
Degrees of Computability and Randomness

Anthony William Morphett

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

School of Mathematics

August 2009

The candidate confirms that the work submitted is his own, except where work

which has formed part of jointly-authored publications has been included. The

contribution of the candidate and the other authors to this work has been explicitly

indicated overleaf. The candidate confirms that appropriate credit has been given

within the thesis where reference has been made to the work of others. This copy

has been supplied on the understanding that it is copyright material and that no

quotation from the thesis may be published without proper acknowledgement.

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl,uk

MISSING PAGE/PAGES

HAVE NO CONTENT

Jointly authored publications

Work from the following publication has been included in this thesis:

G. Barmpalias and A. Morphett. Non-cupping, measure and computably enumer­

able splittings. Mathematical Structures in Computer Science 19 (2009), 25-43.

The published version of this paper is included as Appendix A of this thesis.

Theorem 1.1 of the paper was suggested by the first author, and the proof was

developed jointly by both authors. Section 4 of the paper was initially written by the

second author and later revised by both authors. It appears as chapter 4 of this thesis.

The ideas of section 3 of the paper were suggested by the first author (motivated

by discussions with Andre Nies). The basic technique of the construction of Theorem

3.1 was developed by the second author. An earlier draft of Theorem 3.1 was written

by the second author, and the final version was written by the first author. A version

of Theorem 3.1 written by the second author appears in chapter 3 of this thesis as

Theorem 3.1. Theorem 3.2 of the paper was the work of the first author and does not

appear in this thesis.

ii

Acknowledgements

I would like to thank my supervisor Prof. S. Barry Cooper for his support, encour­

agement and numerous discussions both mathematical and non-mathematical during

my time in Leeds. I would also like to thank to George Barmpalias and Andy Lewis

for stimulating discussions and collaborations, from which I and the work in this thesis

have benefited greatly.

Thanks to the Marie Curie programme for funding my studies in Leeds as well

as travel to numerous conferences and research secondments via the MATHLOGAPS

scheme. Many thanks particularly to Prof. Dugald Macpherson; I am grateful for his

help with funding, visas and travel reimbursements, and for his efforts organising the

regular MATHLOGAPS summer schools and more generally as MATHLOGAPS co­

ordinator. Thanks also to Dr. David Salinger for his support and especially his assistance

regarding my visa.

I am grateful to Prof. Andrea Sorbi of Siena and Prof. Schwichtenberg of Munich for

their generous hospitality during my secondment visits to their departments. Thanks

also to Prof. Doug Cenzer of Gainesville and Prof. Alexandra Soskova of Sofia for ar­

ranging additional conference travel grants.

My thanks to everyone in the School of Mathematics for providing a welcoming

community and a stimulating and exciting research and study environment.

Special thanks to my wife Avalon for her dedicated companionship and continuing

support, which I greatly appreciate.

iii

Abstract

In this thesis we will study LR-reducibility, a weakening of Turing reducibility arising

naturally in the context of relative randomness. We will focus particularly on the LR­

degrees of c.e. and .6.g sets. In chapter 2 we present a technique for lower cone avoidance

in full approximation constructions, and use it to construct a c.e. LR-degree that is LR­

incomparable with a given intermediate .6.g LR-degree. We also give a weak upward

density result, showing that every low .6.g LR-degree is bounded by an incomplete

c.e. LR-degree.

In chapter 3, we consider splittings of c.e. sets into two c.e. sets of the same LR­

degree; an analogue of the notion of mitoticity previously studied in the context of

Turing degrees. We show that there are c.e. sets that cannot be split into two c.e. sets

of the same LR-degree, and that such sets may be Turing complete or low, and can be

made to avoid nontrivial upper cones of c.e. LR-degrees. We also show that this notion

differs from Turing nonmitoticity on both the low-for-random and non-Iow-for-random

c.e. sets.

Chapter 4 presents a construction of an LR-complete c.e. set that is non-cuppable

in the c.e. Turing degrees. This is a strengthening of an earlier result of Barmpalias and

Montalban [7J, and can also be seen as a strengthening of a theorem of Harrington (in

[53]).

In chapter 5 we introduce a new notion of promptness for c.e. sets, prompt non­

low-far-randomness, which can be seen as an LR-analogue of prompt simplicity. We

investigate the Turing degrees of promptly non-Iow-for-random sets, and compare the

property of prompt non-Iow-for-randomness to the traditional property of prompt sim­

plicity.

v

Contents

Jointly authored publications

Acknowledgements

Abstract

Chapter 1. Introduction

1. Introduction & outline

2. Notation and conventions

3. Randomness and LR-reducibility

4. LR-reducibility and bounded coverings

5. Priority arguments and tree constructions

6. The recursion theorem

Chapter 2. Structural results in the c.e. and bog LR-degrees

ii

iii

v

1

1

5

9

14

19

19

21

1. Working with an LR-incomplete set 21

2. A c.e. LR-degree incomparable with a given intermediate bog LR-degree 22

3. C.e. LR-degrees above low LR-degrees 38

4. Downward density and other results

Chapter 3. Nonmitoticity and LR-degrees

1. Splittings and mitoticity

2. A non-LR-mitotic Thring complete c.e. set

3. Low LR-nonmitotics and cone avoidance

4. A Thring-nonmitotic but LR-mitotic non-Iow-for-random c.e. set

Chapter 4. A non-cuppable LR-complete c.e. set

1. Non-cupping and LR-completeness

2. Proof of Theorem 4.1

Chapter 5. Prompt enumerations and relative randomness

vii

56

57

57

58

60

61

67

67

69

85

viii CONTENTS

1. Prompt simplicity and Yates permitting 85

2. Non-low-for-random permitting and prompt permitting 90

3. Prompt non-low-for-random sets 94

4. Prompt non-Iow-for-randomness, prompt simplicity and Turing degrees 97

5. Non-prompt non-Iow-for-randomness 100

6. Prompt non-Iow-for-randomness and LR-degrees 108

Bibliography 111

Appendix A. Non-cupping, measure and computably enumerable splittings 115

1. Introduction

2. Preliminaries

3. Splittings of computably enumerable sets inside their LR-degree

4. Proof of Theorem 1.1

References

115

117

117

124

138

CHAPTER 1

Introduction

1. Introduction & outline

Algorithmic randomness has been an important and interesting field of study within

computability theory.1 Although the roots of randomness go back to work by von Mises

[72] on selection rules and by Kolmogorov [34] and Solomonoff [69] in the context of

finite strings, the study of randomness of infinite sequences in its current form traces

its origins to Martin-Lof's work [50] of 1966. In this paper, Martin-Lof developed

the concept of Martin-Lof tests and the notion of Martin-Lof randomness, which has

become one of the most popular notions in the recent study of algorithmic randomness.

Martin-Lof's eponymous test notion (of which a formal definition is given in section

3.1) was intended to formalise the idea of effective nullsets - those measure 0 subsets of

Cantor space which can be approximated in a computably enumerable way. Since there

are only countably many such nullsets, this yields a well-defined notion of randomness:

each such nullset can be seen as the set of strings possessing some 'special property' or

'distinguishing feature' that can be computably approximated, so any string that avoids

all such computably approximable nullsets and the corresponding special properties is

random, as far as can be effectively detected.

Several other important developments soon followed Martin-Lof's work. Schnorr

[66] established a connection between randomness of an infinite string in the sense of

Martin-Lof and complexity of its finite initial segments in the sense of Kolmogorov.

Specifically, Schnorr proved that a sequence X is Martin-Lof random iff there is a

constant c such that, for all n,

K(X t n) ~ n - c,

1 We defer a discussion of notation, definitions etc until sections 2 and 3, though our notation and
terminology is standard. References for background, history, unexplained notation and definitions are
Nies [60J and Downey and Hirschfeldt [20J.

~-------------~ ---:--:=

2 1. INTRODUCTION

where X f n denotes the first n bits of X and K(a) is the prefix-free Kolmogorov

complexity of the finite string a.2 Schnorr also gave a characterisation of Martin-Lof

randomness in terms of martingales: X is Martin-Lof random iff no c.e. martingale suc­

ceeds on X. 3 Schnorr's work thus unified three different and complementary approaches

to randomness, those of effective measure, compressibility and effective gambling strate­

gies. Each approach to randomness has its own advantages and yields its own insights

into the class of Martin-Lof random sequences.

The compressibility approach was taken by Chaitin [11], whose work on prefix-free

complexity yielded a concrete example of a random real number, the halting probability

0.4 The halting probability is particularly interesting as it is c.e.5 and Turing equivalent

to the halting problem. Such c.e. random reals, and their special status of Turing­

completeness, has been studied for instance in [10], [37] and [21].

Because of its flexibility, the martingale approach has proved useful for general­

ising or strengthening Martin-Lof randomness. Schnorr [66] defined the notions of

computable and Schnorr randomness by requiring that the martingales be computable

(rather than just c.e.) and that they succeed at a computable rate, respectively. Com­

putable randomness and Schnorr randomness were further studied for example in [19],

2 A partial computable function (machine) M :~ 2<w -> 2<w is prefix-free if its domain is prefix-free;
that is,

M(u) 1 =} M(T) i for all T C u.
All prefix-free machines can be computably listed, and hence there is a universal prefix-free machine U.
The prefix-free Kolmogorov complexity of a finite string u, denoted K(u), is the length of the shortest
string T such that U(T) = u. This is the length of the shortest progmm that outputs u, or the shortest
description of u (in the pmgramming language of the universal machine U). For a comprehensive survey
of Kolmogorov complexity in connection with algorithmic randomness, see Downey and Hirschfeldt [20].
For a treatment of Kolmogorov complexity more generally, see Li and Vitanyi [45].
3 A martingale is a function p : 2<w -> Q satisfying the condition

q(u) = ~(q(u~O) + q(u~1)).
A martingale is a formalisation of a betting strategy in a fair game; if we think of a gambler as betting
on the bits of an infinite sequence X, q(X r n) is the gambler's capital after betting on the first n bits
according to the strategy q. The martingale q succeeds on an infinite sequence X if

limsupq(X r n) = 00.
n

A c.e. martingale is one in which the set {x E Q : x $ q(u)} is uniformly c.e. in u.
4 Let U be a universal prefix-free machine. The halting probability

n:= E Tlul = JL(dom U)
u:U(u)!

is the probability that the universal machine U will halt if it is fed random bits as its input.
S A c.e. real is a real number x E [0, 1] such that the lower cut {q E Q : q $ x} is c.e. This differs from
the notion of a c.e. set; if we think of the binary representation of a c.e. real x as giving the characteristic
function of a set X, the set X need not be c.e. We will not use the notion of c.e. reals any further;
when we write c.e. we mean it in the sense of a c.e. set.

1. INTRODUCTION & OUTLINE 3

[23]. Another way to generalise the martingale approach to randomness is via non­

monotonicity. Kolmogorov [33] and Loveland [46] proposed non-monotonic betting

strategies, in which the strategy is allowed to choose the next position in the sequence

on which to bet. This was studied more recently in [57] and [52]. Still another topic

arising from martingales is effective dimension. An effective version of Hausdorff dimen­

sion was originally suggested by Lutz [47], and Mayordomo [51] established connections

between Kolmogorov complexity and Lutz's original formulation of effective dimension

in terms of martingales.

Although the compressibility and martingale approaches to randomness and the

various strengthenings or weakenings of Martin-Lof randomness are interesting and

fruitful, we will not concern ourselves with them here. We will restrict our attention to

Martin-Lof's original notion of randomness in terms of Martin-Lof tests, though we note

that many important concepts such as low for randomness and LR-reducibility can be

thought of equally well in terms of Kolmogorov complexity or martingales as in terms

of Martin-Lof tests. Comprehensive treatments of the various notions of randomness

may be found in the references [20] and [60].

Work on Martin-Lof randomness continued through the 1980s with important con­

tributions by Solovay [70], Kucera [35], Gacs [27] and van Lambalgen [71], to name

only a few. However it was in the late 1990s that interest in algorithmic randomness

blossomed. One topic of particular interest was relative randomness, Martin-Lof ran­

domness relativised to an oracle. The notions of Martin-Lof tests and randomness can

naturally be relativised to an arbitrary oracle; one can then study the information con­

tent of an oracle X by examining the randomness notion obtained by relativising to

X. In particular, relative randomness gave rise to various lowness properties, captur­

ing ways in which an oracle can have low information content as far as randomness is

concerned. Zambella [77] defined the notion of low for randomness: an oracle A is low

for random if all (unrelativised) random sequences are also random relative to A. Such

an oracle is no assistance for detecting patterns or approximating nullsets, compared to

the unrelativised case. Kucera and Terwijn [39] constructed a noncomputable c.e. set

that is low for random. Muchnik [56] defined and studied the class of low for K, those

--------------------------------------............ r:· __ Jx

4 1. INTRODUCTION

oracles which are no assistance as far as Kolmogorov complexity is concerned.6 Oth­

ers [22, 59J studied the K-trivials, sequences with the smallest possible initial segment

complexity.7 A fourth lowness property, being a basis for randomness 8
, was suggested

by Kucera [36]. This work culminated in [59J and [28J with proofs that these classes

co-incide; in fact, they form an ideal in the Turing degrees that has since been studied

extensively [38, 58J.

Relativising notions such as low for randomness naturally leads to reducibilities and

associated degree structures. Nies [59J defined the LR-reducibility '5.LR, which is the

main topic of this thesis: oracle A is LR-reducible to B, A '5.LR B, if the class of

Martin-Lof randoms relative to B is contained in the class of randoms relative to A.

Intuitively, the oracle B is at least as useful, computationally, for detecting patterns as

the oracle A. LR-reducibility extends Turing reducibility, with a least degree consisting

of exactly the low for random sets. This gives LR-reducibility a claim to being a very

natural notion for studying information content in the context of relative randomness.

In this thesis we will mainly study the reducibility '5.LR, its degree structure, its

connections with Turing reducibility, and related notions. We will focus particularly

on the LR-degrees of c.e. and bog sets. In chapter 2 we prove some results about the

structure of the bog LR-degrees (that is, LR-degrees containing bog sets). Specifically, we

present a technique for lower cone avoidance in full approximation constructions, and

use it to construct a c.e. LR-degree that is LR-incomparable with a given intermediate

bog LR-degree. We also give a weak upward density result, showing that every low bog
LR-degree is bounded by an incomplete c.e. LR-degree.

In chapter 3, we consider splittings of c.e. sets into two c.e. sets of the same LR­

degree. We look at an LR-degree analogue of the notion of mitoticity studied in the

context of c.e. Turing degrees by Lachlan [41], Ladner [43] and others. We show that

there are c.e. sets that cannot be split into two c.e. sets of the same LR-degree, and that

such sets may be Turing complete or low, and can be made to avoid nontrivial upper

6 A set A is low for K if there is a constant c such that

K(a) ~ KA(a) + c

for all strings a. That is, the oracle A does not help (heyond the fixed constant c) in compressing data.
KA is the prefix-free Kolmogorov complexity relative to oracle A.
7 A is K-trivial if the complexity of initial segments of A is as small as possible: there is a constant c
such that

K(A f n) ~ K(n) + c
for all n.
8 A is a basis for randomness if there is an X such that X is random relative to A and A ~T X.

2. NOTATION AND CONVENTIONS 5

cones of c.e. LR-degrees. We also show that this notion differs from Turing nonmitoticity

on both the low-for-random and non-Iow-for-random c.e. sets.

Chapter 4 presents a construction of an LR-complete c.e. set that is non-cuppable

in the c.e. Turing degrees. This is a strengthening of an earlier result of Barmpalias and

Montalban [7] that there is a cappable LR-complete c.e. set, and can also be seen as a

strengthening of a theorem of Harrington (in [53]).

In chapter 5 we introduce a new notion of promptness for c.e. sets, prompt non­

low-for-randomness, which can be seen as an LR-analogue of prompt simplicity. We

investigate the Turing degrees of promptly non-Iow-for-random sets, and compare the

property of prompt non-Iow-for-randomness to the traditional property of prompt sim­

plicity.

2. Notation and conventions

2.1. Cantor space and strings. Let 2<w denote the set of all finite binary strings,

and 2W denote Cantor space of infinite binary sequences. We call members of 2<w

strings, and members of 2w reals. We identify reals with subsets of N in the usual way,

and sometimes use the terms real, set and oracle synonymously. We typically use the

letters a, T, p. for strings and A, X etc. for reals. We sometimes use a, T also for finite sets

of strings, which represent clopen subsets of 2w. For X E 2W and n EN, X r n denotes

the initial segment of X of length n, a finite string. For strings a, T, we write a <;; T

to denote that a is an initial segment of T, and c to denote a strict initial segment.

We also write a c A for A E 2W to indicate that a is an initial segment of the real A.

alT denotes that a and T are incomparable, i.e. a ~ T and T ~ a. A set of strings is

prefix-free if for any two distinct strings a, T in the set, we have alT. The length of a

string is denoted lal· We obtain the standard bijection between 2<w and N by ordering

the finite strings first by length and then lexicographically.

Cantor space 2w is equipped with the usual topology, generated by basic clop en sets

[a] = {X E 2w': a C X} for a E 2<w. We can extend the notation [.] in the obvious

way to sets of strings: if C <;; 2<w then

[CJ = {X E 2w
: a C X for some a E C}.

To simplify presentation we will often omit the brackets and denote by a both the string

and the clop en set (and similarly for sets of strings). It will be clear from context which

6 1. INTRODUCTION

is intended. The Lebesgue measure on 2w is denoted by J.l. Note that the measure of

(the clopen set corresponding to) a string a is J.l(a) = 2-10"1, and for a prefix-free set C

of strings it is J.l(C) = I:O"EC 2-10"1.

Suppose that V <:;:: 2w is a clop en set. When we say the least (or leftmost) clopen set

C <:;:: V of measure q we mean the clopen set C, if it exists, such that C <:;:: V, J.l(C) = q,

and if Z E V - C then Z > X for all X E C, where < is the lexicographical ordering on

reals. That is, C is the leftmost clopen subset of V of size q. If we require a particular

representation of the clop en set C by finite strings, ie. a finite prefix-free D <:;:: 2<w such

that C = [D], we may take the first such D under a standard listing of finite prefix-free

sets of strings.

2.2. Turing functionals and operators as c.e. sets. It is convenient to consider

computably enumerable (c.e.) sets to be the fundamental objects of computability

theory, since we can obtain other objects such as 'lUring reductions or ~~ classes from

c.e. sets. In several constructions we will build 'lUring functionals or oracle ~~ classes as

c.e. sets of axioms. We briefly discuss how such objects can be represented as c.e. sets.

Let (-, .) be a standard pairing function, which is a computable bijection from N x N

to No From this we can obtain codings of tuples of all sizes in a standard way. We can

consider a 'lUring reduction <I> to be a consistent c.e. set of axioms of the form

(1) (X,Z,T) for x,z E N and T E 2<w,

which asserts that

<I>X (x)l= z if T C X

for X E 2W. In this context consistent means that if (X,Z,T), (X,Z',T') are both axioms

in the set then

TIT' or z = z'.

Any such consistent c.e. set W of axioms certainly defines a (possibly partial) 'lUring

reduction; moreover, from an enumeration of any c.e. set W we can obtain a 'lUring

reduction by discarding any numbers enumerated into W which are not of the form

(1) or which are not consistent with any axioms previously enumerated. Conversely,

given a 'lUring reduction I]i we can obtain an equivalent C.e. set of axioms by the usual

procedure of enumerating all possible computation paths.

2. NOTATION AND CONVENTIONS 7

In cases when we are interested in Turing reductions as operators from 2W to 2w, it

is convenient to consider Turing reductions as c.e. sets of axioms of the form (cr, r) for

cr, r E 2<w which assert that

cr ~ <px if reX.

In this case consistent means that if (cr, r), (a', r') are both axioms in the set then

r ~ r' => a ~ a'.

From such a set we obtain a Turing reduction whose domain (for each oracle X) is N

or an initial segment of N. Conversely, from a Turing reduction W we can obtain a

c.e. set of axioms for a Turing reduction <p such that WX (x) ~ <px (x) on that part of

the domain of WX which is an initial segment of N.

A c.e. operator is a uniform procedure for obtaining an A-c.e. set WA from an oracle

A. A c.e. operator can be considered as a c.e. set W of axioms of the form

(n,r) for n E N,r E 2<w

if we are interested in sets of numbers, or of the form

if we are interested in sets of strings, which assert, respectively, that nEW A or a E W A

ifr C A.

Let A E 2W. An A-E~ class VA is a subset of 2W which is E~ relative to the oracle

A. That is, there is an A-computable relation R on 2<w such that

X E VA {::} ::In R(X f n).

Such a class VA is generated by an A-c.e. set of strings WA such that X E VA iff X J a

for some a E WA, although many different A-c.e. sets may generate the same A-E~ class

of reals. Howe~er, when we talk of an A-E~ class VA, we will always understand it to

be generated by a fixed A-c.e. set, and for convenience we often identify the class V A

with the C.e. set of strings.

An oracle E~ class V is a uniform procedure for obtaining an A-E~ class VA from

an oracle A. Since A-E~ classes are generated by c.e. sets of strings, such a uniform

procedure is in fact a c.e. operator. In particular, an oracle E~ class V can be thought

8 1. INTRODUCTION

of as a c.e. set of axioms (a, 7) as above, but asserting in the context of E~ classes that

if 7 C A and a C X then X EVA. It is often convenient to assume without loss of

generality that for a fixed A the set

{a E 2<w : (a, 7) E V and 7 C A}

is prefix-free, and that if (a,7) is enumerated into V at stage s then lal = 171 = s.

For a set W ~ 2<w, define the weight function

weight W = L Tlcrl.
crEW

Note that weight W 2:: p,([W]), with equality exactly when W is prefix-free. Say that

W ~ 2<w is bounded if weight W < 00. If V is an oracle E~ class, say that V is bounded

if there is a rational q < 1 such that p,(VX) < q for all oracles X.

Bounded oracle E~ classes and c.e. operators are a particularly useful tool when

working with LR-reducibility, because of Theorem 1.5. In many constructions we will

need a computable listing of all bounded oracle E~ classes or c.e. operators, along with

a bound q. Let (Ve, qe) for e E N be a listing of all pairs of a (not necessarily bounded)

oracle E~ class V and a dyadic9 rational q in the interval (0,1). We can obtain a

bounded oracle E~ class Ve from the pair (Ve, qe) by discarding any axioms (a, 7) which

are enumerated into Ve and which would make p,(V{) 2:: qe for any X E 2w. If V is

an oracle E~ class such that p,(VX) < q for some dyadic q E (0,1), then certainly the

pair (V, q) will appear somewhere in the listing ((Ve, qe))eEN. In a similar way we may

obtain a listing of all bounded c.e. operators.

Suppose that V is an oracle E~ class (given by a prefix-free c.e. operator) and A is a

c.e. set. From enumerations V[s] and A[s] of V and A, we can approximate VA in a Eg
way. Let VA[s] denote V[s]A[sl, the approximation to VA at stage s, which is a clop en

set uniformly computable in s. If a string a E VA[s], then there is an axiom (a, 7) E V[s]

such that 7 C A[s]. In this case we say that a is in VA[s] via the axiom (a,7). Say that

the computation a E VA[s] became valid at t ::::; s if t is the least such that (a, 7) E V[t]

and 7 C A[t]. When we say the oldest string in VA[s] satisfying some condition P we

mean the unique string, if it exists, such that a E VA[s], and for any other a' E VA[s],

either the computation a E VA[s] became valid before the computation a' E VA[s], or

9 A rational whose binary expansion is finite, ie. a finite sum of powers of 2.

3. RANDOMNESS AND LR-REDUCIBILITY 9

if they became valid at the same stage then 0' preceeds a' in the length/lexicographical

ordering of strings.

3. Randomness and LR-reducibility

3.1. Martin-Lof randomness. A Marlin-Lii! test is a sequence (Ui)iEN of uni­

formly ~y classes such that J.L(Ui) ::; 2-i. Each Ui is called a member of the test. The

intersection niUi is an effective measure 0 set (nullset). We say that a real X E 2w is

captured by the test (Ui) if X E niUi. X is Martin-Lii! random if X ¢ niUi for all

Martin-Lof tests (Ui)iEN; that is, X is not captured by any Martin-Lof test.

The motivation for Martin-Lof randomness is that a real is 'random' if it does not

have any 'special properties' or 'patterns' that can be effectively approximated. A

pattern or property is 'special' if it is atypical in the measure sense, that is, if the class

of reals with that property has measure O. Each Martin-Lof test approximates (the

nullset of reals satisfying) one such special property. Hence if X is not captured by

any Martin-Lof test, then it does not have any special property that can be effectively

approximated, and is, as far as can be effectively determined, random.

By weakening or strengthening the notion of Martin-Lof test, we can obtain other

notions of randomness. For instance, if we require that J.L(Ui) = 2-i , then we obtain

Schnorr randomness (after Schnorr [66]); if we require only that J.L(Ui) ---7 0 as i ---7 00

without a uniform bound on J.L(Ui) then we obtain a stronger randomness notion known

as weak 2-randomness. We will not be concerned with other types of randomness in this

thesis however, and we will use the word 'random' to just mean Martin-LOf random.

From an enumeration of any c.e. set W we can obtain a Martin-Lof test (Ui)iEN

by treating W as a set of axioms of the form (i,O') for i E Nand 0' E 2<w, asserting

that 0' E Ui, and discarding any axioms that would make J.L(Ui) > 2-i. Moreover, every

Martin-Lof test arises from some c.e. set in this way. Hence there is a uniform listing

of all Martin-Lof tests. From this listing we can construct a universal Martin-Lo! test:

let (Uik)iEN be the k'th Martin-Lof test in the listing, and let

(2) Ui = UUi\k+l'
k

Clearly the Ui are uniformly ~y and J.L(Ui) ::; 2-i, hence they form a Martin-Lof test.

We have niuf ~ niUi for all k, so that X E 2w is random iff X ¢ niUi'

10 1. INTRODUCTION

The definitions of Martin-LOf tests and randomness may be relativised to an arbi­

trary oracle A. An oracle Martin-Laf test is a uniform sequence of oracle E~ classes

(Ui)iEN such that /-L(Ui
A) ::; 2-i for any oracle A. As in (2) above, we can obtain a

universal oracle Martin-Lof test (Ui)iEN' A real X E 2w is A-random if A f/. niul for

the universal oracle Martin-LOf test (Ui)iEN.

3.2. Low-for-randomness. Low for randomness, and equivalent notions such as

K-triviality, have been a significant area of recent research (for instance, [59, 22]). An

oracle A E 2w is low for random if all (unrelativised) random reals are also A-random.

That is,

X is random => X is A-random.

Informally, the oracle A is no assistance, compared to the unrelativised case, for detect­

ing patterns in reals. The universal A-Martin-Lof test does not capture any reals that

aren't already captured by the unrelativised universal Martin-LOf test.

Certainly all computable sets are low for random. A noncomputable low for random

c.e. set was constructed by Kucera and Terwijn [39] using the now well-known cost

function method. A series of work by Downey, Hirschfeldt, Nies and Stephan [22],

Nies and Hirschfeldt [59], Nies [59] and Hirschfeldt, Nies and Stephan [28] culminated

in the co-incidence of the class of low for randoms with several other classes of reals:

the K-trivials, low for K, and the bases for randomness. We list some important facts

about the class of low for random reals (some of which are best proved by first proving

the corresponding fact for the K-trivials and then invoking the equivalence between

K-triviality and low for randomness). All low for randoms are ~g, and superlow (that

is, A' =tt 0'). The low for randoms form an ideal in the ~g or c.e. Turing degrees; that

is, the low for random Turing degrees are closed downwards under ::;T and under join.

Every ~g low for random set is computable in some low for random c.e. set; hence in

fact the ideal of low for random Turing degrees is generated by the c.e. low for randoms.

For proofs of these facts, a thorough treatment of the notions of K-triviality, low for K

and bases for randomness, and their equivalence with low for randomness, we refer to

Nies [60] or Downey and Hirschfeldt [20].

3.3. LR-reducibility and LR-degrees. Now we come to the key notion of this

thesis.

3. RANDOMNESS AND LR-REDUCIBILITY 11

DEFINITION 1.1. Let A, B E 2W. The real A is LR-reducible to B, A ~LR B, if the

class of B-random reals is contained in the class of A-random reals. That is,

X is B-random =} X is A-random.

A <LR B denotes A ~LR B but B 1:.LR A. A is LR-equivalent to B, denoted A =-LR B,

if A ~LR Band B ~LR A. An LR-degree is an equivalence class under the equivalence

relation =-LR' The LR-degree of the real A is denoted degLR(A). An LR-degree is c.e. or

~g if it contains a c.e. or ~g set, respectively.

It is more intuitive to phrase the definition of A ~LR B in contrapositive: if X is

not random relative to A then it is not random relative to B. Informally, oracle B is at

least as good at detecting patterns as oracle A.

LR-reducibility was first defined by Nies in 2005 [59]. It can be seen as a partial

relativisation of the notion of low for random.1O Clearly A ~T B implies A ~LR B.

The converse fails however; Kucera and Terwijn's [39] noncomputable low-for-random

set A satisfies A ~LR 0 but A 1:.T 0. Hence LR-reducibility is a proper weakening

of 'lUring reducibility. However it still has some properties in common with 'lUring

reducibility. For instance, both ~LR and 5:T are Eg predicates (this is clear for 5:LR,

for instance, from Theorem 1.5 below). Also, some techniques from the study of the

c.e. and ~g 'lUring degrees can be adapted to work with LR-reducibility. Examples of

this are Barmpalias, Lewis and Stephan [6] and Barmpalias, Lewis and Soskova [5], in

which the familiar techniques of Sacks restraints and Sacks coding from the c.e. 'lUring

degrees are adapted to the context of c.e. LR-degrees. We will use Sacks restraints in

the LR-context in chapter 2.

We mention without detailed proof some key facts and significant results in the

study of LR-degrees. The least LR-degree 0 LR consists of exactly the low for random

sets. If A =-LR B then A is low for random relative to B and B is low for random

relative to A. Each LR-degree is countable (ie, contains only count ably many sets).

This follows from the fact that if A =-LR B then A and B are low for random relative

to each other, and thus A' =-tt B' by relativising the fact that all low for randoms

are superlow. This was first observed by Nies [59]. However, some LR-degrees have

uncountably many predecessors. Barmpalias, Lewis and Soskova [5] and independently

10 Note however that a full relativisation of the statement "A is low for random" to an oracle B would
be that "all B-randoms are A EB B-random", ie X is B-random =} X is A EB B-random.

12 1. INTRODUCTION

Miller and Yu [55] showed that there are uncountably many sets A ~LR 0'. Since

each LR-degree is countable, there are uncountably many LR-degrees below that of

0'. Barmpalias [3] later improved this to show that there are uncountably many reals

~LR any non-Iow-for-random b.g real. Not every nonzero LR-degree has uncountably

many predecessors though; Miller [54] showed that reals which are low for the halting

probability 0 11 bound only count ably many LR-degrees. In particular all 2-randoms12

are low for 0 and so bound only countably many LR-degrees.

Kjos-Hanssen, Miller and Solomon [31] showed that ~LR is equivalent to another

reducibility arising from relative randomness, LK-reducibility ~LK. Nies [59] defined

A ~LK B if there is a constant c such that for all strings 0',

where K X (0') is the prefix-free Kolmogorov complexity of the string 0', relative to the

oracle X. Intuitively, the oracle B is at least as useful for compressing finite data as A.

The reducibility ~LK has also been studied in [54]. Since ~LR and ~LK co-incide, one

could re-interpret all results about ~LR in terms of prefix-free Kolmogorov complexity,

instead of in terms of Martin-Lijf tests and measure.

As Turing reducibility implies LR-reducibility, each LR-degree is a union of Turing

degrees. Barmpalias, Lewis and Soskova [5] studied the Turing degrees inside LR­

degrees, and showed that every LR-degree contains infinite chains and infinite antichains

of Turing degrees. They showed that this holds in the c.e. case also: every c.e. LR-degree

contains infinite chain..". and antichains of c.e. Turing degrees. Each LR-degree is closed

under EEl, the join operation in the Turing degrees. This follows from the fact that if

A =LR B then A and B are low for random relative to each other, and the fact that

low for randoms are closed under EEl relativised to A or B.

However, EEl does not give a join (least upper bound) operation in the LR-degrees:

Kucera and Terwijn [39] constructed a promptly simple low for random set A, and by

a well-known result from [1] the promptly simple c.e. Turing degrees co-incide with the

low cuppable c.e. Turing degrees. Therefore there is a low B such that A EEl B =T 0'.

B cannot be low for random since the low for randoms are closed under EEl and all low

11 A real A is low for n if every (equivalently, some) random of c.e. Thring degree is also A-random.
This notion was defined by Nies, Stephan and Terwijn [61], and further studied in an excellent paper
by Downey, Hirschfeldt, Miller and Nies in [21] and by Miller [54].
12 X is 2-random if it is random relative to the halting problem 0'.

'$

3. RANDOMNESS AND LR-REDUCIBILITY 13

for randoms are low (and in particular cannot be ~T 0'). Moreover B 1=-LR 0' since

B' 1=-tt 0". Hence B $ A 1=-LR B even though A =LR 0. It is unknown if every pair of

LR-degrees has a least upper bound, ie. if the LR-degrees form an upper semi-lattice.

Barmpalias, Lewis and Soskova [5] also studied the c.e. LR-degrees as a structure.

They prove analogues of some theorems from the c.e. 'lUring degrees, such as the Sacks

splitting theorem: that any non-Iow-for-random c.e. set A can be split into two disjoint

c.e. sets B, C such that A ~LR B and A ~LR C. Barmpalias, Lewis and Stephan [6]

continue the study of c.e. LR-degrees, proving a weak density theorem:

THEOREM 1.2 (Barmpalias, Lewis and Stephan [6]). Let A, B be c.e. sets such that

A <LR B and A ::;T B. Then there is a c.e. set C such that A <LR C <LR B and

A ::;T C ::;T B.

The proof of Theorem 1.2 is an adaptation of that of the Sacks density theorem for the

c.e. 'lUring degrees. It is not known if this holds without the requirement that A ::;T B.

Hirschfeldt, Nies and Stephan proved the following theorem connecting computable

enumerability, randomness and incompleteness.

THEOREM 1.3 (Hirschfeldt, Nies and Stephan [28]). Suppose A is c.e., Z is random

and 0' ~T A $ Z. Then Z is A-random.

It follows from this theorem that the ~g and c.e. LR-degrees differ.

COROLLARY 1.4 (Folklore). There is a ~g LR-degree that does not contain any

c.e. sets.

PROOF. Let Z be a low random; such a random exists by the Low Basis Theorem

(see Soare [68] §VI.5.13) applied to the complement of a member of a universal Martin­

Lof test. We claim that the LR-degree of Z does not contain any c.e. set. Suppose that

Z =LR A for some c.e. A. Since each LR-degree is closed under $, A $ Z is low and in

particular A $ Z <T 0'. Therefore by Theorem 1.3, Z is random relative to A. But Z

is not random relative to itself, contradicting that A =LR Z. o

In fact, the Low Basis Theorem guarantees that Z is superlow, Z' ::;tt 0', and hence

Z is w-c.e. We may therefore deduce the stronger result that the w-c.e. LR-degrees

differ from the c.e. LR-degrees. It is not known if the n-c.e. LR-degrees differ from the

c.e. LR-degrees or from the w-c.e. LR-degrees.

14 1. INTRODUCTION

Barmpalias [2] has established that the structures of c.e. and Dog LR-degrees are not

elementarily equivalent to the structures of c.e. and Dog Turing degrees, respectively. The

elementary difference that Barmpalias gave between the c.e. LR-degrees and c.e. Turing

degrees is the existence of minimal pairs: Lachlan [40] and independently Yates [74]

showed that there are minimal pairs of c.e. Turing degrees, whereas Barmpalias [2]

established that there are no minimal pairs of c.e. LR-degrees. The elementary difference

between the Dog LR-degrees and Dog Turing degrees is the existence of minimal degrees:

Sacks [64] constructed a minimal Dog Turing degree, and Barmpalias [2] showed that

there is no minimal Dog LR-degree (in fact, every Dog LR-degree bounds a nonzero

c.e. LR-degree).

4. LR-reducibility and bounded coverings

4.1. Characterisations of LR-reducibility in terms of bounded coverings.

We now present in Theorem 1.5 some important characterisations of 5:.LR. These char­

acterisations provide a concrete way for us to work with LR-reducibility, giving us a

means to construct or diagonalise against possible LR-reductions.

THEOREM 1.5 (Kjos-Hanssen [30], Kjos-Hanssen, Miller and Solomon [31]). Let

A, B E 2w. The following are equivalent:

(i) A 5:.LR B;

(ii) for every A-~~ class WA with p,(WA) < 1, there is a B-~~ class VB such that

(iii) for some member U of a universal oracle Martin-Lof test, there is a B-~~ class VB

such that

UA ~ VB and p,(VB) < 1;

(iv) for every A-c.e. set of strings WA with weight W A < 1, there is a B-c.e. set of

strings VB such that

WA ~ VB and weight VB < 1;

4. LR-REDUCIBILITY AND BOUNDED COVERINGS 15

(v) for every A-c.e. set of strings W A with weight WA < 00, there is a B-c.e. set of

strings VB such that

WA ~ VB and weight VB < 00.

Parts (i),(ii),(iii) of Theorem 1.5 are due to Kjos-Hanssen [30]. Parts (iv) and (v)

are due to Kjos-Hanssen, Miller and Solomon [31]. We give a proof of the theorem in

section 4.3.

Theorem 1.5 provides a convenient way to work with LR-reductions. If we wish

to construct a set A to be 1.LR a given set B, by (ii) it suffices to diagonalise against

bounded B-E? classes by constructing an A-E? class TA with p,(TA) < 1 and TA ~ VB

for any bounded oracle E? class V. Alternately, if we wish to ensure that A ~LR B, by

(iii) it suffices to construct a B-E? class VB with p,(VB) < 1 and UA ~ VB, for some

universal oracle Martin-Lof test member U. Conditions (ii) and (iii) will be the primary

tool for working with LR-reducibility in chapters 2, 3 and 4. In chapter 5 it will be

convenient to work with LR-reducibility and low-for-randomness via (iv) and (v).

The difference between (ii) and (iv) is that WA is considered as a set of reals in

(ii) and as a set of strings in (iv). Clauses (iv) and (v) are in the spirit of Solovay's

formulation of Martin-Lof randomness. A Solovay test is a c.e. set of strings S such

that weight S < 00. A real X E 2w is captured by the test S if there are infinitely many

strings (J E S with (J C X. Solovay [70] showed that X is Martin-Lof random iff X is

not captured by any Solovay test. This holds when relativised to an arbitrary oracle.

4.2. Preparation for the proof of Theorem 1.5. We first give some lemmas

which will be useful for the proof of Theorem 1.5 in section 4.3. To prove the equivalence

of (i), (ii) and (iii) of Theorem 1.5 we will follow the presentation in Barmpalias, Lewis

and Soskova [5]. Our proof of the equivalence of (ii), (iv) and (v) is adapted from Nies

[60] Lemma 5.6.4, which in turn follows Simpson [67].

LEMMA 1.6. If a II? class P contains a random, then P has positive measure.

PROOF. Suppose p,(P) = O. Let Ps be a computable sequence of clopen sets such

that P = nsPs. In particular p,(Ps) is computable. For i E N let k i be the least such

that p,(PkJ ~ 2-i . Then (Pk;)iEN is a Martin-Lof test which captures all reals in P.

Therefore any real in P is not random. 0

16 1. INTRODUCTION

In fact, if P contains a random then f..L(P) is random, but we will not need this

stronger result.

LEMMA 1.7. Let U be a member of a universal oracle Martin-Lof test and let a E

A f..L(UA n [aj)
f..La{U):= f..L([aj) < 1.

PROOF. Suppose [aj ~ UA . Then [aj- UA is a nonempty A-II~ class containing a

random. Hence it has positive measure by Lemma 1.6 relativised to A, and in particular

o

For sets of strings X, Y ~ 2<w, let

(3) XY := {aT: a E X, T E Y}.

If X, Yare c.e. in some oracle A then XY is also c.e. in A.

LEMMA 1.8. Let A, B E 2w, and suppose that X, Y are A-E~ classes with measure

< 1, V is a B-E~ class with measure < 1 and XY ~ V. Then there is a B-E~ class W

with measure < 1 such that either X ~ W or Y ~ W.

PROOF. Suppose first that there is a a E X such that f..La(V) < 1. Then for

W = {T : aT E V} we have Y ~ Wand f..L(W) < 1. Suppose next that f..La(V) = 1 for all

a E X. Let q be a rational> 0 such that f..L(V) < 1- q. Let W = {a : f..La(V) > 1 - q}.

We have X ~ Wand f..L(W) :::; f..L(V) . (1 - q)-1 < 1. 0

A tail of a real X is any final segment of X.

LEMMA 1.9. If P is a II~ class of positive measure, then P contains a tail of every

random.

PROOF. Let X be random and let S be a c.e. set of strings such that [Sj = 2W
- P.

Let q be a rational < 1 such that f..L(S) < q and let ki be the least such that qki :::; 2-i .

Then Ski is a Martin-Lof test (where sn is as in (3)), so X rf:. niski . Thus X rf:. sn for

some n. Let n be the least such. Then X E sn-1 so X :J T for some string T E sn-1.

Let Z be the tail of X obtained from X after discarding T. Z rf:. S so Z E P as

required. o

We will use this analysis fact in proving (iv) of Theorem 1.5.

4. LR-REDUCIBILITY AND BOUNDED COVERINGS 17

LEMMA 1.10. Let (ai)iEN be a sequence of real numbers such that 0::; ai < 1. Then

2: ai < 00 <=> II 1 - ai > O.
i i

For a proof, see for instance Nies [60] Lemma 5.6.4.

4.3. Proof of Theorem 1.5. Now we can give the proof of Theorem 1.5.

PROOF OF THEOREM 1.5. We will prove (i) =* (ii) =* (iii) =* (i) and then (ii) =*

(v) =* (iv) =* (ii).

(i) =* (ii). Assume A ::;LR B, that all B-randoms are A-random. Let WA be an

A-:E~ class with ",,(WA) < 1. Fix a member [; of a universal oracle Martin-V)f test, and

let Ui be the universal oracle Martin-Lof test from (2). We claim that

(4) 3m E N, a E 2<w such that [a] !Z [;B and U~ n [a] ~ [;B.

Assume the contrary. We construct by finite extensions a real X which is in U~ for all m

but X rJ. [;B. Such an X is B-random but not A-random, contradicting A ::;LR B. Let

7-1 be the empty string and assume inductively that Ti-1 is defined and [Ti-1] !Z [;B.

A - B By the negation of (4), Ui n [Ti-1] !Z U . Therefore there is a T :J Ti-l such that

[T] ~ Ui
A and [T] !Z [;B. Let Ti be such a T. Then the real X = UiTi is B-random but

not A-random. This establishes (4).

Let m and a be as in (4), and let

Then U~ ~ VB and by Lemma 1.7, ""q([;B) < 1 and so ",,(VB) < 1. (We have actually

showed (iii) for the specific case when U is one component of the universal test (2).) Let

q be a rational ~ 1 such that ",,(WA) ::; q, and let ki be the least such that qk; ::; 2-i .

Then (WA)ki gives an A-Martin-Lof test (where (wA)n is as in (3)). By the definition

(2) of the universal test Ui, we have (WA)ki ~ U~ ~ VB for some i. By Lemma 1.8,

there is a B-:E~ class VB with WA ~ VB and ",,(VB) < 1.

(ii) =* (iii) is immediate.

(iii) =* (i). Assume that UA ~ VB for some U and Vas in (iii). Taking complements,

we have VB := 2w - VB ~ UA := 2w - UA. Let X be B-random. Then VB contains a

18 1. INTRODUCTION

tail Z of X by Lemma 1.9 relativised to B, since /-L(VB) > O. So UA contains Z also,

and hence Z is A-random. But X is A-random iff Z is A-random, so X is A-random.

(ii) =? (v). We follow Nies [60J Lemma 5.6.4 in the special case where f is the

weight function. Assume (ii). Let g(a) = I:r<uI71 (where the ordering < is the usual

length-lexicographical ordering of strings). Let

Eu = {Z ~ N::.Ji E Z,g(a) ~ i < g(a) + lal}.

Eu is a clop en set and /-L(Eu) = 1 - 2-1171 . It is easy to check that /-L(Eu n Er)

/-L(Eu)/-L(Er) for a i= 7, and more generally

/-L(n Eu) = IT/-L(Eu) = IT 1- r 1ul

uEI uEI uEI

for I ~ 2<w.

Let W A be a bounded A-c.e. set of strings, and let

P is an A-I1~ class and /-L(P) > 0 by Lemma 1.10 and the fact that W A is bounded. By

(ii) (taking complements), there is a B-I1~ class Q such that Q ~ P and /-L(Q) > O. Let

V is a B-c.e. set, and WA ~ V. Finally, weight V = I:uEV 2- 1171 < 00 by Lemma 1.10

because

(v) =? (iv). Assume (v). Let W A be an A-c.e. set with weight WA < 1. By (v),

there is a B-c.e. set VB with weight VB < 00 and WA ~ VB. By discarding finitely

many strings from VB - W A , we may obtain a B-c.e. set VB with weight VB < 1 and

WA ~ VB.

(iv) =? (ii) is immediate since every A-E~ class of measure < 1 is generated by a

prefix-free A-c.e. set of weight < 1. o

6. THE RECURSION THEOREM 19

5. Priority arguments and tree constructions

We assume familiarity with priority arguments, in the form of finite injury con­

structions and tree constructions. Tree constructions will be particularly important in

chapters 2 and 4. Our notation will mostly follow Cooper [15]; further background on

the priority method may be found in a standard reference such as Soare [68]. Formally,

we can consider a tree T as a suitable subset of words E<w in an ordered alphabet

E, and a node as a member of that set T. However, we will not specify our trees so

formally. We prefer instead to define them inductively by specifying the types of nodes

(or labels) of which the tree is comprised, listing the outcomes of each node type in a

certain order, and describing how to assign labels to nodes according to their length.

We consider our trees to grow downwards. In particular, we have this in mind when

we use terminology like 'above' and 'below'. Suppose that a, /3 are nodes on a tree.

We say that a is above /3 if a C /3, and a is below /3 if a :J /3. We use the notation

a <L /3 to denote that a is to the left of /3 in the lexicographical ordering (induced by

the ordering of outcomes, or more formally by the ordering of the alphabet E). a < /3

denotes that a <L /3 or a C /3, in which case we also say that a has higher priority

than /3. a:::; /3 has the obvious meaning of a < /3 or a = /3, and similarly for :::;L. For a

node a with lal > 0, a- = a f lal - 1 denotes the parent of a.

We will perform our constructions in stages. Typically, at the start of stage s + 1

we are given the values possessed by parameters such as A, VB, etc at the end of stage

s, which we denote with the suffix [s]. Any enumerations, definitions, etc that we make

during stage s + 1 are in order to define A[s + 1], VB[s + 1] etc.

6. The recursion theorem

The Recursion Theorem of Kleene [32] is a convenient tool for simplifying construc­

tions. We will use it in Theorem 2.13 and in chapter 5 in the form of the Slowdown

Lemma 5.4. Let (<I>e)eEN be a standard listing of all partial computable functions.

THEOREM 1.11 (Recursion Theorem, Kleene [32]). Let f N -+ N be a total

computable function. There is a fixed point e E N such that

20 1. INTRODUCTION

PROOF. Let g be a computable function such that

for all x E N. That is, g(i) is the index of a partial computable function that first

computes lPi(i), and if lPi(i) 1, then computes IPf(<I>i(i))(X). Let k be an index for the

partial computable function g, ie. such that

Then

IPg(k)(X) ~ IPf(<I>k(k)) (x) = IPf(g(k))(X).

Hence e = g(k) is the required fixed point. o

Since c.e. sets are the domains of partial computable functions and vice versa,

we may alternately phrase the Recursion Theorem in terms of the standard listing

of c.e. sets (We)eEN: if f is a computable function then there is a fixed point e such that

A small modification of the previous proof yields the following version of the Recursion

Theorem.

THEOREM 1.12 (Recursion Theorem with parameters). Let n EN and f : Nn+1 -) N

be a total computable function. There is a computable function k : Nn -) N such that

CHAPTER 2

Structural results in the c.e. and ~g LR-degrees

In this chapter we present some results about structural properties of the c.e. and

~g LR degrees. First we give a technique for lower cone avoidance in the c.e. and ~g LR

degrees, and combine this with upper cone avoidance via Sacks restraints to construct

a c.e. set which is LR incomparable with a given ~g set of intermediate LR degree.

Next we combine measure-guessing with an LR-incompleteness strategy to construct

an LR-incomplete c.e. set which is LR-above a given low ~g set. This is in contrast to

the 'lUring degrees, in which there is a ~g degree which is 'lUring incomparable with

all intermediate c.e. degrees.

Finally we discuss how to combine the techniques of the first two theorems in the

c.e. case, and the obstacles to combining them in the more general case of ~g sets.

1. Working with an LR-incomplete set

We outline a technique for working with an LR-incomplete c.e. or ~g set in full­

approximation constructions. The technique is a method for leveraging the LR-incom­

pleteness of a set A to limit the changes in the approximation of A, effectively imposing

'restraints' on A which can be utilised by other requirements in a construction.

Suppose that the c.e. set A is LR-incomplete and FA is an A-~~ class; then by

Theorem 1.5 we have

for a member U of a universal oracle ML-test. If we attempt to trace U0' into an A-~~

class FA, then we are guaranteed that 0' will change more frequently than A, frequently

enough to ensure p,(FA) = 1. We can use this to our advantage to provide restraints

on A. Suppose that during a construction we wish to restrain A r u at stage s. We

can take a string p from U0' [s] which is not yet in FA, and enumerate p into FA with

use u. Then we wait for a 0'-change below the use of the computation p E U0'[s]. If

the 0'-change never occurs, then we never proceed further with this attempt, and the

restraint is unsuccessful; we say that the attempt is stalled. However in this case we

21

-

22 2. STRUCTURAL RESULTS IN THE C.E. AND <lg LR-DEGREES

have that p E U0' permanently; this can happen for at most /.L(U0') worth of strings p,

and this can be made as small as necessary by choosing a suitably small U. Otherwise,

a 0'-change eventually occurs. At this point, we have p E pA but p rf. U0'. If A later

changes below u, then the attempt at restraining A r u is unsuccessful. However we can

argue that sufficiently many attempts will be successful (ie A will not change below u

after the 0'-change) to ensure that /.L(pA) = 1.

If our requirement is such that it requires a finite measure worth of restraints for

satisfaction, then we can argue that it will be satisfied with the above method. Suppose

that it is not satisfied. We will make infinitely many attempts at restraining A r u

for some u, each attempt corresponding to a string from U0'[s]. Infinitely many will

correspond to the true strings of U0'. Since a 0'-change never occurs for these attempts,

we trace U0' into pA. But then, by the LR-incompleteness of A, we are assured that

measure 1- /.L(U0') worth of attempts will succeed, providing enough restraint to satisfy

the requirement.

We can think of this technique in the following way. We are given an approximation

A[s] of A such that A = lims A[s]. Each time we take a string p from U0' and put

it into pA[s] with some use T = A[s] r u, we are requesting that A => T in the limit;

the measure of p is the strength of the request. If in fact TeA, then the request

is successful. Since we will threaten to make U0' ~ pA, the LR-incompleteness of A

guarantees that enough requests will be successful to ensure that /.L(pA) = 1. Whether

a request is successful or not depends only on whether TeA in the limit. It does not

matter (as far as this b~ic strategy is concerned) whether A is approximated in a c.e. or

Ag way. Thus the technique can be used with both c.e. and Ag sets A.

We will first use this technique in a lower cone avoidance strategy, as part of the

construction of a c.e. set B that is LR-incomparable to a given LR-intermediate Ag
set A. In section 3.5 we sketch another use of the technique in combination with the

LR-incompleteness strategy of section 3.

2. A c.e. LR-degree incomparable with a given intermediate Ag LR-degree

Barmpalias, Lewis and Stephan [6] use an oracle construction to construct a Ag
set B that is LR-incomparable with a given Ag set A of intermediate LR degree. We

strengthen this result to make B c.e., using a full approximation construction.

:p:p

2. A C.E. LR-DEGREE INCOMPARABLE WITH A GIVEN INTERMEDIATE ~g LR-DEGREE 23

The analogous theorem for the 'lUring degrees, namely that for every ~g set A of

intermediate 'lUring degree there is (uniformly in A) a c.e. set B 'lUring incomparable

with A, was proved by Sacks [65J using a coding strategy combined with Sacks restraints.

A presentation may be found in Odifreddi [62J XI.3.7.

THEOREM 2.1. Let A be a ~g set such that 0 <LR A <LR 0'. There is (uniformly

in A) a c.e. set B such that AILRB.

Let A be a ~g set such that 0 <LR A <LR 0', given as a computable approximation

A[sJ such that

limA(x)[sJ = A(x) for all x.
8

Let (Ve, Pe) be a listing of all LR-operators, that is, pairs (V, p) of an oracle E? class V

and a dyadic rational P E (0,1) such that

Let U be a fixed member of a universal oracle Martin-V)f test. We will construct the

required c.e. set B, as well as an oracle E? class T, to satisfy the requirements

Pe: TB Sf: ~A

Be: UA Sf: ~B

for all e E N. In fact, we will uniformly build a sequence Ta,i of oracle E? classes,

where i E N and a ranges over nodes of the tree of strategies defined later. We can set

TB = u~ .rB. which is a B-E? class. We will ensure that u, .. (l,t

L /-t(T!.i) < 2-1
,

a,i

so by Theorem ~.5, the requirements Pe ensure that B 1:.LR A. We will use a strategy

based on the technique outlined at the start of the chapter to meet the P requirements;

for the B requirements we will use a variation of Sacks restraints adapted for LR degrees,

first used by Barmpalias, Lewis and Soskova [5J.

2.1. Outline of the B-strategy. We use Sacks restraints, adapted to LR-reduct­

ions. Sacks restraints were first used by Sacks [65J in the context of c.e. 'lUring degrees

24 2. STRUCTURAL RESULTS IN THE C.E. AND .6.g LR-DEGREES

(see Soare [68] for the standard presentation). The technique was adapted to LR-degrees

by B armp alias, Lewis and Soskova [5].

In the 'lUring case, suppose we are building B and want to ensure that <pB f:. A

for a 'lUring functional <p and a noncomputable c.e. or ~g set A. We can monitor the

length of agreement of <pB = A, and whenever we see a new computation <pB(n) = A(n)

converge, we restrain B on the use u of <pB (n) to preserve that part of the computation.

If the restraint is respected and B does not change below u after the restraint is imposed,

then we can argue that <pB f:. A. If <pB = A, then we would be able to compute A(n)

by finding a stage in the construction when the length of agreement is above n; at this

stage the <pB-side of the computation will never change so the approximation to A(n)

must be correct. Thus A would be computable, which is a contradiction.

In the case of LR-reductions, we have a fixed member UA of a universal Martin-LOf

test relative to A, and a bounded B-E~ class VB. We want to ensure that UA ~ VB.

Suppose at some stage we see a string a E UA and a ~ VB with use u. We can restrain

B up to u in order to preserve the computation a ~ VB. Assuming that the restraint

is respected, we can also enumerate the string a into a E~ class G. If UA ~ VB, then

we will eventually do this for every string a E UA . Thus UA ~ G. But since the

B-restraint is respected, each string in G is also in VB, so G ~ VB. Since VB has

measure < 1, so does G. But then UA is contained in a E~ class of bounded measure,

which would mean that A is low-for-random, a contradiction. So eventually there must

be some string a E U A but a ~ VB, and we succeed in diagonalising against V.

2.2. Outline of the P-strategy. Formal details of the P-strategy are given later.

We omit the subscript e in the following discussion. We will diagonalise against the LR­

operator (V,p) by putting a clopen set a into TB, waiting for a ~ VA[s], and then

removing a from TB by enumerating into B if we see a ~ VA[s]. If a is never ~ VA[s]

then P is satisfied and the requirement contributes at most J..l(a) to J..l(TB). If eventually

a ~ VA[s] and A does not later change below the use of the computation a ~ VA[s],

then J..l(V A) increases permanently by J..l(a) but J..l(TB) does not increase. With suitable

choice of J..l(a), requirement P must be satisfied after finitely many repetitions of this

strategy as J..l(VA) cannot increase above p.

If however A does later change below the use of a ~ VA[s], then a may no longer be

~ V A and the attack a is unsuccessful. We can use the method described above using

lii;l?

2. A C.E. LR-DEGREE INCOMPARABLE WITH A GIVEN INTERMEDIATE Ag LR-DEGREE 25

the LR-incompleteness of A to impose restraints on A and guarantee that sufficiently

many attacks will be successful to satisfy P. Since A lLR 0', if U0' ~ FA for some

A-c.e. class FA and member U of a universal oracle Martin-Lof test, then J.l(FA) = 1.

When we want to schedule an attack at stage s, we take a string p E U0' [s] and choose a

with J.l(a) = J.l(p). When the attack a appears successful because a ~ VA[tJ, we would

like to restrain A on the use u of a. We put p into an A-c.e. class FA with the same use

u, then we wait for a 0'-change to remove p from U0'. If this 0'-change never occurs,

then p E U0' permanently and the attack a is considered unsuccessful; however this can

happen for at most J.l(U0') worth of attacks. Otherwise, 0' eventually changes and pis

removed from U0'. Then we can remove a from rB via a B-change. If later an A-change

removes a from V A, then the attack a is unsuccessful. However, since we threaten to

trace U0' into FA, we are guaranteed that enough p's will be permanently in FA, and

hence a's permanently in VA, to ensure that J.l(FA) = 1. Since each p E FA corresponds

to an attack a of the same measure in V A, we can argue that the P requirement must

eventually be satisfied as J.l(VA) = 1 is impossible.

Each attack a is tied to a computation p E U0'[s], and the outcome of the attack a

depends on the outcome of the computation p E U0'[s]. If the computation p E U0'[s]

is not permanent, then the attack a will be removed permanently from TB and will

either succeed or fail, depending on whether p E FA (and a ~ VA). If the computation

p E U0' [s] is permanent, then a will be permanently in TB. The attack a may end

up permanently pending (if a ~ VA), or permanently waiting (if a is never ~ VA).

However we also might have a ~ VA[s] at infinitely many s but a <l:. VA in the limit; in

this case, a may rotate infinitely often between waiting and pending. In this case a is

permanently in TB but a <l:. VA so the P-requirement is satisfied, and a itself does not

cause any enumerations into B. However, during the stages when a is pending, we will

schedule other attacks for P. Each time a changes from pending to waiting, any attacks

scheduled after 0' must be removed from TB. So although a itself will not cause any

B-enumerations, attacks scheduled during a's pending periods might cause infinitely

many B-enumerations, which could conflict with the B-restraints of weaker-priority

S-requirements. This conflict is resolved by having the P-strategy play an infinitary

outcome each time a moves between pending and waiting; the S-strategies below the

--~~-~-~-~---------------------':;;;:''';;;;:;::::::::''':iI:::''r:

26 2. STRUCTURAL RESULTS IN THE C.E. AND Dog LR-DEGREES

infinitary outcome will only believe a computation if its use is below that of any attacks

scheduled after a.

We will argue that if P is not satisfied then U0' ~ FA, FA has measure 1, and so

V A must have measure 1 also since every string in FA corresponds to a successful attack

in V A. For this argument to work, we require that successful attacks are disjoint. This

is slightly complicated by the bog approximation of A. At a stage So we may have an

attack a which is succeeding, ie a ~ VA[so] and its corresponding string p E FA[so].

At SI > So the attack a might be failing (a Sl V A[SI] and p ~ FA[SI]) because the

approximation to A has changed. We might now schedule a new attack a', which might

overlap (as a clopen set) with a. However, later on at S2 > SI the approximation to A

might change back to its state at So, and a would become succeeding again. If we keep

working with a', we risk having two non-disjoint attacks. To account for this, when

we create a new attack a' we record the state of all earlier attacks, in the form of a

suitable initial segment 'Y of A[s]. We choose bllonger than the use of any computations

relevant to earlier attacks a which might later become succeeding if A reverts back to

an earlier approximation. We will only work with a' at stages when 'Y C A[s]. We call

'Y the state of the attack a'. Note that this is not necessary if A is in fact c.e., since a

c.e. approximation cannot revert to a previous state.

Since we want to illustrate the technique outlined in section 1 in generality, the

form of the P-strategy we are using here is slightly more general than is necessary for

this specific construction. To meet the P-requirements of this theorem we could trace

strings from U0' directly into TB, rather than via an intermediate set FA. We could

thus slightly simplify the notation by eliminating the class FA. However the notion of

state and the infinitary outcomes would still be necessary. In order to establish notation

that is suitable for more general applications of this technique, such as in the discussion

of section 3.5, we will not make this simplification in this construction.

2.3. The priority tree. The construction takes place on an w + 1 branching tree,

with nodes labelled either Pe,i or Be for some e, i E N. Nodes are labelled according

to their length: if lal = 2e then a is labelled Be and has a single outcome 0 (that is,

there is a single child node a""'O extending a on the tree). If lal = 2(e, i) + 1 then a is

labelled Pe,i and has w + 1 outcomes (children)

00(0) <L 00(1) <L 00(2) <L ... <L f.

2. A C.E. LR-DEGREE INCOMPARABLE WITH A GIVEN INTERMEDIATE 6g LR-DEGREE 27

The ordering of outcomes <L induces an ordering on the tree; for nodes a, (3, a <L (3

indicates that a is to the left of (3, and a < (3 indicates that a <L (3 or a C (3. We

refer to nodes labelled Pe,i for some e, i as P-nodes, or as Pe-nodes if the index e is

significant, and similarly for S-nodes.

During the construction we will define approximations to the true path TP s, which

are the nodes of the tree which are active at stage s. Say that s is an a-stage, or

alternatively that a is accessible at s, if a ~ TP s'

2.4. P-requirements. Each P-node pursues an independent copy of the P-strategy.

Fix a computable listing aD, al,··· of all P-nodes on the tree. Recall that Pe is an up­

per bound on the measure JL(V{) of the e'th LR-operator. If a is a Pe-node (for some

e EN), let n be its position in the above ordering. Let ma be the least number m such

that 2-m < 2-n - 2 . Pe· Each P-node a has a counter c(a, s) which is the number of

times that node a has been reset by the end of stage s. At any stage, a works with

oracle E~-classes Ta and Fa, and a member U£' of a universal Martin-Lof test relative

to the halting problem. Actually, a works with a sequence of oracle E~-classes Ta,i and

Martin-Lof test members U!:i' i E N. Each time a is reset it empties Fa, abandons

the previous Ta,i, U!:i and starts working with Ta,i+I. U!:i+l instead. To be precise, at

stage s, a will work with Ta,c(a,s) and U::c(a,s)' where Ua,i is the ma + i + l'th member

of the universal oracle Martin-Lof test. For brevity we write Ta and Ua to refer to the

appropriate class Ta,i, Ua,i which is in use at the time; Ta and Ua may be considered

pointers to Ta,c(a,s) and Ua,c(a,s) at each stage s. If a is reset only finitely often, then

Ta, Ua are eventually fixed. We will ensure that JL(T~i[S]) ~ 2-ma - i - l for all X E 2W

and all s, so that, setting T = Ua Ui Ta,i, we have

(5) JL(TB) ~ L~2-ma-i-l ~ LTma ~~,
a t a

where 0: ranges -over all P-nodes.

Let a be a Pe-node. The node a will attempt to meet its requirement by putting

certain clopen sets of reals (attacks) a into T!l, waiting until T!l ~ VaA , then removing

the clopen set a from T!l and attempting to restrain A to keep a ~ Va
A . Each time,

a causes the measure of Va
A to increase by JL(a), while JL(T!l) does not increase. Since

JL(Va
A) is bounded by Pa < 1, this can only happen finitely often (with a suitable choice

of JL(a)) before some attack satisfies the requirement because a ~ Va
A .

28 2. STRUCTURAL RESULTS IN THE C.E. AND ag LR-DEGREES

An attack a is a finite prefix-free set of strings (representing a clopen set of reals)

which we treat as a single unit. It is possible that two attacks may be created at

different times in the construction which have the same set of strings, but in this case

we consider them to be distinct attacks (formally, we may consider an attack as the

finite set of strings along with the stage at which it is scheduled, though we will not do

this explicitly). When we put an attack into T![sJ we put each string from a into T![sJ

with the same use; we write a E T![sJ to mean that each string in a is in T![sJ with

the same use. At most one attack is scheduled (created) at each stage. If an attack a

is scheduled by node a then we say that a is an a-attack. The lifecycle of an attack is

as follows. It is scheduled at some stage t. At future stages it is either current or not

current; if it is current then it is either waiting for V:, pending 0'-permission, succeeding

or failing. These terms are defined later.

We consider each Ua,i as a c.e. set of axioms. An axiom is a pair (p, r) asserting

that p E UX if reX. Since we are working with U0' as we approximate 0', we are

only interested in those axioms such that r ~ 0'[sJ at some stage. An axiom (p, r) is

valid at stage s if the tuple (p, r) has been enumerated into U by stage s and r C 0'[sJ.

Fix a, i and let

(6)

be a list of the computations (axioms) from Ua,i which are valid at some stage, ordered

first by the least stage at which they are valid and then by the usual length/lexico­

graphical ordering on the Pi' When an a-attack is created, it is associated with one of

these computations. Suppose that attack a is associated with axiom (Pk, rk). We write

rank(O') to denote the position k of the axiom in the above list, p(O') to denote the string

Pk, p(O') to denote the computation (Pk. rk), and u(O') to denote Irkl.

Attack a also has a state 1(0'), defined when a is scheduled, which is an initial

segment of A at the stage when a is scheduled. The attack a is current at a later stage

s + 1 if 1(0') c A[sJ; at any stage, we only work with attacks which are current.

When we wish to restrain a computation a ~ VaA[s], we will put the string p(O') into

F; [s + 1 J by defining a new computation with use v larger than that of the computation

a ~ VaA[sJ. We say that the axiom (p, A[sJ r v) is in Fa on account of O'. Every axiom

in Fa is on account of some attack. Two distinct axioms (p, r), (p', r') E Fa may be

I¥E

2. A C.E. LR-DEGREE INCOMPARABLE WITH A GIVEN INTERMEDIATE Ag LR-DEGREE 29

on account of different attacks even if p = p' (although then T ::/= T'). We say that

p E F:[s] on account of a if p E F:[s] due to an axiom (p,T) E Fa[s] on account of a.

Schedule an a-attack at stage t + 1 by taking the least k (if it exists) such that

(Pk, Tk) is valid at t+ 1 and Pk fJ. F:[t], and choosing the least clopen set a ~ 2w - VaA[t]

with p,(a) = p,(Pk). Set p(a) = Pk, fJ(a) = (Pk, Tk), u(a) = hi and rank(a) = k. Let

w be the maximum use of any computation (p', T') E Fa[t] on account of any attack a'

with rank(a') < k, and define the state -y(a) to be A[t] r w. Put a into T![t + 1] with

fresh use. Note that, when scheduling an attack, a suitable choice for a will always exist

since

by choice of rna' It is possible that sometimes k will not exist (if U~'[t] ~ F:[t]). In

this case, do nothing; no attack is scheduled at t + 1.

At certain stages s + 1 we will implement a by putting p(a) into F:[s + 1] with

some use v; that is, enumerating a new axiom (p(a), A[s] r v) into Fa[s+ 1]. We declare

that the new computation is on account of a.

The attack (1 which was scheduled at t + 1 is failing at s + 1 > t + 1 if it is current at

s+ 1, 0'[s] r u(a)::/= 0'[t] r u(a) and p(a) is not in F:[s] on account of a. a is succeeding

at s+ 1 if it is current at s+ 1, 0'[s] r u(a) ::/= 0'[t] r u(a) and p(a) is in F:[s] on account

of a.

Attack a is waiting at stage s + 1 if it is current at s + 1, 0'[s] r u(a) = 0'[t] r u(a),

but p(a) is not in F:[s] on account of a. This is the case when a !6 VaA[s]. a is pending

at stage s + 1 if it is current at s + 1, 0'[s] r u(a) = 0'[t] r u(a) and p(a) is in F:[s] on

account of a. In this case we are waiting for a 0'-change before we remove a from T!.

It is possible that for some a we may have a ~ VaA[s] for infinitely many s but

a !6 Va in the limit. Such a a may be implemented infinitely often, with A[s] always

changing below the use of the new Fa computation. In this case, a E T! permanently

but a !6 vt so the requirement Pa is satisfied. Although a itself will not cause infinitely

many enumerations into B, attacks of rank > rank(a) may cause infinitely many B­

enumerations since any such attack will not be permanently current and will eventually

need to be removed from T!. To allow the lower-priority negative requirements to

work with these potentially infinitary enumerations, each time attack a is implemented

we access an infinitary outcome a~oo(k) for k = rank(a). The negative requirements

30 2. STRUCTURAL RESULTS IN THE C.E. AND t:.g LR-DEGREES

below this outcome will only believe a computation if the use of the computation is less

than that of any a-attack of rank> k which is in T![sJ.

Let (3 be an S-node below some infinitary outcome a~oo(n). The node (3 will only

believe a computation if the use of the computation is less than the use of any a-attack

a which is currently in T![sJ and has rank(a) > n. Precisely, suppose that {3 is an

S-node and r ~ VB[s] with use u for some clopen set r and oracle E~-class V. The

computation r ~ VB[s] is (3-believable if there does not exist a P-node a such that

• a~oo(n) ~ (3 for some n, and

• there is an a-attack a with rank(a) > n and a E T![sJ with use ~ u.

If in fact r ~ VB and {3 is on the true path, then eventually the computation will be

{3-believable.

We observe that the construction can be considerably simplified in the case that the

set A is low (A' =T 0/). In this case we can avoid the infinitary outcomes by a technique

similar to Robinson guessing (see Soare [68J §XI.3). We can take a computable function

h: N x N ~ {O, I} such that

Ii:nh(a,e,s) = {:
if a ~ V/

otherwise

and believe a computation a ~ YeA[sJ only if h(a, e, s) = 1. In this case, if a ~ YeA[sJ

at infinitely many s but not in the limit, then a will only be implemented finitely often

before h(a, e, s) reaches its limiting value of O. Hence the infinitary outcomes are not

necessary, and we could use the strategy in a finite injury construction.

2.5. S-requirements. Let a be an S-node. Define the length of agreement

lea, s) = max{ i : (Pi, ri) E U[s] and

Vj ~ i(Pi ~ V:[sJ by an a-believable computation, or Pi ¢. UA[sJ)}.

Since A is bog, we also need the modified length of agreement

mea, s) = max { i : 3a-stage t ~ S(i ~ lea, t) /\ B[sJ r u = B[tJ r u) }

where u is the maximum use of all computations Pj ~ V:[t] for j ~ i with Pj E UA[t].

we

2. A C.E. LR-DEGREE INCOMPARABLE WITH A GIVEN INTERMEDIATE ~g LR-DEGREE 31

Each S-node has a restraint Ta which is initially 0 and is set explicitly during the

construction. Let R(a, s) = max{T,B[s] : f3 < a} be the total restraint imposed by nodes

of higher priority than a. To Te8et an S-node a at stage s means to set Ta[S] = O.

2.6. Some conventions. We assume that when a string is put into any T/!,i with

some use u, it remains there until the number u is explicitly enumerated into B. In

particular, the string remains in T/!,i even if numbers < u enter B.

We use the 'hat-trick' for the enumeration of UA . Let ao = 0 and for 8 > 0 let as

be the least number such that A(as)[s] =/::. A(as)[s - 1], or as = s if such number does

not exist. Let

iJA[s] := UAtas[s] = {O' : 0' is in UA[s] with use ::; as}.

Henceforth we omit the hat and write UA[s] to mean UA[8]. The hat-trick ensures that

0' E U A [8] for all but finitely many 8 iff 0' E U A .

2.7. The construction. Initially, B and all classes Ta,i, Fa are empty, and Ta is

zero for all S-nodes a.

At stage 0, do nothing.

At stage 8 + 1, define TPs+1 inductively as below. After TPs+1 is defined, reset all

nodes f3 > L TP s+1'

Suppose that TP s+1 r n is defined, for n ;::: O. If n = s + 1 then stop defining TP s+1.

Otherwise let a = TP 8+1 r n and go to the appropriate case below .

• a is a P-node. Let 8' be the previous stage when a was accessible, or 0 if never.

Check if any of the following hold:

(I) there is an a-attack 0' such that 0' is in T![s] but 0' is not current at s + Ij
(II) there is a current a-attack 0' that is failing or succeeding at s + 1 and 0' E T![s]j

(III) there is a current a-attack 0' that is pending or waiting at s + 1 but 0' tt T![s];

(IV) there is a current a-attack 0' which is waiting at 8 + 1 and 0' ~ V;[s] (as sets of

reals);

(V) no current a-attacks are waiting at 8 + 1.

Go to the least case below which holds.

32 2. STRUCTURAL RESULTS IN THE C.E. AND ~g LR-DEGREES

(I) or (II) hold. For each such a, remove a from T![s + 1] by enumerating the

use of the computation a E T![s] into B[s + 1]. Let k be the minimum rank of all such

a, and reset a~oo(k) and all nodes of lower priority. Stop defining TPs+l.

(III) holds. For each such a, add a to T![s + 1] with fresh use. Stop defining

TPs+l.

(IV) holds. For the least such a, let v be the maximum of b(a)1 and the use of

the computation a ~. VaA[s], and implement a by defining p(a) E Fc¢[s + 1] with use v.

Let k = rank(a) and let TPs+1 f n + 1 = a~oo(k).

(V) holds. Schedule a new a-attack at s + 1. Stop defining TPs+l.

None of (I)-(V) hold. Let TPs+1 f n + 1 = a~ f .

• a is an S-node. Let r be the maximum use of all computations Pj ~ Vt![s] for

j ::; m(a, s) with Pj E UA[s]. If r > ra[s] then set ra[s + 1] = r, reset all nodes of lower

priority than a and stop defining TP s+1' Otherwise let TP 8+1 = a~O.

End of construction.

2.8. Verification. First we deal with the P-requirements. We give some lemmas

to clarify the relations between attacks.

LEMMA 2.2. Let a be a P-node. If a is an a-attack such that rank(a) = k and a

is current at stage s + 1, then for every j < k such that the j'th computation from the

list (6) is valid at s + 1 there is an a-attack a' with p(a') = Pj and rank(a') ::; j which

is current at s + 1.

PROOF. Suppose that there is a j < k such that the j'th computation (Pj, Tj) is

valid at s + 1 but there is no current attack with rank j. Let t + 1 < s + 1 be the stage

when a was scheduled. Since rank(a) > j, the computation (Pj, Tj) is valid at t + 1,

and we must have Pj E Fc¢[t]. But then there must be a current a-attack a' pending at

t + 1 with p(a') = Pj and rank(a') :s: j. But ')'(a') ~ ')'(a), and a is current at s + 1, so

a' must also be current at s + 1. o

The next lemma states that no two attacks associated with the same computation

from U~' are simultaneously current, and that any two attacks which both have strings

in Fc¢[s] are disjoint.

) wilE

2. A C.E. LR-DEGREE INCOMPARABLE WITH A GIVEN INTERMEDIATE Llg LR-DEGREE 33

LEMMA 2.3. For any P-node a and any stage s, if distinct a-attacks a, a' are both

current at s then rank(a) =1= rank(a'). If p(a),p(a') are both in Ft[s] on account of

a, a' respectively, then p(a) =1= p(a') and a n a' = 0 (as sets of reals).

PROOF. Let a, a' be as in the claim. Assume for contradiction that rank(a)

rank(a'), and let t+ 1, t' + 1 be the stages when a, a' respectively are scheduled. Suppose

w.l.o.g. that t < t'. Then 'Y(a) ~ 'Y(a') C A[t'], so a must be current at t' + 1, and is

either waiting, pending, failing or succeeding. a cannot be waiting at t' + 1 or the attack

a' would not be scheduled. Nor can a be failing or suceeding, as the computation p(a)

(= p(0")) is valid at t' + 1. Finally if 0' is pending at t' + 1 then p(0') E Ft [t'], and a'

would be scheduled with p(a') =1= p(a). So rank(a) =1= rank(a').

Suppose that p(a), p(a') are in Ft[s] on account of 0', 0". Then both 0',0" are current

at s + 1 by choice of the use of the FO/ computations, so rank(a) =1= rank(a') by the above.

Suppose w.l.o.g. that rank(a)'< rank(a') and let t + 1, t' + 1 be the stages when 0',0"

are scheduled. By Lemma 2.2, t < t'. Then a must be pending, failing or succeeding

at t' + 1. If 0' is pending or succeeding at t' + 1, then a ~ VO/A[t'] and 0" will be chosen

disjoint from 0'. If 0' is failing at t' + 1, then we cannot have p(a) E Ft[s] on account

of 0' since A[t'] and A[s] agree on the use of any such computation. So a and a' are

disjoint. o

The next lemma verifies that /-t(TB) < 1.

LEMMA 2.4. For any P-node a and sEN,

PROOF. Suppose that T![s] is not empty, and let t + 1 be the greatest stage::; s

when an attack is added to T![t + 1]. At stage t + 1, (I) and (II) do not hold for

any a-attack, as, otherwise nothing would be added to T![t + 1]. So for every attack

0' E T! [t + 1], 0' is pending or waiting at t + 1 and p(0') E U~' It]. Since /-t(0') = /-t(p(a))

and T![s] ~ T![t + 1], we have /-t(T![s]) ::; /-t(U~'[t]) ::; 2-ma - C(0/,s)-1. 0

Note that since A is bog and the string 1'(0') is finite, each attack a is eventually

either permanently current (that is, a is current at all s > some so) or permanently not

current, depending on whether 1'(0') C A.

The following lemma describes the fate of a-attacks for a on the true path.

34 2. STRUCTURAL RESULTS IN THE C.E. Al'JD 6.g LR-DEGREES

LEMMA 2.5. Suppose that a is a P-node which is accessible infinitely often and is

reset only finitely often. Let So be the last stage at which a is reset (or 0 if never).

Suppose that a is an a-attack scheduled at t + 1 > So such that a is eventually per­

manently current and no a-attack a' with rank(a') < rank(a) is implemented infinitely

often. Then exactly one of the following holds:

(A) a is implemented infinitely often;

(B) a g V![s'] at eve~y a-stage s' after some stage S;

(C) a is permanently pending after some s (that is, a is pending at every s' > s);

(D) a is permanently succeeding after some S;

(E) a is permanently failing after some s.

PROOF. We use induction on rank(a). Let a be as in the claim and assume in­

ductively that there is a stage Sl such that a is permanently current after Sl and all

permanently current a-attacks of rank < rank(a) scheduled after So satisfy one of (B)­

(E) for s = Sl.

First consider the case that the computation fJ(a) is not permanent. Then a

is implemented only finitely often (possibly never), with finitely many computations

(p(a), TO), ... (p(a), Tn) in Fa on account of a. If A ::) Ti for some i then eventually a

is permanently succeeding and (D) holds; otherwise a is permanently failing and (E)

holds.

Next consider the case that the computation fJ(a) is permanent. If a is implemented

infinitely often then (A).holds and (B), (C) cannot hold. Suppose that a is implemented

only finitely often and (B) does not hold; that is, a ~ V! [s'] for infinitely many a­

stages s'. Each time this occurs after Sl, a will be implemented unless some existing

computation (p(a), T) E FOI.[s'] on account of a is valid. Since a is implemented only

finitely often, and as A is ~g, eventually the approximation A[s] will settle on the use

of these computations. After this point, one of the computations must be permanently

valid, and p(a) E F~ permanently on account of a. Thus (C) holds. 0

As usual, the true path consists of the leftmost infinitely-often visited nodes. Since

the tree is infinitely branching, and since we sometimes stop defining TP 8 early, we

must verify that the true path exists. This lemma verifies that P-nodes do not cause

the true path to be finite; Lemma 2.9 does the same for S-nodes. We simultaneously

verify that a P-node on the true path satisfies its P-requirement.

hPJ '1

2. A C.E. LR-DEGREE INCOMPARABLE WITH A GIVEN INTERMEDIATE Ag LR-DEGREE 35

LEMMA 2.6. Suppose that a is a P-node that is reset only finitely often and is

accessible infinitely often. Then T! ~ VaA. Furthermore, either some outcome a~oo(i)

is accessible infinitely often, or after some stage 80 outcome a~ f is accessible at every

a-stage.

PROOF. Suppose first that some a-attack is implemented infinitely often; let a be

the least a-attack by rank which is implemented infinitely often. Since a is perma­

nently current, and the computation pea) is permanently valid, a is permanently in

T!. Howe~er, a ~ V;, since then a would be implemented only finitely many times

before some computation pea) E F: on account of a was permanent. So T! ~ V; and

Pe is satisfied. Furthermore, every time a is implemented, outcome oo(k) is accessed,

where k = rank(o}

Suppose then that no a-attack is implemented infinitely often. Inductively, by

Lemma 2.5, every permanently current a-attack satisfies one of (B)-(E). We claim that

some attack satisfied (B), and hence T! ~ Va
A

, only finitely many a-attacks are sched­

uled, and a~ f is accessible at all but finitely many a-stages. Suppose for contradiction

that there is no attack which satisfies (B). Then infinitely many a-attacks are scheduled.

0' A We first argue that Ua <;;;; Fa'

We argue by induction on the Ua computations (pi, Ti) that for every string P E u2'
there is an a-attack a which is permanently pending or permanently succeeding with

pea) = p. For Pi E u2', assume inductively that there is a stage 81 such that for every

computation Pj E U2',j < i there is an attack aj with p(aj) = Pj which is permanently

pending or succeeding by 81· Let 82 be a stage such that the computation Pi E U2'[82J

is correct, and any computations Pj E U2'[82J for j < i are correct.

By choice of 82, if an a-attack is scheduled at 8 > 82 and there is no attack a pending

at 8 with pea) = p, then the newly scheduled attack will have rank i. Furthermore,

')'(0") is fixed for- all such attacks scheduled after 82· Therefore eventually there must

be an attack a which is permanenly current and has pea) = p; by Lemma 2.5 and

the assumptions it must eventually be permanently pending. This establishes that

U~' <;;;;F:.

Since 0' iLR A, we must have /-L(F:) = 1. By Lemma 2.3, every string P in F:

corresponds to an attack of the same measure in V;, and distinct strings correspond to

disjoint attacks. Therefore /-L(V;) = 1 > Pa, a contradiction.

------------------------•••••••• ! :;SlE

36 2. STRUCTURAL RESULTS IN THE C.E. AND Dog LR-DEGREES

Some a-attack must therefore satisfy (B) of Lemma 2.5, and hence T! g Va
A and

Pe is satisfied. Since condition (V) in the construction holds for only finitely many

a-stages, only finitely many a-attacks are scheduled. Since each attack satisfies one of

(I)-(IV) only finitely often, outcome f is accessed at all but finitely many a-stages. 0

Now we deal with the S-requirements. First we verify that an S-node's restraint is

respected.

LEMMA 2.7. For an S-node a and stage s, if ra[sJ i= 0 and a is not reset at stage

s + 1 then B[s + 1] r ra[s] = B[s] r ra[sJ.

PROOF. Suppose that a is not reset at s+l, r = ra[sJ i= 0 but B[s+IJ r r i= B[sJ r r.

Some P-node f3 must enumerate a number x < r into B[s + IJ in order to remove an

attack a from T![s + IJ. We must have f3 < a since all nodes of lower priority than a

are reset when ra is set nonzero, and thereafter any attacks would be put into T with

use > r. Let a be the least f3-attack by rank which is removed from T! [s + 1], and let

k = rank(a). Since all nodes of lower priority than f3'""'oo(k) are reset at s + 1, we must

have f3'""'oo(j) ~ a for some j < k. Let t + 1 be the greatest stage < s when a was put

into T![t + 1], and let s' + 1 be the greatest stage < s + 1 when ra was increased above

x. If t + 1 < s' then a E T![s'j, and since rank(a) > j and x < r the computation

p ~ V! [s'] with use r would not be a-believable. So ra would not be set nonzero at

s' + 1, contradicting the choice of s'. If t+ 1> s' then a would be put into Tf[t+ IJ with

fresh use x > r, contra.dieting x < r. Also s' = t is impossible since we stop defining

TP t +1 once f3 takes action. So B[s] r r = B[s + 1] r r. o

The next lemma verifies that true computations will eventually be believable, with

respect to an S-node on the true path.

LEMMA 2.8. Let a be an S-node such that a is accessible infinitely often and a is

reset only finitely often. Suppose that T ~ V!. Then there is a stage So such that the

computation T ~ V![sJ is a-believable at all s 2: So.

PROOF. Suppose that a is as in the claim, and let So be the first a-stage such that

T ~ V! [soJ with use u, and B[soJ r u = B r u. Then the computation T ~ V! is

believable at So. If it were not, then there must be a P-node f3 with f3'""'oo(k) ~ a for

some k, and a f3-attack a with rank (a) > k and a E T![so] with use < u. Note that

2. A C.E. LR-DEGREE INCOMPARABLE WITH A GIVEN INTERMEDIATE ~g LR-DEGREE 37

(3's computation Pk E U0' must be permanent, since otherwise (3~oo(k), and hence a,

would not be accessible infinitely often. Let t + 1 be the stage when a was scheduled.

By Lemma 2.2, Pk E Ft[t] on account of some attack with rank :S k, so '}'(a) is greater

than the use of Pk E Ft[tJ. By Lemma 2.6 there is a stage S1 ~ So when some ,8-attack

a' with p(a') = Pk is implemented. At s1. the computation Pk E Ft[t] is no longer

valid, so a cannot be current at S1. Therefore a must have been removed from Til
before S1 but after So via a B-enumeration, which contradicts the choice of So. So the

computation T E V! is believable by So. 0

Now we verify that the restraint m(a, s) reaches a limit for nodes on the true path.

LEMMA 2.9. Let a be an S-node such that a is accessible infinitely often and a is

reset only finitely often. Then

limm(a,s) < 00.
a

PROOF. By Lemma 2.7, a's restraint is respected at all s ~ some So. After So,

m(a, s) does not decrease. Suppose that lima m(a, s) = 00. Enumerate a ~?-class G as

follows: put the string Pi into G at a-stage s ~ So if Pi E UA[s] and m(a, s) ~ i. Then

UA ~ G, since eventually m(a, s) ~ i for every Pi E UA
. Also, since the restraint r(a, s)

is greater than the use of Pi ~ V![sJ and is respected after s, we have G ~ V!. So

/l(G) :S /l(V!) < 1. But this gives A :SLR 0 since G is ~~, which contradicts 0 <LR A.

Therefore m(a, s) < i for some i and aU s. o

LEMMA 2.10. The true path TP = liminfa TPa exists and is infinite, and each node

on it is reset only finitely often.

PROOF. The root node is on TP a for all s and is never reset. Inductively assume

that a = lim infa TP a r n for n > 0, and that a is reset only finitely often. If a is a

P-node, then by Lemma 2.6 there is some outcome (either f or oo(k) for some k) that

is accessible infinitely often. If a is an S-node, then Lemma 2.9 guarantees that the

child a~ f is accessible at all but finitely many a-stages, since the definition of TP a is

only ended at a if ra and m(a, s) increase. Therefore (3 = liminfs TP s r n + 1 exists.

Now we verify that (3 is reset only finitely often. The situations where (3 might

be reset are when (I) or (II) holds for some P-node ')' C ,8, when some S-node 8 c (3

increases its restraint, or when TP a <L,8. The last can happen only finitely often by

--.. I1 I11 ~\~I¥.IQ~!'

38 2. STRUCTURAL RESULTS IN THE C.E. AND 6.g LR-DEGREES

induction assumption. By Lemma 2.9, each B-node 8 C (3 increases its restraint only

finitely often.

Suppose then that "(is a P-node and "(~ f ~ (3. By Lemma 2.6 there is an attack a

satisfying (B) at all "(-stages after some SQ. After SQ, no new attacks will be scheduled

by ,,(, and existing attacks can cause (3 to be reset only finitely often after SQ.

If "(~oo(k) ~ (3 for some k, then k is the least such that some ,,(-attack of rank k is

implemented infinitely often. By Lemma 2.2, there are only finitely many ,,(-attacks of

rank < k, and they can cause (3 to be reset due to (I) or (II) only finitely often. 0

LEMMA 2.11. Each requirement Pe is satisfied.

PROOF. Let a be the Pe-node on TP. By Lemma 2.6, there is an a-attack a

that is permanently in T!! but a g; Va
A . (In the case that a~oo(k) c TP, then a

is implemented infinitely often so no computation a ~ VaA[s] is permanent.) Since

o

LEMMA 2.12. Each requirement Be is satisfied.

PROOF. Let a be the Be-node on the true path. By Lemma 2.8 and the use of the

hat-trick for UA, we have

uA ~ 'VeE <=? limm(a,s) = 00.
s

By Lemma 2.9, limsm(a,s) < 00. So UA g; 'VeE. o

This completes the proof of Theorem 2.1. o

3. C.e. LR-degrees above low LR-degrees

In this section we show that above any low bog LR degree there is an incomplete

c.e. LR degree. This is in contrast with the bog Turing degrees, in which there is a low

bog degree which is incomparable with all intermediate c.e. degrees (the proof of this is

sketched in section 3.4). Thus it highlights a difference of the position of the c.e. degrees

within the bog LR-degrees, as compared to the bog Turing degrees.

We first tried to prove the considerably stronger result that above any LR-incomplete

bog LR-degree A there is an LR-incomplete c.e. degree. Unfortunately there are obsta­

cles to performing the construction in this general case, which we discuss in section 3.6.

It is not known if this more general result holds. However the construction does work

3. C.E. LR-DEGREES ABOVE LOW LR-DEGREES 39

in the specific case when A is c.e. and LR-incomplete. We outline the modifications

necessary for this case in section 3.5.

THEOREM 2.13. Let A be a low ~g set. Then there is a c.e. set B such that

A 5:LR B <LR 0'.

Let A be a low ~g set, given by a computable approximation A[s] such that

limsA(x)[s] = A(x) for all x. Let (Ve,Pe) be a listing of all LR-operators, and U

be the second member of a universal oracle ML-test (so /L(UX) 5: ! for all X E 2W).

We construct c.e. sets B, D and oracle ~~-classses E, He for all e E N to satisfy the

requirements:

Ne:

R: and

By Theorem 1.5, requirement R ensures that A 5:LR B. Since the He are uniformly ~~,

their union H = UeHe is also an oracle ~~ class. We will ensure that /L(HP) < 2-e-
1

,

and thus

If Ne is satisfied for each e, then HD ~ VeB, and D l,LR B by Theorem 1.5, since

/L(HD) < 1. Therefore in particular 0' l,LR B.

Notice that we do not include any requirements to explicitly make B l,LR A. If

desired, we could include P-requirements as in Theorem 2.1 to explicitly ensure A <LR

B. How to do this is discussed briefly at the end of the section. However, we may

instead invoke the upward density of the c.e. LR-degrees, namely Theorem 1.2, to

obtain a C.e. set C with B <LR C <LR 0'. Of course, if the LR-degree of A does not

contain any C.e. sets then we automatically have A <LR B from the requirements above.

(This is the interesting case since if A is =LR to some c.e. set then we can just invoke

the upward density of the c.e. LR-degrees in the first place.)

R strategy. Fix U as the second member of a universal oracle ML-test, so /L(U A
) <

!. We simply trace UA into EB: whenever a new computation p E UA[s] appears, we

put pinto EB[s] with large use. If a B-change inadvertently removes a string p from

EB[t] while p E UA[t] is still valid, we put p back into EB with the same use as

40 2. STRUCTURAL RESULTS IN THE C.E. AND bog LR-DEGREES

previously. If an A-change invalidates the computation p E UA[s], we remove p from

EB via a B-enumeration, if such an enumeration is not prevented by an active restraint.

It is up to the N-requirements to ensure that their restraints do not prevent too many

strings from being removed from EB, so we can ensure that J1.(EB) < 1.

Ne strategy. Recall that (Ve, Pe) is a list of all LR-operatorsj that is, an oracle E~

class Ve and a dyadic rational Pe such that J1.CV~X) ::; qe for all X E 2w. We need to

diagonalise against Ve, forcing measure into VeB without causing J1.(Hf) to permanently

increase. The basic strategy is to put a clopen set 8 into Hf and wait until 8 ~ VeB
.

When this occurs we restrain B on the use of the computation and remove 8 from Hf

by enumerating into D. Thus J1.(VeB) permanently increases by J1.(8) but J1.(Hf) does

not. With a suitable choice of J1.(8), after finitely many repetitions we will have some

8 which is not covered by VeB, since J1.(VeB) cannot increase above Pe. This 8 will be

permanently in Hf, and nothing else will be added to Hf. So J1.(Hf) permanently

increases by J1.(8) only once.

This is complicated by the fact that B-restraints conflict with the R-strategy. Each

B-restraint captures certain junk intervals in EB, in the sense that the B-restraint will

prevent the R-strategy from removing some intervals from EB if an A-change removes

them from UA . Such strings that are in EB but not in UA are junkj we must make sure

that the total junk measure captured by B-restraints is small so that J1.(EB) < 1.

We can separate the Ne-requirement into finitely many subrequirements Ne,i, and

assign each N-subrequirement a quota f. We ask that Ne,i'S restraints contribute at

most f measure of junk to EB. We will allow an N-node a to impose a restraint r at

stage s only if the total junk measure that would be captured, those strings in EB - UA

with use < r, is within the quota f. However, the junk captured by the restraint r

may later increase as the construction proceeds, as strings may be removed from UA

after the restraint is imposed. Although we can easily ensure that the restraint initially

captures at most f of junk, we must also ensure that the junk does not later grow too

large.

This is dealt with by measure-guessing: we place the construction on a tree of

strategies, and equip each N-node a with a backing measure-guessing node. The backing

node supplies the N-node a with an approximation to J1.(UA), in the form of a rational

interval [qQ, qQ+fQ). The node a works only at stages when J1.(UA [sJ) E [qQ, qQ+fQ)j that

3. C.E. LR-DEGREES ABOVE LOW LR-DEGREES 41

is when the 'measure guess' that J.L(UA) E [qo:, qo: + fo:) appears correct. By ordering the

nodes with lower intervals to the left, and by applying the hat-trick to the approximation

of U A, we can ensure that the true path (the path of leftmost infinitely-often visited

nodes) consists of those nodes whose measure guess is correct, ie J.L(UA) E [qo:,qo: + fo:)

in the limit. A node may only impose a B-restraint r if the measure of junk captured

by r is less than fo:. If the junk captured by the B-restraint later increases by more

than fo:, the hat-trick applied to the approximation of UA guarantees that the node

will be reset, as in that case the approximation J.L(UA[s]) drops below qo:. The result is

that a node never captures more than 2f much junk: f much which was present when it

first imposed restraint, and f much which may have been added after the restraint was

imposed. This technique was first used by Cholak, Greenberg and Miller [12] and later

by Barmpalias and Montalban [7]. We will use the same technique in Theorem 4.1 of

chapter 4.

We arrange the priority tree so that each level of the tree is occupied by a single

requirement, and all the nodes of that level have the same quota. We need one additional

condition to keep the junk captured by restraints under control. In a traditional tree

construction, there is no bound to the number of nodes on any level of the tree that

may be imposing restraint simultaneously. In our case, each such node on a particular

level would potentially be contributing the same amount f of junk to E B
, threatening

our desire to keep J.L(EB) < 1. The solution is to ensure that at most one node on each

level of the tree is imposing restraint at any time. To satisfy this, all nodes on one level

of the tree will work with the same cIopen set 8, on the task of ensuring that 8 ~ VeB.

If a node f3 on the same level but to the left of a has already imposed a B-restraint to

preserve 8 ~ VeB, then a does not need to do anything since (from a's point of view)

f3 has already satisfied 8 ~ VeB. If no node left of a has imposed a restraint, and a

sees 8 ~ VeB[s] (via a computation which does not capture too much junk), then a may

impose a restraint and remove 8 from HP·
There is a risk here however that the junk captured by a's restraint later grows

above the quota fa, and a is reset when J.L(UA[s]) drops below qo:. Then we will have

to start again with 8, putting 8 back into HP and waiting for 8 ~ VeB[s] again. In

fact, if a is to the right of the true path, this may happen infinitely often; in this case,

8 rz. vf3 as no computation 8 ~ VeB[s] is permanent, but nor is 8 ~ HP. SO 8 does not

42 2. STRUCTURAL RESULTS IN THE C.E. AND ~g LR-DEGREES

contribute towards requirement Ne . This problem only arises if every time a node O! on

level i of the tree imposes a restraint, its measure guess proves wrong and it is reset.

We can solve this problem by attempting to restrain A, to prevent an A-change from

causing p,(UA[s]) to drop below qa.

Each time an Ne,i-node O! wishes to impose B-restraint and remove 8 from H D , O!

will attempt to restrain A r u for u such that p,(UAfu) 2: qa. If the restraint is succe~sful,

then p,(UA) will never drop below qa and O! will never be reset. As long as the restraint is

eventually successful after finitely many attempts, we will avoid the problem described

above. To restrain A, we utilise the fact that A is low. (In section 3.5 we describe how

to modify this strategy to work in the case where A is c.e. and LR-incomplete rather

than low.) When O! is ready to remove 8 from HA, it defines a computation cI>A(z)[s]!

with use u as above. Since A is low, we can argue that computations cI>A(z)[s] can only

be spoiled by A-changes finitely often before the computation is permanent and the

A-restraint succeeds.

3.1. The priority tree and notation. For each e, let ke be the least number

such that 2-k• < 2-e- 2 . (1 - Pe). Requirement Ne will use 2k• subrequirements Ne,i,

° :::; i :::; 2k
e - 1. Fix a listing of all N subrequirements

(7)

namely, all the No subrequirements in order, followed by the NI subrequirements, etc.

The construction takes place on a finitely branching tree, defined below, consisting

of nodes labelled G or Ne,i for some e, i E N according to their length. Nodes of even

length (including the root node) are labelled G; nodes of odd length 2n + 1 are labelled

Ne,i where Ne,i is the n'th entry in the list (7). Nodes labelled Ne,i for some e, i are

referred to as N-nodes; nodes labelled Ne,i for a fixed e are referred to as Ne-nodes. N­

nodes have a single outcome ° (a single child node O!~o on the tree). G-nodes have four

outcomes Xo <L Xl <L X2 <L X3, corresponding to subintervals of the half-unit interval

[0, !). Each node O! is associated with an interval [qa, qa + fa), where qa, fa are dyadic

rationals. For the root node 0 we have q0 = 0,100 = !; for other nodes the interval is

defined inductively. Suppose that [qa, qa + fa) is defined. If O! is an N-node then it has

only one child O!~o; let qa~O = qa and fa~O = fa. If O! is a G-node, then fa~Xi = :lfa

and qa~xi = qa + i!fa for ° :::; i :::; 3; that is, we evenly subdivide [qa, qa + fa) and

3. C.E. LR-DEGREES ABOVE LOW LR-DEGREES 43

assign the subintervals in order to XO • •• x3. We subdivide into four to ensure that

(8)

for any set Z of nodes longer than a containing at most one node of each length. This

means that, even if every subrequirement below a has a node 'Y imposing restraint, and

capturing up to f")' of junk, the total junk is still within a's quota fa, SO a will be able

to act.

The ordering <L on {xo,··· X3} induces an ordering on the tree: for nodes a, {3,

a <L {3 indicates that a is to the left of {3, and a < {3 indicates that a <L {3 or a C {3.

As described previously, we will use the lowness of A to ensure that the restraints

imposed by N-nodes are eventually permanent. Since A is low, the jump

A' = {(e, z) : q>:(z) l}

is limit computable; that is, there is a total computable function 9 : N x N --t {a, I}

such that

\Ix limg(x, s) exists and equals A'(x).
s

In the construction, we will construct a 'lUring functional r (as a consistent c.e. set of

axioms). By the Recursion Theorem 1.11, we may assume that we know in advance an

index of the functional r; that is, a number e such that r = q>e. 1 Define h : N x N --t

{a, I} by h(x, s) = g((e, x), s); then rA(x)l iff lims h(x, s) = 1.

For each e, divide 2w evenly into 2k
e many subintervals Ie,O,!e,l ... Ie,2ke_l' Sub­

requirement Ne,i works with interval Ie,i' Assign each N-node a a unique number Zo

from N. An Ne,i-node a pursues the following strategy. When all higher-priority Ne

subrequirements are finished, a puts Ie,i into HP and waits until Ie,i ~ VeB[s]. When

this occurs it restrains B on the use of this computation to preserve Ie,i ~ VeB (if the

restraint does not capture too much measure in E B). Then a defines a computation

rA(zo)[s]! (if it is not already defined), to attempt to prevent j.L(UA[s]) from dropping

below qo which would cause a to be reset. When the b.g approximation h of A' indicates

1 Formally, we can consider e to be a free parameter, on which the function h and indeed the whole
construction depend. The construction is well-defined for all values of e (although it will only do what
we want it to do for certain values of e). We thus have a uniform procedure for obtaining a Thring
functional re from a number ej that is, a computable function f such that if>J(e) = re (where (if>e)eEN
is a canonical listing of 'lUring functionals). The Recursion Theorem 1.11 guarantees an e such that
if>e = if>J(e) = reo For that particular value of e, we do in fact have rA(x) 1 iff lim.h(x,s) = 1 as

desired.

44 2. STRUCTURAL RESULTS IN THE C.E. AND Dog LR-DEGREES

that the computation rA(zaJ is permanent, we remove Ie,i from HP by enumerating

into D. If our attempted A-restraint fails and 0: is later reset, then we have to re-add

Ie,i to HP. However, each time this happens an old computation rA(za) is invalidated.

If it happens infinitely often then h(za, s) = 0 for all but finitely many s, so Ie,i can

only be removed from HP finitely often before it is permanently in HP. Then we can

argue that Ie,i Sb VeB and Ne is satisfied.

Each N-node 0: has a parameter ra which is the restraint that 0: wishes to impose

on B. Let Ra[s] = max,e<a r,e[s] be the total restraint imposed by N-nodes of higher

priority than 0:.

As in Theorem 2.1, we assume that when a string is put into any HP with some use

U, it remains there until the number u is explicitly enumerated into D. This assumption

does not apply to EB however. Each time we put a string into HP[s] it will be while

carrying out the instructions for some N-node. If an interval I is in HP[s], then we say

that I is in HP[s] on account of 0: if I was most recently put into HP while carrying

out the instructions for 0:.

We again use the hat-trick for the enumeration of UA . Let ao = 0, and for s > 0

let as be the least number such that A(as)[s] i= A(as)[s - 1], or as = s if such number

does not exist. Let

Henceforth we omit the hat and write UA[s] to mean UA[s]. In this case, the hat­

trick ensures that there are infinitely many true stages, at which UA[s] ~ UA and

JL(UA[s]) ::; JL(UA).

In the construction, we will explicitly define the approximation to the true path

TP s' When we take action for a node on TP s, we will stop defining TP s, so TP s will

not always have length s. This means that we cannot rely on a node 0: being reset due

to TP s <L 0: when its measure guess becomes wrong. Hence at each stage we must

explicitly reset all nodes whose measure guess has become wrong. For convenience, we

do this resetting only at even stages of the construction, and perform the other tasks of

the construction only at odd stages. We can assume that we are given approximations

of A, U, Vi etc that change only on even stages. That is, A[2s] = A[2s + 1] for all s,

and similarly for U, Vi (as sets of axioms).

3. C.E. LR-DEGREES ABOVE LOW LR-DEGREES 45

3.2. The construction. To reset an Ne,i-node a at stage s + 1 means to set

ra[s + I] = 0, and if Ie,i is in H,f[s] on account of a then remove Ie,i from H,f[s + I] by

enumerating its use into D[s + I].
Initially B[O] = D[O] = H[O] = 0 and ra[O] = 0 for all N-nodes a. At stage s + 1 we

are given A[s], B[s] etc and any changes we make are in order to define B[s + I] etc.

At stage s + 1 where s + 1 is even, reset any N-nodes a such that /-L(UA[s]) < qa

and ra[s] i= O.

At stage s + 1 where s + 1 is odd, perform steps 1 and 2 in order.

Step 1. We define the approximation to the true path TP s+1 and take action for

some node on TP s+l. Suppose inductively that TP s+1 f n is defined, for n ~ O. If

n = s + 1 then stop defining TP s+1 and go to step 2. Otherwise let a = TP s+1 f n and

go to the appropriate case below.

• a is a G-node. Inductively, /-L(UA[s]) E [qa, qa + fa). Let i be such that

/-L(UA[s]) E [qa~Xi!qa~xi + fa~xi) and let TPs+1 f n + 1 = a~xi'

• a is an Ne,i-node for some e, i E N. Say that a is active at stage s + 1 if

Vj < i there is an Ne,j-node f3 < a with

r~[s] i= 0 and h(z~, s) = 1.

Go to the least case below which holds.

(I) Higher priority subrequirements have finished and a is ready to start. a is active;

there is no Ne,i-node a' '5:.L a with ra/[s] i= 0; and Ie,i ¢ H,f[s]. Then put Ie,i

into H,f[s + I] with large use. Stop defining TPs+1 and go to step 2.

(II) a's interval Ie,i has appeared in YeB lsI with a believable computation and we are

ready to restrain B. a is active; there is no Ne,i-node a' '5:.L a with ra/[s] i= 0;

Ie,i E H,f[s] and Ie,i ~ YeB[s] with use u such that

(9)

(10)

Then set ra[s + I] = u. If rA(Za)[S] i then let v be the least such that

and define a new computation rA[sJiv(za)! with use v. Reset all N-nodes of lower

priority than a, stop defining TP HI and go to step 2.

46 2. STRUCTURAL RESULTS IN THE C.E. AND ~g LR-DEGREES

(III) The computation rA(z) appears permanent so we can remove Ie,i from HP. There

is an Ne,i-node 0/ ~L a such that ra,[s] '# 0, Ie,i E HP[s] and h(za" s) = 1. Then

remove Ie,i from HP[s + 1] by enumerating the use into D[s + 1]. Stop defining

TP 8+1 and go to step 2.

(IV) Otherwise, set TP 8+1 r n + 1 = a"'O, the unique child of a, and continue defining

TP8+1.

Step 2. Let R = maxa ra[s + 1] be the total restraint imposed by all nodes after

step 1. Enumerate R+ 1 into B[s+ 1] to remove some junk intervals from EB[s]-UA[s].

End of construction.

3.3. Verification. First we verify that HP[s] contains at most one of the intervals

Ie,i at any time, and thus J-l(H D) < 1.

LEMMA 2.14. For all e and at any stage s, either HP[s] = 0 or HP[s] = Ie,i for

some i.

PROOF. Suppose on the contrary, that HP[s] contains both Ie,i and Ie,j for some

i '# j. Suppose that Ie,i, Ie,j were added to HP[s] at stage so, SI by Ne-node a, (3,

respectively. Note that at most one interval is added to HP at each stage (since the stage

is ended if (I) holds); thus we may assume that So < SI. We consider the possibilities

for the position of a relative to (3.

If (3 <L a, then J-l(U A [SI]) < qa, and a would have been reset at the (even) stage

S1 - 1. Thus Ie,i could not be in HP[S1].

If (3 ~ a and 1(31 > lal, then (3 must satisfy (I) at S1; in particular, there must be

an Ne,i-node a' ~ (3 with ra,[sJ] '# 0 and h(za" S1) = 1. But then, a" = (3 rial would

satisfy (III) at S1, Ie,i would be removed from HP[S1 + 1] and (3 would not be accessible

at S1.

Finally, 1(31 < lal and (3 f..L a. In this case, at So there is some Ne,j-node (3' ~ a

with r{3' [so] '# O. Since (3 satisfies (I) at S1 > so, the node (3' must have been reset at

some s', So < s' < S1. But then a would be reset at s' also, and Ie i would have been ,

removed from H{J[s' + 1J. 0

3. C.E. LR-DEGREES ABOVE LOW LR-DEGREES 47

Next we verify that each restraint does indeed capture no more than its quota of

junk. For an N-node a and s > 0, let

be the junk intervals restrained by a at the end of stage s.

LEMMA 2.15. For any N-node a and for any even s,

PROOF. Suppose that ra[s] =/:. 0, and let t + 1 be the greatest stage ~ s when ra

was set nonzero. Write r = ra[s]. If new strings are added to EB after t then they are

added with fresh use, and if B[s] r r =/:. B[t] r r then a would be reset between t + 1 and

s. Thus EBtr[s] = EBtr[t]. Also, Ra[t] = Ra[s] as otherwise a would have been reset.

So,

j.£(Ja[s]) = j.£(EBtr[s]_ EBtRo[s]_ UA[s - 1])

(11) ~ j.£(EBtr[t]_ EBtRo[t]_ UA[t]) + j.£(UA[t]- UA[s - 1]).

The first term of (11) is the junk that was captured by a when it imposed its restraint;

the second is that which becomes junk after the restraint was imposed. By (9), the first

term is less than fa. Suppose that j.£(UA[t]- UA[s -1]) ~ fa. But then by the hat-trick

there would be an even stage t' with t < t' ~ s such that j.£(UA[t']) ~ j.£(UA[t]) -fa ~ qa'

At t' a would be reset, contradicting the definition of t. , o

Since we sometimes end the definition of TP s before it reaches length s, we must

verify that the true path lim infs TP s exists. The following lemma simultaneously verifies

that the true path exists, is infinite, and that the N-nodes on the true path reach a

limit state.

LEMMA 2.16. Suppose that a is an Ne,i-node and the leftmost node of length lal
that is accessible infinitely often. Then j.£(UA) E [qa, qa + fa), a is reset only finitely

often, the definition of TP s is ended at a only finitely often, and exactly one of the

following hold:

(i) there is a j ~ i and an Ne,j-node /3 ~ a and a stage So such that Ie,j E HP
permanently after So and Ie,j ~ ~B;

48 2. STRUCTURAL RESULTS IN THE C.E. AND L).g LR-DEGREES

(ii) there is an Ne,i-node (3 '.5.L a and a stage So such that r{3[so] -I 0, (3 is not reset

after So, Ie,i ~ Y'eB and Ie,i tI. HP[s] at any S ;::: So·

PROOF. Suppose that a is the leftmost node of length lal which is accessible infin­

itely often, and assume inductively that there is a stage So such that TP s f.L a and the

definition of TP s is not ended at any (3 c a for all s > So, no N -node (3 C a is reset

after So, and all N-nodes (3 C a satisfy (i) or (ii) by So.

First we establish that p.(UA) E [qo, qo + Eo). Let 'Y = a- be the parent of a.

Inductively, p.(UA) E [q1',q1' + E1')' and by the hat-trick, there are infinitely many true

stages when p.(UA[s]) E [q1" q1' +E1')' At every true stage after So, we also have TP 8 ~'Y.

If p.(uA) < qo, then at all true stages after some S1 ;::: So some outcome of'Y to the

left of a would be accessible, contradicting that a is the leftmost node of length lal

which is accessible infinitely often. If p.(UA) ;::: qa + Eo then there is a u such that

p.(UAfu) ;::: qo + Eo and a stage S2 ;::: So when A r u has settled. After S2, a will never

be accessible, again a contradiction. So p.(UA) E [qo, qo + Eo).

Next we verify that a is reset only finitely often. By assumption on a, it is reset

only finitely often by step 2 when TPs <L a. As p.(UA) E [qo,qo + Eo), eventually

p.(UA[s]) does not drop below qo, so a is is reset only finitely often at even stages. By

the induction assumption, eventually all N-nodes (3 C a reach a limit state and (II) will

not hold for any such (3 after So. These are the only places in the construction where a

may be reset.

Next we show that a reaches a limit state, satisfying (i) or (ii). If some Ne-node

(3 C a satisfies (i) then a also satisfies (i) after So. Thus (I) or (II) of the construction

will hold only finitely often for a, since a is only active finitely often. Otherwise, suppose

that every Ne-node (3 C a satisfies (ii) by So. If some Ne,i-node a' <L a has ro/[so] -1O,

then that restraint is permanent and a satisfies (i) due to a'. Then rA(zo/) 1 and

eventually h(zo/ s) = 1 for all sufficently large s; so a will eventually satisfy (III) and

Ie,i will be removed permanently from HP.

Suppose that no Ne,i-node a' <L a has ro/[so] -10. If (II) holds for a at any stage

after So, then a will impose a permanent restraint, rA(zo) 1 and Ie,i will eventually be

removed permanenly from HP via (III). Then a will satisfy (ii). It suffices now to show

that if (II) never holds for a then Ie,i ~ Y'eB and Ie,i E HP permanently.

3. C.E. LR-DEGREES ABOVE LOW LR-DEGREES 49

Suppose that a never imposes a permanent restraint. We argue that Ie,i is perma­

nently in HP after some Sl ~ So. At any a-stage s after So, if Ie,i ¢ HP[sJ then it will

be put into HP[s + 1J as a will satisfy (I). We argue that, because A is low, Ne,i-nodes

to the right of a will satisfy (III) only finitely often. Suppose that some Ne,i-node right

of a satisfies (III) infinitely often; let {3 be the leftmost such node. If {3 satisfies (III) at

s then some Ne,i-node {3' $L {3 must have previously satisifed (II), imposed a restraint,

and defined a computation rA(z,81)[sJ (if it wasn't already defined). Thus no Ne,i-node

imposes a permanent restraint, and no computation axiom rA(Z1')[sJ for any Ne,i-node

'Y is permanently valid. But the ~g approximation of A ensures that each computation

axiom is eventually permanently valid or permanently invalid. Thus infinitely many

different computation axioms rA(Z1')[sJ must be defined during the construction, for

some Ne,i-node 'Y. But then, rA(z1') T in the limit, and since A is low, h(z1' , s) = 0

for all but finitely many s. Thus (III) can hold at only finitely many stages, and Ie,i is

permanently in HP· Hence a satisfies (i) (with a' = a).

Finally we verify that if Ie,i ~ ~B then eventually the measure condition (9) is

satisfied and a will satisfy (ii). Let v be the use of the computation Ie,i ~ VeB , and let

S2 be the second a-stage after So such that

(such S2 exists because of the hat-trick). Every string in EB[v[S2]_EB[R", [82]- UA[82] is

in J1'[82] for some 'Y > a; as otherwise it would be removed in step 2 of the construction

contradicting the choice of 82. Let

be the lower-priority nodes with nonzero restraint at 82. Then

. J-L(EBfv[S2J - EBfR
", [S2J - UA[S2]) $ L J-L(J1'[S2])

1'EZ

by Lemma 2.15 and (8). Thus eventually (9) is satisfied, so if Ie,i ~ ~B then a satisfies

(i). o

50 2. STRUCTURAL RESULTS IN THE C.E. AND 6.g LR-DEGREES

Having established that each N-node reaches a limit state, we can easily verify that

each requirement is satisfied.

LEMMA 2.17. For all e there is an Ie,i such that Ie,i E HP and Ie,i ~ ~B. Thus

each requirement Ne is satisfied.

PROOF. If some Ne,i-node on the true path satisfies (i) of Lemma 2.16, then Ne is

satisfied by Ie,i for the least such i. To see that there is always such an i for each e,

note that if not, every Ne-node on TP must satisfy (ii), and thus Ie,i ~ VeB for each i.

But there are 2ke many such Ie,i, each has measure 2-ke , and they are pairwise disjoint.

Then j.L(~B) ;::: 2ke ·2-ke = 1, which contradicts j.L(V!) :s; qe < 1. D

Finally we verify that requirement R is satisfied.

LEMMA 2.18. A :5:.LR B.

PROOF. By the definition of E, once an interval appears in UA via a permanent

computation it will henceforth always be in EB with the same use. Thus UA ~ EB.

We must verify that j.L(EB) < 1. Since j.L(UA) :s; !, it suffices to show that

for all n E N and sufficiently large s. Fix n and let So be a stage such that

(as sets of strings). Then for all s ;::: So we have

and by Lemma 2.15 and the fact that at any time there is at most one node of each

length with nonzero restraint, j.L(EBtn[s] - UA[s]) :s; Le 2-e- 2 = ~. D

This completes the proof of Theorem 2.13. D

In section 3.5 we sketch how this construction can be adapted to the case where

A is c.e. and LR-incomplete (rather than low), and discuss the obstacles to the most

general case where A is bog and LR-incomplete.

The key aspect of this construction is the fact that movement of TPs depends only

on the approximation of A. That is, if Q is accessible at t, and later TP s <L Q for

3. C.E. LR-DEGREES ABOVE LOW LR-DEGREES 51

s > t, then there must have been an A-change between s and t which removed some

strings from UA and made the approximation to /-L(UA) decrease. This is the fact that

allows us to restrain A in order to prevent 0:: from being reset. This seems to be a

significant limitation on the technique; it is unclear how, if at all, this construction

could be combined with other requirements which involve branching on the tree of

strategies that does not depend solely on A, for instance minimal pair or non-cupping­

style requirements in which the outcomes depend on convergence of computations rather

than on the approximation to A. However, it can be combined with the P-strategy of

Theorem 2.1. Although sometimes the P-strategy causes the construction to move to

the left independently of A-changes, for instance when an attack is implemented for

the first time, Lemma 2.6 ensures that if infinitary outcomes are accessed infinitely

often, then infinitely often this will be due to an A-change, after an attack changes from

pending to waiting. This is sufficient for the N-strategy to succeed; we just need to

modify condition (10) so that v is also larger than the use of any computations (j ~ VA[s]

for pending P-attacks (j which would cause the N-node to be reset if re-implemented.

3.4. Differences with the Turing degrees. Theorem 2.13 displays a difference

between the c.e. and Ag Turing degrees and the c.e. and Ag LR-degrees. Yates [75]

constructed a Ag Turing degree which is incomparable with all c.e. Turing degrees except

o and 0'. Yates used an oracle construction with a 0' oracle to construct the required

Ag set A. It is possible to adapt his construction to also ensure that A is low (the proof

is sketched below). Hence there is a low Ag Turing degree that is incomparable with all

intermediate c.e. Turing degrees. In particular, it has no incomplete c.e. Turing degree

above it. This is in contrast to Theorem 2.13 which shows that every low Ag LR-degree

is bounded by an LR-incomplete c.e. LR-degree.

It is possible to further adapt Yates's construction to make the set A be low and

non-Iow-for-random in addition to being incomparable with all intermediate c.e. Turing

degrees. We note that if we apply Theorem 2.13 to such an A, we obtain a c.e. set B

such that A <LR B but A 1:.T B. Hence the construction of Theorem 2.13 does not

automatically produce B ?T A.

We sketch the construction of a Ag set which is low, non-Iow-for-random and Turing

incomparable with all c.e. sets of intermediate Turing degree. We build A via finite

extensions 0::0 ~ 0::1,'" so A = UsGs. We have a listing We of all c.e. sets, and the

52 2. STRUCTURAL RESULTS IN THE C.E. AND f>.g LR-DEGREES

We are uniformly computable from 0'. lPe is a standard listing of Turing functionals.

To make A low we use the usual technique of 'forcing the jump': at stage 8 if there is

a string r :J Q s such that 1P;(e) 1, then make A :J r by suitable choice of Qs+1' The

strategy for making We iT A if We is noncomputable is the usual strategy of looking for

splittings of lPi for each i. To make A iT We if 0' iT We, we utilise a function 1 ~T 0'

such that 1 is not dominated by any function of degree < 0'. We use a bounded search,

bounded at stage 8 by 1(8), to search for an x such that A(x) is not yet defined and

lP~e(x) 1. We can then define A(x) ¥- lPr'e(x). Because we use only a bounded search,

we must place the requirements in a finite injury setting, to allow a higher priority

requirement to take action as soon as its bounded search finds a suitable candidate.

This is straightforward and may be found in Odifreddi [62] Proposition XI.3.6.

The only remaining requirement is to make A non-Iow-for-random. Fix a member

U of a universal oracle Martin-Lof test, and a listing (Vi, Pi) of E~ classes along with a

rational bound Pi < 1 such that J.L(Vi) ~ Pi. We can assume that the set UT is finite and

uniformly computable from r E 2<w. Given any Q E 2<w, we want to find an extension

Q' :J Q such that ua' ~ Vi. Using the 0' oracle we can search for an d and a string (J'

such that

(J' E U
al

and (J' ~ Vi

and make A :J d. Such an d and (J' are guaranteed to exist: let X E 2w be such that

X rJ. Vi; such X exists since J.L(Vi) < 1. There is a Z :J Q such that X is not random

relative to Z (for instance, a Z such that X ~T Z). Since U is a universal test, there

is a (J' and an n such that (J' C X and (J' E uZtn. The string Q' = Z I nand (J' are

as required. We can combine this with the previous strategies in a finite injury setting

using a 0' oracle to construct the set A.

3.5. The N-strategy with A LR-incomplete and c.e. It was originally hoped

that the construction of Theorem 2.13 could be combined with the LR-incompleteness

strategy of section 1 to show that every incomplete ~g LR-degree is bounded by an

incomplete c.e. LR-degree; that is, that above any LR-incomplete bog set there is an

LR-incomplete c.e. set. Unfortunately there are obstacles to performing the construction

in this most general case. Indeed, it is not known if every incomplete ~g LR-degree is

bounded by an incomplete c.e. LR-degree. However, the construction of Theorem 2.13

can be combined with the strategy of section 1 in the specific case when the set A is

3. C.E. LR-DEGREES ABOVE LOW LR-DEGREES 53

c.e. (rather than only Llg) and LR-incomplete. Although this result is not of interest

in itself, the technique might be of use for other constructions in the LR-degrees. We

now sketch how the construction of Theorem 2.13 may be modified to work with an

LR-incomplete c.e. set, and discuss in section 3.6 the difficulties with the more general

case when A is an arbitrary LR-incomplete Llg set.

As in Theorem 2.13 we will put strings 8 into HD, wait for 8 s:;; VB, then remove 8

from HD and restrain B on the use. Again, we will use subrequirements Ne,i, and the

Ne-nodes must co-ordinate their actions. All Ne,i-nodes will work with the same elopen

set 8. In this case, when an N-node Q wishes to remove 8 from HD and impose a B­

restraint, it must use the incompleteness of A to (attempt to) prevent A from changing

and the construction moving to the left of Q. The method for attempting to preserve A

is the same as in the P-strategy of Theorem 2.1. Each elopen set 8 will be associated

with a string p E U0'[s]. When we have 8 ~ VB, we will restrain B and try to prevent

A from changing by enumerating p into an A-E~ class FA. Once 0' changes and p is

removed from U0', we can remove 8 from HD on the assumption that A will not change

below the use of p E FA. Since we threaten to make U0' s:;; FA, we are guaranteed that

our attempted A-restraint will succeed sufficiently often to make J.L(F A) = 1, which

assures us of enough successful attacks 8 to ensure H D ~ VB.

Using this strategy, it is possible that an attempted A-restraint will neither succeed

nor fail, when it corresponds to a true string p E U0'. In such a case, we will be unable

to remove 8 from HD. Say that such an attempt is stalled. Since there are infinitely

many such true strings, we cannot fix the size of all 8's in advance. Instead, each

subrequirement will correspond to a string p from the approximation to U0', and will

choose 8 the same size as p. Thus the measure of those 8's which we cannot remove

from HP is bounded by J.L(U0'). We will need infinitely many subrequirements for each

Ne , as we can use each string p from the approximation of U0' at most once, and we do

not know in advance which will succeed, which will fail and which will stall.

Note that p is associated with 8, and not with any individual N-node. In particular,

all Ne i-nodes share the same p. This is in contrast to the earlier version of the N-,

strategy where every N-node had its own computation rA(zaJ

Since J.L(HP) is bounded by the measure of the Martin-Lof test member U0' that Ne

is working with, Ne must work with a U such that J.L(U0') < 2-e- 1 to ensure J.L(H D) < 1.

54 2. STRUCTURAL RESULTS IN THE C.E. AND t.g LR-DEGREES

We also want J.L(U0') < 1 - J.L(VeB) as in earlier constructions. Let

be a listing of the axioms from U0' that are valid at some stage, in the order in which

they become valid (as in (6)). Subrequirement Ne,i will work with some computation

(7, p) from this list, and a clop en set 8i such that J.L(8i) = J.L(p). All Ne,i-nodes share the

same computation (7, p) and 8i. The Ne,i-nodes work as follows. If at stage s there is a

higher-priority subrequirement Ne,j with 8j E HP[s] but 8j g; ~B[s], then (from Ne,i'S

point of view) Ne appears satisfied and Ne,i need not do anything. So Ne,i will only

work when all higher-priority Ne subrequirements have either succeeded in restraining

8j into VeB , or have abandoned their attempt for reasons described below.

When Ne,i first needs to work, it chooses its clop en set 8i of the same measure as

J.L(p) and disjoint from any 8j, j < i for which 8j is already restrained in ~B[s]. It puts

8i into HP, where it remains until a 0'-change invalidates the computation p E U0'[s].

Once 8i is in HP, all Ne,i-nodes a wait for 8i ~ ~B[s] via an acceptable computation

whose use v does not capture too much junk in EB (ie, condition (9)). We say that

Ne,i is waiting at stage s if 8i E HP[s] but 8i g; ~B[s] by a computation satisfying (9).

for any Ne,i-node a. When some a sees 8i ~ VeB[s] via an acceptable computation, a

imposes a B-restraint to preserve the computation 8i ~ ~B[s]. At this point a would

like to remove 8i from HP, but this would jeopardise the Ne,i-strategy from the point

of view of Ne,i-nodes to th~ left of a, if the construction later moves to the left. a must

use the LR-incompleteness of A to attempt to restrain a suitable initial segment A I v

as in (10) to prevent the construction moving to the left of a. It does this by defining

a computation p E pAls + 1] with use v.

We then wait for an 0'-change to invalidate the computation p E U0'[s]. During

this period (while the computation p E U0'[s] is valid and p E pAls]) we say that Ne,i

is pending. If such a 0'-change never occurs, then 8i E HP permanently, even though

8i may be contained in Ve
B. However, then we must have p E U0', and such p's are

bounded in measure by J.L(U0') < 2-e- 2 . Otherwise, eventually an 0'-change occurs.

When this happens we can remove 8i from HP permanently, on the assumption that

the restraint A I u is successful. If the restraint is successful then Ne,i has forced J.L(~B)

to increase by J.L(8i) while J.L(HP) has not increased; contributing towards Ne. If the

3. C.E. LR-DEGREES ABOVE LOW LR-DEGREES 55

restraint is not successful, then TP 8 will move to the left and a will be reset. In this case

Ne,i is unsuccessful. However we can argue that the LR-incompleteness of A guarantees

that enough subrequirements will be successful (ie. the restraint will succeed) that Ne

will be satisfied.

Specifically, we argue that if Ne is not satisfied, then infinitely many subrequirements

will start working. For infinitely many of these, namely, those whose computations

p E U0' are permanent, we will have 8i ~ ~B acceptable for some a on or left of the

true path, and thus we have p E pA. But then we have U0' ~ pA, and since A is

LR-incomplete, f..L(pA) = 1. Each string p E pA corresponds to a clop en set 8 ~ ~B,

since the B-restraint is maintained as long as the computation p E pA[s] is valid. Since

f..L(U0') < 1 - Pe by choice of U, pA contains more than Pe measure worth of successful

p's (recall that Pe is a bound on f..L(Ve
B)). Further, since Ne,i chooses its 8 disjoint from

those of higher-priority subrequirements, distinct strings in pA correspond to disjoint

clop en sets in ~B. But then f..L(~B) > Pe, a contradiction. Thus Ne is eventually

satisfied: there is some {) permanently in HP but q,; ~B.

3.6. Obstacles when A is ~g and LR-incomplete. In both Theorem 2.13 and

the construction sketched above, we want to restrain segments of A from changing, to

avoid N-nodes being reset and some B-computation 8 ~ VB from being destroyed.

When we want to restrain A to protect 8 ~ VB, we define a computation: rA(z)

in the first case, p E pA in the second. If A later changes, then 8 ~ VB may be

destroyed by B-enumerations. In the case when A is c.e., if the attempted A-restraint

fails then A changes below the use of the computation and the computation is destroyed

permanently. The N strategy can then try again with 8. In the case where A is ~g, the

computation might only be destroyed temporarily, and later A might be restored to its

previous state. Then we would have rA(z)l or p E pA but 8 q,; VB.

This is not a 'problem in Theorem 2.13 because each N-node uses its own compu­

tation rA(zaJ Eventually some Ne,i-node (3 ?L a will have a computation rA(z,B) 1

protecting 8 ~ VB. In the end there might be some spurious computations rA (a)l for

a <L (3, but these are harmless.

In the LR-incomplete case however, all Ne,i-nodes must share the same string p

from U0' since they all share the same 8 and f..L(8) is tied to f..L(p). Hence they must

also share the same computation p E pA. This can be done in the c.e. case, since then

56 2. STRUCTURAL RESULTS IN THE C.E. AND 6.g LR-DEGREES

the computation p E FA is valid iff the corresponding B-restraint is respected. In the

bog case however, if the computation p E FA becomes spurious then there would be

no other computations available to protect 8 ~ VB. Also, the spurious p E FA would

contribute useless measure to FA which we could not attribute to measure in VB. In

that case we could not argue that J.L(VB) ~ J.L(FA) = 1.

4. Downward density and other results

We briefly mention some related results. Since this work was done, Barmpalias [2]

has proved that LR-below any non-Iow-for-random bog set A there is a non-Iow-for­

random c.e. set. That is, if A 1:.LR 0 is bog then

:3 c.e. B such that 0 <LR B <LR A.

This is a dual of Theorem 2.13 in the general case of any non-Iow-for-random bog set A.

By relativising an earlier splitting theorem from [5], Barmpaiias [2] also established

the upward density of the bog LR-degrees. That is, if A is bog and <LR 0' then there is

a bog set B such that A <LR B <LR 0'. It is not known (as discussed earlier) whether

the set B can be made c.e.. Theorem 2.13 can be considered a stronger version of

Barmpalias's upwards density result in the specific case when A is low.

CHAPTER 3

N onmitoticity and LR-degrees

1. Splittings and mitoticity

Let A be a c.e. set. A splitting of A is a pair of disjoint c.e. sets C, D such that

CUD = A. Note that C, D 5:.T A and A5:.T C ED D for such a splitting. In the context

of c.e. Turing degrees, a splitting is called (Turing) mitotic if C =T D =T A, and the

set A is called mitotic if it has a mitotic splitting. If it does not have a mitotic splitting

then it is (Turing) nonmitotic.

Mitoticity and nonmitoticity were first studied in the context of the c.e. Turing

degrees. Lachlan [41] constructed a nonmitotic c.e. set, and Ladner [43, 42] proved

further results about nonmitotic sets and their degrees, including the existence of a

non-zero completely mitotic c.e. degree, that is, a non-zero c.e. Turing degree in which

all the c.e. sets are mitotic. Downey and Slaman [24] improved this result and gave an

alternate method for constructing completely mitotic Turing degrees.

Some work has also been done on mitoticity in the wtt-degrees. Ladner's construc­

tion from [42] in fact gives a completely mitotic wtt-degree. Downey [18] showed that

every array nonrecursive c.e. Turing degree contains a completely mitotic wtt-degree,

and Downey and Stob [25] point out that not all c.e. Turing degrees contain completely

mitotic wtt-degrees. Study of mitoticity in the Turing and wtt-degrees is motivated

in part by the connections with notions such as autoreducibility and contiguity; see

Downey and Stob [25] for a survey on mitoticity and other splitting results.

In this chapter we will consider nonmitoticity in the LR-degrees. Call a c.e. set

A LR-mitotic if it has a splitting C, D such that A =LR C =LR D; otherwise A is

LR-nonmitotic. We prove first that there is an LR-nonmitotic c.e. set of Turing degree

0', then describe how to modify the construction to make the set low or to avoid a

non-trivial LR-upper cone. We show that the notions of LR-mitoticity and Turing

mitoticity differ on the non-Iow-for-random c.e. sets by constructing a c.e. set that is

LR-mitotic but Turing nonmitotic. It is not known if there is a non-zero completely

57

58 3. NONMITOTICITY AND LR-DEGREES

LR-mitotic LR-degree, though we observe as a corollary of previous results that there

is no completely TUring-mitotic LR-degree.

Theorem 3.1 is joint work with George Barmpalias and has been published in [8]

(see also Appendix A). The notion of LR-nonmitoticity was motivated by Andre Nies

(in private communications), and was first studied in [8].

2. A non-LR-mitotic Turing complete c.e. set

THEOREM 3.1. There is a c.e. set A which cannot be split into two c.e. sets X, Y

such that X =LR Y =LR A. Moreover, A ?T 0'.

We will construct the required set A. Let (Xi, Yi, Vi, qi) be a listing of all quadruples

of disjoint c.e. sets X, Y, an oracle E~ class V and a rational q < 1 such that J.l(VZ
) ::; q

for all Z E 2w. We will construct A as well as a sequence of oracle E~ classes Ti to

satisfy the requirements

The Ti are uniformly E~, and we will ensure that J.l(T/) ::; 2-i - 2
, so that we can set

which is a E~ class and has measure < 1. By Theorem 1.5, the requirements Ri suffice

to ensure that if X, Y is a c;e. splitting of A then A iLR X or A iLR Y. We will argue

at the end that the set A automatically satisfies A ?T 0'.

The strategy for satisfying ~ is as follows. We will put a clopen set a of size E into ~A

and wait until a ~ l/ix; and a ~ ViYi with some use v such that Xds] UYi [s] r v = A[s] r v

(if this never occurs then Ri is already satisfied). When we see a in both l/ix; and ViYi,
we can remove a from TA by enumerating a single number into A, and then restrain

A r v to prevent any other numbers from entering A. Since we enumerate only a single

number x into A below v, at most one of Xi r v, Yi r v can change later, if they are

to be a splitting of A. Hence one of Xi r v, Yi r v must be fixed (assuming that Xi, Yi

are a splitting of A) and thus a ~ l/iXi or a ~ ViYi permanently. We have forced one of

Vix;, ViYi to increase in size by at least E. We can now repeat with a new a of size E.

Since Vix; and l/iY; are bounded in measure by qi, after at most 2qi/E many repetitions

we will have some a which is never covered by ViXi or ViY;, satisfying Ri . At no time

2. A NON-LR-MITOTIC TURING COMPLETE C.E, SET 59

do we ever have more than f in TiA, so J.L(T/) ~ f. We can combine these strategies in

a finite injury setting.

For each i, let Pi = 2- i- 2 • (1- qi); requirement R;, will work with clopen sets of size

Pi. It will have parameters 17f, 17f which are clopen sets, 17i := 17f U17f, and Ui which is

the use of the computation 17i E TiA (when it is defined). Initially they are all undefined,

and we denote their value at the end of stage S by the suffix [s]. Requirement R;, requires

attention at stage s + 1 if Ui [s] , 17f [s] , 17 f[s] are undefined or if they are defined and

(12)

and

(13) Xi[S] U }i[s] r v = A[s] r v.

The construction. At stage 0 do nothing; at stage s + 1 let i be the least such

that Ri requires attention at s + 1.

If uds],17f[s],17f[S] are undefined then let 17f[s + 1] be the leftmost clop en set of

measure pd2 which is ~ 2w
- ViXi[S] and 17f[S+ 1] be the leftmost clopen set of measure

pd2 which is ~ 2w - Vil'i[s], choose uds + 1] fresh (Le., larger than any numbers used

before) and declare 17i = 17f U 17f E TiA[S + 1] with use Ui[S + 1].

If Ri satisfies (12) and (13) then enumerate Ui[S] into A[s + 1] to remove 17i from

T/[s + 1] and set 17J[S + 1], 17j[S + 1], Uj[s + 1] undefined for all j ~ i.

Verification. Since we defined Pi < 1 - qi ~ p,(2W - ViZ) for any Z, when we need

to choose clopen sets 17f ~ 2w
- ViXi[S] and uri ~ 2W

- Vil'i[s] they will exist. Note

that if Ui[S] and Uj[s] are both defined and i < j then Ui[S] < Uj[s]. In particular, if Rj

receives attention at stage s + 1 and enumerates Uj[s] into A, this enumeration will not

affect Ri'S computation 17i E TiA[s]. Also, if Ri enumerates uds] into A then this will

be below the use Yj[s] of 17j E T/[s], so 17j[s] will be removed from T/ when 17j is set

undefined. Note that at any stage either T/[s] = 0 or TiA[s] = 17ds]' which has measure

~ Pi. So TA is an A-~~ class and p,(TA) < 1.

Now we show by induction that each Ri requires attention only finitely often and

is eventually satisfied. Assume inductively that So is the last stage at which some Ri'

for i' < i requires attention. After so, no number < uds] will ever be enumerated into

A. Except for stage So + 1, every time R;, receives attention due to uds] i, it must have

6Q 3. NONMITOTICITY AND LR-DEGREES

received attention at the previous stage due to (12) and (13). But when (12) and (13)

hold, we will enumerate only the single number Ui[S] into A. If (12) and (13) hold again

at some t > s, then one of Xdt] f Ui[S] = Xds] f uds] or Y;;[t] f uds] = Y;;[s] f uds]

must hold since only one number uds] has entered A between sand t. But then either

o"f[s] ~ \tiXi[t] or orrs] ~ \tiYi[t], and in fact this computation is permanent since

no number less than the use v will ever enter A after SQ. SO one of J.L(\tixi),J.L(ViYi)

has increased by pd2 = J.L(af) = J.L(an. This can happen at most 4qdpi times since

J.L(ViXi), J.L(ViYi) are bounded by qi. So I4, can require attention at most 4qdpi times

after SQ. Requirement I4, is therefore eventually satisfied since if it were not, it would

require attention infinitely often which is impossible.

To argue that 0' '5:.T A, let f be a computable function such that

X f(i) = Yf(i) = 0, qf(i) = Tl

and

z {{O}
Vf(i) = 0

if i E 0'

if i tJ. 0'

for any Z E 2W. That is, Vfii) contains the string '0' if i E 0', or is empty otherwise. By

the argument above, Uj reaches a limit for each j, and since Uj can only change if some

number '5:. Uj[s] enters A at s + 1, the oracle A can compute a stage tj such that Uj[s]

has reached its limit by tj. Since we always choose the leftmost clopen set for a~i) and

aJ(i)' we have i E 0' iff i E 0'[tf(i)]' Hence 0' '5:.T A. 0

3. Low LR-nonmitotics and cone avoidance

The nonmitoticity strategy of Theorem 3.1 can easily be combined with other re­

quirements in a finite injury setting. We briefly discuss the modifications necessary

to combine the nonmitoticity strategy with negative requirements to construct, for in­

stance, a low LR-nonmitotic c.e. set, or an LR-nonmitotic c.e. set that is not LR-above

a given non-Iow-for-random Dog set.

THEOREM 3.2. There is a low c.e. set that cannot be split into two c.e. sets of the

same LR-degree. Given any non-Iow-for-random Dog set B, there is a c.e. set A "iLR B

such that A cannot be split into two c.e. sets of the same LR-degree.

. !

4. A TURING-NONMITOTIC BUT LR-MITOTIC NON-LOW-FOR"RANDOM C.E. SET 61

To make the set A low, we can use the usual strategy of restraining A when we see

a computation ~~(e)[s] converge. Since the higher priority nonmitoticity requirements

will act only finitely often, we will have

which ensures that A' ~T 0' if met for all e.

To make the set A be 'i..LR a given non-Iow-for-random ~g set B, we can use Sacks

restraints as in Theorem 2.1. Either of these negative strategies can be combined with

the nonmitotic strategy in a finite injury setting, since each nonmitotic requirement acts

only finitely often.

One modification is necessary to the nonmitoticity requirements in the presence of

restraints however. If a higher priority negative requirement imposes a restraint on

A, this restraint may prevent lower priority nonmitoticity requirements from removing

some strings a from TA. Such strings would become permanent residents of TA, con­

tributing measure to JL(TA). When this happens the nonmitoticity requirement must

abandon a and start with a new attack a' . However we will no longer have that at

all times Tt contains at most one attack. To keep the measure of TiA under control,

requirement Ri must halve its quota each time a higher priority requirement acts (ie,

imposes or changes its restraint). Each time a higher priority requirement acts, ~ must

abandon any previous attack a and must restart with a new attack a' half the size of a.

In a finite injury setting, this will only happen finitely often before ~'s quota is fixed

and then the verification can proceed as in Theorem 3.1. Since TiA consists of at most

one attack of each size, we still ensure that JL(TA) < 1 by a suitable choice of the initial

quotas. The details are a standard finite injury argument.

Obvious questions remain about which LR-degrees contain LR-nonmitotic c.e. sets.

In particular, is t?ere a completely LR-mitotic LR-degree - a c.e. LR-degree which does

not contain an LR-nonmitotic c.e. set?

4. A Turing-nonmitotic but LR-mitotic non-low-for-random c.e. set

Clearly all LR-nonmitotic c.e. sets are Turing nonmitotic. Note that all low-for­

random c.e. sets are trivially LR-mitotic since low-for-randomness is closed downwards

under Turing reducibility. Ladner [43] showed that every noncomputable c.e. set com­

putes a nonmitotic c.e. set. We can apply this result to a noncomputable low-for-random

62 3. NONMITOTICITY AND LR-DEGREES

c.e. set to obtain a c.e. set which is Turing nonmitotic but (trivially) LR-mitotic. We

now show that LR-nonmitoticity and Turing nonmitoticity differ also on non-Iow-for­

random c.e. sets.

THEOREM 3.3. There is a non-Iow-for-random Turing nonmitotic c.e. set A and

disjoint c.e. sets C, D such that

A = CUD and A =LR C =LR D.

Let (Xi, Yi, cI>i, Wi) be a listing of all quadruples of disjoint c.e. sets Xi, Yi and Turing

functionals cI>i, Wi. Let Vi be a listing of all E~ classes such that J.L(Vi) < 1. Fix a member

U of a universal oracle Martin-Lof test. We will construct the required set A as well as

an oracle E~ class T which will satisfy the requirements

Pi: TA ss Vi

~ : Xi U Yi = A =} cI>;i =1= A V wii =1= A.

We also construct the c.e. sets C, D such that enD = 0 and CUD = A, and oracle

E~ classes V C , V D such that

(14)

By Theorem 1.5 this ensures that A 5:.LR C, Dj A =LR C =LR D follows since C, D 5:.T

A.

The requirements Pi are the standard non-Iow-for-randomness requirements: we put

a clop en set a into TA, wait until a ~ Vi and then remove a from TA by enumerating

into A. With J.L(a) fixed, after finitely many repetitions J.L(Vi) will not be able to increase

any further and we will satisfy Pe.

The requirements ~ are the Turing version of the nonmitoticity requirements. The

basic strategy is similar to (in fact, simpler than) that of Theorem 3.1: choose a witness

x not yet in A and wait until

cI>X (x)[s] 1= 0 and wy
(x)[s] 1= 0 with use u such that X[s] U Y[s] r u = A[s] r u.

When this occurs, enumerate x into A and restrain A to prevent any other numbers

< u from entering A. Since at most one of X r u, Y r u can change, at least one of

4. A TURING-NONMITOTIC BUT LR-MITOTIC NON-LOW-FOR-RANDOM C.E. SET 63

<pX(x), IJTY(X) =1= A(x) = 1. This is the strategy originally used by Lachlan [41J to

construct a nonmitotic c.e. set.

Whenever a number is enumerated into A, we will also enumerate it into one of C

or D, ensuring that CUD = A and CnD = 0. To meet (14), we will trace strings from

U A into V C and V D. That is, if we see p E U A with use v then we will put pinto V C

and VD also with use v. The danger is that if some number x < v is enumerated into

A, then p might be removed from U A. Since we can only enumerate x into one of C

or D, say C, we will only be able to remove p from V C . If no other numbers < v ever

enter A, then we will never be able to remove p from V D and it will become junk. We

need to keep this junk small so that J1.(Vc) and J1.(VD) are < 1.

If the enumeration is on account of a P-requirement, the solution is simple. We can

just enumerate two numbers x and x-I into A (even though one is enough to fulfil P's

desire of removing a from TA). We can put one into C and the other into D. We cannot

do this for the nonmitotic requirements though, as they depend on there being only a

single enumeration into A below the use u. However we can use the ideas from the 'cost

function' construction of a noncomputable non-Iow-for-random ([39], see [60]). Let

cost(x,s) = J1.({a: a E UA[sJ with use> x}).

This is the amount of junk that we risk contributing to one of VC, VD if we enumerate

x into A at stage s. We will give each requirement R-i, a quota f, and will only allow R-i,

to enumerate a number x if cost(x, s) :::; f. By a familiar argument from cost function

constructions, we can argue that R-i, will eventually have a suitable x that it can use for

d· aI' . . t n-.X ,T, Y lagon lsmg agams 'J.' , 'J' •

Each requirement Pi has a parameter ai which is a clopen set and Zi which is

a number. They are initially undefined and may be redefined or declared undefined

during the construction. It also has a quota 2-ki , which is the amount Pi is allowed to

contribute to TA. Initially we set ki = i + 2, and ki may be incremented during the

construction.

Each requirement Ri has a parameter Xi which is initially undefined and may be

defined or declared undefined during the construction. It also has a quota 2-j ;, initially

set to ji = i + 2, which may be incremented during the construction. The suffix [sJ

indicates the value of a parameter at the end of stage s of the construction.

64 3. NONMITOTICITY AND LR-DEGREES

Requirement Pi requires attention at s+ 1 if ads] j and zds] j, or if ads] L ai E TA[s]

and ai ~ Vi[s]. We take action for Pi by doing the following. If ails], Zi[S] j then choose

ads+ 1] to be a clopen set of measure 2-ki [s] that is disjoint from any previous adt] used

since the last stage when Pi was injured. Choose zds + 1] to be a fresh odd number (ie,

larger than any number used so far in the construction) and declare ai[s+l] E TA[s+l]

with use zds + 1] + 1. If ails], zds]l and ails] ~ Vi[s], then enumerate zds] + 1 into A

and into C, and enumerate Zi[S] into A and D. Choose a new ads + 1] and zds + 1] as

above.

Requirement ~ requires attention at s+ 1 if xds] j, or if xds] L If>;i(Xi)[S] 1= 0 and

W~(Xi)[S] 1= 0 with use u, xds] ¢ A, and Xds] U }i[s] r u = A[s] r u. We take action

for Ri by doing the following. If xds] j then choose Xi fresh (larger than any numbers

used so far in the construction). Otherwise (when ~ requires attention for the second

reason), check if

(15) cost(xds], s) ::; Tj;[s].

If so, then enumerate Xi[S] into A and into C. If not, then abandon the old Xi[S] and

choose xd s + 1] fresh.

To injure a requirement Pi at stage s + 1 means to set ads + 1] j and zds + 1] j

and to set kds + 1] = ki[s] + 1. To injure a requirement ~ means to set Xi[S + 1] j and

jds + 1] = jds] + 1.

We order the requiremeats in the order Po, Ro, Pl , R l ,··· Pn , Rn

The construction. Initially A, C, D are empty and T, V are empty (as sets of

axioms). We give the construction of VC and VD in advance. At stage s, for each

P E UA[s] with some use u, put pinto VCrs + 1] and VD[s + 1] (if, it is not in there

already) with use v, where v is the least even number ~ u.

Now for the construction of A, C, D. At stage 0 do nothing. At stage s + 1, take

action for the highest priority requirement that requires attention at stage s + 1. Injure

all lower priority requirements.

End of construction.

Verification. First, note that if a requirement Pi enumerates into A, then it enu­

merates two numbers z, z + 1, and z goes into C and z + 1 into D. Since all strings in

VC and V D have even use, if a string is removed from U A because of the enumeration

4. A TURING-NONMITOTIC BUT LR-MITOTIC NON-LOW-FOR-RANDOM C.E. SET 65

of z or z + 1, then it is removed from both VD and VC. So the P-requirements do not

contribute junk to JL(VC), JL(VD). If requirement ~ enumerates a number x into A at

s, then it must satisfy (15). Hence the enumeration of x can contribute at most 2-iils]

towards JL(VD). By the construction, if ~ later enumerates another number, then it

must have been injured since s and so its quota 2-j ; would have halved. So each R;, can

contribute at most twice its initial quota to JL(VD), and by the initial choice of ji, we

have JL(VD - UA) ~ 2-1. Since JL(UA) ~ 2-2, we have JL(V D) < 1. By the definition

of VC, V D we have UA ~ VC, UA ~ yD. Hence A ~LR C and A ~LR D. Note that

actually VC = UA ; in fact, A ~T C.

We must verify that each requirement requires attention only finitely often, and

hence is eventually satisfied. Assume inductively that no requirement of higher priority

than Pi requires attention at any stage S ~ So, and that So is the least such. At So, we

will define (Ti, Zi and they will remain defined thereafter. Each time Pi receives attention

after So, it is because (Ti ~ Vi· But each time we choose a new clopen set for (Ti, we

choose it disjoint from those previously used. So after receiving attention at most 2k ;[so]

many times after So, Pi will be satisfied since JL(Vi) cannot increase above qi < 1.

Assume now that no requirement of higher priority than ~ requires attention at

any stage S ~ So, and that So is the least such. Note that ji is fixed after So. If ~

requires attention at some stage S after So such that (15) holds, then it will enumerate

xds] into A and R;, will be permanently satisfied. We just need to argue that eventually

this will occur. Assume to the contrary that R;, requires attention infinitely often after

So, at stages So < S1 + 1 < S2 + 1 < Let Jk = {p : p E UA[Sk] with use > XdSkJ}; at

each Sk, we have JL(Jk) = cost(XdSk]' Sk) > 2-j ;. Since all lower priority requirements

are injured at Sk, no numbers < Sk will enter A after Sk. By the usual assumptions

about the use of computations, all p E Jk have use < Sk. So Jk ~ UA. Since XdSk + 1]

is chosen fresh, we have cost(XdSk + 1], Sk) = O. At sk+1 we again have JL(Jk+1) =
cost(XdSk+l], Sk+l) > 2- j

;. As above, Jk+l ~ UA. But since UA is prefix-free, Jk and

Jk+l must be disjoint. So during each interval Sk < S ::; Sk+t. JL(UA) increases by at

least Tj;. But this is impossible since JL(UA) < 1. So eventually there must be an Sk

at which (15) holds. Then R;, will be satisfied. 0

66 3. NONMITOTICITY AND LR-DEGREES

What we have done in this construction is to make A :::;T C by coding all enumer­

ations into C, and to make enough extra enumerations into A but not into D to make

A be low-for-random but non-computable relative to D.

A corollary of previous results is the fact that every c.e. LR-degree contains a Turing

nonmitotic c.e. set. Ingrassia [29J (see Downey and Slaman [24] for a more accessible

proof) showed that the degrees of nonmitotic c.e. sets are dense in the c.e. Turing

degrees. That is, given c.e. sets B <T C, there is a Turing nonmitotic c.e. set A with

B <T A <T C. Barmpalias, Lewis and Soskova [5J showed that every c.e. LR-degree

contains infinite chains of c.e. Turing degrees; in particular it contains c.e. sets B <T C.

Combining these two results we obtain the desired fact.

COROLLARY 3.4. Every c.e. LR-degree contains a Turing nonmitotic c.e. set.

As mentioned previously, it is not known if there is a completely LR-mitotic LR­

degree; that is, a c.e. LR-degree which does not contain any LR-nonmitotic c.e. set.

However Corollary 3.4 establishes the weaker result that there is no completely Turing

mitotic LR-degree.

CHAPTER 4

A non-cuppable LR-complete c.e. set

1. Non-cupping and LR-completeness

In this chapter, we turn our attention to the LR-degree of 0'. We will prove that

the LR-degree of 0' contains a non-cuppable c.e. Turing degree, that is, a c.e. set that

cannot be joined to 0' by any incomplete c.e. set. The theorem presented in this chapter

is joint work with George Barmpalias, and has been published in [8] (see also Appendix

A).

THEOREM 4.1. There is a c.e. set A such that A ~LR 0' and A EB W ¥;T 0' for all

c.e. sets W <T 0'.

The proof is given in section 2.

LR-completeness, the property of being ~LR 0', is a notion that has been of interest

apart from studies of relative randomness. Dobrinen and Simpson [11] defined the

notion of almost everywhere domination, in connection with the reverse mathematics

of certain results from measure theory. A is almost everywhere dominating if the class

of X E 2W such that every total function 9 -::;'T X is dominated by some total f -::;'T A

has measure 1.1 Kjos-Hanssen, Miller and Solomon [31] showed that this notion of

almost everywhere domination is equivalent to LR-completeness (see Nies [60] 5.6.30).

Dobrinen and Simpson pointed out that almost everywhere domination implies highness,

Binns, Kjos-Hanssen, Lerman and Solomon [9] showed that not all high degrees are

almost everywhere dominating, and Cholak, Greenberg and Miller [12] showed that

there are Turing-incomplete c.e. sets that are almost everywhere dominating (though

this also follows from the result from [5] that every c.e. LR-degree contains infinite

chains of c.e. Turing degrees and the equivalence between LR-completeness and almost

everywhere domination).

1 An equivalent notion is uniformly almost everywhere dominating (u.a.e.d.): A is u.a.e.d. if there is a
single f ::;T A such that the measure of those X such that f dominates all total g ::;T X has measure
1. This was shown to be equivalent to (non-uniform) almost everywhere domination by Kjos-Hanssen
[30J.

67

68 4. A NON-CUPPABLE LR-COMPLETE C.E. SET

LR-completeness has also been studied in comparison to other highness properties

such as (regular) highness, superhighness2 and 0'-trivialising 3. See for example [67] or

[4].

One question that is of interest is whether there is a degree-theoretic property on

which the LR-complete and the high 'lUring degrees can be separated. That is, a formula

¢ in the language of the C.e. 'lUring degrees such that some high c.e. degrees satisfy ¢

but no LR-complete c.e. degrees satisfy ¢. Barmpalias and Montalban [7] constructed

a cappable c.e. 'lUring degree that is LR-complete; that is, a c.e. set A which forms

half of a minimal pair with another c.e. set and is ?:.LR 0'. Hence being cappable is

not such a property. We strengthen this result by showing that there is a non-cuppable

LR-complete c.e. 'lUring degree. Hence non-cuppability is also not such a property.

Non-cuppable c.e. degrees were first constructed by Yates, Cooper [13] (unpub­

lished). Harrington constructed a high non-cuppable c.e. degree, in fact proving the

stronger theorem that for every high c.e. degree a there is a high c.e. degree b that

cannot be cupped to a by any c.e. degree c l. a (see Miller [53]). A tree strategy for

constructing non-cuppable degrees was sketched in Cooper [15], the original construc­

tions of Yates, Cooper and Harrington being pinball constructions. 'free constructions

were also given by Li, Slaman and Yang [44] and Yang and Yu [76], whose basic strategy

we will use in Theorem 4.1.

It is well known from work by Ambos-Spies, Jockusch, Shore and Soare [1] that

the cappable degrees form an ideal within the c.e. 'lUring degrees. Harrington estab­

lished that the non-cuppable degrees form a proper subideal of the cappable degrees,

by showing that all c.e. degrees either cup or cap and some do both (see Soare [68]

XII.4.3).

Since the LR-complete sets are a proper subclass of the high sets, Theorem 4.1 can

be seen as a strengthening both of Barmpalias and Montalban's cappable LR-complete

c.e. set, and of Harrington's construction of a high non-cuppable c.e. set.

An open question regarding the LR-complete c.e. sets is whether there is a single

noncomputable c.e. set that is computable by all LR-complete c.e. sets. A corollary of

Theorem 4.1 is that if such a set exists then it must be non-cuppable.

2 A is super high if A' =tt 0'.
3 A is 0'-triviaJising, also known as almost complete, if 0' is K-trivial relative to A. See [20J for discussion
of this notion.

2. PROOF OF THEOREM 4.1 69

2. Proof of Theorem 4.1

In the following we fix U to be the second member of a universal oracle Martin-Lor

test, so that JL(UX) $ 2-1 for all X E ~. We will construct a non-cuppable set A and

an A-E~ class VA such that U0' ~ VA and JL(VA) < 1. By Theorem 1.5 this ensures

that A ~LR 0'.

We adopt the assumptions that, for a 'lUring functional r, rX(z)[s] 1 only if

rX(y)[s] 1 for all y < z, and that userX(y)[s] $ userX(z)[s] $ s if rX(z) 1 and

y $ z. We consider 'lUring functionals r as c.e. sets of axioms (z, y, a) (asserting that

rX (z) = y for all X E 2w with a C X), which are consistent in the sense that if (z, y, a)

and (z, y', a') are both in the set, for y' # y, then a and a' are incomparable. We will

abbreviate r XElw as r XY
.

2.1. Making A non-cuppable. We describe the basic strategies for constructing

a non-cuppable degree, based on [44, 76]. For convenience, we can assume that 0' ~ 2N,

the even numbers. We will construct 'lUring functionals ~e to ensure that the following

holds for all e E N:

(16)

where (re , We) ranges over all pairs of a 'lUring functional and a c.e. set; assuming

that 0' ~ 2N we let K = D u 0' where D ~ 2N + 1 is an auxiliary c.e. set that

we enumerate. Although K = D u 0' is not the 'standard' halting set, we use the

letter K nonetheless as we can think of it as a version of the halting problem which

we have some control over (via the set D). In the following discussion we omit the

index e. The idea is to let ~ W copy rAW by monitoring the 'lUring reduction rAW

and restraining A to preserve the agreement of the two computations. The problem

with this approach is that the restraint on A may well have limit 00, in which case

very little can be done to make A nontrivial, let alone LR-above 0'. The solution is

to split N into infinitely many subrequirements Mp which are responsible just for the

definition of ~ W (p), thus splitting a potentially infinite restraint into infinitely many

finite restraints. The strategies for the subrequirements Mp will be coordinated by a

master N strategy which will make sure that ~ is consistent and this coordination will

be implemented on a tree of strategies.

70 4. A NON-CUPPABLE LR-COMPLETE C.E. SET

We can think of N as having two outcomes 00 <L f (Le. 00 is to the left of f)

corresponding to whether there are infinitely many expansionary stages in rAW = K or

not, and Mp having outcomes 00 <L f according to whether rAW (p) 1 or equivalently,

.6. W (p) 1. We will have a uniformly labelled tree of strategies with each strategy N or

Mp occupying a single level of the tree. For the consistency of .6. we make sure that at

any Mp-Ievel (Le. occupied py an M requirement) and at any stage at most one node a

will be responsible for .6.W(p) 1 (by preserving A in rAW(p) 1). Any nodes to the right

of a may adopt a's .6.-definition but if a node to the left of a wishes to define .6.(p) it

must first cancel the .6. computation that a holds. This happens by enumerating into

the auxiliary set D which in turn causes a W-change (provided that the rAW = K

reduction is valid). Eventually, if rAW = K, at each Mp level there will be exactly one

node on or to the left of the true path which permanently preserves .6.W(p) 1== 0'(p).

Otherwise some node will witness the partiality of rAW. As in any 0" priority argument

the restraints imposed on a node on the true path will be finite.

Each Mp-node a has a flip-point d, which is the number enumerated into D when we

wish to cancel the computation .6. W (p). When a is visited, it checks if the computation

rAW (d) has changed since the last time it was visited, and if so it plays outcome 00.

Otherwise we may define .6.W(p) = rAW(p), with W-use u = userAW(d) and restrain

A r u. If we later want to visit a node /3 to the left of a, we enumerate the flip-point d

into D whilst maintaining a's A-restraint. This enumeration should force a W-change

below u, and so a will not hold a .6.-computation anymore (if this does not happen

then N will be satisfied by a finite outcome). Then we can drop a's restraint and /3

can take action. This must happen immediately upon seeing the next N -expansionary

stage, otherwise some other node ex' to the right of /3 may act first and define another

.6.-computation which prevents /3 from acting. For this reason when we enumerate d

into D we create a link (T, /3) from the N-node T to /3, and when T is next visited at an

expansionary stage we will follow the link straight to /3.

2.2. Measure-guessing nodes and LR-completeness. This aspect of the con­

struction is largely the same as in Theorem 2.13, however the presence of links neces­

sitate some small modifications compared to the method of Theorem 2.13. For com­

pleteness and so that this chapter might be self-contained, we discuss the strategy for

making 0' ~LR A.

I

,

\
I

if }"

2. PROOF OF THEOREM 4.1 71

To make A LR-complete, it suffices to construct an A-E~ class VA with U0' ~ VA

and JL(VA) < 1. Without loss of generality we may assume that if (a, T) is enumerated

into U at stage s then lal = ITI = s. We will also use the hat-trick for U0': let

ks = min{x : x E 0'[s]-0'[s-1]}, or k = s if there is no such x and define 0'[s] = 0'[s] r k.

Then U0'[s] = {a : (a, T) E Us for some T ~ 0'[sJ}. In the following we assume that

U0'[s] and 0'[s] refer to U0'[s] and 0'[s] respectively. Infinitely often we have true stages

s at which U0'[s] = U0'fn C U0' for some n, and thus JL(U0'[s]) < JL(U0').

Whenever an interval a appears in U0', we add it to VA with large A-use u. If

a 0' -change later removes a from U0', we could remove it from V A by enumerating u

into A, provided that u is not restrained by some requirement. The A-change may also

remove some legitimate intervals from VA, but we add these again with the same use

as before. This clearly gives U0' ~ VA. The conflict with the non-cupping strategy is

that the A-restraints will prevent us from removing some superfluous 'junk' intervals

a from V A. For the argument to succeed, we must ensure that the total measure of

junk intervals JL(VA - U0') < ~. We assign each requirement (each level of the tree) a

quota €, which is the amount of junk measure that requirement is allowed to capture.

We implement the negative strategies in such a way that we have at most one node

imposing restraint at each level of the tree. A restraint may only be imposed on A

if the (current) junk measure that it captures is less than the quota. To ensure that

strategies will eventually be able to impose restraints under this restriction, we choose

the quota €(k) of level k of the tree so that 'L-j>k €(j) < €(k) (in this way the lower

priority requirements will not capture more than €(k) of junk).

To ensure that the strategies do not exceed their junk quota, the predecessor of

each N and M node will be a node with a strategy G which measures M(U0') in a rrg
way. The backup nodes G successively subdivide the interval [0,1), assigning each of

its outcomes an i~terval [q, r) which corresponds to a guess that M(U0') E [q, r). The

construction will make sure that if the backing node of a strategy predicts the right

interval [q,r) of M(U0'[S]) then the junk measure that it captures will increase by no

more than r - q after it acts. If we choose r - q = €, then 0: will capture at most 2€ of

junk, which is acceptable if we choose the quotas €(k) such that 'L-kEw 2€(k) < ~. An

analysis of the permanent restraints and the timing of the enumerations into A in the

construction will verify that M(VA
- U0') < ~.

72 4. A NON-CUPPABLE LR-COMPLETE C.E. SET

2.3. Combining the strategies. The difficulty in combining the non-cupping and

LR-completeness strategies stems from the fact that the non-cupping subrequirements

are not independent of each other or of the parent N-node. In previous constructions

using the measure-guessing strategy such as [12], [7] and Theorem 2.13, when a node

holds a restraint under a measure guess which proves wrong, we initialise that node

and all lower-priority nodes. However here we can only initialise non-cupping parent

N-nodes since by initialising an M-node we may make ~ inconsistent. Once a ~ w (p)

axiom has been enumerated, we must retain the A-restraint until the axiom is invali­

dated by a W-change or the parent N-node is initialised.

Thus whenever some M -node holds a restraint under a wrong assumption about

j.L(U0') we just try to invalidate the corresponding ~ axiom by enumerating the flip

point and waiting for a suitable W-change. The construction will make sure that if this

does not happen and N is not reset, the junk measure from the subrequirements of N

will be less than the quota of N, even though the junk measure of some M may turn out

to be larger than its quota. Overall this satisfies N trivially and with small enough cost.

The trick which allows the above quota-junk relation is in the enumeration of U0': it

is prefix-free and if some interval a leaves U0' then all intervals which were enumerated

after a leave as well, at the same time.

2.4. Priority Tree and Definitions. The priority tree is a finite branching tree

which consists of the parent l).odes labelled Ne, the subrequirement nodes labelled Me,p,

and the measure-guessing backup nodes labelled G. Let (-, -) be a monotone 1-1 com­

putable function from N x N onto N. If JaJ = 2(e,0) + 1 then a is labelled Ne and if

JaJ = 2(e, p + 1) + 1 then it is labelled Me,2p (by assumption 0' C 2w and so only even

~W(p) arguments need to be considered). If JaJ = 2e then a is labelled G. We write

R < R' to indicate that the requirement R occupies an earlier level of the tree than

requirement R' (where R, R' are one of G, Ne, Me,p)'

The Ne-nodes T have outcomes 00 <L f and are associated with a functional ~T

that is built by the Me,p-nodes below T and is occasionally cleared and started afresh

when T is reset. The Me,p nodes have outcomes 00 <L f and are associated with a

flip-point do which may change in the course of the construction.

A measure-guessing G-node 'Y has outcomes qo <L ql <L q2 <L q3 which correspond

to guesses about an interval in which j.L(U0') may lie. We inductively assign to each node

2. PROOF OF THEOREM 4.1 73

a an interval fa as in Theorem 2.13. Start with i). = [0,2-1) for the root node >.. For a

node a with fa defined, if a is a G-node then subdivide fa equally into four subintervals

and assign them to fo.~qi in order. If a is an N- or M-node then let fo.~x = fa for

x E {oo, f}. We write q(a) for the lower endpoint of fa and €(a) for the width of fa·

We refer to €(a) as a's resolution and q(a) as its measure guess. Since all nodes of the

same label have the same length, we may write €(Ne) or €(Me,p) to denote €(a) for any

node a labelled Ne or Me,p, respectively. For each N or M requirement R we have

(17) L 2€(R') < €(R) and
R'>R

where R' is an N or M requirement.

The ordering <L on the outcomes can be extended lexicographically to the nodes

of the tree. We say that a has higher priority than /3 or write a < /3 if either a c /3 or

a <L /3.
We write rOo for the restraint imposed on A by node a, and a- for the predecessor of

a. Also let ROo = max{r{3 : /3 <L a or /3 C a}. All parameters have a current value each

time they are mentioned in the construction. It is convenient in this chapter to use the

suffix [s] to denote the value of a parameter at the start of stage s. For an Me,p-node

a, we write 7(a) for the unique Ne-node 7 C a. We refer to 7 as a's parent, or say that

a is working for 7. An Me,p-node a with parent 7 is enabled if 7~00 C a and for every

Me,p,-node a' with 7 C a' C a, we have a'~ f C a. Otherwise, a is disabled (which

means that it regards rAW. as partial and no further action is needed for Ne).

2.5. Construction. Set A[O] = 0,.6.T = 0 for all N-nodes 7, and do. j, rOo = 0

initially for all M-nodes a. When a parameter is assigned a value, it retains that value

until explicitly given a new value. To reset an N-node 7 means to empty .6.71 set r{3 = 0

and d{3 j for any M-nodes /3 working for 7, and remove any links to or from 7 or any

M-node /3 working for 7. To reset an M-node a means to remove any links to it and

if rOo i- 0 and do. L enumerate do. into D, setting do. j. To reset a G-node means to

remove any links to it. The construction will explicitly declare certain nodes a to be

accessible at each stage, which does not merely mean that a C TP s ' If a is an N-node,

it will also declare certain stages to be a-expansionary. We give the enumeration of VA

74 4. A NON-CUPPABLE LR-COMPLETE C.E. SET

during the stages s of the construction in advance:

Enumeration of VA. For each (J,p) E U[s] with p c 0'[s] but

(J f/. VAts], if (J E VA[t] with use u for some t < s take the largest

(18) such t and if (J, p') E U[t], p' C 0'[s], then enumerate (J into

VAts + 1] with use u. Otherwise, put (J into VAts + 1] with fresh

use.

The construction will occasionally call the following routine, which is needed in order

to access certain outcomes x of nodes Q.

Routine L(Q, x, s). Reset all N-nodes which are to the left of

Q x. Then consider the longest node 7 C Q which has label

Ne for some e E N and there is some Me,p-node {3 ::J 7 with

(19) {3 >L Q x and r/3[s] =1= O. If 7 exists, let {3 be the shortest node

as above, enumerate d/3 into D (if d/3 1), set d/3 i, create a link

(7, Q) associated with outcome x and go to step 4. Otherwise let

TP s,t+l = Q x and go to step 3.

At stage s, perform the following steps in order.

Step 1. (Reset some nodes) Look for the highest priority node Q such that some {3 ;2 Q

has been accessed since Q was last reset and J.L (U0' [s]) < q(Q). If there is such, reset Q

and all nodes of lower priority than Q.

Step 2. (Drop some restraints) For each M-node Q with rex =1= 0 and W I rex[s] =1= W I rex[t] ,

where t is the stage at whidi the restraint rex was last set, set rex = 0 and reset Q f

and all nodes of lower priority than Q f.

Step 3. (Define TPs in substages) Let TPs,o = >.. Let t be the largest number such

that TPs,t 1· If ITPs,tl ~ s then go to step 4. Otherwise let Q = TPs,t and check if

(20) there is an M-node {3 SL Q with 7({3) 00 C Q, r/3 =1= 0 and d/3 i .

The check for (20) is to ensure that an M -node does not try to act while a higher­

priority M -node is awaiting a W -change. This could potentially happen if a parent

node 7 was bypassed by a link, rather than accessing outcome 7 f. Preventing this

helps simplify the verification later.

If (20) holds, go to step 4; otherwise declare Q accessible and go to the relevant

clause below.

2. PROOF OF THEOREM 4.1 75

• 0: is a G-node. Let lao, al), ... [a3, a4) be the intervals corresponding to the

outcomes of 0: and f = al - ao be the resolution of 0:. Let ga(s) be the largest t < s

such that 0: C TPt, or 0 if such t does not exist. Let

(Lemma 4.3 verifies that l/ always exists) and let i be such that l/ E [ai, ai+l), and run

routine L(o:, qi, s).

• 0: is an Me,p-node. If 0: is a disabled Me,p-node, let TP s,t+l = 0:""00 and go

to step 3. Otherwise do as follows. For brevity let d = da ,7 = 7(0:), W = We,r = r e,

u = userAW(d)[s) (if defined) and

(22) ha(s) = max{t::; s: l/(O:-, s) = /-t(U0'[t])}

where 0:- is the predecessor of 0:. ha(s) is the stage lor which the measure-guessing

G-node of 0: gave its outcome. If d i choose a fresh value for d.

Ml. If ~~ (p)[s)! let TPs ,t+l = 0:"" I and go to step 3; if ~~ (p)[s)! for some Ne-

node 7' <L 0: then define ~~ (p) = ~~ (p) with the same use, let TP s,t+l =

0:"" I and go to step 3.

M2. Otherwise if rAW (d)[s) i or if A r u[s] i= A r u[t] or W r u[s] i= W r u[t] for

the last stage t when 0: was accessible, or if 0: has never been accessible before,

then run routine L(o:, 00, s).

(23)

M3. Otherwise, if

we define ~~ (p) = rAW (p)[s] with use u, impose restraint ra[s + 1) = u, and

go to step 4.

M4. In any other case go to step 4.

• 0: is an Ne-node. Let

l(o:, s) = min ({n : r:we(n)[s) i= K(n)[s]}

U {d : d was enumerated into D in step 1 or 2}) ,

76 4. A NON-CUPPABLE LR-COMPLETE C.E. SET

and say that stage s is a-expansionary if l(a, s) > l(/3, t) for all Ne-nodes /3 :5:L a and all

t < s such that /3 was accessible at t. If s is not a-expansionary, then let TP 8,t+1 = a""' f

and go to step 3. Otherwise, if there is a link (a, /3) associated with outcome x of /3

which was created at stage t < s, remove it and run routine L(/3, x, s). Otherwise run

routine L(a, 00, s).

Step 4. Set TP 8 = a for the longest a which was declared accessible in step 3. Reset

all nodes > L TP 8 and enumerate into A the least number which is not in A and is

greater than all r.B [s + 1] for all M -nodes /3.

2.6. Verification. In the following, whenever we say 'M-node' we mean an enabled

M-node, as disabled M-nodes have no effect on the construction. A basic fact which

stems from the hat-trick in the enumeration of U0' and will be used repeatedly in the

verification is the following: if So < t :5: S1 are stages and j.l(U0') takes its minimum

value in (so, SI] at t, then U0'[t] ~ U0'[s] for all s E (so, SI].

LEMMA 4.2. Links can never be nested or crossing. That is, if (7', a) and (7", d) are

two distinct links both present at stage s, with 7' cae /3 and 7" C a' C /3 for some

node /3, then a C 7" or a' C 7'. Furthermore, at the end of any stage s, there is at most

one link (7', a) with 7' C a ~ TP 8, and such a link was created at stage s.

PROOF. By induction on the stages. Note that initially there are no links and at

any stage at most one link i~ created. Suppose that the claim holds at stage s and a

link (7', a) is created at stage s + 1. Then a is accessible at stage s + 1 or a link was

travelled to a, and any links (7", d) with 7" C a' ~ a present at the start of stage

s + 1 have been travelled and removed. If there was a link (7''', a") at the start of stage

s + 1 for some 7''' cae a", then that link would have been travelled and a would not

be accessible. Thus the new link cannot be crossing or nested within an existing link.

Finally any links (7', a) with 7' cae TP 8+1 which are present at the start of stage

s + 1, would be travelled and removed during the definition of TP8+1 in step 3. Since

at most one link is created under routine (19), the last claim of the lemma holds. 0

The following lemma verifies that a G-node will always have a valid outcome to play

when it is accessible. Note that we need to verify this because of the presence of links

in the construction; in Theorem 2.13 such a lemma was not necessary.

2. PROOF OF THEOREM 4.1 77

LEMMA 4.3. Suppose a G-node 'Y is accessible at stage So and let SI = 91'(SO) be the

greatest stage < So such that 'Y C TP81 (or 0 if such stage does not exist). Then there

is some t with SI < t ~ So and J.L{U0'[tJ) E II" Thus, when'Y is accessible in step 3, 1/

(as in (21» will exist.

PROOF. Let "I, So and S1 be as in the lemma. The proof is by simultaneous induction

on the length of "I and the stage So. For the root node the claim is trivial, so let 1"11 > 1

and suppose that the claim is true for all G-nodes shorter than "I and at all stages ~ So·

Let "I' = "I r 1"11 - 2 be the last G-node above "I and note that if "I has never been

accessed before, a suitable t must exist or else "I' would not have chosen the outcome

leading to "I. Suppose then that "I has been accessed before. If "I' is also accessible

at So, since "I' C "I we have 91"(So) ~ S1 and by hypothesis there is a suitable t with

91"(so) < t ~ So and f1.{U0'[tJ) E 11"

If "I' is not accessible at So, then there must be a link (T, (3) at So, with T C "I' ~ (3 C

"I. Also by induction hypothesis there must be a stage to < So such that "I' is accessible

at to and f1.{U0'[tJ) E 11' for some t with 91"(to) < t ~ to. We can assume that to is the

greatest stage < So with the above property. If t2 is the stage at which the link (T, (3)

was created we have t2 ~ to. Now TP 8 72. "I for to ~ s ~ t2, as otherwise to would not

be the greatest with the above property. Also TP 8 72. "I for t2 < s < So as otherwise the

link would be travelled and removed before So, because by Lemma 4.2 links cannot be

nested. So Sl < to and Sl ::; g'Y,(to) since "I' C "I, which means that S1 < t ::; So. 0

By the construction, if an Me,p-node a has To[S] 1= 0 and do L then do has not

been enumerated into D via resetting or routine (19). Conversely, To[S] 1= 0 and do i

indicates that the construction has attempted to invalidate a's ~ W (p) computation.

The definition of T-expansionary stage and the check for (20) in step 3 ensures that no

Me-node of lower priority than a will be accessible again until the ~ W (p) computation

is invalidated.

A restraint To is called permanent at stage s if To[S] = To[t] 1= 0 for all t ~ s; it

is called permanent if it is permanent at some stage. Let P be the set of nodes with

permanent restraints.

For anM-node a, let Jo[s] = {D' E VA[s+1]-U0'[s]: RO'[s+l]::; useD' < TO'[s+l]},

which is the junk intervals that are restrained at stage s by a but not by any higher­

priority node at the end of stage s. For an Ne-node T, let Qr[s] = U JO'[s] , where the

78 4. A NON-CUPPABLE LR-COMPLETE C.E. SET

union is taken over all Me-nodes Q which are either ~ 7 or <L 7. The following lemma

shows that if the junk captured by an M-node becomes greater than the node's quota

2«: then the node is reset; and although an M-node may sometimes capture more than

its quota of junk (if the junk is never released via step 2), the total junk captured by

nodes belonging to an N-node remains within the N-node's quota.

LEMMA 4.4. Let {3 be an M-node and S a stage such that T/3[S+ 1] -:f. 0 and d/3[s+ 1]1

(so {3 has not been reset since T/3 was set -:f. 0). Then J.l(J/3[s]) < 2«:({3). Let 7 be an

N-node. Then J.l(Qr[s]) < 2«:(7) for all s.

PROOF. Suppose {3 and S are as in the first claim. Let t be the stage when T,B[S + 1]

was set. At t, VAfr[t] = vAfr[s + 1] for T = T/3[S + 1] as new intervals in VA have use

chosen fresh. So,

(24)

J.l(J/3[S]) = J.l(VAfr~[s + 1]- VAfR~[s + 1]- U0'[s])

~ J.l(vAfr~[t]- VAfR~[t]- U0'[h/3(t)])

+ J.l(U0'[h,B(t)]- U0'[s])

where the first term of (24) is the junk that {3 captured when it imposed its restraint

T/3[S + 1], and the second is the measure which appears to be in U0' at h,B(t) but

later is removed from U0'. By (23) the first term is less than «:({3). Suppose that

J.l(U0'[h/3(t)] - U0'[s]) ;::: «:({3), We have U0'[h/3(t)] - U0'[t] = 0, as otherwise (by the

canonical enumeration of U0') there would be a stage t', h/3(t) < t' ~ t with J.l(U0'[t']) <

J.l(U0'[h/3(t)]), which contradicts (22). So we must have J.l(U0'[t]- U0'[s]) ;::: «:({3). But

then, again by the canonical enumeration of U0' there would be a stage t', t < t' ~ s

such that J.l(U0'[t']) ~ J.l(U0'[h/3(t)]) - «:({3), and {3 would be reset at t' by step 1 of the

construction. So J.l(U0'[h/3(t)]- U0'[s]) < «:({3), and J.l(J/3[s]) < 2«:({3).

Next, let 7 be an Ne-node; we need only consider the case where there is some

Me-node {3 ~ 7 with J/3[s] -:f. 0. Let Z denote the set of Me-nodes {3' ~ 7 or <L 7 with

T,B'[S + 1] -:f. 0, and let {3 be the longest; by assumption {3 ~ 7. Let t be the stage when

T/3[S + 1] was set -:f. o. At t, d/3,[t + 1]1 for all {3' E Z, as otherwise {3 would not be

accessible at t. Also J.l(J,B[t]) < «:({3) by (23). So by the first part of the lemma and

(17), J.l(Qr[t]) < 2«:(7). Also, d/3,[t' + 1]1 for all t < t' ~ S and {3' E Z,{3' <L 7, as

otherwise 7 would be reset, contradicting the definition of t. So if J.l(Qr[t']) ;::: 2«:(7)

2. PROOF OF THEOREM 4.1 79

at some t < t' :$ s it must be because ETC,B'EZ /L(Jtdt'J) > f(r). But then by the

canonical enumeration of U0' there would be a stage til such that t < t" :$ t' and

/L(U0'[t"J) < /L(U0'[h,B(t)]) - f(r). In such a case r would be reset at step 1, again

contradicting the definition of t. So /L(Qr[sJ) < 2f(r). o

In the following lemma we prove simultaneously that the true path TP = lim infs TP s

is infinite, that every node on it has infinitely many chances to act, and that eventually

the measure condition (23) will be satisfied for each M-node on TP.

LEMMA 4.5. If a is the leftmost node of length lad such that a ~ TP s for infinitely

many s, then

(i) a is reset only finitely often; if it is an M-node then eventually the flip-point da

is fixed;

(ii) a is accessible infinitely often;

(iii) there is some extension 13 ::J a with 13 ~ TP s for infinitely many s.

Thus TP = liminfs TPs is infinite.

PROOF. First of all, if lal = 0 then a ~ TP s for all S so (i)-{iii) of the lemma implies

by induction that TP is infinite. Then it remains to assume that a is the leftmost node

of length lal such that a ~ TPs infinitely often and (inductively) that the lemma holds

for all 13 C a, and show claims (i)-{iii).

For the first claim note that there are four places in the construction where a may

be reset: in step 1, step 2, step 3 (through the routine £) and step 4. Let So be the

second stage such that a ~ TP so' TP s 1.L a V s > So, any computations ~~,B) (p) !

of nodes 13 <L a that exist at So are permanent and no nodes above or to the left of

a are reset after So· After So, a will not be reset in step 4. If a was reset after So at

step 3 then it would be because routine £(13, x, s) was run for some 13 C a such that

f3 x <L a. But this would mean that either TP s <L a for some s > So or a is not

~ TP s infinitely often, a contradiction.

If a was reset by step 2, by the choice of So there must be some M -node 13 such

that 13 f c a which had a computation ~~,B)(p) ! and this was spoilt after So. But

then the corresponding r computation (which has larger use) would be spoilt and the

construction would define TP s to the left of a at M2, a contradiction. Suppose that

a was reset in step 1 after stage So. By the choice of So there must be a node 13 C a

80 4. A NON-CUPPABLE LR-COMPLETE C.E. SET

and a stage SI > So such that J.L(U0' [SI]) < q({3). But in that case after stage SI

the construction would define TP 8 to the left of a, before it defines it below a, a

contradiction. Finally suppose that a is an M-node and do: was changed after stage So.

Since a is not reset after So there must be some {3 c a which ran routine L({3, x, st) for

SI > So and {3---x <L a. But in that case the construction would define TP 8 to the left

of a, before it defines it below a, a contradiction.

For claim (ii), notice that since by hypothesis a ~ TP8 for infinitely many s, the

only way that a may stop being accessible after some stage is that for all sufficiently

large stages there is a link (7, {3) with 7 cae {3. Suppose, for a contradiction, that

this is the case and after stage So a is never accessible again. Let Y[s] be the finite set

of b.-computations that are held by M-nodes below a at s 2: So. Note that if TP t :2 a

for t 2: So then by Lemma 4.2 a link must be created at t as otherwise the next time

a ~ TP 8, a would not be covered by a link and would be accessible. Thus no new

computations can be added to Y after So as if a b.-definition is made then no link is

created at that stage. Also, by the construction there are no b.-computations held by

nodes> L a at the end of a stage s when a ~ TP 8' Finally a link is only travelled if

the b.-computation for which it was created has been invalidated. So any link covering

a at s 2: So is created because of a computation in Y, which is removed from Y when

the link is travelled. Since Y is finite and non-increasing, after finitely many stages Y

will be empty and a will be accessible when next TP 8 :2 a.

For claim (iii), since a is accessible infinitely often the only way the claim could fail

is if, whenever a is accessible after some finite stage So > lal, step 3 is ended without any

a---x being declared accessible. Suppose this is the case. Then whenever a is accessible

after So, step 3 is ended by routine L, or by M3 or M4 if a is an M-node, or because of

(20).

At So there are only finitely many b.(p) definitions held by nodes {3 below a. If (20)

holds at s > So for some a---x, it is because one such {3 was reset while 7({3) was covered

by a link. But the link is removed after being travelled, and the next time 7({3)---00 C a

is accessible, {3's b.(p) definition will have been invalidated and rf3 set to 0 at step 2.

Since no {3 below a is accessible after So, this can happen only finitely often for the

finitely many b.(p) computations below a. So it will not happen after some stage SI.

I
I,

I

!

2. PROOF OF THEOREM 4.1 81

If step 3 is ended after 81 due to a routine L{ a, x, 8) for some outcome x of a,

according to the induction hypothesis for a the routine will eventually define TP s,t =

a"""x and so TP s ;2 a"""x at some stage 8. If step 3 is ended because of M3 applied to

a, then either the A-definition made there is permanent (in which case a""" f ~ TP s at

some later stage 8) or it is not, in which case routine L(a, 00, 8) will be called and the

previous argument applies.

Finally, suppose that whenever an Me,p-node a is accessible after some 81. case M4

applies and step 3 is ended at a. We show that eventually the measure condition (23) is

satisfied and M3 will apply, a contradiction. At 81, there are only finitely many nodes

:J a with restraints, and no nodes below a are accessible after 81. Let 82 be the second

stage after 81 such that

• any non-permanent restraints below a have been dropped;

• all nodes {3 above or left of a have settled; ie (3 is not reset after 82 and if

T.a[82) f. 0 then T.a[82) is permanent;

• rAW (do,) 1 and the use is correct;

• V Afu [82)- VArRa[82)- U0'[82) = V Aru - VAfRa - U0', where u is as in M3;

• a is accessible at 82.

Such stage exists by the induction hypothesis and the fact that new intervals in V A

have use chosen fresh. Every interval in V Afu [82)- VArRa[82)- U0'[82) is in J.a[82) for

some {3 :J a, as otherwise it would be removed in step 4 contradicting the choice of 82.

Letting E = {{3 : (3 :J a and T.a[82) f. O}, we have

J.t(VArU[82)- VArRa[82)- U0'[82J) = L J.t(J.a[82)) .
.aEE

Write E = F U G where

F = {(3 E E : T({3) C a}; G = {(3 E E : a C T{(3)}.

Note that at 82, every node {3 in F has d.a[82 + 1)1; as otherwise {3 has been reset at

some t, 80 ::; t ::; 82, and by choice of 82 T.a is never set to 0 and (3's A-definition is never

invalidated. But then T{(3) has only finitely many expansionary stages, contradicting

that T{(3)"""OO C a is accessible infinitely often by induction hypothesis.

82 4. A NON-CUPPABLE LR-COMPLETE C.E. SET

Observe that the first clause of Lemma 4.4 holds for any f3 E F and S = S2, and the

second for T = T(f3) for any f3 E G and s = S2. SO by (17),

J1,(VA tU[S2]- VAtR"[S2]- U0'[S2]) = L J1,(J/3[S2]) + L J1,(Q,,-[S2])
/3EF .,-E{.,-(/3):/3EG}

< L 2E(f3) + L 2E(T)
/3EF .,-E{.,-(/3):/3EG}

< E(a).

Thus (23) will hold at S2, a will make a .6.(p) definition which will be permanent, and

a""'" f will be accessible at some stage after S2. o

LEMMA 4.6. All non-cupping requirements Ne are satisfied.

PROOF. Let T be the Ne-node on TP. It is clear from the construction that

T"""'OO C TP iff there are infinitely many T-expansionary stages. By Lemma 4.5 and

the construction, if a is an Me-node with T"""'OO cae TP then

• a"""'oo C TP =} rAW(daJ j, and

• a""'" f C TP =} .6.;Ve(p)l.

To show that for each e the requirement Ne is satisfied assume that r1We = K and

let T be the Ne-node on T P. Since r1We = K there are infinitely many T-expansionary

stages. First note that by the construction, .6..,- is consistent, i.e. at each stage S if

(a, n, x), (p, n, y) E .6..,-[s] and a ~ p then x = y. Also by Lemma 4.5 and the fact that

all strategies appear along the true path, the function .6.;V is total and the restraints

imposed by each Me-node below T when it makes a definition ensure that .6.;V (p) =

r1We(p) = 0'(p) for each pEN. Thus W ?T 0' and Ne is satisfied. 0

LEMMA 4.7. 0' 50LR A.

PROOF. We must verify that U0' ~ VA and J1,(VA) < 1. Once an interval a appears

in U0' with correct 0'-use, according to (18) in any later stage it will be in VA with the

same A-use. Thus eventually it will permanently belong to VA and U0' ~ VA.

To verify J1,(VA) < 1, since J1,(U0') < ! it suffices to show that J1,(vAtn[s]_u0'[s]) < !
for all n E N and all s ? some so. Fix n and let So be a stage such that A r n[so] = A r n

2. PROOF OF THEOREM 4.1 83

and yAtn[sol- CJ0'[sol = yAtn - U0'. Then for all s ~ So we have

yAtn[s] - U0' [s] ~ U QT[S]
TCO

where T runs over the N-nodes and 8 is the rightmost path of the tree. Hence, by

Lemma 4.4 and the second clause of (17) we have, for s ~ So,

JL(yAtn[s]_ U0'[sJ) ::; L 2f(Ne) < ~.
e

o

This concludes the proof of Theorem 4.1.

CHAPTER 5

Prompt enumerations and relative randomness

The 'dynamic' property of prompt simplicity has become an influential and impor­

tant concept in the study of the c.e. 'lUring degrees. The equivalent property of prompt

permitting is a particularly fruitful notion, arising neatly from the technique of Yates

permitting. In this chapter, we will introduce an analogous notion, prompt non-low-for­

randomness. Prompt non-Iow-for-randomness is a prompt form of non-Iow-for-random

permitting, which is the natural notion of permitting in the context of relative ran­

domness. Since non-Iow-for-random permitting is an analogue of Yates permitting, it

is natural to ask if a prompt version of non-Iow-for-random permitting plays a role

similar to the notion of prompt permitting, or gives a nice class of degrees analogous

to the promptly simple degrees. We begin to investigate this notion by showing that

the class of degrees of promptly non-Iow-for-random c.e. sets is a proper non-trivial

subclass of the promptly simple degrees, and study some other properties of promptly

non-Iow-for-random sets and degrees.

1. Prompt simplicity and Yates permitting

We begin with a discussion of simplicity, permitting and promptness, to establish

some terminology and notation that will be useful for defining the notion of prompt

non-Iow-for-randomness in section 2.

Let We (e E N) be a standard listing of all c.e. sets, with a uniformly computable

enumeration We[s] such that We = UsWe[s]. We call this the canonical listing of

c.e. sets. By a suitable coding, we can consider the We as sets of numbers or sets of

strings as appropriate. An enumeration of a c.e. set A is a computable sequence A[s]

of finite sets such that A[D] = 0, A[s] ~ A[s + 1] and A = UsA[s]. The number x

enters A at s if x E A[s]- A[s - 1]. In the following, whenever we work with a c.e. set

A, we actually work with a particular enumeration A[s] of A. However we will usually

suppress the enumeration: when we say 'a c.e. set A' we mean a c.e. set A along with an

85

86 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

enumeration A[s] of A. We similarly assume without further mention that c.e. operators

U (considered as c.e. sets of axioms) come with a particular enumeration U[s].

Recall that a c.e. set A is simple if it is co-infinite and it intersects with every infinite

c.e. set; that is,

(25) Ve We infinite => 3x : x E A and x EWe'

Post (see Cooper [15], Theorem 6.2.3) first constructed a simple set in 1944. Dekker

[16] showed simple sets occur in every nonzero c.e. Turing degree. In the 1980s, certain

constructions in connection with structural properties of the c.e. Turing degrees aroused

interest in dynamic properties of enumerations of c.e. sets. Maass [48] defined the notion

of prompt simplicity: a c.e. set A is promptly simple if it is co-infinite and there is a

computable function p such that

Ve We infinite => 3x, s : x enters We at stage s and x E A[P(s)].

This notion was further studied in Maass, Shore and Stob [49] and in an influential

paper by Ambos-Spies, Jockusch, Shore and Soare [1]. It has since become well-known

and has been studied extensively. The standard reference is Soare [68] chapter XIII, in

which a presentation of the following results may be found. Say that a Turing degree

is promptly simple if it contains a promptly simple set. Several important results were

proved in [1] about the promptly simple Turing degrees. In particular, they prove that

the promptly simple Turing' degrees form a strong filter in the c.e. Turing degrees. 1

Moreover, the non-promptly simple degrees form an ideal in the c.e. Turing degrees. 2

They also prove the following important co-incidence between the 'dynamic' property

of being promptly simple and two structural properties of the c.e. Turing degrees.

THEOREM 5.1 (Ambos-Spies, Jockusch, Shore, Soare [1]). Let a be a c.e. Turing

degree. The following are equivalent.

(i) a is a promptly simple degree,

(ii) a is noncappable; that is, there is no nonzero c.e. Turing degree b such that

anb = 0,

1 Recall that a set F in an upper semi-lattice I:- is a filter if F is closed upwards and in taking greatest
lower bounds (when they exist); it is a strong filter if it is closed upwards and every pair of elements in
F bound a third element in F.
2 A set I in an upper semi-lattice I:- is an ideal if it is closed downwards and in taking least upper
bounds.

1. PROMPT SIMPLICITY AND YATES PERMITTING 87

(iii) a is low cuppablej that is, there is a c.e. Turing degree b such that b' = 0' and

aUb = 0'.

An important equivalent condition to prompt simplicity is prompt permitting. We

first discuss the general technique of permitting before considering prompt permitting,

to establish some notation and terminology which will be useful later for defining prompt

non-Iow-for- randomness.

The general idea behind permitting is, given a c.e. set A with some noncom put ability

property (such as 'being noncomputable' or 'being non-Iow-for-random'), to construct a

c.e. set B in such a way that B f n changes at stage s only if A f n also changes at stage

s (while also satisfying some other requirements). This guarantees that B ~T A, since

given an oracle for A we can compute B f n by finding a stage such that A[s] f n = A f n;

after this stage, B f n cannot change. We can use the noncomputability condition to

guarantee enough changes in A f n to fulfill our requirements. The exact method of

ensuring A-changes depends on the noncomputability condition. We typically do it by

enumerating 'request sets', with each enumeration being a request that A change on

some initial segment. In its original form as used by Friedberg [26] and Yates [13]' now

known as Yates permitting, the noncomputability condition is 'being noncomputable',

and the request sets are c.e. sets of numbers x, where each number x is a request that

A f x changes. Yates permitting is based on the following lemma.

LEMMA 5.2. Suppose that A is a non-computable c.e. set and W is an infinite

c.e. set. Then

pY (W) := {x E W: x enters W at some stage s and A[s] f x f A f x}

is infini te.

PROOF. Assume that W is infinite and pY (W) is finite; we argue that A is com­

putable. Let So be the least stage such that pY (W) ~ W[so]. To compute A f x,

find a stage s > So such that some y > x enters W at y. Since y ~ pY (W),

A[s] f x = A f x. 0

In the notation pY (W) (and similar notations used later) there is an implicit depen­

dence on A; however since A is usually understood to be fixed, and to avoid additional

subscripts we omit explicit mention of the set A.

88 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

Thinking of W as a request set, the set pY (W) is the permission set for W, con­

sisting of those requests which are successful. (The superscript Y for 'Yates' is to

distinguish this from the non-low-for-random permission set P(W) we will define later.)

The lemma guarantees that infinitely many requests from W will succeed.

Although Lemma 5.2 guarantees that infinitely many requests will succeed, it pro­

vides no indication of how long we might have to wait for any particular request to

succeed. We can obtain a notion of prompt permitting by requiring that the success­

ful permissions occur within a computable time interval. Fix the c.e. set A and let

p: N --4 N be a computable function such that p(s) > s. Let

(26) pp} (We) = {x E We : x enters We at some stage sand A[s] f x =f. A(P(s)] f x}.

pp} (We) is the set of prompt permissions from We, with respect to the function p. Say

that A is promptly permitting if there is a computable function p such that p(s) > sand

(27) \Ie We infinite => pp} (We) infinite.

This can be seen as a strong version of Lemma 5.2, ensuring that infinitely many requests

will succeed within a computable time from when the request is made. An important

characterisation of the promptly simple degrees in terms of prompt permitting is the

following theorem of [1].

THEOREM 5.3 ([1]). Let A be a c.e. set. The following are equivalent:

(i) A has promptly simple degree;

(ii) there is a computable function p such that for all e,

We infinite => pp} (We) infinite;

(iii) there is a computable function q such that for all e,

We infinite => PP~ (We) =f. 0.

The degrees of promptly simple and the degrees of promptly permitting c.e. sets

thus co-incide. Although the property of prompt simplicity lends its name to this

important class of degrees, the property of prompt permitting is in many ways the

better notion. Properties (ii) and (iii) are often the more convenient to work with, being

I

I
I
I
I
I
I
I

I

1. PROMPT SIMPLICITY AND YATES PERMITTING 89

phrased in terms of permitting that makes them applicable to permitting constructions

without modification. Also, prompt permitting is degree-invariant, in the sense that

if some c.e. set of degree a satisfies (ii) or (iii) then all c.e. sets of degree a satisfy

(ii) and (iii), unlike prompt simplicity. Finally, simplicity can be seen as a special

kind of noncomputability arising from the particular sparseness property (25), whereas

the permitting property of Lemma 5.2 applies to all noncomputable sets regardless

of special properties. Prompt permitting is thus descended from the more general

noncomputability property. Although in the remainder of the chapter we talk of prompt

simplicity and promptly simple degrees, we are really thinking of prompt permitting.

When we define prompt non-Iow-for-randomness in section 2, we will define it in terms

of prompt permitting, in analogy with property (ii) of Theorem 5.3.

Note that condition (27) only concerns c.e. sets We from the canonical listing. Sup­

pose X is a c.e. set, and let e be such that X = We (although the enumerations X[s]

and We[s] may differ). Condition (27) requires that we measure promptness of per­

missions from X relative to the canonical enumeration We[s], and not relative to some

other non-canonical enumeration X[s]. In particular, if we enumerate a request x into

a set X during some construction, we must judge promptness not relative to the stage

s at which we enumerate x into X, but relative to the stage t at which x is enumerated

into We according to the canonical enumeration. The usual way to do this is by the

Slowdown Lemma.

LEMMA 5.4 (Slowdown Lemma, [68] XIII. 1.5) . Let Xe be a sequence of c.e. sets with

a uniformly computable enumeration Xe = U8Xe[s]. There is a computable function

g : N -+ N such that for all e,

That is, when we construct a sequence of c.e. sets X e , we can computably obtain

canonical indexes for c.e. sets Wg(e) such that numbers enter Wg(e) strictly later than

they enter Xe·

PROOF. By the Recursion Theorem with parameters (Theorem 1.12) we can define

g by

Wg(e) = {x : 3s (x E Xe[s]- Wg(e) [s])}.

90 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

o

With the above notation and terminology established, we can now adapt definition

(26) and condition (27) from Yates permitting to non-low-for-random permitting to

obtain the notion of prompt non-low-for-randomness.

2. Non-Iow-for-random permitting and prompt permitting

In the context of relative randomness and LR-degrees, the most natural form of

permitting is non-low-for-random permitting. This was first used in [8J, and further

developed by Barmpalias in [3J and [2J. The idea of non-low-for-random permitting

is as follows. Let A be a non-low-for-random c.e. set. By Theorem 1.5, there is an

A-c.e. set of strings UA with weight < 1 such that, for any c.e. set of strings W,

(28) uA ~ W =} weight W = 00.

We can use this fact to force changes in the c.e. set A. Suppose at stage s during

some construction we wish some number < n to be enumerated into A, so that the

approximation to A I n will change. We can request a change by taking a string a from

UA[sJ with use:::; n and enumerating a into a c.e. set W. If we do this repeatedly, we

threaten to make UA ~ W. By (28), if we succeed in making UA ~ W then we must

have weight W = 00. Since the weight of UA is finite, the strings in W - UA must

contribute infinite weight to W. Each of these strings a E W - UA corresponds to a

successful change of some initial segment of A, as we had a E UA[sJ at the stage when

a was put into W. Hence we are guaranteed enough successful A-changes to ensure

weight W = 00. This technique was used for instance in [3J to show that every non-zero

~g LR-degree has uncountably many predecessors in the LR-degrees.

Note the following point about the technique of non-low-for-random permitting as

sketched above. If we enumerate a string a into W at stage s, then we have a E UA[sJ.

Let u be the use of a E UA[s]. The request corresponding to a succeeds as soon as

A I u changes at a stage after s. Suppose W is a given c.e. set (as opposed to one that

we enumerate during a permitting construction). If a string a is enumerated into W

at stage s but a (j. UA[sJ, then, as far as permitting is concerned, a is irrelevant until

a appears in UA[t] at some t > s (if ever). This observation motivates the following

definition of W*. Fix the c.e. sets A and W, and the universal A-c.e. set UA . As we

I
I
I

I

I
I
I
,
I
I
I

I
(
I
I

I
I

2. NON-LOW-FOR-RANDOM PERMITTING AND PROMPT PERMITTING 91

approximate UA[s] in a Eg way, we can approximate the c.e. set

W* = {O' : :3s (0' E W[s] n UA[sJ)}

via the enumeration

(29) W*[s] = {O' : :3t ::; s (0' E W[t] n UA[tJ)}.

That is, a string 0' is enumerated into W* at stage s if s is the first stage at which

0' is in both W[s] and UA[s]. Note that if UA £;;; W then UA £;;; W*, and if A is

non-Iow-for-random and UA £;;; W then weight W* is infinite. For the purposes of

non-Iow-for-random permitting, W* is equivalent to W.

With A fixed, let

PUA (W) = {O' : 0' enters W* at some stage s,

0' E UA[s] with use u and A[s] r u:f:. A r u}.

This is the set of strings from W that are permitted via UA . The 'non-Iow-for-random

permitting principle' (28) can be expressed as

uA £;;; W :::} weight PUA (W) = 00.

We can now formulate a notion of prompt non-Iow-for-random permitting. Let p be

a computable function such that p(s) > s. By analogy with (26), we can define the

prompt permitting set for W with respect to U A and p,

(30) PPUA,p(W) = {O' : 0' enters W* at some stage s,

0' E UA[s] with use u and A[s] r u :f:. A[p(s)] r u}.

When the function p and/or class UA are understood to be fixed, we can omit the

subscripts. With this notation established, we can now give a definition of prompt

non-Iow-for- randomness.

DEFINITION 5.5. Let A be a c.e. set. A is promptly non-low-for-random if there is

an A-c.e. set UA such that weight UA < 1 and a computable function p : N ~ N such

92 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

that, for all e,

(31)

We say that A is promptly non-low-for-random via UA,p if U A and p satisfy (31).

This definition asserts that if UA is contained in a c.e. request set We, then the requests

which succeed promptly (w.r.t. p) will have infinite weight.

It is clearly equivalent to require only that weight UA < 00 rather than weight UA <

1 in Definition 5.5. We show in Theorem 5.6 that we can ~quivalently replace the

condition weight PPUA,p(We) = 00 with weight PPUA,p(We) ;::: 1.

As with the definition of promptly (Yates) permitting, Definition 5.5 only concerns

c.e. sets from the canonical enumeration. Note that in this case we measure promptness

relative to the enumeration of W;, which depends not only on the canonical enumeration

of We but also on the ~g approximation of U A .

We now give an equivalent condition to that of Definition 5.5 which will be use­

ful later; namely that the condition that weight PP(W) = 00 can be replaced with

weight PP(W) ;::: 1.

THEOREM 5.6. Let A be a c.e. set and U be a c.e. operator such that weight UA < 1.

Then the following are equivalent:

(i) there is a computable ~ction q such that for all e,

(ii) there is a computable function p such that for all e,

PROOF. (i) implies (ii) is immediate, so we prove (ii) implies (i). Assume (ii). We

may assume without loss of generality that p is strictly increasing and p(s) > s for all

s. Let W; be a delayed enumeration of a subset of We such that a enters W; at s iff a

appears in wets] n UA[s] for the first time at s. We will define the computable function

q satisfying (i).

Let 2<k denote the set of all binary strings of length < k, and let Di , i E N be a

standard computable listing of all finite sets of strings. Define the c.e. set Xe,k,i by the

2. NON-LOW-FOR-RANDOM PERMITTING AND PROMPT PERMITTING 93

enumeration

Xe,k,i[S] = Di U {a: lal ~ k /\ a E W;[s]}.

In the limit we have

and strings of length ~ k enter Xe,k,i at the same stage as they enter W;. Let g(e, k, i)

be a computable function obtained from the Slowdown Lemma 5.4 such that Wg(e,k,i) =

Xe,k,i and strings enter Wg(e,k,i) strictly later than they enter Xe,k,i' Note that for every

k there is some i such that

D ·-uA n2<k-w n2<k l - - g(e,k,i) .

We now define q. Fix s, and let

Z = {(e,a) : a enters W; at s}.

For each pair (e,a) E Z, for each k < lal and for each i such that Di ~ 2<k, let te,u,k,i

be the stage when a enters Wg(e,k,i)' Define q(s) to be the maximum of p(te,u,k,i) over

all those te,u,k,i just defined, or q(s) = p(s) + 1 if no te,u,k,i were defined (ie., if Z is

empty). Note that q(s) > te,u,k,i > p(s) since te,u,k,i > sand p is increasing.

We claim that if lal ~ k and a E PPUA,p(Wg(e,k,i») for some i then a E PPUA,q(We).

Suppose that a E PPUA,p(Wg(e,k,i») and lal ~ k. Since Wg(e,k,i) - 2<k ~ W;, a enters

W; at some stage s, and therefore enters Wg(e,k,i) at some t > s. Let u be the use

of a E UA[s]. If a E UA[t] with use u, then we must have A[t] r u # A[p(t)] r u

since a is promptly permitted, and hence A[s] r u # A[q(s)] r u since q(s) ~ p(t).

So a E PPUA,q(We). Otherwise, either a is not in UA[t] or it is in UA[t] with some

other use; but either way A must have changed below u between sand t and hence

a E PPUA,iWe) since q(s) > t.

Now we can prove that q satisfies (i). Let f be such that 0 < f < I-weight UA . Sup­

pose that UA ~ We. By (ii), PPUA,p(We)-UA has weight> f, and so PPUA,q(We) - UA

has weight> f also since PPUA,p(We) ~ PPUA,q(We). Let k be such that

(32)

94 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

has weight> f:. For some i we have Di = UA n2<k. Then UA ~ Wg(e,k,i)' and therefore

(33)

has weight> f. By the earlier claim, PPUA,p(Wg(e,k,i») C PPUA,q(We). Since the

sets (32) and (33) are disjoint, PPUA,q(We) has weight> 2f. We may now repeat the

argument with k such that

to show that weight PPUA,q(We) > 3f. We can repeat this argument arbitrarily many

times, each time adding f to weight PPUA,q(We). Hence weight PPUA,q(We) is un­

bounded, establishing (i). 0

3. Prompt non-low-for-random sets

One usually obtains an example of a promptly simple set by analysing the standard

simple set construction. That is, Post's example of a simple set (see Cooper [15], The­

orem 6.2.3) turns out in fact to be promptly simple via t)J.e identity function. The same

thing occurs in the case of prompt non-Iow-for-randomnessj a standard construction of

a non-Iow-for-random c.e. set in fact yields a set which is promptly non-Iow-for-random.

We now give a version of the non-Iow-for-random construction, adapted slightly to sim­

plify the promptness verification.3

THEOREM 5.7. There is a c.e. set A which is promptly non-Iow-for-random. More­

over, we can have A ~T 0'.

We will construct the set A, as well as a sequence of c.e. operators Te to satisfy

where id is the identity function. We ensure that weight TeA:::; 2-e- 1 and that the T:

are pairwise disjoint (as sets of strings). Hence we may set TA = UeT: to obtain a

bounded A-c.e. set such that A is promptly non-Iow-for-random by Theorem 5.6 via TA

and the identity function. We will argue that A ~T 0' automatically.

3 Usually one would obtain a non-low-for-random c.e. set indirectly, for instance by using the fact that
alliow-for-randoms are low and hence that any non-low c.e. set is non-low-for-random. If one wished
to explicitly construct a non-low-for-random c.e. set, the construction of Theorem 5.7 would be the
standard method.

3. PROMPT NON-LOW-FOR-RANDOM SETS 95

The basic strategy for Pe will be to put a string (j of fixed length l into Tt and wait

for (j E wets]. As soon as this occurs, we remove (j from TeA by enumerating into A

below the use of (j E Tt[s], thus promptly permitting (j. Then we repeat with the next

string of length l. After at most 21 many repetitions, we will either have some string

(j which never appears in We and is permanently in TeA, and hence Tt ~ We, or we

will have promptly permitted all strings of length l, which have weight 1. At any stage,

there is at most one string in Tt of length l; thus Tt has weight at most 2-1. Let W; [s]

be (as in equation (29)) a delayed enumeration of a subset of We, such that a string (j

is enumerated into W; at stage s iff s is the least such that (j E wets] n Tt[s].

To simplify the verification, each time a higher priority requirement acts we will

make Pe start over with a new length l. Let j(e, s) be the number of times that any

requirement Pel with e' < e has acted by stage s, and let lets] = r1e(e,s)+1, where Pe is the

e'th prime. At stage s, Pe will use strings of length lets]. This simplifies the verification

by ensuring that no two requirements will ever use strings of the same length.

The construction consists of the Pe requirements in a finite injury setting. Initially

we have A, Te all empty. At stage 0, do nothing. At stage s + 1, let e be the least such

that Tt[s] r;;; W;[s], or Tt[s] = 0 and there is some string (j of length leis] not in W;[s].

If there is some (j' E TeA[s] , then enumerate the use of (j' E Tt[s] into A[s + 1]

(removing (j' from Tt). We say that Pe acts at s + 1.

Let (j be the lexicographically least string of length lets] which is not in W;[s], if

it exists. If (j exists, declare (j E T/[s + 1] with fresh use u. If (j does not exist, do

nothing more.

End of construction.

LEMMA 5.B. For each e, Pe acts only finitely often.

PROOF. This is a standard finite injury argument. Assume inductively that the

claim holds for e' < e, and let So be the least stage such that no P~ for e' < e acts at

any s 2: so. Then lets] is fixed after so. Note that if (j E TeA[s] and (j' E Te1[s] for e' > e

then the latter has larger use than the former. Thus if Pe enumerates into A at stage s

then all T:[s + 1] become empty, for e' > e. If some string is put into T: after s then

it will have use larger than that of any string in Tt. So enumerations into A by lower

priority requirements will not disturb strings in Tt, and any strings put into Tt after

96 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

So will remain there until removed by Pe. After So, Pe can act at most 21e[801 times until

every string of length le[so] is in Ve. 0

LEMMA 5.9. A is promptly non-Iow-for-random.

PROOF. Set T = UeTe. Note that each T: contains at most one string, of length

2: e + 1, so weight TA < 1.. Suppose that TA ~ We. Let So be the least stage such

that no requirement Pe' for e' < e acts after So. Then l := leIs] is fixed after So. At So,

Pe will put the first string 0' of length l into TA. Since TA ~ We, there will be a least

Sl > So with 0' E We [Sl]. Since no higher priority requirement ever acts after So, Pe

will act at Sl and will enumerate into A below the use of 0'. Thus 0' E PP(We). Pe will

then put the next string oflength l into T:[Sl + 1]. Since T: ~ W;, W;[so] contains no

strings of length l, and no other requirement uses strings of length l, this will happen 21

many times, until every string of length l is in PP(We). But then weight PP(We) 2: 1.

Hence A is promptly non-Iow-for-random by Theorem 5.6, via the operator T and the

identity function.

LEMMA 5.10. A 2:T 0'.

PROOF. Let f be a computable function such that

{

{Q,QQ,QQQ,QQQQ, ... } ifn E 0';
Wf(n) =

. 0 otherwise.

o

That is, Wf(n) enumerates 0', and if it finds n E 0' then it enumerates strings of zeros

of every length. From the proof of Lemma 5.8, it is clear that using an oracle for A

we can find the least stage after which Pf(n) is never injured. Let So be that stage. At

So, Pf(n) will put a string of zeros into TAn) with some use u. If n E 0', then Pe will

enumerate into A below u. Thus it suffices to find the least stage Sl 2: So such that

A[Sl] f u = A f u. Then we have n E 0' iff n E 0'[Sl]. 0

The method used above can clearly be combined with other finite-injury strategies.

For instance, we could make A low by using the usual lowness strategy, or we could

use Sacks restraints (as in Theorem 2.1) to avoid a non-trivial upper cone of Turing or

LR-degrees. In the presence of restraints, we can no longer ensure that T: contains at

most one string, since a higher-priority requirement might impose a restraint on Pe and

4. PROMPT NON-LOW-FOR-RANDOMNESS, PROMPT SIMPLICITY AND TURING DEGREES 97

prevent it from removing a string from T/,. However, by making Pe use longer strings

each time it is injured, we can still ensure that T/, contains at most one string of each

length, so we can keep the weight of TA under control.

4. Prompt non-low-for-randomness, prompt simplicity and Turing degrees

We now show that the promptly non-low-for-random Turing degrees are a subset

of the promptly simple Turing degrees. In section 5 we show that the subset is proper.

Although the promptly simple Turing degrees form a filter in the c.e. Turing degrees, it

is not known if the promptly non-low-for-random Turing degrees form a filter. However

we show that the promptly non-low-for-random degrees are closed upwards under 5,T,

and discuss the obstacles to establishing the remaining filter condition.

THEOREM 5.11. Let A be a c.e. set. If A is promptly non-low-for-random then A

is of promptly simple degree.

PROOF. Suppose A is promptly non-low-for-random via U and p. We construct a

computable function q such that

We infinite =} 3x, s : x E We[s]- We[s - 1] and A[s] f x # A[q(s)] f x.

That is, A promptly permits via q and hence has promptly simple degree by Theorem

5.3. We also construct c.e. sets Ve for e E !'ii, and assume that we have a computable

function 9 given by the Slowdown Lemma 5.4 such that Wg(e) = Ve and strings enter

Wg(e) strictly later than they enter Ve·

Set q(O) = O. At stage s + 1, do the following for each e 5, s. Let x be the largest

number which entered We at s + 1, if any. If x exists, and if there is a string p E UA[s]

with use 5, x and p tJ. Ve[s], then enumerate the oldest such pinto Ve[s+ 1]. Let te be the

stage when p app~ars in Wg(e)' If x or p do not exist then te is undefined. Finally, let

q(s+ 1) be the maximum of p(te) for all those te defined at this stage (or q(s+ 1) = q(s)

if no te were defined).

Verification. Suppose that We is infinite. Then there will be infinitely many

stages s when some x enters We and there is apE UA[s] with use 5, x and p tJ. Ve[s].

(To see this, observe that for every p E U A there will be such a stage.) So we will

enumerate infinitely many strings into Ve, and since we always choose the oldest string

to enumerate, we will have UA ~ Ve. But then weight PP(Wg(e») = 00 since A is

98 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

promptly non-low-for-random. In particular, there is at least one x, s and string p such

that x enters We at s, p E UA[s] with use < x, and A[s] f x i=- A[q(x)] f x. o

We show in section 5 that the converse of this does not hold.

We now show that prompt non-low-for-randomness is closed upwards under Turing

reducibility. The proof is an adaptation of that of Theorem XIII.1.6 from Soare [68].

THEOREM 5.12. If A, Bare c.e. sets, A '.5:T B and A is promptly non-low-for­

random, then B is promptly non-low-for-random.

PROOF. Suppose that A = If>B for a Turing functional If>, and that A is promptly

non-low-for-random via U, p. Assume without loss of generality that p is nondecreasing,

and assume the convention that if If>B(n)[s] 1 with use u then If>B(z)[s] 1 for all z < n

with use '.5: u. We define T, q so that B is promptly non-low-for-random via T, q. We also

construct auxiliary c.e. sets Ve. Let 9 be a computable function given by the Slowdown

Lemma 5.4 such that Wg(e) = Ve, and strings enter Wg(e) strictly later than they enter

Ve·
We can define T in advance: when we see a string p E UA[s] with use u such that

If>B[s] f u = A[s] I u, then declare p E TB[s] with use v = use If>A(u)[s] (if it is not

already in TB[sJ).

Initially all Ve are empty and q(s) undefined for all s. At stage 0, set q(O) = o. At

stage s + 1, do the following for each e < s + 1. Let

be the strings in We and TB but not in Ve at s + 1. If X is empty, then do nothing for

e at this stage. Otherwise, put each string a from X into Ve [s + 1]. For each a EX,

let tu be the stage when a was put into TB with the current computation (ie, the least

t < s + 1 such that a E TB[t] with use u such that B[t] I u = B[s] f u), and let Uu be

the use of a E UA[tu]. Let te be the least stage such that for all a E X:

• a appeared in Wg(e) at some t' > s + 1 and te ~ p(t'), and

• If>B[te] I Uu = A[te] I Uu·

Finally, at the end of stage s + 1 declare q(s + 1) to be the maximum of those te defined

at this stage (or q(s + 1) = q(s) if no te were defined). End of construction.

I
I
I

I
I
j
I

4. PROMPT NON-LOW-FOR-RANDOMNESS, PROMPT SIMPLICITY AND TURING DEGREES 99

Verification. First we observe that TB = UA: certainly if a E UA then there will

be a stage when a E UA[s] via a permanent computation, and q,B[s] correctly computes

A on the use. At this stage a will be put permanently into TB (if not already). Further,

since strings are only put into TB at s if they are already in UA[s] and q,B[s] agrees with

A[s] on the use, if a string leaves UA after it has been put into TB then B must change

below the use of the corresponding q,B computation, which will remove the string from

TB also.

Suppose now that TB ~ We. Then UA = TB ~ Ye ~ We. Since A is promptly non­

low-for-random, we must have weight PPUA(Wg(e») = 00. We claim that PPUA(Wg(e») ~

PPTB(We), and thus PPTB(We) has infinite weight also.

Suppose a E PPUA(Wg(e»). Let So be the stage at which we put a into Ye. At So

we have a E We[so] and a E TB[sO] with some use v. Moreover, So is the first stage at

which a is in both We and TB (or else we would have put a into Ye at an earlier stage).

Thus it suffices to show that B[so] f v f B[q(so)] f v.

Let tu and Uu be as in the construction, and let t' be the stage when a enters

Wg(e). We have A[tu] r Uu f A[P(t')] r Uu; either because A[t'] r Uu f A[tu] r uu, or if

A[t'] r Uu = A[tu] r Uu then because a E PPuA(Wg(e»)· But

q,B[SO] r Uu = A[tu] r Uu

f A[q(so)] f Uu since q(so) 2:: p(t')

= q,B[q(sO)] r Uu by choice of q(so).

Therefore B[so] r v f B[q(so)] r v, and a E PPTB(We). D

The equivalent of Theorem 5.12 for LR-reducibility instead of 'lUring reducibility

does not hold. We describe in section 6 that there is an LR-complete c.e. set B which

is not promptly non-Iow-for-random. In particular, B is 2::LR all promptly non-Iow-for­

random sets including the 'lUring-complete set from Theorem 5.7.

To show that the promptly non-Iow-for-random degrees form a filter in the c.e. 'lUr­

ing degrees, it would suffice to show that given any two promptly non-Iow-for-random

sets A, B there is a promptly non-Iow-for-random set C which is computable in both

A, B. Given A and B, one would typically use double permitting below both A and B

to construct the required C. In the case of the promptly simple degrees, the argument

100 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

is as follows. Suppose A and B are of promptly simple degree and we want to make

C ~T A, B promptly simple. Suppose at some stage we see a number x enter a c.e. set

We, and we would like to make C promptly permit x by changing below x. We could

enumerate x into a set Ve, and see if x is promptly permitted by A. If it is not promptly

permitted, then we abandon x and try again later with some other number from We.

If A does promptly permit x, then we enumerate x into a second set V: and see if B

promptly permits x. If not, again we abandon x. Otherwise, we have received prompt

permissions from both A and B, so we can enumerate x into C, satisfying the prompt

simplicity requirement for We. The fact that A and B are promptly simple ensures

that some x will eventually receive both prompt permissions, although arbitrarily many

other x may have to be discarded first.

In the case of prompt non-low-for-randomness, we would like to perform a similar

construction. Suppose we are given promptly non-Iow-for-random c.e. sets A, B and

we want to construct C, T C and q such that C ~T A, C ~T B and C is promptly

non-Iow-for-random via TC, q. Suppose at some stage we see a string (J' E We which we

would like C to promptly permit. We put (J' into T C with some use u and then attempt

to get A and B-permissions to change C below u. If the A and B permissions both

succeed then we can change C f u, promptly permitting (J'. However, if one of the A or

B permissions fail, then we cannot remove (J' from TC. It becomes junk and contributes

unwanted weight to T C. The risk is that weight TC will become infinite. The fact that

A and B are promptly non-Iow-for-random guarantees that the set of strings that do

receive both A and B permissions has infinite weight, but makes no guarantee about

the strings that do not receive both permissions. In particular we cannot ensure that

weight TC < 00. It is unknown if the promptly non-Iow-for-random degrees form a

filter in the c.e. 'lUring degrees.

5. Non-prompt non-low-for-randomness

We now present some c.e. 'lUring degrees that do not contain promptly non-Iow­

for-random sets. One class of c.e. degrees that are not promptly non-Iow-for-random

are the cappable degrees: by Theorem 5.1, the cappable c.e. 'lUring degrees are exactly

the non-promptly simple c.e degrees, and by Theorem 5.11, every non-promptly simple

'lUring degree is not promptly non-low-for-random. Cappable degrees are known to

occur widely, for instance, in every class Lown and Highn [49].

I
II

I

I
I

5. NON-PROMPT NON-LOW-FOR-RANDOMNESS 101

Certainly low-for-random degrees cannot be promptly non-Iow-for-random. These

include both promptly simple and non-promptly simple degrees: it is easy to construct

a cappable low-for-random c.e. set by adapting the usual minimal pair construction, and

the standard cost function construction from [39] of a non-computable low-for-random

c.e. set yields a promptly simple low-for-random set.

Hence there are c.e. 'lUring degrees which are promptly simple but not promptly non­

low-for-random. This example of a promptly simple low-for-random is not so interesting

though, as a low-for-random c.e. set does not (non-Iow-for-random) permit at all, let

alone permit promptly. A more interesting question is whether there is a non-Iow­

for-random c.e. set which is promptly simple but not promptly non-Iow-for-random.

We now give a direct construction of such a set. The strategy for making a set non­

promptly non-Iow-for-random is very similar to that for making a c.e. set cappable in

the c.e. 'lUring degrees (ie. the minimal pair method).

THEOREM 5.13. There is a non-Iow-for-random c.e. set A which is of promptly

simple degree but is not promptly non-Iow-for-random.

We will construct the required c.e. set A. Let (Ue , <Pe)eEN be a listing of all pairs of

a c.e. bounded operator U and a (possibly partial) computable function <p. We assume

the convention that if <p{x)[s]!= z then z < s and <p{y)[s]! for all y < z. To ensure that

A is not promptly non-Iow-for-random, it will suffice to construct a c.e. set Xe (with a

canonical enumeration Wg(e) given by the Slowdown Lemma 5.4) for each pair Ue, <Pe

such that if <Pe is total then Ut' ~ Wg(e) but weight PPUe.<Pe{Wg(e») < 1. That is, we

will satisfy each requirement

Ne : <Pe total and U: infinite => U: ~ Xe but weight PPUe.<Pe (Wg(e») < 1.

To ensure that A is of promptly simple degree, it suffices by Theorem 5.1 to make

A promptly permitting via the function p{ s) = s + 2. Thus we have the promptness

requirements

PSe : We infinite => ::Ix, s : x enters We at s and A[s] f x =1= A[s + 2] f x

for each e E N.

Let Ve be a listing of all bounded c.e. sets; that is, c.e. sets such that weight Ve < 1.

To make sure that A is not low-for-random we also meet the non-Iow-for-randomess

102 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

requirements

for e E N, where TA is an A-c.e. set with weight < 1 that we construct. By Theorem

1.5 this ensures that A is not low-for-random. The construction will take place on a

tree; in fact we will uniformly construct a c.e. operator To: for each P-node a on the

tree, and we will set TA = U~T:.

The strategy for meeting Pe is essentially that used in Theorem 5.7. A Pe-node a

will place a string a of fixed length k into T: and wait for a E Ve[s]. When a sees

a E Ve[s], it removes a from T: by enumerating into A, and repeats with the next

string a of length k. Since weight Ve < 1, after at most 2k many repetitions we must

have some a such that a ct. Ve. This a will be permanently in T:, but no other string

will be permanently in T:. By suitable choice of k we can ensure that weight T: is as

small as necessary. Unlike Theorem 5.7, the tree framework will mean that a will not be

removed from T: as soon as it appears in Ve, but only when the node a is next visited.

Hence the strategy will make A non-Iow-for-random, without making it promptly so.

Occasionally it will be necessary to impose a restraint on A; when this happens,

a may be unable to enumerate into A to remove a string from T:. In this case, a

must abandon its old string a (which remains permanently in TA). To ensure that

weight TA < 1, a will need to use longer strings in future. It will increment k and

restart its strategy. Each time a is injured, the additional amount of junk contributed

to TA halves. In a finite injury setting, a will be able to satisfy its requirement while

still contributing an arbitrarily small permanent weight to TA.

The strategy for Ne will be as follows. We will try to build a c.e. set X such that if

¢e is total then U: <;;;; X but PPu.;4.,¢. (X) has finite weight. Strictly, we should actually

be concerned with weight PP(We) where We is a canonical version of X given by the

Slowdown Lemma 5.4, but we overlook this technicality in the following discussion.

Suppose at stage s we have some string T E U:[s] with use u, but T is not yet in X.

Put T into X[s], and note that T E X[s] n U:[s] for the first time at s. We want to

ensure T is not promptly permitted with respect to the function ¢e. This will happen

if A changes below u before stage ¢e(s). If A f u does change before stage ¢e(s)

then T will contribute to PPu.,¢. (X), which we want to keep small. So after we have

enumerated T into X, we will restrain A f u until a stage t such that ¢e(s)[t] 1 (by

5. NON-PROMPT NON-LOW-FOR-RANDOMNESS 103

convention if ¢e(s)[tj 1= x then x < t). At stage t we may drop the restraint, since

any change in A r u after t will not contribute to PPUe.4>e(X), If ¢e(s) j, then we

will never drop the restraint, but nor will we ever impose any additional restraint for

Ne. In this case, we have a permanent finite restraint. Otherwise, when ¢e is total,

the restraint will be dropped infinitely often, providing infinitely many windows for the

positive P-requirements to enumerate into A.

This situation is reminiscent of the construction of a minimal pair of c.e. Turing de­

grees. As in the minimal pair strategy, the negative requirement either drops its restraint

infinitely often, or eventually imposes a single finite permanent restraint. With multi­

ple N-requirements working together, the (potential) difficulty for the P-requirements

is that the different N-requirements may not drop their restraints at the same time.

This is solved exactly as in the minimal .pair case by performing the construction on a

tree.

For the prompt simplicity requirements, we have to promptly enumerate some num­

ber into A as soon as we see a larger number enter the c.e. set We. This would appear

to be in direct conflict with the negative requirements, which want us to delay enumer­

ations. However, the Ne strategy outlined above would in fact construct a c.e. set X

such that U~ ~ X but PPU,;4,4>e (X) = 0. This is stronger than we need to satisfy Ne;

we don't need PP(X) to be empty, but merely to have small weight. We can allow some

weaker priority PS requirements to ignore a higher priority restraint, enumerate into

A, and promptly permit some string in X, as long as the total weight that is promptly

permitted is small.

The tree will consist of nodes labelled Ne and Pe for e E N. The prompt simplicity

reqirements PSe do not reside on the tree. Nodes of even length 2e are labelled Ne,

and nodes of odd length 2e + 1 are labelled Pe. N-nodes have two outcomes 00 < j,

representing, respeetively, the infinitary outcome where ¢e is total and U~ is infinite,

and the finitary outcome where ¢e is partial or U~ is finite. P-nodes have a single

outcome o. The ordering 00 < j induces an ordering on tree nodes as usual. We denote

nodes of the tree by a, /3 etc. A node /3 has lower priority than a if /3 extends a or is

to the right of a.

We write Uoo ¢o to denote Ue , ¢e when a is an Ne-node. Each N-node a will build

a c.e. set Xo. Each P-node a has parameters ko which is a number, and 0'0 which is a

104 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

string of length kex . Initially, assign each P-node a on the tree a unique parameter kex

such that 2:ex 2-ka < 2-2 •

Let g be a function from N-nodes to N given by the Slowdown Lemma 5.4 such that

Wg(ex) = Xex and strings enter Wg(ex) strictly later than they enter Xex'

During the construction we will declare some nodes injured. When an P-node a is

injured, we increment kex and declare aex j. We needn't do anything when an N-node

is injured except to note the fact.

We will say that an N-node is expansionary at a stage s if it is not waiting for a

computation ¢(t) to halt, so it is safe to enumerate into A without promptly permitting

any strings in Xex (the formal definition is given below). Note that all nodes belonging

to a single N-requirement share the same pair U, ¢ and reside on the same level of the

tree. Suppose that a, (3 are Ne-nodes with a to the left of (3. If at stage s the node a

is waiting for a computation ¢(t) to halt, then it appears to a at that stage that ¢ is

partial. Since a has stronger priority than {3, {3 may safely adopt a's judgement and

also assume at that stage that ¢ is partial. Thus {3 need not act while a is waiting

for a computation. We can thereby co-ordinate the nodes of each N-requirement so

that at most one node on each level is imposing restraint at any time. This simplifies

calculating the cost of enumerations for PS requirements. Note that this is the same

principle used in the proofs of Theorem 2.13 and Theorem 4.1, used first by Cholak,

Greenberg and Miller [12]. The following definition of expansionary stage captures this

principle.

Let a be an Ne-node. Say that a stage s is a-expansionary if Xex[s] = 0, or

• t is the greatest {3-expansionary stage < s for any Ne-node (3 ::; a, and some

string p was put into X,a[t + 1],

• P has appeared in each Wgb) for all Ne-nodes 'Y ~ (3 by some t', t < t' ::; s, and

t' is the least such,

• ¢e(t')[s] !, and

• U:[s]- Xex[s] i= 0.

The first three clauses state that a (or a higher priority (3) isn't still delaying enumer­

ations to prevent a string from being promptly permitted; the last clause states that

there is a new string ready to be added to Xex'

5. NON-PROMPT NON-LOW-FOR-RANDOMNESS 105

To satisfy a promptly simple requirement PSe, we will need to enumerate a number

into A as soon as some larger number appears in We. Such an enumeration might cause

some strings from the Xa's to be promptly permitted. We will allow PSe to injure the

lower priority N-requirements Ne l for e' > e, but we need to ensure that PSe will cause

only a small weight of prompt permissions in the sets Xa belonging to higher-priority

N-requirements. Let i, x, sEN; we define cost{i, x, s) which is the weight that would

be promptly permitted into the sets Xa belonging to Ni-nodes a if x were enumerated

into A at stage s. Let (3 be the leftmost Ni-node such that s is not (3-expansionary, if it

exists; let p be the string most recently added to Xf3 at some t + 1 < s, and let u be the

use of p E UA[t]. If x > u or if there is no such (3 then let cost{i, x, s) = O. Otherwise

let cost{i,x,s) = 2- lpl .

To prevent the P and PS requirements from interfering with each other, we will

reserve the odd numbers for satisfying PS requirements and the even numbers for P.

We will assume that when a string CT is put into some T: with use u it remains there

until the number u is enumerated into A. In particular, CT remains in T: even if numbers

< u enter A.

A Pe-node a requires attention at stage s + 1 if CTa j, or CTa 1, CTa E T![s] and

CTa E Ve[s].

The construction. At even stages we will take action for N and P-requirements;

at odd stages we will take action for P S requirements. At stage 0 and 1, do nothing.

At stage s + 1 > 1, we are given A[s], <Pe[s] etc and we define A[s + 1].

If s + 1 is odd, then let e be the least such that P Se is not yet satisfied and there

exists z and an odd number x :=:; z satisfying

• z E We [s + 1] - We [s - 1],

• x ~ A[s], and

• cost{i,x,s) < 2-e- l for all i:=:; e.

If there is no such e then go to the next stage. Otherwise enumerate the least such x

into A[s + 1] and injure all nodes a of length lal > 2e + 1 (these are all the Ne l nodes

for e' > e or Pel-nodes for e' ~ e). Declare PSe to be satisfied.

If s + 1 is even, then perform steps 1 and 2 below in order.

Step 1. Let a be shortest P-node that requires attention at stage s + 1 and such

that if (3 is an N-node with (3 C a then (3~oo ~ a iff s + 1 is (3-expansionary. (Note

106 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

that previously unvisited P-nodes will always require attention, so such a node always

exists). Let the current approximation of the true path TPs+1 = a .

• If (Ja[sJ j, then let (Ja[s + 1J be the lexicographically least string of length ka[sJ

which is not in Va[sJ. Put (Ja into T![s + 1J with large even use. (Note that

such a string must exist since weight Va < 1.)

• Otherwise, (Ja L (Ja E T![sJ with some use u and (Ja E Va[sJ. Enumerate u

into A[s + 1J to remove (Ja from T:[s + 1], and declare (Ja[s + 1J j.

Step 2. For each N-node 13 C TPs+1 such that s is j3-expansionary, in order of

length, do the following. Let p be the oldest string in ut[sJ -X.a[sJ. That is, the unique

p E ut[sJ - X.a[sJ such that p was enumerated into ut at some s' ::; s with use u,

A[sJ r u = A[s'J r u, and if p' E ut[sJ then p' was enumerated into ut after s' or p' 2: p

(in the usual length/lexicographic order). Enumerate pinto X.a[s+ 1J and into X')'[s+ 1J

for all Ne-nodes 'Y to the right of 13. If p does not exist then do nothing for 13. Injure

all P-nodes of lower priority than TP s+1'

End of construction.

Verification. Say that s is an a-stage if s is even and a ~ TPs ' a is accessible at s

if s is an a-stage. Define the true path TP = lim infeven s TP s' We verify simultaneously

that the true path TP is infinite, each node on TP is injured only finitely often, and

that each P-node on TP requires attention only finitely often.

LEMMA 5.14. For each n, there is a unique node a of length n such that

(i) a is accessible infinitely often, and is the leftmost such node of length n;

(ii) a is injured only finitely often;

(iii) if a is a P-node, then a requires attention only finitely often and there is a string

(J E T: permanently but (J rt Va.

PROOF. Induction on the length n. The claim holds trivially for the root node.

Assume inductively that 13 is the node of length n satisfying the claim, and that So is a

stage such that 13 is never injured or receives attention after So. If 13 is an N-node, then

for every j3-stage s > So we have either j3~oo ~ TPs or j3~O ~ TPs ' If 13 is a P-node,

then it has only one child j3~O, and since 13 never receives attention after So, we have

j3~O ~ TP s for all j3-stages s > So. Hence some child of 13 is accessible infinitely often,

and so (i) holds. Let a be the leftmost such.

5. NON-PROMPT NON-LOW-FOR-RANDOMNESS 107

The node a can only be injured when TP 8 < f3 or when some requirement P Se with

2e + 1 < lal enumerates into A. The former occurs only finitely often by the induction

hypothesis, and there are only finitely many PS requirements with 2e + 1 < lal, and

each acts at most once. So a is injured only finitely often.

Suppose that a is a P-node. Let S1 be the least a-stage such that a is never injured

at any S ~ S1. Then ka is fixed after S11 and a receives attention at S1. Since weight Va

is bounded, it cannot contain all strings of length ka . Hence there is a lexicographically

least string a r/:. Va of length ka. After receiving attention finitely many times after SI,

a will set aa = a and will put a into T:[s]. After this, a is in T: permanently and a

will never require attention again. o

We can now verify that the P and N requirements are satisfied by the nodes on the

true path.

LEMMA 5.15. Each requirement Pe is satisfied. Therefore A is not low-for-random.

PROOF. By Lemma 5.14, TA = UaT: ~ Ve for all e. We just need to verify that

weight TA < 1. Let a be a P-node and qa be the initial value of ka. Since ka is increased

each time a is injured, and at most one string is left in T: with each injury, we have

weight T: :::; En 2-qa - n-1. By the choice of the qa, weight TA :::; Ea 2-qa < 1. 0

LEMMA 5.16. Each requirement Ne is satisfied. Therefore A is not promptly non­

low-for-random.

PROOF. Let a be the Ne-node on TP, and let So be the least a-stage such that a

is never injured at any S ~ So· If rPa is partial or U~ is finite, then Ne is satisfied and

there are only finitely many a-expansionary stages after So. Suppose that rPa is total

and U~ is infinite. Then there are infinitely many a-expansionary stages after So, and

at each such stage s we put some string from U~[s] into Xa. Since we always choose

the oldest string from U~[sJ -Xa[S], if p E U~ permanently then eventually we will put

pinto Xa. Hence U~ <;;; Xa = Wg(a). We argue that weight PPUa.tPa(Wg(a») < 00.

Each time a is injured, some strings may be promptly permitted into PP(Wg(a»)'

However a is injured only finitely often so this contributes only finite weight to PP(Wg(a»)'

The tree layout ensures that lower-priority P-requirements will not contribute to

PP(Wg(a»), and after So nor will higher priority P or PS requirements. So the only con­

tributions to PP(Wg(a») after So can come from requirements PSi with i > e. But each

108 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

of these acts at most once, and contributes at most cost(e, x, s) < 2-i - 2 to PP(Wg(Q»)'

Thus the total contribution to PP(Wg(Q») after So is at most Ei>e 2-i- 2 = 2-e- 2 , which

establishes the claim. 0

LEMMA 5.17. Each requirement PSe is satisfied. Hence, A is of promptly simple

degree.

PROOF. Let e be such that We is infinite. We show that eventually the cost con­

ditions cost(i, x, s) < 2-e- 2 hold for each i < e and all sufficiently large x and s. Fix

i < e, and let a be the Ni-node on the true path. Because an N-node must wait for

the leftward nodes before it can have an expansionary stage, we have the following fact.

Either (i) a has infinitely many expansionary stages, or (ii) there are only finitely many

stages when any Ni-node is expansionary. If (ii) holds, let So be a stage such that no

Ni-node is expansionary after So. Then cost(i, x, s) = 0 for all x,s > So. If (i) holds,

let So be a stage such that no string shorter than e + 2 is added to W.a after So for any

Ni-node (3. Then cost(i, x, s) < 2-e- 2 for all x, s > So.

Let S1 be such that cost(i, x, s) < 2-e- 2 for all i < e and all x,s > Sl, and such

that no requirement PSj for j < i acts after S1. Let z, s > S1 + 1 be such that z is

enumerated into We at s. Then some x :::; z will be enumerated into A at the first odd

stage ~ sand P Se will be satisfied, if it is not already satisfied. This establishes Lemma

5.17 and Theorem 5.13. o

As noted earlier, the nodes belonging to each requirement Ni co-operate in such a

way that there is at most one node on each level imposing restraint at any time. This

is exactly the condition used in Theorem 4.1 for constructing an LR-complete c.e. set.

We can in fact modify the above construction to make the set A be LR-complete, by

replacing the P-requirements with the LR-completeness strategy exactly as in Theorem

4.1. Since the N-strategy already satisfies the condition that at most one node on each

level imposes restraint at a time, the modifications needed to make A LR-complete are

straightforward and we omit the details.

6. Prompt non-low-for-randomness and LR-degrees

So far we have been investigating prompt non-Iow-for-randomness within the Turing

degrees. We might ask whether the LR-degrees of promptly non-Iow-for-randoms form

6. PROMPT NON-LOW-FOR-RANDOMNESS AND LR-DEGREES 109

a nice class within the LR-degrees also. Although it is possible that the class of LR­

degrees of promptly non-Iow-for-randoms might have some nice properties, the LR­

degrees do not seem as natural a setting for the study of prompt non-Iow-for-randomness

as the Turing degrees. Theorem 5.12 shows that prompt non-Iow-for-randomness is

Turing degree-invariant: if A is promptly non-Iow-for-random and A =T B for c.e. sets

A, B, then B is also promptly non-Iow-for-random. This does not hold for LR-degrees

however; an LR-degree can contain both prompt and non-prompt non-Iow-for-randoms.

By Theorem 5.7 there is a Turing complete, and therefore LR-complete, promptly non­

low-for-random c.e. set. By Theorem 4.1 and the implications

non-cuppable => cappable => not promptly simple

=> not promptly non-Iow-for-random

there is an LR-complete c.e. set that is not promptly non-Iow-for-random. Hence the LR­

degree of 0' contains promptly and non-promptly non-Iow-for-random c.e. sets. More­

over, by the remarks at the end of section 5, the LR-degree of 0' contains a promptly

simple but not promptly non-Iow-for-random c.e. set. Thus the LR-degree of 0' con­

tains c.e. sets of all possibilities: promptly non-Iow-for-random, promptly simple but

not promptly non-Iow-for-random, and not promptly simple.

It is not known whether there is a nonzero c.e. LR-degree that contains no promptly

non-Iow-for-random c.e. sets, or whether there is a c.e. LR-degree in which all the c.e. sets

are promptly non-Iow-for-random. One possible approach to the latter is via jump

inversion. If a is a Turing degree which is ~T 0' and c.e. in 0', the atomic jump class of

a is the set of those c.e. Turing degrees b such that b' = a. The Sacks jump inversion

theorem (see Soare [68] VIII.3.1) states that every atomic jump class is nonempty.

Cooper [14] showed that there is an atomic jump class that contains only noncappable

c.e. Turing degrees: there is a degree a c.e. in and ~T 0' such that if a c.e. degree b

has b' = a then b is noncappable. Since B =LR e implies B' =tt e', the LR-degree of

such a b contains only noncappable, and hence promptly simple, c.e. sets. If Cooper's

theorem could be strengthened to produce an atomic jump class of promptly non-Iow­

for-randoms, ie h' = a implies h is promptly non-Iow-for-random, then this would give

a c.e. LR-degree in which all the c.e. sets are promptly non-Iow-for-random.

110 5. PROMPT ENUMERATIONS AND RELATIVE RANDOMNESS

A similar jump inversion argument cannot produce a nontrivial c.e. LR-degree with­

out promptly non-Iow-for-randoms however, because promptly non-Iow-for-randoms oc­

cur in every atomic jump class. Robinson [63] proved that the Sacks jump inversion

theorem can be done above any low c.e. 'lUring degree. That is, given a low c.e. 'lUr­

ing degree d and a 'lUring degree a c.e. in and ~T 0', there is a c.e. 'lUring degree

h ~T d with h' = a. By the comments after Theorem 5.7, there is a low promptly

non-Iow-for-random c.e. set D. By Robinson's theorem, every atomic jump class has a

representative ~T D, and hence promptly non-Iow-for-random by Theorem 5.12. (The

same argument works for showing that promptly simples occur in every atomic jump

class.)

Bibliography

[lJ K. Ambos-Spies, C. G. Jockusch Jr., R. A. Shore and R. 1. Soare. An algebraic decomposition of

the recursively enumerable degrees and the coincidence of several degree classes with the promptly

simple degrees. Transactions of the American Mathematical Society 281 (1984), 109-128.

[2J G. Barmpalias. Elementary differences between the degrees of unsolvability and the degrees of

compressibility. To appear.

[3J G. Barmpalias. Relative randomness and cardinality. To appear.

[4J G. Barmpalias. Tracing and domination in the Turing degrees. To appear.

[5J G. Barmpalias, A. E. M. Lewis and M. Soskova. Randomness, lowness and degrees. Journal of

Symbolic Logic 73 (2008), 559-577.

[6J G. Barmpalias, A. E. M. Lewis and F. Stephan. rr~ classes, LR degrees and Turing degrees. Annals

of Pure and Applied Logic 156 (2008), 21-38.

[7J G. Barmpalias and A. Montalban. A cappable almost everywhere dominating computably enumer­

able degree. Electronic Notes in Theoretical Computer Science 167 (2007).

[8J G. Barmpalias and A. Morphett. Non-cupping, measure and computably enumerable splittings.

Mathematical Structures in Computer Science 19 (2009), 25-43.

[9J S. Binns, B. Kjos-Hanssen, M. Lerman and R. Solomon. On a conjecture of Dobrinen and Simpson

concerning almost everywhere domination. Journal of Symbolic Logic 71 (2006), 119-136.

[10J C. Calude, P. Hertling, B. Khoussainov and Y. Wang. Recursively enumerable reals and Chaitin n
numbers. Theoretical Computer Science 255 (2001), 125-149.

[11J G. Chaitin. A theory of program size formally identical to information theory. Journal of the

Association for Computing Machinery 22 (1975), 329-340.

[12J P. Cholak, N. Greenberg and J. S. Miller. Uniform almost everywhere domination. Journal of

Symbolic Logic 71 (2006), 1057-1072.

[13J S. B. Cooper. On a theorem of C. E. M. Yates. Handwritten notes (1974).

[14J S. B. Cooper. A jump class of noncappable degrees. Journal of Symbolic Logic 54 (1989), 324-353.

[15J S. B. Cooper, Computability Theory. Chapman & Hall/CRC Press, Boca Raton, New York, London,

Washington D.C., 2004.

[16J J. C. E. Dekker. A theorem on hypersimple sets. Proceedings of the American Mathematical Society

5 (1954), 791-796.

[17J N. L. Dobrinen and S. G. Simpson. Almost everywhere domination. Journal of Symbolic Logic 69

(2004), 914-922.

111

112 BIBLIOGRAPHY

[18] R. G. Downey. Array nonrecursive degrees and lattice embeddings of the diamond. Illinois Journal

of Mathematics 37 (1993), 349-374.

[19] R. G. Downey, E. Griffiths and G. Laforte. On Schnorr and computable randomness, martingales,

and machines. Mathematical Logic Quarterly 50 (2004), 613-627.

[20] R. G. Downey and D. R. Hirschfeldt. Algorithmic Randomness and Complexity. Springer, to appear.

[21] R. G. Downey, D. R. Hirschfeldt, J. S. Miller and A. Nies. Relativizing Chaitin's halting probability.

Journal of Mathematical Logic 5 (2005), 167-192.

[22] R. G. Downey, D. R. Hirschfeldt, A. Nies and F. Stephan. Thivial reals. In Proceedings of the 7th

and 8th Asian Logic Conferences, Singapore University Press, Singapore, 2003, 103-131.

[23] R. G. Downey, D. R. Hirschfeldt, A. Nies and S. Terwijn. Calibrating randomness. Bulletin of

Symbolic Logic 12 (2006),411-491.

[24] R.G. Downey and T.A. Slaman. Completely mitotic r.e. degrees. Annals of Pure and Applied Logic

41 (1989), 119-152.

[25] R. G. Downey and M. Stob. Splitting theorems in recursion theory. Annals of Pure and Applied

Logic 65 (1993), 1-106.

[26] R. M. Friedberg. The fine structure of degrees of unsolvability of recursively enumerable sets.

Summaries of Cornell University Summer Institute for Symbolic Logic, Communications Research

Division, Inst. for Def. Anal., Princeton, 1957, 404-406.

[27] P. GIi.cs. Every sequence is reducible to a random one. Information and Control 70 (1986),186-192.

[28] D. R. Hirschfeldt, A. Nies and F. Stephan. Using random sets as oracles. Journal of the London

Mathematical Society 75 (2007), 610-622.

[29] M. Ingrassia. P-genericity for recursively enumerable sets. Ph.D. dissertation, University of Illinois

at Urbana-Champaign (1981).

[30] B. Kjos-Hanssen. Low for random reals and positive-measure domination. Proceedings of the Amer­

ican Mathematical Society 135 (2007), 3703-3709.

[31] B. Kjos-Hanssen, J. S. Miller and D. R. Solomon. Lowness notions, measure and domination. To

appear.

[32] S. C. Kleene. On notations for ordinal numbers. Journal of Symbolic Logic 3 (1938), 150-155.

[33] A. N. Kolmogorov. On tables of random numbers. Sankhya, Ser. A 25 (1963), 369-376.

[34] A. N. Kolmogorov. Three approaches to the definition of the concept "quantity of information".

Problemy Pederaci Informacii 1 (1965),3-11.

[35] A. Kucera. Measure, nY-classes and complete extensions of PA. In Recursion Theory Week (Ober­

wolfach, 1984), Springer, Berlin, 1985.

[36] A. Kucera. On relative randomness. Annals of Pure and Applied Logic 63 (1993),61-67.

[37] A. Kucera and T. A. Slaman. Randomness and recursive enumerability. SIAM Journal of Comput­

ing 31 (2001), 199-211.

[38] A. KuCera and T. A. Slaman. Low upper bounds of ideals. Journal of Symbolic Logic 74 (2009),

517-534.

I
.j,

BIBLIOGRAPHY 113

[39] A. Kucera and S. A. Terwijn. Lowness for the class of random sets. Journal of Symbolic Logic 64

(1999), 1396-1402.

[40] A. H. Lachlan. Lower bounds for pairs of recursively enumerable degrees. Proceedings of the London

Mathematical Society 3 (1966), 537-569.

[41] A. H. Lachlan. The priority method I. Z. Math. Logik Grundlag. Math 13 (1967), 1-10.

[42] R.E. Ladner. A completely mitotic nonrecursive recursively enumerable degree. Transactions of the

American Mathematical Society 184 (1973),479-507.

[43] R.E. Ladner. Mitotic recursively enumerable sets. Journal of Symbolic Logic 38 (1973), 199-211.

[44] A. Li, T. A. Slaman and Y. Yang. A nonlow2 c.e. degree which bounds no diamond bases. Unpub­

lished draft (2001).

[45] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications. Springer­

Verlag, New York, London, 1993.

[46] D. Loveland. A new interpretation of the von Mises' concept of random sequence. Z. Math. Logik

Grundlagen Math. 12 (1966), 279-294.

[47] J. Lutz. Dimension in complexity classes. Proceedings of the Fifteenth Annual IEEE Conference on

Computational Complexity, IEEE Computer Society, 2000, 158-169.

[48] W. Maass. Recursively enumerable generic sets. Journal of Symbolic Logic 47 (1982),809-823.

[49] W. Maass, R. A. Shore and M. Stob. Splitting properties and jump classes. Israel Journal of

Mathematics 39 (1981), 210-224.

[50] P. Martin-Lof. The definition of random sequences. Information and Control 9 (1966), 602-619.

[51] E. ~ayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension.

Tech. Report TROI-059, Electronic Colloquium on Computational Complexity, 2001.

[52] W. Merkle, J. S. Miller, A. Nies, J. Reimann and F. Stephan. Kolmogorov-Loveland randomness

and stochasticity. Annals of Pure and Applied Logic 138 (2006), 183-210.

[53] D. P. Miller. High recursively enumerable degrees and the anti-cupping property. In Logic Year

1979-80 (M. Lerman et al., editors), Lecture Notes in Mathematics, vol. 859, Springer-Verlag,

Berlin, 1981.

[54] J. S. Miller. The K-degrees, low for K degrees, and weakly low for K sets. To appear.

[55] J. S. Miller and L. Yu. Unpublished notes (2006).

[56] A. A. Muchnik. Seminar at Moscow State University, Moscow, Russia, 1999.

[57] A. A. Muchnik, A. L. Semenov and V. A. Uspensky. Mathematical metaphysics of randomness.

Theoretical Computer Science 207 (1998), 263-317.

[58] A. Nies. Reals which compute little. In Proceedings of Logic Colloquium 2002, Chatizdais, Z,

Koepke, P. and Pohlers, W., editors, Lecture Notes in Logic 27 (2002), 261-275.

[59] A. Nies. Lowness properties and randomness. Advances in Mathematics 197 (2005), 274-305.

[60] A. Nies. Computability and Randomness. Oxford University Press, Oxford, 2009.

[61] A. Nies, F. Stephan and S. Terwijn. Randomness, relativization and 'lUring degrees. Journal of

Symbolic Logic 70 (2005), 515-535.

114 BIBLIOGRAPHY

[62] P. G. Odifreddi. Classical Recursion Theory Volume II. North-Holland, Amsterdam, Oxford, 1999.

[63] R. W. Robinson. Jump restricted interpolation in the recursively enumerable degrees. The Annals

of Mathematics 93 (1971), 586-596.

[64] G. E. Sacks. A minimal degree below 0'. Bulletin of the American Mathematical Society 67 (1961),

416-419.

[65] G. E. Sacks. On the degrees less than 0'. Annals of Mathematics 77 (1963), 221-231.

[66] C. P. Schnorr. Process complexity and effective random tests. Journal of Computer and System

Sciences 7 (1973), 376-388.

[67] S. G. Simpson. Almost everywhere domination and superhighness. Mathematical Logic Quarterly

53 (2007), 462-482.

[68] R. 1. Soare. Recursively Enumemble Sets and Degrees. Springer-Verlag, Berlin, London, 1987.

[69] R. J. Solomonoff. A formal theory of inductive inference. Information and Control 7 (1964), 1-22.

[70] R. Solovay. Draft of a paper (or series of papers) on Chaitin's work. Unpublished handwritten

notes, 215 pages, 1975.

[71] M. van Lambalgen. Random sequences. Ph.D. dissertation, University of Amsterdam, 1987.

[72] R. von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Math. ZeitschriJt 5 (1919), 52-99.

[73] C. E. M. Yates. Three theorems on the degree of recursively enumerable sets. Duke Mathematical

Journal 32 (1965), 461-468.

[74] C. E. M. Yates. A minimal pair of recursively enumerable degrees. Journal of Symbolic Logic 31

(1966), 159-168.

[75] C. E. M. Yates. Recursively enumerable degrees and the degrees less than 0'. In Sets, Models and

Recursion Theory (Proc. Summer School Math. Logic and Tenth Logic Colloq., Leicester, 1965),

North-Holland, Amsterdam, 1967,264-271.

[76] L. Yu and Y. Yang. On the definable ideal generated by nonbounding c.e. degrees. Journal of

Symbolic Logic 20 (2005), 252-270.

[77] D. Zambella. On sequences with simple initial segments. IILC technical report ML 1990-05, Uni­

versity of Amsterdam, 1990.

APPENDIX A

N on-cupping, measure and computably enumerable

splittings

Title: Non-cupping, measure and computably enumerable splittings

Authors: George Barmpalias and Anthony Morphett

Barmpalias was supported by EPSRC Research Grant No. EP /C001389/1. Mor­

phett was supported by MEST-CT-2004-504029 MATHLOGAPS Marie Curie Host Fel­

lowship. We would like to thank Andre Nies for motivating the results of section 3.

Status: Published in Mathematical Structures in Computer Science 19, Issue 1,

February 2009, pp 25-43

Key words and phrases: Almost-everywhere domination, computably enumer­

able Turing degrees, incompleteness

Abstract: We show that there is a computably enumerable function f (Le. com­

putably approximable from below) which dominates almost all functions and fED W is

incomplete, for all incomplete computably enumerable sets W. Our main methodology

is the LR equivalence relation on reals: A =LR B iff the notions of A-randomness and

B-randomness coincide. We also show that there are c.e. sets which cannot be split

into two c.e. sets of the same LR degree. Moreover a c.e. set is low for random iff it

computes no c.e. set with this property.

1. Introduction

Computability theory studies the real line from the point of view of relative com­

putation. Interactions with measure theory were explored from fairly early on, see

for example [7, 18, 22). The study of algorithmic randomness has produced a large

body of work on measure and computability; good references for this are Downey and

Hirshfeldt [9) and Nies [21). More recently, Dobrinen and Simpson [8) introduced the

115

116 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

notion of almost everywhere domination which was investigated more deeply in sev­

eral follow-up papers [3, 13, 5, 12]. A function f is almost-everywhere dominating if

J.L{ X E 2w : f dominates all total g '5.T X} = 1 where J.L is the Lebesgue measure, and

a set is almost-everywhere dominating if it computes such a function f. This notion is

degree-theoretic and we can also talk about almost everywhere dominating degrees. In

this paper we are interested in the computably enumerable almost everywhere domi­

nating degrees. Nies [20] noticed that these degrees a are high, i.e. a' ~ 0", and Binns,

Kjos-Hanssen, Lerman and Solomon showed that there are high c.e. degrees which are

not almost everywhere dominating. Cholak, Greenberg and Miller [5] established the

existence of incomplete c.e. almost everywhere dominating degrees, and Barmpalias

and Montalban [3] showed that some of them are halves of minimal pairs. In section

4 we show that some of these c.e. degrees are non-cuppable, i.e. their join with any

incomplete c.e. degree is incomplete.

THEOREM 1.1. There is a c.e. almost everywhere dominating set A such that

A EB W ¢.T 0' for all c.e. W <T 0'.

Theorem 1.1 has the very interesting corollary that if a set is computed by all almost

everywhere dominating c.e. degrees, then it must be non-cuppable (the existence of

noncomputable such sets is stU! open). Also, it can be viewed as a generalization of a

theorem of Harrington (see [19]) which asserts that there is a function of c.e. degree

which dominates all computable functions and has incomplete join with all incomplete

c.e. sets. A fundamental question, which also served as motivation for Theorem 1.1 is

whether almost everywhere dominating sets have degree-theoretic properties which are

not shared by all the high degrees. More precisely, is there a formula 4> in the language

of (R, <) (where R denotes the c.e. Turing degrees) such that for all a c.e. almost

everywhere dominating 4>(a) holds but there is a high c.e. degree b such that 4>(b) fails?

In section 3 we consider splittings of c.e. sets in relation with relative randomness.

It is a natural question whether a c.e. set is the disjoint union of two c.e. sets B, C which

induce the same notion of randomness (i.e. the class of random numbers relative to A is

the same as the class of random numbers relative to B). We show that this is not always

the case and that a set is low for random iff it can compute such a counterexample.

r

3. SPLITTINGS OF COMPUTABLY ENUMERABLE SETS INSIDE THEIR LR-DEGREE 117

2. Preliminaries

In the following, we use c.e. sets of strings to generate subclasses of the Cantor

space. In particular, we never use the relations c, ~, ::) and 2, the measure j.l and the

operations n and U for sets U of strings; these relations and operations always refer

to the class S(U) = {A E 2W I 3n(A f n E Un. In other words, j.l(U) is j.l(S(U)),

U ~ V iff S(U) ~ S(V) and Un V denotes actually S(U) n S(V), not S(U n V). For

union, S(U U V) and S(U) U S(V) would, for both interpretations of U, anyway be the

same. We recall some basic notions of relative randomness. An oracle Martin-Lof test

(Ue) is a uniform sequence of oracle machines which output finite binary strings such

that if U! is the range of the e-th machine with oracle B E 2w then for all B E ~,

e E N, j.l(U!) < 2-(e+l) and U! 2 U!+l' A real A is called B-random if for every

oracle Martin-Lof test (Ue) we have A ¢ neU!. A universal oracle Martin-Lof test is an

oracle Martin-Loftest (Ue) such that for every A, B E 2w , A is B-random iff A ¢ ne U! .

Given any oracle Martin-Lof test (Ue), each Ue can be thought of as a c.e. set of axioms

(r,a). If B E ~ then U! = {a 13r(r c B 1\ (r,a) E Uen. The suffix [s] indicates

the value of a parameter at the beginning of stage s. The notion of almost everywhere

domination turned out to be very related with the so-called LR reduciblity, defined by

Nies [20]. We say that a set A is LR reducible to set B (and write A '5.LR B) if all

B-random reals are also A-random. Kjos-Hanssen, Miller and Solomon [13] (also see

[23]) showed that A is almost everywhere dominating iff 0' '5.LR A. Kjos-Hanssen [12]

showed that A '5.LR B iff for some member U of a universal oracle Martin-Lof test,

there is a E~(A) class VA with UB ~ VA and j.l(VA) < 1.

3. SpUttings of computably enumerable sets inside their LR-degree

Given a c.e. set it is natural to ask if it can be expressed as the disjoint union of two

c.e. sets of the same degree as itself. In the context of Turing degrees this notion has

been widely studied. Lachlan [14] showed that not every c.e. set has this property. The

c.e. sets which can be split into two (disjoint) c.e. sets of the same degree are known as

mitotic. Ladner [15, 16] studied further this notion, showing that every noncomputable

c.e. set computes a non-mitotic set and that there is a non-zero Turing degree whose

c.e. sets are all mitotic. More results about this notion were shown in [10]' and the

118 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

reader can find a comprehensive survey on the general theme of splittings of c.e. sets in

[I1J.

It is interesting to carry such notions in the context of the LR reducibility. If a c.e.

set is low for random, then obviously it can be split into two c.e. sets of the same LR

degree. However we show that there is a c.e. set (even a complete one) which does not

have this property. That is, there is a c.e. set which cannot be expressed as a disjoint

union of two c.e. sets B, C such that the class of B-random numbers is the same as the

class of C-random numbers. Moreover, we show that every c.e. set which is not low

for random computes a c.e. set which cannot be split into two c.e. sets of the same LR

degree. The latter construction is interesting as it demonstrates a notion of "non-low for

random permitting": c.e. sets which are not low for random permit certain properties

to occur in the 'lUring degrees below them, as this happens with noncomputable, array

noncomputable, non-Iow2 sets etc.

THEOREM 3.1. There is a c.e. set A that cannot be split into two c.e. sets X, Y such

that A =LR X =LR Y. Moreover A can be such that A =T 0'.

Proof. Let (Xi, Yi, Vi, qi) be an effective list of all quadruples (X, Y, V, q) of c.e. sets

X, Y with X n Y = 0 and pairs V, q where V is a c.e. operator such that Jl(V.B) < q for

all (J E 2w , and q < 1. It suffices to construct a c.e. set A and a uniform sequence (TeA)

of E?(A) classes such that Jl(Te
A) < 2-e- 1 and the following requirements are satisfied:

(the construction will automatically satisfy A =T 0'). Then if TA = uiTl we have

Jl(TA) < 1 and for every i E N, if Xi U Yi = A then either TA ~ l/iXi or TA ~ l/iYi,

which is what we wanted. For each i we define the quota Pi := (1-qi)·2-i- 2 for~. The

idea for the satisfaction of ~ is to put a clopen set Bi ~ 2W
- l/iXi of measure pd2 and a

clopen set Di ~ 2W
- l/iYi of measure pd2 into TiA (with use Ui), and wait until Ci ~ l/ix;

and Ci ~ l/iYi with use w, where Ci := Bi U Di. Then we remove Ci from TiA (by

enumerating into A) and restrain A f w. Note that since Jl(l/iX;) < qi and Jl(l/iYi) < qi

the procedure is well defined. Since Xi n Yi = 0, either A f w i= (Xi U Yi) f w or Bi

permanently stays in l/iXi or Di permanently stays in l/iYi . If we repeat this procedure

-!i times then either some round has the first outcome, or one of TiA ~ l/ix;, Tl ~ l/iYi

holds. In any case ~ is satisfied in a E? way. We say that Ri requires attention at

3. SPLITTINGS OF COMPUTABLY ENUMERABLE SETS INSIDE THEIR LR-DEGREE 119

stage s if either Ui[SJ, Bi[SJ, Di[SJ are undefined, or they are defined and BdsJ ~ \fix,[sJ,

DdsJ ~ \fi'Yo[sJ and (XdsJ U Yi[s]) f w = A[sJ f w where w is the least number greater

than the use of Bi[SJ in \fiX' and Di[SJ in \fi'Yo. When we say the leftmost clopen subset

of Q of measure q for a elopen set Q such that J.L(Q) > q we mean the unique subset P

of Q which has measure q and the property that if f3 E P then all reals in Q which are

lexicographically smaller than f3 belong to P.

Construction. At stage s let i be the least number < s such that Ri requires

attention at s (if there is no such i, go to the next stage). If udsJ i, BdsJ i, DdsJ i,

choose the leftmost elopen set Bds + 1] ~ 2w - \fix, [s] of measure pi/2 and the leftmost

elopen set Di[S + 1] ~ 2w - "\!iY;[s] of measure pi/2, and put them into TiA with big use

Ui[S + 1J. Otherwise put Ui[SJ into A and set Uj[s + 1J i, Bj[s + 1J i, D)·[s + 1J i for all

j ? i.

Verification. By the above discussion the construction is well defined, i.e. when

it chooses Bi, Di, suitable such sets exist. Also note that if Ui[S] L Uj[s] ! and i < j

then udsJ < Uj[sJ. In particular, as long as Ui[SJ L no requirement Rj with j > i can

change A f (Ui + 1). Note that TiA[sJ = BdsJ U DdsJ (or 0 if BdsJ, Di[SJ j); and if Bi, Di

are set i at s then A changes below udsJ. So TA = Ui1iA is a E?(A) class. We have

J.L(TiA) < 2-i- 2 since at any time Bdt] uDdt] has measure at most Pi, which is < 2-i- 2 •

Next we show by induction that all Ri require attention finitely often and are sat­

isfied. Suppose that this holds for all Rj, with j < i and So is the least stage after all

stages where one of these Rj requires attention. At (the beginning of) So we must have

udsol i, Bdsol i, Ddsol i and so Ri will receive attention at So. In the following stages

Ri can only redefine its parameters at most!; times, since J.L(\fiX') < qi and J.L("\!iY;) < qi.

When this stops at some stage S1. we will have Uj = Uj[s] L Bj = Bj[s] L Dj = Dj[s] !

for all s > S1 and j ::; i, and either A r w #- (Xi U Yi) f w for some w or Bi ~ "\!ix, or

Di ~ \fiYi, and so Ri is satisfied.

120 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

Finally we show that A =T 0'. Let f be a computable function such that Xf(i) =

Yf(i) = 0, qf(i) = 2-1 and for all i,

V
Xf(i) _ VYf(i) _ {{OO}
f(i) - f(i) -

o
if i E 0'

if i tJ. 0'

where '00' is a string representing the leftmost quarter of 2w. According to the argument

above and the construction, Ui := lims uds] exists for all i and A can compute a modulus

of convergence for this function, Le. there is an A-recursive function cpA such that for

each i and all t 2: CPA(i) we have Ui = udt]. Then according to the construction and

since we always choose the leftmost suitable clopen set to enumerate into TA we have

that i E 0' iff i E 0'[cpA(f(i))] and so 0' '5.T A. o

THEOREM 3.2. If B is c.e. and B 1:.LR 0 then there is a c.e. set A '5.T B which

cannot be split into two c.e. sets X, Y such that A =LR X =LR Y.

Proof. We use the ideas and some of the notation in the proof of Theorem 3.1 in a

more refined form. Let (Ui) be universal oracle Martin-Lof test and let ti be the least

such that 2-ti < 2-i- 2 . (1 - qi) (so that, in particular, J.L(Ut~) < 1 - J.L('\Ii)). Without

loss of generality we can assume that

(1)

Since B 1:.LR 0 for all E~ classes E such that Ut~ ~ E we have J.L(E) = 1. To satisfy

R? we will enumerate clop en sets into TiA (as before) as well as a E~ class Ei such that

Ut~ ~ Ei · The idea is that, roughly speaking, for any amount that is put into TiA (and

so ~Xi or ~Y;), the same amount is put into E i . Eventually, the measure in Ei - Ut~

will translate into measure in ~X - T/ or ~Y - TiA (B changes will allow A changes)

and by making J.L(Ei) large enough, we have that either Vixi or ViY; will stop covering

T/; also the measure that permanently stays in TiA will be at most J.L(Ut~) < 2-i - 2 .

Since J.L(Ei) can be at most 1, we will remove Ei - Ut1 (Le. the useless measure) from Ei

a finite number of times, provided that J.L(Ei) > 2-1 + 2-ti . Each time we do this, we

ensure that J.L(~Xi) and J.L(~Y;) have increased by a total of 2-2 , so that after finitely

many times requirement R? is satisfied.

3. SPLITTINGS OF COMPUTABLY ENUMERABLE SETS INSIDE THEIR LR-DEGREE 121

Order the strings as usual, first by length and then lexicographically. For each

stage s and string P E Ut~[sJ let pi(p)[SJ be the stage where p was enumerated into

Ut~[sJ with the current computation. At any stage s let pdsJ be the least string in

Ut~[sJ - Ei[SJ such that Pi(Pi[SJ)[SJ ~ pi(a)[sJ for all a E Ut~[sJ - Ei[SJ (and pdsJ i if

such string does not exist). Also let udsJ be the use of the computation Pi[SJ E Ut~[sJ.

To schedule an i-attack at stage s means to pick a clopen set ef[s + 1J ~ 2w - ViXi[SJ

of measure 2-lpi [sJi-l and a clopen set errs + 1J ~ 2W - ViY;[sJ of measure 2-lp;[sJi-1,

and enumerate ei[S + 1J := ef[s + 1J U errs + 1J into T/ with big use Vi[S + 1J. An

attack which was scheduled at stage s is cancelled at stage t > s if t is the least stage

with B r udsJ f:. B r udtJ . An attack scheduled at stage s is implemented at stage

t > s if Pi[SJ is enumerated into Ei at t. If an attack was implemented at stage s and

B[sJ r Ui[SJ f:. B[tJ r udsJ for some t > s then for the least such stage t we say that the

attack succeeds at stage t. If an implemented attack succeeds at some stage, we say that

it is successful; otherwise we say that it is unsuccessful. In the following construction

when a parameter is not explicitly redefined it retains its previous value and if a string is

not explicitly extracted from TiA it remains in it (perhaps with a different computation,

but then surely with the same A-use). As usual, we assume that UiB[SJ is prefix-free for

all s, as a set of strings.

We say that 14 requires attention at stage s if either vdsJ i, or vdsJ L

((Xi U Yi) r Vi)[SJ = (A r Vi)[SJ and one of the following holds:

(I) An i-attack is cancelled at s.

(II) An i-attack was implemented at some stage t < s and it succeeds at stage s.

(III) An i-attack was scheduled at some stage t < s, it has not been cancelled or

implemented by stage s, edtJ ~ ViXi[S], edtJ ~ ltiYi[S], fUld (XiUYi)[sJ r w = A[sJ r w

for some w greater than the use of edt] in ViXi[SJ and in ViY;[sJ.

(IV) All previous attacks have been either implemented or cancelled.

To initialize 14 means to empty Ei and T/.

Construction. At stage s pick the least i < s such that 14 requires attention at s

(if such i does not exist, go to the next stage) and do the following.

122 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

• If an i-attack is cancelled at s, enumerate Vi[S] into A, remove Ci[s] from TiA

and initialize Rj for all j > i.

• If an i-attack was implemented at some stage t < s and it succeeds at stage s,

put vdt] into A, remove Cdt] from T/ and initialize Rj for all j > i.

• If (IV) applies, schedule an attack at stage s.

• If (III) applies then enumerate pdt] into Ei and say that this attack was im­

plemented at stage s.

• If J.£(Eds]) > 2-1 + 2-ti , remove from Ei the set Ei - ut[s].

Verification. Note that at any stage an attack is scheduled only if all previous

attacks are either cancelled or implemented. If an attack is implemented at stage s and

another attack is scheduled at t > s (and Ri is not initialized in [s, t]) we have Pi[sl!pdt]

(so that [pilslln[Pi[tll = 0). Also, in that case, if A = XiUYi we have cl[s]ncl[t+l] = 0

for some j E {x,y}, depending on whether we have Cf[s] ~ ViXi[t] or Cns] ~ ViYi[t]

(one of the two must occur since at s an i-attack was implemented and only one of

Xi, Yi may change below the relevant use). In particular, Ei is prefix free and T/[s] is

prefix free (as a set of strings) for all s.

By induction on the stages we have that if i < j and Vj[t] 1 then vdt] 1 and

vdt] < Vj[t]. This means that if during initialization the set TiA is emptied at stage s,

then A changes below the smallest use of existing computations of the form (1 E TiA for

strings (1. So (TiA) is indeed a uniform sequence of E~(A) classes, hence TA is a E~(A)

class. Moreover by the choice of Vi[S] , if A r n changes at stage t then B r n changes

at stage t. So A 5:.ibT B (where ibT indicates a 'lUring reduction with the use function

being the identity); in particular A 5:.T B.

Next we show that each ~ is satisfied and stops requiring attention after some stage.

For a contradiction suppose that there is a least i such that either ~ is not satisfied or

it requires attention infinitely often. Suppose that So is the least stage such that Rj,

j < i do not require attention at any stage s ~ So. In any case we have TiA ~ ViXi and

TiA ~ ViY; because otherwise some i-attack would never be implemented or cancelled.

This means that i-attacks will be scheduled at infinitely many stages (by the choice of

ti and the fact that J.£(ViXi),J.£(ViY;) are < 1 there will always be a suitable clopen set

for scheduling a new attack) and by the definition of pds], infinitely many of them will

3. SPLITTINGS OF COMPUTABLY ENUMERABLE SETS INSIDE THEIR LR-DEGREE 123

not be cancelled. In fact, if TJ is a string in Ut~[s] with correct B-use, then for some

stage t we will have Pitt] = TJ and if to is the least such stage, the attack scheduled at to

will be implemented (and will be unsuccessful). This means that if we never removed

measure from Ei after stage So (under the fifth condition for R;. to require attention)

then ut; ~ Ei and since B >LR 0 we have /l(Ei) = 1. In particular /l(Ei) > 2-1 + 2- t;

which means that we will remove useless measure from Ei after So. The same argument

shows that there will be infinitely many stages SI. S2,' .. at which we R;. requires and

receives attention under the fifth condition. If we let

Di = {pds] I at s ~ So an unsuccesful i-attack was implemented}

then since

Edsj] = {pi[S] I at stage s E [Sj-1. Sj) an i-attack was implemented}

Hi[Sj] = {pds] I at S E [Sj-1, Sj) a successful i-attack was implemented}.

If at stage S an unsuccessful attack was implemented we must have pds] E Ut~, so that

Di ~ ut; and /l(Di) < 2-ti . Since Di n Hi = 0 and /l(Edsj]) > 2-1 + 2-ti we have

/l(Hdsj]) > 2-1. But every string TJ E UjHi[Sj] corresponds to a pair of clop en sets

Cf(TJ), Cr(TJ) such that

• /l(Cf(TJ)) = /l(Cr(TJ)) = ~(~Tj])

• Cf(TJ) stays permanently in Vix ; or Cr(TJ) stays permanently in ViY;

• if TJ1 = Pi[t1], TJ2 = pdt2] for So ~ t1 < t2 and Cf(TJd stays permanently

in Vix ; then Cf(TJ1) n Cf(TJ2) = 0; if Cr(TJ1) stays permanently in ViY; then

Cr(TJ1) n Cr(TJ2) = 0

which means that at each Sj either /l{l!iXi) or /l(l!iY;) has increased by at least 2-2 since

Sj-1. Since the sequence (Sj) is infinite and /l(Vix;),/l(ViY;) are less than qi < 1, this is

a contradiction.

Finally we need to show that /l(TA) < 1. Let So be as before, and let W be the

set of stages t ~ So at which an unsuccessful i-attack was implemented. We have

~A = u{Cdt] I t E W} and /l(Cdt]) = /l([pdt]]) for all t E W. Hence /l(T/) = /l(Di)

and since Di ~ ut; we have /l(TiA) < 2-t; < 2-i- 2, which shows that /l(TA) < 1. 0

124 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

An obvious question which is left unanswered here is whether the c.e. sets of Theorem

3.1 occur in every non-zero LR degree. We conjecture that this is not the case.

Some properties of c.e. LR degrees can be derived from a combination of known

properties of the structure of 'lUring degrees inside an LR degree and properties of the

'lUring degrees. As an example we demonstrate the following.

THEOREM 3.3. Let n E N. If A is c.e. then there exists B of properly n-c.e. 'lUring

degree such that A =LR B.

Proof. Since every c.e. LR degree contains noncomputable c.e. sets, we can assume

that A is noncomputable. By a result in [2] we have that there exists a c.e. set C such

that C <T A and C =LR A. Then by the density theorem in [6] there is a set B of

properly n-c.e. 'lUring degree such that C <T B <T A and so B =LR A. o

4. Proof of Theorem 1.1

In the following we fix U to be the second member of a universal oracle Martin-Lof

test, so that J1(U X) ::; 2-1 for all X E 2W. To show Theorem 1.1 it suffices to construct

a non-cuppable set A such that U0' ~ VA for some E~(A) class VA of measure < 1.

We adopt the usual assumptions that, for a 'lUring functional r, rX (z)[s]l only if

rX(y)[sJl for all y < z, and that userX(y)[s]::; userX(z)[s]::; s ifrX(z)l and y::; z.

A 'lUring functional r may be considered as a c.e. set of axioms (z, y, a) (asserting that

rX(z) = y for all X E 2w with a c X), which are consistent in the sense that if (z,y,a)

and (z, y', a') are both in the set, for y' -:f. y, then a and a' are incomparable. We will

abbreviate rXE9Y as rXY .

4.1. Making A non-cuppable. We describe the basic strategies for a non-cuppable

degree, based on [17, 25]. We will construct 'lUring functionals b.e to ensure that the

following holds for all e E w:

(2)

where (re , We) ranges over all pairs of 'lUring functionals and c.e. sets; assuming that

0' ~ 2N we let K = D U 0' where D ~ 2N + 1 is an auxiliary that we enumerate. In the

following discussion we omit the index e. The idea is to let b. W copy rAW by monitoring

the reduction rAW and restraining A to preserve the agreement of the two reductions.

r

4. PROOF OF THEOREM 1.1 125

The problem with this approach is that the restraint on A may well have limit 00, in

which case very little can be done to make A nontrivial, let alone LR-above 0'. The

solution is to split N into infinitely many subrequirements Mp which are responsible

just for the definition of ~ W (p), thus splitting an infinite restraint into infinitely many

finite restraints. The strategies for the subrequirements Mp will be coordinated by a

master N strategy which will make sure that ~ is consistent and this coordination will

be implemented on a tree of strategies.

We can think of N having two outcomes 00 ~ f (Le. 00 is to the left of f) cor­

responding to whether there are infinitely many expansionary stages in rAW = K or

not, and Mp outcomes 00 ~ f according to whether rAW (p) 1 or equivalently, ~ W (p) 1.

This induces a uniformly labelled tree of strategies where each level is occupied by either

some N or some Mp. For the consistency of ~ we make sure that at any Mp-Ievel (Le.

occupied by an M requirement) and at any stage at most one node a will be respon­

sible for ~W(p) 1 (by preserving A in rAW(p) 1). Any nodes to the right of a may

adopt that ~-definition but if a node to the left of a wishes to define ~(p) it must first

cancel the ~ computation that a holds. This happens by enumerating something into

the auxiliary set D which in turn causes a W -change (provided that the r reduction is

valid). Eventually, if rAW = K, at each Mp level there will be exactly one node on or to

the left of the true path which permanently preserves ~ W (p) 1 = 0' (p). Otherwise some

node will witness partiality. As in any 0" priority argument the restraints imposed on

a node on the true path will be finite.

Each Mp-node a has a flip-point d, which is the number enumerated into D when we

wish to cancel the computation ~(p) 1. When a is visited, it checks if the computation

rAW (d) has changed since the last time it was visited and if so, it plays outcome 00.

Otherwise we may define ~W(p) = rAW(p), with W-use u = userAW(d) and restrain

A f u. If we later want to visit a node f3 to the left of a, we enumerate the flip-point d

into D whilst maintaining a's A-restraint. This enumeration should force a W-change

below u, and so a will not hold a ~-computation anymore (if this does not happen then

N will be satisfied by a finite outcome). Then we can drop the restraint of a and f3

can take action. This must happen immediately upon seeing the N -expansionary stage,

otherwise some other node a' to the right of f3 may act first and define another ~­

computation which prevents f3 from being visited. For this reason when we enumerate

126 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

d into D we create a link (r,/3) from the N-node r to /3 and when r is next visited at

an expansionary stage we will follow the link straight to /3.

4.2. Measure-guessing nodes and LR-completeness. To make A LR-complete,

it suffices to construct a E?(A) class VA with U0' ~ VA and J.L(VA) < 1. Without loss of

generality we assume that if (a, r) is enumerated into U at stage s then 10'1 = Irl = s. We

will also use the hat-trick for U0': let ks = min{x : x E 0'[s]- 0'[s -I]}, or k = s if there

are no such x and define 0'[s] = 0'[s] r k. Then U0'[s] = {a : (a, r) E Us for some r ~
0'[s]}. In the following we assume that U0' [s] and 0'[s] refer to U0'[s] and 0'[s] respec­

tively. Then infinitely often we have true stages s at which U0'[s] = U0'fn C U0' for

some n, and thus J.L(U0'[sJ) < J.L(U0').

Whenever an interval a appears in U0', we add it to VA with large A-use u. If a 0'­

change later removes a from U0', we could remove it from VA by enumerating u into A,

provided that u is not restrained by some requirement. The A-change may also remove

some legitimate intervals from V A, but we add these again with the same use as before.

This clearly gives U0' ~ VA. The main conflict is that the A-restraints will prevent

us from removing some superfluous 'junk' intervals a from VA. For the argument to

succeed, we must ensure that the total measure of junk intervals J.L(VA - U0') < !.
We assign each requirement (each level of the tree) a quota 15, which is the amount

of junk measure that requirement is allowed to capture. We implement the negative

strategies in such a way that we.have at most one node imposing restraint at each level

of the tree. A restraint may only be imposed on A if the (current) junk measure that

it captures is less than the quota. To ensure that strategies will eventually be able to

impose restraints under this restriction, we choose the quota €(k) of level k of the tree

so that Lj>k €(j) < €(k) (in this way the lower priority requirements will not capture

more than €(k) of junk).

To ensure that the strategies do not exceed their junk quota, the predecessor of

each N and M node will be a node with a strategy G which measures J.L(U0') in a rrg
way. The backup nodes G successively subdivide the interval [0,1), assigning each of

its outcomes an interval [q, r) which corresponds to a guess that J.L(U0') E [q, r). The

construction will make sure that if the backing node of a strategy predicts the right

interval [q, r) of J.L(U0'[sJ) then the junk measure that it captures will increase by no

more than r - q after it acts. If we choose r - q = 15, then a will capture at most 215 of

r
I

4. PROOF OF THEOREM 1.1 127

junk, which is acceptable if we choose the quotas €(k) such that LkEW 2€(k) < !. An

analysis of the permanent restraints and the timing of the enumerations into A in the

construction will verify that J.l(VA - U0') < !.

4.3. Combining the strategies. The difficulty in combining the non-cupping and

LR-completeness strategies stems from the fact that the non-cupping subrequirements

are not independent of each other or of the parent N-node. In previous constructions of

LR-complete c.e. sets (see [3, 5)) when a node holds a restraint under a measure guess

which proves wrong, we initialise that strategy and all lower-priority nodes. However

here we can only initialise non-cupping parent N-nodes since by initialising an M-node

we may make t1 inconsistent. Once a t1 W (p) axiom has been enumerated, we must

retain the A-restraint until the axiom is invalidated by a W-change or the parent N­

node is initialised.

Thus whenever some M -node holds a restraint under a wrong assumption about

J.l(U0') we just try to invalidate the corresponding t1 axiom by enumerating the flip

point and waiting for a suitable W -change. The construction will make sure that if this

does not happen and N is not reset, the junk measure from the subrequirements of N

will be less than the quota of N, even though the junk measure of some M may turn

out to be larger than its quota. Overall this satisfies N trivially and with small enough

cost. The trick which allows the above quota-junk relation is in enumeration of U0': it

is prefix-free and if some interval a leaves U0' then all intervals which were enumerated

after a leave as well, at the same time.

4.4. Priority Tree and Definitions. The priority tree is a finite branching tree

which consists of the parent nodes labelled Ne , the subrequirement nodes labelled Me,p,

and the measure-guessing backup nodes labelled G. We adopt the convention that the

root node is at the top and the tree branches downwards; thus we may say that a node

0' is above a node (3 if 0' is an ancestor of (3. Let (-,.) be a monotone 1-1 computable

function from NxN onto N. Requirement Ne has code (e,O) and Me,2p has code (e,p+l)

(by assumption 0' C 2w and so only even t1 W (p) arguments need to be considered). We

say that requirement R1 has higher priority than R2 (writing R1 < R2) if the code of

R1 is smaller than the one of R2. We define the tree based on this priority ordering.

If 10'1 = 2(e,0) + 1 then 0' is labelled Ne and if 10'1 = 2(e,p + 1) + 1 then it is labelled

Me,2p' If 10'1 = 2e then 0' is labelled G.

128 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

The Ne-nodes 7 have outcomes 00 -< f and are associated with a functional AT that

is built by the Me,p-nodes below 7 and is occasionally cleared and started afresh when

7 is reset. The Me,p nodes have outcomes 00 -< f and are associated with a flip-point

do: which may change in the course of the construction. A measure-guessing G-node

"I has outcomes qo -< q1 -< q2 -< q3 which correspond to guesses about an interval in

which p,(U0') may lie. Inductively we start with the root node A, divide [0,2-1) (since

p,(U0') :::; !) into four equal intervals and assign them in increasing order to outcomes

qo -< q1 -< q2 -< q3 respectively, which we think of as edges from A. If 1"11 = 2e and

is below interval-outcome 1 of "I f 2e - 2, divide 1 into four equal intervals and assign

them in increasing order to outcomes qo -< q1 -< q2 -< q3 respectively, which we think of

as edges from "I.

For an M or N-node 0', with 0' = "Ir-. x for a G-node "I, let 10: = [q, r) be the interval

assigned to outcome x of "I. We write q(O') for the lower endpoint q of 10:, and f(O')

for r - q, the width of 10:' We refer to f(O') as a's resolution and q(O') as its measure

guess. Since all nodes of the same label have the same length, we may write f(Ne) or

f(Me,p) to denote f(O') for any node 0' labelled Ne or Me,p, respectively. For each N or

M requirement R we have

(3) L 2f(R') < f(R) and
R'>R

where R' is an NorM requirement. The ordering -< on the outcomes is extended to

the nodes of the tree lexicographically: 0' -< (3 if for the longest common initial segment

"I of those nodes, "Ir-. x ~ 0' and "Ir-.y ~ (3 for x -< y. We say that 0' has higher priority

than (3 if either 0' C (3 or 0' -< (3. We write ro: for the restraint imposed on A by node

0', and 0'- for the predecessor of 0'. Also let Ro: = max{r{3 : (3 -< 0' or (3 C a}. All

parameters have a current value each time they are mentioned in the construction and

their value at the beginning of stage 8 is indicated by the suffix [8]. For an Me,p-node

0', we write 7(0') for the unique Ne-node 7 C 0'. We refer to 7 as a's parent, or say that

0' is working for 7. An Me,p-node 0' with parent 7 is enabled if 7r-.00 C 0' and for every

Me,p,-node a' with 7 C a' C 0', we have O',r-. f C 0'. Otherwise, 0' is disabled (which

means that it regards rAW. as partial and no further action is needed for Ne).

4.5. Construction. Set A [0] = 0, AT = 0 for all N-nodes 7, and do: j, ro: = 0

for all M -nodes 0'. When a parameter is assigned a value, it retains that value until

4. PROOF OF THEOREM 1.1 129

explicitly given a new value. To reset an N-node T means to empty ~Tt set r{3 = 0

and d{3 j for any M-nodes f3 working for T, and remove any links to or from T or any

M-node f3 working for T. To reset an M-node a means to remove any links to it and if

r a f:. 0 and da 1, enumerate da into D, setting da j. To reset a G-node means to remove

any links to it. The construction will explicitly declare certain nodes a to be accessible

at each stage, which does not merely mean that a c 8s . If a is an N-node, it will also

declare certain stages to be a-expansionary. We give the enumeration of VA during the

stages s of the construction in advance:

Enumeration of VA. For each (a, p) E U[s] with p c 0'[s] but

a ¢ VA[s], if a E VA[t] with use u for some t < s take the largest

(4) such t and if (a, p') E U[t], p' C 0'[s], then enumerate a into

VA[s + 1] with use u. Otherwise, put a into VA[s + 1] with fresh

use.

The construction will occasionally call the following routine, which is needed in order

to access certain outcomes x of nodes a.

Routine L(a, x, s). Reset all N-nodes which are on the left of

a~x. Then consider the longest node Tea which has label Ne

for some e E N and there is some Me,p-node f3 ::J T with f3 ~ a~x,

(5) r{3[s] f:. O. If T exists let f3 be the shortest node as above, enumerate

d{3 into D (if d{3 1), set d{3 j, create a link (T,a) associated with

outcome x and go to step 4. Otherwise let 8s,t+l = a~x and go

to step 3.

At stage s, we perform the following steps in order.

Step 1. (Reset some nodes) Look for the highest priority node a such that some f3 ;2 a

has been accessed since a was last reset and J.L(U0'[s]) < q(a). If there is such, reset a

and all nodes of lower priority than a.

Step 2. (Drop some restraints) For each M-node a with ra f:. 0 and W r ra[s] f:. w r raft],

where t is the stage for which the restraint ra was last set, set ra = 0 and reset a~ f

and all nodes of lower priority than a~ f.

Step 3. (Define 8s in substages) Let 88 ,0 = >.. Let t be the largest number such that

88 ,t 1. If 18s ,tl ~ s then go to step 4. Otherwise let a = 8s,t and check if

(6) there is an M-node f3 ~ a with T(f3)~OO C a, r{3 f:. 0 and d{3 j .

130 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

If SO, go to step 4; otherwise declare a accessible and go to the relevant clause below .

• a is a G-node. Let lao, a1), ... [a3, a4) be the intervals corresponding to the

outcomes of a and € = a1 - ao be the resolution of a. Let go:(s) be the largest t < s

such that a c 8t , or 0 if such t does not exist. Let

(Lemma 4.2 verifies that 1/ always exists) and let i be such that 1/ E [ai, ai+l), and run

routine L(a, qi, s) .

• a is an Me,p-node. If it is a disabled Me,p-node, let 8s,t+l = a'-"'oo and go to step

3. Otherwise do as follows. Let d = do:,r = r(a), W = we,r = re, u = userAW(d)[s]

(if defined) and

(8)

where a- is the predecessor of a. ho:(s) is the stage for which the measure-guessing

G-node of a gave its outcome. If d 1 choose a fresh value for d.

(9)

Ml. If~;V (p)[s]llet 8s,t+1 = a'-'" f and go to step 3; if ~~ (p)[s]l for some Ne-node

r' -< a then define ~~ (p) = ~~ (p) with the same use, let 8s,t+l = a'-'" f and

go to step 3.

M2. Otherwise if rAW (d)[s] 1 or if A f u[s] # A f u[t] or W f u[s] # W f u[t] for

the last stage t when a. was accessible, or if a has never been accessible before,

then run routine L(a, 00, s).

M3. Otherwise, if

we define ~~ (p) = rAW (p)[s] with use u, impose restraint ro:[s + I] = u, and

go to step 4.

M4. In any other case go to step 4.

• a is an Ne-node. Let l(a, s) = min{n : r:we(n)[s] # K(n)[s]} U

{d: d was enumerated into D in step 1 or 2}, and say that stage s is a-expansionary if

l(a, s) > l({3, t) for all Ne-nodes {3 :5 a and all t < s such that {3 was accessible at t. If

s is not a-expansionary, then let 8s ,t+l = a'-'" f and go to step 3. Otherwise, if there is

4. PROOF OF THEOREM 1.1 131

a link (0'., {3) associated with outcome x of {3 which was created at stage t < s, remove

it and run routine £({3, x, s). Otherwise run routine £(0'.,00, s).

Step 4. Set 08 = 0'. for the longest 0'. which was declared accessible in step 3. Reset

all nodes >- Os and enumerate into A the least number which is not in A and is greater

than all rt3[s + 1] for all M-nodes {3.

4.6. Verification. In the following, whenever we say 'M-node' we mean an enabled

M-node, as disabled M-nodes have no effect on the construction. A basic fact which

stems from the the hat-trick in the enumeration of U0' and will be used repeatedly in

the verification is the following: if So < t ~ Sl are stages and j.L(U0') takes its minimum

value in (so, Sl] at t, then U0'[t] ~ U0'[s] for all s E (SO,81].
\

LEMMA 4.1. Links can never be nested or crossing. That is, if (T, 0'.) and (T', a') are

two distinct links both present at stage 8, with TeO. c {3 and T' C a' C {3 for some

node {3, then 0'. C T' or a' C T. Furthermore, at the end of any stage 8, there is at most

one link (T,a) with TeO. ~ Os, and such a link was created at stage 8.

Proof. By induction on the stages. Note that initially there are no links and at

any stage at most one link is created. Suppose that the claim holds at stage s and a

link (T, a) is created at stage 8 + 1. Then a is accessible at stage s + 1 or a link was

travelled to 0'., and any links (T', a') with T' C a' ~ 0'. present at the start of stage

8 + 1 have been travelled and removed. If there was a link (T", a") at the start of stage

8 + 1 for some T" Cae 0'.", then that link would have been travelled and 0'. would not

be accessible. Thus the new link cannot be crossing or nested within an existing link.

Finally any links (T, a) with Tea C 0S+1 which are present at the start of stage 8 + 1,

would be travelled and removed during the definition of 08 +1 in step 3. Since at most

one link is created under routine (5), the last claim of the lemma holds. 0

For a G-node "f, let Ly = lao, a4) be the interval being subdivided by "f. The following

lemma verifies that a G-node will always have a valid outcome to play when it is

accessible.

LEMMA 4.2. Suppose a G-node "f is accessible at stage 80 and let 81 = g"((80) be the

greatest stage < So such that "f C 881 (or 0 if such stage does not exist). Then there is

some t with 81 < t ~ 80 and j.L(U0'[tJ) E 1"(. Thus, when"f is accessible in step 3, v (as

in (7)) will exist.

132 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

Proof. Let "I, So and SI be as in the lemma. The proof is by simultaneous induction

on the length of "I and the stage so. For the root node the claim is trivial, so let 1"11 ?' 1

and suppose that the claim is true for all G-nodes shorter than "I and at all stages::; So.

Let "I' = "I r 1"11 - 2 be the last G-node above "I and note that if "I has never been

accessed before, a suitable t must exist or else "I' would not have chosen the outcome

leading to "I. Suppose then that 'Y has been accessed before. If "I' is also accessible

at so, since "I' C "I we have g"(l(so) ~ SI and by hypothesis there is a suitable t with

g"(l(so) < t ::; So and j.t(U0/ [tJ) E 1"(.

If "I' is not accessible at so, then there must be a link (T, (3) at so, with T C "I' ~ (3 C

"I. Also by induction hypothesis there must be a stage to < So such that "I' is accessible

at to and j.t(U0
/
[tJ) E 1"(for some t with g"(l(to) < t ::; to. We can assume that to is the

greatest stage < So with the above property. If t2 is the stage at which the link (T, (3)

was created we have t2 ~ to. Now ~8 R. "I for to ::; s ::; t2, as otherwise to would not

be the greatest with the above property. Also ~8 R. "I for t2 < s < So as otherwise the

link would be travelled and removed before So, because by Lemma 4.1 links cannot be

nested. SO SI < to and SI ::; g"(l(to) since "I' C "I, which means that SI < t ::; So. 0

By the construction, if an Me,p-node a has Ta[SJ i= 0 and da L then da has not

been enumerated into D via resetting or routine (5). Conversely, Ta[SJ i= 0 and da i

indicates that the construction .has attempted to invalidate a's t:.. W (p) computation.

The definition of T-expansionary stage and the check for (6) in step 3 ensures that no

Me-node of lower priority than a will be accessible again until the t:.. W (p) computation

is invalidated.

A restraint Ta is called permanent at stage s if Ta[SJ = Ta[tJ i= 0 for all t ~ s; it

is called permanent if it is permanent at some stage. Let P be the set of nodes with

permanent restraints.

For an M-node a, let Ja[sJ = {a E VA[s+IJ -U0
/
[sJ : Ra[s+ IJ ::; use a < Ta[s+I]},

which is the junk intervals that are restrained at stage s by a but not by any higher­

priority node at the end of stage s. For an Ne-node T, let Qr[sJ = U Ja[sJ, where the

union is taken over all Me-nodes a which are either :J T or -< T. The following lemma

shows that if the junk captured by an M-node becomes greater than the node's quota

210 then the node is reset; and although an M-node may sometimes capture more than

4. PROOF OF THEOREM 1.1 133

its quota of junk (if the junk is never released via step 2), the total junk captured by

nodes belonging to an N-node remains within the N-node's quota.

LEMMA 4.3. Let f3 be an M-node and s a stage such that T,a[S+ 1] f. 0 and d,a[s+ 1]1

(so f3 has not been reset since T,a was set f. 0). Then J1-(J,a[s]) < 2E(f3). Let r be an

N-node. Then J1-(Qr[s]) < 2E(r) for all s.

Proof. Suppose f3 and s are as in the first claim. Let t be the stage when T,a[S + 1]

was set. At t, VAtT[t] = VAtT[S + 1] for T = T,a[S + 1] as new intervals in VA have use

chosen fresh. So,

(10)

J1-(J,a[s]) = J1-(V AtTP [s + 1]- VAtRp[s + 1]- U0'[s])

::; J1-(V AtTP [t]- VAtRp[t]_ U0'[h,a(t)j)

+ J1-(U0'[h,a(t)]- U0'[s])

where the first term of (10) is the junk that f3 captured when it imposed its restraint

T,a[S + 1], and the second is the measure which appears to be in U0' at h,a(t) but

later is removed from U0'. By (9) the first term is less than E(f3). Suppose that

J1-(U0'[h,a(t)] - U0'[s]) ~ E(f3). We have U0'[h,a(t)] - U0'[t] = 0, as otherwise (by the

canonical enumeration of U0') there would be a stage t', h,a(t) < t' ::; t with J1-(U0'[t']) <

J1-(U0'[h,a(t)]), which contradicts (8). So we must have J1-(U0'[t]- U0'[sJ) ~ E(f3). But

then, again by the canonical enumeration of U0' there would be a stage t', t < t' ::; s

such that J1-(U0'[t']) ::; J1-(U0'[h,a(t)]) - E(f3), and f3 would be reset at t' by step 1 of the

construction. So J1-(U0'[h,a(t)]- U0'[s]) < E(f3), and J1-(J,a[s]) < 2E(f3).

Next, let r be an Ne-node; we need only consider the case where there is some

Me-node f3 J r with J,a[s] f. 0. Let Z denote the set of Me-nodes f3' J r or -< r with

T,a'[S + 1] f. 0, and let f3 be the longest; by assumption f3 J r. Let t be the stage

when T,a[S + 1] was set f. o. At t, d,a,[t + 1]1 for all f3' E Z, as otherwise f3 would

not be accessible at t. Also J1-(J,a[t]) < E(f3) by (9). So by the first part of the lemma

and (3), J1-(Qr[t]) < 2E(r). Also, d,a,[t' + 1]1 for all t < t'::; sand f3' E Z,f3' -< r, as

otherwise r would be reset, contradicting the definition of t. So if J1-(Qr[t']) ~ 2E(r)

at some t < t' ::; s it must be because Erc,a'EZ J1-(J,a,[t']) > E(r). But then by the

canonical enumeration of U0' there would be a stage til such that t < til ::; t' and

134 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

J.t(U0'[t"]) < J.t(U0'[h,B(t)]) - 10(7). In such a case 7 would be reset at step 1, again

contradicting the definition of t. SO J.t(QT[SJ) < 210(7). o

In the following lemma we prove simultaneously that the true path T P = lim inf8 88

is infinite, that every node on it has infinitely many chances to act, and that eventually

the measure condition (9) will be satisfied for each M-node on TP.

LEMMA 4.4. If a is the leftmost node of length lal such that a ~ 88 for infinitely

many s, then

(1) a is reset only finitely often; if it is an M-node then eventually the flip-point

da is fixed;

(2) a is accessible infinitely often;

(3) there is some extension {3 :> a with {3 ~ 88 for infinitely many s.

Thus T P = lim inf8 88 is infinite.

Proof. First of all, if lal = 0 then a ~ 88 for all S so 1-3 of the lemma implies that

T P is infinite. Then it remains to assume that a is the leftmost node of length lal such

that a ~ 88 infinitely often and (inductively) that the lemma holds for all {3 C a, and

show claims 1-3.

For the first claim note that there are four places in the construction where a may

be reset: in step 1, step 2, step 3 (through the routine L) and step 4. Let So be the

second stage such that a ~ 880 ,.88 -I< a Vs > So, any computations ~~,B)(p) ! of nodes

(3 ~ a that exist at So are permanent and no nodes above or to the left of a are reset

after So. After So, a will not be reset in step 4. If a was reset after So at step 3 then it

would be because routine L({3, x, s) was run for some {3 C a such that {3""x ~ a. But

this would mean that either 88 ~ a for some s > So or a is not ~ 88 infinitely often, a

contradiction.

If a was reset by step 2, by the choice of So there must be some M-node {3 such

that (3"" f C a which had a computation ~~,B)(p) ! and this was spoilt after So. But

then the corresponding r computation (which has larger use) would be spoilt and the

construction would define 88 to the left of a at M2, a contradiction. Suppose that a

was reset in step 1 after stage So. By the choice of So there must be a node (3 C a

and a stage Sl > So such that J.t(U0'[sd) < q({3). But in that case after stage Sl the

construction would define 88 to the left of a, before it defines it below a, a contradiction.

4. PROOF OF THEOREM 1.1 135

Finally suppose that a is an M-node and da was changed after stage So. Since a is not

reset after So there must be some (3 C a which ran routine L({3, x, S1) for S1 > So and

{3~x ~ a. But in that case the construction would define 8s to the left of a, before it

defines it below a, a contradiction.

For claim 2, notice that since by hypothesis a ~ 8s for infinitely many s, the only

way that a may stop being accessible after some stage is that for all sufficiently large

stages there is a link (7, (3) with 7 cae {3. Suppose, for a contradiction, that this

is the case and after stage So a is never accessible again. Let Y[s] be the finite set of

~-computations that are held by M -nodes below a at s 2:: So. Note that if 8t ;2 a for

t 2:: So then by Lemma 4.1 a link must be created at t as otherwise the next time a ~ 8s ,

a would not be covered by a link and would be accessible. Thus no new computations

can be added to Y after So as if a ~-definition is made then no link is created at that

stage. Also, by the construction there are no ~-computations held by nodes >- a at the

end of a stage s when a ~ 8s . Finally a link is only travelled if the ~-computation for

which it was created has been invalidated. So any link covering a at s 2:: So is created

because of a computation in Y, which is removed from Y when the link is travelled.

Since Y is finite and non-increasing, after finitely many stages Y will be empty and a

will be accessible when next 8s ;2 a.

For claim 3, since a is accessible infinitely often the only way the claim could fail is

if, whenever a is accessible after some finite stage So > lal, step 3 is ended without any

a~x being declared accessible. Suppose this is the case. Then whenever a is accessible

after So, step 3 is ended by routine L, or by M3 or M4 if a is an M-node, or because of

(6).

At So there are only finitely many ~(p) definitions held by nodes {3 below a. If (6)

holds at s > So for some a~x, it is because one such (3 was reset while 7({3) was covered

by a link. But the link is removed after being travelled, and the next time 7({3)~OO C a

is accessible, {3's ~(p) definition will have been set to 0 at step 2. Since no (3 below

a is accessible after So, this can happen only finitely often for the finitely many ~(p)

computations below a. So it will not happen after some stage SI.

If step 3 is ended after SI due to a routine L(a, x, s) for some outcome x of a,

according to the induction hypothesis for a the routine will eventually define 8s•t = a~x

and so 8s ;2 a~x at some stage s. If step 3 is ended because of M3 applied to a, then

136 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

either the ~-definition made there is permanent (in which case a~ f ~ 88 at some later

stage 8) or it is not, in which case routine L(a, 00, 8) will be called and the previous

argument applies.

Finally, suppose that whenever an Me,p-node a is accessible after some 81, case M4

applies and step 3 is ended at a. We show that eventually the measure condition (9) is

satisfied and M3 will apply, a contradiction. At 81, there are only finitely many nodes

J a with restraints, and no nodes below a are accessible after 81. Let 82 be the second

stage after 81 such that

• any non-permanent restraints below a have been dropped;

• all nodes f3 above or left of a have settled; ie f3 is not reset after 82 and if

r.a[82] =I- a then r.a[82] is permanent;

• rAW (do,) 1 and the use is correct;

• VAfu[82]- vAfR"'[82]- U0'[82] = VAfu - VAfR", - U0';

• a is accessible at 82.

Such stage exists by the induction hypothesis and the fact that new intervals in V A

have use chosen fresh. Every interval in V AfU [82]- V AfR"'[82]- U0'[82] is in J.a[82] for

some f3 J a, as otherwise it would be removed in step 4 contradicting the choice of 82.

Letting E = {f3 : f3 J a and r.a[82] =I- a}, we have

JL(VAfu [82]- V AfR"'[82]- U0'[82]) = L JL(J.a[82]) .
.aEE

Write E = F U G where

F = {f3 E E : 7(f3) C a}; G = {f3 E E : a C 7(f3)}.

Note that at 82, every node f3 in F has d.a[82 + 1] 1; as otherwise f3 has been reset at

some t, 80 ::; t ::; 82, and by choice of 82 r.a is never set to a and f3's ~-definition is never

invalidated. But then 7(f3) has only finitely many expansionary stages, contradicting

that 7(f3)~00 C a is accessible infinitely often by induction hypothesis.

4. PROOF OF THEOREM 1.1 137

Observe that the first clause of Lemma 4.3 holds for any 13 E F and 8 = 82, and the

second for 7 = 7(13) for any 13 E G and 8 = 82. So by (3),

J.L(VAtU [82J - vAfRa[82J - U0'[82]) = L J.L(JJ3[82J) + L J.L(Qr[82J)
J3EF rE{r{J3):J3EG}

< L 210(13) + L 210(7)
J3EF rE{r{J3):J3EG}

< €(a).

Thus (9) will hold at 82, a will make a b.(p) definition which will be permanent, and

a~ f will be accessible at some stage after 82. o

LEMMA 4.5. All non-cupping requirements Ne are satisfied.

Proof. Let 7 be the Ne-node on T P. It is clear from the construction that T~OO C

T P iff there are infinitely many T-expansionary stages. By Lemma 4.4 and the con­

struction, if a is an Me-node with T~OO cae TP then

• a~oo C TP => rAW (do:) 1, and

• a~ f c TP => b.;V'(p}!.

To show that for each e the requirement Ne is satisfied assume that r:w. = K and

let T be the Ne-node on TP. Since r:w. = K there are infinitely many T-expansionary

stages. First note that by the construction, b.r is consistent, i.e. at each stage 8 if

(O',n,x), (p,n,y) E b.r[sJ and 0' ~ P then x = y. Also by Lemma 4.4 and the fact that

all strategies appear along the true path, the function b.;" is total and the restraints

imposed by each Me-node below T when it makes a definition ensure that b.;V(p) =

r:w.(p) = 0'(p) for each pEN. Thus W ?:.T 0' and Ne is satisfied. 0

LEMMA 4.6. 0' ~LR A.

Proof. We must verify that U0' ~ VA and J.L(VA) < 1. Once an interval 0' appears

in U0' with correct 0'-use, according to (4) in any later stage it will be in VA with the

same A-use. Thus eventually it will permanently belong to VA and U0' ~ VA.

To verify J.L(VA) < 1, since J.L(U0') < ~ it suffices to show that J.L(VAfn [8J-U0'[8J) < ~

for all n EN and all 8 ?:. some 80. Fix n and let So be a stage such that A r n[80J = A r n

138 A. NON-CUPPING, MEASURE AND COMPUTABLY ENUMERABLE SPLITTINGS

and vAtn[soJ - U0'[soJ = vAtn - U0'. Then for all s ~ So we have

vAtn[sJ - U0'[sJ ~ U Qr[sJ
rCo

where T runs over the N-nodes ltnd 8 is the rightmost path of the tree. Hence, by

Lemma 4.3 and the second clause of (3) we have, for s ~ So,

J.t(vAtn[sJ - U0'[sJ) ~ L 2€(Ne) < ~.
e

D

This concludes the proof of Theorem 1.1.

References

[1 J George Barmpalias, Andrew E. M. Lewis and Mariya Soskova, Randomness, low­

ness and degrees, J. Symbolic Logic 73 (2008), no. 2, 559-577

[2J George Barmpalias, Andrew E. M. Lewis and Frank Stephan, II~ classes, LR degrees

and Turing degrees, to appear in Annals of Pure and Applied Logic

[3J George Barmpalias and Antonio Montalban, A cappable almost everywhere dom­

inating computably enumerable degree, Electronic Notes in Theoretical Computer

Science, Vol. 167 (2007)

[4J Stephen Binns, Bjl2lrn Kjos-Hanssen, Manuel Lerman and Reed Solomon, On a

conjecture of Dobrinen and. Simpson concerning almost everywhere domination, J.

Symbolic Logic 71 (2006), no. 1, 119-136

[5J Peter Cholak, Noam Greenberg and Joseph S. Miller, Uniform almost everywhere

domination, Journal of Symbolic Logic, Vol. 71 (2006)

[6J S. Barry Cooper, Steffen Lempp and Philip Watson, Weak density and cupping in

the d-r.e. degrees, Israel Journal of Mathematics, 67, 137-152, 1989

[7J K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro, Computability by

probabilistic machines, Automata studies, pp. 183212. Annals of mathematics

studies, no. 34. Princeton University Press, Princeton, N. J., 1956

[8J Natasha L. Dobrinen and Stephen G. Simpson, Almost everywhere domination, J.

Symbolic Logic 69 (2004), no. 3, 914-922

[9J R. G. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer,

in preparation

REFERENCES 139

[lOJ R. G. Downey, T. A. Siaman, Completely mitotic r.e. degrees, Ann. Pure Appl.

Logic 41 (1989), no. 2, 119-152

[l1J R. G. Downey, M. Stob, Splitting theorems in recursion theory, Ann. Pure Appl.

Logic 65 (1993), no. 1, 1-106

[12J Bj(llrn Kjos-Hanssen, Low for random reals and positive-measure domination, Pro­

ceedings of the American Mathematical Society 135 (2007), 3703-3709

[13J Bj(llrn Kjos-Hanssen, Joseph S. Miller and David Reed Solomon, Lowness notions,

measure and domination, unpublished draft

[14J A. H. Lachlan, The priority method I, Z. Math. Logik Grundlagen Math. 13 (1967)

1-10

[15J R. E. Ladner, Mitotic Recursively Enumerable Sets, Journal of Symbolic Logic, vol.

38 (1973), no. 2, 199-211

[16J R. E. Ladner, A Completely Mitotic Nonrecursive R.E. Degree, Transactions of the

AMS, vol. 184 (1973), 479-507

[17J Angsheng Li, Theodore A. Slaman and Yue Yang, A nonlow2 c.e. degree which

bounds no diamond bases, unpublished draft

[18J D. Martin, Measure, Category, and Degrees of Unsolvability. Unpublished manu­

script, dating from the late 60's

[19] David P. Miller, High recursively enumerable degrees and the anti-cupping property,

Logic Year 1979-80 (M. Lerman et al., editors), Lecture Notes in Mathematics,

vol. 859, Springer-Verlag, Berlin, 1981

[20] Andre Nies, Lowness properties and randomness. Advances in Mathematics, 197

(2005) 274-305

[21] Andre Nies, Computability and Randomness, Oxford University Press, in prepara­

tion

[22] Gerald Sacks, Degrees of Unsolvability, Princeton University Press, 1963

[23] Stephen G. Simpson, Almost everywhere domination and superhighness, Mathe­

matical Logic Quarterly, 53 (2007), 462-482

[24] Robert 1. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag; Berlin,

London; 1987

[25] Liang Yu and Yue Yang, On the definable ideal generated by nonbounding c.e. de­

grees, Journal of Symbolic Logic, Vol. 20 (2005)

