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Abstract

In this thesis we will study LR-reducibility, a weakening of Turing reducibility arising
naturally in the context of relative randomness. We will focus particularly on the LR-
degrees of c.e. and AJ sets. In chapter 2 we present a technique for lower cone avoidance
in full approximation constructions, and use it to construct a c.e. LR-degree that is LR~
incomparable with a given intermediate A9 LR-degree. We also give a weak upward
density result, showing that every low AJ LR-degree is bounded by an incomplete
c.e. LR-degree.

In chapter 3, we consider splittings of c.e. sets into two c.e. sets of the same LR-
degree; an analogue of the notion of mitoticity previously studied in the context of
Turing degrees. We show that there are c.e. sets that cannot be split into two c.e. sets
of the same LR-degree, and that such sets may be Turing complete or low, and can be
made to avoid nontrivial upper cones of c.e. LR~degrees. We also show that this notion
differs from Turing nonmitoticity on both the low-for-random and non-low-for-random
c.e. sets,

Chapter 4 presents a construction of an LR-complete c.e. set that is non-cuppable
in the c.e. Turing degrees. This is a strengthening of an earlier result of Barmpalias and
Montalban (7], and can also be seen as a strengthening of a theorem of Harrington (in
[53}).

In chapter 5 we introduce a new notion of promptness for c.e. sets, prompt non-
low-for-randomness, which can be seen as an LR-analogue of prompt simplicity. We
investigate the Turing degrees of promptly non-low-for-random sets, and compare the
property of prompt non-low-for-randomness to the traditional property of prompt sim-

plicity.
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CHAPTER 1

Introduction

1. Introduction & outline

Algorithmic randomness has been an important and interesting field of study within
computability theory.! Although the roots of randomness go back to work by von Mises
[72] on selection rules and by Kolmogorov [34] and Solomonoff [69] in the context of
finite strings, the study of randomness of infinite sequences in its current form traces
its origins to Martin-Lof’s work [50] of 1966. In this paper, Martin-L6f developed
the concept of Martin-Lof tests and the notion of Martin-Lof randomness, which has
become one of the most popular notions in the recent study of algorithmic randomness.
Martin-Lof’s eponymous test notion (of which a formal definition is given in section
3.1) was intended to formalise the idea of effective nullsets - those measure 0 subsets of
Cantor space which can be approximated in a computably enumerable way. Since there
are only countably many such nullsets, this yields a well-defined notion of randomness:
each such nullset can be seen as the set of strings possessing some ‘special property’ or
‘distinguishing feature’ that can be computably approximated, so any string that avoids
all such computably approximable nullsets and the corresponding special properties is
random, as far as can be effectively detected.

Several other important developments soon followed Martin-Lof’s work. Schnorr
[66] established a connection between randomness of an infinite string in the sense of
Martin-Lof and complexity of its finite initial segments in the sense of Kolmogorov.
Specifically, Schnorr proved that a sequence X is Martin-Lof random iff there is a

constant ¢ such that, for all n,

K(Xrn)zn‘—c)

1 We defer a discussion of notation, definitions etc until sections 2 and 3, though our notation and
terminology is standard. References for background, history, unexplained notation and deﬁmtlons are
Nies [60] and Downey and Hirschfeldt [20].
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where X | n denotes the first n bits of X and K(o) is the prefix-free Kolmogorov
complexity of the finite string 0.2 Schnorr also gave a characterisation of Martin-Lof
randomness in terms of martingales: X is Martin-Lof random iff no c.e. martingale suc-
ceeds on X.3 Schnorr’s work thus unified three different and complementary approaches
to randomness, those of effective measure, compressibility and effective gambling strate-

gies. Each approach to randomness has its own advantages and yields its own insights
into the class of Martin-Lof random sequences.

The compressibility approach was taken by Chaitin [11], whose work on prefix-free
complexity yielded a concrete example of a random real number, the halting probability
Q.4 The halting probability is particularly interesting as it is c.e.® and Turing equivalent
to the halting problem. Such c.e. random reals, and their special status of Turing-
completeness, has been studied for instance in [10], {37] and [21].

Because of its flexibility, the martingale approach has proved useful for general-
ising or strengthening Martin-Lof randomness. Schnorr [66] defined the notions of
computable and Schnorr randomness by requiring that the martingales be computable
(rather than just c.e.) and that they succeed at a computable rate, respectively. Com-

putable randomness and Schnorr randomness were further studied for example in {19],

2 A partial computable function (machine) M :C 2<% — 2<% is prefiz-free if its domain is prefix-free;
that is,

M(o)l = M(1)1 forall T C 0.
All prefix-free machines can be computably listed, and hence there is a universal prefix-free machine U.
The prefiz-free Kolmogorov complexity of a finite string o, denoted K(o), is the length of the shortest
string 7 such that U(7) = o. This is the length of the shortest program that outputs o, or the shortest
description of o (in the programming language of the universal machine U). For a comprehensive survey
of Kolmogorov complexity in connection with algorithmic randomness, see Downey and Hirschfeldt [20].
For a treatment of Kolmogorov complexity more generally, see Li and Vitdnyi [45].
3A martingale is a function p : 2<“ — Q satisfying the condition

9(0) = 3(a(o70) + g(e™1)).

A martingale is a formalisation of a betting stfategy in a fair game; if we think of a gambler as betting
on the bits of an infinite sequence X, ¢(X [ n) is the gambler’s capital after betting on the first n bits
according to the strategy q. The martingale ¢ succeeds on an infinite sequence X if

limsup ¢(X [ n) = oo.

A c.e. martingale is one in which the set {x € Q : z < ¢(0)} is uniformly c.e. in o.
4 Let U be a universal prefix-free machine. The halting probability

Q:= Z 2711 = y(dom U)
a:U(o)l
is the probability that the universal machine U will halt if it is fed random bits as its input.
% A cee. real is a real number « € [0, 1] such that the lower cut {g € Q: g <z} is c.e. This differs from
the notion of a c.e. set; if we think of the binary representation of a c.e. real  as giving the characteristic
function of a set X, the set X need not be c.e. We will not use the notion of c.e. reals any further;
when we write c.e. we mean it in the sense of a c.e. set.
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[23]. Another way to generalise the martingale approach to randomness is via non-
monotonicity. Kolmogorov [33] and Loveland [46] proposed non-monotonic betting
strategies, in which the strategy is allowed to choose the next position in the sequence
on which to bet. This was studied more recently in [57] and [52]. Still another topic
arising from martingales is effective dimension. An effective version of Hausdorff dimen-
sion was originally suggested by Lutz [47], and Mayordomo [51] established connections
between Kolmogorov complexity and Lutz’s original formulation of effective dimension
in terms of martingales.

Although the compressibility and martingale approaches to randomness and the
various strengthenings or weakenings of Martin-L6f randomness are interesting and
fruitful, we will not concern ourselves with them here. We will restrict our attention to
Martin-Lof’s original notion of randomness in terms of Martin-L&f tests, though we note
that many important concepts such as low for randomness and LR-reducibility can be
thought of equally well in terms of Kolmogorov complexity or martingales as in terms
of Martin-Lof tests. Comprehensive treatments of the various notions of randomness
may be found in the references [20] and [60].

Work on Martin-Lof randomness continued through the 1980s with important con-
tributions by Solovay [70], Kucera [35], Gacs [27] and van Lambalgen [71], to name
only a few. However it was in the late 1990s that interest in algorithmic randomness
blossomed. One topic of particular interest was relative randomness, Martin-Lof ran-
domness relativised to an oracle. The notions of Martin-Lof tests and randomness can
naturally be relativised to an arbitrary oracle; one can then study the information con-
tent of an oracle X by examining the randomness notion obtained by relativising to
X. In particular, relative randomness gave rise to various lowness properties, captur-
ing ways in which an oracle can have low information content as far as randomness is
concerned. Zambella [77] defined the notion of low for randomness: an oracle A4 is low
for random if all (unrelativised) random sequences are also random relative to A. Such
an oracle is no assistance for detecting patterns or approximating nullsets, compared to
the unrelativised case. Kugera and Terwijn [39] constructed a noncomputable c.e. set

that is low for random. Muchnik [56] defined and studied the class of low for K, those
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oracles which are no assistance as far as Kolmogorov complexity is concerned.® Oth-
ers [22, 59] studied the K-trivials, sequences with the smallest possible initial segment
complexity.” A fourth lowness property, being a basis for randomness®, was suggested
by Kuéera [36]. This work culminated in [59] and [28] with proofs that these classes
co-incide; in fact, they form an ideal in the Turing degrees that has since been studied
extensively {38, 58].

Relativising notions such as low for randomness naturally leads to reducibilities and
associated degree structures. Nies [59] defined the LR-reducibility <pgr, which is the
main topic of this thesis: oracle A is LR-reducible to B, A <pr B, if the class of
Martin-Lof randoms relative to B is contained in the class of randoms relative to A.
Intuitively, the oracle B is at least as useful, computationally, for detecting patterns as
the oracle A. LR-reducibility extends Turing reducibility, with a least degree consisting
of exactly the low for random sets. This gives LR-reducibility a claim to being a very
natural notion for studying information content in the context of relative randomness.

In this thesis we will mainly study the reducibility <pg, its degree structure, its
connections with Turing reducibility, and related notions. We will focus particularly
on the LR-degrees of c.e. and AJ sets. In chapter 2 we prove some results about the
structure of the AJ LR-degrees (that is, LR-degrees containing AJ sets). Specifically, we
present a technique for lower cone avoidance in full approximation constructions, and
use it to construct a c.e. LR-degree that is LR-incomparable with a given intermediate
AY LR-degree. We also give a weak upward density result, showing that every low A
LR-degree is bounded‘ by an incomplete c.e. LR-degree.

In chapter 3, we consider splittings of c.e. sets into two c.e. sets of the same LR-
degree. We look at an LR-degree analogue of the notion of mitoticity studied in the
context of c.e. Turing degrees by Lachlan [41], Ladner [43] and others. We show that
there are c.e. sets that cannot be split into two c.e. sets of the same LR-degree, and that
such sets may be Turing complete or low, and can be made to avoid nontrivial upper
mw for K if there is a constant ¢ such that

K(o) < K*o)+c

for all strings o. That is, the oracle A does not help (beyond the fixed constant ¢) in compressing data.
K# is the prefix-free Kolmogorov complexity relative to oracle A.
7 A is K-trivial if the complexity of initial segments of A is as small as possible: there is a constant ¢
such that

K(Aln)<K(n)+ec
for all n.
8 A is a basis for randomness if there is an X such that X is random relative to 4 and A <r X.



2. NOTATION AND CONVENTIONS 5

cones of c.e. LR-degrees. We also show that this notion differs from Turing nonmitoticity
on both the low-for-random and non-low-for-random c.e. sets.

Chapter 4 presents a construction of an LR-complete c.e. set that is non-cuppable
in the c.e. Turing degrees. This is a strengthening of an earlier result of Barmpalias and
Montalbén [7] that there is a cappable LR-complete c.e. set, and can also be seen as a
strengthening of a theorem of Harrington (in [53]).

In chapter 5 we introduce a new notion of promptness for c.e. sets, prompt non-
low-for-randomness, which can be seen as an LR-analogue of prompt simplicity. We
investigate the Turing degrees of promptly non-low-for-random sets, and compare the
property of prompt non-low-for-randomness to the traditional property of prompt sim-

plicity.
2. Notation and conventions

2.1. Cantor space and strings. Let 2<“ denote the set of all finite binary strings,
and 2¥ denote Cantor space of infinite binary sequences. We call members of 2<%
strings, and members of 2* reals. We identify reals with subsets of N in the usuai way,
and sometimes use the terms real, set and oracle synonymously. We typically use the
letters o, 7, p for strings and A, X etc. for reals. We sometimes use o, 7 also for finite sets
of strings, which represent clopen subsets of 2. For X € 2¥ and n € N, X | n denotes
the initial segment of X of length n, a finite string. For strings o, 7, we write ¢ C 7
to denote that o is an initial segment of 7, and C to denote a strict initial segment.
We also write o C A for A € 2% to indicate that o is an initial segment of the real A.
o|r denotes that o and 7 are incomparable, i.e. 0 € 7 and 7 Z ¢. A set of strings is
prefiz-free if for any two distinct strings o, 7 in the set, we have o|r. The length of a
string is denoted |o|. We obtain the standard bijection between 2<“ and N by ordering
the finite strings first by length and then lexicographically.

Cantor space 2* is equipped with the usual topology, generated by basic clopen sets
[0] = {X €2 :0 C X} for ¢ € 2<¥. We can extend the notation [-] in the obvious

way to sets of strings: if C C 2<% then
[C]={X €2¥:0 C X for some 0 € C}.

To simplify presentation we will often omit the brackets and denote by o both the string

and the clopen set (and similarly for sets of strings). It will be clear from context which
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is intended. The Lebesgue measure on 2¥ is denoted by u. Note that the measure of
(the clopen set corresponding to) a string o is u(o) = 27191, and for a prefix-free set C
of strings it is u(C) = ¥ pec 271,

Suppose that V C 2% is a clopen set. When we say the least (or leftmost) clopen set
C C V of measure ¢ we mean the clopen set C, if it exists, such that C C V, u(C) = ¢,
andif Z € V—C then Z > X for all X € C, where < is the lexicographical ordering on
reals. That is, C is the leftmost clopen subset of V of size ¢. If we require a particular
representation of thé clopen set C by finite strings, ie. a finite prefix-free D C 2<% such
that C = [D], we may take the first such D under a standard listing of finite prefix-free

sets of strings.

2.2. Turing functionals and operators as c.e. sets. It is convenient to consider
computably enumerable (c.e.) sets to be the fundamental objects of compﬁtability
theory, since we can obtain other objects such as Turing reductions or 2‘13 classes from
c.e. sets. In several constructions we will build Turing functionals or oracle £9 classes as
c.e. sets of axioms. We briefly discuss how such objects can be represented as c.e. sets.

Let (-,-) be a standard pairing function, which is a computable bijection from N x N
to N. From this we can obtain codings of tuples of all sizes in a standard way. We can

consider a Turing reduction ® to be a consistent c.e. set of axioms of the form
(1) (z,2,7) for z,z € N and 7 € 2<%,

which asserts that

®X(z)|=zifrCc X

for X € 2*. In this context consistent means that if (z, z, 1), (z, 2/, 7’) are both axioms
in the set then

7|7 or 2 = 2.

Any such consistent c.e. set W of axioms certainly defines a (possibly partial) Turing
reduction; moreover, from an enumeration of any c.e. set W we can obtain a Turing
reduction by discarding any numbers enumerated into W which are not of the form
(1) or which are not consistent with any axioms previously enumerated. Conversely,
given a Turing reduction ¥ we can obtain an equivalent c.e. set of axioms by the usual

procedure of enumerating all possible computation paths.
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In cases when we are interested in Turing reductions as operators from 2 to 2¥, it
is convenient to consider Turing reductions as c.e. sets of axioms of the form {o,7) for
o, T € 2<% which assert that

cC®XifrcX.

In this case consistent means that if (o, 7), (¢’,7’) are both axioms in the set then
rCr’=0C0o.

From such a set we obtain a Turing reduction whose domain (for each oracle X) is N
or an initial segment of N. Conversely, from a Turing reduction ¥ we can obtain a
c.e. set of axioms for a Turing reduction ® such that ¥X(z) ~ ®X(z) on that part of
the domain of X which is an initial segment of N.

A c.e. operator is a uniform procedure for obtaining an A-c.e. set W4 from an oracle

A. A c.e. operator can be considered as a c.e. set W of axioms of the form
(n,7) forn € N,7 € 2<%
if we are interested in sets of numbers, or of the form
(o,7) for 0,7 € 2<%

if we are interested in sets of strings, which assert, respectively, that n € W4 or 0 € W4
if r C A
Let A€ 2¥ An A-E? class VA is a subset of 2% which is 2(1’ relative to the oracle

A. That is, there is an A-computable relation R on 2<% such that
X eVA & 3InR(X | n).

Such a class V4 is generated by an A-c.e. set of strings W4 such that X e VAif X Do
for some o € W4, although many different A-c.e. sets may generate the same A-%9 class
of reals. However, when we talk of an A-X9 class V4, we will always understand it to
be generated by a fixed A-c.e. set, and for convenience we often identify the class V4
with the c.e. set of strings.

An oracle 9 class V is a uniform procedure for obtaining an A-X9 class V4 from
an oracle A. Since A-X classes are generated by c.e. sets of strings, such a uniform

procedure is in fact a c.e. operator. In particular, an oracle ZJ? class V' can be thought
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of as a c.e. set of axioms (o, T) as above, but asserting in the context of £ classes that
if 7 C Aand 0 C X then X € VA, It is often convenient to assume without loss of

generality that for a fixed A the set
{oc€2<:{0,7) € V and T C A}

is prefix-free, and that if (o, 7) is enumerated into V at stage s then |o| = |7| = s.
For a set W C 2<%, define the weight function
weight W = Z 2-lol,
oW
Note that weight W > u([W]), with equality exactly when W is prefix-free. Say that
W C 2<% is bounded if weight W < co. If V is an oracle ©J class, say that V is bounded
if there is a rational ¢ < 1 such that u(VX) < ¢ for all oracles X.

Bounded oracle £ classes and c.e. operators are a particularly useful tool when
working with LR-reducibility, because of Theorem 1.5. In many constructions we will
need a computable listing of all bounded oracle X classes or c.e. operators, along with
a bound ¢. Let (Ve,qe) for e € N be a listing of all pairs of a (not necessarily bounded)
oracle X9 class V and a dyadic? rational ¢ in the interval (0,1). We can obtain a
bounded oracle T¢ class V, from the pair (V¢, ge) by discarding any axioms (o, 7) which
are enumerated into V, and which would make wu(V,X) > ¢, for any X € 2¥. If V is
an oracle £{ class such that u(VX) < ¢ for some dyadic q € (0,1), then certainly the
pair (V, q) will appear somewhere in the listing ((Ve, ¢e))een. In a similar way we may
obtain a listing of all bounded c.e. operators.

Suppose that V is an oracle ©Y class (given by a prefix-free c.e. operator) and A is a
c.e. set. From enumerations V[s] and A[s] of V and A, we can approximate V4 in a £J
way. Let V4[s] denote V[s]4l%], the approximation to V4 at stage s, which is a clopen
set uniformly computable in s. If a string o0 € V4[s], then there is an axiom (o, 7) € V3]
such that 7 C A[s]. In this case we say that o is in V4[s] via the aziom (o, 7). Say that
the computation o € VA[s] became valid at t < s if ¢ is the least such that (¢, 7) € V|t]
and 7 C Alt]. When we say the oldest string in VA[s] satisfying some condition P we
mean the unique string, if it exists, such that o € V4[s], and for any other ¢’ € V4]s],

either the computation o € V4[s] became valid before the computation o’ € V4[s], or

9 A rational whose binary expansion is finite, ie. a finite sum of powers of 2.
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if they became valid at the same stage then o preceeds o’ in the length/lexicographical

ordering of strings.

3. Randomness and LR-reducibility

3.1. Martin-Lof randomness. A Martin-Lof test is a sequence (U;)ien of uni-
formly 2‘1’ classes such that u(U;) < 27% Each U; is called a member of the test. The
intersection M;U; is an effective measure 0 set (nullset). We say that a real X € 2¥ is
captured by the test (U;) if X € NyU;. X is Martin-Lof random if X ¢ N;U; for all
Martin-Lof tests (U;)ien; that is, X is not captured by any Martin-Lof test.

The motivation for Martin-Lof randomness is that a real is ‘random’ if it does not
have any ‘special properties’ or ‘patterns’ that can be effectively approximated. A
pattern or property is ‘special’ if it is atypical in the measure sense, that is, if the class
of reals with that property has measure 0. Each Martin-L6f test approximates (the
nullset of reals satisfying) one such special property. Hence if X is not captured by
any Martin-Lof test, then it does not have any special property that can be effectively
approximated, and is, as far as can be effectively determined, random.

By weakening or strengthening the notion of Martin-Lof test, we can obtain other
notions of randomness. For instance, if we require that u(U;) = 27, then we obtain
Schnorr randomness (after Schnorr [66]); if we require only that u(U;) — 0 as ¢ — oo
without a uniform bound on u(U;) then we obtain a stronger randomness notion known
as weak 2-randomness. We will not be concerned with other types of randomness in this
thesis however, and we will use the word ‘random’ to just mean Martin-Léf random.

From an enumeration of any c.e. set W we can obtain a Martin-Lof test (U;)ien
by treating W as a set of axioms of the form (i,0) for ¢ € N and ¢ € 2<¥, asserting
that o € U;, and discarding any axioms that would make u(U;) > 2. Moreover, every
Martin-Lof test arises from some c.e. set in this way. Hence there is a uniform listing
of all Martin-Lof tests. From this listing we can construct a universal Martin-Lof test:

let (UF)ien be the k’th Martin-Lof test in the listing, and let
(2) Ui = U Uik+k+1'
k

Clearly the U; are uniformly %{ and u(U;) < 27, hence they form a Martin-Lof test.
We have ﬂiUik C n;U; for all k, so that X € 2 is random iff X ¢ N;U;.
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The definitions of Martin-Lof tests and randomness may be relativised to an arbi-
trary oracle A. An oracle Martin-Léf test is a uniform sequence of oracle ©9 classes
(Ui)ien such that p(UA) < 27% for any oracle A. As in (2) above, we can obtain a
universal oracle Martin-Lof test (U;)ien. A real X € 2¥ is A-random if A ¢ N;U# for

the universal oracle Martin-Lof test (U;);en.

3.2. Low-for-randomness. Low for randomness, and equivalent notions such as
K-triviality, have been a significant area of recent research (for instance, [59, 22]). An
oracle A € 2% is low for random if all (unrelativised) random reals are also A-random.
That is,

VX € 2¥ X is random => X is A-random.

Informally, the oracle A is no assistance, compared to the unrelativised case, for detect-
ing patterns in reals. The universal A-Martin-Lof test does not capture any reals that
aren’t already captured by the unrelativised universal Martin-Lof test.

Certainly all computable sets are low for random. A noncomputable low for random
c.e. set was constructed by Kucera and Terwijn [39] using the now well-known cost
function method. A series of work by Downey, Hirschfeldt, Nies and Stephan {22],
Nies and Hirschfeldt [59], Nies [59] and Hirschfeldt, Nies and Stephan [28] culminated
in the co-incidence of the class of low for randoms with several other classes of reals:
the K-trivials, low for K, and the bases for randomness. We list some important facts
about the class of low for random reals (some of which are best proved by first proving
the corresponding fact for the K-trivials and then invoking the equivalence between
K-triviality and low for randomness). All low for randoms are A9, and superlow (that
is, A" =4 §'). The low for randoms form an ideal in the Ag or c.e. Turing degrees; that
is, the low for random Turing degrees are closed downwards under <7 and under join.
Every AJ low for random set is computable in some low for random c.e. set; hence in
fact the ideal of low for random Turing degrees is generated by the c.e. low for randoms.
For proofs of these facts, a thorough treatment of the notions of K-triviality, low for K
and bases for randomness, and their equivalence with low for randomness, we refer to

Nies [60] or Downey and Hirschfeldt [20].

3.3. LR-reducibility and LR-degrees. Now we come to the key notion of this

thesis.
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DEFINITION 1.1, Let A, B € 2%, The real A is LR-reducible to B, A <ygr B, if the

class of B-random reals is contained in the class of A-random reals. That is,
VX e 2¢ X is B-random = X is A-random.

A <1r B denotes A <pgr Bbut B £1r A. A is LR-equivalent to B, denoted A =5 B,
if A<pr B and B <pgr A. An LR-degree is an equivalence class under the equivalence
relation =pr. The LR-degree of the real A is denoted deg;z(A). An LR-degree is c.e. or

AY if it contains a c.e. or AJ set, respectively.

It is more intuitive to phrase the definition of A <y B in contrapositive; if X is
not random relative to A then it is not random relative to B. Informally, oracle B is at
least as good at detecting patterns as oracle A.

LR-reducibility was first defined by Nies in 2005 [59]. It can be seen as a partial
relativisation of the notion of low for random.!® Clearly A < B implies A <pr B.
The converse fails however; Kucera and Terwijn’s [39] noncomputable low-for-random
set A satisfies A <yr @ but A €7 0. Hence LR-reducibility is a proper weakening
of Turing reducibility. However it still has some properties in common with Turing
reducibility. For instance, both < r and <t are $9 predicates (this is clear for <jp,
for instance, from Theorem 1.5 below). Also, some techniques from the study of the
c.e. and A9 Turing degrees can be adapted to work with LR-reducibility. Examples of
this are Barmpalias, Lewis and Stephan (6] and Barmpalias, Lewis and Soskova [5], in
which the familiar techniques of Sacks restraints and Sacks coding from the c.e. Turing
degrees are adapted to the context of c.e. LR-degrees. We will use Sacks restraints in
the LR-context in chapter 2.

We mention without detailed proof some key facts and significant results in the
study of LR-degrees. The least LR-degree Opr consists of exactly the low for random
sets. If A =g B then A is low for random relative to B and B is low for random
relative to A. Each LR-degree is countable (ie, contains only countably many sets).
This follows from the fact that if A =;r B thenn A and B are low for random relative
to each other, and thus A" =y B’ by relativising the fact that all low for randoms
are superlow. This was first observed by Nies [59]. However, some LR-degrees have
uncountably many predecessors. Barmpalias, Lewis and Soskova [5] and independently

10 Note however that a full relativisation of the statement “A is low for random” to an oracle B would
be that “all B-randoms are A @ B-random”, ie X is B-random = X is A @ B-random.
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Miller and Yu [55] showed that there are uncountably many sets A <y p @#'. Since
each LR-degree is countable, there are uncountably many LR-degrees below that of
. Barmpalias [3] later improved this to show that there are uncountably many reals
<pr any non-low-for-random A§ real. Not every nonzero LR-degree has uncountably
many predecessors though; Miller [54] showed that reals which are low for the halting
probability Q! bound only countably many LR-degrees. In particular all 2-randoms*?
are low for §2 and s0 bound only countably many LR-degrees.

Kjos-Hanssen, Miller and Solomon [31] showed that <pp is equivalent to another
reducibility arising from relative randomness, LK-reducibility <rpx. Nies [59] defined

A <k B if there is a constant ¢ such that for all strings o,
KB(0) < KA(o) + ¢

where KX (o) is the prefix-free Kolmogorov complexity of the string o, relative to the
oracle X. Intuitively, the oracle B is at least as useful for compressing finite data as A.
The reducibility <k has also been studied in [54)]. Since <pg and <pg co-incide, one
could re-interpret all results about <pp in terms of prefix-free Kolmogorov complexity,
instead of in terms of Martin-Lof tests and measure.

As Turing reducibility implies LR-reducibility, each LR-degree is a union of Turing
degrees. Barmpalias, Lewis and Soskova [5] studied the Turing degrees inside LR-
degrees, and showed that every LR-degree contains infinite chains and infinite antichains
of Turing degrees. They showed that this holds in the c.e. case also: every c.e. LR-degree
contains infinite chaing and antichains of c.e. Turing degrees. Each LR-degree is closed
under @, the join operation in the Turing degrees. This follows from the fact that if
A =pr B then A and B are low for random relative to each other, and the fact that
low for randoms are closed under & relativised to A or B.

However, @ does not give a join (least upper bound) operation in the LR-degrees:
Kucera and Terwijn [39] constructed a promptly simple low for random set A, and by
a well-known result from [1] the promptly simple c.e. Turing degrees co-incide with the
low cuppable c.e. Turing degrees. Therefore there is a low B such that A® B =7 .

B cannot be low for random since the low for randoms are closed under @ and all low

11 A real A is low for € if every (equivalently, some) random of c.e. Turing degree is also A-random.
This notion was defined by Nies, Stephan and Terwijn [61], and further studied in an excellent paper
by Downey, Hirschfeldt, Miller and Nies in [21] and by Miller [54].
12 X is 2-random if it is random relative to the halting problem @'.
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for randoms are low (and in particular cannot be > (0’).’ Moreover B #pr &' since
B’ #, 0. Hence B® A #.r B even though A =5 0. It is unknown if every pair of
LR-degrees has a least upper bound, ie. if the LR-degrees form an upper semi-lattice.
Barmpalias, Lewis and Soskova [5] also studied the c.e. LR-degrees as a structure.
They prove analogues of some theorems from the c.e. Turing degrees, such as the Sacks
splitting theorem: that any non-low-for-random c.e. set A can be split into two disjoint
c.e. sets B,C such that A £.r B and A £ r C. Barmpalias, Lewis and Stephan (6]

continue the study of c.e. LR-degrees, proving a weak density theorem:

THEOREM 1.2 (Barmpalias, Lewis and Stephan [6]). Let A, B be c.e. sets such that
A <rr B and A <7 B. Then there is a c.e. set C such that A < g C <yr B and
A<LrC<rB.

The proof of Theorem 1.2 is an adaptation of that of the Sacks density theorem for the
c.e. Turing degrees. It is not known if this holds without the requirement that A <r B.
Hirschfeldt, Nies and Stephan proved the following theorem connecting computable

enumerability, randomness and incompleteness.

THEOREM 1.3 (Hirschfeldt, Nies and Stephan [28]). Suppose A is c.e., Z is random
and ¢/ £ A® Z. Then Z is A-random.

It follows from this theorem that the AJ and c.e. LR-degrees differ.

COROLLARY 1.4 (Folklore). There is a A LR-degree that does not contain any

c.e. sets.

PROOF. Let Z be a low random; such a random exists by the Low Basis Theorem
(see Soare [68] §V1.5.13) applied to the complement of a member of a universal Martin-
Lof test. We claim that the LR-degree of Z does not contain any c.e. set. Suppose that
Z =g A for some c.e. A. Since each LR-degree is closed under @, A @ Z is low and in
particular A & Z < @'. Therefore by Theorem 1.3, Z is random relative to A. But Z

is not random relative to itself, contradicting that A =p5 Z. ]

In fact, the Low Basis Theorem guarantees that Z is superlow, Z’ <y ', and hence
Z is w-c.e. We may therefore deduce the stronger result that the w-c.e. LR-degrees
differ from the c.e. LR-degrees. It is not known if the n-c.e. LR-degrees differ from the

c.e. LR-degrees or from the w-c.e. LR-degrees.
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Barmpalias {2] has established that the structures of c.e. and Ag LR-degrees are not
elementarily equivalent to the structures of c.e. and A9 Turing degrees, respectively. The
elementary difference that Barmpalias gave between the c.e. LR-degrees and c.e. Turing
degrees is the existence of minimal pairs: Lachlan {40] and independently Yates [74]
showed that there are minimal pairs of c.e. Turing degrees, whereas Barmpalias [2]
established that there are no minimal pairs of c.e. LR-degrees. The elementary difference
between the Ag LR—degrees and Ag Turing degrees is the existence of minimal degrees:
Sacks [64] constructed a minimal A Turing degree, and Barmpalias [2] showed that
there is no minimal AJ LR-degree (in fact, every AJ LR-degree bounds a nonzero

c.e. LR-degree).

4. LR-reducibility and bounded coverings

4.1. Characterisations of LR-reducibility in terms of bounded coverings.
We now present in Theorem 1.5 some important characterisations of <pr. These char-
acterisations provide a concrete way for us to work with LR-reducibility, giving us a

means to construct or diagonalise against possible LR-reductions.

THEOREM 1.5 (Kjos-Hanssen [30], Kjos-Hanssen, Miller and Solomon [31]). Let

A, B € 2¥. The following are equivalent:

(i) A<ir B; .
(ii) for every A-% class W4 with u(W4) < 1, there is a B-£9 class V'Z such that

W4 C VB and ,u(VB) <1

(iii) for some member U of a universal oracle Martin-L&f test, there is a B-X class VB
such that
UAC VB and p(VB) < 1;

(iv) for every A-c.e. set of strings W4 with weight W4 < 1, there is a B-c.e. set of

strings V2 such that

W4 C VP and weight VB <« 1;
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(v) for every A-c.e. set of strings W4 with weight W4 < oo, there is a B-c.e. set of

strings V2 such that
W4 C VB and weight VB < .

Parts (i),(ii),(iii) of Theorem 1.5 are due to Kjos-Hanssen [30]. Parts (iv) and (v)
are due to Kjos-Hanssen, Miller and Solomon [31]. We give a proof of the theorem in
section 4.3.

Theorem 1.5 provides a convenient way to work with LR-reductions. If we wish
to construct a set A to be £Lr a given set B, by (ii) it suffices to diagonalise against
bounded B-Z classes by constructing an A-29 class T4 with u(T4) < 1 and TA g VB
for any bounded oracle £9 class V. Alternately, if we wish to ensure that A <. r B, by
(iii) it suffices to construct a B-%9 class V& with u(VB) < 1 and U4 C VB, for some
universal oracle Martin-Lof test member U. Conditions (ii) and (iii) will be the primary
tool for working with LR-reducibility in chapters 2, 3 and 4. In chapter 5 it will be
convenient to work with LR-reducibility and low-for-randomness via (iv) and (v).

The difference between (i) and (iv) is that W4 is considered as a set of reals in
(i) and as a set of strings in (iv). Clauses (iv) and (v) are in the spirit of Solovay’s
formulation of Martin-Lof randomness. A Solovay test is a c.e. set of strings S such
that weight S < co. A real X € 2 is captured by the test .S if there are infinitely many
strings o € S with o C X. Solovay [70] showed that X is Martin-Lof random iff X is

not captured by any Solovay test. This holds when relativised to an arbitrary oracle.

4.2. Preparation for the proof of Theorem 1.5. We first give some lemmas
which will be useful for the proof of Theorem 1.5 in section 4.3. To prove the equivalence
of (i), (ii) and (iii) of Theorem 1.5 we will follow the presentation in Barmpalias, Lewis
and Soskova [5]. Our proof of the equivalence of (ii), (iv) and (v) is adapted from Nies
(60] Lemma 5.6.4, which in turn follows Simpson [67].

LEMMA 1.6. If a TI{ class P contains a random, then P has positive measure.

Proor. Suppose u(P) = 0. Let P, be a computable sequence of clopen sets such
that P = NyPs. In particular u(F;) is computable. For i € N let k; be the least such
that u(Py,) < 2~%. Then (Py,)ieN is a Martin-L&f test which captures all reals in P.

Therefore any real in P is not random. 0
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In fact, if P contains a random then p(P) is random, but we will not need this

stronger result.

LEMMA 1.7. Let U be a member of a universal oracle Martin-Lof test and let ¢ €
2<% If (0] € U# then '
_ wU%n o))

Ay .
e = =y <t

PROOF. Suppose [o] € U4. Then [o] — U4 is a nonempty A-TI? class containing a
random. Hence it has positive measure by Lemma 1.6 relativised to A, and in particular

pe(UA) < 1. a

For sets of strings X,Y C 2<%, let
(3) XY :={or:0€X,TeY}.
If X,Y are c.e. in some oracle A then XY is also c.e. in A.

LEMMA 1.8. Let A, B € 2%, and suppose that X,Y are A-E? classes with measure
< 1,V is a B-2{ class with measure < 1 and XY C V. Then there is a B-X? class W

with measure < 1 such that either X CWorY CW.

PROOF. Suppose first that there is a ¢ € X such that u,(V) < 1. Then for
W={r:07€V} wehave Y C W and u(W) < 1. Suppose next that ,(V) = 1 for all
o € X. Let g be a rational > 0 such that u(V) <1—gq. Let W = {0 : us(V) > 1 —g}.
We have X C W and (W) < u(V)-(1—¢) 1 < 1. (W

A tail of a real X is any final segment of X.

LEMMA 1.9. If P is a I class of positive measure, then P contains a tail of every

random.

PROOF. Let X be random and let S be a c.e. set of strings such that [S] = 2« — P.
Let ¢ be a rational < 1 such that u(S) < g and let k; be the least such that ¢ < 27,
Then S* is a Martin-Lof test (where S™ is as in (3)), so X ¢ M;S*. Thus X ¢ S" for
some n. Let n be the least such. Then X € §"! so X O 7 for some string 7 € S*~1.
Let Z be the tail of X obtained from X after discarding 7. Z ¢ S so Z € P as
required. O

We will use this analysis fact in proving (iv) of Theorem 1.5.
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LEMMA 1.10. Let {a;)ien be a sequence of real numbers such that 0 < a; < 1. Then

Y ai<oo & [[1-ai>0.
i i

For a proof, see for instance Nies [60] Lemma, 5.6.4.

4.3. Proof of Theorem 1.5. Now we can give the proof of Theorem 1.5.

PROOF OF THEOREM 1.5. We will prove (i) = (ii) => (iii) = (i) and then (ii) =
(v) = (iv) = (ii).

(i) = (ii). Assume A <pr B, that all B-randoms are A-random. Let W# be an
A-E? class with u(WA) < 1. Fix a member U of a universal oracle Martin-Léf test, and

let U; be the universal oracle Martin-Lof test from (2). We claim that
(4) Im € N, o € 2% such that [0] £ UZ and U2 N (0] C UP.

Assume the contrary. We construct by finite extensions a real X which is in U for all m
but X ¢ UB. Such an X is B-random but not A-random, contradicting A <pg B. Let
7_; be the empty string and assume inductively that 7;_; is defined and [r;_,] € B,
By the negation of (4), UA N i) € UB. Therefore there is a 7 O 7;_; such that
[r] C UA and [r] € UB. Let 7; be such a 7. Then the real X = U;r; is B-random but
not A-random. This establishes (4).

Let m and o be as in (4), and let
VE = (2 - [o]) U (o] N T").

Then U C V7 and by Lemma 1.7, #e(UP) < 1 and so u(VP) < 1. (We have actually
showed (iii) for the specific case when U is one component of the universal test (2).) Let
g be a rational <1 such that u(W4) < g, and let k; be the least such that ¢¥ < 27%.
Then (W4)* gives an A-Martin-Lof test (where (W#)™ is as in (3)). By the definition
(2) of the universal test Ui, we have (WA ¢ UA € VB for some i. By Lemma 1.8,
there is a B-X9 class VE with WA C VB and u(VB) < 1.

(ii) = (iii) is immediate.

(iif) = (i). Assume that U 4 C VB for some U and V as in (iii). Taking complements,

we have VB := 2% — VB CUA:=2% —UA. Let X be B-random. Then VB contains a
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tail Z of X by Lemma 1.9 relativised to B, since u(ﬁ) > 0. So UA contains Z also,

and hence Z is A-random. But X is A-random iff Z is A-random, so X is A-random.
(ii) = (v). We follow Nies [60] Lemma 5.6.4 in the special case where f is the

weight function. Assume (ii). Let g(o) = > ., |7| (where the ordering < is the usual

length-lexicographical ordering of strings). Let
E,={ZCN:3i€ Z,g(o) <i<g(o)+|a|}.

E, is a clopen set and p(F,) = 1 — 27191, 1t is easy to check that u(E, N E;) =
w(Eqs)u(Ey) for o # 7, and more generally

w(() Es) = [ (Es) = [[1 - 27

oel o€l oel

for I C 2<v,

Let W4 be a bounded A-c.e. set of strings, and let

P= ﬂ E,.

geWw4

P is an A-II class and p(P) > 0 by Lemma 1.10 and the fact that W4 is bounded. By
(ii) (taking complements), there is a B-II class @ such that Q C P and u(Q) > 0. Let

V={c:QCE;}

V is a B-c.e. set, and W4 C V. Finally, weight V = Zaev 271l < 00 by Lemma 1.10

because

II 1ol = 11 w(Es) = () Es) > (@) > 0.

oeV o€V (3%
(v) = (iv). Assume (v). Let W4 be an A-c.e. set with weight W4 < 1. By (v),

there is a B-c.e. set VB with weight V3 < 0o and WA C VB. By discarding finitely
many strings from V2 — W4, we may obtain a B-c.e. set VB with weight VB < 1 and
wACVE

(iv) = (ii) is immediate since every A-X¢ class of measure < 1 is generated by a

prefix-free A-c.e. set of weight < 1. ]
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5. Priority arguments and tree constructions

We assume familiarity with priority arguments, in the form of finite injury con-
structions and tree constructions. Tree constructions will be particularly important in
chapters 2 and 4. Our notation will mostly follow Cooper [15]; further background on
the priority method may be found in a standard reference such as Soare {68]. Formally,
we can consider a tree T as a suitable subset of words ©<“ in an ordered alphabet
¥, and a node as a member of that set 7. However, we will not specify our trees so
formally. We prefer instead to define them inductively by specifying the types of nodes
(or labels) of which the tree is comprised, listing the outcomes of each node type in a
certain order, and describing how to assign labels to nodes according to their length.

‘We consider our trees to grow downwards. In particular, we have this in mind when
we use terminology like ‘above’ and ‘below’. Suppose that o, 3 are nodes on a tree.
We say that a is above 8 if o C 3, and a is below 8 if D 3. We use the notation
a <1, B to denote that o is to the left of § in the lexicographical ordering (induced by
the ordering of outcomes, or more formally by the ordering of the alphabet ). a < 3
denotes that o < B or a C 8, in which case we also say that a has higher priority
than 3. a < (8 has the obvious meaning of o < 8 or a = 3, and similarly for <;. For a
node a with |a| >0, @~ = a [ |a| — 1 denotes the parent of a.

We will perform our constructions in stages. Typically, at the start of stage s + 1
we are given the values possessed by parameters such as A, VB, etc at the end of stage
s, which we denote with the suffix [s]. Any enumerations, definitions, etc that we make

during stage s + 1 are in order to define Als + 1], VB [s + 1] etc.

6. The recursion theorem

The Recursion Theorem of Kleene [32] is a convenient tool for simplifying construc-
tions. We will use it in Theorem 2.13 and in chapter 5 in the form of the Slowdown

Lemma 5.4. Let (®c)een be a standard listing of all partial computable functions.

THEOREM 1.11 (Recursion Theorem, Kleene [32]). Let f : N — N be a total

computable function. There is a fixed point e € N such that

q)e = Qf(e)
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PROOF. Let g be a computable function such that

D) (z) = Do, (%)

for all z € N. That is, g(¢) is the index of a partial computable function that first
computes ®;(z), and if ®;(i) |, then computes @5, (;))(x). Let k be an index for the

partial computable function g, ie. such that
9(z) = P (x).

Then
Dk (%) == @ (@0 (k) (%) = B(o(ky) (2)-
Hence e = g(k) is the required fixed point. [

Since c.e. sets are the domains of partial computable functions and vice versa,
we may alternately phrase the Recursion Theorem in terms of the standard listing

of c.e. sets (We)een: if f is a computable function then there is a fixed point e such that
We = Wi(e)-

A small modification of the previous proof yields the following version of the Recursion

Theorem.

THEOREM 1.12 (Recursion Theorem with parameters). Let n € Nand f : N*t! , N

be a total computable function. There is a computable function k : N* — N such that

Wis,wm) = Wk, yn) w1, m)-



CHAPTER 2
Structural results in the c.e. and A} LR-degrees

In this chapter we present some results about structural properties of the c.e. and
A9 LR degrees. First we give a technique for lower cone avoidance in the c.e. and A LR
degrees, and combine this with upper cone avoidance via Sacks restraints to construct
a c.e. set which is LR incomparable with a given A9 set of intermediate LR degree.

Next we combine measure-guessing with an LR-incompleteness strategy to construct
an LR-incomplete c.e. set which is LR-above a given low AJ set. This is in contrast to
the Turing degrees, in which there is a A9 degree which is Turing incomparable with
all intermediate c.e. degrees.

Finally we discuss how to combine the techniques of the first two theorems in the

c.e. case, and the obstacles to combining them in the more general case of A9 sets.

1. Working with an LR-incomplete set

We outline a technique for working with an LR-incomplete c.e. or AJ set in full-
approximation constructions. The technique is a method for leveraging the LR-incom-
pleteness of a set A to limit the changes in the approximation of 4, effectively imposing
‘restraints’ on A which can be utilised by other requirements in a construction.

Suppose that the c.e. set A is LR-incomplete and F4 is an A-Y9 class; then by
Theorem 1.5 we have

UY CFA = p(FA) =1

for a member U of a universal oracle ML-test. If we attempt to trace U into an A9
class F4, then we are guaranteed that ' will change more frequently than A, frequently
enough to ensure u(F4) = 1. We can use this to our advantage to provide restraints
on A. Suppose that during a construction we wish to restrain A [ u at stage s. We
can take a string p from U%[s] which is not yet in F4, and enumerate p into F4 with
use u. Then we wait for a #'-change below the use of the computation p € U? [s]. If
the @-change never occurs, then we never proceed further with this attempt, and the

restraint is unsuccessful; we say that the attempt is stalled. However in this case we

21
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have that p € U? permanently; this can happen for at most u(U®) worth of strings p,
and this can be made as small as necessary by choosing a suitably small U. Otherwise,
a (’-change eventually occurs. At this point, we have p € FA but p ¢ U¥. If A later
changes below u, then the attempt at restraining A [ u is unsuccessful. However we can
argue that sufficiently many attempts will be successful (ie A will not change below u
after the (-change) to ensure that u(F4) = 1.

If our requirement is such that it requires a finite measure worth of restraints for
satisfaction, then we can argue 