class II TGA factor mutants, which usually have a role in ORA59 

induction (as discussed earlier, ORA59 is an activator of PDF1.2; Wasternack and Hause; 2013).  

The glutaredoxin GRX480 is also required for SA-mediated suppression of PDF1.2, and interacts 

with TGA2 and TGA6 in yeast two hybrid assays (Ndamukong et al., 2007).  It is therefore 

proposed that following SA treatment, GRX480 interacts with TGA factors at the ORA59 

promoter, to repress transcription. 
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Oxophytodienoic acid and phytoprostanes in stress responses 

Recently, there has been focus on whether other linolenic acid-derived compounds could have 

a signalling role, independent of JA-Ile (Farmer and Mueller, 2013).  Namely, 12-

oxophytodienoic acid (OPDA), which is an enzymatically-generated precursor to JA, and 

phytoprostanes, a group of cyclopentenone isoprostanes, generated sequentially from the 

non-enzymatic oxidation of linolenic acid. 

Taki et al. (2005) compared Arabidopsis transcriptome responses to JA, MeJA3 and OPDA, and 

identified 214 genes which are induced or repressed >3-fold by OPDA, but neither induced or 

repressed >2-fold by MeJA.  Approximately half of these genes are also responsive to 

wounding.  Park et al. (2013) identified that OPDA binds cyclophilin 20-3 with strong affinity, 

promoting complex formation with serine acetyltransferase 1, and stabilisation of the hetero-

oligomeric cysteine synthase complex which regulates sulphur uptake and reduction.  This 

results in increased cysteine and glutathione biosynthesis. 

Application of phytoprostane AI (PPA1), BI and BII have also been shown to induce 

detoxification and defence responses, with a response profile similar to that of OPDA (Loeffler 

et al., 2005; Mueller et al., 2008).  Levels of phytoprostane have been found to increase in 

California poppy (Eschscholzia californica) and peppermint (Mentha piperita) cell cultures 

following oxidative stress and wounding (Imbusch and Mueller, 2000), in tobacco (Nicotiana 

tabacum cv. Xanthi) cells following butyl hydroperoxide treatment (Thoma et al., 2003), and in 

Arabidopsis following infection with virulent or avirulent Pseudomonas syringae (Grun et al., 

2007).  It is therefore hypothesised that phytoprostanes could also have a signalling role 

(Farmer and Mueller, 2013).  Due to the structural similarity of phytoprostanes with OPDA, 

signalling could potentially also be via activation of cyclophilin 20-3, and elevation of 

glutathione synthesis. 

In the study by Mueller et al. (2008), induction of 60 % of the PPA1-response genes, and 30 % 

of the OPDA-response genes, were class II TGA factor-dependent. 

  

                                                           
3
 Methyl jasmonate (MeJA) is converted to the COI1 ligand JA-Ile in vivo (Wasternack and Hause, 2013). 
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Role of redox change in defence signalling 

It is now well-established that ROS and Reactive Nitrogen Species (RNS) have important 

signalling roles, although the exact mechanisms of signal transduction remain controversial 

(Mullineaux and Baker, 2010).  A schematic showing the transition between molecular oxygen 

and ROS is included in Figure 8.  Superoxide and hydrogen peroxide are highly selective in their 

reactions with biological molecules, while singlet oxygen, the hydroperoxyl radical and 

hydroxyl radical, are highly reactive, and can directly oxidise protein, DNA and lipids, initiating 

self-perpetuating lipid peroxidation reactions (Halliwell, 2006).  Peroxynitrite rapidly 

protonates to peroxynitrous acid (ONOOH), which is also a powerful oxidising agent (Halliwell, 

2006).  Hydrogen peroxide is non-polar, and has a longer half-life than the other ROS (Halliwell, 

2006), which are useful properties for a direct signalling role.  

 

 

Figure 8: Schematic of transitions between molecular oxygen and ROS 

SOD; superoxide dismutase.  
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As discussed earlier, a well-defined oxidative burst correlates with pathogen recognition and 

defence responses (Stael et al., 2015), while it is also postulated that phytoprostanes, 

generated non-enzymatically following wounding, may have a signalling role (Farmer and 

Mueller, 2013), perhaps (as with OPDA signalling; Park et al., 2013) through direct activation of 

CYP20-3, resulting in increased glutathione synthesis. 

Generally, while SA-treatment increases glutathione content, JA-treatment reduces 

glutathione concentration, and elevates the percentage glutathione oxidation (Spoel and 

Loake, 2011).  Glutathione is synthesised in two steps, each catalysed by the product of a 

single gene in Arabidopsis (Figure 9); γ-glutamylcysteine synthetase (γ-ECS; GSH1, At4g23100) 

and glutathione synthetase (GSH2, At5g27380).  As reviewed by Noctor et al. (2012), a number 

of reports indicate that elevated H2O2 levels lead to an increase in reduced glutathione (GSH) 

content, without an increase in GSH1 or GSH2 transcription.  Cysteine, glycine and ATP 

availability may affect GSH content (and as referenced previously, OPDA induces cysteine 

biosynthesis in the wound response; Park et al., 2013), while there is also evidence for post-

translational regulation of γ-ECS; structural analysis of the γ-ECS of Brassica juncea revealed 

that the γ-ECS homodimer has two intramolecular redox-sensitive disulphide bonds.  When 

one of these is reduced, the active site is shielded, and when both are reduced, the resulting γ-

ECS monomers are inactive (Hothorn et al., 2006). 

 

 

Figure 9: Glutathione biosynthesis in Arabidopsis 

Adapted from Galant et al. (2011).  The enzymes catalysing these two final reaction steps are 

shown in blue, with corresponding gene acronyms used in this thesis in italics.  Immunogold 

labelling has identified γ-ECS in chloroplasts, and glutathione synthetase in both chloroplasts 

and in the cytosol (Galant et al., 2011).   
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A number of studies report disrupted gene expression in mutants with altered glutathione 

levels.  The rax1-1 (regulator of APX2 1-1) allele of GSH1 results in >50 % lower foliar 

glutathione content in Arabidopsis, corresponding with reduced expression of 20 genes, which 

are implicated in stress defence (Ball et al., 2004).  Arabidopsis lesions simulating disease (lsd) 

mutants develop HR in the absence of pathogens (Dietrich et al., 1997).  Senda and Ogawa 

(2004) report suppression of this phenotype upon treatment with buthionine sulfoximine 

(BSO, an inhibitor of γ-ECS; Griffith and Meister, 1979).  Both Senda and Ogawa (2004) and 

Gomez et al. (2004) report induction of PR-1 upon exogenous application of glutathione, in 

Arabidopsis and Nicotiana tabacum cv. Samsung (tobacco), respectively.  Gomez et al. (2004) 

additionally report an increase in free calcium in tobacco leaf discs treated with reduced or 

oxidised glutathione. 

Interestingly, Li et al. (2013) report that activation of 19 GSH-response genes (72 % of those 

induced) is dependent on GLUTAMATE RECEPTOR-LIKE CHANNEL 3.3 (GLR3.3).  This 

corresponds with an increase in cytosolic Ca2+, however other GLR3.3 ligands (glutamate, 

glutathione disulphide, alanine, asparagine, cysteine, glycine and serine) activated the 

transient increase in Ca2+, but not the transcriptome response.  Meanwhile Cheng et al. (2015) 

report exogenous GSH application to increase ribosome-loading, with overrepresentation of 

transcripts for JA and ABA biosynthesis genes. 

Flohé (2013) cautions that the glutathione redox potential should be interpreted in the first 

instance as a consequence of the redox environment, rather than a factor which can regulate 

biological processes; the author comments that enzyme use of glutathione depends on the 

glutathione concentration, rather than [GSH]2 as predicted by the Nernst equation, and that 

enzyme use of GSH is not typically affected by the concentration of glutathione disulphide 

(oxidised glutathione; GSSG). 

Oxidation of protein cysteine (Cys) residues can modify the protein activity, or rate of degradation 
(Sevilla et al., 2015).    The effect of the redox environment on Cys residues is summarised in  

Figure 10.  The S-nitrosylation can be reversed by reduction via GSH and thioredoxins, while 

oxidation to sulfinic (SO2H) and sulfonic (SO3H) species, is less readily reversible (Sevilla et al., 

2015). 
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Figure 10: Modifications of cysteine with redox environment 

Cysteine thiols (SH) are S-nitrosylated (SNO), S-sulphenated (SOH), S-thiolated (SS) and S-

sulphinated (SO2H) at increasingly oxidising environments (Spoel and Loake, 2011).   

 

In addition to ascorbate and glutathione, thioredoxins (Trx; aprroximately 12 kDa) and 

peroxiredoxins (Prx; 17 – 24 kDa) together buffer against redox change (Prxs have peroxidase 

activity, and are subsequently themselves reduced by Trxs; Dietz, 2011; Sevilla et al., 2015).  

The Prx and Trx proteins also have chaperone activity, and Trxs can act as disulphide 

oxidoreductases, reducing disulphides to thiols, at faster rates than dithiothreitol or GSH 

(Sevilla et al., 2015).  Trxs and Prxs themselves contain highly reactive Cys residues (while free 

Cys has a pKa of ~8.3, Cys residues of Trxs range from ~3 to 7, and of Prx range from 5.4 to 6; 

Dietz, 2011; Sevilla et al., 2015), and Cys oxidation modifies their activity (Chi et al., 2013); for 

example, Trx-h3 polymerises upon oxidation, and the polymerised form loses disulphide 

oxidoreductase activity, but retains chaperone activity (Park et al., 2009).  It has been 

proposed that this loss of activity could have a signalling role, acting as a “floodgate”, 

facilitating oxidation of other redox proteins, when H2O2 reaches a threshold level (Wood et 

al., 2003).  The redox changes to Trx and Prx are summarised in Figure 11. 

 

Figure 11: Redox-mediated modification of Trx and Prx proteins 

Adapted from Sevilla et al. (2015).  GSNO; S-nitrosoglutathione. Fd; ferredoxin.  FTR; 

ferredoxin-dependent Trx reductase.  NADPH; nicotinamide adenine dinucleotide phosphate.  

NTR; NADH-dependent Trx reductase. 
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A number of redox-regulated plant TFs have now been described.  The RAP2.4a TF (AP2/DREB-

type) has been identified as a redox sensor and activator of chloroplast antioxidant protein 2-

Cys peroxiredoxin (Prx)-A (2CPA); RAP2.4a dimerises upon oxidation, which enables DNA-

binding at the CGCG core of CE3-like promoter elements (Shaikhali et al., 2008). 

Promoters repressed by excess light, such as that of LIGHT-HARVESTING CHLOROPHYLL A/B-

BINDING PROTEIN2.4 (LHCB2.4), are enriched in G-boxes.  Shaikhali et al. (2012) demonstrated 

that binding of bZIP TF ZIP16 (which is a transcriptional repressor) requires Cys330 for 

repressive activity.  Although bZIP TFs dimerise at promoter elements, DNA binding was 

increased by dithiothreitol (DTT) treatment, which might improve DNA binding through a 

pathway in which a bZIP monomer first associates with the DNA, followed by dimerization 

(Shaikhali et al., 2012). 

As referred to earlier, SAR involves the redox-mediated monomerisation of NPR1, which then 

migrates to the nucleus and interacts with class II TGA factors, to induce PR-1 expression 

(Spoel and Loake, 2011).  S-nitrosylation of NPR1 at Cys156 facilitates oligomerisation, while the 

reduction is catalysed by Trx-h5; Arabidopsis mutants in NPR Cys156, Trx-h5 and S-

nitrosoglutathione reductase are compromised in disease resistance (Feechan et al., 2005; 

Tada et al., 2008).  While SAR is abolished in class II TGA factor triple mutants (Zhang et al., 

2003), class I TGA factor double mutant plants, also have reduced tolerance to pathogen 

infection (Kesarwani et al., 2007; Shearer et al., 2012), although SAR is not effected (Shearer et 

al., 2012), and detoxification genes are still induced following JA, OPDA or PPA1 treatment 

(Stotz et al., 2013).  It has been demonstrated that a disulphide bridge within TGA1 precludes 

interaction with NPR1, and that when this is reduced, followed by S-nitrosylation and S-

glutathionylation, TGA1 is able to interact with NPR1 (Després et al., 2003; Lindermayr et al., 

2010). 
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1.5.3 Focus on TGA factors 

Class II TGA factors are involved in responses to defence hormones SA and JA, and in response 

to phytoprostane treatment.  As discussed in 5.1.1, there is a particularly high level of 

correlation between the detoxification genes induced following phytoprostane treatment, and 

those induced following TNT treatment.  The class II TGA factors could therefore potentially 

also have a role in responses to TNT treatment, and are discussed below. 

Discovery of TGA factors 

Study of TGA factors began with the dissection of Agrobacterium tumefaciens (Agrobacterium) 

and viral T-DNA promoters; Bouchez et al. (1989) described a 16-bp sequence necessary for 

expression from the Agrobacterium octopine synthase (ocs) promoter in tobacco and maize, 

while Lam et al. (1989) described binding of tobacco proteins to a 21-bp element of the 

Cauliflower mosaic virus (CaMV) 35S promoter, termed activation sequence-1 (as-1).  Both ocs 

and as-1 contained the sequence TGACG, as a palindrome and in tandem respectively.  

Tobacco TGACG-binding (TGA) factors were cloned by Katagiri et al. (1989), and identified as 

bZIP transcription factors- a TF family which form hetero- and homodimers at (typically) 

palindromic sequences (Jakoby et al., 2002). 

Ellis et al. (1993) first questioned whether the ocs-element could have a functional role in plant 

gene regulation, and the as-1 element was subsequently found to be activated by auxin, SA 

and MeJA treatment (Liu and Lam, 1994; Qin et al., 1994; Xiang et al., 1996). 

Ten Arabidopsis TGA factors have now been identified, which fall into five classes (Gatz, 2013); 

an overview of the roles of these proteins is included in Table 7, with mutant studies 

summarised in Table 8.  While class IV and V TGA factors are involved in development, class I 

and II TGA factors are required for basal regulation and induction of defence genes.  Class III 

TGA factors have not been highly studied. 
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Table 7: The five classes of Arabidopsis TGA factors 

Class Genes Overview 

I TGA1 (At5g65210) 

TGA4 (At5g10030) 

TGA1 interacts with NPR1 following SA treatment (Després et al., 

2003), and double tga1 tga4 mutants are more susceptible to 

infection (Shearer et al., 2012). 

The mutants are not compromised in SAR however (Shearer et 

al., 2012), or in transcriptome responses to JA, OPDA or PPA1 

(Stotz et al., 2013). 

II TGA2 (At5g06950) 

TGA5 (At5g06960) 

TGA6 (At3g12250) 

Triple mutants are compromised in SAR (Zhang et al., 2003) and 

transcriptome responses to JA, OPDA and PPA1 (Stotz et al., 

2013). 

All interact with NPR1, TGA2 with highest affinity (Zhou et al., 

2000). 

Basal PR-1 expression is higher in tga2 mutants, indicating that 

this TF also has a repressive role (Kesarwani et al., 2007). 

III TGA3 (At1g22070) 

TGA7 (At1g77920) 

TGA3 partially interacts with NPR1 (Zhou et al., 2000), and is 

considered to have a role in the basal regulation of defence 

genes (Kesarwani et al., 2007). 

TGA3 was found to recruit cytokinin-activated transcription 

factor ARR2 to PR-1 in response to SA by Choi et al. (2010). 

TGA7 is highly expressed in xylem, and has not been highly 

studied. 

IV TGA9 (At1g08320) 

TGA10 (At5g06839) 

TGA9 and TGA10 interact with glutaredoxins ROXY1 and ROXY2 

to regulate anther development (Murmu et al., 2010). 

V TGA8/PERIANTHIA 

(At1g68640) 

TGA8 is a repressor of petal development (Chuang et al., 1999). 
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Table 8: Defence responses in class I – III TGA factor mutants 

ACC; 1-aminocyclopropane-1-carboxylic acid (ethylene precursor).  GUS; BETA-

GLUCURONIDASE reporter gene. 

Experiment Mutant Phenotype compared 
with WT 

Reference 

Induction of 
GSTF8::LUC by SA 
or H2O2 treatment 

Knockdown of TGA4 
expression to 40 % of WT, 
knockdown of TGA1 
expression to 64 % of WT 

Increased induction Foley and 
Singh (2004) 

Knockdown of TGA5 
expression to 23 % of WT 

Reduced induction 

Induction of PR-1 
following INA 
treatment 

tga6-1 As WT Zhang et al. 
(2003) 
 

tga2-1 tga5-1 As WT 

tga2-1 tga5-1 tga6-1 Abolished 

Sensitivity to the 
toxicity of SA 

tga6-1 WT 

tga2-1 tga5-1 As WT 

tga2-1 tga5-1 tga6-1 As npr1 

SAR following INA 
treatment 

tga6-1 As WT 

tga2-1 tga5-1 As WT 

tga2-1 tga5-1 tga6-1 Abolished 

PR-1 expression on 
INA-supplemented 
plates 

tga2-2 Higher than WT Kesarwani et 
al. (2007) 
 

TGA6ACT Higher than WT 

tga3-1 Lower than WT 

tga7-1 Higher than WT 

tga1-1 A little lower than WT 

tga4-1 As WT 

tga1-1 tga4-1 As WT 

Infection with 
nectrotrophic 
Pseudomonas 
syringae pv 
maculicola ES4326; 
test for basal 
disease resistance 

tga1-1 Greater infection 

tga4-1 As WT 

tga1-1 tga4-1 Greater infection than 
WT and tga1-1. 
Similar to npr1-1. 

tga2-1 tga3-1 tga5-1 tga6-1 Greater infection than 
WT or tga2-1 tga5-1 
tga6-1. 
Similar to npr1. 

Basal PR-1 
expression 

tga2-1 tga5-1 tga6-1 Higher than WT 

tga2-1 tga3-1 tga5-1 tga6-1 As WT 

TGA6ACT Higher than WT 

tga2-2 Higher than WT 

TGA6ACT tga2-2  Much higher than WT 

Cell culture PPA1 

treatment 
tga2-1 tga5-1 tga6-1 60% of PPA1-responsive 

genes not induced 
Mueller et 
al. (2008) 

Expression of five 
NPR1-dependent 
and two NPR1-
independent SA-
responsive genes 
to SA 

tga2-5 tga5-1 tga6-1 Induction decreased Blanco et al. 
(2009) 
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Cell culture OPDA 
treatment 

tga2-1 tga5-1 tga6-1 30% of OPDA-responsive 
genes not induced 

Matthes et 
al. (2010) 

Lesion size after 
biotrophic Botrytis 
cinerea infection 

tga2-5 tga5-1 tga6-1 Larger than WT Zander et al. 
(2010) 

PDF1.2 expression 
after biotrophic 
Botrytis cinerea 
infection 

tga2-5 tga5-1 tga6-1 Induction almost 
abolished 

PDF1.2 expression 
after nectrotrophic 
Pseudomonas 
syringae infection 

tga2-5 tga5-1 tga6-1 Lower transcript level 
than WT but basal level 
also lower 

PDF1.2 expression 
when treated with 
ACC and JA 
 

tga2-5 tga5-1 tga6-1 Induction almost 
abolished 

tga6 As WT 

tga2-5 tga5-1 tga6-1 jin1 
(jin1 is MYC2 mutant) 

Induced higher than WT 
but not as high as jin1 

tga2-5 tga5-1 tga6-1 with 
35S:TGA2, 5 or 6 

Induction greater than 
WT, especially for  
35S:TGA5 

Safener treatment 
(5 mM mefenpyr 
and 7.2 mM 
isoxadifen) of 
Arabidopsis 
transformed with a 
maize safener-
responsive GST 
promoter: GUS 
construct 

tga2-1 tga3-1 tga5-1 tga6-1 Activation of the 
promoter abolished in 
the tga quadruple 
mutant. 
The response also 
required SA (through 
study with sid2-2 mutant) 
but not NPR1 (studies 
with npr1). 

Behringer et 
al. (2011) 

Pseudomonas 
syringae or 
Hyaloperonospora 
arabidopsidis 
infection 

tga1-1 tga4-1 Ten-fold more bacterial 
growth 
PR-1 still induced 

Shearer et 
al. (2012) 

tga1-1 tga4-1 npr1 More P. syringae growth 
than in tga1 tga4 

SAR following 
treatment with 
avirulent strain 

tga1-1 tga4-1 Pre-inoculation with 
avirulent strain still 
effective at inducing SAR 

Detoxification 
gene induction 
following PPA1 
treatment 

tga1-1 tga4-1 Increased or as WT Stotz et al. 
(2013) tga2-5 tga5-1 tga6-1 Decreased 

Detoxification 
gene induction 
following OPDA 
treatment 

tga1-1 tga4-1 As WT 

tga2-5 tga5-1 tga6-1 Decreased 

Detoxification 
gene induction 
following JA 
treatment 

tga1-1 tga4-1 Increased or as WT 

tga2-5 tga5-1 tga6-1 Decreased 
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Binding and recruitment of TGA factors to promoter elements 

Promoter studies have focused on induction of PR-1 in response to SA or INA.  Lebel et al. 

(1998) implemented linker scanning mutagenesis, and found reduced PR-1 induction in 

response to INA when LS7 is mutated4, and higher basal expression when LS4 or LS5 are 

mutated.  Elements LS7 and LS5 contain TGACG motifs, while LS4 contains a WRKY 

transcription factor binding motif5.  It is proposed that TGA factor binding to the LS7 element 

induces PR-1 expression, while binding to LS5 represses basal PR-1 levels (Kesarwani et al., 

2007).  Pape et al. (2010) further identified that when both LS7 and LS5 are mutated, response 

to INA is restored, but not when LS4 is mutated, or in the npr1 mutant background.  These 

studies highlight the interplay between various regulatory factors at the PR-1 promoter. 

Zander et al. (2010) found induction of PDF1.2 following ACC and JA treatment to be abolished 

in tga2 tga5 tga6, however induction from this promoter was unaffected when the TGACG 

motif was mutated to TTTTT.  The reduction in response is therefore indirect, presumably via 

reduced ORA59 transcription, of which class II TGA factors are activators (Zander et al., 2014). 

Chromatin immunoprecipitation (ChIP) experiments investigating TGA factor recruitment have 

yielded some conflicting results; Johnson et al. (2003) used antiserum against the N-termini of 

TGA2 and TGA3, and reported SA- and NPR1-mediated recruitment of TGA2 and 3 to the PR-1 

promoter.   Rochon et al. (2006) meanwhile overexpressed HIS-tagged TGA2 in tga2 tga5 tga6, 

and reported comparable promoter recovery from SA-treated and untreated plants.  The ChIP 

result of Johnson et al. (2003) was further supported however by a gel-shift binding assay 

between leaf nuclear extracts and labelled promoter probes.  It is possible that in the 

experiment of Rochon et al. (2006), the HIS-tag interfered with TGA factor recruitment, or was 

out-competed by endogenous TGA factors, or alternatively, that when TGA2-HIS is 

overexpressed, there is a greater incidence of non-recruited promoter binding.   

Post-translational regulation of TGA factor activity, including protein-protein interaction 

A number of studies have identified interaction between NPR1 and TGA factors in yeast two 

hybrid screens (Zhang et al., 1999; Després et al., 2000; Zhou et al., 2000; Fan and Dong, 2002); 

Zhou et al. (2000) conclude that TGA2 and TGA3 have strong binding affinity towards NPR1, 

while TGA5 and TGA6 have weaker affinity, and TGA1 and TGA4 little affinity.  Using a plant 

two hybrid assay, Després et al. (2003) identified interaction between TGA1 and NPR1 in 

                                                           
4
 The promoter segments replaced with heterologous sequence (of same length) were denoted LS1 to 

LS13. 
5
 WRKY transcription factors are zinc finger TFs of the WRKY-GCM1 superfamily.  The name derives from 

a conserved WRKYGQK sequence at the protein N-terminus (Chen et al., 2012). 
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Arabidopsis leaves following SA treatment.  Site mutagenesis of TGA1 Cys260 and Cys266 enabled 

interaction of TGA1 with NPR1; these residues are predicted to form intramolecular disulphide 

bridge, which inhibits binding to NPR1.  When this disulphide bridge is reduced, interaction 

with NPR1 is enabled (Després et al., 2003). 

Electrophoretic mobility shift assays by Després et al. (2000) indicate that in vitro, binding of 

TGA2 to the as-1 promoter, and LS5 and LS7 elements of the PR-1 promoter, is increased by 

the presence of NPR1. 

Interestingly, binding to the as-1 element in tobacco cells of a TF immunologically-similar to 

tobacco TGA factor TGA1a, was reduced following phosphatase treatment in a study by Jupin 

and Chua (1996); phosphorylation may have a role in the regulation of TGA factor DNA 

binding.  Kang and Klessig (2005) have since identified that TGA2 is phosphorylated by 

Arabidopsis crude extract, and that this phosphorylation is increased in extract from plants 

which have been treated with SA for 10 min. 

It was prior hypothesised that class II TGA factors also interact with the NPR1 paralogues NPR3 

and NPR4,  to form repressive units,  however NPR3 and NPR4 have since been found to have a 

role in mediating NPR1 degradation (Fu et al., 2012). 

In a yeast two hybrid screen, Fode et al. (2008) also identified interaction between TGA2 and 

the GRAS protein6 SCARECROW-LIKE 14 (SCL14).  In comparison between a scl14 mutant and a 

SCL14-overexpressor, 14 genes were identified as expressed >five-fold (log2) more in the 

overexpressor line, eleven of which are also induced by TNT treatment (Gandia‐Herrero et al., 

2008). 

In another yeast two hybrid screen, Ndamukong et al. (2007) identified that TGA2 and TGA6 

interact with glutaredoxin GRX480.  When GRX480 was constitutively expressed in Arabidopsis, 

if was found to negatively regulate as-1.  This glutaredoxin is also required for SA-mediated 

suppression of PDF1.2 (Ndamukong et al., 2007). 

 

 

  

                                                           
6
 This group of proteins is named after the first three members to be described: GIBBERELLIC-ACID-

INSENSITIVE (GAI), REPRESSOR OF GAI (RGA) and SCARECROW (SCR).  Numerous GRAS domain proteins 
have been found to have important roles in plant growth and development (Hirsch and Oldroyd, 2009). 
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1.5.4 Studies specifically on plant detoxification gene regulation 

Although detoxification genes are induced by SA and JA, study of these signalling pathways has 

focused on the regulation of PR-1 and PDF1.2, respectively.  More recently, the regulation of 

specific detoxification gene promoters in response to various stimuli, including xenobiotics, has 

been studied in more detail. 

Köster et al. (2012) sought to identify components involved in CYP81D11 induction in response 

to JA, 2,3,5-triiodobenzoic acid (TIBA; an auxin transport inhibitor) and benzoxazolin-2(3H)-one 

(BOA; an allelochemical).  The CYP81D11 gene is induced by a broad range of stimuli, including 

TNT treatment (25-fold induction; Gandia‐Herrero et al., 2008).  Their findings are summarised 

in Table 9; induction of CYP81D11 following JA treatment required class II TGA factors and 

MYC2, and the as-1 and G-box binding sites (for TGA factors and MYC2, respectively). 

Meanwhile JA-mediated induction of VSP2 and GRX480 was increased in the tga2 tga5 tga6 

triple mutant.  Induction of CYP81D11 following TIBA treatment was abolished when as-1 was 

mutated, but only halved when the G-box motif was mutated.  Induction in coi1 was reduced 

10-fold, but reduced only 3-fold in the dde2-2 mutant which does not accumulate OPDA or JA, 

and in contrast to following wounding, no change in JA-Ile or JAZ levels was detected following 

TIBA treatment.  These findings indicate a role for COI1 in response to TIBA, partially 

independent of JA and MYC2. 

Stotz et al. (2013) also studied the CYP81D11 promoter, along with the promoters of GSTF8, 

GSTU7, OPR1, TolB-like and VSP17, investigating components required for induction following 

treatment with PPA1, OPDA or JA.  The authors’ findings are summarised in Table 10; while 

induction in response to all three treatments was abolished or reduced in tga2 tga5 tga6, the 

response in tga1 tga4 mutants was unchanged, or increased relative to wild type.  Notably, 

loss of COI1 differentially affects the induction of different genes. 

The studies detailed above highlight differences in signalling pathways in response to different 

stimuli, and the varying roles of shared components, such as COI1, in these pathways. 

Previous studies investigating responses to synthetic compounds in plants are summarised in 

Table 11.  In this thesis, Arabidopsis response to TNT treatment is investigated, as an exemplar 

aromatic pollutant in the environment. 

 

                                                           
7
 These genes are induced in response to TNT as follows: CYP81D11 25-fold, GSTF8 3-fold, GSTU7 8-fold, 

OPR1 14-fold (primers also target OPR2 transcript) and TolB-like 30-fold.  The VSP1 gene is not induced 
by TNT treatment (Gandia‐Herrero et al., 2008). 
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Table 9: Requirements for CYP81D11 induction in response to JA, TIBA or BOA treatment 

Summary of findings reported by (Köster et al., 2012).  The jasmonate-insenstive1 mutant 

allele encodes MYC2. 

Experiment condition 

Induction of CYP81D11 promoter 

in response to treatment 

JA TIBA BOA 

tga2 tga5 tga6 mutant abolished   

coi1 mutant (JA-Ile receptor mutant)  
almost 

abolished 

almost 

abolished 

jin1-1 mutant (MYC2 mutant) abolished reduced 
almost 

abolished 

dde2-2 mutant (doesn’t accumulate OPDA or JA)  reduced reduced 

as-1-like motif (TGA factor binding site) mutated  abolished 
almost 

abolished 
 

G-box motif (MYC2 binding site) mutated  abolished reduced  

 

Table 10: Requirements for detoxification gene induction in response to PPA1, OPDA or JA 

Summary of findings reported by Stotz et al. (2013).  The jasmonate-insenstive1 mutant allele 

encodes MYC2. 

 coi1 jin1 

PPA1 OPDA JA PPA1 OPDA JA 

CYP81D11 reduced as WT reduced as WT as WT reduced 

GSTF8 as WT as WT as WT as WT as WT as WT 

GSTU7 as WT as WT as WT as WT as WT as WT 

OPR1 increased increased increased as WT increased as WT 

TolB-like as WT increased increased as WT as WT as WT 

VSP1 
 

abolished abolished 
 

as WT reduced 

 

 tga2 tga5 tga6 tga1 tga4 

PPA1 OPDA JA PPA1 OPDA JA 

CYP81D11 abolished abolished abolished as WT as WT increased 

GSTF8 reduced reduced abolished increased as WT as WT 

GSTU7 abolished abolished abolished increased as WT as WT 

OPR1 abolished abolished abolished increased as WT as WT 

TolB-like abolished abolished abolished as WT as WT as WT 
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Table 11: Studies investigating responses to synthetic compounds 

The CYP81D11 gene is induced 25-fold by TNT treatment, GSTU24 37-fold, and GSTU19 is not 

induced (Gandia‐Herrero et al., 2008). 

Chemical structure Study 

 
2,4-dichlorophenoxyacetic acid (2,4-D) 

2,4-D is a synthetic auxin, which is used as a 
herbicide. 
 
Fode et al. (2008) reported increased expression 
from as-1:GUS when treated with 2,4-D, and when 
SCL14 was overexpressed. 

 
2,3,5-triiodobenzoic acid (TIBA) 

TIBA is an auxin transport inhibitor. 
 
Köster et al. (2012) report that CYP81D11 induction 
following TIBA treatment requires class II TGA 
factors, and is partially dependent on COI1, MYC2, 
and lipids in the jasmonic acid pathway. 

 
Benzoxazolin-2(3H)-one (BOA) 

BOA is an allelochemical. 
 
Köster et al. (2012) report that CYP81D11 induction 
following BOA treatment requires COI1 and MYC2. 

 
Fenclorim 

Fenclorim is a herbicide safener. 
 
Skipsey et al. (2011) report higher transcript 
abundance of GSTU19 and GSTU24 in fad3-2 fad7-2 
fad8 compared with wild type in control (acetone) 
treatment, but reduced transcript abundance 
relative to wild type following fenclorim treatment. 

 
Isoxadifen-ethyl with mefenpyr-diethyl 

Isoxadifen-ethyl with mefenpyr-diethyl are used in 
herbicide safeners. 
 
Behringer et al. (2011) report that induction from a 
maize GST promoter was abolished in Arabidopsis 
tga2-1 tga3-1 tga5-1 tga6-1. 

 
2,6-dichloroisonicotinic acid (INA) 

INA is a salicylic acid homolog, often used in the 
study of SA signalling, as SA can have toxic effects 
on some mutants. 
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1.6 THESIS OBJECTIVES 

As discussed in 1.3, phytoremediation may be the most cost-effective and environmentally-

friendly means of tackling explosives pollution at large sites, however there is a need to 

develop plants which are able to both tolerate and degrade energetic residues.  Previous work 

in Neil Bruce’s group identified that Arabidopsis plants deficient in 

MONODEHYDROASCORBATE REDUCTASE 6 (MDHAR6) have greatly enhanced TNT tolerance 

(Johnston et al., 2015).  The aims of this study are: 

(i) to explore the means behind the enhanced TNT tolerance of mdhar6 mutants (Chapter 3), 

(ii) to further elucidate the endogenous role of MDHAR6, by investigating the subcellular 

location of this protein (Chapter 4), and 

(iii) to explore the regulation of detoxification genes in response to TNT treatment (Chapter 5). 
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2 Materials and methods 

2.1 MATERIALS AND METHODS 

 Plant material 2.1.1

monodehydroascorbate reductase (mdhar)6-1 

This mutant, in the Columbia7 (Col7) background, was identified in a screen of Weigel T-DNA 

activation lines (Weigel et al., 2000) obtained from the Nottingham Arabidopsis Stock Centre. 

mdhar6-2 

This mutant, in the Nossen (Nos) background, was obtained from the RIKEN Arabidopsis 

transposon-tagged mutant (RATM) lines (Ito et al., 2005). 

mdhar6-3 

This mutant, in the Columbia0 (Col0) background, is line 258H07 of the GABI-Kat T-DNA 

mutagenised lines (Kleinboelting et al., 2012). 

tgacg motif binding factor (tga)2 tga5 tga6 

This mutant, in the Col0 background, was constructed by Zhang et al. (2003), and kindly 

provided by Prof. Christiane Gatz (Georg-August-Universität Göttingen). 

fatty acid desaturase (fad)3-2 fad7-2 fad8 

This mutant, in the Col0 background, was isolated by McConn and Browse (1996), and kindly 

provided by Prof. Robert Edwards (Newcastle University). 

allene oxide synthase (aos) 

This mutant, in the Columbia6 (Col6) background, was isolated by Park et al. (2002), and kindly 

provided by Prof. Ian Graham (University of York). 

 Plant growth conditions 2.1.2

Agar plates 

Half strength Murashige and Skoog basal medium (Sigma M5524) with 0.8 % w/v agar (Sigma 

A1296), indicated by acronym ½ MS(A) or ½ MS(A)(S), where (A) denotes addition of agar, and 

(S) denotes addition of 20 mM sucrose.  

Growth in liquid media and treatment with TNT 

Liquid culture experiments in this thesis are replications of the TNT-response experiment 

described by Gandia‐Herrero et al. (2008).  Stratified seedlings were germinated on ½ MS(A)(S) 

for 24 h, then ten seedlings were transferred to 500 ml conical flasks containing 100 ml of ½ 
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MS(S) with 1 x Gamborg’s Vitamin Solution (Sigma G1019), and grown for 13 d with 130 rpm 

shaking and low light conditions (20 μmol.m-2.s-1, 16 h light, 8 h dark cycle).  The 14-d old 

seedlings were then dosed with 60 μM TNT in DMF (end 0.06% v/v DMF) or DMF alone, and 

harvested after 6 h. 

Hydroponic growth 

In this thesis, “hydroponic” is used to refer to the growth of seedlings on a raft, so that roots, 

but not leaves, are submerged in the liquid growth medium (Figure 12).  The 5 mm diameter 

holes of Foamex rafts (dimensions: 5 mm thickness, 8 cm diameter, 2 cm diameter hole for raft 

removal, 84 x 5 mm diameter holes for germinating seedlings- produced by the University of 

York, Department of Biology Workshop) were plugged with ½ MS(S)(A), and transferred to 100 

ml ½ MS(S), within 560 ml jars.  Ten seeds, which had already been stratified in sterilised 

water, were then transferred per Foamex raft, and the jars were sealed with micropore tape 

and metal clamps.  Before setup, the jars were sterilised in a 150 °C oven for 2 h, while the 

rafts, agar and liquid media were autoclaved. 

 

 

Figure 12: Hydroponic growth of Arabidopsis seedlings 

Seeds are germinated upon ½ MS agar-plugged holes in the raft. 

 

Soil 

Levington’s F2 compost. 
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Soil treated with TNT 

The TNT concentration of soil is reported as mg TNT per kg of soil, which consists of 55 % dry 

mass (70 % Levington’s F2 compost, 30 % fine silica sand) and 45 % water. To prepare this soil, 

TNT dissolved in acetone was first added to the sand within a tub. After the acetone had 

evaporated overnight, a large (2.5 cm diameter) glass marble was added, and the sand and 

TNT mixed by mechanical rotations for 20 min.  The compost was then also added, and the soil 

mixed overnight by mechanical rotations with the marble. 

Seed sterilisation 

Within a box containing the seeds, 3 ml concentrated hydrochloric acid was added to 100 ml 

sodium hypochlorite, to generate chlorine gas.  The box was then immediately sealed, and the 

seeds were incubated with the gas for 4 h. 

Seed stratification 

Seeds were applied to ½ MS(A) or damp soil, and stratified in the dark at 6 °C for 3 d. 

Growth room conditions 

The growth room used in non-soil experiments had low lighting (20 μmol.m-2.s-1), with a 16 h 

light, 8 h dark cycle. 

Growth cabinet conditions 

Growth cabinets (SANYO Electric Co. Ltd., MLR-350) were used in experiments where plants 

were grown on TNT-treated soil.  The cabinets had a light level of 180 µmol.m-2.s-1, with a 12-h 

photoperiod, and 18 and 21 °C dark and light temperatures respectively. 

 Source of TNT 2.1.3

The TNT was kindly provided by the Defence Science and Technology Laboratory (DSTL; Fort 

Halstead, Kent, UK). 

 Growth of plants on TNT-treated soil 2.1.4

Compost was treated with TNT as outlined in 2.1.2, and 20 g (consisting of 55 % dry weight) 

was transferred to individual pots.  Five 5-day old seedlings (germinated on non TNT-treated 

compost) were transferred to each test pot, and grown in a Sanyo growth cabinet.  Plant tissue 

and soil was harvested when plants were six-weeks of age. 

 Recovery of TNT from soil 2.1.5

Soil was dried at 50 °C for 72 h, with vortexing at 48 h, then ground to a fine powder by 

mechanical rotations with two steel ball bearings (of 1 cm diameter) overnight.  Aliquots of 2 g 
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dried soil were weighed into glass vials, and sonicated with 10 ml acetonitrile for 18 h (Sonorex 

Digital 10P, 100% power, chilled with ice).  Samples were centrifuged (20,000 rpm, 40 min), 

and the supernatant concentrated 10-fold by evaporating acetonitrile at 60 °C, then 

resuspending with 50:50 water:acetonitrile for High Performance Liquid Chromatography 

analysis. 

 High Performance Liquid Chromatography (HPLC) 2.1.6

A Waters HPLC system (Waters 2695 separator with Waters Photodiode array detector and 

Waters X-Bridge C18 column; 300 x 4.5 mm, 5 μM) was used to measure TNT or CDNB 

concentration of samples.  Running solvent was isocratic 50:50 acetonitrile:water.  To measure 

TNT concentration, A230 peak area at 9.4 min retention time was compared against a standard 

curve.  To measure CDNB concentration, A250 peak area at 10.5 min retention time was 

compared against a standard curve. 

 Root length analysis 2.1.7

Root length was measured from photographs using ImageJ (Schneider et al., 2012). 

 Ascorbate measurement 2.1.8

Two different methods were used to measure ascorbate. 

In Figure 24, where ascorbate is quantified in roots and leaves, the protocol outlined by 

Kampfenkel et al. (1995) was used; 100 mg tissue crash-frozen in liquid nitrogen was ground in 

a bead mill with 500 μl 6 % trichloroacetic acid (TCA; 30 1/s, 3 min), then incubated on ice for 

15 min before centrifugation (13,000 rpm, 5 min, 6 °C). Ascorbate measurement is based on 

detecting reduction of Fe3+ to Fe2+ by reduced ascorbate. To measure reduced ascorbate, the 

assay contained 50 μl sample or standard, 150 μl 0.2 M sodium phosphate (pH 7.4), 50 μl 

water, 250 μl 10 % TCA (v/v), 200 μl 42 % H3PO4 (v/v), 200 μl 4 % 2,2’-dipyridyl (v/v) in 70% 

ethanol and 100 μl 3 % FeCl3 (v/v).  Reactions were incubated at 42 °C for 40 min before 

reading A525. To measure total ascorbate, after addition of the buffer, 50 μl of 10 mM DTT in 

0.2 M sodium phosphate (pH 7.4) was added and the samples were incubated at 42 °C for 15 

min.  Instead of water, 50 μl of 0.5 % N-ethylmaleimide was then added to remove excess DTT, 

and after 1 min incubation at room temperature (RT), the remaining assay components were 

added.  

In Figure 25, where ascorbate is quantified in control and TNT-treated seedlings, the protocol 

outlined by Queval and Noctor (2007) was used; seedlings were ground in liquid nitrogen and 1 

ml 0.2 N HCl added per 100 mg FW.  Following centrifugation (13,000 rpm, 10 min, 6 oC), 
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supernatant pH was adjusted to between 5 and 6 by the addition of 100 µl 0.2 M NaH2PO4 (pH 

5.6) and 830 µl 0.2 M NaOH, per 1 ml supernatant. Ascorbate measurement is based on the 

difference in A265 between reduced and oxidised ascorbate.  To measure reduced ascorbate, 60 

μl sample or standard was added to 300 μl 0.2 M NaH2PO4 (pH 5.6) and 225 μl water.  A265 was 

measured before and after addition of 15 μl 40 U.ml-1 ascorbate oxidase (Sigma A0157) in 0.2 

M NaH2PO4 (pH 5.6).  To reduce all ascorbate for total ascorbate measurement, 300 μl of 

neutralized extract was incubated with 420 μl 0.12 M NaH2PO4 (pH 7.5) and 30 μl 25 mM DTT 

at RT for 30 min. 

 Glutathione measurement 2.1.9

Glutathione was measured as described by Queval and Noctor (2007); samples were extracted 

and neutralised as described in 2.1.8.  The glutathione measurement is based on glutathione-

mediated reduction of 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB) to thionitrobenzoic acid, 

which corresponds with an increase in A412.  The complete assay consisted of 500 µl 0.2 M 

NaH2PO4 10 mM EDTA (pH 7.5), 50 µl 10 mM NADH, 50 µl 12 mM DTNB, 300 µl water, 50 µl 

neutralised sample or glutathione standard and 50 µl 20 U/ml glutathione reductase (Sigma 

G3664) in 0.2 M NaH2PO4 10 mM EDTA (pH 7.5). The rate of A412 increase before and after 

glutathione reductase addition was recorded. To measure the concentration of oxidised 

glutathione in samples, reduced glutathione was first complexed with 2-vinylpyridine (VPD); 

400 µl of neutralised supernatant was incubated at room temperature with 2 µl VPD for 30 

min, and then centrifuged at 14,000 rpm for 5 min to remove the VPD-glutathione complex. 

For oxidised glutathione measurement, the complete assay contained 10 % (v/v) sample or 

standard. 

 Plant protein extraction and analysis of extract activity 2.1.10

Plant protein extraction and analysis of MDHAR activity was as reported in Colville and 

Smirnoff (2008). 

For protein extraction, 1 ml ice-cold extraction buffer (100 mM Tricine, 1 mM Na2EDTA, 5% 

polyvinylpyrrolidine-40 (v/v), 20% glycerol (v/v) and 2 mM DTT added fresh before use) was 

added per 100 mg of fresh tissue, and the tissue was homogenised using a pestle connected to 

an electric drill.  Samples were centrifuged at 13,000 rpm for 2 min at 4°C, and the supernatant 

kept on ice before assayed. 

To measure MDHAR activity, assays contained 362.5 μl 50 mM Tris (pH7.6) 1 mM EDTA buffer, 

12.5 μl 4.29 mM NADH (end 107 μM), 25 μl 2.5 mM sodium ascorbate (end 125 μM) and 50 μl 

extract.  The oxidation rate of NADH was measured before and after the addition of 50 μl 5.6 
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U/ml ascorbate oxidase (Sigma A0157; end 0.56 U/ml) in 4 mM sodium phosphate buffer 

0.05% BSA (pH 5.6).  The rate of NADH reduction was calculated assuming an extinction 

coefficient of NADH at 340 nm of 6.22 mM-1.cm-1. 

To assay activity towards TNT, the same reaction buffer and NADH concentration was used, 

and A340 was followed before and after addition of 50 μl 10 mM TNT in DMSO (end 1 mM). 

 Production of MDHAR6 in Escherichia coli 2.1.11

The MDHAR6 gene, lacking organelle-targeting sequences, was codon-optimised for E. coli by 

GeneART® Gene Synthesis (ThermoFisher Scientific), and cloned into the vector pET52b by Liz 

Rylott and Maria Budarina.  This introduced an N-terminal Strep-tag and C-terminal 

polyHistidine (HIS)-tag to the expressed protein (Figure 13). 

 

MASWSHPQFEKGADDDDKVPDPSLVTASFANENREFVIVGGGNAAGYAARTFVENGMADGRLCI

VTKEAYAPYERPALTKAYLFPPEKKPARLPGFHTCVGGGGERQTPDWYKEKGIEVIYEDPVAGA

DFEKQTLTTDAGKQLKYGSLIIATGCTASRFPDKIGGHLPGVHYIREVADADSLIASLGKAKKI

VIVGGGYIGMEVAAAAVAWNLDTTIVFPEDQLLQRLFTPSLAQKYEELYRQNGVKFVKGASINN

LEAGSDGRVSAVKLADGSTIEADTVVIGIGAKPAIGPFETLAMNKSIGGIQVDGLFRTSTPGIF

AIGDVAAFPLKIYDRMTRVEHVDHARRSAQHCVKSLLTAHTDTYDYLPYFYSRVFEYEGSPRKV

WWQFFGDNVGETVEVGNFDPKIATFWIESGRLKGVLVESGSPEEFQLLPKLARSQPLVDKAKLA

SASSVEEALEIAQAALQSAAAGAPGFSSISAHHHHHHHHHH 

Figure 13: Sequence of the epitope-tagged MDHAR6 expressed in E. coli 

The N-terminal organelle-targeting sequences (first 48 residues of m-MDHAR6) are omitted, 

i.e. the sequence starts after the RIAS motif for protein cleavage after import into 

mitochondria.  N-terminal Strep-tag and C-terminal HIS-tag highlighted.   

 

The vector pET52b MDHAR6 was transformed into E. coli strain Arctic Express (Agilent 

Technologies) following the manufacturer’s instructions, and transformed colonies were 

selected on 50 μg/ml carbenicillin Luria Broth (LB) agar plates. 

A single transformed colony was used to inoculate 50 ml of LB, which was cultured at 37 °C 

with 250 rpm for 15 h.  Ten ml of this starter culture was then used to inoculate 500 ml LB (50 

μg/ml carbenicillin) within a 2 L conical flask, and incubated at 37 °C 250 rpm until the OD600 

approximated 0.6. At this point 300 μl 1 M isopropyl β-D-1-thiogalactopyranoside (IPTG, end 

concentration 0.6 mM) was added to induce MDHAR6 expression, and the culture was 
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incubated at 15°C with 180 rpm for 24 h.  The cultures were centrifuged (4,000 rpm, 5 min, 

4°C), pellets transferred to Falcon tubes, crash-frozen in liquid nitrogen and stored at -80°C.  

 Purification of Strep-tagged MDHAR6 2.1.12

Two pellets, each from 500 ml of induced culture, were defrosted slowly on ice, each with the 

addition of 30 ml binding buffer (50 mM sodium phosphate, pH 8, 300 mM NaCl) with 0.1 % 

Tween20 (v/v) , 70 μl 0.1 M phenylmethanesulfonylfluoride in isopropanol, and 55 μg avidin.  

These were sonicated on ice at amplification 70 for 4 min (3 sec on, 7 sec off), centrifuged 

(15,000 rpm, 15 min, 4°C), and the supernatant syringed through a 22 μm-filter to obtain 

soluble protein.  Strep-tagged MDHAR6 was then purified on a 5 ml StrepTrap column (GE 

HealthCare 28-9075-48), which was equilibrated with 7 ml water then 25 ml binding buffer 

before the sample was applied.  The column was then washed with a further 15 ml binding 

buffer, before the addition of elution buffer (binding buffer with 2.5 mM desthiobiotin) over a 

gradient of 0 - 100 % in 20 min.  Purified MDHAR6 was dialysed (using cassette 

ThermoScientific #88251) against 2.5 L of dialysis buffer (50 mM potassium phosphate, pH 7) 

at 6 °C for 2 h, and then 2.5 L fresh dialysis buffer for a further 18 h. 

 SDS-PAGE electrophoresis 2.1.13

Protein samples were denatured at 95 °C for 10 min with a four-fold dilution of stock sample 

buffer (25 % 1 M Tris-HCl pH 6.8, 20 % mercaptoethanol, 40 % glycerol, 10 % SDS, 15 % water, 

0.1 % bromophenol blue, all v/v), and loaded into pre-cast 10 % polyacrylamide gels (Bio-Rad 

456-8033). The ladder used in Figure 28 is Fermentas S26619. 

 Western blot against HIS-tag 2.1.14

The proteins separated on an SDS-PAGE gel were transferred to 0.45 μm nitrocellulose 

membrane (Bio-Rad #162-0115) using a Bio-Rad Trans-Blot® with three layers of filter paper 

(Whatman 4) on either side of the gel and nitrocellulose, all soaked in transfer buffer (24.5 mM 

Tris, 191.8 mM glycine, 20 % methanol (v/v)).  Voltage 25 for 20 min (100 mA) was used to 

transfer the protein. 

Protein transfer was checked by staining protein on the membrane with Ponceau S (0.1 % 

Ponceau S (v/v), 5 % acetic acid (v/v)).  This was reversed by rinsing with water. 

For western blot, the membrane was first washed in PBS (137 mM NaCl, 2.5 mM KCl, 10 mM 

Na2HPO4, 1.5 mM KH2PO4, pH 7.4), then blocked by incubation in PBS with 3 % milk powder 

(v/v), for 1 h.  After three 5-minute washes in PBS with 0.05 % Tween20 (v/v), the membrane 

was incubated for 3 h in PBS with 0.05 % Tween20 (v/v), 1 % bovine serum albumin (BSA;  
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(w/v), and a 1:2,000 dilution of Anti-polyHistidine Peroxidase Conjugate (Sigma-Aldrich A7058).  

The membrane was washed another three times in PBS with 0.05 % Tween20 (v/v), then 

developed; for the development buffer, one tablet of 4-chloro-1-napthtol (Sigma C6788) was 

dissolved in 10 ml methanol, then 2 ml of this was added to 10 ml triethanolamine buffer 

saline (137 mM NaCl, 27 mM KCl, 12 mM triethanolamine, pH 7.5) with 5 μl 30 % H2O2. 

 Protein identification following Strep-MDHAR6 purification 2.1.15

Identification of eluted protein was carried out by the University of York Bioscience 

Technology Facility, using trypsin digestion of samples extracted from an SDS-PAGE gel, and 

mass spectrometry (identification code for samples B696).  

 Michaelis-Menten plots for MDHAR6 activity towards MDA, TNT and 2.1.16
CDNB 

Activity was determined by measuring rate of A340 decrease, assuming an extinction coefficient 

of the cofactor NADH at 340 nm of 6.22 mM-1.cm-1.  Assay conditions are detailed in the figure 

legends.  The concentration of MDA generated was estimated by measuring the increase in 

A360 upon ascorbate oxidase addition, in the absence of NADH (which absorbs at 360 nm) or 

extract, and assuming an absorbance coefficient for MDA at 360 nm of 3.3 mM-1.cm-1 (Bielski 

et al., 1971; Hossain et al., 1984).  Kinetic analysis was carried out using Sigma Plot v12.0. 

 Electron Paramagnetic Resonance spectrometry 2.1.17

Spectra were recorded on Bruker EMX Micro spectrometer at X band (9.86 GHz), with 

modulation amplitude 1 G, microwave power 5 mW, scan time 80 s and time constant 80 ms. 

The activity assays contained 1.5 mg/ml MDHAR6 in 50 mM KH2PO4 (pH 7), 80 mM DMPO or 

DEPMPO, 300 μM NADH and 500 μM TNT in DMF (end DMF concentration 1 % v/v).  For assays 

containing superoxide dismutase (SOD; Sigma S8409), 2,500 U/ml SOD in 100 mM KH2PO4 pH 

7.5 was added to the assay to an end concentration of 50 U/ml, before addition of TNT and 

NADH. For the control with denatured MDHAR6, the protein was boiled for 5 min.  Simulations 

of anticipated EPR spectra were constructed using WinSim freeware, available from the 

National Institute of Environmental Health Sciences 

(http://www.niehs.nih.gov/research/resources/software/tox-pharm/tools/). The line widths 

and hyperfine constants used in the simulations were optimized to fit the experimental 

spectra.  Simulation parameters for DMPO-superoxide adduct: aN = 14.09 G, aβ-H = 11.33 G, aγ-H 

= 1.23 G, DMPO-OH aN = 14.97 G, aβ-H = 14.68 G, DEPMPO-superoxide adduct, isomer 1 (42%): 

aN = 13.03 G, aβ-H = 11.85 G, aγ-H = 0.68 G, aP = 50.76 G, and DEPMPO-superoxide adduct, 

isomer 2 (58%): aN = 13.15 G, aβ-H = 10.29 G, aγ-H = 0.61 G, aP 49.63 G. 
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 Staining with 3,3’diaminobenzene 2.1.18

Seedlings were vacuum infiltrated in 1 mg/ml 3,3’diaminobenzene (DAB) in 50 mM Tris-acetate 

(pH 5) for 30 min.  The vacuum was then released, and seedlings were incubated for a further 

2.5 h.  The DAB staining was carried out in the dark and at room temperature (RT).  Images 

were taken using a Nikon SMZ800 dissection microscope with AxioVision Rel. 4.5 software. 

 Genomic DNA (gDNA) extraction 2.1.19

Plant tissue was ground with a pestle within a 1.5 ml Eppendorf tube with 500 μl CTAB buffer 

(2 % cetyl trimethylamin bromide, 1.4 M NaCl, 100 mM Tris-HCl pH 8, 20 mM Na2EDTA), then 

incubated at 65 °C for 1 h.  This was vortexed with 300 μl of 24:1 chloroform:iso-amyl-alcohol, 

centrifuged (13,000 rpm, 10 min) and 300 μl of aqueous layer transferred to a new 1.5 ml 

Eppendorf tube containing 960 μl ethanol and 40 μl 3 M NaAc.  Genomic DNA was precipitated 

at RT over 40 min, then pelleted with centrifugation (13,000 rpm, 15 min, 6 °C).  The pellet was 

rinsed in 70 % ethanol, dried (Savant DNA Speed-Vac, high temperature setting, 10 min) then 

resuspended in 100 μl sterile water. 

 Polymerase chain reaction (PCR) 2.1.20

Phusion High-Fidelity DNA Polymerase (New England Biolabs M0530) was used, following the 

manufacturer’s instructions. 

Primers used in PCR and qPCR experiments are detailed in section 1.1. 

 DNA sequencing 2.1.21

The qPCR amplicons were sequenced by GATC Biotech, and analysed using SeqScanner2.0 

(Applied Biosystems) and ClustalW2 (Larkin et al., 2007). 

 RNA extraction and cDNA preparation 2.1.22

RNeasy (QIAGEN 74104) with DNase I (QIAGEN 79254; in MDHAR6 TSS preference study only) 

was used for RNA extraction, and SuperScript II Reverse Transcriptase (Invitrogen 18064-022) 

for cDNA synthesis. 

 Quantitative PCR 2.1.23

The qPCR experiments used Fast SYBR Green Master Mix (Applied Biosystems 4385612), 

StepOne Plus Real Time PCR System (Applied Biosystems) and StepOne Software v2.2.2. 

For primer efficiency testing, an end concentration of 8,000, 800, 80 or 8 pg/μl cDNA was 

added per well, with 200 nM of each primer, and three technical replicates. 
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The qPCR experiments typically used an end cDNA concentration of 80 pg/ul, with 200 nM of 

each primer. 

 Treatment of root and leaf tissue with antimycin A, TNT or methyl 2.1.24
viologen for MDHAR6 transcription start site study 

Col7 seedlings were grown hydroponically, as described in 2.1.2, for 3 weeks.  Test treatments 

were carried out within a sterile Category 3 fume hood. 

For the root treatments, rafts were transferred to petri dishes containing 50 ml of ½ MS(S) 

with control treatment (0.1 % DMSO v/v), 25 μM antimycin A (Sigma A8674) or 50 μM TNT.  

The leaves were also sprayed with 1.8 ml water (the leaf control treatment). 

For leaf treatment, rafts were transferred to petri dishes containing 50 ml of ½ MS(S) 0.1 % 

DMSO (root control treatment), and sprayed with 1.8 ml of either control treatment (water) or 

50 μM methyl viologen (Aldrich Cat. 85,617-7). 

The petri dishes were then moved to a growth room for 2 h, before the tissue was harvested. 

 Antibody raised against MDHAR6 2.1.25

Antibody against purified Strep-MDHAR6 was produced in rabbit by Covalab UK, Ltd. 

 Western blot using antibody raised against MDHAR6 2.1.26

Protein was extracted from two-week old Col7, Nossen, mdhar6-1 and mdhar6-2 seedlings, 

which were grown vertically on ½ MS(A).  Root tissue was homogenised in extraction buffer 

(100 mM Tricine, 1 mM Na2EDTA, 5% (v/v) polyvinylpyrrolidine-40, 20% (v/v) glycerol, 2 mM 

DTT) using a bead mill, then samples were centrifuged (13,000 rpm, 4 min), and denatured 

supernatant ran on an SDS-PAGE gel (10 μg protein per lane). 

Protein was transferred to nitrocellulose, and stained with Ponceau S, as described in 2.1.14. 

For western blot analysis against MDHAR6, the secondary antibody, goat anti-rabbit alkaline 

phosphatase (Sigma A3687), was used.  The membrane was washed in TBST buffer (50 mM Tris 

pH 7.5, 20 mM NaCl, 0.1% Tween-20 v/v) for 5 min, blocked in TBST with 5 % BSA (w/v) for 1 

hour, then incubated with a 1:1,000 dilution of primary antibody (rabbit 1344025, or pre-

immune serum) in TBST with 3 % BSA, for 2 h.  The membrane was washed another three 

times in TBST, then incubated with a 1:20,000 dilution of the secondary antibody in TBST with 

3 % BSA for 1 h.  The membrane was washed in TBST another three times, then developed 

using SigmaFAST (Sigma B5655) for 10 min, then washed in TBST again for 3 x 5 min. 
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 Cloning of promoter:GUS contructs 2.1.27

Promoter regions were amplified using Phusion High-Fidelity DNA Polymerase (New England 

Biolabs M0530) and the primers listed in Table 14.  The promoters were first cloned into pCR™-

Blunt II-TOPO® plasmid and transformed into TOP10 competent cells using Zero Blunt® TOPO® 

PCR Cloning Kit (Invitrogen K2800), following the manufacturer’s instructions.  After the 

sequence of the cloned promoter region was confirmed, BamHI (New England Biolabs R0136) 

was used to excise the promoter region, for ligation into BI101.1 (for CYP81F2 promoter 

regions; Arabidopsis Biological Resource Center i.e. ABRC stock number CD3-385) or BI101.2 

(for UGT73C1 and GSTU25 promoter regions; ABRC stock number CD3-386) (Jefferson, 1987).  

Antarctic phosphatase (New England Bioloabs M02895) was used to prevent religation of the 

vectors before ligation of insert.  The ligation reactions used vector:insert ratios of 1:3, 1:1, 3:1 

and 6:1, with 100 ng vector, and T4 DNA Ligase (New England Biolabs M02025), and were 

incubated for 1h30 before transformation of ligated constructs (in a 2 μl ligation reaction 

volume) into E. coli strain DH5α.  The transformation reactions were the same as for the E. coli 

strain Arctic Express cells, except a longer (45 sec) heat shock at 42 °C was used. 

QIAprep Spin Miniprep Kit (QIAGEN 27104) was used to extract plasmid DNA from 5 ml 

cultures (in LB) of transformed bacteria, and Wizard® SV Gel and PCR Clean-Up (Promega 

A9281) was used to purify PCR product, and promoter regions from 1 % agarose gels after 

digestion from pCR™-Blunt II-TOPO®, and electrophoresis. 

To select for cells transformed with pCR™-Blunt II-TOPO®, BI101 or BI121 plasmids, 50 μg/ml 

kanamycin was used.  Colony PCR with GoTaq® Flexi DNA Polymerase (Promega M829; with 

end 5 mM MgCl2) and primers listed in Table 14 were used to confirm presence of promoter 

insert, and orientation. 

The BI121 plasmid, in which GUS is constitutively expressed via the Cauliflower Mosaic Virus 

35S promoter (ABRC stock number CD3-388; Jefferson, 1987), was also amplified for 

transformation into Arabidopsis. 

 Stable transformation of Arabidopsis with promoter:GUS constructs 2.1.28

The promoter:GUS contructs were stably transformed into Arabidopsis Col0 ecotype using 

floral dip with Agrobacterium tumefaciens (Agrobacterium) strain GV3101 carrying the Ti 

(pMP90RK) plasmid. 

The Agrobacterium was transformed by electroporation; 100 μl aliquots of competent cells 

were incubated with 1 μl purified plasmid on ice for 1 min, then pulsed with 2.5 kV voltage in a 

MicroPulser™ (Bio-Rad 165-2100; setting Ec2) within a 2 mm electroporation cuvette (EQUIBIO 
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ECU102).  The Agrobacterium was then added to 750 μl SOC medium (20g/L tryptone, 5 g/L 

yeast extract, 0.5 g/L NaCl, autoclaved, then to 1 L additional 10 ml 1 M MgCl2, 10 ml 1 M 

MgSO4 and 10 ml 2 M glucose, all filter-sterilised before addition) and incubated at 30 °C with 

180 rpm for 3 h, before plating on 50 μl/ml kanamycin and 50 μl/ml gentamycin LB plates, for 

incubation at 30 °C for two days. 

Ten ml starter cultures (inoculated with a single Agrobacterium colony) were cultured for 18 h 

with 180 rpm and 50 μl/ml kanamycin and 50 μl/ml gentamycin, then 1 μl of starter culture 

was added to PCR reactions (using GoTaq® Flexi DNA Polymerase; Promega M829) to confirm 

for the presence of promoter:GUS constructs in the Agrobacterium.  The starter culture was 

then used to inoculate 500 ml LB in a 500 ml conical flask, which was incubated in the dark at 

30 °C with 180 rpm for 2-3 days. 

Arabidopsis was transformed by floral dip with Agrobacterium, based on the method described 

by Clough and Bent (1998); Agrobacterium from a 500 ml culture was pelleted by 

centrifugation (10 min, 5,000 rpm), then resuspended in 600 ml 5 % (w/v) sucrose, 0.05 % 

TritonX-100.  The influorescence of Arabidopsis, with developing buds, was dipped in this 

solution at two time points, approximately one week apart.  Dipped plants were closed within 

autoclave bags for 24 h after dipping, to increase humidity.  Transformed seedlings were 

selected on ½ MS(A) containing 50 μl/ml kanamycin. 

 Statistical analysis 2.1.29

Statistical analyses were carried out using IBM SPSS Statistics 22 software, with the exception 

of kinetic analysis, which was carried out using Sigma Plot v12.0. 
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2.2 PRIMER SEQUENCES 

Primers were obtained from Sigma Aldrich.  

The primers in Table 12 were used to amplify the MDHAR6 TSS region, and for amplicon 

sequencing. 

Primers used in qPCR experiments are shown in Table 13.  In all qPCR, ACTIN2 was used as the 

endogenous control. 

Primers used to clone promoter regions are shown in Table 14. 

 

Table 12: Primers used to amplify and sequence the MDHAR6 transcription start site region 

Primer label Primer sequence (5’ to 3’) 

TSS seq F CCGCGACGAATTGTTTTCCA 

TSS seq R CGTTAGCGAACGAAGCAGTG 

 

Table 13: Quantitative PCR primers 

Target gene/ 

primer pair 
Primer label Primer sequence (5’ to 3’) 

ACTIN2 
qActinF TACAGTGTCTGGATCGGTGGTT 

qActinR CGGCCTTGGAGATCCACAT 

mA 
q mA F CAGAGAGACTCACACACTTGTTTCAA 

q mA R TAATGTCTGCAGTTCGTAGAGTCATG 

mB 
q mB F GCTCTTCTTATAAACTAATGTCTGCAGTTC 

q mB R AACCACGTTGCCGACGAA 

mC 
q mC F GCTCTTCTTATAAACTAATGTCTGCAGTTC 

q mC R GAAGTCCGGATTATCTCTTTGGTG 

mD 
q mD F ATCTGAATTTGGCTCTTCTTATAAAC 

q mD R CAACGTGGTTGATGCTAACG 

mE 
q mE F CACTACAGAGAGACTCACACACTTGTTTC 

q mE R CATGACTCTACGAACTGCAGACATTAG 

pA 
q pA F CGATTGTCAAAACCCTAGATCGA 

q pA R TTCGTAGAGTCATGGCGTTAGC 

pB 
q pB F CATCTTCTTCCTCGATTGTCAAAA 

q pB R AATCTGTTGTTACAGTTCGTAGAGTCATG 

pC 
q pC F TCTTCTTCCTCGATTGTCAAAACC 

q pC R TTACAGTTCGTAGAGTCATGGCGT 

pD 
q pD F TCTCTCACTCACCACCATCTTC 

q pD R CAGATTAGAGAGATAAGATTTCGATCT 

pE 
q pE F CTCTCTAATCTGTTGTTACAGTTCGT 

q pE R CGTCGGCAACGTGGTT 
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mpA 
q mpA F CCACGTTGCCGACGAAGT 

q mpA R TCTCTCGCTCGCCGATTT 

mpB 
q mpB F TGGTCGGCTATGCATTGTGA 

q mpB R TGAGAGACCGGCTTTGACAA 

mpC 
q mpC F TGGAAAATGGAATGGCTGATG 

q mpC R CCAAAGAGGCTTACGCACCT 

mpD 
q mpD F TTCGTAGAGTCATGGCGTTAGC 

q mpD R CACCAAAGAGATAATCCGGACTTC 

mpE 
q mpE F CATGGCGTTAGCATCAACCA 

q mpE R GGAGAAGACGGACACCAAAGAG 

mpF 
q mpF F CCGACGAAGTCCGGATTATC 

q mpF R AAAAACGAGCGGGAAATCG 

AOX1a 
q AOX1 F GACGATTGGAGGTATGAGATTCG 

q AOX1 R TCGCGTCCTCCTCCTTCA 

APX2 
v2 q APX2 F TGGGTCGGTGCCACAAG 

v2 q APX2 R GAGCGGGTTTGGTGTCCAT 

CYP71A12 
CYP71A12 qF GCCAACCGCCCGAGAT 

CYP71A12 qR TCACGCCCCCCATTCATA 

CYP81D11 
qCYP81D11F AGATTGTATAGTTGATGGCTATGACGTT 

qCYP81D11R TCTATGGATGGCCCATGCA 

CYP81D8 
CYP81D8 qF TTTTGCGGTTGGTTTCAGATT 

CYP81D8 qR CGAGCCTACCCGCCAACT 

CYP81F2 
qCYP81F2F TCTCCCACCAGGACCAACTC 

qCYP81F2R CGGTGGACCGGTGGTTT 

GSTU24 
GSTU24 qF GTGTACGAGAAGTTTGGAAATGTCA 

GSTU24 qR GGCCCACGCAACCAATT 

GSTU25 
qGSTU25F TGTCAAATTCGATTACAGAGAACAAG 

qGSTU25R GGTATTTTCTTATGAACCGGATTCA 

GSTU4 
GSTU4 qF GGTCCAATGGCGGAGAAA 

GSTU4 qR AGGGCTTGCCCAAAAACC 

OPR1 
OPR1 qF ATCCAGGAGCATTAGGGC 

OPR1 qR CGCTTTCCTCATCGGCAT 

OPR2 
OPR2 qF CCAGAAGCATTAGGGCTG 

OPR2 qR GGCTTCCCTCATTGGCAT 

OPR3 
OPR3 qF AAAGCTCGCTTACCTTCACGTT 

OPR3 qR CATCACTCCCTTGCCTTCCA 

UGT73B4 
UGT74E2 qF GGACTGATCAGCCCACGAAT 

UGT74E2 qR CCCTTACCCCAACCTTCCA 

UGT73C1 
qUGT73C1F AGGTTAAAGCGGGTAAGATATGGA 

qUGT73C1R CCTCTCAGCTTGGTCTTCTCCTAA 

UGT74E2 
UGT74E2 qF GGACTGATCAGCCCACGAAT 

UGT74E2 qR CCCTTACCCCAACCTTCCA 
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Table 14: Primers used to clone promoter regions 

Promoter region Primer label Sequence 

UGT73C1 -1,088 to + 50 

bp from start ATG 

UGT F BamHI NW CAGGGATCCATGAAAGGGAAGAGAACA 

UGT R BamHI CTTGGATCCATATCATATTTTTGCTAC 

UGT73C1 -244 to + 50 

bp from start ATG 

UGT R BamHI -244 TCGGGATCCATGAATACAAAAGAACAT 

UGT R BamHI CTTGGATCCATATCATATTTTTGCTAC 

GSTU25 -1,563 to +83 

bp from start ATG 

GST F BamHI TGTGGATCCTCATTACATTCATTTCCG 

GST R BamHI TGGGGATCCACATTTTTCTCTTCTAAAG 

GSTU25 -220 to +83 bp 

from start ATG 

GST F BamHI -220 TGCGGATCCTATTCCCTTCATATTAAA 

GST R BamHI TGGGGATCCACATTTTTCTCTTCTAAAG 

CYP81F2 -997 to +48 bp 

from start ATG 

CYP F BamHI -997 TGAGGATCCAAAACAAGGTGGGTACAT 

CYP R BamHI TCTGGATCCAGCTATGAGAAACAATGC 

CYP81F2 -270 to +48 bp 

of start ATG 

CYP F BamHI -270 TGAGGATCCGAAATGGTCAAGGAGAAT 

CYP R BamHI TCTGGATCCAGCTATGAGAAACAATGC 

Primer within GUS 

gene, used in PCR to 

check orientation of 

promoter insert 

GUS +69 R TCCACAGTTTTCGCGATCC 
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3 MDHAR6 mediates TNT toxicity in Arabidopsis 

3.1 INTRODUCTION 

3.1.1 Screen identifying mdhar6 mutants as having enhanced TNT tolerance 

The Arabidopsis mutant enhanced TNT tolerance (ett) was originally isolated by Lorenz (2007), 

in screen of Weigel T-DNA activation tagged lines (Weigel et al., 2000), for mutants with longer 

primary roots on agar containing 7 μM TNT.  In a screen of 72,000 seeds, 59 putative mutants 

were isolated.  From the following selfed generation (T5), the enhanced TNT tolerance was 

only confirmed for one line, N23093. 

The mutation was subsequently mapped by Beynon (2008).  It had been anticipated that the 

tolerance would be due to overexpression of a TNT-detoxifying enzyme, however the ett 

phenotype mapped to a loss-of function deletion in MONODEHYDROASCORBATE REDUCTASE 6 

(MDHAR6; At1g63940); a thymine deletion 2,181 bp from the start codon (in exon 11) resulted 

in an early stop codon, truncating over a third of the protein (Figure 14).  This mutant (in the 

Col7 background) is subsequently referred to as mdhar6-1. 

The enhanced TNT tolerance phenotype, on both TNT-supplemented agar and soil, was 

confirmed for two further mdhar6 mutants by Liz Rylott and Maria Budarina (CNAP, University 

of York; Figure 14); mdhar6-2 (Nossen background) contains a transposon 538 bp downstream 

of the start codon, while mdhar6-3 (Col0 background) contains a T-DNA insert 76 bp upstream 

of the start codon, which decreases transcript abundance. 

Complementation studies confirmed that functional MDHAR6 decreases TNT tolerance; Emily 

Beynon, Liz Rylott and Maria Budarina (CNAP, University of York) transformed both p-MDHAR6 

(transcript variant MDHAR6.1, encoding plastid-targeted MDHAR6) and m-MDHAR6 (transcript 

variant MDHAR6.2, encoding mitochondria-targeted MDHAR6) into Col7 and mdhar6-1 

mutants; the m-MDHAR6 gene fully complemented the phenotype, while p-MDHAR6 

complemented the phenotype by approximately 66 % (Figure 15).  
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Figure 14: Three mdhar6 mutants with enhanced TNT tolerance 

(A) Six-week old mdhar6 plants (right) adjacent to wild type backgrounds (left), which were 

transferred to TNT-treated or control-treated soil at 5 d of age.  There are five plants per pot.  

Experiment by Liz Rylott and Maria Budarina.  (B) Scale representation of m-MDHAR6 showing 

mutation locations.  Black boxes; exons.  White boxes; introns.  Grey boxes; untranslated 

regions.  
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Figure 15: Complementation of TNT tolerance phenotype in mdhar6-1 

Summary of complementation experiments carried out by Liz Rylott and Maria Budarina.  

Three independent lines of Col7 and mdhar6-1 were transformed with m-MDHAR6 or p-

MDHAR6, constitutively expressed using the Cauliflower Mosaic Virus 35S promoter.  These 

summary charts display the average root length and MDHAR activity for the median of three 

complementation lines, compared with Col7.  (A) Root lengths of 7-day old seedlings 

germinated on 0 or 7 μM TNT-treated ½ MS(A).  Six biological replicates per line ± SD.  (B) 

Rosette leaf MDHAR activity as percentage of activity from Col7 leaf tissue.  Five biological 

replicates ± SD.  Student’s t test comparing with values for Col7, * P<0.05, ** P<0.01, *** 

P<0.001.  Figure reproduced from Johnston et al. (2015). 

  

(A) 

(B) 



Chapter 3: MDHAR6 mediates TNT toxicity in Arabidopsis 

59 
 

3.1.2 Monodehydroascorbate reductases 

Activity 

The finding that a deficiency in MDHAR6 increases TNT tolerance was surprising, as MDHARs 

are usually considered to protect plants from oxidative stress, by recycling the antioxidant 

ascorbic acid; MDHARs are flavin adenine dinucleotide (FAD)-dependent oxidoreductases, 

which reduce monodehydroascorbate (MDA), the free radical primary oxidation product of 

ascorbate (Figure 16; Yamazaki and Piette, 1961; Hossain et al., 1984). 

Monodehydroascorbate reductase activity was first described by Arrigoni et al. (1981), and 

MDHAR enzymes from cucumber (Hossain and Asada, 1985; Sano et al., 1995), potato 

(Borraccino et al., 1986; De Leonardis et al., 1995), soybean root nodules (Dalton et al., 1992) 

and spinach (Miyake et al., 1998; Sano et al., 2005), have since been purified either directly 

from tissue, or recombinantly.  These studies have demonstrated reductase activity towards 

MDA, and a double replacement mechanism has been proposed (Scheme 2). 

 

E-FAD + NADH → E-FADH2-NAD+ 

E-FADH2-NAD+ + MDA → E-FADH·-NAD+ + ascorbate 

E-FADH·-NAD+ + MDA → E-FAD + NAD+ + ascorbate 

Scheme 2: Double replacement mechanism for MDA reduction by MDHAR 

Mechanism proposed by Hossain and Asada (1985); NADH is used to reduce FAD to the charge 

transfer complex E-FADH2-NAD+, which then sequentially donates two electrons to MDA. 

 

In this way, MDHAR regenerates the antioxidant ascorbate.  There is also evidence that 

MDHARs further replenish the antioxidant pool, by reducing radicals of flavonoid and lignin 

precursors, which can also act as antioxidants; Sakihama et al. (2000) detected cucumber 

MDHAR activity towards radicals of quercetin, chlorogenic acid, ferulic acid and coniferyl 

alcohol.  Hossain and Asada (1985) also report MDHAR activity against ferricyanide and 2,6-

dichloroindophenol (DPIP).  Ferricyanide complexes form in soil where cyanide has been 

applied for metal extraction (Yu et al., 2008), while DPIP is an oxidant commonly used as a 

colorimetric redox dye.  The structures of these diverse putative substrates are shown in 

Figure 17. 
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Figure 16: The ascorbate-glutathione cycle 

(A) Schematic; ascorbate (Asc) is oxidised by ascorbate peroxidase (APX), superoxide or 

hydroxyl radicals, to monodehydroascorbate (MDA).  The MDA radical can be reduced back to 

Asc by monodehydroascorbate reductase (MDHAR), or will spontaneously disproportionate to 

Asc and dehydroascorbate (DHA).  The DHA may catabolise to 2,3-diketogulonic acid or L-

threarate, or can be reduced back to Asc by dehydroascorbate reductase (DHAR), with the 

concurrent oxidation of reduced glutathione (GSH) to glutathione disulphide (GSSG). The GSSG 

can be subsequently reduced by glutathione reductase (GR).  (B) Structures of reduced and 

oxidised ascorbate and glutathione.  
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monodehydroascorbate (MDA) 

 

quercetin radical 

 

chlorogenic acid radical 

 

ferulic acid radical 

 

coniferyl alcohol radical 

 

ferricyanide 

 

2,6-dichloroindophenol (DPIP) 

 

Figure 17: Structures of reported MDHAR substrates 

Activity towards these compounds reported by Hossain and Asada (1985), Sano et al. (1995) 

and Sakihama et al. (2000).   
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Overexpression studies 

Due to the proposed antioxidant recycling role of MDHARs, a number of studies have 

investigated whether MDHAR overexpression could be used to increase stress tolerance in 

plants (Table 15); in most published studies, increased MDHAR activity enhances stress 

tolerance (Eltayeb et al., 2006; Kavitha et al., 2010; Li et al., 2010).  Eltayeb et al. (2006) report 

a 2.2-fold increase in reduced ascorbate levels in MDHAR-overexpressing tobacco leaves.  

Overexpression studies in tomato however, conversely report decreases in reduced ascorbate 

content when MDHAR is overexpressed (Haroldsen et al., 2011; Gest et al., 2013).  This could 

be due to differences between test species, or the location of the overexpressed MDHAR 

protein. 

 

Table 15: MDHAR overexpression studies 

Study 
Plant 

system 

Overexpressed 

MDHAR  
Results (relative to untransformed plants) 

Eltayeb et 

al. (2006) 

Tobacco Arabidopsis 

MDHAR1 (cytosolic) 

2.2-fold increase in reduced ascorbate. 

Higher net photosynthetic rates following 

ozone, salt and polyethylene stress 

treatments. 

Kavitha et 

al. (2010) 

Tobacco Mangrove MDHAR 

(chloroplastic) 

Delayed wilting following NaCl treatment. 

Li et al. 

(2010) 

Tomato Tomato MDHAR Lower H2O2 levels and higher net 

photosynthetic rate and maximal 

photochemical efficiency under high or low 

temperature stress, or methyl viologen 

treatment. 

Yin et al. 

(2010) 

Tobacco Arabidopsis 

MDHAR1 (cytosolic) 

No increased tolerance to aluminium 

(overexpression of DHAR however increased 

aluminium tolerance). 

Haroldsen 

et al. (2011) 

Tomato Tomato MDHAR3 

(cytosolic and 

peroxisomal) 

No difference in leaf ascorbate content, 

however a 0.7-fold decrease in reduced 

ascorbate in fruit. 

Gest et al. 

(2013) 

Tomato Tomato MDHAR3 

(cytosolic and 

peroxisomal) 

Decrease in leaf reduced ascorbate content. 

Knock-down of MDHAR3 increased levels of 

reduced ascorbate. 
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Arabidopsis MDHARs 

There are five MDHAR genes in Arabidopsis (Table 16), of which only the product of MDHAR6 

is plastid- or mitochondria-targeted; MDHAR2 and MDHAR3 are cytosolic, while MDHAR1 and 

MDHAR4 are peroxisomal.  Microarray data available through Genevestigator (Hruz et al., 

2008) indicate that all but MDHAR3 are highly expressed throughout all tissues and 

developmental stages (Figure 18), however MDHAR3 is induced by biotic attack or treatment 

with MeJA, SA, cold or hypoxia.  Expression of the other cytosolic MDHAR, MDHAR2, is also 

induced in some biotic attack and high light studies, while MDHAR6 is downregulated in some 

ABA treatment studies, and expression is higher in the presence of sucrose. 

Microarray data available through DIURNAL indicate that unlike the other MDHARs, MDHAR6 

expression is highly induced at night, while expression of MDHAR4 and possibly MDHAR1 (the 

peroxisomal MDHARs), is higher during the day (Mockler et al., 2007; Figure 19).  The 

nocturnal induction of MDHAR6 appears to be dependent on cold night temperature (Figure 

20). 

Arabidopsis mutants in mdhar4 are seedling-lethal in the absence of supplemented sugar 

(Eastmond, 2007); the mutants are defective in lipase activity, required for breakdown of 

stored triacylglycerol in early seedling growth.  Eastmond (2007) postulates that in the absence 

of MDHAR4, oxidative damage occurs to the lipase SUGAR-DEPENDENT 1 at oil bodies close to 

peroxisomes.  Mutants in the other MDHAR enzymes have not yet been characterised. 

 

Table 16: Arabidopsis MDHAR genes 

Arabidopsis Genome Initiative (AGI) code and protein size data from TAIR (Huala et al., 2001), 

protein location from papers cited. 

AGI Gene Protein size Protein location 

At3g52880 MDHAR1 50 kDa peroxisome matrices (Lisenbee et al., 2005) 

At5g03630 MDHAR2 47 kDa cytosol (Lisenbee et al., 2005) 

At3g09940 MDHAR3 48 kDa cytosol (Lisenbee et al., 2005) 

At3g27820 MDHAR4 54 kDa peroxisome membranes (Lisenbee et al., 2005) 

At1g63940 MDHAR6 53 kDa plastid stroma or mitochondria matrices, depending 

on transcription start site used (Obara et al., 2002) 
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Figure 18: Expression of Arabidopsis MDHAR genes anatomically and throughout 

development 

Level of expression in log2 scale.  MDHAR1; green.  MDHAR2; purple.  MDHAR3; orange.  

MDHAR4; blue.  MDHAR6; red.  Source Genevestigator (Hruz et al., 2008), accessed 4th June 

2015. 
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Figure 19: Temporal expression of Arabidopsis MDHAR genes 

Data from DIURNAL (Mockler et al., 2007), accessed 14th September 2015.  Temporal expression under cycle of 12 h light, 22°C/12 h dark, 12°C.  Temporal 

expression results for MDHAR3 not returned in search.  Gene expression for whole seedlings, grown on agar without sucrose.  The Robust Multi-array Average 

expression values are exponentiated using base 2. 
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Figure 20: Diurnal expression of AtMDHAR6 in different experiments 

Data from DIURNAL (Mockler et al., 2007), accessed 14th September 2015.  LDHC; temporal expression under cycle of 12 h light, 22°C/12 h dark, 12°C.  LLHC; 

temporal expression under cycle of 12 h light, 22°C/12 h light, 12°C.  LH_LLHC; entrained to cycle of 12 h light, 22°C/12 h light, 12°C, then subjected to 24 h light, 

22°C.  Gene expression for whole seedlings, grown on agar without sucrose.  The Robust Multi-array Average expression values are exponentiated using base 2. 
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3.1.3 The ascorbate-glutathione cycle 

The ascorbate-glutathione cycle (as depicted in Figure 16) has been referred to as a “redox 

hub” (Foyer and Noctor, 2011) of interconnecting redox reactions, which function as a 

buffering mechanism against oxidative stress.  Although it is established that ROS have 

important biological roles in defence and abiotic stress signalling (Mullineaux and Baker, 2010), 

it is still generally considered that there is the potential in plants for uncontrolled and self-

perpetuating oxidative reactions, which can damage lipids, proteins and nucleic acids- this is 

referred to “oxidative stress” (Halliwell, 2006). 

Numerous studies have isolated cell fractions to measure ascorbate and glutathione content, 

with the caveats that fractions could be contaminated during isolation, and that the isolation 

process may affect metabolite levels and oxidation states.  More recently, using a different 

approach, antibodies have been raised against ascorbate- or glutathione-BSA (Bovine Serum 

Albumin) conjugates, and Transmission Electron Microscopy (TEM) with immuno-gold labelling 

used to examine the relative distribution of ascorbate and glutathione between cellular 

compartments (Zechmann and Müller, 2010; Zechmann et al., 2011).  These studies reveal a 

difference in the relative distribution of ascorbate and glutathione (Table 17); while ascorbate 

is proposed to be most concentrated in peroxisomes and the cytoplasm, glutathione is 

proposed to be most concentrated in mitochondria and nuclei.  Notably, in these studies 

ascorbate was not detected at the apoplast, where ascorbate has been previously identified in 

a number of other studies (Luwe et al., 1993; Takahama, 1993; Vanacker et al., 1998), and is 

considered to have an important role in redox buffering and defence signalling (Pignocchi and 

Foyer, 2003).  Metabolite distribution could also differ greatly between tissues, and 

developmental stages; for example, Vivancos et al. (2010) used confocal microscopy with 5-

chloromethylfluorescein to probe for glutathione, and identified recruitment of glutathione to 

the nucleus during phase G1 of interphase in the cell cycle, corresponding with severe 

depletion of glutathione in the cytosol. 
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Table 17: Distribution of ascorbate and glutathione within Arabidopsis mesophyll cells 

Ratio of distribution between cellular compartments as determined by immunogold-labelling 

(Zechmann and Müller, 2010; Zechmann et al., 2011).   

Compartment Relative level of ascorbate Relative level of glutathione 

Peroxisomes 27.1 16.6 

Cytoplasm 25.8 12.3 

Nuclei 19.4 24.2 

Chloroplast stroma 12.8 6 

Mitochondria matrices 12.2 40.9 

Vacuoles 2.7 below detection 

Endoplasmic reticulum below detection observed but not quantified 

Apoplast below detection below detection 

 

 

The redox cycle depicted in Figure 16 is simplified; ascorbate can also be regenerated through 

reduction by ferredoxin (Miyake and Asada, 1994), while glutathione peroxidases oxidise GSH 

to GSSG in reducing H2O2 to H2O (Bela et al., 2015). 

Ascorbate and glutathione are sacrificial antioxidants; they scavenge ROS, protecting more 

biologically-important compounds, and the radicals they form are of relative low reactivity 

(Halliwell, 2006).  The oxidised products are then rapidly recycled (Foyer and Nocter, 2011).  

Tocopherols, carotenoids and flavonoids are also abundant sacrificial antioxidants in plants, 

however are not recycled after oxidation (Falk and Munné-Bosch, 2010; Han et al., 2012).  

Regarding protein-mediated control of ROS, superoxide dismutases actively reduce ROS by 

catalysing the dismutation of superoxide to H2O2 and O2 (Alscher et al., 2002), and in addition 

to peroxidases, catalases catalyse the decomposition of H2O2 to H2O and O2 (Mhamdi et al., 

2012).  Prxs are possibly the most important proteins involved in H2O2 removal in plants 

(Halliwell, 2006); a Cys thiol group in peroxiredoxin is oxidised to sulfenic acid by H2O2, with 

high affinity (<20 μM).  In 2-cys Prxs (the most abundant), the sulphenic acid group forms a 

disulphide bridge within the protein, which is subsequently reduced by thioredoxins (Halliwell, 

2006; Dietz, 2011). 

Proteins involved in the ascorbate-glutathione cycle and ROS control are listed in Table 18. 
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Table 18: Location of Arabidopsis proteins involved in the ascorbate-glutathione cycle and 
redox homeostasis 

Putative locations as stated on TAIR (Huala et al., 2001), accessed July 2015.  Thioredoxins as 

listed by Meyer et al. (2005).  MDHAR locations as determined by Obara et al. (2002) and 

Lisenbee et al. (2005).  There are 73 peroxidases in the Arabidopsis thaliana genome (Valério 

et al., 2004); only ascorbate and glutathione peroxidases are included in this table. 

Type AGI Gene Location 

Ascorbate 
peroxidases; 
detoxify peroxides 
using ascorbate as 
a substrate 

At1g07890 ASCORBATE PEROXIDASE 1 cytosol 

At3g09640 ASCORBATE PEROXIDASE 2 cytosol 

At4g32320 ASCORBATE PEROXIDASE 6 cytosol 

At4g08390 
STROMAL ASCORBATE 
PEROXIDASE 

chloroplast stroma 

At1g77490 
THYLAKOIDAL ASCORBATE 
PEROXIDASE 

chloroplast thylakoid 

At4g35000 ASCORBATE PEROXIDASE 3 cytosol 

At4g09010 ASCORBATE PEROXIDASE 4 cytosol 

At4g35970 ASCORBATE PEROXIDASE 5 cytosol 

Monodehydroasco
rbate reductases; 
reduce 
monodehydroascor
bate, regenerating 
ascorbate 

At3g52880 
MONODEHYDROASCORBATE 
REDUCTASE 1 

peroxisome matrices 

At5g03630 
MONODEHYDROASCORBATE 
REDUCTASE 2 

cytosol 

At3g09940 
MONODEHYDROASCORBATE 
REDUCTASE 3 

cytosol 

At3g27820 
MONODEHYDROASCORBATE 
REDUCTASE 4 

peroxisome 
membranes 

At1g63940 
MONODEHYDROASCORBATE 
REDUCTASE 6 

chloroplast stroma, 
mitochondria matrices 

Dehydroascorbate 
reductase/glutathi
one 
dehydrogenases;  
oxidise glutathione 
and reduce 
dehydroascorbate 
concurrently 

At1g19570 
DEHYDROASCORBATE 
REDUCTASE 1 

apoplast, chloroplast 
stroma, cytoplasm, 
cytosol, mitochondrion, 
peroxisome, plasma 
membrane, vacuole 

At1g75270 
DEHYDROASCORBATE 
REDUCTASE 2 

cytosol, plasma 
membrane 

At5g16710 
DEHYDROASCORBATE 
REDUCTASE 3 

chloroplast envelope, 
chloroplast stroma 

Glutathione 
peroxidases; 
catalyse reduction 
of peroxides using 
glutathione as a 
hydrogen donor 

At2g25080 GLUTATHIONE PEROXIDASE 1 

chloroplast envelope, 
chloroplast stroma, 
chloroplast thylakoid 
membrane 

At2g31570 GLUTATHIONE PEROXIDASE 2 
cytosol, mitochondrion, 
nucleus, plasma 
membrane 

At2g43350 GLUTATHIONE PEROXIDASE 3 
Golgi apparatus, 
cytosol, endosome, 
mitochondrion, trans-
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Golgi network 

At2g48150 GLUTATHIONE PEROXIDASE 4 cytosol, mitochondrion 

At3g63080 GLUTATHIONE PEROXIDASE 5 
endoplasmic reticulum, 
plasma membrane 

At4g11600 GLUTATHIONE PEROXIDASE 6 
apoplast, chloroplast, 
cytosol, mitochondrion, 
plasma membrane 

At4g31870 GLUTATHIONE PEROXIDASE 7 chloroplast 

At1g63460 GLUTATHIONE PEROXIDASE 8 cytosol, nucleus 

Glutathione 
reductases; reduce 
glutathione 
disulphide to 
reduced 
glutathione 

At3g24170 GLUTATHIONE REDUCTASE 1 cytosol 

At3g54660 GLUTATHIONE REDUCTASE 2 
chloroplast stroma, 
mitochondrion 

Ferredoxins; iron 
sulphur proteins 
which mediate 
electron transfer in 
a variety of 
processes 

At 1g10960 FERREDOXIN 1 chloroplast stroma 

At1g60950 FERREDOXIN 2 chloroplast stroma 

At2g27510 FERREDOXIN 3 chloroplast, plastid 

At5g10000 FERREDOXIN 4 chloroplast 

Catalases; catalyse 
decomposition of 
peroxide to water 
and oxygen 

At1g20630 CATALASE 1 

cell wall, chloroplast 
envelope, cytosolic 
ribosome, 
mitochondrion, 
nucleus, peroxisome 

At4g35090 CATALASE 2 

chloroplast, cytosolic 
ribosome, glyoxysome, 
mitochondrion, 
nucleus, peroxisome 

At1g20620 CATALASE 3 

apoplast, cell wall, 
chloroplast envelope, 
chloroplast stroma, 
cytosolic ribosome, 
membrane, 
mitochondrion, 
nucleus, peroxisome, 
plasma membrane, 
plasmodesmata, 
vacuole 

Superoxide 
dismutases; 
catalyse 
dismutation of 
superoxide to 
hydrogen peroxide 
and molecular 

At1g08830 
COPPER/ZINC SUPEROXIDE 
DISMUTASE 1 

apoplast, cytosol, 
nucleus 

At2g28190 
COPPER/ZINC SUPEROXIDE 
DISMUTASE 2 

apoplast, chloroplast 
stroma, chloroplast 
thylakoid, cytoplasm 
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oxygen 
At5g18100 

COPPER/ZINC SUPEROXIDE 
DISMUTASE 3 

chloroplast, cytoplasm, 
apoplast, peroxisome, 
vacuole 

At3g10920 
MANGANESE SUPEROXIDE 
DISMUTASE 1 

mitochondria matrix 

At4g25100 
IRON SUPEROXIDE DISMUTASE 
1 

chloroplast envelope, 
chloroplast membrane, 
chloroplast stroma, 
chloroplast thylakoid, 
cytoplasm, 
mitochondria, plasma 
membrane 

At5g23310 
IRON SUPEROXIDE DISMUTASE 
3 

chloroplast nucleoid, 
chloroplast thylakoid 

At5g51100 
IRON SUPEROXIDE DISMUTASE 
2 

chloroplast nucleoid, 
chloroplast thylakoid 

At3g56350 
Iron/manganese superoxide 
dismutase family protein 

mitochondria matrix 

Peroxiredoxins; 
small antioxidant 
proteins with 
peroxidase activity 

At1g48130 1-CYSTEINE PEROXIREDOXIN 1 cytoplasm, nucleus 

At3g11630 2-CYSTEINE PEROXIREDOXIN 
apoplast, chloroplast 
envelope, chloroplast 
stroma, thylakoid 

At5g06290 2-CYSTEINE PEROXIREDOXIN B 
apoplast, chloroplast 
stroma, mitochondrion 

At1g65990 TYPE II PEROXIREDOXIN A cytoplasm, nucleus 

At1g65980 TYPE II PEROXIREDOXIN B 
chloroplast, cytosol, 
plasma membrane 

At1g65970 TYPE II PEROXIREDOXIN C cytosol 

At1g60740 TYPE II PEROXIREDOXIN D 
cytosol, plasma 
membrane 

At3g52960 TYPE II PEROXIREDOXIN E 
chloroplast envelope, 
chloroplast stroma, cell 
wall, thylakoid 

At3g06050 TYPE II PEROXIREDOXIN F mitochondrial matrix 

At3g26060 PEROXIREDOXIN Q 
chloroplast envelope, 
chloroplast thylakoid, 
plastoglobule 

Thioredoxins; small 
antioxidant 
proteins 

AT4G04610 
ADENOSINE-5'-
PHOSPHOSULFATE 
REDUCTASE REDUCTASE 1 

chloroplast thylakoid 

AT1G62180 
ADENOSINE-5'-
PHOSPHOSULFATE 
REDUCTASE REDUCTASE 2 

chloroplast thylakoid 

AT4G21990 
ADENOSINE-5'-
PHOSPHOSULFATE 
REDUCTASE REDUCTASE 3 

chloroplast 

AT1G52990 thioredoxin family protein Secretion 
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AT1G03680 
ARABIDOPSIS THIOREDOXIN 
M-TYPE 1 

apoplast, chloroplast 
envelope, chloroplas 
stroma, cytosol, 
thylakoid 

AT4G03520 THIOREDOXIN M2 plastid 

AT2G15570 
ARABIDOPSIS THIOREDOXIN 
M-TYPE 3 

plastid 

AT3G15360 
ARABIDOPSIS THIOREDOXIN 
M-TYPE 4 

plastid 

AT1G76760 THIOREDOXIN Y1 plastid 

AT1G43560 THIOREDOXIN Y2 plastid 

AT1G50320 THIOREDOXIN X plastid 

AT4G04950 Picot1 cytosol 

AT4G32580 Picot2 cytosol 

AT2G40790 CxxS1 (h6) cytosol 

AT3G08710 THIOREDOXIN h9 plasma membrane 

AT1G11530 CxxS2 cytosol 

AT3G56420 THIOREDOXIN h10 cytosol 

AT3G51030 THIOREDOXIN h1 cytosol 

AT5G42980 THIOREDOXIN h3 cytosol 

AT1G19730 THIOREDOXIN h4 cytosol 

AT1G45145 THIOREDOXIN h5 cytosol 

AT3G17880 TDX cytosol/nucleus 

AT1G60420 Nucleoredoxin1 nucleus 

AT4G31240 Nucleoredoxin2 nucleus 

AT2G35010 THIOREDOXIN o1 mitochondria 

AT1G31020 THIOREDOXIN o2 cytosol, mitochondria 

AT5G39950 THIOREDOXIN h2 cytosol 

AT1G59730 THIOREDOXIN h7 cytosol 

AT1G69880 THIOREDOXIN h8 cytosol 

AT1G08570 Lilium1 cytosol 

AT4G29670 Lilium2 plastid 

AT5G61440 Lilium3 plastid 

AT2G33270 Lilium4 plastid 

AT4G26160 Lilium5 plastid 

AT3G02730 THIOREDOXIN f1 plastid 

AT5G16400 THIOREDOXIN f2 plastid 

AT1G76080 CDSP32 plastid 

AT5G42850 Clot TRP14 cytosol 

AT5G06690 THIOREDOXIN 1 chloroplast stroma 

AT5G04260 WCRKC2 plastid 

AT4G37200 HCF164 plastid 

AT3G53220 WCGVC cytosol 
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Ascorbate and glutathione are not functionally redundant, and each has roles besides redox 

regulation.  This is demonstrated by the low viability of mutants with decreased ascorbate or 

glutathione content; mutants in ascorbate biosynthesis via the GDP-mannose pathway arrest 

growth at germination (Dowdle et al., 2007), and knockout mutants in GSH1, are embryo-

lethal (Cairns et al., 2006). 

Roles of ascorbate 

Ascorbate is not ubiquitous; it is not produced by bacteria (with the possible exception of 

cyanobacteria), fungi, and certain animals such as humans and apes.  In fungi, D-

erythroascorbic acid is believed to function as an analogue of ascorbic acid (Loewus, 1999), 

while apes and humans rely on dietary intake of ascorbate for sufficient collagen, carnitine and 

neurotransmitter biosynthesis (Naidu, 2003).  The use of ascorbate by cyanobacteria has been 

debated (Gest et al., 2012).  A recent report from Wheeler et al., (2015), concluded early 

evolutionary origins of ascorbate biosynthesis in eukaryotes, with subsequent divergence of 

synthesis pathways, and loss in some groups. 

In plants, bryophytes contain low levels of ascorbate (typically 0.5 μmol.gFW-1), while the 

ascorbate content of higher plants varies greatly, from 5 to 138 μmol.gFW-1, with the higher 

concentrations detected in alpine plants (Gest et al., 2012).  It has been hypothesised that 

ascorbate, as a low cost antioxidant, acts as a first line of defense in redox regulation, buffering 

short term oxidising changes in the environment, enabling finer control of glutathione-

mediated redox signalling and other functions (Gest et al., 2012).   

As previously mentioned, ascorbate scavenges ROS directly and indirectly, however ascorbate 

is also used as an electron donor in numerous biochemical reactions; for example, it is used by 

violaxanthin de-epoxidase as a cofactor in the biosynthesis of the carotenoid zeaxanthin 

(Hager and Holocher, 1994).  Ascorbate is also believed to have an important role in reducing 

Fe3+ to Fe2+, which is used by oxygenases in the synthesis of hormones, flavonoids, alkaloids 

and in cell wall modification (Prescott and John, 1996). 

Roles of glutathione 

In contrast to ascorbate, glutathione (a thiol-containing tripeptide; Glu-Cys-Gly) is utilised 

throughout all Kingdoms (Margis et al., 2008), although substitute low-molecular-weight thiols 

have been identified in some species of halobacteria and parasitic protozoa (Fairlamb et al., 

1985; Newton and Javor, 1985).  Glutathione is a highly effective antioxidant, oxidised via the 

activity of DHAR or other glutathione transferases (GSTs), glutaredoxins (GRXs), peroxiredoxins 
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or methionine sulfoxide reductases, with reduced glutathione rapidly regenerated by action of 

glutathione reductases (Foyer and Noctor, 2011). 

Arabidopsis plants with lower glutathione content (due to a mutant GSH1 allele) are more 

susceptible to pathogen and herbivore attack, which corresponds with lower levels of 

camalexin and glucosinolate deterrents (Ferrari et al., 2003; Parisy et al., 2007; Schlaeppi et al., 

2008). 

Glutathione conjugation has an important role in detoxification (Cummins et al., 2011), as 

conjugates are more readily sequestered to the vacuole by ATP-binding cassette proteins 

(Verrier et al., 2008).  As the precursor of phytochelatins, glutathione also has an important 

role in heavy metal detoxification (Rea et al., 2004); heavy metals such as cadmium can 

displace endogenous metal cofactors, and are thought to elicit oxidative stress.  Phytochelatins 

form complexes with heavy metals, promoting their sequestration to the vacuole. 

There are 55 GSTs in Arabidopsis (Dixon and Edwards, 2010), and the function of most remains 

largely unclear.  As GST gene expression is induced in response to infection, cell division and 

environmental stress, a key role in the detoxification of endogenous compounds as well as 

foreign compounds is assumed (Dixon et al., 2010).  It is also considered that GSTs may have 

an important role in the transport and compartmentation of endogenous metabolites 

including reactive oxylipins, phenolics and flavonoids (Dixon and Edwards, 2009). 

Plant glutaredoxins reduce protein disulphide bonds with the oxidation of glutathione, and 

some catalyse S-glutathionylation or de-glutathionylation reactions (Rouhier, 2010).  Such 

reactions can affect the activity of targets, and GRXs have been implicated in stress responses 

and developmental regulation.  For example, GRX40 interacts with TGA2 to regulate salicylic 

and jasmonic acid responses (Ndamukong et al., 2007), while GRXs ROXY1 and ROXY2 interact 

with TGA9 and TGA10 to regulate anther development (Murmu et al., 2010). 
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3.1.4 Phylogenetic analysis of MDHAR6 

Protein sequence similarity results for m-MDHAR6 are shown in Table 19.  There are 

homologues with very high similarly to m-MDHAR6 across monocot and dicot species, 

including Amborella trichopoda, which is placed phylogenetically at the base of the 

Angiosperm lineage.  Homologues with less similarity were identified in Gymnosperms, lower 

plants and algae.  Low sequence similarity was found against the proteomes of animals 

including Homo sapiens. 

In mammalian biology, MDHAR activity has been attributed to NADH-cytochrome b5 (Iyanagi 

and Yamazaki, 1969; Ito et al., 1981), and thioredoxin reductase (May et al., 1998) activities.  

Theoredoxin reductase 1 of H. sapiens shares only 30 % similarity with MDHAR6, over 38 % 

coverage (Table 19).  This highlights that enzymes in other Kingdoms may have the same 

activity, but with low protein sequence similarity. 

Within cyanobacteria, MDHAR activity has been detected in Nostoc (Miyake et al., 1991), 

however the enzymes responsible have not been identified.  It is notable that from genomic 

analysis, plastidial and mitochondrial use of MDHAR appears to be a feature of higher plants 

(Pitsch et al., 2010; Gest et al., 2012). The three MDHAR genes of the moss Physcomitrella 

patens are predicted to be cytosol or peroxisome-targeted (Lunde et al., 2006; Drew et al., 

2007). 
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Table 19: Protein sequence similarity between Arabidopsis m-MDHAR6, and the closest 
homologues in other species 

Examples of BLASTx (Altschul et al., 1990) search results using the National Center for 

Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/).  Protein 

sequences are compared with m-MDHAR6 (TAIR AASequence 1009107687).  Results shown 

are highest scoring hits for the species listed, expect for Homo sapiens thioredoxin reductase.  

Species Relevance Accession and 

annotation of 

closest hit 

Total 

score 

% 

coverage 

% 

identity 

E 

value 

Populus 

trichocarpa 

Remediation 

relevant genus 

XP 002299509.2 
hypothetical 
protein 

795 100 78 0.0 

Elaeis 

guineensis 

Monocot XP-010941082.1 
predicted 
chloroplastic 
MDHAR 

729 99 72 0.0 

Amborella 

trichopoda 

Placed at base of 

Angiosperm 

lineage 

XP 011628912.1 
predicted 
MDHAR 

734 99 72 0.0 

Picea sitchensis Gymnosperm ABK24288.1 
unknown 

360 81 46 1e-

119 

Ginkgo biloba Gymnosperm AGG40646.1 
isoflavone 
reductase-like 
protein 

29.6 13 31 0.067 

Physcomitrella 

patens 

Lower plant 

(moss) 
XP 001776830.1 
predicted protein 

374 84 48 1e-

124 

Ostreococcus 

tauri 

Alga XP 003079182.1 
MDHAR 

361 83 46 3e-

119 

Synechococcus 

sp. PCC 7335 

Cyanobacteria, of 

interest 

considering 

possible 

evolutionary 

origin 

WP 006457515.1 
NAD(FAD)-
dependent 
dehydrogenase 

177 89 28 2e-

48 

Homo sapiens Mammal BAH14413.1 
unnamed protein 
product 

137 72 27 4e-

34 

Homo sapiens Thioredoxin 

reductase has 

been reported to 

have MDHAR 

activity 

EAW97745.1 
thioredoxin 
reductase 1 

58.9 38 30 4e-

08 
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3.2 RESULTS 

3.2.1 The mdhar6-1 mutants remove TNT from soil 

One hypothesis for the increased TNT tolerance of mdhar6 mutants, is that they do not take 

up as much TNT as wild type.  Emily Beynon and Liz Rylott previously demonstrated that when 

transferred to liquid media, mdhar6-1, mdhar6-2 and mdhar6-3 remove TNT from the liquid at 

the same rate as their wild type backgrounds (Johnston et al., 2015).  To investigate whether 

mdhar6-1 seedlings also remove TNT from soil, where TNT binds strongly to the humic 

fractions, five-day old seedlings were transferred to 0 and 100 mg TNT/kg soil, and grown to 

six weeks of age.  At six weeks, aerial biomass was removed and weighed, and the pots of soil 

were halved vertically; root biomass was extracted and weighed from one half of the soil, and 

TNT was extracted and quantified from the other half, including the roots. 

The aerial and root fresh biomass of mdhar6-1 were 2.4 and 3.3-fold greater than Col7 on 100 

mg TNT/kg soil (Figure 21), a smaller difference than seen in previous experiments.  

Percentage TNT recovery from soil is usually low, and in the No Plant Control (NPC) soil of this 

experiment, was 4.3 %.  Extractable TNT from mdhar6-1-treated soil was significantly lower 

than NPC, with P <0.001, while the significance of the difference in TNT content between Col7 

and mdhar6-1 treated soil was lower (P = 0.108; Table 20).  Untransformed TNT within the 

roots of mdhar6-1 was included in the extraction, which may account for the lower 

significance in difference between Col7- and mdhar6-1-treated soil. 
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Figure 21: Biomass of Col7 and mdhar6-1 grown in TNT-treated soil 

Five-day old seedlings were transferred to pots of 0 or 100 mg TNT.kg soil-1 (five seedlings per 

pot), and grown to six weeks of age. (A) Representative seedlings from this experiment at six 

weeks of age, photographs courtesy of Liz Rylott. (B) Fresh and dry weights of the five 

seedlings at six weeks of age.  Roots were extracted and measured from half of each pot, then 

doubled to give the values shown here.  Mean of eight biological replicates ± SD shown.  

Student’s t test * P<0.05, ** P<0.01, *** P<0.001.  
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Table 20: Extractable TNT from 100 mg TNT.kg soil-1  after 5 week treatment with no plants, 

Col7 or mdhar6-1 

Mean of eight biological replicates ± SEM shown.  NPC; No Plant Control.  Roots were included 

in the soil processed for TNT extraction.  One-way ANOVA with Bonferroni correction, * 

P<0.05, ** P<0.01, *** P<0.001. 

Sample 
Extractable TNT 

(nmol/g dry soil) 

P value against 

NPC Col7 mdhar6-1 

NPC 31 ± 2.7    

Col7 21 ± 1.6 0.004 *   

mdhar6-1 15 ± 0.9 0.000 *** 0.108  
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3.2.2 Mutants in mdhar6 are no more tolerant than wild type to a range of 
stresses, including hydrogen peroxide and methyl viologen treatment 

Another theory for the enhanced TNT tolerance of mdhar6 is that due to the mutation, general 

defences are elevated which increase resistance to a variety of stress treatments, including 

TNT.  To investigate this, Liz Rylott and Maria Budarina measured the root lengths of seven-day 

old Col7 and mdhar6-1 seedlings, germinated on agar containing inhibitory levels of the solute 

sorbitol, salt NaCl or superoxide-inducing methyl viologen (the active component of the 

herbicide Paraquat, which transfers electrons from photosystem I to molecular oxygen); no 

significant differences between the wild type and mutant were found.  To supplement this 

prior research, root growth on agar treated with hydrogen peroxide was measured (Figure 22), 

and two-week old seedlings leaves were sprayed with methyl viologen (Figure 23); no 

significant difference in tolerance between Col7 and mdhar6-1 were found. 

The mdhar6-1 seedlings were however, slightly less tolerant to growth in the hypoxic 

conditions of growth in liquid media; when one-day old seedlings were transferred to ½ MS(S) 

1 x Gamborg’s vitamin solution, mdhar6-1 seedlings were 76 % the fresh weight of Col7 

seedlings at two-weeks of age (10 biological replicates, Student’s t test P = 0.052). 

The lack of increased tolerance to other stress treatments demonstrates the specificity of the 

tolerance to TNT in mdhar6 mutants, and indicates that the higher tolerance of mdhar6 to TNT 

cannot be explained by enhanced general defences. 
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Figure 22: Root lengths of Col7 and mdhar6-1 seedlings germinated on hydrogen peroxide-

supplemented ½ MS(S)(A) 

Root lengths of seven-day old seedlings.  Mean of 30 biological replicates ± SD shown. 

 

 

 

Figure 23: Appearance of Col7 and mdhar6-1 seedlings two days after being sprayed with 0 - 

50 μM methyl viologen 

Punnets of five two-week old seedlings, which were sprayed with 1.8 ml 0, 5, 25 or 50 μM 

methyl viologen two days previously. Three representative punnets per treatment pictured. 
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3.2.3 When grown on ½ MS(S)(A), mdhar6-1 roots have higher glutathione 
levels than Col7 

Glutathione conjugation has a direct role in detoxifying TNT (Gunning et al., 2014).  To 

investigate whether ascorbate-glutathione pools are affected in a manner which may enhance 

TNT tolerance, leaf and root extracts from two-week old seedlings grown vertically on agar 

plates, were assayed for ascorbate and glutathione content (Figure 24).  The only significant 

difference between Col7 and mdhar6-1 was a 1.3-fold increase in the total glutathione content 

of mdhar6-1 roots. 
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Figure 24: Ascorbate and glutathione levels of 15-d old Col7 and mdhar6-1 seedlings 

Seedlings were grown vertically on ½ MS(S)(A) for 15 d.  Mean values for eight biological 

replicates ± SD shown.  Student’s t test * P<0.05, ** P<0.01, *** P<0.001. 
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3.2.4 When grown in liquid media and treated with TNT or a control 
treatment, there are no significant differences in ascorbate and 
glutathione between Col7 and mdhar6-1 

To investigate the effect of TNT treatment on Col7 and mdhar6-1 ascorbate and glutathione 

levels, two-week old seedlings were treated with 60 μM TNT or a control treatment for 6 h, as 

described in Gandia‐Herrero et al. (2008).  Ascorbate and glutathione levels were higher than 

when grown on ½ MS(S)(A), perhaps due to the more hypoxic conditions of liquid culture.  

There were no significant differences in ascorbate or glutathione between Col7 and mdhar6-1 

(Figure 25). 
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Figure 25: Ascorbate and glutathione levels of two-week old TNT- or control-treated Col7 
and mdhar6-1 seedlings 

Two-week old seedlings grown in ½ MS(S) 1 x Gamborg’s vitamin solution, were treated with 

60 μM TNT in DMF (end 0.06% v/v DMF) or DMF alone for 6 h.  Mean of six biological 

replicates ± SD shown.  Student’s t test * P<0.05, ** P<0.01, *** P<0.001. 
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3.2.5 The mdhar6-1 mutant has enhanced TNT tolerance in the presence of a 
glutathione synthesis inhibitor 

To investigate the importance of the higher glutathione levels previously measured in mdhar6-

1 roots (Figure 24), TNT tolerance in the presence of the γ-ECS inhibitor buthionine sulfoximine 

(BSO; Griffith and Meister, 1979), was explored in a preliminary experiment.  If glutathione 

levels are reduced to the same extent in Col7 and mdhar6-1, yet mdhar6-1 maintains 

enhanced TNT tolerance, this would suggest that increased glutathione conjugation to TNT 

does not account for the enhanced TNT tolerance in mdhar6-1. 

Col7 and mdhar6-1 root lengths were measured seven days after germination on ½ MS(A) 

treated with various concentrations of TNT and BSO (Figure 26).  The mdhar6-1 mutant was 

more tolerant to BSO, which complicates interpretation of this experiment.  In the presence of 

250 μM BSO, roots of mdhar6-1 were longer than Col7 both in the presence and absence of 

TNT. In the presence of 500 μM BSO, roots of mdhar6-1 were not significantly longer than Col7 

in the presence or absence of TNT (one-way ANOVA P <0.05), but root growth was greatly 

inhibited in both genotypes at concentration.  Without measurement of glutathione 

concentration in the roots, and without measurement of root lengths in the presence of BSO 

concentrations between 250 μM and 500 μM, the results of this experiment are difficult to 

interpret. 
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Figure 26: The effect of glutathione synthesis inhibitor BSO on the enhanced TNT tolerance 

of mdhar6-1 

Root lengths of seven-day old seedlings.  Mean of 25 biological replicates ± SD.  One-way 

ANOVA with post hoc Tukey HSD test used for each BSO treatment.  Different letters indicate 

significant differences at P < 0.05. 
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3.2.6 The activity of crude protein extract towards both MDA and TNT is 
reduced in mdhar6 mutants 

To determine the effect of the three different mdhar6 mutations on total MDHAR activity, 

crude protein extract from seedling leaves and roots were assayed for activity against the 

putative endogenous substrate MDA.  These extracts were also assayed for activity towards 

TNT.  There was an overall decrease in activity towards both MDA and TNT in the three 

mdhar6 mutants (Figure 27), suggesting that MDHAR6 may have activity towards TNT. 
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Figure 27: Activity of WT and mdhar6 crude protein extract towards MDA and TNT 

Seedlings were grown vertically on ½ MS(S)(A) for 14 days. Activity was determined by 

following rates of A340 decrease, corresponding with NADH oxidation.  Mean of five biological 

replicates ± SD shown.  Student’s t test * P<0.05, ** P<0.01, *** P<0.001. 
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3.2.7 Purification of MDHAR6 for enzymatic analysis 

Direct activity of MDHAR6 with TNT would not be unsurprising, as flavin enzymes with broad 

specificity are known to reduce nitroaromatics as substrates (Williams and Bruce, 2002).  To 

investigate the activity of MDHAR6 further, codon-optimised MDHAR6 with a C-terminal HIS-

tag and N-terminal STREP-tag (cloned by Liz Rylott and Maria Budarina), was expressed in E. 

coli, and purified to near homogeneity in a 1:1 molar ratio with cofactor FAD (Figure 28).  The 

identity of the purified protein was confirmed by mass spectrometry. 

The purified MDHAR6 enzyme had high affinity towards MDA, with an estimated Km of 4.1 μM 

(Figure 29).  To generate MDA, ascorbate oxidase was added to assays containing increasing 

concentrations of sodium ascorbate.  As dehydroascorbate is also generated in this reaction, 

activity towards DHA alone was also tested.  No activity towards DHA was found. 
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Figure 28: Purification of MDHAR6 

(A) Purification profile; UV absorbance of column flow-through (corresponding with protein 

concentration), and percentage of 2.5 mM desthiobiotin in the column wash buffer.  A peak in 

protein elution corresponding with approximately 1.25 mM desthiobiotin was observed.  (B) 

Coomassie stain of eluted protein on an SDS-PAGE gel.  The expressed MDHAR6 protein is 53 

kDa.  (C) Absorbance spectra of boiled and unboiled MDHAR6 eluate and of FAD standards 

(average of three replicates). 

 

  



Chapter 3: MDHAR6 mediates TNT toxicity in Arabidopsis 

89 
 

Ascorbate (µM)
0 200 400 600 800

R
at

e 
(m

m
ol

/m
in

/m
g)

0

20

40

60

80

100

120

 

Esimated MDA (µM)

0 1 2 3 4 5 6 7

R
a
te

 (
m

m
o
l/
m

in
/m

g
)

0

20

40

60

80

100

120

 

Km 4.1 μM ± 0.6, Vmax 190 mmol-1.min-1.mg-1 ± 15 

 

Figure 29: Michaelis-Menten for MDHAR6 activity with MDA substrate 

Activity was determined by following decrease in A340 corresponding with NADH oxidation. 

Assay conditions: 50 mM Tris 1 mM EDTA (pH 7.6), 100 μM NADH, 509 ng/ml MDHAR6 and 

increasing concentrations of sodium ascorbate.  Absorbance at 340 nm was measured before 

and after addition of 1.12 U ascorbate oxidase, to generate MDA.  (A) Michaelis-Menten plot 

showing original sodium ascorbate concentration in assay on x axis.  (B) Michaelis-Mentan plot 

showing estimated MDA concentration, generated by ascorbate oxidase addition, on x axis.  

Three technical replicates ± SEM. 
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3.2.8 Enzymatic analysis indicates that MDHAR6 reduces TNT to a TNT nitro 
radical, which autoxidises generating superoxide 

Purified MDHAR6 was also found to have activity towards TNT, although with much lower 

affinity (Km 522 μM; Figure 30) than towards MDA (Km 4.1 μM; Figure 29).  To investigate the 

reduction products, assays containing 200 μM TNT and 200 μM NADH were incubated at room 

temperature for 90 min, by which time all NADH was depleted.  The end concentration of TNT 

was then determined using High Performance Liquid Chromatography (HPLC), however no 

decrease in TNT concentration was observed (Figure 30). 

The activity of MDHAR6 towards TNT, with no decrease in TNT concentration, could be 

explained by a one electron reduction of TNT, to a TNT nitro radical (Figure 31).  This radical 

would then most likely autoxidise, transferring the electron to molecular oxygen, generating 

highly reactive superoxide, in a cyclic reaction.  In addition to generating potentially harmful 

levels of ROS, this cyclic reaction involves the futile use of NADH, which could otherwise be 

used in productive reactions. 

To investigate whether radicals are generated in the reaction of MDHAR6 with TNT, Electron 

Paramagnetic Resonance (EPR) spectrometry was used in collaboration with Dr. Victor Chechik 

(Department of Chemistry, University of York).  The commonly-used spin traps 5,5-dimethyl-

pyrroline N-oxide (DMPO) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) 

were incorporated into the assays; these spin traps form relatively stable adducts with 

otherwise short-lived radicals.  When DMPO was incorporated into the assay, a spectrum 

correlating with DMPO-superoxide was observed (Figure 32).  At the end of the reaction, when 

NADH was depleted, a spectrum corresponding with the decomposition product of DMPO-

superoxide, DMPO-hydroxyl, was observed.  The DMPO-superoxide adduct was not observed if 

superoxide dismutase (SOD) was included in the assay, if TNT was omitted, or if heat-

denatured MDHAR6 was used.  When DEPMPO was applied in the assay, a spectrum 

corresponding with DEPMPO-superoxide was also observed (Figure 32). 
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Figure 30: Michaelis-Menten for MDHAR6 activity with TNT substrate, and TNT 

concentration following activity 

(A) Michaelis-Menten plot.  Three technical replicates ± SEM.  Activity was determined by 

following decrease in A340 corresponding with NADH oxidation.  Assay conditions: 50 mM Tris 1 

mM EDTA (pH 7.6), 10.3 μg/ml MDHAR6, 15 % DMSO, 100 μM NADH, 25oC. (B) Concentration 

of TNT at end of assay.  Five technical replicates ± SD.  Assays consisted of 50 mM Tris (pH 7.6), 

1 mM Na2EDTA, 200 μM NADH, 200 μM TNT, 15% DMSO and 52 μg/ml MDHAR6.  The TNT 

concentration after 90 min incubation at room temperature, when NADH was depleted, was 

determined using HPLC. 

 

 

 

Figure 31: Hypothesised reaction of MDHAR6 with TNT 

Schematic for the hypothesised reaction of MDHAR6 with TNT; MDHAR6 uses cofactor NADH 

to reduce TNT by one electron, forming a TNT nitro radical, which is then able to autoxidise, 

transferring the electron to molecular oxygen, generating superoxide. 
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Figure 32: Electron paramagnetic resonance spectra from MDHAR6 activity with TNT 

(A) Spectrum of DMPO-superoxide, followed by the observed spectrum when MDHAR6 reacts 

with TNT in the presence of DMPO (assay conditions; 1.5 mg/ml MDHAR6 in 50 mM KH2PO4 

(pH 7), 80 mM DMPO, 300 μM NADH and 500 μM TNT in DMF, end DMF 1 % v/v), then when 

50 U/ml SOD was incorporated in the assay, TNT was omitted or heat-denatured MDHAR6 

used.  (B) Spectrum of the DMPO-superoxide degradation product, DMPO-OH, followed by the 

spectrum observed at the end of MDHAR6 reaction with TNT, when NADH has been depleted.  

(C) Spectrum of DEPMPO-superoxide, followed by the spectrum observed when MDHAR6 

reacted with TNT in the presence of 80 mM DEPMPO (same assay conditions as with DMPO). 
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If this reaction occurs in vivo, higher levels of cellular H2O2 when exposed to TNT might be 

expected, as SOD catalyses the dismutation of superoxide to O2 and H2O2 (Alscher et al., 2002).  

To assess the level of H2O2 in whole seedlings, 3,3’-diaminobenzidine (DAB) staining was used; 

DAB monomer is oxidised by H2O2 in the presence of peroxidase, to form an insoluble brown 

polymer.  Seedlings were germinated on ½ MS(A) containing 0 or 15 μM TNT, and DAB-stained 

after 7 days.  Col7 seedlings grown in the presence of TNT stained much darker than those 

grown in the absence of TNT, and mdhar6-1 seedlings were stained to comparable levels as 

Col7 in the absence of TNT.  Images at different magnifications from two technical replicate 

experiments are shown in Figure 33 and Figure 34. 

 

 

Figure 33: DAB stain of Col7 and mdhar6-1 seedlings germinated in the presence or absence 

of TNT; high magnification 

Seedlings were germinated and grown vertically on ½ MS(A) plates containing 0 or 15 μM TNT 

(0.05 % v/v DMSO), then DAB-stained for 3 h.  

  



Chapter 3: MDHAR6 mediates TNT toxicity in Arabidopsis 

94 
 

 

Figure 34: DAB stain of Col7 and mdhar6-1 seedlings germinated in the presence or absence 

of TNT; low magnification 

Seedlings were germinated and grown vertically on ½ MS(A) plates containing 0 or 15 μM TNT 

(0.05 % v/v DMSO), then DAB-stained for 3 h.  Leaves were removed to facilitate alignment of 

roots on slide. 
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3.2.9 Investigating the potential of using MDHAR6 as a herbicide target 

Herbicides are grouped into 25 classes, according to the herbicide mode of action (MOA), i.e. 

the protein or process inhibited by the chemical (HRAC, 2010; Heap, 2014).  Since the 1970s, 

there has been a steady increase in herbicide tolerance in weed species, including the 

“stacking” of tolerance to a number of herbicide MOA (Heap, 2015).  This highlights the 

necessity of careful farming practise, with alternation in the class of herbicide used.  At the 

same time however, no herbicide with a new MOA has been commercialised since the 1980s 

(Duke, 2012).  Reflecting on this, and the apparent toxic effect of MDHAR6 upon reaction with 

TNT, it was considered whether an agrochemical could be designed, which MDHAR6 would 

similarly reduce by one electron, with toxic effect. 

To investigate the specificity of the reaction further, nitro group-containing chemicals 1-

chloro-2,4-dinitrobenzene(CDNB) and 1-chloro-4-nitrobenzene (CNB) were also tested as 

MDHAR6 substrates.  The enzyme was found only to have activity towards CDNB, which 

correlated with enhanced CDNB tolerance in mdhar6-1 (Figure 35; Figure 36). 

A summary of the chemical structures tested as MDHAR6 substrates in this study, with kinetic 

values, is included in Figure 37.  
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Figure 35: Michaelis-Menten for activity of MDHAR6 with CDNB, and CDNB concentration 

following reaction 

(A) Michaelis-Menten plot and kinetics for MDHAR6 activity with CDNB.  Three technical 

replicates ± SEM.  Activity was determined by following decrease in A340 corresponding with 

oxidation of cofactor NADH.  Assay conditions: 50 mM Tris 1 mM EDTA pH 7.6, 128 μg/ml 

MDHAR6, 15 % DMSO, 100 μM NADH, 25oC.  (B) Concentration of CDNB following reaction 

with MDHAR6.  Five technical replicates ± SD.  Assays consisted of 50 mM Tris (pH 7.6), 1 mM 

Na2EDTA, 200 μM NADH, 200 μM CDNB, 15% DMSO and 52 ug/ml  MDHAR6.  Concentration of 

CDNB after 90 min incubation at room temperature was determined using HPLC. 

 

Figure 36: Col7 and mdhar6-1 root growth in presence of CDNB or CNB 

Root lengths of seven-day old seedlings germinated on ½ MS(A) containing increasing 

concentrations of (A) CDNB or (B) CNB.  Mean of 30 biological replicates ± SD shown.  

Student’s t test * P<0.05, ** P<0.01, *** P<0.001. 

(A)                                                                                                     (B) 

(A)                                                              (B) 
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Figure 37: Structures of chemicals tested for MDHAR6 substrates in this study, and kinetic 
values 

(A) Chemicals identified as MDHAR6 substrates in this study.  (B) Chemicals identified not to be 

MDHAR6 substrates in this study. (C) Michaelis-Menten kinetic activity values ± SEM.  ND; 

activity not detected.  
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          0 μM                                400 μM                         0 μM                           400 μM 

Col7                                                           mdhar6-1 

Some herbicides such as atrazines are applied to soil, while others including glyphosates are 

sprayed onto foliage.  The phytotoxic effects of TNT in soil have previously been 

demonstrated.  To establish the effect of foliage treatment with TNT, 16-d old Col7 and 

mdhar6-1 seedlings were sprayed with 0, 5, 50, 200 or 400 μM TNT (maximum solubility in 

water without added organic solvent) for 7 d.  Chlorosis and stunted growth was visible from 

48 h after treatment with 400 μM TNT, and to a lesser extent 200 μM TNT.  Following 7 d of 

treatment, there were still no visible difference between Col7 and mdhar6-1 (Figure 38). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Aerial treatment of two-week old seedlings with TNT 

Three-week old Col7 and mdar6-1 seedlings which have been sprayed daily with 2.6 ml (per 

punnet) 0 or 400 μM TNT in water for 7 d. 
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3.3 DISCUSSION 

3.3.1 The endogenous role of MDHAR6 

This study has included the first purification of an Arabidopsis MDHAR for enzymatic analysis, 

and has confirmed that AtMDHAR6 has reductase activity against MDA, but not DHA.  The 

estimated Km for activity with MDA (4.1 μM) is within the range of previously reported Km 

values for MDHAR enzymes; 0.9 μM (Borraccino et al. 1986) to 7 μM (Dalton et al. 1992). 

A surprising outcome, is the finding that mdhar6-1 mutants are little compromised in high 

solute, salt or oxidative stress tolerance (Johnston et al., 2015), although biomass is lower than 

wild type when seedlings are grown in the hypoxic conditions of liquid culture (3.2.2).  As 

MDHAR6 is the only plastid and mitochondria-targeted MDHAR in Arabidopsis, and 

chloroplasts and mitochondria are such redox-active compartments, this may be surprising, 

however plastid and mitochondria-targeting of MDHAR appears to be a feature of higher 

plants (Gest et al., 2012); genetic analysis indicates that lower plants have only cytosolic and 

peroxisomal MDHARs (Lunde et al., 2006; Drew et al., 2007).  As ascorbate oxidation was 

found to be unchanged in mdhar6-1 in this study (Figure 24, Figure 25), it could be the case 

that ferredoxin is sufficient to reduce MDA (Miyake and Asada, 1994) in the mutants. 

3.3.2 Rejected hypotheses for the enhanced TNT tolerance of mdhar6 
mutants 

That there is no difference in root growth between Col7 and mdhar6-1 in the presence of high 

solute, salt or oxidative stress, suggests that the enhanced TNT tolerance of mdhar6-1 is not 

due to enhanced general defences. 

Another hypothesis has been that the mdhar6 mutation results in increased DHA levels, which 

have been proposed to promote cell wall loosening and cell expansion (Lin and Varner, 1991; 

Green and Fry, 2005).  Contradictory to this theory however, in this study no enhanced DHA 

levels were measured in mdhar6-1 mutants (Figure 24, Figure 25), and roots are no longer than 

wild type in the absence of TNT (Figure 22; Student’s t test, P <0.05). 

3.3.3 The significance of increased glutathione in mdhar6 roots in explaining 
mdhar6 enhanced TNT tolerance 

Glutathione conjugation and subsequent sequestration of conjugates is known to have a role 

in agrochemical detoxification (Cummins et al., 2011), and in Arabidopsis, overexpression of 

GSTU24 or GSTU25 enhances TNT tolerance (Gunning et al., 2014); these enzymes have been 

found to conjugate glutathione to HADNT via the methyl group, with GSTU25 additionally 
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conjugating glutathione directly to the aromatic ring of TNT, replacing a nitro group at position 

2 or 5 (Gunning et al., 2014). 

On ½ MS(A), mdhar6-1 roots had 1.3-fold more glutathione than Col7 (Figure 24).  Under the 

more stressful conditions of liquid culture, there were higher glutathione levels in both Col7 

and mdhar6-1, which increased in the presence of TNT, however the content was not 

significantly different between Col7 and mdhar6-1 under both TNT and control treatments (to 

P <0.05 with Student’s t test; Figure 25). 

To explore whether reducing glutathione content affects TNT tolerance and the enhanced TNT 

tolerance of the mdhar6-1 mutant, Col7 and mdhar6-1 were germinated on ½ MS(A) 

containing various concentrations of BSO, which inhibits γ-ECS (Griffith and Meister, 1979), 

and 0 or 7 μM TNT (Figure 26).  Glutathione concentration was not measured in this 

preliminary experiment however, and if repeated, a lower TNT concentration would be better, 

as the combined effect of BSO and TNT is highly inhibitory to root development.  As 250 μM 

BSO resulted in a small degree of root growth inhibition (perhaps indicating reduced 

glutathione content), while with 500 μM, BSO roots were only 4 mm in length (making 

significant differences between genotypes and treatments difficult to measure), measuring 

root growth and glutathione content in the presence of BSO concentrations between 250 and 

450 μM may be optimal.  As it stands, conclusions cannot be made from this preliminary 

experiment without glutathione measurement, however considering that (i) under the 

stressful conditions of liquid culture, and in the presence of TNT, glutathione levels between 

Col7 and mdhar6-1 are comparable (Figure 25), and (ii) that if mdhar6-1 seedlings contained 

higher levels of glutathione than Col7 under stressful conditions, enhanced tolerance to other 

stresses may be expected (Chen et al., 2012; Cheng et al., 2015), which was not observed 

(Johnston et al., 2015), it is likely that glutathione levels are not having a huge contribution 

towards the enhanced TNT tolerance of mdhar6-1. 

3.3.4 The significance of MDHAR6 activity towards TNT in explaining mdhar6 
enhanced TNT tolerance 

Although Genevestigator microarray data indicate high levels of MDHAR6 expression 

throughout all tissues, my quantitative Polymerase Chain Reaction (qPCR) data (discussed in 

Chapter 4) indicate higher MDHAR6 expression in roots compared with leaves.  This 

corresponds with the greater toxicity of TNT when taken up by roots, as opposed to sprayed 

onto leaves, and also the location of TNT in plants when removed from soil;  >95 % of TNT 

remains in plant roots following uptake (studies with poplar and switchgrass; Brentner et al., 

2010). 
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The hypothesis of one electron reduction of TNT by MDHAR6 is supported by measurement of 

cofactor oxidation in the presence of TNT, HPLC analysis of reaction products, EPR 

spectrometry and in vivo probing of oxidative state.  The one electron reduction of TNT would 

have a detrimental effect through superoxide generation, and via the futile use of NADH.  The 

rate of MDHAR6 activity towards TNT compared with MDA is relatively low, however as the 

TNT substrate is regenerated, only catalytic concentrations of TNT are needed for cyclic activity 

towards TNT, with superoxide generation. 

Superoxide reacts readily with nitric oxide (NO·) to form peroxynitrite (ONOO-), which rapidly 

protonates to peroxynitrous acid (ONOOH).  Peroxynitrous acid is a powerful oxidising and 

nitrating agent, which can damage protein, lipids and DNA, or split to reactive nitrogen dioxide 

and hydroxyl radicals (Halliwell, 2006).  Hydroxyl radicals react quickly with low specificity, and 

can initiate self-perpetuating cascades of lipid peroxidation (Halliwell, 2006).  Nitrogen dioxide 

is also a powerful oxidising agent (Halliwell, 2006).  Superoxide and peroxynitrite also release 

iron from enzymes with iron-sulphur clusters; this can result in Fenton chemistry, catalysing 

the disproportionation of hydrogen peroxide, forming hydroperoxyl and hydroxyl radicals, 

perpetuating cellular ROS content (Halliwell, 2006). 

3.3.5 The importance of MDHAR6 location in conferring toxicity upon 
reaction with TNT 

The importance of MDHAR location in relaying TNT phytotoxicity is implied through two 

findings; (i) that mdhar6 mutations confer such high TNT tolerance, when there are four 

further MDHAR enzymes in Arabidopsis, and (ii) that overexpression of mitochondria-targeted 

MDHAR6 (m-MDHAR6) complements the mutant phenotype more than the plastid-targeted 

variant (p-MDHAR6). 

The mdhar6-1 mutants are not entirely TNT tolerant; for example in Figure 21, the FW of six-

week old mdhar6-1 seedlings growing on 100 mg TNT.kg soil-1 are 81 % of those growing in the 

absence of TNT.  It is possible that activity of the other MDHAR enzymes could account for the 

remaining toxic effect.  Mutants in peroxisome membrane-targeted MDHAR mdhar4 are no 

more tolerant to TNT (unpublished data- Liz Rylott).  Mutants in mdhar1, mdhar2 and mdhar3 

have not been characterised. 

Regarding the more complete mutant complementation by m-MDHAR6, there are no reliable 

studies localising TNT at the subcellular level, which would determine whether TNT diffuses 

into mitochondria more easily than plastids.  Chloroplasts accumulate flavonoids, the radicals 

of which could be additional MDHAR substrates in competition with TNT (Sakihama et al., 
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2000).  In roots however, flavonoids primarily accumulate at nuclei and the endomembrane 

systems (Peer et al., 2001).  It is highly plausible that there is greater potential for oxidative 

stress at mitochondria, compared with the amyloplasts and elaioplasts of roots, and/or that 

the diversion of NADH from respiration has a greater inhibitory effect than from processes in 

amyloplast and elaioplast organelles.  

3.3.6 Application of this finding in the development of phytoremediation 
technologies 

As discussed in Chapter 1, with regards to explosives remediation, removal and degradation of 

RDX is of higher immediate priority than TNT.  Plants developed to degrade RDX however, 

need tolerance to the co-pollutant TNT.  Phytoremediation-appropriate species include 

grasses, which are fast-spreading, tolerant to physical perturbation, and have extensive root 

networks, and poplar, which has previously been used to remediate groundwater pollution at 

US EPA Superfund sites (US EPA, 2015).  Recent explosives remediation studies have focused 

on transforming RDX-degrading activity into switchgrass, a species native to North America, 

following successful experiments in transgenic Arabidopsis (Rylott et al., 2006, 2011).  

Knocking out MDHAR6 in these lines, for example through use of CRISPR-Cas genome editing 

technology (Sander and Joung, 2014), may increase TNT tolerance and the efficacy of 

explosives phytoremediation. 

3.3.7 Consideration of MDHAR6 as a potential herbicide target 

If the increase in stacking of target site-based resistance traits in weeds continues, the demand 

for new herbicide target sites will greatly increase.  As mentioned earlier, no herbicide with a 

new target site has been commercialised since the 1980s (Duke, 2012).  An MDHAR6 substrate 

would need to be developed which is much more environmentally-friendly and biodegradable 

than TNT however, and as our preliminary experiments indicate high specificity in the targets 

for one electron reduction, this could be a challenging task.  Use of such a herbicide would also 

require identification of MDHAR6 orthologue(s) for environmental risk assessment, and 

development of crops with engineered loss of MDHAR6 activity. 
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4 The dual targeting of MDHAR6 

4.1 INTRODUCTION 

4.1.1 The dual targeting of MDHAR6 

Two MDHAR6 transcription start sites (TSSs) were identified and studied by Obara et al. (2002; 

Figure 39); when the first is used, the transcript encodes seven additional residues at the N-

terminus.  These form an amphiphilic alpha helix, which is predicted to promote targeting to 

the mitochondria (Dudek et al., 2013).  A mitochondrial peptide cleavage motif (RIAS) is 

present at residues 45 to 48.  There is an intron within the sequence of the amphiphilic helix, 

and a second TSS within this intron sequence is also used.  The uncharged N-terminus of this 

transcript, with methionine followed by alanine, is frequently found in plastid-targeted 

proteins, and additionally the central domain enriched in hydroxylated residues, and C-

terminus enriched in alanine, are common of plastid-targeted proteins (Bruce, 2000, 2001). 

To avoid confusion with the mutant alleles discussed in Chapter 3, in this thesis, MDHAR6.2 

(the transcript variant for mitochondria-targeting) is referred to as m-MDHAR6, and 

MDHAR6.1 (the transcript variant for plastid targeting) is referred to as p-MDHAR6. 

 

 

AGCCAACACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTGAATTTGGCTCTTCTT

ATAAACTAATGTCTGCAGGTCTTCTTATCTCTCTCACTCACCACCATCTTCTTCCTCGATTGTC

AAAACCCTAGATCGAAATCTTATCTCTCTAATCTGTTGTTACAGTTCGTAGAGTCATGGCGTTA 

Figure 39: Transcription start sites of MDHAR6 

Adapted from Obara et al. (2002).  N-terminus of Col0 MDHAR6 showing the two TSSs, and 

amino acids encoded following translation start sites. Grey highlight; intron.  Blue highlight; 

transcript specific to m-MDHAR6.  Green highlight; beginning of p-MDHAR6 translation.  Black 

double-underline; reverse primer used by Obara et al. (2002) to identify the p-MDHAR6 TSS. 
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Obara et al. (2002) analysed cDNA databases, and identified two MDHAR transcripts (m-

MDHAR6 and p-MDHAR6) which could arise from At1g63940.  To identify the TSSs shown in 

Figure 39, Obara et al. (2002) used cap site hunting.  In cap site hunting, the 5’ cap of mRNA is 

replaced with an artificially synthesised oligoribonucleotide, before reverse transcription.  

Primers can then be designed against the 5’ oligoribonucleotide for PCR, cloning and 

sequencing.  The first cap site hunting experiment by the authors used a nested reverse primer 

against the MDHAR6 3’-terminus.  Only the m-MDHAR6 transcript was amplified, indicating 

that this is the dominant transcript.  To identify the p-MDHAR6 TSS, the authors needed to use 

a nested reverse primer, within the intron which should be absent from m-MDHAR6 (indicated 

in Figure 39). 

To study protein targeting, Obara et al. (2002) fused the 5’ sequences of MDHAR6 (first 50 

bases of m-MDHAR6, and separately, the first 43 bases of p-MDHAR6) to Green Fluorescent 

Protein (GFP), and expressed the constructs in Arabidopsis using the constitutive CaMV 35S 

promoter.  The N-terminus of m-MDHAR6 targeted GFP to small moving compartments, 

characteristic of mitochondria when probed separately by the authors with MitoTracker 

Orange.  The N-terminus of p-MDHAR6 targeted GFP to chloroplasts, co-localising with 

chloroplast autofluorescence.  In these experiments, the termini resulted in exclusive targeting 

to mitochondria or plastids. 

Chew et al. (2003) also explored the targeting of MDHAR6, along with other enzymes of the 

ascorbate-glutathione cycle.  The authors used a system in which purified mitochondria and 

chloroplasts are mixed, incubated with [35S]methionine-labelled protein-of-interest, and then 

separated again.  The import of the labelled protein into mitochondria and/or chloroplasts is 

then assessed.  The authors concluded that m-MDHAR6 is imported to both mitochondria and 

chloroplasts, however the in vitro import protocol is subject to a degree of contamination (the 

authors estimate 1.5 % contamination of mitochondria with chloroplasts in each separation).  

In the same study, Chew et al. (2003) also fused full length m-MDHAR6 to GFP, and found 

exclusive targeting of GFP to mitochondria.  The report of exclusive targeting of m-MDHAR6 

and p-MDHAR6, to mitochondria or plastids respectively, is more reliable in this respect. 

As discussed further below, MDHAR6 appears to be unusual in that dual targeting to plastids 

or mitochondria is determined by TSS.  Considering (i) the research interest in retrograde 

signalling (discussed further in 4.1.3 and 4.1.4), which could be competitive between 

organelles at MDHAR6, and (ii) the questions raised in this thesis regarding the endogenous 

role of MDHAR6, it was considered of interest to further investigate MDHAR6 TSS preference, 

and protein location, in different tissues, and in response to different stress treatments.  
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4.1.2 Regulation of dual targeting to mitochondria and plastids 

Mitochondria and plastids are derived from the endosymbiosis of α-proteobacterium and 

cyanobacterium-like ancestors respectively, >1.5 and 1.2 to 1.5 billion years ago (Dyall et al., 

2004).  During endosymbiosis, approximately 95 % of mitochondria and plastid genes have 

been transferred to the cell nuclear genome (Carrie and Small, 2013), and consequentially, the 

encoded proteins are imported, as unfolded precursor proteins.  Carrie and Small (2013) list 

over 100 of these which have been identified as dual targeting to plastids and mitochondria, 

most of which are involved in DNA replication, protein translation, or protein folding.  Of 

these, MDHAR6 is the only for which targeting is dependent on the TSS used (Obara et al., 

2002). 

Dual targeting raises interesting questions regarding mechanism and regulation.  In 

mitochondria, unfolded protein precursors are recognised by the outer membrane 

TRANSPORTER OUTER MEMBRANE (TOM) complex, which transfers outer membrane proteins 

to the outer membrane SORTING AND ASSEMBLY MACHINERY (SAM) complex, inner 

membrane proteins to the inner membrane TRANSPORTER INNER MEMBRANE (TIM) 22 

complex, and soluble matrix proteins to the inner membrane TIM23 complex, for translocation 

(Dudek et al., 2013).  The N-terminal signal/transit peptide (usually an amphiphilic alpha helix) 

is recognised by a receptor in TOM, and cleaved (at sequence RIAS) within the matrix following 

import (Dudek et al., 2013).  The receptor components of TOM in plants are considered to be 

non-orthologous to those in animals (Perry et al., 2006). 

In plastids, unfolded protein precursors are translocated through TOC and TIC complexes 

(Translocon at the Outer/Inner envelope membrane of Chloroplasts) at the outer and inner 

membrane respectively (Jarvis, 2008).  Transit peptides appear to be highly variable and 

unstructured, ranging from 20 to >100 residues, but are generally positively charged (Jarvis, 

2008).  The transit peptides are also cleaved, within the stroma (Jarvis, 2008).  Intriguingly, 

there are multiple genes encoding receptor components of TOC, regulation of which could 

mediate plastid differentiation (Jarvis et al., 1998; Yan et al., 2006; Jarvis, 2008). A 

transportation pathway via endoplasmic reticulum (ER) and Golgi apparatus has also been 

proposed (Radhamony and Theg, 2006). 

Dual targeting of an identical precursor protein may be mediated by (i) an ambiguous signal 

peptide, recognised by receptors at TOM and TOC which also associate with single organelle-

targeted protein, (ii) recognition of the same signal by receptors specific for dual targeted 

proteins at TOM and TOC, or (iii) recognition of different signals on the same protein by TOM 

and TOC.  Experiments involving fusion of protein domains to reporters such as GFP have 
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provided evidence for both shared and multiple signal peptides.  For example, Berglund et al. 

(2009) identified that for the amino acyl-tRNA synthetases (aaRSs) TyrRS, ValRS and ThrRS, 27, 

22 and 23 residues, respectively, were required for targeting to both plastids and 

mitochondria.  These sequences had a high percentage of hydroxylated residues (26 – 51 %).  

Meanwhile removal of 20 residues from the N-terminus of ProRS inhibited translocation to 

plastids only, and removal of 16 residues from N-terminus of AspRS inhibited translocation to 

mitochondria only. 

Regulation of destination in dual targeting could involve (i) regulation of import machinery (for 

example, TOM translocase is activated by phosphorylation; Schmidt et al., 2011), (ii) regulation 

of guidance complexes (cytosolic chaperones have an important role in maintaining the 

unfolded structure of precursor proteins in the cytosol, and are considered to promote 

organelle targeting; Lee et al., 2013) and/or (iii) post-translational modifications of the signal 

peptide (for example, by phosphorylation; May and Soll, 2000). 

The MDHAR6 protein differs from the models above, in that targeting to mitochondria or 

plastids depends on the TSS used, resulting in the presence or absence of seven additional 

residues at the N-terminus.  Although there are examples of TSS preference determining 

transport to mitochondria or retention in the cytosol (histidine tRNA synthetase 1 and valyl-

tRNA synthetase in yeast; Yogev and Pines, 2011), or to mitochondria or the ER (renin in rat; 

Yogev and Pines, 2011), MDHAR6 is the only known example where TSS determines targeting 

to plastids or mitochondria, and TSS preference could potentially be regulated by organelle 

retrograde signalling.  For example, Baier et al. (2000) report induction of MDHAR6 in mutants 

with decreased levels of 2-cysteine peroxiredoxin (2CPA; a chloroplast-targeted antioxidant 

protein); it would be interesting to further elucidate whether such induction is specifically of 

the transcript for plastid-targeting. 

4.1.3 Retrograde signalling from chloroplasts 

Following the migration of genes from plastid and mitochondria genomes to the nucleus, tight 

coordination between organelle and nuclear genomes is required for efficient and appropriate 

responses to changing environmental conditions and organelle requirements.  Retrograde 

signalling pathways originate from stimuli at organelles, and culminate in changing nuclear 

gene expression.  Retrograde pathways from plastids and mitochondria could potentially be 

competitive at the MDHAR6 gene. 

Chloroplast retrograde signalling (reviewed; Barajas-López et al., 2013) is considered to include 

(i) repression of nuclear-encoded components of the photosynthetic electron transport chain 
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(e.g. LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN B1; LHCB1) in response to 

accumulating levels of chlorophyll precursor Mg-protoporphyrin IX (Mg-proto), (ii) cell death in 

response to singlet oxygen, and (iii) activation of antioxidant genes (such as ASCORBATE 

PEROXIDASE 2; APX2) in response to hydrogen peroxide and/or 3’phosphoadenosine 5’-

phosphate (PAP).   

Chloroplast Mg-proto signalling 

Repression of LHCB1 in response to norflurazon treatment (a carotenoid biosynthesis inhibitor, 

which increases Mg-proto levels) requires pentatricopeptide repeat protein GENOMES 

UNCOUPLED 1, and has been linked with AP2-type transcription factor ABSCISIC ACID 

INSENSITIVE 4 (ABI4; Koussevitzky et al., 2007), GOLDEN-LIKE (GLK) transcription factors GLK1 

and GLK2 (Waters et al., 2009), and LONG HYPOCOTYL 5 (HY5; Kindgren et al., 2012).  It should 

be noted however that this pathway is highly debated; correlation between Mg-proto levels 

and LHCB1 expression has been contested (Mochizuki et al., 2008; Moulin et al., 2008), and 

norflurazon treatment is arguably a severe stress, unrepresentative of changing environmental 

conditions. 

Chloroplast singlet oxygen signalling 

The Arabidopsis fluorescent mutant accumulates photosensitizer protochlorophyllide in the 

dark, and upon shift to light, exhibits a burst of 1O2 in chloroplasts, followed by necrotic lesion 

development (Camp et al., 2003).  The cell death response is reduced when treated with 

Vitamin B6, which quenches 1O2, and when salicylate hydroxylase is expressed, indicating a 

role for salicylic acid (Danon et al., 2005).  Plastid proteins EXECUTER 1 and 2 attenuate the cell 

death response in dark-light treated flu (Lee et al., 2007; Wagner et al., 2004). 

Chloroplast hydrogen peroxide and 3’phosphoadenosine 5’-phosphate (PAP) signalling 

The transcriptome of catalase-deficient mutants under high light (HL) indicate that H2O2 could 

have a role in inducing 88 genes and repressing 349 genes in response to HL (Vanderauwera et 

al., 2005).  Hydrogen peroxide-mediated induction of APX2 has been a focus in studying the 

H2O2 response.  Mutant screens have identified constitutive APX2 expression in lines with 

mutant alleles of GSH1, which have lower glutathione levels (Ball et al., 2004). 

A role for PAP in retrograde signalling was identified in a screen for mutants that did not 

induce APX2 under HL or drought conditions.  The phosphatase mutant, sal1, was found to 

have reduced APX2 expression under HL, corresponding with reduced PAP levels (Estavillo et 

al., 2011).  It is proposed that under HL/drought, SAL1 is inhibited, and PAP levels increase, 

which could have a signalling role through inhibition of miRNA-targeting exoribonucleases 

(Estavillo et al., 2011). 
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4.1.4 Retrograde signalling from mitochondria 

Mitochondrial retrograde signalling is best understood in the budding yeast Saccharomyces 

cerevisiae; these cells can use fermentation to derive ATP in the absence of respiration, and so 

it is possible to study S. cerevisiae cell lines with severe mitochondria defects (Woodson and 

Chory, 2008).  In what is referred to as the RTG (Retrograde) pathway, loss in mitochondrial 

membrane potential results in the induction of genes for α-ketoglutarate biosynthesis (the 

precursor for glutamate, and part of the citric acid cycle; review, Liu and Butow, 2006).  

Mutants in this pathway are glutamate auxotrophs (Liu and Butow, 2006).  Upon mitochondria 

dysfunction, the bHLH/Zip transcription factor Rtg3p becomes partially dephosphorylated, and 

migrates from the cytosol to the nucleus with Rtg1p (Sekito et al., 2000).  A number of 

upstream positive and negative regulators have been characterised (Liu and Butow, 2006).  

Glutamate is a negative regulator of the signalling pathway, introducing a negative feedback 

loop (Liu and Butow, 2006). 

Haem biosynthesis is oxygen-dependent, and in S. cerevisiae, haem levels appear to function 

as an oxygen sensor; haem binds to HEME ACTIVATOR PROTEIN 1 (HAP1; a zinc finger protein) 

to promote HAP1-mediated activation of genes for aerobic respiration and restriction of 

oxidative damage, and ROX1, the product of which represses hypoxic-response genes 

(Hickman and Winston, 2007; Woodson and Chory, 2008).  Under hypoxic conditions, HAP1 no 

longer activates genes for aerobic respiration, and directly represses ergosterol biosynthesis 

genes (Hickman and Winston, 2007; Woodson and Chory, 2008). 

In response to plant mitochondrial electron transport chain (mtETC) disruption, a number of 

nuclear genes are activated, including ALTERNATIVE OXIDASE 1A (AOX1a), which is commonly 

used as a marker for mitochondria dysfunction.  The ABI4 transcription factor (implicated in 

gene repression in Mg-proto plastid retrograde signalling; Koussevitzky et al., 2007) is also 

required for AOX1a repression (Giraud et al., 2009).  Clercq et al. (2013) identified 34 genes 

which are induced >two-fold in five or more (out of 22) conditions which induce mitochondria 

dysfunction.  A common motif was identified in 24 of these genes, which the authors then 

termed “Mitochondria Dysfunction Stimulon” (MDS) genes, and chromatin 

immunoprecipitation experiments demonstrated recruitment of NAC8 transcription factor 

ANAC013 to the motif in MDS gene promoters following mitochondria dysfunction. 

                                                           
8
 The NAC family is named after the first members to be described; NO APICAL MERISTEM/ARABIDOPSIS 

TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON (Olsen et al., 2005). 
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4.2 RESULTS 

4.2.1 Designing qPCR primers for investigating MDHAR6 TSS preference 

The N-terminus sequence in Figure 39 was determined by Obara et al. (2002) in Col0 ecotype.  

This study uses Col7, so that qPCR data can be compared with immuno-gold labelling of 

MDHAR6 localisation, using mdhar6-1 as a negative control.  To confirm the sequence of this 

region in Col7, genomic DNA was extracted from three Col7 plants, and the TSS region 

amplified by PCR and sequenced.  The TSS region in Col7 was found to be the same sequence 

as in Col0 (Figure 40). 

As shown in Figure 39, there are untranslated mRNA regions specific to the transcripts m-

MDHAR6 or p-MDHAR6.  Quantitative PCR primers were designed against these transcript-

specific regions, and also against the N-terminal region present in both m-MDHAR6 and p-

MDHAR6, referred to in this thesis as mp-MDHAR6 (Figure 41).  Primer pairs specific to m-

MDHAR6 are referred to as “mA” to “mD”, specific to p-MDHAR6 as “pA” to “pD”, and 

targeting both m-MDHAR6 and p-MDHAR6 as “mpA” to “mpF”.  The primer efficiency results 

are summarised in Table 21. 

The most appropriate primers for each region, with efficiencies closest to that of the 

endogenous control (ACTIN2), and a single amplicon indicated by melt curve analysis, were 

mE, pB and mpA.  For confirmation of the qPCR targets, fresh qPCR product was purified and 

sequenced using the qPCR primers.  The sequencing results support that the primers are 

targeting MDHAR6 (Figure 44). 
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A               -------------------------TAAA-------GTGTA-TCTGCTATGGGTTTAGTT 27 

C               -------------------------GAAA-------GTGTA-TCTGCTATGG-TTTAGTT 26 

Col0            CCGCGACGAATTGTTTTCCATCCTAAAAATAGAATGGTGTAATCTGCTAATGGTTTAGTT 60 

B               -------------------------TAAATA--ATGGTGTA-TCTGCTAATGGTTTAGTT 32 

                                          ***       ***** *******  * ******* 

 

A               CCCATTAACTTGCAA-GTTCTATTGAAAGCCTAAATGTCAATAAAGATCTTAAAATTCGG 86 

C               CC-ATTAACTTGCAAAGTTCTATTGAAAGCCTAAATGTCAATAAAGATATTAAAATTCGG 85 

Col0            CC-ATTAACTTGCAA-GTTCTATTGAAAGCCTAAATGTCAATAAAGATATTAAAATTCGG 118 

B               CC-ATTAACTTGCAA-GTTCTATTGAAAGCCTAAATGTCAATAAAGATATTAAAATTCGG 90 

                ** ************ ******************************** *********** 

 

A               AGTCAAAAGACAAATGAATCAAAAGCAACAAGACAAGTCAGCTCCATTCTTCACTACCCA 146 

C               AGTCAAAAGACAAATGAATCAAAAGCAACAAGACAAGTCAGCTCCATTCTTCACTACCCA 145 

Col0            AGTCAAAAGACAAATGAATCAAAAGCAACAAGACAAGTCAGCTCCATTCTTCACTACCCA 178 

B               AGTCAAAAGACAAATGAATCAAAAGCAACAAGACAAGTCAGCTCCATTCTTCACTACCCA 150 

                ************************************************************ 

 

A               TCTTTTACAATAAATCATCTCTCTTTTCACAAATTTCAAACTACTCTCATTGCCCTTTAG 206 

C               TCTTTTACAATAAATCATCTCTCTTTTCACAAATTTCAAACTACTCTCATTGCCCTTTAG 205 

Col0            TCTTTTACAATAAATCATCTCTCTTTTCACAAATTTCAAACTACTCTCATTGCCCTTTAG 238 

B               TCTTTTACAATAAATCATCTCTCTTTTCACAAATTTCAAACTACTCTCATTGCCCTTTAG 210 

                ************************************************************ 

 

A               CTTTGTTATAGAGCCAACACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTG 266 

C               CTTTGTTATAGAGCCAACACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTG 265 

Col0            CTTTGTTATAGAGCCAACACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTG 298 

B               CTTTGTTATAGAGCCAACACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTG 270 

                ************************************************************ 

 

A               AATTTGGCTCTTCTTATAAACTAATGTCTGCAGGTCTTCTTATCTCTCTCACTCACCACC 326 

C               AATTTGGCTCTTCTTATAAACTAATGTCTGCAGGTCTTCTTATCTCTCTCACTCACCACC 325 

Col0            AATTTGGCTCTTCTTATAAACTAATGTCTGCAGGTCTTCTTATCTCTCTCACTCACCACC 358 

B               AATTTGGCTCTTCTTATAAACTAATGTCTGCAGGTCTTCTTATCTCTCTCACTCACCACC 330 

                ************************************************************ 

 

A               ATCTTCTTCCTCGATTGTCAAAACCCTAGATCGAAATCTTATCTCTCTAATCTGTTGT-T 385 

C               ATCTTCTTCCTCGATTGTCAAAACCCTAGATCGAAATCTTATCTCTCTAATCTGTTGT-T 384 

Col0            ATCTTCTTCCTCGATTGTCAAAACCCTAGATCGAAATCTTATCTCTCTAATCTGTTGT-T 417 

B               ATCTTCTTCCTCGATTGTCAAAACCCTAAATCGAAATCTTATCTCTCCAATCTGTTGAAT 390 

                **************************** ****************** *********  * 

 

A               ACAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGATTATCT 445 

C               ACAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGATTATCT 444 

Col0            ACAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGATTATCT 477 

B               AAAGTTCGTAAA------------------------------------------------ 402 

                * ******** *                                                 

 

A               CTTTGGTGTCCGTCTTCTCCGTCTCTCGCTCGCCGATTTCCCGCTCGTTTTTCTCCGATC 505 

C               CTTTGGTGTCCGTCTTCTCCGTCTCTCGCTCGCCGATTTCCCGCTCGTTTTTCTCCGATC 504 

Col0            CTTTGGTGTCCGTCTTCTCCGTCTCTCGCTCGCCGATTTCCCGCTCGTTTTTCTCCGATC 537 

B               ------------------------------------------------------------ 

                                                                             

 

A               GGTTCTAGAATCGCTTCCAGAAGCCTCGTCACTGCTT-GTTCGCCCTAACGAAAAAGCCC 564 

C               GGTTCTAGAATCGCTTCCAGAAGCCTCGTCACTGCTTCGTTCGC--TAACGAACAAG--- 559 

Col0            GGTTCTAGAATCGCTTCCAGAAGCCTCGTCACTGCTTCGTTCGC--TAACG--------- 586 

B               ------------------------------------------------------------ 

 

Figure 40: ClustalW comparison of Col7 and Col0 MDHAR6 N-terminal sequence 

Genomic DNA was extracted from three separate Col7 plants for TSS region amplification 

(amplicons A-C).  The sequence quality of amplicon B decreases greatly at nucleotide 330.  

Alignment by ClustalW2 (Larkin et al., 2007). 

  

m-MDHAR6 TSS 

p-MDHAR6 TSS m-MDHAR6 start ATG 

p-MDHAR6 start ATG 
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Primer pair mA 

AACACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTGAATTTGGCTCTTCTTATAA

ACTAATGTCTGCAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGA

TTATCTCTTTGGTGTCCGT… 

 

Primer pair mB 

AACACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTGAATTTGGCTCTTCTTATAA

ACTAATGTCTGCAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGA

TTATCTCTTTGGTGTCCGT… 

 

Primer pair mC 

AACACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTGAATTTGGCTCTTCTTATAA

ACTAATGTCTGCAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGA

TTATCTCTTTGGTGTCCGT… 

 

Primer pair mD 

AACACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTGAATTTGGCTCTTCTTATAA

ACTAATGTCTGCAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGA

TTATCTCTTTGGTGTCCGT… 

 

Primer pair mE 

AACACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTGAATTTGGCTCTTCTTATAA

ACTAATGTCTGCAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGA

TTATCTCTTTGGTGTCCGT… 

 

Figure 41: Quantitative PCR primers tested for study of m-MDHAR6 transcript abundance 

The 5’ terminus of m-MDHAR6 cDNA is shown, with primers highlighted in blue.  The 

underlined region is specific to the m-MDHAR6 transcript variant. 
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Primer pair pA 

ATCTCTCTCACTCACCACCATCTTCTTCCTCGATTGTCAAAACCCTAGATCGAAATCTTATCTC

TCTAATCTGTTGTTACAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTC

CGGATTATCTCTTTGGTGTCCGT… 

 

Primer pair pB 

ATCTCTCTCACTCACCACCATCTTCTTCCTCGATTGTCAAAACCCTAGATCGAAATCTTATCTC

TCTAATCTGTTGTTACAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTC

CGGATTATCTCTTTGGTGTCCGT… 

 

Primer pair pC 

ATCTCTCTCACTCACCACCATCTTCTTCCTCGATTGTCAAAACCCTAGATCGAAATCTTATCTC

TCTAATCTGTTGTTACAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTC

CGGATTATCTCTTTGGTGTCCGT… 

 

Primer pair pD 

ATCTCTCTCACTCACCACCATCTTCTTCCTCGATTGTCAAAACCCTAGATCGAAATCTTATCTC

TCTAATCTGTTGTTACAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTC

CGGATTATCTCTTTGGTGTCCGT… 

 

Primer pair pE 

ATCTCTCTCACTCACCACCATCTTCTTCCTCGATTGTCAAAACCCTAGATCGAAATCTTATCTC

TCTAATCTGTTGTTACAGTTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTC

CGGATTATCTCTTTGGTGTCCGT… 

 

Figure 42: Quantitative PCR primers tested for study of p-MDHAR6 transcript abundance 

The 5’ terminus of p-MDHAR6 cDNA is shown, with primers highlighted in green.  The 

underlined region is specific to the p-MDHAR6 transcript variant. 

  



Chapter 4: The dual targeting of MDHAR6 

113 
 

Primer pair mpA 

…TTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGATTATCTCTTTGGTGTCCG

TCTTCTCCGTCTCTCGCTCGCCGATTTCCCGCTCGTTTTTCTCCGATCGGTTCTAGAATCGCTTCCAGAAG

CCTCGTCACTGCTTCGTTCGCTAACGAGAATCGCGAGTTTGTGATTGTTGGTGGAGGAAATGCTGCTGG

TTATGCTGCTAGAACTTTTGTGGAAAATGGAATGGCTGATGGTCGGCTATGCATTGTGACCAAAGAGG

CTTACGCACCTTATGAGAGACCGGCTTTGACAAA… 

 

Primer pair mpB 

…TTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGATTATCTCTTTGGTGTCCG

TCTTCTCCGTCTCTCGCTCGCCGATTTCCCGCTCGTTTTTCTCCGATCGGTTCTAGAATCGCTTCCAGAAG

CCTCGTCACTGCTTCGTTCGCTAACGAGAATCGCGAGTTTGTGATTGTTGGTGGAGGAAATGCTGCTGG

TTATGCTGCTAGAACTTTTGTGGAAAATGGAATGGCTGATGGTCGGCTATGCATTGTGACCAAAGAGG

CTTACGCACCTTATGAGAGACCGGCTTTGACAAA… 

 

Primer pair mpC 

…TTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGATTATCTCTTTGGTGTCCG

TCTTCTCCGTCTCTCGCTCGCCGATTTCCCGCTCGTTTTTCTCCGATCGGTTCTAGAATCGCTTCCAGAAG

CCTCGTCACTGCTTCGTTCGCTAACGAGAATCGCGAGTTTGTGATTGTTGGTGGAGGAAATGCTGCTGG

TTATGCTGCTAGAACTTTTGTGGAAAATGGAATGGCTGATGGTCGGCTATGCATTGTGACCAAAGAGG

CTTACGCACCTTATGAGAGACCGGCTTTGACAAA… 

 

Primer pair mpD 

…TTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGATTATCTCTTTGGTGTCCG

TCTTCTCCGTCTCTCGCTCGCCGATTTCCCGCTCGTTTTTCTCCGATCGGTTCTAGAATCGCTTCCAGAAG

CCTCGTCACTGCTTCGTTCGCTAACGAGAATCGCGAGTTTGTGATTGTTGGTGGAGGAAATGCTGCTGG

TTATGCTGCTAGAACTTTTGTGGAAAATGGAATGGCTGATGGTCGGCTATGCATTGTGACCAAAGAGG

CTTACGCACCTTATGAGAGACCGGCTTTGACAAA… 

 

Primer pair mpE 

…TTCGTAGAGTCATGGCGTTAGCATCAACCACGTTGCCGACGAAGTCCGGATTATCTCTTTGGTGTCCG

TCTTCTCCGTCTCTCGCTCGCCGATTTCCCGCTCGTTTTTCTCCGATCGGTTCTAGAATCGCTTCCAGAAG

CCTCGTCACTGCTTCGTTCGCTAACGAGAATCGCGAGTTTGTGATTGTTGGTGGAGGAAATGCTGCTGG

TTATGCTGCTAGAACTTTTGTGGAAAATGGAATGGCTGATGGTCGGCTATGCATTGTGACCAAAGAGG

CTTACGCACCTTATGAGAGACCGGCTTTGACAAA… 
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Figure 43: Quantitative PCR primers tested for study of MDHAR6 total transcript abundance 

The 5’ terminus region of MDHAR6 which is present in both m-MDHAR6 and p-MDHAR6 cDNA 

is shown, with primers highlighted in grey.   

 

 

Table 21: Summary of primer efficiency results for MDHAR6 TSS study 

The PCR efficiency (10(-1/slope)-1) of the primer pairs was determined using cDNA from 2-week 

old Col7 seedlings, grown in liquid culture.  A PCR efficiency between 90 and 105 % is 

acceptable for qPCR.  Melt curve analysis of qPCR product was also used to determine the 

number of different amplicons resulting from the qPCR; multiple Tm peaks indicate more than 

one amplicon product.  Large peaks at 65° also indicate a high degree of primer dimerization. 

Primer pair Rank PCR efficiency Melt curve 

ACTIN2 1 92.8 % (Acceptable) Good 

mA - 64.7 % (Too low) Good 

mB - 91.3 % (Acceptable) Peak asymmetrical 

mC - 90.1 % (Acceptable) Multiple Tm peaks 

mD - 102.5 % (Acceptable) Possible second Tm peak 

mE 1 91.3 % (Acceptable) Good 

pA 2 96.2 % (Acceptable) Good 

pB 1 92.0 % (Acceptable) Good 

pC 3 92.7 % (Acceptable) Good 

pD 4 102.7 % (Acceptable) Good 

pE 5 94.2 % (Acceptable) Large 65° peak 

mpA 1 93.1 % (Acceptable) Large 65° peak 

mpB - 118.5 % (Too high) Multiple Tm peaks 

mpC - 94.5 % (Acceptable) Large 65° peak 

mpD 2 96.3 % (Acceptable) Large 65° peak 

mpE 3 97.6 % (Acceptable) Large 65° peak 
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Primer pair mE 

Anticipated amplicon sequence 

CACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTGAATTTGGCTCTTCTTA

TAAACTAATGTCTGCAGTTCGTAGAGTCATG 

 

Forward primer sequence read 

 

mE      CACTACAGAGAGACTCACACACTTGTTTCAATAATTAAATCTGAATTTGGCTCTTCTTAT 60 

seqF    ---------------------------------AATATATCTGA--TTGGCTCTTCTTAT 25 

                                         *:**:******  ************** 

 

mE      AAACTAATGTCTGCAGTTCGTAGAGTCATG- 90 

seqF    -AACTAATGTCTGCAGTTCGTAGAGTCATGA 55 

         *****************************  

 

Reverse primer sequence read 

 

mErev   CATGACTCTACGAACTGCAGACATTAGTTTATAAGAAGAGCCAAATTCAGATTTAATTAT 60 

seqR    -----------------------TTAG---------AGAGC--AATTCAGATTT-ATTAT 25 

                               ****         *****  *********** ***** 

 

mErev   TGAAACAAGTGTGTGAGTCTCTCTGTAGTG--- 90 

seqR    TG-AACAAGTGTGTGAGTCTCTCTGTAGTGAGA 57 

        ** ***************************    
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Primer pair pB 

Anticipated amplicon sequence 

CATCTTCTTCCTCGATTGTCAAAACCCTAGATCGAAATCTTATCTCTCTAATCTGTTGT

TACAGTTCGTAGAGTCATG 

 

Forward primer sequence read 

 

 

pB      CATCTTCTTCCTCGATTGTCAAAACCCTAGATCGAAATCTTATCTCTCTAATCTGTTGTT 60 

seqF    ------------------------ACCGAG-TCG--ATCTTATCTCTCT-ATCTGTTGTT 32 

                                .** ** ***  ************* ********** 

 

pB      ACAGTTCGTAGAGTCATG- 78 

seqF    ACAGTTCGTAGAGTCATGA 51 

        ******************  

 

Reverse primer sequence read 

 

pBrev   CATGACTCTACGAACTGTAACAACAGATTAGAGAGATAAGATTTCGATCTAGGGTTTTGA 60 

seqR    -------------------------GACAAGAGA-----GATTTCGATCTAGGGTTTTGA 30 

                                 ** :*****     ********************* 

 

pBrev   CAATCGAGGAAGAAG--ATG 78 

seqR    CAATCGAGGAAGAAAGGAT- 49 

        **************.  **  
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Primer pair mpA 

Anticipated amplicon sequence 

CCACGTTGCCGACGAAGTCCGGATTATCTCTTTGGTGTCCGTCTTCTCCGTCTCTCGCT

CGCCGATTT 

 

Forward primer sequence read 

 

mpA     CCACGTTGCCGACGAAGTCCGGATTATCTCTTTGGTGTCCGTCTTCTCCGTCTCTCGCTC 60 

seqF    ----------------G-CCGGATAAT-----TAGTGT-CGTCT-CT-CGTCTCTCGCTC 35 

                        * ******:**     *.**** ***** ** ************ 

 

mpA     GCCGATTT- 68 

seqF    GCCGATTAG 44 

        *******:  

 

Reverse primer sequence read 

 

mpArev  AAATCGGCGAGCGAGAGACGGAGAAGACGGACACCAAAGAGATAATCCGGACTT-CGTCG 59 

seqR    ---ACG-----------ACG----TATCG--CTGTATAGAGATATCCCGGACTTTCGTCG 40 

           :**           ***    :.:**  *:  *:*******: ******** ***** 

 

mpArev  GCAACGTGG- 68 

seqR    GCA-CGTGGA 49 

        *** *****  
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Figure 44: Sequencing of qPCR amplicons in MDHAR6 TSS study 

Anticipated qPCR amplicon sequences shown with regions specific to m-MDHAR6 or p-

MDHAR6 underlined, and primer sequences highlighted.  Amplicons were sequenced using 

both forward and reverse primers.  Sequence data as analysed by SeqScanner2.0 (Applied 

Biosystems) displayed, with alignment against anticipated sequence calculated by ClustalW2 

(Larkin et al., 2007). 

4.2.2 The qPCR primers indicate that a third, previously undescribed TSS 
could be dominant 

In order to investigate TSS preference in different tissues, and in response to different 

treatments, Col7 seedlings were grown hydroponically (on rafts with roots submerged in ½ 

MS(S)).  This was chosen so that roots could be easily and uniformly treated in subsequent 

experiments. 

In a preliminary experiment, root and leaf tissue from 3-week old seedlings were harvested for 

RNA extraction, cDNA synthesis and qPCR.  All qPCR primers with appropriate efficiencies 

(Table 21) were used to estimate m-MDHAR6 and p-MDHAR6 transcript abundance, relative to 

the endogenous control ACTIN2.  This was done to verify the qPCR primers; if the amount of 

unspliced m-MDHAR6 is negligible, it was considered that the relative abundance of m-

MDHAR6 and p-MDHAR6 should equal that of mp-MDHAR6. 

Surprisingly, the abundance of m-MDHAR6 and p-MDHAR6 indicated by primers pairs mE and 

pA-pE, were approximately two orders of magnitude lower than the combined transcript 

abundance, indicated by the primers against mp-MDHAR6 (Figure 45).  The abundance of p-

MDHAR6 indicated by primer pair pE however, was in line with that of the mp-MDHAR6 

primers.  It is very possible, that by using the reverse primer within the m-MDHAR6 intron in 

cap site hunting (Figure 39), Obara et al. (2002) were unable to identify a third TSS, located 

between the pE and pA forward primers (Figure 41).  The Arabidopsis Information Resource 

(TAIR; Huala et al., 2001) does predict two further MDHAR6 transcripts (with lower confidence 

than for m-MDHAR6 and p-MDHAR6), which use a TSS approximately 55 bases upstream of the 

p-MDHAR6 TSS in Figure 39.  This would be within the reverse primer sequence used in cap 

site hunting to identify p-MDHAR6 TSS, and so would not have been identified in the Obara et 

al. (2002) study. 

To differentiate between the different results indicated by primer pairs pB and pE, abundance 

of transcript indicated by primer pair pB (i.e. from the p-MDHAR6 TSS indicated in Figure 39) is 

subsequently referred to as pB-MDHAR6, and the abundance indicated by primer pair pE 
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(indicating use of a third TSS), is subsequently referred to as pE-MDHAR6.  These transcripts 

would both encode plastid-targeted MDHAR6. 

 

 

Figure 45: MDHAR6 transcript abundance in leaf and root, relative to ACTIN2, indicated by 

different qPCR primer pairs 

Mean of five biological replicates ± SD.  Primer pair code (see Figure 41 - Figure 43) indicated 

above bars.  Only primers with PCR efficiencies between 90 and 105 %, which amplify a single 

amplicon (as indicated by melt curve analysis) are included in this study. 
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As the reverse transcription in cDNA synthesis is in the 3’ to 5’ direction from the polyA tail, 

another possible explanation for the discrepancy in transcript abundance is that the reverse 

transcriptase dissociates from the RNA before reaching the 5’ terminus.  However, the forward 

primer of pair mE is 28 bases closer to the 5’ terminus than pA, with three-fold greater 

transcript abundance, suggesting that proximity to the 5’ terminus is insufficient to explain the 

difference in transcript level. 

To investigate whether RNA secondary structure at the 5’ termini could impede complete 

reverse transcription, the predicted secondary structure of the 150 bases most proximal to the 

5’ termini of the three putative MDHAR6 transcripts was investigated, using ViennaRNA 

Package 2.0 (Lorenz et al., 2011).  The free energy of the predicted structures for the terminus 

of pE-MDHAR6 is more negative than for m-MDHAR6 or pB-MDHAR6 (Table 22), indicating that 

the difference in transcript abundance cannot be explained by inhibitory secondary structures. 

From the data presented in Figure 45, it would appear that the putative third TSS, which would 

encode plastid-targeted MDHAR6, is the dominant of the three. 
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Table 22: Secondary structure of MDHAR6 RNA 5’ termini 

Secondary structure of RNA predicted by RNAfold via ViennaRNA Package 2.0 (Lorenz et al., 

2011).  Optimal secondary structure colour-coded by base pairing probabilities, from 0 (blue) 

to 1 (red).  MFE; Minimum Free Energy. 

Sequence input m-MDHAR6 

i.e. 150 bp from 

m-MDHAR6 TSS 

indicated in Figure 39 

pB-MDHAR6 

i.e. 150 bp from 

p-MDHAR6 TSS 

indicated in Figure 39 

pE-MDHAR6 

i.e. 150 bp from 

possible third TSS 

within m-MDHAR6 

intron 

Optimal 

secondary 

structure 

   

MFE of optimal 

secondary 

structure 

-27.7 kcal/mol -27.2 kcal/mol -34.3 kcal/mol 

Frequency of 

MFE structure in 

thermodynamic 

ensemble 

0.4 % 6.08 % 2.5 % 

Free energy of 

thermodynamic 

ensemble 

-31.1 kcal/mol -28.93 kcal/mol -36.57 kcal/mol 
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4.2.3 Transcript Start Site preference changes between tissues 

Comparing transcript abundance in root relative to leaf tissue, m-MDHAR6, pB-MDHAR6 and 

pE-MDHAR6 are more highly expressed in roots, however the increase in abundance in root 

tissue is 1.9 and 1.6-fold greater than m-MDHAR6 for pB-MDHAR6 and pE-MDHAR6 

respectively (Figure 46).   

 

 

Figure 46: Expression of m-MDHAR6 and p-MDHAR6 in root and leaf tissue   

Three-week old seedlings grown hydroponically.  Mean of five biological replicates ± SD.  One-

way ANOVA with post hoc Tukey, P <0.05. 
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4.2.4 Preliminary investigation of TSS preference in response to organelle 
stress treatments 

To investigate whether TSS preference changes with organelle demand, the effect of stress 

treatments which primarily target plastids or mitochondria were explored. 

Finding a mitochondria- or plastid-specific stress condition is challenging, as chemicals which 

disrupt the function of one (usually by targeting the electron transport chain), generally also 

affect the function of the other.  Based on the literature outlined below, the treatment of 

roots with 25 μM antimycin A or 50 μM TNT for 2 h, and treatment of leaves with 50 μM 

methyl viologen for 2 h was decided upon. 

Antimycin A binds to mitochondria cytochrome c reductase, inhibiting the oxidation of 

ubiquinol and disrupting the proton gradient, resulting in superoxide formation (Xia et al., 

1997).  Schwarzländer et al. (2009) found oxygen consumption to decrease by 75 % following 2 

h 20 μM antimycin A treatment, and subsequently used this treatment in a study of 

transcriptome responses to mitochondria dysfunction (Schwarzländer et al., 2012).  Chew et al. 

(2003) reported MDHAR6 induction 1 and 6 h after painting 17-day old seedling leaves with 25 

μM antimycin A, supporting that transcriptional changes should be observed after 2 h 25 μM 

treatment.  However, antimycin A-like compounds have also been found to inhibit electron 

transport in chloroplasts (Taira et al., 2013), and so to avoid this, roots were treated rather 

than leaves. 

The effect of root treatment with TNT was of interest, as mdhar6-1 complementation 

experiments discussed, in 3.1.1, indicate that MDHAR6 reaction with TNT could cause greater 

disruption within mitochondria than plastids. 

Methyl viologen accepts electrons from ferredoxin of photosystem I, and transfers them to 

oxygen.  Dalal et al. (2014) sprayed 15-day old seedlings with 50 μM methyl viologen, and 

measured a doubling in H2O2 and malondialdehyde, 2 h after treatment.  Chew et al. (2003) 

reported induction of MDHAR6 at 1 h but not 6 h following leaf treatment with 437.5 mg/L 

Paraquat with 225 mg/L Diquat (50 μM methyl viologen is 13 mg/L). 

Transcript abundance of commonly used mitochondria stress marker AOX1a (Schwarzländer et 

al., 2012) and plastid stress marker APX2 (Chang et al., 2004; Jarvis and López-Juez, 2013) 

following these treatments was also assessed, in order to gauge whether the treatments were 

having measurably stressful effects on mitochondria and/or plastids. 

In this preliminary experiment, there was a high degree of variation between biological 

replicates, possibly due to differences in wounding during sample collection, and the low PCR 
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efficiency of the APX2 primers.  The only significant difference in stress marker transcript 

abundance (one-way ANOVA, P <0.05), was an increase in APX2 expression following leaf 

treatment with methyl viologen (Figure 47A).  Interestingly this corresponds with a significant 

increase in m-MDHAR6, pB-MDHAR6 and mp-MDHAR6 (two-way ANOVA with post hoc Tukey, 

P <0.05; Figure 47B), however overall few significant changes in transcript abundance were 

identified in this experiment.  Transcript abundance of pE-MDHAR6 in these samples has not 

yet been tested. 
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Figure 47: Preliminary organelle stress treatment experiment: induction of organelle stress 

markers and MDHAR6 transcript variants following treatment with antimycin A, TNT or 

methyl viologen 

Mean of six biological replicates ± SD.  Three-week old seedlings were grown hydroponically.  

Roots were treated with 25 μM antimycin A, 50 μM TNT or a control treatment (0.03 % 

ethanol) for 2 h.  Leafs were sprayed with 50 μM methyl viologen or control (water), and 

harvested after 2 h.  (A) Induction of mitochondria stress marker AOX1a and chloroplast stress 

marker APX2.  One-way ANOVA with post hoc Tukey, P <0.05.  Note, primer efficiency for APX2 

only 87.3 %.  (B) Induction of MDHAR6 transcript variants.  Two-way ANOVA with post hoc 

Tukey, P <0.05.  Due to outlier removal, in (A) there are only 4 and 3 replicates of the root and 

leaf controls included in analysis respectively, and in (B) only 5 replicates of leaf control. 
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4.2.5 Anti-MDHAR6 antibody is specific to MDHAR6 

An antibody was raised against purified MDHAR6, so that the location of MDHAR6 could be 

determined using Transmission Electron Microscopy with immuno-gold labelling.  The 

specificity of the antibody was tested in a preliminary western blot against root extracts of 

Col7, Nossen, mdhar6-1 and mdhar6-2 (Figure 48).  Labelled bands were only observed against 

the extracts of wild type roots, indicating that the antibody is specific to MDHAR6. 
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Figure 48: Western Blot of root extracts against anti-MDHAR6 

Ponceau stain and western blots against MDHAR6, where pre-immune serum (control) or anti-

MDHAR6 has been used as primary antibody.  Lane 1, ladder (Fermentas PageRuler S26619).  

Lane 2, Col7 root biological replicate 1.  Lane 3, Col7 root biological replicate 2.  Lane 4, Nossen 

root biological replicate 1.  Lane 5, Nossen root biological replicate 2.  Lane 6, mdhar6-1 root 

biological replicate 1.  Lane 7, mdhar6-1 root biological replicate 2.  Lane 8, mdhar6-2 root 

biological replicate 1.  Lane 9, mdhar6-2 root biological replicate 2.  Lane 10, purified MDHAR6.  

Ten μg protein loaded per lane.  Arrows indicate 55 kDa protein marker in ladder.  The 

expressed MDHAR6 protein is 53 kDa. 
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4.3 DISCUSSION 

4.3.1 Comparison of MDHAR6 transcript abundance 

Comparing transcript abundance relative to the endogenous control is a valid method of 

comparing the abundance of different transcripts, although differences in primer efficiency can 

affect results.  The small differences between primer pair PCR efficiencies in this experiment 

however (Table 21), cannot account for the large (~100-fold) differences in transcript 

abundance presented in Figure 45.  For example, compared with primer pair pB (PCR efficiency 

92.0 %), pD has a higher PCR efficiency (102.7 %) than pE (94.2 %), however reports an 8-fold 

higher transcript abundance, while pE reports a 409-fold higher transcript abundance.  The 

difference in transcript abundance reported by the different primers also cannot be explained 

by proximity to the 5’ terminus, or differences in RNA secondary structure at cDNA synthesis. 

The data presented in this Chapter strongly suggest that in contrast to the results presented by 

Obara et al. (2002), a third TSS, within the first intron of m-MDHAR6, is the most dominant 

TSS.  Such a site is predicted by TAIR (Huala et al., 2001), however opposes the cap site hunting 

experiment result of Obara et al (2002), which indicated m-MDHAR6 to be the dominant 

transcript.  It is possible that the dominant MDHAR6 transcript is shorter at the 3’ terminus, 

lacking the sequence used in nested PCR by Obara et al. (2002). 

The data indicate that (i) the majority of MDHAR6 transcripts encode the plastid-targeted 

variant, (ii) both plastid and mitochondria-targeted MDHAR6 are more highly expressed in root 

than leaf tissue, and (iii) there is greater relative increase in abundance of transcript for 

plastid-targeted than mitochondria-targeted MDHAR6 in roots compared with leaves. 

4.3.2 Evidence for change in TSS preference 

The greater relative increase in pB- and pE-MDHAR6 than m-MDHAR6 in root tissue (compared 

with leaf tissue) is indicative that the TSSs or transcript stabilities are differentially regulated.  

Whether this is influenced by environmental conditions cannot be determined by the 

preliminary stress treatment experiment presented here.  The stress marker qPCR results, 

although unreliable (due to the high variability between results, and need for testing additional 

stress markers), indicate that the methyl viologen treatment is inducing a stress response, 

corresponding with increased MDHAR6 transcript levels, with no difference between transcript 

variants.   
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4.3.3 The role of MDHAR6 in root plastids and mitochondria 

It is interesting that MDHAR6 is more highly expressed in roots than leaves, and that transcript 

data implies that the majority of MDHAR6 is plastid-targeted, as it may be considered that 

there is greater demand for redox regulation at redox-active chloroplasts and mitochondria, 

than the non-photosynthetic plastids of plant roots. 

In roots, proplastids develop into amyloplasts, which store starch, and elaioplasts, which store 

lipids (Jarvis and López-Juez, 2013).  In the root cap, amyloplasts have an important role in 

gravitropism (Leitz et al., 2009). 

As discussed in Chapter 3, MDHAR6 is most highly expressed at night (DIURNAL; Mockler et al., 

2007), when growth rates increase (Dowson-Day and Millar, 1999), and starch is broken down 

in leaf amyloplasts (Graf et al., 2010).  The MDHAR6 enzyme could have an important role in 

protecting amyloplasts and elaioplasts during these processes at night. 

4.3.4 Future direction of this research 

Transmission Electron Microscopy with immuno-gold labelling of MDHAR6 is required to 

explore whether transcript abundance correlates with protein localisation; relative distribution 

could also be regulated by control of ribosome loading, precursor protein stability, or 

regulation of the protein import machinery for example.  The preliminary western blot against 

wild type and mdhar6 mutant plant protein extract indicates that the anti-MDHAR6 antibody is 

specific to MDHAR6, and can be used to determine MDHAR6 location using immuno-gold 

labelling. 

Although MDHAR6 activity towards MDA has been demonstrated (3.2.7), the role of MDHAR6 

remains elusive, as mutants are little compromised in stress tolerance (3.2.2), with unaffected 

ascorbate pools (3.2.3 and 3.2.4).  If MDHAR6 has a pivotal role in protecting elaioplasts from 

lipid peroxidation, decreased stress tolerance, especially to growth on H2O2-supplemented 

agar, would be expected.  This has been tested, and increased H2O2 sensitivity has not been 

observed (3.2.2).  The effect of the mdhar6 mutation on amyloplasts could be investigated 

further, by growing seedlings under low and high light conditions, and comparing starch 

granule formation.  Effectiveness of gravitropism could be investigated, by rotating seedlings 

growing on agar plates. 

The effect of organelle demand on TSS preference could also be explored further, for example 

by treatment of roots with a greater concentration of antimycin A, menadione or rotenone to 

disrupt the electron transport chain in root mitochondria, or comparing MDHAR6 expression in 

tissues with different demands. 
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5 Exploring detoxification gene regulation in 
response to TNT treatment 

5.1 INTRODUCTION 

5.1.1 Regulation of detoxification genes in plants 

As reviewed in detail in 1.5, although detoxification genes are induced to varying extents in 

response to numerous stimuli, the regulation of these genes, particularly in response to 

foreign compounds, has not been studied in great detail.  A couple of prior studies have 

focused on regulation of the CYP81D11 gene, and these studies have highlighted the different 

signalling pathways involved in responses to different stimuli; for example, Stotz et al. (2013) 

studied CYP81D11 induction in response to PPA1, OPDA and JA, and found induction in 

response to PPA1 and JA, but not OPDA, to be reduced in the JA-receptor coi1 mutant.  Only 

induction in response to JA was reduced in the MYC2 TF mutant jin1 however. 

In this chapter, the regulation of detoxification genes in response to TNT, as an example 

aromatic xenobiotic and environmental pollutant, is explored.  A prior study by Gandia-Herrero 

et al. (2008; discussed in 1.4.2) identified early TNT response detoxification genes, deemed to 

be most specific to the perturbation of TNT treatment.  For the microarray, two-week old 

Arabidopsis seedlings growing in liquid culture were dosed with 60 μM TNT or a control 

treatment (0.06 % DMF) for 6 h.  Arabidopsis OPRs, 12 P450, 15 UGT, 15 GST, 1 MT and 11 ABC 

transporter genes were induced over two-fold in the TNT treatment (Figure 3).  The induction 

of these genes following 6 h 60 μM TNT treatment is the focus of this study. 

5.1.2 The TNT response is very similar to that from phytoprostane treatment 

The Genevestigator “Signature” tool was used to identify Arabidopsis treatments with the 

most similar expression profiles to TNT treatment (Hruz et al., 2008), as these might involve 

overlapping signalling pathways.  The heatmap display of results is shown in Figure 49, with 

further detail and correlation values listed in Table 23. 

Genes classically used in SA- and JA-signalling studies (i.e. PR-1 and PDF1.2, respectively) are 

not induced in response to TNT (Gandia‐Herrero et al., 2008), however the Signature tool 

indicates that there is some correlation in detoxification gene responses to SA, MeJA and TNT. 

The TNT response most closely correlates with safener, antimycin A, and phytoprostane 

treatment.  There is also correlation with ozone and hypoxia treatments. 
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Figure 49: Detoxification gene induction profiles most closely correlating with the TNT 

response; heatmap of results 

Genevestigator (Hruz et al., 2008) “Signature” search against the TNT-induced detoxification 

genes shown Figure 3 (displayed as “Your Signature” in this Figure).  Search results from 7th 

August 2014.  Perturbations highlighted with arrows; (i) antimycin A treatment of shoots, (ii) 

fenclorim treatment of roots, (iii) PPA1 treatment of seedlings, (iv) MeJa treatment of cell 

culture and (v) SA treatment of seedlings.  Further perturbation detail in Table 23. 
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Table 23: Detoxification gene induction profiles most closely correlating with response to 

TNT; experiment details 

Genevestigator (Hruz et al., 2008) “Signature” search against the TNT-induced detoxification 

genes shown in Figure 3.  Search results from 7th August 2014.  A heatmap display of results is 

included as Figure 49. 

Perturbation 

summary 
Further information 

Relative 

similarity 

score 

CMP 

Col0 root cell culture treated with 100 μM 4-chloro-6-methyl-2-

phenylpyrimidine (CMP) in acetone for 4 h. 

CMP is a close derivative of the safener fenclorim. 

2.403 

Antimycin A 

AOX1a:LUC shoot samples sprayed with 50 μM antimycin A and 

incubated for 3 h. 

Antimycin A inhibits complex III of the mitochondrial electron 

transport chain. 

2.321 

Fenclorim 

Col0 root cell culture treated with 100 μM of the safener 4,6-

dichloro-2-phenylpyrimidine (Fenclorim) in acetone for 4 h. 

Herbicide safeners are used to induce detoxification genes and 

prime crops for herbicide treatment. 

2.256 

TIBA 
Col0 rosette leaves treated with 10 μM of the auxin inhibitor 

2,3,5-triiodobenzoic acid (TIBA) for 3 h. 
2.168 

Oligomycin 

Col0 seedlings in liquid culture dosed at 9 d with 10 μM 

oligomycin in ethanol for 4 h in darkness. 

Oligomycin is an inhibitor of ATP synthase. 

2.167 

Antimycin A 
AOX1a:LUC shoot samples sprayed with 50 μM antimycin A and 

incubated for 3 h. 
2.159 

Flu OEx 

ascorbate 

peroxidase  vs. 

Col0 

Rosette leaves of flu mutant overexpressing ascorbate 

peroxidase compared with Col0. 

FLU encodes a chloroplast-membrane coiled-coil protein 

involved in chlorophyll biosynthesis.  Mutants accumulate the 

chlorophyll intermediate protochlorophyllide in the dark, and 

release singlet oxygen within plastids upon dark-to-light shift. 

2.142 

PPA1 
Col0 samples treated with 75 μM phytoprostane A1 in 0.5% 

methanol for 4 h. 
2.131 

Fenclorim 
Col0 root culture treated with 100 μM 4-chloro-6-methyl-2-

phenylpyrimidine in 0.1% acetone for 24 h.  
2.106 

Antimycin A 

rao1-1 seedlings sprayed with 50 μM antimycin A and 

incubated for 3 h. 

The rao1-1 mutant was derived from a screen of ethyl 

methanesulfonate-generated AOX1a:LUC mutants for mutants 

in AOX1a transcription. 

2.095 

Flu Mutant rosette leaves compared with Col0. 2.079 

DFPM + ABA 
Col0 seedlings treated with 30 μM 5-(3,4-Dichlorophenyl)Furan-

2-yl]-Piperidin-1-ylMethanethione for 30 min then 10 μM 
2.055 
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abscisic acid for 5.5 h.  Control treated with 1:5000 v/v DMSO 

for 6 h. 

DFPM inhibits expression of ABA-induced genes. 

flu1-1 shift 

from low, to 

dark, to high 

light  

Control not shifted to high light. 1.934 

DFPM 

Col0 seedlings treated with 30 μM 5-(3,4-Dichlorophenyl)Furan-

2-yl]-Piperidin-1-ylMethanethione for 6 h.  Control treated with 

1:5,000 v/v DMSO. 

1.9 

Iron deficiency  

bhlh100 bhlh101 double mutant grown for 10 days on agar 

plates without FeEDTA.  Control supplemented with 100 μM 

FeEDTA. 

The mutations are in iron-regulated transcription factors which 

are hypersensitive to iron deficiency, accumulating less iron and 

chlorophyll than wild type. 

1.895 

Catalase 

deficient + 

high light 

Leaves of six-week old catalase-deficient cat2 mutant plants 

exposed to 8 h high light irradiation compared with leaves from 

Col4 plants exposed to 8 h high light irradiation. 

1.885 

Gibberellic 

acid 

insensitive 

Leaf samples from five-week old gibberellic acid-insensitive gai 

mutants compared with Ler. 
1.879 

Arsenate  
Col0 seedlings transferred to liquid medium containing 30 μM 

arsenate for 8 h.  
1.853 

atgsnor1-3 

P. syringae pv. 

tomato  

Leaf samples from atgsnor1-3 mutants treated with 

Pseudomonas syringae pv. tomato avirulent strain DC3000 avrB 

for 6h, compared with non-treated. 

The mutant has a T-DNA insertion within the S-

nitrosoglutathione reductase gene; involved in R gene-mediated 

defence, basal and non-host disease resistance. Mutant shows 

21% of the S-nitrosoglutathione reductase activity compared to 

Col-0 wild type. 

1.818 

Sulfometuron 

methyl 

Col0 sprayed with the herbicide OustTM (active ingredient 

sulfometuron methyl) with 0.25% surfactant PreferenceTM.  

Control sprayed with 0.25% PreferenceTM. 

1.806 

Hypoxia 
Col0 plants moved to anaerobic cannisters, flushed with 0.1% 

O2 and sealed for 5 h, compared with unsealed cannisters. 
1.77 

A. brassicocola 
Droplets of Alternaria brassicicola spore suspension placed on 

Col0 leaf for 24 h.  Control treated with droplets of water. 
1.765 

Shift high 

CO2/SD to air 

CO2/SD 

Leaves from cat2-1 mutant grown in high CO2 concentration 

moved to ambient CO2 concentration for 2 days, compared with 

not moved. 

CAT2 is a catalase which metabolises H2O2 produced during 

photorespiration. 

1.762 

Ozone 
Fumigation with 500 ppb ozone for 6 h, compared with 

fumigation with scrubbed air. 
1.761 
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Furyl acrylate 

ester 

10 uM furyl acrylate ester treatment for 1 h. 

Furyl acrylate ester is an auxin signalling inhibitor. 
1.747 

Imidacloprid 

Col0 treated with soil application of 4 mM imidacloprid and 

sampled after 4 d. 

Imidacloprid is a neonicotinoid insecticide. 

1.744 

B. cinerea Exposed to germinated Botrytis cinerea spores for 3 h. 1.716 

CMP 
Col0 root culture samples treated with 100 uM 4-chloro-6-

methyl-2-phenylpyrimidine (CMP) in acetone for 24 h. 
1.7 

cat2-1 vs. Col0 

high to low 

CO2 

Leaf samples from cat2-1 mutants grown in high CO2 

concentration then moved to ambient CO2 concentration for 2 

days, compared with Col0 given the same treatment. 

1.696 

PNO8 

N-octyl-3-nitro-2,4,6-trihydroxybenzamide (PNO8) treatment 

for 3 h. 

PNO8 is a photosystem II inhibitor. 

1.695 

atgsnor1-3 vs. 

Col0 

P. syringae 

treatment 

Leaf tissue from 4 week old atgsnor1-3 treated with 

Pseudomonas syringae strain DC3000 avrB for 6 h compared 

with Col0 treated the same. 

1.678 

Paclobutrazole 

Ler leaf discs treated with paclobutrazol compared with non-

treated. 

Paclobutrazol is an antagonist of gibberellin. 

1.678 

AgNO3 
10 μM AgNO3 treatment for 3 h. 

AgNO3 is an ethylene inhibitor. 
1.657 

atgsnor1-3 vs. 

atgsnor1- 

 P. syringae 

treatment 

Leaf tissue from atgsnor1-3 treated with P. syringae strain 

DC3000 avrB for 6 h, compared with atgsnor1-1 treated with P. 

syringae strain DC3000 avrB for 6 h. 

1.655 

CAT2HP1 vs. 

Col4 high light 

Leaf samples from CAT2HP1 vs. Col4 plants exposed to high 

light irradiation for 3 h. 
1.649 

4-

thiazolidinone 

10 μM 4-thiazolidinone for 1 h. 

4-thiazolidinone is an auxin signalling inhibitor. 
1.641 

UV 
Ws seedling samples taken 6 h after the seedlings were treated 

with UV-B irradiation for 15 min. 
1.617 

Antimycin A rao1-2 shoots treated with 50 μM Antimycin A for 3 h.  1.573 

Salt study 
Col0 seedlings grown hydroponically.  Media treated with 150 

mM NaCl. 
1.554 

A. brassicola Col0 leaves incoculated with A. brassicicola spores for 9 h. 1.551 

35S::amiR-

white-2 

(MIR172a) 

Constitutive overexpressor of amiR-white-2 compared with 

Col0. 
1.548 

Arsenate Seedlings in liquid culture treated with 30 μM arsenate for 8 h. 1.54 

High light 
Leaf samples from CAT2HP1 plants exposed to HL irradiation for 

8 h. 
1.525 

MeJa Cell suspension treated with 50 μM MeJA for 2 h. 1.511 

Pep2 

treatment in 

Bak1-3 seedlings in liquid culture treated with 1 μM Pep2 for 10 

h.  Control bak1-3 not treated with Pep2. 
1.503 
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bak1-3 Pep2 is an Arabidopsis DAMP. 

BAK1 is a Leucine-Rich Repeat Receptor Like Kinase. 

Antimycin A 
Rao1-2 shoots treated with 50 μM antimycin A for 3 h.  Control 

treated with water. 
1.497 

H2O2 Col0 seedlings treated with 20 mM H2O2 for 1 h. 1.496 

Flu Shoot samples of 12 d old flu1-1 compared with Col0. 1.496 

Salicylic acid Col0 treated with 2 mM SA for one day. 1.489 

Arsenate 
Root samples of Ws-2 seedlings treated with 100 μM arsenate 

for 1.5 and 3 h.  
1.488 

 

5.1.3 Hypothesis for phytoprostane and class II TGA factor involvement in 
TNT-response detoxification gene induction 

Considering that (i) results discussed in Chapter 3 indicate that TNT phytotoxicity is caused by 

MDHAR6-mediated superoxide generation (Johnston et al., 2015), (ii) phytoprostanes are 

induced following oxidative treatment (Imbusch and Mueller, 2000; Thoma et al., 2003; Grun 

et al., 2007), (iii) phytoprostane application has been found to induce detoxification gene 

expression, class II TGA factor-dependently (Mueller et al., 2008), and (iv) the induction profile 

following TNT treatment closely matches that of phytoprostane treatment,  it was 

hypothesised that in response to TNT, phytoprostanes accumulate, and induce detoxification 

genes, class II TGA factor-dependently.  

To test this hypothesis, the following mutants were sourced; (i) the class II TGA factor triple 

mutant tga2 tga5 tga6, (Zhang et al., 2003), (ii) the triple mutant fatty acid desaturase (fad)3-2 

fad7-2 fad8 (McConn and Browse, 1996), and (iii) allene oxide synthase (aos) (Park et al., 

2002).  The fad3-2 fad7-2 fad8 mutant has negligible levels of linolenic acid (McConn and 

Browse, 1996), so should not accumulate phytoprostanes, OPDA or JA.  The AOS enzyme 

catalyses the conversion of 13(s)-hydroperoxy-octadecatrienoic acid to (13S)-12,13-epoxy-

octadecatrienoic acid in the JA biosynthesis pathway (Wasternack and Hause, 2013), and so 

the aos mutant can accumulate phytoprostanes, but not OPDA or JA.  The hypothesis above 

would be supported if the response is abolished in mdhar6-1, fad3-2 fad7-2 fad8 and tga2 

tga5 tga6 mutants, but maintained in aos mutant seedlings. 
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5.2 RESULTS 

5.2.1 The TNT response requires class II TGA factors 

Repeating the TNT treatment conditions used by Gandia‐Herrero et al. (2008; see 2.1.2), two-

week old Col0 and tga2 tga5 tga6 seedlings, grown in liquid culture, were treated with 60 μM 

TNT or a control treatment for 6 h.  Abundance of detoxification gene transcripts, and fold 

induction in response to TNT, are shown in Figure 50. 

In the control treatment, abundance of transcript for two genes is significantly higher in tga2 

tga5 tga6 (Students t test P <0.05; CYP81D8, OPR3), while abundance of transcript for three 

genes is significantly lower (GSTU25, GSTU24, OPR2). 

In response to TNT treatment, fold induction of all transcripts is lower in tga2 tga5 tga6 than 

in Col0.  The frequency of TGACG, the TGA factor binding motif, in the promoters of the genes 

studied is shown in Figure 51. 
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Figure 50: Col0 vs. tga2 tga5 tga6 TNT response detoxification gene induction  

Transcript abundance in (A) control and (B) TNT treatment (6 h 60 μM TNT) compared with 

transcript abundance in Col0.  (C) Fold increase in transcript abundance in TNT treatment 

compared with control treatment.  Mean of five biological replicates ± SD.  Student’s t test; * 

P<0.05, ** P<0.01, *** P<0.001.  
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Figure 51: Frequency of the TGACG motif in TNT-response detoxification genes 

Frequency of TGACG motifs in forward or reverse orientation.  Promoter range indicated in 

legend; bp following (+) or prior (-) to the gene start ATG. 
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5.2.2 Mutants in class II TGA factors are compromised in TNT tolerance to a 
small extent 

As there is interest in engineering plants for the remediation of explosives, the effect of the 

tga2 tga5 tga6 mutation, and lower transcript abundance for enzymes with putative 

involvement in TNT detoxification, was assessed. 

Seven-day old tga2 tga5 tga6 seedlings had shorter roots than Col0 when germinated on 2 and 

7 μM TNT ½ MS(A), but not on 15 μM TNT (Figure 52).  In soil, no significant difference in 

seedling FW in the presence of TNT was observed (Student’s t test, P <0.05; Figure 53). 

 

 

Figure 52: Root lengths of 7-d old Col0 and tga2 tga5 tga6 seedlings on TNT-treated agar 

Mean of 10 replicates ± SD.  Student’s t test * P<0.05, ** P<0.01, *** P<0.001.  
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Col0 tga2 tga5 tga6 

  

Figure 53: Biomass of Col0 and tga2 tga5 tga6 seedlings grown on TNT-treated soil for five 
weeks 

Five-day old seedlings were transferred to pots of 0 or 100 mg TNT.kg soil-1 (five seedlings per 

pot), and grown to six weeks of age.  Mean fresh weights of six-week old seedlings.  (A) Fresh 

weight of all five seedlings in pot (eight biological replicates ± SD).  (B) Fresh weight of 

individual seedlings (40 biological replicates ± SD).  (C) Six-week old Col0 and tga2 tga5 tga6 

seedlings on 100 mg TNT.kg soil-1.  

0

0.5

1

1.5

2

2.5

3

3.5

0 25 50

FW
 o

f 
fi

ve
 s

ee
d

lin
gs

 (
g)

 

mg TNT. kg soil-1 

Col0

tga2 tga5 tga6

0

20

40

60

80

100

120

140

Col0 tga2 tga5 tga6

Se
ed

lin
g 

FW
 (

m
g)

 

100 mg TNT.kg soil-1 

tga2 tga5 tga6 

(A)                           (B) 

 

 

 

 

 

 

 

 

 

 

(C) 



Chapter 5: Exploring detoxification gene regulation in response to TNT treatment 

140 
 

5.2.3 The TNT response does not require oxylipins 

The qPCR results for the fad3-2 fad7-2 fad8 mutant are shown in Figure 54, and for the aos 

mutant in Figure 55. 

Following TNT treatment, transcript abundance of four genes (CYP81D11, UGT73B4, CYP81F2 

and GSTU4) is significantly lower in fad3-2 fad7-2 fad8 (Students t test, P <0.05), however 

when fold induction is compared between Col0 and fad3-2 fad7-2 fad8, only the fold induction 

of CYP81F2 is significantly lower in fad3-2 fad7-2 fad8. 

The qPCR results involving the aos mutant were highly variable.  An increase in the fold 

induction of CYP81F2, GSTU4 and CYP71A12 in aos is indicated, however due to the variability 

in results between biological replicates, this is not a reliable result.     
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Figure 54: Col0 vs. fad3-2 fad7-2 fad8 TNT response detoxification gene induction 

Transcript abundance in (A) control and (B) TNT treatment (6 h 60 μM TNT) compared with 

transcript abundance in Col0.  (C) Fold increase in transcript abundance in TNT treatment 

compared with control treatment.  Mean of five biological replicates (two technical replicates 

of each) ± SD.  Student’s t test; * P<0.05, ** P<0.01, *** P<0.001.  
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Figure 55: Col6 vs. aos TNT response detoxification gene induction 

Transcript abundance in (A) control and (B) TNT treatment (6 h 60 μM TNT) compared with 

transcript abundance in Col0.  (C) Fold increase in transcript abundance in TNT treatment 

compared with control treatment.  Mean of five biological replicates ± SD.  Student’s t test; * 

P<0.05, ** P<0.01, *** P<0.001.  
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5.2.4 The TNT response does not require MDHAR6 

Considering that MDHAR6 appears to be the main cause of increased oxidative state in the 

presence of TNT (Chapter 3), the effect of the mdhar6-1 mutation on TNT-response 

detoxification gene induction was investigated (Figure 56).  The abundance of the GSTU25 

transcript was significantly higher in mdhar6-1 compared with Col7, in the presence of TNT 

(Student’s t test, P<0.05), however there were no further significant differences. 

5.2.5 Summary of TNT response in different mutants 

A summary of the qPCR results discussed in this Chapter is included in Table 24.  These indicate 

that while class II TGA factors are required for the induction of the majority of TNT-response 

detoxification genes tested, the induction does not appear to require oxylipins, or MDHAR6. 
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Figure 56: Col7 vs. mdhar6-1 TNT response detoxification gene induction 

Transcript abundance in (A) control and (B) TNT treatment (6 h 60 μM TNT) compared with 

transcript abundance in Col0.  (C) Fold increase in transcript abundance in TNT treatment 

compared with control treatment.  Mean of five biological replicates ± SD.  Student’s t test; * 

P<0.05, ** P<0.01, *** P<0.001.  
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Table 24: Comparison of detoxification gene transcript level and fold induction in mutants 

relative to wild type, in TNT-response experiments 

Transcript abundance or fold induction following TNT treatment for the four mutants tested, 

relative to their wild type backgrounds.  Results are colour-coded: red; reduction in transcript 

abundance/induction.  Green; increase in transcript abundance/induction.  Blank; not tested.  

Emboldened numbers; significant difference between mutant and wild type (Student’s t test, P 

<0.05). 

  

Transcript abundance in 

control treatment 

Transcript abundance in 

TNT treatment 
Fold induction 

tga2 

tga5 

tga6 

fad3-2 

fad7-2 

fad8 aos 

mdhar

6-1 

tga2 

tga5 

tga6 

fad3-2 

fad7-2 

fad8 aos 

mdhar

6-1 

tga2 

tga5 

tga6 

fad3-2 

fad7-2 

fad8 aos 

mdhar

6-1 

UGT74E2 1.15 0.53 2.40 

 

0.32 0.62 1.13 

 

0.27 1.21 0.72 

 CYP81D8 1.41 

   

0.68 

   

0.43 

   GSTU25 0.49 1.45 1.52 2.73 0.02 1.04 1.23 2.21 0.03 0.76 0.80 0.90 

GSTU24 0.37 1.01 1.65 1.23 0.05 1.06 1.16 1.12 0.14 1.10 0.72 0.92 

CYP81D11 0.71 0.73 1.35 

 

0.06 0.61 0.96 

 

0.09 0.85 0.71 

 UGT73B4 1.09 0.84 0.83 1.32 0.08 0.54 1.06 1.55 0.08 0.66 1.28 1.16 

OPR1 0.92 

  

1.35 0.14 

  

1.37 0.15 

  

1.05 

CYP81F2 1.32 1.12 0.44 2.44 0.66 0.42 1.09 1.61 0.48 0.39 2.66 0.71 

GSTU4 1.27 0.38 0.31 1.87 0.47 0.23 0.81 2.56 0.34 0.57 2.66 1.39 

UGT73C1 1.35 1.32 1.97 

 

0.10 1.02 1.03 

 

0.07 0.86 0.51 

 CYP71A12 2.05 0.83 0.13 

 

0.99 0.50 1.09 

 

0.44 0.73 9.23 

 OPR2 0.52 

   

0.12 

   

0.24 

   OPR3 1.32 

   

0.94 

   

0.70 
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5.2.6 Generation of promoter-reporter Arabidopsis lines 

At the beginning of this investigation, three TNT-response detoxification gene promoters were 

cloned and constructed adjacent to the β-GLUCURONIDASE (GUS) reporter gene.  The aim was 

to verify the TNT-responsiveness of the promoter regions, before use in yeast one hybrid 

assays, to identify interacting proteins.  The promoter-reporter constructs in Figure 57 have 

been stably transformed into Arabidopsis, but have not yet been tested for TNT-

responsiveness. 

The UGT73C1 promoter was chosen as it is induced by a smaller number of perturbations than 

other detoxification genes induced by TNT (Figure 49, third column from left), suggesting that 

it could be regulated by a signalling pathway more specific to the stress of TNT treatment.  

The two most TNT-responsive GSTs, GSTU24 and GSTU25, have similar expression profiles, 

however GSTU25 is not induced by biotic stress treatment, and so was chosen for this study. 

The most TNT-responsive P450s have similar expression profiles, however regulation of the 

second most TNT-responsive P450, CYP81F2, was chosen as regulation of this gene may be of 

wider interest; CYP81F2 is involved in the biosynthesis of 4-methoxy-indole-3-ylmethyl-

glucosinolate (4MI3G), which induces callose deposition in response to the inducer of basal 

defense Flg22.  While the induction of other 4MI3G-biosynthesis genes in response to Flg22 is 

dependent on ethylene signalling and the TF MYB51, Flg22-mediated induction of CYP81F2 is 

ethylene and MYB51-independent (Bednarek et al., 2009; Clay et al., 2009).   
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Figure 57: Promoter-reporter constructs 

Black bar; GUS gene.  Grey bar; translated region of gene.  White bar; promoter region.  

Promoter range indicated as bp following (+) or prior (-) to gene start ATG.  Arrows indicate 

locations of TGACG motifs in forward () or reverse () orientation. 
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5.2.7 There is an increase in glutathione following TNT treatment 

As discussed in 1.5.2, various reports point to glutathione accumulation having a signalling role 

(Ball et al., 2004; Gomez et al., 2004; Senda and Ogawa, 2004; Li et al., 2013; Cheng et al., 

2015), including in OPDA signalling; induction of OPDA response genes GRX480, CYP81D11, 

GSTF8, GSTU19 and HSP17.6, is reduced in cyclophilin 20-3 mutants, in which glutathione 

accumulation following OPDA treatment is abolished (Park et al., 2013). 

There is a doubling in glutathione content in response to 6 h 60 μM TNT treatment, in both 

Col7 and mdhar6-1.  This is statistically significant (Student’s t test, P <0.05; Figure 58).  

 

 

 

Figure 58: Changes in glutathione content in response to TNT treatment 

Two-week old seedlings grown in ½ MS 20 mM sucrose, were treated with 60 μM TNT in DMF 

(end 0.06% v/v DMF) or DMF alone for 6 h.  Mean of six biological replicates ± SD.  Student’s t 

test * P<0.05, ** P<0.01, *** P<0.001. 
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5.3 DISCUSSION 

5.3.1 The small change in TNT tolerance in tga2 tga5 tga6 mutants 

It is surprising, considering the involvement of the target genes (OPR1 and 2, UGT73B7, 74E2, 

41C1, 73C1, 73C6, 73B2 and 73B5, and GSTU25 and U24) in TNT detoxification, indicated by 

both enzymatic analysis and overexpression studies (Gandia‐Herrero et al., 2008; Beynon et 

al., 2009; Gunning et al., 2014), that when expression of the corresponding genes is reduced, 

TNT tolerance is not compromised to a larger extent.  Expression of these genes is not 

completely abolished however, and it is possible that functional redundancy with other 

enzymes mitigates the TNT toxicity; for example, OPR3 transcript levels are unaffected in tga2 

tga5 tga6, and OPR3 is known to reduce TNT to HADNT in vitro (Beynon et al., 2009).  

5.3.2 Lack of requirement for MDHAR6 or phytoprostanes in the TNT 
response 

In the presence of TNT, the transcript abundance of CYP81D11, CYP81F2, UGT73B4 and GSTU4 

are significantly lower in fad3-2 fad7-2 fad8 than in wild type, however when fold induction 

between control and TNT treatment is compared, there is no longer a significant difference 

between fad3-2 fad7-2 fad8 and wild type, for all genes but CYP81F2.  It is possible that 

CYP81F2 is induced by a pathway responsive to accumulating phytoprostane levels.  Additional 

biological replicates are required for confidence in conclusions from this experiment.  

The fold induction was also unaffected in mdhar6-1 mutants.  This was unexpected, as 

considering the results presented in Chapter 3, less ROS might be anticipated in mdhar6-1 

compared with Col7 following TNT treatment, which would be expected to have an impact on 

the transcriptome.  It is possible that at this early time point however, there is no difference in 

ROS between Col7 and mdhar6-1; the other MDHAR enzymes could similarly reduce TNT by 

one electron, and considering the relatively high Km and low Vmax of the reaction of MDHAR6 

with TNT (522 μM and 0.143 mmol-1.min-1.mg-1, respectively), and low concentration of TNT 

treatment (60 μM), few moles of TNT may be reduced by one electron within the 6 h 

treatment.  Notably, this is also a very different experimental system to TNT treatment on soil 

or on agar; mdhar6-1 seedlings are less tolerant to growth in liquid (hypoxic) media, and have 

76 % less biomass at two-weeks of age (3.2.2).  It would be of interest to clarify where there is 

a significant difference in ROS between the TNT and control treatment, and between Col7 and 

in mdhar6-1, using a ROS probe such as Amplex Red.  Whether ROS have a role in the 

detoxification genes induction could be investigated by prior treatment with antioxidants such 

as DMTU or BHA, similar to as carried out by Garretón et al. (2002). 
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5.3.3 The importance of the increase in glutathione in response to TNT 

As discussed in 1.5.2, numerous studies indicate a role of glutathione in defence signalling, and 

this study has identified a doubling in Arabidopsis glutathione content following TNT treatment 

(Figure 58).  Of the 19 GSH-response genes found not to be induced in glutamate receptor-like 

channel 3.3 mutants by Li et al. (2013), nine are also induced by TNT treatment (Gandia‐

Herrero et al., 2008). 

The TNT-response microarray experiment reported by Gandia‐Herrero et al. (2008) did not 

identify induction of GSH1 (γ-glutamylcysteine synthetase) or GSH2 (glutathione synthetase) 

following TNT treatment, however did identify induction of the cysteine biosynthesis genes 

APR3 (adenosine 5’phosphosulphate reductase; 6-fold induction) and SAT2.1 (serine 

acetyltransferase; 5-fold induction). 

It would be of interest to investigate whether the increased glutathione levels in the presence 

of TNT are having a causative effect on the induction of detoxification genes.  This could be 

explored by investigating whether prior treatment with BSO results in reduced detoxification 

gene expression in the presence of TNT.  That being said, there is a similar pattern in 

detoxification gene induction between SA and JA, and while SA treatment results in an 

increase in glutathione content, JA treatment results in a decrease in glutathione content 

(Spoel and Loake, 2011).  This argues against a role for glutathione in the regulation of these 

detoxification genes. 

5.3.4 The involvement of class II TGA factors in mediating the TNT response 

It is clear that class II TGA factors have an important role in the induction of defence and 

detoxification genes, following treatment with a broad range of stimuli (Table 8), including, as 

demonstrated by this research, TNT treatment.  With regards to JA-signalling, this appears to 

be via regulation of a master transcriptional regulator (Zander et al., 2010, 2014), rather than 

via direct interaction at the PDF1.2 promoter.  It is notable that of the TNT-response 

detoxification genes, those with TGACG motifs most proximal to the start ATG are most 

reduced in transcript abundance by the tga2 tga5 tga6 mutations (Figure 51, Table 24), which 

could suggest that TGA factors have a direct role at these gene promoters.  That being said, 

UGT74E2 and CYP81D8 are the most TNT-induced genes, but have distal TGACG motifs.  The 

effect of mutating TGACG motifs in the promoters of promoter-reporter constructs (Figure 57) 

can be used to establish whether these TFs regulate expression through direct interaction at 

the gene promoters. 
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It is also notable that transcript abundance of four genes (GSTU25, GSTU24, CYP81D11 and 

OPR2) is reduced in tga2 tga5 tga6 in the control treatment; this indicates that class II TGA 

factors are involved in the positive basal regulation of these genes, while Kesarwani et al. 

(2007) report basal expression of PR-1 to be higher in tga2 tga5 tga6 mutants.  The class II TGA 

factors are therefore not always co-repressors as well as co-activators.  Chromatin 

immunoprecipitation experiments could be used to investigate whether TGA factors are 

recruited to detoxification gene promoters upon TNT treatment. 

The NPR1 and SCL14 proteins have already been demonstrated to interact with class II TGA 

factors, and are candidates for other proteins required in the TNT response. Comparing the 

TNT response with responses to SA (as reported by Blanco et al., 2009) however, only 7 % of 

NPR1-dependent SA-response genes are also induced by TNT treatment, while 68 % of NPR1-

independent SA-response genes are induced by TNT >2-fold.  This indicates that NPR1 is not 

likely to be involved in responses to TNT.  In contrast, of the 14 genes differentially regulated 

in scl14 compared with an SCL14-overexpressor line investigated by Fode et al. (2008), 11 are 

induced by TNT treatment.  It is possible, therefore, that SCL14 is involved in detoxification 

gene activation in response to TNT, via interaction with class II TGA factors.   

The Genevestigator Signature tool has provided useful insight as to treatments which similarly 

induce TNT-response detoxification genes.  In further analysis of microarray data available on 

Genevestigator, the TNT-response detoxification genes are not always induced following SA, 

MeJA, ozone or H2O2 treatment, but always highly correlate with responses to antimycin A or 

fenclorim.  Reactive Oxygen Species are produced and involved in numerous cellular 

processes, and presumably the location and time of ROS flux is central to directing ROS 

responses (Xia et al., 2015).  Due to the correlations with antimycin A treatment, it is possible 

that the TNT response is induced by ROS flux at mitochondria.  Class II TGA factors have not yet 

been implicated with mitochondria retrograde signalling, and this is an interesting avenue for 

research. 
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6 Final discussion 

6.1 RESEARCH IN CONTEXT 

This research, 

i. reveals that MDHAR6 mediates TNT toxicity in Arabidopsis- a valuable contribution 

towards the development of phytoremediation strategies 

ii. highlights a potential new herbicide target, in an environment of increasing herbicide 

tolerance 

iii. raises questions regarding the endogenous function of MDHAR6 

iv. highlights the sensitivity of the plant antioxidant system, and 

v. broadens our understanding of the role of TGA factors in defence signalling 

6.1.1 MDHAR6 mediates TNT toxicity in Arabidopsis- a valuable contribution 
towards developing phytoremediation strategies 

As discussed in Chapter 1, due to the costs associated with soil removal for composting or 

incineration (with care for UXO), phytoremediation could be the most cost-effective and 

environmentally-friendly means of tackling explosives pollution.  This is particularly true for 

military training ranges, where phytoremediation could be used to contain and degrade 

energetic residues in situ, while the land is still used for munitions testing and training of 

personnel. 

While RDX is of top priority in explosives remediation, plants developed to degrade RDX in situ 

need at the very least tolerance to the co-pollutant TNT, and ideally, the additional capacity to 

degrade TNT.  The CRISPR/Cas system (Sander and Joung, 2014) could be used to knockout 

MDHAR6 in remediation-applicable plant species, to increase TNT tolerance.  

As discussed in Rylott et al. (2015), the time and cost required to license and trial genetically 

modified plants is a limiting factor in the use of transgenic plants for phytoremediation; 

Kalaitzandonakes et al. (2007) for example, estimate the compliance cost for release of a 

genetically modified herbicide-tolerant maize in the US to be between $6.18 million and 

$14.15 million, while Baulcombe et al. (2014) report the regulatory process for commercial 

release of a genetically modified plant in the EU to be between €10 million and €20 million.  

Considering this, it is of interest to investigate the impact of inducing MDHAR6 deficiency in 

native plant species by mutagenesis, without use of Genetic Modification (GM) to introduce 

any further genes.  In the US, under the Federal Food, Drug, and Cosmetic Act, crops generated 

using GM biotechnology do not require pre-market approval unless a gene encoding a protein 

significantly different to endogenous plant proteins has been introduced.  The MDHAR6 gene 
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could therefore be knocked out in native plant lines using CRISPR/Cas, and used in situ without 

pre-market approval.  Alternatively, mutagenesis (not classed as GM technology) and TILLING 

(Targeting Induced Local Lesions in Genomes) could be used to identify plant lines with 

mutations in MDHAR6. 

Diverse plant communities promote microbial diversity and density (Lange et al., 2015), and 

there is extensive evidence that metabolites in root exudates promote microbial degradation 

of pollutants, either through stimulating microbial growth and diversity, and/or providing co-

metabolites for degradation of organic pollutants (Singer et al., 2003).  It is possible that 

inducing MDHAR6 deficiency, and therefore TNT tolerance, without addition of transgenes, 

could be an effective non-GM approach. Such MDHAR6-deficient plants could then be used to 

contain and remove explosives pollution, stabilise soil structure, and promote microbial and 

plant diversity in situ. 

A factor to keep in mind with this non-GM approach however, is that while sites could be re-

vegetated with TNT-tolerant, MDHAR6-deficient plant species, if these plants lack enhanced 

RDX-degrading capability, water-mobile RDX may accumulate in the shoots of these plants, 

and be consumed by herbivores.  In a study by Rylott et al. (2011), locusts had no preference 

between XplA/B-overexpressing (RDX-degrading; discussed in 1.3.6) and wild type Arabidopsis 

lines, while foliage of the XplA/B lines contained 30- to 100-fold less RDX.  Impact on 

herbivores would need to be assessed and incorporated into risk assessment prior to 

deployment of this phytoremediation strategy. 

6.1.2 MDHAR6 as a new herbicide target 

There are >250 herbicides on the global market (Heap, 2015), however no herbicide with a 

new Mode of Action (MOA) has been commercialised since the 1980s (Duke, 2012), while 

herbicide resistance has been increasing steadily since the 1970s (Heap, 2014).  Weeds have 

now evolved resistance to 21 of the 25 herbicide MOA (Heap, 2014). 

Herbicide resistance can result from (i) target-site resistance9, (ii) increased expression of the 

herbicide target, compensating for inhibition, (iii) reduced herbicide uptake, (iv) enhanced 

herbicide metabolism, and/or (v) increased herbicide sequestration.  The most common means 

of cross-resistance to multiple herbicides is through stacking of target-site resistance, and 

there are now 65 unique cases of multiple herbicide resistance in weeds (Heap, 2014).  In the 

UK, the most important weeds with emerging herbicide resistance are Alopecurus myosuroides 

Huds. (black-grass), Lolium multiflorum Lam. (Italian rye-grass), Avena spp. (wild-oats), Stellaria 

                                                           
9
 Occurrence of mutation(s) which prevent herbicide-binding to the target site. 
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media (L.) Vill (common chickweed), Papaver rhoeas L. (common poppy) and 

Tripleurospermum inodorum (L.) Sch.Bip. (scentless mayweed) (Hull et al., 2014). 

Evolution of herbicide tolerance in weeds is a natural phenomenon, however is facilitated by 

year-on-year use of the same crops and weed control strategies.  In 2014, three crops (wheat, 

barley and oilseed rape) were grown over 81 % of UK arable crop land (DEFRA, 2014), and 

reduced crop rotation is partially attributed to the spread of herbicide-resistant black-grass 

(POST, 2015).  Meanwhile, year-on-year use of Roundup Ready® (Monsanto Co.) crops with 

reliance on glyphosate herbicide has led to widespread emergence of glyphosate-resistant 

weeds in the US (Heap, 2014).  The uptake of herbicide-resistant crops, and subsequent 

devaluation of other herbicides, has been partially attributed to the lack of new herbicides in 

recent years (Duke, 2012).  Increasing development costs could also be a contributing factor; 

the cost of bringing a new agrochemical active ingredient to market has increased greatly in 

recent years, from an estimated $184 million in 2000, to $256 million in 2008 (Phillips 

McDougall, 2013). 

As herbicide tolerance increases, the need to destabilise evolution of herbicide resistance in 

weeds, through crop and herbicide MOA rotation will also increase.  As MDHAR6 activity with 

TNT appears to induce phytotoxicity, it could be explored whether an agrochemical (more 

environmentally-friendly than TNT) could be designed which MDHAR6 reduces with similar 

phytotoxic effect.  Our preliminary experiments indicate high specificity in the targets for one 

electron reduction by MDHAR6 however, and so this could be a challenging task.  

The toxicity of the agrochemical to herbivores and humans may also be an issue; bovine lens ζ-

crystallin and rat neuronal nitric oxide synthase similarly reduce TNT by one electron (Kumagai 

et al., 2000, 2004), and there may be enzymes in humans and herbivores which readily react 

with the designed MDHAR6 target in a similar way. 

6.1.3 The endogenous role of MDHAR6 

A surprising outcome of this research is the low impact of MDHAR6 deficiency on Arabidopsis 

stress tolerance.  Although results in this study indicate that in Col7, MDHAR6 contributes 13 % 

of leaf and 32 % of root MDHAR activity, the mdhar6-1 mutants are no more susceptible than 

Col7 to inhibitory levels of NaCl, sorbitol, methyl viologen or H2O2 in agar, although biomass 

when grown in liquid culture is reduced in mdhar6-1.  Responses to further stress conditions 

such as high light could be characterised further.  As ascorbate and dehydroascorbate levels 

were unchanged in the mdhar6-1 mutant compared with wild type, it would appear that the 

Arabidopsis antioxidant system is robust enough to cope with a deficiency in MDHAR6. 
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Further insight as to the endogenous role(s) of MDHAR6 will arise from further 

characterisation of the enzyme location.  Prior research has focussed on the mitochondria-

targeted precursor protein (Chew et al., 2003), however preliminary results discussed in 

Chapters 3 and 4 of this thesis, indicate that a third, previously undescribed TSS is dominant, 

and that the majority of MDHAR6 transcript encodes plastid-targeted precusor MDHAR6.  As 

discussed in Chapter 3, data on public microarray repositories indicate that MDHAR6 is 

induced by sucrose treatment, and also by cold night temperature, resulting in a diurnal 

expression pattern.  Induction at night correlates with increased growth (Dowson-Day and 

Millar, 1999) and starch breakdown in leaf amyloplasts for carbon reallocation (Graf et al., 

2010; Yazdanbakhsh and Fisahn, 2011).  The MDHAR6 enzyme could have an important role in 

protecting amyloplasts and elaioplasts during these processes at night.  This could be 

investigated by comparing the phenotype of wild type and mdhar6 mutants under longer or 

shortened cycles of light and temperature, to disrupt the efficacy of starch regulation (Graf et 

al., 2010). 

It is curious that while qPCR results in Chapter 4 indicate that more plastid-targeted than 

mitochondria-targeted MDHAR6 is likely to be produced, complementation studies carried out 

by Liz Rylott and Emily Beynon (Johnston et al., 2015) indicate that m-MDHAR6 fully 

complements the TNT toxicity phenotype, while p-MDHAR6 complements the TNT phenotype 

by approximately two-thirds.  This would suggest that the (implied) low levels of MDHAR6 in 

mitochondria are having an especially toxic effect.  Imaging subcellular distribution of ROS 

generation in Col7 and mdhar6-1, in response to TNT and other stresses, would be desirable, 

however there are drawbacks with most ROS probes; results can be biased by the intercellular 

distribution of probes, or distribution of factors required in addition to ROS for probe 

fluorescence (Winterbourn, 2014). 

6.1.4 The sensitivity of the plant antioxidant system 

Oxygenic photosynthesis arose in the ancestors of cyanobacteria around 3 billion years ago, 

and has had a profound effect on evolution; initially, O2 by-product was consumed in the 

oxidation of metals such as iron and manganese, however when these sinks became exhausted 

around 2.4 billion years ago, levels of O2 in the atmosphere began to rise steeply in what is 

known as the Great Oxidation Event (Buick, 2008; Planavsky et al., 2014).  Aerobic respiration 

became dominant, which increased the ATP yield from glucose >15-fold (Halliwell, 2006).  As 

organic compounds constructed through photosynthesis accumulated, some bacteria became 

to rely solely on respiration for energy, and an ozone (O3) layer formed in the stratosphere, 
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protecting organisms from UV-C radiation, possibly aiding the colonisation of land (Halliwell, 

2006). 

Importantly, oxygen is toxic; the radical forms of oxygen are highly reactive, and the evolution 

of robust antioxidant systems was required to keep oxygen under control (Halliwell, 2006).  

These include scavengers such as ascorbate, which are metabolically cheap to produce (Gest et 

al., 2013), and inducible enzymes such as peroxidases and superoxide dismutases.  The system 

is intricately balanced, as the ROS are also used as signals (Xia et al., 2015).  The nature of the 

antioxidant system, means that, as highlighted by Noctor (2015), genetic perturbations can 

have unexpected effects, which are often different between species; for example, Creissen et 

al. (1999) overexpressed chloroplast-targeted GSH1 in tobacco, increasing glutathione 

synthesis, and observed light-dependent chlorosis, while in a study by Noctor et al. (1998), 

overexpression of chloroplast-targeted GSH1 in Poplar (Populus tremula x Populus alba) did 

not have detrimental effects.  Overexpression of Arabidopsis cytosolic MDHAR in tobacco 

increased ascorbate levels in a study by Eltayeb et al. (2006), while Haroldsen et al., (2011) and 

Gest et al. (2013) report a decrease in ascorbate in tomato overexpressing cytosolic and 

peroxisomal MDHAR. 

The results reported in this thesis are unexpected as deficiency in plastid and mitochondria 

MDHAR did not increase susceptibility to drought, salt and oxidative stress, and yet superoxide 

generation following MDHAR6 activity with TNT appears to have a highly phytotoxic 

consequence. 

6.1.5 The role of TGA factors in defence signalling 

The finding that class II TGA factors are required for detoxification gene induction in response 

to TNT treatment, independent of phytoprostanes, highlights the diversity of signalling 

pathways which are dependent on TGA factors for transcriptome responses.  How often this 

requirement is due to interaction directly at defence and detoxification gene promoters, and 

how often the compromised transcriptome response in class II TGA factor mutants is due to 

misregulation of a master regulator, remains to be elucidated.  Chromatin 

immunoprecipitation experiments have yielded conflicting results (Rochon et al., 2006), 

however it would appear that class II TGA factors are recruited to the PR-1 promoter following 

SA treatment (Johnson et al., 2003).  At the same time, there is evidence that TGA2 is also 

required for basal repression of PR-1 (Kesarwani et al., 2007); hence much remains to be 

understood regarding the role of TGA factors and their regulation in defence responses.  
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It is also notable that the detoxification gene induction profile following TNT treatment 

correlates highly with responses to antimycin A treatment; it is possible that the TNT response 

is induced by ROS flux or other disruption at mitochondria.  Class II TGA factors have not yet 

been implicated in mitochondria retrograde signalling, and this is an interesting avenue for 

research. 

6.2 FUTURE DIRECTION OF RESEARCH 

6.2.1 Elucidating the location and function of MDHAR6 

Primarily, this research raises interesting questions regarding the function of MDHAR6; an 

unusual enzyme with both pro-oxidant and anti-oxidant activity.  Mutagenesis and X-ray 

crystallography will aid in understanding this dual activity, while clarification of MDHAR6 

localisation, and phenotyping mdhar6 mutants under additional test conditions, will further 

elucidate the in planta role of MDHAR6. 

While growing plants hydroponically facilitates uniform chemical treatment of roots, the 

hypoxic growth condition induces stress in seedlings (Fukao and Bailey-Serres, 2004).  To 

investigate MDHAR6 TSS preference and protein location in unstressed conditions, analysing 

cDNA and sections of leaf and root tissue from soil-grown seedlings would be appropriate.  It is 

important to verify MDHAR6 location with immuno-gold labelling, and the preliminary western 

blot against crude extract from Col7, Nossen, mdhar6-1 and mdhar6-2 indicates that the anti-

MDHAR6 primary antibody which has already been sourced will be appropriate for this.  

Sections from mdhar6-1 seedlings can be used as a negative control. 

It is ambitious to try to cause more dysfunction in one organelle than another.  Differences in 

TSS preference could instead be investigated further by testing cDNA from different tissues 

(e.g. root tips, stamens), developmental stages (e.g. germination, senescence) and stress 

conditions (e.g. drought, heat) to gauge whether demands for MDHAR6 differ, resulting in 

differing TSS preference. 

As qPCR data indicate that MDHAR6 is most highly expressed in root tissue, for plastid-

targeting, the effect of mdhar6 mutation on amyloplasts and elaioplasts under non-stress and 

stress conditions could be studied more closely using transmission electron microscopy to 

identify any differences in physiology.  As amyloplasts in root caps have an important role in 

gravitropism, it would also be of interest to test whether gravitropism responses are affected 

by mdhar6 mutation.  Differences in tolerance to shortened or lengthened cycles of light and 

dark, disrupting starch regulation, may also reveal differences in amyloplast efficacy (Graf et 

al., 2010). 



Chapter 6: Final discussion 

158 
 

Although anecdotally there is no difference in the timing of wild type and mdhar6 flowering 

and senescence, this also remains to be experimentally recorded, as well as measurement of 

seed number and viability as an assessment of fitness.   

6.2.2 Further exploring the role of TGA factors in defence signalling 

Chromatin immunoprecipitation (ChIP) experiments could provide useful insight as to whether 

class II TGA factors are recruited to detoxification gene promoters following TNT treatment, 

however prior ChIP experiments with TGA2 have yielded conflicting results, depending on the 

antibody used (discussed in 1.5.3).  Electropheretic mobility shift assays would be useful for 

verifying ChIP results, while in planta two hybrid assays, as used by Després et al. (2003), could 

also provide evidence for or against TGA factor recruitment.  Pre-treatment with protein 

synthesis inhibitor cycloheximide (Schneider-Poetsch et al., 2010) could also be used to 

identify whether increased translation of, for example, a transcription factor, is required for 

the detoxification gene induction. 

A role for TGA factors in mitochondria retrograde signalling has not yet been investigated, and 

could be an interesting avenue of research; TNT-response detoxification gene induction 

correlates closely with responses to antimycin A treatment (Figure 49), while 21 of the 24 

Mitochondria Dysfunction Stimulon (MDS) genes identified by Clercq et al. (2013), are also 

upregulated following 6 h 60 μM TNT treatment (microarray data from Gandia-Herrero et al., 

2008).  Fourteen of the 24 MDS genes contain one or more TGACG motifs in the promoter 

region +100 to -1,000 bp from the start ATG, and so it is plausible that TGA factors could have 

a role in the regulation of these genes.  Whether gene induction following TNT and/or 

antimycin A treatment requires a flux in ROS or glutathione content could also be investigated, 

by pre-treatment of seedlings with an antioxidant or glutathione synthesis inhibitor. 

6.2.3 Developing plant lines for the phytoremediation of explosives 

Although overexpressing OPR, UGT and GST genes in Arabidopsis has been found to increase 

TNT tolerance (Beynon et al., 2009; Gandia-Herrero et al., 2008; Gunning et al., 2014), low 

transcript abundance of these TNT-response genes in tga2 tga5 tga6 little compromises TNT 

tolerance, suggesting that alternative TNT detoxification pathways may be dominant and/or 

that a high degree of functional redundancy exists. 

The impact of mdhar6 deficiency in remediation-applicable species towards phytoremediation 

is of priority to be assessed; this could be an effective non-GM approach to removing 

explosives pollution in situ, and re-greening polluted areas. 
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Abbreviations 

1/2 MS(A)(S) half strength Murashige and Skoog medium  (with 0.8 % w/v agar) (with 20 
mM sucrose) 

ABA abscisic acid 

ABI4 ABSCISIC ACID INSENSITIVE 4 

ABRC Arabidopsis Biological Resource Center  

ACC 1-aminocyclopropane-1-carboxylic acid 

ADNT aminodinitrotoluene 

AGI Arabidopsis Genome Initiative reference number 

AOS ALLENE OXIDE SYNTHASE 

AOX1a ALTERNATIVE OXIDASE 1A  

APX2 ASCORBATE PEROXIDASE 2 

BHA butylated hydroxyanisole 

bHLH basic Helix Loop Helix 

BOA benzoxazolin-2(3H)-one  

bp base pairs 

BSA bovine serum albumin 

BSO buthionine sulfoximine 

bZIP basic leucine zipper 

CaMV 35S Cauliflower Mosaic Virus 35S promoter 

cDNA complementary DNA 

ChIP chromatin immunoprecipitation 

CMP 4-chloro-6-methyl-2-phenylpyrimidine 

COI1 CORONATINE INSENSITIVE1 

Cys cysteine 

d days 

DAMP damage-associated molecular pattern 

DEPMPO 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide 

DFPM 5-(3,4-Dichlorophenyl)Furan-2-yl]-Piperidin-1-ylMethanethione  

DHA dehydroascorbate 

DHAR dehydroascorbate reductase 

DMF dimethylformamide 

DMPO 5,5-dimethyl-pyrroline N-oxide  

DMSO dimethyl sulfoxide 

DMTU dimethylthiourea 

DNA deoxyribonucleic acid 

DTT dithiothreitol 

DW dry weight 

EMS ethyl methanesulphonate 

EPR Electron Paramagnetic Resonance 

ER endoplasmic reticulum 

ERF ETHYLENE RESPONSE FACTOR 

FAD flavin adenine dinucleotide 

FAD FATTY ACID DESATURASE 

Fd ferredoxin 

Flg22 22 amino acid concerved region of the flagellin protein 
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FLS2 FLAGELLIN SENSING 2 

flu fluorescent 

FTR ferredoxin-dependent Trx reductase 

FW fresh weight 

gDNA genomic DNA 

GFP Green Fluorescent Protein 

GNSO S-nitrosoglutathione 

GNSOR S-nitrosoglutathione reductase 

GR glutathione reductase 

GSH reduced glutathione 

GSSG oxidised glutathione (glutathione disulphide) 

GST glutathione-S-transferase 

GUS beta-glucuronidase 

h hours 

HADNT hydroxylaminodinitrotoluene 

HAP1 HEME ACTIVATOR PROTEIN 1 

HMX High Melting Explosive 

HPLC High Performance Liquid Chromatography 

HR Hypersensitive Response 

HY5 LONG HYPOCOTYL 5  

INA 2,6-dichloroisonicotinic acid 

IPTG isopropyl β-D-1-thiogalactopyranoside 

JA jasmonate 

JA-Ile jasmonate-isoleucine 

JAZ protein jasmonate ZIM domain protein 

LB Luria Broth 

LDHC temporal expression under cycle of 12 h light, 22°C/12 h dark, 12°C 

LH_LLHC entrained to cycle of 12 h light, 22°C/12 h light, 12°C, then subjected to 24 h 
light, 22°C 

LHCB1 LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN B1 

LLHC temporal expression under cycle of 12 h light, 22°C/12 h light, 12°C 

LRR Leucine-Rich Repeat 

MDA monodehydroascorbate 

MDHAR monodehydroascorbate reductase 

MeJA methyl jasmonate 

Mg-proto Mg-protoporphyrin IX  

m-MDHAR6 transcript variant for mitochondria-targeted MDHAR6 (MDHAR6.2) 

MOA Mode(s) of Action 

mp-MDHAR6 region shared between m-MDHAR6 and p-MDHAR6 

mtETC mitochondrion electron transport chain 

Na2EDTA sodium ethylenediaminetetraacetic acid 

NADH nicotinamide adenine dinucleotide 

NADPH nicotinamide adenine dinucleotide phosphate 

NPC No Plant Control 

NPR1 NON-EXPRESSOR OF PR1 

NTR NADH-dependent Trx reductase 

OPDA 12-oxophytodienoic acid 

ORA59 OCTADECANOID-RESPOPNSIVE ARABIDOPSIS APETALA2/EHTYLENE 
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RESPONSE FACTOR protein domain59  

P Likelihood that difference in results between groups is due to chance 

PAMP Pathogen-Associated Molecular Pattern 

PAP 3’phosphoadenosine 5’-phosphate  

PCR Polymerase Chain Reaction 

PDF1.2 PLANT DEFENSIN 1.2 

p-MDHAR6 transcript variant for plastid-targeted MDHAR6 (MDHAR6.1), TSS as shown 
in Figure 39 

pB-MDHAR6 transcript variant for plastid-targeted MDHAR6 (MDHAR6.1), TSS as shown 
in Figure 39, transcript abundance determined by primer pair pB 

pE-MDHAR6 transcript variant for plastid-targeted MDHAR6, from possible third TSS- 
transcript abundance determined by primer pair pE 

PMF phenylmethanesulfonylfluoride 

PPA1 phytoprostane AI 

PR-1 PATHOGENESIS-RELATED 1 

Prx Peroxiredoxin 

qPCR quantitative Polymerase Chain Reaction 

RDX Royal Demolition Explosive 

RLK Receptor-Like Kinase 

RNA ribonucleic acid 

RNS Reactive Nitrogen Species 

ROS Reactive Oxygen Species 

RT room temperature 

SA salicylic acid 

SAM Sorting and Assembly Machinery 

SCL14 SCARECROW-LIKE 14 

SD standard deviation 

SEM standard error of the mean 

SOD superoxide dismutase 

TAIR The Arabidopsis Information Resource 

TEM transmission electron microscopy 

TF transcription factor 

TGA factor TGACG-binding factor 

TIBA 2,3,5-triiodobenzoic acid 

TIC Translocon at the Inner envelope Membrane 

TIM Transporter Inner Membrane 

TNT 2,4,5-trinitrotoluene 

TOC Translocon at the Outer envelope Membrane 

TOM Transporter Outer Membrane 

Tris 2-amino-2-hydroxymethyl-1,3-propanediol 

Trx Thioredoxin 

TSS transcription start site 

US EPA United States Environmental Protection Agency 

UDP-G uridine diphosphate-glucose 

UGT uridine diphosphate transferring glycosyltransferases 

VSP2 VEGETATIVE STORAGE PROTEIN 2 

WT wild type 

γ-ECS γ-glutamylcysteine synthetase  
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