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Abstract 

In this thesis we will study LR-reducibility, a weakening of Turing reducibility arising 

naturally in the context of relative randomness. We will focus particularly on the LR­

degrees of c.e. and .6.g sets. In chapter 2 we present a technique for lower cone avoidance 

in full approximation constructions, and use it to construct a c.e. LR-degree that is LR­

incomparable with a given intermediate .6.g LR-degree. We also give a weak upward 

density result, showing that every low .6.g LR-degree is bounded by an incomplete 

c.e. LR-degree. 

In chapter 3, we consider splittings of c.e. sets into two c.e. sets of the same LR­

degree; an analogue of the notion of mitoticity previously studied in the context of 

Turing degrees. We show that there are c.e. sets that cannot be split into two c.e. sets 

of the same LR-degree, and that such sets may be Turing complete or low, and can be 

made to avoid nontrivial upper cones of c.e. LR-degrees. We also show that this notion 

differs from Turing nonmitoticity on both the low-for-random and non-Iow-for-random 

c.e. sets. 

Chapter 4 presents a construction of an LR-complete c.e. set that is non-cuppable 

in the c.e. Turing degrees. This is a strengthening of an earlier result of Barmpalias and 

Montalban [7J, and can also be seen as a strengthening of a theorem of Harrington (in 

[53]). 

In chapter 5 we introduce a new notion of promptness for c.e. sets, prompt non­

low-far-randomness, which can be seen as an LR-analogue of prompt simplicity. We 

investigate the Turing degrees of promptly non-Iow-for-random sets, and compare the 

property of prompt non-Iow-for-randomness to the traditional property of prompt sim­

plicity. 
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CHAPTER 1 

Introduction 

1. Introduction & outline 

Algorithmic randomness has been an important and interesting field of study within 

computability theory.1 Although the roots of randomness go back to work by von Mises 

[72] on selection rules and by Kolmogorov [34] and Solomonoff [69] in the context of 

finite strings, the study of randomness of infinite sequences in its current form traces 

its origins to Martin-Lof's work [50] of 1966. In this paper, Martin-Lof developed 

the concept of Martin-Lof tests and the notion of Martin-Lof randomness, which has 

become one of the most popular notions in the recent study of algorithmic randomness. 

Martin-Lof's eponymous test notion (of which a formal definition is given in section 

3.1) was intended to formalise the idea of effective nullsets - those measure 0 subsets of 

Cantor space which can be approximated in a computably enumerable way. Since there 

are only countably many such nullsets, this yields a well-defined notion of randomness: 

each such nullset can be seen as the set of strings possessing some 'special property' or 

'distinguishing feature' that can be computably approximated, so any string that avoids 

all such computably approximable nullsets and the corresponding special properties is 

random, as far as can be effectively detected. 

Several other important developments soon followed Martin-Lof's work. Schnorr 

[66] established a connection between randomness of an infinite string in the sense of 

Martin-Lof and complexity of its finite initial segments in the sense of Kolmogorov. 

Specifically, Schnorr proved that a sequence X is Martin-Lof random iff there is a 

constant c such that, for all n, 

K(X t n) ~ n - c, 

1 We defer a discussion of notation, definitions etc until sections 2 and 3, though our notation and 
terminology is standard. References for background, history, unexplained notation and definitions are 
Nies [60J and Downey and Hirschfeldt [20J. 
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2 1. INTRODUCTION 

where X f n denotes the first n bits of X and K(a) is the prefix-free Kolmogorov 

complexity of the finite string a.2 Schnorr also gave a characterisation of Martin-Lof 

randomness in terms of martingales: X is Martin-Lof random iff no c.e. martingale suc­

ceeds on X. 3 Schnorr's work thus unified three different and complementary approaches 

to randomness, those of effective measure, compressibility and effective gambling strate­

gies. Each approach to randomness has its own advantages and yields its own insights 

into the class of Martin-Lof random sequences. 

The compressibility approach was taken by Chaitin [11], whose work on prefix-free 

complexity yielded a concrete example of a random real number, the halting probability 

0.4 The halting probability is particularly interesting as it is c.e.5 and Turing equivalent 

to the halting problem. Such c.e. random reals, and their special status of Turing­

completeness, has been studied for instance in [10], [37] and [21]. 

Because of its flexibility, the martingale approach has proved useful for general­

ising or strengthening Martin-Lof randomness. Schnorr [66] defined the notions of 

computable and Schnorr randomness by requiring that the martingales be computable 

(rather than just c.e.) and that they succeed at a computable rate, respectively. Com­

putable randomness and Schnorr randomness were further studied for example in [19], 

2 A partial computable function (machine) M :~ 2<w -> 2<w is prefix-free if its domain is prefix-free; 
that is, 

M(u) 1 =} M(T) i for all T C u. 
All prefix-free machines can be computably listed, and hence there is a universal prefix-free machine U. 
The prefix-free Kolmogorov complexity of a finite string u, denoted K(u), is the length of the shortest 
string T such that U(T) = u. This is the length of the shortest progmm that outputs u, or the shortest 
description of u (in the pmgramming language of the universal machine U). For a comprehensive survey 
of Kolmogorov complexity in connection with algorithmic randomness, see Downey and Hirschfeldt [20]. 
For a treatment of Kolmogorov complexity more generally, see Li and Vitanyi [45]. 
3 A martingale is a function p : 2<w -> Q satisfying the condition 

q(u) = ~(q(u~O) + q(u~1)). 
A martingale is a formalisation of a betting strategy in a fair game; if we think of a gambler as betting 
on the bits of an infinite sequence X, q(X r n) is the gambler's capital after betting on the first n bits 
according to the strategy q. The martingale q succeeds on an infinite sequence X if 

limsupq(X r n) = 00. 
n 

A c.e. martingale is one in which the set {x E Q : x $ q(u)} is uniformly c.e. in u. 
4 Let U be a universal prefix-free machine. The halting probability 

n:= E Tlul = JL(dom U) 
u:U(u)! 

is the probability that the universal machine U will halt if it is fed random bits as its input. 
S A c.e. real is a real number x E [0, 1] such that the lower cut {q E Q : q $ x} is c.e. This differs from 
the notion of a c.e. set; if we think of the binary representation of a c.e. real x as giving the characteristic 
function of a set X, the set X need not be c.e. We will not use the notion of c.e. reals any further; 
when we write c.e. we mean it in the sense of a c.e. set. 
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[23]. Another way to generalise the martingale approach to randomness is via non­

monotonicity. Kolmogorov [33] and Loveland [46] proposed non-monotonic betting 

strategies, in which the strategy is allowed to choose the next position in the sequence 

on which to bet. This was studied more recently in [57] and [52]. Still another topic 

arising from martingales is effective dimension. An effective version of Hausdorff dimen­

sion was originally suggested by Lutz [47], and Mayordomo [51] established connections 

between Kolmogorov complexity and Lutz's original formulation of effective dimension 

in terms of martingales. 

Although the compressibility and martingale approaches to randomness and the 

various strengthenings or weakenings of Martin-Lof randomness are interesting and 

fruitful, we will not concern ourselves with them here. We will restrict our attention to 

Martin-Lof's original notion of randomness in terms of Martin-Lof tests, though we note 

that many important concepts such as low for randomness and LR-reducibility can be 

thought of equally well in terms of Kolmogorov complexity or martingales as in terms 

of Martin-Lof tests. Comprehensive treatments of the various notions of randomness 

may be found in the references [20] and [60]. 

Work on Martin-Lof randomness continued through the 1980s with important con­

tributions by Solovay [70], Kucera [35], Gacs [27] and van Lambalgen [71], to name 

only a few. However it was in the late 1990s that interest in algorithmic randomness 

blossomed. One topic of particular interest was relative randomness, Martin-Lof ran­

domness relativised to an oracle. The notions of Martin-Lof tests and randomness can 

naturally be relativised to an arbitrary oracle; one can then study the information con­

tent of an oracle X by examining the randomness notion obtained by relativising to 

X. In particular, relative randomness gave rise to various lowness properties, captur­

ing ways in which an oracle can have low information content as far as randomness is 

concerned. Zambella [77] defined the notion of low for randomness: an oracle A is low 

for random if all (unrelativised) random sequences are also random relative to A. Such 

an oracle is no assistance for detecting patterns or approximating nullsets, compared to 

the unrelativised case. Kucera and Terwijn [39] constructed a noncomputable c.e. set 

that is low for random. Muchnik [56] defined and studied the class of low for K, those 
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oracles which are no assistance as far as Kolmogorov complexity is concerned.6 Oth­

ers [22, 59J studied the K-trivials, sequences with the smallest possible initial segment 

complexity.7 A fourth lowness property, being a basis for randomness 8 
, was suggested 

by Kucera [36]. This work culminated in [59J and [28J with proofs that these classes 

co-incide; in fact, they form an ideal in the Turing degrees that has since been studied 

extensively [38, 58J. 

Relativising notions such as low for randomness naturally leads to reducibilities and 

associated degree structures. Nies [59J defined the LR-reducibility '5.LR, which is the 

main topic of this thesis: oracle A is LR-reducible to B, A '5.LR B, if the class of 

Martin-Lof randoms relative to B is contained in the class of randoms relative to A. 

Intuitively, the oracle B is at least as useful, computationally, for detecting patterns as 

the oracle A. LR-reducibility extends Turing reducibility, with a least degree consisting 

of exactly the low for random sets. This gives LR-reducibility a claim to being a very 

natural notion for studying information content in the context of relative randomness. 

In this thesis we will mainly study the reducibility '5.LR, its degree structure, its 

connections with Turing reducibility, and related notions. We will focus particularly 

on the LR-degrees of c.e. and bog sets. In chapter 2 we prove some results about the 

structure of the bog LR-degrees (that is, LR-degrees containing bog sets). Specifically, we 

present a technique for lower cone avoidance in full approximation constructions, and 

use it to construct a c.e. LR-degree that is LR-incomparable with a given intermediate 

bog LR-degree. We also give a weak upward density result, showing that every low bog 
LR-degree is bounded by an incomplete c.e. LR-degree. 

In chapter 3, we consider splittings of c.e. sets into two c.e. sets of the same LR­

degree. We look at an LR-degree analogue of the notion of mitoticity studied in the 

context of c.e. Turing degrees by Lachlan [41], Ladner [43] and others. We show that 

there are c.e. sets that cannot be split into two c.e. sets of the same LR-degree, and that 

such sets may be Turing complete or low, and can be made to avoid nontrivial upper 

6 A set A is low for K if there is a constant c such that 

K(a) ~ KA(a) + c 

for all strings a. That is, the oracle A does not help (heyond the fixed constant c) in compressing data. 
KA is the prefix-free Kolmogorov complexity relative to oracle A. 
7 A is K-trivial if the complexity of initial segments of A is as small as possible: there is a constant c 
such that 

K(A f n) ~ K(n) + c 
for all n. 
8 A is a basis for randomness if there is an X such that X is random relative to A and A ~T X. 
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cones of c.e. LR-degrees. We also show that this notion differs from Turing nonmitoticity 

on both the low-for-random and non-Iow-for-random c.e. sets. 

Chapter 4 presents a construction of an LR-complete c.e. set that is non-cuppable 

in the c.e. Turing degrees. This is a strengthening of an earlier result of Barmpalias and 

Montalban [7] that there is a cappable LR-complete c.e. set, and can also be seen as a 

strengthening of a theorem of Harrington (in [53]). 

In chapter 5 we introduce a new notion of promptness for c.e. sets, prompt non­

low-for-randomness, which can be seen as an LR-analogue of prompt simplicity. We 

investigate the Turing degrees of promptly non-Iow-for-random sets, and compare the 

property of prompt non-Iow-for-randomness to the traditional property of prompt sim­

plicity. 

2. Notation and conventions 

2.1. Cantor space and strings. Let 2<w denote the set of all finite binary strings, 

and 2W denote Cantor space of infinite binary sequences. We call members of 2<w 

strings, and members of 2w reals. We identify reals with subsets of N in the usual way, 

and sometimes use the terms real, set and oracle synonymously. We typically use the 

letters a, T, p. for strings and A, X etc. for reals. We sometimes use a, T also for finite sets 

of strings, which represent clopen subsets of 2w. For X E 2W and n EN, X r n denotes 

the initial segment of X of length n, a finite string. For strings a, T, we write a <;; T 

to denote that a is an initial segment of T, and c to denote a strict initial segment. 

We also write a c A for A E 2W to indicate that a is an initial segment of the real A. 

alT denotes that a and T are incomparable, i.e. a ~ T and T ~ a. A set of strings is 

prefix-free if for any two distinct strings a, T in the set, we have alT. The length of a 

string is denoted lal· We obtain the standard bijection between 2<w and N by ordering 

the finite strings first by length and then lexicographically. 

Cantor space 2w is equipped with the usual topology, generated by basic clop en sets 

[a] = {X E 2w': a C X} for a E 2<w. We can extend the notation [.] in the obvious 

way to sets of strings: if C <;; 2<w then 

[CJ = {X E 2w 
: a C X for some a E C}. 

To simplify presentation we will often omit the brackets and denote by a both the string 

and the clop en set (and similarly for sets of strings). It will be clear from context which 
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is intended. The Lebesgue measure on 2w is denoted by J.l. Note that the measure of 

(the clopen set corresponding to) a string a is J.l(a) = 2-10"1, and for a prefix-free set C 

of strings it is J.l( C) = I:O"EC 2-10"1. 

Suppose that V <:;:: 2w is a clop en set. When we say the least (or leftmost) clopen set 

C <:;:: V of measure q we mean the clopen set C, if it exists, such that C <:;:: V, J.l(C) = q, 

and if Z E V - C then Z > X for all X E C, where < is the lexicographical ordering on 

reals. That is, C is the leftmost clopen subset of V of size q. If we require a particular 

representation of the clop en set C by finite strings, ie. a finite prefix-free D <:;:: 2<w such 

that C = [D], we may take the first such D under a standard listing of finite prefix-free 

sets of strings. 

2.2. Turing functionals and operators as c.e. sets. It is convenient to consider 

computably enumerable (c.e.) sets to be the fundamental objects of computability 

theory, since we can obtain other objects such as 'lUring reductions or ~~ classes from 

c.e. sets. In several constructions we will build 'lUring functionals or oracle ~~ classes as 

c.e. sets of axioms. We briefly discuss how such objects can be represented as c.e. sets. 

Let (-, .) be a standard pairing function, which is a computable bijection from N x N 

to No From this we can obtain codings of tuples of all sizes in a standard way. We can 

consider a 'lUring reduction <I> to be a consistent c.e. set of axioms of the form 

(1) (X,Z,T) for x,z E N and T E 2<w, 

which asserts that 

<I>X (x)l= z if T C X 

for X E 2W. In this context consistent means that if (X,Z,T), (X,Z',T') are both axioms 

in the set then 

TIT' or z = z'. 

Any such consistent c.e. set W of axioms certainly defines a (possibly partial) 'lUring 

reduction; moreover, from an enumeration of any c.e. set W we can obtain a 'lUring 

reduction by discarding any numbers enumerated into W which are not of the form 

(1) or which are not consistent with any axioms previously enumerated. Conversely, 

given a 'lUring reduction I]i we can obtain an equivalent C.e. set of axioms by the usual 

procedure of enumerating all possible computation paths. 
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In cases when we are interested in Turing reductions as operators from 2W to 2w, it 

is convenient to consider Turing reductions as c.e. sets of axioms of the form (cr, r) for 

cr, r E 2<w which assert that 

cr ~ <px if reX. 

In this case consistent means that if (cr, r), (a', r') are both axioms in the set then 

r ~ r' => a ~ a'. 

From such a set we obtain a Turing reduction whose domain (for each oracle X) is N 

or an initial segment of N. Conversely, from a Turing reduction W we can obtain a 

c.e. set of axioms for a Turing reduction <p such that WX (x) ~ <px (x) on that part of 

the domain of WX which is an initial segment of N. 

A c.e. operator is a uniform procedure for obtaining an A-c.e. set WA from an oracle 

A. A c.e. operator can be considered as a c.e. set W of axioms of the form 

(n,r) for n E N,r E 2<w 

if we are interested in sets of numbers, or of the form 

if we are interested in sets of strings, which assert, respectively, that nEW A or a E W A 

ifr C A. 

Let A E 2W. An A-E~ class VA is a subset of 2W which is E~ relative to the oracle 

A. That is, there is an A-computable relation R on 2<w such that 

X E VA {::} ::In R(X f n). 

Such a class VA is generated by an A-c.e. set of strings WA such that X E VA iff X J a 

for some a E WA, although many different A-c.e. sets may generate the same A-E~ class 

of reals. Howe~er, when we talk of an A-E~ class VA, we will always understand it to 

be generated by a fixed A-c.e. set, and for convenience we often identify the class V A 

with the C.e. set of strings. 

An oracle E~ class V is a uniform procedure for obtaining an A-E~ class VA from 

an oracle A. Since A-E~ classes are generated by c.e. sets of strings, such a uniform 

procedure is in fact a c.e. operator. In particular, an oracle E~ class V can be thought 
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of as a c.e. set of axioms (a, 7) as above, but asserting in the context of E~ classes that 

if 7 C A and a C X then X EVA. It is often convenient to assume without loss of 

generality that for a fixed A the set 

{a E 2<w : (a, 7) E V and 7 C A} 

is prefix-free, and that if (a,7) is enumerated into V at stage s then lal = 171 = s. 

For a set W ~ 2<w, define the weight function 

weight W = L Tlcrl. 
crEW 

Note that weight W 2:: p,([W]), with equality exactly when W is prefix-free. Say that 

W ~ 2<w is bounded if weight W < 00. If V is an oracle E~ class, say that V is bounded 

if there is a rational q < 1 such that p,(VX) < q for all oracles X. 

Bounded oracle E~ classes and c.e. operators are a particularly useful tool when 

working with LR-reducibility, because of Theorem 1.5. In many constructions we will 

need a computable listing of all bounded oracle E~ classes or c.e. operators, along with 

a bound q. Let (Ve, qe) for e E N be a listing of all pairs of a (not necessarily bounded) 

oracle E~ class V and a dyadic9 rational q in the interval (0,1). We can obtain a 

bounded oracle E~ class Ve from the pair (Ve, qe) by discarding any axioms (a, 7) which 

are enumerated into Ve and which would make p,(V{) 2:: qe for any X E 2w. If V is 

an oracle E~ class such that p,(VX) < q for some dyadic q E (0,1), then certainly the 

pair (V, q) will appear somewhere in the listing ((Ve, qe) )eEN. In a similar way we may 

obtain a listing of all bounded c.e. operators. 

Suppose that V is an oracle E~ class (given by a prefix-free c.e. operator) and A is a 

c.e. set. From enumerations V[s] and A[s] of V and A, we can approximate VA in a Eg 
way. Let VA[s] denote V[s]A[sl, the approximation to VA at stage s, which is a clop en 

set uniformly computable in s. If a string a E VA[s], then there is an axiom (a, 7) E V[s] 

such that 7 C A[s]. In this case we say that a is in VA[s] via the axiom (a,7). Say that 

the computation a E VA[s] became valid at t ::::; s if t is the least such that (a, 7) E V[t] 

and 7 C A[t]. When we say the oldest string in VA[s] satisfying some condition P we 

mean the unique string, if it exists, such that a E VA[s], and for any other a' E VA[s], 

either the computation a E VA[s] became valid before the computation a' E VA[s], or 

9 A rational whose binary expansion is finite, ie. a finite sum of powers of 2. 
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if they became valid at the same stage then 0' preceeds a' in the length/lexicographical 

ordering of strings. 

3. Randomness and LR-reducibility 

3.1. Martin-Lof randomness. A Marlin-Lii! test is a sequence (Ui)iEN of uni­

formly ~y classes such that J.L(Ui) ::; 2-i. Each Ui is called a member of the test. The 

intersection niUi is an effective measure 0 set (nullset). We say that a real X E 2w is 

captured by the test (Ui) if X E niUi. X is Martin-Lii! random if X ¢ niUi for all 

Martin-Lof tests (Ui)iEN; that is, X is not captured by any Martin-Lof test. 

The motivation for Martin-Lof randomness is that a real is 'random' if it does not 

have any 'special properties' or 'patterns' that can be effectively approximated. A 

pattern or property is 'special' if it is atypical in the measure sense, that is, if the class 

of reals with that property has measure O. Each Martin-Lof test approximates (the 

nullset of reals satisfying) one such special property. Hence if X is not captured by 

any Martin-Lof test, then it does not have any special property that can be effectively 

approximated, and is, as far as can be effectively determined, random. 

By weakening or strengthening the notion of Martin-Lof test, we can obtain other 

notions of randomness. For instance, if we require that J.L(Ui) = 2-i , then we obtain 

Schnorr randomness (after Schnorr [66]); if we require only that J.L(Ui) ---7 0 as i ---7 00 

without a uniform bound on J.L(Ui) then we obtain a stronger randomness notion known 

as weak 2-randomness. We will not be concerned with other types of randomness in this 

thesis however, and we will use the word 'random' to just mean Martin-LOf random. 

From an enumeration of any c.e. set W we can obtain a Martin-Lof test (Ui)iEN 

by treating W as a set of axioms of the form (i,O') for i E Nand 0' E 2<w, asserting 

that 0' E Ui, and discarding any axioms that would make J.L(Ui) > 2-i. Moreover, every 

Martin-Lof test arises from some c.e. set in this way. Hence there is a uniform listing 

of all Martin-Lof tests. From this listing we can construct a universal Martin-Lo! test: 

let (Uik)iEN be the k'th Martin-Lof test in the listing, and let 

(2) Ui = UUi\k+l' 
k 

Clearly the Ui are uniformly ~y and J.L(Ui) ::; 2-i, hence they form a Martin-Lof test. 

We have niuf ~ niUi for all k, so that X E 2w is random iff X ¢ niUi' 
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The definitions of Martin-LOf tests and randomness may be relativised to an arbi­

trary oracle A. An oracle Martin-Laf test is a uniform sequence of oracle E~ classes 

(Ui)iEN such that /-L(Ui
A ) ::; 2-i for any oracle A. As in (2) above, we can obtain a 

universal oracle Martin-Lof test (Ui)iEN' A real X E 2w is A-random if A f/. niul for 

the universal oracle Martin-LOf test (Ui)iEN. 

3.2. Low-for-randomness. Low for randomness, and equivalent notions such as 

K-triviality, have been a significant area of recent research (for instance, [59, 22]). An 

oracle A E 2w is low for random if all (unrelativised) random reals are also A-random. 

That is, 

X is random => X is A-random. 

Informally, the oracle A is no assistance, compared to the unrelativised case, for detect­

ing patterns in reals. The universal A-Martin-Lof test does not capture any reals that 

aren't already captured by the unrelativised universal Martin-LOf test. 

Certainly all computable sets are low for random. A noncomputable low for random 

c.e. set was constructed by Kucera and Terwijn [39] using the now well-known cost 

function method. A series of work by Downey, Hirschfeldt, Nies and Stephan [22], 

Nies and Hirschfeldt [59], Nies [59] and Hirschfeldt, Nies and Stephan [28] culminated 

in the co-incidence of the class of low for randoms with several other classes of reals: 

the K-trivials, low for K, and the bases for randomness. We list some important facts 

about the class of low for random reals (some of which are best proved by first proving 

the corresponding fact for the K-trivials and then invoking the equivalence between 

K-triviality and low for randomness). All low for randoms are ~g, and superlow (that 

is, A' =tt 0'). The low for randoms form an ideal in the ~g or c.e. Turing degrees; that 

is, the low for random Turing degrees are closed downwards under ::;T and under join. 

Every ~g low for random set is computable in some low for random c.e. set; hence in 

fact the ideal of low for random Turing degrees is generated by the c.e. low for randoms. 

For proofs of these facts, a thorough treatment of the notions of K-triviality, low for K 

and bases for randomness, and their equivalence with low for randomness, we refer to 

Nies [60] or Downey and Hirschfeldt [20]. 

3.3. LR-reducibility and LR-degrees. Now we come to the key notion of this 

thesis. 
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DEFINITION 1.1. Let A, B E 2W. The real A is LR-reducible to B, A ~LR B, if the 

class of B-random reals is contained in the class of A-random reals. That is, 

X is B-random =} X is A-random. 

A <LR B denotes A ~LR B but B 1:.LR A. A is LR-equivalent to B, denoted A =-LR B, 

if A ~LR Band B ~LR A. An LR-degree is an equivalence class under the equivalence 

relation =-LR' The LR-degree of the real A is denoted degLR(A). An LR-degree is c.e. or 

~g if it contains a c.e. or ~g set, respectively. 

It is more intuitive to phrase the definition of A ~LR B in contrapositive: if X is 

not random relative to A then it is not random relative to B. Informally, oracle B is at 

least as good at detecting patterns as oracle A. 

LR-reducibility was first defined by Nies in 2005 [59]. It can be seen as a partial 

relativisation of the notion of low for random.1O Clearly A ~T B implies A ~LR B. 

The converse fails however; Kucera and Terwijn's [39] noncomputable low-for-random 

set A satisfies A ~LR 0 but A 1:.T 0. Hence LR-reducibility is a proper weakening 

of 'lUring reducibility. However it still has some properties in common with 'lUring 

reducibility. For instance, both ~LR and 5:T are Eg predicates (this is clear for 5:LR, 

for instance, from Theorem 1.5 below). Also, some techniques from the study of the 

c.e. and ~g 'lUring degrees can be adapted to work with LR-reducibility. Examples of 

this are Barmpalias, Lewis and Stephan [6] and Barmpalias, Lewis and Soskova [5], in 

which the familiar techniques of Sacks restraints and Sacks coding from the c.e. 'lUring 

degrees are adapted to the context of c.e. LR-degrees. We will use Sacks restraints in 

the LR-context in chapter 2. 

We mention without detailed proof some key facts and significant results in the 

study of LR-degrees. The least LR-degree 0 LR consists of exactly the low for random 

sets. If A =-LR B then A is low for random relative to B and B is low for random 

relative to A. Each LR-degree is countable (ie, contains only count ably many sets). 

This follows from the fact that if A =-LR B then A and B are low for random relative 

to each other, and thus A' =-tt B' by relativising the fact that all low for randoms 

are superlow. This was first observed by Nies [59]. However, some LR-degrees have 

uncountably many predecessors. Barmpalias, Lewis and Soskova [5] and independently 

10 Note however that a full relativisation of the statement "A is low for random" to an oracle B would 
be that "all B-randoms are A EB B-random", ie X is B-random =} X is A EB B-random. 
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Miller and Yu [55] showed that there are uncountably many sets A ~LR 0'. Since 

each LR-degree is countable, there are uncountably many LR-degrees below that of 

0'. Barmpalias [3] later improved this to show that there are uncountably many reals 

~LR any non-Iow-for-random b.g real. Not every nonzero LR-degree has uncountably 

many predecessors though; Miller [54] showed that reals which are low for the halting 

probability 0 11 bound only count ably many LR-degrees. In particular all 2-randoms12 

are low for 0 and so bound only countably many LR-degrees. 

Kjos-Hanssen, Miller and Solomon [31] showed that ~LR is equivalent to another 

reducibility arising from relative randomness, LK-reducibility ~LK. Nies [59] defined 

A ~LK B if there is a constant c such that for all strings 0', 

where K X (0') is the prefix-free Kolmogorov complexity of the string 0', relative to the 

oracle X. Intuitively, the oracle B is at least as useful for compressing finite data as A. 

The reducibility ~LK has also been studied in [54]. Since ~LR and ~LK co-incide, one 

could re-interpret all results about ~LR in terms of prefix-free Kolmogorov complexity, 

instead of in terms of Martin-Lijf tests and measure. 

As Turing reducibility implies LR-reducibility, each LR-degree is a union of Turing 

degrees. Barmpalias, Lewis and Soskova [5] studied the Turing degrees inside LR­

degrees, and showed that every LR-degree contains infinite chains and infinite antichains 

of Turing degrees. They showed that this holds in the c.e. case also: every c.e. LR-degree 

contains infinite chain..". and antichains of c.e. Turing degrees. Each LR-degree is closed 

under EEl, the join operation in the Turing degrees. This follows from the fact that if 

A =LR B then A and B are low for random relative to each other, and the fact that 

low for randoms are closed under EEl relativised to A or B. 

However, EEl does not give a join (least upper bound) operation in the LR-degrees: 

Kucera and Terwijn [39] constructed a promptly simple low for random set A, and by 

a well-known result from [1] the promptly simple c.e. Turing degrees co-incide with the 

low cuppable c.e. Turing degrees. Therefore there is a low B such that A EEl B =T 0'. 

B cannot be low for random since the low for randoms are closed under EEl and all low 

11 A real A is low for n if every (equivalently, some) random of c.e. Thring degree is also A-random. 
This notion was defined by Nies, Stephan and Terwijn [61], and further studied in an excellent paper 
by Downey, Hirschfeldt, Miller and Nies in [21] and by Miller [54]. 
12 X is 2-random if it is random relative to the halting problem 0'. 

'$ 
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for randoms are low (and in particular cannot be ~T 0'). Moreover B 1=-LR 0' since 

B' 1=-tt 0". Hence B $ A 1=-LR B even though A =LR 0. It is unknown if every pair of 

LR-degrees has a least upper bound, ie. if the LR-degrees form an upper semi-lattice. 

Barmpalias, Lewis and Soskova [5] also studied the c.e. LR-degrees as a structure. 

They prove analogues of some theorems from the c.e. 'lUring degrees, such as the Sacks 

splitting theorem: that any non-Iow-for-random c.e. set A can be split into two disjoint 

c.e. sets B, C such that A ~LR B and A ~LR C. Barmpalias, Lewis and Stephan [6] 

continue the study of c.e. LR-degrees, proving a weak density theorem: 

THEOREM 1.2 (Barmpalias, Lewis and Stephan [6]). Let A, B be c.e. sets such that 

A <LR B and A ::;T B. Then there is a c.e. set C such that A <LR C <LR B and 

A ::;T C ::;T B. 

The proof of Theorem 1.2 is an adaptation of that of the Sacks density theorem for the 

c.e. 'lUring degrees. It is not known if this holds without the requirement that A ::;T B. 

Hirschfeldt, Nies and Stephan proved the following theorem connecting computable 

enumerability, randomness and incompleteness. 

THEOREM 1.3 (Hirschfeldt, Nies and Stephan [28]). Suppose A is c.e., Z is random 

and 0' ~T A $ Z. Then Z is A-random. 

It follows from this theorem that the ~g and c.e. LR-degrees differ. 

COROLLARY 1.4 (Folklore). There is a ~g LR-degree that does not contain any 

c.e. sets. 

PROOF. Let Z be a low random; such a random exists by the Low Basis Theorem 

(see Soare [68] §VI.5.13) applied to the complement of a member of a universal Martin­

Lof test. We claim that the LR-degree of Z does not contain any c.e. set. Suppose that 

Z =LR A for some c.e. A. Since each LR-degree is closed under $, A $ Z is low and in 

particular A $ Z <T 0'. Therefore by Theorem 1.3, Z is random relative to A. But Z 

is not random relative to itself, contradicting that A =LR Z. o 

In fact, the Low Basis Theorem guarantees that Z is superlow, Z' ::;tt 0', and hence 

Z is w-c.e. We may therefore deduce the stronger result that the w-c.e. LR-degrees 

differ from the c.e. LR-degrees. It is not known if the n-c.e. LR-degrees differ from the 

c.e. LR-degrees or from the w-c.e. LR-degrees. 
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Barmpalias [2] has established that the structures of c.e. and Dog LR-degrees are not 

elementarily equivalent to the structures of c.e. and Dog Turing degrees, respectively. The 

elementary difference that Barmpalias gave between the c.e. LR-degrees and c.e. Turing 

degrees is the existence of minimal pairs: Lachlan [40] and independently Yates [74] 

showed that there are minimal pairs of c.e. Turing degrees, whereas Barmpalias [2] 

established that there are no minimal pairs of c.e. LR-degrees. The elementary difference 

between the Dog LR-degrees and Dog Turing degrees is the existence of minimal degrees: 

Sacks [64] constructed a minimal Dog Turing degree, and Barmpalias [2] showed that 

there is no minimal Dog LR-degree (in fact, every Dog LR-degree bounds a nonzero 

c.e. LR-degree). 

4. LR-reducibility and bounded coverings 

4.1. Characterisations of LR-reducibility in terms of bounded coverings. 

We now present in Theorem 1.5 some important characterisations of 5:.LR. These char­

acterisations provide a concrete way for us to work with LR-reducibility, giving us a 

means to construct or diagonalise against possible LR-reductions. 

THEOREM 1.5 (Kjos-Hanssen [30], Kjos-Hanssen, Miller and Solomon [31]). Let 

A, B E 2w. The following are equivalent: 

(i) A 5:.LR B; 

(ii) for every A-~~ class WA with p,(WA) < 1, there is a B-~~ class VB such that 

(iii) for some member U of a universal oracle Martin-Lof test, there is a B-~~ class VB 

such that 

UA ~ VB and p,(VB) < 1; 

(iv) for every A-c.e. set of strings WA with weight W A < 1, there is a B-c.e. set of 

strings VB such that 

WA ~ VB and weight VB < 1; 
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(v) for every A-c.e. set of strings W A with weight WA < 00, there is a B-c.e. set of 

strings VB such that 

WA ~ VB and weight VB < 00. 

Parts (i),(ii),(iii) of Theorem 1.5 are due to Kjos-Hanssen [30]. Parts (iv) and (v) 

are due to Kjos-Hanssen, Miller and Solomon [31]. We give a proof of the theorem in 

section 4.3. 

Theorem 1.5 provides a convenient way to work with LR-reductions. If we wish 

to construct a set A to be 1.LR a given set B, by (ii) it suffices to diagonalise against 

bounded B-E? classes by constructing an A-E? class TA with p,(TA) < 1 and TA ~ VB 

for any bounded oracle E? class V. Alternately, if we wish to ensure that A ~LR B, by 

(iii) it suffices to construct a B-E? class VB with p,(VB) < 1 and UA ~ VB, for some 

universal oracle Martin-Lof test member U. Conditions (ii) and (iii) will be the primary 

tool for working with LR-reducibility in chapters 2, 3 and 4. In chapter 5 it will be 

convenient to work with LR-reducibility and low-for-randomness via (iv) and (v). 

The difference between (ii) and (iv) is that WA is considered as a set of reals in 

(ii) and as a set of strings in (iv). Clauses (iv) and (v) are in the spirit of Solovay's 

formulation of Martin-Lof randomness. A Solovay test is a c.e. set of strings S such 

that weight S < 00. A real X E 2w is captured by the test S if there are infinitely many 

strings (J E S with (J C X. Solovay [70] showed that X is Martin-Lof random iff X is 

not captured by any Solovay test. This holds when relativised to an arbitrary oracle. 

4.2. Preparation for the proof of Theorem 1.5. We first give some lemmas 

which will be useful for the proof of Theorem 1.5 in section 4.3. To prove the equivalence 

of (i), (ii) and (iii) of Theorem 1.5 we will follow the presentation in Barmpalias, Lewis 

and Soskova [5]. Our proof of the equivalence of (ii), (iv) and (v) is adapted from Nies 

[60] Lemma 5.6.4, which in turn follows Simpson [67]. 

LEMMA 1.6. If a II? class P contains a random, then P has positive measure. 

PROOF. Suppose p,(P) = O. Let Ps be a computable sequence of clopen sets such 

that P = nsPs. In particular p,(Ps) is computable. For i E N let k i be the least such 

that p,(PkJ ~ 2-i . Then (Pk;)iEN is a Martin-Lof test which captures all reals in P. 

Therefore any real in P is not random. 0 
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In fact, if P contains a random then f..L(P) is random, but we will not need this 

stronger result. 

LEMMA 1.7. Let U be a member of a universal oracle Martin-Lof test and let a E 

A f..L(UA n [aj) 
f..La{U ):= f..L([aj) < 1. 

PROOF. Suppose [aj ~ UA . Then [aj- UA is a nonempty A-II~ class containing a 

random. Hence it has positive measure by Lemma 1.6 relativised to A, and in particular 

o 

For sets of strings X, Y ~ 2<w, let 

(3) XY := {aT: a E X, T E Y}. 

If X, Yare c.e. in some oracle A then XY is also c.e. in A. 

LEMMA 1.8. Let A, B E 2w, and suppose that X, Y are A-E~ classes with measure 

< 1, V is a B-E~ class with measure < 1 and XY ~ V. Then there is a B-E~ class W 

with measure < 1 such that either X ~ W or Y ~ W. 

PROOF. Suppose first that there is a a E X such that f..La(V) < 1. Then for 

W = {T : aT E V} we have Y ~ Wand f..L(W) < 1. Suppose next that f..La(V) = 1 for all 

a E X. Let q be a rational> 0 such that f..L(V) < 1- q. Let W = {a : f..La(V) > 1 - q}. 

We have X ~ Wand f..L(W) :::; f..L(V) . (1 - q)-1 < 1. 0 

A tail of a real X is any final segment of X. 

LEMMA 1.9. If P is a II~ class of positive measure, then P contains a tail of every 

random. 

PROOF. Let X be random and let S be a c.e. set of strings such that [Sj = 2W 
- P. 

Let q be a rational < 1 such that f..L( S) < q and let ki be the least such that qki :::; 2-i . 

Then Ski is a Martin-Lof test (where sn is as in (3)), so X rf:. niski . Thus X rf:. sn for 

some n. Let n be the least such. Then X E sn-1 so X :J T for some string T E sn-1. 

Let Z be the tail of X obtained from X after discarding T. Z rf:. S so Z E P as 

required. o 

We will use this analysis fact in proving (iv) of Theorem 1.5. 
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LEMMA 1.10. Let (ai)iEN be a sequence of real numbers such that 0::; ai < 1. Then 

2: ai < 00 <=> II 1 - ai > O. 
i i 

For a proof, see for instance Nies [60] Lemma 5.6.4. 

4.3. Proof of Theorem 1.5. Now we can give the proof of Theorem 1.5. 

PROOF OF THEOREM 1.5. We will prove (i) =* (ii) =* (iii) =* (i) and then (ii) =* 

(v) =* (iv) =* (ii). 

(i) =* (ii). Assume A ::;LR B, that all B-randoms are A-random. Let WA be an 

A-:E~ class with ",,(WA) < 1. Fix a member [; of a universal oracle Martin-V)f test, and 

let Ui be the universal oracle Martin-Lof test from (2). We claim that 

(4) 3m E N, a E 2<w such that [a] !Z [;B and U~ n [a] ~ [;B. 

Assume the contrary. We construct by finite extensions a real X which is in U~ for all m 

but X rJ. [;B. Such an X is B-random but not A-random, contradicting A ::;LR B. Let 

7-1 be the empty string and assume inductively that Ti-1 is defined and [Ti-1] !Z [;B. 

A - B By the negation of (4), Ui n [Ti-1] !Z U . Therefore there is a T :J Ti-l such that 

[T] ~ Ui
A and [T] !Z [;B. Let Ti be such a T. Then the real X = UiTi is B-random but 

not A-random. This establishes (4). 

Let m and a be as in (4), and let 

Then U~ ~ VB and by Lemma 1.7, ""q([;B) < 1 and so ",,(VB) < 1. (We have actually 

showed (iii) for the specific case when U is one component of the universal test (2).) Let 

q be a rational ~ 1 such that ",,(WA) ::; q, and let ki be the least such that qk; ::; 2-i . 

Then (WA)ki gives an A-Martin-Lof test (where (wA)n is as in (3)). By the definition 

(2) of the universal test Ui, we have (WA)ki ~ U~ ~ VB for some i. By Lemma 1.8, 

there is a B-:E~ class VB with WA ~ VB and ",,(VB) < 1. 

(ii) =* (iii) is immediate. 

(iii) =* (i). Assume that UA ~ VB for some U and Vas in (iii). Taking complements, 

we have VB := 2w - VB ~ UA := 2w - UA. Let X be B-random. Then VB contains a 
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tail Z of X by Lemma 1.9 relativised to B, since /-L(VB) > O. So UA contains Z also, 

and hence Z is A-random. But X is A-random iff Z is A-random, so X is A-random. 

(ii) =? (v). We follow Nies [60J Lemma 5.6.4 in the special case where f is the 

weight function. Assume (ii). Let g(a) = I:r<uI71 (where the ordering < is the usual 

length-lexicographical ordering of strings). Let 

Eu = {Z ~ N::.Ji E Z,g(a) ~ i < g(a) + lal}. 

Eu is a clop en set and /-L( Eu) = 1 - 2-1171 . It is easy to check that /-L( Eu n Er) 

/-L(Eu)/-L(Er ) for a i= 7, and more generally 

/-L(n Eu) = IT/-L(Eu) = IT 1- r 1ul 

uEI uEI uEI 

for I ~ 2<w. 

Let W A be a bounded A-c.e. set of strings, and let 

P is an A-I1~ class and /-L(P) > 0 by Lemma 1.10 and the fact that W A is bounded. By 

(ii) (taking complements), there is a B-I1~ class Q such that Q ~ P and /-L(Q) > O. Let 

V is a B-c.e. set, and WA ~ V. Finally, weight V = I:uEV 2- 1171 < 00 by Lemma 1.10 

because 

(v) =? (iv). Assume (v). Let W A be an A-c.e. set with weight WA < 1. By (v), 

there is a B-c.e. set VB with weight VB < 00 and WA ~ VB. By discarding finitely 

many strings from VB - W A , we may obtain a B-c.e. set VB with weight VB < 1 and 

WA ~ VB. 

(iv) =? (ii) is immediate since every A-E~ class of measure < 1 is generated by a 

prefix-free A-c.e. set of weight < 1. o 
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5. Priority arguments and tree constructions 

We assume familiarity with priority arguments, in the form of finite injury con­

structions and tree constructions. Tree constructions will be particularly important in 

chapters 2 and 4. Our notation will mostly follow Cooper [15]; further background on 

the priority method may be found in a standard reference such as Soare [68]. Formally, 

we can consider a tree T as a suitable subset of words E<w in an ordered alphabet 

E, and a node as a member of that set T. However, we will not specify our trees so 

formally. We prefer instead to define them inductively by specifying the types of nodes 

(or labels) of which the tree is comprised, listing the outcomes of each node type in a 

certain order, and describing how to assign labels to nodes according to their length. 

We consider our trees to grow downwards. In particular, we have this in mind when 

we use terminology like 'above' and 'below'. Suppose that a, /3 are nodes on a tree. 

We say that a is above /3 if a C /3, and a is below /3 if a :J /3. We use the notation 

a <L /3 to denote that a is to the left of /3 in the lexicographical ordering (induced by 

the ordering of outcomes, or more formally by the ordering of the alphabet E). a < /3 

denotes that a <L /3 or a C /3, in which case we also say that a has higher priority 

than /3. a:::; /3 has the obvious meaning of a < /3 or a = /3, and similarly for :::;L. For a 

node a with lal > 0, a- = a f lal - 1 denotes the parent of a. 

We will perform our constructions in stages. Typically, at the start of stage s + 1 

we are given the values possessed by parameters such as A, VB, etc at the end of stage 

s, which we denote with the suffix [s]. Any enumerations, definitions, etc that we make 

during stage s + 1 are in order to define A[s + 1], VB[s + 1] etc. 

6. The recursion theorem 

The Recursion Theorem of Kleene [32] is a convenient tool for simplifying construc­

tions. We will use it in Theorem 2.13 and in chapter 5 in the form of the Slowdown 

Lemma 5.4. Let (<I>e)eEN be a standard listing of all partial computable functions. 

THEOREM 1.11 (Recursion Theorem, Kleene [32]). Let f N -+ N be a total 

computable function. There is a fixed point e E N such that 
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PROOF. Let g be a computable function such that 

for all x E N. That is, g( i) is the index of a partial computable function that first 

computes lPi(i), and if lPi(i) 1, then computes IPf(<I>i(i))(X). Let k be an index for the 

partial computable function g, ie. such that 

Then 

IPg(k)(X) ~ IPf(<I>k(k)) (x) = IPf(g(k))(X). 

Hence e = g(k) is the required fixed point. o 

Since c.e. sets are the domains of partial computable functions and vice versa, 

we may alternately phrase the Recursion Theorem in terms of the standard listing 

of c.e. sets (We)eEN: if f is a computable function then there is a fixed point e such that 

A small modification of the previous proof yields the following version of the Recursion 

Theorem. 

THEOREM 1.12 (Recursion Theorem with parameters). Let n EN and f : Nn+1 -) N 

be a total computable function. There is a computable function k : Nn -) N such that 



CHAPTER 2 

Structural results in the c.e. and ~g LR-degrees 

In this chapter we present some results about structural properties of the c.e. and 

~g LR degrees. First we give a technique for lower cone avoidance in the c.e. and ~g LR 

degrees, and combine this with upper cone avoidance via Sacks restraints to construct 

a c.e. set which is LR incomparable with a given ~g set of intermediate LR degree. 

Next we combine measure-guessing with an LR-incompleteness strategy to construct 

an LR-incomplete c.e. set which is LR-above a given low ~g set. This is in contrast to 

the 'lUring degrees, in which there is a ~g degree which is 'lUring incomparable with 

all intermediate c.e. degrees. 

Finally we discuss how to combine the techniques of the first two theorems in the 

c.e. case, and the obstacles to combining them in the more general case of ~g sets. 

1. Working with an LR-incomplete set 

We outline a technique for working with an LR-incomplete c.e. or ~g set in full­

approximation constructions. The technique is a method for leveraging the LR-incom­

pleteness of a set A to limit the changes in the approximation of A, effectively imposing 

'restraints' on A which can be utilised by other requirements in a construction. 

Suppose that the c.e. set A is LR-incomplete and FA is an A-~~ class; then by 

Theorem 1.5 we have 

for a member U of a universal oracle ML-test. If we attempt to trace U0' into an A-~~ 

class FA, then we are guaranteed that 0' will change more frequently than A, frequently 

enough to ensure p,(FA) = 1. We can use this to our advantage to provide restraints 

on A. Suppose that during a construction we wish to restrain A r u at stage s. We 

can take a string p from U0' [s] which is not yet in FA, and enumerate p into FA with 

use u. Then we wait for a 0'-change below the use of the computation p E U0'[s]. If 

the 0'-change never occurs, then we never proceed further with this attempt, and the 

restraint is unsuccessful; we say that the attempt is stalled. However in this case we 

21 
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have that p E U0' permanently; this can happen for at most /.L(U0') worth of strings p, 

and this can be made as small as necessary by choosing a suitably small U. Otherwise, 

a 0'-change eventually occurs. At this point, we have p E pA but p rf. U0'. If A later 

changes below u, then the attempt at restraining A r u is unsuccessful. However we can 

argue that sufficiently many attempts will be successful (ie A will not change below u 

after the 0'-change) to ensure that /.L(pA) = 1. 

If our requirement is such that it requires a finite measure worth of restraints for 

satisfaction, then we can argue that it will be satisfied with the above method. Suppose 

that it is not satisfied. We will make infinitely many attempts at restraining A r u 

for some u, each attempt corresponding to a string from U0'[s]. Infinitely many will 

correspond to the true strings of U0'. Since a 0'-change never occurs for these attempts, 

we trace U0' into pA. But then, by the LR-incompleteness of A, we are assured that 

measure 1- /.L(U0') worth of attempts will succeed, providing enough restraint to satisfy 

the requirement. 

We can think of this technique in the following way. We are given an approximation 

A[s] of A such that A = lims A[s]. Each time we take a string p from U0' and put 

it into pA[s] with some use T = A[s] r u, we are requesting that A => T in the limit; 

the measure of p is the strength of the request. If in fact TeA, then the request 

is successful. Since we will threaten to make U0' ~ pA, the LR-incompleteness of A 

guarantees that enough requests will be successful to ensure that /.L( pA) = 1. Whether 

a request is successful or not depends only on whether TeA in the limit. It does not 

matter (as far as this b~ic strategy is concerned) whether A is approximated in a c.e. or 

Ag way. Thus the technique can be used with both c.e. and Ag sets A. 

We will first use this technique in a lower cone avoidance strategy, as part of the 

construction of a c.e. set B that is LR-incomparable to a given LR-intermediate Ag 
set A. In section 3.5 we sketch another use of the technique in combination with the 

LR-incompleteness strategy of section 3. 

2. A c.e. LR-degree incomparable with a given intermediate Ag LR-degree 

Barmpalias, Lewis and Stephan [6] use an oracle construction to construct a Ag 
set B that is LR-incomparable with a given Ag set A of intermediate LR degree. We 

strengthen this result to make B c.e., using a full approximation construction. 

:p:p 



2. A C.E. LR-DEGREE INCOMPARABLE WITH A GIVEN INTERMEDIATE ~g LR-DEGREE 23 

The analogous theorem for the 'lUring degrees, namely that for every ~g set A of 

intermediate 'lUring degree there is (uniformly in A) a c.e. set B 'lUring incomparable 

with A, was proved by Sacks [65J using a coding strategy combined with Sacks restraints. 

A presentation may be found in Odifreddi [62J XI.3.7. 

THEOREM 2.1. Let A be a ~g set such that 0 <LR A <LR 0'. There is (uniformly 

in A) a c.e. set B such that AILRB. 

Let A be a ~g set such that 0 <LR A <LR 0', given as a computable approximation 

A[sJ such that 

limA(x)[sJ = A(x) for all x. 
8 

Let (Ve, Pe) be a listing of all LR-operators, that is, pairs (V, p) of an oracle E? class V 

and a dyadic rational P E (0,1) such that 

Let U be a fixed member of a universal oracle Martin-V)f test. We will construct the 

required c.e. set B, as well as an oracle E? class T, to satisfy the requirements 

Pe: TB Sf: ~A 

Be: UA Sf: ~B 

for all e E N. In fact, we will uniformly build a sequence Ta,i of oracle E? classes, 

where i E N and a ranges over nodes of the tree of strategies defined later. We can set 

TB = u~ .rB. which is a B-E? class. We will ensure that u, .. (l,t 

L /-t(T!.i) < 2-1
, 

a,i 

so by Theorem ~.5, the requirements Pe ensure that B 1:.LR A. We will use a strategy 

based on the technique outlined at the start of the chapter to meet the P requirements; 

for the B requirements we will use a variation of Sacks restraints adapted for LR degrees, 

first used by Barmpalias, Lewis and Soskova [5J. 

2.1. Outline of the B-strategy. We use Sacks restraints, adapted to LR-reduct­

ions. Sacks restraints were first used by Sacks [65J in the context of c.e. 'lUring degrees 
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(see Soare [68] for the standard presentation). The technique was adapted to LR-degrees 

by B armp alias, Lewis and Soskova [5]. 

In the 'lUring case, suppose we are building B and want to ensure that <pB f:. A 

for a 'lUring functional <p and a noncomputable c.e. or ~g set A. We can monitor the 

length of agreement of <pB = A, and whenever we see a new computation <pB(n) = A(n) 

converge, we restrain B on the use u of <pB (n) to preserve that part of the computation. 

If the restraint is respected and B does not change below u after the restraint is imposed, 

then we can argue that <pB f:. A. If <pB = A, then we would be able to compute A(n) 

by finding a stage in the construction when the length of agreement is above n; at this 

stage the <pB-side of the computation will never change so the approximation to A(n) 

must be correct. Thus A would be computable, which is a contradiction. 

In the case of LR-reductions, we have a fixed member UA of a universal Martin-LOf 

test relative to A, and a bounded B-E~ class VB. We want to ensure that UA ~ VB. 

Suppose at some stage we see a string a E UA and a ~ VB with use u. We can restrain 

B up to u in order to preserve the computation a ~ VB. Assuming that the restraint 

is respected, we can also enumerate the string a into a E~ class G. If UA ~ VB, then 

we will eventually do this for every string a E UA . Thus UA ~ G. But since the 

B-restraint is respected, each string in G is also in VB, so G ~ VB. Since VB has 

measure < 1, so does G. But then UA is contained in a E~ class of bounded measure, 

which would mean that A is low-for-random, a contradiction. So eventually there must 

be some string a E U A but a ~ VB, and we succeed in diagonalising against V. 

2.2. Outline of the P-strategy. Formal details of the P-strategy are given later. 

We omit the subscript e in the following discussion. We will diagonalise against the LR­

operator (V,p) by putting a clopen set a into TB, waiting for a ~ VA[s], and then 

removing a from TB by enumerating into B if we see a ~ VA[s]. If a is never ~ VA[s] 

then P is satisfied and the requirement contributes at most J..l(a) to J..l(TB). If eventually 

a ~ VA[s] and A does not later change below the use of the computation a ~ VA[s], 

then J..l(V A) increases permanently by J..l( a) but J..l(TB) does not increase. With suitable 

choice of J..l(a), requirement P must be satisfied after finitely many repetitions of this 

strategy as J..l(VA) cannot increase above p. 

If however A does later change below the use of a ~ VA[s], then a may no longer be 

~ V A and the attack a is unsuccessful. We can use the method described above using 

lii;l? 
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the LR-incompleteness of A to impose restraints on A and guarantee that sufficiently 

many attacks will be successful to satisfy P. Since A lLR 0', if U0' ~ FA for some 

A-c.e. class FA and member U of a universal oracle Martin-Lof test, then J.l(FA) = 1. 

When we want to schedule an attack at stage s, we take a string p E U0' [s] and choose a 

with J.l(a) = J.l(p). When the attack a appears successful because a ~ VA[tJ, we would 

like to restrain A on the use u of a. We put p into an A-c.e. class FA with the same use 

u, then we wait for a 0'-change to remove p from U0'. If this 0'-change never occurs, 

then p E U0' permanently and the attack a is considered unsuccessful; however this can 

happen for at most J.l(U0') worth of attacks. Otherwise, 0' eventually changes and pis 

removed from U0'. Then we can remove a from rB via a B-change. If later an A-change 

removes a from V A, then the attack a is unsuccessful. However, since we threaten to 

trace U0' into FA, we are guaranteed that enough p's will be permanently in FA, and 

hence a's permanently in VA, to ensure that J.l(FA) = 1. Since each p E FA corresponds 

to an attack a of the same measure in V A, we can argue that the P requirement must 

eventually be satisfied as J.l(VA) = 1 is impossible. 

Each attack a is tied to a computation p E U0'[s], and the outcome of the attack a 

depends on the outcome of the computation p E U0'[s]. If the computation p E U0'[s] 

is not permanent, then the attack a will be removed permanently from TB and will 

either succeed or fail, depending on whether p E FA (and a ~ VA). If the computation 

p E U0' [s] is permanent, then a will be permanently in TB. The attack a may end 

up permanently pending (if a ~ VA), or permanently waiting (if a is never ~ VA). 

However we also might have a ~ VA[s] at infinitely many s but a <l:. VA in the limit; in 

this case, a may rotate infinitely often between waiting and pending. In this case a is 

permanently in TB but a <l:. VA so the P-requirement is satisfied, and a itself does not 

cause any enumerations into B. However, during the stages when a is pending, we will 

schedule other attacks for P. Each time a changes from pending to waiting, any attacks 

scheduled after 0' must be removed from TB. So although a itself will not cause any 

B-enumerations, attacks scheduled during a's pending periods might cause infinitely 

many B-enumerations, which could conflict with the B-restraints of weaker-priority 

S-requirements. This conflict is resolved by having the P-strategy play an infinitary 

outcome each time a moves between pending and waiting; the S-strategies below the 
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infinitary outcome will only believe a computation if its use is below that of any attacks 

scheduled after a. 

We will argue that if P is not satisfied then U0' ~ FA, FA has measure 1, and so 

V A must have measure 1 also since every string in FA corresponds to a successful attack 

in V A. For this argument to work, we require that successful attacks are disjoint. This 

is slightly complicated by the bog approximation of A. At a stage So we may have an 

attack a which is succeeding, ie a ~ VA[so] and its corresponding string p E FA[so]. 

At SI > So the attack a might be failing (a Sl V A[SI] and p ~ FA[SI]) because the 

approximation to A has changed. We might now schedule a new attack a', which might 

overlap (as a clopen set) with a. However, later on at S2 > SI the approximation to A 

might change back to its state at So, and a would become succeeding again. If we keep 

working with a', we risk having two non-disjoint attacks. To account for this, when 

we create a new attack a' we record the state of all earlier attacks, in the form of a 

suitable initial segment 'Y of A[s]. We choose bllonger than the use of any computations 

relevant to earlier attacks a which might later become succeeding if A reverts back to 

an earlier approximation. We will only work with a' at stages when 'Y C A[s]. We call 

'Y the state of the attack a'. Note that this is not necessary if A is in fact c.e., since a 

c.e. approximation cannot revert to a previous state. 

Since we want to illustrate the technique outlined in section 1 in generality, the 

form of the P-strategy we are using here is slightly more general than is necessary for 

this specific construction. To meet the P-requirements of this theorem we could trace 

strings from U0' directly into TB, rather than via an intermediate set FA. We could 

thus slightly simplify the notation by eliminating the class FA. However the notion of 

state and the infinitary outcomes would still be necessary. In order to establish notation 

that is suitable for more general applications of this technique, such as in the discussion 

of section 3.5, we will not make this simplification in this construction. 

2.3. The priority tree. The construction takes place on an w + 1 branching tree, 

with nodes labelled either Pe,i or Be for some e, i E N. Nodes are labelled according 

to their length: if lal = 2e then a is labelled Be and has a single outcome 0 (that is, 

there is a single child node a""'O extending a on the tree). If lal = 2(e, i) + 1 then a is 

labelled Pe,i and has w + 1 outcomes (children) 

00(0) <L 00(1) <L 00(2) <L ... <L f. 
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The ordering of outcomes <L induces an ordering on the tree; for nodes a, (3, a <L (3 

indicates that a is to the left of (3, and a < (3 indicates that a <L (3 or a C (3. We 

refer to nodes labelled Pe,i for some e, i as P-nodes, or as Pe-nodes if the index e is 

significant, and similarly for S-nodes. 

During the construction we will define approximations to the true path TP s, which 

are the nodes of the tree which are active at stage s. Say that s is an a-stage, or 

alternatively that a is accessible at s, if a ~ TP s' 

2.4. P-requirements. Each P-node pursues an independent copy of the P-strategy. 

Fix a computable listing aD, al,··· of all P-nodes on the tree. Recall that Pe is an up­

per bound on the measure JL(V{) of the e'th LR-operator. If a is a Pe-node (for some 

e EN), let n be its position in the above ordering. Let ma be the least number m such 

that 2-m < 2-n - 2 . Pe· Each P-node a has a counter c(a, s) which is the number of 

times that node a has been reset by the end of stage s. At any stage, a works with 

oracle E~-classes Ta and Fa, and a member U£' of a universal Martin-Lof test relative 

to the halting problem. Actually, a works with a sequence of oracle E~-classes Ta,i and 

Martin-Lof test members U!:i' i E N. Each time a is reset it empties Fa, abandons 

the previous Ta,i, U!:i and starts working with Ta,i+I. U!:i+l instead. To be precise, at 

stage s, a will work with Ta,c(a,s) and U::c(a,s)' where Ua,i is the ma + i + l'th member 

of the universal oracle Martin-Lof test. For brevity we write Ta and Ua to refer to the 

appropriate class Ta,i, Ua,i which is in use at the time; Ta and Ua may be considered 

pointers to Ta,c(a,s) and Ua,c(a,s) at each stage s. If a is reset only finitely often, then 

Ta, Ua are eventually fixed. We will ensure that JL(T~i[S]) ~ 2-ma - i - l for all X E 2W 

and all s, so that, setting T = Ua Ui Ta,i, we have 

(5) JL(TB ) ~ L~2-ma-i-l ~ LTma ~~, 
a t a 

where 0: ranges -over all P-nodes. 

Let a be a Pe-node. The node a will attempt to meet its requirement by putting 

certain clopen sets of reals (attacks) a into T!l, waiting until T!l ~ VaA , then removing 

the clopen set a from T!l and attempting to restrain A to keep a ~ Va
A . Each time, 

a causes the measure of Va
A to increase by JL(a), while JL(T!l) does not increase. Since 

JL(Va
A ) is bounded by Pa < 1, this can only happen finitely often (with a suitable choice 

of JL( a)) before some attack satisfies the requirement because a ~ Va
A . 
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An attack a is a finite prefix-free set of strings (representing a clopen set of reals) 

which we treat as a single unit. It is possible that two attacks may be created at 

different times in the construction which have the same set of strings, but in this case 

we consider them to be distinct attacks (formally, we may consider an attack as the 

finite set of strings along with the stage at which it is scheduled, though we will not do 

this explicitly). When we put an attack into T![sJ we put each string from a into T![sJ 

with the same use; we write a E T![sJ to mean that each string in a is in T![sJ with 

the same use. At most one attack is scheduled (created) at each stage. If an attack a 

is scheduled by node a then we say that a is an a-attack. The lifecycle of an attack is 

as follows. It is scheduled at some stage t. At future stages it is either current or not 

current; if it is current then it is either waiting for V:, pending 0'-permission, succeeding 

or failing. These terms are defined later. 

We consider each Ua,i as a c.e. set of axioms. An axiom is a pair (p, r) asserting 

that p E UX if reX. Since we are working with U0' as we approximate 0', we are 

only interested in those axioms such that r ~ 0'[sJ at some stage. An axiom (p, r) is 

valid at stage s if the tuple (p, r) has been enumerated into U by stage s and r C 0'[sJ. 

Fix a, i and let 

(6) 

be a list of the computations (axioms) from Ua,i which are valid at some stage, ordered 

first by the least stage at which they are valid and then by the usual length/lexico­

graphical ordering on the Pi' When an a-attack is created, it is associated with one of 

these computations. Suppose that attack a is associated with axiom (Pk, rk). We write 

rank(O') to denote the position k of the axiom in the above list, p(O') to denote the string 

Pk, p(O') to denote the computation (Pk. rk), and u(O') to denote Irkl. 

Attack a also has a state 1(0'), defined when a is scheduled, which is an initial 

segment of A at the stage when a is scheduled. The attack a is current at a later stage 

s + 1 if 1(0') c A[sJ; at any stage, we only work with attacks which are current. 

When we wish to restrain a computation a ~ VaA[s], we will put the string p(O') into 

F; [s + 1 J by defining a new computation with use v larger than that of the computation 

a ~ VaA[sJ. We say that the axiom (p, A[sJ r v) is in Fa on account of O'. Every axiom 

in Fa is on account of some attack. Two distinct axioms (p, r), (p', r') E Fa may be 

I¥E 



2. A C.E. LR-DEGREE INCOMPARABLE WITH A GIVEN INTERMEDIATE Ag LR-DEGREE 29 

on account of different attacks even if p = p' (although then T ::/= T'). We say that 

p E F:[s] on account of a if p E F:[s] due to an axiom (p,T) E Fa[s] on account of a. 

Schedule an a-attack at stage t + 1 by taking the least k (if it exists) such that 

(Pk, Tk) is valid at t+ 1 and Pk fJ. F:[t], and choosing the least clopen set a ~ 2w - VaA[t] 

with p,(a) = p,(Pk). Set p(a) = Pk, fJ(a) = (Pk, Tk), u(a) = hi and rank(a) = k. Let 

w be the maximum use of any computation (p', T') E Fa[t] on account of any attack a' 

with rank(a') < k, and define the state -y(a) to be A[t] r w. Put a into T![t + 1] with 

fresh use. Note that, when scheduling an attack, a suitable choice for a will always exist 

since 

by choice of rna' It is possible that sometimes k will not exist (if U~'[t] ~ F:[t]). In 

this case, do nothing; no attack is scheduled at t + 1. 

At certain stages s + 1 we will implement a by putting p(a) into F:[s + 1] with 

some use v; that is, enumerating a new axiom (p(a), A[s] r v) into Fa[s+ 1]. We declare 

that the new computation is on account of a. 

The attack (1 which was scheduled at t + 1 is failing at s + 1 > t + 1 if it is current at 

s+ 1, 0'[s] r u(a)::/= 0'[t] r u(a) and p(a) is not in F:[s] on account of a. a is succeeding 

at s+ 1 if it is current at s+ 1, 0'[s] r u(a) ::/= 0'[t] r u(a) and p(a) is in F:[s] on account 

of a. 

Attack a is waiting at stage s + 1 if it is current at s + 1, 0'[s] r u(a) = 0'[t] r u(a), 

but p(a) is not in F:[s] on account of a. This is the case when a !6 VaA[s]. a is pending 

at stage s + 1 if it is current at s + 1, 0'[s] r u(a) = 0'[t] r u(a) and p(a) is in F:[s] on 

account of a. In this case we are waiting for a 0'-change before we remove a from T!. 

It is possible that for some a we may have a ~ VaA[s] for infinitely many s but 

a !6 Va in the limit. Such a a may be implemented infinitely often, with A[s] always 

changing below the use of the new Fa computation. In this case, a E T! permanently 

but a !6 vt so the requirement Pa is satisfied. Although a itself will not cause infinitely 

many enumerations into B, attacks of rank > rank( a) may cause infinitely many B­

enumerations since any such attack will not be permanently current and will eventually 

need to be removed from T!. To allow the lower-priority negative requirements to 

work with these potentially infinitary enumerations, each time attack a is implemented 

we access an infinitary outcome a~oo(k) for k = rank(a). The negative requirements 
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below this outcome will only believe a computation if the use of the computation is less 

than that of any a-attack of rank> k which is in T![sJ. 

Let (3 be an S-node below some infinitary outcome a~oo(n). The node (3 will only 

believe a computation if the use of the computation is less than the use of any a-attack 

a which is currently in T![sJ and has rank(a) > n. Precisely, suppose that {3 is an 

S-node and r ~ VB[s] with use u for some clopen set r and oracle E~-class V. The 

computation r ~ VB[s] is (3-believable if there does not exist a P-node a such that 

• a~oo(n) ~ (3 for some n, and 

• there is an a-attack a with rank(a) > n and a E T![sJ with use ~ u. 

If in fact r ~ VB and {3 is on the true path, then eventually the computation will be 

{3-believable. 

We observe that the construction can be considerably simplified in the case that the 

set A is low (A' =T 0/). In this case we can avoid the infinitary outcomes by a technique 

similar to Robinson guessing (see Soare [68J §XI.3). We can take a computable function 

h: N x N ~ {O, I} such that 

Ii:nh(a,e,s) = {: 
if a ~ V/ 

otherwise 

and believe a computation a ~ YeA[sJ only if h(a, e, s) = 1. In this case, if a ~ YeA[sJ 

at infinitely many s but not in the limit, then a will only be implemented finitely often 

before h( a, e, s) reaches its limiting value of O. Hence the infinitary outcomes are not 

necessary, and we could use the strategy in a finite injury construction. 

2.5. S-requirements. Let a be an S-node. Define the length of agreement 

lea, s) = max{ i : (Pi, ri) E U[s] and 

Vj ~ i(Pi ~ V:[sJ by an a-believable computation, or Pi ¢. UA[sJ)}. 

Since A is bog, we also need the modified length of agreement 

mea, s) = max { i : 3a-stage t ~ S(i ~ lea, t) /\ B[sJ r u = B[tJ r u) } 

where u is the maximum use of all computations Pj ~ V:[t] for j ~ i with Pj E UA[t]. 

we 



2. A C.E. LR-DEGREE INCOMPARABLE WITH A GIVEN INTERMEDIATE ~g LR-DEGREE 31 

Each S-node has a restraint Ta which is initially 0 and is set explicitly during the 

construction. Let R(a, s) = max{T,B[s] : f3 < a} be the total restraint imposed by nodes 

of higher priority than a. To Te8et an S-node a at stage s means to set Ta[S] = O. 

2.6. Some conventions. We assume that when a string is put into any T/!,i with 

some use u, it remains there until the number u is explicitly enumerated into B. In 

particular, the string remains in T/!,i even if numbers < u enter B. 

We use the 'hat-trick' for the enumeration of UA . Let ao = 0 and for 8 > 0 let as 

be the least number such that A(as)[s] =/::. A(as)[s - 1], or as = s if such number does 

not exist. Let 

iJA[s] := UAtas[s] = {O' : 0' is in UA[s] with use ::; as}. 

Henceforth we omit the hat and write UA[s] to mean UA[8]. The hat-trick ensures that 

0' E U A [8] for all but finitely many 8 iff 0' E U A . 

2.7. The construction. Initially, B and all classes Ta,i, Fa are empty, and Ta is 

zero for all S-nodes a. 

At stage 0, do nothing. 

At stage 8 + 1, define TPs+1 inductively as below. After TPs+1 is defined, reset all 

nodes f3 > L TP s+1' 

Suppose that TP s+1 r n is defined, for n ;::: O. If n = s + 1 then stop defining TP s+1. 

Otherwise let a = TP 8+1 r n and go to the appropriate case below . 

• a is a P-node. Let 8' be the previous stage when a was accessible, or 0 if never. 

Check if any of the following hold: 

(I) there is an a-attack 0' such that 0' is in T![s] but 0' is not current at s + Ij 
(II) there is a current a-attack 0' that is failing or succeeding at s + 1 and 0' E T![s]j 

(III) there is a current a-attack 0' that is pending or waiting at s + 1 but 0' tt T![s]; 

(IV) there is a current a-attack 0' which is waiting at 8 + 1 and 0' ~ V;[s] (as sets of 

reals); 

(V) no current a-attacks are waiting at 8 + 1. 

Go to the least case below which holds. 
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(I) or (II) hold. For each such a, remove a from T![s + 1] by enumerating the 

use of the computation a E T![s] into B[s + 1]. Let k be the minimum rank of all such 

a, and reset a~oo(k) and all nodes of lower priority. Stop defining TPs+l. 

(III) holds. For each such a, add a to T![s + 1] with fresh use. Stop defining 

TPs+l. 

(IV) holds. For the least such a, let v be the maximum of b(a)1 and the use of 

the computation a ~. VaA[s], and implement a by defining p(a) E Fc¢[s + 1] with use v. 

Let k = rank(a) and let TPs+1 f n + 1 = a~oo(k). 

(V) holds. Schedule a new a-attack at s + 1. Stop defining TPs+l. 

None of (I)-(V) hold. Let TPs+1 f n + 1 = a~ f . 

• a is an S-node. Let r be the maximum use of all computations Pj ~ Vt![s] for 

j ::; m(a, s) with Pj E UA[s]. If r > ra[s] then set ra[s + 1] = r, reset all nodes of lower 

priority than a and stop defining TP s+1' Otherwise let TP 8+1 = a~O. 

End of construction. 

2.8. Verification. First we deal with the P-requirements. We give some lemmas 

to clarify the relations between attacks. 

LEMMA 2.2. Let a be a P-node. If a is an a-attack such that rank(a) = k and a 

is current at stage s + 1, then for every j < k such that the j'th computation from the 

list (6) is valid at s + 1 there is an a-attack a' with p(a') = Pj and rank(a') ::; j which 

is current at s + 1. 

PROOF. Suppose that there is a j < k such that the j'th computation (Pj, Tj) is 

valid at s + 1 but there is no current attack with rank j. Let t + 1 < s + 1 be the stage 

when a was scheduled. Since rank(a) > j, the computation (Pj, Tj) is valid at t + 1, 

and we must have Pj E Fc¢[t]. But then there must be a current a-attack a' pending at 

t + 1 with p(a') = Pj and rank(a') :s: j. But ')'(a') ~ ')'(a), and a is current at s + 1, so 

a' must also be current at s + 1. o 

The next lemma states that no two attacks associated with the same computation 

from U~' are simultaneously current, and that any two attacks which both have strings 

in Fc¢[s] are disjoint. 

) wilE 
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LEMMA 2.3. For any P-node a and any stage s, if distinct a-attacks a, a' are both 

current at s then rank(a) =1= rank(a'). If p(a),p(a') are both in Ft[s] on account of 

a, a' respectively, then p(a) =1= p(a') and a n a' = 0 (as sets of reals). 

PROOF. Let a, a' be as in the claim. Assume for contradiction that rank(a) 

rank( a'), and let t+ 1, t' + 1 be the stages when a, a' respectively are scheduled. Suppose 

w.l.o.g. that t < t'. Then 'Y(a) ~ 'Y(a') C A[t'], so a must be current at t' + 1, and is 

either waiting, pending, failing or succeeding. a cannot be waiting at t' + 1 or the attack 

a' would not be scheduled. Nor can a be failing or suceeding, as the computation p(a) 

(= p( 0")) is valid at t' + 1. Finally if 0' is pending at t' + 1 then p( 0') E Ft [t'], and a' 

would be scheduled with p(a') =1= p(a). So rank(a) =1= rank(a'). 

Suppose that p(a), p(a') are in Ft[s] on account of 0', 0". Then both 0',0" are current 

at s + 1 by choice of the use of the FO/ computations, so rank( a) =1= rank( a') by the above. 

Suppose w.l.o.g. that rank(a)'< rank(a') and let t + 1, t' + 1 be the stages when 0',0" 

are scheduled. By Lemma 2.2, t < t'. Then a must be pending, failing or succeeding 

at t' + 1. If 0' is pending or succeeding at t' + 1, then a ~ VO/A[t'] and 0" will be chosen 

disjoint from 0'. If 0' is failing at t' + 1, then we cannot have p(a) E Ft[s] on account 

of 0' since A[t'] and A[s] agree on the use of any such computation. So a and a' are 

disjoint. o 

The next lemma verifies that /-t(TB) < 1. 

LEMMA 2.4. For any P-node a and sEN, 

PROOF. Suppose that T![s] is not empty, and let t + 1 be the greatest stage::; s 

when an attack is added to T![t + 1]. At stage t + 1, (I) and (II) do not hold for 

any a-attack, as, otherwise nothing would be added to T![t + 1]. So for every attack 

0' E T! [t + 1], 0' is pending or waiting at t + 1 and p( 0') E U~' It]. Since /-t( 0') = /-t(p( a)) 

and T![s] ~ T![t + 1], we have /-t(T![s]) ::; /-t(U~'[t]) ::; 2-ma - C(0/,s)-1. 0 

Note that since A is bog and the string 1'(0') is finite, each attack a is eventually 

either permanently current (that is, a is current at all s > some so) or permanently not 

current, depending on whether 1'(0') C A. 

The following lemma describes the fate of a-attacks for a on the true path. 
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LEMMA 2.5. Suppose that a is a P-node which is accessible infinitely often and is 

reset only finitely often. Let So be the last stage at which a is reset (or 0 if never). 

Suppose that a is an a-attack scheduled at t + 1 > So such that a is eventually per­

manently current and no a-attack a' with rank(a') < rank(a) is implemented infinitely 

often. Then exactly one of the following holds: 

(A) a is implemented infinitely often; 

(B) a g V![s'] at eve~y a-stage s' after some stage S; 

(C) a is permanently pending after some s (that is, a is pending at every s' > s); 

(D) a is permanently succeeding after some S; 

(E) a is permanently failing after some s. 

PROOF. We use induction on rank(a). Let a be as in the claim and assume in­

ductively that there is a stage Sl such that a is permanently current after Sl and all 

permanently current a-attacks of rank < rank(a) scheduled after So satisfy one of (B)­

(E) for s = Sl. 

First consider the case that the computation fJ(a) is not permanent. Then a 

is implemented only finitely often (possibly never), with finitely many computations 

(p(a), TO), ... (p(a), Tn) in Fa on account of a. If A ::) Ti for some i then eventually a 

is permanently succeeding and (D) holds; otherwise a is permanently failing and (E) 

holds. 

Next consider the case that the computation fJ(a) is permanent. If a is implemented 

infinitely often then (A).holds and (B), (C) cannot hold. Suppose that a is implemented 

only finitely often and (B) does not hold; that is, a ~ V! [s'] for infinitely many a­

stages s'. Each time this occurs after Sl, a will be implemented unless some existing 

computation (p(a), T) E FOI.[s'] on account of a is valid. Since a is implemented only 

finitely often, and as A is ~g, eventually the approximation A[s] will settle on the use 

of these computations. After this point, one of the computations must be permanently 

valid, and p( a) E F~ permanently on account of a. Thus (C) holds. 0 

As usual, the true path consists of the leftmost infinitely-often visited nodes. Since 

the tree is infinitely branching, and since we sometimes stop defining TP 8 early, we 

must verify that the true path exists. This lemma verifies that P-nodes do not cause 

the true path to be finite; Lemma 2.9 does the same for S-nodes. We simultaneously 

verify that a P-node on the true path satisfies its P-requirement. 

hPJ '1 
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LEMMA 2.6. Suppose that a is a P-node that is reset only finitely often and is 

accessible infinitely often. Then T! ~ VaA. Furthermore, either some outcome a~oo(i) 

is accessible infinitely often, or after some stage 80 outcome a~ f is accessible at every 

a-stage. 

PROOF. Suppose first that some a-attack is implemented infinitely often; let a be 

the least a-attack by rank which is implemented infinitely often. Since a is perma­

nently current, and the computation pea) is permanently valid, a is permanently in 

T!. Howe~er, a ~ V;, since then a would be implemented only finitely many times 

before some computation pea) E F: on account of a was permanent. So T! ~ V; and 

Pe is satisfied. Furthermore, every time a is implemented, outcome oo(k) is accessed, 

where k = rank( o} 

Suppose then that no a-attack is implemented infinitely often. Inductively, by 

Lemma 2.5, every permanently current a-attack satisfies one of (B)-(E). We claim that 

some attack satisfied (B), and hence T! ~ Va
A

, only finitely many a-attacks are sched­

uled, and a~ f is accessible at all but finitely many a-stages. Suppose for contradiction 

that there is no attack which satisfies (B). Then infinitely many a-attacks are scheduled. 

0' A We first argue that Ua <;;;; Fa' 

We argue by induction on the Ua computations (pi, Ti) that for every string P E u2' 
there is an a-attack a which is permanently pending or permanently succeeding with 

pea) = p. For Pi E u2', assume inductively that there is a stage 81 such that for every 

computation Pj E U2',j < i there is an attack aj with p(aj) = Pj which is permanently 

pending or succeeding by 81· Let 82 be a stage such that the computation Pi E U2'[82J 

is correct, and any computations Pj E U2'[82J for j < i are correct. 

By choice of 82, if an a-attack is scheduled at 8 > 82 and there is no attack a pending 

at 8 with pea) = p, then the newly scheduled attack will have rank i. Furthermore, 

')'(0") is fixed for- all such attacks scheduled after 82· Therefore eventually there must 

be an attack a which is permanenly current and has pea) = p; by Lemma 2.5 and 

the assumptions it must eventually be permanently pending. This establishes that 

U~' <;;;;F:. 

Since 0' iLR A, we must have /-L(F:) = 1. By Lemma 2.3, every string P in F: 

corresponds to an attack of the same measure in V;, and distinct strings correspond to 

disjoint attacks. Therefore /-L(V;) = 1 > Pa, a contradiction. 
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Some a-attack must therefore satisfy (B) of Lemma 2.5, and hence T! g Va
A and 

Pe is satisfied. Since condition (V) in the construction holds for only finitely many 

a-stages, only finitely many a-attacks are scheduled. Since each attack satisfies one of 

(I)-(IV) only finitely often, outcome f is accessed at all but finitely many a-stages. 0 

Now we deal with the S-requirements. First we verify that an S-node's restraint is 

respected. 

LEMMA 2.7. For an S-node a and stage s, if ra[sJ i= 0 and a is not reset at stage 

s + 1 then B[s + 1] r ra[s] = B[s] r ra[sJ. 

PROOF. Suppose that a is not reset at s+l, r = ra[sJ i= 0 but B[s+IJ r r i= B[sJ r r. 

Some P-node f3 must enumerate a number x < r into B[s + IJ in order to remove an 

attack a from T![s + IJ. We must have f3 < a since all nodes of lower priority than a 

are reset when ra is set nonzero, and thereafter any attacks would be put into T with 

use > r. Let a be the least f3-attack by rank which is removed from T! [s + 1], and let 

k = rank(a). Since all nodes of lower priority than f3'""'oo(k) are reset at s + 1, we must 

have f3'""'oo(j) ~ a for some j < k. Let t + 1 be the greatest stage < s when a was put 

into T![t + 1], and let s' + 1 be the greatest stage < s + 1 when ra was increased above 

x. If t + 1 < s' then a E T![s'j, and since rank(a) > j and x < r the computation 

p ~ V! [s'] with use r would not be a-believable. So ra would not be set nonzero at 

s' + 1, contradicting the choice of s'. If t+ 1> s' then a would be put into Tf[t+ IJ with 

fresh use x > r, contra.dieting x < r. Also s' = t is impossible since we stop defining 

TP t +1 once f3 takes action. So B[s] r r = B[s + 1] r r. o 

The next lemma verifies that true computations will eventually be believable, with 

respect to an S-node on the true path. 

LEMMA 2.8. Let a be an S-node such that a is accessible infinitely often and a is 

reset only finitely often. Suppose that T ~ V!. Then there is a stage So such that the 

computation T ~ V![sJ is a-believable at all s 2: So. 

PROOF. Suppose that a is as in the claim, and let So be the first a-stage such that 

T ~ V! [soJ with use u, and B[soJ r u = B r u. Then the computation T ~ V! is 

believable at So. If it were not, then there must be a P-node f3 with f3'""'oo(k) ~ a for 

some k, and a f3-attack a with rank (a) > k and a E T![so] with use < u. Note that 
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(3's computation Pk E U0' must be permanent, since otherwise (3~oo(k), and hence a, 

would not be accessible infinitely often. Let t + 1 be the stage when a was scheduled. 

By Lemma 2.2, Pk E Ft[t] on account of some attack with rank :S k, so '}'(a) is greater 

than the use of Pk E Ft[tJ. By Lemma 2.6 there is a stage S1 ~ So when some ,8-attack 

a' with p(a') = Pk is implemented. At s1. the computation Pk E Ft[t] is no longer 

valid, so a cannot be current at S1. Therefore a must have been removed from Til 
before S1 but after So via a B-enumeration, which contradicts the choice of So. So the 

computation T E V! is believable by So. 0 

Now we verify that the restraint m(a, s) reaches a limit for nodes on the true path. 

LEMMA 2.9. Let a be an S-node such that a is accessible infinitely often and a is 

reset only finitely often. Then 

limm(a,s) < 00. 
a 

PROOF. By Lemma 2.7, a's restraint is respected at all s ~ some So. After So, 

m(a, s) does not decrease. Suppose that lima m(a, s) = 00. Enumerate a ~?-class G as 

follows: put the string Pi into G at a-stage s ~ So if Pi E UA[s] and m(a, s) ~ i. Then 

UA ~ G, since eventually m(a, s) ~ i for every Pi E UA
. Also, since the restraint r(a, s) 

is greater than the use of Pi ~ V![sJ and is respected after s, we have G ~ V!. So 

/l( G) :S /l(V!) < 1. But this gives A :SLR 0 since G is ~~, which contradicts 0 <LR A. 

Therefore m(a, s) < i for some i and aU s. o 

LEMMA 2.10. The true path TP = liminfa TPa exists and is infinite, and each node 

on it is reset only finitely often. 

PROOF. The root node is on TP a for all s and is never reset. Inductively assume 

that a = lim infa TP a r n for n > 0, and that a is reset only finitely often. If a is a 

P-node, then by Lemma 2.6 there is some outcome (either f or oo(k) for some k) that 

is accessible infinitely often. If a is an S-node, then Lemma 2.9 guarantees that the 

child a~ f is accessible at all but finitely many a-stages, since the definition of TP a is 

only ended at a if ra and m(a, s) increase. Therefore (3 = liminfs TP s r n + 1 exists. 

Now we verify that (3 is reset only finitely often. The situations where (3 might 

be reset are when (I) or (II) holds for some P-node ')' C ,8, when some S-node 8 c (3 

increases its restraint, or when TP a <L,8. The last can happen only finitely often by 
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induction assumption. By Lemma 2.9, each B-node 8 C (3 increases its restraint only 

finitely often. 

Suppose then that "( is a P-node and "(~ f ~ (3. By Lemma 2.6 there is an attack a 

satisfying (B) at all "(-stages after some SQ. After SQ, no new attacks will be scheduled 

by ,,(, and existing attacks can cause (3 to be reset only finitely often after SQ. 

If "(~oo(k) ~ (3 for some k, then k is the least such that some ,,(-attack of rank k is 

implemented infinitely often. By Lemma 2.2, there are only finitely many ,,(-attacks of 

rank < k, and they can cause (3 to be reset due to (I) or (II) only finitely often. 0 

LEMMA 2.11. Each requirement Pe is satisfied. 

PROOF. Let a be the Pe-node on TP. By Lemma 2.6, there is an a-attack a 

that is permanently in T!! but a g; Va
A . (In the case that a~oo(k) c TP, then a 

is implemented infinitely often so no computation a ~ VaA[s] is permanent.) Since 

o 

LEMMA 2.12. Each requirement Be is satisfied. 

PROOF. Let a be the Be-node on the true path. By Lemma 2.8 and the use of the 

hat-trick for UA, we have 

uA ~ 'VeE <=? limm(a,s) = 00. 
s 

By Lemma 2.9, limsm(a,s) < 00. So UA g; 'VeE. o 

This completes the proof of Theorem 2.1. o 

3. C.e. LR-degrees above low LR-degrees 

In this section we show that above any low bog LR degree there is an incomplete 

c.e. LR degree. This is in contrast with the bog Turing degrees, in which there is a low 

bog degree which is incomparable with all intermediate c.e. degrees (the proof of this is 

sketched in section 3.4). Thus it highlights a difference of the position of the c.e. degrees 

within the bog LR-degrees, as compared to the bog Turing degrees. 

We first tried to prove the considerably stronger result that above any LR-incomplete 

bog LR-degree A there is an LR-incomplete c.e. degree. Unfortunately there are obsta­

cles to performing the construction in this general case, which we discuss in section 3.6. 

It is not known if this more general result holds. However the construction does work 
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in the specific case when A is c.e. and LR-incomplete. We outline the modifications 

necessary for this case in section 3.5. 

THEOREM 2.13. Let A be a low ~g set. Then there is a c.e. set B such that 

A 5:LR B <LR 0'. 

Let A be a low ~g set, given by a computable approximation A[s] such that 

limsA(x)[s] = A(x) for all x. Let (Ve,Pe) be a listing of all LR-operators, and U 

be the second member of a universal oracle ML-test (so /L(UX ) 5: ! for all X E 2W). 

We construct c.e. sets B, D and oracle ~~-classses E, He for all e E N to satisfy the 

requirements: 

Ne: 

R: and 

By Theorem 1.5, requirement R ensures that A 5:LR B. Since the He are uniformly ~~, 

their union H = UeHe is also an oracle ~~ class. We will ensure that /L(HP) < 2-e-
1

, 

and thus 

If Ne is satisfied for each e, then HD ~ VeB, and D l,LR B by Theorem 1.5, since 

/L(HD) < 1. Therefore in particular 0' l,LR B. 

Notice that we do not include any requirements to explicitly make B l,LR A. If 

desired, we could include P-requirements as in Theorem 2.1 to explicitly ensure A <LR 

B. How to do this is discussed briefly at the end of the section. However, we may 

instead invoke the upward density of the c.e. LR-degrees, namely Theorem 1.2, to 

obtain a C.e. set C with B <LR C <LR 0'. Of course, if the LR-degree of A does not 

contain any C.e. sets then we automatically have A <LR B from the requirements above. 

(This is the interesting case since if A is =LR to some c.e. set then we can just invoke 

the upward density of the c.e. LR-degrees in the first place.) 

R strategy. Fix U as the second member of a universal oracle ML-test, so /L(U A
) < 

!. We simply trace UA into EB: whenever a new computation p E UA[s] appears, we 

put pinto EB[s] with large use. If a B-change inadvertently removes a string p from 

EB[t] while p E UA[t] is still valid, we put p back into EB with the same use as 
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previously. If an A-change invalidates the computation p E UA[s], we remove p from 

EB via a B-enumeration, if such an enumeration is not prevented by an active restraint. 

It is up to the N-requirements to ensure that their restraints do not prevent too many 

strings from being removed from EB, so we can ensure that J1.(EB) < 1. 

Ne strategy. Recall that (Ve, Pe) is a list of all LR-operatorsj that is, an oracle E~ 

class Ve and a dyadic rational Pe such that J1.CV~X) ::; qe for all X E 2w. We need to 

diagonalise against Ve, forcing measure into VeB without causing J1.(Hf) to permanently 

increase. The basic strategy is to put a clopen set 8 into Hf and wait until 8 ~ VeB
. 

When this occurs we restrain B on the use of the computation and remove 8 from Hf 

by enumerating into D. Thus J1.(VeB) permanently increases by J1.(8) but J1.(Hf) does 

not. With a suitable choice of J1.(8), after finitely many repetitions we will have some 

8 which is not covered by VeB, since J1.(VeB) cannot increase above Pe. This 8 will be 

permanently in Hf, and nothing else will be added to Hf. So J1.(Hf) permanently 

increases by J1.( 8) only once. 

This is complicated by the fact that B-restraints conflict with the R-strategy. Each 

B-restraint captures certain junk intervals in EB, in the sense that the B-restraint will 

prevent the R-strategy from removing some intervals from EB if an A-change removes 

them from UA . Such strings that are in EB but not in UA are junkj we must make sure 

that the total junk measure captured by B-restraints is small so that J1.(EB) < 1. 

We can separate the Ne-requirement into finitely many subrequirements Ne,i, and 

assign each N-subrequirement a quota f. We ask that Ne,i'S restraints contribute at 

most f measure of junk to EB. We will allow an N-node a to impose a restraint r at 

stage s only if the total junk measure that would be captured, those strings in EB - UA 

with use < r, is within the quota f. However, the junk captured by the restraint r 

may later increase as the construction proceeds, as strings may be removed from UA 

after the restraint is imposed. Although we can easily ensure that the restraint initially 

captures at most f of junk, we must also ensure that the junk does not later grow too 

large. 

This is dealt with by measure-guessing: we place the construction on a tree of 

strategies, and equip each N-node a with a backing measure-guessing node. The backing 

node supplies the N-node a with an approximation to J1.(UA), in the form of a rational 

interval [qQ, qQ+fQ). The node a works only at stages when J1.(UA [sJ) E [qQ, qQ+fQ)j that 
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is when the 'measure guess' that J.L(UA) E [qo:, qo: + fo:) appears correct. By ordering the 

nodes with lower intervals to the left, and by applying the hat-trick to the approximation 

of U A, we can ensure that the true path (the path of leftmost infinitely-often visited 

nodes) consists of those nodes whose measure guess is correct, ie J.L(UA) E [qo:,qo: + fo:) 

in the limit. A node may only impose a B-restraint r if the measure of junk captured 

by r is less than fo:. If the junk captured by the B-restraint later increases by more 

than fo:, the hat-trick applied to the approximation of UA guarantees that the node 

will be reset, as in that case the approximation J.L(UA[s]) drops below qo:. The result is 

that a node never captures more than 2f much junk: f much which was present when it 

first imposed restraint, and f much which may have been added after the restraint was 

imposed. This technique was first used by Cholak, Greenberg and Miller [12] and later 

by Barmpalias and Montalban [7]. We will use the same technique in Theorem 4.1 of 

chapter 4. 

We arrange the priority tree so that each level of the tree is occupied by a single 

requirement, and all the nodes of that level have the same quota. We need one additional 

condition to keep the junk captured by restraints under control. In a traditional tree 

construction, there is no bound to the number of nodes on any level of the tree that 

may be imposing restraint simultaneously. In our case, each such node on a particular 

level would potentially be contributing the same amount f of junk to E B
, threatening 

our desire to keep J.L(EB ) < 1. The solution is to ensure that at most one node on each 

level of the tree is imposing restraint at any time. To satisfy this, all nodes on one level 

of the tree will work with the same cIopen set 8, on the task of ensuring that 8 ~ VeB. 

If a node f3 on the same level but to the left of a has already imposed a B-restraint to 

preserve 8 ~ VeB, then a does not need to do anything since (from a's point of view) 

f3 has already satisfied 8 ~ VeB. If no node left of a has imposed a restraint, and a 

sees 8 ~ VeB[s] (via a computation which does not capture too much junk), then a may 

impose a restraint and remove 8 from HP· 
There is a risk here however that the junk captured by a's restraint later grows 

above the quota fa, and a is reset when J.L(UA[s]) drops below qo:. Then we will have 

to start again with 8, putting 8 back into HP and waiting for 8 ~ VeB[s] again. In 

fact, if a is to the right of the true path, this may happen infinitely often; in this case, 

8 rz. vf3 as no computation 8 ~ VeB[s] is permanent, but nor is 8 ~ HP. SO 8 does not 
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contribute towards requirement Ne . This problem only arises if every time a node O! on 

level i of the tree imposes a restraint, its measure guess proves wrong and it is reset. 

We can solve this problem by attempting to restrain A, to prevent an A-change from 

causing p,(UA[s]) to drop below qa. 

Each time an Ne,i-node O! wishes to impose B-restraint and remove 8 from H D , O! 

will attempt to restrain A r u for u such that p,(UAfu) 2: qa. If the restraint is succe~sful, 

then p,(UA) will never drop below qa and O! will never be reset. As long as the restraint is 

eventually successful after finitely many attempts, we will avoid the problem described 

above. To restrain A, we utilise the fact that A is low. (In section 3.5 we describe how 

to modify this strategy to work in the case where A is c.e. and LR-incomplete rather 

than low.) When O! is ready to remove 8 from HA, it defines a computation cI>A(z)[s]! 

with use u as above. Since A is low, we can argue that computations cI>A(z)[s] can only 

be spoiled by A-changes finitely often before the computation is permanent and the 

A-restraint succeeds. 

3.1. The priority tree and notation. For each e, let ke be the least number 

such that 2-k• < 2-e- 2 . (1 - Pe). Requirement Ne will use 2k• subrequirements Ne,i, 

° :::; i :::; 2k
e - 1. Fix a listing of all N subrequirements 

(7) 

namely, all the No subrequirements in order, followed by the NI subrequirements, etc. 

The construction takes place on a finitely branching tree, defined below, consisting 

of nodes labelled G or Ne,i for some e, i E N according to their length. Nodes of even 

length (including the root node) are labelled G; nodes of odd length 2n + 1 are labelled 

Ne,i where Ne,i is the n'th entry in the list (7). Nodes labelled Ne,i for some e, i are 

referred to as N-nodes; nodes labelled Ne,i for a fixed e are referred to as Ne-nodes. N­

nodes have a single outcome ° (a single child node O!~o on the tree). G-nodes have four 

outcomes Xo <L Xl <L X2 <L X3, corresponding to subintervals of the half-unit interval 

[0, !). Each node O! is associated with an interval [qa, qa + fa), where qa, fa are dyadic 

rationals. For the root node 0 we have q0 = 0,100 = !; for other nodes the interval is 

defined inductively. Suppose that [qa, qa + fa) is defined. If O! is an N-node then it has 

only one child O!~o; let qa~O = qa and fa~O = fa. If O! is a G-node, then fa~Xi = :lfa 

and qa~xi = qa + i!fa for ° :::; i :::; 3; that is, we evenly subdivide [qa, qa + fa) and 
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assign the subintervals in order to XO • •• x3. We subdivide into four to ensure that 

(8) 

for any set Z of nodes longer than a containing at most one node of each length. This 

means that, even if every subrequirement below a has a node 'Y imposing restraint, and 

capturing up to f")' of junk, the total junk is still within a's quota fa, SO a will be able 

to act. 

The ordering <L on {xo,··· X3} induces an ordering on the tree: for nodes a, {3, 

a <L {3 indicates that a is to the left of {3, and a < {3 indicates that a <L {3 or a C {3. 

As described previously, we will use the lowness of A to ensure that the restraints 

imposed by N-nodes are eventually permanent. Since A is low, the jump 

A' = {(e, z) : q>:(z) l} 

is limit computable; that is, there is a total computable function 9 : N x N --t {a, I} 

such that 

\Ix limg(x, s) exists and equals A'(x). 
s 

In the construction, we will construct a 'lUring functional r (as a consistent c.e. set of 

axioms). By the Recursion Theorem 1.11, we may assume that we know in advance an 

index of the functional r; that is, a number e such that r = q>e. 1 Define h : N x N --t 

{a, I} by h(x, s) = g( (e, x), s); then rA(x)l iff lims h(x, s) = 1. 

For each e, divide 2w evenly into 2k
e many subintervals Ie,O,!e,l ... Ie,2ke_l' Sub­

requirement Ne,i works with interval Ie,i' Assign each N-node a a unique number Zo 

from N. An Ne,i-node a pursues the following strategy. When all higher-priority Ne 

subrequirements are finished, a puts Ie,i into HP and waits until Ie,i ~ VeB[s]. When 

this occurs it restrains B on the use of this computation to preserve Ie,i ~ VeB (if the 

restraint does not capture too much measure in E B ). Then a defines a computation 

rA(zo)[s]! (if it is not already defined), to attempt to prevent j.L(UA[s]) from dropping 

below qo which would cause a to be reset. When the b.g approximation h of A' indicates 

1 Formally, we can consider e to be a free parameter, on which the function h and indeed the whole 
construction depend. The construction is well-defined for all values of e (although it will only do what 
we want it to do for certain values of e). We thus have a uniform procedure for obtaining a Thring 
functional re from a number ej that is, a computable function f such that if>J(e) = re (where (if>e)eEN 
is a canonical listing of 'lUring functionals). The Recursion Theorem 1.11 guarantees an e such that 
if>e = if>J(e) = reo For that particular value of e, we do in fact have rA(x) 1 iff lim.h(x,s) = 1 as 

desired. 
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that the computation rA(zaJ is permanent, we remove Ie,i from HP by enumerating 

into D. If our attempted A-restraint fails and 0: is later reset, then we have to re-add 

Ie,i to HP. However, each time this happens an old computation rA(za) is invalidated. 

If it happens infinitely often then h(za, s) = 0 for all but finitely many s, so Ie,i can 

only be removed from HP finitely often before it is permanently in HP. Then we can 

argue that Ie,i Sb VeB and Ne is satisfied. 

Each N-node 0: has a parameter ra which is the restraint that 0: wishes to impose 

on B. Let Ra[s] = max,e<a r,e[s] be the total restraint imposed by N-nodes of higher 

priority than 0:. 

As in Theorem 2.1, we assume that when a string is put into any HP with some use 

U, it remains there until the number u is explicitly enumerated into D. This assumption 

does not apply to EB however. Each time we put a string into HP[s] it will be while 

carrying out the instructions for some N-node. If an interval I is in HP[s], then we say 

that I is in HP[s] on account of 0: if I was most recently put into HP while carrying 

out the instructions for 0:. 

We again use the hat-trick for the enumeration of UA . Let ao = 0, and for s > 0 

let as be the least number such that A(as)[s] i= A(as)[s - 1], or as = s if such number 

does not exist. Let 

Henceforth we omit the hat and write UA[s] to mean UA[s]. In this case, the hat­

trick ensures that there are infinitely many true stages, at which UA[s] ~ UA and 

JL(UA[s]) ::; JL(UA). 

In the construction, we will explicitly define the approximation to the true path 

TP s' When we take action for a node on TP s, we will stop defining TP s, so TP s will 

not always have length s. This means that we cannot rely on a node 0: being reset due 

to TP s <L 0: when its measure guess becomes wrong. Hence at each stage we must 

explicitly reset all nodes whose measure guess has become wrong. For convenience, we 

do this resetting only at even stages of the construction, and perform the other tasks of 

the construction only at odd stages. We can assume that we are given approximations 

of A, U, Vi etc that change only on even stages. That is, A[2s] = A[2s + 1] for all s, 

and similarly for U, Vi (as sets of axioms ). 
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3.2. The construction. To reset an Ne,i-node a at stage s + 1 means to set 

ra[s + I] = 0, and if Ie,i is in H,f[s] on account of a then remove Ie,i from H,f[s + I] by 

enumerating its use into D[s + I]. 
Initially B[O] = D[O] = H[O] = 0 and ra[O] = 0 for all N-nodes a. At stage s + 1 we 

are given A[s], B[s] etc and any changes we make are in order to define B[s + I] etc. 

At stage s + 1 where s + 1 is even, reset any N-nodes a such that /-L(UA[s]) < qa 

and ra[s] i= O. 

At stage s + 1 where s + 1 is odd, perform steps 1 and 2 in order. 

Step 1. We define the approximation to the true path TP s+1 and take action for 

some node on TP s+l. Suppose inductively that TP s+1 f n is defined, for n ~ O. If 

n = s + 1 then stop defining TP s+1 and go to step 2. Otherwise let a = TP s+1 f n and 

go to the appropriate case below. 

• a is a G-node. Inductively, /-L(UA[s]) E [qa, qa + fa). Let i be such that 

/-L(UA[s]) E [qa~Xi!qa~xi + fa~xi) and let TPs+1 f n + 1 = a~xi' 

• a is an Ne,i-node for some e, i E N. Say that a is active at stage s + 1 if 

Vj < i there is an Ne,j-node f3 < a with 

r~[s] i= 0 and h(z~, s) = 1. 

Go to the least case below which holds. 

(I) Higher priority subrequirements have finished and a is ready to start. a is active; 

there is no Ne,i-node a' '5:.L a with ra/[s] i= 0; and Ie,i ¢ H,f[s]. Then put Ie,i 

into H,f[s + I] with large use. Stop defining TPs+1 and go to step 2. 

(II) a's interval Ie,i has appeared in YeB lsI with a believable computation and we are 

ready to restrain B. a is active; there is no Ne,i-node a' '5:.L a with ra/[s] i= 0; 

Ie,i E H,f[s] and Ie,i ~ YeB[s] with use u such that 

(9) 

(10) 

Then set ra[s + I] = u. If rA(Za)[S] i then let v be the least such that 

and define a new computation rA[sJiv(za)! with use v. Reset all N-nodes of lower 

priority than a, stop defining TP HI and go to step 2. 



46 2. STRUCTURAL RESULTS IN THE C.E. AND ~g LR-DEGREES 

(III) The computation rA(z) appears permanent so we can remove Ie,i from HP. There 

is an Ne,i-node 0/ ~L a such that ra,[s] '# 0, Ie,i E HP[s] and h(za" s) = 1. Then 

remove Ie,i from HP[s + 1] by enumerating the use into D[s + 1]. Stop defining 

TP 8+1 and go to step 2. 

(IV) Otherwise, set TP 8+1 r n + 1 = a"'O, the unique child of a, and continue defining 

TP8+1. 

Step 2. Let R = maxa ra[s + 1] be the total restraint imposed by all nodes after 

step 1. Enumerate R+ 1 into B[s+ 1] to remove some junk intervals from EB[s]-UA[s]. 

End of construction. 

3.3. Verification. First we verify that HP[s] contains at most one of the intervals 

Ie,i at any time, and thus J-l(H D ) < 1. 

LEMMA 2.14. For all e and at any stage s, either HP[s] = 0 or HP[s] = Ie,i for 

some i. 

PROOF. Suppose on the contrary, that HP[s] contains both Ie,i and Ie,j for some 

i '# j. Suppose that Ie,i, Ie,j were added to HP[s] at stage so, SI by Ne-node a, (3, 

respectively. Note that at most one interval is added to HP at each stage (since the stage 

is ended if (I) holds); thus we may assume that So < SI. We consider the possibilities 

for the position of a relative to (3. 

If (3 <L a, then J-l(U A [SI]) < qa, and a would have been reset at the (even) stage 

S1 - 1. Thus Ie,i could not be in HP[S1]. 

If (3 ~ a and 1(31 > lal, then (3 must satisfy (I) at S1; in particular, there must be 

an Ne,i-node a' ~ (3 with ra,[sJ] '# 0 and h(za" S1) = 1. But then, a" = (3 rial would 

satisfy (III) at S1, Ie,i would be removed from HP[S1 + 1] and (3 would not be accessible 

at S1. 

Finally, 1(31 < lal and (3 f..L a. In this case, at So there is some Ne,j-node (3' ~ a 

with r{3' [so] '# O. Since (3 satisfies (I) at S1 > so, the node (3' must have been reset at 

some s', So < s' < S1. But then a would be reset at s' also, and Ie i would have been , 

removed from H{J[s' + 1J. 0 
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Next we verify that each restraint does indeed capture no more than its quota of 

junk. For an N-node a and s > 0, let 

be the junk intervals restrained by a at the end of stage s. 

LEMMA 2.15. For any N-node a and for any even s, 

PROOF. Suppose that ra[s] =/:. 0, and let t + 1 be the greatest stage ~ s when ra 

was set nonzero. Write r = ra[s]. If new strings are added to EB after t then they are 

added with fresh use, and if B[s] r r =/:. B[t] r r then a would be reset between t + 1 and 

s. Thus EBtr[s] = EBtr[t]. Also, Ra[t] = Ra[s] as otherwise a would have been reset. 

So, 

j.£(Ja[s]) = j.£(EBtr[s]_ EBtRo[s]_ UA[s - 1]) 

(11) ~ j.£(EBtr[t]_ EBtRo[t]_ UA[t]) + j.£(UA[t]- UA[s - 1]). 

The first term of (11) is the junk that was captured by a when it imposed its restraint; 

the second is that which becomes junk after the restraint was imposed. By (9), the first 

term is less than fa. Suppose that j.£(UA[t]- UA[s -1]) ~ fa. But then by the hat-trick 

there would be an even stage t' with t < t' ~ s such that j.£(UA[t']) ~ j.£(UA[t]) -fa ~ qa' 

At t' a would be reset, contradicting the definition of t. , o 

Since we sometimes end the definition of TP s before it reaches length s, we must 

verify that the true path lim infs TP s exists. The following lemma simultaneously verifies 

that the true path exists, is infinite, and that the N-nodes on the true path reach a 

limit state. 

LEMMA 2.16. Suppose that a is an Ne,i-node and the leftmost node of length lal 
that is accessible infinitely often. Then j.£(UA) E [qa, qa + fa), a is reset only finitely 

often, the definition of TP s is ended at a only finitely often, and exactly one of the 

following hold: 

(i) there is a j ~ i and an Ne,j-node /3 ~ a and a stage So such that Ie,j E HP 
permanently after So and Ie,j ~ ~B; 
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(ii) there is an Ne,i-node (3 '.5.L a and a stage So such that r{3[so] -I 0, (3 is not reset 

after So, Ie,i ~ Y'eB and Ie,i tI. HP[s] at any S ;::: So· 

PROOF. Suppose that a is the leftmost node of length lal which is accessible infin­

itely often, and assume inductively that there is a stage So such that TP s f.L a and the 

definition of TP s is not ended at any (3 c a for all s > So, no N -node (3 C a is reset 

after So, and all N-nodes (3 C a satisfy (i) or (ii) by So. 

First we establish that p.(UA) E [qo, qo + Eo). Let 'Y = a- be the parent of a. 

Inductively, p.(UA) E [q1',q1' + E1')' and by the hat-trick, there are infinitely many true 

stages when p.(UA[s]) E [q1" q1' +E1')' At every true stage after So, we also have TP 8 ~'Y. 

If p.(uA ) < qo, then at all true stages after some S1 ;::: So some outcome of'Y to the 

left of a would be accessible, contradicting that a is the leftmost node of length lal 

which is accessible infinitely often. If p.(UA) ;::: qa + Eo then there is a u such that 

p.(UAfu ) ;::: qo + Eo and a stage S2 ;::: So when A r u has settled. After S2, a will never 

be accessible, again a contradiction. So p.(UA) E [qo, qo + Eo). 

Next we verify that a is reset only finitely often. By assumption on a, it is reset 

only finitely often by step 2 when TPs <L a. As p.(UA) E [qo,qo + Eo), eventually 

p.(UA[s]) does not drop below qo, so a is is reset only finitely often at even stages. By 

the induction assumption, eventually all N-nodes (3 C a reach a limit state and (II) will 

not hold for any such (3 after So. These are the only places in the construction where a 

may be reset. 

Next we show that a reaches a limit state, satisfying (i) or (ii). If some Ne-node 

(3 C a satisfies (i) then a also satisfies (i) after So. Thus (I) or (II) of the construction 

will hold only finitely often for a, since a is only active finitely often. Otherwise, suppose 

that every Ne-node (3 C a satisfies (ii) by So. If some Ne,i-node a' <L a has ro/[so] -1O, 

then that restraint is permanent and a satisfies (i) due to a'. Then rA(zo/) 1 and 

eventually h(zo/ s) = 1 for all sufficently large s; so a will eventually satisfy (III) and 

Ie,i will be removed permanently from HP. 

Suppose that no Ne,i-node a' <L a has ro/[so] -10. If (II) holds for a at any stage 

after So, then a will impose a permanent restraint, rA(zo) 1 and Ie,i will eventually be 

removed permanenly from HP via (III). Then a will satisfy (ii). It suffices now to show 

that if (II) never holds for a then Ie,i ~ Y'eB and Ie,i E HP permanently. 
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Suppose that a never imposes a permanent restraint. We argue that Ie,i is perma­

nently in HP after some Sl ~ So. At any a-stage s after So, if Ie,i ¢ HP[sJ then it will 

be put into HP[s + 1J as a will satisfy (I). We argue that, because A is low, Ne,i-nodes 

to the right of a will satisfy (III) only finitely often. Suppose that some Ne,i-node right 

of a satisfies (III) infinitely often; let {3 be the leftmost such node. If {3 satisfies (III) at 

s then some Ne,i-node {3' $L {3 must have previously satisifed (II), imposed a restraint, 

and defined a computation rA(z,81 )[sJ (if it wasn't already defined). Thus no Ne,i-node 

imposes a permanent restraint, and no computation axiom rA(Z1')[sJ for any Ne,i-node 

'Y is permanently valid. But the ~g approximation of A ensures that each computation 

axiom is eventually permanently valid or permanently invalid. Thus infinitely many 

different computation axioms rA(Z1')[sJ must be defined during the construction, for 

some Ne,i-node 'Y. But then, rA(z1') T in the limit, and since A is low, h(z1' , s) = 0 

for all but finitely many s. Thus (III) can hold at only finitely many stages, and Ie,i is 

permanently in HP· Hence a satisfies (i) (with a' = a). 

Finally we verify that if Ie,i ~ ~B then eventually the measure condition (9) is 

satisfied and a will satisfy (ii). Let v be the use of the computation Ie,i ~ VeB , and let 

S2 be the second a-stage after So such that 

(such S2 exists because of the hat-trick). Every string in EB[v[S2]_EB[R", [82]- UA[82] is 

in J1'[82] for some 'Y > a; as otherwise it would be removed in step 2 of the construction 

contradicting the choice of 82. Let 

be the lower-priority nodes with nonzero restraint at 82. Then 

. J-L(EBfv[S2J - EBfR
", [S2J - UA[S2]) $ L J-L(J1'[S2]) 

1'EZ 

by Lemma 2.15 and (8). Thus eventually (9) is satisfied, so if Ie,i ~ ~B then a satisfies 

(i). o 
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Having established that each N-node reaches a limit state, we can easily verify that 

each requirement is satisfied. 

LEMMA 2.17. For all e there is an Ie,i such that Ie,i E HP and Ie,i ~ ~B. Thus 

each requirement Ne is satisfied. 

PROOF. If some Ne,i-node on the true path satisfies (i) of Lemma 2.16, then Ne is 

satisfied by Ie,i for the least such i. To see that there is always such an i for each e, 

note that if not, every Ne-node on TP must satisfy (ii), and thus Ie,i ~ VeB for each i. 

But there are 2ke many such Ie,i, each has measure 2-ke , and they are pairwise disjoint. 

Then j.L(~B) ;::: 2ke ·2-ke = 1, which contradicts j.L(V!) :s; qe < 1. D 

Finally we verify that requirement R is satisfied. 

LEMMA 2.18. A :5:.LR B. 

PROOF. By the definition of E, once an interval appears in UA via a permanent 

computation it will henceforth always be in EB with the same use. Thus UA ~ EB. 

We must verify that j.L(EB) < 1. Since j.L(UA) :s; !, it suffices to show that 

for all n E N and sufficiently large s. Fix n and let So be a stage such that 

(as sets of strings). Then for all s ;::: So we have 

and by Lemma 2.15 and the fact that at any time there is at most one node of each 

length with nonzero restraint, j.L(EBtn[s] - UA[s]) :s; Le 2-e- 2 = ~. D 

This completes the proof of Theorem 2.13. D 

In section 3.5 we sketch how this construction can be adapted to the case where 

A is c.e. and LR-incomplete (rather than low), and discuss the obstacles to the most 

general case where A is bog and LR-incomplete. 

The key aspect of this construction is the fact that movement of TPs depends only 

on the approximation of A. That is, if Q is accessible at t, and later TP s <L Q for 
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s > t, then there must have been an A-change between s and t which removed some 

strings from UA and made the approximation to /-L(UA ) decrease. This is the fact that 

allows us to restrain A in order to prevent 0:: from being reset. This seems to be a 

significant limitation on the technique; it is unclear how, if at all, this construction 

could be combined with other requirements which involve branching on the tree of 

strategies that does not depend solely on A, for instance minimal pair or non-cupping­

style requirements in which the outcomes depend on convergence of computations rather 

than on the approximation to A. However, it can be combined with the P-strategy of 

Theorem 2.1. Although sometimes the P-strategy causes the construction to move to 

the left independently of A-changes, for instance when an attack is implemented for 

the first time, Lemma 2.6 ensures that if infinitary outcomes are accessed infinitely 

often, then infinitely often this will be due to an A-change, after an attack changes from 

pending to waiting. This is sufficient for the N-strategy to succeed; we just need to 

modify condition (10) so that v is also larger than the use of any computations (j ~ VA[s] 

for pending P-attacks (j which would cause the N-node to be reset if re-implemented. 

3.4. Differences with the Turing degrees. Theorem 2.13 displays a difference 

between the c.e. and Ag Turing degrees and the c.e. and Ag LR-degrees. Yates [75] 

constructed a Ag Turing degree which is incomparable with all c.e. Turing degrees except 

o and 0'. Yates used an oracle construction with a 0' oracle to construct the required 

Ag set A. It is possible to adapt his construction to also ensure that A is low (the proof 

is sketched below). Hence there is a low Ag Turing degree that is incomparable with all 

intermediate c.e. Turing degrees. In particular, it has no incomplete c.e. Turing degree 

above it. This is in contrast to Theorem 2.13 which shows that every low Ag LR-degree 

is bounded by an LR-incomplete c.e. LR-degree. 

It is possible to further adapt Yates's construction to make the set A be low and 

non-Iow-for-random in addition to being incomparable with all intermediate c.e. Turing 

degrees. We note that if we apply Theorem 2.13 to such an A, we obtain a c.e. set B 

such that A <LR B but A 1:.T B. Hence the construction of Theorem 2.13 does not 

automatically produce B ?T A. 

We sketch the construction of a Ag set which is low, non-Iow-for-random and Turing 

incomparable with all c.e. sets of intermediate Turing degree. We build A via finite 

extensions 0::0 ~ 0::1,'" so A = UsGs. We have a listing We of all c.e. sets, and the 
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We are uniformly computable from 0'. lPe is a standard listing of Turing functionals. 

To make A low we use the usual technique of 'forcing the jump': at stage 8 if there is 

a string r :J Q s such that 1P;(e) 1, then make A :J r by suitable choice of Qs+1' The 

strategy for making We iT A if We is noncomputable is the usual strategy of looking for 

splittings of lPi for each i. To make A iT We if 0' iT We, we utilise a function 1 ~T 0' 

such that 1 is not dominated by any function of degree < 0'. We use a bounded search, 

bounded at stage 8 by 1(8), to search for an x such that A(x) is not yet defined and 

lP~e(x) 1. We can then define A(x) ¥- lPr'e(x). Because we use only a bounded search, 

we must place the requirements in a finite injury setting, to allow a higher priority 

requirement to take action as soon as its bounded search finds a suitable candidate. 

This is straightforward and may be found in Odifreddi [62] Proposition XI.3.6. 

The only remaining requirement is to make A non-Iow-for-random. Fix a member 

U of a universal oracle Martin-Lof test, and a listing (Vi, Pi) of E~ classes along with a 

rational bound Pi < 1 such that J.L(Vi) ~ Pi. We can assume that the set UT is finite and 

uniformly computable from r E 2<w. Given any Q E 2<w, we want to find an extension 

Q' :J Q such that ua' ~ Vi. Using the 0' oracle we can search for an d and a string (J' 

such that 

(J' E U
al 

and (J' ~ Vi 

and make A :J d. Such an d and (J' are guaranteed to exist: let X E 2w be such that 

X rJ. Vi; such X exists since J.L(Vi) < 1. There is a Z :J Q such that X is not random 

relative to Z (for instance, a Z such that X ~T Z). Since U is a universal test, there 

is a (J' and an n such that (J' C X and (J' E uZtn. The string Q' = Z I nand (J' are 

as required. We can combine this with the previous strategies in a finite injury setting 

using a 0' oracle to construct the set A. 

3.5. The N-strategy with A LR-incomplete and c.e. It was originally hoped 

that the construction of Theorem 2.13 could be combined with the LR-incompleteness 

strategy of section 1 to show that every incomplete ~g LR-degree is bounded by an 

incomplete c.e. LR-degree; that is, that above any LR-incomplete bog set there is an 

LR-incomplete c.e. set. Unfortunately there are obstacles to performing the construction 

in this most general case. Indeed, it is not known if every incomplete ~g LR-degree is 

bounded by an incomplete c.e. LR-degree. However, the construction of Theorem 2.13 

can be combined with the strategy of section 1 in the specific case when the set A is 
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c.e. (rather than only Llg) and LR-incomplete. Although this result is not of interest 

in itself, the technique might be of use for other constructions in the LR-degrees. We 

now sketch how the construction of Theorem 2.13 may be modified to work with an 

LR-incomplete c.e. set, and discuss in section 3.6 the difficulties with the more general 

case when A is an arbitrary LR-incomplete Llg set. 

As in Theorem 2.13 we will put strings 8 into HD, wait for 8 s:;; VB, then remove 8 

from HD and restrain B on the use. Again, we will use subrequirements Ne,i, and the 

Ne-nodes must co-ordinate their actions. All Ne,i-nodes will work with the same elopen 

set 8. In this case, when an N-node Q wishes to remove 8 from HD and impose a B­

restraint, it must use the incompleteness of A to (attempt to) prevent A from changing 

and the construction moving to the left of Q. The method for attempting to preserve A 

is the same as in the P-strategy of Theorem 2.1. Each elopen set 8 will be associated 

with a string p E U0'[s]. When we have 8 ~ VB, we will restrain B and try to prevent 

A from changing by enumerating p into an A-E~ class FA. Once 0' changes and p is 

removed from U0', we can remove 8 from HD on the assumption that A will not change 

below the use of p E FA. Since we threaten to make U0' s:;; FA, we are guaranteed that 

our attempted A-restraint will succeed sufficiently often to make J.L(F A ) = 1, which 

assures us of enough successful attacks 8 to ensure H D ~ VB. 

Using this strategy, it is possible that an attempted A-restraint will neither succeed 

nor fail, when it corresponds to a true string p E U0'. In such a case, we will be unable 

to remove 8 from HD. Say that such an attempt is stalled. Since there are infinitely 

many such true strings, we cannot fix the size of all 8's in advance. Instead, each 

subrequirement will correspond to a string p from the approximation to U0', and will 

choose 8 the same size as p. Thus the measure of those 8's which we cannot remove 

from HP is bounded by J.L(U0'). We will need infinitely many subrequirements for each 

Ne , as we can use each string p from the approximation of U0' at most once, and we do 

not know in advance which will succeed, which will fail and which will stall. 

Note that p is associated with 8, and not with any individual N-node. In particular, 

all Ne i-nodes share the same p. This is in contrast to the earlier version of the N-, 

strategy where every N-node had its own computation rA(zaJ 

Since J.L(HP) is bounded by the measure of the Martin-Lof test member U0' that Ne 

is working with, Ne must work with a U such that J.L(U0') < 2-e- 1 to ensure J.L(H D ) < 1. 
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We also want J.L(U0') < 1 - J.L(VeB) as in earlier constructions. Let 

be a listing of the axioms from U0' that are valid at some stage, in the order in which 

they become valid (as in (6)). Subrequirement Ne,i will work with some computation 

(7, p) from this list, and a clop en set 8i such that J.L(8i ) = J.L(p). All Ne,i-nodes share the 

same computation (7, p) and 8i. The Ne,i-nodes work as follows. If at stage s there is a 

higher-priority subrequirement Ne,j with 8j E HP[s] but 8j g; ~B[s], then (from Ne,i'S 

point of view) Ne appears satisfied and Ne,i need not do anything. So Ne,i will only 

work when all higher-priority Ne subrequirements have either succeeded in restraining 

8j into VeB , or have abandoned their attempt for reasons described below. 

When Ne,i first needs to work, it chooses its clop en set 8i of the same measure as 

J.L(p) and disjoint from any 8j, j < i for which 8j is already restrained in ~B[s]. It puts 

8i into HP, where it remains until a 0'-change invalidates the computation p E U0'[s]. 

Once 8i is in HP, all Ne,i-nodes a wait for 8i ~ ~B[s] via an acceptable computation 

whose use v does not capture too much junk in EB (ie, condition (9)). We say that 

Ne,i is waiting at stage s if 8i E HP[s] but 8i g; ~B[s] by a computation satisfying (9). 

for any Ne,i-node a. When some a sees 8i ~ VeB[s] via an acceptable computation, a 

imposes a B-restraint to preserve the computation 8i ~ ~B[s]. At this point a would 

like to remove 8i from HP, but this would jeopardise the Ne,i-strategy from the point 

of view of Ne,i-nodes to th~ left of a, if the construction later moves to the left. a must 

use the LR-incompleteness of A to attempt to restrain a suitable initial segment A I v 

as in (10) to prevent the construction moving to the left of a. It does this by defining 

a computation p E pAls + 1] with use v. 

We then wait for an 0'-change to invalidate the computation p E U0'[s]. During 

this period (while the computation p E U0'[s] is valid and p E pAls]) we say that Ne,i 

is pending. If such a 0'-change never occurs, then 8i E HP permanently, even though 

8i may be contained in Ve
B. However, then we must have p E U0', and such p's are 

bounded in measure by J.L(U0') < 2-e- 2 . Otherwise, eventually an 0'-change occurs. 

When this happens we can remove 8i from HP permanently, on the assumption that 

the restraint A I u is successful. If the restraint is successful then Ne,i has forced J.L(~B) 

to increase by J.L(8i ) while J.L(HP) has not increased; contributing towards Ne. If the 
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restraint is not successful, then TP 8 will move to the left and a will be reset. In this case 

Ne,i is unsuccessful. However we can argue that the LR-incompleteness of A guarantees 

that enough subrequirements will be successful (ie. the restraint will succeed) that Ne 

will be satisfied. 

Specifically, we argue that if Ne is not satisfied, then infinitely many subrequirements 

will start working. For infinitely many of these, namely, those whose computations 

p E U0' are permanent, we will have 8i ~ ~B acceptable for some a on or left of the 

true path, and thus we have p E pA. But then we have U0' ~ pA, and since A is 

LR-incomplete, f..L(pA) = 1. Each string p E pA corresponds to a clop en set 8 ~ ~B, 

since the B-restraint is maintained as long as the computation p E pA[s] is valid. Since 

f..L(U0') < 1 - Pe by choice of U, pA contains more than Pe measure worth of successful 

p's (recall that Pe is a bound on f..L(Ve
B)). Further, since Ne,i chooses its 8 disjoint from 

those of higher-priority subrequirements, distinct strings in pA correspond to disjoint 

clop en sets in ~B. But then f..L(~B) > Pe, a contradiction. Thus Ne is eventually 

satisfied: there is some {) permanently in HP but q,; ~B. 

3.6. Obstacles when A is ~g and LR-incomplete. In both Theorem 2.13 and 

the construction sketched above, we want to restrain segments of A from changing, to 

avoid N-nodes being reset and some B-computation 8 ~ VB from being destroyed. 

When we want to restrain A to protect 8 ~ VB, we define a computation: rA(z) 

in the first case, p E pA in the second. If A later changes, then 8 ~ VB may be 

destroyed by B-enumerations. In the case when A is c.e., if the attempted A-restraint 

fails then A changes below the use of the computation and the computation is destroyed 

permanently. The N strategy can then try again with 8. In the case where A is ~g, the 

computation might only be destroyed temporarily, and later A might be restored to its 

previous state. Then we would have rA(z)l or p E pA but 8 q,; VB. 

This is not a 'problem in Theorem 2.13 because each N-node uses its own compu­

tation rA(zaJ Eventually some Ne,i-node (3 ?L a will have a computation rA(z,B) 1 

protecting 8 ~ VB. In the end there might be some spurious computations rA (a)l for 

a <L (3, but these are harmless. 

In the LR-incomplete case however, all Ne,i-nodes must share the same string p 

from U0' since they all share the same 8 and f..L(8) is tied to f..L(p). Hence they must 

also share the same computation p E pA. This can be done in the c.e. case, since then 
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the computation p E FA is valid iff the corresponding B-restraint is respected. In the 

bog case however, if the computation p E FA becomes spurious then there would be 

no other computations available to protect 8 ~ VB. Also, the spurious p E FA would 

contribute useless measure to FA which we could not attribute to measure in VB. In 

that case we could not argue that J.L(VB ) ~ J.L(FA) = 1. 

4. Downward density and other results 

We briefly mention some related results. Since this work was done, Barmpalias [2] 

has proved that LR-below any non-Iow-for-random bog set A there is a non-Iow-for­

random c.e. set. That is, if A 1:.LR 0 is bog then 

:3 c.e. B such that 0 <LR B <LR A. 

This is a dual of Theorem 2.13 in the general case of any non-Iow-for-random bog set A. 

By relativising an earlier splitting theorem from [5], Barmpaiias [2] also established 

the upward density of the bog LR-degrees. That is, if A is bog and <LR 0' then there is 

a bog set B such that A <LR B <LR 0'. It is not known (as discussed earlier) whether 

the set B can be made c.e.. Theorem 2.13 can be considered a stronger version of 

Barmpalias's upwards density result in the specific case when A is low. 



CHAPTER 3 

N onmitoticity and LR-degrees 

1. Splittings and mitoticity 

Let A be a c.e. set. A splitting of A is a pair of disjoint c.e. sets C, D such that 

CUD = A. Note that C, D 5:.T A and A5:.T C ED D for such a splitting. In the context 

of c.e. Turing degrees, a splitting is called (Turing) mitotic if C =T D =T A, and the 

set A is called mitotic if it has a mitotic splitting. If it does not have a mitotic splitting 

then it is (Turing) nonmitotic. 

Mitoticity and nonmitoticity were first studied in the context of the c.e. Turing 

degrees. Lachlan [41] constructed a nonmitotic c.e. set, and Ladner [43, 42] proved 

further results about nonmitotic sets and their degrees, including the existence of a 

non-zero completely mitotic c.e. degree, that is, a non-zero c.e. Turing degree in which 

all the c.e. sets are mitotic. Downey and Slaman [24] improved this result and gave an 

alternate method for constructing completely mitotic Turing degrees. 

Some work has also been done on mitoticity in the wtt-degrees. Ladner's construc­

tion from [42] in fact gives a completely mitotic wtt-degree. Downey [18] showed that 

every array nonrecursive c.e. Turing degree contains a completely mitotic wtt-degree, 

and Downey and Stob [25] point out that not all c.e. Turing degrees contain completely 

mitotic wtt-degrees. Study of mitoticity in the Turing and wtt-degrees is motivated 

in part by the connections with notions such as autoreducibility and contiguity; see 

Downey and Stob [25] for a survey on mitoticity and other splitting results. 

In this chapter we will consider nonmitoticity in the LR-degrees. Call a c.e. set 

A LR-mitotic if it has a splitting C, D such that A =LR C =LR D; otherwise A is 

LR-nonmitotic. We prove first that there is an LR-nonmitotic c.e. set of Turing degree 

0', then describe how to modify the construction to make the set low or to avoid a 

non-trivial LR-upper cone. We show that the notions of LR-mitoticity and Turing 

mitoticity differ on the non-Iow-for-random c.e. sets by constructing a c.e. set that is 

LR-mitotic but Turing nonmitotic. It is not known if there is a non-zero completely 
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LR-mitotic LR-degree, though we observe as a corollary of previous results that there 

is no completely TUring-mitotic LR-degree. 

Theorem 3.1 is joint work with George Barmpalias and has been published in [8] 

(see also Appendix A). The notion of LR-nonmitoticity was motivated by Andre Nies 

(in private communications), and was first studied in [8]. 

2. A non-LR-mitotic Turing complete c.e. set 

THEOREM 3.1. There is a c.e. set A which cannot be split into two c.e. sets X, Y 

such that X =LR Y =LR A. Moreover, A ?T 0'. 

We will construct the required set A. Let (Xi, Yi, Vi, qi) be a listing of all quadruples 

of disjoint c.e. sets X, Y, an oracle E~ class V and a rational q < 1 such that J.l(VZ
) ::; q 

for all Z E 2w. We will construct A as well as a sequence of oracle E~ classes Ti to 

satisfy the requirements 

The Ti are uniformly E~, and we will ensure that J.l(T/) ::; 2-i - 2
, so that we can set 

which is a E~ class and has measure < 1. By Theorem 1.5, the requirements Ri suffice 

to ensure that if X, Y is a c;e. splitting of A then A iLR X or A iLR Y. We will argue 

at the end that the set A automatically satisfies A ?T 0'. 

The strategy for satisfying ~ is as follows. We will put a clopen set a of size E into ~A 

and wait until a ~ l/ix; and a ~ ViYi with some use v such that Xds] UYi [s] r v = A[s] r v 

(if this never occurs then Ri is already satisfied). When we see a in both l/ix; and ViYi, 
we can remove a from TA by enumerating a single number into A, and then restrain 

A r v to prevent any other numbers from entering A. Since we enumerate only a single 

number x into A below v, at most one of Xi r v, Yi r v can change later, if they are 

to be a splitting of A. Hence one of Xi r v, Yi r v must be fixed (assuming that Xi, Yi 

are a splitting of A) and thus a ~ l/iXi or a ~ ViYi permanently. We have forced one of 

Vix;, ViYi to increase in size by at least E. We can now repeat with a new a of size E. 

Since Vix; and l/iY; are bounded in measure by qi, after at most 2qi/E many repetitions 

we will have some a which is never covered by ViXi or ViY;, satisfying Ri . At no time 
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do we ever have more than f in TiA, so J.L(T/) ~ f. We can combine these strategies in 

a finite injury setting. 

For each i, let Pi = 2- i- 2 • (1- qi); requirement R;, will work with clopen sets of size 

Pi. It will have parameters 17f, 17f which are clopen sets, 17i := 17f U17f, and Ui which is 

the use of the computation 17i E TiA (when it is defined). Initially they are all undefined, 

and we denote their value at the end of stage S by the suffix [s]. Requirement R;, requires 

attention at stage s + 1 if Ui [s] , 17f [s] , 17 f[ s] are undefined or if they are defined and 

(12) 

and 

(13) Xi[S] U }i[s] r v = A[s] r v. 

The construction. At stage 0 do nothing; at stage s + 1 let i be the least such 

that Ri requires attention at s + 1. 

If uds],17f[s],17f[S] are undefined then let 17f[s + 1] be the leftmost clop en set of 

measure pd2 which is ~ 2w 
- ViXi[S] and 17f[S+ 1] be the leftmost clopen set of measure 

pd2 which is ~ 2w - Vil'i[s], choose uds + 1] fresh (Le., larger than any numbers used 

before) and declare 17i = 17f U 17f E TiA[S + 1] with use Ui[S + 1]. 

If Ri satisfies (12) and (13) then enumerate Ui[S] into A[s + 1] to remove 17i from 

T/[s + 1] and set 17J[S + 1], 17j[S + 1], Uj[s + 1] undefined for all j ~ i. 

Verification. Since we defined Pi < 1 - qi ~ p,(2W - ViZ) for any Z, when we need 

to choose clopen sets 17f ~ 2w 
- ViXi[S] and uri ~ 2W 

- Vil'i[s] they will exist. Note 

that if Ui[S] and Uj[s] are both defined and i < j then Ui[S] < Uj[s]. In particular, if Rj 

receives attention at stage s + 1 and enumerates Uj[s] into A, this enumeration will not 

affect Ri'S computation 17i E TiA[s]. Also, if Ri enumerates uds] into A then this will 

be below the use Yj[s] of 17j E T/[s], so 17j[s] will be removed from T/ when 17j is set 

undefined. Note that at any stage either T/[s] = 0 or TiA[s] = 17ds]' which has measure 

~ Pi. So TA is an A-~~ class and p,(TA) < 1. 

Now we show by induction that each Ri requires attention only finitely often and 

is eventually satisfied. Assume inductively that So is the last stage at which some Ri' 

for i' < i requires attention. After so, no number < uds] will ever be enumerated into 

A. Except for stage So + 1, every time R;, receives attention due to uds] i, it must have 
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received attention at the previous stage due to (12) and (13). But when (12) and (13) 

hold, we will enumerate only the single number Ui[S] into A. If (12) and (13) hold again 

at some t > s, then one of Xdt] f Ui[S] = Xds] f uds] or Y;;[t] f uds] = Y;;[s] f uds] 

must hold since only one number uds] has entered A between sand t. But then either 

o"f[s] ~ \tiXi[t] or orrs] ~ \tiYi[t], and in fact this computation is permanent since 

no number less than the use v will ever enter A after SQ. SO one of J.L(\tixi),J.L(ViYi ) 

has increased by pd2 = J.L(af) = J.L(an. This can happen at most 4qdpi times since 

J.L(ViXi ), J.L(ViYi ) are bounded by qi. So I4, can require attention at most 4qdpi times 

after SQ. Requirement I4, is therefore eventually satisfied since if it were not, it would 

require attention infinitely often which is impossible. 

To argue that 0' '5:.T A, let f be a computable function such that 

X f(i) = Yf(i) = 0, qf(i) = Tl 

and 

z {{O} 
Vf(i) = 0 

if i E 0' 

if i tJ. 0' 

for any Z E 2W. That is, Vfii) contains the string '0' if i E 0', or is empty otherwise. By 

the argument above, Uj reaches a limit for each j, and since Uj can only change if some 

number '5:. Uj[s] enters A at s + 1, the oracle A can compute a stage tj such that Uj[s] 

has reached its limit by tj. Since we always choose the leftmost clopen set for a~i) and 

aJ(i)' we have i E 0' iff i E 0'[tf(i)]' Hence 0' '5:.T A. 0 

3. Low LR-nonmitotics and cone avoidance 

The nonmitoticity strategy of Theorem 3.1 can easily be combined with other re­

quirements in a finite injury setting. We briefly discuss the modifications necessary 

to combine the nonmitoticity strategy with negative requirements to construct, for in­

stance, a low LR-nonmitotic c.e. set, or an LR-nonmitotic c.e. set that is not LR-above 

a given non-Iow-for-random Dog set. 

THEOREM 3.2. There is a low c.e. set that cannot be split into two c.e. sets of the 

same LR-degree. Given any non-Iow-for-random Dog set B, there is a c.e. set A "iLR B 

such that A cannot be split into two c.e. sets of the same LR-degree. 

. ! 
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To make the set A low, we can use the usual strategy of restraining A when we see 

a computation ~~(e)[s] converge. Since the higher priority nonmitoticity requirements 

will act only finitely often, we will have 

which ensures that A' ~T 0' if met for all e. 

To make the set A be 'i..LR a given non-Iow-for-random ~g set B, we can use Sacks 

restraints as in Theorem 2.1. Either of these negative strategies can be combined with 

the nonmitotic strategy in a finite injury setting, since each nonmitotic requirement acts 

only finitely often. 

One modification is necessary to the nonmitoticity requirements in the presence of 

restraints however. If a higher priority negative requirement imposes a restraint on 

A, this restraint may prevent lower priority nonmitoticity requirements from removing 

some strings a from TA. Such strings would become permanent residents of TA, con­

tributing measure to JL(TA). When this happens the nonmitoticity requirement must 

abandon a and start with a new attack a' . However we will no longer have that at 

all times Tt contains at most one attack. To keep the measure of TiA under control, 

requirement Ri must halve its quota each time a higher priority requirement acts (ie, 

imposes or changes its restraint). Each time a higher priority requirement acts, ~ must 

abandon any previous attack a and must restart with a new attack a' half the size of a. 

In a finite injury setting, this will only happen finitely often before ~'s quota is fixed 

and then the verification can proceed as in Theorem 3.1. Since TiA consists of at most 

one attack of each size, we still ensure that JL(TA) < 1 by a suitable choice of the initial 

quotas. The details are a standard finite injury argument. 

Obvious questions remain about which LR-degrees contain LR-nonmitotic c.e. sets. 

In particular, is t?ere a completely LR-mitotic LR-degree - a c.e. LR-degree which does 

not contain an LR-nonmitotic c.e. set? 

4. A Turing-nonmitotic but LR-mitotic non-low-for-random c.e. set 

Clearly all LR-nonmitotic c.e. sets are Turing nonmitotic. Note that all low-for­

random c.e. sets are trivially LR-mitotic since low-for-randomness is closed downwards 

under Turing reducibility. Ladner [43] showed that every noncomputable c.e. set com­

putes a nonmitotic c.e. set. We can apply this result to a noncomputable low-for-random 
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c.e. set to obtain a c.e. set which is Turing nonmitotic but (trivially) LR-mitotic. We 

now show that LR-nonmitoticity and Turing nonmitoticity differ also on non-Iow-for­

random c.e. sets. 

THEOREM 3.3. There is a non-Iow-for-random Turing nonmitotic c.e. set A and 

disjoint c.e. sets C, D such that 

A = CUD and A =LR C =LR D. 

Let (Xi, Yi, cI>i, Wi) be a listing of all quadruples of disjoint c.e. sets Xi, Yi and Turing 

functionals cI>i, Wi. Let Vi be a listing of all E~ classes such that J.L(Vi) < 1. Fix a member 

U of a universal oracle Martin-Lof test. We will construct the required set A as well as 

an oracle E~ class T which will satisfy the requirements 

Pi: TA ss Vi 

~ : Xi U Yi = A =} cI>;i =1= A V wii =1= A. 

We also construct the c.e. sets C, D such that enD = 0 and CUD = A, and oracle 

E~ classes V C , V D such that 

(14) 

By Theorem 1.5 this ensures that A 5:.LR C, Dj A =LR C =LR D follows since C, D 5:.T 

A. 

The requirements Pi are the standard non-Iow-for-randomness requirements: we put 

a clop en set a into TA, wait until a ~ Vi and then remove a from TA by enumerating 

into A. With J.L(a) fixed, after finitely many repetitions J.L(Vi) will not be able to increase 

any further and we will satisfy Pe. 

The requirements ~ are the Turing version of the nonmitoticity requirements. The 

basic strategy is similar to (in fact, simpler than) that of Theorem 3.1: choose a witness 

x not yet in A and wait until 

cI>X (x)[s] 1= 0 and wy 
(x)[s] 1= 0 with use u such that X[s] U Y[s] r u = A[s] r u. 

When this occurs, enumerate x into A and restrain A to prevent any other numbers 

< u from entering A. Since at most one of X r u, Y r u can change, at least one of 
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<pX(x), IJTY(X) =1= A(x) = 1. This is the strategy originally used by Lachlan [41J to 

construct a nonmitotic c.e. set. 

Whenever a number is enumerated into A, we will also enumerate it into one of C 

or D, ensuring that CUD = A and CnD = 0. To meet (14), we will trace strings from 

U A into V C and V D. That is, if we see p E U A with use v then we will put pinto V C 

and VD also with use v. The danger is that if some number x < v is enumerated into 

A, then p might be removed from U A. Since we can only enumerate x into one of C 

or D, say C, we will only be able to remove p from V C . If no other numbers < v ever 

enter A, then we will never be able to remove p from V D and it will become junk. We 

need to keep this junk small so that J1.(Vc ) and J1.(VD ) are < 1. 

If the enumeration is on account of a P-requirement, the solution is simple. We can 

just enumerate two numbers x and x-I into A (even though one is enough to fulfil P's 

desire of removing a from TA). We can put one into C and the other into D. We cannot 

do this for the nonmitotic requirements though, as they depend on there being only a 

single enumeration into A below the use u. However we can use the ideas from the 'cost 

function' construction of a noncomputable non-Iow-for-random ([39], see [60]). Let 

cost(x,s) = J1.( {a: a E UA[sJ with use> x}). 

This is the amount of junk that we risk contributing to one of VC, VD if we enumerate 

x into A at stage s. We will give each requirement R-i, a quota f, and will only allow R-i, 

to enumerate a number x if cost(x, s) :::; f. By a familiar argument from cost function 

constructions, we can argue that R-i, will eventually have a suitable x that it can use for 

d· aI' . . t n-.X ,T, Y lagon lsmg agams 'J.' , 'J' • 

Each requirement Pi has a parameter ai which is a clopen set and Zi which is 

a number. They are initially undefined and may be redefined or declared undefined 

during the construction. It also has a quota 2-ki , which is the amount Pi is allowed to 

contribute to TA. Initially we set ki = i + 2, and ki may be incremented during the 

construction. 

Each requirement Ri has a parameter Xi which is initially undefined and may be 

defined or declared undefined during the construction. It also has a quota 2-j ;, initially 

set to ji = i + 2, which may be incremented during the construction. The suffix [sJ 

indicates the value of a parameter at the end of stage s of the construction. 
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Requirement Pi requires attention at s+ 1 if ads] j and zds] j, or if ads] L ai E TA[s] 

and ai ~ Vi[s]. We take action for Pi by doing the following. If ails], Zi[S] j then choose 

ads+ 1] to be a clopen set of measure 2-ki [s] that is disjoint from any previous adt] used 

since the last stage when Pi was injured. Choose zds + 1] to be a fresh odd number (ie, 

larger than any number used so far in the construction) and declare ai[s+l] E TA[s+l] 

with use zds + 1] + 1. If ails], zds]l and ails] ~ Vi[s], then enumerate zds] + 1 into A 

and into C, and enumerate Zi[S] into A and D. Choose a new ads + 1] and zds + 1] as 

above. 

Requirement ~ requires attention at s+ 1 if xds] j, or if xds] L If>;i(Xi)[S] 1= 0 and 

W~(Xi)[S] 1= 0 with use u, xds] ¢ A, and Xds] U }i[s] r u = A[s] r u. We take action 

for Ri by doing the following. If xds] j then choose Xi fresh (larger than any numbers 

used so far in the construction). Otherwise (when ~ requires attention for the second 

reason), check if 

(15) cost(xds], s) ::; Tj;[s]. 

If so, then enumerate Xi[S] into A and into C. If not, then abandon the old Xi[S] and 

choose xd s + 1] fresh. 

To injure a requirement Pi at stage s + 1 means to set ads + 1] j and zds + 1] j 

and to set kds + 1] = ki[s] + 1. To injure a requirement ~ means to set Xi[S + 1] j and 

jds + 1] = jds] + 1. 

We order the requiremeats in the order Po, Ro, Pl , R l ,··· Pn , Rn .... 

The construction. Initially A, C, D are empty and T, V are empty (as sets of 

axioms). We give the construction of VC and VD in advance. At stage s, for each 

P E UA[s] with some use u, put pinto VCrs + 1] and VD[s + 1] (if, it is not in there 

already) with use v, where v is the least even number ~ u. 

Now for the construction of A, C, D. At stage 0 do nothing. At stage s + 1, take 

action for the highest priority requirement that requires attention at stage s + 1. Injure 

all lower priority requirements. 

End of construction. 

Verification. First, note that if a requirement Pi enumerates into A, then it enu­

merates two numbers z, z + 1, and z goes into C and z + 1 into D. Since all strings in 

VC and V D have even use, if a string is removed from U A because of the enumeration 
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of z or z + 1, then it is removed from both VD and VC. So the P-requirements do not 

contribute junk to JL(VC), JL(VD). If requirement ~ enumerates a number x into A at 

s, then it must satisfy (15). Hence the enumeration of x can contribute at most 2-iils] 

towards JL(VD). By the construction, if ~ later enumerates another number, then it 

must have been injured since s and so its quota 2-j ; would have halved. So each R;, can 

contribute at most twice its initial quota to JL(VD), and by the initial choice of ji, we 

have JL(VD - UA) ~ 2-1. Since JL(UA) ~ 2-2, we have JL(V D) < 1. By the definition 

of VC, V D we have UA ~ VC, UA ~ yD. Hence A ~LR C and A ~LR D. Note that 

actually VC = UA ; in fact, A ~T C. 

We must verify that each requirement requires attention only finitely often, and 

hence is eventually satisfied. Assume inductively that no requirement of higher priority 

than Pi requires attention at any stage S ~ So, and that So is the least such. At So, we 

will define (Ti, Zi and they will remain defined thereafter. Each time Pi receives attention 

after So, it is because (Ti ~ Vi· But each time we choose a new clopen set for (Ti, we 

choose it disjoint from those previously used. So after receiving attention at most 2k ;[so] 

many times after So, Pi will be satisfied since JL(Vi) cannot increase above qi < 1. 

Assume now that no requirement of higher priority than ~ requires attention at 

any stage S ~ So, and that So is the least such. Note that ji is fixed after So. If ~ 

requires attention at some stage S after So such that (15) holds, then it will enumerate 

xds] into A and R;, will be permanently satisfied. We just need to argue that eventually 

this will occur. Assume to the contrary that R;, requires attention infinitely often after 

So, at stages So < S1 + 1 < S2 + 1 < .... Let Jk = {p : p E UA[Sk] with use > XdSkJ}; at 

each Sk, we have JL(Jk) = cost(XdSk]' Sk) > 2-j ;. Since all lower priority requirements 

are injured at Sk, no numbers < Sk will enter A after Sk. By the usual assumptions 

about the use of computations, all p E Jk have use < Sk. So Jk ~ UA. Since XdSk + 1] 

is chosen fresh, we have cost(XdSk + 1], Sk) = O. At sk+1 we again have JL(Jk+1) = 
cost(XdSk+l], Sk+l) > 2- j

;. As above, Jk+l ~ UA. But since UA is prefix-free, Jk and 

Jk+l must be disjoint. So during each interval Sk < S ::; Sk+t. JL(UA) increases by at 

least Tj;. But this is impossible since JL(UA) < 1. So eventually there must be an Sk 

at which (15) holds. Then R;, will be satisfied. 0 
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What we have done in this construction is to make A :::;T C by coding all enumer­

ations into C, and to make enough extra enumerations into A but not into D to make 

A be low-for-random but non-computable relative to D. 

A corollary of previous results is the fact that every c.e. LR-degree contains a Turing 

nonmitotic c.e. set. Ingrassia [29J (see Downey and Slaman [24] for a more accessible 

proof) showed that the degrees of nonmitotic c.e. sets are dense in the c.e. Turing 

degrees. That is, given c.e. sets B <T C, there is a Turing nonmitotic c.e. set A with 

B <T A <T C. Barmpalias, Lewis and Soskova [5J showed that every c.e. LR-degree 

contains infinite chains of c.e. Turing degrees; in particular it contains c.e. sets B <T C. 

Combining these two results we obtain the desired fact. 

COROLLARY 3.4. Every c.e. LR-degree contains a Turing nonmitotic c.e. set. 

As mentioned previously, it is not known if there is a completely LR-mitotic LR­

degree; that is, a c.e. LR-degree which does not contain any LR-nonmitotic c.e. set. 

However Corollary 3.4 establishes the weaker result that there is no completely Turing 

mitotic LR-degree. 



CHAPTER 4 

A non-cuppable LR-complete c.e. set 

1. Non-cupping and LR-completeness 

In this chapter, we turn our attention to the LR-degree of 0'. We will prove that 

the LR-degree of 0' contains a non-cuppable c.e. Turing degree, that is, a c.e. set that 

cannot be joined to 0' by any incomplete c.e. set. The theorem presented in this chapter 

is joint work with George Barmpalias, and has been published in [8] (see also Appendix 

A). 

THEOREM 4.1. There is a c.e. set A such that A ~LR 0' and A EB W ¥;T 0' for all 

c.e. sets W <T 0'. 

The proof is given in section 2. 

LR-completeness, the property of being ~LR 0', is a notion that has been of interest 

apart from studies of relative randomness. Dobrinen and Simpson [11] defined the 

notion of almost everywhere domination, in connection with the reverse mathematics 

of certain results from measure theory. A is almost everywhere dominating if the class 

of X E 2W such that every total function 9 -::;'T X is dominated by some total f -::;'T A 

has measure 1.1 Kjos-Hanssen, Miller and Solomon [31] showed that this notion of 

almost everywhere domination is equivalent to LR-completeness (see Nies [60] 5.6.30). 

Dobrinen and Simpson pointed out that almost everywhere domination implies highness, 

Binns, Kjos-Hanssen, Lerman and Solomon [9] showed that not all high degrees are 

almost everywhere dominating, and Cholak, Greenberg and Miller [12] showed that 

there are Turing-incomplete c.e. sets that are almost everywhere dominating (though 

this also follows from the result from [5] that every c.e. LR-degree contains infinite 

chains of c.e. Turing degrees and the equivalence between LR-completeness and almost 

everywhere domination). 

1 An equivalent notion is uniformly almost everywhere dominating (u.a.e.d.): A is u.a.e.d. if there is a 
single f ::;T A such that the measure of those X such that f dominates all total g ::;T X has measure 
1. This was shown to be equivalent to (non-uniform) almost everywhere domination by Kjos-Hanssen 
[30J. 
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LR-completeness has also been studied in comparison to other highness properties 

such as (regular) highness, superhighness2 and 0'-trivialising 3. See for example [67] or 

[4]. 

One question that is of interest is whether there is a degree-theoretic property on 

which the LR-complete and the high 'lUring degrees can be separated. That is, a formula 

¢ in the language of the C.e. 'lUring degrees such that some high c.e. degrees satisfy ¢ 

but no LR-complete c.e. degrees satisfy ¢. Barmpalias and Montalban [7] constructed 

a cappable c.e. 'lUring degree that is LR-complete; that is, a c.e. set A which forms 

half of a minimal pair with another c.e. set and is ?:.LR 0'. Hence being cappable is 

not such a property. We strengthen this result by showing that there is a non-cuppable 

LR-complete c.e. 'lUring degree. Hence non-cuppability is also not such a property. 

Non-cuppable c.e. degrees were first constructed by Yates, Cooper [13] (unpub­

lished). Harrington constructed a high non-cuppable c.e. degree, in fact proving the 

stronger theorem that for every high c.e. degree a there is a high c.e. degree b that 

cannot be cupped to a by any c.e. degree c l. a (see Miller [53]). A tree strategy for 

constructing non-cuppable degrees was sketched in Cooper [15], the original construc­

tions of Yates, Cooper and Harrington being pinball constructions. 'free constructions 

were also given by Li, Slaman and Yang [44] and Yang and Yu [76], whose basic strategy 

we will use in Theorem 4.1. 

It is well known from work by Ambos-Spies, Jockusch, Shore and Soare [1] that 

the cappable degrees form an ideal within the c.e. 'lUring degrees. Harrington estab­

lished that the non-cuppable degrees form a proper subideal of the cappable degrees, 

by showing that all c.e. degrees either cup or cap and some do both (see Soare [68] 

XII.4.3). 

Since the LR-complete sets are a proper subclass of the high sets, Theorem 4.1 can 

be seen as a strengthening both of Barmpalias and Montalban's cappable LR-complete 

c.e. set, and of Harrington's construction of a high non-cuppable c.e. set. 

An open question regarding the LR-complete c.e. sets is whether there is a single 

noncomputable c.e. set that is computable by all LR-complete c.e. sets. A corollary of 

Theorem 4.1 is that if such a set exists then it must be non-cuppable. 

2 A is super high if A' =tt 0'. 
3 A is 0'-triviaJising, also known as almost complete, if 0' is K-trivial relative to A. See [20J for discussion 
of this notion. 
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2. Proof of Theorem 4.1 

In the following we fix U to be the second member of a universal oracle Martin-Lor 

test, so that JL(UX ) $ 2-1 for all X E ~. We will construct a non-cuppable set A and 

an A-E~ class VA such that U0' ~ VA and JL(VA) < 1. By Theorem 1.5 this ensures 

that A ~LR 0'. 

We adopt the assumptions that, for a 'lUring functional r, rX(z)[s] 1 only if 

rX(y)[s] 1 for all y < z, and that userX(y)[s] $ userX(z)[s] $ s if rX(z) 1 and 

y $ z. We consider 'lUring functionals r as c.e. sets of axioms (z, y, a) (asserting that 

rX (z) = y for all X E 2w with a C X), which are consistent in the sense that if (z, y, a) 

and (z, y', a') are both in the set, for y' # y, then a and a' are incomparable. We will 

abbreviate r XElw as r XY
. 

2.1. Making A non-cuppable. We describe the basic strategies for constructing 

a non-cuppable degree, based on [44, 76]. For convenience, we can assume that 0' ~ 2N, 

the even numbers. We will construct 'lUring functionals ~e to ensure that the following 

holds for all e E N: 

(16) 

where (re , We) ranges over all pairs of a 'lUring functional and a c.e. set; assuming 

that 0' ~ 2N we let K = D u 0' where D ~ 2N + 1 is an auxiliary c.e. set that 

we enumerate. Although K = D u 0' is not the 'standard' halting set, we use the 

letter K nonetheless as we can think of it as a version of the halting problem which 

we have some control over (via the set D). In the following discussion we omit the 

index e. The idea is to let ~ W copy rAW by monitoring the 'lUring reduction rAW 

and restraining A to preserve the agreement of the two computations. The problem 

with this approach is that the restraint on A may well have limit 00, in which case 

very little can be done to make A nontrivial, let alone LR-above 0'. The solution is 

to split N into infinitely many subrequirements Mp which are responsible just for the 

definition of ~ W (p), thus splitting a potentially infinite restraint into infinitely many 

finite restraints. The strategies for the subrequirements Mp will be coordinated by a 

master N strategy which will make sure that ~ is consistent and this coordination will 

be implemented on a tree of strategies. 
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We can think of N as having two outcomes 00 <L f (Le. 00 is to the left of f) 

corresponding to whether there are infinitely many expansionary stages in rAW = K or 

not, and Mp having outcomes 00 <L f according to whether rAW (p) 1 or equivalently, 

.6. W (p) 1. We will have a uniformly labelled tree of strategies with each strategy N or 

Mp occupying a single level of the tree. For the consistency of .6. we make sure that at 

any Mp-Ievel (Le. occupied py an M requirement) and at any stage at most one node a 

will be responsible for .6.W(p) 1 (by preserving A in rAW(p) 1). Any nodes to the right 

of a may adopt a's .6.-definition but if a node to the left of a wishes to define .6.(p) it 

must first cancel the .6. computation that a holds. This happens by enumerating into 

the auxiliary set D which in turn causes a W-change (provided that the rAW = K 

reduction is valid). Eventually, if rAW = K, at each Mp level there will be exactly one 

node on or to the left of the true path which permanently preserves .6.W(p) 1== 0'(p). 

Otherwise some node will witness the partiality of rAW. As in any 0" priority argument 

the restraints imposed on a node on the true path will be finite. 

Each Mp-node a has a flip-point d, which is the number enumerated into D when we 

wish to cancel the computation .6. W (p). When a is visited, it checks if the computation 

rAW (d) has changed since the last time it was visited, and if so it plays outcome 00. 

Otherwise we may define .6.W(p) = rAW(p), with W-use u = userAW(d) and restrain 

A r u. If we later want to visit a node /3 to the left of a, we enumerate the flip-point d 

into D whilst maintaining a's A-restraint. This enumeration should force a W-change 

below u, and so a will not hold a .6.-computation anymore (if this does not happen 

then N will be satisfied by a finite outcome). Then we can drop a's restraint and /3 

can take action. This must happen immediately upon seeing the next N -expansionary 

stage, otherwise some other node ex' to the right of /3 may act first and define another 

.6.-computation which prevents /3 from acting. For this reason when we enumerate d 

into D we create a link (T, /3) from the N-node T to /3, and when T is next visited at an 

expansionary stage we will follow the link straight to /3. 

2.2. Measure-guessing nodes and LR-completeness. This aspect of the con­

struction is largely the same as in Theorem 2.13, however the presence of links neces­

sitate some small modifications compared to the method of Theorem 2.13. For com­

pleteness and so that this chapter might be self-contained, we discuss the strategy for 

making 0' ~LR A. 

I 

, 

\ 
I 

if }" 
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To make A LR-complete, it suffices to construct an A-E~ class VA with U0' ~ VA 

and JL(VA ) < 1. Without loss of generality we may assume that if (a, T) is enumerated 

into U at stage s then lal = ITI = s. We will also use the hat-trick for U0': let 

ks = min{x : x E 0'[s]-0'[s-1]}, or k = s if there is no such x and define 0'[s] = 0'[s] r k. 

Then U0'[s] = {a : (a, T) E Us for some T ~ 0'[sJ}. In the following we assume that 

U0'[s] and 0'[s] refer to U0'[s] and 0'[s] respectively. Infinitely often we have true stages 

s at which U0'[s] = U0'fn C U0' for some n, and thus JL(U0'[s]) < JL(U0'). 

Whenever an interval a appears in U0', we add it to VA with large A-use u. If 

a 0' -change later removes a from U0', we could remove it from V A by enumerating u 

into A, provided that u is not restrained by some requirement. The A-change may also 

remove some legitimate intervals from VA, but we add these again with the same use 

as before. This clearly gives U0' ~ VA. The conflict with the non-cupping strategy is 

that the A-restraints will prevent us from removing some superfluous 'junk' intervals 

a from V A. For the argument to succeed, we must ensure that the total measure of 

junk intervals JL(VA - U0') < ~. We assign each requirement (each level of the tree) a 

quota €, which is the amount of junk measure that requirement is allowed to capture. 

We implement the negative strategies in such a way that we have at most one node 

imposing restraint at each level of the tree. A restraint may only be imposed on A 

if the (current) junk measure that it captures is less than the quota. To ensure that 

strategies will eventually be able to impose restraints under this restriction, we choose 

the quota €(k) of level k of the tree so that 'L-j>k €(j) < €(k) (in this way the lower 

priority requirements will not capture more than €(k) of junk). 

To ensure that the strategies do not exceed their junk quota, the predecessor of 

each N and M node will be a node with a strategy G which measures M(U0') in a rrg 
way. The backup nodes G successively subdivide the interval [0,1), assigning each of 

its outcomes an i~terval [q, r) which corresponds to a guess that M(U0') E [q, r). The 

construction will make sure that if the backing node of a strategy predicts the right 

interval [q,r) of M(U0'[S]) then the junk measure that it captures will increase by no 

more than r - q after it acts. If we choose r - q = €, then 0: will capture at most 2€ of 

junk, which is acceptable if we choose the quotas €(k) such that 'L-kEw 2€(k) < ~. An 

analysis of the permanent restraints and the timing of the enumerations into A in the 

construction will verify that M(VA 
- U0') < ~. 
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2.3. Combining the strategies. The difficulty in combining the non-cupping and 

LR-completeness strategies stems from the fact that the non-cupping subrequirements 

are not independent of each other or of the parent N-node. In previous constructions 

using the measure-guessing strategy such as [12], [7] and Theorem 2.13, when a node 

holds a restraint under a measure guess which proves wrong, we initialise that node 

and all lower-priority nodes. However here we can only initialise non-cupping parent 

N-nodes since by initialising an M-node we may make ~ inconsistent. Once a ~ w (p) 

axiom has been enumerated, we must retain the A-restraint until the axiom is invali­

dated by a W-change or the parent N-node is initialised. 

Thus whenever some M -node holds a restraint under a wrong assumption about 

j.L(U0') we just try to invalidate the corresponding ~ axiom by enumerating the flip 

point and waiting for a suitable W-change. The construction will make sure that if this 

does not happen and N is not reset, the junk measure from the subrequirements of N 

will be less than the quota of N, even though the junk measure of some M may turn out 

to be larger than its quota. Overall this satisfies N trivially and with small enough cost. 

The trick which allows the above quota-junk relation is in the enumeration of U0': it 

is prefix-free and if some interval a leaves U0' then all intervals which were enumerated 

after a leave as well, at the same time. 

2.4. Priority Tree and Definitions. The priority tree is a finite branching tree 

which consists of the parent l).odes labelled Ne, the subrequirement nodes labelled Me,p, 

and the measure-guessing backup nodes labelled G. Let (-, -) be a monotone 1-1 com­

putable function from N x N onto N. If JaJ = 2(e,0) + 1 then a is labelled Ne and if 

JaJ = 2(e, p + 1) + 1 then it is labelled Me,2p (by assumption 0' C 2w and so only even 

~W(p) arguments need to be considered). If JaJ = 2e then a is labelled G. We write 

R < R' to indicate that the requirement R occupies an earlier level of the tree than 

requirement R' (where R, R' are one of G, Ne, Me,p)' 

The Ne-nodes T have outcomes 00 <L f and are associated with a functional ~T 

that is built by the Me,p-nodes below T and is occasionally cleared and started afresh 

when T is reset. The Me,p nodes have outcomes 00 <L f and are associated with a 

flip-point do which may change in the course of the construction. 

A measure-guessing G-node 'Y has outcomes qo <L ql <L q2 <L q3 which correspond 

to guesses about an interval in which j.L(U0') may lie. We inductively assign to each node 
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a an interval fa as in Theorem 2.13. Start with i). = [0,2-1) for the root node >.. For a 

node a with fa defined, if a is a G-node then subdivide fa equally into four subintervals 

and assign them to fo.~qi in order. If a is an N- or M-node then let fo.~x = fa for 

x E {oo, f}. We write q(a) for the lower endpoint of fa and €(a) for the width of fa· 

We refer to €(a) as a's resolution and q(a) as its measure guess. Since all nodes of the 

same label have the same length, we may write €(Ne) or €(Me,p) to denote €(a) for any 

node a labelled Ne or Me,p, respectively. For each N or M requirement R we have 

(17) L 2€(R') < €(R) and 
R'>R 

where R' is an N or M requirement. 

The ordering <L on the outcomes can be extended lexicographically to the nodes 

of the tree. We say that a has higher priority than /3 or write a < /3 if either a c /3 or 

a <L /3. 
We write rOo for the restraint imposed on A by node a, and a- for the predecessor of 

a. Also let ROo = max{r{3 : /3 <L a or /3 C a}. All parameters have a current value each 

time they are mentioned in the construction. It is convenient in this chapter to use the 

suffix [s] to denote the value of a parameter at the start of stage s. For an Me,p-node 

a, we write 7(a) for the unique Ne-node 7 C a. We refer to 7 as a's parent, or say that 

a is working for 7. An Me,p-node a with parent 7 is enabled if 7~00 C a and for every 

Me,p,-node a' with 7 C a' C a, we have a'~ f C a. Otherwise, a is disabled (which 

means that it regards rAW. as partial and no further action is needed for Ne ). 

2.5. Construction. Set A[O] = 0,.6.T = 0 for all N-nodes 7, and do. j, rOo = 0 

initially for all M-nodes a. When a parameter is assigned a value, it retains that value 

until explicitly given a new value. To reset an N-node 7 means to empty .6.71 set r{3 = 0 

and d{3 j for any M-nodes /3 working for 7, and remove any links to or from 7 or any 

M-node /3 working for 7. To reset an M-node a means to remove any links to it and 

if rOo i- 0 and do. L enumerate do. into D, setting do. j. To reset a G-node means to 

remove any links to it. The construction will explicitly declare certain nodes a to be 

accessible at each stage, which does not merely mean that a C TP s ' If a is an N-node, 

it will also declare certain stages to be a-expansionary. We give the enumeration of VA 



74 4. A NON-CUPPABLE LR-COMPLETE C.E. SET 

during the stages s of the construction in advance: 

Enumeration of VA. For each (J,p) E U[s] with p c 0'[s] but 

(J f/. VAts], if (J E VA[t] with use u for some t < s take the largest 

(18) such t and if (J, p') E U[t], p' C 0'[s], then enumerate (J into 

VAts + 1] with use u. Otherwise, put (J into VAts + 1] with fresh 

use. 

The construction will occasionally call the following routine, which is needed in order 

to access certain outcomes x of nodes Q. 

Routine L(Q, x, s). Reset all N-nodes which are to the left of 

Q ...... x. Then consider the longest node 7 C Q which has label 

Ne for some e E N and there is some Me,p-node {3 ::J 7 with 

(19) {3 >L Q ...... x and r/3[s] =1= O. If 7 exists, let {3 be the shortest node 

as above, enumerate d/3 into D (if d/3 1), set d/3 i, create a link 

(7, Q) associated with outcome x and go to step 4. Otherwise let 

TP s,t+l = Q ...... x and go to step 3. 

At stage s, perform the following steps in order. 

Step 1. (Reset some nodes) Look for the highest priority node Q such that some {3 ;2 Q 

has been accessed since Q was last reset and J.L (U0' [s]) < q( Q). If there is such, reset Q 

and all nodes of lower priority than Q. 

Step 2. (Drop some restraints) For each M-node Q with rex =1= 0 and W I rex[s] =1= W I rex[t] , 

where t is the stage at whidi the restraint rex was last set, set rex = 0 and reset Q ...... f 

and all nodes of lower priority than Q ...... f. 

Step 3. (Define TPs in substages) Let TPs,o = >.. Let t be the largest number such 

that TPs,t 1· If ITPs,tl ~ s then go to step 4. Otherwise let Q = TPs,t and check if 

(20) there is an M-node {3 SL Q with 7({3) ...... 00 C Q, r/3 =1= 0 and d/3 i . 

The check for (20) is to ensure that an M -node does not try to act while a higher­

priority M -node is awaiting a W -change. This could potentially happen if a parent 

node 7 was bypassed by a link, rather than accessing outcome 7 ...... f. Preventing this 

helps simplify the verification later. 

If (20) holds, go to step 4; otherwise declare Q accessible and go to the relevant 

clause below. 
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• 0: is a G-node. Let lao, al), ... [a3, a4) be the intervals corresponding to the 

outcomes of 0: and f = al - ao be the resolution of 0:. Let ga(s) be the largest t < s 

such that 0: C TPt, or 0 if such t does not exist. Let 

(Lemma 4.3 verifies that l/ always exists) and let i be such that l/ E [ai, ai+l), and run 

routine L(o:, qi, s). 

• 0: is an Me,p-node. If 0: is a disabled Me,p-node, let TP s,t+l = 0:""00 and go 

to step 3. Otherwise do as follows. For brevity let d = da ,7 = 7(0:), W = We,r = r e, 

u = userAW(d)[s) (if defined) and 

(22) ha(s) = max{t::; s: l/(O:-, s) = /-t(U0'[t])} 

where 0:- is the predecessor of 0:. ha(s) is the stage lor which the measure-guessing 

G-node of 0: gave its outcome. If d i choose a fresh value for d. 

Ml. If ~~ (p)[s)! let TPs ,t+l = 0:"" I and go to step 3; if ~~ (p)[s)! for some Ne-

node 7' <L 0: then define ~~ (p) = ~~ (p) with the same use, let TP s,t+l = 

0:"" I and go to step 3. 

M2. Otherwise if rAW (d)[s) i or if A r u[s] i= A r u[t] or W r u[s] i= W r u[t] for 

the last stage t when 0: was accessible, or if 0: has never been accessible before, 

then run routine L(o:, 00, s). 

(23) 

M3. Otherwise, if 

we define ~~ (p) = rAW (p)[s] with use u, impose restraint ra[s + 1) = u, and 

go to step 4. 

M4. In any other case go to step 4. 

• 0: is an Ne-node. Let 

l(o:, s) = min ( {n : r:we(n)[s) i= K(n)[s]} 

U {d : d was enumerated into D in step 1 or 2} ) , 
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and say that stage s is a-expansionary if l(a, s) > l(/3, t) for all Ne-nodes /3 :5:L a and all 

t < s such that /3 was accessible at t. If s is not a-expansionary, then let TP 8,t+1 = a""' f 

and go to step 3. Otherwise, if there is a link (a, /3) associated with outcome x of /3 

which was created at stage t < s, remove it and run routine L(/3, x, s). Otherwise run 

routine L(a, 00, s). 

Step 4. Set TP 8 = a for the longest a which was declared accessible in step 3. Reset 

all nodes > L TP 8 and enumerate into A the least number which is not in A and is 

greater than all r.B [s + 1] for all M -nodes /3. 

2.6. Verification. In the following, whenever we say 'M-node' we mean an enabled 

M-node, as disabled M-nodes have no effect on the construction. A basic fact which 

stems from the hat-trick in the enumeration of U0' and will be used repeatedly in the 

verification is the following: if So < t :5: S1 are stages and j.l(U0') takes its minimum 

value in (so, SI] at t, then U0'[t] ~ U0'[s] for all s E (so, SI]. 

LEMMA 4.2. Links can never be nested or crossing. That is, if (7', a) and (7", d) are 

two distinct links both present at stage s, with 7' cae /3 and 7" C a' C /3 for some 

node /3, then a C 7" or a' C 7'. Furthermore, at the end of any stage s, there is at most 

one link (7', a) with 7' C a ~ TP 8, and such a link was created at stage s. 

PROOF. By induction on the stages. Note that initially there are no links and at 

any stage at most one link i~ created. Suppose that the claim holds at stage s and a 

link (7', a) is created at stage s + 1. Then a is accessible at stage s + 1 or a link was 

travelled to a, and any links (7", d) with 7" C a' ~ a present at the start of stage 

s + 1 have been travelled and removed. If there was a link (7''', a") at the start of stage 

s + 1 for some 7''' cae a", then that link would have been travelled and a would not 

be accessible. Thus the new link cannot be crossing or nested within an existing link. 

Finally any links (7', a) with 7' cae TP 8+1 which are present at the start of stage 

s + 1, would be travelled and removed during the definition of TP8+1 in step 3. Since 

at most one link is created under routine (19), the last claim of the lemma holds. 0 

The following lemma verifies that a G-node will always have a valid outcome to play 

when it is accessible. Note that we need to verify this because of the presence of links 

in the construction; in Theorem 2.13 such a lemma was not necessary. 
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LEMMA 4.3. Suppose a G-node 'Y is accessible at stage So and let SI = 91'(SO) be the 

greatest stage < So such that 'Y C TP81 (or 0 if such stage does not exist). Then there 

is some t with SI < t ~ So and J.L{U0'[tJ) E II" Thus, when'Y is accessible in step 3, 1/ 

(as in (21» will exist. 

PROOF. Let "I, So and S1 be as in the lemma. The proof is by simultaneous induction 

on the length of "I and the stage So. For the root node the claim is trivial, so let 1"11 > 1 

and suppose that the claim is true for all G-nodes shorter than "I and at all stages ~ So· 

Let "I' = "I r 1"11 - 2 be the last G-node above "I and note that if "I has never been 

accessed before, a suitable t must exist or else "I' would not have chosen the outcome 

leading to "I. Suppose then that "I has been accessed before. If "I' is also accessible 

at So, since "I' C "I we have 91"(So) ~ S1 and by hypothesis there is a suitable t with 

91"(so) < t ~ So and f1.{U0'[tJ) E 11" 

If "I' is not accessible at So, then there must be a link (T, (3) at So, with T C "I' ~ (3 C 

"I. Also by induction hypothesis there must be a stage to < So such that "I' is accessible 

at to and f1.{U0'[tJ) E 11' for some t with 91"(to) < t ~ to. We can assume that to is the 

greatest stage < So with the above property. If t2 is the stage at which the link (T, (3) 

was created we have t2 ~ to. Now TP 8 72. "I for to ~ s ~ t2, as otherwise to would not 

be the greatest with the above property. Also TP 8 72. "I for t2 < s < So as otherwise the 

link would be travelled and removed before So, because by Lemma 4.2 links cannot be 

nested. So Sl < to and Sl ::; g'Y,(to) since "I' C "I, which means that S1 < t ::; So. 0 

By the construction, if an Me,p-node a has To[S] 1= 0 and do L then do has not 

been enumerated into D via resetting or routine (19). Conversely, To[S] 1= 0 and do i 

indicates that the construction has attempted to invalidate a's ~ W (p) computation. 

The definition of T-expansionary stage and the check for (20) in step 3 ensures that no 

Me-node of lower priority than a will be accessible again until the ~ W (p) computation 

is invalidated. 

A restraint To is called permanent at stage s if To[S] = To[t] 1= 0 for all t ~ s; it 

is called permanent if it is permanent at some stage. Let P be the set of nodes with 

permanent restraints. 

For anM-node a, let Jo[s] = {D' E VA[s+1]-U0'[s]: RO'[s+l]::; useD' < TO'[s+l]}, 

which is the junk intervals that are restrained at stage s by a but not by any higher­

priority node at the end of stage s. For an Ne-node T, let Qr[s] = U JO'[s] , where the 
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union is taken over all Me-nodes Q which are either ~ 7 or <L 7. The following lemma 

shows that if the junk captured by an M-node becomes greater than the node's quota 

2«: then the node is reset; and although an M-node may sometimes capture more than 

its quota of junk (if the junk is never released via step 2), the total junk captured by 

nodes belonging to an N-node remains within the N-node's quota. 

LEMMA 4.4. Let {3 be an M-node and S a stage such that T/3[S+ 1] -:f. 0 and d/3[s+ 1]1 

(so {3 has not been reset since T/3 was set -:f. 0). Then J.l(J/3[s]) < 2«:({3). Let 7 be an 

N-node. Then J.l(Qr[s]) < 2«:(7) for all s. 

PROOF. Suppose {3 and S are as in the first claim. Let t be the stage when T,B[S + 1] 

was set. At t, VAfr[t] = vAfr[s + 1] for T = T/3[S + 1] as new intervals in VA have use 

chosen fresh. So, 

(24) 

J.l(J/3[S]) = J.l(VAfr~[s + 1]- VAfR~[s + 1]- U0'[s]) 

~ J.l(vAfr~[t]- VAfR~[t]- U0'[h/3(t)]) 

+ J.l(U0'[h,B(t)]- U0'[s]) 

where the first term of (24) is the junk that {3 captured when it imposed its restraint 

T/3[S + 1], and the second is the measure which appears to be in U0' at h,B(t) but 

later is removed from U0'. By (23) the first term is less than «:({3). Suppose that 

J.l(U0'[h/3(t)] - U0'[s]) ;::: «:({3), We have U0'[h/3(t)] - U0'[t] = 0, as otherwise (by the 

canonical enumeration of U0') there would be a stage t', h/3(t) < t' ~ t with J.l(U0'[t']) < 

J.l(U0'[h/3(t)]), which contradicts (22). So we must have J.l(U0'[t]- U0'[s]) ;::: «:({3). But 

then, again by the canonical enumeration of U0' there would be a stage t', t < t' ~ s 

such that J.l(U0'[t']) ~ J.l(U0'[h/3(t)]) - «:({3), and {3 would be reset at t' by step 1 of the 

construction. So J.l(U0'[h/3(t)]- U0'[s]) < «:({3), and J.l(J/3[s]) < 2«:({3). 

Next, let 7 be an Ne-node; we need only consider the case where there is some 

Me-node {3 ~ 7 with J/3[s] -:f. 0. Let Z denote the set of Me-nodes {3' ~ 7 or <L 7 with 

T,B'[S + 1] -:f. 0, and let {3 be the longest; by assumption {3 ~ 7. Let t be the stage when 

T/3[S + 1] was set -:f. o. At t, d/3,[t + 1]1 for all {3' E Z, as otherwise {3 would not be 

accessible at t. Also J.l(J,B[t]) < «:({3) by (23). So by the first part of the lemma and 

(17), J.l(Qr[t]) < 2«:(7). Also, d/3,[t' + 1]1 for all t < t' ~ S and {3' E Z,{3' <L 7, as 

otherwise 7 would be reset, contradicting the definition of t. So if J.l(Qr[t']) ;::: 2«:(7) 
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at some t < t' :$ s it must be because ETC,B'EZ /L(Jtdt'J) > f(r). But then by the 

canonical enumeration of U0' there would be a stage til such that t < t" :$ t' and 

/L(U0'[t"J) < /L(U0'[h,B(t)]) - f(r). In such a case r would be reset at step 1, again 

contradicting the definition of t. So /L(Qr[sJ) < 2f(r). o 

In the following lemma we prove simultaneously that the true path TP = lim infs TP s 

is infinite, that every node on it has infinitely many chances to act, and that eventually 

the measure condition (23) will be satisfied for each M-node on TP. 

LEMMA 4.5. If a is the leftmost node of length lad such that a ~ TP s for infinitely 

many s, then 

(i) a is reset only finitely often; if it is an M-node then eventually the flip-point da 

is fixed; 

(ii) a is accessible infinitely often; 

(iii) there is some extension 13 ::J a with 13 ~ TP s for infinitely many s. 

Thus TP = liminfs TPs is infinite. 

PROOF. First of all, if lal = 0 then a ~ TP s for all S so (i)-{iii) of the lemma implies 

by induction that TP is infinite. Then it remains to assume that a is the leftmost node 

of length lal such that a ~ TPs infinitely often and (inductively) that the lemma holds 

for all 13 C a, and show claims (i)-{iii). 

For the first claim note that there are four places in the construction where a may 

be reset: in step 1, step 2, step 3 (through the routine £) and step 4. Let So be the 

second stage such that a ~ TP so' TP s 1.L a V s > So, any computations ~~,B) (p) ! 

of nodes 13 <L a that exist at So are permanent and no nodes above or to the left of 

a are reset after So· After So, a will not be reset in step 4. If a was reset after So at 

step 3 then it would be because routine £(13, x, s) was run for some 13 C a such that 

f3 ....... x <L a. But this would mean that either TP s <L a for some s > So or a is not 

~ TP s infinitely often, a contradiction. 

If a was reset by step 2, by the choice of So there must be some M -node 13 such 

that 13 ....... f c a which had a computation ~~,B)(p) ! and this was spoilt after So. But 

then the corresponding r computation (which has larger use) would be spoilt and the 

construction would define TP s to the left of a at M2, a contradiction. Suppose that 

a was reset in step 1 after stage So. By the choice of So there must be a node 13 C a 
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and a stage SI > So such that J.L(U0' [SI]) < q({3). But in that case after stage SI 

the construction would define TP 8 to the left of a, before it defines it below a, a 

contradiction. Finally suppose that a is an M-node and do: was changed after stage So. 

Since a is not reset after So there must be some {3 c a which ran routine L({3, x, st) for 

SI > So and {3---x <L a. But in that case the construction would define TP 8 to the left 

of a, before it defines it below a, a contradiction. 

For claim (ii), notice that since by hypothesis a ~ TP8 for infinitely many s, the 

only way that a may stop being accessible after some stage is that for all sufficiently 

large stages there is a link (7, {3) with 7 cae {3. Suppose, for a contradiction, that 

this is the case and after stage So a is never accessible again. Let Y[s] be the finite set 

of b.-computations that are held by M-nodes below a at s 2: So. Note that if TP t :2 a 

for t 2: So then by Lemma 4.2 a link must be created at t as otherwise the next time 

a ~ TP 8, a would not be covered by a link and would be accessible. Thus no new 

computations can be added to Y after So as if a b.-definition is made then no link is 

created at that stage. Also, by the construction there are no b.-computations held by 

nodes> L a at the end of a stage s when a ~ TP 8' Finally a link is only travelled if 

the b.-computation for which it was created has been invalidated. So any link covering 

a at s 2: So is created because of a computation in Y, which is removed from Y when 

the link is travelled. Since Y is finite and non-increasing, after finitely many stages Y 

will be empty and a will be accessible when next TP 8 :2 a. 

For claim (iii), since a is accessible infinitely often the only way the claim could fail 

is if, whenever a is accessible after some finite stage So > lal, step 3 is ended without any 

a---x being declared accessible. Suppose this is the case. Then whenever a is accessible 

after So, step 3 is ended by routine L, or by M3 or M4 if a is an M-node, or because of 

(20). 

At So there are only finitely many b.(p) definitions held by nodes {3 below a. If (20) 

holds at s > So for some a---x, it is because one such {3 was reset while 7({3) was covered 

by a link. But the link is removed after being travelled, and the next time 7({3)---00 C a 

is accessible, {3's b.(p) definition will have been invalidated and rf3 set to 0 at step 2. 

Since no {3 below a is accessible after So, this can happen only finitely often for the 

finitely many b.(p) computations below a. So it will not happen after some stage SI. 

I 
I, 

I 

! 
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If step 3 is ended after 81 due to a routine L{ a, x, 8) for some outcome x of a, 

according to the induction hypothesis for a the routine will eventually define TP s,t = 

a"""x and so TP s ;2 a"""x at some stage 8. If step 3 is ended because of M3 applied to 

a, then either the A-definition made there is permanent (in which case a""" f ~ TP s at 

some later stage 8) or it is not, in which case routine L( a, 00, 8) will be called and the 

previous argument applies. 

Finally, suppose that whenever an Me,p-node a is accessible after some 81. case M4 

applies and step 3 is ended at a. We show that eventually the measure condition (23) is 

satisfied and M3 will apply, a contradiction. At 81, there are only finitely many nodes 

:J a with restraints, and no nodes below a are accessible after 81. Let 82 be the second 

stage after 81 such that 

• any non-permanent restraints below a have been dropped; 

• all nodes {3 above or left of a have settled; ie (3 is not reset after 82 and if 

T.a[82) f. 0 then T.a[82) is permanent; 

• rAW (do,) 1 and the use is correct; 

• V Afu [82)- VArRa[82)- U0'[82) = V Aru - VAfRa - U0', where u is as in M3; 

• a is accessible at 82. 

Such stage exists by the induction hypothesis and the fact that new intervals in V A 

have use chosen fresh. Every interval in V Afu [82)- VArRa[82)- U0'[82) is in J.a[82) for 

some {3 :J a, as otherwise it would be removed in step 4 contradicting the choice of 82. 

Letting E = {{3 : (3 :J a and T.a[82) f. O}, we have 

J.t(VArU[82)- VArRa[82)- U0'[82J) = L J.t(J.a[82)) . 
.aEE 

Write E = F U G where 

F = {(3 E E : T({3) C a}; G = {(3 E E : a C T{(3)}. 

Note that at 82, every node {3 in F has d.a[82 + 1)1; as otherwise {3 has been reset at 

some t, 80 ::; t ::; 82, and by choice of 82 T.a is never set to 0 and (3's A-definition is never 

invalidated. But then T{(3) has only finitely many expansionary stages, contradicting 

that T{(3)"""OO C a is accessible infinitely often by induction hypothesis. 
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Observe that the first clause of Lemma 4.4 holds for any f3 E F and S = S2, and the 

second for T = T(f3) for any f3 E G and s = S2. SO by (17), 

J1,(VA tU[S2]- VAtR"[S2]- U0'[S2]) = L J1,(J/3[S2]) + L J1,(Q,,-[S2]) 
/3EF .,-E{.,-(/3):/3EG} 

< L 2E(f3) + L 2E(T) 
/3EF .,-E{.,-(/3):/3EG} 

< E(a). 

Thus (23) will hold at S2, a will make a .6.(p) definition which will be permanent, and 

a""'" f will be accessible at some stage after S2. o 

LEMMA 4.6. All non-cupping requirements Ne are satisfied. 

PROOF. Let T be the Ne-node on TP. It is clear from the construction that 

T"""'OO C TP iff there are infinitely many T-expansionary stages. By Lemma 4.5 and 

the construction, if a is an Me-node with T"""'OO cae TP then 

• a"""'oo C TP =} rAW(daJ j, and 

• a""'" f C TP =} .6.;Ve(p)l. 

To show that for each e the requirement Ne is satisfied assume that r1We = K and 

let T be the Ne-node on T P. Since r1We = K there are infinitely many T-expansionary 

stages. First note that by the construction, .6..,- is consistent, i.e. at each stage S if 

(a, n, x), (p, n, y) E .6..,-[s] and a ~ p then x = y. Also by Lemma 4.5 and the fact that 

all strategies appear along the true path, the function .6.;V is total and the restraints 

imposed by each Me-node below T when it makes a definition ensure that .6.;V (p) = 

r1We(p) = 0'(p) for each pEN. Thus W ?T 0' and Ne is satisfied. 0 

LEMMA 4.7. 0' 50LR A. 

PROOF. We must verify that U0' ~ VA and J1,(VA) < 1. Once an interval a appears 

in U0' with correct 0'-use, according to (18) in any later stage it will be in VA with the 

same A-use. Thus eventually it will permanently belong to VA and U0' ~ VA. 

To verify J1,(VA) < 1, since J1,(U0') < ! it suffices to show that J1,(vAtn[s]_u0'[s]) < ! 
for all n E N and all s ? some so. Fix n and let So be a stage such that A r n[so] = A r n 
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and yAtn[sol- CJ0'[sol = yAtn - U0'. Then for all s ~ So we have 

yAtn[s] - U0' [s] ~ U QT[S] 
TCO 

where T runs over the N-nodes and 8 is the rightmost path of the tree. Hence, by 

Lemma 4.4 and the second clause of (17) we have, for s ~ So, 

JL(yAtn[s]_ U0'[sJ) ::; L 2f(Ne ) < ~. 
e 

o 

This concludes the proof of Theorem 4.1. 



CHAPTER 5 

Prompt enumerations and relative randomness 

The 'dynamic' property of prompt simplicity has become an influential and impor­

tant concept in the study of the c.e. 'lUring degrees. The equivalent property of prompt 

permitting is a particularly fruitful notion, arising neatly from the technique of Yates 

permitting. In this chapter, we will introduce an analogous notion, prompt non-low-for­

randomness. Prompt non-Iow-for-randomness is a prompt form of non-Iow-for-random 

permitting, which is the natural notion of permitting in the context of relative ran­

domness. Since non-Iow-for-random permitting is an analogue of Yates permitting, it 

is natural to ask if a prompt version of non-Iow-for-random permitting plays a role 

similar to the notion of prompt permitting, or gives a nice class of degrees analogous 

to the promptly simple degrees. We begin to investigate this notion by showing that 

the class of degrees of promptly non-Iow-for-random c.e. sets is a proper non-trivial 

subclass of the promptly simple degrees, and study some other properties of promptly 

non-Iow-for-random sets and degrees. 

1. Prompt simplicity and Yates permitting 

We begin with a discussion of simplicity, permitting and promptness, to establish 

some terminology and notation that will be useful for defining the notion of prompt 

non-Iow-for-randomness in section 2. 

Let We (e E N) be a standard listing of all c.e. sets, with a uniformly computable 

enumeration We[s] such that We = UsWe[s]. We call this the canonical listing of 

c.e. sets. By a suitable coding, we can consider the We as sets of numbers or sets of 

strings as appropriate. An enumeration of a c.e. set A is a computable sequence A[s] 

of finite sets such that A[D] = 0, A[s] ~ A[s + 1] and A = UsA[s]. The number x 

enters A at s if x E A[s]- A[s - 1]. In the following, whenever we work with a c.e. set 

A, we actually work with a particular enumeration A[s] of A. However we will usually 

suppress the enumeration: when we say 'a c.e. set A' we mean a c.e. set A along with an 

85 
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enumeration A[s] of A. We similarly assume without further mention that c.e. operators 

U (considered as c.e. sets of axioms) come with a particular enumeration U[s]. 

Recall that a c.e. set A is simple if it is co-infinite and it intersects with every infinite 

c.e. set; that is, 

(25) Ve We infinite => 3x : x E A and x EWe' 

Post (see Cooper [15], Theorem 6.2.3) first constructed a simple set in 1944. Dekker 

[16] showed simple sets occur in every nonzero c.e. Turing degree. In the 1980s, certain 

constructions in connection with structural properties of the c.e. Turing degrees aroused 

interest in dynamic properties of enumerations of c.e. sets. Maass [48] defined the notion 

of prompt simplicity: a c.e. set A is promptly simple if it is co-infinite and there is a 

computable function p such that 

Ve We infinite => 3x, s : x enters We at stage s and x E A[P(s)]. 

This notion was further studied in Maass, Shore and Stob [49] and in an influential 

paper by Ambos-Spies, Jockusch, Shore and Soare [1]. It has since become well-known 

and has been studied extensively. The standard reference is Soare [68] chapter XIII, in 

which a presentation of the following results may be found. Say that a Turing degree 

is promptly simple if it contains a promptly simple set. Several important results were 

proved in [1] about the promptly simple Turing degrees. In particular, they prove that 

the promptly simple Turing' degrees form a strong filter in the c.e. Turing degrees. 1 

Moreover, the non-promptly simple degrees form an ideal in the c.e. Turing degrees. 2 

They also prove the following important co-incidence between the 'dynamic' property 

of being promptly simple and two structural properties of the c.e. Turing degrees. 

THEOREM 5.1 (Ambos-Spies, Jockusch, Shore, Soare [1]). Let a be a c.e. Turing 

degree. The following are equivalent. 

(i) a is a promptly simple degree, 

(ii) a is noncappable; that is, there is no nonzero c.e. Turing degree b such that 

anb = 0, 

1 Recall that a set F in an upper semi-lattice I:- is a filter if F is closed upwards and in taking greatest 
lower bounds (when they exist); it is a strong filter if it is closed upwards and every pair of elements in 
F bound a third element in F. 
2 A set I in an upper semi-lattice I:- is an ideal if it is closed downwards and in taking least upper 
bounds. 
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(iii) a is low cuppablej that is, there is a c.e. Turing degree b such that b' = 0' and 

aUb = 0'. 

An important equivalent condition to prompt simplicity is prompt permitting. We 

first discuss the general technique of permitting before considering prompt permitting, 

to establish some notation and terminology which will be useful later for defining prompt 

non-Iow-for- randomness. 

The general idea behind permitting is, given a c.e. set A with some noncom put ability 

property (such as 'being noncomputable' or 'being non-Iow-for-random'), to construct a 

c.e. set B in such a way that B f n changes at stage s only if A f n also changes at stage 

s (while also satisfying some other requirements). This guarantees that B ~T A, since 

given an oracle for A we can compute B f n by finding a stage such that A[s] f n = A f n; 

after this stage, B f n cannot change. We can use the noncomputability condition to 

guarantee enough changes in A f n to fulfill our requirements. The exact method of 

ensuring A-changes depends on the noncomputability condition. We typically do it by 

enumerating 'request sets', with each enumeration being a request that A change on 

some initial segment. In its original form as used by Friedberg [26] and Yates [13]' now 

known as Yates permitting, the noncomputability condition is 'being noncomputable', 

and the request sets are c.e. sets of numbers x, where each number x is a request that 

A f x changes. Yates permitting is based on the following lemma. 

LEMMA 5.2. Suppose that A is a non-computable c.e. set and W is an infinite 

c.e. set. Then 

pY (W) := {x E W: x enters W at some stage s and A[s] f x f A f x} 

is infini te. 

PROOF. Assume that W is infinite and pY (W) is finite; we argue that A is com­

putable. Let So be the least stage such that pY (W) ~ W[so]. To compute A f x, 

find a stage s > So such that some y > x enters W at y. Since y ~ pY (W), 

A[s] f x = A f x. 0 

In the notation pY (W) (and similar notations used later) there is an implicit depen­

dence on A; however since A is usually understood to be fixed, and to avoid additional 

subscripts we omit explicit mention of the set A. 
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Thinking of W as a request set, the set pY (W) is the permission set for W, con­

sisting of those requests which are successful. (The superscript Y for 'Yates' is to 

distinguish this from the non-low-for-random permission set P(W) we will define later.) 

The lemma guarantees that infinitely many requests from W will succeed. 

Although Lemma 5.2 guarantees that infinitely many requests will succeed, it pro­

vides no indication of how long we might have to wait for any particular request to 

succeed. We can obtain a notion of prompt permitting by requiring that the success­

ful permissions occur within a computable time interval. Fix the c.e. set A and let 

p: N --4 N be a computable function such that p(s) > s. Let 

(26) pp} (We) = {x E We : x enters We at some stage sand A[s] f x =f. A(P(s)] f x}. 

pp} (We) is the set of prompt permissions from We, with respect to the function p. Say 

that A is promptly permitting if there is a computable function p such that p( s) > sand 

(27) \Ie We infinite => pp} (We) infinite. 

This can be seen as a strong version of Lemma 5.2, ensuring that infinitely many requests 

will succeed within a computable time from when the request is made. An important 

characterisation of the promptly simple degrees in terms of prompt permitting is the 

following theorem of [1]. 

THEOREM 5.3 ([1]). Let A be a c.e. set. The following are equivalent: 

(i) A has promptly simple degree; 

(ii) there is a computable function p such that for all e, 

We infinite => pp} (We) infinite; 

(iii) there is a computable function q such that for all e, 

We infinite => PP~ (We) =f. 0. 

The degrees of promptly simple and the degrees of promptly permitting c.e. sets 

thus co-incide. Although the property of prompt simplicity lends its name to this 

important class of degrees, the property of prompt permitting is in many ways the 

better notion. Properties (ii) and (iii) are often the more convenient to work with, being 
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phrased in terms of permitting that makes them applicable to permitting constructions 

without modification. Also, prompt permitting is degree-invariant, in the sense that 

if some c.e. set of degree a satisfies (ii) or (iii) then all c.e. sets of degree a satisfy 

(ii) and (iii), unlike prompt simplicity. Finally, simplicity can be seen as a special 

kind of noncomputability arising from the particular sparseness property (25), whereas 

the permitting property of Lemma 5.2 applies to all noncomputable sets regardless 

of special properties. Prompt permitting is thus descended from the more general 

noncomputability property. Although in the remainder of the chapter we talk of prompt 

simplicity and promptly simple degrees, we are really thinking of prompt permitting. 

When we define prompt non-Iow-for-randomness in section 2, we will define it in terms 

of prompt permitting, in analogy with property (ii) of Theorem 5.3. 

Note that condition (27) only concerns c.e. sets We from the canonical listing. Sup­

pose X is a c.e. set, and let e be such that X = We (although the enumerations X[s] 

and We[s] may differ). Condition (27) requires that we measure promptness of per­

missions from X relative to the canonical enumeration We[s], and not relative to some 

other non-canonical enumeration X[s]. In particular, if we enumerate a request x into 

a set X during some construction, we must judge promptness not relative to the stage 

s at which we enumerate x into X, but relative to the stage t at which x is enumerated 

into We according to the canonical enumeration. The usual way to do this is by the 

Slowdown Lemma. 

LEMMA 5.4 (Slowdown Lemma, [68] XIII. 1.5) . Let Xe be a sequence of c.e. sets with 

a uniformly computable enumeration Xe = U8Xe[s]. There is a computable function 

g : N -+ N such that for all e, 

That is, when we construct a sequence of c.e. sets X e , we can computably obtain 

canonical indexes for c.e. sets Wg(e) such that numbers enter Wg(e) strictly later than 

they enter Xe· 

PROOF. By the Recursion Theorem with parameters (Theorem 1.12) we can define 

g by 

Wg(e) = {x : 3s (x E Xe[s]- Wg(e) [s])}. 
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o 

With the above notation and terminology established, we can now adapt definition 

(26) and condition (27) from Yates permitting to non-low-for-random permitting to 

obtain the notion of prompt non-low-for-randomness. 

2. Non-Iow-for-random permitting and prompt permitting 

In the context of relative randomness and LR-degrees, the most natural form of 

permitting is non-low-for-random permitting. This was first used in [8J, and further 

developed by Barmpalias in [3J and [2J. The idea of non-low-for-random permitting 

is as follows. Let A be a non-low-for-random c.e. set. By Theorem 1.5, there is an 

A-c.e. set of strings UA with weight < 1 such that, for any c.e. set of strings W, 

(28) uA ~ W =} weight W = 00. 

We can use this fact to force changes in the c.e. set A. Suppose at stage s during 

some construction we wish some number < n to be enumerated into A, so that the 

approximation to A I n will change. We can request a change by taking a string a from 

UA[sJ with use:::; n and enumerating a into a c.e. set W. If we do this repeatedly, we 

threaten to make UA ~ W. By (28), if we succeed in making UA ~ W then we must 

have weight W = 00. Since the weight of UA is finite, the strings in W - UA must 

contribute infinite weight to W. Each of these strings a E W - UA corresponds to a 

successful change of some initial segment of A, as we had a E UA[sJ at the stage when 

a was put into W. Hence we are guaranteed enough successful A-changes to ensure 

weight W = 00. This technique was used for instance in [3J to show that every non-zero 

~g LR-degree has uncountably many predecessors in the LR-degrees. 

Note the following point about the technique of non-low-for-random permitting as 

sketched above. If we enumerate a string a into W at stage s, then we have a E UA[sJ. 

Let u be the use of a E UA[s]. The request corresponding to a succeeds as soon as 

A I u changes at a stage after s. Suppose W is a given c.e. set (as opposed to one that 

we enumerate during a permitting construction). If a string a is enumerated into W 

at stage s but a (j. UA[sJ, then, as far as permitting is concerned, a is irrelevant until 

a appears in UA[t] at some t > s (if ever). This observation motivates the following 

definition of W*. Fix the c.e. sets A and W, and the universal A-c.e. set UA . As we 
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approximate UA[s] in a Eg way, we can approximate the c.e. set 

W* = {O' : :3s (0' E W[s] n UA[sJ)} 

via the enumeration 

(29) W*[s] = {O' : :3t ::; s (0' E W[t] n UA[tJ)}. 

That is, a string 0' is enumerated into W* at stage s if s is the first stage at which 

0' is in both W[s] and UA[s]. Note that if UA £;;; W then UA £;;; W*, and if A is 

non-Iow-for-random and UA £;;; W then weight W* is infinite. For the purposes of 

non-Iow-for-random permitting, W* is equivalent to W. 

With A fixed, let 

PUA (W) = {O' : 0' enters W* at some stage s, 

0' E UA[s] with use u and A[s] r u:f:. A r u}. 

This is the set of strings from W that are permitted via UA . The 'non-Iow-for-random 

permitting principle' (28) can be expressed as 

uA £;;; W :::} weight PUA (W) = 00. 

We can now formulate a notion of prompt non-Iow-for-random permitting. Let p be 

a computable function such that p(s) > s. By analogy with (26), we can define the 

prompt permitting set for W with respect to U A and p, 

(30) PPUA,p(W) = {O' : 0' enters W* at some stage s, 

0' E UA[s] with use u and A[s] r u :f:. A[p(s)] r u}. 

When the function p and/or class UA are understood to be fixed, we can omit the 

subscripts. With this notation established, we can now give a definition of prompt 

non-Iow-for- randomness. 

DEFINITION 5.5. Let A be a c.e. set. A is promptly non-low-for-random if there is 

an A-c.e. set UA such that weight UA < 1 and a computable function p : N ~ N such 
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that, for all e, 

(31) 

We say that A is promptly non-low-for-random via UA,p if U A and p satisfy (31). 

This definition asserts that if UA is contained in a c.e. request set We, then the requests 

which succeed promptly (w.r.t. p) will have infinite weight. 

It is clearly equivalent to require only that weight UA < 00 rather than weight UA < 

1 in Definition 5.5. We show in Theorem 5.6 that we can ~quivalently replace the 

condition weight PPUA,p(We) = 00 with weight PPUA,p(We) ;::: 1. 

As with the definition of promptly (Yates) permitting, Definition 5.5 only concerns 

c.e. sets from the canonical enumeration. Note that in this case we measure promptness 

relative to the enumeration of W;, which depends not only on the canonical enumeration 

of We but also on the ~g approximation of U A . 

We now give an equivalent condition to that of Definition 5.5 which will be use­

ful later; namely that the condition that weight PP(W) = 00 can be replaced with 

weight PP(W) ;::: 1. 

THEOREM 5.6. Let A be a c.e. set and U be a c.e. operator such that weight UA < 1. 

Then the following are equivalent: 

(i) there is a computable ~ction q such that for all e, 

(ii) there is a computable function p such that for all e, 

PROOF. (i) implies (ii) is immediate, so we prove (ii) implies (i). Assume (ii). We 

may assume without loss of generality that p is strictly increasing and p(s) > s for all 

s. Let W; be a delayed enumeration of a subset of We such that a enters W; at s iff a 

appears in wets] n UA[s] for the first time at s. We will define the computable function 

q satisfying (i). 

Let 2<k denote the set of all binary strings of length < k, and let Di , i E N be a 

standard computable listing of all finite sets of strings. Define the c.e. set Xe,k,i by the 
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enumeration 

Xe,k,i[S] = Di U {a: lal ~ k /\ a E W;[s]}. 

In the limit we have 

and strings of length ~ k enter Xe,k,i at the same stage as they enter W;. Let g( e, k, i) 

be a computable function obtained from the Slowdown Lemma 5.4 such that Wg(e,k,i) = 

Xe,k,i and strings enter Wg(e,k,i) strictly later than they enter Xe,k,i' Note that for every 

k there is some i such that 

D ·-uA n2<k-w n2<k l - - g(e,k,i) . 

We now define q. Fix s, and let 

Z = {(e,a) : a enters W; at s}. 

For each pair (e,a) E Z, for each k < lal and for each i such that Di ~ 2<k, let te,u,k,i 

be the stage when a enters Wg(e,k,i)' Define q(s) to be the maximum of p(te,u,k,i) over 

all those te,u,k,i just defined, or q(s) = p(s) + 1 if no te,u,k,i were defined (ie., if Z is 

empty). Note that q(s) > te,u,k,i > p(s) since te,u,k,i > sand p is increasing. 

We claim that if lal ~ k and a E PPUA,p(Wg(e,k,i») for some i then a E PPUA,q(We). 

Suppose that a E PPUA,p(Wg(e,k,i») and lal ~ k. Since Wg(e,k,i) - 2<k ~ W;, a enters 

W; at some stage s, and therefore enters Wg(e,k,i) at some t > s. Let u be the use 

of a E UA[s]. If a E UA[t] with use u, then we must have A[t] r u # A[p(t)] r u 

since a is promptly permitted, and hence A[s] r u # A[q(s)] r u since q(s) ~ p(t). 

So a E PPUA,q(We). Otherwise, either a is not in UA[t] or it is in UA[t] with some 

other use; but either way A must have changed below u between sand t and hence 

a E PPUA,iWe) since q(s) > t. 

Now we can prove that q satisfies (i). Let f be such that 0 < f < I-weight UA . Sup­

pose that UA ~ We. By (ii), PPUA,p(We)-UA has weight> f, and so PPUA,q(We) - UA 

has weight> f also since PPUA,p(We) ~ PPUA,q(We). Let k be such that 

(32) 
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has weight> f:. For some i we have Di = UA n2<k. Then UA ~ Wg(e,k,i)' and therefore 

(33) 

has weight> f. By the earlier claim, PPUA,p(Wg(e,k,i») C PPUA,q(We). Since the 

sets (32) and (33) are disjoint, PPUA,q(We) has weight> 2f. We may now repeat the 

argument with k such that 

to show that weight PPUA,q(We) > 3f. We can repeat this argument arbitrarily many 

times, each time adding f to weight PPUA,q(We). Hence weight PPUA,q(We) is un­

bounded, establishing (i). 0 

3. Prompt non-low-for-random sets 

One usually obtains an example of a promptly simple set by analysing the standard 

simple set construction. That is, Post's example of a simple set (see Cooper [15], The­

orem 6.2.3) turns out in fact to be promptly simple via t)J.e identity function. The same 

thing occurs in the case of prompt non-Iow-for-randomnessj a standard construction of 

a non-Iow-for-random c.e. set in fact yields a set which is promptly non-Iow-for-random. 

We now give a version of the non-Iow-for-random construction, adapted slightly to sim­

plify the promptness verification.3 

THEOREM 5.7. There is a c.e. set A which is promptly non-Iow-for-random. More­

over, we can have A ~T 0'. 

We will construct the set A, as well as a sequence of c.e. operators Te to satisfy 

where id is the identity function. We ensure that weight TeA:::; 2-e- 1 and that the T: 

are pairwise disjoint (as sets of strings). Hence we may set TA = UeT: to obtain a 

bounded A-c.e. set such that A is promptly non-Iow-for-random by Theorem 5.6 via TA 

and the identity function. We will argue that A ~T 0' automatically. 

3 Usually one would obtain a non-low-for-random c.e. set indirectly, for instance by using the fact that 
alliow-for-randoms are low and hence that any non-low c.e. set is non-low-for-random. If one wished 
to explicitly construct a non-low-for-random c.e. set, the construction of Theorem 5.7 would be the 
standard method. 
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The basic strategy for Pe will be to put a string (j of fixed length l into Tt and wait 

for (j E wets]. As soon as this occurs, we remove (j from TeA by enumerating into A 

below the use of (j E Tt[s], thus promptly permitting (j. Then we repeat with the next 

string of length l. After at most 21 many repetitions, we will either have some string 

(j which never appears in We and is permanently in TeA, and hence Tt ~ We, or we 

will have promptly permitted all strings of length l, which have weight 1. At any stage, 

there is at most one string in Tt of length l; thus Tt has weight at most 2-1. Let W; [s] 

be (as in equation (29)) a delayed enumeration of a subset of We, such that a string (j 

is enumerated into W; at stage s iff s is the least such that (j E wets] n Tt[s]. 

To simplify the verification, each time a higher priority requirement acts we will 

make Pe start over with a new length l. Let j(e, s) be the number of times that any 

requirement Pel with e' < e has acted by stage s, and let lets] = r1e(e,s)+1, where Pe is the 

e'th prime. At stage s, Pe will use strings of length lets]. This simplifies the verification 

by ensuring that no two requirements will ever use strings of the same length. 

The construction consists of the Pe requirements in a finite injury setting. Initially 

we have A, Te all empty. At stage 0, do nothing. At stage s + 1, let e be the least such 

that Tt[s] r;;; W;[s], or Tt[s] = 0 and there is some string (j of length leis] not in W;[s]. 

If there is some (j' E TeA[s] , then enumerate the use of (j' E Tt[s] into A[s + 1] 

(removing (j' from Tt). We say that Pe acts at s + 1. 

Let (j be the lexicographically least string of length lets] which is not in W;[s], if 

it exists. If (j exists, declare (j E T/[s + 1] with fresh use u. If (j does not exist, do 

nothing more. 

End of construction. 

LEMMA 5.B. For each e, Pe acts only finitely often. 

PROOF. This is a standard finite injury argument. Assume inductively that the 

claim holds for e' < e, and let So be the least stage such that no P~ for e' < e acts at 

any s 2: so. Then lets] is fixed after so. Note that if (j E TeA[s] and (j' E Te1[s] for e' > e 

then the latter has larger use than the former. Thus if Pe enumerates into A at stage s 

then all T:[s + 1] become empty, for e' > e. If some string is put into T: after s then 

it will have use larger than that of any string in Tt. So enumerations into A by lower 

priority requirements will not disturb strings in Tt, and any strings put into Tt after 
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So will remain there until removed by Pe. After So, Pe can act at most 21e[801 times until 

every string of length le[so] is in Ve. 0 

LEMMA 5.9. A is promptly non-Iow-for-random. 

PROOF. Set T = UeTe. Note that each T: contains at most one string, of length 

2: e + 1, so weight TA < 1.. Suppose that TA ~ We. Let So be the least stage such 

that no requirement Pe' for e' < e acts after So. Then l := leIs] is fixed after So. At So, 

Pe will put the first string 0' of length l into TA. Since TA ~ We, there will be a least 

Sl > So with 0' E We [Sl]. Since no higher priority requirement ever acts after So, Pe 

will act at Sl and will enumerate into A below the use of 0'. Thus 0' E PP(We). Pe will 

then put the next string oflength l into T:[Sl + 1]. Since T: ~ W;, W;[so] contains no 

strings of length l, and no other requirement uses strings of length l, this will happen 21 

many times, until every string of length l is in PP(We). But then weight PP(We) 2: 1. 

Hence A is promptly non-Iow-for-random by Theorem 5.6, via the operator T and the 

identity function. 

LEMMA 5.10. A 2:T 0'. 

PROOF. Let f be a computable function such that 

{

{Q,QQ,QQQ,QQQQ, ... } ifn E 0'; 
Wf(n) = 

. 0 otherwise. 

o 

That is, Wf(n) enumerates 0', and if it finds n E 0' then it enumerates strings of zeros 

of every length. From the proof of Lemma 5.8, it is clear that using an oracle for A 

we can find the least stage after which Pf(n) is never injured. Let So be that stage. At 

So, Pf(n) will put a string of zeros into TAn) with some use u. If n E 0', then Pe will 

enumerate into A below u. Thus it suffices to find the least stage Sl 2: So such that 

A[Sl] f u = A f u. Then we have n E 0' iff n E 0'[Sl]. 0 

The method used above can clearly be combined with other finite-injury strategies. 

For instance, we could make A low by using the usual lowness strategy, or we could 

use Sacks restraints (as in Theorem 2.1) to avoid a non-trivial upper cone of Turing or 

LR-degrees. In the presence of restraints, we can no longer ensure that T: contains at 

most one string, since a higher-priority requirement might impose a restraint on Pe and 
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prevent it from removing a string from T/,. However, by making Pe use longer strings 

each time it is injured, we can still ensure that T/, contains at most one string of each 

length, so we can keep the weight of TA under control. 

4. Prompt non-low-for-randomness, prompt simplicity and Turing degrees 

We now show that the promptly non-low-for-random Turing degrees are a subset 

of the promptly simple Turing degrees. In section 5 we show that the subset is proper. 

Although the promptly simple Turing degrees form a filter in the c.e. Turing degrees, it 

is not known if the promptly non-low-for-random Turing degrees form a filter. However 

we show that the promptly non-low-for-random degrees are closed upwards under 5,T, 

and discuss the obstacles to establishing the remaining filter condition. 

THEOREM 5.11. Let A be a c.e. set. If A is promptly non-low-for-random then A 

is of promptly simple degree. 

PROOF. Suppose A is promptly non-low-for-random via U and p. We construct a 

computable function q such that 

We infinite =} 3x, s : x E We[s]- We[s - 1] and A[s] f x # A[q(s)] f x. 

That is, A promptly permits via q and hence has promptly simple degree by Theorem 

5.3. We also construct c.e. sets Ve for e E !'ii, and assume that we have a computable 

function 9 given by the Slowdown Lemma 5.4 such that Wg(e) = Ve and strings enter 

Wg(e) strictly later than they enter Ve· 

Set q(O) = O. At stage s + 1, do the following for each e 5, s. Let x be the largest 

number which entered We at s + 1, if any. If x exists, and if there is a string p E UA[s] 

with use 5, x and p tJ. Ve[s], then enumerate the oldest such pinto Ve[s+ 1]. Let te be the 

stage when p app~ars in Wg(e)' If x or p do not exist then te is undefined. Finally, let 

q(s+ 1) be the maximum of p(te) for all those te defined at this stage (or q(s+ 1) = q(s) 

if no te were defined). 

Verification. Suppose that We is infinite. Then there will be infinitely many 

stages s when some x enters We and there is apE UA[s] with use 5, x and p tJ. Ve[s]. 

(To see this, observe that for every p E U A there will be such a stage.) So we will 

enumerate infinitely many strings into Ve, and since we always choose the oldest string 

to enumerate, we will have UA ~ Ve. But then weight PP(Wg(e») = 00 since A is 
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promptly non-low-for-random. In particular, there is at least one x, s and string p such 

that x enters We at s, p E UA[s] with use < x, and A[s] f x i=- A[q(x)] f x. o 

We show in section 5 that the converse of this does not hold. 

We now show that prompt non-low-for-randomness is closed upwards under Turing 

reducibility. The proof is an adaptation of that of Theorem XIII.1.6 from Soare [68]. 

THEOREM 5.12. If A, Bare c.e. sets, A '.5:T B and A is promptly non-low-for­

random, then B is promptly non-low-for-random. 

PROOF. Suppose that A = If>B for a Turing functional If>, and that A is promptly 

non-low-for-random via U, p. Assume without loss of generality that p is nondecreasing, 

and assume the convention that if If>B(n)[s] 1 with use u then If>B(z)[s] 1 for all z < n 

with use '.5: u. We define T, q so that B is promptly non-low-for-random via T, q. We also 

construct auxiliary c.e. sets Ve. Let 9 be a computable function given by the Slowdown 

Lemma 5.4 such that Wg(e) = Ve, and strings enter Wg(e) strictly later than they enter 

Ve· 
We can define T in advance: when we see a string p E UA[s] with use u such that 

If>B[s] f u = A[s] I u, then declare p E TB[s] with use v = use If>A(u)[s] (if it is not 

already in TB[sJ). 

Initially all Ve are empty and q(s) undefined for all s. At stage 0, set q(O) = o. At 

stage s + 1, do the following for each e < s + 1. Let 

be the strings in We and TB but not in Ve at s + 1. If X is empty, then do nothing for 

e at this stage. Otherwise, put each string a from X into Ve [s + 1]. For each a EX, 

let tu be the stage when a was put into TB with the current computation (ie, the least 

t < s + 1 such that a E TB[t] with use u such that B[t] I u = B[s] f u), and let Uu be 

the use of a E UA[tu]. Let te be the least stage such that for all a E X: 

• a appeared in Wg(e) at some t' > s + 1 and te ~ p(t'), and 

• If>B[te] I Uu = A[te] I Uu· 

Finally, at the end of stage s + 1 declare q( s + 1) to be the maximum of those te defined 

at this stage (or q(s + 1) = q(s) if no te were defined). End of construction. 

I 
I 
I 

I 
I 
j 
I 



4. PROMPT NON-LOW-FOR-RANDOMNESS, PROMPT SIMPLICITY AND TURING DEGREES 99 

Verification. First we observe that TB = UA: certainly if a E UA then there will 

be a stage when a E UA[s] via a permanent computation, and q,B[s] correctly computes 

A on the use. At this stage a will be put permanently into TB (if not already). Further, 

since strings are only put into TB at s if they are already in UA[s] and q,B[s] agrees with 

A[s] on the use, if a string leaves UA after it has been put into TB then B must change 

below the use of the corresponding q,B computation, which will remove the string from 

TB also. 

Suppose now that TB ~ We. Then UA = TB ~ Ye ~ We. Since A is promptly non­

low-for-random, we must have weight PPUA(Wg(e») = 00. We claim that PPUA(Wg(e») ~ 

PPTB(We), and thus PPTB(We) has infinite weight also. 

Suppose a E PPUA(Wg(e»). Let So be the stage at which we put a into Ye. At So 

we have a E We[so] and a E TB[sO] with some use v. Moreover, So is the first stage at 

which a is in both We and TB (or else we would have put a into Ye at an earlier stage). 

Thus it suffices to show that B[so] f v f B[q(so)] f v. 

Let tu and Uu be as in the construction, and let t' be the stage when a enters 

Wg(e). We have A[tu] r Uu f A[P(t')] r Uu; either because A[t'] r Uu f A[tu] r uu, or if 

A[t'] r Uu = A[tu] r Uu then because a E PPuA(Wg(e»)· But 

q,B[SO] r Uu = A[tu] r Uu 

f A[q(so)] f Uu since q(so) 2:: p(t') 

= q,B[q(sO)] r Uu by choice of q(so). 

Therefore B[so] r v f B[q(so)] r v, and a E PPTB(We). D 

The equivalent of Theorem 5.12 for LR-reducibility instead of 'lUring reducibility 

does not hold. We describe in section 6 that there is an LR-complete c.e. set B which 

is not promptly non-Iow-for-random. In particular, B is 2::LR all promptly non-Iow-for­

random sets including the 'lUring-complete set from Theorem 5.7. 

To show that the promptly non-Iow-for-random degrees form a filter in the c.e. 'lUr­

ing degrees, it would suffice to show that given any two promptly non-Iow-for-random 

sets A, B there is a promptly non-Iow-for-random set C which is computable in both 

A, B. Given A and B, one would typically use double permitting below both A and B 

to construct the required C. In the case of the promptly simple degrees, the argument 
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is as follows. Suppose A and B are of promptly simple degree and we want to make 

C ~T A, B promptly simple. Suppose at some stage we see a number x enter a c.e. set 

We, and we would like to make C promptly permit x by changing below x. We could 

enumerate x into a set Ve, and see if x is promptly permitted by A. If it is not promptly 

permitted, then we abandon x and try again later with some other number from We. 

If A does promptly permit x, then we enumerate x into a second set V: and see if B 

promptly permits x. If not, again we abandon x. Otherwise, we have received prompt 

permissions from both A and B, so we can enumerate x into C, satisfying the prompt 

simplicity requirement for We. The fact that A and B are promptly simple ensures 

that some x will eventually receive both prompt permissions, although arbitrarily many 

other x may have to be discarded first. 

In the case of prompt non-low-for-randomness, we would like to perform a similar 

construction. Suppose we are given promptly non-Iow-for-random c.e. sets A, B and 

we want to construct C, T C and q such that C ~T A, C ~T B and C is promptly 

non-Iow-for-random via TC, q. Suppose at some stage we see a string (J' E We which we 

would like C to promptly permit. We put (J' into T C with some use u and then attempt 

to get A and B-permissions to change C below u. If the A and B permissions both 

succeed then we can change C f u, promptly permitting (J'. However, if one of the A or 

B permissions fail, then we cannot remove (J' from TC. It becomes junk and contributes 

unwanted weight to T C. The risk is that weight TC will become infinite. The fact that 

A and B are promptly non-Iow-for-random guarantees that the set of strings that do 

receive both A and B permissions has infinite weight, but makes no guarantee about 

the strings that do not receive both permissions. In particular we cannot ensure that 

weight TC < 00. It is unknown if the promptly non-Iow-for-random degrees form a 

filter in the c.e. 'lUring degrees. 

5. Non-prompt non-low-for-randomness 

We now present some c.e. 'lUring degrees that do not contain promptly non-Iow­

for-random sets. One class of c.e. degrees that are not promptly non-Iow-for-random 

are the cappable degrees: by Theorem 5.1, the cappable c.e. 'lUring degrees are exactly 

the non-promptly simple c.e degrees, and by Theorem 5.11, every non-promptly simple 

'lUring degree is not promptly non-low-for-random. Cappable degrees are known to 

occur widely, for instance, in every class Lown and Highn [49]. 

I 
II 

I 

I 
I 
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Certainly low-for-random degrees cannot be promptly non-Iow-for-random. These 

include both promptly simple and non-promptly simple degrees: it is easy to construct 

a cappable low-for-random c.e. set by adapting the usual minimal pair construction, and 

the standard cost function construction from [39] of a non-computable low-for-random 

c.e. set yields a promptly simple low-for-random set. 

Hence there are c.e. 'lUring degrees which are promptly simple but not promptly non­

low-for-random. This example of a promptly simple low-for-random is not so interesting 

though, as a low-for-random c.e. set does not (non-Iow-for-random) permit at all, let 

alone permit promptly. A more interesting question is whether there is a non-Iow­

for-random c.e. set which is promptly simple but not promptly non-Iow-for-random. 

We now give a direct construction of such a set. The strategy for making a set non­

promptly non-Iow-for-random is very similar to that for making a c.e. set cappable in 

the c.e. 'lUring degrees (ie. the minimal pair method). 

THEOREM 5.13. There is a non-Iow-for-random c.e. set A which is of promptly 

simple degree but is not promptly non-Iow-for-random. 

We will construct the required c.e. set A. Let (Ue , <Pe)eEN be a listing of all pairs of 

a c.e. bounded operator U and a (possibly partial) computable function <p. We assume 

the convention that if <p{x)[s]!= z then z < s and <p{y)[s]! for all y < z. To ensure that 

A is not promptly non-Iow-for-random, it will suffice to construct a c.e. set Xe (with a 

canonical enumeration Wg(e) given by the Slowdown Lemma 5.4) for each pair Ue, <Pe 

such that if <Pe is total then Ut' ~ Wg(e) but weight PPUe.<Pe{Wg(e») < 1. That is, we 

will satisfy each requirement 

Ne : <Pe total and U: infinite => U: ~ Xe but weight PPUe.<Pe (Wg(e») < 1. 

To ensure that A is of promptly simple degree, it suffices by Theorem 5.1 to make 

A promptly permitting via the function p{ s) = s + 2. Thus we have the promptness 

requirements 

PSe : We infinite => ::Ix, s : x enters We at s and A[s] f x =1= A[s + 2] f x 

for each e E N. 

Let Ve be a listing of all bounded c.e. sets; that is, c.e. sets such that weight Ve < 1. 

To make sure that A is not low-for-random we also meet the non-Iow-for-randomess 
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requirements 

for e E N, where TA is an A-c.e. set with weight < 1 that we construct. By Theorem 

1.5 this ensures that A is not low-for-random. The construction will take place on a 

tree; in fact we will uniformly construct a c.e. operator To: for each P-node a on the 

tree, and we will set TA = U~T:. 

The strategy for meeting Pe is essentially that used in Theorem 5.7. A Pe-node a 

will place a string a of fixed length k into T: and wait for a E Ve[s]. When a sees 

a E Ve[s], it removes a from T: by enumerating into A, and repeats with the next 

string a of length k. Since weight Ve < 1, after at most 2k many repetitions we must 

have some a such that a ct. Ve. This a will be permanently in T:, but no other string 

will be permanently in T:. By suitable choice of k we can ensure that weight T: is as 

small as necessary. Unlike Theorem 5.7, the tree framework will mean that a will not be 

removed from T: as soon as it appears in Ve, but only when the node a is next visited. 

Hence the strategy will make A non-Iow-for-random, without making it promptly so. 

Occasionally it will be necessary to impose a restraint on A; when this happens, 

a may be unable to enumerate into A to remove a string from T:. In this case, a 

must abandon its old string a (which remains permanently in TA). To ensure that 

weight TA < 1, a will need to use longer strings in future. It will increment k and 

restart its strategy. Each time a is injured, the additional amount of junk contributed 

to TA halves. In a finite injury setting, a will be able to satisfy its requirement while 

still contributing an arbitrarily small permanent weight to TA. 

The strategy for Ne will be as follows. We will try to build a c.e. set X such that if 

¢e is total then U: <;;;; X but PPu.;4.,¢. (X) has finite weight. Strictly, we should actually 

be concerned with weight PP(We) where We is a canonical version of X given by the 

Slowdown Lemma 5.4, but we overlook this technicality in the following discussion. 

Suppose at stage s we have some string T E U:[s] with use u, but T is not yet in X. 

Put T into X[s], and note that T E X[s] n U:[s] for the first time at s. We want to 

ensure T is not promptly permitted with respect to the function ¢e. This will happen 

if A changes below u before stage ¢e(s). If A f u does change before stage ¢e(s) 

then T will contribute to PPu.,¢. (X), which we want to keep small. So after we have 

enumerated T into X, we will restrain A f u until a stage t such that ¢e(s)[t] 1 (by 
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convention if ¢e(s)[tj 1= x then x < t). At stage t we may drop the restraint, since 

any change in A r u after t will not contribute to PPUe.4>e(X), If ¢e(s) j, then we 

will never drop the restraint, but nor will we ever impose any additional restraint for 

Ne. In this case, we have a permanent finite restraint. Otherwise, when ¢e is total, 

the restraint will be dropped infinitely often, providing infinitely many windows for the 

positive P-requirements to enumerate into A. 

This situation is reminiscent of the construction of a minimal pair of c.e. Turing de­

grees. As in the minimal pair strategy, the negative requirement either drops its restraint 

infinitely often, or eventually imposes a single finite permanent restraint. With multi­

ple N-requirements working together, the (potential) difficulty for the P-requirements 

is that the different N-requirements may not drop their restraints at the same time. 

This is solved exactly as in the minimal .pair case by performing the construction on a 

tree. 

For the prompt simplicity requirements, we have to promptly enumerate some num­

ber into A as soon as we see a larger number enter the c.e. set We. This would appear 

to be in direct conflict with the negative requirements, which want us to delay enumer­

ations. However, the Ne strategy outlined above would in fact construct a c.e. set X 

such that U~ ~ X but PPU,;4,4>e (X) = 0. This is stronger than we need to satisfy Ne; 

we don't need PP(X) to be empty, but merely to have small weight. We can allow some 

weaker priority PS requirements to ignore a higher priority restraint, enumerate into 

A, and promptly permit some string in X, as long as the total weight that is promptly 

permitted is small. 

The tree will consist of nodes labelled Ne and Pe for e E N. The prompt simplicity 

reqirements PSe do not reside on the tree. Nodes of even length 2e are labelled Ne, 

and nodes of odd length 2e + 1 are labelled Pe. N-nodes have two outcomes 00 < j, 

representing, respeetively, the infinitary outcome where ¢e is total and U~ is infinite, 

and the finitary outcome where ¢e is partial or U~ is finite. P-nodes have a single 

outcome o. The ordering 00 < j induces an ordering on tree nodes as usual. We denote 

nodes of the tree by a, /3 etc. A node /3 has lower priority than a if /3 extends a or is 

to the right of a. 

We write Uoo ¢o to denote Ue , ¢e when a is an Ne-node. Each N-node a will build 

a c.e. set Xo. Each P-node a has parameters ko which is a number, and 0'0 which is a 
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string of length kex . Initially, assign each P-node a on the tree a unique parameter kex 

such that 2:ex 2-ka < 2-2 • 

Let g be a function from N-nodes to N given by the Slowdown Lemma 5.4 such that 

Wg(ex) = Xex and strings enter Wg(ex) strictly later than they enter Xex' 

During the construction we will declare some nodes injured. When an P-node a is 

injured, we increment kex and declare aex j. We needn't do anything when an N-node 

is injured except to note the fact. 

We will say that an N-node is expansionary at a stage s if it is not waiting for a 

computation ¢(t) to halt, so it is safe to enumerate into A without promptly permitting 

any strings in Xex (the formal definition is given below). Note that all nodes belonging 

to a single N-requirement share the same pair U, ¢ and reside on the same level of the 

tree. Suppose that a, (3 are Ne-nodes with a to the left of (3. If at stage s the node a 

is waiting for a computation ¢(t) to halt, then it appears to a at that stage that ¢ is 

partial. Since a has stronger priority than {3, {3 may safely adopt a's judgement and 

also assume at that stage that ¢ is partial. Thus {3 need not act while a is waiting 

for a computation. We can thereby co-ordinate the nodes of each N-requirement so 

that at most one node on each level is imposing restraint at any time. This simplifies 

calculating the cost of enumerations for PS requirements. Note that this is the same 

principle used in the proofs of Theorem 2.13 and Theorem 4.1, used first by Cholak, 

Greenberg and Miller [12]. The following definition of expansionary stage captures this 

principle. 

Let a be an Ne-node. Say that a stage s is a-expansionary if Xex[s] = 0, or 

• t is the greatest {3-expansionary stage < s for any Ne-node (3 ::; a, and some 

string p was put into X,a[t + 1], 

• P has appeared in each Wgb) for all Ne-nodes 'Y ~ (3 by some t', t < t' ::; s, and 

t' is the least such, 

• ¢e(t')[s] !, and 

• U:[s]- Xex[s] i= 0. 

The first three clauses state that a (or a higher priority (3) isn't still delaying enumer­

ations to prevent a string from being promptly permitted; the last clause states that 

there is a new string ready to be added to Xex' 
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To satisfy a promptly simple requirement PSe, we will need to enumerate a number 

into A as soon as some larger number appears in We. Such an enumeration might cause 

some strings from the Xa's to be promptly permitted. We will allow PSe to injure the 

lower priority N-requirements Ne l for e' > e, but we need to ensure that PSe will cause 

only a small weight of prompt permissions in the sets Xa belonging to higher-priority 

N-requirements. Let i, x, sEN; we define cost{i, x, s) which is the weight that would 

be promptly permitted into the sets Xa belonging to Ni-nodes a if x were enumerated 

into A at stage s. Let (3 be the leftmost Ni-node such that s is not (3-expansionary, if it 

exists; let p be the string most recently added to Xf3 at some t + 1 < s, and let u be the 

use of p E UA[t]. If x > u or if there is no such (3 then let cost{i, x, s) = O. Otherwise 

let cost{i,x,s) = 2- lpl . 

To prevent the P and PS requirements from interfering with each other, we will 

reserve the odd numbers for satisfying PS requirements and the even numbers for P. 

We will assume that when a string CT is put into some T: with use u it remains there 

until the number u is enumerated into A. In particular, CT remains in T: even if numbers 

< u enter A. 

A Pe-node a requires attention at stage s + 1 if CTa j, or CTa 1, CTa E T![s] and 

CTa E Ve[s]. 

The construction. At even stages we will take action for N and P-requirements; 

at odd stages we will take action for P S requirements. At stage 0 and 1, do nothing. 

At stage s + 1 > 1, we are given A[s], <Pe[s] etc and we define A[s + 1]. 

If s + 1 is odd, then let e be the least such that P Se is not yet satisfied and there 

exists z and an odd number x :=:; z satisfying 

• z E We [s + 1] - We [s - 1], 

• x ~ A[s], and 

• cost{i,x,s) < 2-e- l for all i:=:; e. 

If there is no such e then go to the next stage. Otherwise enumerate the least such x 

into A[s + 1] and injure all nodes a of length lal > 2e + 1 (these are all the Ne l nodes 

for e' > e or Pel-nodes for e' ~ e). Declare PSe to be satisfied. 

If s + 1 is even, then perform steps 1 and 2 below in order. 

Step 1. Let a be shortest P-node that requires attention at stage s + 1 and such 

that if (3 is an N-node with (3 C a then (3~oo ~ a iff s + 1 is (3-expansionary. (Note 
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that previously unvisited P-nodes will always require attention, so such a node always 

exists). Let the current approximation of the true path TPs+1 = a . 

• If (Ja[sJ j, then let (Ja[s + 1J be the lexicographically least string of length ka[sJ 

which is not in Va[sJ. Put (Ja into T![s + 1J with large even use. (Note that 

such a string must exist since weight Va < 1.) 

• Otherwise, (Ja L (Ja E T![sJ with some use u and (Ja E Va[sJ. Enumerate u 

into A[s + 1J to remove (Ja from T:[s + 1], and declare (Ja[s + 1J j. 

Step 2. For each N-node 13 C TPs+1 such that s is j3-expansionary, in order of 

length, do the following. Let p be the oldest string in ut[sJ -X.a[sJ. That is, the unique 

p E ut[sJ - X.a[sJ such that p was enumerated into ut at some s' ::; s with use u, 

A[sJ r u = A[s'J r u, and if p' E ut[sJ then p' was enumerated into ut after s' or p' 2: p 

(in the usual length/lexicographic order). Enumerate pinto X.a[s+ 1J and into X')'[s+ 1J 

for all Ne-nodes 'Y to the right of 13. If p does not exist then do nothing for 13. Injure 

all P-nodes of lower priority than TP s+1' 

End of construction. 

Verification. Say that s is an a-stage if s is even and a ~ TPs ' a is accessible at s 

if s is an a-stage. Define the true path TP = lim infeven s TP s' We verify simultaneously 

that the true path TP is infinite, each node on TP is injured only finitely often, and 

that each P-node on TP requires attention only finitely often. 

LEMMA 5.14. For each n, there is a unique node a of length n such that 

(i) a is accessible infinitely often, and is the leftmost such node of length n; 

(ii) a is injured only finitely often; 

(iii) if a is a P-node, then a requires attention only finitely often and there is a string 

(J E T: permanently but (J rt Va. 

PROOF. Induction on the length n. The claim holds trivially for the root node. 

Assume inductively that 13 is the node of length n satisfying the claim, and that So is a 

stage such that 13 is never injured or receives attention after So. If 13 is an N-node, then 

for every j3-stage s > So we have either j3~oo ~ TPs or j3~O ~ TPs ' If 13 is a P-node, 

then it has only one child j3~O, and since 13 never receives attention after So, we have 

j3~O ~ TP s for all j3-stages s > So. Hence some child of 13 is accessible infinitely often, 

and so (i) holds. Let a be the leftmost such. 
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The node a can only be injured when TP 8 < f3 or when some requirement P Se with 

2e + 1 < lal enumerates into A. The former occurs only finitely often by the induction 

hypothesis, and there are only finitely many PS requirements with 2e + 1 < lal, and 

each acts at most once. So a is injured only finitely often. 

Suppose that a is a P-node. Let S1 be the least a-stage such that a is never injured 

at any S ~ S1. Then ka is fixed after S11 and a receives attention at S1. Since weight Va 

is bounded, it cannot contain all strings of length ka . Hence there is a lexicographically 

least string a r/:. Va of length ka. After receiving attention finitely many times after SI, 

a will set aa = a and will put a into T:[s]. After this, a is in T: permanently and a 

will never require attention again. o 

We can now verify that the P and N requirements are satisfied by the nodes on the 

true path. 

LEMMA 5.15. Each requirement Pe is satisfied. Therefore A is not low-for-random. 

PROOF. By Lemma 5.14, TA = UaT: ~ Ve for all e. We just need to verify that 

weight TA < 1. Let a be a P-node and qa be the initial value of ka. Since ka is increased 

each time a is injured, and at most one string is left in T: with each injury, we have 

weight T: :::; En 2-qa - n-1. By the choice of the qa, weight TA :::; Ea 2-qa < 1. 0 

LEMMA 5.16. Each requirement Ne is satisfied. Therefore A is not promptly non­

low-for-random. 

PROOF. Let a be the Ne-node on TP, and let So be the least a-stage such that a 

is never injured at any S ~ So· If rPa is partial or U~ is finite, then Ne is satisfied and 

there are only finitely many a-expansionary stages after So. Suppose that rPa is total 

and U~ is infinite. Then there are infinitely many a-expansionary stages after So, and 

at each such stage s we put some string from U~[s] into Xa. Since we always choose 

the oldest string from U~[sJ -Xa[S], if p E U~ permanently then eventually we will put 

pinto Xa. Hence U~ <;;; Xa = Wg(a). We argue that weight PPUa.tPa(Wg(a») < 00. 

Each time a is injured, some strings may be promptly permitted into PP(Wg(a»)' 

However a is injured only finitely often so this contributes only finite weight to PP(Wg(a»)' 

The tree layout ensures that lower-priority P-requirements will not contribute to 

PP(Wg(a»), and after So nor will higher priority P or PS requirements. So the only con­

tributions to PP(Wg(a») after So can come from requirements PSi with i > e. But each 
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of these acts at most once, and contributes at most cost(e, x, s) < 2-i - 2 to PP(Wg(Q»)' 

Thus the total contribution to PP(Wg(Q») after So is at most Ei>e 2-i- 2 = 2-e- 2 , which 

establishes the claim. 0 

LEMMA 5.17. Each requirement PSe is satisfied. Hence, A is of promptly simple 

degree. 

PROOF. Let e be such that We is infinite. We show that eventually the cost con­

ditions cost( i, x, s) < 2-e- 2 hold for each i < e and all sufficiently large x and s. Fix 

i < e, and let a be the Ni-node on the true path. Because an N-node must wait for 

the leftward nodes before it can have an expansionary stage, we have the following fact. 

Either (i) a has infinitely many expansionary stages, or (ii) there are only finitely many 

stages when any Ni-node is expansionary. If (ii) holds, let So be a stage such that no 

Ni-node is expansionary after So. Then cost(i, x, s) = 0 for all x,s > So. If (i) holds, 

let So be a stage such that no string shorter than e + 2 is added to W.a after So for any 

Ni-node (3. Then cost(i, x, s) < 2-e- 2 for all x, s > So. 

Let S1 be such that cost( i, x, s) < 2-e- 2 for all i < e and all x,s > Sl, and such 

that no requirement PSj for j < i acts after S1. Let z, s > S1 + 1 be such that z is 

enumerated into We at s. Then some x :::; z will be enumerated into A at the first odd 

stage ~ sand P Se will be satisfied, if it is not already satisfied. This establishes Lemma 

5.17 and Theorem 5.13. o 

As noted earlier, the nodes belonging to each requirement Ni co-operate in such a 

way that there is at most one node on each level imposing restraint at any time. This 

is exactly the condition used in Theorem 4.1 for constructing an LR-complete c.e. set. 

We can in fact modify the above construction to make the set A be LR-complete, by 

replacing the P-requirements with the LR-completeness strategy exactly as in Theorem 

4.1. Since the N-strategy already satisfies the condition that at most one node on each 

level imposes restraint at a time, the modifications needed to make A LR-complete are 

straightforward and we omit the details. 

6. Prompt non-low-for-randomness and LR-degrees 

So far we have been investigating prompt non-Iow-for-randomness within the Turing 

degrees. We might ask whether the LR-degrees of promptly non-Iow-for-randoms form 
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a nice class within the LR-degrees also. Although it is possible that the class of LR­

degrees of promptly non-Iow-for-randoms might have some nice properties, the LR­

degrees do not seem as natural a setting for the study of prompt non-Iow-for-randomness 

as the Turing degrees. Theorem 5.12 shows that prompt non-Iow-for-randomness is 

Turing degree-invariant: if A is promptly non-Iow-for-random and A =T B for c.e. sets 

A, B, then B is also promptly non-Iow-for-random. This does not hold for LR-degrees 

however; an LR-degree can contain both prompt and non-prompt non-Iow-for-randoms. 

By Theorem 5.7 there is a Turing complete, and therefore LR-complete, promptly non­

low-for-random c.e. set. By Theorem 4.1 and the implications 

non-cuppable => cappable => not promptly simple 

=> not promptly non-Iow-for-random 

there is an LR-complete c.e. set that is not promptly non-Iow-for-random. Hence the LR­

degree of 0' contains promptly and non-promptly non-Iow-for-random c.e. sets. More­

over, by the remarks at the end of section 5, the LR-degree of 0' contains a promptly 

simple but not promptly non-Iow-for-random c.e. set. Thus the LR-degree of 0' con­

tains c.e. sets of all possibilities: promptly non-Iow-for-random, promptly simple but 

not promptly non-Iow-for-random, and not promptly simple. 

It is not known whether there is a nonzero c.e. LR-degree that contains no promptly 

non-Iow-for-random c.e. sets, or whether there is a c.e. LR-degree in which all the c.e. sets 

are promptly non-Iow-for-random. One possible approach to the latter is via jump 

inversion. If a is a Turing degree which is ~T 0' and c.e. in 0', the atomic jump class of 

a is the set of those c.e. Turing degrees b such that b' = a. The Sacks jump inversion 

theorem (see Soare [68] VIII.3.1) states that every atomic jump class is nonempty. 

Cooper [14] showed that there is an atomic jump class that contains only noncappable 

c.e. Turing degrees: there is a degree a c.e. in and ~T 0' such that if a c.e. degree b 

has b' = a then b is noncappable. Since B =LR e implies B' =tt e', the LR-degree of 

such a b contains only noncappable, and hence promptly simple, c.e. sets. If Cooper's 

theorem could be strengthened to produce an atomic jump class of promptly non-Iow­

for-randoms, ie h' = a implies h is promptly non-Iow-for-random, then this would give 

a c.e. LR-degree in which all the c.e. sets are promptly non-Iow-for-random. 
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A similar jump inversion argument cannot produce a nontrivial c.e. LR-degree with­

out promptly non-Iow-for-randoms however, because promptly non-Iow-for-randoms oc­

cur in every atomic jump class. Robinson [63] proved that the Sacks jump inversion 

theorem can be done above any low c.e. 'lUring degree. That is, given a low c.e. 'lUr­

ing degree d and a 'lUring degree a c.e. in and ~T 0', there is a c.e. 'lUring degree 

h ~T d with h' = a. By the comments after Theorem 5.7, there is a low promptly 

non-Iow-for-random c.e. set D. By Robinson's theorem, every atomic jump class has a 

representative ~T D, and hence promptly non-Iow-for-random by Theorem 5.12. (The 

same argument works for showing that promptly simples occur in every atomic jump 

class.) 
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Abstract: We show that there is a computably enumerable function f (Le. com­

putably approximable from below) which dominates almost all functions and fED W is 

incomplete, for all incomplete computably enumerable sets W. Our main methodology 

is the LR equivalence relation on reals: A =LR B iff the notions of A-randomness and 

B-randomness coincide. We also show that there are c.e. sets which cannot be split 

into two c.e. sets of the same LR degree. Moreover a c.e. set is low for random iff it 

computes no c.e. set with this property. 

1. Introduction 

Computability theory studies the real line from the point of view of relative com­

putation. Interactions with measure theory were explored from fairly early on, see 

for example [7, 18, 22). The study of algorithmic randomness has produced a large 

body of work on measure and computability; good references for this are Downey and 

Hirshfeldt [9) and Nies [21). More recently, Dobrinen and Simpson [8) introduced the 
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notion of almost everywhere domination which was investigated more deeply in sev­

eral follow-up papers [3, 13, 5, 12]. A function f is almost-everywhere dominating if 

J.L{ X E 2w : f dominates all total g '5.T X} = 1 where J.L is the Lebesgue measure, and 

a set is almost-everywhere dominating if it computes such a function f. This notion is 

degree-theoretic and we can also talk about almost everywhere dominating degrees. In 

this paper we are interested in the computably enumerable almost everywhere domi­

nating degrees. Nies [20] noticed that these degrees a are high, i.e. a' ~ 0", and Binns, 

Kjos-Hanssen, Lerman and Solomon showed that there are high c.e. degrees which are 

not almost everywhere dominating. Cholak, Greenberg and Miller [5] established the 

existence of incomplete c.e. almost everywhere dominating degrees, and Barmpalias 

and Montalban [3] showed that some of them are halves of minimal pairs. In section 

4 we show that some of these c.e. degrees are non-cuppable, i.e. their join with any 

incomplete c.e. degree is incomplete. 

THEOREM 1.1. There is a c.e. almost everywhere dominating set A such that 

A EB W ¢.T 0' for all c.e. W <T 0'. 

Theorem 1.1 has the very interesting corollary that if a set is computed by all almost 

everywhere dominating c.e. degrees, then it must be non-cuppable (the existence of 

noncomputable such sets is stU! open). Also, it can be viewed as a generalization of a 

theorem of Harrington (see [19]) which asserts that there is a function of c.e. degree 

which dominates all computable functions and has incomplete join with all incomplete 

c.e. sets. A fundamental question, which also served as motivation for Theorem 1.1 is 

whether almost everywhere dominating sets have degree-theoretic properties which are 

not shared by all the high degrees. More precisely, is there a formula 4> in the language 

of (R, <) (where R denotes the c.e. Turing degrees) such that for all a c.e. almost 

everywhere dominating 4>( a) holds but there is a high c.e. degree b such that 4>(b) fails? 

In section 3 we consider splittings of c.e. sets in relation with relative randomness. 

It is a natural question whether a c.e. set is the disjoint union of two c.e. sets B, C which 

induce the same notion of randomness (i.e. the class of random numbers relative to A is 

the same as the class of random numbers relative to B). We show that this is not always 

the case and that a set is low for random iff it can compute such a counterexample. 

r 
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2. Preliminaries 

In the following, we use c.e. sets of strings to generate subclasses of the Cantor 

space. In particular, we never use the relations c, ~, ::) and 2, the measure j.l and the 

operations n and U for sets U of strings; these relations and operations always refer 

to the class S(U) = {A E 2W I 3n(A f n E Un. In other words, j.l(U) is j.l(S(U)), 

U ~ V iff S(U) ~ S(V) and Un V denotes actually S(U) n S(V), not S(U n V). For 

union, S(U U V) and S(U) U S(V) would, for both interpretations of U, anyway be the 

same. We recall some basic notions of relative randomness. An oracle Martin-Lof test 

(Ue ) is a uniform sequence of oracle machines which output finite binary strings such 

that if U! is the range of the e-th machine with oracle B E 2w then for all B E ~, 

e E N, j.l(U!) < 2-(e+l) and U! 2 U!+l' A real A is called B-random if for every 

oracle Martin-Lof test (Ue) we have A ¢ neU!. A universal oracle Martin-Lof test is an 

oracle Martin-Loftest (Ue) such that for every A, B E 2w , A is B-random iff A ¢ ne U! . 

Given any oracle Martin-Lof test (Ue), each Ue can be thought of as a c.e. set of axioms 

(r,a). If B E ~ then U! = {a 13r(r c B 1\ (r,a) E Uen. The suffix [s] indicates 

the value of a parameter at the beginning of stage s. The notion of almost everywhere 

domination turned out to be very related with the so-called LR reduciblity, defined by 

Nies [20]. We say that a set A is LR reducible to set B (and write A '5.LR B) if all 

B-random reals are also A-random. Kjos-Hanssen, Miller and Solomon [13] (also see 

[23]) showed that A is almost everywhere dominating iff 0' '5.LR A. Kjos-Hanssen [12] 

showed that A '5.LR B iff for some member U of a universal oracle Martin-Lof test, 

there is a E~(A) class VA with UB ~ VA and j.l(VA) < 1. 

3. SpUttings of computably enumerable sets inside their LR-degree 

Given a c.e. set it is natural to ask if it can be expressed as the disjoint union of two 

c.e. sets of the same degree as itself. In the context of Turing degrees this notion has 

been widely studied. Lachlan [14] showed that not every c.e. set has this property. The 

c.e. sets which can be split into two (disjoint) c.e. sets of the same degree are known as 

mitotic. Ladner [15, 16] studied further this notion, showing that every noncomputable 

c.e. set computes a non-mitotic set and that there is a non-zero Turing degree whose 

c.e. sets are all mitotic. More results about this notion were shown in [10]' and the 
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reader can find a comprehensive survey on the general theme of splittings of c.e. sets in 

[I1J. 

It is interesting to carry such notions in the context of the LR reducibility. If a c.e. 

set is low for random, then obviously it can be split into two c.e. sets of the same LR 

degree. However we show that there is a c.e. set (even a complete one) which does not 

have this property. That is, there is a c.e. set which cannot be expressed as a disjoint 

union of two c.e. sets B, C such that the class of B-random numbers is the same as the 

class of C-random numbers. Moreover, we show that every c.e. set which is not low 

for random computes a c.e. set which cannot be split into two c.e. sets of the same LR 

degree. The latter construction is interesting as it demonstrates a notion of "non-low for 

random permitting": c.e. sets which are not low for random permit certain properties 

to occur in the 'lUring degrees below them, as this happens with noncomputable, array 

noncomputable, non-Iow2 sets etc. 

THEOREM 3.1. There is a c.e. set A that cannot be split into two c.e. sets X, Y such 

that A =LR X =LR Y. Moreover A can be such that A =T 0'. 

Proof. Let (Xi, Yi, Vi, qi) be an effective list of all quadruples (X, Y, V, q) of c.e. sets 

X, Y with X n Y = 0 and pairs V, q where V is a c.e. operator such that Jl(V.B) < q for 

all (J E 2w , and q < 1. It suffices to construct a c.e. set A and a uniform sequence (TeA) 

of E?(A) classes such that Jl(Te
A) < 2-e- 1 and the following requirements are satisfied: 

(the construction will automatically satisfy A =T 0'). Then if TA = uiTl we have 

Jl(TA) < 1 and for every i E N, if Xi U Yi = A then either TA ~ l/iXi or TA ~ l/iYi, 

which is what we wanted. For each i we define the quota Pi := (1-qi)·2-i- 2 for~. The 

idea for the satisfaction of ~ is to put a clopen set Bi ~ 2W 
- l/iXi of measure pd2 and a 

clopen set Di ~ 2W 
- l/iYi of measure pd2 into TiA (with use Ui), and wait until Ci ~ l/ix; 

and Ci ~ l/iYi with use w, where Ci := Bi U Di. Then we remove Ci from TiA (by 

enumerating into A) and restrain A f w. Note that since Jl(l/iX;) < qi and Jl(l/iYi) < qi 

the procedure is well defined. Since Xi n Yi = 0, either A f w i= (Xi U Yi) f w or Bi 

permanently stays in l/iXi or Di permanently stays in l/iYi . If we repeat this procedure 

-!i times then either some round has the first outcome, or one of TiA ~ l/ix;, Tl ~ l/iYi 

holds. In any case ~ is satisfied in a E? way. We say that Ri requires attention at 
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stage s if either Ui[SJ, Bi[SJ, Di[SJ are undefined, or they are defined and BdsJ ~ \fix,[sJ, 

DdsJ ~ \fi'Yo[sJ and (XdsJ U Yi[s]) f w = A[sJ f w where w is the least number greater 

than the use of Bi[SJ in \fiX' and Di[SJ in \fi'Yo. When we say the leftmost clopen subset 

of Q of measure q for a elopen set Q such that J.L( Q) > q we mean the unique subset P 

of Q which has measure q and the property that if f3 E P then all reals in Q which are 

lexicographically smaller than f3 belong to P. 

Construction. At stage s let i be the least number < s such that Ri requires 

attention at s (if there is no such i, go to the next stage). If udsJ i, BdsJ i, DdsJ i, 

choose the leftmost elopen set Bds + 1] ~ 2w - \fix, [s] of measure pi/2 and the leftmost 

elopen set Di[S + 1] ~ 2w - "\!iY;[s] of measure pi/2, and put them into TiA with big use 

Ui[S + 1J. Otherwise put Ui[SJ into A and set Uj[s + 1J i, Bj[s + 1J i, D)·[s + 1J i for all 

j ? i. 

Verification. By the above discussion the construction is well defined, i.e. when 

it chooses Bi, Di, suitable such sets exist. Also note that if Ui[S] L Uj[s] ! and i < j 

then udsJ < Uj[sJ. In particular, as long as Ui[SJ L no requirement Rj with j > i can 

change A f (Ui + 1). Note that TiA[sJ = BdsJ U DdsJ (or 0 if BdsJ, Di[SJ j); and if Bi, Di 

are set i at s then A changes below udsJ. So TA = Ui1iA is a E?(A) class. We have 

J.L(TiA) < 2-i- 2 since at any time Bdt] uDdt] has measure at most Pi, which is < 2-i- 2 • 

Next we show by induction that all Ri require attention finitely often and are sat­

isfied. Suppose that this holds for all Rj, with j < i and So is the least stage after all 

stages where one of these Rj requires attention. At (the beginning of) So we must have 

udsol i, Bdsol i, Ddsol i and so Ri will receive attention at So. In the following stages 

Ri can only redefine its parameters at most!; times, since J.L(\fiX') < qi and J.L("\!iY;) < qi. 

When this stops at some stage S1. we will have Uj = Uj[s] L Bj = Bj[s] L Dj = Dj[s] ! 

for all s > S1 and j ::; i, and either A r w #- (Xi U Yi) f w for some w or Bi ~ "\!ix, or 

Di ~ \fiYi, and so Ri is satisfied. 
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Finally we show that A =T 0'. Let f be a computable function such that Xf(i) = 

Yf(i) = 0, qf(i) = 2-1 and for all i, 

V
Xf(i) _ VYf(i) _ {{OO} 
f(i) - f(i) -

o 
if i E 0' 

if i tJ. 0' 

where '00' is a string representing the leftmost quarter of 2w. According to the argument 

above and the construction, Ui := lims uds] exists for all i and A can compute a modulus 

of convergence for this function, Le. there is an A-recursive function cpA such that for 

each i and all t 2: CPA(i) we have Ui = udt]. Then according to the construction and 

since we always choose the leftmost suitable clopen set to enumerate into TA we have 

that i E 0' iff i E 0'[cpA(f(i))] and so 0' '5.T A. o 

THEOREM 3.2. If B is c.e. and B 1:.LR 0 then there is a c.e. set A '5.T B which 

cannot be split into two c.e. sets X, Y such that A =LR X =LR Y. 

Proof. We use the ideas and some of the notation in the proof of Theorem 3.1 in a 

more refined form. Let (Ui) be universal oracle Martin-Lof test and let ti be the least 

such that 2-ti < 2-i- 2 . (1 - qi) (so that, in particular, J.L(Ut~) < 1 - J.L('\Ii)). Without 

loss of generality we can assume that 

(1) 

Since B 1:.LR 0 for all E~ classes E such that Ut~ ~ E we have J.L(E) = 1. To satisfy 

R? we will enumerate clop en sets into TiA (as before) as well as a E~ class Ei such that 

Ut~ ~ Ei · The idea is that, roughly speaking, for any amount that is put into TiA (and 

so ~Xi or ~Y;), the same amount is put into E i . Eventually, the measure in Ei - Ut~ 

will translate into measure in ~X - T/ or ~Y - TiA (B changes will allow A changes) 

and by making J.L(Ei) large enough, we have that either Vixi or ViY; will stop covering 

T/; also the measure that permanently stays in TiA will be at most J.L(Ut~) < 2-i - 2 . 

Since J.L(Ei) can be at most 1, we will remove Ei - Ut1 (Le. the useless measure) from Ei 

a finite number of times, provided that J.L(Ei ) > 2-1 + 2-ti . Each time we do this, we 

ensure that J.L(~Xi) and J.L(~Y;) have increased by a total of 2-2 , so that after finitely 

many times requirement R? is satisfied. 
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Order the strings as usual, first by length and then lexicographically. For each 

stage s and string P E Ut~[sJ let pi(p)[SJ be the stage where p was enumerated into 

Ut~[sJ with the current computation. At any stage s let pdsJ be the least string in 

Ut~[sJ - Ei[SJ such that Pi(Pi[SJ)[SJ ~ pi(a)[sJ for all a E Ut~[sJ - Ei[SJ (and pdsJ i if 

such string does not exist). Also let udsJ be the use of the computation Pi[SJ E Ut~[sJ. 

To schedule an i-attack at stage s means to pick a clopen set ef[s + 1J ~ 2w - ViXi[SJ 

of measure 2-lpi [sJi-l and a clopen set errs + 1J ~ 2W - ViY;[sJ of measure 2-lp;[sJi-1, 

and enumerate ei[S + 1J := ef[s + 1J U errs + 1J into T/ with big use Vi[S + 1J. An 

attack which was scheduled at stage s is cancelled at stage t > s if t is the least stage 

with B r udsJ f:. B r udtJ . An attack scheduled at stage s is implemented at stage 

t > s if Pi[SJ is enumerated into Ei at t. If an attack was implemented at stage s and 

B[sJ r Ui[SJ f:. B[tJ r udsJ for some t > s then for the least such stage t we say that the 

attack succeeds at stage t. If an implemented attack succeeds at some stage, we say that 

it is successful; otherwise we say that it is unsuccessful. In the following construction 

when a parameter is not explicitly redefined it retains its previous value and if a string is 

not explicitly extracted from TiA it remains in it (perhaps with a different computation, 

but then surely with the same A-use). As usual, we assume that UiB[SJ is prefix-free for 

all s, as a set of strings. 

We say that 14 requires attention at stage s if either vdsJ i, or vdsJ L 

((Xi U Yi) r Vi)[SJ = (A r Vi)[SJ and one of the following holds: 

(I) An i-attack is cancelled at s. 

(II) An i-attack was implemented at some stage t < s and it succeeds at stage s. 

(III) An i-attack was scheduled at some stage t < s, it has not been cancelled or 

implemented by stage s, edtJ ~ ViXi[S], edtJ ~ ltiYi[S], fUld (XiUYi)[sJ r w = A[sJ r w 

for some w greater than the use of edt] in ViXi[SJ and in ViY;[sJ. 

(IV) All previous attacks have been either implemented or cancelled. 

To initialize 14 means to empty Ei and T/. 

Construction. At stage s pick the least i < s such that 14 requires attention at s 

(if such i does not exist, go to the next stage) and do the following. 
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• If an i-attack is cancelled at s, enumerate Vi[S] into A, remove Ci[s] from TiA 

and initialize Rj for all j > i. 

• If an i-attack was implemented at some stage t < s and it succeeds at stage s, 

put vdt] into A, remove Cdt] from T/ and initialize Rj for all j > i. 

• If (IV) applies, schedule an attack at stage s. 

• If (III) applies then enumerate pdt] into Ei and say that this attack was im­

plemented at stage s. 

• If J.£(Eds]) > 2-1 + 2-ti , remove from Ei the set Ei - ut[s]. 

Verification. Note that at any stage an attack is scheduled only if all previous 

attacks are either cancelled or implemented. If an attack is implemented at stage s and 

another attack is scheduled at t > s (and Ri is not initialized in [s, t]) we have Pi[sl!pdt] 

(so that [pilslln[Pi[tll = 0). Also, in that case, if A = XiUYi we have cl[s]ncl[t+l] = 0 

for some j E {x,y}, depending on whether we have Cf[s] ~ ViXi[t] or Cns] ~ ViYi[t] 

(one of the two must occur since at s an i-attack was implemented and only one of 

Xi, Yi may change below the relevant use). In particular, Ei is prefix free and T/[s] is 

prefix free (as a set of strings) for all s. 

By induction on the stages we have that if i < j and Vj[t] 1 then vdt] 1 and 

vdt] < Vj[t]. This means that if during initialization the set TiA is emptied at stage s, 

then A changes below the smallest use of existing computations of the form (1 E TiA for 

strings (1. So (TiA) is indeed a uniform sequence of E~(A) classes, hence TA is a E~(A) 

class. Moreover by the choice of Vi[S] , if A r n changes at stage t then B r n changes 

at stage t. So A 5:.ibT B (where ibT indicates a 'lUring reduction with the use function 

being the identity); in particular A 5:.T B. 

Next we show that each ~ is satisfied and stops requiring attention after some stage. 

For a contradiction suppose that there is a least i such that either ~ is not satisfied or 

it requires attention infinitely often. Suppose that So is the least stage such that Rj, 

j < i do not require attention at any stage s ~ So. In any case we have TiA ~ ViXi and 

TiA ~ ViY; because otherwise some i-attack would never be implemented or cancelled. 

This means that i-attacks will be scheduled at infinitely many stages (by the choice of 

ti and the fact that J.£(ViXi),J.£(ViY;) are < 1 there will always be a suitable clopen set 

for scheduling a new attack) and by the definition of pds], infinitely many of them will 
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not be cancelled. In fact, if TJ is a string in Ut~[s] with correct B-use, then for some 

stage t we will have Pitt] = TJ and if to is the least such stage, the attack scheduled at to 

will be implemented (and will be unsuccessful). This means that if we never removed 

measure from Ei after stage So (under the fifth condition for R;. to require attention) 

then ut; ~ Ei and since B >LR 0 we have /l(Ei) = 1. In particular /l(Ei) > 2-1 + 2- t; 

which means that we will remove useless measure from Ei after So. The same argument 

shows that there will be infinitely many stages SI. S2,' .. at which we R;. requires and 

receives attention under the fifth condition. If we let 

Di = {pds] I at s ~ So an unsuccesful i-attack was implemented} 

then since 

Edsj] = {pi[S] I at stage s E [Sj-1. Sj) an i-attack was implemented} 

Hi[Sj] = {pds] I at S E [Sj-1, Sj) a successful i-attack was implemented}. 

If at stage S an unsuccessful attack was implemented we must have pds] E Ut~, so that 

Di ~ ut; and /l(Di) < 2-ti . Since Di n Hi = 0 and /l(Edsj]) > 2-1 + 2-ti we have 

/l(Hdsj]) > 2-1. But every string TJ E UjHi[Sj] corresponds to a pair of clop en sets 

Cf(TJ), Cr(TJ) such that 

• /l(Cf(TJ)) = /l(Cr(TJ)) = ~(~Tj]) 

• Cf(TJ) stays permanently in Vix ; or Cr(TJ) stays permanently in ViY; 

• if TJ1 = Pi[t1], TJ2 = pdt2] for So ~ t1 < t2 and Cf(TJd stays permanently 

in Vix ; then Cf(TJ1) n Cf(TJ2) = 0; if Cr(TJ1) stays permanently in ViY; then 

Cr(TJ1) n Cr(TJ2) = 0 

which means that at each Sj either /l{l!iXi) or /l(l!iY;) has increased by at least 2-2 since 

Sj-1. Since the sequence (Sj) is infinite and /l(Vix;),/l(ViY;) are less than qi < 1, this is 

a contradiction. 

Finally we need to show that /l(TA) < 1. Let So be as before, and let W be the 

set of stages t ~ So at which an unsuccessful i-attack was implemented. We have 

~A = u{Cdt] I t E W} and /l(Cdt]) = /l([pdt]]) for all t E W. Hence /l(T/) = /l(Di) 

and since Di ~ ut; we have /l(TiA) < 2-t; < 2-i- 2, which shows that /l(TA) < 1. 0 
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An obvious question which is left unanswered here is whether the c.e. sets of Theorem 

3.1 occur in every non-zero LR degree. We conjecture that this is not the case. 

Some properties of c.e. LR degrees can be derived from a combination of known 

properties of the structure of 'lUring degrees inside an LR degree and properties of the 

'lUring degrees. As an example we demonstrate the following. 

THEOREM 3.3. Let n E N. If A is c.e. then there exists B of properly n-c.e. 'lUring 

degree such that A =LR B. 

Proof. Since every c.e. LR degree contains noncomputable c.e. sets, we can assume 

that A is noncomputable. By a result in [2] we have that there exists a c.e. set C such 

that C <T A and C =LR A. Then by the density theorem in [6] there is a set B of 

properly n-c.e. 'lUring degree such that C <T B <T A and so B =LR A. o 

4. Proof of Theorem 1.1 

In the following we fix U to be the second member of a universal oracle Martin-Lof 

test, so that J1(U X ) ::; 2-1 for all X E 2W. To show Theorem 1.1 it suffices to construct 

a non-cuppable set A such that U0' ~ VA for some E~(A) class VA of measure < 1. 

We adopt the usual assumptions that, for a 'lUring functional r, rX (z)[s]l only if 

rX(y)[sJl for all y < z, and that userX(y)[s]::; userX(z)[s]::; s ifrX(z)l and y::; z. 

A 'lUring functional r may be considered as a c.e. set of axioms (z, y, a) (asserting that 

rX(z) = y for all X E 2w with a c X), which are consistent in the sense that if (z,y,a) 

and (z, y', a') are both in the set, for y' -:f. y, then a and a' are incomparable. We will 

abbreviate rXE9Y as rXY . 

4.1. Making A non-cuppable. We describe the basic strategies for a non-cuppable 

degree, based on [17, 25]. We will construct 'lUring functionals b.e to ensure that the 

following holds for all e E w: 

(2) 

where (re , We) ranges over all pairs of 'lUring functionals and c.e. sets; assuming that 

0' ~ 2N we let K = D U 0' where D ~ 2N + 1 is an auxiliary that we enumerate. In the 

following discussion we omit the index e. The idea is to let b. W copy rAW by monitoring 

the reduction rAW and restraining A to preserve the agreement of the two reductions. 

r 
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The problem with this approach is that the restraint on A may well have limit 00, in 

which case very little can be done to make A nontrivial, let alone LR-above 0'. The 

solution is to split N into infinitely many subrequirements Mp which are responsible 

just for the definition of ~ W (p), thus splitting an infinite restraint into infinitely many 

finite restraints. The strategies for the subrequirements Mp will be coordinated by a 

master N strategy which will make sure that ~ is consistent and this coordination will 

be implemented on a tree of strategies. 

We can think of N having two outcomes 00 ~ f (Le. 00 is to the left of f) cor­

responding to whether there are infinitely many expansionary stages in rAW = K or 

not, and Mp outcomes 00 ~ f according to whether rAW (p) 1 or equivalently, ~ W (p) 1. 

This induces a uniformly labelled tree of strategies where each level is occupied by either 

some N or some Mp. For the consistency of ~ we make sure that at any Mp-Ievel (Le. 

occupied by an M requirement) and at any stage at most one node a will be respon­

sible for ~W(p) 1 (by preserving A in rAW(p) 1). Any nodes to the right of a may 

adopt that ~-definition but if a node to the left of a wishes to define ~(p) it must first 

cancel the ~ computation that a holds. This happens by enumerating something into 

the auxiliary set D which in turn causes a W -change (provided that the r reduction is 

valid). Eventually, if rAW = K, at each Mp level there will be exactly one node on or to 

the left of the true path which permanently preserves ~ W (p) 1 = 0' (p). Otherwise some 

node will witness partiality. As in any 0" priority argument the restraints imposed on 

a node on the true path will be finite. 

Each Mp-node a has a flip-point d, which is the number enumerated into D when we 

wish to cancel the computation ~(p) 1. When a is visited, it checks if the computation 

rAW (d) has changed since the last time it was visited and if so, it plays outcome 00. 

Otherwise we may define ~W(p) = rAW(p), with W-use u = userAW(d) and restrain 

A f u. If we later want to visit a node f3 to the left of a, we enumerate the flip-point d 

into D whilst maintaining a's A-restraint. This enumeration should force a W-change 

below u, and so a will not hold a ~-computation anymore (if this does not happen then 

N will be satisfied by a finite outcome). Then we can drop the restraint of a and f3 

can take action. This must happen immediately upon seeing the N -expansionary stage, 

otherwise some other node a' to the right of f3 may act first and define another ~­

computation which prevents f3 from being visited. For this reason when we enumerate 
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d into D we create a link (r,/3) from the N-node r to /3 and when r is next visited at 

an expansionary stage we will follow the link straight to /3. 

4.2. Measure-guessing nodes and LR-completeness. To make A LR-complete, 

it suffices to construct a E?(A) class VA with U0' ~ VA and J.L(VA) < 1. Without loss of 

generality we assume that if (a, r) is enumerated into U at stage s then 10'1 = Irl = s. We 

will also use the hat-trick for U0': let ks = min{x : x E 0'[s]- 0'[s -I]}, or k = s if there 

are no such x and define 0'[s] = 0'[s] r k. Then U0'[s] = {a : (a, r) E Us for some r ~ 
0'[s]}. In the following we assume that U0' [s] and 0'[s] refer to U0'[s] and 0'[s] respec­

tively. Then infinitely often we have true stages s at which U0'[s] = U0'fn C U0' for 

some n, and thus J.L(U0'[sJ) < J.L(U0'). 

Whenever an interval a appears in U0', we add it to VA with large A-use u. If a 0'­

change later removes a from U0', we could remove it from VA by enumerating u into A, 

provided that u is not restrained by some requirement. The A-change may also remove 

some legitimate intervals from V A, but we add these again with the same use as before. 

This clearly gives U0' ~ VA. The main conflict is that the A-restraints will prevent 

us from removing some superfluous 'junk' intervals a from VA. For the argument to 

succeed, we must ensure that the total measure of junk intervals J.L(VA - U0') < !. 
We assign each requirement (each level of the tree) a quota 15, which is the amount 

of junk measure that requirement is allowed to capture. We implement the negative 

strategies in such a way that we.have at most one node imposing restraint at each level 

of the tree. A restraint may only be imposed on A if the (current) junk measure that 

it captures is less than the quota. To ensure that strategies will eventually be able to 

impose restraints under this restriction, we choose the quota €(k) of level k of the tree 

so that Lj>k €(j) < €(k) (in this way the lower priority requirements will not capture 

more than €(k) of junk). 

To ensure that the strategies do not exceed their junk quota, the predecessor of 

each N and M node will be a node with a strategy G which measures J.L(U0') in a rrg 
way. The backup nodes G successively subdivide the interval [0,1), assigning each of 

its outcomes an interval [q, r) which corresponds to a guess that J.L(U0') E [q, r). The 

construction will make sure that if the backing node of a strategy predicts the right 

interval [q, r) of J.L(U0'[sJ) then the junk measure that it captures will increase by no 

more than r - q after it acts. If we choose r - q = 15, then a will capture at most 215 of 

r 
I 
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junk, which is acceptable if we choose the quotas €(k) such that LkEW 2€(k) < !. An 

analysis of the permanent restraints and the timing of the enumerations into A in the 

construction will verify that J.l(VA - U0') < !. 

4.3. Combining the strategies. The difficulty in combining the non-cupping and 

LR-completeness strategies stems from the fact that the non-cupping subrequirements 

are not independent of each other or of the parent N-node. In previous constructions of 

LR-complete c.e. sets (see [3, 5)) when a node holds a restraint under a measure guess 

which proves wrong, we initialise that strategy and all lower-priority nodes. However 

here we can only initialise non-cupping parent N-nodes since by initialising an M-node 

we may make t1 inconsistent. Once a t1 W (p) axiom has been enumerated, we must 

retain the A-restraint until the axiom is invalidated by a W-change or the parent N­

node is initialised. 

Thus whenever some M -node holds a restraint under a wrong assumption about 

J.l(U0') we just try to invalidate the corresponding t1 axiom by enumerating the flip 

point and waiting for a suitable W -change. The construction will make sure that if this 

does not happen and N is not reset, the junk measure from the subrequirements of N 

will be less than the quota of N, even though the junk measure of some M may turn 

out to be larger than its quota. Overall this satisfies N trivially and with small enough 

cost. The trick which allows the above quota-junk relation is in enumeration of U0': it 

is prefix-free and if some interval a leaves U0' then all intervals which were enumerated 

after a leave as well, at the same time. 

4.4. Priority Tree and Definitions. The priority tree is a finite branching tree 

which consists of the parent nodes labelled Ne , the subrequirement nodes labelled Me,p, 

and the measure-guessing backup nodes labelled G. We adopt the convention that the 

root node is at the top and the tree branches downwards; thus we may say that a node 

0' is above a node (3 if 0' is an ancestor of (3. Let (-,.) be a monotone 1-1 computable 

function from NxN onto N. Requirement Ne has code (e,O) and Me,2p has code (e,p+l) 

(by assumption 0' C 2w and so only even t1 W (p) arguments need to be considered). We 

say that requirement R1 has higher priority than R2 (writing R1 < R2) if the code of 

R1 is smaller than the one of R2. We define the tree based on this priority ordering. 

If 10'1 = 2(e,0) + 1 then 0' is labelled Ne and if 10'1 = 2(e,p + 1) + 1 then it is labelled 

Me,2p' If 10'1 = 2e then 0' is labelled G. 
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The Ne-nodes 7 have outcomes 00 -< f and are associated with a functional AT that 

is built by the Me,p-nodes below 7 and is occasionally cleared and started afresh when 

7 is reset. The Me,p nodes have outcomes 00 -< f and are associated with a flip-point 

do: which may change in the course of the construction. A measure-guessing G-node 

"I has outcomes qo -< q1 -< q2 -< q3 which correspond to guesses about an interval in 

which p,(U0') may lie. Inductively we start with the root node A, divide [0,2-1) (since 

p,(U0') :::; !) into four equal intervals and assign them in increasing order to outcomes 

qo -< q1 -< q2 -< q3 respectively, which we think of as edges from A. If 1"11 = 2e and 

is below interval-outcome 1 of "I f 2e - 2, divide 1 into four equal intervals and assign 

them in increasing order to outcomes qo -< q1 -< q2 -< q3 respectively, which we think of 

as edges from "I. 

For an M or N-node 0', with 0' = "Ir-. x for a G-node "I, let 10: = [q, r) be the interval 

assigned to outcome x of "I. We write q(O') for the lower endpoint q of 10:, and f(O') 

for r - q, the width of 10:' We refer to f(O') as a's resolution and q(O') as its measure 

guess. Since all nodes of the same label have the same length, we may write f(Ne) or 

f(Me,p) to denote f(O') for any node 0' labelled Ne or Me,p, respectively. For each N or 

M requirement R we have 

(3) L 2f(R') < f(R) and 
R'>R 

where R' is an NorM requirement. The ordering -< on the outcomes is extended to 

the nodes of the tree lexicographically: 0' -< (3 if for the longest common initial segment 

"I of those nodes, "Ir-. x ~ 0' and "Ir-.y ~ (3 for x -< y. We say that 0' has higher priority 

than (3 if either 0' C (3 or 0' -< (3. We write ro: for the restraint imposed on A by node 

0', and 0'- for the predecessor of 0'. Also let Ro: = max{r{3 : (3 -< 0' or (3 C a}. All 

parameters have a current value each time they are mentioned in the construction and 

their value at the beginning of stage 8 is indicated by the suffix [8]. For an Me,p-node 

0', we write 7(0') for the unique Ne-node 7 C 0'. We refer to 7 as a's parent, or say that 

0' is working for 7. An Me,p-node 0' with parent 7 is enabled if 7r-.00 C 0' and for every 

Me,p,-node a' with 7 C a' C 0', we have O',r-. f C 0'. Otherwise, 0' is disabled (which 

means that it regards rAW. as partial and no further action is needed for Ne ). 

4.5. Construction. Set A [0] = 0, AT = 0 for all N-nodes 7, and do: j, ro: = 0 

for all M -nodes 0'. When a parameter is assigned a value, it retains that value until 
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explicitly given a new value. To reset an N-node T means to empty ~Tt set r{3 = 0 

and d{3 j for any M-nodes f3 working for T, and remove any links to or from T or any 

M-node f3 working for T. To reset an M-node a means to remove any links to it and if 

r a f:. 0 and da 1, enumerate da into D, setting da j. To reset a G-node means to remove 

any links to it. The construction will explicitly declare certain nodes a to be accessible 

at each stage, which does not merely mean that a c 8s . If a is an N-node, it will also 

declare certain stages to be a-expansionary. We give the enumeration of VA during the 

stages s of the construction in advance: 

Enumeration of VA. For each (a, p) E U[s] with p c 0'[s] but 

a ¢ VA[s], if a E VA[t] with use u for some t < s take the largest 

(4) such t and if (a, p') E U[t], p' C 0'[s], then enumerate a into 

VA[s + 1] with use u. Otherwise, put a into VA[s + 1] with fresh 

use. 

The construction will occasionally call the following routine, which is needed in order 

to access certain outcomes x of nodes a. 

Routine L(a, x, s). Reset all N-nodes which are on the left of 

a~x. Then consider the longest node Tea which has label Ne 

for some e E N and there is some Me,p-node f3 ::J T with f3 ~ a~x, 

(5) r{3[s] f:. O. If T exists let f3 be the shortest node as above, enumerate 

d{3 into D (if d{3 1), set d{3 j, create a link (T,a) associated with 

outcome x and go to step 4. Otherwise let 8s,t+l = a~x and go 

to step 3. 

At stage s, we perform the following steps in order. 

Step 1. (Reset some nodes) Look for the highest priority node a such that some f3 ;2 a 

has been accessed since a was last reset and J.L(U0'[s]) < q(a). If there is such, reset a 

and all nodes of lower priority than a. 

Step 2. (Drop some restraints) For each M-node a with ra f:. 0 and W r ra[s] f:. w r raft], 

where t is the stage for which the restraint ra was last set, set ra = 0 and reset a~ f 

and all nodes of lower priority than a~ f. 

Step 3. (Define 8s in substages) Let 88 ,0 = >.. Let t be the largest number such that 

88 ,t 1. If 18s ,tl ~ s then go to step 4. Otherwise let a = 8s,t and check if 

(6) there is an M-node f3 ~ a with T(f3)~OO C a, r{3 f:. 0 and d{3 j . 
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If SO, go to step 4; otherwise declare a accessible and go to the relevant clause below . 

• a is a G-node. Let lao, a1), ... [a3, a4) be the intervals corresponding to the 

outcomes of a and € = a1 - ao be the resolution of a. Let go:(s) be the largest t < s 

such that a c 8t , or 0 if such t does not exist. Let 

(Lemma 4.2 verifies that 1/ always exists) and let i be such that 1/ E [ai, ai+l), and run 

routine L(a, qi, s) . 

• a is an Me,p-node. If it is a disabled Me,p-node, let 8s,t+l = a'-"'oo and go to step 

3. Otherwise do as follows. Let d = do:,r = r(a), W = we,r = re, u = userAW(d)[s] 

(if defined) and 

(8) 

where a- is the predecessor of a. ho:(s) is the stage for which the measure-guessing 

G-node of a gave its outcome. If d 1 choose a fresh value for d. 

(9) 

Ml. If~;V (p)[s]llet 8s,t+1 = a'-'" f and go to step 3; if ~~ (p)[s]l for some Ne-node 

r' -< a then define ~~ (p) = ~~ (p) with the same use, let 8s,t+l = a'-'" f and 

go to step 3. 

M2. Otherwise if rAW (d)[s] 1 or if A f u[s] # A f u[t] or W f u[s] # W f u[t] for 

the last stage t when a. was accessible, or if a has never been accessible before, 

then run routine L(a, 00, s). 

M3. Otherwise, if 

we define ~~ (p) = rAW (p)[s] with use u, impose restraint ro:[s + I] = u, and 

go to step 4. 

M4. In any other case go to step 4. 

• a is an Ne-node. Let l(a, s) = min{n : r:we(n)[s] # K(n)[s]} U 

{d: d was enumerated into D in step 1 or 2}, and say that stage s is a-expansionary if 

l(a, s) > l({3, t) for all Ne-nodes {3 :5 a and all t < s such that {3 was accessible at t. If 

s is not a-expansionary, then let 8s ,t+l = a'-'" f and go to step 3. Otherwise, if there is 
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a link (0'., {3) associated with outcome x of {3 which was created at stage t < s, remove 

it and run routine £({3, x, s). Otherwise run routine £(0'.,00, s). 

Step 4. Set 08 = 0'. for the longest 0'. which was declared accessible in step 3. Reset 

all nodes >- Os and enumerate into A the least number which is not in A and is greater 

than all rt3[s + 1] for all M-nodes {3. 

4.6. Verification. In the following, whenever we say 'M-node' we mean an enabled 

M-node, as disabled M-nodes have no effect on the construction. A basic fact which 

stems from the the hat-trick in the enumeration of U0' and will be used repeatedly in 

the verification is the following: if So < t ~ Sl are stages and j.L(U0') takes its minimum 

value in (so, Sl] at t, then U0'[t] ~ U0'[s] for all s E (SO,81]. 
\ 

LEMMA 4.1. Links can never be nested or crossing. That is, if (T, 0'.) and (T', a') are 

two distinct links both present at stage 8, with TeO. c {3 and T' C a' C {3 for some 

node {3, then 0'. C T' or a' C T. Furthermore, at the end of any stage 8, there is at most 

one link (T,a) with TeO. ~ Os, and such a link was created at stage 8. 

Proof. By induction on the stages. Note that initially there are no links and at 

any stage at most one link is created. Suppose that the claim holds at stage s and a 

link (T, a) is created at stage 8 + 1. Then a is accessible at stage s + 1 or a link was 

travelled to 0'., and any links (T', a') with T' C a' ~ 0'. present at the start of stage 

8 + 1 have been travelled and removed. If there was a link (T", a") at the start of stage 

8 + 1 for some T" Cae 0'.", then that link would have been travelled and 0'. would not 

be accessible. Thus the new link cannot be crossing or nested within an existing link. 

Finally any links (T, a) with Tea C 0S+1 which are present at the start of stage 8 + 1, 

would be travelled and removed during the definition of 08 +1 in step 3. Since at most 

one link is created under routine (5), the last claim of the lemma holds. 0 

For a G-node "f, let Ly = lao, a4) be the interval being subdivided by "f. The following 

lemma verifies that a G-node will always have a valid outcome to play when it is 

accessible. 

LEMMA 4.2. Suppose a G-node "f is accessible at stage 80 and let 81 = g"((80) be the 

greatest stage < So such that "f C 881 (or 0 if such stage does not exist). Then there is 

some t with 81 < t ~ 80 and j.L(U0'[tJ) E 1"(. Thus, when"f is accessible in step 3, v (as 

in (7)) will exist. 
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Proof. Let "I, So and SI be as in the lemma. The proof is by simultaneous induction 

on the length of "I and the stage so. For the root node the claim is trivial, so let 1"11 ?' 1 

and suppose that the claim is true for all G-nodes shorter than "I and at all stages::; So. 

Let "I' = "I r 1"11 - 2 be the last G-node above "I and note that if "I has never been 

accessed before, a suitable t must exist or else "I' would not have chosen the outcome 

leading to "I. Suppose then that 'Y has been accessed before. If "I' is also accessible 

at so, since "I' C "I we have g"(l(so) ~ SI and by hypothesis there is a suitable t with 

g"(l(so) < t ::; So and j.t(U0/ [tJ) E 1"(. 

If "I' is not accessible at so, then there must be a link (T, (3) at so, with T C "I' ~ (3 C 

"I. Also by induction hypothesis there must be a stage to < So such that "I' is accessible 

at to and j.t(U0
/
[tJ) E 1"( for some t with g"(l(to) < t ::; to. We can assume that to is the 

greatest stage < So with the above property. If t2 is the stage at which the link (T, (3) 

was created we have t2 ~ to. Now ~8 R. "I for to ::; s ::; t2, as otherwise to would not 

be the greatest with the above property. Also ~8 R. "I for t2 < s < So as otherwise the 

link would be travelled and removed before So, because by Lemma 4.1 links cannot be 

nested. SO SI < to and SI ::; g"(l(to) since "I' C "I, which means that SI < t ::; So. 0 

By the construction, if an Me,p-node a has Ta[SJ i= 0 and da L then da has not 

been enumerated into D via resetting or routine (5). Conversely, Ta[SJ i= 0 and da i 

indicates that the construction .has attempted to invalidate a's t:.. W (p) computation. 

The definition of T-expansionary stage and the check for (6) in step 3 ensures that no 

Me-node of lower priority than a will be accessible again until the t:.. W (p) computation 

is invalidated. 

A restraint Ta is called permanent at stage s if Ta[SJ = Ta[tJ i= 0 for all t ~ s; it 

is called permanent if it is permanent at some stage. Let P be the set of nodes with 

permanent restraints. 

For an M-node a, let Ja[sJ = {a E VA[s+IJ -U0
/
[sJ : Ra[s+ IJ ::; use a < Ta[s+I]}, 

which is the junk intervals that are restrained at stage s by a but not by any higher­

priority node at the end of stage s. For an Ne-node T, let Qr[sJ = U Ja[sJ, where the 

union is taken over all Me-nodes a which are either :J T or -< T. The following lemma 

shows that if the junk captured by an M-node becomes greater than the node's quota 

210 then the node is reset; and although an M-node may sometimes capture more than 
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its quota of junk (if the junk is never released via step 2), the total junk captured by 

nodes belonging to an N-node remains within the N-node's quota. 

LEMMA 4.3. Let f3 be an M-node and s a stage such that T,a[S+ 1] f. 0 and d,a[s+ 1]1 

(so f3 has not been reset since T,a was set f. 0). Then J1-(J,a[s]) < 2E(f3). Let r be an 

N-node. Then J1-(Qr[s]) < 2E(r) for all s. 

Proof. Suppose f3 and s are as in the first claim. Let t be the stage when T,a[S + 1] 

was set. At t, VAtT[t] = VAtT[S + 1] for T = T,a[S + 1] as new intervals in VA have use 

chosen fresh. So, 

(10) 

J1-(J,a[s]) = J1-(V AtTP [s + 1]- VAtRp[s + 1]- U0'[s]) 

::; J1-(V AtTP [t]- VAtRp[t]_ U0'[h,a(t)j) 

+ J1-(U0'[h,a(t)]- U0'[s]) 

where the first term of (10) is the junk that f3 captured when it imposed its restraint 

T,a[S + 1], and the second is the measure which appears to be in U0' at h,a(t) but 

later is removed from U0'. By (9) the first term is less than E(f3). Suppose that 

J1-(U0'[h,a(t)] - U0'[s]) ~ E(f3). We have U0'[h,a(t)] - U0'[t] = 0, as otherwise (by the 

canonical enumeration of U0') there would be a stage t', h,a(t) < t' ::; t with J1-(U0'[t']) < 

J1-(U0'[h,a(t)]), which contradicts (8). So we must have J1-(U0'[t]- U0'[sJ) ~ E(f3). But 

then, again by the canonical enumeration of U0' there would be a stage t', t < t' ::; s 

such that J1-(U0'[t']) ::; J1-(U0'[h,a(t)]) - E(f3), and f3 would be reset at t' by step 1 of the 

construction. So J1-(U0'[h,a(t)]- U0'[s]) < E(f3), and J1-(J,a[s]) < 2E(f3). 

Next, let r be an Ne-node; we need only consider the case where there is some 

Me-node f3 J r with J,a[s] f. 0. Let Z denote the set of Me-nodes f3' J r or -< r with 

T,a'[S + 1] f. 0, and let f3 be the longest; by assumption f3 J r. Let t be the stage 

when T,a[S + 1] was set f. o. At t, d,a,[t + 1]1 for all f3' E Z, as otherwise f3 would 

not be accessible at t. Also J1-(J,a[t]) < E(f3) by (9). So by the first part of the lemma 

and (3), J1-(Qr[t]) < 2E(r). Also, d,a,[t' + 1]1 for all t < t'::; sand f3' E Z,f3' -< r, as 

otherwise r would be reset, contradicting the definition of t. So if J1-(Qr[t']) ~ 2E(r) 

at some t < t' ::; s it must be because Erc,a'EZ J1-(J,a,[t']) > E(r). But then by the 

canonical enumeration of U0' there would be a stage til such that t < til ::; t' and 
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J.t(U0'[t"]) < J.t(U0'[h,B(t)]) - 10(7). In such a case 7 would be reset at step 1, again 

contradicting the definition of t. SO J.t(QT[SJ) < 210(7). o 

In the following lemma we prove simultaneously that the true path T P = lim inf8 88 

is infinite, that every node on it has infinitely many chances to act, and that eventually 

the measure condition (9) will be satisfied for each M-node on TP. 

LEMMA 4.4. If a is the leftmost node of length lal such that a ~ 88 for infinitely 

many s, then 

(1) a is reset only finitely often; if it is an M-node then eventually the flip-point 

da is fixed; 

(2) a is accessible infinitely often; 

(3) there is some extension {3 :> a with {3 ~ 88 for infinitely many s. 

Thus T P = lim inf8 88 is infinite. 

Proof. First of all, if lal = 0 then a ~ 88 for all S so 1-3 of the lemma implies that 

T P is infinite. Then it remains to assume that a is the leftmost node of length lal such 

that a ~ 88 infinitely often and (inductively) that the lemma holds for all {3 C a, and 

show claims 1-3. 

For the first claim note that there are four places in the construction where a may 

be reset: in step 1, step 2, step 3 (through the routine L) and step 4. Let So be the 

second stage such that a ~ 880 ,.88 -I< a Vs > So, any computations ~~,B)(p) ! of nodes 

(3 ~ a that exist at So are permanent and no nodes above or to the left of a are reset 

after So. After So, a will not be reset in step 4. If a was reset after So at step 3 then it 

would be because routine L({3, x, s) was run for some {3 C a such that {3""x ~ a. But 

this would mean that either 88 ~ a for some s > So or a is not ~ 88 infinitely often, a 

contradiction. 

If a was reset by step 2, by the choice of So there must be some M-node {3 such 

that (3"" f C a which had a computation ~~,B)(p) ! and this was spoilt after So. But 

then the corresponding r computation (which has larger use) would be spoilt and the 

construction would define 88 to the left of a at M2, a contradiction. Suppose that a 

was reset in step 1 after stage So. By the choice of So there must be a node (3 C a 

and a stage Sl > So such that J.t(U0'[sd) < q({3). But in that case after stage Sl the 

construction would define 88 to the left of a, before it defines it below a, a contradiction. 
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Finally suppose that a is an M-node and da was changed after stage So. Since a is not 

reset after So there must be some (3 C a which ran routine L({3, x, S1) for S1 > So and 

{3~x ~ a. But in that case the construction would define 8s to the left of a, before it 

defines it below a, a contradiction. 

For claim 2, notice that since by hypothesis a ~ 8s for infinitely many s, the only 

way that a may stop being accessible after some stage is that for all sufficiently large 

stages there is a link (7, (3) with 7 cae {3. Suppose, for a contradiction, that this 

is the case and after stage So a is never accessible again. Let Y[s] be the finite set of 

~-computations that are held by M -nodes below a at s 2:: So. Note that if 8t ;2 a for 

t 2:: So then by Lemma 4.1 a link must be created at t as otherwise the next time a ~ 8s , 

a would not be covered by a link and would be accessible. Thus no new computations 

can be added to Y after So as if a ~-definition is made then no link is created at that 

stage. Also, by the construction there are no ~-computations held by nodes >- a at the 

end of a stage s when a ~ 8s . Finally a link is only travelled if the ~-computation for 

which it was created has been invalidated. So any link covering a at s 2:: So is created 

because of a computation in Y, which is removed from Y when the link is travelled. 

Since Y is finite and non-increasing, after finitely many stages Y will be empty and a 

will be accessible when next 8s ;2 a. 

For claim 3, since a is accessible infinitely often the only way the claim could fail is 

if, whenever a is accessible after some finite stage So > lal, step 3 is ended without any 

a~x being declared accessible. Suppose this is the case. Then whenever a is accessible 

after So, step 3 is ended by routine L, or by M3 or M4 if a is an M-node, or because of 

(6). 

At So there are only finitely many ~(p) definitions held by nodes {3 below a. If (6) 

holds at s > So for some a~x, it is because one such (3 was reset while 7({3) was covered 

by a link. But the link is removed after being travelled, and the next time 7({3)~OO C a 

is accessible, {3's ~(p) definition will have been set to 0 at step 2. Since no (3 below 

a is accessible after So, this can happen only finitely often for the finitely many ~(p) 

computations below a. So it will not happen after some stage SI. 

If step 3 is ended after SI due to a routine L( a, x, s) for some outcome x of a, 

according to the induction hypothesis for a the routine will eventually define 8s•t = a~x 

and so 8s ;2 a~x at some stage s. If step 3 is ended because of M3 applied to a, then 
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either the ~-definition made there is permanent (in which case a~ f ~ 88 at some later 

stage 8) or it is not, in which case routine L(a, 00, 8) will be called and the previous 

argument applies. 

Finally, suppose that whenever an Me,p-node a is accessible after some 81, case M4 

applies and step 3 is ended at a. We show that eventually the measure condition (9) is 

satisfied and M3 will apply, a contradiction. At 81, there are only finitely many nodes 

J a with restraints, and no nodes below a are accessible after 81. Let 82 be the second 

stage after 81 such that 

• any non-permanent restraints below a have been dropped; 

• all nodes f3 above or left of a have settled; ie f3 is not reset after 82 and if 

r.a[82] =I- a then r.a[82] is permanent; 

• rAW (do,) 1 and the use is correct; 

• VAfu[82]- vAfR"'[82]- U0'[82] = VAfu - VAfR", - U0'; 

• a is accessible at 82. 

Such stage exists by the induction hypothesis and the fact that new intervals in V A 

have use chosen fresh. Every interval in V AfU [82]- V AfR"'[82]- U0'[82] is in J.a[82] for 

some f3 J a, as otherwise it would be removed in step 4 contradicting the choice of 82. 

Letting E = {f3 : f3 J a and r.a[82] =I- a}, we have 

JL(VAfu [82]- V AfR"'[82]- U0'[82]) = L JL(J.a[82]) . 
.aEE 

Write E = F U G where 

F = {f3 E E : 7(f3) C a}; G = {f3 E E : a C 7(f3)}. 

Note that at 82, every node f3 in F has d.a[82 + 1] 1; as otherwise f3 has been reset at 

some t, 80 ::; t ::; 82, and by choice of 82 r.a is never set to a and f3's ~-definition is never 

invalidated. But then 7(f3) has only finitely many expansionary stages, contradicting 

that 7(f3)~00 C a is accessible infinitely often by induction hypothesis. 
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Observe that the first clause of Lemma 4.3 holds for any 13 E F and 8 = 82, and the 

second for 7 = 7(13) for any 13 E G and 8 = 82. So by (3), 

J.L(VAtU [82J - vAfRa[82J - U0'[82]) = L J.L(JJ3[82J) + L J.L(Qr[82J) 
J3EF rE{r{J3):J3EG} 

< L 210(13) + L 210(7) 
J3EF rE{r{J3):J3EG} 

< €(a). 

Thus (9) will hold at 82, a will make a b.(p) definition which will be permanent, and 

a~ f will be accessible at some stage after 82. o 

LEMMA 4.5. All non-cupping requirements Ne are satisfied. 

Proof. Let 7 be the Ne-node on T P. It is clear from the construction that T~OO C 

T P iff there are infinitely many T-expansionary stages. By Lemma 4.4 and the con­

struction, if a is an Me-node with T~OO cae TP then 

• a~oo C TP => rAW (do:) 1, and 

• a~ f c TP => b.;V'(p}!. 

To show that for each e the requirement Ne is satisfied assume that r:w. = K and 

let T be the Ne-node on TP. Since r:w. = K there are infinitely many T-expansionary 

stages. First note that by the construction, b.r is consistent, i.e. at each stage 8 if 

(O',n,x), (p,n,y) E b.r[sJ and 0' ~ P then x = y. Also by Lemma 4.4 and the fact that 

all strategies appear along the true path, the function b.;" is total and the restraints 

imposed by each Me-node below T when it makes a definition ensure that b.;V(p) = 

r:w.(p) = 0'(p) for each pEN. Thus W ?:.T 0' and Ne is satisfied. 0 

LEMMA 4.6. 0' ~LR A. 

Proof. We must verify that U0' ~ VA and J.L(VA) < 1. Once an interval 0' appears 

in U0' with correct 0'-use, according to (4) in any later stage it will be in VA with the 

same A-use. Thus eventually it will permanently belong to VA and U0' ~ VA. 

To verify J.L(VA) < 1, since J.L(U0') < ~ it suffices to show that J.L(VAfn [8J-U0'[8J) < ~ 

for all n EN and all 8 ?:. some 80. Fix n and let So be a stage such that A r n[80J = A r n 
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and vAtn[soJ - U0'[soJ = vAtn - U0'. Then for all s ~ So we have 

vAtn[sJ - U0'[sJ ~ U Qr[sJ 
rCo 

where T runs over the N-nodes ltnd 8 is the rightmost path of the tree. Hence, by 

Lemma 4.3 and the second clause of (3) we have, for s ~ So, 

J.t(vAtn[sJ - U0'[sJ) ~ L 2€(Ne) < ~. 
e 

D 

This concludes the proof of Theorem 1.1. 
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