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Abstract 

Quantifying the appearance of coating products is essential in the automobile and 

automobile finishing industries for efficient product development and product/quality 

control. There is a specific need to develop techniques to measure the total appearance 

of metallic coatings. The present study focuses on two key attributes of visual texture: 

coarseness and glint. In order to develop models to capable of measuring these 

attributes, it was first necessary to design psychophysical experiments for assessing 

coarseness and glint as perceived on metallic-coating panels. The change in the 

appearance of the metallic coatings is known as a gonioapparent effect, and is greatly 

dependant on the illumination and viewing conditions. Therefore, appropriate 

conditions were carefully examined for the independent observation of coarseness and 

glint in order to discern those attributes. It was found that diffuse illumination was 

appropriate for viewing coarseness and directional illumination was appropriate for 

observing glint. Under these appropriately-controlled conditions, the perceptual 

coarseness and glint of sets of metallic-coating panels were assessed by human 

observers. 

A digital camera was used to capture information on the spatial detail of the 

metallic-coating panels. An image of each panel was captured under the same viewing 

conditions as used for the visual assessments. The information in a single image was 

sufficient to represent a metallic-coating panel under identical diffuse illumination 

conditions for which observers assessed coarseness. For capturing information on glint, 

however, a high dynamic-range (HDR) image was necessary because the dynamic range 

of the scene in which the glint was observed exceeded that of the camera used in this 

study. Two computational models were developed to predict perceptual coarseness and 

perceptual glint by extracting associated features from the captured images. The 

performance of these models was verified by comparing predictions made using them 

with the perceptual coarseness and glint scaled by observers. 

For industrial use, the visualisation of products on computer displays would give 

various opportunities, for example, to develop and design products or coatings and also 

to communicate appearance information. A digital camera and a suitable display would 

enable this to be achieved, but the ability to reproduce the appearance of metallic­

coating products on displays in a satisfactory manner was found to have significant 
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challenges. The coarseness model developed in the present study was able to represent 

perceptual coarseness based on the images captured by the digital camera. However, 

the resolution of the images was not high enough to resolve the individual aluminium 

flakes contained in the coatings, which contribute to the visual texture. Therefore, 

verification of the images was carried out for the coarseness attribute by comparing the 

coarseness perceived in the images displayed on a liquid-crystal display (LCD) with the 

metallic-coating panels themselves. In addition to camera limitations, LCD resolution 

also prevented the same conditions used for physical panel assessment from being 

replicated. Therefore, two optimal conditions were selected and perceptual coarseness 

was scaled using images. Besides the difference in experimental conditions, there was 

also a difference in the "absolute" texture appearance between the two media because of 

errors in image reproduction of the images. In spite of this, the relatively-scaled 

perceptual coarseness for the image samples agreed well with that for the original 

physical samples. This implies that it is practicable to assess perceptual coarseness 

from an image on a display that simulates a metallic-coating panel. 
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1.1 Background 

In the modem automobile industry, textured coatings for cars are essential for 

attracting customers. The appearance of these coating products involves a variety of 

properties of perceptual attributes (colour, gloss, texture, etc.) and therefore there is no 

satisfactory method to describe total appearance. Due to the complexity of appearance 

measurement, product quality control often requires on the instrumental measurements 

of a limited number of attributes and relies heavily on human inspectors. To improve 

efficiency, there is considerable interest in being able to make objective and quantitative 

measurements of the appearance of products. As well as the measurement of 

appearance, its visualisation for products presented on computer displays is becoming 

more and more demanding, not only for the efficiency of product development and 

product/quality control, but also for the communication of products in a global sense. 

The measurement of the appearance of coatings can be achieved from an 

investigation of the relationships between the appearance attributes perceived by 

observers and the physical parameters obtained by instrumental measurements. The 

numerical expression of this relationship allows perceptual attributes to be predicted 

from physical measurements. The appearance attributes perceived on coatings can be 

quantified by visual assessment. On the other hand, there are various possibilities for 

measuring physical parameters; these are dependent on physical properties of the 

coatings and, specifically, their optical properties. Physical properties are related to the 

structure and components of coatings. Optical properties are the result of the 

interactions between light and the components of the coatings. In some cases, such as 

in the surface-refmishing industry, only the optical properties can be measured, since 

information of the physical properties is not available. The present study, which was 

carried out in conjunction with the National Physical Laboratory and Akzo Nobel 

Coatings and Car Refinishes, is focused on the modelling of correlations between 

perpetual appearance attributes and measurements of the optical properties in order to 

quantify the appearance of metallic coatings. 

Visualisation of appearance can be accomplished by displaying an image or video 

captured by a suitable imaging system such as a digital camera or by synthesising the 

appearance of coatings. The simplest method is to display a captured image. Advances 

in systems for image acquisition and reproduction have led to enhancements in the 

realistic depiction of the appearance of products; however, detailed textural information 
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which can be captured and displayed is still unsatisfactory because of limitations with 

current technologies. In order to be able to use images in practice, it is necessary to 

investigate the performance of current imaging and displaying systems at visualising 

appearance. 

1.2 Appearance Attributes and Measurements 

Some of the important and possible measurements of optical properties are colour, 

gloss and texture, although these measurements are not necessarily independent (Pointer, 

2003). 

The study of colour in coatings has been active and colorimetry is well established 

as a method to quantify colour (see Section 2.3 and 2.5.1.1). Spectral information of 

light reflected from the surface can be associated as the physical parameter and it is 

possible to make measurements using commercial instruments such as a 

spectroradiometer or a spectrophotometer. Colorimetric parameters can be derived 

based on colour matching/unctions (see Section 2.3) so as to correlate with the quantity 

of perceptual colours. Moreover, a colour appearance model (CIE, 2004a) is capable of 

predicting colour-perceptual attributes, for example, lightness, chroma, and hue, by 

taking into account the viewing conditions. 

Gloss perception is associated with the way the light reflects from the surface of 

an object at and near the specular direction (Pointer, 2003). A gloss meter or a 

goniophotometer is often used for this measurement, which gives a relative intensity of 

reflected light as a function of illumination and viewing angle. However, unlike the 

colour appearance model, a standardised model which is correlated with human 

perception of gloss has yet to be established. 

Texture is a term that refers to the spatial properties representing the surface of an 

object. The human response to texture can generally be described in terms such as 

coarseness, fmeness, graininess, smoothness, roughness, mottle, speckle, etc. In terms 

of human recognition, texture is perhaps intuitively obvious, but it has, as yet, no 

precise defmition. Typically, a digital image can be a representation of a two­

dimensional spatial distribution of a surface and this fact can be utilised as an 

instrumental method. Attributes of texture can then be characterised by analysing the 

spatial distribution of the pixels in the image using anyone of a number of various 

3 



methods depending on the attributes of interest and also on the purpose of measurement. 

However, because of the wide variability and interaction of texture attributes, it is often 

difficult to tell what actual physical characteristics in an image contribute to a particular 

appearance attribute. Moreover, resolution dependence of the texture attributes also 

makes the measurements difficult, i.e. , the perceived texture depends on the viewing 

distance and similarly, the texture elements in an image are dependent on the resolution 

of the components of the imaging system used (Gibson, 1950). For instance, Figure 1-1 

illustrates resolution dependence of the texture as an example of a textural attribute of 

coarseness. Although it is a same object, when it is viewed from a far distance, the 

texture looks very fine, while it is perceived to be much coarser at a closer distance. 

As can be seen, the measurement of total appearance requires investigation to 

isolate the separate appearance attributes. It is not known how many of these attributes 

exist or need to be quantified to characterise total appearance. However, in the present 

tudy, two texture attributes, coarseness and glint of the metallic coatings have been 

investigated. 

f it has fine texture when 
viewed from a far distance. 

It has coarse texture when 
viewed from a close distance. 

Figure 1-1: An example of coarseness appearance. The appearance of coarseness is dependant on a 

\'iewing distance. 

1.3 Aim of the study 

The aim of the present study was to model the appearance of attributes related to 

the texture of a number of sets of metallic coatings which were supplied by Akzo Nobel. 

The overall appearance of these metallic coatings consists of combinations of various 

attributes. In general , many studies have been carried out on measurements and 

visualisation or reproduction of the colour of metallic coatings (Alman, 1984; ASTM, 

2003 ; McCamy, 1996; Venable, 1987; Westlund & Meyer, 2001) because of the large 
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impacts of gonioapparent colours (see Section 2.5.1.1). Compared with colour, there 

has been considerably less study on texture. Texture cannot be explained by a single 

parameter because it consists of a combination of various spatially related attributes. 

Although many texture attributes can be observed on metallic coatings e.g.. coarseness, 

glint, mottle, luster, the present study is focused on just two, coarseness and glint, 

which are identified as the key attributes by our collaborator, Akzo Nobel (2004-2006). 

The aims of this study are: 

• To design an experiment to visually assess the coarseness and the glint of 

metallic-coating panels. 

• To develop computational models capable of predicting the perceptual coarseness 

and the perceptual glint of the metallic-coating panels based on an image 

captured by a digital camera. 

• To verify the information derived from the captured images in terms of the 

appearance of the coarseness. 

• To investigate the possibility of using displayed images for the visual assessment 

of coarseness. 

1.4 Achievements 

All of the aims established at the beginning of the project (see Section 1.3) have 

been successfully achieved. They are summarised below. 

• An experimental database for assessment of the coarseness and the glint of 

metallic-coating panels has been produced. This database includes data from 

observations made using a number of observers and samples, as well as images 

of those samples. 

• Models for predicting the coarseness and glint from parameters derived from 

digital images were developed. 

• Essential information necessary to design an imaging system for the 

measurement and display of metallic-coating panels was investigated. 

• Limitations of this visualisation system were realised. 
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1.5 Thesis Structure 

This thesis consists of six chapters. A brief account of each chapter is given 

below. 

Chapter 1 covers the background, aims and overview of the present study. 

Chapter 2 reviews the literature related to the present study. It includes an 

overview of human vision and colorimetry; background knowledge on metallic 

coatings and their appearance, texture analysis methods, image acquisition and 

display devices, as well as relevant psychophysics and statistical analysis tools. 

Chapter 3 presents the investigations of the perceptual coarseness of the metallic­

coating panels. The visual assessments to scale perceptual coarseness and the 

computational model developed for predicting perceptual coarseness are described. 

Chapter 4 discusses the images used in Chapter 3 and also used to visualise the 

appearance of metallic coatings focusing on the coarseness attribute. The 

experiments that were carried out in order to achieve the aims, such as the 

reproduction of images of the metallic-coating panels and the visual assessments 

using those image displayed on the LCD are presented. 

Chapter 5 introduces the work on the appearance of the glint on the metallic­

coating panels. The visual assessments carried out in order to scale perceptual 

glint and the development of a computational model based on a generated HDR 

image are described. 

Chapter 6 summarises the conclusions of the studies presented in chapters 3 to 5 

and considers future work that could further our understanding of the appearance 

of gonioapparent coatings. 

1.6 Publications 

The following publications relate to study presented in this thesis. 

1. Kitaguchi S, Westland S, Owens H, Luo MR & Pointer MR (2004). Surface 

Texture - A review. National Physical Laboratory Report DQL-OR, Teddington, 

Mdlx., UK. 
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2. Kitaguchi S, Westland S & Luo MR (2005). Suitability of Texture Analysis 

Methods for Perceptual Texture. In Proceedings of AIC Colour 2005, the J Oth 

Congress of the International Colour Association, Granada, Spain, 923-926. 

3. Kitaguchi S, MacDonald L & Westland S (2006). Evaluating contrast sensitivity. 

In Proceedings of SPIE Vol. 6057, Human Vision and Electronic Imaging XI, San 

Jose, USA, 22-31. 

4. Kitaguchi S, Luo MR, Kirchner EJJ & van den Kiehoom GJ (2006). Computation 

model for perceptual coarseness prediction. In Proceedings of Third European 

Conference on Colour in Graphics, Imaging, and Vision (CGIV), Leeds, UK, 27S-

282. 

5. Kitaguchi S, Luo MR, Westland S, Kirchner EJJ & van den Kieboom GJ (2006). 

Assessing texture difference for metallic coating on different media. In 

Proceedings of the 14th Color Imaging Conference: Color Science and 

Engineering Systems, Technologies, Applications, Scottsdale, USA, 197-202. 

6. Kitaguchi S, Westland S, Luo MR, Kirchner EJJ & van den Kieboom GJ (200S). 

Application of HDR colour imaging to modelling of glints in metallic coatings. In 

Proceedings of AIC Colour 2008, Effects and Affects, Stockholm, Sweden. 
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2.1 Introduction 

This chapter provides background information related to the present study. 

Understanding the human visual system is fundamental for the study of appearance. 

Section 2.2 presents a brief review of the human visual system, including aspects of 

optical and neural processing, as well as the characteristics of human vision described 

on the basis of psychophysics. Section 2.3 covers colorimetry for specifying colour and 

colour differences. The appearance of visual texture originates in the interaction 

between light, a surface material and the human visual system. Therefore, it is also 

essential to understand how light is absorbed, transmitted or reflected by a material, and 

especially its surface, as reviewed in Section 2.4.1. The CIE recommended methods for 

the measurement of light, as well as suitable instruments are reviewed in Section 2.4.2. 

In Section 2.5, the behaviour of light is described regard to metallic-coating materials. 

As a result of the light reflected by a surface, colour and texture, etc. can be perceived. 

Metallic coatings are often called gonioapparent material since their appearance changes 

with the illumination and viewing geometry. This is much in the literature relating to 

this angular dependence and this is reviewed in Section 2.5.1.1. In comparison, the 

visual texture of metallic coatings has received less attention and the characteristics of 

visual texture are introduced in Section 2.5.1.2. Although there is a limited amount of 

literature available specifically on the texture of metallic coatings, texture in general has 

been studied and methods of texture analysis have been proposed, in order to extract 

texture-based features from digital images. Some of these methods are reviewed in 

Section 2.6 to demonstrate various approaches to the derivation of models for 

coarseness and glint prediction. In this study, digital images are utilised to extract 

information about visual texture. The dynamic range of conventional image-capture 

devices, for example digital cameras, is capable of capturing images of a typical scene. 

However, due to limitations in most of these devices, it is not possible to capture the full 

dynamic range of a scene containing very bright areas as, for example, caused by glint. 

Therefore, an HDR (high dynamic-range) image, as described in Section 2.7, is needed 

to be employed to obtain useful information about glint. In Section 2.8, a general 

introduction is provided on the digital camera and liquid-crystal display (LCD), used for 

the image acquisition and display in this study. Since these devices deal with the 

device-dependent values, a transformation into device-independent values is necessary 

in order to relate with colorimetric values. Characterisation methods, as describe in 

Section 2.8.3, are usually used for this purpose. The investigation of visual texture in 
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this study i based on psychophysics and a review of the methods employed is given in 

Section 2.9 Finally, the statistical measures for analysing the results obtained from the 

experiments are described in Section 2.10. 

2.2 Human Visual System 

2.2.1 The Eye 

There are three basic components for the human perception: sources of light, 

objects and observers. The eye is the first place where reflected light from an object 

illuminated by a light source reaches. A brief description of the human visual system is 

provided in the following sections. 

(a) 

Amacrine Cell 

HOrizontal Cell 

light 
~ ~ ~ 

Co~ 

Photoreceptors 

(b) 

GanQlion Cell 

Bipolar Cell 

figure 2-1: (a) A schematIc drawmg of a hOrizontal cross-sectIOn of the right human eve radaptedfrom 

(,\latlm & hiley, 2007)) (h) 5,lrliCIUre of Ihe reI/no (adoptedfrom (\ Itller 2007)) 

Figure 2-1 (a) shows a horizontal cross-section of the right human eye. The 

cornea is the front part of the eye where light first enters. It is approximately spherical 

with a radius of curvature of about 8 mm, its thickness is about 0.5 mm and its 

refractive index is approximately 1.38 (Atchison & Smith, 2000). The cornea is nearly 

transparent tissue without blood vessels and is contiguous with the sclera, the tough 

protecting envelop of the eye in which is inserted the extrinsic muscles that move the 

eye in its orbit (Wyszecki & Stiles, 2002) The cornea absorbs about [0 % to 20 % of 

the incident light in the visible spectrum (approximately between 380 nm and 780 nm) 

but more than 99 % of the incident light in the ultra-violent region «300 nm) (Packer & 

Williams, 2003). Figure 2-2 indicates the light loss due to the absorption of the cornea 
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and other components of the eye. The data is based on the measurements of freshly 

enucleated eyes (Boettner & Wolter, 1962). Between the cornea and the lens are the 

aqueous humour which is watery fluid with refractive index of about 1.33 (Atchison & 

Smith, 2000) and the iris which is an opaque muscular diaphragm forming a circular 

aperture, the pupil, trough which the light passes. The size of the pupil is regulated by 

muscles in the iris and varies from 2 mm to 8 mm in diameter (Hunt, 1998). When 

bright light hits the eye, the ring-shaped sphincter muscle in the iris contracts (shrinks) 

the pupil. In dim light, the spindle cells dilate the pupil. The lens which suspended 

between the aqueous humour and the vitreous humour (which is watery fluid with 

refractive index of about 1.33), is a biconvex structure made of thousands of roughly 

concentric layers with refractive index varying from 1.38 to 1.41 (Saxby, 2002). 

Together with the cornea as well as the other components of the eye, the lens refracts 

the light, and as a result helps the eye to focus the image-forming light at the retina. 

Among two main refracting components: the cornea and the lens, the cornea has the 

grater power. However, the corneal power is constant, whereas the power of the lens 

can be changed when the eye needs to focus at different distances. The process is called 

accommodation and occurs because of alteration in the lens shape by the ciliary muscle 

(Atchison & Smith, 2000). The amount of refraction that occurs is also a function of 

wavelength and therefore the visual system can only focus perfectly at a particular 

wavelength, which is about 580 nm in the green part of the visible spectrum. Therefore, 

light with shorter and longer wavelengths cannot be focused. This effect is known as 

chromatic aberration (Wyszecki & Stiles, 2002). The pigments of the lens absorb light 

primarily at short wavelengths and absorb less than 10 % at wavelengths between 450 

nm and 900 nm, in young adults (Packer & Williams, 2003) but these amounts vary 

between observers, and within the same observer with age (Malacara, 2002). 

Transduction of light into neural signals is a chief function of the retina. The 

retina and the optic nerve originate as outgrowths of the developing brain. Hence, the 

retina is part of the central nervous system. The retina is thin layers of nerve tissue 

lining most of the choroid, vascular and pigmented layer attached to the sclera. The 

thickness of the retina varies from 0.05 mm at the foveal centre to about 0.6 mm near 

the optic disc (Atchison & Smith, 2000). An area where the optic disc is (about 3° 

across), is known as the blind spot because of the lack of photoreceptors to response to 

the light, thus there is a break in the visual field. The centre area of the retina (the 

fovea) is covered by the macula which is a layer of the yellow pigment that is located 
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between the photoreceptors and bipolar cells (Figure 2-1 (b)). It is most intense in the 

fovea and gradually fading out beyond the fovea (Wyszecki & Stiles, 2002). It mostly 

absorbs light primarily at short wavelengths (Figure 2-2). 

As shown in Figure 2-1 (b), the layers in the retina incorporate the neurons which 

can be classified into five classes: ganglion cells, amacrine cells, bipolar cel/s, 

horizontal cells and photoreceptors. The deepest layer of neurons, the photoreceptors, 

processes the light first (Lee, 2005). The photoreceptors convert light into neural 

signals and then transmit these signals to the bipolar cells and on to the ganglion cells. 

It is only the axons of these ganglion cells that are collected in a bundle at the optic disc, 

and leave the eye to form the optic nerve. In addition to this direct pathway from the 

photoreceptors to the brain, two other kinds of cells contribute to the processing of 

visual information in the retina. In this indirect pathway, the horizontal cells are 

interposed between the photoreceptors and the bipolar cells, and the amacrine cells 

between the bipolar cells and the ganglion cells. 

1.0 cornea 
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Figure 2-2: The proportion of photons transmitted by various components of the eye as a function of 

wavelength. The data were based on measurements of freshly enucleated eyes. Each curve is the 

transmittance at the rear surface of the labelled structure, therefore showing the cumulative effects of all 

the layers up to that point. The data was collected by Boettner and Wolter (1962) and adapted from 

(Packer & Williams, 2003). 

2.2.2 Photoreceptors 

There are two types of retinal photoreceptors, rods and cones (Figure 2-1 (b». 

The rods and cones differ in a number of ways. The arrangement of the circuits that 

transmit the rod and cone information to the ganglion cells in the retina is different. The 

early stages of the pathways that link the rods and the cones to the ganglion cells are 

largely independent (Lee, 2005). The pathway from the rods to the ganglion cells 
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involves a distinct class of the bipolar cell which is called rod bipolar cell. Each rod 

bipolar cell contacts between 15 and 50 or more rods, depending on eccentricity. In 

contrast, the cone system is much less convergent. The pathway from the cones to the 

ganglion cells involves two different classes of the bipolar cell which are known as the 

midget bipolar cell and the diffuse bipolar cell. A midget bipolar cell makes contact 

with only one cone, while a diffuse bipolar cell makes contact with many (usually 5 to 

10) cones. Convergence makes the rod system a better detector of light, because small 

signals from many rods are pooled to generate a large response in the rod bipolar cell. 

At the same time, this convergence reduces the spatial resolution of the rod system, 

since the source of a signal in a rod bipolar cell could have come from anywhere within 

a relatively large area of the retina (Purves and Augustine et al., 2001). On the other 

hand, the cone system has less detection of light, but the system, especially involved the 

midget bipolar cells, preserves a spatial resolution as fine as the individual cone because 

of the less convergence of the cone information (Purves and Augustine et al., 2001). 

Thus, the rods are responsible for vision in low luminance levels, while the cones are 

responsible in high luminance levels. Vision relying on rods is referred to as scotopic 

vision (below about 0.001 cd/m2) and on cones is refereed to as photopic vision (above 

about 3 cd/m2), and vision, between scotopic and photopic vision, in which both rods 

and cones are active is referred to as mesopic vision (Valberg, 2005). The sensitivities 

of human vision under conditions of photopic and scotopic vision in the visible 

spectrum have been characterised and are called as the CIE 1924 luminance efficiency 

V(A.) and as the CIE 1951 luminance efficiency V'(A.) respectively as shown in Figure 

2-3. The peak shifts from 555 nm for photopic vision to the lower wavelength 507 nm 

for scotopic vision. This is called the Purkinje shift (Lee, 2005). For instance, red 

colours appear brighter than blue colours at high luminance levels, but these same blue 

colours appear brighter than red colours at low luminance levels. The luminance 

efficiency V(A.) for photopic vision is originated in a combination of spectral responses 

of the three types of cones which are referred to as long-, medium- and short­

wavelength-sensitive (also called the L-, M-, and S-cones), according to the peaks of 

their relative spectral sensitivities. The luminance efficiency V'(A.) for scotopic vision is 

based on spectral response of the rods. 
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Figure 2-3: The CIF. 191-1lunllnance ejJicienc )' I '(A) (solid line) and (he CIE 1951 luminance efficiency 

I "(A) {dashed line) (rI RL, 1007). 

Another important difference between the rods and the cones is in their 

distribution across the retina (Wandell , 1995) As shown in Figure 2-4, the central 

fovea contains no rods, but it contains the highest concentration of the cones. Thus, the 

region of the highest spatial vision in the retina is the fovea . The presence of rods 

begins at an angle of about 4° from the central fovea . The distributions of the L-. M­

and S-cones are also not the same. The S-cones are sparsely distributed in the retina and 

almost absent at the centre of the fovea (Curcio and Allen et aI. , 1991). Additionally, 

the number of S-cones are considerably fewer than that of L- or M-cones (the L:M:S 

cones are approximately in the ratio 40 :20 : I (Walraven & Bouman, 1966)). 

While the rods are incapable of providing colour vision , the cones are responsible 

for the generation of chromatic signals which lead to the perception of colour (Purves 

and Augustine ef aI. , 2001) . However. individual cones are entirely color blind, like 

rods Their response is simply a reflection of the number of photons of light that they 

capture, regardless of the wavelength of the photon . Colour vision is possible only 

when the photoreceptors of more than one work together by comparing the activity in 

different classes of cones. It is known that the three cone signals are compared and 

combined in the retina and, by the time the cone signals reach the ganglion cells, colour 

seems to be encoded in opponent-colour processes (Lee, 2005). Based on the responses 

of individual ganglion cells and also lateral geniculate nucleus (LGN) cells at higher 

levels in the visual pathway, three types of mechanisms have been found for the 

opponent-colour process : an achromatic mechanism and two chromatic mechanisms. 

The achromatic mechanism carries information on luminance (black and white) and 

responds information from M- and L-cones . One chromatic mechanism is responsible 

for red-green differences and processes information about differences between L- and 
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M-cones. The other chromatic mechanism is responsible for yellow-blue differences 

and processes the differences between S-cones and a combined signal from both L- and 

M-cones. 
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Figure 2-4: Densities of rods and cones as a function of eccentricity from the fovea along a horizontal 

meridian of the human retina (OsterberK. 1935). 

2.2.2.1 Cone Fundamentals 

Cone spectral sensitivity functions are called cone fundamentals. The cone 

fundamentals describe the sensitivity of the cones, but this is not the absorbance spectra 

of the cones because of the presence of other light absorbing elements, e.g., the cornea, 

the lens, the macula, etc (Stockman & Sharpe, 1999). Various methods have been used 

to measure the cone fundamentals. Details of the experimental technique for the 

measurement of cone fundamentals are described by Stockman and Sharpe (1999). A 

set of cone fundamentals (Stockman & Sharpe, 2000; Stockman and Sharpe et al., 1999) 

is shown in Figure 2-5. They are derived based on L- and M-cones spectral sensitivity 

measurements in single-gene red-green dichromats, or they are known protanopes (who 

are missing L-cone functions) and deuteranopes (who are missing M-cone functions), 

and S-cone spectral sensitivity measurements in S-cone monochromats and normal 

vision observers, and analysis of Stiles and Burch colour matching functions (Stiles & 

Burch, 1959). 

Since the spectral sensitivities of each type of cone overlap, the methods for their 

measurement are not as simple and precise as the colour matching methods that will be 

described in Section 2.3. This is the reason that basic photometry and colorimetry were 

not derived in terms of cone sensitivities. 
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Figure 2-5: Cone Fundamentals (Stockman & Sharpe, 2000: Stockman and ,c,,'harpe et al. , 1999). 

2.2.2.2 Physiologically-Based Chromaticity Diagram 

A physiologically-based chromaticity diagram was suggested by MaxweH (1860) 

who introduced a diagram comprised of an isosceles triangle with one cone fundamental 

at each comer Although the Maxwell triangle has the advantage that it incorporates an 

axis corresponding to each cone type. it has the drawback that the axes are not 

orthogonal , each being perpendicular to a side of the tnangle (MacLeod & Boynton, 

1979) 

MacLeod-Boynton (1979) suggested a chromaticity diagram which describes 

colours in terms of their relation with the L- M- and S-cones This is a two-dimensional 

chromaticity diagram presented on a constant luminance plane Assuming no 

contribution of the S-cone to the luminance, the luminance can be defined by the sum of 

the L- and M-cone sensitivities and chromaticity coordinates can be obtained by 

Equati on 2-1 

L M S 

(L + M) ' (1_ + M) 
Equation 2-1 

(L + M) ' 

The diagram, shown in Figure 2-6. consists of the relative excitation of the I_­

cones on the horizontal axis and the relative excitation of the S-cones on the vertical 

axis . This diagram has become one of the main methods for specifying colour stimuli in 

vision research, because of the advantage of the direct correlation of the coordinates to 

the cone fundamentals Another advantage is that the central gravity rule for colour 

mixture can be applied in a straight-forward way ; a mixture of two lights lies on the line 

between them at a distance proportional to the luminance of those lights (which are the 

coordinates of the diagram) (Benzschawel , 1992). However, its utility in terms of 
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colour specification has not been proved. A big disadvantage is that the diagram is 

perceptually highly non-uniform (MacLeod & Boynton, 1979). 

1.0 

0.8 

~ 0.6 
+ 
...J en 0.4 

0.2 

0.0 L--~_-,---,~ __ -J 

0.0 0.2 0.4 0.6 0.8 1.0 
L(L+M) 

Figure 2-6: MacLeod-Boynton chromaticity diagram with locus a/monochromatic stimuli. 

2.2.3 Spatial Properties of the Human Visual System 

The human visual system cannot only be considered in terms of spatially isolated 

stimuli, since objects are always seen in relation to their spatial configuration in the 

real-world. As has been shown in the previous sections, the human visual system 

processes information at many stages and each stage has various linear and non-linear 

characteristics. The fact that there are many things we do not understand about the 

neural processing in the eye/brain system leads to limitations in the description of 

human visual perception. Therefore, psychophysical measurements are often conducted 

in order to explore the various phenomena of visual perception. The spatial 

characteristics of the human visual system are typically explored through 

psychophysical measurements of contrast sensitivity which provide information about 

the ability of the eye to discriminate in a spatial sense, in terms of both luminance and 

chromaticity. The contrast-sensitivity function (CSF) is a measure of the contrast 

sensitivity of the human visual system as a function of a spatial frequency. The CSF 

resembles the modulation transfer function (MTF) associated with both In Image 

science and optical systems. The MTF describes the amount of contrast reduction as a 

function of spatial frequency. If a sine-wave grating is passed through a perfect optical 

system, the image will still be a sine-wave grating but will have a slightly reduced 

contrast, or modulation, compared to the original object. If the eye only consisted of an 

optical system, the perceived luminance contrast of a sine-wave grating would be 

similar to the MTF. However, since the human visual system consists of both optical 

and neural processing elements, the characteristics of the CSF differ from that of the 

MTF. For instance, the luminance contrast attenuates at both high and low spatial 
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frequencies. One reason for the attenuation of contrast at low frequencies is the lateral 

inhibition within the retinal ganglion cells. A typical retinal ganglion cell presents a 

centre region with either excitation or inhibition and a surround region with the opposite 

sign. Therefore, when the spatial frequency is very low, a bright bar in a stimulus 

pattern covers both the inhibitory and the excitatory region of the ganglion cell. 

Moreover, it is known that the information passed through the retinal image can be 

discriminated according to its orientation and spatiaVtemporal frequency in further 

processes (such as in visual cortex, (Wandell, 1995». 

The contrast sensitivity of the human visual system is normally assessed by 

displaying sine-wave gratings of specific spatial frequencies and asking observers to 

adjust the contrast until they can just detect the presence of the grating against the 

uniform background (Westland, 2002). The usual defmition of contrast of a sine-wave 

grating is given by the Michelson contrast equation (Michelson, 1927) as shown in 

Equation 2-2. 

M == I max - I min 

Imax + I min 

Equation 2-2 

where M is a measure of contrast, Irnax and Imin are the maximum and minimum 

intensities in the stimulus. Contrast sensitivity is then defined as the inverse of the 

contrast threshold. 

It should be noted that contrast sensitivity is dependent on many factors including 

stimulus size, viewing distance, retinal position, age of an observer, eye movement and 

observation time. Therefore, the CSF is not unique. The extent to which the CSF is to 

account for vision in the everyday environment is unclear: in everyday vision, contrast 

levels are usually above threshold, but the CSF describes only visual thresholds and so 

one .may question the usefulness of the function. However, it was found that the CSF 

incorporated with the metrics for image-difference and image-quality assessments 

seems to give reasonable results, although these are superthreshold applications (Barten, 

1990; Bouzit & MacDonald, 2001; Sun & Fairchild, 2004). 

In the following sections, the factors that affect the human contrast sensitivity and 

the CSF resulted in the influences of these factors are reviewed. 
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2.2.3.1 Luminance CSF 

There have been many experiments involving the measurement of the luminance 

CSF (Campbell & Robson, 1968; Carlson, 1982; van Meeteren & Vos, 1972; Watanabe 

and Sakara et al., 1976), but since the measurements were carried out using various 

experimental conditions, the data were not always comparable. 

The typical shape of the luminance CSF for observers with normal VISIon, 

measured using stimuli consisting of a luminance-varying grating with central fixation 

at photopic levels can be seen in Figure 2-7 where the contrast sensitivity is plotted 

against the spatial frequency (cycles/degree). The highest sensitivity is usually found in 

the middle spatial frequency range at approximately 2-6 cycles/degree, with a sharp 

drop in sensitivity towards high spatial frequencies and reaching zero at about 60 

cycles/degree (the point at which detail can no longer be resolved by the eye), and with 

a slower loss in sensitivity at low spatial frequencies; thus the CSF exhibits a bandpass 

filter. However, this shape applies only to the CSF measured using the variable 

luminance gratings. The CSF for chromatic stimuli often differs from this shape. Also, 

it is known that the sensitivity and shape of the functions change with various factors as 

listed above. 
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Figure 2-7: Schematic diagram to show the luminance CSF (Mullen. 1985). 

The CSFs shown, in Figure 2-8, were measured by van Meeteren and Vos (1972) 

at various luminance levels from 10.4 cdlm2 to 10 cdlm2 using white light. As the 

luminance levels are progressively reduced, the contrast sensitivities generally reduce 

and the point of highest sensitivity moves to lower ~patial frequencies. Finally, when 

the rods dominate vision, the shape becomes that of a lowpass rather than a bandpass 

filter (when less than 0.01 cdlm2). At mean luminance levels over 1 cdlm2, the contrast 
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sensitivities at lower spatial frequencies remain constant (although Figure 2-8 shows the 

CSFs up to 10 cd/m2, this consistency at low luminance can be seen for the CSFs at 

more than 10 cd/m2 (Wandell 1995)) . The range in which contrast sensitivity becomes 

constant is called Weber 's law regime (Wandell 1995) Weber 's law can be expressed 

by V I K where V represents the difference in threshold, 1 is intensity of the 

background and K is a constant 

Weber ' s law for CSFs is imprecise because Weber' s law does not hold at high 

spatial frequencies and at low mean luminance levels . However, it suggests the 

importance of contrast rather than absolute intensity (absolute luminance levels) for the 

human visual system . For example, the mean luminance levels in the experimental 

results shown in Figure 2-8 vary by a factor of 105
, yet the contrast sensitivity generally 

varies by only a factor of approximatel y 20. The pattern of results suggests that the 

visual system preserves the contrast sensitivity, as suggested by Weber' s law, rather 

0 .1 1.0 10 0 100.0 

spatial frequency (cycles/degree ) 

FiS(llre 2-8: The contrast sensitivity van es with averaRe lunllnance levels (van / ... feeleren and 1 'as, 1972) 

F.ach curve shows a CSF at different average luminance levels f rom IO-lcd1lr/ to 10cdln/. , It the low 

luminance levels (from 0. 01 cd".,·,: to 0. 0001 cd'I/I~). the C'SF~' exhih it a Iml'pass fi lter. A t the luminance 

levelsfrom 0.1 cd m:to 10 cd m:, the CSFs exhihit a handpassfilter 

Another factor that affects the contrast sensitivity is the angular size. The contrast 

sensitivity increases as the angular display sizes become larger Carlson (I 982) 

investigated the importance of the angular display size as shown in Figure 2-9 . The 

measurements were made for large ranges of angular display sizes extending from 0 .50 

to 600 The luminance of the test object was 108 cd/m2 with a surround luminance of 

one tenth of this value . 
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Besides these factors, the contrast sensitivities vary with the age of the observers 

(Iwata and Okajima el al.. 2001) and with retinal eccentricity (Virsu & Rovamo, 1979) 

The contrast sensitivities decrease for older observers, especially at higher spatial 

frequencies in comparison with younger observers. The previously introduced CSFs (in 

Figure 2-7 to Figure 2-9) are measured at the foveal vision . The contrast ensitivity 

tends to decrease at peripheral locations. One reason for these decrease 111 ensith ities 

is that the density of the cones falls off with visual eccentricity 0 that there are fewer 

sensors in the peripheral area to encode signals (Wandell 1995) 

2.2.3.2 Luminance CSF with Chromatic Backgrounds 

The contrast sensitivities of the luminance gratings measured USIng chromatic 

backgrounds are reported by Owens (2002). When the contrast sensitivit was 

measured using the fixed mean luminance of the gratings but the chromaticity of the 

field was varied from neutral to being chromatic in each of eight colour directions (red, 

yellow, green, blue, cyan, lime, purple and orange), it wa~ evident that the sensitivit\' to 

luminance contrast was consistently less for chromatic stimulI than for achromatic 

stimuli as shown in Figure 2-10 This suggests that the human vIsual system does not 

completely process achromatic and chromatic information independentl) In practice, 

achromatic and chromatic information does not usually appear separately. everal 

image-difference and image-quality metrics have been proposed to incorporate the 
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luminance CSF (Barten, 1990~ Bouzit & MacDonald, 2001~ Sun & Fairchild, 2004). 

These metrics may be overestimating the sensitivity of the visual system to luminance 

modulations when the metrics are applied to colour images. 

1~ ,--------- ----~---------------, 

10 100 
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Figure 2-10: Computational model prediction for mean luminance of 50 cdlm2 with various saturations 

(Westland. 2005). 

2.2.3.3 Chrominance CSF 

Typical chrominance CSF for isoluminant gratings (red-green and yellow-blue) is 

given in Figure 2-11 together with the luminance CSF. Different from the luminance 

CSF, the chrominance CSF exhibits a lowpass filter and significantly lower cut-off 

frequencies, and also the chrominance CSF for yellow-blue shows high-frequency 

attenuation at much lower spatial frequencies than is shown for the red-green due to the 

sparse retinal distribution of the S-cones (see Section 2.2.2). However, there are 

variations in the obtained results from the various experimental measurements. This 

may be caused by the fact that purely chromatic stimuli (isoluminant) gratings are not 

easy to produce. It should be noted that in colour imaging applications, it is impossible 

to separate image information into pure luminance and chrominance components. 

Therefore, for applications to image analysis, the precision of the chrominance CSF is 

not so critical (Lee, 2005). 
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2.3 Colorimetry 

Colorimetry is a scientific field concerned with the as ignment of a concl e 

numerical representation to any given colour stimulus. This is achieved by desclibing 

the spectral power distribution of any given colour stimulus by a much reduced number 

of parameters. Since three types of cones are used in normal human colour vision (see 

Section 2.2.2), it can be expected that three numbers are both necessary and sufficient. 

Therefore, colorimetry could aim to determine the three cone spectral response 

functions . However, in 1920s when this study was first attempted, it was not 

technically possible to measure the cone response functions so the three functIOn 

derived were not these functions but rather linear combinations of possible functions 

The functions were derived by psychophysical experiments, a c%llr matching 

experiment, and are known as the c%llr malchll1g/III1Cliol1s (CMFs). 

Pnmary Stimuli 

• Red 

Test Stimulus Green 

• Blue 

Figure 2-12: An example oJthe vlell'lngJteld oj a typical colour marchillg experlllle//(. 
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One of the important results of this experiment was that almost all colours may be 

visually matched by a suitably-adjusted additive mixture of three different lights, termed 

primary stimuli. As given in Figure 2-12, the basic colour matching experiments use a 

bipartite viewing field (with a certain angular subtense), where three primary stimuli 

and a test stimulus are presented onto two separate halves. An observer adjusts the 

radiant powers of the primary stimuli until the mixture appears to match the test 

stimulus. When the radiant powers of the primary stimuli are measured for 

monochromatic test stimuli spanning the entire visible spectrum, the CMFs 

r(.;l),g(.;l)andb(.;l) can be created, which are shown in Figure 2-13. Thus, a linear 

combination of the three primaries yields a colour stimulus Q(A.) as follows. 

Q(.;l) = Rr(.;l) + Gg(.;l) + Bb(.;l) Equation 2-3 

where R, G and B are scalars that represent the portions of the three fixed primaries that 

match a colour Q. R, G and B are called the tristimulus values of Q. 

The choice of primary is any set such that no one primary stimulus can be matched 

by a mixture of the other two. The unit for the radiant power of the primaries is selected 

so that the mixture of one unit from each of the three primaries can be matched to the 

equal-energy white which is the stimulus having equal radiant power at every 

wavelength. For any real primaries, it is not always possible to match the test stimulus 

with combinations of the primaries; it is sometimes necessary to add one of the 

primaries to the test stimulus. This results in negative values for the CMFs. It is 

however, computationally simpler if no negative values are included. Thus, the 

International Commission on Illumination (Commission Intemationale de I'Eclairage, 

CIE) defined alternative CMFs chosen such that any colour may be matched with 

positive amounts of three primaries which are imaginary stimuli existing only as 

mathematical constructs and are not physical realisable. These CMFs are denoted by 

x(.;l),y(.;l)andz(.;l) (CIE, 2004b) and shown in Figure 2-14. 

Although there is individual variability in the properties of the human colour 

visual system, there is a need for a set of functions for colour specification which 

represents the mean properties of human observers with normal colour vision. Such a 

set of functions are termed the Standard Colorimetric Observer. The CIE has 

established two Standard Colorimetric Observers (details are given in the following 

sections) (CIE, 2004b). 
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2.3.1 CIE 1931 Standard Colorimetric Observer 

The CIE 1931 Standard Colorimetric Observer (Figure 2-14) was adopted as the 

- -
CMFs x(A),Y(A)and Z(A) of the standard observer for a 2° viewing field based on the 

colour matching experiments carried out by Guild (1931) and Wright (1928), and also 

the CIE 1924 luminous efficiency function V(2) , Guild measured the CMFs using seven 

observers with broadband light as the primaries. Wright measured the CMFs of ten 

observers using monochromatic primaries at 650 nm, 530 nm and 460 nm . Both sets of 

data were transformed to a system that uses monochromatic primaries at wavelengths of 

700,0 nm, 546. 1 nm and 435 ,8 nm , It would have been possible to derive the CMFs if 

all the radiant powers of the monochromatic test timuli had been recorded in the 

experiments. Instead, CMFs were derived by assuming that the luminous eniciency 
- -

function V(2) is a linear combination of the CMFs r(A) ,g(A)andb(A.) . Since the CMFs 
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- -
r(A),g(A)andb(A) had negative values at some wavelengths, which was inconvenient, 

- - -
they were transformed to the new set of CMF's x(A),Y(A)andz(A) with the final 

adjustment of Y(A) to be the same as V(l). 

2.3.2 CIE 1964 Standard Colorimetric Observer 

The CIE recommended the 1964 Standard Colorimetric Observer (Figure 2-14) for 

a 10° viewing field based on data measured by Stiles and Burch (49 observers) and by 

Speranskaya (18 observers) (Stiles & Burch, 1959; Speranskaya, 1959). The CMFs 

- -
rlo(A),glO(A)andblO(A) were measured directly without using V(l). Stiles and Burch 

used different sets of primary stimuli (all monochromatic stimuli) for their investigation, 

but the final mean results were transformed to refer to primaries at 645.2 nm, 526.3 nm 

and 444.4 nm. Due to the presence of rods in 10° field, the luminance of the matching 

field was kept high in order to minimise the effect of rod participation in the results. 

Speranskaya used broadband primaries and the luminance levels of the experimental 

conditions were 30 to 40 times lower than in the Stiles and Burch study so that the 

results were affected by rod intrusion. In a manner similar to the CIE 1931 Standard 
- -

Colorimetric Observer, these sets ofCMFs rlO(A),gJO(A)andblo(A) were averaged, but 

weighted (the higher weight being given to Stiles and Burch study) after the correction 

for rod intrusion was made, and then, an all positive set of CMFs 
- - -
XIO(A)'Ylo(A)and Zlo(A) were derived. These CMFs are recommended for use when the 

viewing field is greater than 4°. 

2.3.3 CIE XYZ Tristimulus Values 

The CIE XYZ tristimulus values X, Y and Z are defined from the CIE Standard 

Colorimetric Observer CMFs by following Equations 2-4 (CIE, 2004b). 

An.. -
X = k ~ Q(A)X(A)L\A 

A=..l",;n 

..Ia. -
Y = k r Q(A)Y(A)L\A Equation 2-4 

A=..l",;n 

..Ia. -
Z = k ~ Q(A)Z(A)L\A 

A=..l",;n 
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where x(l),y(l)andz(l) are the CMFs of the CIE 1931 Standard Colorimetric 

Observer. A.min and Amax are the minimum and maximum wavelengths of the range over 

which the spectral power distribution is sampled (usually 360-830 nm or 380-780 nm) 

and LU represents the wavelength sampling interval. For a reflecting or transmitting 

object, Q(A.) can be replaced by S(A)O(A), where SeA) is the spectral power distribution of 

the light illuminating the object and 0(..1.) is the spectral reflectance factor or the spectral 

transmittance factor of the object. k in the above equation is a factor used to normalize 

the tristimulus values such that a perfectly reflecting or transmitting object will have Y = 

100; it can be expressed as Equation 2-5. 

k 
100 

Equation 2-5 

For a self-luminous object or illumination, Q(1) is the spectral power distribution 

and k is an arbitrary normalising factor, which is usually set to 683 ImlW so that Y 

corresponds to the luminance in cd/m2
. 

The CIE 1964 XYZ tristimulus values can be calculated in a similar manner using 

the CIE 1964 CMFs of the Standard Colorimetric Observer 

;lO(l)'Ylo(l)and;lO(l) instead of the ;(l),Y(l)and;(l). However, unlike y(l) , 

YlO(l) is not adjusted to the luminous efficiency so Y value does not represent the 

luminance in cd/m2
. 

2.3.4 CIE xy Chromaticity Diagram 

As described above, the colour of a stimulus can be specified using the CIE XYZ 

tristimulus values. Chromaticity coordinates (x. y and z) (CIE, 2004b) are defined as 

the ratio of the tristimulus values to their sum as shown in Equation 2-6. 

x Y 
x=X+Y+Z' y=X+Y+Z' 

Z 
z= I-x-y 

X+Y+Z 
Equation 2-6 

Chromaticity coordinates can be plotted to give a chromaticity diagram which is a 

two dimensional representation of colours. All monochromatic wavelengths map to a 

position along the boundary, which is called the spectral locus. The CIE xy 

chromaticity diagrams of the CIE 1931 and the CIE 1964 Standard Colorimetric 

Observers are shown in Figure 2-15 (a). Chromaticity coordinates are relative so that 
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colours which have the same relative spectral power di stribution map to the same 

chromaticity coordinates. Since the chromaticity diagram follows the properties of 

additive colour mixture, as shown in Figure 2-15 (b), the chromaticity point of an 

additive mixture of aA and fJB (a 2 0, fJ 2 0 and a t fJ 

connecting the chromaticity points of A and B. 

0.8 0 .8 

0.6 0.6 
o o 
>. >. 
o 0.4 o 0.4 

0.2 t 

I 

0.0 " 0.0 , 

1) falls on the straight-line 

0.0 0.2 0.4 0.6 0.8 QO Q2 Q4 0.6 Q8 
x or X lO x or X10 

Figure 2-1 5: xv chromaticity diagrams of the CIE .)'tandard Colorimetnc Ohserver. (a) The lIP- 1931 

Standard Colorimetric Observer (solid line) and the C1E 196-1 Standard Colorimetric Observer (dashed 

line). (b) Chromaticity diagram with the position of the additive mixture ofaA ... fJE. 

2.3.5 CIE 1976 UCS Diagram 

Although, the CIE xy chromaticity diagram is very useful for quantifying colour 

stimuli , it has one serious disadvantage which is the non- uniformity of colour 

distribution within its space . Equal changes in chromaticity coordinates do not 

correspond to equal perceptual differences . A different chromaticity diagram known as 

the ('IE 1976 Uniform Chromaticity Scale (UC,)) diaKram was developed by attempting 

to make a chromaticity diagrams that gave a more perceptually uniform representation 

of colour differences (CIE. 2004b) . The chromaticity diagram is produced by plotting 

u ' and v' which are defined by Equation 2-7. 

/I' :::: 
4X 4x 

:::: 

X + 15Y + 3Z - 2x + 12y+ 3 

v' :::: 
9Y 9y 

:::: 

Equation 2-7 

X + 15Y + 3Z - 2x + 12y+ 3 
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2.3.6 CIELAB Colour Space and Colour Differences 

A further attempt to define a perceptually uniform colour space is the Clf.UB 

colour space defined by the CIE in 1976 (CIE, 2004b). A colour stimulus can be 

described using perceptual attributes such as lightness, chroma and hue. The CIELAB 

system is comprised of three orthogonal dimensions L *, a* and b*. The vertical 

dimension L * represents the lightness; the two horizontal dimensions a* and b* 

represent the redness-greenness and yellowness-blueness perceptions of colours 

respectively. These coordinates are defined by the following transformation of the CIE 

XYZ tristimulus values given in Equation 2-8. 

L ... = 116f(Y I YJ -16 

a*=500[f(X I XJ-f(Y IYJ] 

b*=200[f(Y IY")-f(Z I ZJ] 

{ 

((l) )' J if (l) > (241116 f 
f({l) = (84111 08)({l) + 161116 if (l) ~ (241116f 

Equation 2-8 

where X Y, Z and Xn. Yn. Zn are the CIE XYZ tristimulus values for the stimulus and for 

the reference white respectively. The chroma Cab * and hue angle hab can be calculated 

from the following Equation 2-9. 

C*ob =.Ja*2 +b*2 

hob = tan-I (b * / a*) 
Equation 2-9 

Practical application of colorimetry requires the ability to evaluate a colour 

difference between two colour stimuli, which corresponds to the magnitude of the 

perceptual difference of two colour stimuli. The colour difference specified by 

CIELAB is quantified as the Euclidean distance between the co-ordinates of the two 

stimuli. These distances are expressed in Equations 2-10. 

M* ob =~M.. *2+ Aa*2+ Ab *2 =~M.. *2+ AC *2+ All *2 

where Mf * ab = 2(C * ab.1 C * ab.2 )112 sin[(hob •2 - hob . l ) /2] 
Equation 2-10 

where M* ab is the CIELAB colour difference and the subscripted number J and 2 

indicates the two colours whose colour difference is to be compared. 
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2.3.7 S-CIELAB Colour Difference 

S-CIELAB (Zhang & Wandell , 1997) has been proposed as a spatial extension to 

CIELAB to account for the influence of spatial informatIon on the colour appearance 

and colour discrimination of colours in digital Image The development of the 

CIELAB system was based on psychophysical data from the colour appearance 

assessments of relatively large uniform fields (subtend at least a 2° viewing field) . 

Therefore, CIELAB was found to be unsatisfactory when predicting the colour 

appearance and discrimination of smaller fields or fine patterned colours. For example, 

when a continuous-tone colored image is compared with a halftone version of the image, 

a point-by-point computation of the CIELAB colour difference produces large errors at 

most image points . Because the halftone patterns vary rapidly in a spatial sense, 

perceived these differences are blurred and the reproduction may still preserve the 

appearance of the original 

A flowchart representing the computational procedure of S-CIELAB is given in 

Figure 2-16 . The values representing the input image are initially converted into 

opponent-colour values that represent a luminance (achromatic), red-green yellow-blue 

channels. Spatial filtering is then performed to the channel individually The filters 

are selected with regard to the sensitivity of each channel of the human visual system. 

The final output can be computed in a manner similar to CIELAB ~* ab from the CIE 

XYZ values transformed from the filtered images. 

Colour Image 

Colour Separation 

Luminance 

Red-Green 

Yellow-Blue 

Spatial Filtering 

--.. XYZ - S-CIELAB 

Figure 2-16:.-4 flowchart ojS'-ClEL,IB computattOnal process (I.hang & Wandell, 1997). 
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2.4 Light-Field Formation and Measurements 

The human visual system is activated by light entering into the eye. Light radiated 

from light sources is reflected, refracted, scattered or diffused by the surface of an 

object. Interaction of all these sources of radiation creates a spatially and temporally 

distributed light-field that we perceive. It is important to understand the behaviour of 

light in terms of this interaction with a surface and the methods of instrumental 

measurement of light or colour. 

2.4.1 Light Behaviour 

When light is incident on the surface of an object, two phenomena occur. One is 

reflection and the other is transmission as shown in Figure 2-17. 

Incident Light Specular Reflection 

Refractive Index = nl 

Refractive Index = 1J2 

Transmitted Light 

Figure 2-17: Relationship between incident light, sp ecular reflection and transmitted light. 

The relationship between the incident and refracted light can be stated according 

to Snell's Law. When light passes through a medium of refractive index nj and enters a 

medium of refractive index n2, the light is bent (refracted) through an angle (Figure 

2-17) which can be expressed by Equation 2-11. 

sin 81 n2 --=-
sin 8 2 n l 

Equation 2-\ \ 

where 01 and O2 are the angles of the incident and refracted light respectively. The 

refractive index is dependent on the wavelength of light used. 

The light reflected from the surface of, for example, a paint film without 

transmission into the body of the medium usually has the same colour as the incident 

light, when it is viewed at an angle equal to that of the incident light B1; this directly 

reflected light is called the specular reflection (Figure 2-17). The angle of the specular 
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reflection follows the law of reflection which states that the angle between the incident 

light and the normal (the perpendicular to a surface) is equal to the angle between the 

specular reflection and the normal. The amount of specular reflectance Rand 

transmittance T for unpolarised light can be described by the angles of the incident light 

(}l and refracted light (}2 determined from Fresnel's law, Equation 2-12. 

R =.!.[sin
2

«(}1 -82 ) + tan
2
(81 -82 )] 

2 sin 2 (81 + 82 ) tan 2 (81 + 82 ) 

T=l-R 

Equation 2-12 

When the light enters a medium with an angle of incidence normal to the surface (00), 

the specular reflection R can be defined by the relative refractive indices of the two 

media nj, and n2.as expressed in Equation 2-13. 

Equation 2-13 

Light then penetrates the surface of the paint film, and enter the medium which 

contains pigment particles of many different sizes with a variety of scattering properties. 

When these particles are sufficiently small «-0.2 ~), they absorb the light without 

scattering as governed by the Beer-Lambert law (Beer, 1852; Lambert, 1760) which can 

be expressed by Equation 2-14. 

I = rIO-txt Equation 2-14 

where I and 10 are the intensity of the transmitted and incident light respectively, e is the 

molar absorption coefficient (l'morl'cm-l), c is the concentration of the absorbing 

species in the medium (mol·rl) and I is the distance that the light travels through the 

layer (the path length, cm). When it is described as T = II 10, Equation 2-14 can be 

written as Equation 2-15. 

10g(1 / T) = IXI = A Equation 2-15 

where T represents the transmittance and A is the absorbance. Since absorbance follows 

the additivity law, if the particles have different absorbance values, the sum of these 

gives the resultant absorbance. However, the Beer-Lambert law is restricted to a mono­

molecular pigment condition and application to non-scattering pigment particles. The 

Kubelka-Munk theory (Kubelka & Munk, 1931) would be more appropriate, which can 

be applied to translucent objects containing pigment particle distributions that are 

reasonably uniform. 
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When the pigment particles are larger, with a diameter in excess of ten times the 

wavelength, the light is not only absorbed but also scattered. The amount of scattering 

depends on the refractive indices of the pigments and the medium following Fresnel 's 

law. The scattered light therefore depends on the changes of the wavelength of the light. 

As shown in Figure 2-18, the light in the layers is scattered between the pigment 

particles' or absorbed by these particles in many different directions due to the irregular 

size and shape of the particles. Parts of the scattered light reach the top surface and thi s 

light then leaves the surface at all angles. This produces diffuse reflection. 

Incident Light 
Specular Reflection 

Figure 2-18: Microscopic view oflight travelling through a layer. 

Another important phenomenon is interference. This involves the interaction 

between waves of light as illustrated in Figure 2-19. When two light waves arrive at the 

same place, they add together. If the two waves are in phase (the peak of one wave 

coincides with the peak of another wave), the resulting amplitude is doubled. This is 

called constructive interference (Figure 2-19 (a)). If two waves are out of phase (the 

peak of one wave coincides with the trough of another), they cancel each other out. 

This is called destructive intef:ference (Figure 2-19 (b)) . Since the light consists of 

waves of various wavelengths, the reinforced visible wavelengths are pronounced more 

strongly in the perceived colour. 
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wave 1 ~ 
x -+ wave 1 + 2 " 

... ~ 
(a) 

wave 2 

Constructive Interference 

wave 1 ··rVrv 
(b) x -+ wave 1 + 2 

... ~ 
Destructive Interference 

wave 2 

Figure 2-19: Light interference. (a) Constructive interference. (b) Destructive interference. 

The resulting reflected light gives the colour of an object. The light behaviour is 

basically a simple concept, as has been demonstrated in the previous sections. However, 

the total reflectance is complicated, because it is a function of the wavelength of the 

incident light, the indices of refraction, and the absorption of the material and also the 

size of the particles which form the material. 

Characteristics of the reflected light in accordance with the surface roughness or 

smoothness are generally illustrated in Figure 2-20. When the light illuminates a 

mirror-like surface (a smooth polished surface), the incident light entirely reflects at the 

specular angle (Figure 2-20 (a)). If the surface is not completely polished, but not 

completely matt, the light is reflected in many directions but with a lower specular 

reflection (Figure 2-20 (b)). The light indiscriminately reflects at all angles without any 

specular reflection (diffuse reflection) when the surface is completely matt (Figure 2-20 

(c). 

Mirror 
(a) 

Semi-matt 
(b) 

Matt 
(c) 

Figure 2-20: Light reflection o/three types o/surface. (a) Mirror. (b) Semi-matt. (c) Matt. 
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2.4.2 Light/Colour Measurements 

Colour measuring instruments, such as a spectroradiometer and a 

spectrophotometer, are designed to measure colours in terms of radiance, reflectance 

and the CIE colorimetric specifications. As has been demonstrated in the previous 

section, the angles of illumination and viewing are important. Therefore, in colour 

measuring instruments, the illumination and viewing geometry are critical. The CIE has 

recommended different types of geometry which are appropriate for the measurement of 

surface colours (CIE, 2004b). Schematic diagrams of four of these geometries are given 

in Figure 2-21, which are specified as 45°/normal (45/0) and Norma1l45° (0/45), and 

Diffuse/8° (d/8°) and 8°/diffuse (8°/d). The illumination and viewing geometry can be 

also described in terms of an aspecular angle which is the angle between a specular 

angle and a viewing angle. For colour measurement, it is generally recommended to 

only measure the diffuse reflection and not the specular reflection. Only the diffusely 

reflected light has properties that represent the colour of an object, since the specular 

reflection has the same colour as the incident light. The 45/0 and 0145 geometries 

(Figure 2-21) are therefore recommended so as to avoid the specular reflection. A 

diffusely illuminating white sphere, called an integrating sphere, is used to produce the 

dl8 and 8/d geometries. As illustrated in Figure 2-21, this is able to control whether the 

specular component is included or excluded in the measurement by adjusting a gloss 

trap mounted at the specular angle on the integrating sphere. If the reflection from the 

surface is perfectly diffused, the difference between the illumination and viewing 

geometries does not affect the colour. However, since most surfaces of materials are 

not perfectly matt, the geometry has to be specified. Some materials, such as metallic 

and pearlescent coatings, are especially dependent on illumination and viewing 

geometry. Therefore, the measurements made using more than two geometries are 

necessary to characterise their surface properties. 
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Figure 2-2 I: Schematic diagrams showing the CIE recommended illumination and viewing geometries: 

leji 0145 and 4510. right dl8 and 81d (Luo. 2002). 

2.4.2.1 Spectroradiometer 

A spectroradiometer is an instrument designed to measure the radiometric 

quantities, for example irradiance (in W·m-2 unit) or radiance (in W·sr-J m-2 unit), of an 

object over the visible spectrum with a fixed measurement interval such as Snm or 

I Dnm. A tele-spectroradiometer (TSR) is the most frequently used type of 

spectroradiometer. This normally consists of a telescope, a monochromator and a 

photo-detector and can be used for measurements of both surface and self-luminous 

colours. For accurate measurement, the instrument needs to be calibrated which is 

usually done by using a standard light source whose absolute spectral power distribution 

is known. Such standard light sources are usually avai lable from national standardising 

laboratories (e.g. , National Physical Laboratory) (Hunt, 1998). The advantage ofa TSR 

is that the resulting measurements can correspond to the actual conditions of viewing 

(Hunt, 1998). This can be achieved by setting up a TSR at the same position as was 

occupied by an observer' s eye, and by directing it at a target colour while it is 

illuminated by the same illumination in the same surroundings. 
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2.4.2.2 Spectrophotometer 

A spectrophotometer is often used to make measurements of surface colours. A 

spectrophotometer is designed to measure the ratio between the incident and reflected 

light of a surface across the visible spectrum with a fixed interval such as 5 nm, 10 nm 

or 20 nm, to give a reflectance value of a surface colour. The basic elements of the 

instrument are a light source, a monochromator and a detector. The instrument can be 

calibrated by comparison with the data of a set of standard samples, the BCRA-NPL 

ceramic tiles which are available from the National Physical Laboratory for this purpose. 

One of the CIE recommended geometries (Figure 2-21) is usually employed as 

illumination and viewing geometry of the instruments. Some spectrophotometers, often 

called gonio-spectrophotometers, are able to make measurements at a wide range of 

illumination and viewing geometries. This is particularly useful for the measurements 

of surfaces whose colours change as a function of these angles. 

2.5 Metallic Coatings 

Ever since the first automobiles were made in the late 1800s, there have been 

many changes in paint technologies. The majority of automotive paints produced until 

the 1950s were solid-colour coatings which are coatings with a uniform appearance 

irrespective of the angle of illumination and viewing. Later, special-effect coatings such 

as metallic and pearlescent coatings were introduced (McCamy, 1996). These special­

effect coatings exhibit differences in their perceived appearance with changes in 

illumination and viewing angle and thus these coatings are sometimes called 

gonioapparent coatings (Rodrigues, 2004) The increase in popularity of these coatings 

is due to the glamorous look which they give to a car. These coatings are also widely 

used on other products such as bikes, home electrical products and sportswear. 

The metallic coatings contain aluminium pigments which possess many of the 

characteristics of aluminium metal itself. Among these are resistance to corrosion, light 

reflection (visible, infrared and ultraviolet) and a unique lamellar geometry to the 

individual particle. The aluminium pigments are mainly manufactured from over 90 % 

pure aluminium metal, mineral spirits and suitable fatty acid, generally stearic or oleic. 

These three materials are atomised using a ball mill and flattened into flakes with a 

typical thickness between 0.1 and 2 ~m and a diameter of between 5 and 50 ~m. Thus, 
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the aluminium pigments are actually flakes, rather than being spherical or granular as 

are most other pigments (Akzo Nobel, 2004). 

An automobile coating is usually comprised of three layers as shown in Figure 

2-22 (Akzo Nobel, 2004). The ground coat is applied on to the substrate (panel). Then 

the colour coat (base coat) is treated. There are different types of the colour coat. A 

plain colour coat only contains solid-colour paint. A colour coat with special effects 

contains a mixture of solid-colour paint and metallic paint, or a mixture of solid-colour 

paint and pearJescent paint. On top of these two coatings, the clear coat is applied in 

order to protect the lower layers against weathering: it also gives the high gloss 

properties associated with these coatings. 

clear coat 
colour coat I base coat 

ground coat 

I substrate (panel) I 
Figure 2-22: Coating layers 011 an automotive panel. 

When metallic paint is incorporated within a coating, the aluminium flakes exist in 

many layers and do not tend to lie parallel to the coating surface (but this is dependent 

on the systems used). As the coating dries the layer becomes thinner and the flakes 

become more parallel to the surface. The orientation of aluminium flakes is one factor 

that gives the unique appearance of metallic coatings, since it affects the behaviour of 

reflected light (see Section 2.4.1). As shown in Figure 2-23 (a), the parallel alignment 

of the flakes allows more light to be reflected in the specular direction (mirror-like 

reflection) and thus gives less diffuse reflection. In addition, it leads to the appearance 

changes with the viewing angle. In contrast, as shown in Figure 2-23 (b), the light 

reflected from the randomly oriented flakes is scattered diffusely (Besold, 1990). 

38 



@;u 
coatin la ers}, e e 

~~~--su""':'b-st~ra~t;';e~~~~. L.-( =------------~ 

~ Good ~:)nlatiOn 

}4~~-=~~ 
Poor Orientation 

(b) 

Figure 2-23: Light behaviour cased by the orientations of aluminium flakes. (a) Parallel alignment of the 

aluminium flakes. (b) Random alignment of the aluminium flakes. 

The appearance of the coatings is not only influenced by the orientation of the 

flakes, but also their size. When the flakes are oriented parallel to the surface, the light 

reflects at the surface of the flakes and comes back in a specular direction, but the light 

reflected at the edge is scattered and comes back to the surface as diffusely reflected 

light. An example of the light reflected from coatings with coarse and fine flakes is 

given in Figure 2-24; a panel coated with coarse flakes leads to high brilliance or 

sparkle because of the more mirror-like reflection properties due to the larger area of the 

flakes, whereas a panel coated with fine flakes is much smoother but also darker due to 

the more diffuse reflection (Akzo Nobel, 2004). The arrows denote mirror-like 

reflection and the asterisks indicate diffuse reflection in Figure 2-24. 

coatin coating layers 
substrate " 'substrate 

Coarse Flakes Fine Flakes 

Figure 2-24: Relationship between aluminium flake size and light reflection. 

39 



2.5.1 Appearance of Metallic Coatings 

McCamy (1996, 1998) studied the appearance of metallic coatings by dividing the 

subject two categories: macro appearance and micro appearance. An example of 

macro appearance is the appearance of a metallic-coating material, which can be seen at 

a distance of a few meters. This effect can be represented by the appearance of colour 

and gloss. When the coatings are viewed at a distance of a meter or less, the details of 

the coatings (small-scale non-uniformity) can be perceived and this is known as micro 

appearance. It is also termed visual texture (Kirchner and van den Kieboom et al., 

2007). In a different way, Hunter (1977) suggested two categories of appearance 

criteria that are normally measured: chromatic and geometric. The chromatic attribute 

is the colour of a surface whereas the attributes associated with the geometric category 

could include gloss, haze, texture, etc. Thus, McCamy and Hunter grouped appearance 

attributes differently. However, they both stress the importance of texture which is the 

focus of the present study. In the thesis, the term visual texture is used henceforth. 

The following sections focus on the essential attribute, colour and the target 

attributes of this study, the texture of metallic coatings. 

2.5.1.1 Colour of Metallic Coatings 

Colour is obviously one of the most important attributes when describing the 

appearance of coatings (van Aken, 2006). The CIE introduced methods to quantify 

colours from the spectral properties of light reflected from a coating surface measured 

using a spectrophotometer (or a gonio-spectrophotometer) or spectroradiometer (or a 

gonio-spectroradiometer) (see Section 2.3 and Section 2.4). Traditional solid-colour 

pigments absorbs part of the incident light, while the remainder is diffusely scattered 

(Teaney and Pfaff et al., 1999). Therefore, the perceived colour is independent of the 

illumination and viewing angle and, consequently, a single instrumental measurement 

using one of the CIE recommended geometries such as 0/45 is sufficient to characterise 

the colour of solid-colour coatings. In contrast, the primary interaction between light 

and metallic coatings is the specular reflection from the aluminium flakes. Thus, the 

perceived brightness depends on the viewing angle, but is independent of the 

illumination angle, while the perceived chroma and hue are independent of both the 

illumination and viewing geometry (Nadal & Early, 2004). The pearlescent coatings 

usually contain mica interference pigments (interference; see Section 2.4.1) so that their 
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perceived chroma, hue, and brightness depend on both the illumination and viewing 

angles (Nadal & Early, 2004). Therefore, the wide angular dispersion of reflected light 

in these gonioapparent materials can be fully characterised by evaluating them using a 

range of geometries. Much work has been carried out to try to measure and characterise 

the appearance of metallic coatings and some ofthis work is reviewed in the followings. 

Alman (1984) evaluated the colour of metallic coatings instrumentally. The 

reflectance of metallic coatings with various flake types and solid-colour pigments was 

measured in six different illumination and viewing (detector position) geometries. It 

was found that an optimum set of geometries to characterise the colour of metallic 

coatings consisted of the measurements taken at three viewing angles. The angles are 

near the specular angle (aspecular angle of 15°), about 45° from the specular angle 

(aspecular angle of 45°) and far from the specular angle (aspecular angle of 110°) with 

an illumination angle of 45° from normal to the surface of a metallic coating. It was 

determined that the colour could be characterised by an interpolation between the 

minimum of these three measurements in terms of CIELAB L * using a second order 

polynomial; more measurements would only be served to improve the precision of the 

same function. In addition, a comparison was made between measurements made using 

varying illumination angles and a fixed viewing angle, and measurements made using a 

number of viewing angles with a fixed angle of illumination. It was found the angular 

dependence of the CIELAB values for a typical metallic colour was not influenced by 

these geometric differences. Later, the importance of these three angles (aspecular 

angles of 15°,45° and 110°) were verified by Rodrigues (Westlund & Meyer, 2001). 

Venable (1987) proposed a simple theoretical model for the reflectance factors as 

a function of a viewing angle, and was also found that measurements at three angles 

adequately characterise metallic coatings. The angles should be near the specular angle, 

more than 60° from the specular angle and an intermediate angle between them. 

However, slightly different geometries from the studies previously introduced, were 

recommended. They were measurements at the aspecular angles of 20°, 40° and 75° 

with normal incident illumination. 

Saris and Gottenbos et al.(l990) studied correlations between colour differences 

perceived by human observers and colour differences based on instrumental 

measurements. Instrumental measurements at seventeen different geometries (from 

three different instruments) were compared with the associated perceptual colour 

differences. It was found that the perceptual colour differences could be best 
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characterised using the instrumental measurements at the aspecular angles of 25°, 45° 

and 110° with an illumination angle of 45° from nonnal. 

Nicholls (2000), in a study similar to that of Saris and Gottenbos et al., also 

investigated correlations between instrumental and visual measurements. Instrumental 

measurements were made using a spectrophotometer with aspecular angles of 15°,25°, 

45°, 75° and 110° with an illumination angle of 45° from nonnal. Additionally, using an 

integrating sphere spectrophotometer, dl8 geometry with the specular component 

included (SPIN) and excluded (SPEX) were used. A total of 35 observers, consisting of 

17 professional (experienced) observers and 18 naive (student/untrained) observers, 

carried out the visual assessment of the colour difference between pairs of metallic 

coatings. A statistical analysis of the results showed that there were significant 

differences in perfonnance between the professional and naive observer groups; the 

professional observers were more consistent in their judgements. The measurement 

angles that were found to be important to describe the perceptual colour differences 

from the professional observers were SPIN, 25°, 45° and 110° aspecular. In comparison 

with this distinct group, the combined group of the professional and naive observers was 

considered as a representation of the general population. The angles of SPIN, 15°, 45° 

and 110° aspecular were shown to be important angles for the general population. 

Chou (2003) also evaluated the colour difference of metallic coatings in tenns of 

instrumental and visual measurements. Instrumental measurements were made at 

aspecular angles of 20°, 45°, 75° and 110° with an illumination angle of 45° from nonnal. 

The results showed that the combination of the measurements at the aspecular angles of 

15°, 45° and 110° could characterise the perceptual colour difference. This indicates 

that the measurement at the aspecular angle of 75° could be considered redundant. 

Various sets of the geometry have been recommended for the measurement of the 

colour of metallic coatings by different researchers. A common finding from these 

studies is the necessity for measurement at the more than one geometry for metallic 

coatings, and most researchers recommend at least three angles; one near the specular 

angle; a second at around 45° from the specular angle; and a third at far from the 

specular angle, with an illumination angle of 45° from the normal. 

The American Society for Testing and Materials (ASTM) (2003) recommended 

aspecular angles of 15°, 45° and 110° with an illumination angle of 45° from the nonnal, 

while Deutsches Institut fUr Nonnung (DIN) has recommended aspecular angles of 25°, 

45° and 75° with an illumination angle of 45° from nonnal (lmura, 2006). 
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A more intensive approach to the characterisation of macro appearance is to 

measure the bidirectional reflectance distribution function (BRDF) which describes the 

geometrical reflectance properties of the surface in absolute terms. Computational 

models have been proposed to predict the BRDF from multiple scattering from 

microstructural properties (e.g., surface roughness, pigment size, and pigment spatial 

distribution) (Sung and Nadal et al., 2000; Sung and Nadal et al., 2002). The BRDF 

gives more information about the distribution of the reflected light which can be utilised 

to correctly render images for appearance simulation. 

2.5.1.2 Visual Texture of Metallic Coatings 

There is a large amount ofliterature on texture in general which will be introduced 

in the next section. The importance of visual texture for metallic coatings, has been 

referred to, but the available literature is relatively limited, e.g., (Kang and Butler et al., 

2000; Kirchner and van den Kieboom et al., 2007; McCamy, 1998). It is known that 

visual texture affects the perception for colours (Han and Luo et al., 2005a, b; Hunter, 

1987). Unlike colour, there is no standardised method for numerical evaluation of 

visual texture. Therefore, in order to model total appearance, visual texture needs to be 

perceptually and instrumentally (computationally) characterised. 

Visual texture changes depending on illumination and viewing geometry, surface 

roughness, and the size and spatial orientation of aluminium flakes, as well as other 

appearance attributes of metallic coatings. 

In the scientific study of visual texture for metallic and pearlescent coatings, one 

particular aspect of appearance is often considered. This has been called glint (Kirchner 

and van den Kieboom et al., 2007; McCamy, 1998), sparkle (Baba and Miura et aI., 

2005; Durikovic, 2003; Ershov and Kolchin et al., 2001; Prakash and Karmes et al., 

2005; Rodrigues, 2004) or glitter (Arai & Baba, 2005; ASTM, 2006; McCamy, 1998; 

Sung and Nadal et al., 2000). According to the Cambridge English Dictionary 

(Cambridge, 2005), general definitions of these words are "small bright flashes of light 

reflected from a surface" for glint, "bright shine with a lot of small points of light" for 

sparkle and "a lot of small bright flashes of reflected light" for glitter. So the general 

definitions of these words are, in fact, very similar. However they may be used to 

indicate different phenomenon. For instance, glitter is also applied bright areas which 

are seen under directional illumination but it should not be confused with tiny spots or 
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sparkle caused by individual flakes (Durikovic, 2003). Even if these three tenns imply 

the same phenomenon (such as bright flashes/spots), they are made complicated by the 

gonioapparent nature of metallic coatings (McCamy, 1998). For example, high 

intensity bright flashes/points can be seen on metallic coatings at small aspecular angles 

where a large percentage of the flakes reflect light specularly, but the contrast between 

the bright flashes/points and their background is not as high as it is at large aspecular 

angles. At large aspecular angles bright flashes/points are more separate and distinct 

from the background due to the high contrast between them. This indicates that at least 

two different phenomena cause the attributes tenned glint, sparkle and glitter. 

Another important aspect of visual texture for metallic coatings IS called 

coarseness (Kirchner and van den Kieboom et at., 2007) or graininess (McCamy, 1998). 

For example, coarseness can be described as "composed of relatively large parts or 

particles (Merriam-Webster, 2005)", "loose or rough in texture (Merriam-Webster, 

2005)" or "related to the spatial repetition period of the local structure (Xin and Shen et 

at.,2005)". These tenns seem to relate to the most fundamental effect of visual texture 

for many materials (Shen & Hie, 1992; Tamura and Mori et at., 1978; Xin and Shen et 

al., 2005). Although these attributes are very common for describing texture, again 

their appearance for metallic coatings changes due to goniometric effects. McCamy 

(1998) remarked that when a metallic coating is viewed at small and large aspecular 

angles, the bright flashes/points can be observed, but at intennediate angles, the 

attribute turns to graininess. 

It has been seen that, although general concepts of common visual texture 

attributes are implicitly simple, they do not clearly indicate the phenomenon which can 

be seen on metallic coatings because of the complexity of the appearance of the coatings. 

This suggests that it is necessary to define the attributes in such a manner as to include a 

specification of the viewing conditions. 

The sponsor of this project, Akzo Nobel identities the tenns glint and coarseness 

as the most important visual texture attributes of metallic coatings and, in order to avoid 

confusion, proposed strict definitions taking into account the viewing conditions 

(Kirchner and van den Kieboom et at., 2007): 
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"Glint Impression is the overall impression of several or many tiny light­

spots (' 'glints' ') that are strikingly brighter than their surrounding. Instead 

of brightness, it may also be their color that distinguishes the glints from the 

background The glints may be expected to switch on and off when the 

observation/illumination geometry is changed. Glint Impression is visible 

under intense unidirectional illumination conditions only. " 

"Diffuse Coarseness is the perceived contrast in the light/dark irregular 

pattern exhibited by effect coatings viewed under diffuse illumination 

conditions. " 

There are other attributes of visual texture which can be seen on metallic coatings 

such as coherence glitter and mottle (McCamy, 1998). However, they are more difficult 

to recognise visually and therefore considered insignificant to the current state of 

appearance modelling. 

Instrumental measurements of macro appearance, e.g., colour, are often made by 

macroscopic methods using a spectrophotometer or a spectroradiometer. However, 

generally these instruments give the information from integration of an area which is 

too large to resolve the necessary detail for texture analysis. Therefore, microscopic 

methods, using a CCD camera or a micro-spectrophotometer must be employed to 

analyse texture information. For texture in general, a variety of computational methods 

have been proposed in order to describe texture numerically, based on information 

obtained from two-dimensional digital images (this will be reviewed in the following 

sections). Although many texture analysis methods exist, there is no recognised method 

for any surface. Therefore, it is necessary to develop a method for numerical expression 

of texture, particularly for metallic coatings. 

A study by Arai & Baba (2005) investigated the texture of metallic and 

pearlescent coatings based on a two-dimensional digital image captured using a camera 

with a geometry of 45/0. Sets of silver, blue and red metallic coatings were used as 

samples where each colour group had four samples that were different in the physical 

size of the aluminium flakes contained in the coatings: fine, medium fine, medium and 

coarse. It was found that a power spectrum derived from the Fourier transform of the 
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two-dimensional brightness distribution is larger when the coatings contain larger sizes 

of flakes (see Section 2.6.2.1). Although this implies a relation between visual texture 

and the spatial frequency domain, the extracted information from an image was 

evaluated according to the physical compositions of the coatings and not compared with 

the perceptual coarseness or fineness. 

It should be noted that manufacturers use the term coarse or fine to indicate the 

physical size of aluminium flakes contained in coatings. Perceptual coarseness or 

fineness should not be confused with the physical properties of flakes. It is known that 

appearance is not only dependant on flake size but also on the orientation of flakes, 

other pigments contained in the coatings, and the illumination and viewing geometry 

(Kirchner and van den Kieboom et al., 2007) (also see Section 2.5). 

Visual texture has also been studied in terms of the modelling of small scale of 

light interactions within the structural properties of coatings for rendering the 

appearance (Durikovic, 2003; Ershov and Kolchin et al., 2001). Although the methods 

can be used for the simulation of appearance, for example on a computer display, the 

modelling of the light reflection based on the microstructural properties is 

computationally expensive. In practice, computationally inexpensive methods are 

always preferred. Also, there is a need for the automobile refmishing industry to 

measure the visual texture without knowing the composition of the coatings. Therefore, 

the approach of the present study is to characterise the visual texture, coarseness and 

glint, of metallic coatings without any structural information, with less time-consuming 

and computationally inexpensive methods. 

2.6 Texture Analysis 

The following sections discuss texture in general and do not focus on the texture 

of metallic coatings which has been discussed in Section 2.5.1.2. Texture is a term that 

refers to properties that represent the surface of an object. ASTM (2001) defined 

texture as; the visible surface structure depending on the size and organization of small 

constituent parts of a material; typically, surface structure of a woven fabric. Moreover, 

it was suggested by Pointer (2003) that physical texture and optical texture be 

differentiated. Physical texture can be associated with physical, topological, variability 

in a surface and optical texture is texture associated with spatial variation in appearance 

caused by non-uniformity of colorant. Texture is a widely used term and perhaps 
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intuitively obvious but there are, as yet, no precise methods to describe or measure , It is 

often described subjectively using terms such as coar e, fine, smooth, granulated and 

rippled , 

In computer vIsIon applications, vanous texture analysi s methods have been 

proposed to compute features of texture based on digital images captured from any 

surface (see the texture analysis reviews, e.g , in (Chen and Pau el al. , 1999» , Texture 

is represented in a digital image by variation in the pixel values. Computed features are 

extensively used for any of three purposes : lexlure c/ass~fical1on, lexture sewnentatiol1 

and lexture 5ynthesls. 

Texture classification refers to the process of grouping images of texture into 

classes, where each resulting class contains similar patterns according to some ~im i l arity 

criterion as illustrated in Figure 2-25 , For example, a particul ar region In an aeri al 

image may belong to agricultural land, a forest region , or an urban area, Each of these 

regions has unique texture characteristics, 

Group 2 
-[ 

Group 1 

Figure 2-25: ClasstjicatlOn offi ve /maRes contGined different chnrnctef'lsl/W o/cex/Llrc , 

Texture egmentation is used to refer to the process of dividing an Image into 

homogeneous regions according to orne homogeneity criterion , For example, the four 

different textures in an image shown in Figure 2-26 (a) can be identified a. separate 

textures as shown in Figure 2-26 (b) . 

(a) (b) 

Figure 2-26: (a) An image cons/sling 0/ (iJUr dlstlncl leXTure r('glOm, rh) thl .IOUI' Idt!ntJlil!d le:(/ur_' 

regIOns in the Image - the buundar.~ map. 
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Texture synthesis is often used for image-compression applications. It is also 

important in computer graphics where the goal is to render object surfaces which are as 

realistic as possible. An example is given in Figure 2-27. 

(a) (b) 

Figure 2-27: (a) An image 0/ the Brodatz textures. (b) The Synthesized image ba'ied on parameters 

extracted/rom the image shown in (a) (Portilla & Simon celli, 2000). 

Although many image texture analysis methods have been proposed, there is no 

unique method which can be applied because of the wide variation in texture. The 

following sections review some of the traditional methods in three categories: statistical 

methods, signal-processing methods and structural methods . 

2.6.1 Statistic Methods 

Various statistic methods are used to define the texture of an image by a set of 

statistics extracted from the texture regions. Common descriptive statistics, such as the 

mean, median, mode and variance can be employed to summarise information 

according to the image pixel values. Histograms of an image are also often employed to 

analyse the characteristics of texture by using descriptive statistics. However, 

histograms do not give any hint as to where the pixels are located within an image 

(Castleman, 1996). For instance, a black and white checkerboard will have the same 

histogram as an image in which the top halfis black and the bottom halfis white. 

The two-dimensional spatial properties of an image are obviously important 

indicators of texture. Therefore, in order to incorporate the spatial information, 

statistical analyses are often applied not directly to individual pixel values, but to pre­

processed information from an image. Some of these methods are introduced in the 

following sections. 
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2.6.1.1 Spatial Grey Level Dependence Method 

The spatial grey level dependence method (SGLDM) (also called the co­

occurrence matrix method) is concerned with the grey-level spatial independence of 

pixels and their spatial distribution in a local area (Haralick, 1979; Haralick and 

Shanmugam et al., 1973). Various statistics describe how the grey levels tend to occur 

together in pairs (note that this method is usually applied only to a greyscale image). 

The SGLDM is based on a matrix P do{X, y) which is the joint occurrence of grey 

levels x and y for two pixels with a defined spatial relationship. The spatial relationship 

is defined as a distance d (in terms of the number of pixels) and angle e. The direction e 
usually takes values of either 0°, 45°, 90° and 135° but distance d can be any number of 

pixels. Figure 2-28 describes the relation of a pair of pixels in an image. For a given 

distance parameter d = 1, both 5 and 1 are paired with the central pixel X for 0° direction 

(a directional parameter () = 0°). Similarly, 4 and 8 are paired for () = 45°, 3 and 7 for () 

= 90° and 2 and 6 for () = 135°. 

e = 135° e = 90° a = 45° 

678 

e = 0° 

Figure 2-28: Indications of a directional parameter () for o~ 45~ 90 0 and 135 0 and examples of a pair 

with a pixel X 

The process of acquisition of a matrix Pdo{x, y) is best explained by an example 

using an image I with four grey levels (0-3) as described in Figure 2-29 (a); I(i, i) 

represents the pixel intensity at a pixel position (i, i), where i and i represent the rows 

and columns in the image (i andi = 1,2,3 and 4 in this example). All the combinations 

of grey levels x and y for two pixels and a general form for the matrix Pdrl...x, y) (the 

position of pairs in a matrix Pdo{X, y)) are shown in Figure 2-29 (b). Figure 2-29 (c-t) 

gives the matrices Pdri..X, y), which contain the occurrence (the number of times) each of 

the respective pairs of pixels, for () = 0°,45°, 90° and 135° respectively with d = 1. Thus, 

when () = 0°, the pair of grey levels (x, y) = (0, 0) occurs four times at pixels (i,i) = (1, 

1) and (i,i) = (1, 2), pixels (1, 2) and (1, 1), pixels (2, 1) and (2,2), and pixels (2, 2) and 

(2, 1). 
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Image 
2 3 4 

0 0 1 1 
1 (0.0) (0.1) (0.2) (0.3) 

0 0 1 1 
2 (1.0) (1.1) (1.2) (1.3) 

0 2 2 2 
3 (2.0) (2.1) (2.2) (2.3) 

2 2 3 3 
4 (3.0) (3.1) (3.2) (3.3) 

(a) (b) 

0° 45° 90° 135° 

4 2 0 4 0 0 6 0 2 0 2 3 0 

2 4 0 0 2 2 0 4 2 0 2 0 

0 6 0 2 4 2 2 2 2 3 6 2 

0 0 2 0 0 0 0 0 2 0 0 0 2 0 

(c) (d) (e) (f) 

Figure 2-29: (a) A 4 x 4 image with four grey levels 0-3. (b) General form of and grey level spatial 

dependence matrix for an image with grey levels 0-3 - the elements stand for the grey levels x and y for 

two paired pixels. (c)-(f) Matrices P d6(x, y) with a distance parameter d = J for () = o~ 45~ 90° and J 35° 

respectively. 

A total of fourteen statistical feature measures based on the SGLDM have been 

developed to summarise the matrix Pdi.,x, y) numerically and allow meaningful 

comparisons between various textures (Haralick and Shanmugam et 01., 1973). Energy, 

Contrast and Entropy are commonly selected as texture features. Energy (also called 

the angular second moment) measures the homogeneity of a texture and is given in 

Equation 2-16. In a smooth texture, the matrix Pdi.,X, y) will have few entries of large 

magnitude; therefore the energy will be larger. Contrast (also called inertia) gives an 

indication of the amount of local variation of intensity presented in an image and can be 

computed using Equation 2-17. Entropy measures the complexity of a texture which 

can be calculated using Equation 2-18. 

Energy (Angular Second Moment): LLP2d9 (X,y) Equation 2-16 
x y 

Contrast: LL(X - y)2 ~9(X,y) Equation 2-17 
x y 

Entropy: LL~9(X,y)log~9(x,y) Equation 2-18 
x y 

If the texture is coarse and distance d is small compared with the size of texture 

elements, the pairs of pixels at the distance d should have similar grey levels. On the 

other hand, for a fine texture, if distance d is large compared to the size of the texture 

elements, then the grey levels of the pairs separated by the distance d should usually be 
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quite different. Therefore, a good way to analyse texture coarseness/smoothness is to 

apply and compare texture features obtained using various values of distance parameter 

d (Singh & Singh, 2002). Similarly the directional characteristics of texture can be 

analysed by varying the direction parameter 8. 

Although this is one of the most popular statistical methods and has been 

successfully used (Conners & Harlow, 1980; Ohanian & Oubes, 1992; Weszka and 

Oyer et al., 1976), it suffers from a number of difficulties. There is no well-established 

method of selecting the distance parameter d, and too many texture features are obtained. 

For images comprising many millions of pixels and quantised to 8 bits (or more), it can 

be seen that the size of a matrix Pdg(X, y) is very large and there are also many 

combinations of the distance parameters. Although the texture features obtained from 

this method are simple, implementation and comparison are computationally very 

expensive. 

2.6.1.2 Grey Level Difference Method 

The grey level difference method (GLOM) is similar to the SGLOM, but the 

GLOM computes texture features based on a vector of absolute difference in grey levels 

between pairs of pixels in an image. For any given displacement d = (dx, dy ) where dx 

and dy are integers to indicate the distances m an Image, let 

I'(i,j) = 11(i,j) - 1(i + d, ,j + d}.)I· A vector P J(x) is a probability density of /'(i, j). If 

there are m grey levels, this has the form of an m-dimensional vector. The xth 

component of P J(x) is the probability of r(i, j) having a value of x. Similar to the 

SGLOM, texture features: Energy, Contrast, Entropy and Mean can be computed from 

the Equation 2-19 to Equation 2-22 (Lew, 2001). 

Energy: L~(X)2 Equation 2-19 
x 

Equation 2-20 

Entropy: - L P d (x ) . loge P d ( X )) Equation 2-21 
x 

Mean: (l/m)Lx~(x) Equation 2-22 
x 

If a texture is coarse and the elements of the parameter d = (dx , dy ) are small 

compared to the texture element size, the pair of pixels at separation d = (dx , d~.) usually 
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has similar grey levels resulting in a small value of I'(i,j). Then, the elements of P J..x) 

will be concentrated near x = o. 

2.6.1.3 Neighbouring Grey Level Dependence Method 

The neighbouring grey level dependence method (NGLDM) (Siew and Hodgson 

et al., 1988; Sun & Wee, 1983) uses an angular independent feature by considering the 

relationship between a pixel and its all neighbouring pixels at the one time instead of in 

one direction at a time. This method eliminates angular dependency, while at the same 

time reducing the computation required to process an image. It is based on the 

assumption that a grey level dependence matrix of an image can adequately specify the 

textural information. This matrix is computed from the grey level relationship between 

every pixel in an image and its all neighbours at the certain distance d. This matrix 

takes the form of a two-dimensional array PaJ..x, y), which can be considered as 

frequency counts of the grey level variation in an image. The size of PaJ..x, y) is Ng x 

Nr where Ng is the number of possible grey levels and Nr is the number of possible 

neighbours to a given pixel in an image. The P aJ..x, y) matrix can be obtained by 

counting the number of pixel pairs having a difference between each pixel I( i, J) and its 

neighbours (with a certain distance d) equal to certain number a. Figure 2-30 shows an 

example of an NGLDM matrix Pad computed from a 5 x 5 image having four grey 

levels (0-3) with the distance between neighbour d = 1 and the difference between its 

neighbour equal to 0 (a = 0). 

Image NGLDM number (Nf) 

1 1 2 3 1 0 1 2 3 4 5 6 7 8 

0 1 1 2 2 ~ 0 0 0 1 0 0 0 0 0 0 
III 

0 0 1 1 0 0 0 0 0 Q) 0 0 2 2 1 
> 

3 3 2 2 1 ~ 2 0 0 0 0 4 1 0 0 0 
>. 

0 0 2 0 1 ~ 3 0 
OJ 

1 0 0 0 0 0 0 0 

(a) (b) 

Figure 2-30: An example of a NGLDM (a) A 5 x 5 image with four grey levels 0-3. (b) A matrix P Jx. 

y) computedJrom the image in (a). 

For the purpose of extracting textural information, the following features: Small 

number emphasis, Large number emphasis, Number non-uniformity, Second moment 

and Entropy can be computed. Small number emphasis measures the fineness of texture 

in an image and large values of this feature represent finer texture (Equation 2-23). 
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Large number emphasis measures the coarseness of the texture and large values 

represent coarser texture (Equation 2-24). Second moment is a measure of the 

homogeneity (Equation 2-25). In a homogeneous image, there are only a few large 

numbers of entries in the matrix PaJ,x, y). The second moment is the sum of the squares 

of all entries in the matrix PaJ,x, y). Number non-uniformity and entropy are also both 

related to the coarseness of an image texture (Equation 2-26 and Equation 2-27). 

Small Number Emphasis: LL Pad(~'Y) ILL~Ax,y) 
x y y x y 

Equation 2-23 

Equation 2-24 
x y x y 

Equation 2-25 
x y x y 

Number Non-uniformity : L[L~Ax,yW ILLPad(X,y) Equation 2-26 
y x x y 

Entropy: LLPad(x,y)log(Pad(x,y»ILL~Ax,y) Equation 2-27 
x y x y 

2.6.2 Signal Processing Methods 

A common denominator for most signal processing methods is to submit a 

textured image to a linear or non-linear filter, for example, a Law filter (Laws, 1980), a 

Laplacian operator (Lloyd, 2007), a Fourier domain filtering and a Gabor filter 

(Kruizinga and Petkov et al., 1999) followed by some statistical analysis. Hence, this 

approach is sometimes referred to as filtering methods (Randen & Hus0Y, 1999). 

Psychophysical research indicates that neural processing in the human visual system 

analyses an image by decomposing it into the frequency and orientation components 

(Campbell & Robson, 1968). This is the main motivation for the most signal processing 

methods that extend feature extraction into the spatial frequency domain. Particularly, 

many researchers believe that the human visual system acts as a crude Fourier analyser 

(Hendee & Wells, 1997). As demonstrated by the contrast-sensitivity function (CSF) 

(see Section 2.2.3), the human visual system processes information within a restricted 

range of spatial frequencies. 
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2.6.2.1 Fourier Domain Filtering 

Fourier transform has been used as an efficient computational tool in a wide range 

of applications. A two-dimensional discrete Fourier transform (DFT) converts a digital 

image into a two-dimensional complex function of energy, also referred to as magnitude, 

and phase, in the frequency domain (Gonzalez & Woods, 1992). The two-dimensional 

DFT of an image I(i,j) having size M x N is defined by Equation 2-28. 

I M-IN-I [ ] 
F(u, v) = - L L I(i, j) exp - p2tr(ui / M + vj / N) 

MN i:Oj:O 
Equation 2-28 

where p = n , u and v are the frequencies corresponding to i and j respectively, and 

0:::; u :::; M -I and 0:::; v :::; N -1. The inverse of the function F(u, v) can be written by 

Equation 2-29. 

I(i,j) = ~I.IIF(u, v)exp[p2tr(ui / M + vj / N)] 
u=o v=o 

Equation 2-29 

where 0:::; i :::; M -1 and 0:::; j :::; N -1. 

It is clear that F(u, v) is a complex function. If the real and imaginary components in 

F(u, v) are denoted as F,.{u, v) and F,{u, v), then the energy E(u, v) and phase (>(u, v) can 

be calculated by Equation 2-30. 

E(u, v) = IF(u, v)1 = ~~2(U, v) + F/(u, v) 

(>(u, v) = tan-I [F; (u, v)/ Fr(u, v)] 
Equation 2-30 

The power spectrum P(u, v) of an image can be derived from the Fourier transform 

function as given in Equation 2-31. It plays important role in image analysis for 

displaying and analysing the intensity of the image. 

P(u, v) = IF(u, vt Equation 2-31 

One way to analyse the power spectrum is to divide it into rings (for frequency 

content) and wedges (for orientation content) as shown in Figure 2-31. The frequency 

domain is thus divided into regions and then various statistical techniques, such as the 

total energy in each of these regions, are often applied to describe the information 

contained and extract the texture feature content. 
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v 

Figure 2-3 J.' The u, v dimensions of the Fourier transform may be split into concentric rings (lefi) and 

wedges (right) to encode spatial frequency and orientation information respectively. 

2.6.3 Structural Methods 

Structural methods assume that a texture image can be regarded as being 

generated from a set of texture primitives (or texture elements) using a set of placement 

rules. This approach is better suited to texture having large texture primitives or regular 

texture. When an image or region which has a simple texture is corrupted by noise, the 

texture primitive can be first extracted using, e.g., morphological filters, and then their 

placement rule can be determined. The methods are represented by the grey level run 

length method (Galloway, 1975). 

2.6.3.1 Grey Level Run Length Method 

A large number of neighbouring pixels of the same grey level represent a coarse 

texture, a small number of neighbouring pixels represent a fine texture and the lengths 

of texture primitives in different directions can serve as a texture description. The 

primitive is a maximum contiguous set of constant grey level pixels located in a line; 

these can then be described by their grey level, length and direction. Therefore, this 

method is sometimes called primitive length. The texture features can be based on 

computation of the continuous probability of the length and grey level of each primitive 

in the texture. Let P g(x, y) be the number of times that an image contains a run of length 

y consisting of points having grey level x in the given direction (). The following 

example in Figure 2-32 shows a 4 x 4 image having four grey levels (0-3) and the 

resulting grey level run length matrices for the four principle directions C(} = 0°, 45°, 90° 

or 135°). 
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Image 

0 1 2 3 

0 2 3 3 

2 1 1 1 

3 0 3 0 

(a) 

run length 

0 0 1 2 3 4 45 0 1 2 3 4 90 0 2 3 4 135 0 1 2 3 4 
Q) 

0 4 0 0 0 0 2 1 0 0 0 4 0 0 0 ~ 0 4 0 0 0 
>.1 1 0 1 0 1 4 0 0 0 1 4 0 0 0 1 4 0 0 0 
~ 2 3 0 0 0 2 0 0 1 0 2 3 0 0 0 2 3 0 0 0 
0>3 3 1 0 0 3 3 1 0 0 3 3 1 0 0 3 5 0 0 0 

(b) 

Figure 2-32: An example of the Run Length Method. (a) A 4 x 4 image with four grey levels 0-3. (b) Run 

length matrices P,ix. y) for each direction () = O~ 45~ 900 and 1350 respectively. 

To obtain texture features from the matrices, Short run emphasis, Long run 

emphasis, Grey level non-uniformity, Run length non-uniformity and Run percentage 

can be computed. Short run emphasis tends to emphasise short runs and therefore gives 

greater weight to short runs of any grey level (Equation 2-32). Long run emphasis gives 

greater weight to long runs of any grey level (Equation 2-33). When runs are equally 

distributed throughout the grey levels, grey level non-uniformity takes on lower values 

(Equation 2-34). If the runs are equally distributed throughout the lengths, run length 

non-uniformity has a lower value (Equation 2-35). Run percentage is the ratio of the 

total number of runs to the total number of possible runs (Equation 2-36). If all runs 

had a length of one, it should have its lowest value. 

Short Run Emphasis: ~~Po~;Y) / ~~Po(x,y) Equation 2-32 

Long Run Emphasis: ~~lPo(x,y) / ~~Po(x,y) Equation 2-33 

Grey Level Non-uniformity: ~q:Pe(X,y»2 / ~~Po(x,y) Equation 2-34 

Run Length Non-uniformity: ~~Po(X,y»2 / ~~(x,y) Equation 2-35 

Run Percentage: ~~Pe(x,y) / ~~y~(x,y) Equation 2-36 
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2.7 High Dynamic-Range Imaging 

Real-world scenes have a significantly wide range of brightness variation. For 

instance, luminance levels under the sun at noon may be 100 million (108
) times higher 

than under the starlight (Wandell 1995). The human visual system is capable of 

adapting to these varying conditions and can function over a range of about five orders 

of magnitude simultaneously within a scene (Reinhard and Ward et al., 2006). In 

contrast, conventional digital imaging technologies provide only about 8 to 14 bits of 

information for each of red, green and blue channel of each pixel. Having only 8 to 14 

bits per channel is not enough to represent many real-world scenes. Therefore, a set of 

techniques called high dynamic-range imaging (HDR imaging) has been developed 

which aim to increase the limited range of levels that conventional technology can 

provide. 

HDR images were originally adopted for the production of more realistic images 

for computer games and other computer applications. Later, the interest in HDR 

imaging extended to the idea of producing better images of natural scenes from images 

captured using digital cameras where limitations in sensor design prevent the capture of 

the high dynamic range of typical scenes. In contrast to HDR, the dynamic range which 

conventional cameras can capture is called low dynamic-range (LDR). As a result, 

when capturing a scene which contains a higher dynamic range than a conventional 

camera can capture, the image produced will either be too dark in some areas, and 

possibly saturated, or even both. To cover the full dynamic range of such a scene, a 

serious of images is captured using multiple exposures, a range of camera apertures, or 

by using a set of neutral density filters over the lens of the camera. However, the 

method of using various apertures is not recommended due to the effect of aperture on 

the depth of a field (Robertson and Borman et al., 2003). The most frequently used 

method is to use multiple exposures. Clearly, an over-exposed image can be saturated 

in light areas, but contains good detail in dark areas. On the other hand. an under­

exposed image exhibits less saturation in light areas but can lose detail in the shadows. 

The complementary nature of these images allows combining them into a single HDR 

image. Various algorithms have been introduced in literature (Debevec & Malik. 1997; 

Krawczyk and Goesele et al., 2005; Mitsunaga & Nayar, 1999; Nayar & Mitsunaga, 

2000; Robertson and Borman et al., 2003; Xiao and DiCarlo et al., 2002). An example 

is given in Figure 2-33. The images on the left side are LDR images which have been 

captured using a range of exposures. A single HDR image denved from the LDR 
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images is shown on the right. Since the HDR image could not be displayed on a 

conventional 8 bit displa , tone mapping needs to be applied, which converts HDR 

images into a viewable format on LDR devices such as cathode-ray tube (CRT) displays, 

liquid-crystal displays (LCD) and printers (Fattal and Lischinski et a/., 2002; Kuang and 

Yamaguchi et a/., 2004; Larson and Rushmeier et aI. , 1997; Meylan, 2006; Meylan & 

Susstrunk, 2006, O'Malley, 2006). 

Low Dynamic Range Images 
Multiple Exposures 

High Dynamic Range Image 

Figure 2-33: An HDR Image (right) createdfromfour LDR images rleji; ((',.11 'E, 2007; 

2.8 Image Acquisition and Display Devices 

The following sections review image acquisition and display device technologies. 

The basic structures of a digital camera and a liquid-crystal display (LCD) are first 

reviewed, followed by an overview of method for device characterisation. 

2.8.1 CCO Camera Systems 

There are two main types of sensors u ed for current digital camera systems, 

which are a charge-coupled device (CCD) sensor and a complimentary metal-oxide 

semiconductor (CMOS) sensor. Currently , CCO sensors tend to have less noise, high 

light sensitivity, less pixel cross-talk than CMOS sen ors, but CMOS sensors consume 

less power and inexpensive compared to CCO sensors (Litwiller, 2005). CCO sensors 

have been mass-produced for a longer period of time, so they are more mature and tend 

to create higher quality of images 

For a digital camera incorporated with a CCO sensor, three main components are a 

lens, a CCO sensor and a digital signal proce sing chip (Lee, 2005) The amount of 
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light that reaches the sensor can be controlled by both the aperture size and the shutter 

speed (the exposure time). The sensor has spatially discrete sensing elements (known as 

pixels). When photons strike a sensor, electronic charge is produced whose magnitude 

is proportional to the intensity of the incoming radiation during the exposure time The 

signal at each pixel is then digitised by an analogue-to-digital converter. Signal 

processing then produces a digital image in the required format. This processing takes a 

variety of forms including interpolation for missing pixels, tone scale correction and 

digital compression (Lee, 2005). 

There are two different basic types of CCO-based digital camera (Ippolito, 2002). 

One type utilises three CCO sensors to capture the image. This type of camera receives 

the light with three different filters entirely covering each individual sensor. This is 

similar to the human visual system (see Section 2.2.2), which is sensing different 

spectral bands with three types of cones, L-. M- and .. \'-cones. It has been argued that if 

the sensitivities of the colour filters combined with that of the sensor are linear 

transforms of the LMS sensitivities or the CIE CMFs (Luther condition (Ohta, 1982». 

there will be no difference between what the camera system 'sees' and what a human 

observers sees (Lee, 2005). However, in practice this is not the case: the Luther 

condition is not realisable due to the difficulty in manufacturing such filters. If the 

filters were to mimic the human cone spectral sensitivity functions, the system signal­

to-noise performance may be unacceptable. Since the human L-, M- and S-cones have a 

large overlap in their sensitivities, it is difficult to create signals without overly 

magnifying the noise (Lee, 2005). Therefore, filters responding in approximately the 

red, green and blue regions of the visible spectrum are usually utilised. Each sensor 

responds to the light intensity for one colour (red, green or blue) with a full sensor 

resolution simultaneously, and the camera must combine the output of the three CCO 

sensors to create a single image. This produces a high quality image, but, having three 

CCD sensors significantly increases the price of the camera. 

An alternative to using three CCO sensors is a single CCO sensor as used in most 

consumer cameras. The individual pixels in the sensor are coated with one of three 

filters such that each pixel senses the incoming light in only one of the three specular 

bands. One of the most popular colour filter arrays is called Bayer pattern (Bayer, 

1976) which uses the filters responding in the red, green and blue regions of the visible 

spectrum, and uses twice as many green elements as red or blue as illustrated in Figure 

2-34. This colour filter array is designed to give approximate luminance sensitivity with 
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the green filter because the human visual system is more sensitive to the luminance 

component than the chromatic components (see Sections 2.2.2 and 2.2.3). The 

increased number of green sensitive pixels improves the spatial sampling of the 

luminance signal . Since each pixel is filtered to record only one of three colours, two 

thirds of the colour information is missing. In order to obtam a full colour image, a 

'demosaicing ' algorithms has to be applied to interpolate between the information from 

adjacent pixels. 

Bayer pattern colour filter 

- • • 
As a result of a mosaic pattern filter captures only 25% of 

red, 25 of blur and 50% of green light 

Results of Interpolation for the missing pixel values 

Figure 2-3./: Schematic diagram of Bayer pattern and Its proces~ 

2.8.2 Display Systems 

Liquid-crystal displays (LCDs) are now replacing cathode-ray tube (CRT) 

displays. In comparison with CRT displays, LCOs require lower voltage and smaller 

power sources, and a distinct advantage is their lower physical size and weight. 

Molecules forming liquid-crystals are a main component of LCOs. Liquid­

crystals are substances that share properties of both liquid and crystalline states. 

Molecules in a typical fluid , for example water, have random locations and are rotated 

in random directions . Conversely, molecules in a molecular crystal have ordered 

positions on a lattice and point in well-defined directions . The essential properties of 

liquid-crystals are their optical and electromagnetic anisotropy and they have an 

orientation order where the long axis of the molecules tends to align in a preferred 

direction (Lee, 2005). When elongated molecules are placed in an electric field , they 

are polarized. The molecules rotate to rearrange their orientation such that the dipole 

moments are aligned with the external field and this induced an orientation change and 

also changes the optical transmission of the material. This is the basic phenomenon 

which enables liquid-crystal devices to work as electronic displays. Depending on the 
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type of orientation order, there are three different anisotropic phases in liquid-crystals: 

nematic, smectic and cholesteric (Lee, 2005). For display applications, nematic and 

twisted nematic (TN) phases are commonly used. The nematic phase is characterised 

by the long-range orientation order. Therefore, long molecular axes align roughly in 

their preferred orientations, but their relative positions are random. Figure 2-35 gives a 

schematic diagram of the physical structure of a typical LCD (TN liquid crystal and 

active matrix (LG Philips, 2007». An LCD consists of a TN liquid crystal sandwiched 

between two plates of glass (HORIBA Jobin Yvon, 2007). The glass plates are coated 

with a transparent conducting material (made of indium tin oxide (ITO» which acts as 

an electrode. On one side of the glass, there are a common electrode and colour filters 

which generate the colour (red, green and blue) information for colour displays. On the 

other side of the glass is a pixel electrode which can be patterned to form rows and 

columns of a passive matrix display or the individual pixels of an active matrix display 

Therefore, in the case of a passive matrix display, the pixels are addressed one at a time 

by row and column addresses. Thus, an effective voltage applied to liquid crystals must 

average the signal voltage pulses over several frame times, which results in a slow 

response time and a reduction of the maximum contrast ratio. For an active matrix, the 

switching devices are located at each sub-pixel to control each pixel separately. A pixel, 

the smallest unit of a picture image, is formed by three sub-pixels with red, green, and 

blue outputs. Therefore, active-matrix displays look brighter and sharper than passive­

matrix displays of the same size, generally have a quicker response time and produce 

much better images. Most transistors are made of deposited thin films, which are 

therefore called thin-film transistors (TFTs). The voltage between the pixel electrode 

and the common electrode which is supplied by a backlight, creates the electrical field 

that is applied to the liquid-crystal molecules which determine the amount of movement 

of the liquid-crystals required to change the light-transmitting properties. The red, 

green and blue colour filters modify the output spectra to produce the desired colour 

stimulus at a spatial location on the image (Lee, 2005). 

61 



Glass 

Colour Filter I Glass 

Common Electrode 

TFTI Glass 

Pixel Electrode 

Data Line 

TFT Off 

PolarIZer 

Colour Fitter 

TFT 

Polarizer 

Colour Filter 

Common Electrode 

Pixel Electrod 

TFT On 

Figure ]-35: S'chematlc diagram of the physical structure of a typical iJCD (T."" lIquid crystal and active 

maTrix) (adapTedfrom (LC Philips. ] 007)) 

2.8.3 Device Characterisation 

A digital camera and an LCD quantify colours corresponding to the amount of 

light passing through their colour filters as described in Sections 2.8.1 and 2.8.2. These 

devices often use three filters which respond broadly in the red, green and blue regions 

of visible spectrum . Therefore, their input or output values are often called RGB values, 

although the spectral sensitivity curves of the filters are different depending on cameras 

and LCDs . Hence, for example, the output RGB values of identical scenes captured by 

two cameras can be different depending on the filters used, Figure 2-36. Similarly, 

identical input RGB values to two LCDs can result in different perceived colours. RGB 

values describing colours are therefore called device-dependent values and the 

associated colour space is termed a device-dependent colour space . On the other hand, 

deVice-independent values or colour spaces express colours are not subject to the 

devices ; an example being the CIE systems and associated colour spaces (Johnson, 

1996) 
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Red = 250 
Green = 250 

Blue = 10 

Red = 250 
Green = 260 

Blue = 15 

Figure 2-36: An example of del'lce-dependent values. Different camera:, Rive dij(erent RCB valuesfrol1l 

the same scene. 

Calibration and characterisatIOn are two important procedures that must be 

applied to capture and display devices to be used for scientific research . Calibration 

refers to achieving a predefined state for a device system and is an essential first step to 

obtain repeatable data. For digital cameras, the settings involve lighting conditions, 

exposure time, aperture settings, etc. For displays, calibration includes the settings of 

the system white point, the system gamma, etc. Techniques for the calibration of 

cameras and displays have, for example, been described by Cheung (2004) and Berns 

(1996) respecti vely . 

Characterisation defines the relationship between device-dependent and device­

independent colour space (Johnson, 1996). A characterisation model is a tool to 

transform any colour from one space to another. Many characterisation models have 

been proposed but no one type of model gives optimal results to every type of device . 

Green (2002b) classified the basic models into the following three groups according to 

the approach to generating the models : physical models, numerical models and look-lip 

tables. Physical models include terms for various physical properties of the device, for 

example as the absorbance, scattering and reflectance of colorants and 'ubstrates, or the 

gain, offset and gamma of display devices. The GOG (Gam-Ofj.~et-Gamma) model 

(Berns, 1996) is an example of a physical model for the characterisation of a display 

device . Similarly, the Kubelka-Munk and Yule-Nielsen models are physical models 

which can be used as the basis of a characterisation model for a printer (Green, 2002a). 

Numerical models define a series of coefficients, usually from a set of known samples, 

with no prior assumptions about the phySIcal behaviour of the devices and as ociated 

media. Examples of numerical methods include linear and pO~l'flOm/Q/ /'l!K!'esm)l1 

models and art(ficia/ neural networks (Cheung, 2004). Look-up tables define the 

conversion between a device colour space and a eIE colour space as a serie of 

coordinates (a table of data) within the colour space, and interpolate the values for 

intermediate coordinates. The entries in the look-up table can be determined either by 
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direct measurements or through a physical or numerical model. In practice, two or more 

of these approaches can be combined to provide the necessary transformation. The 

details of some of these models are given in the following sections. Prior to this, 

performance of the experimental practices of previous studies are reviewed. 

Linear and polynomial regression models, with least-squares fitting, have been 

applied to digital camera and scanner characterisation and satisfactory performance has 

been obtained. Kang (1997) applied these models to a flat-platen Sharp JX450«l scanner 

comparing different numbers of polynomial terms (3 x 3, 3 x 6, 3 x 8, 3 x 9, 3 x 11 and 

3 x 20) and various data sets (different numbers of training data which are samples 

used to derive a transfer matrix). The details of polynomial modelling will be discussed 

in Section 2.8.3.1. The most accurate performance obtained, in terms of the mean l1E* ab 

of test data which are samples used to test the performance of the derived model, was a 

value of 1.50 using a 3 x 20-term polynomial model with a Kodak Q60 photographic 

standard chart (105 colour patches in the standard as a training data set and 131 as a test 

data set). Hong and Luo et al. (2001) applied polynomial models to digital camera 

characterisation. In their study, an Agfa digital StudioCam camera and the colour 

patches in an ANSI ITS.712 chart as data were used. The mean value of ~Mql:I} was 

1.21 using a 3 x II-term polynomial model with 96 and 168 colour patches as a training 

and test data sets respectively. Similarly, Cheung (2004) carried out a comparison study 

of characterisation models with different numbers of polynomial terms (3 x 3, 3 x 4, 3 x 

5, 3 x 10, 3 x 20 and 3 x 35) using an Agfa digital StudioCam camera and colour 

patches in a GretagMacbeth ColorChecker DC chart as a training data set and selected 

50 colour patches from the Natural Color System (NCS) as test data. The model with 3 

x 20 terms gave the most accurate result with a median ~* ab of 1.13 (a mean l1E* ab of 

1.28). Also, neural network models were evaluated in the same manner and a similar 

accuracy found with a median ~* ab of 1.24 (a mean l1E* ab of 1.44). Although the 

polynomial regression and neural network models showed similar performance, it was 

concluded that there was no advantage in using the neural network model over the 

polynomial model, since the neural network model is more computationally complex 

and time consuming. 

The GOG model (see Section 2.8.3.2) is a well-established characterisation model 

that can be applied to a CRT display. The model accuracy, in terms of l1E*ab, of less 

than 1.0 has been reported from various studies (Berns, 1996; Cui and Luo et al., 2001; 

Gibson & Fairchild, 2000). Compared with CRT technology, the characteristics of 

64 



LCDs have not matured. Therefore, if the optoelectronic transfer function (OETF) of an 

LCD is similar to that of a typical CRT display, the GOG model can be applied for 

characterisation. However, the OETFs of LCDs are not always similar to those ofCRTs 

and is consequently the reason why various different analytical models have been 

recently introduced (Gibson & Fairchild, 2000; Kwak & MacDonald, 2001; Sharma, 

2002; Yoshida & Yamamoto, 2001). A model proposed by Day and Taplin et al. 

(2004) shares similarities with the GOG model, but is different in the method for 

charactering the OETF. Values of ~Eoo were obtained which ranged from 0.1 to 0.4. 

Three-dimensional (3D) look-up table with interpolation can be used to characterise 

displays as well as other devices such as printers and scanners (Hung, 1993; Kang, 

1997). This method provides high accuracy, especially for devices which have a 

complex nature, such as plasma display panels (PDP) or when analytical models do not 

work in practical systems. However, the disadvantage is that it requires a large number 

of samples and is thus considered time consuming. 

In the following sections, the structure of linear and polynomial models is first 

introduced. The GOG model and the analytical model proposed by Day and Taplin et al. 

(2004) for characterising a display are then described. 

2.8.3.1 Linear and Polynomial Regression Model 

The linear and polynomial regression models assume that the correlation between 

colour spaces can be approximated by a set of simultaneous equations. These can be 

express using a formula as shown in Equation 2-37. The example of a linear transform 

ofXYZ values from RGB values is given in Equation 2-38. 

I=DxM or D=IxM'1 Equation 2-37 

[x Y Z]= [R G B] [:::: 
au 

Equation 2-38 

where I represents the device-independent values, D is the device dependent values, M 

is the transfer matrix and au to a3.3 are the elements of the transfer matrix that links 

these two colour spaces. In order to derive a transfer matrix, a set of data consisting of 

device-dependent values and device-independent values of uniform colour samples are 

required. In the case of cameras and displays, a set of RGB values and the CIE XYZ 

65 



tristimulus values can be used. The most efficient method to obtain a data set for input 

devices (e.g., digital cameras or scanners) is to capture a colour chart containing a wide 

range of colour patches of known XYZ values (Westland & Ripamonti, 2004). A 

Macbeth ColorChecker DC chart or an ANSI ITS.7/1 or 2 are often used, since they 

include colour patches reasonably uniformly distributed in colour space. For output 

devices (e.g., displays and printers), output of created sample colour patches of a range 

of device values is measured by any appropriate colour measurement instrument. 

In performing regression, a transform matrix M needs to be derived from a set of 

known XYZ and RGB data set which is described in Equation 2-39. 

M =D +1 
JxJ nx3 nx3 Equation 2-39 

where SUbscripts n and the numbers denote the matrix size. They represent the numbers 

of data (n RGB values and n XYZ values). If there are three suitable samples available, 

then n = 3 and M is easy to compute from the inverse of D and has a single and unique 

solution. However, if n>3 then there is no exact solution (an over-determined system), 

since 0 has become a non-square matrix. This is always the case for device 

characterisation, since the number of colour samples that are used to define the transfer 

matrix is almost always greater than the number of coefficients. Therefore, a least­

squares method must be used to determine the best-fit approximation of the coefficients 

in the transfer matrix by minimising the error matrix E between I and OM given in 

Equation 2-40. 

Equation 2-40 

The transfer matrix M can be solved in terms of I and D written in Equation 2-41. 

Equation 2-41 

When the linear model does not yield a sufficiently accurate transformation, a 

polynomial regression can be used. An example of a second order polynomial model is 

given in Equation 2-42. 

°1,1 °2,1 °3,1 

01.2 °2.2 °3.2 

[X Z]=[R G B R2 G2 B2] °1,3 °2.3 a3.3 
y 

°1.4 °2,4 a3,4 
Equation 2-42 

°1,S °u a3,S 

01,6 °2.6 a3,6 
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The coefficients au to a3.6 are found in a similar manner as in Equation 2-39 to 

Equation 2-41. As a higher order polynomial model is used, the size of the matrix D 

and M are adjusted accordingly. However, it is desirable to keep the polynomial order 

as low as possible (Green, 2002b). 

2.8.3.2 GOG Model 

Berns et al. (Berns, 1996; Berns and Grozynski et al., 1993; Berns and Motta et al., 

1993) proposed the GOG (Gain-Offset-Gamma) model based on their investigation of 

the physical properties of CRT displays. Unlike LCDs, the technology for CRT 

displays is more stable and the GOG model has been widely used and adopted in colour 

management software (Katoh and Deguchi et al., 2001 b). 

The GOG model consists of two stages. The first stage models the optoelectronic 

transfer function (OETF) of a CRT display, in which a non-linear relationship between 

the digital counts d and the spectral radiance L;. as described in Equation 2-43 for the 

red channel as an example. 

Equation 2-43 

where the subscript r refers to the red channel, LUT represents the video look-up table, 

N is the number of bits in the digital-analogue converter (DAC), Vmin and Vmax are 

minimum and maximum voltages of the video-signal generator, ar and br are the CRT 

video amplifier gain and offset, Vcr is the cut-off voltage that defines zero beam current, 

Yr is the gamma of the channel and kJ..r is a spectral constant to account for the particular 

CRT phosphors and faceplate combination. Generally, an accurate physical model of 

display behaviour is not used for characterisation purposes, rather the relationship 

between the digital counts d and the spectral radiance L;.r is adopted as express in 

Equation 2-44 (Westland & Ripamonti, 2004). 
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Equation 2-44 

o 

It can be useful to think of the coefficient gr and Or as the system gain and offset 

respectively. The implication of Equation 2-44 is that although the CRT has an inherent 

fixed gamma, the effective gamma of the system can be set according to the offset and 

gain controls. Under the assumption that the spectral radiance LA, at any level of 

phosphor excitation, can be related to the maximum spectral radiance (Katoh and 

Deguchi et al., 200 I b), a radiometric scalar s, the ratio of a given signal to the 

maximum signal, throughout the wavelengths can be applied instead. This property is 

often referred to as chromaticity constancy of primaries (Gibson & Fairchild, 2000) or 

channel scalability (Day and Taplin et al., 2004). In practice, a radiometric scalar scan 

be expressed as the linearised normalised digital counts d using Equation 2-44. This 

can be written as Equation 2-45. 

s = r Equation 2-45 

o 

where the normalisation procedure requires that the system gain and offset are equal to 

unity. Therefore, the offset can be express as Or = (1 - gr). Analogous equations can be 

used for the other two channels. 

At the second stage, the scalars can be related to the XYZ values using a simple 

linear transform as shown in Equation 2-46. A primary matrix consisting of the 

measured XYZ values of each of the red, green and blue channels at maximum digital 

count is applied for this transformation by assuming that the channel additivity rule 

(Gibson & Fairchild, 2000) holds. However, in practice, this assumption does not hold 

in cases where a small amount of luminance can be detected at the black level as a result 

of measurable flare. There are mainly three types of flare which can be described. 

These are external flare which comes from reflections on the display from ambient 

light; internal flare which comes from internal scattering; and a second type of internal 

flare which comes from output from other channels at the same pixel location (Katoh 

and Oeguchi et al., 2001 a; Katoh and Oeguchi et aI., 2001 b). It is characterised by the 
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black level which is defined as the output XYZ values from zero digital counts for all 

channels (dr = dg = db = 0). Therefore, Equation 2-46 can be replaced by Equation 2-47. 

Equation 2-46 

Equation 2-47 

where X, Y and Z define the tristimulus values, the subscript max represents the 

maximum output and Xk, Yk and Zk are the black level (minimum) output. Three model 

parameters, gain, offset and gamma, for each channel can be estimated by solving for 

minimum error between estimated scalars for a training data set (usually a grey scale) 

using the inverse of Equation 2-47 and using Equation 2-45. 

2.8.3.3 Day, Taplin and Berns Method 

A characterisation model has been proposed for LCD characterisation by Day, 

Taplin and Berns (Day and Taplin et al., 2004). Similar to the GOG model, there are 

two stages; one is to characterise OETF and the other is the transformation between a 

radiometric scalar and the XYZ values. OETFs of a CRT display can be characterised 

using gain, offset and gamma values based on- the physical characteristics, whereas 

OETFs of an LCD depend on the technology or system of operation used. Therefore, a 

solution to characterise OETFs is to build one-dimensional look-up tables (LUTs), 

generally formed by subsampled measurements and linear or non-linear interpolations, 

as described by Equation 2-48. 

S, = LUT(dJ ;Sg = LUT(dg ) ;Sb = LUT(db) 

(O:S;s"Sg,Sb :S;1) 
Equation 2-48 

where d defines the digital counts, S defines the radiometric scalar and the subscripts r, 

g and b represent the red, green and blue channels respectively. The scalars are 

constrained to values between zero to unity by taking the ratio of a given signal to the 

maximum signal. The second stage is to relate the scalars to the XYZ values using a 

simple linear transform. As with the GOG model, flare needs to be considered. 

Especially for LCDs, there is often significant radiant output at the black level caused 
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by the liquid-crystal having a minimum transmittance factor well above zero (Day and 

Taplin et al., 2004). Thus, the relationship between the scalars and the XYZ values can 

be also described using Equation 2-47. The relations described in Equation 2-47 

assume perfect chromaticity constancy of primaries and channel additivity (Gibson & 

Fairchild,2000). However, it is known that the spectral transmittance ofliquid-crystals 

varies as a function of voltage. The peak wavelength shifts toward shorter wavelengths 

with decreasing transmittance (Day and Taplin et at., 2004). Therefore, in practice, 

these assumptions are not met. In order to compensate for this, the coefficients in 

Equation 2-47 are optimised by minimising the colour differences between measured 

and estimated colours, sampled over the colour gamut of the LCD. Then, the LUTs are 

re-computed according to the optimised coefficients. The worked flowchart is given in 

Figure 2-37. 

start 

Input RGB 

1 
re-compute 

LUTs 

Forward Model 
~ __ ~(R_G_B_-~X_Y_Z~) _____ ~ 
I 3)( 10 LUT II 3)( 4 matrix 

use LUT based on 
measurements for initial values 

- non-linear optimisation 

I update 3 )( 4 matrix I -
-- predicted 

XYZvalues 

mean L\E r measured 
XYZvalues 

Figure 2-37: A workedflowchart of the Day. Taplin and Berns characterisation model (Day and Taplin et 

al .. 2004). 

2.9 Psychophysics: Quantitative Methods for 

Perceptual Responses 

Much of the knowledge about the human visual system has been revealed from the 

interaction between the study of neural mechanisms and the investigation of perceptual 

responses using the methods of psychophysics. For example, as has been shown in the 

previous sections, eIE colorimetry (see Section 2.3) and the human CSF (see Section 

2.2.3) have been established based on psychophysical studies. Psychophysics is a 

scientific discipline designed to determine the relationship between physical 

measurements of stimuli and sensations or perceptions that those stimuli evoke. Many 

different experimental techniques can be used to measure the perceptions of stimuli. 

F or visual psychophysics, the experimental methods tend to fall into the two broad 

classes: threshold and scaling methods (Johnson & Fairchild, 2003). Threshold 
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methods include detection, discrimination and matching experiments. The experimental 

method for measuring the human CSF is an example of a threshold method. Also, the 

basis of CIE colorimetry was derived using threshold methods; specifically the (colour) 

matching method. The second class, scaling methods, is appropriate to generate the 

relationship between the physical and the perceptual magnitudes of a stimulus. Scaling 

is based on the assignment of numbers to physical stimuli (objects) according to stated 

rules. S.S Stevens identified four basic types of scales: nominal, ordinal, interval and 

ratio (Luce & Suppes, 2002). Nominal scales are relatively trivial. They merely use 

numbers instead of names or labels to identify the stimulus. Even if numbers are used, 

they are just labels which mean they do not possess any numerical properties. Ordinal 

scales are derived by the observer placing the stimuli in an order defined by some 

attribute: they give no information about the distances between the scale values. In the 

case of interval scales, the differences between scale values have equal weight in tenns 

of the scaled attribute. However, generally, an origin of the scale is unknown and 

arbitrary, i.e., there is no meaningful zero point. Ratio scales are an interval scales with 

a meaningful zero point. 

There are many experimental methods for using nominal, ordinal, interval and 

ratio scales, however, the following sections only introduce the experimental scaling 

methods used in the present study: the categorical judgement scaling method and the 

magnitude estimation method. These methods were applied to provide scales of 

suprathreshold perceptual difference in terms of perceptual coarseness and perceptual 

glint of a set of metallic coating panels. 

2.9.1 Categorical Judgement Scaling Method 

The categorical judgement scaling method is designed to measure the perception 

of the observer on an equal-appearing interval scale of categories. The general 

categorical judgement scaling method requires observers to assign stimuli to predefined 

categories according to the size of the perceptual attribute of interest. These categories 

are usually specified to observers either as numbers (e.g., I, 2 and 3) or as names 

(adjectives are generally used, e.g., good, better or best). The number of categories is 

usually between three and twenty although usually an odd number of categories from 

five to eleven are used. If there are too few categories available for observers, it is 

possible that they are not able to discriminate between stimuli. On the other hand, too 
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many categories causes errors because observers may be tempted to assign stimuli 

having the same perception to different categories (Park and Jeon et 01., 2004). This is 

however, dependent on the attributes being scaled. Most observers typically distinguish 

only about seven different categories so that additional categories may contribute very 

little useful information (Engeldrum, 2000). 

As a result of applying this method, the categories corresponding to the given 

stimuli are obtained from each observer. Then data analysis is used to derive scale 

values that represent the perceptual responses of the observers to the stimuli. 

The simplest way of determining scale values is to take the arithmetic mean of 

categories for each stimulus. This method is called the mean-category value method 

(Bartleson, 1984). Underlying such a method is the tacit assumption that observers are 

capable of keeping the intervals between category boundaries psychologically equal, as 

they assign stimuli to various categories. However, this is often taken as an 

unwarranted assumption, as this method is influenced by many factors that have a 

tendency to lead to unequal intervals, for example, stimulus range and stimulus 

sequence (Gescheider, 1997). Yet it is frequently found that this simple mean-category 

value method yields scale values that are very close to those determined by a more 

sophisticated technique known as the categorical-judgement method following 

Torgerson's law of categorical judgement (Torgerson, 1967). 

Torgerson's law of categorical judgement was proposed to consider the issues 

raised by the mean-category value method and is an extension of Thurstone's law of 

comparative judgements (Thurstone, 1959). The assumptions made by Torgerson 

(1967) were; 

"1. The psychological continuum of the subject can be divided into a 

specified number of ordered categories or steps. 

2. Owing to various and sundry factors, a given category boundary is not 

necessarily always located at a particular point on the continuum. Rather, it 

also projects a normal distribution of positions on the continuum. Again, 

different category boundaries may have different mean locations and 

different dispersions. 

3. The subject judges a given stimulus to be below a given category boundary 

wherever the value of the stimulus on the continuum is less than that of the 

category boundary. " 
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According to the underlying assumption of the Torgerson's law of categorical 

judgement, Figure 2-38 illustrates an example of the distribution of observers' 

judgements on the stimulus (full line) and the distributions of category boundaries 

(dashed line) along a perceptual scale. This can be formulated in terms of the 

differences between scale values and category boundaries as given in Equation 2-49. 

~ -Sf = Z!l~a; + cr: -2pppj (i = 1,2,.· ·,m)U = 1,2, .. ·,n-l) Equation 2-49 

where T
j 
is the mean location of the upperjth category boundary, S; is the scale value of 

stimulus i, zij is the unit normal deviate (z-score) corresponding to the population of 

times stimulus i sorted below the category boundary j, u j is the dispersion (standard 

deviation) of the jth category boundary, u; is the dispersion (standard deviation) of 

stimulus i, Pij is the correlation between the momentary positions of the category 

boundary j and stimulus i, n is the number of categories; namely there are n-J category 

boundaries for n categories; m is the number of stimuli . 

... "...... ..."...... . .. ,..... . .. "... .. . . ... .. . . . . . . ... . .. . . . . . . . . . \ 
",.. . ...... 

...-II!'- - -"""'-
Psychological continuum of attribute (perceptual scale) 

Figure 2-38: Illustration o/judgement distributions 0/ stimulus and category boundaries. 

Torgerson's law of categorical judgement is defined by Equation 2-49. However, 

it cannot be solved in its complete form, since the number of unknown variables 

exceeds the number known. To solve this problem, some assumptions must be made. 

In practice, the dispersions u; and u j ' and the correlation Pij are seldom known. 

Therefore, u
j 

anda> are assumed to be the same and Pij is taken to have a value of 

zero. This is known as Thurstone's Case V for the law of comparative judgements 

(Thurstone, 1959). This allows the scale values to be determined using Equation 2-50. 

Equation 2-50 
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2.9.2 Magnitude Estimation 

Magnitude estimation was first used by Richardson and Ross (1930) and then 

elaborated by Stevens (1953). This method is similar to the category judgement scaling 

method in many ways. The most notable differences are first, the number of categories 

is much larger (e.g., any positive number) and secondly, this method relies on responses 

of observers so as not to invoke assumptions about initial categories which possibly 

cover all observer responses against presented stimuli. In the magnitude estimation 

method, observers are asked to make direct numerical estimations of the perceived 

magnitude produced by various stimuli regarding the attribute under interest. It has to 

be mentioned that although it is called magnitude estimation, it is not the magnitudes 

that are specified. What is specified is a ratio; the ratio of one perception with respect to 

another implicit or explicit perception (Bartleson, 1984). There are two main ways of 

applying the magnitude estimation technique. One way is that observers are presented 

with a reference stimulus and told that the perception it produces has a certain defined 

numerical value, such as 10. Subsequently, other stimuli are presented and observers 

are asked to make judgements by comparison with the reference stimulus (the ratio 

between the test stimulus and a reference stimulus). Therefore, the estimations are 

constrained by the reference stimulus. In the other version, an unconstrained method is 

used by omitting the reference stimulus. The various stimuli are randomly presented to 

observers who assign numbers in proportion to the perceived magnitude of the 

perception. 

In order to determine scale values for the stimuli, the raw data collected from 

observers are usually averaged by taking their geometric mean 0 using Equation 2-51 

or sometimes by taking the median for each stimulus. 

Equation 2-51 

where 0 is the observer's response, i stands for a particular stimuli and n represents the 

number of the observations. 

The rational for using the geometrical mean is that the dispersions tend to be 

normally distributed over the logarithms of responses and also standard deviations tend 

to increase linearly with the mean. This means that equal intervals on logarithmic 

scales correspond to equal ratios. The arithmetic mean is rarely used because it may be 

excessively influenced by a few unrepresentative high judgements. One problem of 

taking the geometric mean is caused by zero responses because a zero response from 
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just one observer makes the geometric mean have a value of zero. A fundamental 

property of scale is that it has an absolute zero. In practice, this was not expected to be 

encountered, but there are many exceptions. An alternative method of computing the 

geometric mean of the data with zero responses is to add a small constant a to each 

observer's response. Then the constant is subtracted from the computed geometric 

mean as shown in Equation 2-52 (Engeldrum, 2000). Appropriate values of this 

constant should be very small, say 0.001, otherwise it can seriously affect the mean 

especially if there are many zero responses. 

Equation 2-52 

After the collection of many experimental results using the ratio method, to 

various stimuli such as brightness, loudness smell and so on, Stevens (Stevens, 1961) 

concluded that the central tendency of the numerical response of observers 0 is 

approximately a power function of the stimulus intensity I with exponent y and 

constants a and P (which may be applied depending on several factors) as given in 

Equation 2-53. This is widely known as Stevens' power law (the original law is without 

the constant a). 

O=aI' +P Equation 2-53 

Thus the results of magnitude estimation experiments are analysed. 

2.10 Statistical Measures 

Various experimental data obtained in this study were analysed using a number of 

statistical techniques. Descriptive statistics were used to describe the basic features of 

the data such as the mean, median and range of the data. The correlation coejficient (R) 

and the coefficient of determination (R2) were frequently used to indicate the degree of a 

linear relationship between two data sets. In addition to these qualitative measurements, 

the root mean square error (RMSE) which is categorised as a quantitative method, and 

the coefficient of variation (CV) were also utilised to assess a relationship between data 

sets. In some cases, to describe the probabilistic properties of data, a 95 % confidence 

interval was calculated and the Wilcoxon matched-pairs signed-rank test performed 

(Kothari, 2005; Upton & Cook, 1996). The methods utilised in this study are 

introduced in the following sections. 
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2.10.1 Correlation Coefficient & Coefficient of Determination 

The correlation coefficient (R, also called the Pearson product-moment correlation 

coefficient) measures the strength and direction of a linear relationship between two 

data sets. The range of the correlation coefficient is from -1.0 to 1.0, where -1.0 

represents a perfect negative correlation and 1.0 represents a perfect positive correlation. 

The value of zero indicates a non-linear relationship between the two data sets. The 

formula for computing the correlation coefficient is given in Equation 2-54. 

-
R = L(x; -x)(y; - y) 

[L(x; -x)2 L (y; _ y)2]0.5 
Equation 2-54 

where Xi and Yi are individual values of two data sets for stimulus i, and x and y are 

the mean values of the two data sets. 

The coefficient of determination (K) represents the proportion of variability 

between data sets. Although the value of K can be obtained practically from the square 

of R, the original idea of R2 was to determine the total variance between two data sets, 

rather than the linear correlation between two sets. R2 is often used in regression 

analysis as a measure of goodness-of-fit which indicates how well data fits to an 

estimated model. R2 values range from 0 to 1; a larger value indicates better correlation; 

and zero represents no correlation. 

Rand R2 conveniently describe the correlation of two data sets with a single 

number. Unfortunately, high values of Rand R2 do not always guarantee high 

correlation. Examples are given using Figure 2-39. All data sets plotted in each graph 

in Figure 2-39 have similar R and R2 values. However, it can be seen that they exhibit 

very different features in their distribution. R and R2 values are appropriate measures to 

describe the data sets plotted in Figure 2-39 (a). However, the data sets given in Figure 

2-39 (b) might be criticised as being a poor correlation. The plotted graph in Figure 

2-39 (c) suggests that a non-linear correlation may better describe the characteristics of 

the data sets. Thus, these examples suggest that the data analysis should not rely on 

those numerical methods alone and, as a minimum, the data should be plotted, or 

another measure found. 
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Figure 2-39: Examples of the relationships between data sets and the correlation coefficient or the 

coefficient of determination. 

2.10.2 Root Mean Square Error (RMSE) 

Root mean square error (RMSE) measures an average magnitude of errors. The 

range of the RMSE is from zero to infinity. A minimum RMSE value of zero indicates 

that two data sets perfectly agree with each other. A maximum RMSE value, which is 

an indication of disagreement, depends on the scale range of both data sets. The RM/'lE 

is determined by Equation 2-55. 

RMSE= 
N 

Equation 2-55 

where x and y. are individual values of two data sets on stimulus i and N is the number 
I I 

of stimuli. 

2.10.3 Coefficient of Variation (CV) 

The coefficient of variation is another measure of the variability between two data 

sets. If they agree perfectly, all the data points lie on a 45° line when they are plotted. 

The wider the scatter of the data points, the poorer the agreement. A value of zero 

indicates a perfect correlation between two data sets. If two data sets have different 

units, it is necessary to first transform the units using a scaling factor SF. CV can be 

expressed by Equation 2-56. 

100 r.(YI-SFxY 
CV=~ ....:.'----

Y N 

r.(xly,) 
Equation 2-56 

SF= I 2 

r.XI 
I 
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where N is the total number of stimulus, Xi and y, are individual values of two data sets 

on stimulus i, and y is a mean value of Yi. 

2.10.4 Confidence Intervals 

The confidence interval of a population mean gtves an indication of the 

uncertainty in the estimate of the true mean. A small interval indicates that the 

estimation is more precise. The choice of confidence coefficient is somewhat arbitrary: 

a 90 %, 95 % or 99 % confidence interval is often used with 95 % being the most 

common. This can be computed using Equation 2-57. 

- a 
95% Confidence Interval = SV ± t9j%(N I) I"':"; 

- vN 
Equation 2-57 

where SV is the mean of the data, N is the number of observations, such that N-} 

indicates the number of degrees of freedom, q is the standard deviation and t95" (N-/) 

represents the upper critical value of the t-distribution. When the sample size is 

sufficiently large, or even though sample size is small when the distribution of the 

population can be assumed to be normal, 1.96 is used instead of t95 " (N-J) (95 % of the 

area of a normal distribution is within 1.96 standard deviations of the mean). In this 

study, the sample sizes (the number of the observations per sample) are not large 

enough and the distributions cannot be assumed to be normal. Therefore, t-distribution 

is applied. 

2.10.5 The Wilcoxon Matched-Pairs Signed-Rank Test 

Statistical analysis is often used to infer the probability that any differences 

between data are caused by chance. The Wilcoxon matched-pairs signed-rank test (or 

the Wilcoxon signed-rank test) is a nonparametric analogue to the paired t-test which is 

most commonly used. Unlike the paired t-test, the Wilcoxon matched-pairs signed-rank 

test does not assume that the data distribution can be approximated by the normal 

distribution. This test takes account of the magnitude of the difference between data 

sets based on their median values. Therefore, this method tests the null hypothesis (Ho) 

against one of the alternative hypotheses (HI, H2 or H3): 
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Ho: the median of two data sets are same 

HI: the median of two data sets are different 

H2: the median of one data set is larger than the other data set 

H3: the median of one data set is smaller than the other data set 

A worked example is given in Table 2-1. When this test is applied, the differences 

(denoted in Table 2-1 as di ) between each pair of values (X;, Yi ) can first be determined. 

If the differences are zero, they should be discarded from the calculations. The rank is 

then assigned to each difference without regard to sign. Consequently, the original 

signs of each difference are restored to corresponding ranks (Rank). When two or more 

pairs have the same difference values, the assigned ranks to such pairs are averaged and 

given the same rank. For example, if two pairs have rank values of 3, the rank of 3.5 is 

assigned for each rank value (i.e., (3 + 4)/2 = 3.5) and then the next largest difference 

should be 5. Then, W+ and W- are computed as the sums of the positive and negative 

ranks respectively. The smaller of two W+ and W- in absolute values can be assigned 

as the test statistics T. When the number of pairs n, after discarding the pairs which 

have zero difference, is equal to or less than 25 (n:525), the critical value of T can be 

found according to the Wilcoxon signed-rank statistic distribution in order to evaluate 

the hypothesis of whether to accept or reject the null hypothesis at the desired level of 

significance (5 % error rate is commonly used). If the number of pairs exceeds 25 

(n>25), the test statistic T is evaluated using the normal distribution with a mean of f.J 

and a standard deviation u, as given in Equation 2-58 and Equation 2-59 respectively. 

n(n + 1) 
p= 

4 

cr= 
n(n + 1)(2n + 1) 

24 

The test statistic z can be described by Equation 2-60. 

n(n+l)/4-T 
z = -;::~=======:==:= 

~n(n + 1)(2n + 1)/24 

Equation 2-58 

Equation 2-59 

Equation 2-60 

The appropriate critical value is defined according to the normal distribution. 
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Consider the example shown in Table 2-1 for the hypothesis, 

Ho: the median of two data sets are the same 

HI: the median of two data sets are different 

Since the test statistic T = 11 is greater than the critical two-tailed 0.05 value of To.os = 8, 

the null hypothesis is accepted. This indicates that the probability value according to 

the test statistic is more than 5 % (p>0.05). 

Table 2-1: A work example for the Wilcoxon matched-pairs signed-rank test. 

,3 4 6 
Yi 4 6 3 
d i -1 -2 3 

Rank -1 -2 3.5 

2.11 Summary 

8 5 
5 1 
3 4 

3.5 5.5 

14 
10 
4 

5.5 

7 2 13 19 
2 7 8 9 
5 -5 5 10 
8 -8 8 10 

W+ = 3.5+3.5+.5.5+5.5+8+8+10 = 44 
W- = 1 +2+8 = 11 

The present study deals with various issues for studying the human visual system, 

colorimetry and appearance. The available literature is large. Hence, only that directly 

related to the intended study has been reviewed. The review shows that the appearance 

of metallic coatings consisting of qualities such as colour and gloss belonging to macro 

appearance, and many visual texture attributes belonging to micro appearance. Colour 

is obviously important when considering the appearance, and a relatively ?igh number 

of study have been carried out. However, there seems to be less information about 

visual texture. Because of the physical complexity of gonioapparent metallic coatings 

and the subjective nature of texture attributes, even the definitions associated with 

visual texture remain ill-defined. Moreover, although many methods to quantify texture 

have been introduced, there is no unique method which can be applied for all textured 

surfaces. These uncertainties give motivation for the investigations into the perception 

of coarseness and glint. Also, with the great expectation of digital image acquisition 

and visual assessments of appearance attributes on computer displays, the current 

project is considered to be very challenging. 
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Chapter 3 

Assessing and Modelling Coarseness 

using Physical Samples 
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3.1 \ntroduct\on 

This chapter describes a study aimed to characterise perceptual coarseness of 

metallic-coating panels. The coarseness of metallic-coating panels was perceptually 

scaled and a computational model capable for predicting the perceptual coarseness was 

developed. 

, "Coarseness" is a general term that can be used to describe the human response to 

perceived texture. In the literature, it has been referred as a key feature in the analysis 

of texture and also as an important appearance attribute of metallic coatings (see Section 

2.5.1.2). In terms of human recognition, it is not difficult to identify, but it is not trivial 

to quantify since the appearance of coarseness is generally size and resolution 

dependent (see Section 1.2). In addition, illumination and viewing geometry is crucial 

to texture appearance; especially for gonioapparent materials such as the metallic 

coatings used in this study (see Section 2.5). In order to characterise the perceptual 

coarseness of metallic coatings, it is necessary to establish an identifying condition 

where the coarseness could be observed. Therefore, the following sections describe a 

preliminary investigation to find appropriate illumination and viewing geometry for 

observation of the coarseness of the metallic coating and the visual assessments for 

scaling the perceptual coarseness of a series of metallic-coating panels under defined 

conditions as well as subsequent evaluations of the results at first. Then, a 

computational model which was developed for predicting the perceptual coarseness of 

the metallic-coating panels is introduced. Finally, the performance of the developed 

model which is evaluated by comparing the model prediction with the perceptual 

coarseness as illustrated in Figure 3-1, is described. Before starts the characterisation of 

coarseness, instruments used for colour measurement in this study and their 

performance are introduced. 
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Agreement 

Figure 3-J: A flowchart for the study of the present chapter. 

3.2 Colour Measurement Instruments 

Colour measurement is essential in the present study to specify colour of metallic­

coating panels used and also to describe experimental conditions such as illumination 

conditions. Two colour measuring instruments were employed. A Mino/ta CSIOOO 

te/e-spectroradiometer (TSR) was used for measuring spectral power distribution (SPD). 

A GretagMacbeth ColorEye 7000A spectrophotometer (CE7000A) was utilised for 

surface reflectance measurement. Variability in the measurements of colour can be 

caused by fluctuation in the measurements made using a measuring instrument, in a 

target to be measured and in the environmental conditions (e.g., illumination). Hence, it 

is important to quantify the variability of the instruments. In the following sections, the 

specification of the instruments and their performance are described. 

3.2.1 Mlnolta CS1000 Tele-Spectroradiometer 

A Minolta CS 1 000 tele-spectroradiometer (TSR) is configured with an SLR 

(single lens reflex) optical system for targeting an object and a high-resolution 

photodiode array for capturing the signal. The measurement is made over the visible 

spectrum from 380 to 780 nm with a fixed interval of 5 nm. The minimum measuring 

area is 7.9 mm in diameter. 

The performance of the TSR was investigated 10 terms of repeatability. A 

tungsten light source in an integrating sphere (Bentham SRS8Q Spectral 
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RadiancelLuminance Standard) was measured five times in 30 minutes. The light 

source and the TSR were allowed 30 minutes warm-up time before the measurements. 

The measurement results are given in Table 3-1 in terms of CIE XYZ tristimulus values 

and their standard deviations. It should be aware that the colorimetric data which were 

obtained using this instrument in this study, were including errors such as repeatability 

and accuracy errors. This data set was provided by Colour and Imaging Group at the 

Department of Colour Science in the University of Leeds in 2007. 

Table 3-J: Repeatability test of Minolta CSJ 000 tele-spectroradiometer. 

Measurement X Y Z 
1-' 97.81 86.07 24.89 
2nd 97.83 86.09 24.81 

3m 97.81 86.06 24.87 
4th 97.81 86.06 24.87 
5th 97.80 86.05 24.81 

Standard Deviation 0.01 0.02 0.04 

3.2.2 GretagMacbeth ColorEye 7000A Spectrophotometer 

A GretagMacbeth ColorEye 7000A spectrophotometer (CE7000A) has 

measurement geometry of dl8 provided by an integrating sphere (see Section 2.4.2). It 

measures spectral reflectance from 360 to 750 nm at 10 nm interval. A pulsed xenon 

light source with high intensity ensures accurate readings, even for dark or highly 

saturated colours. Measurement can be made with specular component included or 

excluded by adjusting a motorised spectral insert, and also a motorised UV control is for 

adjusting the UV content. An aperture size for measurement can be selected from four 

different sizes: large (25.4 mm circular), medium (15 mm circular), small (8 mm 

circular) and very small (3 x 8 mm). In this study, the measurements were made with 

the setting of the specular component excluded using a small aperture size. 

Accuracy of the CE7000A was investigated based on a set of BCRA-NPL glossy 

ceramic tiles provided by the NPL. Ten tiles were consecutively measured two times 

and the mean values were compared with the calibration data provided for each tile. 

The results are reported in terms of CIELAB .1E* ab in Table 3-2. The CIELAB 

coordinates were computed from the reflectance assuming the D65 ilIuminant and using 

the eIE 1964 standard colorimetric observer. Repeatability was tested by measuring the 

four of the ceramic tiles successively ten times at the same position. The results are 
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summarised in Table 3-3. The mean and maximum errors were ~E* ab values of 0.42 

and 1.02 respectively. The repeatability was found in a range of mean ~E* ab values 

from 0.004 to 0.047. These accuracy and repeatability errors were contained in the 

measurements carried out in this study with this instrument. 

Table 3-2: Accuracy test of the CE 7000A in terms of I1E* ab of 10 tiles between the measurement data 

using the CE7000A and the calibration data prOVided by the NPL. 

Tile I1E* ab 

Pale Grey 0.30 

Mid Grey 0.21 

Diffuse Grey 0.16 

Deep Grey 0.26 

Deep Pink 0.25 

Red 0.75 

Orange 0.75 

Green 0.32 

Diffuse Green 0.17 

Green 1.02 

Mean 0.42 

Maximum 1.02 

Minimum 0.17 

Table 3-3: Repeatability test of the CE 7000A in terms of mean, maximum and minimum I1E*ab values of 

10 successive measurements. 

Tile Mean I1E*ab Maximum I1E* ab Minimum I1E* ab 

Mid Grey 0.004 0.007 0.002 

Red 0.047 0.079 0.010 

Green 0.016 0.031 0.003 

Deep Blue 0.026 0.050 0.006 

3.3 Visual Assessments of Coarseness on 

Metallic-Coating Panels 

The following sections introduce a method to characterise coarseness perceptually. 

Appropriate illumination and viewing geometry to observe coarseness and a method to 

quantify coarseness of metallic-coating panels are discussed as well as the results thus 

obtained. 
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3.3.1 Samples 

A set of 156 metallic-coating panels produced by Akzo Nobel were used as 

samples. These panels were made by mixing solid-colour pigments and aluminium 

flakes in different proportions. There were 6 grey colour panels, 50 blue colour panels, 

50 green colour panels and 50 purple colour panels. In this experiment, a part of the 

panel, the size of 8 x 8 cm, was presented to observers. Images of one sample from 

each colour group are given in Appendix I as examples. Note that the appearance of the 

images may not be the same as that perceived for the physical samples. 

3.3.2 Viewing Conditions 

The overall appearance of any object consists of a combination of various 

attributes (see Section 1.2). One attribute might appear stronger than the others under 

one viewing condition but another attribute might be more predominant in a different 

viewing condition. The coarseness of metallic coatings is clearly visible under diffuse 

illumination (see Section 2.5.1.2). Although the coarseness is seen under different 

conditions, for example, directional illumination, observers can be distracted by 

undesired attributes such as specular reflection or gloss. ASTM (2006) defines diffuse 

illumination as "an extended-area source". According to this definition, a typical 

viewing cabinet as illustrated in Figure 3-2, which is often used to make visual 

assessments, provides such extended-area illumination. However, it was found that this 

type of viewing cabinet was not appropriate for the coarseness assessments of the 

metallic-coating samples, as a result of a visual inspection. Since the cabinet has 

tubular lamps in the ceiling, effects which are similar to a directional light were 

observed at some viewing angles. Therefore, in order to carry out the visual 

assessments under stable diffuse illumination condition, a DigiEye® viewing cabinet 

(Luo and Cui et al., 2001) which is especially made to provide diffuse illumination, was 

used for this experiment. 
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Figure 3-2: A ryplcalvlewrng cabrnet used/or visual asseSSllle17l. 

3.3.2.1 Experimental Settings 

The experimental settings are illustrated in Figure 3-3 (a) and (b) . A DigiEye® 

viewing cabinet was used for this experiment, incorporating diffuse illumtnation from 

two light sources (CIE illuminant D65 simulator) covered by diffusing filters and a flat 

base to present amples, as shown in Figure 3-3 (a) . Hence, the illumination and 

viewing geometry was dlO . Two samples of metallic-coating panels which were used a 

a reference and a te t sample, were placed on a uniform mid-grey background on the 

bottom of a cabinet as illustrated in Figure 3-3 (b) . The visual asses ment wa, 

conducted in a darkened room Each observer was seated on a chair in front of the 

cabinet placed on the floor An observer looked down onto the samples from the 

viewing window on the top of the cabinet. The di tance from the ob erver's eye to the 

sample was approximately 54 em which was considered an appropriate distance to 

assess micro appearance (see Section 2.5.1). It was slightly farther than 25 em which is 

suggested by McCamy (1998) for the visual texture observations, but similar to the 

distance of 50 em used in the coarseness assessment of coatings by Akzo Nobel 

(Kirchner and Kieboom et aI., 2007). The two samples were eparated by 10 em from 

each other across the centre area in order to avoid observers seeing a reflected mirror 

image which can be seen on the sample if it is placed directly under the viewing 

window, since the metallic coatings have a high gross surface 
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________ observers eyes 

10cm ! v~ewing window 

r--..,..--t. ' ...... _~.., 

44cm 

VieWIng Cabinet 

(a) 

reference sample & test sample 

.. 
8cm 

61 em 

Samples Arrangement 

(b) 

31 em 

Figure 3-3: (a) A schematic diagram of a DigiEye(f>., l'iewlng Cahmet. The samples are placed on the 

base. Two light sources (D65 simulators) are posItioned at fwo bOllom corners at each 'ilde and both 

emil light to the walls. The two top corners have curved surfaces 10 reflect Itghl umform~v onto the 

samples. An observer looked down onto the sample from the vlewmg window (b) The arrangement of the 

samples as presented to the obsen lers. 

The SPD of the light source was specified by measuring the PD of the light 

reflected from a white ceramic tile using the TSR mounted on the top of the cabinet. 

The SPD is given in Figure 3-4. The luminance level of the light reflected from the tile 

was 167.8 cd/m 2 The CIE XYZ tristimulus values and the eIE (x , y) chromaticity 

coordinates in terms of the CIE 1964 standard colorimetric observer were (X, Y, Z) 

equal to (171.0, 186.7,217.1) and (x, y) equal to (02974,03248) re pectivel The 

chromaticity coordinates can be compared to the eIE \964 (x, y) chromaticity 

coordinates of 0 .3138 and 0 .33\ 0 for the CIE D1uminant D65 (CIE, 2004b). The 

uniform mid-grey background of the samples had CIELAB (L*, a* , b*) values equal to 

(5601,0.3431, \ .3727) according to the measurement using the TSR at the centre of the 

viewing field . 

0 .010 ,-

0.008 

0 .006 

0 .004 

0 .002 f 

0 .000 
380 430 480 530 580 630 680 730 780 

wavelength (nm) 

Figure 3-4: SPD of the Itght source spec!fied by measuring SPIJ of a while ceramIc \tandard fIle usmg a 

Uinolta ('SIOOO tele-spectroradiometer (I:SR). 

88 



Spatial unifonnity of the illumination was investigated by measuring the grey 

background using the TSR at 17 points shown in Figure 3-5 (a). [t was necessary for 

these measurements to tilt the TSR except at the centre. The TSR could not be placed 

directly above each point, because of the structure of the cabinet which only had a small 

viewing window in the top. Figure 3-5 (b) shows the luminance in cd/m2 at each point 

corresponding to Figure 3-5 (a). The values of CIELAB ~E* ab colour difference (see 

Section 2.3.6) between the centre and each point are given in Figure 3-5 (c) . It can be 

seen that the luminance levels at the areas where the samples were presented were 

adequately uniform: The maximum and minimum luminance at the sample areas were 

38.41 cd/m2 and 37.91 cd/m2 respectively . The difference between these values was 

only 0.5 cdlm2
. The maximum colour difference at the sample areas was equal to 0.83 

and the minimum to 0.23 . These errors can be considered to be insignificant. 

61cm 
; . • ! 

o 

31cm 

I.QJ 
10cm 

(a) 

38.49 38.78 

38.07 38.07 

38.17 I 38.15 37.94 37.91 j 38.25 I 38.41 37.93 37.97 1 37.97 

38.18 38.13 

38.30 38.78 

(b) 

0.48 0.63 

0.40 0.52 

0.62 I 0.32 0.30 0.58 I 0 1 0.23 0.67 0.63 1 0.60 

0.83 0.36 

0.57 0.62 

(c) 

Figure 3-5: Spatial uniformity evaluation of the illumination. (a) Locations of measurements in 

uniformity evaluation. (b) Luminance in cdlm1 at each measurement paint. (c) ('1/:;0/8 l\ E *ab colour 

differences between the centre and each point. 
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3.3.3 Scaling Perceptual Coarseness 

Ten observers, including four females and six males aged between 24 and 34, 

participated in the visual assessments for scaling perceptual coarseness of the metallic­

coating panels. All observers were either students or members of staff at the University 

of Leeds. They all passed the Ishihara visual test as observers with normal colour vision. 

Each observer commenced an observation session by adapting to the viewing field 

which was the mid-grey background in the cabinet. Unlike length or weight, there is 

not any unit for scaling perceptual coarseness. Therefore, even though the concept of 

the coarseness is relatively easy to understand, observers may find it difficult to scale 

coarseness without any reference. This problem was solved by applying a Categorical 

judgment scaling method (see Section 2.9.1) with a reference sample so as to calibrate 

observers on the same scale. Two samples were presented for each assessment in the 

cabinet. One was the reference sample and the other a test sample (see Figure 3-3). 

One of the six grey samples, having a middle level of coarseness, was chosen as the 

reference sample. Observers were asked to assign a category for the test sample by 

comparing it with the reference sample, whose category was set at a value of five, 

according to their perception in terms of coarseness on a 1-9 scale as shown in Table 

3-4. All samples were presented in a random order and the position of the reference 

sample was also randomly selected on either the right- or left-hand side of the test 

sample during each assessment so as to prevent any systematic and experimenter bias 

(Dean & Voss, 1999). A training session was conducted before the main session. In the 

training session, each observer was asked to assess samples including the five grey 

colour samples and ten random samples from the other coloured samples. The training 

session was to help the observers get used to the experimental procedure and therefore 

the results were not included in the overall experimental analysis and the observers were 

also informed that it was a training session. After the training session, the main session 

involving the assessments of all the 155 samples was conducted. To test repeatability, 

each observer carried out the main session twice. A total of 20 main sessions which 

gave a total of 3100 categorical judgements (10 observers x 2 sessions x 155 samples) 

were needed. 
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Table 3-4: 1-9 categories used/or the visual assessment. 

Category 

Category 1 

Category 2 

Category 3 

Category 4 

Category 5 

Category 6 

Category 7 

Category 8 

Category 9 

3.3.4 Data Analysis and Results 

3.3.4.1 Scale Value 

Category Description 

Extremely Fine 

Very much Fine 

Moderately Fine 

Slightly Fine 

Reference Sample 

Slightly Coarse 

Moderately Coarse 

Very much Coarse 

Extremely Coarse 

The raw experimental data consisted of the category numbers assigned by the 

observers to each sample according to the perceptual coarseness. The simplest way to 

analysis these data is to take an arithmetic mean over the results from all observers to 

obtain a mean scale value for each sample. This is known as the mean-category value 

method (see Section 2.9.1) and assumes that the observers are capable of keeping the 

intervals between category boundaries psychologically equal. However, there is always 

doubt about an observer's ability to categorise samples into an equal-interval of the 

categories. Thus, a more sophisticated technique known as the categorical-judgement 

method is preferred (see Section 2.9.1). This transfonns scaled data to an equal-interval 

scale. A worked example is given in Table 3-5 (Bartleson, 1984; Luo, 2002). 

1. An m x n frequency matrix was constructed regarding m samples (stimuli) and n 

categories in a categorical judgement assessment. Each entry shows the frequency 

for a sample being judged as being in a specific category. 

2. An m x n cumulative frequency matrix was constructed in which each entry 

shows the frequency of a sample judged to be below a given category. 

3. An m x n cumulative probability matrix was obtained by divided each entry in 

the cumulative frequency matrix by the number of observations. 

4. An m x n LG matrix (logistic function values) is obtained from the cumulative 

frequency matrix using Equation 3-1. This function can be used to estimate z­

scores in Step 5. 

91 



LG = In( CF + a ) 
N -CF+a 

Equation 3-1 

where CF represents the cumulative frequency matrix, N is the number of the 

observations and a is an arbitrary additive constant (0.5 was suggested by 

Bartleson (1984) and was used in this study). 

5. Z-scores can be obtained from the cumulative probability matrix as probability is 

the area (proportion) under the normal distribution curve. According to a property 

of the normal distribution, for those having probability values of 0 or I, the z­

scores are - 00 or 00 respectively. Therefore, in both cases, an m x n z-score 

matrix was estimated from the LG values using a scaling coefficient a (and if 

necessary a coefficient fJ) as given in Equation 3-2, which was calculated using 

linear regression between the valid z-scores and corresponding LG value. 

zscore = aLG+ P Equation 3-2 

6. An m x (n - 1) difference matrix between adjacent columns was calculated 

followed by calculation of the mean for each column. 

7. Category boundaries were determined by setting the ongm (in the worked 

example, it is the boundary between Category 1 and 2) to zero and adding adjacent 

mean values from the different matrix. 

8. An m x (n - 1) scale value matrix was calculated by subtracting each entry of the 

z-score matrix from the corresponding category boundaries. The mean values of 

each row represent the coarseness of the samples as their scale value. 
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Table 3-5: A worked example of the categorical-judgement method. In this example, the number of the 

sample, m = 3, the category, n = 7 and the total observations, N = 8, by 4 observers (twice by each 

observer). 

Category 2 3 4 5 6 7 

Observer 1 

Sample 1 0 0 0 2 0 0 0 

Sample 2 0 0 0 1 1 0 0 

Sample 3 1 0 0 0 0 0 

Observer 2 

Sample 1 0 0 0 0 2 0 0 

Sample 2 0 0 0 1 0 0 

Sample 3 0 0 2 0 0 0 0 

Observer 3 

Sample 1 0 0 0 0 2 0 0 

Sample 2 0 1 1 0 0 0 0 

Sample 3 0 2 0 0 0 0 0 

Observer 4 

Sample 1 0 0 0 0 1 1 0 

Sample 2 0 0 0 1 1 0 0 

Sample 3 0 0 1 1 0 0 0 
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Category 2 3 4 5 6 7 

Frequency matrix 

Sample 1 0 0 0 2 5 1 0 

Sample 2 0 1 3 3 0 0 

Sample 3 3 3 1 0 0 0 

Cumulative frequency 

Sample 1 0 0 0 2 7 8 8 

Sample 2 0 1 2 5 8 8 8 

Sample 3 1 4 7 8 8 8 8 

Cumulative probability matrix 

Sample 1 0 0 0 0.25 0.875 

Sample 2 0 0.125 0.25 0.625 1 

Sample 3 0.125 0.5 0.875 1 1 

LG matrix 

Sample 1 -2.833 -2.833 -2.833 -0.956 1.609 2.833 2.833 

Sample 2 -2.833 -1.609 -0.956 0.452 2.833 2.833 2.833 

Sample 3 -1.609 0.000 1.609 2.833 2.833 2.833 2.833 

z-score matrix 

Sample 1 -2.020 -2.020 -2.020 -0.680 1.149 2.023 2.023 

Sample 2 -2.020 -1.147 -0.680 0.324 2.023 2.023 2.023 

Sample 3 -1.147 0.001 1.149 2.023 2.023 2.023 2.023 

Difference matrix 

Sample 1 0.000 0.000 1.340 1.830 0.873 0.000 

Sample 2 0.873 0.467 1.004 1.699 0.000 0.000 

Sample 3 1.148 1.148 0.873 0.000 0.000 0.000 

Mean 0.674 0.538 1.072 1.176 0.291 0 
........... ~~ .. -....... -..... -.-.. -..... ---.. -.--.... -.... -

Boundary 0.000 0.674 1.212 2.284 3.460 3.751 3.751 

Scale 
Scale value matrix Value 

(Mean) 

Sample 1 2.020 2.694 3.232 2.965 2.311 1.729 2.492 

Sample 2 2.020 1.821 1.892 1.960 1.438 1.729 1.810 

Sample 3 1.147 0.672 0.062 0.262 1.438 1.729 0.885 

The raw experimental data were analysed using the two methods: the mean­

category value method and the categorical-judgement method. These methods were 

compared by plotting two sets of results as shown in Figure 3-6 where the mean­

category value method is plotted on the horizontal axis and the categorical-judgement 

method on the vertical axis. As can be seen in Figure 3-6, the coefficient of the 

determination value (R2) of 0.9966 indicates that the results from both methods are well 

correlated. Frequently, it is found that a simple mean-category value method yields 

scale values that are very similar to those determined by a categorical-judgement 

method (Bartleson, 1984; Han, 2006). This high level of correlation indicates that the 
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observers could follow the instructions with the respect to the equal-interval properties 

of the category scales with a high degree of precision . Consequently, the scale values 

derived from the simple mean-category value method were used to represent the 

perceptual coarseness of the samples scaled by the observers. The scale values of all the 

samples are given in Appendix II. 

4

r 

.-- . ~ 

~ "0 R2 = 0.9966 
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scale value 
(mean-category value method) 

Figure 3-6: Comparison oj the scale values derived from the mean-category value melhod and (he 

categorical-judgement method for all samples. 

3.3.4.2 Observer Variabil ity 

In this section, the uncertainty In the experimental results is determined by 

observer variability . Observer variability was investigated from two aspects : observer 

repeatability and observer accuracy, sometimes called intra-observer agreement and 

inter-observer agreement respectively . Observer repeatability indicates how well the 

experimental result agrees with a result replicated by the same observer. Observer 

accuracy investigates how well individual observers agree with the mean experimental 

result. Thus, for the repeatability investigation, the raw data in the first ses ion of the 

coarseness scaling for the 155 samples was compared with that in the second session for 

individual observers . The raw data means the category data assigned by each observer 

for each sample. Observer accuracy was investigated by comparing the raw data of 

each session with the mean-category values. These comparisons were carried out in 

terms of the coefficient of determination (R2) and the coeffiCient of Ilanalioll (CY) (R2 

and CV; see Sections 2 .10.1 and 2.10.3) and the results are summarised in Table 3-6 

and Table 3-7 . In addition, a 95 % confidence interval was computed to obtain a 

measure of the performance of the observers (see Section 2. 10.4). 
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Table 3-6: Observer repeatability and the associated mean. median. maximum and minimum values of all 

the samples and the individual grey. blue. green and purple samples in terms oflf and Cv. 

Observer 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Mean 

Median 

Max 

Min 

All 

0.70 

0.79 

0.55 

0.66 

0.53 

0.74 

0.77 

0.67 

0.75 

0.74 

0.69 

0.72 

0.79 

0.53 

Grey 

0.74 

0.92 

0.81 

0.92 

0.90 

0.96 

0.95 

0.95 

0.98 

0.89 

0.90 

0.92 

0.98 

0.74 

R2 

Blue Green Purple 

0.36 0.40 0.35 

0.36 0.32 0.57 

0.19 0.36 0.36 

0.27 0.47 0 19 

0.17 0.30 0.17 

0.41 0.26 0.50 

0.42 0.42 0.46 

0.20 0.30 0.21 

0.43 0.57 0.57 

0.38 0.28 0.14 

0.32 0.37 0.35 

0.36 0.34 0.36 

0.43 0.57 0.57 

0.17 0.26 0.14 

All 

16 

17 

18 

21 

19 

16 

12 

24 

19 

17 

18 

17 

24 

12 

Grey 

22 

20 

21 

13 

13 

8 

8 
12 

9 

12 

14 

12 

22 

8 

CV 

Blue Green Purple 

14 13 25 

15 12 29 

19 14 20 

19 11 39 

17 15 27 

19 15 14 

10 8 19 

20 13 54 

20 15 25 

14 12 32 

17 13 28 

18 13 26 

20 15 54 

10 8 14 

Table 3-7: Observer accuracy for each session and the associated mean. median. maximum and minimum 

values of all the samples and the individual grey. blue. green and purple samples in terms of If and Cv. 

cv Observer 
& 

Session All Grey Blue Green Purple All Grey Blue Green Purple 

1 
1 

2 

0.82 0.91 0.64 0.66 

0.88 0.98 0.50 0.72 
- .. -~--.--- _ .. _- ----.-.--.- .. -.-.. ~.-. -" 

0.96 0.60 0.58 

0.58 11 14 9 10 18 

0.76 18 20 16 14 26 
........ - .-..... ""1-"- .......... - .. - .......... -.--.- ... - ... -- .... --.... - .. ------

0.56 : 16 8 17 13 20 
i 2 

1 

2 0.98 

0.75 

0.93 

0.59 0.68 0.65 i 12 10 11 8 19 
- ... - ... ---... .. ..... _ ...... _ .. - ...... - -4 .... _ ...... _ .. · .... _---- .......... --.. -.--.. - .. -.-----.. --_ 

3 

4 

1 

2 

1 

2 

0.84 

0.83 

0.81 

0.98 

0.97 

0.45 

0.56 

0.61 

0.49 

0.45 0.45! 16 19 13 11 26 

0.53 0.69 i 16 11 19 13 17 
_ .. _.- - ..... j- .. _ .... - - ..................... _. __ .- .. -_._--_ .. _-_._-

0.54 0.59 . 13 10 8 8 24 

0.32 0.51 18 8 15 12 33 
_ .. _- - _. _ .. _.j- - - ._."-'--- ---1--1- 0.82-- O~93 -- -()~61-.. -0.76 0.73: 15 

5 
14 

8 

19 

8 

15 

10 

12 

7 

21 

27 2 0.81 0.95 0.54 0.61 0.23 13 
.. ____ ." _ .• ___ I - "_M __ " •• _ •• _" _____ • _ •• _ ••••• - .- --" _ •• _ ••••• 

6 
1 0.88 0.93 0.51 0.72 

2 0.88 0.97 0.66 0.55 

7 
1 

2 

0.78 

0.84 

0.88 

0.91 

0.47 

0.44 
_ •• _ •• -- "_ •• _0 •• M ••• ----T' .. - _ .... _ .. -.- - .... -- _ .. _._ .. - ._._._-,._" .. -.,. -- - .. -.-> 

8 
1 

2 

0.74 

0.86 

9 
1 0.88 

2 0.82 
......................... 

10 
1 0.66 

2 0.81 

Mean 

Median 

Max 

Min 

96 

0.82 

0.83 

0.88 

0.68 

0.58 

0.99 

0.31 

0.66 

0.98 0.60 

0.99 0.45 
"------- ------ '--'"-'" .. -_ ...... _ .. -,-

0.99 0.76 

0.96 0.58 

0.93 0.55 

0.96 0.57 

0.99 

0.58 

0.76 

0.31 

0.65 

0.74 

0.66 

0.56 

0.65 

0.58 

0.81 

0.48 

0.61 

0.63 

0.81 

0.32 

0.72 

0.70 

0.71 

0.44 

0.42 

0.70 i 

0.63 

0.55 

0.78 

0.27 

0.58 

0.61 

0.78 

0.23 

11 

15 

13 

17 

14 

10 

11 

11 

15 

14 

14 

14 

18 

10 

11 

13 

7 

13 

15 

21 

17 11 9 20 

15 16 8 31 
- . __ ._-------------------------

22 13 12 18 

5 9 8 14 
"---- - .-----.----------------~----------

8 10 8 19 

5 10 9 18 
.. _-----_ .. _---_ ... _-

13 16 12 20 

7 

12 

10 

22 

5 

13 

13 

13 

19 

8 

10 

10 

10 

14 

7 

22 

21 

20 

33 

14 



3.3.5 Discussion 

Observer variability indicates the uncertainty in the experiment. For observer 

repeatability, mean and median R2 values for all the observers were 0.69 and 0.72 

respectively, and mean and median CV values were 18 and 17 respectively, as shown in 

Table 3-6. It is difficult to evaluate acceptability of the repeatability from this 

experiment; however, the observer repeatability obtained in a study to scale 

colourfulness (Luo and Clarke et al., 1991) or gloss (Wei, 2006), for example, had CV 

values of around 19. According to the results of these previous experiments, the 

repeatability obtained in this experiment seems to be not too high or low. However, it 

should be noted that the observer variability are dependent on the attributes evaluated, 

the scaling methods and also background and experience of the observers. In 

comparison, observer accuracy was found to be reasonably high: the mean and median 

values ofR2 for all the observers were 0.82 and 0.83 respectively, and mean and median 

values of CV were 14 for both as shown in Table 3-7. It was found that both the 

repeatability and accuracy from the blue and purple colour samples showed poorer 

results compared to those of the green colour samples. This indicates that the scale 

values of the perceptual coarseness obtained from the green colour samples were more 

reliable than those of the blue and purple colour samples. Both the repeatability and 

accuracy were excellent for the grey colour samples in terms of R2 (over 0.9). In 

contrast, the CV values were not as good as might be expected. These results indicate 

that the individual data are linearly related, but the absolute values of these data are not 

the same. 

Parallel to the present study, the perceptual coarseness was investigated by Akzo 

Nobel using seven observers and 398 coating samples (Kirchner and Kieboom et aI., 

2007). These samples were not only metallic-coating panels but also pearlescent­

coating panels and some panels coated with a mixture of metallic and pearlescent 

pigments. They used a 0-9 categorical judgement scaling method with eight reference 

samples which corresponded to categories one to eight: category nine was used for any 

samples that were coarser than that indicated by category eight. More reference 

samples could be used in this experiment if there were appropriate samples available, 

for example the six grey colour samples could be used. However, the perceptual 

coarseness differences between these six samples and even the recipes of their coatings 

(the amount of aluminium flake contained in these coating samples) were unknown. 

Moreover, there was no method available to measure perceptual coarseness. Therefore, 
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only one reference sample was used. Another difference between their experiment and 

the present study was that they allowed the observers to assign the values up to a quarter 

scale precision. The visual assessment was carried out in their laboratory in which an 

isotropic and luminous flux was emitted all over the ceiling to provide diffuse 

illumination with the illumination and viewing geometry of about 0/45. The viewing 

condition used in their experiment is shown in Figure 3-7. 
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Figure 3-7: The viewing condition used for the coarseness assessment at Akzo Nobel (Kirchner and 

Kieboom et 01. , 2007). 

A mean value of observer accuracy reported was 0.90 in their study with 

minimum and maximum values of 0.83 and 0.92 respectively, in terms of the R2. These 

indicate better accuracy compared with the present study, where the mean, minimum 

and maximum values of the accuracy were 0.82, 0.68 and 0.88 respectively, in terms of 

R2. In their experiment, the observers "had experience in observing visual texture, and 

were trained to recognise visual texture attribute" (Kirchner and Kieboom et aI. , 2007) , 

while all the observers who participated in this study were not experienced in the visual 

assessment of visual texture. Although the target attribute is different, the professional 

observers consistently out-performed the student/naive observers regarding the ability to 

judge colour difference of metallic coatings (Nicholls, 2000) (see Section 2.5 .1.1). In 

addition, they used eight reference samples compared with only one used in this study. 

More reference samples are likely to make the judgements easier and more precise. If 

these points are taken into consideration, it can be concluded that the accuracy obtained 

in the present experiment is not much worse than the result obtained using the 

professional observers. Hence, the relatively high observer accuracy in both 

experimental conditions encourages using the diffuse illumination for assessing the 

coarseness of the coatings and also indicates that the perceptual coarseness can be 

reliably assessed by observers. 

98 



3.4 Computational Model for Perceptual 

Coarseness Prediction 

Image texture analysis has been much studied in the last few decades. A large 

number of image-texture analysis methods in the computing domain have been 

developed based on various analyses of image. However, those methods are mainly for 

texture classification, texture segmentation and texture synthesis (see Section 2.6) rather 

than for actually predicting visual texture using numerical values, although the 

performance of these tasks is often evaluated by visual inspection. Many of these 

methods require input parameters which are often difficult to determine (see Section 

2.6). For example, although the comparison studies (Conners & Harlow, 1980; Ohanian 

& Dubes, 1992; Weszka and Dyer et aJ., 1976) proved the ability of the jpatial grey 

level dependence matrix (co-occu"ence matrix) (see Section 2.6.1.1) for classification 

tasks, this method suffers from a number of difficulties because there are no well­

established methods to select the directional and distance parameters. 

The present author (Kitaguchi and Westland et aI., 2004) also implemented 

several conventional image texture analysis methods to investigate the correlation of , 

features extracted from images of fabric samples with perceptual coarseness. The 

image texture analysis methods used and the features extracted from them are listed in 

Table 3-8. 

Table 3-8: A list of image texture ana~ysis methods implemented and features extracted in the coar.\'ene."~· 

assessment using the fabriC samples. 

Texture Analysis Method 

Spatial Grey Level Dependence Method 
(Co-occurrence matrices) 

Run Length 

Grey Level Difference Method 

Neighbouring Grey Level Dependence Statistics 

Features 

Energy 
Entropy 
Contrast 

Short run emphasis 
Long run emphasis 

Run length non-uniformity 
Grey level non-uniformity 

Run percentage 
Contrast 

Angular second moment 
Entropy 
Mean 

Small number emphaSis 
Number non-uniformity 

Large number emphasis 
Entropy 

Second moment 
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In the experiment, fifteen observers evaluated the coarseness of ten real lOx 10 

cm fabric samples in a viewing cabinet using the rank order method (Engel drum, 2000). 

Each observer was asked to rank the samples in order of coarseness. In order to check 

their repeatability, each observer carried out the assessment twice. The raw 

experimental results were converted into z-scores. The mean values of the observers' z­

score of coarseness with 95 % confidence intervals are given in Figure 3-8. The more 

negative z-scores indicate the perceptually coarser texture. 

4 

CD 2 I ... 
I 0 

~ I I I 
N 0 I c: I I IV I CD 
E -2 I 

I 

-4 
N (t) V 10 co ...... CD Ol 0 

CD CD CD .!Z CD CD .!Z CD .!Z CD 0. 0. 0. D- o. 0. D- o. D- o. E E E E E E E E E E IV IV IV IV IV IV IV IV IV IV en en en en II) en en en en en 

Figure 3-8: Mean of the observers' z-scores of coarseness with 95 % confidence intervals (the more 

negative z-scores indicate the perceptually coarser texture). 

Among the features computed from the implemented methods, some, such as the 

contrast from the spatial grey level dependence method and the mean from the grey 

level difference method, showed high correlation with the perceptual coarseness, whose 

correlation, in terms of R2 was 0.82 and 0.90 respectively. However, these features 

changed as the parameters varied. Although the feature describes the perceptual texture 

very well at a particular value of a parameter, the other parameters do not always show 

good correlation, as shown in Figure 3-9~ the correlation for contrast from the spatial 

grey level dependence method changes when the distance parameter is changed from 1 

to 11. In practice, it is necessary to consider the efficiency of the computation 

procedures. Although some of the methods showed good agreement with the perceptual 

coarseness, they were time consuming to examine and analyse because they involve 

many parameters. In addition, even human perception is affected by the viewing 

conditions such as the distance between an observer and the samples, and because of the 

size and resolution dependence of visual texture (see Section 1.2), the conventional 

methods are not so sensitive from the human perceptual perspective. 
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Figure 3-9: ChanRes of R" values for contrast from the !>patwl Rrey level dependence method when the 

distance parameter chanflesfrol1l I to II . 

The objective of the study described in this section is to develop a computational 

model capable of predicting the perceptual coarseness of the metallic coating from a 

digital image of those coatings. Such a model should take into account the human 

visual system and analyse an image and it should also make a quantitative match with 

perceptual coarseness . Coarseness is caused by the non-uniformity of a surface and it 

can be analysed by looking at the pixel value variation in an image of that surface which 

is a measure of the contrast between neighbouring pixels. Therefore, a coarseness 

model was developed based on the hypothesis that the Fourier enerb'Y of an image is a 

measure of the amount of contrast in the image and that the amount of contrast is 

correlated closely with coarseness. Furthermore, the contrast-sensitivity function (C SF, 

see Section 2.2.3) measures the visible amount of the contrast which is related to 

perceptual coarseness. The model structure as given in Figure 3-10 is described in the 

following sections. 
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Coarsen .. s Prediction 

Figure 3-/0: A flowchart of the main framework for the coarseness model. 

3.4.1 Capture and Measurement of the Target 

Spectroradiometers and spectrophotometers are often employed for the 

measurement of SPD and reflectance, parameters which can be associated with colour 

and gloss appearance respectively. The infonnation obtained from these instruments is 

as a result of integration over a defined area. However, two-dimensional spatial 
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information is essential for analysis of visual texture (depending on the material, three 

dimensional information may be required). Therefore, a digital camera was used to 

obtain information on the spatial variation of a surface. In this section, the required data 

for a model and the development of a model are introduced. 

Digital images and their spectral properties, such as the SPD and the CIE XYZ 

tristimulus values of the 156 metallic-coating samples (the same samples as used in the 

visual assessment in Section 3.3), 124 solid-colour-coating panels, a white ceramic 

standard tile and a GretagMacbeth ColorChecker DC (ColorChecker DC) were used in 

this experiment. 

A Nikon DIX digital camera was used to capture images of all target samples the 

metallic-coating samples, the solid-colour-coating panels, the white ceramic standard 

tile and the ColorChecker DC. This camera is a single-lens reflex (SLR) digital camera 

featuring a 23.7 x 15.6 mm CCD incorporated with a Bayer RGB filter, coded at 8-bits 

per channel and it can capture images of up to 3008 x 1960 pixels spatial resolution. 

Image capture was made with the same experimental conditions as used for the visual 

assessment (see Figure 3-3). A digital camera was placed at the approximately location 

of the observer's eyes as shown in Figure 3-11. For the metallic-coating samples and 

the solid-colour-coating panels, a part of the image (832 x 832 pixels), which 

corresponds to the sample size of 8 x 8 em as used in the visual assessment, was 

selected from the whole image (3008 x 1960 pixels). These sub-images were selected 

not from the central area of the camera's view but at the location where the metallic­

coating sample was placed in the visual assessment, so as to avoid the reflected mirror 

image. 

The SPD of the metallic-coating samples, the solid-colour-coating panels and the 

white tile, were measured using the TSR. The TSR was mounted on the viewing 

cabinet, but it was tilted about 100 from the central area (Figure 3-11). This was again 

to avoid the reflected mirror image. The CIE XYZ tristimulus values were then 

calculated using the CIE 1964 standard colorimetric observer. Since the patches in the 

ColorChecker DC were too small to be measured in the cabinet, the spectral reflectance 

of all the patches was measured using the 7000A spectrophotometer (see Section 3.2.2). 

The CIE XYZ tristimulus values were then computed using the SPD of the illumination 

obtained by measuring the white ceramic standard tile and the CIE 1964 standard 

colorimetric observer data. 

103 



_____ observers eyes ~---__ 

10cm t : 
--.,.. ............ --... 

44cm 

TSR 

Viewing Cabinet 

Figure 3-J J: An illustration of the experimental condition for the measurement of the spectral properties 

using the TSR and the image capture using the digital camera. 

3.4.2 Colour Space Transformation 

3.4.2.1 XYZ Colour Space 

A characterisation method (see Section 2.8.3) was employed in order to convert 

device-dependent image RGB values to device-independent values such as eIE XYZ 

tristimulus values. 

In general , two data sets : a training data set and a test data set, are required . Both 

sets should consist of a set of device-dependent values and corresponding device­

independent values, and the two data sets should be independent. A training data set is 

used to derive a model such as to generate the parameters of the transfer matrix that 

forms part of the characterisation model. The test data set is used to evaluate the 

performance of a model derived based on the training data set. Colour differences 

between measured and predicted XYZ values of the test data set indicate the 

performance of the derived model. 

In this study, a variety of linear and polynomial regressIOn models with least­

squares titting (see Section 2.8.3.1) were tirst implemented and then an appropriate 

model was selected, which transforms the colours from RGB to XYZ values with a 

mInimum error. Size of the transfer matrix (M) and augmented matrices (D) (see 

Section 2.8.3.1) used in this study are given in Table 3-9. 
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Table 3-9: Size of the transfer matrix and augmented matrices compared in this study. 

Size of Transfer 
Matrix eM) 

3113 

3 11 4 

3 11 5 

3 11 9 

3)( 10 

3 II 11 

3)( 20 

Augmented Matrices (D) 

i [R G B) 

i [R G B 1) 

I [R G B RGB 1) 

i [R G B RG RB GB R2 G2 B2] 

, [R G B RG RB GB R2 G2 B21] 

: [R G B RG RB GB R2 ~ B2 RGB 1) 

, [R G B RG RB GB R2 G2 B2 RGB R2G R2B G2R G2B B2R B2G R3 G3 B3 1] 

, [R G B RG RB GB R2 G2 B2 RGB R2G R2B G2R ~B B2R B2G R3 G3 B3 R3G R38 
G3R G38 B3R B3G R2G8 RG28 RGB2 R2G2 R282 G282 R4 G4 B4 1] 

[R G B RG RB GB R2 G2 B2 RG8 R2G R28 G2R G28 82R 82G R3 G3 B3 R3G R38 
G3R G38 B3R B3G R2G8 RG2B RGB2 R2G2 R2B2 G282 R4 G4 B4 R4G R48 G4R G4B 

j 84R B4G R3GB RG3B RGB3 R3G2 R3B2 G3R2 G3B2 B3R2 83G2 R2G2B R2GB2 R 
, ~B2 R5 G5 B5 1] 

The purpose of the characterisation in this experiment is to transform RGB values 

of the image of the metallic-coating samples to CIE XYZ values on a pixel-by-pixel 

basis. Hence, mean RGB values for each of the images of the metallic-coating samples 

and the XYZ values of the corresponding samples based on the measurements using the 

TSR were used as a test data. 

Careful consideration must be given to the choice of colours for the training data 

set. Available data in this experiment were the mean RGB values for each image of the 

156 metallic-coating samples, the 166 patches in the ColorChecker DC and the 124 

solid-colour-coating panels and the measured XYZ values of the corresponding samples. 

The colour distribution of these data are given in a CIELAB L *C* diagram and a 

CIELAB a*b* diagram shown in Figure 3-12 (a) and (b) respectively. 
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Figure 3-/2: Colour diSlrIbutions of the 156 metalflc-coo(mR samples, 12-1 solid-colour-coatmg panels 

and 166 patches in the ColorChecker /)( ' (0) "1 ClEL I B 1 *C * dlGf!,ram rb) A n ELA B a *h * diagram. 

The ColorChecker DC is often used as training data (see ection 2 83 1). Also, it 

is common to omit the patches that have a high gloss surface and only consider the matt 

surface patches which form the majority in it (Cheung, 2004). This is because that 

surface material differences cause errors to a characterisation mode! This experiment 

deals with the metallic coatings whose surface finish differs from that of the 

ColorChecker DC But, in practice, it is also not unusual for a chart being used as 

training data, even though its surface finish differs from that of the samples being 

considered . The solid-colour-coating panels did not have exactly the same surface 

material as the metallic-coating samples, but it was sImilar. At least, their glossy 

surface materials were closer to that of metallic-coating samples compared with the matt 

surface of the majority patches in the ColorChecker DC Moreover, the solid-colour­

coating panels included a wide range of colours, in contrast to the variation in the 

colours of the metallic-coating samples which was very limited . In order to find a best 

set of training data, consequently, four different combinations of these data were 

employed as training data sets as summarised in Table 3-10 The first training data set 

(Data Set I) consisted of the 156 metallic-coating samples. The second data set (Data 

Set 2) included the 124 solid-colour-coating panels . The third data set (Data Set 3) was 

consisted of the 166 patches in the ColorChecker DC (excluding glossy surface patches) 

For the fourth data set (Data Set 4), the 124 solid-colour-coating panels and the 156 

metallic-coating samples were categorised as training data The models derived from 

each training data set were then evaluated using the test data set consisting of the 156 

metallic-coating samples which were also included in Data Set 1 and Data Set 4. 
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Therefore. in case of Data Set 1. a leave-one-out method was applied so that data of 155 

metallic-coating samples out of 156 were used as training data and a model was 

evaluated with data of the one remaining metallic-coating sample. Consequently, 156 

trials were needed to be made in order to evaluate a model with all test data. Similarly, 

in case of Data Set 4, all the 124 solid-colour-coating panels and the 155 metallic­

coating samples out of the 156 metallic-coating samples were used as training data and 

the remaining one metallic-coating sample was used to test the performance. Again, 

156 trials were needed. 

The summary of the data sets and the models that best performed is given in Table 

3-10, and the performance of all the models derived from Data Set 1, Data Set 2, Data 

Set 3 and Data Set 4 is found in Table 3-11 to Table 3-14 respectively. The 

performance was evaluated in terms of CIELAB L\E* ab between the measured and 

predicted values for both the training and test data sets. 

It is shown in Table 3-11 to Table 3-14 that the smallest median test errors for 

Data Set 1, Data Set 2, Data Set 3 and Data Set 4 are L\E*ab values of 0.36 for M = 3 )< 

35, 1.39 for M = 3 x 35, 1.49 for M = 3 x 35 and 0.65 for M = 3 x 56 respectively. The 

models derived from Data Set 1 performed best in significance level (p<O.05) according 

to the Wilcoxon signed-rank test (see Section 2.10.5). The models obtained from Data 

Set 1 were generally better than those obtained from the other training data sets with 

any number of terms. Therefore, Data Set 1 was considered to provide the most 

appropriate model in terms of the test errors, and also in terms of the surface material. 

This is because the samples consisted of the metallic-coating samples themselves, so 

there were no surface material differences between the training and the test data sets. 

However, a shortcoming of Data Set 1 was that the colour distribution of the training 

data was not widely spread in colour space as seen in Figure 3-12. If the model would 

be applied to samples having much wider colour distribution than Data Set 1, then Data 

Sets 2, 3 or 4 which all include a wider range of colours would be more appropriate. 

However, in this experiment. the model was applied to the each pixel in the images of 

the metallic-coating samples and therefore the colour distribution of these pixel values 

was expected to be wider but not too different from the mean pixel values of each image 

of the metallic-coating samples, i.e., Data Set 1. Consequently, Data Set I was chosen 

as a training data set for this experiment. The smallest median test error obtained was 

~.ab of 0.36 from M = 3x 35 and an equivalently smaller error of 0.41 ~E·ab was 

obtained from M = 3 x 20. In contrast, the maximum test error of the model from M = 
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3 x 35 was LlE*ab of 4.73 which was a much larger compared with that of 1.77 LlE*ab 

obtained from M = 3 x 20 This large maximum error for M = 3 " 35 was likely caused 

by over-fitting the training data. Consequently, the polynomIal model (M = 3 x 20) 

derived from all the 156 samples was applied to the samples to transform the image 

RGB values to CIE XYZ values on a pixel-by-pixel basi 

Table 3-10: .1 summary of/he data sets and the performance of the characterisatIOn model which showed 

the smallest lest error for each training data set. 

Training 
Data 

Test Data 

Method 

Size of M 

Test Error 

\E*ab 

Median 

Mean 

Max 

Min 

Data Set 1 Data Set 2 

155 metallic- 166 patches In 

coating samples ColorChecker DC 

156 meta lilc-
coating samples 

Leave-one-out 

3)( 20 

041 

0.51 

1.77 

0.06 

. ~ . ~ . ,.: .. : .. : 
" ... -..... -. . "J.II:~: . .....• ~ ..... 

$ ,1 ... . . ....... -. • • • • • • • 

156 meta lliC 
coating samples 

3)( 35 

1 39 

1 54 

4.03 

0.33 

Table 3-11 . Hodel performances usmg the Data Set l. 

Training 

Data 155 metallic-coating samples 

Training Error ( \E'".b) 

Data Set 3 

124 solid-colour­
coating panels 

156 metalilc-
coating samples 

3 x 35 

149 

166 

5 01 

032 

Test 

Data Set 4 

156 metallic­
coating samples 

+ 
124 sOlld-colour­
coating panels 

& • ••• 
156 metallic­

coating samples 

Leave-<lne-<lut 

3)( 56 

065 

073 

195 

0.06 

156 metallic-coating samples 

Test Error ( ' EO ab) 

SIZe of M Median Mean Max Min Median Mean Max Min 

3 x 3 1 92 222 742 006 1 93 227 747 0.24 

3 x 4 1 83 2 06 6.90 007 1 88 212 695 019 

3 x 5 1 76 1 84 733 007 1 81 1 91 738 0.20 

3 x 9 046 0.62 266 003 048 066 318 0.04 

3 x 10 045 0.61 263 0.01 048 0.65 3 07 0.02 

3 x 11 0.45 061 264 0.01 a 50 0.66 3.14 0.01 

3 x 20 035 0.44 1.50 003 041 051 177 0.06 

3 x 35 0.26 0.34 1.25 0.02 036 a 50 473 0.04 

3 x 56 0.21 0.28 1.18 001 037 060 6.35 0.05 
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Table 3-12: Model peiformances using the Data Set 2. 

Training Test 

Data 124 solid-colour-coating panels 156 metallic-coating samples 

Training Error (~E* ab) Test Error (~E*ab) 

Size of M Median Mean Max Min Median Mean Max Min 

3x3 14.08 16.26 54.68 3.24 11.14 11.82 18.25 6.34 
3x4 19.73 21.93 83.48 3.98 15.55 15.96 34.96 5.12 
3x5 17.40 20.20 111.71 2.50 11.75 15.00 37.28 4.25 
3x9 6.52 7.12 18.61 0.98 7.81 7.40 11.89 0.57 

3 x 10 6.79 6.99 19.11 0.99 7.77 7.62 12.72 3.41 
3 x 11 6.17 6.68 18.01 1.41 5.90 6.38 11.87 1.79 
3 x 20 2.35 2.96 10.16 0.30 3.43 3.86 8.24 0.30 
3 x 35 1.44 1.73 6.20 0.15 1.39 1.54 4.03 0.33 
3 x 56 0.94 1.17 3.93 0.08 1.63 1.94 5.57 0.55 

Table 3-13: Model peiformances using the Data Set 3. 

Training Test 

Data 166 patches in the ColorChecker DC 156 metallic-coating samples 

Training Error (~E* ab) Test Error (~E* ab) 

Size of M Median Mean Max Min Median Mean Max Min 

3x3 12.74 13.25 35.01 2.01 14.25 13.98 15.34 9.77 
3x4 11.11 22.71 110.78 2.48 16.62 18.51 57.42 3.59 

3x5 9.05 13.01 123.28 0.83 15.61 17.68 37.41 2.89 

3x9 5.18 6.31 18.69 0.69 8.40 8.30 14.80 1.61 

3 x 10 5.22 5.62 18.53 0.90 7.03 7.51 14.30 3.54 

3 x 11 4.10 5.05 19.58 0.46 6.14 6.27 9.11 2.42 

3 x 20 2.00 2.54 12.65 0.25 3.15 3.46 6.87 0.86 

3 x 35 1.46 1.88 12.35 0.24 1.49 1.66 5.01 0.32 

3 x 56 1.20 1.53 12.10 0.22 1.84 2.12 5.07 0.43 

Table 3-14: Model peiformances using the Data Set 4. 

Training Test 

124 solid-colour-coating panels 
Data + 156 metallic-coating samples 

155 metallic-coatina samEles 

Training Error (~E* ab) Test Error (..A.E* ab) 

Size of M Median Mean Max Min Median Mean Max Min 

3x3 10.93 11.95 35.27 3.31 9.97 9.56 17.74 4.84 

3x4 11.88 13.21 60.81 1.01 9.58 9.82 20.27 1.18 

3x5 10.40 12.70 119.97 0.69 7.68 7.93 19.73 1.78 

3x9 4.20 4.92 19.03 0.13 3.77 3.49 7.29 0.16 

3 x 10 4.15 4.92 19.33 0.25 3.79 3.68 7.46 0.32 

3 x 11 4.29 4.75 18.37 0.29 3.52 3.41 6.37 0.49 

3 x 20 1.97 2.29 12.42 0.08 1.75 1.75 3.11 0.16 

3 x 35 0.92 1.23 7.77 0.05 0.75 0.85 2.54 0.07 

3 x 56 0.76 0.94 4.39 0.02 0.65 0.73 1.95 0.06 
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3.4.2.2 LMS Colour Space 

The human visual system processes images in a way that is consistent with a . 
spatial-frequency analysis of an image (Wandell, 1995). By taking this into 

consideration, it is assumed that the CSF should be incorporated into the model in order 

to accomplish a spatial-frequency analysis in terms of the human visual system. As 

introduced in Section 2.2.3, the contrast sensitivity of the human visual system is 

different in the luminance channel, the red-green channel and the yellow-blue channel. 

Thus the image of the metallic-coating samples had to be separated into these three 

channels. To do this, the XYZ values of each pixel in the image of the samples were 

first transformed into the LMS cone fundamentals (see Section 2.2.2.1). The following 

transformation as shown in Equation 3-3 was proposed by Stockman and MacLeod et al. 
- -

(1993) enable transformation of the CIE 1964 XYZ CMFs (xlO(A)'YIO(.l),ZlO(A» to 

corresponding LMS cone fundamentals (/(A),m(A),s(A». However, the spectral 

property of each pixel in the image was not recovered in this study, since a polynomial 

regression model was employed to transform from the RGB to XYZ values. Instead, 

the simplified transformation between XYZ to LMS values as shown in Equation 3-4 

was employed. The estimated S-cone response was not quite correct because there is no 

linear conversion equation; two different equations need to be applied at wavelengths 

either shorter than or longer than 520 nm. However, the effect was negligible in this 

study, since the S-cone information was not used in the final model. 

l(}') 

m(A) 

S(A) 

10glO S(A) 

= 
= 
= 
= 

0.236157 XJo(A) + 0.826427 .YIO(A) - 0.04571OzlO (A) 

- 0.431117 XJo(A) + 1.206922.YIO(A) + 0.090020zlO (A) 

0.040557 XIO(A) - 0.019683 .YIO(A) + 0.486195 ZIO(A) 

10402.1/ A - 21.7185 (A> 520nm) 

Equation 3-3 

L = 0.236157 X +0.826427Y -0.045710Z 

M = - 0.431117 X + 1.206922 Y + 0.090020Z Equation 3-4 

S = 0.040557 X -0.019683Y +0.486195Z 

The three channels; luminance, red-green and yellow-blue, were then separated 

from the image according to a chromaticity coordinate system proposed by MacLeod 

and Boynton (1979) (see Section 2.2.2.2). The luminance channel was determined from 

the values of L + M; the red-green channel from L / (L + M); the yellow-blue channel 

from S / (L of- M). 
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3.4.3 Contrast Measure 

A two-dimensional discrete Fourier transform (see Section 2.6.2.1) was applied to 

each of the three channels (luminance, red-green and yellow-blue) to transfer the spatial 

domain into the frequency domain to follow the assumption that the amount of energy 

in the Fourier transform of the image was a measure of the amount of contrast in that 

image. It should be noted that a uniform image by definition has zero coarseness. It 

also has zero contrast and zero energy apart from its DC component. The DC 

component signifies a direct current, the energy in the Fourier transform at the origin of 

the frequency domain~ i.e., zero frequency. As the brightness of an image increases, the 

DC component increases accordingly. Before applying the Fourier transform to the 

image, the mean value of each luminance, red-green and yellow-blue channel was 

subtracted from every pixel value in each channel, so that the DC component in the 

Fourier transform was zero. 

Figure 3-13 shows an original image of a sample and its Fourier spectrum images 

for the three channels, where the top left image is the original image, the top right is a 

Fourier spectrum image for the luminance channel, the bottom left is the red-green 

channel and the bottom right is the yellow-blue channel. Note that the appearance of 

the images in this figure might be different from the physical sample because it was not 

possible to apply colour management to the images printed in this document. These 

images indicate that there is little Fourier energy in both chromatic channels and that 

there is large amount of Fourier energy in the luminance channel. This suggests that, 

for these samples, the chromatic channels make little contribution to perceptual 

coarseness. In addition, it is known that the spatial resolution of the human perception 

is more sensitive to luminance variation than chromatic variation (see Sections 2.2.2 and 

2.2.3). Therefore, this study focused only on the luminance channel for modelling 

coarseness. 
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original Image luminance channel 

red-green channel yellow-blue channel 

Figure 3-13: An original image of a metallic-coating panel (top lefl) and its Fourier spectrum images for 

luminance (top right) and chromatic channels: red-green channel (bottom lefl) and yellow-blue channel 

(bottom right). Note that the DC component IS in the centre of each Fourier pectrum image and that the 

spatial frequency increases from the centre to outwards. 

3.4.4 Applying CSF 

As has been mentioned before, to incorporate properties of the human visual 

system into the model , the Fourier energy, which was the measure of the contrast 

contained in the image, was weighted using the CSF modelled by Westland (2005) on 

the basis of the CSF measurements made by Owens (2002) (see Section 2.2.3.2) as 

shown in Equation 3-5, and the sum of these weighted values was computed. 

CSF(u) = FLFC x 0.28u exp(- 0.3u)[l + exp(0.3u)t
5 

where 

{

I OOO(L / 70yn 

FL = 1000(1170)"3 

1000 

Fe = (1 - d) 

if 1 <;, L <;, 70} 
if L < 1 

if 70 < L 

d = [(x - xwhll.)2 + (y - Ywlm,) 2t ~ 

Equation 3-5 

where u is the spatial frequency in cycles/degree, L is the mean luminance level of a 

sample in units of cd/m2, d is a measure of the chromatic content of the image, (x, y) is 

the average chromaticity co-ordinate derived from the XYZ values for a sample image 
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and (Xwhite, Ywhite) is the chromaticity of the white point. Consequently, infonnation 

about the viewing geometry of the experimental conditions provides input parameters to 

this model. 

3.4.5 Normalisation 

Comparison of the model output (the sum of the Fourier energy weighted using 

the CSF) with the scale values of the perceptual coarseness (results of the visual 

assessments described in Section 3.3.4.1) of the samples require that the data be 

normalised. The sum of the Fourier energy weighted using the CSF was nonnalised 

using the mean value of the luminance channel according to characteristic of the human 

contrast sensitivity, in which the ratio of the increment threshold to the background 

intensity is said to be a constant. This is explained with Weber's law (see Section 

2.2.3.1). Figure 3-14 shows the original images of the grey colour samples on the 

middle row and their Fourier spectrum images in the luminance channel on the bottom 

row along with the scale values of the perceptual coarseness on the top row. It can be 

seen that the lightness values of these original images are similar, but the perceptual 

coarseness increases as the Fourier energy becomes larger. When comparing dark 

colour samples with light colour samples of similar perceptual coarseness, it was found 

that the Fourier energy was much greater for the light samples than for dark samples, as 

shown in Figure 3-15 which shows the original images of the green colour samples on 

the middle row and their Fourier spectrum images on the bottom row along with the 

coarseness scale values on the top row. Figure 3-16 also demonstrates this finding by 

plotting the relationship between Fourier energy weighted by the CSF and the mean 

value of the luminance channel of the images of the samples having similar perceptual 

coarseness. The four points in Figure 3-16 correspond to the same four sample images 

as is shown in Figure 3-15. According to the coarseness scale values, these samples are 

expected to be similar in appearance. However, it is evident that, as shown in Figure 

3-16, the sum of the Fourier energy weighted by the CSF is much greater for the light 

samples. Therefore, this effect was included in the model by nonnalising such a sum 

using the mean value of the luminance channel for each image. 
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Perceptual Coarseness Value 

7.7 7.1 5.8 5.0 

Original Image 

Fourier spectrum images In the luminance channel 

Figure 3-14: Perceptual coarseness values obtainedfrom the visual assessment of grey samples (top row). 

Original images of the amples (middle row). Fourier spectrum images of the luminance channel (bottom 

row). 

Perceptual Coarseness Value 

7.70 775 780 7.80 

Original Image 

Fourier spectrum images in the luminance channel 

Figure 3-15: Perceptual coarseness value obtained from the visual as essment of green samples (top 

row). Original images of the amples (middle row). Fourier spectrum images of/he luminance channel 

(bottom row). 
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Figure 3-16: An example of the relationship between Fourier energy and the lightness of images in the 

green colour samples which are the same samples as in Figure 3-15 having similar perceptual coarseness 

(a scale value of 7. 70 - 7.80) of the perceptual coarseness obtained .from the visual assessment. 

3.4.6 Non-Linearity 

The output values after the process introduced in the prevIous sections are 

compared by plotting against the scale values of the perceptual coarseness for all 155 

samples in Figure 3-17. It appears that the perceptual coarseness tends to increase 

approximately linearly with the logarithmic of the output values. This is not an 

unexpected finding. It has been found that human responses do not usually have a 

linear relationship with any associated physical properties, which has been evidenced 

from many psychophysical studies (see Section 2.9.2). Therefore, a function was 

derived by comparing the outputs with the coarseness scale values and a logarithmic 

function was found to be appropriate to describe the nonlinear behaviour of the output 

values. Incorporating this, the model can be express using Equation 3-6. 

Coarseness Model = log.o ("r_E.-:..(U....:.)_X_C_SF---,-(U...;..») 
o LxS 

Equation 3-6 

where U is the spatial frequency in cycles/degree, Umax is the maximum spatial frequency 

containing in an image, CSF(u) is the CSF given in Equation 3-5, E(u) is the Fourier 

energy, L is the mean value of the luminance channel and S is the size of an image in 

pixel units. The model prediction for each metallic-coating sample at the experimental 

condition as described in Section 3.3.2.1 is given in Appendix II. 
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perceptual coarseness values. 

3.5 Model Performance 

The model developed in Section 34 was evaluated by comparing its output with 

the scale values of the perceptual coarseness obtained from the visual assessment using 

the metallic-coating panels described in Section 3 3. [t should be noted that the model 

was developed on the image statistics and vision model which were completely 

independent from the scale values of the perceptual coarseness, except the non-linearity 

stage. 

The model predictions and the scale values for all the 155 metallic-coating panels 

are plotted in Figure 3-18, and those of the grey , blue, green and purple colour samples 

are individually shown in Figure 3-19. with the accuracy of the model predictions 

investigated in terms of the coefficient of determination (R2) and the coefficient of 

variation (CY) (see Section 2. 101 and 2 103) ince the model predictions and the 

scale values do not have the same units, scaling factor (SF) were computed so as to 

correct their units for obtaining CY. 

The result of an R2 value of 0.91 for all the sample suggests an excellent 

relationship between the model prediction and the perceptual coarseness and indicate 

better performance than the observer repeatability (0 72) and accuracy (0 83). R2 values 

for the grey, blue, green and purple colour samples were 096, 0.79, 0.95 and 0.81 

respectively . Slightly lower model accuracy was found for the blue and purple colour 

samples According to the result of the vi ual assessments, both the observer 
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repeatability and the accuracy of these two colour samples were also poorer than the 

other colour samples, as has been seen in Table 3-6 and Table 3-7 (see Section 3.3.4.2). 

Therefore, the lower accuracy of the model performance for these samples might be 

caused by the reliability of the scale values rather than a fault with the model. In 

contrast, reliable scale values and accurate model prediction were both obtained for the 

green colour samples. 

The CV values for all samples and for the grey, blue, green and purple colour 

samples were 7, 13, 6, 3 and 12 respectively. The CV values agreed well with the R2 

values, except the result for the grey colour samples. While an R2 value is a measure of 

a linear relationship, a CV value measures an absolute difference (see Section 2.10.1 

and 2.10.3). Although a scaling factor was applied in this analysis because of scale 

difference between the model predictions and the perceptual coarseness scale values, the 

poor CV value indicates that it was not possible to adjust this data set with a simple 

scaling factor. However, it is difficult to identify the cause of error due to the relatively 

small number of grey colour samples. 

The model developed was only applied to the luminance channel of the image. 

Although the samples were coloured, the chromatic channels were not concerned. This 

was based on the fact that the Fourier energy of the chromatic channels in the image 

contained much less information than that in the luminance channel. Moreover, the 

human visual system is much more sensitive to the luminance than to the chromatic 

channels. The excellent model performance obtained for all the samples supports this 

theory. However, slight disagreement was observed between colours. It can be seen 

from Figure 3-18 that the model slightly under estimated for the blue colour samples 

compared with that for the green and purple samples or that the model slightly over 

predicted for green and purple samples. However, as shown in Figure 3-20, there were 

no significant differences for most of those samples, since the data were within 95 % 

confidence intervals. There were only a few blue colour samples that were significantly 

different from the others at a perceptual coarseness scale values around five. Hence, it 

was concluded that the influence of the chromatic channels can be considered negligible 

in this sample group. However, as has been shown in Figure 3-12, the colour 

distribution of this metallic-coating sample set used in this experiment was limited in 

colour space. Moreover, the perceptual coarseness variation did not quite overlap with 

the other colour sets of the samples. Therefore, in order to investigate a possible 
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chromaticity effect, it is necessary to carry out further experiments with more coloured 

samples. Further evaluations of the model are given in the following Chapter 4. 
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3.6 Summary 

The characterisation of perceptual coarseness was carried out usmg a set of 

metallic-coating samples provided by Akzo Nobel . Because of gonioapparent nature of 

metallic coatings, the illumination and viewing conditions were carefully chosen so that 

the observers could consistently assess their coarseness. It was fou nd that the 

coarseness could best be assessed under diffuse illumination . Using a 1-9 categorical 

judgement scaling method with one reference sample, the coarseness of the samples was 

visually scaled. The observer accuracy obtained from the visual asse sment was less 

accurate in comparison with the coarseness assessment carried out In the sImilar 

conditions at Akzo Nobel (see Section 3.3 .5) This difference perhaps originated from 

the different observers involved . While naive observers (had no experience in assessing 

the visual texture) participated in the present study, professional observers (had 

experiences in assessing visual texture) carried out the assessment at Akzo Nobel. Also, 

a 0-9 categorical judgement scaling method with eight reference sampl es was employed 

by Akzo obel. It could be thought that the use of more reference amples made the 

observers ' judgement easier and it uggest using more than one reference. sample to 

improve observer accuracy. In the present tudy, there were some vanations 10 the 

observer accuracy depending on the colours of the samples. However, the hI 'h values 

of the overall observer accuracy and repeatability suggest the adequacy f the diffuse 
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illumination for the coarseness assessments and that the perceptual coarseness can be 

reliably assessed by observers. 

A computational model was developed based on the information from a digital 

image of the metaIlic-coating samples. The advantages of this model are that it is 

computationally inexpensive and the input parameters (such as the physical size of the 

panel, the viewing distance and the white point for the observation condition) are related 

to the viewing conditions. Unlike the conventional texture models, such as SGLOM, 

GLOM, NGLOM and grey level run length (see Section 2.6), no parameters needed to 

be estimated to implement this model. 

As it was for the visual assessment, suitable experimental conditions were critical 

for image capture and measurement of spectral properties which were necessary as 

model input. Therefore, they were carried out at the same conditions as the observers 

assessed the coarseness of the samples. The eIE XYZ tristimulus values corresponding 

to each pixel in the images were transformed using a camera characterisation. As a 

result of comparison of various training data sets that were used to derive such a model, 

the training data consisting of metallic-coating samples themselves were found to be the 

best. An advantage was that this data set did not have any surface material difference 

from the samples that the deriv~d model was applied to. The XYZ values were then 

transformed to the LMS values and then to a luminance and two chromatic channels. 

The Fourier energy in these individual channels was computed to measure the amount 

of the contrast based on the assumption that the contrast correlated with coarseness. As 

a result, the large amount of the Fourier energy was contained in the luminance channel 

but less in the chromatic channels, so that only the luminance channel was utilised for 

next processes. The amount of the visible contrast was then measured by applying the 

CSF. The sum of the Fourier energy weighted using the CSF was then normalised by 

the mean value of the luminance channel for each image in order to incorporate Weber's 

law relating to contrast sensitivity. Finally, the coarseness prediction was obtained by 

taking the logarithm of such a sum after normalisation by the number of the pixels in the 

image. 

The model performance was evaluated in comparison of the model predictions 

with the scaled perceptual coarseness of the samples. There were slight variations in the 

performance depending on the colours of the samples, for example, the model 

performance for the blue and purple colour samples was worse than that of the green. 

This might be influenced by observer variability which was slightly lower for the blue 
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and even lower for purple samples than the green. Although overall agreement between 

the model predictions and the scale values of the coarseness indicates that the luminance 

channel alone is sufficient for the prediction of coarseness, it would be interesting to 

carry out a further study to verify the model for use with a wider range of coarseness 

levels and colours of coating panels. 

121 



Chapter 4 

Assessing and Modelling Coarseness 

using a Display 
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4.1 Introduction 

In the development of the coarseness model, as described in Section 3.4, it was 

necessary to obtain coarseness information from metallic-coating samples via the 

images captured using a digital camera. A Nikon DIX camera was used to capture a 

physical area of 96 x 96 Jlffi on each pixel via a 5.4 megapixel CCD sensor. It is known 

however, that the physical size of the aluminium flakes, which are the major cause of 

the non-uniform appearance, or coarseness, of the metallic coatings had an approximate 

diameter of between 5 to 50 Jlffi. This means that the resolution of the camera was not 

high enough to capture individual aluminium flakes in the metallic coatings. This can 

overcome by taking images with higher resolution so as to capture a smaller area per 

pixel, but not sufficiently fine to cover the range of all the flakes using the camera used. 

However, it may not be necessary to capture higher resolution images, since the 

resolution of the human eye is also limited by its contrast-sensitivity function (CSF) 

(see Section 2.2.3). In addition, it is known that the perceptual attributes of metallic 

coatings are not only caused by the aluminium flakes. Observers see the reflected light 

not only directly from the flakes but also from other components such as colour 

pigments and the varnish clear coat, and the apparent size of the flakes is likely to be 

larger than their physical size because of the relationships between the incident light and 

its reflection (see Sections 2.4.1 and 2.5). Also, the reflection from diffuse illumination 

(which was used for coarseness assessments in Section 3.3) behaves more complicated 

manner than a directional incident light. Since no information about the structural 

composition of the metallic-coating samples, such as the paint recipes, the actual 

particle size distribution and the orientation of flakes in the samples, is available, it is 

not possible to estimate the reflected or scattered light from the surface of the samples 

in this experiment. Although it is possible to use a microscope to measure the reflected 

or scattered light of an area as small as a single flake (Sung and Nadel et al., 2002), the 

requirement of this study is to analyse the appearance of metallic coatings rather than a 

single flake and hence a digital camera is most easily used to capture the spatial 

information in the form of an image; it is less costly and less time consuming than 

capturing micro-information with a microscope. 

Investigations in this chapter were made in order to verify the reliability of the 

information in the image capture process described in Section 3.4.1, especially whether 

adequate information relevant to the perceptual coarseness was captured by the camera, 
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bearing in mind that the pixel size was larger than the flake size. Part of the verification 

process involved simply looking at the images to see if the coarseness appeared to 

match that of the original metallic-coating sample. If this can be achieved, an image 

capture system with higher resolution is then unnecessary. It also suggests that digital 

images of coating samples could be used to provide the stimuli for coarseness 

experiment rather using real samples. This would provide the opportunity, for example, 

to change the colour of a sample to produce a greater range of stimuli. It would also 

provide an extremely convenient facility for the product and quality control of coating 

systems, as well as a useful tool for product design and manufacturing. 

Therefore, visual assessments were carried out to assess the coarseness using the 

images displayed on a liquid-crystal display (LCD) (see Section 2.8.2). The scaled 

coarseness of the images was compared with the perceptual coarseness of the actual 

metallic-coating samples described in Chapter 3. 

To accomplish this, a set of images was assembled from those captured for the 

coarseness prediction described in the previous chapter (Section 3.4.1). The following 

sections start with the evaluation and characterisation of a display in order to reproduce 

accurate images on an LCD for this experiment. In practice, since it not possible to 

avoid the introduction of errors during an image generation process, these potential 

errors were analysed and are discussed. The visual assessments are then described 

including the viewing conditions and the actual coarseness scaling experiments. The 

image quality was then evaluated by comparing the perceptual coarseness results 

obtained using the images with that obtained using the actual metallic-coating samples. 

In addition, the coarseness model developed in Chapter 3 (see Section 3.4) was applied 

to the generated images. The predicted coarseness results were compared with the 

perceptual coarseness of the image to test the model's performance. 

4.2 Display Evaluation 

An Eizo ColorEdge CG220 LCD was used to display the images. This LCD had a 

size of 22.2 inch (56.4 em) in diagonal and 1920 x 1200 pixel resolution with 8 bits per 

pixel. The chromaticity, the white point luminance and the gamma of the display were 

set to illuminant 065, 100 cdlm2 and 2.2 respectively. This LCD can achieve 

luminance levels up to 200 cdlm2
. In most situations however, this high level of 

luminance could cause fatigue in typical applications. Also, a wide luminance range 
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using only 8 bit colours would produce quantisation errors Thus, a maximum 

luminance of 100 cd/m2 was selected for this study . Mea urements of the spectral 

properties for display evaluation and characterisation were made u ing a Minolta 

CSIOOO spectroradiometer (TSR) (see Section 3 2.1) with the display in a darkened 

room . The TSR was always placed at a distance of 70 cm from the display . The 

measured targets were square with a size equivalent to 14 % of the full creen ize (570 

x 570 pixel) and were displayed in the centre area of the display with a mid-gre 

background (CIELAB L * of approximately 50). It should be noted that influences of 

polarisation to both of the TSR and the display were not considered in this experiment . 

CIE XYZ tristimulus values were determined using the CIE 1964 standard colorimetric 

observer. Colorimetric errors were evaluated in terms of CIELAB t£* ab The pectral 

power distribution (SPD) of the display primaries and the gamut of the display are 

plotted in Figure 4-1 As a reference, a gamut of sRGB colour pace is al 0 hov. n (IEC 

1998); note that the given RGB gamut has been tran formed to the \ alue 

corresponding to the CrE 1964 standard colorimetric observer (Ll, 2008) Different 

LCDs can have different gamut but most have gamuts that are not too different from 

that of defined by the sRGB . It can be seen however, that this di play ha a particularly 

wide gamut in an area of the green primary but not in an area of blue, comparing with 

the sRGB gamut. 
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4.2.1 Temporal Suitability 

All display require a finite time to reach a steady state from a cold ' tart A mid­

grey colour patch was measured with the T R each minute over the time penod ot 140 

minutes. Temporal suitability was evaluated in terms ofth colour difference, CIEL. B 
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6.£* ab, of each measurement from the last measurement (at 140 mins). The values of 

6.£* ab were plotted against time as shown in FIgure 4-2 It can be seen that there is a 

relatively large colour difference at the beginning; the value then decreased steadily 

after a period of approximately 15 minutes . These results indicate that the display needs 

to stabilise for at least 60 minutes to get a colour difference of less than 0.2 and for 100 

minutes to reduce this figure to 0.1. 
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4.2.2 Additivity Test 

Channel additivity of the display characterises the ability of that display to 

reproduce a colour which is the exact sum of the colours of the three primaries that 

comprise it. In order to evaluate this additivity , SPD measurements of each primary, 

red (R), green (G) and blue (G), were taken at each of thirty-three levels that 

corresponded to an approximately equal interval scale from 0 to 255, and XYZ values 

were then calculated from each measurement The colours of the mixture of those 

primaries (R + G + B) were also measured at the same thirty-three levels and XYZ 

values calculated The XYZ values of the black (R = 0, G = 0, B = 0) was subtracted 

from the XYZ values for each measurement. C[£LAB parameters L *, a* and b* were 

then calculated . Additivity errors were investigated by comparing these CIELAB 

values of both the colours from the separate primaries and from the sum of the three 

primaries. Figure 4-3 shows values of 6.£*ab, 6L* , ~a* and ~b* at each of the thirty­

three levels where the measurements were made. Mean and maximum additivity errors 

were ~E* ah of 1.17 and] .61 respectively . It can be seen from Figure 4-3 that the errors 

of 6L *, ~a* and ~b* were not consistent in the range from 0 to 255 . 6L * was larger in 

the middle of the range, but the ~a* and ~b* values were relatively larger at the high 

end of the range, although ~E* ab was relatively consistent. At the peak output of the 

primaries (R = G = B = 255), the additivity errors were 0.55 %, 0.79 % and 0.58 % for 
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x, Y and Z values respectively. Gib on and Fairchild (2000) similarly evaluated 

additivity of two LCDs and found additivity errors of a a I %, 0.08 % and 0.09 % from 

one LCD and 7.61 %, 7.51 % and 2.98 % for the other for X, Y and Z values 

respectively . It seems that additivity can vary considerably between displays. The LCD 

used in this experiment exhibited larger errors than one of the displays in the tudy by 

Gibson and Fairchild, but smaller errors than the other. These errors suggests that it is 

necessary to take into account the influence of channel additivity (primary crosstal\... ) 

(Wen & Wu, 2006) to characterise this display . 
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primaries). 

4.2.3 Chromaticity Constancy of Primaries 

Chromaticity constancy evaluate chromaticity changes of the pnmanes 

corresponding to the input digital counts of each channel. Thirty-three steps for each of 

the red, green and blue channels and grey (the additive mixture of three primaries) were 

measured as above. Chromaticity coordinates were calculated and the results plotted 111 

the CIE 1976 Uniform Chromaticity Scales diagram as shown in Figure 4-4 (a) . The 

chromaticity of all the colours follows a line from the point representing the primary 

towards the black (neutral). Ideally, there should be four indi vi dual points in Figure 4-4 

(a) corresponding to each primary and grey, assuming there i no variation In the 

chromaticity coordinates. However, this is not found, probably due to the internal and 

external flare in the display . Therefore, it was necessary to re-calculate the chromaticIty 

by subtracting the black from each measurement and these results are shown 111 hgure 

4-4 (b). This black colour expresses the amount of internal and external tlare, whIch 

should be removed . It can be seen that there are now clearly four POInt , However 

some residual errors were still found . The green was very stable but changes were seen 
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for the red and blue channels. One reason for the chromaticity inconstancy originates in 

the physical nature of LCDs in that the spectral transmittance of liquid crystals varies as 

a function of the applied voltage and this causes the peak wavelength to shift toward 

shorter wavelengths with decreasing transmittance (see ection 2.8.3.3). 
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4.2.4 Spatial Independency 

The output colour from one spatial location should not be affected by the colour of 

its surround . However, in practice, this spatial independency is not perfect. This was 

evaluated by measuring the colour differences between a grey patch displayed in the 

centre of the display with individual white, black, red, green and blue surrounds, and the 

physically identical grey patch with a grey surround. Values of Llli* ab for each 

background colour are given in Figure 4-5 (a) and in addition the colour shifts are 

plotted in a CIELAB a*b* diagram in Figure 4-5 (b). The results clearly indicate that 

the colour of the central patch, the grey colour (indicated by cross in Figure 4-5 (b)), 

shifts toward the colour of the background by up to approximately 1.8 CIELAB ~E*ab 

units . 
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4.2.5 Spatial Uniformity 

Ideally, colours should be reproduced uniformly across an entire display area. In 

order to evaluate the spatial uniformity of the display, measurements of white and grey 

patches were taken at nine different spatial locations arranged as a 3 x 3 grid pattern . 

The TSR was always placed normal to the screen. The colour difference between the 

colours measured at the centre and at each location are given as a representation of the 

spatial uniformity as shown in Figure 4-6 . Also, the differences in value ofCIELAB L * 
at each location compared with the centre are given as a percentage in Figure 4-7 . It is 

well known that most displays produce non-uniformity because of technological 

limitations. The display used in this experiment also showed some non-uniformity . 

The mean value of colour differences of the nine locations for the white and grey were 

very similar; ~* ab values of 2.44 and 2.47 respectively . In both cases, there were 

relatively large differences between at the centre and corner areas . In general, the 

luminance level reduces from the centre to the edges of most CRT displays (Berns, 

1996). However, L * increased toward the corners in case of this display (Figure 4-7) 

The cause of this slight increase is not known and although this non-uniformity was 

visible, no correction was applied . 
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4.3 Display Characterisation 

Similar to camera characterisation, display characterisation defines a relationship 

between device-dependent values such as RGB values and device-independent values 

such as CIE XYZ tristimulus values (see Section 2.8.3). The technology for CRT 

displays has matured and a significant amount of research has been made into 

colorimetric characterisation (e.g., Berns and Grozynski et al., 1993 ~ Berns and Motta et 

al., 1993) (also see Section 2.8.3). For the characterisation of CRT displays, the gain­

offset-gamma model, often referred to as the GOG model (see Section 2.8.3.2), is a well 

established method which takes into account the physical characteristics of CRT 

displays. Unlike CRT displays, however, the technology for LCDs is still inmature and 

hence improving. This makes it difficult to develop a standard physical-based 

characterisation model. Therefore, several models were evaluated to select one which 

could best describe the characteristics of the LCD used in this experiment. Recent 
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LCDs tend to mimic the relationship (termed optoelectronic transfer function, OETF) 

between the input signals and the radiant power output of CRT displays and therefore 

the GOG model although developed for CRT displays, polynomial regression models 

(see Section 2.8.3.1), and the Day, Taplin and Berns's model (see Section 2.8.3.3) were 

implemented and then the model that provided the best performance was employed to 

obtain RGB values in order to best display the images of the metallic-coating panels on 

the LCD. 

4.3.1 Data Sets 

Three data sets consisting of RGB values and XYZ values were created to derive 

and test the characterisation models. The first data set consisted of 36-step scales, 

between digital counts of the 0 to 255, for the red, green and blue channels individually 

as well as in combinations to create a neutral scale. The second data set (labelled: Data 

Set A) included 793 colours which were a regular sampling of the RGB gamut made up 

of a 9 x 9 x 9 grid of digital counts from 0 to 255 and a 4 x 4 x 4 grid of digital counts 

from 5 to 20 in order to increase the sampling in dark colours. The third data set 

(labelled: Data Set B) had a total of 155 colours from a 4 x 4 x 4 grid of digital counts 

from 5 to 65, a 4 x 4 x 4 grid of digital counts from 85 to 145 and a 3 x 3 x 3 grid of 

digital counts from 165 to 235. All of these colours were displayed on the centre area of 

the display (14 % of full screen) against a mid-grey background having digital counts of 

115 for the red, green and blue channels. Their XYZ values were obtained from 

measurements of the spectral properties using the TSR at a distance of 70 cm from the 

display. These sets of colours were used either as training data for deriving a model or 

test data for testing the performance of a model. 

4.3.2 Implementation of Characterisation Models 

4.3.2.1 GOG Model 

As it has described in Section 2.8.3.2, the GOG model includes two stages. The 

first is a non-linear transform between the digital counts d and the radiometric scalars s 

for each red, green and blue channel using the model parameters of gain, offset and 

gamma as this transformation for the red channel is given in Equation 2-45. Similar 

expressions can be written for the green and blue channels. The second stage is a linear 
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transformation between the scalars and the XYZ values using a matrix as defmed in 

Equation 2-47. 

In order to apply the GOG model, three model parameters have to be derived. To 

do this, first the primary matrix was obtained by subtracting the XYZ values at zero 

digital counts from the XYZ values at the maximum output of each red, green and blue 

channel by setting the XYZ values at zero digital counts as flare in the display. The 

primary matrix thus determined is given in Equation 4-1. Then, using the inverse of 

Equation 4-1, the scalar value for each channel for the training data set, either the 33-

step neutral scale or the 33-step red, green and blue scales, was estimated. Because of 

the imperfect system of the display, especially the channel additivity (see Section 4.2.2), 

the scalars for the peak white (dr = dg = db = 255) do not equal unity. Therefore, the 

scalars estimated using the primary matrix were normalised by the maximum value of 

each channel. Three model parameters, gain, offset and gamma, for each channel were 

then estimated by solving for minimum errors between the estimated scalars for the 

training data using the inverse of Equation 4-1 and using Equation 2-45. The 

optimisation was performed using a non-linear optimisation provided by Solver in 

Microsoft Excel®. Consequently, two models were derived; the fIrst based on the 33-

step neutral scale; and the second on the 33-steps of the individual red, green and blue 

scales. Data Set B, consisting of 155 colours, was used to test the performances of these 

derived models. 
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4.3.2.2 Linear and Polynomial Model 

Equation 4-1 

A variety of linear and polynomial regression models with least-squares fitting, 

similar to those implemented for camera characterisation (see Section 2.8.3.1 and 

Section 3.4.2.1), were also evaluated. The tested augmented matrices are given in Table 

3-9 in Section 3.4.2.1. Although the polynomial models with the transfer matrix up to 

M = 3 x 56 were evaluated for the camera characterisation (see Section 3.4.2.1), the 

higher order polynomials were not used (up to M = 3 x 20) in this experiment, since 

there was acceptable channel additivity and chromaticity constancy of the primaries. 

All the 33-step scales (red, green, blue and neutral scales) and Data Set A consisting of 
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the 793 colours were used as training data to derive models. Then, Data Set B (155 

colours) was used to test the performance of the derived models. 

4.3.2.3 Day, Taplin and Berns Model 

A characterisation method proposed by Day, Taplin and Berns was implemented (see 

Section 2.8.3.3). Similar to the GOG model, it consists of two stages; the first is to 

characterise each channel's OETF and the second is for the transformation between the 

radiometric scalars and XYZ values. In this model, the OETFs are described by three 

one-dimensional look-up tables (LUTs) as expressed in Equation 2-48. A 

transformation matrix is initially used to describe the relationship between the 

radiometric scalars and XYZ values as given in Equation 2-47. 

In this study, the three one-dimensional LUTs of scalars corresponding to 256 

digital counts were created for each red, green and blue channel either from the 

measurements of the individual red, green and blue 33-step scales or that of the neutral 

scale using piecewise cubic-spline interpolation. The LUTs were created after the black 

level had been subtracted from each measurement. Then, the XYZ values of all 33-step 

scales and Data Set A (793 colours) were predicted using the initial transformation 

matrix consisting of the maximum output of each channel and the measured XYZ 

values at zero digital counts as shown in Equation 2-47. Using a non-linear 

optimisation provided by by Solver in Microsoft Excel®, the coefficients in the 

transformation matrix were adjusted until the mean colour difference, CIELAB LlE* ab, 

between the measured and estimated XYZ values of all 33-step scales and Data Set A 

was minimised. Then, the LUTs were re-computed using the adjusted transformation 

matrix. The model performances were evaluated using the 155 colours of Data Set B. 

4.3.3 Display Characterisation Performance 

The implemented models and their results are summarised in Table 4-1 for the 

GOG models, Table 4-2 for the linear and polynomial regression models and Table 4-3 

for the Day, Taplin and Berns models. 
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Table 4-1: Performance of the GOG models. 

Training Test 

Training Error (CIELAB ~E*ab) Test Error (CIELAB ~E*ab) 

Median Mean Max Min Median Mean Max Min 

Data 33-step red, green and blue scales Data Set B (155 colours) 

0.40 0.51 1.65 0.051 1.32 1.22 2.32 0.23 
..................................................... ~ ....... . .. .................................... -....... -----1--------............ -... --....... - ....... ----

Data 33-step neutral scale Data Set B (155 colours) 

0.56 0.54 1.19 0.016 0.88 0.94 2.78 0.13 

Table 4-2: Performance of the linear and polynomial regression models. 

Training 

Data All 33-step red, green, blue and neutral 
scales + Data Set A (793 colours) 

Size ofM 
Training Error (CIELAB ~E*ab) 

Median Mean Max Min 

3)(3 20.8 32.9 163.6 0 
3)(4 23.0 54.2 283.5 1.32 
3)(5 24.9 54.1 240.5 0.81 
3)(9 1.85 2.41 11.7 0 

3)( 10 1.92 2.41 11.2 0.058 
3)( 11 1.84 2.38 11.1 0.057 
3)( 20 0.84 1.38 11.5 0.042 

Table 4-3: Performance of the Day, Taplin and Berns models. 

Training 

Data All 33-step red, green, blue and neutral 
scales + Data Set A 793 colours 

Training Error (CIELAB ~E*ab) 

LUTs Median Mean Max Min 

red, green i 
and blue i 1.24 1.33 4.53 o 
scales I 

neutral scal~r ... 0.76 
; 

0.84 2.81 o 

Test 

Data Set B (155 colours) 

Test Error (CIELAB ~E*ab) 

Median Mean Max Min 

15.8 20.8 65.0 2.79 

13.8 43.7 232.9 1.47 

13.31 38.4 193.1 1.72 

1.65 2.61 9.54 0.22 

1.63 2.45 7.98 0.22 

1.64 2.44 7.92 0.22 

1.06 1.71 8.05 0.073 

Test 

Data Set B (155 colours) 

Test Error (CIELAB ~E*ab) 

Median Mean Max Min 

1.08 1.08 2.58 0.14 
.----_ ................................ __ .... _ ..... _---

0.71 0.75 2.09 0.17 

It can be seen that the GOG models and the Day, Taplin and Berns models 

generally showed good perfonnance compared with the linear and polynomial models. 

Although the GOG model is a model for CRT displays, it provided a good fit. This is 

because the OETFs of the particular LCD had a shape representing a power function. In 

Figure 4-8, the nonnalised digital counts in the range 0-1 for each channel are plotted 

against the scalars from the measurements of the 33-step neutral scale together with that 

estimated using the parameters from the GOG model in Figure 4-8 (a), and that from the 

optimised transfonn matrix and interpolation for the Day, Taplin and Berns model in 

Figure 4-8 (b). There is only slight dispersion between the measured values (x) and 
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estimated values from the GOG parameters (full line) at the high di gital counts . It can 

be seen that the display manufacturer has designed thi s LCD to mimi c the typical OETF 

characteristic of a CRT. But, note that not all LCDs have this type of OETF 

characteristic; some LCDs have di fferent characteristics such as an S-shape function 

(Kwak & MacDonald, 2001 ; Sharma, 2002) and could cause the GOG model to fail 
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In the GOG and the Day, Taplin and Berns models, the results based on the neutral 

scale provi ded better results than those based on the individual red. green and blue 

channel . If the display had a perfect input and output ystem , the perfonnance should 

be the same. However, the display used in this experiment did not have a perfect 

system (see Section 4 .2). The evaluation of the chromaticity con tancy revealed the 

inconstancy of the red and blue channels compared with the green channel This lack of 

the constancy was also found from a comparison of the transformation matnce ba ed 

on the measurements and the optimisation in the Day, Taplin and Berns model using the 

neutral scale, as shown in Equation 4-2 and Equation 4-4 respectively , and their 

absolute difference in Equation 4-3. The large changes occurred for the red and blue 

channels and indicated the lack of chromatici ty constancy It confirms that the 

optimisation of the matrix is effective and compensates for the lack of the chromatiCity 

constancy . 
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A possible reason of the better performance of the models from the neutral scale is 

that these models better compensated the lack of the channel additivity and also cross­

talk which affect to colours which are a mixture of the red, green and blue channels, 

since the neutral colours had already incorporated with these problems. Therefore, the 

models from the neutral scale showed the better predictions for the test colours the 

majority of which were mixtures of the red, green and blue channels. In fact, the 

images of the metallic-coating samples which the model is applied to, also did not have 

much pure colour. The performance of the GOG and the Day, Taplin and Berns models 

were very similar; the median test errors were 0.88 and 0.71 in term of CIELAB colour 

difference ~*ab respectively, but the difference was statistically significant (P<0.05) 

according to the Wilcoxon signed-rank test (see Section 2.10.5). Consequently, the Day, 

Taplin and Berns models provided the best performance. 

The model was tested only in terms of a "forward model", which provides XYZ 

values for given pixel digital counts. In this experiment, the purpose of the 

characterisation model was to display images whose pixel values were specified in 

terms of XYZ values. To achieve this, a "inverse model" is required, which provides a 

mapping from XYZ values to the corresponding RGB digital counts. Although an 

inverse model is generally expected to work well, if a forward model performs well, it is 

useful to confirm this. Therefore, the red, green and blue digital counts of the 155 

colours in Data Set B (the same set used to test the forward models) were predicted 

from the measured XYZ values as input using the inverse model of the Day, Taplin and 

Berns model. Then, these predicted digital counts were displayed on the LCD and 

measured using the TSR. Finally the colour differences between the input and 

measured XYZ values were calculated in order to evaluate the inverse model. The 

median, mean, maximum and minimum values of colour differences were 0.80, 0.89, 

2.98 and 0.02 ~*ab respectively. Thus the performance is slightly worse than for the 

forward model, but still better than the GOG and the linear and polynomial forward 
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models. Consequently, the Day, Taplin and Berns model derived based on the neutral 

scale was used in this study. 

4.4 Image Reproduction 

~ 
Viewing Cabinet 

CIELAB Lab (cabinet) 

hite Point (viewing cabinet condition) 

(X, Y, Z) = (171.0,186.7, 217.1) 
(x, y) = (0.2974, 0.3248) 

Figure 4-9: A flo wchart for image reproduction process. 

CIELAB Lab (display) 

White Point (display condition) 
(X, Y, Z) = (103.3,108.5, 119.5) 

(x, y) = (0.3118, 0.3273) 

Images (image samples) were generated from the metallic-coating samples 

(physical samples) to display on the LCD. The physical samples were the same as the 

metallic-coating samples used in Chapter 3. A worked flowchart is given in Figure 4-9. 

The digital images of the physical samples were captured using the digital camera in the 

viewing cabinet used for the coarseness assessment (see Section 3.4.1) and the camera 

RGB values of the captured images were transformed to XYZ values corresponding to 

the viewing cabinet condition where the perceptual coarseness of the physical samples 

was assessed, via the camera characterisation (see Section 3.4.2.1). Since the light 

source in the viewing cabinet and the white point of the display were different in their 

SPD (XYZ values and chromaticity for both conditions are given in Figure 4-9), it was 

necessary to convert the XYZ values corresponding to the viewing cabinet condition to 

those corresponding to the display condition. Since D65 was simulated in both 

conditions and therefore the chromaticity difference was relatively small. Hence, a 

simple transformation between these two conditions was made in CIELAB colour space. 
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The CIELAB values, which were transformed from XYZ values corresponding to the 

white point of the viewing cabinet condition, were converted back to XYZ values, but 

for the display condition according to the white point of the LCD. Then, the RGB 

values for the display were obtained through the display characterisation model (see 

Section 4.3). During the transformation process, it was found that some colours were 

outside of the gamut of the display, since all the devices have a limited gamut and its 

volume depends on the device. However, only 7 out of the 156 samples had pixel 

values outside of the display gamut. The size of the out-of-gamut pixels was, on 

average 0.036 % of all pixels in whole image. Even for the sample which had the 

largest number of the out-of-gamut pixels, only 0.12 % of all pixels in the image were 

outside the gamut. Therefore, those out-of-gamut pixel values were simply clipped to 

bring them into the gamut of the display. Although there are many sophisticated gamut 

mapping methods (Morovic, 1998), a simply clipping method was applied to avoid 

changing the other majority of pixels because the number of pixels requiring alteration 

was very small. 

The accuracy of the reproduction system was evaluated in CIELAB colour space. 

Four sets of ClELAB values were obtained for the samples during the image generation 

process (Figure 4-9). The first set was the values representing the physical samples and 

they are labelled MP (Measured Physical samples). These were obtained based on the 

measurements of the physical samples in the viewing cabinet using the TSR (see 

Section 3.4.1). The second set ofCIELAB values was based on the captured images of 

those samples. The camera RGB values were transformed to XYZ values and then to 

ClELAB values. As a result, the CIELAB values for each pixel in the images were 

obtained. The mean CIELAB values of the pixels in each image were taken as 

representative of each sample and they are called EC (Estimated by Camera 

characterisation). The third data set, EL (Estimated for LCD), was based on the input 

XYZ values to the display; namely they were XYZ values transformed from EC 

according to the white points of the cabinet and display conditions. Similar to EC, the 

mean values of the pixels in each image represented the each sample. The fourth data 

set, MI (Measured Image samples), comprised the CIELAB values based on the 

displayed image samples; the generated image samples were displayed on the screen 

and measured using the TSR from a distance of 70 cm from the display. The 

differences in these data sets are that MP and MI were based on the measurements using 

the TSR, while the EC and EL were based on the computational transformations. The 
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colour differences, CIELAB .1E*ab, between MP, EC, EL and MI are summarised in 

Figure 4-10. Figure 4-10 (a) shows the .1E*ab differences between MP and the other 

sets (EC, EL and MI). Each bar represents a range between maximum and minimum 

.1E* ab value for all the 156 samples (red bar), 5 grey colour samples (grey bar), 50 

purple colour samples (purple bar), 50 green colour samples (green bar) and 50 blue 

colour samples (blue bar). The graph also shows the median values associated with the 

data (indicated by a dot on each bar). Similarly, Figure 4-10 (b, c, and d) show the 

.1E*ab values between EC, EL or MI and the other data sets. 

The colour difference between the MP and EC was a median .1E* ab value of 0.38 

for all the 156 samples. This can be considered reasonable difference, because the EC 

data were estimated using the camera characterisation model which includes some 

optimisations (see Section 3.4.2.1), since there are often no exact solutions to correlate 

device-dependent and device-independent values. It can be seen clearly from the graphs 

that the values of .1E* ab between EC and EL are negligible; a median .1E* ab value was 

0.036 for all the 156 samples. It is resulted of the mathematical transformation in order 

to adjust the white point from the cabinet to the display conditions, so no any estimation 

was included in this transformation. Consequently, the difference between MP and EL 

(a median .1E*ab value of 0.39) was similar to that of between MP and EC. However, it 

can be seen that the differences between MI with the other sets are relatively large; 

median .1E* ab values for all 156 samples were 4.65 between MP and MI, 4.63 between 

EC and MI and 4.64 between EL and MI. These large errors were reasonable if 

significant errors were generated in the display characterisation process. However, as 

has been mentioned in Section 4.3, the display characterisation errors were reasonably 

small. The median value of ~E* ab was 0.8 with the inverse model according to the 

evaluation using a set of the 155 test colours. These test colours were widely distributed 

in RGB colour space. Therefore, it can be assumed that the model was able to 

satisfactorily predict the coordinates of colours over the required range. Further 

examination was carried out by comparing CIELAB L*, C* and a*b* values of the MP 

and MI data sets shown in Figure 4-11 (a, b and c) respectively. These graphs reveal 

that the colour differences were caused not so much by the lightness shifts, but by the 

chroma and hue shifts. In fact, the grey samples had smaller errors as has already been 

demonstrated in Figure 4-10. A possible reason of the errors could be traced by 

examining the characteristic difference between the test colours (used to test the display 

characterisation model) and the samples. The test colours were uniform patches, while 
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the samples were not uniform. In order to demonstrate the influence of the spatial 

configuration, a uniform grey patch, a checked image and a striped images consisting of 

alternating rows or columns of black and white with one pixel each cycle were 

displayed on the LCD (Rhodes, 2007). The checked and striped images are illustrated 

in Figure 4-12. It was found that, although these images had a same portion of back and 

white, they looked different, for example, one was more reddish or greenish than the 

others. This cannot ~e explained solely by the lack of the spatial independency which 

showed colour shifts toward the surrounding colours (see Section 4.2.4). This defect 

indicates that colours cannot be reproduced accurately on a pixel-by-pixel basis. 

Moreover, the degree and direction of the errors are different depending on the spatial 

arrangement, and also depending on displays (It was found by demonstrating this with 

several displays). It seems that this influence is larger if the colour differences between 

neighbouring pixels are large. This can be attributed to the fact that the accuracy of the 

green colour samples was worst followed by the blue then the purple colour samples in 

terms of ~E* ab (Figure 4-10). According to the visual assessment results using the 

physical samples, it was found that the perceptual coarseness of the average green 

colour samples was larger than that of the blue and purple colour samples (Figure 3-18). 

There should have been larger variation in the pixel values in coarse samples, i.e., in the 

green colour samples. Consequently, it can be presumed that one reason for the large 

colour differences between MP and MI (Figure 4-10) is originated in the defect of 

physical structure of the displays. Namely, it is a limitation of LCD technology. 

Although the accuracy of image generation was not excellent, the problems were 

accepted for this study. 
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4.5 Visual Assessment using Image Samples 

Although the resolution of the camera was not high enough to resolve individual 

aluminium flakes (see Section 4 1). the resolution of the display is even lower. In order 

to display the image sample with the same size as the physical sample (8 x 8 cm), the 

image had to be captured with a lower resolution which gave a 249 x 249 llfll area in 

each pixel , since the physical size of one pixel of this display was 249 )( 249 llfll . In this 

case, most of the detail has been lost, because information read out from a pixel of the 

camera was integrated over a larger area . This resulted in loss detail in the perceptual 

texture as seen in the images. Therefore, the images were captured at a higher 

resolution to obtain much more details. This resulted in an image size of21 x 21 cm on 

the display and a viewing distance of 140 em, in order to keep the same angular display 

size of 8.50 x 8.50 for the experimental conditions for both the physical samples and the 

image samples. The specification of thi s viewing condition is given in 
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Table 4-4 as Condition 1. Note that the conditions for the coarseness assessment of the 

physical samples were a sample size of 8 x 8 cm, a viewing distance of 54 cm and an 

angular display size of 8.50 x 8.50 (see Section 3.3.2.1). It was found that the 

appearance of the images in Condition I, however, did not perfectly match that of the 

physical samples. This is mainly because of the errors that occurred during the image 

generation process, as has been discussed in the previous section, and also the loss of 

detail in the imaging-fonning system (both of the camera and the display) as 

characterised by the modulation transfer factor. Moreover, the study by Johnson and 

Montag (2005) showed a disagreement in perceptual appearance of images having the 

same retinal size, if the viewing distances are different. The appearance of coarseness 

in the images in Condition 1 was such that was smaller than that of the physical samples 

because of the increased viewing distance. In common practice, it is usual to move 

closer to an object to see its detail. Therefore, to achieve image samples having the 

perceptual coarseness equivalent to that of the physical samples, the coarseness of the 

image samples and the physical samples were compared in various conditions (e.g, 

various viewing distances). Since it was difficult to simply compare the "absolute" 

coarseness of the image samples with the physical samples because not only their 

coarseness but also their colours were different, the "relative" coarseness was 

investigated, i.e., the coarseness difference of two physical samples placed in a viewing 

cabinet was compared with that of two image samples on the display at nine viewing 

distances as shown in Table 4-4, in order to find conditions in which coarseness 

differences appeared similar. Then, according to the results of this coarseness 

difference assessment in varying conditions, the coarseness of the image samples was 

scaled by observers under the condition which showed the closest perceptual coarseness 

differences between the image and physical samples. Additionally, the coarseness of 

the image samples was scaled using Condition 1 which was relative reproduction of the 

conditions used in the visual assessment of the physical samples. The following 

sections describe these three visual assessments. 
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Table 4-4: The viewing conditions for the visual assessments. 

Image Image Viewing Angle Magnification 
Condition size size distance display size ratio 

(pixel) (em) (em) (degree) (%) 
1 832 x 832 20.7 140 8.5 x8.5 100 

2 714 x 714 17.8 120 8.5 x8.5 117 

3 595 x 595 14.8 100 8.5x8.5 140 

4 476 x 476 11.9 80 8.5 x 8.5 175 

5 417 x 417 10.4 70 8.5 x8.5 200 

6 357 x 357 8.9 60 8.5 x 8.5 233 

7 298 x 298 7.4 50 8.5x8.5 280 

8 238 x 238 5.9 40 8.5x8.5 350 

9 179 x 179 4.4 30 8.5 x 8.5 466 

4.5.1 Comparison of Coarseness Differences 

Ten observers, six females and four males, aged between 25 and 35, compared the 

coarseness difference between two physical samples with the coarseness difference 

between two image samples. The two physical samples were the coarsest grey sample 

and the second least coarse grey sample according to the results of the visual 

assessments using the physical sample described in Section 3.3. The two image samples 

were the reproduced images of those two selected physical samples. The physical 

samples were presented in a viewing cabinet beside the display on which the image 

samples were displayed, as illustrated in Figure 4-13 for Condition 1 and Condition 6 as 

examples. The assessments were carried out for the nine conditions listed in Table 4-4; 

namely, the image samples were observed at the nine different viewing distances. Since 

the angular display size of the image was kept constant for all the conditions, the actual 

image size (physical size) was made smaller by showing only part of the full image as 

illustrated in Figure 4-13. Accordingly, the images appeared magnified to the observers 

as the viewing distance decreased, although the image itself did not change. The 

cabinet where the physical samples were placed in this assessment, was different from 

the one used for the coarseness assessments for the physical samples in Section 3.3. In 

order to produce the luminance level to be the same as that of the display (100 cd/m2), a 

cabinet whose luminance level was adjustable was used. Other viewing conditions were 

such that the sample size was 8 x 8 cm and the viewing distance was 54 em which was 

consistent with the coarseness assessment conditions used in Section 3.3. 

The magnitude estimation method (see Section 2.9.2) was applied for scaling. 

Observers were asked to assign a number that best described the coarseness difference 
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between the two image samples when compared with the coarseness difference between 

two physical samples whose coarseness difference was assigned a value of five. For 

example, if an observer scaled the coarseness differenc~ of a pair of image samples as 

five, it meant that the coarseness difference of these two image samples was the same as 

that of the two physical samples. The geometric mean of raw observer data was 

calculated as a measure of the central tendency of their data for each condition and also 

a general apporoximation of the standard deviation of scale values was computed using 

Equation 4-5 (Engeldrum, 2000). 

u~ [ 0/ ±[In(Oi/) -In(OJr]o.5 
n-lFI 

Equation 4-5 

where Oij is the raw data of the observer) (j=1,2;··,n) for the observation condition i. 01 

is the geometric mean of the obervers data. The geometric means are presented in 

Figure 4-14 together with ± 1 standard deviation from the means (error bars). A scale 

value of 4.8 obtained in Condition 6 was the closest match to the coarseness difference 

of the physical samples which was assigned a value of five, but the error bars indicats 

the insignificance of the difference between the coarseness difference of the two 

physical samples and that of the two image sample in any condition. However, the 

standard deviation calculated using Equation 4-5 assumes the log normal distribution of 

the observer data. The observer data obtained from this experiment do not entirely 

satisfy this assumption. Therefore, the Wilcoxon signed-rank test was performed and 

the significances of the differences (p-values) between the coarseness difference of the 

two physical samples and those of two image samples in each Condition 1 to Condition 

9 are given in Table 4-5. This table shows that, although there are no significant 

differences in most conditions, the coarseness difference was significantly smaller in 

Condition 1 (p<0.05) which was the relative reproduction of the viewing conditions to 

the coarseness assessment described in Section 3.3. Consequently, since Condition 6 

was the closest match with the physical samples, this was selected as an optimal 

condition to scale the perceptual coarseness of the image samples. 
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4.5.2 Scaling Perceptual Coarseness in Condition 6 

The experimental procedure was similar to the visual assessment of the physical 

samples carried out in Section 3.3.3. Two images samples were displayed on the LCD 

for each trial. One was a reference image and the other a test image. The reference 

image was the image of the physical sample used as a reference sample in the 

coarseness assessment in Section 3.3.3. The 1-9 categorical judgement scaling method 

with a reference was applied (see Table 3-4). The difference from the previous 

experiment, Section 3.3.3, was that the observers were allowed to give the coarseness 

values with up to two decimal places, e.g., 5.25, 5.5 or 6. All 156 test images were 

presented in a random order. To check the repeatability, each observer carried out the 

assessment twice. Fourteen observers, including six females and eight males aged 

between 25 and 35, participated in the visual assessment. A total of 4368 (14 observers 

x 2 sessions x 156 samples) categorical judgments were made. 

4.5.3 Scaling Perceptual Coarseness in Condition 1 

The coarseness assessment was also conducted using Condition 1. Condition 1 

was the relative condition to that used for assessing the physical samples (described in 

Section 3.3.3). Thus, the area of the image samples displayed was the same as that of 

the physical samples presented to the observers. The same categorical judgement 

scaling method, as used for Condition 6, was applied. In this experiment, 66 image 

samples out of the 156 image samples were used. All 6 grey samples and 20 from each 

of the blue, green and purple colour samples were selected. Ten observers, six females 

and four males aged between 25 and 35, participated in this experiment. A total of 1320 

by 10 observers (2 sessions for each observer to check their repeatability for 66 

samples) categorical judgments were made. 

4.6 Data Analysis and Result 

The mean-category value method (see Section 2.9.1) was employed to represent 

the observer data for each sample. Therefore, arithmetic means of the raw observer data 

were calculated as scale values of each sample for both the Condition 1 and Condition 6 

experiments and they are given in Appendix II. In the following sections, observer 

variability (observer repeatability and accuracy) were investigated for each condition. 
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Then, the quality of the image samples was assessed by analysing the agreement and 

correlation between the scale values obtained from the three conditions: the visual 

assessments using the image samples in Condition 1 and Condition 6, and also the 

physical samples in the viewing cabinet (Section 3.3). In addition, the scale values were 

also compared to the predicted coarseness values from the image samples for each 

experimental condition using the computational model developed in Section 3.4. 

4.6.1 Observer Variability 

Observer variability was investigated for two aspects: observer repeatability and 

observer accuracy. The investigations of these were carried out in terms of R 2 and CV. 

Summaries of the observer variability; the mean, median, maximum and minimum for 

Condition 6, Condition 1, and also for the coarSeness assessment in the viewing cabinet 

using the physical sample (labelled: Physical Sample), are given in Table 4-6 for the 

repeatability and Table 4-7 for the accuracy. In addition, each observer's repeatability 

is shown in Table 4-8 and Table 4-9 for Condition 6 and Condition 1 respectively. 

Similarly, the accuracy obtained in each session for Condition 6 and Condition 1 can be 

found in Table 4-10 and Table 4-11 respectively. 

It can be seen from the results of observer repeatability and accuracy for Condition 

6 that the observer variability for Condition 6 shows a similar tendency to the results for 

the physical samples. The both repeatability and accuracy was very good for the grey 

samples in terms of R2, but not in terms of CV. This indicates that there was a linear 

correlation, however the observers did not give the same categories to the samples. 

Also, the result for the purple colour samples showed the poorest performance; although 

their correlations in terms of R2 are similar to those of the blue samples, the CV values 

indicate poorer performance than for the blue samples. A possible reason of the better 

performance for the grey colour samples might possibly be that there are only five grey 

samples with each relatively distinguishable coarseness difference. On the other hand, 

the poor performance for the purple colour samples could be attributable to the 

relatively small distribution of coarseness and to the low coarseness levels (Figure 3-18), 

and therefore it might be difficult for the observers to distinguish between the samples 

because of the limitations in the inability of our spatial vision system (see Section 2.2.3). 

The observer repeatability and accuracy of individual blue, green and purple 

colour samples obtained in Condition 1 generally showed better performance than that 

148 



in Condition 6 and the physical samples (Table 4-6). Usually, the observer variability 

indicates the reliability of the assessments. However, it is difficult to say whether 

Condition 1 is superior to the other conditions, since the overall variability for all the 

samples were equivalent to the other conditions and the number of the samples used in 

Condition 1 was less than that used in the other conditions so there was less opportunity 

for confusion between the coarseness levels of the samples. 

Consequently, it can be seen that the repeatability and accuracy for all the samples 

are similar for all conditions. This indicates that observers assessed the coarseness with 

equivalent accuracy under these three conditions, although the absolute appearances of 

the coarseness at these conditions were different, i.e., there was a much smaller 

perceived coarseness difference under Condition 1 than that under Condition 6, or using 

the viewing cabinet, according to the experimental results presented in Figure 4-14. 

Table 4-6: Observer repeatability: mean. median. maximum and minimum values 0/ all observer data/or 

coarseness assessment using Condition 6 and Condition 1. and the physical samples (from Chapter 3: 

Table 3-6). 

I R2 1 CV ! 

Samples I All Grey Blue Green Purple i All Grey Blue Green Purple 
I 

Condition 6 

Mean 0.69 0.80 0.39 0.46 0.34 14 14 13 10 21 

Median 0.73 0.87 0.40 0.45 0.37 15 12 14 9 20 

Max 0.83 0.98 0.70 0.69 0.59 19 29 22 14 37 

Min 0.34 0.38 0.10 0.20 0.04 8 5 8 7 9 

Condition 1 

Mean 0.68 0.68 0.50 0.51 0.37 12 15 11 9 15 

Median 0.72 0.79 0.51 0.53 0.32 13 13 10 9 14 

Max 0.84 0.93 0.61 0.76 0.67 15 35 17 12 23 

Min 0.31 0.10 0.31 0.15 0.11 6 7 6 5 8 

Physical Sample 

Mean I 0.69 0.90 0.32 0.37 0.35 18 14 17 13 28 

Median 0.72 0.92 0.36 0.34 0.36 17 12 18 13 26 

Max 0.79 0.98 0.43 0.57 0.57 24 22 20 15 54 

Min 0.53 0.74 0.17 0.26 0.14 12 8 10 8 14 
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Table 4-7: Observer accuracy: mean. median. maximum and minimum values of all observer data for the 

coarseness assessment using Condition 6 and Condition 1. and the physical samples (from Chapter 3: 

Table 3-7). 

R2 CV 

Samples All Grey Blue Green Purple All Grey Blue Green Purple 

Condition 6 

Mean 0.81 0.89 0.58 0.66 0.56 12 12 11 9 18 

Median 0.84 0.92 0.58 0.67 0.60 12 12 11 9 19 

Max 0.90 0.99 0.76 0.82 0.73 18 26 17 15 39 

Min 0.49 0.55 0.25 0.39 0.07 7 5 6 4 9 

Condition 1 

Mean 0.79 0.79 0.67 0.67 0.57 11 12 10 10 14 

Median 0.83 0.89 0.68 0.70 0.56 12 10 10 10 13 

Max 0.89 0.97 0.89 0.87 0.87 16 42 17 16 28 

Min 0.36 0.21 0.48 0.25 0.26 7 5 5 5 6 

Physical Sample 

Mean 0.82 0.93 0.55 0.61 0.58 14 12 13 10 21 

Median 0.83 0.96 0.57 0.63 0.61 14 10 13 10 20 

Max 0.88 0.99 0.76 0.81 0.78 18 22 19 14 33 

Min 0.68 0.58 0.31 0.32 0.23 10 5 8 7 14 

Table 4-8: Observer repeatability for each observer using Condition 6. 

R2 CV 

Observer All Grey Blue Green Purple All Grey Blue Green Purple 

1 0.71 0.58 0.46 0.66 0.36 16 26 14 8 27 

2 0.67 0.97 0.11 0.37 0.40 19 9 22 9 30 
3 0.48 0.59 0.24 0.29 0.25 16 13 20 14 14 

4 0.79 0.98 0.52 0.45 0.59 8 5 8 8 9 

5 0.83 0.94 0.55 0.57 0.38 10 6 9 8 16 

6 0.69 0.74 0.51 0.45 0.23 12 11 9 10 18 

7 0.34 0.56 0.11 0.22 0.04 15 25 15 9 21 

8 0.70 0.80 0.25 0.20 0.47 15 18 14 12 21 

9 0.76 0.98 0.70 0.61 0.47 16 9 13 11 27 

10 0.81 0.89 0.42 0.69 0.41 9 12 8 7 10 

11 0.76 0.98 0.56 0.61 0.18 15 10 15 7 30 

12 0.77 0.85 0.35 0.57 0.39 14 16 15 9 19 

13 0.75 0.94 0.29 0.41 0.28 17 9 13 11 37 

14 0.64 0.38 0.38 0.31 0.31 15 29 13 13 18 
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Table 4-9: Observer repeatability for each observer using Condition 1. 

Observer 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

All 

0.72 

0.64 

0.31 

0.80 

0.84 

0.72 

0.69 

0.79 

0.57 

0.74 

Grey 

0.58 

0.10 

0.38 

0.81 

0.89 

0.83 

0.69 

0.84 

0.93 

0.76 

Blue 

0.59 

0.31 

0.46 

0.47 

0.59 

0.57 

0.48 

0.54 

0.34 

0.61 

Green 

0.65 

0.53 

0.15 

0.60 

0.76 

0.37 

0.53 

0.44 

0.44 

0.59 

I 
Purple I 
0.67 I 
0.56 , 

0.11 I 
0.58 /' 
0.35 

0.19 

0.28 

0.14 

0.17 

0.61 

All 

14 

15 

14 

6 

12 

9 

9 

14 

13 

10 

Table 4-10: Observer accuracy for each session using Condition 6. 

Observer 
& i 

All Grey Blue Green Purple! All Session I i 

Grey 

22 

21 

35 

7 

11 

9 

14 

10 

11 

14 

Grey 

CV 

Blue 

14 

17 

10 

6 

9 

9 

8 

15 

14 

9 

cv 
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Green 
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10 

12 

5 

6 

8 

7 

9 

12 

8 

Green 

10 

11 

15 

Purple 

16 

18 

12 

8 

23 

10 

12 

21 

15 

10 

Purple 

21 

19 

25 
2 

1 0.83 0.95 0.56 0.56 ~.46 I 18 12 17 
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1 0.84 0.90 0.69 0.63 0.53 I 9 10 7 8 12 

6 I 

~ ~::~ ~:: ~:~: ~:;: ~:!: I ~~ .. · .. --· .... ~·~ .. ·· .. -· .. ·..183· .. 1~O· .. ···~·:· 
7 

2 0.49 0.79 0.28 0.39 0.07 I 16 14 10 8 27 
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8 2 I 0.84 0.86 0.61 0.46 0.71 I 12 13 10 9 20 
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1 I 0.80 0.99 0.69 0.69 0.70! 14 16 13 
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2 0.85 0.97 0.64 0.79 0.67 i 12 12 
9 

11 --_ .. -+---_ ...... -......................... _ ............................................ -_ ......... _ ..... _-----' ................................................... . 
1 0.85 0.91 0.51 0.74 0.55 II 10 

10 
2 0.87 0.86 0.57 0.67 0.67 8 
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10 
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23 

21 

11 

10 

30 

22 

18 

14 

39 

24 

12 

13 
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Table 4-11: Observer accuracy for each session using Condition 1. 

Observer 
& 

Session All Grey 

1 

2 

0.83 0.72 

0.84 0.97 
-_.;-- "'1\ 

2 \ ____ ....•..... _1 

3 1 I 

0.83 

0.75 

0.36 

•• m_ ••• _ ••••• 2 ...... 1 0.56 
1 0.86 

4 
2 i ................ j 

1 
5 

2 
. ·····1 

1 j 
! 

2 I 6 

~-~-I 

0.86 

0.89 

0.87 

0.81 

0.87 

0.78 

0.80 

0.87 

0.83 
----1\ 0.68 

9 2 \ 0.84 

··--~·~-1·\ 0.79 

2 0.85 

0.77 

0.33 

0.21 

0.38 

0.94 

0.87 

0.94 

0.95 

0.91 

0.91 

0.89 

0.81 

0.74 

0.95 

0.93 

0.88 

0.84 

0.92 

R2 

Blue 

0.74 

0.75 

0.67 

0.56 

0.71 

0.58 

0.52 

0.66 
••• _MM ___ •• 

0.73 

0.68 

0.74 

0.8 
.. 

0.54 
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4.6.2 Comparisons of Perceptual Coarseness Scaled in 

Different Conditions 

Investigations were carried out on the perceptual coarseness scaled at three 

conditions: Condition 6 and Condition 1 using the image samples, and the viewing 

cabinet condition using the physical samples. Figure 4-15 shows the comparisons of the 

scale values obtained in these conditions together with the measures of their agreement 

computed in terms of R2 and CV. Black lines in each graph are an indication of perfect 

agreement between the data sets. 

The results for all the samples from Condition 6 and Condition 1 are compared in 

Figure 4-15 (a). The results of an R2 value of 0.95 and of a CV value of 5 found 

between Condition 6 and Condition 1 indicate the excellent agreement. The statistical 

analysis also shows the insignificant difference (p>0.05) between them. The 

comparisons of individual colour samples are given in Figure 4-16. While the grey, 

blue and green colour samples showed excellent agreement (R2 values of 0.95, 0.93 and 

0.95 and CV values of 11, 3 and 5 respectively), the purple colour samples had a 
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slightly poor agreement (an R2 value equal to 0.75 and a CV value of9). The reason of 

the poor agreement for the purple colour samples might be originated in the observer 

variability. The observer repeatability and accuracy for the purple colour samples were 

poorer than that especially for blue and green colour samples in both conditions. 

However, overall results indicate, as well as the observer variability (in Section 4.6.1), 

that the observers could fairly assess the coarseness in these conditions, although 

absolute coarseness for the far distance (Condition 1) was smaller than that for the 

closer distance (Condition 6). Under Condition 6, only a part of the sample was 

presented to the observers comparing with the physical sample and the image sample in 

Condition 1; Condition 6 had less than half the area compared with the other conditions 

(see Figure 4-13 and Table 4-4). The results suggest that for assessing the equally 

distributed fine detail over a sample like a metallic-coating panel used in the experiment, 

the area presented to the observers are not so important. Observers tend to focus on 

only a part of the sample and not on the whole sample. 

The comparison between Condition 6 and the physical samples is shown in Figure 

4-15 (b) and that between Condition 1 and the physical samples was Figure 4-15 (c). 

The statistical analysis indicates the significant difference between Condition 6 and the 

physical samples (p<0.05). Although there is no significant difference between 

Condition 1 and the physical sample for a 5 % significance level, the low p-value (p = 

0.065) is found. This implies the disagreement between them. The detail can be 

examined from Figure 4-17 and Figure 4-18. Figure 4-17 compares the results of 

individual grey, blue, green and purple colour samples of Condition 6 against those of 

the physical samples. Similarly, Figure 4-17 is for between Condition 1 and the 

physical samples. In both cases, it can be clearly seen that there is excellent agreement 

for the higher coarseness scale values, i.e., the results for the blue and green colour 

samples, but slightly poorer agreement is found for the samples with smaller coarseness 

scale values, i.e., the results for the purple colour samples. In terms of the image 

reproduction errors summarised in Figure 4-10 and Figure 4-11, the purple colour image 

samples are more accurately reproduced than the blue and green colour image samples. 

Therefore, higher agreement would be expected. But, it must be noted the poor 

observer repeatability and accuracy for the purple colour samples than that for the blue 

and green colour samples in Condition 6, Condition 1 and importantly also the visual 

assessments using the physical samples. Therefore, the scale values for the purple 

colour samples are less reliable than that for the others. Accordingly, the high 
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correlation of the scale values between the image and physical samples for the blue and 

green colour samples verified the quality of the reproduced image samples in respect to 

their perceptual coarseness, but the poor correlation of the scale values of the purple 

colour samples cannot be a strong evidence of a failure in the image reproduction. 

Overall, the significant difference was found between Condition 6 and the 

physical samples and slightly poor agreement between the conditions for the samples 

whose coarseness levels were relatively small. However, for visual assessments in 

general, the correlations obtained between Condition 6 and the physical samples (an R2 

value of 0.92 and a CV value of 9) and that between Condition 1 and the physical 

samples (an R2 value of 0.89 and a CV value of 11) for all the samples can be 

considered as excellent agreement. 

It should be noted that a significant colour shift was found in the generated image 

samples. The lightness of the images was relatively preserved compared with the errors 

occurred in the chroma and hue (Figure 4-11). The agreement of the scale values in 

three conditions suggests the importance of the lightness for the perceptual coarseness 

rather than the chroma and hue, and also supports the coarseness model to use only the 

luminance channel to predict perceptual coarseness (see Section 3.4). 

Importantly, the agreement of the scale values in three conditions also indicates 

that the resolution of the images used in this experiment was high enough, even though 

each pixel size of the camera setting was larger than the size of the aluminium flakes. 

As was expected, although the coarseness of the metallic-coating samples was 

originated in the flakes, the observers did not view the flakes themselves; rather they 

perceived coarseness as a result of the interaction of reflected light and the composition 

of the coatings, and this caused the coarseness effect to exceed the physical size of the 

flakes. 
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4.6.3 Comparisons of Perceptual Coarseness and Coarseness 

Model Predictions 

In the previous Chapter 3, the coarseness model perfonnance was verified by 

comparing the model predictions with the perceptual coarseness of the physical samples. 

The model predicted the coarseness from the images of the physical samples captured 

with high resolution and using the experimental viewing conditions. Hence, the model 

considers the high resolution image (832 x 832 pixel) as a physical sample size of 8 x 8 

cm which could not be simulated on the display because of the limited display 

resolution. Therefore, here, the model perfonnance was evaluated for the images and 

the conditions under which the observers really assessed the displayed image samples 

(Condition 6 and Condition 1). Because of errors that occurred during the image 

generation process, the reproduced image samples varied colorimetrically in a small 

way. However, the model should be able to predict the coarseness of the reproduced 

image samples under the conditions that those image samples were seen by the 

observers. 

The scale values obtained in the preVIOUS sections were used to test the 

perfonnance of the model for Condition 6 and Condition 1. The computed model 

predictions for Condition 6 and Condition 1 are all given in Appendix II. The model 

predictions were compared with the perceptual coarseness scale values for Condition 6, 

Condition 1 and also for the physical samples, together with indications of the 

associated correlation values in tenns of R2 and CV in Figure 4-19. This figure shows 

that the scale values agree well with the model predictions for all conditions with 

equivalent accuracy. The correlation between the model predictions and scale values 

had R2 values of 0.91, 0.93 and 0.91 for Condition 6, Condition I and the physical 

samples respectively and CV values of7, 10 and 7 for each three condition respectively. 

However, as well as the results of the physical samples, there were slight deviations 

from a linear relationship at low values of coarseness. In order to see these details, the 

model predictions and the scale values were plotted separately for each colour of the 

samples and each of the three conditions in Figure 4-20. Black dashed lines in the four 

graphs on the left column (in column (a)) indicate a linear regression line between the 

model predictions and the scale values of all samples obtained in Condition 6. Similarly, 

black dashed lines in the four graphs in each column (b) and (c) are linear regression 

lines for the data sets of all the samples in each of Condition 1 and the physical samples. 

Red lines in each graph are an indication of the linear regression line for each plotted 
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data set (not all the samples). The values of slope a and intercept fJ for all the regression 

lines, and the correlation measures, R2 and CV, are given in Table 4-12. In this 

experiment, a unit of the perceptual coarseness (a 1-9 scale) and a unit of the model 

prediction are not the same. Therefore, the absolute value of the slopes is not important 

and the intercept does not necessary to be zero. The difference between those values 

indicates the tendency of the data sets. 

A similar tendency was found for each colour group in the three experimental 

conditions except for the results for the grey colour samples in Condition 1 as shown in 

Figure 4-20. The model predicted the perceptual coarseness of the grey colour samples 

with the equivalent accuracy for all three conditions in tenns of R2 (0.98, 0.97 and 0.96 

for Condition 6, Condition 1 and the physical samples respectively), while there was a 

dispersion from the majority of the samples (indicated with the black dashed line in 

Figure 4-20) at low coarseness levels in Condition 6 and the physical samples, however, 

not in Condition 1. This can also be seen from the differences in the slope and intercept 

between all the samples and the grey samples (Table 4-12). However, it is not possible 

to identify the reason, because the number of the grey colour samples was too small. 

In all three conditions, the results for the purple samples also showed deviation 

from a linear regression line. A possible reason is for the deviation that the model 

underestimates the perceptual coarseness at the low coarseness levels. However, at this 

stage, this can not be proved because the observer variability was poor for the purple 

colour samples and therefore the errors might be caused by the observers' results not the 

underestimations by the model. Another possible reason is that the model is not capable 

of predicting the samples with particular colours such as purple, since it only considers 

the luminance infonnation in the images. It is also difficult to investigate, since no 

other colour samples had the values of coarseness at such a low levels. Only limited 

sample colours with only limited coarseness distribution were available for this 

experiment. Therefore, the further study is suggested for the investigation of the 

influence of the chromatic channels for the model using samples with a wider range of 

colours and coarseness levels, although the use of only luminance channel to predict 

coarseness was thought as reasonable according to the correlation between the 

perceptual coarseness scaled using the image samples and the physical samples (see 

Section 4.6.2). 
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Table 4-12: Measures of model performance in terms of If and CV with the scaling factor SF (see 

Section 2.10.3) and the values of the slope a and the intercept P for a linear regression line fitted to data 

(the scale values against the model predictions). 

All Grey Blue Green Purple 

Condition 6 

a 11.25 16.89 9.54 9.40 17.95 

~ -0.15 -3.17 0.97 0.95 -3.02 
R2 0.91 0.98 0.79 0.83 0.75 

CV 7 10 5 4 10 

SF 11 11 11 11 11 

Condition 1 

a 8.69 8.96 9.04 8.37 10.84 

~ 1.99 1.65 2.02 2.09 1.29 
R2 0.93 0.97 0.82 0.92 0.81 

CV 10 7 7 5 7 

SF 13 13 14 12 15 

Physical Sample 

a 12.12 16.70 10.31 10.70 16.27 

~ -0.58 -2.87 0.74 0.10 -2.35 
R2 0.91 0.96 0.79 0.95 0.81 

CV 7 13 6 3 12 

SF 11 11 12 11 10 

4.7 Summary 

The investigations in this chapter were attempted to verify the images of the 

metallic-coating samples (Physical samples) which were captured using a camera and 

were used as input for the coarseness model developed in Chapter 3, because the camera 

resolution was insufficient to capture individual aluminium flakes which were the major 

cause of the non-uniform appearance of the metallic coatings. In order to examine 

whether adequate information relevant to the perceptual coarseness was captured, the 

images were displayed on an LCD and their coarseness appearance was visually 

assessed. In addition to this verification, visual assessments using the images explored 

the possibility of using a digital image for appearance assessment instead of physical 

samples. This would provide an extremely convenient method of assessment for 

product/quality control, for the development of products and for communication. 

To carry out the visual assessments, the images captured by the digital camera 

were converted to be suitable for displaying on the LCD. Although the accuracy of the 

camera and display characterisation processes was high (Section 3.4.2.1 and 4.3.3), the 

colour shifts were found between the physical samples and the displayed image samples. 
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The lightness of the images was relatively preserved, however the significant shifts 

were found in chroma and hue (Figure 4-11). These colour differences probably 

originated in the limitations of the LCD to display the fine details. Therefore, the 

absolute appearance of coarseness of the physical samples could not be reproduced 

using the displayed images. Another difficulty when using the images for visual 

assessments was that, although the resolution of the camera was not high enough to 

resolve individual aluminium flakes, the resolution of the display was even lower. 

Consequently, the actual physical size of the image sample had to be larger than that of 

the physical sample in order to display the whole area of the physical sample. Therefore, 

it was impossible to perform the visual assessment using the images under similar 

experimental conditions used to assess the physical samples in the viewing cabinet (see 

Section 3.3.2.1). Therefore, the perceptual coarseness of the image samples was scaled 

in two optimal conditions. 

In one condition, the Image of the whole area of the physical sample was 

displayed and the viewing geometry was reproduced in proportion to that used in the 

assessments for the physical samples. Thus, the viewing distance was greater than that 

used for the physical samples experiment, but the angular display size was kept at a 

similar value. The perceptual coarseness in this condition found to be smaller than that 

observed on the real samples. In the second condition, only a part of the image of the 

physical sample was displayed, but the angular display size was kept at a similar value, 

and the physical image size and the viewing distance were similar to the conditions used 

for scaling the physical samples. It was found that the perceptual coarseness in this 

condition appeared closer to that observed on the real samples. 

However, the overall observer variability obtained in those two conditions for 

image samples and also in the viewing cabinet using the physical samples (see Section 

3.3) was similar. This indicates that the observers assessed the coarseness with the 

equivalent accuracy under these three conditions, although the absolute appearances of 

the coarseness under these conditions were different. The overall agreement of the 

relative scaled perceptual coarseness between these three conditions was also 

encouraging. This indicates that the influences of chroma and hue to the perceptual 

coarseness were small. Also this supports the coarseness model to use only the 

luminance channel to predict perceptual coarseness. Moreover, these results indicates 

that the resolution of the images used in this experiment was high enough for the 
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coarseness appearance reproduction, even though each pixel size of the camera setting 

was larger than the size of the aluminium flakes. 

In this chapter, the model was also implemented based on the image samples and 

the specification of the experimental conditions as input for each condition. The model 

predictions for each condition agreed well with the scale values. As well as the 

agreement of the scale values between three conditions, this also verified the quality of 

the reproduced images in terms of the perceptual coarseness. Moreover, it proved the 

performance of the coarseness model. 

Although this study succeeded to visualise the relative coarseness appearance, but 

the further study is necessary to reproduce accurate colours and absolute coarseness for 

the use of images for total appearance assessment. 
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Chapter 5 

Assessing and Modelling Glint 

using Physical Samples 
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5.1 Introduction 

This chapter describes a study aimed to characterise perceptual glint of metallic­

coating panels. As well as coarseness introduced in Chapter 3 and 4, "glint" has been 

identified as an important attribute of visual texture of metallic coatings by our 

collaborator, Akzo Nobel (2004-2006). Glint is as an attribute of visual texture and it is 

categorised as micro appearance, not as macro appearance such as gloss or specular 

reflection (see Section 2.5.1). Glint is originated mainly in characteristics of aluminium 

flakes contained in coatings. Obviously, the amount and orientation of flakes are 

assumed to be strongly related to perceptual glint. However, as well as the coarseness 

study presented in Chapter 3, this study intended to characterise perceptual glint 

focusing on what can be observed on the surface and is not concerned about physical 

components of metallic coatings. 

As has been mentioned in Section 2.5.1.2, sparkle, brilliance and glitter are also 

used to describe similar or same appearance to glint and it remains unclear whether 

these terms refer exactly to the same phenomenon. Therefore, it is important to give a 

clear definition for the term "glint" as visual texture of metallic coatings together with a 

specification of observation conditions. 

Several definitions were proposed by researchers in Akzo Nobel (2004) in order to 

describe glint of metallic coatings. Three of them are given: 

• Points of reflected light of very high intensity that switch on and off while 

changing panel orientation. 

• The impression that coatings show bright tiny lights under specific viewing 

angles only when irradiated by an intense directed light source. 

• Tiny spot that is strikingly brighter than its surrounding. It is visible under 

directional illumination conditions only. The glint may be expected to switch on 

and off when the observation geometry is changed. 

A final definition of glint was settled as given below by taking into account these 

proposed definitions. 
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"Tiny spot that is strikingly brighter than its surrounding, in other words, 

bright sparkle. It is visible under directional illumination conditions only. 

The glint may be expected to switch on and off when the illumination and 

observation geometry is changed. " 

In respect to the definition given above, the characterisation of the perceptual glint 

of metallic-coating panels was carried out. The following sections start with an 

investigation of illumination and viewing geometry appropriate for observation of the 

glint of metallic coatings. Then, visual assessments to quantify perceptual glint using a 

series of metallic-coating panels are described. Finally, a model was developed to 

predict the perceptual glint of metallic coatings utilising a high dynamic-range (HDR) 

image of the metallic-coating panels (see Section 2.7). Hence, a procedure of the model 

development and its performance are then introduced. 

5.2 Visual Assessments of Glint 

The following sections introduce a method to characterise glint perceptually. 

Appropriate illumination and viewing geometry to observe glint and a method to 

quantify glint of metallic-coating panels are discussed as well as results thus obtained. 

5.2.1 Samples 

A set of 106 metallic-coating panels produced by Akzo Nobel were used as 

samples. These panels were made by mixing solid-colour pigments and aluminium 

flakes in different proportions. There were 6 grey colour panels, 20 blue colour panels, 

20 brown colour panels, 20 green colour panels, 20 red colour panels and 20 yellow 

colour panels. The 6 grey colour panels had the same proportion of solid-colour 

pigments, but various amounts of metallic flakes, in order to produce a range of degrees 

of perceptual glint. As well as the grey colour panels, 20 panels of each colour group 

had the same proportion of solid-colour pigments with different amounts of aluminium 

flakes. In this experiment, a part of a panel (size of 6 x 6 em) was presented to 

observers. Note that the 6 grey colour samples were the same as the grey colour 

samples used in the coarseness experiment in Chapter 3, but the 100 coloured samples 
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were different from those that were used in the coarseness experiment. Images of one 

sample from each colour group are given in Appendix III as examples. Note that the 

appearance of the images is not the same as that perceived for the physical samples 

because some of pixel values in those images were saturated. 

5.2.2 Viewing Conditions 

The glint, as it has been defined in the previous section, is visible under directional 

illumination. It becomes less visible when the illumination becomes less directional. It 

disappears under diffuse illumination conditions, but another attribute, coarseness, 

appears instead. It is known that the glint appears only under directional illumination, 

but the specification of illumination and viewing geometry which optimally enhances 

appearance of the glint is unknown. It can be considered that it is appropriate and easier 

for observers to characterise the perceptual glint under conditions for which the glint is 

most obvious. Therefore, illumination and viewing geometry conditions were first 

investigated. To do this, visual assessments were carried out using a tilting table so that 

the glint was observed at various illumination and viewing angles, and the angle where 

the glint pronounced most strongly, was determined by observers. The details of the 

experimental conditions and procedure are given in the following sections. 

5.2.2.1 Experimental Settings 

A schematic diagram of the experimental settings is given in Figure 5-1. Visual 

assessments were conducted in a darkened room. Each observer was seated at a desk, 

on which a chin-rest, a tilting table and a lamp were situated. Observers' viewing 

geometry was kept constant by adjusting the height of hislher eyes at 46 cm from the 

desk using the chin-rest. On the tilting table, two samples (metallic-coating panels), a 

reference and a test sample, were placed on the uniform mid-grey background. The 

tilting table allowed observers to see the glint effect of the samples at various 

illumination and viewing geometries by changing the angle of the tilting table. The 

angle of the tilting table was always measured with a digital protractor placed on the 

tilting table. A GretagMacbeth Sol-source lamp consisted of a tungsten halogen light 

source was arranged directly above the centre of the viewing field (Figure 5-1 (b». 
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The SPD of the light source was specified by measuring the SPD of the light 

reflected from a white ceramic standard tile using a Minolta CS 1 000 tele­

spectroradiometer (TSR, see Section 3.2.1) in a 45/0 geometry . Figure 5-2 (a) shows 

the measurement condition and the measured SPD is given in Figure 5-2 (b). The CIE 

(x, y) chromaticity coordinate of the light ource were equal to (0.4086. 04097) in 

terms of the CIE 1964 tandard colorimetric observer The uni form mld-gre 

background of the sample had CIELAB (L* , a*, b*) values equal to (506:, -2018, -

2.609) according to the mea urement using 45/0 geometry at the centre of the Viewi ng 

field Spatial uniformity of the illumination was evaluated by mea uring the vie\.\'i llg 

field at 15 various point using a GretagMacbeth LightSpex pectroradiometer on the 

flat table as shown in Figure 5-3 ; (a) for the measurement condition, (b ) for the 

locations where the measurements were made; and (c) for the illuminance 10 lux at th 

locations corresponding to Figure 5-3 (b). It is ideal to use a light source havlOg 

directional illumination which is strong enough to bring out gl int appearance and is able 

to illuminate a viewing field uniformly A large high-power light would be ideal, a~ 

would sunlight, however, because of the limited availabi lity of light source for thiS 

experiment, the GretagMacbeth 01- ource lamp wa employed, although it wa not 

po ible to illuminate the viewing field uniformly However, the illumlOanc at the 

centre of both samples (a reference and a test sample) was adju ted to be a close a~ 

po ible 
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Figure 5-2: (a) Ilummation and vieWing geometry for the measurement. (b) SPD of the light source. 
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in lux at the 15 points. 

5.2.3 Scaling the Perceptual Glint 

Ten observers, including five females and five males aged between 25 and 38, 

participated in the visual assessment for scaling the perceptual glint of the metallic­

coating samples. All observers were either students or members of staff at the 

University of Leeds. They all passed the Ishihara visual test as observers with normal 

colour vision . 
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Magnitude estimation method (see Section 2.9.2) was applied as a scaling method. 

Each observer commenced an observation session by adapting to the viewing field 

which was the mid-grey background illuminated by the lamp in a darkened room. 

Before the assessment starts, the following instruction was given to each observer: 

Your task is to assess "glint" of pairs of metallic-coating panels. The 'glint' 

has the following definition: 

"Tiny spot that is strikingly brighter than its surrounding, in other words, 

bright sparkle. It is visible under directional illumination conditions only. The 

glint may be expected to switch on and off when the observation geometry is 

changed. Glint value can be defined by local contrasts between "bright 

sparkle" and its surround. and the amount of the sparkle. " 

In each assessment, two metallic-coating panels will be provided. a test sample 

and a reference sample. Both are placed on a tilting table whose angle can be 

adjusted. Please find an angle that provides you with the maximum perception 

of glint based on the reference sample and then assign a number that best 

describes the perception of glint of the test sample in comparison with the 

reference sample having a glint value of 50. A value of 1 represents no glint at 

all. This is an open-ended scale, i.e., there is no upper limit to this scale. 

One of the six grey samples, having a middle level of glint, was chosen as a 

reference sample. The perceptual glint of the remaining I 05 samples was visually 

scaled by comparison with the reference sample. All samples were presented in a 

random order and the position of the reference sample was also randomly selected on 

either the right- or left-hand side of the test sample during the assessment so as to 

prevent any systematic and experimenter bias (Dean & Voss, 1999). In each assessment 

(i.e., every time when a new test was presented to the observer), the angle of the tilting 

table was changed by an experimenter in order to let the observer re-adjust the angle 

best to see the glint. This was to examine the consistency of angle selections within 

observers and between observers. Moreover, this was to compensate for any slight 

variations in the observer's position which were not preventable during a long session 

(each session lasted about one hour). 
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At each assessment, a scaled glint value and the selected angle of the tilting table 

were recorded. A training session was given before the main experimental session to 

allow the observers to practice and understand the glint observed on the metallic-coating 

samples. In the training session, each observer was asked to find an angle that provides 

the maximum perceptual glint of each of the six grey colour samples. After the 

observer got used to participating in the assessment, the main session involving the 

assessments of all the 105 assessments was carried out. Each observer conducted the 

main session twice, in order to test repeatability. A total of 20 main sessions 

corresponding to a total of 2100 magnitude estimations were made by 10 observers (10 

observers x 2 sessions x I 05 samples). 

5.2.4 Data Analysis and Results 

5.2.4.1 Scale Value 

For the perceptual glint scaling, the magnitude estimation method with the 

reference sample was applied. A standard way to summarise results is to take a 

geometric mean over the results from all observers for each sample to obtain a mean 

scale value (see Section 2.9.2), since each observer may use different scales. To see the 

influence of scale difference, arithmetic and geometric means of all raw observer data 

were calculated for each sample and Figure 5-4 investigates their correlation by plotting 

the arithmetic means against the geometric means with a line which indicates perfect 

agreement between them. Their correlation of an R2 value of 0.998 indicates very good 

agreement. However, it can be clearly seen in Figure 5-4 that the correlation gradually 

declines toward the largest scaled values of perceptual glint. This might be caused by 

positively skewed distributions of the observer data or rather by a few high outlying 

values. A range of the numbers used in all the sessions to scale the glint was from 1 to 

400, while the maximum numbers used at each session were various. The maximum 

values were in between 80 to 200 in 12 sessions and between 201 to 300 in 7 sessions 

out of 20 sessions. This is not surprising, since the glint was scaled with an open-ended 

method. However, the correlation between the arithmetic and geometric means was 

good; namely there was not much scale variation in this experiment. This is presumably 

because the reference sample was used to compare with the test samples and therefore, 

the observers used a relatively similar range of the numbers. However, some small 

influence of the scale differences can still be observed. Consequently, the geometric 
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means were found to be appropriate to determine the mean observer scale values of the 

perceptual glint for the samples in this study . The derived geometric means for all the 

samples used in this study were given in Appendix IV. 
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Figure 5--1: Comparison oj the scale values derived/rom geometric mean and arlthmellc mean oj rml 

observer data Jar all samples. 

5.2.4.2 Observer Variability 

In this section, reliability of the visual assessments was investigated by analysing 

observer variabi lity 

Individual raw observer data are often examined in terms of a relation to 

geometric means of all observer data in a logarithmic form as shown in Equation 5-1 

(Bartleson, 1979; Luo and Clarke el aI., 1991; Pointer, 1980) 

logO = a logO + f3 
J J Y J 

Equation 5-1 

where 0 1) is the raw data of the observer j for the test sample i, 0, is the geometric 

mean of the test sample i, and the aJ and fJJ are a slope and an intercept of a regre sion 

line determined using least-squares fitting for the observer j. This function (Equation 

5-1) is not always appropriate to describe a relation between an individual observer data 

and a geometric mean of all observer data. This function is appropriate, however, if 

individual observer data are either logarithmic or power function of stimuli (Bartleson. 

1979); these are the functions which are the most likely when human sensatIon is scaled 

using magnitude estimation (Luce & Krumhansl, 1988). Unfortunately, there is no 

evidence in the relation between the observer data and the stimuli in this experiment, 

since there is no certain physical measure for the glint; namely stimuli . However. thIS 

function was found to be suitable to describe the relationship from the good correlations 
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between the logarithmic observer data and geometric means. Table 5-1 shows that the 

correlation for all the samples is 0.92 on average with a range from 0.86 to 0.96 in terms 

of R2. These high correlations indicate that a log-log scale is appropriate to analyse 

observer variability; by comparison, the correlation of the raw observer data and the 

geometric mean is 0.89 on average with a range from 0.75 to 0.95 (see Table 5-1). 

Therefore, logarithms of the data were utilised to investigate observer accuracy and 

repeatability (see Section 3.3.4.2). 

Observer accuracy was investigated in terms of R2 and CV based on a logarithm 

scale, and also R2 values in a raw scale in order to compare with that in logarithm scale. 

The slope aj and intercept Pj in Equation 5-1 was also obtained to see the differences of 

scales used in each session from the mean observer data. The slope and intercept in 

Table 5-1 show absolute differences of the slope and the intercept from the mean 

observer data. It means that the differences from the value of one for the slope ( I aj -

1 I) and from the values of zero for intercept ( 1/1;· - 0 I ) were calculated, because the 

slope of one and the intercept of zero indicate the mean observer data. Table 5-1 

summarises these observer accuracy measures in terms of their mean, median, 

maximum and minimum of all the sessions from all the samples and from individual 

grey, blue, brown, green, red and yellow samples. Table 5-3 to Table 5-9 give the 

accuracy measures of R2 and CV for individual session from all the samples and 

individual coloured sample groups together with the raw slope value aj and the raw 

intercept value /J;. 

Similarly, Table 5-2 summarises mean, median, maximum and minimum observer 

repeatability measures of all the observers from all the samples and individual coloured 

sample groups. It shows R2 and CV values between the observer's first and second 

session in the logarithm scale and R 2 values between them in the raw scale. In addition, 

the details of repeatability are given in Table 5-10 to Table 5-16. 
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Table 5-1: A summary of observer accuracy measures from al/ the samples and the samples in each grey, 

blue, brown, green, red and yellow sample group. 

Sample 

L02arithmic Scale 

Slope ( I a - 11 ) 
Mean I 0.20 0.24 0.22 0.24 0.20 0.19 0.19 

Median i 0.18 0.19 0.18 0.24 0.20 0.20 0.17 
Max ! 0.38 0.98 0.49 0.63 0.49 0.37 0.61 
Min 0.00 0.00 0.03 0.00 0.00 0.02 0.01 

Intercept ( ~ - 0 ) 
Mean 0.35 0.33 0.37 0.41 0.35 0.35 0.33 

Median 0.33 0.30 0.35 0.38 0.36 0.31 0.25 
Max 0.68 0.61 0.78 1.12 0.69 0.82 0.96 
Min 0.02 0.04 0.02 0.03 0.03 0.02 0.02 

R2 

Mean 0.92 0.92 0.94 0.93 0.93 0.93 0.93 
Median 0.93 0.93 0.95 0.94 0.95 0.94 0.94 

Max 0.96 0.96 0.98 0.98 0.98 0.98 0.97 
Min 0.86 0.83 0.88 0.87 0.78 0.78 0.84 

CV 
Mean 14 9 12 14 13 14 16 

Median 13 9 11 13 13 14 14 
Max 23 23 22 27 22 25 31 
Min 7 4 6 6 6 6 8 

SF (for CV) 
Mean 0.98 0.99 0.99 0.98 0.99 0.98 0.98 

Median 0.98 0.98 0.98 0.98 0.99 0.97 0.97 
Max 1.12 1.05 1.12 1.11 1.06 1.17 1.17 
Min 0.91 0.93 0.91 0.89 0.91 0.9 0.88 

Raw Scale 

RZ 

Mean 0.89 0.93 0.91 0.92 0.92 0.91 0.92 
Median 0.91 0.94 0.92 0.92 0.94 0.91 0.92 

Max 0.95 1.00 0.98 0.96 0.97 0.97 0.99 
Min 0.75 0.83 0.78 0.87 0.78 0.81 0.82 

Table 5-2: A summary of observer repeatability measures from all the samples and the samples in each 

grey, blue, brown, green, red and yellow sample group. 

Sample 

Lg2arithmiC Scale 
R 

Mean I 0.93 0.91 0.88 0.87 0.90 0.89 0.93 
Median I 0.97 0.92 0.87 0.88 0.91 0.90 0.97 

Max 0.99 0.95 0.95 0.97 0.93 0.97 0.99 
Min 0.73 0.83 0.79 0.71 0.83 0.78 0.73 

CV 
Mean 7 13 17 15 16 17 7 

Median 6 13 16 15 18 16 6 
Max 14 17 25 22 21 30 14 
Min 1 8 10 10 11 11 1 

Raw Scale 

RZ 

Mean 0.95 0.87 0.85 0.89 0.89 0.88 0.95 
Median 0.96 0.88 0.85 0.91 0.92 0.90 0.96 

Max 0.99 0.96 0.94 0.95 0.96 0.97 0.99 
Min 0.84 0.71 0.73 0.76 0.77 0.78 0.84 
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Table 5-3: Observer accuracy measures for each session from all the samples. 

Raw Scale 

Observer Session I 
Slope CV R 

t 0.90 0.96 8 0.94 

~~=1T1E !.: ~.E Z H~ I ~i--~~--
--.-.-~-.-.-- ~ -+ ~:~ ~::: ~:~ ~~ ~::~ ~:: 

2 I 0.82 0.26 0.92 12 0.97 0.93 - ... -...... --.. - ..... -..... ---... ------:,..;.-:-;:'---~:__--~::---~'---...:..:.::..:--f---.-----. 
1 0.67 0.58 0.94 21 0.99 0.75 
2 0.67 0.59 0.93 22 1.01 0.86 .. ---... ---.---.... -.. ---t----:--------------------+-------

6 1 I 0.88 0.14 0.93 10 0.95 0.88 
........ _. ____ .......... -.. -.-.?-.---t _0_.8_5 ___ 0_.1_1 ___ 0._95 ____ 9 ____ 0_.9..:....1_-+-1 . 0.89 __ 

7 1 i 1.17 -0.33 0.94 11 0.98 0.92 

........................ ~ .................................... -{ .... -....... -j-.. -----.. ~~~~... --~:-.:.:;~~:---·-·-~-:~-6 -.. --....,.;~~::.----...:..:~ :-=--~~~--{-.-- .. -.... ~~~~ ... -... --. 
-...... -.--~-- .... -...... -.. --~-.. -+ .. -~:: ~.~~ ~:: 29

3 ~:: - ... --~:-:~---

-.-~--.. --i--+- ~:~: ~:~~ ~::: ~: ~:~~ ~:: 
2 I 1.20 -0.12 0.88 13 1.12 0.89 

5 

Table 5-4: Observer accuracy measures for each session from the grey colour samples. 

Raw Scale 

Observer Session CV SF R 
forCV 

1 1 0.96 6 0.97 0.99 
2 0.96 6 0.97 1.00 

__ •• __ N ••• _._ ••• ___ ,_ 

2 1 0.90 6 1.~ Ci= 2 0.96 5 1.04 0.96 ......... _._._--_._ .... _--_ ...... __ .... . ....... _. __ ...... -_._-

3 1 1.98 0.84 10 1.01 0.96 
2 1.34 0.92 10 _~:Q<!___ 0.88 ... __ ..... _-_ ... _ ........ _ .................... 

4 1 1.10 -0.31 0.87 10 0.97 I 0.94 
2 0.80 0.27 0.92 10 1.05 0.94 ...... __ .... _ .. " ........ -..... --_ ...... _ .............. "."." 

5 0.66 0.60 0.92 12 0.93 0.83 
2 0.68 0.61 0.93 10 0.96 0.85 ..... _--- . __ ................... -..... _ ........ 

6 1 0.87 0.13 0.94 4 0.98 1.00 
2 0.85 0.10 0.95 4 0.95 0.99 .......... _--_ .. _-_ ........... __ . 

7 1 1.19 -0.37 0.93 7 0.99 0.88 
2 0.82 0.33 0.94 5 0.97 0.98 .......... _._ ... _-_ ..... _-_ .... 

8 1 0.69 0.57 0.96 14 0.97 0.99 
2 0.71 0.58 0.94 23 0.96 0.90 .................... _-_ .. _._ ............... _- .......... _._._---_ .. 

9 1 0.95 -0.05 0.94 12 1.00 0.90 
2 1.19 -0.51 0.93 8 0.98 0.98 ............... --......... ---..... ~-.--..... 

10 1 1.40 -0.58 0.83 8 1.03 0.91 
2 1.19 -0.09 0.87 10 1.05 0.92 
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Table 5-5: Observer accuracy measures for each session from the blue colour samples. 

Logarithmic Scale i Raw Scale 

Observer Session Slope 
(0) 

Intercept R;t CV SF iii R2 
(13) (for CV) 

1 0.89 
2 1.19 
1 0.97 
2 1.03 
1 1.49 
2 1.35 
1 1.34 
2 0.88 
1 0.68 
2 0.63 

6 
1 0.87 
2 0.86 
1 1.14 
2 0.84 
1 0.66 
2 0.68 

9 
1 0.92 
2 1.16 

10 
1 1.40 
2 1.19 

Table 5-6: Observer accuracy measures for each session from the brown colour samples. 

Observer Session 

1 
2 
1 

Slope 
(0) 

0.86 
0.98 

Raw Scale 

Intercept SF R 
(13) (for CV) 

0.20 0.96 9 0.98 I 0.96 
~.Q:..~~ ________ Q~.~'? ___ ._ 11 0.~~ __ ~ ____ QJ:!1 _____ ._ 

0.76 0.47 0.94 18 1.04 i 0.91 
2 

2 ______ ~_+-_1~.0:..:0~. __ . __ .Q:..~ ____ .. _Q.:.9.~._ 6 --~~-----l--.-.... il:§-~- .. --.-.--.--
1.44 -0.77 0.92 16 0.97 I 0.87 

3 
1 
2 1.63 ... ___ .. :2_:.~.~ ____ .. ___ Q:..~! ___ ._. 18 0:.95 _____ J ___ .. ___ Q:.~L .. __ .. __ .. __ _ 

-0.80 0.91 16 0.90! 0.96 
0.27 0.92 13 0.95 i 0.95 .. ---.-.. ------.-.--... --.-.... ---...... -... --------.-----1--------------_·_···_-_·····_·_· 
0.52 0.98 19 1.02 i 0.88 
0.49 0.95 18 1.02 I 0.87 

4 
1 1.35 
2 0.80 

". 

5 
1 0.72 
2 0.73 

--'-():-16 ------0:95--·· 9 0.96 ---r---O~91---'--

_~.I! __ ....Q:.~~ __ " 11 0.92 + __ o.92 __ _ 
-0.29 0.93 11 0.99 0.95 
0.32 0.95 12 1.02 I 0.93 -------.---.. --.- - --------.. t------.--.-.--.----... 
0.56 0.97 20 0.99 i 0.93 

.. _._O'_:~_~ ________ ._. __ .. Q.:~.?. ___ ... ___ 27 -------~Q.§---.---.. l------....... Q.:.~~ .. -.. . 
9 1 I 0.93 -0.03 0.93 10 0.92 i 0.96 

_____ -=-2 __ I~~-~~--.-... -... -::Q.:?.~ ... -.. -....... -........ __ O':9..~_ ....... ____ !? ___ .. _._. ___ ....... _Q .. ~~_" ... " ..... _.+ .. _ ...... "_._.Q.:~~ ..... _. 
1 I 1.32 -0.44 0.94 12 1.04, 0.95 
2 I 1.24 -0.18 0.90 12 1.11' 0.95 

6 
1 0.87 
2 0.82 .. 

7 
1 1.17 
2 0.83 .. 

8 
1 0.68 
2 0.66 

-.~. 

10 
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Table 5-7: Observer accuracy measures for each session from the green colour samples. 

I L 'th' Seal _ogan mlc e R Seale aw 
. ! Slope Intercept R" CV SF R'" Observer Session I (a) (J3) (forCVl 

1 1 ! 0.93 0.08 0.97 6 0.98 0.96 
2 1.08 -0.23 0.96 9 0.95 0.93 --'--"'--'''---'-''-

2 1 0.95 0.11 0.88 13 1.02 0.83 
2 1.00 0.07 0.97 7 1.04 0.91 '--'-'---' 

3 1 1.14 -0.24 0.78 18 1.00 0.86 
2 I 1.30 -0.51 0.94 12 0.99 0.87 _. __ ._--_. __ .. __ ._-

I 4 1 1.07 -0.21 0.85 15 0.95 0.96 
2 0.79 0.36 0.95 13 0.99 0.97 .. _-.. __ ._. 

I 5 1 0.71 0.45 0.91 18 0.95 0.78 
2 I 0.72 0.52 0.97 18 1.01 0.92 ._._ .. _ .. _._.-

I 6 
1 0.87 0.16 0.96 8 0.96 0.93 
2 i 0.81 0.22 0.96 9 0.93 0.94 ... "._ ................. _---_ ............ 

I 
7 1 1.23 -0.46 0.97 10 0.96 0.97 

2 0.81 0.36 0.94 14 1.02 0.97 .... __ ............... __ ._---

8 
1 0.68 0.57 0.98 20 0.98 0.94 
2 I 0.70 0.60 0.95 22 1.04 0.81 ---------

9 1 
I 

0.92 0.03 0.91 11 0.93 0.96 
2 1.29 -0.69 0.94 14 0.91 0.96 

10 1 I 1.49 -0.67 0.93 14 1.06 0.96 
2 1.31 -0.40 0.96 12 1.06 0.93 

Table 5-8: Observer accuracy measures for each session from the red colour samples. 

I..c:>garithmic Scale Raw Scale 

Observer Session I 
Slope Intercept R" CV SF R" 

(a) (J3) (forCV) 

1 1 I 0.88 0.13 0.95 9 0.95 0.91 
2 1.05 -0.16 0.98 7 0.95 0.92 

2 1 0.77 0.44 0.93 17 1.04 0.87 
2 1.03 -0.04 0.96 8 1.01 0.91 ----_ ... _-_._ .. __ .. 

3 
1 ! 1.17 -0.34 0.86 16 0.96 0.91 
2 I 1.28 -0.51 0.91 15 0.97 0.81 .. _ ................ __ ._-_. __ ..... _-_ ..... -. 

17 0.90 4 1 i 1.37 -0.82 0.92 0.94 
2 

I 
0.85 0.17 0.92 12 0.95 0.97 ..... _ .......... __ ... __ ... __ ._-_._-_. 

5 
1 0.68 0.62 0.97 25 1.04 0.94 
2 i 0.68 0.59 0.92 24 1.02 0.85 ..... , .... _--..... _--_._ .. _._ ... .. 

6 
1 0.86 0.21 0.94 11 0.98 0.91 
2 0.96 -0.08 0.96 7 0.91 0.94 .. __ .-._-----_._ .. __ . _ •... M._ 

7 1 1.28 -0.58 0.93 15 0.94 0.91 
2 I 0.88 0.18 0.95 10 0.98 0.96 .-... __ ......... __ ... _-_. __ ... _-

I 
8 1 

I 
0.69 0.60 0.96 24 1.03 0.87 

2 0.71 0.55 0.95 21 1.03 0.84 ......... -.-.~.-.-.. - .. -.. -......... -.. 

I 
-----. 

9 1 0.98 -0.12 0.98 6 0.91 0.97 
2 1.21 -0.54 0.94 13 0.90 0.97 ....... ........... , .......... _ ........ __ . .... ~. 

I 10 1 1.22 -0.27 0.78 18 1.04 0.88 
2 1.18 -0.02 0.91 12 1.17 0.94 
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Table 5-9: Observer accuracy measures for each session from the yellow colour samples. 

Logarithmic Scale Raw Scale 

Observer Session Slope 
(0) 

Intercept RZ CV SF R2 
(P) (for CV) 

1 1 0.94 
2 1.06 

2 1 0.97 
2 0.97 

3 
1 1.12 
2 1.44 

4 1 0.99 
2 0.79 

0.03 0.96 8 0.96 0.93 

_____ --.:=-_t---.:..:..~---!l.2~-.. -.. ----Q;.~?---.----1-1------.-.g.:.~~ ..... ---L.--g·~~-.... ----.. __ . 
0.04 0.95 10 0.99 0.94 

______ -=-_-+--=.:...:..:.. ______ .Q:.Q~ __ ... __ ._ .. ____ Q;.~§ .... _. ___ . ___ ~. ____ . ___ ~_:.Q.2.. ______ ,.----.. -g~~-3 
-0.29 0.87 16 0.94; 0.87 
-0.82 0.92 19 0.94 I 0.82 .. _-----.... --_._ ..... __ ..... __ ..... _ ... _--._.-.... --.. _........ ._---_ .. __ ._ ..... _+--._._._--.. ----.. _ .. --_ ........ _ ...... _ ..... 
-0.15 0.90 14 0.90 i 0.91 
Q.1.~_ ... ____ ._..Q;~~. __ .. __ 14 0.92 ----..L __ . _____ g.:~?__ __ 

5 
1 0.65 
2 0.66 

0.65 0.91 30 1.02 0.92 
0.67 ______ .!l.91 _____ . 31 1.05 _-L. __ .9.9.? _____ _ 

6 
1 0.91 
2 0.82 

7 1 1.16 
2 0.80 

8 1 0.72 
2 0.73 

9 1 0.96 
2 1.11 

10 1 1.61 
2 1.27 

0.02 0.95 10 0.92 0.89 
______ =--_+ __ --=..:..=--__ 0.12 0.96 10 0.88 0.94 

--~0.24--·-0~9-5----1-2·---1T1----r--·--·(l':9·6--·-------

0.40 0.97 16 1.04 i 0.99 --------+---------.. -..... --.. -.. ----.... ---.. ----..... - ...... ---..... --.- --·---·---·--·---·-----t-----·--.... ·---.............. --.. --.... -.. -· 
0.55 0.94 24 1.04 i 0.88 
0.57 0.93 25 1.08 I 0.91 _ ..... _ ..... -._-_._._---.- . . .... + .. _----_. __ ._ .... _ .............. _ ...... . 
-0.09 0.94 10 0.91 0.96 

-------=---f------=..:....:....:-- -q:~_. ____ ()..:.~.? __ .. __ 14 O.~~_ .. !-_. ____ .Q.:~? __ 
-0.96 0.85 22 0.99 j 0.90 
-0.14 0.84 17 1.17 0.89 

Table 5-10: Observer repeatability measures of each observer from all the samples. 

Observer 
Logarithmic Scale Raw Scale 

R2 CV R2 

0.92 13 0.92 

2 0.90 14 0.89 

3 0.81 11 0.84 

4 0.88 19 0.91 

5 0.90 18 0.82 

6 0.90 14 0.83 

7 0.91 18 0.92 

8 0.92 18 0.80 

9 0.89 14 0.88 

10 0.80 16 0.87 

Table 5-11: Observer repeatability measures of each observer from the grey colour samples. 

Observer 
Logarithmic Scale Raw Scale 

R2 CV R2 

1 0.99 1 0.99 
2 0.94 6 0.95 
3 0.98 5 0.98 
4 0.73 14 0.84 
5 0.85 11 0.99 
6 0.99 5 0.99 
7 0.94 5 0.94 
8 0.98 9 0.95 
9 0.99 9 0.96 
10 0.97 3 0.96 
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Table 5-12: Observer repeatability measures of each observer from the blue colour samples. 

Observer 
Logarithmic Scale Raw Scale 

R2 ev R2 

1 0.93 13 0.96 
2 0.95 8 0.88 
3 0.90 8 0.87 
4 0.93 17 0.90 
5 0.91 16 0.90 
6 0.89 13 0.71 
7 0.91 15 0.95 
8 0.95 13 0.80 
9 0.92 13 0.85 
10 0.83 14 0.85 

Table 5-13: Observer repeatability measures of each observer from the brown samples. 

I Logarithmic Scale Raw Scale 
Observer I R' ev R:l , 

1 ! 0.86 18 0.87 I 
2 ! 0.93 20 0.87 
3 I 0.81 10 0.83 
4 ! 0.95 20 0.94 
5 I 0.95 12 0.73 
6 0.89 14 0.81 
7 I 0.86 20 0.89 
8 ! 0.85 25 0.82 
9 I 0.89 15 0.83 
10 i 0.79 15 0.90 

Table 5-14: Observer repeatability measures of each observer from the green colour samples. 

Observer 
Logarithmic Scale Raw Scale 

R2 ev R2 

1 0.94 11 0.92 
2 0.87 14 0.91 
3 0.71 16 0.81 
4 0.83 22 0.95 
5 0.92 17 0.76 
6 0.90 14 0.92 
7 0.88 21 0.95 
8 0.97 12 0.87 
9 0.82 18 0.89 
10 0.88 10 0.94 

Table 5-15: Observer repeatability measures of each observer from the red colour samples. 

Observer 
Logarithmic Scale Raw Scale 

RZ ev R2 

1 0.93 12 0.94 
2 0.92 21 0.91 
3 0.85 11 0.81 
4 0.90 19 0.93 
5 0.93 18 0.82 
6 0.93 16 0.94 
7 0.91 18 0.92 
8 0.91 19 0.77 
9 0.91 12 0.96 
10 0.83 18 0.92 
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Table 5-16: Observer repeatability measures o/each observer from the yellow colour samples. 

Observer 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

I 

5.2.4.3 Glint Angle 

0.94 
0.94 
0.86 
0.89 
0.84 
0.90 
0.97 
0.91 
0.91 
0.78 

Logarithmic Scale 
cv 
13 
11 
13 
18 
30 
15 
21 
20 
12 
22 

Raw Scale 

0.90 
0.91 
0.91 
0.89 
0.92 
0.82 
0.93 
0.81 
0.91 
0.81 

The glint can be seen on a metallic coating at various geometries as long as it is 

viewed under directional illumination. However, intensity of the glint changes with 

viewing geometries. Therefore, illumination and viewing geometry which provides the 

maximum perceptual glint, was investigated. The observers adjusted the tilting table to 

the angle which provides the maximum perceptual glint, at each assessment. 

The results of the selected angles are given in Figure 5-5. The angle () used in this 

study is the angle with respect to the tilting table which is illustrated in Figure 5-5 (a). 

Figure 5-5 (b) shows the maximum, minimum and mean angles selected at each session. 

The horizontal axis indicates the observer and hislher session (e.g., the result of 

Observer l' s first session is labelled as Ob 1-1 st) and the vertical axis indicates the angle. 

95 % confidence intervals of each session are plotted with their mean in Figure 5-5 (c). 
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Figure 5-5: The results of the selected angles. (a) The indication of the angle measurement. (b) The 

maximum, minimum and mean angles selected at the each session (e.g., the result of Observer I 's first 

session is labelled as Obi-1st). (c) 95 % confidence interval of each session were plotted with their 

mean. 
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5.2.5 Discussion 

Reliability of the experimental results was examined in terms of the observer 

accuracy and repeatability. The results of the accuracy can be found in Table 5-1 and 

Table 5-3 to Table 5-9. The results of the repeatability are in Table 5-2 and Table 5-10 

to Table 5-16. 

The mean accuracy was 0.92 from all the samples with a range from 0.86 to 0.96 

in terms of R2. The mean R2 values of 0.92, 0.94, 0.93, 0.93, 0.93 and 0.93 were 

obtained for the grey, blue, brown, green, red and yellow samples respectively. This 

indicates that individual observer data are linearly correlated with the mean observer 

data. It is also found that there is no significant difference in observer accuracy 

depending on the colour of the samples. The mean CV values of 14, 9, 12, 14, 13, 14 

and 16 were obtained from all the samples, and the samples in each colour group 

respectively. The grey samples had a better accuracy in comparison with the other 

colours. It was thought that there were only five grey samples and they had relatively 

distinguishable perceptual glint differences, therefore the observers could judge 

consistently, while there were 20 for each in other colour groups. The CV values also 

proved that there were no differences in observer accuracy between the samples having 

different colours except the grey samples. 

Since the magnitude estimation method was applied, it was not surprising to find 

variations in the scale used by observers; namely, the range of the numbers used for 

scaling varied between observers. However, it can be seen from the results of the slope 

in Table 5-1 and Table 5-3 to Table 5-9 that there were relatively small scale differences. 

The mean of the absolute differences in the slope and the intercept between the sessions 

were only 0.20 and 0.35 respectively from all the samples. This indicates that the 

majority of the observers used quite similar scales. However, it is also evident that a 

minority of the observers used quite different ranges of numbers from the others. A 

large slope difference obtained from a session for all the samples was 1.38. Although 

this indicates the large scale difference from the one which the majority used, the 

accuracy of this session was the R2 value of 0.91 which was as accurate as the other 

sessions. Thus it should be noted that the slope is only the indication of variations of 

the scale used by the observers and it does not need to be same for all sessions. In 

contrast to slope, the intercepts should be a value of close to zero. This is because the 

bottom end value of one was given as an indication of no glint in the visual assessment, 
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while there was no indication for top end in a glint scale, since the open-ended system 

was used. Even a largest intercept difference from the mean observer data was 0.68 

from all the samples. This is considerably small comparing with the range of scale 

values used by the observers (see Section 5.2.4.1). 

The results of the observer repeatability can be found in Table 5-2 and the details 

in Table 5-10 to Table 5-16. As well as the accuracy, the repeatability for the grey 

samples was slightly superior to that for the other coloured samples and it is because of 

the number of the samples and their distinguishable glint levels. However the 

perfonnance of the repeatability also does not seem to depend on the colours of the 

samples. 

Another study was also carried out, in parallel with the present study, to 

investigate glint appearance of coating materials by Akzo Nobel (Kirchner and 

Kieboom et aI., 2007). The definition of glint in their study (see Section 2.5.1.2) made 

much the same point as the definition given in this study. Seven observers assessed a 

total of 216 samples. These samples were not only metallic-coating panels but also 

pearlescent-coating panels and some panels coated with a mixture of metallic and 

pearlescent. Similar to the coarseness experiment by Akzo Nobel (see Section 3.3.5), a 

0-9 categorical judgement scaling method was applied with eight references which 

corresponded to categories one to eight and they allowed the observers to assign the 

values up to a half scale precision. As in this study, directional illumination was utilised, 

but the glint was scaled at three fixed illumination and viewing angles with a fixed 

angle for the reference samples. The angles were 35°, 45° and 60° (note that the angle 

was indicated in the same matter to the present study see Figure 5-5 (a)). The viewing 

conditions used by Akzo Nobel are given in Figure 5-6. 

41em 1Scm .... -----~.--. 

*'1em • 
• • • 140em 

,~so !ISO . ~ r.1 · _1 .. - ~ 

Figure 5-6: Sketch of the experimental set-up used at Akzo Nobel (Kirchner and Kieboom et al. , 2007). 

An example of the angle of 45~ 
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They obtained the average observer accuracy of 0.94, 0.90 and 0.94 at the 35°, 45° 

and 60° conditions respectively in term ofR2. It found to be very similar to the result of 

the present study which was 0.92. Their results of accuracy and repeatability indicate 

that the glint was able to be assessed equivalently at the three different geometries. 

However, the maximum glint values obtained in three conditions were varied. It was 

smaller at the 60° condition (the glint value rounded off to 8) than the other two 

conditions. They explained that the perceptual glint decreased when the observation 

angle was further away from the specular angle. In fact, the 35° condition had largest 

maximum values, of which was the condition closest to a specular angle among three 

conditions followed by the 45° condition. However, in contrast, this study reports a 

mean angle of 58° (see Figure 5-5), i.e., the aspecular angle was 71°. The mean angle 

range was from 53° to 63° and the maximum and minimum of the all the observations' 

angles were 45° and 68° respectively (Figure 5-5 ) from the results of the present study. 

It tells that although the range of the angles that the observers selected, was not so small, 

no observer selected less than 45°. This disagreement can be considered that the 

observers scaled the glint using slightly different criteria. The definitions of the glint in 

both experiments were similar. However, in the present study, the observers were 

guided that: 

"Glint value can be defined by local contrasts between "bright sparkle" and 

its surround, and the amount of the sparkle. " 

As a result of this instruction, it can be assumed that observers in this study scaled 

the glint in terms of the difference between the bright sparkle and its surround (local 

contrast), while the Akzo Novel observers, the glint was evaluated in simply in terms of 

the brightness of the sparkle (absolute intensity). When the samples are observed close 

to the specular angle, not only the sparkles but also the whole area of the samples look 

brighter compared with when the samples are viewed away from the specular angle. but 

the contrast between bright sparkles and their surround dramatically decreases and even 

some of the tiny spots are vanished. It is suggested that this is the reason why in this 

study the optimal angle for glints was somewhat different to that found in the Akzo 

Nobel experiment. 

However, the results obtained by Akzo Nobel indicate that the glint was assessed 

with equivalent accuracy at any of the three angles, although there were differences in 

the scaled glint value between the observation angles. This suggests, in any event, that 

in this study the variations found in observation angles between the observers were not 
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critical (Figure 5-5). The lack of importance of the viewing angle in this study may 

result because the observers always assessed the test samples relative to the reference 

sample (and both samples were always at the same angle). In the Akzo Nobel 

experiment, the angle for the reference samples was fixed and the test samples were 

assessed at all three angles which resulted in variations in the scaled glint values found 

between angles. 

5.3 Computational Model for Perceptual Glint 

Prediction 

The following sections describe a model developed for predicting the perceptual 

glint using a digital colour image of metallic coatings. Unlike coarseness, the presence 

of glint means that it is impossible to capture the full dynamic range of such a scene in a 

single image due to the limitations in most image-capture devices. Hence, an HDR 

image system was employed (see Section 2.7) and a glint model was developed based 

on the HDR image as input. A framework of the model is given in Figure 5-7. The 

following sections describe each stage of these processes. They start with a procedure 

for creating the HDR image followed by various steps to extract a feature correlated 

with perceptual glint. The performance of this model is then evaluated. 
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Physical Sample 
(Meta llic Coating Panel) 

~ 

LOR Images of Physical Sample LOR Images of Greyscale 

x Z 

Glint Prediction 

Figure 5-7: A flowchart of the main framework for the glint model 

5.3.1 Measurement and Capture of Targets 

In order to develop and evaluate a model, digital images and spectral properties, 

such as the SPD and the CIE XYZ tristimulus values of the 106 metallic-coatlOg 

samples (same sample as used in the vi ual a sessment in ction: 2) and a 

GretagMacbeth ColorChecker DC (ColorChecker DC ) were required The 

measurement of the spectral propertie and the image capturing were carried out in 

consistent conditions with the visual asses ments (see Figure 5-1 (b» . The TSR or a 

digital camera was placed where the observer' eyes would be as hown in Figure ~-8 
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The angle of the tilting table was adjusted at 0 = 58° (aspecular angle of 71°) which was 

the average angle of all the visual assessments (see ection 5.2.4.3). Each target was 

placed at the centre of the tilting table. 

light 

observer camera 

TSR 

Figure 5- : An illustration of the experimental condition f or the pectral propertle mea urement u ing 

a TSR and the image capturing using a digital camera. 

The SPD of the metallic-coating samples and 12 patche in a greyscale on the 

centre region of the ColorChecker DC were measured u ing the T R. From the 

obtained SPD, CIE XYZ tristimulus values were computed u ing the IE 1964 tandard 

colorimetric observer. However, it was difficult to carry out measurements for all 

patches in the ColorChecker D on the tilting table, becau e of the limitation of the 

space on the tilting table and the structure of the 010 hecker D (the patches stuck on 

a board). Hence, spectral reflectance of aJl patche in the 010 hecker D was 

measured using the CE7000A with specular component excluded (see ection 3.2.2). 

CIE XYZ tristimulus values were then computed using the PO of the illumination 

obtained by measuring the white patch in the greyscale and the CIE 1964 standard 

colorimetric observer. 

Digital i mages of the samples, the 12 greyscale patches and the olorChecker DC 

were captured using a Nikon D1X digital camera (ee ection 3 4.1) with two different 

exposure settings. 

5.3.2 HDR Image Capture 

If a dynamic range of a scene is greater than that of an image-capture device then 

a problem occurs that i illustrated in Figure 5-9 (a) and (b) Although the camera gain 

can be altered, at a camera setting, the camera re pon e aturate well before the 

maximum scene intensity is reached (Figure 5-9 (a»; at a different setting, the conver e 

problem occurs where the camera captures the high-intensi ty end of the cene, but 
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provides little useful information at the bottom end (Figure 5-9 (b». This situation 

occurs when an image of scene is captured containing metallic-coating panels with glint 

because bright spots, which are mainly caused by the reflection from aluminium flakes 

in coatings, are extremely brighter than their surround. Conventional cameras are not 

able to capture both those bright and dark part of the scene intensity at once because of 

limitations in technology. Therefore, in this study, an HDR image was created in order 

to capture all the necessary information in the scene. 

Each sample was captured using two different exposures and these two LDR (low 

dynamic-range) images were then combined to create an image with a higher dynamic­

range than either of the original images. For example, a LDR image captured with an 

exposure setting (Exposure 1) is resulted in Figure 5-9 (a)~ another LDR image captured 

with a different exposure setting (Exposure 2) is resulted in Figure 5-9 (b)~ and these 

two LDR can be combined as illustrated in Figure 5-9 (c): the region A where the 

response of Exposure 1 can be used to recover scene properties; the region C where the 

response of Exposure 2 can be used; and the region B where the responses of both 

exposures can be used. A result of combining the data from Exposures 1 and 2 is seen 

in Figure 5-9 (d) where a virtual camera response is possible that exceeds the dynamic 

range of either of the individual exposures. This process generates an HDR image. 

Examples of images corresponding to Figure 5-9 (a) and (b) are given in Figure 5-10. 

Images in Figure 5-10 (a) capture a dark part of the scene and images in Figure 5-10 (b) 

have information ofa bright part of the scene. 

The problem of capturing HDR images from multiple exposures has been studied 

and a number of solutions have been proposed (Debevec & Malik, 1997; Krawczyk and 

Goesele et al., 2005~ Mitsunaga & Nayar, 1999~ Nayar & Mitsunaga, 2000; Robertson 

and Borman et al., 2003; Xiao and DiCarlo et al., 2002). The published solutions treat 

each channel separately and attempt to derive smooth camera response functions. 

However, the problem that they are trying to address is generally more complex than the 

problem in this study. Typically, multiple-exposure images are taken in, for example, 

outdoor scene including bright part and shadow, or indoor scene with a window in 

daytime such as in a church, where there are no surfaces of known spectral properties, 

and illumination is also unknown and spatially variable. Since this study is aiming to 

capture images under the controlled condition of a laboratory, the camera response 

function was derived from the relationship between the camera responses and the 
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spectral properties of the grey cale. The detail of the HDR capturing procedure are 

descri bed in the following sections. 

valid valid 
(1) • • <Jl 

(1) • <Jl • 
C C 
0 0 a. a. 
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Figure 5-9: (a) Response of camera Of f:.xposure I. (b) Response of camera at f:.xposure 2 (c) 

//lustral/on of reglons .1 (Exposure I valid on~VI, B (both exposures valid) and C (}.xposure 2 valid onM. 

(d) A comhmed HDR camera response 

-
I 

(a) (b) 

Figure 5- 10. Examples of LDR Images captured with No exposure 'Iettmg (a) imafl,es capture 

mformatlOn of a dark part of the scene (the right hand 'Ilde Image). (hi imaf,!es capture a hrlght part of 

the scene (the leji hand side Images) 
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5.3.2.1 LCR Image Capture 

HDR images were created based on the images captured at two exposures and the 

spectral properties of the 12 greyscale patches including very dark (black) and bright 

(white) colour patches. Two exposure settings, 1/10 seconds (Exposure 1) and 1/400 

seconds (Exposure 2), were selected resulting from a comparison of the camera 

responses at the various exposure settings of 1/2, 113 , 1/4, 115, 1/6, 1/8, 111 0, 1/13 , 

1/200, 11250, 11320, 1/400, 11400 and 1/500. In order to use information of the 

greyscale, camera responses of all greyscale patches should be within a valid range of a 

camera response at either one of the two exposure settings. As illustrated in Figure 5- 11 

(Exposure Setting Selection 1), if there are any patches not covered wi th any of 

exposure settings, it results in missing parts of scene information in an HDR image; 

information of middle levels of greyscale patches is missing. On the other hand, as is 

illustrated in Figure 5-11 (Exposure Setting Selection 2), if many of patches la on 

ranges of both exposure settings, there is no missing scene information, but only a 

limited range of information is included. Consequently, the exposure settings of 1110 

and 11400 were applied, for which there were no invalid areas and no widely overlapped 

area so as to use the information from the greyscale effectively. 

Exposure Setting SI e ectlon 

a valid range fo, ~ a valid range for 
Exposure 1 /' ~ Exposure 2 , / 

••••••• 1IJ3}9:0 0 
scene ••••••• 0000 scene 

intensity intensity 
(darker) a valid range for a valid range fo 

(brighter) 

Exposure 1 Exposure 2 

Ex osure Settin p g Selection 2 

Figure 5-J J: An example of selections of camera settings. if there are any patches are not covered with 

any of exposure settings, it results in missing parts of scene information (Exposure Setting Selection /) . 

On the other hand, there is no missing scene informaCion, but only a limited range of information i 

included (Exposure Setting Selection 2). 

Figure 5-12 shows the camera responses of the greyscale patches of the green 

channel from two of the selected exposure settings (normalised in the range 0-1 ) against 

the sum of the measured SPD of the corresponding greyscale patches. The plots circled 

with dashed lines indicate the patches within the valid camera responses. Although 

some of the un-circled patches were not under- or over-exposed (which means camera 

responses do not reach 0 or 1), these patches were excluded from consideration because 
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these camera responses at the close to under- and upper-limit are less reliable (Reinhard 

and Ward et al., 2006). Note that the camera responses have not been linearised at this 

stage so that the plots in Figure 5-12 do not relate to exactly the same condition as 

Figure 5-9 (c) which assumed a perfect linear camera system . It would be possible to 

create an HDR image from more than two exposure settings, however it was assumed 

that two was sufficient to capture all the scene information needed in this study and it is 

verified later. 

1 ~ • • • • ·1 . , 
• 

0.8 ' . j 
<1> 
(/) 

c • 0 0.6 c.. 
(/) 

<1> • .... 
(\l 

0.4 , .... 
<1> 
E /: (\l 
0 .. I 

0.2 1 ... I 

... .. ... 
o L&..4I>" 

..... 
0 2 3 

sum of SPD 

Figure 5-12: The camera responses (normalised In the range O-lJ oJthe green channel from two oJthe 

selected exposure settings (I /0 IS shown In green and /1400 is shown in blue) against the sum oj the 

measured SPD oj the greys-cale patches. The plots circled with red dashed lines indicate the patches 

within the valid camera responses. 

5.3.2.2 Linearisation of Camera Response 

In a perfect system, the output of a CCD sensor is linearly related to the input. 

However, in practice, the relationship is sometimes found to be non-linear. A camera 

response is often approximately related to the output of a CCO with a power function as 

described by Equation 5-2. 

dRGB = rRGB'Y Equation 5-2 

A camera response dRGB is a raw response, rRGB, raised by an exponent J fy. One 

reason for this non-linear response of many cameras is a manufacturer-induced 

correction for the non-linear response of typical display systems. The luminance L of 

typical display devices can be modelled as a function of input voltage V and an 

exponent y which is usually referred to as the gamma of a display device as is given in 

Equation 5-3 . 

L = V' 
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The knowledge of the camera response function was required to combine images 

from two exposures into an HDR image. Therefore, the output of the camera was 

linearised with values that were linearly related with the camera input. For each red, 

green and blue channel, a power function was applied to fit the relationship between the 

valid camera responses and the sum of the SPD for the greyscale patches. Three graphs 

on the top of Figure 5-13 show the valid camera responses I of the greyscale patches 

plotted against the respective sum of the SPD with the fitted power function for the 

camera setting at Exposure 1. Three graphs on the bottom of Figure 5-13 show the 

linearised camera responses for the greyscale patches plotted against the sum of the 

SPD with the fitted line for each channel for the camera setting at Exposure 1. Figure 

5-14 is similarly for the camera setting at Exposure 2. This transformation can be 

written with Equation 5-4. 

IRGB = a x dRGBP Equation 5-4 

where IRGB is each linearised red, green and blue camera response, dRGB is the camera 

responses and a and p are the scaling factor and the exponent respectively. The errors 

of the fitted lines were measured in terms of R2. The exponent, the scaling factor and 

the R2 for each camera setting and each channel are given in Table 5-17. The range of 

the R2 values from 0.986 to 0.998 indicates that the power functions could model the 

non-linearity of the camera responses well. These power functions were subsequently 

applied to all camera responses in order to Iinearise them before further processing. 

I Only the valid camera responses were used for the linearisation. For Exposure I setting, camera responses equal to 
255 were not included, and for Exposure 2 setting, camera responses equal to 0 were not included. 
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Table 5-17: The scaling factor a and the exponents P for the linearisation of the camera responses, and 

if values as indications of how well the power functions fit to the greyscale patches. 

Exposure Time 1/10 11400 

a ~ R2 a ~ R2 

Red Channel 1.25 1.66 0.994 19.01 1.02 0.998 

Green Channel 1.07 1.95 0.986 17.83 1.14 0.996 

Blue Channel 1.14 1.94 0.990 19.97 1.14 0.993 

5.3.2.3 Spatial Uniformity Correction 

Spatial unifonnity correction was perfonned to minimise the effect of non­

unifonnity of the intensity of the illumination, since the intensity of the illumination 

was not unifonn over the capturing field due to the spot light used. Also, in the context 

of cameras, spatial unifonnity correction compensates for any non-unifonnity in 

sensitivity of individual elements of a CCD array and imperfections in an optical 

system~ optical properties of most camera lenses allow more light to transmit at the 

centre area of lens than the peripheral area (Hong and Luo et al., 2001) and chromatic 

aberration because of inevitable consequences of the laws of refraction at spherical 

surfaces. Hence, spatial unifonnity correction was perfonned to the red, green and blue 

channels individually after the linearisation according to a previously established 

method (Hardeberg, 1999) as shown in Equation 5-5. 

Q(i ") = (IRGBw -IRGBd) x (lRGB(i, j) -IRGBd(i, j» 
, J (IRGBw(i, j) -IRGBd(i, j» 

Equation 5-5 

Equation 5-5 describes the relationship of a linearisd camera response, IRGB(i. j), of 

either red, green and blue channel at each pixel position (i, j) to its spatially-corrected 

value Q(i, j). IRGBw and IRGBd are the mean linearised camera responses for central 

areas of the unifonn white (bright) and black (dark) patches which fill the camera 

viewing field. IRGBw(i,j) and IRGBd(i,j) are the linearised camera responses for the 

white and black patches at each pixel position (i,j) respectively. 

5.3.2.4 Deriving Camera Response Function 

An HDR camera response function was derived by combining the two LDR 

camera responses (which were previously linearised and spatially corrected) so that the 

HRD response was correlated with the sum of the SPD of the greyscale patches. Figure 

5-15 (a) and (b) show the two linearised LDR responses of the greyscale patches for the 
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green channel. Valid LDR camera responses from Exposure I were up to the upper end, 

G'(II)' as indicated with A in Figure 5-15 (a) and the camera responses of Exposure 2 

were valid above the lower end, G2(/) , where the area indicated as C in Figure 5-15 (b). 

At the area B in Figure 5-15 (c), the average of the camera responses from the two 

exposures were used. The HDR camera responses of the greyscale patches are given in 

Figure 5-15 (d) for each red, green and blue channel. 
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This procedure of combing the two LDR Images to create an HDR Image IS 

summarised in Equation 5-6. 

HDR(I./) = 

Q(l. j) 

Ql (l .j) 

QI (i ,j) ~ GWI 

Ql (i·.l) ~ GH . 1 
Equation 5-6 

where Hf)R(i , j) indicates the HDR value of an image at a pixel position (i , j), Qe(i, j) 

represents the LDR camera response of the exposure, e (e = ) or 2, since only two 

exposure settings were used in this study), after the linearisation and the spatial 
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correction were applied, and G1(u) and G 2(l) are the responses of the greyscale at the 

upper end of Exposure 1 and the lower end of Exposure 2 respectively (see Figure 5-15 

(a) and (b». Figure 5-15 (d) allows a comparison between the actual sum of the SPD 

and the generated HDR values of the greyscale patches. For a perfect HDR response. 

the data in Figure 5-15 (d) would be expected to form a straight line at 45°. The errors 

between the two were CV of 1.29 for each of the red, green and blue channels and the 

root mean squared error (RMSE) values calculated after normalising the data in the 

range 0-1, were 0.010, 0.012 and 0.017 for the red, green and blue channels respectively. 

These results prove the performance of the HDR algorithm used in this study. The 

HDR images of all the samples (metallic-coating samples) were obtained from a set of 

LDR images using this algorithm. Using this imaging setup and HDR algorithm, it was 

possible to capture reflected light 5.6,5.3 and 5.9 times greater than that from the white 

patch in the greyscale for the red, green and blue channels respectively. The generated 

HDR system was sufficient to cover the full range of the scene intensity of the samples~ 

when all of the samples were considered, the maximum pixel value was about 69 %, 

63 % and 43 % of the individual red, green and blue full HDR range available. This 

reveals that some of the pixels in the HDR images of the samples had the values several 

times greater than the similarly captured white patch and therefore justifies the use of 

the HDR approach in this study. The HDR algorithm used was relatively simple and 

based on the SPD of a greyscale. Only two exposure levels were used, but it would be 

possible to extend the method to combine three or more exposures using the linear 

method which was applied. 

5.3.3 Colour Space Transformation 

For the work in this chapter, the colorimetric response at each pixel in the image is 

required. The approach taken, is to capture an HDR image and then to use a 

characterisation method in order to convert the HDR values to device-independent 

values such as CIE XYZ tristimulus values. Similar to the work that has already been 

described (see Section 3.4.2.1), linear and polynomial regression models with least­

squares fitting (see Section 2.8.3.1) were used for characterisation. Various training 

data sets and various terms of polynomial regression models were implemented and an 

appropriate model was chosen based on performances evaluated with a test data set 

consisting of mean HDR values for each of the HDR images of the 106 metallic-coating 

samples and the XYZ values of the corresponding samples from the measurements. The 
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augmented matrices used are given in Table 3-9 in Section 3.4.2.1. Three training data 

sets, which were combinations of the 106 metallic-coating amples and the 166 patches 

from in the ColorChecker DC (no glossy surface patches included), were compared. As 

has been mentioned, the XYZ values of the 106 metallic-coating samples were derived 

from the measurements of the spectral properties using the TSR at the condition 

illustlated in Figure 5-8 (see Section 5.3.1), while the XYZ values of the 166 patches in 

the ColorChecker DC were based on the measurement using the CE7000A (see Section 

5.3.1). The spectral properties of surfaces often change with the viewing geometry. 

This change is large for gonioapparent materials, e.g., metallic coatings, but smaller for 

matt surface materials, e.g. , a ColorChecker DC. The colour differences of the ] 2 

greyscale patches in the ColorChecker DC between the measurements using the TSR 

and the measurements using the CE7000A were a mean llE* ab of 0.65 with a range from 

o to 1.22. In contrast, the comparison using ] 0 metallic coatings (two samples from 

each blue, brown, green, red and yellow sample group) showed that the measurement 

geometry could affect the spectral property of the metallic coatings. The mean colour 

difference between the measurements using these two instruments was llE* ab of 31 with 

a range from 22 to 4) . These suggest that the measurement geometry differences did 

not affect the ColorChecker DC much, but did affect the metallic-coating samples. 

Figure 5-16 shows the colour distribution of the 106 samples and the 166 patches in the 

ColorChecker DC plotted in a CIELAB L *C* diagram and a CIELAB a*b* diagram . 
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Three data sets used as training data are summarised in Table 5-18. The first 

training data set (Data Set 1) consisted of the mean HDR values for each of the 106 

metallic-coating samples and the XYZ values of the corresponding samples. The 
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second data set (Data Set 2) included the mean HDR values for each of the 166 patches 

in the ColorChecker DC and the XYZ values of the corresponding patches. The third 

data (Data Set 3) were the mean HDR values for each of the 106 samples and the 166 

patches and the XYZ values of the corresponding samples and patches. 

The test data set consisted of the 106 metallic-coating samples. Therefore, in case 

of Data Set 1, a leave-one-out method was applied. The 105 metallic-coatings samples 

out of the 106 samples were used as training data and the remaining one sample was 

used to test the performance. Consequently, 106 trials needed to be made in order to 

evaluate a model with all test data. Similarly, for Data Set 3, all the 166 patches and the 

105 samples out of the 106 samples were used as training data and the remaining one 

sample was used to test the performance. Again, 106 trials needed to be made in order 

to evaluate a model with all test data. 

Table 5-18: Training and test data/or characterisation. 

Training Data 

Test Data 

Data Set 1 

106 metallic-coating 
samples 

106 metallic-coating 
samples 

Data Set 2 

166 patches 
in ColorChecker DC 

106 metallic-coating 
samples 

..........•........•............................................... _--_._-._._-_._ ............ _ ....... _._. __ .... _------_. 
Test Method Leave-one-out 

Data Set 3 

106 metallic-coating 
samples 

+ 
166 patches 

in ColorChecker DC 

106 metallic-coating 
samples 

Leave-one-out 

The performance of the models was evaluated in terms of CIELAB ~E* ab between 

the measured and predicted values for both the training and test data sets. The results 

are given in Table 5-19, 5-20 and Table 5-21 for Data Set 1, 2 and 3 respectively. It 

can be seen that the model derived from Data Set I using M = 3 x 20 provides best fit 

which had a median ~E* ab value of 0.46. This model performed better than the other 

models at a Significance level (p<0.05) according to the Wilcoxon signed-rank test (see 

Section 2.10.5). As in Section 3.4.2.1, the reasons that Data Set 1 performs well are that 

Data Set 1 has the same surface material as that of the test data set and the colour 

distribution of Data Set I is concentrated in an area where the colours of the test data 

are in colour space (because both training and test data consisted of the metallic-coating 

samples). The very low error values in Table 5-19 demonstrate that it is possible to 

obtain an accurate transformation from the HDR values to the XYZ values. However, 

in this study, a model is needed that can predict a wider range of colours (wider than in 
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Data Set 1) and therefore the model derived from Data Set 1 is rejected despite its low 

error values in Table 5-19. In Figure 5-16, it is evident that the colour distribution of 

the metallic-coating samples is relatively small. However, this only considers the 

spatially averaged mean values; the earlier analysis demonstrated that the largest pixel 

value in the HDR images of the samples was about 3 to 4 times larger than even white 

patches. Hence, to predict such a wide range of colours, Data Set 3 (the 105 samples 

and the 166 patches in the ColorChecker DC) was considered to be most appropriate 

because the training set covered such a wide colour gamut and the test errors were 

smaller than those from Data Set 2. Among the models derived from Data Set 3, the 

model of M = 3 x 10 provided the best performance of 3.39 L\E* ab (median error). 

However, if higher powers than needed are included, the polynomial may diverge 

rapidly from smooth behaviour outside the range of the training data. Since an HDR 

system was used in this study, extrapolation was unavoidable. Hence, the models' 

behaviours when the extrapolation performed need to be examined. 

Figure 5-17 compares the predicted Y tristimulus values from the models of M = 3 

x 10 and M = 3 x 3 (a linear model). It showed the comparison in terms of the median, 

maximum and minimum values in each image of the 106 metallic-coating samples. The 

median and minimum values seem to be within the interpolation process, however some 

of the maximum values are far beyond the range of the training data and it means that 

the extrapolation was applied. Although the model of M = 3 x 10 was higher order than 

the linear model of M = 3 x 3, there were only slight differences between them. 

However, their differences were significant (p<0.05) in absolute values, although they 

were highly related linearly. In order to see the influence of these differences, both of 

the polynomial (M = 3 x 10) and linear (M = 3 x 10) models derive from all the 106 

metallic-coating samples and the 166 patches in ColorChecker DC were applied. 

After the HDR values in the images were converted into the XYZ values, only the 

luminance channel (namely y tristimulus value) was 'processed to extract the glint 

information. As mentioned in Sections 2.2.2 and 2.2.3, the properties of human 

perception has better resolution for the achromatic channel than for the chromatic 

channels. Additionally, even in coloured samples, a close visual inspection reveals that 

the bright spots appeared to be achromatic. Certainly, it was evident that even if the 

spot was not perfectly achromatic, they possess a much higher luminance level than 

their background. Therefore, it is suggested that the luminance channel would be more 

important than the chromatic channels. 
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Tahle 5-19: Model performances using the Dolo Sel 1. 

Training Test 

Data 105 metallic-coating samples 106 metallic-coating samples 

Training Error (6E*.b) Test Error (!l.E·.b) 

Size ofM Median Mean Max Min Median Mean Max Min 

3x3 3.69 4.28 8.82 0.31 3.78 4.40 8.85 0.34 

3 x 4 3.62 4.07 8.73 0.22 3.76 4.22 8.77 0.24 

3 x 5 1.68 2.56 14.80 0.19 1.76 2.71 14.93 0.26 

3 x 9 0.73 1.00 3.49 0.07 0.80 1.11 3.57 0.14 

3 x 10 0.63 0.82 3.21 0.03 0.70 0.92 3.60 0.13 

3" 11 0.58 0.76 3.39 0.02 0.63 0.87 4.08 0.05 

3" 20 0.38 0.45 1.99 0.03 0.46 0.59 2.71 0.08 

3" 35 0.32 0.36 1.42 0.02 0.50 0.75 4.83 0.04 

3" 56 0.22 0.24 0.89 0.01 0.54 1.13 13.47 0.13 

Table 5-20: Model performances using the Data Set 2. 

Training Test 

Data 166 patches in the ColorChecker DC 106 metallic-coating samples 

Training Error (L\E*ab) Test Error (tiE*.b) 

Size ofM Median Mean Max Min Median Mean Max Min 

3 x 3 4.66 5.83 22.99 0.48 3.87 5.74 18.62 0.42 
3x4 4.42 5.12 22.77 0.73 7.09 9.17 19.49 5.05 

3 x 5 3.81 4.73 22.74 0.57 7.42 10.01 20.37 5.84 

3x9 4.10 5.10 21.67 0.35 4.33 6.62 18.81 1.14 

3 x 10 3.50 4.33 22.99 0.42 7.85 9.63 19.38 5.51 

3 x 11 3.63 4.31 23.00 0.42 8.00 10.16 19.00 6.06 

3 x 20 3.15 3.91 22.98 0.46 7.74 10.08 21.11 5.15 

3" 35 2.76 3.37 21.86 0.25 8.43 11.18 21.28 4.08 

3" 56 2.42 2.94 21.41 0.02 9.34 11.90 20.19 5.48 

Table 5-2 J: Model performances using the Data Set 3. 

Training Test 

166 patches in the ColorChecker DC 
Data + 106 metallic-coating samples 

105 metallic-coating samples 

Training Error (L\E*ab) Test Error (L\E*ab) 

Size ofM Median Mean Max Min Median Mean Max Min 

3x3 4.43 5.76 22.99 0.13 3.83 5.55 17.75 0.58 

3)(4 4.53 5.90 21.19 0.45 4.49 6.38 16.84 2.23 

3 x 5 4.06 5.49 21.13 0.25 3.79 5.72 16.85 1.73 

3 x9 3.93 5.50 25.02 0.37 3.54 5.71 15.88 1.03 

3 x 10 3.82 5.31 28.16 0.51 3.39 5.29 15.55 . 1.43 

3 x 11 4.17 5.36 30.61 0.50 4.29 5.45 14.87 1.49 

3x 20 4.06 5.20 22.37 0.24 4.18 5.43 15.05 1.96 

3x 35 3.68 4.77 20.17 0.35 4.07 5.56 12.94 1.51 

3 x 56 2.81 3.86 20.62 0.04 3.98 4.37 9.74 0.44 
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each of the /06 samples. 

5.3.4 Glint Feature Extraction 

The observers were instructed to scale the glint of the metallic-coating samples 

according to both the observed contrast between bnght spots (sparkles) and their 

background (surround), and the amount (number) of spots (see ection 5.2.3). It is clear 

that there are two sub-parameters; local contrast and the amount of spots, although the 

relative importance that observers gave to the e sub-parameters is unknown It suggests 

that the image should be analysed in terms of contrast rather than absolute intensity of 

the pixels in the image. Based on contrast analysis, the pixels corresponding to spots 

were identified and then segmented Finall y, a feature corresponding to glint was 

extracted based on the premise that the number of such segmented pixels or 

agglomerates of such pixel is proportional to the perceptual glint. 

5.3.4.1 Contrast Measure 

Figure 5-18 shows the range of maximum and minimum luminance values in each 

image together with its mode (the value most frequently occurs in an image). In Figure 

5-18 each vertical line represents the luminance range of one metallic-coating sample; 

the horizontal black dashed line indicates the luminance value of the white patch for 

reference It can be seen that, for example, the minimum values of some of the yellow 

colour samples are much higher than that of other samples and sometimes even higher 

than the maximum values of some of the samples In spite of the low maximum values 

of some of the samples, the scale values of the perceptual glint for these samples were 
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not one (in visual assessment, one indicated non-glint, see Section 523). Meanwhile, 

the spots and the background were both observed from those yellow samples, whose 

minimum values were higher than the maximum values of some of the sample Thus, 

it is evident that the spots cannot be identified in tenns of their absolute luminance 

values; rather, it is luminance contrast that is important. Therefore, the pixel values 

were represented in terms of the intensity of contrast by subtracting the mode of each 

image from every pixel value in the image. It is more common to ubtract a mean of an 

image rather than a mode in order to measure contrast. However, the contrast which 

should be measured here is the difference between the pixel values and the background 

(no spots area); the mode is considered to be more representati ve than the mean for the 

background intensity (the further detail is explained in Section 5 3.4.2.2) 
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5.3.4.2 Segmentation 

Image segmentation was implemented in order to separate the image into two 

regions: spots and background. The spots on the metallic-coating sample are the bright 

regions which are caused by the characteristics of the aluminium flakes contained in the 

coating. However, it should be noted that the spots do not have the actual physical 'ize 

of the reflecting flakes (see Chapter 4). The background is defined as the region where 

there are no spots . 

A global thresholding technique partitions an image histogram by uSing a ingle 

threshold t as illustrated in Figure 5-19 This egmentation technique is effecti\ e. If an 

image contains objects and background, in such a way that objects and background 

pixel values have levels grouped into two dominated and well-separated modes 
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P(t) 

~--------~--------------'f 

hgure 5-19 .. 1 histogram of an Image thaI can he partitIOned hy a smgle threshold I. 

A simple way to separate objects from background is to select a single threshold l 

that separate the modes of the two distributions. If J(/ ,}) is the pixel value at position (i, 

I), where i (i = 1,2 ,"' ,m) andj U = 1,2"" ,n) represent the ranges of position (m and n are 

the number of rows and columns In an image), then any pixel in an image where fU,) is 

larger than (or equal to) the threshold is classed as an object, otherwise the pixel is 

classed as background . The thresholded image, g(l,) is often defined using a binary 

indication as given in Equation 5-7 (Gonzalez & Woods, 1992) . 

. , {I if J(i , j) ? t 
g(l,'/) = 0 (f /(i,) < t Equation 5-7 

For this simple point-wise binary operation, the choice of threshold needs to be made. 

For the case where an image histogram contain clearly distinguished modes, it is 

relatively straightforward to define an optimal (or effective) threshold value. However, 

if the two distributions are not clearly separated, it IS more difficult to define an optimal 

threshold . In Figure 5-20, the luminance histograms for SIX Images, each corresponding 

to a metallic-coating sample from one of the colours, are given It can be seen that each 

distribution contains only one mode. The mode is generally located towards the lower 

end of the luminance range in each case so that it is assumed that the mode represents 

pixels belonging to the background. The intensity of the spots are widely scattered and 

it is difficult to differentiate spot pixel values from background pixel values. Note that 

if the background and spot distributions overlap, as seems likely in Figure 5-20, then a 

perfect segmentation by thresholding is impossible. However, an optimal threshold 

value is sought. Therefore, in order to find an optimal threshold, two approaches were 

considered : an iterative method (Gonzalez and Woods el aI. , 2004) and a dislribulion­

estimate method. The criteria used to evaluate the effectiveness of the segmentation 

methods were the correlation measures, R R2 and RMSE between the scale values of 

the perceptual glint (see Section 5.2.4 .1) and the outputs of the glint model (that 
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incorporates the thresholding) . This model is described in Sections 5 3.4 .3 and 53.4.4 . 

However, the two threshold-estimation methods are first briefly described . 
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Figure 5-20: Luminance channel's histograms of one of the Images from each grey, hille, bro 11'/1 , green, 

red and yellow colour samples (the luminance value was ohtalned uSing the linear charaClerllatlO1I 

model). 

5.3.4.2.1 Iterative Method 

The iterative me/hod (Gonzalez and Woods eL aI., 2004) chooses a thre hold 1/ b 

exhaustive search, picking different thresholds until one is found that produces a 

satisfactory result as judged by certain criteria. In this study, the cnteria were the 

correlation measures described in the previous section . 
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5.3.4.2.2 Distribution-Estimate Method 

This dislrihulion-estimale method is based on the a sumption that the distributions 

of the background of the samples should be a bell-shaped, symmetric histogram with 

most of the frequency counts bunched in the middle and with the counts dying off out in 

the tails. Histograms of solid-colour-coating panels were measured and can be seen to 

demonstrate this property; two examples are given in Figure 5-21. It is reasonable to 

assume that the histograms of the solid-colour-coating panels should be similar to that 

of the metallic-coating samples used in this experiment if there were no the aluminium 

flakes . Therefore, a threshold td can be determined by estimating an upper limit of the 

distribution of the background . As is illustrated in Figure 5-22, when p represents the 

mode and I is the minimum value (lower limit) in an image, td is estimated to be Id = (2p 

- I) . 
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Figure 5-21 : Histograms of solid-colour-coaling panels. 
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Figure 5-22: An illustration of/he theory of the dlstribu/lOn-eslimate method. 

5.3.4.3 Glint Features - Statistical Approaches 

250 
f 

300 

Various statistical approaches were proposed in this section to extract glint 

features correlated with the perceptual glint based on the segmented images. 

An obvious approach would be to use the number of pixels that exceed a certain 

threshold I as a direct measure of perceptual glint. ThIs method is based on the implicit 
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assumption that perceptual glint depends only on the number of pixels that have been 

identified as spots and ignores the spatial distributions of these pixels. It can be 

informally described in Equation 5-8 using the indications; IU,j) is the luminance value 

of the image I at the pixel position (i,j), p is the mode and t is either Ii or Id. The mode 

was subtracted from every pixel in the image to derive the contrast measure (see Section 

5.3.4.1). This metric is called MI. 

Ml = count«(J(i,j) - p) ~ t) Equation 5-8 

However, although the metric MI is simple, it does not differentiate between pixels that 

are just over the threshold and those that greatly exceeded the threshold. Therefore, the 

metric M2 computed the sum of those pixel values that belonged to the spots, as given 

in Equation 5-9. 

M2 = "[.«(J(i,j) - p) ~ t) Equation 5-9 

In the metrics MI and M2, individual pixels were counted as one element of the spots, 

although more than one pixel might compose a particle as one spot in the image. In fact, 

the physical size of the aluminium flakes has a diameter of between 5 and 50 Ilm which 

is much smaller than the physical size ofa pixel (114.5 x 114.5 Ilm) in this experimental 

setting. So, one spot may consist of one pixel. However, the apparent size of one spot 

may exceed the actual physical size of reflecting flakes (Chapter 4). It was also 

mentioned by Durikovic (2003) that the bright sparkles observed on metallic coatings 

looked much larger than the physical size of flakes. Therefore, instead of the number of 

pixels, the metric M3 counted particles which consisted of one or more pixels above 

threshold in the image. Particles were identified by labelling 8-connected components 

(Gonzalez and Woods et al., 2004). By scanning the image pixel-by-pixel, if a pixel 

value at the position (i, j) is less than the threshold, simply move on to next scanning 

position. If the value is over than the threshold, examine 8-neighboring pixels. If none 

of the neighbouring pixels is over threshold, the pixel 10, j) is identified as a particle 

consisting of only one pixel. However, if any of the 8-neighbors are over the threshold, 

those pixels and IU,j) are labelled as elements that compose a particle. Figure 5-23 (a) 

indicates the positions of the 8-neighboring pixels of a pixel at the position (i, j) and 

Figure 5-23 (b) is an example of a labelled image. Three connected components (i.e., 

three particles in this study) can be found in the image. Consequently, the metric M3 is 

given in Equation 5-10. 

M3 = count (particle «(l(i,j) - p) ~ t») Equation 5-10 
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Figure 5-23: (a) The position of 8-neighboring pixels of a pixel at coordinates (i, j) (8 shadowed cells). 

(b) An Example of a labelled image. It indicates three connected components in an image. 

The metric M4 computed the sum of mean value of each particle as given in Equation 

5-11. 

M4 = Lmean(particle((I(i,j)- p) 2 t))) Equation 5-11 

The metrics MI, M2, M3 and M4 introduced above already take into account the 

contrast in the image by subtracting the mode of the image. However, in addition to this, 

the metrics M5, M6, M7 and M8 adopted another contrast effect which is described by 

Weber's law (see Section 2.2.3.1). The metrics M5, M6, M7 and M8 are corresponding 

to the metrics MI, M2, M3 and M4 as given in Equation 5-12. 

M5=Ml 
p 

M6=M2 
P 

5.3.4.4 Non-Linearity 

M7=M3 
p 

M8=M4 
P 

Equation 5-12 

The correlation of the outputs of the metrics MI-M8 with perceptual glint should 

also be considered. The outputs of the metrics may not necessarily correlate with 

perceptual glint linearly. However, final model predictions were expected to correlate 

linearly with the perceptual glint. Therefore, a non-linearity stage wa incorporated to 

find a linear approximation function of the metrics MI- M8 to the scale values of the 

perceptual glint (see Section 5.2.4.1). Applied forms were linear, power, exponential 

and logarithm transformation as shown in Equation 5-13. 
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Linear SV=aM+ P 
Power 1 S~'=aMY 

Power 2 SV=aMY + P Equation 5-13 

Exponential SV= a x exp(yM) + p 
Logarithm 1 SV = a x 10g\O(M) + P 
Logarithm 2 SV= a x 10M + P 

where SV indicates the scale value of the perceptual glint, M indicates the output of the 

metrics and a, p and yare parameters. 

5.4 Model Performance 

Performance of the models from all combinations of the segmentation methods, 

the metrics MI-M8 and the linearisation functions was evaluated by measuring a linear 

correlation with the scale values of the perceptual glint. R. R2 and RMSE between the 

model predictions and the scale values of the samples were utilised as measures of the 

performance of the models. Prior to computing these error measures, both the model 

predictions and the scale values were normalised in the range 0-1 so as to compare 

RMSE measures from the various models with the same unit. 

A flowchart in Figure 5-24 summarises the framework of the proposed models and 

the evaluation procedure of the model performance. 
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Scale Value 

Perceptual Glint 

II 
Visual assessment 

Figure 5-2-1 .. I.flowchar/ of a sUlIIlI10ry oj/he mode/ components and /helr el'a/lio/lOn processes 

5.4.1 Model Performance: Iterative Method 

The models were Implemented USing the iterative segmentation method (see 

Section 5 3 4 2 I). A sequence of threshold 1 values wa applied to all the ample at 

each trial Thresholds varied from zero upward until the threshold exceeded the 

intensities of all pixels in one of the images in the set An example is given in Figure 

5-25, the iteration is terminated at the threshold 11k, when all the pixels of a red colour 

sample become below the threshold . Note that this procedure applied to the images 

after their mode were subtracted from the every pixel of each image 0 that the pixel 

value of zero indicates the mode, in other words, the mean value of the background 
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Figure 5-25: A Ihreshold I, II'llh the Image histograms of three sOli/pies (~re. \ , hlue. red c% ur somplt's; 

The lleratlOn is terminated at the threshold tko lI'hen aI/the pixels of the red colour sample he('(Jl/I £! helOlI 

the threshold. 

Figure 5-26 and Figure 5-27 show the prediction errors of the model associated 

with the metrics Ml M8 plotted at each threshold. A series of six graph~ on the left 

column shows the errors in terms of R; the graphs in the middle present the errors in 

terms of R2; and the right graphs are for RMSE. A set of three graphs in each row 

presents the each of the six Iinearisation functions utilised . Figure 5-26 and Figure 5-27 

present the prediction errors when the models applied to samples whose luminance 

values were transformed from the HDR values using the linear regressIOn 

characterisation model and the polynomial regressIOn characterisation model 

respectively . Top six models in terms of their performance in R2 and RMSE are gi\ en 

in Table 5-22 based on the samples associated with the linear model and Tabl e ~ - ~3 

based on the samples associated with the polynomial models 
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f'igure 5-::6 The prechctlOn errors of the I1Iode/.\ assoCiated \tlfh the metrlC\ \11- \1'< at each threshold , I 
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The I'erllcal aXIs present,\ the error and the hortzontal aXIs mdlcate, thre\h(lld t I'aille [he result, are 

hosed Oil (he IUII/mance values transformed from the HDR mille, USlI1g the Imear regressIOn 

charactertSaf/()n model 

Tahle 5-::: fop SIX model.\ II/ term.' (I//helr performance In R- anc! /{\I,\/' lhe rellllf.1 are ha.led (In the 

luminanc e milles Irans/imlled from the IIIJ!? I'alue\ /Ising the linear regre\\wn (haraclerl\at/(Jt/ model 

R' RMSE 

Rank MetriC Nonlinearrty R' t Rank Metnc Nonlinearity RMSE t. 
1 M6 Power2 094 56 1 M6 Power2 0078 56 

2 M6 Power1 093 56 2 M5 Power2 0087 56 

3 M5 Power2 092 56 3 M8 Power2 0090 56 

4 M5 Power1 091 57 4 M6 Power1 0092 57 

5 M8 Power2 091 57 5 M5 Power1 0092 57 

6 M8 Power1 090 57 6 M8 Power1 0078 56 
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Figure 5-27. The prediction errors of the l7Iodels associnfed with the memcs .\ 1/-.\ IX at each threshold as 
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Tab le 5-23: Top six l7Iodels /17 terms of their performance in R: and RMSF The results are /lmed 0/1 rlu: 

IUl7linance values transforllled from the HDR I'{Ilues using the pofvl1omral regre.lslOJ1 chamcterl:,atlOl1 

l7Iode/. 

R2 RMSE 

Rank Metnc Nonlineanty R2 t, Rank MetriC Nonlinearity RMSE t, 

1 M6 Power2 0.94 57 1 M6 Power2 0.080 58 

2 M6 Power1 0.93 58 2 M5 Power2 0 083 57 

3 M5 Power2 0.93 58 3 M8 Power2 0 088 57 

4 M5 Power1 092 58 4 M6 Power1 0 093 58 

5 M8 Power2 091 58 5 M5 Power1 0095 58 

6 M8 Power1 0.91 58 6 M8 Power1 0.095 58 
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It can be seen from Figure 5-26, Figure 5-27, Table 5-22 and Table 5-23 that the 

model with the metric M6 and the linearisation using Power2 provides the best fit to the 

perceptual glint. The R2 value of 0.94 and the RMSE value of 0.078 were obtained for 

this model based on the samples associated with the linear characterisation model, and 

the R2 value of 0.94 and the RMSE value of 0.080 were found based on the samples . 
associated with the polynomial characterisation model. The predictions of these models 

for individual samples were given in Appendix IV. There was no significant difference 

in the model predictions between the results based on the linear characterisation models 

and those based on the polynomial characterisation models (p>0.05). The model with 

M5 and Power2 also showed the excellent prediction in terms of both R2 and RMSE 

values. This case also did not show any differences caused by the characterisation 

models (p>0.05). These results indicate that the choice of characterisation model does 

not affect the performance of the glint models. Note that although there was a 

significant difference between the linear and polynomial models in their performance 

(see Section 5.3.3), their predictions were highly correlated linearly (Figure 5-17). 

These encouraging results from M5 and M6 give evidence that it is sufficient to 

analyse the individual pixels in the image and not necessary to consider the particle 

which was more complicated. The comparisons of the results of M5 with Mi and that 

of M6 with M2 reveal the necessity of accomplishing normalisation accordance with 

Weber's law. Figure 5-28 presents the comparisons of the perceptual glint with the 

model predictions of Mi and M2 (before Weber's law applied), and M5 and M6 (after 

Weber's law applied) at the threshold Ii = 56. These model predictions were based on 

the luminance values of the samples obtained from the linear characterisation model. 

The model predictions for Mi, M2, M5 and M6 given in Figure 5-28 (a, b, c and d) are 

the model outputs before the linearisation is applied, but in Figure 5-28 (e) and (f) for 

M5 and M6 are the results of the linearisation using Power2. Also, both the scale values 

of the perceptual glint and the model predictions are not normalised in the range O-l. 

Figure 5-28 (a) and (b) are evident that there are linear correlations between the 

perceptual glint and the model predictions with Mi and M2 for the samples having a 

same colour, however, it shows a wide disparity between the colour groups. Compared 

with that, the performance of M5 and M6 (Figure 5-28 (c, d, e and f) reveals that a 

normalisation using the mode of the image is essential. This is because of the fact that 

although two samples had similar perceptual glint, the glint predictions from Mi and 

M2 were much higher for the sample whose mean background was brighter than the 
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other. This is explained by the human visual ystem which is Weber ' law and this was 

accomplished by the normalisation . 
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Figure 5-28: Comparisons 0/ the perceptual glint against with the //Iodel predlclioll.\ 01 Ihe t/trl's/to{d 01 

56 (based on the luminance values ohtained/rolll the Il17ear charactertmtlOn/J/(}(/e{) . (a. h, ( rllld eI) '"l' 
predictions of the model with 0/ JI/ I, An, .\ [5 and '\/6 re,\pectlve/v (he/ore IlIleari\al/()lIj (I' (II/df, Iht' 

predictions 0/ the mode/with ofM5 and Af6 respectil'e/v (after the IlIIean\al/o/l L/,\lIlg I'oll'er]) 

Although this model incorporated with M6 could predi ct the perceptual flint very 

well , there is no clear indication of the optimal threshold . [n other words, in Figure 

5-26 and Figure 5-27 where the model perfonnance are pre en ted as a functIOn of 

threshold, there is no clear peak of Rand R2 nor valley for RMSE to mdicate an optimal 

threshold . Although such model predicted the perceptual glint well at the wide range of 

the threshold values, these thresholds might be limited to the set of the sampl s used in 

this experiment. For example, the model penormance at the wide range of the threshold 
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around 40-58 had considerably linear correlation with the perceptual glint in this 

experiment, whereby these threshold can be applied to any sample whose colour and 

glint level are similar to the samples used in this experiment. However, there is no 

guarantee for performance when it is applied to samples whose colour and glint level 

are very different from the samples used in this experiment. Therefore, this method 

incorporated with the iterative segmentation method is considered to be sample-set 

dependent. 

The final model with M6 and Power 2 incorporated with the iterative method is 

summarised in Equation 5-14. 

GlintModel=ax(L(/(i,j)-P)~IIJr +P 
pxmxn 

Equation 5-14 

where I(i,j) is a pixel value (luminance value) of an image I at the pixel position of (i, 

j); (i=I,2,"',m) and (j=1,2;··,n), nand m represent the numbers of row and column in a 

image, p is the mode in an image, I, is the threshold and a, y and p are model parameters. 

5.4.1.1 Model Performance: Distribution-Estimate Method 

The models were implemented by incorporating with the distribution-estimate 

segmentation method (see Section 5.3.4.2.2). This segmentation method identifies a 

threshold of individual samples by estimating the distribution of the background. It 

assumes that the range of the distribution of pixel values belonging to the background is 

twice a range between the mode and the minimum value in the image. In this method, 

the minimum value in the image can be used an indicator of one end of the distribution. 

However, it might not belong to the background distribution. In practice, an image 

often contains noise, especially at both ends of a dynamic range of imaging systems. 

Therefore, when in doubt, it is necessary to precede noise reduction by applying such as 

spatial filtering: median, lowpass filtering, etc., before determining the minimum value 

of the background distribution. However, an examination of the images of the samples 

led to the conclusion that noise was relatively unimportant in the images of the samples 

used in this experiment. Figure 5-29 shows the minimum values in each image plotted 

against their mode. It can be seen that the minimum values increase with the mode. A 

possible reason for the low noise level in this system may be that some noise is already 

removed during the spatial correction applied during creating the HDR images. Also, 

because HDR images are being used, around the minimum values in the HDR image 
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samples are captured relati vely in the middle range of the LOR imaging system where is 

always less noisy than both end of the dynami c range of the system Consequen tl y, no 

noise removal process was applied to the images 
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Figure 5-29: The minimulII values 111 (he IlIIage" of the salllple,' were [lIm tell agnill"( (Ii" \ a/L1c fit (h e l /' 

mode (based on the IUl1Il17ance vallie ohrall7edjrolll the IlI1ear characterlsa(lOn /!I or/e I) , 

The performance of the models incorporated with each metri c M I /VIH and the 

linearisation functions was given in terms of R, R2 and RMS as sum marised in Table 

5-24 to Table 5-29 , Table 5-24 to Table 5-26 present the results of the models applied 

to the samples associated with the linear characterisation model and Table 5-27 to Table 

5-29 present those associated with the polynomial model. The resul ts indicate that it is 

sufficient to analyse the individual pixels and not necessary to consider the particle, as 

well as the results obtained from the models using the iterative method , 

A best model performance was the R, R 2 and RMS values of ° 92, 0,84 and 0. 132 

respectively , from the model associated with the metric M2 and Power] as the li neal 

characterisation model applied . Figure 5-30 (a) shows the predictions of this model 

plotted against the scale values of the perceptual glint for all th sampl e~ . The model 

predictions of all the samples were given in Appendix lY. 

As results of applying the models to the samples associated wi th the polynomial 

characterisation mode, the model incorporated with the metric A42 and /1(JIl 'eri were 

found to be the best and the R, R2 and RMS values of 0.92, 0.85 and 0 116 were 

obtained respectively . Figure 5-30 (b) plots the model predictions aga inst the scale 

values , The model predictions for all the samples were gi ven in Append ix IV 
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It can be seen from Figure 5-30 (a) and (b) that the correlations weaken when the 

value of the perceptual glint and the model prediction increases. Although the 

performance at the higher glint values were less perfect, overall results of these models 

are satisfactory. It was also found that there were no significant differences (p>0.05) 

between the linear characterisation model and the polynomial characterisation model in 

terms of the predictions of these models. 

Table 5-24: R values between the perceptual glint and the model predictions based on the luminance 

value obtained from the linear characterisation model. 

R M1 M2 M3 M4 M5 M6 M7 M8 

Linear 0.79 0.91 0.62 0.43 0.63 0.78 0.49 0.71 

Power1 0.80 0.92 0.64 0.44 0.65 0.84 0.48 0.71 

Power2 0.80 0.92 0.64 0.43 0.66 0.84 0.49 0.70 

Exponential 0.71 0.81 0.65 0.40 0.57 0.66 0.47 0.70 

Logarithm 1 0.71 0.77 0.70 0.52 0.53 0.63 0.48 0.73 

Logarithm2 0.72 0.88 0.54 0.48 0.60 0.81 0.43 0.63 

Table 5-25: If values between the perceptual glint and the model predictIOns based on the luminance 

value obtained from the linear characterisation model. 

R2 M1 M2 M3 M4 M5 Me M7 M8 

Linear 0.63 0.82 0.34 0.18 0.40 0.61 0.24 0.50 

Power1 0.64 0.84 0.41 0.19 0.43 0.71 0.23 0.50 

Power2 0.64 0.84 0.41 0.18 0.43 0.71 0.24 0.50 

Exponential 0.50 0.65 0.42 0.16 0.33 0.47 0.22 0.49 

Logarithm 1 0.52 0.60 0.49 0.27 0.28 0.40 0.23 0.54 

Log a rith m2 0.53 0.77 0.29 0.23 0.35 0.66 0.19 0.39 

Table 5-26: RMSE values between the perceptual glint and the model predictions ba.'ied on the luminance 

value obtained from the linear characterisation model 

RMSE M1 M2 M3 M4 M5 Me M7 M8 

Linear 0.207 0.172 0.340 0.304 0.284 0.244 0.277 0.235 

Power1 0.183 0.136 0.297 0.307 0.223 0.160 0.290 0.227 

Power2 0.183 0.132 0.298 0.304 0.228 0.156 0.272 0.246 

Exponential 0.300 0.270 0.239 0.302 0.331 0.311 0.307 0.219 

Logarithm 1 0.438 0.432 0.227 0.357 0.523 0.501 0.452 0.271 

Logarithm2 0.330 0.272 0.495 0.377 0.344 0.303 0.404 0.431 
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Table 5-27: R values between the perceptual glint and the model predictions based on the luminance 

value obtainedfrom the polynomial characterisation model. 

R M1 M2 M3 M4 M5 M6 M7 M8 

Linear 0.80 0.91 0.63 0.45 0.66 0.80 0.51 0.70 

Power1 0.80 0.92 0.63 0.46 0.67 0.85 0.50 0.70 

Power2 0.79 0.92 0.60 0.46 0.67 0.85 0.51 0.68 

Exponential 0.75 0.83 0.64 0.42 0.62 0.73 0.50 0.72 

Logarithm 1 0.71 0.78 0.70 0.54 0.56 0.66 0.51 0.73 

Logarithm2 0.71 0.87 0.53 0.50 0.60 0.81 0.45 0.61 

Table 5-28: If values between the perceptual glint and the model predictions based on the luminance 

value obtainedfrom the polynomial characterisation model. 

R2 M1 M2 M3 M4 M5 M6 M7 M8 

Linear 0.64 0.82 0.39 0.20 0.43 0.65 0.26 0.49 

Power1 0.65 0.85 0.39 0.21 0.45 0.73 0.25 0.49 

Power2 0.63 0.84 0.37 0.21 0.46 0.73 0.26 0.46 

Exponential 0.56 0.70 0.41 0.17 0.37 0.51 0.25 0.50 

Logarithm 1 0.51 0.60 0.48 0.29 0.31 0.43 0.26 0.54 

Logarithm2 0.51 0.75 0.28 0.25 0.36 0.66 0.20 0.37 

Table 5-29: RMSE values between the perceptual glint and the model predictions based on the luminance 

value obtainedfrom the po~vnomial characterisation model. 

RMSE M1 M2 M3 M4 M5 M6 M7 M8 

Linear 0.195 0.159 0.323 0.286 0.270 0.232 0.269 0.269 

Power1 0.173 0.116 0.322 0.295 0.219 0.154 0301 0.272 

Power2 0189 0.145 0.371 0.291 0.221 0.166 0.270 0.338 

Exponential 0.285 0.257 0.235 0.287 0.319 0.306 0.288 0.213 

Logarithm 1 0.425 0.421 0.232 0.348 0.507 0.491 0.416 0.243 

Logarithm2 0.347 0.293 0.493 0.395 0.353 0.311 0.427 0.465 
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Figure 5-30. The model predictIOns agmnsT the perceptual glinT (0) The performance of the model 

incorporated with \/1 and Power] hased on the luminance value ohtalned from the linear 

charactenmlfOl1 model (h) The perforlllance (~f the model incorporated with A/1 and Power J based on 

the /wJ/fnance value ohtainedfrolll the po~vl1oll/lal characterisaTIOn III ode I. 

The predictions of the model with M2 and Power/ (applied to the samples 

associated with the polynomial characterisation model) and the scale values were 

plotted separately for each colour of the samples with the indication of the associated 

correlation value of R2 in Figure 5-31 Black dashed lines in graphs are linear 

regression lines between the model predictions and the scale values of all samples. Red 

lines in each graph are linear regressIOn lines of each plotted data set. It can be seen the 

high correlations between the model predictions and the perceptual glint for each 

coloured samples. The R2 values of 0.97, 0.93, 093, 094, 096 and 0.85 were obtained 

for the grey, blue, brown, green, red and yellow samples The differences between the 

black dashed lines and the red lines indicate the dispersion of the tendency of each 

coloured sample from that of all the samples These dispersions were different 

depending on the colours of the samples, however, the degree of the differences was 

quite small Therefore, although it is not perfect, it can be concluded that there are no 

much differences in ability of the model to predict the perceptual glint depending on the 

colour of the samples. The same tendency was found from the observer variability (see 

Section 5.2.4.2) . The observer variability did not seem to depend on the colours of the 

samples It verifies that the luminance channel alone is sufficient for prediction glint 

not only for the grey samples but also for the coloured samples. 

218 



200 

c 
0150 
~ 
"0 

r R2 = 0 .97 

~1oo l 
0-

Q) .. 
"0 • ~ 
o 50 I .' 
E I . ' 

200 

c 
0150 , 
~ 
'0 

~100 a. 
OJ 
'0 

R2 = 0 .93 

o 50 • 
E ..... 

200 

< c 
0150 
13 
-i5 
~100 
0-

OJ 
'0 
o 50 ... ... . 
E " 

. . 
.. . 

r 
0 1 
o 

grey sample • blue sample C- brown sample 

100 200 
o 
o 100 

perceptual glint perceptual glint 

200 
R2 = 0 .94 

OJ .' .. , 
'9 

. • 

"'0 ••• 

~5O 
~4"' 

o ~ 
o 

green sample 

100 
perceptual glint 

200 

c 
2150 
~ 
'0 
Q) 

I 0.100 

R2 = 0.96 

Q) ' . 
'0 
o 50 •• 
E ,' •• 

,S' 
0 '" red sample 

200 0 100 
perceptual glint 

o 
200 0 100 200 

perceptua l glint 

200 
R' = 0 .85 

c 
2150 
. ~ 
'0 
Q) 

ruoo 
Q) 
'0 
0 50 
E 

0 
yellow sample 

200 0 100 200 
perceptual glint 
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data. 

The best performance of the model with the distribution-estimate method was the 

R2 value of 0.85 and the RMS value of 0.116 They indicate sl igh tlv less accuracy In 

comparison with the best performance of the model with the iterative method whIch \.\a~ 

the R2 values of 0.94 and the RMSE values of 0078 However, an advantage of the 

distribution-estimate method is a separate threshold to be deri ved for every Image ba 'ed 

upon the characteristics of that image. Hence, the model with the distribution-estimate 

method is considered to be sample-set independent except the final linearisation stage 

Consequently, the distribution-estimate method is considered to be more robust The 

final model consisting of M2 and Power 1 with the distribution-estimate method IS 

summarised in Equation 5-15. 

( 

\ Y 

GI ' 1 AA , / I ;,...,U(i,j) p) > 1,( 
111 l V/OUe = a x J 

m){ II Equatl 011 ~-1 " 

Id=2p-1 

where l(i,j) is a pixel value (luminance value) of an image / at the pixel position of (I. 

j); (i= 1,2,.··,m) and (J= l ,2,. ··,II), f1 and til represent the numbers of row and column in a 
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image, p and I are the mode and minimum value in an image, a and "I are model 

parameters. These parameter were a = 0.02 and 'Y ~ 0.68 in this experiment. 

5.5 Summary 

In this chapter, the glint of the metallic-coating panels was characterised. The 

appearance of the glint is strongly affected by illumination and viewing geometry as 

well as other visual texture. Therefore, it was essential to give a strict definition of the 

observation geometry in order to specify the phenomenon of the glint. As a result of the 

visual assessment by observers, a suitable geometry was found to be using directional 

illumination such that an aspecular angle of about 71 0
• This was disagreed with the 

results of the glint assessment carried out at Akzo Nobel (see Section 5.2.5). They 

found that the glint was better observed with the observation angle close to a specular 

angle. However, at the same time, the study in Akzo Nobel revealed that the glint could 

be scaled with equivalent accuracy at different angles. 

The glint of the metallic-coating samples was visually scaled by observers. As a 

result, the obtained observer variability suggests the high reliability of the scaled values 

of the perceptual glint for the samples and of the adequacy of the illumination and 

viewing condition for glint assessment. Also, it was found that that there were no 

significant differences in the variability between the samples having different colours. 

In this chapter, the computational model was also developed to predict the 

perceptual glint from a digital image. An HDR imaging method was used to obtain 

useful images of metallic-coating samples containing aluminium flakes. since a LOR 

image was not sufficient to capture the glint effect. The HDR images were created 

based on the LOR images captured at two exposures and the spectral properties of a 

series of greyscale patches. The HDR images created had a capacity to cover the full 

range of the scene intensity of the samples whose maximum intensity was several times 

greater than the intensity of the white patch in ColorChecker DC seen under the 

experimental conditions used. This justified the use of the HDR approach in this study. 

The HDR values were then transformed to the CIE XYZ tristimulus values using a 

characterisation model. In a manner similar to that used in the coarseness model in 

Chapter 3, only a luminance channel (the Y tristimulus value) of the HDR image was 

incorporated for the glint feature extraction. The analysis of the luminance channel of 

the images revealed that the contrast information in the images were more relevant to 
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the glint than the absolute intensity. Then, the pixels in the image were segmented into 

two regions: spots (bright sparkles) and background (surrounds of the sparkles). Two 

approaches, an iterative method and a distribution-estimate method, were applied to find 

a threshold for segmenting. As a result of applying the various statistical analyses to the 

segmented image for a glint feature extraction, it was found that the perceptual glint was 

correlated to the pixels which belonged to the spots but the spatial distribution of these 

pixels could be ignored. 

The glint values predicted using the model with the iterative method provided a 

better correlation with the perceptual glint than that using the model with the 

distribution-estimate method. However, there is a shortcoming for the iterative method. 

A single threshold value is used, but it is computationally intensive to derive, and it is 

not obvious that it would be applicable for samples that were not in the sample set from 

which it was derived. Therefore, this method is considered to be sample-set dependent. 

On the other hand, the distribution-estimate method allowed a separate threshold to be 

derived for every image based upon the characteristics of that image. Derivation of the 

threshold is computationally easy but relies upon certain assumptions that may not, in 

practice, be valid. The performance of the distribution-estimate method is slightly 

worse that the iterative method and most likely this is because the underlying 

assumptions are not met, however, the method is considered to be more robust whereas 

there is serious concern that the iterative method could not be relied on for samples that 

were not used in this study. 
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Chapter 6 

Conclusions 
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6.1 Overview 

In the automobile industry, there is considerable interest to be able to make 

quantitative measurements of appearance and to use digital images of the coating 

products, as perceived by customers, in order to improve efficiency in product 

development, product/quality control and communication. The overall appearance can 

be thought of as a combination of several different attributes such as colour, gloss, 

texture, etc. The present study focused only on modelling the visual texture, coarseness 

and glint of the metallic-coating panels, and to reproduce a digital image preserving the 

coarseness appearance of the panels. The investigation was carried using a subjective 

approach (perceptual scaling of coarseness and glint), and an objective approach (the 

derivation of computational models for the predicting the appearance attributes and the 

image reproduction of appearance). The major findings are summarised in the 

following sections. 

6.1.1 Assessing Coarseness using Physical Samples 

An experimental method for assessing the coarseness of metallic-coating panels 

was proposed. It was found that the coarseness could best be assessed under diffuse 

illumination. The observer accuracy obtained from the visual assessment of perceptual 

coarseness using scaling methods was less accurate in comparison with the coarseness 

assessment carried out in the similar conditions at Akzo Nobel (Kirchner and Kieboom 

et al., 2007). This difference perhaps originated from the different observers involved. 

While naive observers participated in the present study, professional, and hence 

considerably more experienced observers, carried out the assessment at Akzo Nobel. 

Another difference between these assessments was that the present study used the 1-9 

categorical judgement scaling method with only one reference sample, but Akzo Nobel 

employed a 0-9 categorical judgement scaling method with eight reference samples. 

Thus, it may be possible to improve the observer accuracy using more than one 

reference sample. The high value of observer accuracy obtained in both experiments 

suggests the adequacy of the diffuse illumination condition for coarseness assessment 

and that the perceptual coarseness can be reliably assessed by observers. 
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6.1.2 Computational Model for Coarseness Prediction 

The present study proposed a computational model capable of predicting the 

perceptual coarseness of the metallic-coating panels, based on the information from a 

digital image of those panels. Figure 6-1 presents a flowchart of the main framework 

for the coarseness model. The model required an image of the metallic-coating panel, 

the physical size of the panel, the viewing distance and the white point for the 

observation condition as input. After transformation from the RGB values of each pixel 

in the image to the corresponding CIE XYZ tristimulus values, and then to the LMS 

values, the image was separated into a luminance and two chromatic channels. Only the 

luminance channel was utilised for next processes. In order to measure the contrast, the 

mean luminance value of all pixels in the image was subtracted from each pixel value. 

The Fourier energy was computed as a measure of the contrast and then the energy was 

weighted by the contrast-sensitivity function (CSF) to take into account the 

characteristics of the human visual system. The sum of these processed pixel values 

was then normalised using the mean luminance value for incorporating with another 

characteristic of the CSF, i.e., Weber's law. Finally, the coarseness prediction was 

obtained by taking the logarithm of such a sum after normalisation by the number of the 

pixels in the image. 

The advantages of this model are that it is computationally inexpensive and the 

input parameters are related to the viewing conditions. Unlike the conventional texture 

models, such as SGLDM, GLDM, NGLDM and grey level run length (see Section 2.6), 

no parameters needed to be estimated. The performance of the model was investigated 

by comparing model predictions with the perceptual coarseness scaled by observers. 

The model gave excellent performance in terms of the accuracy in predicting the visual 

results. There were variations in the model performance depending on the colour of the 

samples, for example, the performance for the blue and purple colour samples was 

generally poorer than that of the green samples. This might be caused by the fact that 

the model only considered the information of the luminance channel and ignored that of 

the chromatic channels. However, because of the limited number of samples, i.e., the 

available colours and coarseness levels of the metallic-coating panels supplied by Azko 

Nobel, it was not possible to determine the importance of the chromatic channels for 

coarseness analysis. 
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Figure 6-1: A flowchart of the mainframeworkfor the developed coarseness model. 
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6.1.3 Assessing Coarseness using a Display 

The coarseness appearance of the metallic-coating panels was reproduced on an 

LCD and their perceptual coarseness was scaled by observers using the similar scaling 

method as used for the metallic-coating panels (physical samples). The sample images 

were generated based on the images used as input for the coarseness model that was 

used to predict the coarseness perceived on the physical samples. The images were 

required to be captured with high resolution to capture a suitable level of detail. 

Consequently, it was not possible to display the image with an actual size that was 

equivalent to the size of the physical sample (8 x 8 cm) because of the resolution 

limitation of the LCD used in this experiment. Therefore, two optimal conditions were 

chosen. One kept the experimental conditions used in the assessments for the physical 

samples in the same ratio. This resulted in the physical size of the images of the 

samples being much larger, and the viewing distance thus greater, than that used for the 

experiment with the physical samples, but the angular display size was kept at a similar 

value. The perceptual coarseness in this condition was smaller than that observed on 

the real samples. The second condition used the same angular display size and had the 

similar physical image size and viewing distance to the conditions used for scaling the 

physical samples. Thus, this resulted in the presentation of only a part of the image of 

the physical sample. However, the perceptual coarseness in this condition appeared 

closer to that observed on the real samples. 

As results of the perceptual coarseness scaling of the image samples, observer 

variability obtained at these two conditions was similar and it was also similar to that 

obtained from the coarseness assessment using the physical samples. This indicates that 

the observers assessed the coarseness with equal precision. The comparison of the 

perceptual coarseness scaled using these three conditions revealed that although the 

conditions were different, there were no particular differences in the relative scaled 

perceptual coarseness. This suggests that for assessing the equally distributed fine 

detail over a sample like the metallic-coating panel used in the experiment, the area 

presented to the observers is not so important. Observers tend to focus on only a part of 

the sample and not on the whole sample. Although the quality of the reproduced images 

was proved in terms of the perceptual coarseness, a significant colour shift was found. 

The lightness of the images was relatively preserved compared with the errors that 

occurred in the values of chroma and hue. These results suggest the importance of 

lightness for the perception of coarseness rather than chroma and hue, and also support 
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the coarseness model that uses only the luminance channel to predict perceptual 

coarseness. In fact, the model predictions for each condition all agreed well with the 

scaled values of perceptual coarseness. 

6.1.4 Assessing Glint using Physical Samples 

The present study was also aimed to characterise the perceptual glint of the 

metallic-coating panels. As well as the coarseness, the perceptual glint of the coatings 

varies with the illumination and viewing geometry. Therefore, the illumination and 

viewing geometry for which the glint was most obvious was detennined by visual 

assessment. A suitable geometry was found to be using directional illumination such 

that an aspecular angle of about 71°. The perceptual glint of the metallic-coating panels 

was scaled under the selected conditions using the magnitude estimation method with a 

single reference sample. As a result, the high value of observer accuracy and 

repeatability were obtained. These suggest the reliability of the scaled values of the 

perceptual glint for the panels and of the adequacy of the illumination and viewing 

condition for glint assessment. 

6.1.5 Computational Model for Perceptual Glint Prediction 

A computational model was developed to predict glint using images of the 

metallic-coating panels. Figure 6-2 presents a flowchart of the main framework for the 

developed glint model. The model employed an HDR imaging system in order to 

capture the full range of the glint infonnation of the metallic-coating panels observed 

under the directional illumination. The HDR images were created based on the LOR 

images captured at two exposures and the spectral properties of a series of greyscale 

patches. Each HDR pixel value was basically obtained by taking a pixel value from 

either one of the LDR images representing the two exposures or the average of the two 

LDR images at the two exposures. This simple algorithm allowed for the creation of the 

HDR images with suitable high precision. Then the eIE XYZ tristimulus values were 

transformed from the HDR values using a camera characterisation model. In a manner 

similar to that used in the coarseness model, only a luminance channel (the Y 

tristimulus value) of the HDR image was incorporated for the glint feature extraction. 

In order to analyse the contrast in the image rather than the absolute values, the mode of 

the luminance channel of the image was subtracted from each pixel value. Then a 
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thresholding technique was applied to segment pixels in the image into two regions: 

spots and background. In this study, two segmentation approaches, an iterative method 

and a distribution-estimate method, were applied. Various statistical approaches to the 

segmented image revealed that the sum of the pixel values that exceeded a certain 

threshold, i.e., the pixel values that belonged to the spots, was correlated with the 

perceptual glint. For the model incorporated with the distribution-estimate method, 

such a sum, linearised using a power function, was found to be proportional to the 

perceptual glint. For the model incorporated with the iterative method, such a sum 

normalised by the mode of individual images for incorporating with Weber's law, and 

then linearised using a power function, was proportional to the perceptual glint. 

Although the model with the iterative method provided better predictions than the 

model with the distribution-estimate method, there is a shortcoming in the iterative 

method. The iterative method may not be applied to samples if colour distribution and 

glint levels are significantly different from samples which are used to derive an 

appropriate threshold value. Hence, this method is considered to be sample-set 

dependent. On the other hand, the distribution-estimate method allows a separate 

threshold to be derived for each image based on the characteristics ofthat image and the 

derivation of the threshold is computationally easy. Hence, this model can be 

considered to be sample-set independent. Consequently, the distribution-estimate 

method is considered to be more robust. 
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6.2 Discussion and Future Work 

In order to develop a system for the measurement of the appearance of a metallic 

coating, two important appearance attributes, coarseness and glint, were studied. One of 

the major limitations of the present study was in the sample sets used for the 

investigation. The experiments were carried out using samples with only limited 

colours and coarseness or glint levels~ variations in existing metallic coatings are 

significantly larger and new products are frequently introduced. Because of these 

limitations in the samples used, it was not possible to investigate the details of the 

influence of the colour on perceptual coarseness and glint. Although the developed 

models for both attributes provided satisfactory performance by only taking into 

account the luminance channel of the image, to include the chromatic channels might 

further improve the model performance. 

The developed models were both based on the image captured by a digital camera 

and the associated computation was inexpensive. Therefore, the concept has practical 

application to instruments for appearance measurement. For example, a BYK-mac® 

has recently been developed by BYK-Gardner GmbH in close collaboration with Akzo 

Nobel and this instrument measures colour using various geometries as well as two 

appearance attributes, coarseness and sparkle. 

The relative visualisation of the coarseness appearance was found to be possible. 

It was however, not possible to achieve absolute visualisation due to technical 

limitations. Although the digital camera allowed the capture of images at high 

resolution, the display resolution was not high enough. Also, in this study, only the 

visualisation of the coarseness was attempted; not the glint. This was because the high 

dynamic rage of the glint information was beyond the dynamic range of the LCD used. 

It would be possible to overcome these technical limitations using a higher resolution 

HDR display. Recent high-end technologies make it possible to achieve, for example, a 

22 inch LCD with a resolution of 3840 x 2400 (produced by Mondale IT Solutions Ltd), 

and an HDR display providing a contrast ratio of 200000: I with a luminance of over 

3000 cd/m2 (from Dolby). It is predicted that high resolution HDR displays will 

become popular in the near future and this will allow better simulation of visual 

appearance. Other than these limitations, the accuracy of the colour in reproduced 

image needs to be improved. The reproduced images were evaluated perceptually in 

terms of the coarseness, but not in term of the perceptual colour. Since the appearance 
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is the interaction of many attributes, for accurate visualisation of total appearance, it is 

necessary to reproduce the colour dimension accurately as well as the spatial attributes. 

In the present study, the reproduction error of the images was measured 

colorimetric ally using CIELAB colour difference pixel by pixel. As S-CIELAB 

suggests (Section 2.3.7), the colour difference values given from the computation of 

CIELAB colour difference for a non-uniform colour image tend to overestimate the 

perceived colour difference. Therefore, it can be thought that a better measure of the 

perceived colour difference is to use the S-CIELAB method rather than the CIELAB 

equation. However, in the present study, the magnitude of the perceptual colour 

difference was not the focal point. The relative comparison of the systematic error that 

occurred in the reproduction process was focused and evaluated. Therefore, it was 

convenient to use a consistent measure, the CIELAB colour difference, for all processes 

such as the camera characterisation, the monitor characterisation and the reproduced 

images. For the visualisation of total appearance, it would be necessary to evaluate the 

perceptual colour difference using a more accurate method such as S-CIELAB, and it 

would be ideal to reproduce the images of the metallic coatings accurately in terms of 

not only perceptual coarseness but also colour, glint and other attributes. 

In the present study, the attributes of coarseness and glint were investigated 

individually. Since different sets of the samples were used for the coarseness and glint 

investigations, it was not possible to compare and find the correlation between these two 

attributes. However, it would be interesting to know the relationship between two 

attributes. It is however, possible that these two attributes may be considered 

insufficient to describe the total appearance of the coatings. Colour has also been 

studied as an important attribute (Section 2.5.1.1), but how many more attributes need 

to be characterised to measure the total appearance of the metallic coatings is still 

unknown. Therefore, another area of future work should be focused on other 

appearance attributes which were not investigated in this study. 
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Appendix I: Images of Metallic-Coating 

Panels used for Coarseness Assessments 

The images of the metallic-coating panels used for the coarseness assessment. 

One image from each colour group (grey, blue, green and purple) is shown . It should be 

noted that the images may look different from the original metallic-coating panels. 
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Appendix II: Scale Values and Model 

Predictions from Coarseness Assessments 

The scale values for each sample obtained from the visual assessments of the 

coarseness using the metallic-coating panels (physical samples) and the image samples 

at Condition 6 and Condition 1 together with the model predictions of the corresponding 

samples and experimental conditions. 

Sample Perceptual Coarseness Model Prediction 

Physical 
Sample 

Condition 6 Condition 1 Physical 
Sample 

Condition 6 Condition 1 

Grey Colour Sample 
.... __ ...•. H·· __ ·_·· • 

1 3.15 

2 3.60 
............ H·.···· ___ ·_·_ 

3 5.75 

4 7.10 
............... _._ ..... - . 

5 7.70 

Blue Colour Sample 

3.78 

4.04 

5.91 

6.83 

7.74 

.-----
1 5.90 6.11 

.. ---.-... - .......... ._----
2 5.70 5.35 

.......... _ .......... _ ..... _ ... _ ... 

3 7.30 6.98 
.-... __ . __ .-.... _ .... _ ... 

4 5.70 5.89 
_ .. _--_.-

4.51 

4.62 

5.80 

6.06 

6.93 

0.381 ._-_ ..... _ .... _ .. _ ....... _ .................. -
0.397 

0.505 

0.574 

0.659 

0.419 

0.436 

0.524 

0.582 

0.660 

6.10 0.505 0.533 -------_. __ ._._----_._ .. _ .. _----_ ... __ ........ _-_ ...................... __ ... _ .. _ ..... " 
0.458 0.484 

0.596 0.615 

5.50 0.468 0.491 

5 5.95 5.91 0.507 0.530 
_. __ ._ ...... _-_ .. ._--------------------_ ... _-_ .... _ .. _--_ ..... _ ................ _ ........... _ ...... . 

6 7.65 7.41 0.637 0.656 
......... _-....... __ .. _._ .... ._-

7 5.90 5.59 0.501 0.525 

8 7.50 7.09 0.642 0.653 

9 5.80 5.84 0.530 0.559 
............ _. __ ._-_. ._------_ ... _----_._._ ..... _ .. __ ._ ...... _ ........ _ .. __ .... __ .. _ ............................. -.......... .. 

10 7.45 6.98 6.91 0.631 --_ .. _ .. _ ...... _--.-................. __ ................ -....................... .. 

11 5.60 5.45 5.55 0.494 
...... _ .... _ .............. __ ....• 

12 6.75 6.82 0.608 
.. H"_'_' __ "' ___ ' __ ._------

13 7.00 6.50 6.32 0.592 ._-------
14 4.90 5.51 0.481 ------- -------_ .. -......... __ ............. _ ................. _ ........ _ ........... -...... . 

15 6.30 6.21 0.530 

16 5.55 5.47 5.36 0.496 
••••••••••• H •• _ •• __ ••• ____ ••• _ •• _______ •• _ •• _ •••• __ • __ ._ ......... _ ••••••••• _ ••• , .................................. _ •• , ................ . 

17 4.75 4.95 0.487 

0.651 

0.527 

0.626 

0.613 

0.526 

0.555 

0.535 

0.526 

18 

19 

6.40 6.46 0.535 0.564 
.. __ ._-_._----_ ............... _ ... _-.. _. __ .... _ ...... __ .... _.-_ ...... _ ... _ ..... _ ........ _ ... _ ........................................................ . 

6.05 5.89 0.506 0.524 
.... _ ............... _ ... _------ .. _ .... _-_._ .. _-_._._--------_._-_._ ... -.,-_ ... _ ................ _ ................ _ ..... _, ....... ", 

20 5.80 0.483 0.509 
.......... _ ... _ ........ _ .... _---------- ... __ ._ ........ _ .. __ ...... __ ... _ ........ _ .. - ........ _ ...... _ ......... _ ......... _ .. _ ............................. . 

21 0.480 0.494 --_ .. _ .. _-_ .. _ .. _-_ .... _ .. __ ........... - ...... _ ...... _ ........ _ .. _._ ........ _ ......... _ ................... .. 

22 0.490 0.516 
-------

23 0.504 0.534 

24 5.46 0.471 

25 5.85 5.24 5.32 0.436 .......... _------------_._-_. __ ..... ,-_ ....... ,_ .... - .. _, ... _-,._-.. _-_ .. _ ... _ .......... _ ........ _ ............... _, .................. , .... . 

26 5.60 5.65 5.33 0.469 

0.315 

0.329 

0.434 

0.503 

0.589 

0.436 

0.399 

0.562 

0.426 

0.521 

0.430 

0.412 

0.399 

0.361 

0.397 
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Sample 

27 

Physical 
Sample 

5.30 

6.75 

5.55 

Perceptual Coarseness 

Condition 6 Condition 1 

4.79 5.04 

6.64 

Physical 
Sample 

0.376 

0.566 

Model Prediction 

Condition 6 Condition 1 

0.396 0.305 

0.578 

5.47 0.421 0.439 

28 

29 

30 

31 

.............................................•..... ---------- .. __ ._._-_._---_ .. _ ...... _--_._. __ ...... . 
6.15 

6.90 

6.25 6.16 0.473 0.480 0.401 -----_ .. _ .. _ ........ _ ....... -_ ... _-_ .................. -- ---------_._---
7.04 0.597 0.607 ----- ........ __ ............... _--_._ ............ __ ........ .. 

32 5.45 6.14 0.486 0.513 
...................................................................................................... _---_ ... _._ ... _--_. __ .... _.-... _._ ... _----------

33 6.90 7.19 0.607 0.631 
..... N ................ __ ......................... _ ........... _________ .... __ ._. _______ ._ •• _ .... __ ... ___ • __ ._._ ••• __ ........ _. -----_ ....... _._ .......... _-_ ... . 

34 5.65 6.19 0.488 0.516 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 
... ....................... ~ .. 

50 

7.15 

5.85 

--------_ .......................................... - .... _ ................ _ ...... _ .. _ ................ __ ... ---------
7.20 7.37 0.612 0.624 ----_ ........................................ - ........................................ _ .............. _ .. _---------
5.94 6.04 0.498 0.522 

0.541 

0.429 
............................. _------- ............................. _ ..................... _ ...... _ ...... __ ....... __ ......... _._-----

7.05 

6.75 

7.23 6.99 0.592 0.605 0.521 --------- ............ _ .................. _ .................. _._ .. _ ........... _. __ ..... _ ...... _------ .... _ ......... _ ...... __ .. _ ....... . 

7.06 6.80 0.577 0.604 0.508 
............... _ ............ ----_._ .... _ ......... __ ................... _ .. _ ... _._-_ ..... _ .... _----- ......... _ .... _-_ .......... .. 
4.70 5.59 5.29 0.454 0.487 0.383 

............................................. _---_ .... _ ... _ ... _ .... --._- -------- ----_ ......... 
6.05 6.40 6.17 0.509 0.537 0.440 

5.25 
••••• N •••••••• __ ... __ _ 

5.60 

5.70 

5.00 

._---_ .. _-_._._---_._------_._--
6.00 0.477 0.513 ----------------
6.22 0.492 0.522 ----------
5.55 0.472 0.501 ------_ .... _._ .... _._._. __ .... 
5.48 0.443 0.468 

................................................. -------.-.... - ........ -........ - ...... ---... - ... ------_ .... _. __ ................ _ ... __ .... 
5.80 5.60 5.61 0.457 0.473 0.387 

................... -................................................................ _ .... _._---_ ............................. __ ........... _ ... 
5.45 5.90 5.68 0.467 0.492 0.399 

.................................................... _ ........................ _ ............ _---_ .............. _ ...... _ ........ _._ ........... . 
5.40 5.43 0.460 0.488 

............................. _---_ .................... _ ......................................... _ .. _ .... _ ..................... - -----_ ..... _ .............. _ ..... _ .. _ ..... _ .. 

5.25 5.84 0.468 0.490 
.. __ ._ .............. -_ ... _ .......... _._--_ .. _-----_ ....... _--_ .. . 

5.45 5.47 0 .. 444 0.466 
............................ _ .... _----- ........ _ .... _._ ....... _ .... _ ... _._------
5.30 5.08 0.404 0.436 

Green Colour Sample 
...................................................................... _---_ ... _. __ ... _ .................. _ .. _ ..... _-_ ... -- .------_ ....... _ .... _-_ ..... _ .. 

1 6.45 6.50 0.604 0.616 ----_ ....... _ ....... _ ........... _ ............... _ .................. _-_ .... .. ------_ ...... _ ..... _ ..... _ ...... _. __ .. 
2 5.70 5.93 5.60 0.546 0.559 0.470 -----_ ....... _ ....... _ ......... ............. _ ... __ ....... _ ... __ .... -------_ ....... _._._ .............. _ ...... .. 

3 7.85 7.80 7.31 0.720 0.723 0.646 ----_ ...................................................................... _-_ ........ _ ... _ ....... _ .... _----_ ................ _ .......... _ .... .... 
4 5.95 6.21 5.99 0.559 0.571 0.483 ----_ .... _ ....... _ ....... _ ..................................... _._ .... _ ..... _ ...... -----
5 6.65 6.68 6.54 0.590 0.610 0.519 -----_ ................................ _ .............. _ ..... _._ .................................... __ ... ------

8.05 7.73 0.730 0.741 
.............................. _---- ............................................ _ ... _ .... __ ............... _ ....... __ ... ----------
6.85 

7.85 

6.70 

7.70 

6.95 

7.85 

7.09 6.61 0.633 0.649 0.561 
....... _ ................... _ .......... _ ......................................................... _----- .. _ .... _._---_ .... 

7.77 7.45 0.729 0.740 0.657 
.................................. _ ........................... __ .............. _ ........ _ ... _---_ ... _._ ........... _---_ ..... . 

6.35 0.601 0.628 
............................................... _ ................... _ ................................ _-------_ ...... _-_ .. _ ... __ ... . 

7.80 7.61 0.718 0.727 0.645 
.................................... _ .............. __ ............................ _-----_._ .. _--_ ... _ ......... . 

7.39 7.10 0.641 0.658 0.569 
............................................................................................... _---_ ........ _ .............. __ .......... ... 

8.18 0.726 0.740 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

........................ _---- ....................... _ ...... - ............................... ----_ ...... _._----_ ..... . 

16 

17 

18 

19 

20 

21 

7.80 

5.80 

6.85 

6.25 

5.95 

7.05 

6.55 

6.15 

6.30 

7.40 0.704 0.729 ----_ ................................................. _ .. _ ............... - ----- .. _._. __ ......... _ ....... . 
5.50 0.545 0.587 ----_ ........................................................ _ ....... _ ........ - ----_ .................... __ .. __ ........ . 

6.96 0.616 0.631 

6.86 6.32 0.577 0.612 0.507 -------_ .......... __ ....... -.-

6.10 0.567 0.596 

6.49 0.636 0.652 

6.65 0.612 0.622 

6.82 6.50 0.611 0.628 0.539 
........................... - ..... ------........ -- .---_ ...... _ .. 

6.93 0.605 0.614 
.............. __ ... _. ----- ............................. .. ----_ ................................................. _---------
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Sample Perceptual Coarseness Model Prediction 

Physical 
Sample 

Condition 6 Condition 1 
Physical 
Sample Condition 6 Condition 1 

22 6.25 6.63 6.31 0.593 0.611 0.519 ------- -----_ .. "" .. "'. __ .,."",-" .. _._"""""',"',"," .. _",,, .. ","", ... ,"',.,.,""', ... , .. , .. "."., ....... ,". 
23 6.35 

...... " .. " ...... _-"-_.. .----
24 6.05 

.......... _ .. _._. __ ..... _-_.- ,----

6.68 

6.47 

0.603 0.612 

0.576 0,592 
.................... ~ ......... .. 

25 6.25 6.74 6.29 0.552 0,567 

0.617 
...... _-_ .................. ,-_._----_._----_ .... _ .. _---_._ .... --_._. __ ._ .... _ .............. _ ........ _ .. _ ... __ ........... _ ........................... , .. " ....... "., ... . 

26 6.30 7.01 0.596 

27 5.85 5.76 0.505 0.527 
"-, ........ ""' ...... _,_ ... _---- _. __ .. "._--"._"""'-.. " ... "'".""-""'-'"-"."'."--, .. _ ..... ""' .. " .. "" ..... "' .... "' ...... ," .......... " .. , .. , .. "" .... ,", ...... ," .. " ........ ," .............. , ........ , ...... . 

28 7.75 8.07 0.710 0.715 ------_."'_. __ ._----_._--,-."'._-, ... "_ .... ". __ .. ","_ ... - ....... " ... _ ...... , .. , .. , ... , ...... " ...... , .. ," .... ,' .... 

29 5.90 6.16 0.526 0.550 
.------.. --------- ........... __ ......... _ .......... _-_ .............. -........ _ ........ _._ ........ _. __ .... _ ....... -... _ .... _. __ .-....... _ ........................ _ ...... . 

30 6.00 6.63 0.572 0.587 
............ ," ... _"', .. _"._-------"._,--"---"'._" .. "--"""'_."._"'""' .... _."',"."''''" .. " ...... " .. "" .. " .... _ .. ''' .. " .. "" ........ ", ...... ' .... , ..... " .. , .. " .... " ...... , .... 

31 7.80 8.14 0.719 0.720 
.. _ .. ", ........ "' .. ,""'_ .. ---------- ---_._--_._._ ......... _." ..... _ ...... -. __ .......... -....... """ .. ,_ ........ ,,, ............ ,, ...... . 

32 6.50 6.89 0.597 0.612 

33 8.20 8.21 7.75 0.758 0.767 -_._._-_._---_ .. _--_._-----_._-_._._--_ .... _-_._ .. _. __ ......... __ .. _ ....... . 
34 6.70 6.96 0.627 0.646 ._ ... _ .. " .. "" ... "'_ ... _ .. _-------

0.479 

0.684 

35 

36 

8.10 7.99 7.77 0.744 0.758 0.671 .... __ . __ M. ____ .. ___ • ___ .M._W ..... M_M .. ·_M'w __ · __ .M_ .. __ •• · .. _ ... - ..... -_ .... _ ... _ ... _ ................... , .... . 

6.65 6.78 0.610 0.632 
................. ,-.-.... "'." .. "'---------"'-----"'--.--",",","".--"''''"" .. ",".-" .. "."""'''' .. '''' .. "-.. ".''' .. "." ........ , .. ''' ..... -........ , ...... , ...... 

37 

38 

7.95 7.75 

8.15 7.99 

0.735 0.742 

0.744 0.759 
." ... _."".,,-""_ ... _-------"'----,"'-"' .. ,,_ ... _"""""'''', ... ",."''''''."'" .... " .. " ....... "'', ..... , .. ,"'''''''''''''''''"" .. ,''''" .. ,,, .. ''',." .... "''"."'',, ...... ,'',, .................... . 

39 6.85 6.87 0.624 0.645 
......... _ ....... _ ...... " .. _------ "'-._"''''_._ .. _-''' .... _, ...... _ ..... '''", ..... """ ........ ","",,,,,, .. ,,,,, .. ,,,,,,,, ... "'", .... """" .... ,,, .. , ""'''''''''" ....... "" ..... " ......... .. 

40 7.25 7.24 6.94 0.638 0.660 
, ..... "'. __ ...... "'" .. _-------, "'--"'---'""' .. -""""', .. "' .. "'"."'_ .. ""'""."" .... " .. ,,",, .... ""' .... ", ..................... ,,, .... ,, ... .. 

41 6.70 6.88 6.70 0.614 0.637 
........ "'_ .. "''''-,,''',-,-------, ... ,_ ... _ .. "",-"'''"'"''''''''''''-" ..... ,,''' .. ,,'"'"'"''''''''.'''' .... , .. ''' ... """," .... " .. , .... """"" .. ,,""", .. ,,""',, ..... ,,' 

42 6.80 7.07 0.620 0.642 
.. " ...... "''''-'''_ .... _ .. , ------- ---'''''''_ ... _,-''''''_ .. '''-'''_ .. _''''''".''' .... "'"."", ..... _ ... '''"-''' .. ''' ....... _ ... __ .... _ .... -." .... ,,,_ ...... ,,.,, , , 

43 6.80 6.82 6.73 0.610 0.621 " __ . __ ... _ .. ____ ... _ ..... __ ._w_ .. __ ..... _.M ...... _ .. _ .. ____ ... M_ .. M .. ", .................................. _ .................... . 

44 6.30 6.69 6.33 0.568 0.585 
" ...... ,_." .... "', .. _ ...... , ... _------, ---, .. "--"',,,-""'-."'" .... _,, .... _, .. "' .. ,", .... _-_ ..... _ .... _ ............ _ .. _ .... ,,. 

45 6.20 
............... _ ...... _._ .. 

46 6.25 

47 6.60 
._ ......... _ .......... _-....... . 

48 6.45 

6.74 

6.70 

7.01 

7.23 

0.582 0.595 

6.59 0.583 0.594 
............... _ .......... -..................................... . 

0.596 0.611 

0.610 0.633 

0.567 

0.541 

0.535 

0.496 

0.509 

49 

50 

6.15 6.48 5.98 0.542 0.561 0.469 ,---------, ---, "'--"_ .. __ .. - .. _ .... "'" .. _-" .. """"."" .. _-_ .. " ... _"."'",, ........ "_ .. , .. , ...... "" ........... , ... ,., ....... , 
5.80 5.88 0.508 0.524 

Purple Colour Sample ... __ .... _ .. _ .. _._--_. ..," 

1 4.10 4.36 0.395 0.422 
....... "._,,_ .. -.,,"---------, 

2 4.40 4.40 0.383 0.409 
.. " .... , .. " .. , ... _ ...... "'-------, -_._-_._---_ ..... _ ... _--" ... _--_. __ ._._ ... _-_ .. _ .. _-.. _ ..... _._ .. _._ ....... -....................... , ....... . 

3 5.50 5.65 5.68 0.493 0.496 0.422 
" _____ ._ .. , __ ._. __ ... __ .... __ , ........................... _ .. _ .... _ .... _.· ____ .. _ ................ _, ... __ ........ ••• ............ • ........ ·M ......... . 

4 4.35 4.51 4.70 0.393 0.419 
"'-"'''''--'--'--''''-' ,------ -,--_ .... _" .... _"--"-"'"-,,,"'''' .. '',, .. ,,'''--''''' ...... ,"'",, ... ,,''' .. ''''''' .. """""""""""""'"''''"''''''''''''''''''''''''''''''''''' 

5 4.05 4.84 0.393 0.423 ,--------, .. "." .. ""'-"'",_ .. _._","""""""""" .. """ .... " .. """' .. """'"," .. ",,,,,,,, ... , ........ "" ...... ", .. ,", .. "" .... "" .. , 
6 5.30 5.61 0.447 0.472 _._ .. _-_ .. _---_ ... _-._._-----_ .. __ ... - .... _._. __ ............ _ .... _ ..... _ ...... _.............. .. ................ _.................... . 

7 3.20 4.41 0.357 0.396 

8 4.25 5.66 5.50 0.438 0.470 
.. " ....... ", ... _ ......... ,-"' ... _--

9 3.05 4.00 0.341 0.385 
.... "' .. " .. " ... " .. _--,,------

10 3.90 4.77 0.392 0.434 
.. _,---_ ........... _ ....... _. __ .. __ .. _---_._--_ .. _-_ .. -..... _ ..... _-..... -.... __ ......... _-_ .......... _._ ...... -............... _ ............................. _ ............. . 

11 3.00 3.57 3.86 0.313 0.372 

12 3.50 4.84 5.26 0.402 0.431 --- .. " ..... _-"_ .. "'----_._" .. _-_ ......... "' ............ ", .. ""' ...... " .... " .. "" .. ".,,", .... "'"''''''" .. "''""."'''''''''''''" .. " ... " , 

13 3.15 4.14 4.20 0.368 0.419 
, " .. " ..... ""' ....... " ......... _----

14 2.30 2.72 0.295 0.371 -_ ..... , .... "' .. "' ..... ",." ..... _------ "---_ .. ""-,----"--""'''''"'""'''"_.'''_ .. " .... "'''''' ... ''''',, ...... ''', .......... , ..... ,'"'", ..... ,''''''''''''''''',,, ... ,,''''''',, ...... ,''' 
15 

16 

4.15 4.99 0.426 0.456 

2.40 3.88 0.316 0.381 

0.326 

0.367 

0.239 

0.324 

0.303 
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Sample Perceptual Coarseness Model Prediction 

17 

18 

19 

Physical 
Sample 

2.55 

4.80 

5.10 

Condition 6 Condition 1 
Physical 
Sample 

Condition 6 

3.34 0.307 0.374 

Condition 1 

-----_ ............ _ ............ _ .... __ ... _ ........ _._. __ .. _._-_. __ .-_._--------
4.71 0.413 0.447 -------... __ .. _-----------_._._-_. ------------
5.44 5.34 0.452 0.473 

........................... -._ ...... _----_._---_._-_. __ .. _._ .. __ .. _. __ .... _._._------
20 4.05 4.36 4.58 0.365 0.392 

0.384 

0.296 
......................................................... -...... ------ ---------------

21 3.90 4.18 0.368 0.401 
........................................................................................... ----- ... _ .. __ .. _-,,-_._._._ .. _-----_ .. 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

3.40 
................................................ _. 

3.20 

4.35 

4.65 

3.75 

4.00 

4.00 0.365 0.400 ----_._--_ .. __ ._. __ ..... _.- --------------
3.69 4.39 0.354 0.396 0.284 ----_ ...... _._ ....... _ .......... _._ .... ---_ .. _--_ .. _-_ .... _._ .... _ .. 

4.63 4.85 0.404 0.425 0.335 --------.-----
4.79 5.16 0.408 0.434 0.343 --------_. __ .... _ ...... _------_ .... _._ ..... __ .-._----------
4.46 4.71 0.378 0.411 0.306 -------------
3.85 0.354 0.371 

...................................... -............... _----_ ............ __ ._ .... __ .. _--_ ... .. 
5.25 5.71 0.453 0.454 

......................................... ----- ....................... _ ..... _. __ .. __ ._._. __ ..... _-_ .. _-----------
3.90 4.27 0.373 0.386 

................... _ ....... _---- ... _ ... _ ......... _._ ...... _ .... _ ... _-_..... -----------
3.80 4.35 0.384 0.405 

..................................... ----_ ..... _ ................... _ ............. _ ........ _ .. __ .. _ .. _--._--_ ............ _ .. __ ..... __ ._---_. 
5.15 5.58 0.466 0.481 ----_ ........... _ .. _ ........... _ ......... __ .... _._-_._ ... _--.. _._ .. _-----_._-_ .. _--_ .. _ .. 
3.65 4.52 0.355 0.387 
.......................... - ....... _---_._ ........ _ ...... _ ............. _ .. _ .... _--.... _ ...... _ ............... - ...... __ ._._------_. 
4.70 5.39 0.430 0.458 ----_ ..................................... _ ... _ ................ _ .... _ ... _-_ .... _ .......... .. 

3.30 4.18 4.54 0.346 0.381 
............................... ----_ ........ -.................... _ ....... _._ .. _ ... _ ...... _ ....... _ ... _-_ ... _ ... ------

4.00 5.23 5.29 0.411 0.443 ------.............. _ ................... _ ............ _. __ ...... _ .. __ .. _._._ ........ -._ .... _._-----
3.20 4.45 4.79 0.360 0.391 

0.270 

0.342 

0.285 -----........................... .. ........................... _ .......... -_ .... - ._-----_ .. _-----_ .. . 
3.50 4.94 0.379 0.422 

....................... _ ..................... _._ ....... _ ... _ ...... _---_ .......... _ ........ -.-.. - ...... --........... . 

3.60 3.74 0.406 0.443 
.................................. _ ... _----_ .... __ ................. __ ... _ ........... .. 

2.50 2.75 3.39 0.294 0.364 0.218 
..... _ ..................... --_ ........... _----_ ......... __ ...... - .... --_._ ......... .. 

3.35 4.83 0.379 0.416 ----_ ................ _ ... _ ................. _ .. - .. _._ ... _ ................ _ .. _._-..... ---.. 
2.50 3.87 4.00 0.326 0.382 0.257 

....................... _ ........... _---_ .... _ ....................... __ ..... -._---.. ---_ ...... __ .. 
2.45 3.15 0.275 0.337 
....................................... _---_._._._ ..... _ ...... __ ....... _ ....... _._ .. __ . __ .. _ .... _ ... 

4.30 4.52 4.76 0.416 0.437 0.342 
........................................... ----- --------------

4.45 

4.15 

4.30 

3.35 

3.50 

4.60 

4.90 

4.42 0.393 0.413 
.................... _ ... _ ...... _. __ .. __ ...... __ ._ .... _-_._-----_. 

4.14 0.387 0.416 
................................... --...... --...... -...... -... -------. 

3.99 0.393 0.413 
............................... _ ...................... _----_ ..... _._ ... _.-....... - .. _ .......... _. 

3.98 4.37 0.370 0.396 0.300 
..................... _ ........ _ ............ _---_ .......... _ ... _-_ ..... - .. _-... 

4.19 0.362 0.393 
............ _ .......... _ ................................. -............ - .......... -------....... --.. ----.... . 

4.37 4.29 0.385 0.412 0.317 
..... _ ........... _ .. __ .. - ....... __ ....... _ ... _._ .... __ .... _-----_ .. _----_._ ...... . 

4.57 0.391 0.405 ----- ............................................. _ .... ----_ .......... _ .. _ ...... _ ... __ ........ _._ ..... _---------
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Appendix III: Images of Metallic-Coating 

Panels used for Glint Assessments 

The images of the metallic-coating panels used for the glint assessment. One 

image from each colour group (grey, blue, brown green, red and yellow) is shown. It 

should be noted that the images may look different from the original metallic-coating 

panels . 

Grey Colour Sample 
(No 6) 

Brown Colour Sample 
(No. 4) 

Red Colour Sample 
(No.4) 

Blue Colour Sample 
(No. 4) 

Green Colour Sample 
(No.4) 

Yellow Colour Sample 
(No. 4) 
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Appendix IV: Scale Values and Model 

Predictions from Glint Assessments 

The scale values for each sample obtained from the visual assessments of the 

perceptual glint using the metailic-coating panels and the model predictions of the 

corresponding samples. The model predictions given below were computed from the 

models incorporated with the iterative method with the metric M6 and the Iinearisation 

using Power2 at the threshold 56 based on the samples whose luminance values were 

obtained using the linear regression characterisation model and that at the threshold 57 

based on the samples whose luminance values were obtained using the polynomial 

characterisation model; and from the models incorporated with the distribution-estimate 

method with the metric M2 and Power2 based on the samples whose luminance values 

were obtained using the linear regression characterisation model and with the metric M2 

and Power J based on the samples whose luminance values were obtained using the 

polynomial characterisation model. 

Perceptual Glint Model Prediction 

Segmentation 
Method 

Iterative Olstrlbutlon-estlmate 

Characterisation 
Model 

Linear Polynomial Linear Polynomial 

Grey Colour Sample .. -..... ---... -...... --...... =----------
1 16.0 17.7 16.0 24.2 30.2 

• _. '--"- - •• _. -- • ¥" ._." •• _ ••••• _ •• ------------
2 33.9 30.7 28.2 37.1 43.1 - ._._ .. _- - -_._--_ ... - .. _ .. _--------------_ .. _ .. _. __ .. _------_._-------------- _ .. _--------
3 73.1 71.1 68.4 63.2 70.9 

... -.-._ ....... - ... _ .. ---.. ------------------. --_. __ ._._-----_._----------_._-
4 101.7 104.4 102.9 83.8 92.2 

- ._.- _ .. _ .. _ .. _. -" - ._ .. _-----_._-----------_._._ .. _--------
5 146.6 166.4 157.2 113.1 107.1 

Blue Colour Sample 
.. - - - ._.- _ ... _" - .-... ------. 

1 8.9 11.9 12.5 20.1 31.2 
.- - . __ . __ ... _._ .... -- ._.-----------_._._--_. --------------

2 102.4 103.0 101.2 105.9 101.6 
- '-"'--- -_ .. _ .. _._. --------------

3 20.7 40.5 36.9 50.9 39.6 
.... _ ... -.. - .-..... - -- ... -- .. -... -.-- ---- .. _---_ .. __ ._--,,--_._--- -------------

4 144.2 139.1 158.9 103.3 145.8 
.. _ ...... -.- --_ ... - "--'- -". _ .. -_ .. -----"-----

5 50.7 55.0 58.1 eo. 7 80.5 
.. _._---_ .... _ ......... _-_ .... _._-------

6 73.1 76.1 75.9 69.3 76.9 

7 31.8 39.1 35.8 40.7 39.7 _ .. _ .. _._-_._._ .... _ .... _ ... _._._------------------------
8 58.1 67.8 69.1 63.7 79.8 

. "'- ... ,,_ .. _... --------------------------
9 130.5 134.0 128.8 100.7 102.9 

'-"'--"-' _ .. -
10 2.8 -3.4 -2.3 17.5 22.6 

11 131.2 152.6 145.9 122.2 113.5 _ ... -._ ...... _ ...... _ ... _ .... - --_._------------------------
12 91.5 91.6 92.6 69.9 80.1 

13 14.2 21.4 21.3 28.0 38.1 
..... _ .. _-_ ... _ ... _._-------_ ....... _---------- '''-_ .. _ .. _- -_ ... _._ .. - ._----
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Perceptual Glint Model Prediction 
Segmentation 

Iterative Distribution-estimate Method 
Characterisation 

Linear Polynomial Linear Polynomial Model 

14 137.7 144.6 138.0 126.6 118.0 .. - -_._-_.--------._---------_._-_._--_. __ ._ .. __ .. __ ... __ .-._-""_ .. ,," _.-... __ ._-_._-----_. __ ._--_ .. _-_._-_.-
15 5.2 3.6 4.1 15.4 23.8 ._ .. __ ... _--_. __ ._._ .. _-_.-.. -._._-----_ .. _-_._-----_ .. _---....... _._.-. __ ..... _ .. __ ...... __ ._ .... __ ._ .. _---_ ... _-_._._._._._.---.... _. __ ... __ .. -
16 96.9 97.7 97.8 79.7 85.9 

'''---''-''--''--'''-'-'--''---
17 4.3 7.8 8.7 12.9 23.6 

••••• __ ................ _ •• _........... • .............................. -.-----.-----........ -.--....... _-_ .... , •••• -._ •• ___ ••••• __ "" ... _ .... _._ .... _ ........ __ ............... __ .......... _ ....... _ •••••••••• H •• _ ....... ___ .. _ .... __ ,,_, __ , ____ " ...... " .............. _ ........ __ ......... _ •••• H ...... _. __ ........ M ••• 

18 47.7 52.5 51.9 47.8 58.7 
•••...•.•••.••••• _._._ •••••••• _ ••••• _...... • .................... --___ • __ • ___ ...... _ •••.• __ .. _ .. __ .... _.· .. ___ ._ ... __ ._._ ....... ___ ..... _ .......... _ .... __ .M ..... M.M ..... "._ ....... _._ ........... _ ....... ______ . __ .,,_ .. ___ ._._. __ ._ .... _._ .. _. ___ . __ ..... _ ..... _ ...... _ ....... _ 

19 41.2 37.1 33.9 38.9 38.7 
.. -.-.... _ ... _-_. __ ._ .. _ ..... _._ .. _ ... _-_. __ ._-- ._--------_._._-.. _ .. _ ... _-_ ....... _._-.. _. __ ..... __ .... _ .. _ ...... -._ .. _-_._---_._---_. __ .. _._._ .. _---_. __ ._._._._ .... _ .. 

20 32.6 29.4 28.7 44.1 50.4 

Brown Colour Sample -_ .. _---_._---_._----'------ --_._._-------_._---_._-_._._.-.- ---
1 6.2 4.0 4.6 6.0 9.1 ----_._----_._-_._------_._._. __ ._-.. _--
2 87.5 82.8 83.9 85.8 83.0 -._._._-._--_._--_._._----_._. ---_. 
3 12.9 21.6 22.0 10.7 18.2 

4 116.8 98.5 107.5 114.4 125.9 ........ " .. "_.,, .... _._. __ .................. " ............ ___ . __ . ___ ...... _ ... _ ..... ___ .. _. __ . ___ .... __ ....... _N._._ ...... M .. __ .. M .... _ ....... _.".N .... _._.N .......................... _. _____ ..... _ .. _ .... _ .. " .. __ .......... _M_ ........... _ ...... " .. "_ ... "._ ................ .. 

5 43.2 44.8 38.9 62.6 33.6 ._ ..................... _ ..... _ .. ". .. ..... " ...... _ ..... _-. __ ._--_._--.... _.", ... _._ .... __ ............. -.. _ .... __ ..... " ........ -... - ........ _ ....... _ ................. ".............. . ............................ __ ..... _. __ ...... , ....... _ ...... _ ...... "." ....................................... _ ............ . 
6 62.5 61.7 58.6 76.0 58.3 ... _ ........ _._ .. " ........... _ ......... " ... , .. " ......... _ .... "_ ... ____ . __ .N._" .. ___ N._ ....... __ .,. ___ ... _._._. __ .. _. ___ .... __ ._"" .. _ .. _" ................... " ........ """ ... _ .. "". ________ . ____ ..... _ ...... _"._ ... __ ._ .... ___ " ..... " ......... " .. " .... _._ .. _ ... _ .... _ .. "_ ... _,, .. . 

7 14.7 19.8 24.6 15.0 50.8 
· .. __ ._ .. ____ · .. ,,·_· .. _· ........ "_"."N" .... "· ___ • _______ ..... _____ .. "_ ... _. ___ " .. ". ___ ._. __ ..... _._." __ .... __ ._ .... ",,, ...... ,, .. " __ ."· .... "" ..... ________ w_._ ... a_ ..... ___ ... _._._ ... _ ... _ ........ __ .,,H''''''H" .. ___ ._." 

8 48.8 52.7 54.7 32.5 44.5 __ • ___ "._._. ____ .... _.". __ ... __ _ ___ • __________ .. ____ .... ___ • __ •• _ ...... _ ...... N'H" ________________ _ 

9 110.0 117.6 117.7 145.8 126.4 '--'---'"'---'--'-''' ---_ ... _._ ... _------_._._ .•. _._--
10 2.6 0.3 1.6 

11 119.2 120.0 117.1 

15.1 

144.5 

22.2 

118.3 .... _._ .. _.-. __ ... _ .. _.-_ ... - ... _-_._._. __ .. _ .. _-----------_.-------_._---_._-----_. __ ... _. __ . __ ._ .. _ .... _---_._--------------._ .. _-_. __ . 
12 78.2 72.6 73.3 94.7 90.0 

13 8.5 3.8 4.9 20.0 25.8 

14 123.7 111.1 118.8 131.6 135.3 
....................... N_ .... H_ .. • ___ ' ... " .... " ... _ ....... _ ...... ____ • __ ... _" __ ._. __ ........ ,_"._. ___ ... _.". ___ • ___ ._ ...... _,, .................. _"._ ... - ....... ,,, ......... ,,._._ ................ __________ ... ____ .. _._ .. ,, ___ ............ _ .......... _._ ........ _ •• H._" ...... " ... . 

15 4_2 11.9 12.8 7.6 16.2 
......... _ .... __ .. __ ...... " .... _."_.".,,_ ....... ,, ............. _______ .. _._ .. _____ N ... _. ____ .. _______ "_. __ ... ___ ,,, .... ,,,,, __ ·_ .. ,, ... __ .. • .. • ..... , __ ....... _ .... " ... _ .. ,,, .. __________ ._ ... _._._.,, .......... _ .. _._ .... __ .. ___ ,,_ ... __ .. 

16 80.1 61.3 62.2 69.6 71.5 
..... _ ... _-_ .... __ ._-------_.... ---"._ .. _ .. _----_._--_ .. _--_ ... _." .. _._-_ .. " ..... - .. __ ._-"------_._----_._--

17 4.3 11.6 11.7 7.9 12.5 ... _ ... __ . ___ ._"._ ... ____ • __ ,,___ _ __ • ________ "N _____ ._ .. _,, __ • ___ M."_._M" ...... _' ______ .. __________ • ___ _ 

18 41.6 35.6 31.0 57.4 36.9 

19 32.4 29.3 29.8 41.1 47.2 
......... _ .. "" __ ",,. __ .. ___ ._. ___ ... , .. _ .. _______ M __ .. ________ ,, ________ ....... _._._ .. _ ......... ______ .. ____ .. _____ • ______ • __ • ___ ._ 

20 22.6 28.8 30.9 27.9 42.8 

_._<?~_:~_~5:.~I_?.~.r..~~.'.:"ple ________ . ____ ._ ... _____ . __ . __ .. _ ... ____________ ._ ..... _._ ... _ .. _. _______ . _____ ._. _______ . _____ ._._ .. __ . __ ._. __ . __ . 

1 5.1 11.5 11.8 20.4 29.9 " .............. ___ ... _ .... ___ ... _ .. _ ... _ ...... " ..... _._ .. ______ , _______ " __________ "_. ____ . _____ M._. __ "_ .. __ .. "",, .. _ ........ ·_·,, .. _ ...... ____ ... __ ... ____ .. _ .. _. __ " .... _ ... _._" .... __ " ............. ,, __ ..... ___ .... " 

2 84.7 89.3 84.5 90.8 76.2 ...... _ ....... ___ ......... _._".".".""._ ... ",, ......... ___ . _____ . __ . __ " ... ___ . ___ ..... ____ .. __ ..... ____ ......... ,,_ .. _ ... " .... _ .. ,, __ ..... "" ........ __ .......... _ ... _ ....... _."_N ____ " ____ ."._." .. "._ ........ ,,_,,_ .. ___ .. __ ... _ ........ _ ... ___ .. " .................. . 

3 15.9 18.2 18.6 19.1 29.5 

4 133.4 130.4 144.5 121.4 147.4 ..... __ ... _ ... _ .. __ . __ .. _-_ .... _ ... __ .. _._-_._._-- _ .. __ ._-----_. __ ... _-_._-_. __ ._ ... _---_._._-_. __ .. __ .. _-_ .. -.. -_ ......... _ ...... _---------_. __ .. __ .. _-_ .. _-_ .. _ .. _--_ ... _ .... _ .... -_ .. _-_ .. __ ... 

5 48.0 53.3 52.0 54.7 57.9 
......... __ ._._._--_ .. _--------_ ... _---------------------------_ .... _---_ .... _ ..... _ ..... __ ........ _._ ......... _._._---------_._--_._._---_ .. _ .. _-_ ... -.. -. __ .... _ ...... _ .... _--_ ........ _ ... 

6 71.2 70.3 76.8 72.3 98.1 
• __ .. ___ ." __ • ____ " .. _____ .... ,,_ ....... ___________________ M __ MMN"._. __ .. _ .... " ............... " .... , ........ _ ... · .... · ......... _______ " .. __ --------_._. ___ ... ____ . __ ...... _ ... ,,_ .......... _~ 

7 23.9 43.6 45.8 42.4 62.3 

8 66.0 69.0 73.4 66.5 85.1 
........ _" .. __ .""~ __ N __ .. __ .. _~._ .... __ .. _ .... ,, ___________ w _________ .. _ .... _,,_ .. _ .. ""_. __ M __ .. _" -------_._-----_ . 

9 163.2 177.1 181.9 180.8 168.1 

10 2.8 -0.3 0.6 11.4 15.5 ._ .... _ ... -_._._._. __ ... _._. __ ._---- ----------_ .. _._-------_._._-_ .. _._-------_._----------
11 135.3 160.5 147.2 193.9 140.8 

...... _ .... _---_._-_._-_. __ .. _------------_ .. _----_. __ ._----._--_ .. __ ._--_ .... _---------_ .. _-_ .. _------------_. 
12 74.8 76.4 82.0 62.8 84.4 

......... __ ._._._-_._-----_ .. _._ .... _ .... _----_. ____ .. ____ y_ .. _". __ ._ .. _ ... _ ......... N .. ""_""_ .. ,, _____ .. ____ ._ ... _,, ___ .. _~N ____ ""_ .. _ ... 

13 8.8 13.1 11.4 24.5 22.6 .. --_._-_ .. - .. _-_ .. _---_._. __ ... _._ .. _---. 
14 141.9 149.2 146.0 145.0 128.6 

.... _--_._-----_ .. _-_ .. --_._._----- _____ N" __ " __ .... ____ ..... ____ ,, ______ ._ ...... _ ... _ ... _________ ._ .. _ .. _" ... _ •• ___ ._ .. ___ ,, ____ ..... _ •• _ ... _ .. _ ... _ .. _ ... 

15 4.2 11.4 10.7 21.9 17.2 
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Method 

Characterisation 
Model 

16 

Perceptual Glint 

Linear 

17 5.0 12.4 

Model Prediction 

Iterative Distribution-estimate 

Polynomial Linear Polynomial 

91.9 113.7 90.5 

11.8 16.0 15.5 
......................................•.......•• _ .•...................•...... _ ........• _.-.... _ ... _---_. __ ._._----------------

18 47.0 57.3 54.5 68.4 62.5 -------------------------
19 33.0 44.3 41.8 63.3 61.4 

·_···.·h. ______ ._ 

20 23.7 31.0 31.9 45.3 60.4 

Red Colour Sample 
.. _ ........ _. __ .......... _ ....................... _._-_ ... _-_._---_._._------------------------

1 4.9 -1.9 -0.8 6.1 13.8 -------------------------
82.3 62.4 60.6 54.2 57.0 2 

3 

4 

5 

................................•. _ .......... _._ ... _--.. _._ ........ _ .. __ ..... _ ... _-----------------
13.3 7.9 7.0 10.4 21.4 

............................................ , ... ,',., .. "".", ... ".',., .... ,.,., ... _ .... _, ... , .... , .. " ... ,.,-.. _ ..... _ .. _---------------
163.9 128.4 126.0 113.2 102.8 

............................. _ .. _._ ....... _ ............ _._ .... _ ... __ ._ ... _,._----------------
36.0 15.3 15.3 24.2 32.4 

......................... -.... ........ __ .. __ ._-_._--_. __ .. _-_ . 
6 60.3 45.9 42.2 43.0 38.5 

7 19.0 15.0 15.4 20.2 30.3 
......... _--,._, .... _ .. _ .... _--,_ ... _.. -----, 

8 ~.4 ~~ 43.7 39.7 38.9 
----_ .• _ .. __ .. _. ---------------------------

9 107.5 95.6 92.0 66.9 65.2 
.. ,._-_._-_ ... __ ............. _ ...... ,.,_ .. _ ... _--,----------------------------

10 2.6 5.0 4.6 12.8 14.8 
....................................................... , ........... , .. , ... _ .. , .. _ ......... , ........... _ ... _._,_ ... _,_ .. _ ..... , ....... _.-------------------

110.2 75.1 72.8 60.3 65.1 

73.8 47.9 50.5 35.1 54.6 

11 

12 

13 

14 

15 

.. ,., ...... " ..................... , .... , .......................... _ .. _ ......... _._ .. -., ... _---------------
7.6 0.4 1.4 7.6 17.8 

............ _ ....•...... __ ._-_ ...... _ .. _ ...... _ .•.... _ ... _-_ .. _._ .. _ .. __ ._ ... . 
118.7 103.6 101.3 17.9 17.2 

....................................................... --................. __ ._._ ... __ .......... , .......... , .. ,_ .. _---------------
3.2 0.4 1.6 5.2 16.1 

........... ·w.··.··· .. ·· ....................... _ ........... _, ..... _ .. , .. _ ........ _ ........ _ ..... _ ........... _ ... _---.... _---------------
16 88.7 72.5 75.2 58.1 76.9 

............................................... _ .... ,-_ ........ _ ... __ ...... __ ... _._--_ ...... _.- ----------------
17 5.4 4.7 5.2 5.4 9.6 

........ , ......... _ ... _ ...... " .. , ....... " ...... , ........... "_ ........... ,, ............. , .... _, ...... , ........ _ ........................ _._ ... _--_ .... _ ..... __ .. -... -----------------
18 38.8 18.9 16.1 22.6 27.4 

..... , ..................................................... _ .............. _ ...................... _ ........ _ .... _ .. __ ._ ....... __ ._-_. __ .,_ ... _----------------
19 23.6 14.2 13.4 21.1 28.2 

20 21.4 5.2 5.1 16.8 24.1 

Yellow Colour Sample 
., ..... , .. , .............................................. " ..................................... -................... _ ........................ __ ......... _ ..... _ .. _ ... _ ... _ .. _ ......... _---------------

1 5.1 11.2 11.7 4.2 10.0 
..... , ............................................................................................... _-_ .... _------_ .... _. __ ._--_ .... _--_._----------------

2 75.8 83.6 85.3 89.1 87.0 

8.8 18.9 22.2 15.9 41.4 3 

4 

5 

6 

.............................................................. _ ................. _ ......... _ ..... _._ .... -_._ ........... _ .. _----------------
115.4 96.8 98.8 82.7 81.1 

............ , ..................... , ..... , .. ", ...... _ ..... , ... _ ............................ , ........ , .. ,-----------------
35.7 48.4 48.4 45.7 48.2 
.............. _ .. _ .. _ ... _-,_ ... _. __ ._ ............ _-_ ....... _, ......... _-----------------
57.5 75.9 17.0 30.0 35.6 

............................................ --_ .. _ .............. __ ........ _._ .... _-_._._,-_._-_. __ .. _ ........... _------------------
7 14.5 30.4 30.9 26.2 34.3 

... " .................................... ,"', .......... , ...................................... _ .............. __ ......... _ .. _ ......... _ .. _. __ .. _-_. __ . __ ._------------------
8 48.8 57.8 58.2 55.2 57.7 

9 141.6 128.7 133.8 146.2 133.4 
................................ , ..................................................................... _-.............. _ ............ _ .... _ ..... - ..... _ ........ -.... _-------------------

10 2.3 9.0 9.3 15.3 22.4 
................. _...... ... ............... _ ... _ .. _.-.... _ ................. _----------------

11 

12 

13 

14 

139.2 115.5 
...... .. ······.· ... · .. ··_ ............... m._ ...... ... _ .... __ .. _ .. _ .... _ ..... . 

67.9 72.4 

7.0 

115.9 

5.6 

93.4 

123.6 

71.2 

4.9 

90.4 

132.5 133.2 

36.2 39.9 

4.9 7.5 

104.4 85.7 
....... , ........ ,_ .... _ .......... , ..... _ ...... __ .. _. __ .... __ .............. _ .. _._---------------

15 2.8 15.6 16.3 5.1 12.1 
............................................................... _ .... _ ... -_ .... __ .... _ ......... _ ........... _ ..... _ .......... __ ..... _ .... _ .. _---------------

16 17.9 62.5 63.6 54.1 57.5 

17 3.4 6.9 7.7 1.7 8.6 
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