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Abstract

To date the influence of bed roughness on the propagation and dynamics of gravity cur-
rents has been largely neglected. A new physical modelling dataset has been comnpiled,
which details the fundamental affects of several bed roughnesses on lock-release gravity
currents, Five bed configurations were chosen encompassing ‘grain’ and ‘form’ type ele-
ments at a range of spacings. 1%, 5% and 10% initial density excesses were studied and
the effect of removing the buoyant ambient fluid between the elements examined. Obser-
vations due to changing the current depth relative to the element height were also made.
Ultrasonic Doppler velocimetry profiling (UDVP) and video capture techniques were
used to analyse streamwise and vertical velocity structures and the affects on the front
speed and distance travelled by the current. A 1D depth-averaged modecl solves modified
2-layer shallow water equations using the method of characteristics to obtain tempo-
ral velocity and depth evolution for a current under the influence of a general roughness
quantity. 2D and 3D depth-resolved CFD simulations use the commercial software FLU-
ENT to solve the RANS equations and transport of a scalar for the dense current with
the RNG k — ¢ turbulence model. The CFD predictions were well validated by the new
experimental dataset and provide supplementary predictions of concentration, lateral
motion and activity in the vicinity of the roughness elements. Comparison of 2D and 3D
models resulted in the conclusion that the 3D model is vital for accurate simulation of
internal dynamics of gravity current propagation over beam type bed roughness. In gen-
eral, the distance that the front travels decreases with any bed roughness present. This
reduction increases with element spacing. The streamwise mean velocity profiles show
a reduced velocity maximum further from the bed. Decreased entrainment results from
breakdown of larger billows. Also observed is a thicker current, a rounder profile and a
shorter, diluted head. Areas of increased vertical motion within the current. associated
with decreased horizontal motion are observed, indicative of ejections of ambient fluid
from between the elements. The presence of this flnid is found to contribute to ~ 50% of
the current retardation. There are also similarities with the effects of bed roughness in
open channel and pipe flows, most notably there is a critical element spacing (w/k, = 7)
where the effects of roughness are greatest (where w is element spacing and k, is ele-
ment height). The experimental and numerical results demonstrate that the application
of existing models that rely on experimental validation with smooth beds to situations

where a rough boundary is present may lead to significant errors.
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Chapter 1

Introduction

1.1 The significance of gravity currents and bed roughness

Gravity currents, or density currents, ocenr due to the effect of the gravitational force
on two bodies of fluid where differences in the fluid density resulting, for example, from
concentration or temperature discontinuities, cause flow propagation to occur in a direc-
tion normal to that of gravity. The phenomena can occur with liquids or gases moving
into less dense liquids or gases that are in motion or quiescent. The density difference
need only be a few percent but can be much greater. Gravity currents can be invisible,
propagating as a cold front in an exchange with warm air. Often they occur in particu-
late form as ‘turbidity’ currents. For example in landslides, the flow is not made up of
one uniform fluid, instead it carries thousands of small and large particles in suspension.
The implications can be substantial, for example, submarine landslides on ocean floors
can gouge large channels in the seabed and impact on the human environment by dam-
aging submarine infrastructure. Avalanches, where the density difference is generated
by thousands of tiny particles of powder-snow suspended in the air, are another example
of a gravity current. Again they can present a serious hazard to the human environ-
ment. Man-made gravity currents are observed in industrial situations, such as, the
accidental release of dense gas which might be poisonous or explosive; and oil spills on
the sea (Hoult, 1972; Fannelop and Waldman, 1972) both of which result in severe and
potentially wide-spread environmental impact. The modelling and subsequent increased
understanding of these phenomena clearly has significant benefits, be it for human or
environmental safety reasons or the efficient management of various scenarios natural

and man-made.



We need only consider the foregoing examples to understand the relevance of investigat-
ing the influence of bed roughness on gravity currents. The sea floor is not smooth, an
avalanche path is rarely so, more typically encompassing mountainsides, forests and, in
a worst case scenario, residential areas. A cold front can occur over a variety of terrain.
If a heavier than air gas is released from an industrial setting, there is a high possibility
that this will be in or near an urban environment so the surface that it interacts with will
not be smooth. A number of questions arise: What is the effect of this surface? Does it
have an effect at all? Will it slow the current or speed it up? Will particulate currents
behave differently? What if the roughness is sparse or what if it is dense? And so on.
To investigate and increase understanding of the various and complex fundamental flow
dynamics of gravity currents the general approach has been to simplify the situation by
assuming that the bed is essentially smooth. The present investigation does not intend
to prove that these studies are in error, but to extend them by asking: What influence

does bed roughness have on the dynamics of gravity currents?

1.2 Definition of bed roughness

Bed roughuess is classified in the present study by arrays of elements that occur at
intervals such that an adjacent element influences the gravity current before the flow
dynamics have fully adjusted to the effects of the previous element and complete flow
blocking does not occur, i.e. the elements are not considered stand alone obstacles.
For example, a cityscape including tall and low buildings over which a sea breeze is

propagating may be described as bed roughness while one single building should not.

1.3 Literature review

This section is intended to provide a general overview of the physical attributes of gravity
currents and a discussion of known effects of different types of roughness and investiga-
tions that have been performed to date. Reviews of specific methods, theoretical and

experimental, can be found at the start of the corresponding chapters.

An excellent general compilation of fundamental knowledge on gravity currents can be
found in Simpson (1997) or summarised in Huppert (2006). Moodie (2002) gives a
summary of some different methods of theoretical models and highlights restrictions

on the theory. The most detailed study of bed roughness effects on gravity currents



to date is Peters and Venart (2000), and Jimenez (2004) gives a review of turbulent
flows over rough walls for open channels. It must be highlighted that the fundamental
characterisation of bed roughness and its effects is still a highly active area of research
in pipe and channel flows, despite several decades of work. The complexities of natural

roughness have proven to be extremely difficult to characterise (Rouse, 1965; Yen, 2002).

A substantial amount of literature concerns the development of models for particle-
driven or turbidity currents. Since the methodology of the present study involves non-
particulate, saline currents, this review does not specifically cover previous studies in
this area. However, an overview of the dynamics and structure of particle-driven and

turbidity currents can be found in Kneller and Buckee (2000).

1.3.1 The anatomy of gravity currents

Characteristic gravity current shape

The anatomy of a gravity current is particularly complex. The primary component of
motion is away from the point of release and parallel to the bed. At the leading edge,
a frontal zone forms which, creates a sharp dividing interface between the two fluids.
The basic shape of the current has been discussed and developed through observations
in many studies. Von Karman (1940) proposed a model, as shown in figure 1.1, with
theory based on Bernoulli's equation applied to steady, irrotational flows. However,
this theory was rejected by Benjamin (1968) due to the assumption of conservation of
energy required for such derivations being unjustifiable, thus the wholly irrotational flow
required for a profile, such as shown in figure 1.1, is not possible. Von Karman (1940)
did note the existence of a distortion in the interface of the real flow profile. He also
correctly established the existence of a ‘head’ at the front of the gravity current that had
a crest higher than the main body of the flow although, as proven again by Benjamin, a
head wave of this shape cannot actually occur under the assumption of energy conserving
flow. Keulegan (1957) carried out extensive experimental studies on gravity currents and
directly observed the existence of a breaking wave region behind the ‘head’ of the current.
From the observations of Keulegan (1958), Benjamin (1968) constructed a modified form
of a gravity current shown in figure 1.2. Keulegan (1957, 1958) observed that when the
front is at great depths or moving at high spced, the deflected waters at the head will form
eddies, waves will be generated on the interface and intense mixing occurs. Benjamin
(1968) also proved the inevitability of wave-breaking on the backward side of the head

and therefore the energy losses that would ensue. He details many of the main features



Figure 1.1: The form of the head of a gravity current propagating over a horizontal surface as
suggested by Von Karman (1940).

P:

Figure 1.2: The form of the head of a gravity current propagating over a horizontal surface as
suggested by Benjamin (1968).

of gravity currents through the application of the theory of flow force balance to an
air-filled cavity and the liquid into which it is advancing. Through analogy with these
results, he draws conclusions for the interaction of two fluids of different densities. The
one considerable difference between the cavity flow and that of the gravity current is the
wave-breaking process. This turbulent motion generates significant mixing between the
two fluids of a gravity current and thus causes loss of definition of the density interface.

However, for the propagation of a ‘bubble’, the interface will remain a smooth surface.

Investigations in lock release cases with varying initial lock length to initial height ratios
(xo/ho) have shown that the head shape changes as the ratio increases or decreases about
1 (Hacker et al.. 1996). More recently it has been established that the head shape also
changes with the ratio of initial current height to ambient height ratios (ho/H) in fixed
volume (lock-release and lock-exchange) flows. Shin et al. (2004) carried out a range of
experiments for hg/H between 0.11 and 1 and found for full height releases the current
is practically uniform in depth like a constant flux case. Smaller release heights have a
more noticeable depression behind the head, therefore a more pronounced raised head

with a clearer slope on the density interface of the main body of the current.

The Reynolds number (Re) of a gravity current can also affect the current shape and
is an important consideration if analogies are to be made with ‘real’ currents. Schmidt
(1911) found that for Re < 1000, the current morphology is dependent on Re but for

Re 2 1000 similar characteristics can be observed regardless of changes in Re. Keulegan



(1957, 1958), Simpson and Britter (1979) and Parsons and Garcia (1998) agree with this
observation although they notice that slight increases in Froude number (Fr) have been
observed for Re greater than 1000. Discussion of Fr and the relevance to scaling can also
be found in Kneller and Buckee (2000). For very small Re < 10 Simpson and Britter
(1979), found that the head is not distinct.

Mixing and entrainment

The mixing between the current and ambient fluids is a result of gravitational and shear
instabilities at the gravity current head (Simpson and Britter, 1979). Simpson (1972)
analysed the effects of the bottom boundary on the head of a gravity current studying
the forms of these instabilities. The two main types are billows (resembling Kelvin-
Helmbholtz instabilities) and a complex shifting pattern of lobes and clefts, see figure 1.3.
Billows are vortices caused by the breaking waves as established by Benjamin (1968)
and theorised by Prandtl (1952). They appear, in basic form, as rolls of fluid along
the density interface in the region of velocity shear above the front. Slightly different
structured billows have been observed to form dependent on low or high Re (Parsons
and Garcia, 1998). Benjamin (1968), through the flow force balancing theory has shown
that the breaking waves behind the head will remain when the theory is reduced to
a two-dimensional case thus implying the retention of billows. This is confirmed by
Britter and Simpson (1978) and Patterson et al. (2005) using a slip boundary to create
a ‘2D’ current. However, it has been shown that in the three-dimensional case, there is
a mechanism for the dissipation of billows (Hacker et al., 1996; Cantero et al., 2003) not

present in 2D.

The lobe and cleft formation occurs duc to the cffects of instabilities at the bottom
boundary on the front. Their existence proves the three-dimensional nature of the fiow.
Simpson (1972) concluded that they are generated by less dense fluid over-ridden by
the denser fluid, see figure 1.4. The buoyancy force induced by the lighter fluid has
the effect of disrupting the billows and thus affects the mixing of the head at the top.
It also raises the foremost point of the gravity current above the surface, thus moving
the stagnation point beneath the head. Hartel et al. (2000b) found that the stagnation
point is behind and slightly below the nose and does not coincide with it as previously
thought (figure 1.4). They calculated the volume flux of the overrun fluid and found
it to be very small and to decrease as Re increases. Since the energy available for a

buoyancy-driven instability downstream of the head, such as that suggested by Simpson



Figure 1.3: Sketch of the instabilities and three-dimensional motion in a gravity current head,
after Simpson et al. (1977). (i) Billows forming behind the head, and (7) cleft with lobes forming
either side.

»

Figure 1.4: Schematic of a gravity current head, after Simpson (1972) where H is total fluid
depth, O the stagnation point, h the current head height, p the ambient fluid density and u; and

uz are the streamwise velocity of the current and ambient fluids, respectively.

(1972), depends on the amount of fluid entrained, Hartel et al. (2000b) conclude that
this cannot be the primary mechanism for the generation of lobes and clefts. Instead,
they suggest that they form due to a local instability generated at the leading edge of the
current. This is illustrated in more detail using stability analysis and direct numerical
simulations in Hartel et al. (2000a), although there exists insufficient experimental data

to confirm these analyses.

Simpson and Britter (1979) found that for a constantly fed flow, whether surface stress is
present or not, the fluid in the gravity current is mixed outside the current head behind
it forming a mixed layer above the current body. Hence a thick velocity and density
interface between the gravity current and the ambient fluid is formed. In both constant
flux and fixed volume cases, the fluid in the head is initially unmixed even during the
initial slumping stages of the lock release (Hallworth et al., 1996). However, for fixed

volume releases, the mixing and internal structure of the flow is different and has been



shown to be dependent on the aspect ratio of the fluid in its initial state. Hacker et al.
(1996) use a ratio defined by the lock height to lock length hy/xo, whereas Hallworth
et al. (1996) use lock length to lock height x¢/hg. For ease of comparison, it is taken as
x0/ho here. Hacker et al. (1996) found that for larger aspect ratios (> 1), mixed fluid
is detrained from the head and replaced by denser fluid from the body of the current
until no more unmixed fluid is available and the head is eroded. With an aspect ratio
of unity, Kelvin-Helmholtz billows mix deeply into the current and produce a region of
stratification between a main vortex and the head. Eventually the vortex loses its energy
and the current becomes analogous to that generated by the larger aspect ratio. A small
aspect ratio (< 1) current has a head height comparable to its body depth. There is
little supply of dense fluid behind the head and so the billows break directly into a region
of mixed fluid. Gradually all the fluid in the current becomes mixed but denser fluid
in the head maintains a leading front until eventually the stratification extends into the
head. Hallworth et al. (1996) found that gravity currents with identical initial cross-
sectional areas but different aspect ratios are diluted at different times and so propagate
at different speeds. Also, the entrainment of ambient fluid into the current is spatially
non-uniform, it occurs mostly at the head and decreases monotonically with increasing
initial volume behind the gate. Hallworth et al. (1996) noticed the occurrence of ‘abrupt
transitions’ in the flow, i.e. when the current head changes abruptly from dense to dilute.
This mechanism is explained by Amy et al. (2005) and is dependent on the concentration
and Re of the current. However, it is peculiar to laboratory generated currents and has

not been observed in natural currents.

In a more quantitative study, Ellison and Turner (1959) found that for flow down inclines,
entrainment decreases as the Richardson number (Ri) increases and is negligible for

Ri > 0.8.

The height of the current

Difficulties in choosing the location within the current to measure the height have been
encountered in many experimental studies (e.g. Marino et al., 2005) and can have sub-
stantial repercussions on subsequent analysis. For example, the Froude number (Fr)
requires the height of the current to be known. A value of h just behind the head where
flow can be shallower will give a larger Fr than deeper h measurements taken elsewhere.
Shin et al. (2004) suggests that Fr in the current body should be calculated using a

height taken from a region away from non-hydrostatic influences. Re also varies with



height. One Re value can be calculated in the head and a different one in the body of
the current (Peters, 1999). It can be calculated using the total height of the fluids but
since it is the Re of the current that is of interest it is more commonly calculated using

ho/2, the maximum height of an energy conserving current (e.g. Shin et al., 2004).

In the laboratory, the height of the current depends on the experimental method and if a
fixed volume lock exchange is used it will depend on the aspect ratio of the flow. In this
case, differences are observed in the current height, for example, between dense body
height, total dense and mixed layer height, head height and nose height (Simpson, 1972).
Benjamin (1968) noted that for energy conserving flow, in his cavity model theory, the
liquid must occupy half the space between the top and bottom planes of the channel for
the steady flow without encrgy losses, ie. h = %H . Flows with h < %H are possible
with energy losses but flows with h > ,_I;H are not possible without some external source
of energy. Analysis of energy conserving gravity current flow performed by Shin et al.
(2004) found that the only non-trivial case is h = hy/2, i.e. for an energy conserving
partial depth release, the height of the current after release is half its initial lock depth

before release.

Benjamin (1968) found a theoretical maximum current to ambient height ratio (h/H)
of 0.347 for fixed volume releases including energy losses. An identical result was found
by Klemp et al. (1994) and the experiments of Simpson and Britter (1979) obtained a
maximum value of 0.33. However, Shin et al. (2004) proved that ratios of h/H > 0.347
are possible with lock exchange flows. The previous theoretical values are derived through
shallow water theory and consideration of the speed of the characteristics analogous to
a piston problem. However, shallow water theory is not valid at the front where non-
hydrostatic forces are present so a constant depth and front velocity faster than the

maximum characteristic speed is a possibility (Shin et al., 2004).

The correlation of the nose to head height ratio (d,/hy) with Re for a current in the
range 300 < Re < 10000 can be given by

Gn _ (,61Re-029201 (1.1)
hn

(Simpson, 1972). Subsequent studies agree with this relationship and it is important for
understanding the instabilities generated at the front that depend on the nose height
and stagnation point (Simpson and Britter, 1979; Hartel et al., 2000b; Cantero et al.,
2007a).



The bore

The formation of a bore is another feature of lock release currents. Rottman and Simpson
(1983) observed an expansion wave propagating back from the disturbance generated
by removal of the partition which upon collision with the upstream end wall reflects
back towards the current front. The nature of this reflection has been the subject of
much discussion. Rottman and Simpson (1983) found that it is dependent on the initial
dense fluid to ambient height ratio (ho/H) and specified that there was a difference for
ho/H > 0.5. Klemp et al. (1994) showed that it takes the form of a rarefaction wave
for hg/H < 0.5 but becomes a bore for hg/H > 0.5 as reversed flow and subsequent
interaction with the end wall increase. D’Alessio et al. (1996) gives ho/H = 0.5 for
the condition on formation of the bore but this is a theoretical value and subject to
simplifications used in the derivation (Moodie, 2002). Shin et al. (2004), through different.
theoretical analysis, found that a bore will form for releases greater than hg/H = 2/3.
This value agrees with observations in the region of 0.7 from experiments (Rottman and

Simpson, 1983).

Typical gravity current profiles over a smooth bed

Gravity current flow over a smooth bed has been examined intensively. The internal
structure of the current is discussed, for example, in Kneller et al. (1999) and Zhu et al.
(2006). Typical results for the internal downstream horizontal and vertical velocities can
be seen in figure 1.5 (a), with sketches of characteristic profiles of downstream horizontal
velocity, density and turbulence kinetic energy throughout the depth of the current head
(1.5 (b) and (c)). The arrival of the head is defined in the velocity time series by a sharp
increase in both the vertical and horizontal velocity components. The billows behind
the current head can be identified as large structures within the downstream horizontal
velocity data. The vertical velocities are significantly smaller than the horizontal com-
ponent with the majority of vertical motion at the front where the current forces itself
into the ambient fluid. The concentration profile shows high concentration fluid lower
in the profile, identifying the high density of the gravity current and low concentration
above in the ambient fluid. Over a smooth bed, the velocity maximum is typically low
down in the flow profile, which can be modelled from this point down to the bed using a
log-law profile (Kneller et al., 1999). The location of the turbulence kinetic energy min-
imum is typically observed to coincide with the velocity maximum and the turbulence

kinetic energy typically attains maximum values at the density interface and near the
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Figure 1.5: Typical results for saline lock-release laboratory gravity currents propagating over
smooth surfaces after Kneller et al. (1999). (a) Time series of downstream horizontal and vertical
velocity, (b) sketch of horizontal velocity and density profiles through the current depth, (c) sketch
of turbulence kinetic energy profile through the current depth.
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Figure 1.6: Velocity vector field, generated by PIV data within a gravity current head, adapted

from Zhu et al. (2006). Solid black line represents the approximate outline of the gravity current
head.
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bed (Kneller et al., 1999; Best et al., 2001).

Zhu et al. (2006) produced vectors of velocity at points within a gravity current head
(figure 1.6) from experimental particle image velocimetry (PIV) data. The strong down-
stream horizontal component of velocity is evident within the current fluid, with weaker
negative velocities at higher depths in the overlying ambient fluid. The front is clearly
identified by the strong upward motion to the right of the image. The billows can also be
observed behind the head, created by the shear at the density interface between the cur-
rent and ambient fluid. Chapter 2 provides further discussion of methods for gathering

experimental datasets.

1.3.2 The front position and speed

Establishing the speed of the front is one of the primary objectives in many gravity
current analyses. Despite being a long-standing component of gravity current research,
the complexity of the instability in the flow dynamics at the front mean that the position
and hence the speed of the current front is still a priority topic to date. An up-to-date

and detailed discussion can be found in Cantero et al. (2007b).

Clearly the speed of the front will change from the instigation of the motion to the
eventual quiescence. Since the flow in this problem is transient, the motion moves in
phases dependent on the balance of the forces in the flow at that time (Huppert and
Simpson, 1980; Didden and Maxworthy, 1982; Rottman and Simpson, 1983; Marino
et al., 2005; Cantero et al., 2007b). For a full height ratio current (i.e. ho/H = 1),
when a lock partition is suddenly removed the fluid at the front collapses in an initial
slumping phase (Huppert and Simpson, 1980) of constant front velocity before a balance
of buoyancy and inertial forces dominates the flow (Rottman and Simpson, 1983). From
the results of Rottman and Simpson (1983). Hallworth et al. (1996) specify the empirical

expression for the length travelled before slowing begins (z,) as

Ta h()
— =3+ 74—, .
%o + 7] (1.2)

The current advances along the horizontal surface in this inviscid self-similar phase with
a decreasing speed proportional to t~1/3 (Hoult, 1972). The buoyancy-inertia balance
is maintained so long as the inertia forces are large in comparison to the viscous forces
that result from the shear generated at the interface between the fluids and by contact

with the lower boundary. When this balance no longer holds, it has been found that a
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current moving along a rigid boundary will have length of order
1
T 05 h05 gl 7
and the flow is said to enter the buoyancy-viscous regime (Didden and Maxworthy, 1982;
Huppert, 1982). The speed of the front has been found to further decrease in the viscous

self-similar phase with ¢t=4/® (Huppert, 1982).

For low Re currents, the inertia-buoyancy regime is shorter or can appear absent (Hup-
pert and Simpson, 1980; Amy et al., 2005; Marino et al., 2005; Cantero et al., 2007b).
Cantero et al. (2007b) found that whether the flow undergoes the transition from slump-
ing phase to viscous phase via the inertial phase or not depends on the initial Re of the
flow and the size of the release. For larger releases, with high Re, the slumping phase is
maintained for longer and the inertial phase is apparent. When the current is generated
from a continuous flux source (e.g. Simpson and Britter, 1979, Peters et al., 1997), the
initial slumping phase does not occur and the first flow regime is the inviscid self-similar

phase.

Systems of governing equations that describe the flow can be derived and solved either
analytically or numerically for the velocity and other quantities required for different
models relating to gravity currents. These have been investigated extensively by previous

authors and the subject is covered in more depth in section 3.2.1.

1.3.3 Bed roughness

In many ‘real’ studies of gravity currents, the macroscale characteristics of the bed are
given, such as the slope or substantial ridges or steps, but a truer physical characterisa-
tion of the bed is omitted. In some cases this is justified since the bed can be classified
as hydraulically smooth but whether this has been formally established in any one in-
vestigation or is simply an assumption is often not presented in the data or perhaps has
not been considered. With this in mind, it would be of significant benefit to compile a
detailed database of known natural occurrences of gravity currents with details such as
the speed, spread, depth and concentration of the current and finer details of the bed
such as the presence of, for example, bed forms, and the height and distribution of these
‘roughness elements’. This task was not performed in the present study due to the time
constraints involved in compiling such information, particularly since the details of an
event are not always provided by one source and therefore rigorous searches and cross-

referencing are required. Moreover, the spontaneity of natural gravity currents means
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that collection of field data is difficult.

In the case of turbidity currents, it is common practise to analyse deposits and infer
flow processes that might result in the formations observed. The stratification of de-
posits in rock outcrops and the orientation of larger particles can be used retrospectively
to deduce finer details such as the nature of turbulence in the flow. Data from recent
events or laboratory studies can then be used to support any hypotheses. Similar in-
verse hypotheses could therefore be used the generate more detailed datasets of the flow
dynaniics in the presence of bed roughness. An example of the above is the pyroclastic
currents that resulted from the eruption of Mt.Vesuvius in AD 79 and destroyed the
Roman town of Herculaneum (e.g. Sigurdsson et al.. 1982; Gurioli et al., 2002). This
context represents an urban roughness condition at the bed. Results indicate that some
of the buildings would be classificd as obstacles rather than a roughness since they cause
substantial flow deflection. However, the effects of several ‘small’ steps between 0.1-0.5
m high have been observed and the.resulting turbulence and particle deposition from the
current in relation to these steps has been suggested by analysing the facies in the lee
of the steps. A step of height 0.5 m that was not high enough to affect the entire flow
was found to induce an abrupt flow transition inducing the settling of heavier particles
and partial removal of fine material. A series of smaller steps up to 0.4 m high were
purported to result in an increase in flow turbulence, in this case instigating a transition
from non-turbulent to turbulent transport. The inclusion of the effects of the urban
roughness caused a change in the interpretation of some of the deposits to be described
as the results of flow transformations in response to irregularities at the bed (Gurioli

et al., 2002).

Until recently most model investigations into gravity currents have considered the flow
over a smooth rigid boundary. Flow down slopes (e.g. Middleton 1966a, 1966b, Britter
and Linden, 1980), flow over or through obstacles (e.g. Rottman et al., 1985, Hatcher
et al., 2000), flow over permeable surfaces (c.g. Marino and Thomas, 2002) and various
other aspects affecting these important phenomena have been studied but there has been
little attention applied to characterising the flow over a homogeneously rough surface.
The most notable studies to date are those of Peters (1999), Kubo (2003), Ozgtkmen
et al. (2004a) and Ozgdkmen and Fischer (2008). Peters (1999) performed experiments
of constant flux gravity currents of different densities flowing over square roughness el-
ements, Kubo (2003) carried out experiments and a numerical study of particle-driven
gravity currents flowing over ‘humps’ as a bedform analogy, and Ozgokmen et al. (2004a)

and Ozgdkmen and Fischer (2008) simulated oceanic overflows (stratified saline gravity
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currents) over a sinusoidal bed topography. These studies are discussed further subse-

quently.

It should be noted that the presence of elements on the bed does not immediately imply
that the bed is rough, even if they meet the general description of bed roughness given,
for the present study, in section 1.2. In typical boundary layer flows, if the elements
are small and within the boundary layer or the flow is laminar then the flow dynam-
ics will not feel the effects of the roughness. As the flow increases in turbulence, i.e.
the Reynolds number increases, the effect of the roughness can still remain within the
hydraulically smooth regime until a critical level is reached and the roughness begins
to take effect. As the Reynolds number continues increasing, the roughness effects in-
crease proportionately in a transitional regime where the dynamics are dependent on the
Reynolds number and the geometry of the roughness elements. Within the boundary
layer, the viscous sublayer thickness reduces due to the diminishing damping effect of the
wall on the flow until the sublayer can no longer be maintained and the flow is considered
fully rough. The roughness effects are approximately constant, independent of further
increases in Re and proportional to a roughness Reynolds number. This theory was first
established by Nikuradse (1933) who classified the different regimes of the flow as hy-
draulically smooth, transitional and fully rough based on a roughness Reynolds number
for sand grain roughness. Note that for a given surface, as the boundary layer thickness
and Reynolds number change, the classification of that surface can change, even from
effectively rough to hydraulically smooth. Further details of the effects of roughness on
the boundary layer can be found in textbooks, for example Chow (1959), Schlichting
(1960) and Cebeci and Bradshaw (1977).

Different types of roughness

Naturally occurring roughness, depending on the scale, can constitute almost any array
of objects over which a fluid flows. Therefore, it is not possible to explicitly identify ev-
ery different type. In order to understand the effects of roughness on fluids, a variety of
artificial elements have been used experimentally and theoretically, resulting in the cat-
egorisation of different roughness ‘types’ the varying effects of which can be related back
to the natural environment. This use of artificial elements is justified by the complexity

of natural roughness (Rouse, 1965).

The investigation of the effects of bed roughness on flows in pipes, ducts and in open

channels spans several decades and continues to date (Jimenez, 2004). In all of these
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contexts, the roughness elements can take a variety of forms, for example natural coarse
sand or man-made steel rivets. There is an obvious divide between ‘grain’ type roughness
and ‘form’ type roughness whereby the roughness could be characterised by either of
these or both. A flat bed of coarse sand would be categorised as a grain type roughness,
a series of triangular shaped ridges in an otherwise smooth bed would be a form type
roughness, combine these as a dune field and the result is a composite grain and form

type bed roughness (Van Rijn, 1984).

In most roughness studies, reference is given to the fundamental work of Nikuradse
(1933) which was based on the effects of coarse sand in pipes. In the pursuit of charac-
terising all roughnesses, the results of Nikuradse (1933) have been used for decades to
generate a theoretical roughness type, the so-called ‘equivalent sand roughness height’,
k,*. Essentially this involves relating the roughness cffects of a study back to the results
of Nikuradse (1933). Thus the effects of that roughness on the flow are known based
on the effects of an equivalent sand roughness. Grain type roughnesses correlate well to
this representation, as might be expected. However, there is substantial debate as to the
effective representation of form type roughnesses by a single k, value. Rouse (1965) and
Yen (2002) query how one value can describe the effects of the size, shape and spatial dis-
tribution of larger roughness elements such as bedforms. In particular, if flow separation
occurs around an element, changes to the flow dynamics could be significantly more than
k. can prescribe (Yen, 2002). In turbulent boundary layer studies, it has been contested
that the equivalent roughness, k,, is a bad parameterisation of roughness resulting in
very different roughness geometries having very different effects on the turbulent stresses
but with nominally identical roughness functions (e.g. Krogstad and Antonia, 1999, Or-
landi and Leonardi, 2008). Hence risking misrepresentation of the required roughness
with potentially scrious inaccuracics in the flow ficld. With this is mind, Orlandi and
Leonardi (2008) recently suggested that bed roughness would be better parametrised in

terms of its affocts on turbulence characteristics of the flow.

For single-phase flow conditions it is known that rod roughness perpendicular to the flow
which involve a gap between one element and the adjacent one can be categorised into
‘d-type’ and ‘k-type’ roughnesses depending on the length scales presumed to represent
the flow over them. This idea was established by Perry et al. (1969) who characterised
k-type roughness by a roughness function dependent on the Reynolds number based on

*Note that this does not always have to be an equivalent sand roughness height, it can be related to
other known results but since Nikuradse (1933) was a very thorough study it appears to be the most
commonly used.
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Figure 1.7: Sketches of the reaction of the flow to different bed spacings for single-phase pipe or
open channel flows over square beams. (a) After Chow (1959) and (b) numerical data of Cui et
al. (2003). Both show d-type (i) and k-type (#i) element spacings and the possible intermediate

spacing (ii).

shear velocity and on a length associated with the size of the roughness. The function
describing the d-type roughness was found to depend on the diameter of the pipe and not
on the roughness scale and gives rise to different flow dynamics’. Physical descriptions of
flow dynamics corresponding very well with these three categories were observed previous
to Perry et al. (1969). Chow (1959) suggested three categories for the description of flow
over a beam-type roughness: isolated-roughness flow, wake-interference flow and quasi-
smooth, shown in figures 1.7 (a) (¢), (¢2) and (i71), respectively. Of these, figures 1.7
(a) (7) and (iii) represent d and k-type roughness effected flows, respectively, but Chow
(1959) identifies wake-interference flow independently of the others. More recently, the
element spacing to height ratio, w/k,, has been used in research to categorise roughness
into d or k-type, although this appears to be under discussion. For example, Leonardi
et al. (2003b), Leonardi et al. (2004) and lkeda and Durbin (2007) suggest a value of
w/k, 2 3 for a roughness to be described as k-type after the work of Bandyopadhyay
(1987), while Cui et al. (2003b) suggest a value of w/k, 2 4 based on the work of Tani
(1987) and Okamoto et al. (1993). However, they also consider an intermediate type
roughness classification of w/k, = 4, which suggests agreement with the observations of

Chow (1959), see figures 1.7 (a) and (b) (i).

TThese results have still not been proven explicitly and hence are still not fully understood, particularly
for the d-type case but they are still very commonly used to describe roughness element spacings (Jimenez,
2004).
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The flow dynamics over a d-type roughness are typified by vortices trapped between the
elements that are not easily released into the overlying flow (e.g. figure 1.7 (b) (3)). The
elements do not penetrate the flow and therefore it resembles that of low in a smooth
channel. It has been shown that the coherent structures and turbulence intensities are
very similar to the smooth-walled case (Perry et al., 1969; Leonardi et al., 2004). It is
only d-type roughness that has been applied to gravity currents to date. In particular,
Peters et al. (1997), Peters (1999) and Peters and Venart (2000) investigated the flow
of constant flux saline gravity currents over a d-type beam roughness (w/k, = 1). They
observed trapped vortices of recirculating fluid between the elements that are typical of

single-phase flows over this roughness type as mentioned above.

The k-type flows are characterised by separation and reattachment occurring within the
distance between two adjacent clements (e.g. figure 1.7 (b) (i4i)) and the ejection of
larger and more frequent eddies into the overflow (Perry et al., 1969). There is strong
interaction between the roughness elements and the main body of flow and therefore
both the height of the roughness elements and the space between them are crucial pa-
rameters (Ashrafian et al., 2004). Leonardi et al. (2003b) find that when w/k, is large
enough the reattachment length is not influenced by the presence of other elements.
This critical spacing is generally agreed to be w/k, = 7 (Cui et al.,, 2003b; Leonardi
et al., 2003b; Ashrafian et al., 2004; Ikeda and Durbin, 2007). There is some variation
in results of research into the value of the corresponding reattachment length: Cui et al.
(2003b) suggest a value of about 4k, while Ikeda and Durbin (2007) find a value of 4.5k,
and Leonardi et al. (2003b) report a value of 4.8k,. For roughness spacings below the
critical w/k, value, the upstream face of the next element acts as a vertical blocking wall
causing an adverse pressure gradient resulting in a shortened reattachment length. A
larger reattachment length implies larger eddy development at the downstream wall of
an element and therefore increased strength of the outward ejection of these eddies into
the main body of the flow. Hence w/k, = 7 can also be interpreted as representative of
the spacing for which the maximum strength of ejection occurs (Leonardi et al., 2004).
Similar results would have significant implications for gravity current propagation, par-
ticularly with respect to entrainment. Leonardi et al. (2004) find that in the vicinity of
the elements, flow structures are less elongated than for flow over a smooth wall and as
w/ky increases, the coherence is further reduced in the streamwise direction and attains
a minimum when w/k, = 7. Finally, for larger values of w/k,, the nornal wall motion
induced by the roughness is confined to smaller regions and the overlying fluid dynamics

are once again similar to those encountered above a smooth wall (Leonardi et al., 2004).
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The so-called intermediate flows are characterised by separation with a recirculating
eddy about the same size as the cavity between the elements with reattachment on the
upstream face of the adjacent element and the overflow affected by the ejected eddies,
refer to figure 1.7 () (éi). This flow description agrees with that of Chow (1959) for wake-
interference flow shown in figure 1.7 (a) (i), and also agrees with the results of Leonardi
et al. (2004) where for 3 < w/k, < 7 the effects of the wall on coherent structures and

turbulence intensities extends approximately 2k, — 5k, above the top of the elements.

In an attempt to further characterise the bed roughness for single-phase open-channel
flows, Schlichting (1936) derived a ‘solidity’ function. This is defined by the total pro-
jected frontal roughness area per unit wall-parallel projected area. It was found that
the effects of the roughness increased until there was a solidity of about 0.15 and then
decreased since the elements start to sheiter each other so the roughness effects of in-
dividual elements lessen. d-type flows have a solidity of about 0.5 in the extreme limit
of mutual sheltering (Schlichting, 1936). Rouse (1965) found optimum ‘concentration’
between 15-20% produced the greatest resistance, in good agreement with the solidity
values of Schlichting (1936). Values below approximately 15% caused the resistance to
vary in direct proportion to the concentration of the roughness elements with the con-
stant of proportionality varying with the relative drag of individual roughness elements.
This line of research caused Rouse (1965) to query the reliability of estimating roughness
parameters based on the results of Nikuradse (1933) since the exact concentration of the
elements used in that study is unknown and even using a reasonable approximation, does

not agree with the results of Rouse (1965).

It must be noted that very recently, Orlandi and Leonardi (2008) have suggested, perhaps
controversially, that the characterisation of rounghnesses to date should be discarded and
a new approach adopted. They suggest, through the results of an extensive range of
direct numerical simulations that roughness is better parametrised through its impact
on turbulence in the near wall region. In particular, through the root mean square of
the wall normal velocity fluctuation at the element crests. In their work, Orlandi and
Leonardi (2008) have created a database of ‘numerical experimental’ data for different
roughness types for reference. Clearly, categorisation of a roughness type is not a simple

task and is subject to considerable ongoing research.

More ‘natural’ elements, like the macroscale bedforms suggested by Yen (2002), have
been used by Kubo (2003) to study the effects of three adjacent ‘humps’ on a lock-

release particle-driven gravity current. The hump geometries were 1.2 or 3.6 cm high



0 X
€

(€ )M

Figure 1.8: Results of numerical study by Yue et al. (2006) of open channel flow over a fixed
dune using LES. (a) - (1) shows consecutive timesteps highlighting the development and life-time
of vortices (V) and the approximate location of the reattachment point (R).

with symmetrical slopes either side of a peak of horizontal length 50 cm or 100 cm?. The
aspect ratios (height to wavelength) were between 0.006 and 0.036. In the terms of duct
flow, w/k, values approximated using the wavelength, since the humps are symmetric,
and the height, were found to be ~ 27 < w/k, < 167. Therefore, the humps could po-
tentially be categorised as k-type. However, this should only be applied loosely as their
proximity is augmented by the effects of the up and downward slopes which could result
in another classification being more appropriate. The topography applied by Ozgokmen
et al. (2004a) and Ozgokmen and Fischer (2008), using a bumpy bed described numer-
ically using sinusoidal perturbations also represents more natural elements. However,
in Ozgokmen and Fischer (2008) in particular, the close proximity of the bumps results
in recirculating vortices observed in the flow field similar to those seen between d-type

elements.

*Note that in Kubo (2003) there is some ambiguity in the slope dimensions. The text implies that
it is the slope itself that is 50 or 100 cm. However, the diagram in figure 2 (b) and the values of ‘hump
length’ in table 1 (¢) therein suggest that it is in fact the horizontal distance from the peak to the bottom
of the slope.
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In open channel flows, the effects of a single fixed dune and arrays of bed forms have been
investigated. For example, Yue et al. (2005, 2006) performed high resolution numerical
siulations to analyse the streamlines of low round such an element and showed good
agreement with experimental data. An example of their results can be seen in figure
1.8 and highlight that for non-adjacent dunes, where there is a gap between upward and
downward slopes, coherent structures exist which could perhaps be analogised to those

occurring in the widely spaced k-type beam cases (see figure 1.7 (b) (#i7)).

The height of the roughness elements in relation to the overlying fluid has a substantial
impact on the flow dynamics in pipe and duct flows, particularly on the modelling of
turbulence boundary layers. The relative height is important because the channel half
height should be at least 40k, (Jimenez, 2004) if the direct effects of the roughuess ele-
ments on the overflow are not required in the model, i.c. the roughness lies solely within
the boundary layer. The critical spacing value w/k, ~ 7 was obtained for roughness
heights 5 - 10% of the channel height and have been shown to hold for a roughness
height of only 1.7% of the channel height (Ashrafian et al., 2004; and Krogstad et al..
2005). In gravity current studies, the principle body of fluid in motion over the roughness
elements is the current and therefore, as an approximation, the conservative assumption
that hy = ho/2 can potentially be used to calculate the roughness height as a percentage
of the current height for experimental currents$. For Kubo (2003), the height of their
humps corresponds to 6-18% of the channel depth, or 12-36% of the conservative current
depth. However, they note that this causes at least 10-30% blocking effects on the cur-
rent which, in the present study, is more indicative of a series of obstacles rather than

roughness elements.

The anatomy of gravity currents propagating over rough surfaces

The significance of the lower boundary on gravity currents has been implied in section
1.3.1 (Britter and Simpson, 1978; Simpson and Britter, 1979). The earliest record of
roughness effects on gravity currents, to the author’s knowledge, is in experiments un-
dertaken by O'Brien and Cherno (1934), as cited by Keulegan (1957). No difference was
found in the velocity of the salt water between tests run in a channel with a hard wood
bottom painted with red lead and a channel with a bottom covered with coarse sand.
However, the small velocities in the saline laboratory gravity currents mean that viscous

layers within the flow adjacent to the walls will be sizeable (Keulegan, 1957). Clearly,

SIn the present study, k. of the beam-type bed-roughness corresponds to = 2.5% of the tank height
and = 5% of the gravity current height.
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Figure 1.9: Reproduction of the representative tracings from video frame analyses from Hallworth
et al. (1996). Saline lock-release gravity current flow over (a) a bed of coarse granules of ~2 mm
diameter (dots) and (b) over a smooth bed (black). Designed to show the relative cross-sectional
shape of the head (black). Dark grey layer behind the head represents fluid in the current body

that has been somewhat diluted. Light grey represents highly mixed fluid.

for ronghness to take effect, the size of the rough clements in relation to the size of the

tank and the possible velocity scales must be considered.

The profile of the head is expected to change with the introduction of roughness on
the bed. Hallworth et al. (1996) performed experiments with saline lock-release gravity
currents with a thin layer of granules of diameter ~2 mm on the bed (although they
do not state if they were fixed or moveable). They found that the shape of the head is
dependent on the roughness, see figure 1.9 and, that entrainment is much higher, more
than double that of the smooth case at approximately 20 dimensionless units downstream
of the point where entrainment commenced. The thickness of the current behind the
head increased relative to the head in the rough case which, they comment, is physically

reasonable in terms of turbulence generated at the bed.

The results of Peters (1999) show that head and layer heights increase with increasing
surface roughness and develop in a similar way to smooth surface flows, i.e. after an
initial growth they stabilise. The difference between the head heights with smooth and
rough beds in that study is considered to be the result of the increased entrainment at the
front which induces additional mixing as the nose interacts with each roughness element.
Thompson et al. (2007) found that a gravity current induced by a sea breeze flowing

over an urban roughness (New York City, maximum height 200 m over Manhattan)
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Figure 1.10: Downstream horizontal velocity profiles through the flow depth in a duct for a
smooth bed and beds of transverse square beams with spacings (w) of one and seven times the
height (k,) of the beams. Reproduced from Orlandi et al. (2006).

has a head height that ranges from about 2.5 to over 7 times the body height over the
urban landscape while over their ‘smooth’ grassland conditions, it's consistently only 2-3
times the body depth, i.e. the ratio of head height to body height has approximately
doubled. This result contrasts with the observations of Hallworth et al. (1996) who
suggested that this ratio should decrease in the presence of roughness. This could be
a result of several physical differences. The sea breeze model is a temperature induced
current at a large scale and based on many specific parameters, including ambient cross
winds, irregular topographical features, temperature fluxes from the urban grid model
and other variables. Hallworth et al. (1996) investigate a saline, laboratory scale model

flowing into a quiescent ambient and over a regular, granular surface.

In a recent numerical study, (")zgiikmen and Fischer (2008) concluded that the distribu-
tion of entrainment in the case of rough bottomed gravity currents is totally different to
those with smooth beds. They suggest that entrainment initiates earlier due to vertical
motion induced by the roughness, but also finishes earlier, due to the increasing effects of
form drag. The overall result of this process is that the mass of current remains similar
to that of the smooth case but with different entrainment characteristics. They observe
that the interfacial instabilities become less pronounced and tend towards the spatial
scales of the roughness elements beneath the current. However, it should be noted that
the magnitude of their roughness is of the same order as the current depth in most of

their cases and their flow initiates with a pre-stratified saline current.
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In the presence of bed roughness the velocity maximum should move further from the
bed (Kneller et al., 1999). The equivalent velocity profile of a single-phase flow through
a pipe or a duct has a profile, for example shown in figure 1.10, with a logarithmic profile
holding below the velocity maximum, similar to that below a gravity current nose. It
can be seen in figure 1.10 that in the presence of a beam type bed roughness on one
wall of the duct, the maximum shifts further from the bed, as predicted for the gravity
current case. It is possible that other observations from duct and open channel flows will
also hold for gravity currents in the context of bed roughness, for example the effects of

clement spacing shown in figure 1.10 and discussed previously.

In a larger scale study, Petersen and Ratcliffe (1989) ran heavier than air gas (HTAG)
tests over rough surfaces and found that cloud dilution can be greatly enhanced by
increasing the size of the surface roughness. Concentrations were 2 to 6 times less over
an urban area, and 8 to 25 times less downwind of a processing facility in an urban
area. When studying the effects of the rough elements on the concentration in the head,
Peters et al. (1997) observed that when the dilution is such that the density difference
reduces to only 10% of the maximum for that current, the head still remains intact. Their
normalised front position data collapses well indicating that the position of the current
as a function of time, scales with the density difference for all bed types. They found
that near the end of the channel, the normalised mean head concentration in the flows
over the rough surfaces were at least 20 times less than the equivalent smooth surface
flow. They also noticed that with increasing roughness size, the normalised mean fluid
density difference in the head decreased almost asymptotically. Their results show that,
the contribution of trapped packets of lighter fluid in the rough cases, is much more
significant to the head dilution and thus deceleration of the current than Simpson (1972)
and Simpson and Britter (1979) allow for.

Sea breeze frontal passages have been retarded by up to 50% (= 5 ms~!) as they approach
New York City due to the urban boundary conditions (Thompson et al., 2007). As
discussed in section 1.3.2, the velocity of the gravity current depends on which are the
dominating forces acting on it at the time and therefore which flow regime it is within.
Ozgokmen and Fischer (2008) observed a constant phase where the initial propagation
speed is constant for all cases, followed by a decrease in speed with the increase in
the amplitude of their roughness configuration. They suggest that the reduction in
speed due to roughness is a result of the increased form drag from the elements. Peters
(1999) found that even for the smallest roughness elements (6 mm), there was a 50%

decrease in the distance to viscous transition compared to the smooth case. However,



Figure 1.11: Visualisation of experiments with a gravity current propagating over a d-type rough

surface, Peters and Venart (2000). (@) ‘Light’ current propagating over a rough bed, (b) ‘Heavy’

current propagating over a rough bed.

this distance only decreased slightly between the smallest (6 mum high) and largest (25
mm high) roughness scales used. In the buoyancy-inertia regime, the initial front velocity
decreased linearly with roughness scale (Peters, 1999) and deceleration rates increased in
the buoyancy-viscous regime. This is confirmed by Peters and Venart (2000), although
previously, Peters et al. (1997) found that there is no inertia dominated regime, i.e. the
viscous dominated decelerating regime takes over straight away. This contrasting view
is apparently an inconsistency in these works since the experimental setup and all other

conditions appear identical.

Peters et al. (1997) and Peters and Venart (2000) attributed the deceleration to the
less dense fluid trapped beneath the current in the cavities between the beams. This
fluid became entrained and mixed into the denser fluid, thus reducing the density excess
and weakening the buoyancy flux, i.e. the driving force of the flow. When the density
difference between the current and the ambient fluid is small, the current is able to
lift above the roughness elements so that this mixing effect and the consequent current
dilution does not occur to such an extent, see figure 1.11 (a). Thus the light current
maintains its density and its speed for longer and the flow dynamics are more analogous
to that over a smooth surface but still slightly slower due to energy loss to the trapped
vortices (Chow, 1959). For a ‘heavy’ current (figure 1.11 (b)), the interaction with the
trapped lighter ambient fluid is much more vigorous so that the dilution is increased over

the length of the channel and the current will decelerate more rapidly.

Kubo (2003) found that under the influence of the hump topography the current did not
travel as far as smooth cases in the same time period and deposition from the current
occurred much sooner and more so on the stoss (upstream) slope of the humps. The
study did not measure internal experimental velocity fields or concentration so effects

on internal dynamics that might shed light on this issue are not available and further
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investigation is necessary. Unfortunately, this is beyond the scope of the present study

but would be an interesting extension.

1.3.4 Summary

The investigation of the fundamental effects of bed roughness is still a highly active
research topic in pipe and open channel flows, despite several decades of dedicated re-
search. The complexity involved in modelling bed roughness effects on any flow should
not be underestimated. With such a quantity of work incorporating or focussing entirely
on the coffeets of roughness, it should be apparent that significant cffects will also be
important in the gravity current arena. The added complication of density differences
and the consequent intricate frontal dynamics result in a highly complex phenomena
for experimental or numerical modelling. However, with these differences in mind, it is
possible that several of the observations for single-phase flows through roughened pipes

might also hold for gravity current flows, qualitatively if not quantitatively.

From the sparse studies that have been performed on the effects of bed roughness on
gravity currents and potential effects from relevant pipe and open channel studies, the
following might be expected and will be considered in the present study:

e A velocity maximum occurring further from the bed, higher in the current depth.

Reduced current speed.

o Reduced concentration within the current head.

Increased entrainment, particularly from ambient fluid beneath the head.

Increase (or decrease) in the current depth, dependent on the roughness and other

parameters.

Effects due to the height of the roughness relative to the fluid height.

Effects due to different types of roughness elements, for example grain and form

roughnesses.

Varying effects due to the roughness element configuration and spacing.
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1.4 Aims of this thesis

The global aim of this thesis is to use experimental and numerical methods to
create a knowledge database of the fundamental dynamics and flow structure
of lock-release gravity currents flowing over rough surfaces and to discuss the

implications for this case.

To the author’s knowledge, as demonstrated in the previous section, there is little existing
work dedicated to understanding the effects of bed roughness on lock release gravity

currents. With this objective in mind, this thesis has three primary investigatory aims:

1. To carry out a reproducible and easily modified set of experiments in order to
compile a new, accurate data set to extend and compliment the existing smooth
bed studies. This data will be analysed in an experimental context and used for

rigorous theoretical comparison.

2. To study existing depth-averaged gravity current models and mathematical forms
of including bed roughness in order to create a model for the rough surface and to

fully validate this model using available data.

3. To use the CFD commercial software FLUENT to study the fully depth-resolved
forms of the governing equations, including modifications for bed roughness, in
order to create 2D and 3D numerical models and to fully validate this model using

experimental data.

1.5 Thesis outline

This thesis is split into seven chapters, including the current chapter one. Essentially,
it is designed so that chapter two addresses aim one, chapter three covers aim two, and

chapters four, five and six fulfill aim three. Chapter seven concludes the present study.

Chapter 2 Chapter 2 contains a review of some of the existing experimental literature
on methods and techniques for studying gravity currents, including roughness. The
experimental methodology used in this study is outlined and measurement techniques
explained. Results and observations for the fundamental flow structures and dynamics of
gravity currents flowing over bed roughness are presented. The chapter concludes with
a discussion of the effectiveness of the techniques used, the effects of bed roughness, and

the subsequent implications of these results.



27

Chapter 3 This chapter introduces the depth-averaged (1D) model used in the present
study. Existing models and theories are discussed and terms for the inclusion of bed
roughness are outlined. This is followed by a derivation of the governing equations
and the assumptions and boundary conditions applied. The method of characteristics
solution procedure is explained and applied to the smooth and the rough bed cases. 1D
results are presented and validated with existing experimental data in the smooth case.
A concluding discussion analyses the effectiveness of the solution method, the value of

1D models and the theoretical effects of bed roughness.

Chapter 4 Existing literature implementing fully depth-resolved numerical models is
reviewed along with some work to date on the inclusion of bed roughness in such studies.
The essential geometry of the simulations is outlined and models for the multiphase, tur-
bulent nature of the flow are discussed. Two methods for the inclusion of bed roughness
are explained and the solution method and model verification and validation procedures

are covered.

Chapters 5 & 6 The results of the depth-resolved numerical models are split between
these two chapters into 2D model results and 3D model results. Both include an outline
of the simulations performed herein and the models undergo rigorous verification and
validation with experimental data where available. Chapter six concludes with a discus-
sion of the data and numerical techniques and the implications with regards to the effect

of bed roughness on gravity currents.

Chapter 7 This concludes the present study with a summary of the fundamental
effects of bed roughness on gravity currents that have been established through the
use of experimental and numerical modelling herein. Implications derived from these
conclusions are presented. Satisfaction of the aims of the thesis is demonstrated and
conclusions are drawn on the techniques used in the investigation. Finally, suggestions

for future work are proposed.
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Chapter 2

Experimental investigation:
Smooth and rough surfaces

2.1 Introduction

In this chapter the experimental methodology used in this study is outlined and the mea-
surement techniques are explained. A brief review of relevant methods and techniques is
included. Results and observations for the fundamental flow structures and dynamics of
gravity currents flowing over bed roughness are presented. The chapter concludes with
a discussion of the general effects of bed roughness with attention given to the effects of
varving different parameters, namely, the initial density of the current, the removal of
ambient fluid from between the roughness elements and the height of the finid relative
to the element height. Comments are also included on the effectiveness of the techniques

used herein.

2.2 Literature Review

Laboratory experiments on gravity currents and analogous phenomena have been carried
out for more than half a century. The results of many of these studies have been discussed
in section 1.3. This review aims to cover some common methods and measurement
techniques used for research on homogeneous currents as in the present study. Further
description of experiments, techniques and applications can be found in Simpson (1997)

and in Kneller and Buckee (2000).
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2.2.1 Experimental configuration

The flume

The simplest lume for gravity current experiments is a lock-release or lock-exchange
tank* whereby the dense fluid that will form the current is separated from the less dense
ambient by a removable partition at a certain distance along the tank which creates a
lock box. If the experiments require no end-wall effects then the partition is positioned
in the centre of the tank (lock-exchange, Grobelbauer et al., 1993; Shin et al., 2004; Lowe
et al., 2005; Tanino et al., 2005). If the end-wall effects are of interest, for example if the
dynamics and effects of the bore are also under study then the lock length is shorter so
that the backward propagating flow reflects off the end wall (creating the bore) and the
current propagates towards the opposite ‘far end wall’ (lock-release, Keulegan, 1957,1958;
Simpson, 1972; Rottman and Simpson, 1983; Hacker et al., 1996; Kneller et al., 1999;
Zhu et al., 2006). For experiments on axisymmetric gravity currents a cylindrical lock
containing the denser fluid is placed in the centre of the tank, surrounded by the ambient
fluid and then removed to release the current (Huppert, 1982). Alahyari and Longmire
(1996) used a novel lock ‘sector’, i.e. a wedge shaped volume, which allowed them to set

up their measuring equipment efficiently and with better flow coverage.

Other methods of simulating gravity currents experimentally involve relcasing dense fluid
from a reservoir suspended above the tank (Ellison and Turner, 1959; Hallworth et al.,
1998; Best et al., 2001). The fluid is rcleased as a jet and cvolves into a typical current
once it hits the bottom of the tank. This method is useful for gathering experimental
data of the current in the constant phase but the initial conditions simulated by the

lock-release or lock-exchange methods are absent.

A continual flux current can be generated by pumping the dense fluid into the ambient
fluid from one end of the tank, with an outflow weir at the opposite end enabling the
displaced water to overspill (Britter and Simpson, 1978; Simpson and Britter, 1979;
Peters, 1999; Peters and Venart, 2000; Buckee et al., 2001). This method also removes
the initial adjustment of the current as it leaves the lock and no bore forms. This
configuration is used when the inviscid self-similar or viscous phases are of interest,
where a fully formed current, independent of any slumping or bore effects, is required.
Huppert (1982) carried out continual flux axisymetric experiments by pouring dense fluid

(silicone oils) into the centre of a perspex sheet to record the spreading rates.

*Note that in Kneller and Buckee (2000) they do not differentiate between a lock-release and lock-
exchange tank. This is however an important consideration for modelling houndary effecis on the flow.
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Natural and laboratory gravity currents are typically subject to ‘no-slip’ on boundaries.
To understand some of the features of the current it is useful to be able to control this
condition. Thus, experiments have been designed in order to simulate inviscid flow, or
‘free-slip’ on the walls of the tank. The use of a moving floor ahead of the advancing
current has the desired effect (Britter and Simpson, 1978; Simpson and Britter, 1979;
Parsons and Garcia, 1998). Less dense fluid is pumped into the tank from the same end
as the moving floor, i.e. in the opposing direction to the oncoming denser current which
is pumped into the tank from below. The floor moves at the same speed as the ambient
fluid so that it maintains the denser fluid at rest (an ‘arrested wedge’) on the fixed floor
downstream of the moving conveyor. Another means of creating free-slip is to generate
an overflow whereby the current is released into a denser ambient and thus the current
propagates along the surface (Ellison and Turner, 1959; Didden and Maxworthy, 1982;
Hallworth et al., 1996). However, unless this is required to model a natural process, this

method can incur additional errors due to free surface effects.

Sets of experiments have also been undertaken on slopes (Ellison and Turner, 1959;
Middleton, 1966a; Buckee et al., 2001) and porous beds (Marino and Thomas, 2002) to
study the effects of more natural topographies on gravity currents. Slopes are commonly
generated using a ‘tilting’ tank where the slope angle can be varied for comparative
analyses. Marino and Thomas (2002) used a flume with a false mesh floor raised from
the tank floor to create a porous bed over (and through) which their lock-release current

flowed.

The fluids

A saline solution with a fresh water ambient is the simplest means of creating a density
difference for the study of the typical gravity cwrrent structure. The solution density
can be changed with ease and experimental measurement remains uncomplicated by the
presence of particles. Best et al. (2001) showed that sediment-free studies are in many
ways a good analogy for low density sediment bearing currents so this simple method
can potentially be used to study the effects of a broad range of conditions. The addition
of alcohol (propan2ol) or sodium iodide can be used to reduce the ambient fluid density
or increase the current density, respectively (Kneller et al. 1997, 1999; Lowe et al., 2005).
Gaseous gravity currents can be generated, for example, for heavier-than-air-gas (HTAG,
Petersen, 1987, 1989) and smoke propagation studies. However, it is common for these

studies to use saline or liquid because it is easier and often less dangerous to handle (e.g.
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Fleischmann and McGrattan, 1999; Weng et al., 2002). Fluid temperature also creates
a density difference and is particularly relevant to atmospheric studies, for example,
cold fronts. However, like gases, laboratory experiments are harder to set up using this

method and often analogised to saline work.

In addition to changing the fluid density, the viscosity of the current solution can be
simply increased by adding sugar to the current fluid (Keulegan, 1957; Simpson, 1972).
For studies of much higher viscosities Huppert (1982) used silicone oils and Amy et al.

(2005) used glycerol.

Bed roughness

In nature, bed roughness might be a grain type roughness such as sand or gravel or
a form type such as ripples or dunes, as discussed in section 1.3.3. In the laboratory,
simplified versions of these roughnesses have been studied extensively for their effects on
pipe and open channel flow including different grades of sand, grooves, different shaped
riblets and wire grids (see Jimenez, 2004 for an overview of pipes). Flow over dunes and
ripples have been studied extensively, for example Maddux et al. (2003a, 2003b) studied
the dynamics of a turbulent continual flux flow in a flume over a bed of 3D fixed dunes
with 1 mm mean diameter coarse sand but little has been done specifically on gravity

currents.

In the gravity current literature, Hallworth et al. (1996) used a thin layer of granules
with a mean grain diameter of about 2 mm for an entrainment study but did not go into
detail on how these granules were included in the tank setup. Peters (1999) and Peters
and Venart (2000) studied the effects of ‘d-type’ beams perpendicular to the flow using
beams of sizes 6, 13, 19 and 25 mm square pinned to the bed of the tank and a continual
flux current pumped over them. In a lock-release particle-driven gravity current study,
Kubo (2003) looked at the cffects of a ramp followed by a series of ‘humps’ on sediment
deposition. However, the material and method by which the topography is included is
not stated. Moreover, the height of the topography relative to the fiuid means blocking
occurs which is characteristic of arrays of obstacles, rather than bed roughness. See

chapter 1 for further background on bed roughness studies.
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2.2.2 Data capture and measurement techniques

Typical physical characteristics and current height

Photography and video capture techniques provide a relatively simple ‘dataset’ to physi-
cally observe any qualitative changes to the flow dynamics resulting from the laboratory
configuration in use. They can be used as pointers to potential changes or factors of

interest in a quantitative study and aid in the interpretation of quantitative results.

A higher resolution method for visualising the typical current shape, including the inter-
facial mixing and billows, is laser induced fluorescence (LIF, Parsons and Garcia, 1998;
Peters, 1999; Peters and Venart, 2000). The fluid is illuminated using a dye that fluo-
resces at the wavelength of the laser light and features of the flow are captured with a
high speed video camera. It can be effectively combined with particle image velocime-
try (PIV) to give a fully qualitative and quantitative dataset. The billows and current
outline can also be visualised using shadowgraphs and bromide paper (Simpson, 1997;
Lowe et al., 2005) which can give good interfacial definition for observing the billows.
This method has also been used for the study of lobes and clefts (Simpson, 1972) and

to obtain height readings, as described below.

Accurate measurement of the height is important in laboratory work for the calculation
of Froude numbers and Reynolds numbers, which give an indication of the effects of scale
on the results when comparing to natural currents. However, since the density interface
is typically a poorly defined region of high mixing, establishing the upper boundary of
the current to measure the height is a difficult task. There are also notorious problems
with choosing where along the length of the current to take measurements (Shin et al.,
2004). Due to these discrepancies, care must be taken to be consistent when using these
techniques and to be clear where the measurements have been taken. One simple method
is to mark the height of whichever part of the current is required on the side of the tank
as accurately as possible, at required times (Keulegan, 1958; Middleton, 1966a). Clearly
this method is subject to human error and difficulties with interfacial definition but it
gives a simple indication of the height. Video capture or photography and shadowgraphs
can be used to record the current and then measure the height from the video frames,
thus reducing human error and the need for time coordination (Simpson and Britter,
1979; Simpson, 1997). Simpson (1972) performed experiments using slit lighting with a

fluorescing dye to measure the nose height.

A more theoretically defined method is to use the data from velocity measurements and
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integrate them over the depth to obtain a depth-averaged velocity and height, using the

equations:

uh = /ﬁdy (2.1)

w?h = / wdy (2.2)

following the method of Ellison and Turner (1959).

Density, concentration and entrainment

Measuring the changing concentration levels of the current during experiments enables
the study of mixing and entrainment which are essential to the distribution of energy in
the flow and ultimately the transport of sediment. For homogeneous currents, Didden
and Maxworthy (1982) and Parsons and Garcia (1998) used conductivity probes and
Keulegan (1957, 1958) used parallel wire electrodes with success. With the advance of
laser technology, LIF has become an accurate non-intrusive method for visualising the

flow and measuring concentration (Peters, 1999; Peters and Venart, 2000).

Hallworth et al. (1996) used a novel neutralisation technique with an alkaline current
and an acidic ambient. Universal pH indicator solution turns the acid red (pH < 4) and
the alkaline purple (pH > 10) and regions of mixing are shades in between depending
on the ratio of acid to alkaline in the mixed fluid. Thus the volume fraction of one fluid
to the other can be calculated by measuring the pH in these mixed regions to give a

quantitative value for concentration and mixing.

Another relatively simple method is to record light attenuation in a dyed current (Hacker
et al., 1996). A light is placed on one side of the tank directed perpendicular to the cur-
rent through the flume side walls. A video camera captures the current and the light
from the other side of the tank. The film is processed and in regions of the current where
the dye is darker, light has been attenuated and current fluid is thus more concentrated.
The amount of light that is emitted can be calculated and is proportional to the concen-

tration and hence the amount of mixing occurring.

Front position and speed

The position of the front as a function of time for lock-release (or lock-exchange) experi-
ments is a simple and useful dataset to compile for indication of any immediate effects of
the tauk configuration on the current. The front position and speed are frequently used

to validate theoretical methods (e.g. Rottman and Simpson, 1983) so their accuracy is
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essential. Plotting the front position as a function of time establishes which phase of the
flow the current is governed by in the time period of interest, where the phase transitions
occur and hence any differences in these transitions for different flow conditions. The

front speed is calculated for the constant speed phase from the front position data.

A common method for capturing the front position is to record the experiments with
a video camera from flow initiation over the required time period or distance and to
measure the distance that the front has travelled along the tank at regular intervals in
time or space (Middleton, 1966a; Didden and Maxworthy, 1982; Rottman and Simpson,
1983; Lowe et al., 2005). Since many experimental techniques involve the use of video
cameras for the study of other flow characteristics or as an experimental record this data
is often readily available. A similar method involves marking the position of the front

on the tank or noting the time at regular time or space intervals, respectively.

Velocity

There are intrusive and non-intrusive techniques for measuring the internal velocities in
gravity currents. PIV is a laser based non-intrusive method that has been successfully
used to study all three components of velocity in gravity currents to a high level of
accuracy (Zhu et al., 2006). Kneller et al. (1997, 1999) and Buckee et al. (2001) used laser
Doppler anamometry (LDA), another non-intrusive technique, to obtain downstream

and vertical velocities with a velocity resolution of +2 mms™!.

However, laser based
equipment is expensive, requires the refractive indices of the fluids to be matched, cannot
be used with particles and can be complex to setup depending on the facilities available.
Consequently, if a study is not primarily interested in gaining high resolution internal
velocity data then other techniques are more commonly used. Acoustic methods such as
ultrasonic Doppler velocity profiling (UDVP, Best et al., 2001) are simpler to implement
but this is an intrusive method so has to be setup so as to minimise the interference with
the flow dynamics. The UDVP method also only captures the component of velocity
along which the transducers are aligned (see section 2.3) so in order to obtain a 3D
dataset, i.e. three components for one point, three probes are required, one directed
along each axis. However, since the largest component of velocity in gravity currents
is along the downstream horizontal (assuming the component is aligned parallel with
the bed), after the initial slumping phase, data from probes on this axis can give a

good indication of the effects of the condition under investigation on the current before

a more complex method is applied. Particle tracking velocimetry (PTV) is another
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simpler method than PIV or LDA but gives similar accuracy (Thomas et al., 2003). It’s
simplicity is due to the use of halogen lamp light rather than lasers. The light illuminates
particles carried by the flow and images for particle tracking are obtained using a video

camera and recorded as a luminescence signal.

Turbulence

The term ‘turbulence’ covers several variables, e.g. root mean-squared velocities (urms),
turbulent kinetic energy. etc. and can be measured in different ways depending on
which or how many of these datasets are required. The question of whether a flow is
turbulent or not is typically determined by calculation of a flow Reynolds number using

a characteristic velocity and length scale of the flow and the fluid’s dynamic viscosity:
Re=UL/v (2.3)

Note that this value can vary substantially depending on which values of U and L are
taken. Flows with Re 2 2000 are considered turbulent. The calculation simply requires
the use of measurement techniques previously outlined to obtain the necessary parame-
ters in equation (2.3). However, for a more detailed study of the turbulence structure, for
example calculation of Reynolds stresses, high resolution velocity data in more than one
dimension is required to determine more accurately the scale of the turbulent fluctua-~
tions within the flow. More sensitive equipment, such as anemometers (e.g. LDA Kneller
et al., 1997; Kneller et al., 1999; Buckee et al., 2001) are used for resolution down to small
length scales and velocity capture methods such as PIV can obtain three-dimensional
data and UDVP has high enough resolution to calculate the root mean square velocity
in one dimension and for the study of the fundamental turbulence structures within the
flow (e.g. the presence of turbulent interfacial instabilities can be readily observed from

this data (Best et al., 2001)).

2.2.3 Summary

Gravity currents are highly complex flow processes. Hence experimental studies of them
advance as the ability of new technology to capture higher resolution data and thus finer
details increases. Since bed roughness effects are a relatively unstudied topic in this
subject, the present experiments aim to create an accurate preliminary dataset using the
simpler flow measurement techniques outlined in the foregoing review. Additional tech-
niques have been applied when considered essential in understanding the fundamental

cffects of roughness.
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Figure 2.1: Sketch of the tank configuration and dimensions used in the present study. The sand,
spheres and beams roughness elements are mounted on perspex sheets 2 mm thick and placed
in the bottom of the tank covering a 4 m long region from the lock partition. Dimensions of the

beams roughness are shown.

In light of the present literature, simple bed roughnesses have been used to study a
variety of roughness types in order to create initial datasets for several ‘bedforms’ that

can be expanded on in future work.

2.3 Experimental methodology

All experiments herein were carried out in the Sorby Environmental Fluid Dynamics
Laboratory at the University of Leeds. The flume tank used was designed specifically
for the study of lock-release density currents, sce figures 2.1 and 2.2 (a) and (b). It is
fixed to the wall of the laboratory on adjustable brackets and is constructed as one unit
with a plunge tank at one end with an outlet pipe. There are two lock partitions, one at
either end, so that studies of reflected currents (bores) can also be undertaken. There is

a fresh water source with a hose immediately above the tank for filling.

Tank configuration and dimensions

The flume is used with just one lock partition in place at the right hand end. It is 5 m
long from lock partition to lock partition, 0.2 m wide and 0.3 m high, filled with fresh
water to a maximum depth of 0.25 m in the present experiments. The lock box is 0.25

m long, 0.3 m high and 0.2 m wide so that when filled to 0.25 m it creates a 2D lock box
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Tank height, H' 0.3 m

Ambient fluid height, H 0.25 m

Flow temperature ~ 18°¢

Initial current density, p; 999.2/1048.11/1098.02 kg/m3
Initial ambient density, p; 998.2 kg/m3

Tank width, W 02m

Tank length, L 5m

Initial current height, ho 0.25 m

Lock length, xq 0.25 m

Current volume 1251

Table 2.1: Initial conditions typical of all experiments. The three values shown for the initial
current density represent three excesses over the ambient, namely 1%, 5% and 10%.

length to initial fluid height aspect ratio (zo/ho) of 1 and an initial current to ambient
height ratio (ho/H) of 1. These specifications are summarised as initial conditions in

table 2.1.

Five vertically aligned UDVP probes are set up 3 m from the lock partition at the half-
width of the tank (W/2 = 0.1 m) and directed along the centre plane of the current. The
probes were mounted in a rig with 3 different configurations depending on the run (see
figure 2.3 (b) and (c)). For a standard run, they were at 6, 27, 48, 68 and 89 mm above
the bed. To obtain more data points below the nose of the front, in order to calculate
ks values, the probes were mounted at 6, 17, 27, 37 and 48 mm and then shifted up 5
mm to 11, 22, 32, 42 and 53 mm in a second repeat experiment. One vertical probe is
positioned at 2.89 m from the lock partition, at the tank half-width with the probe tip
190 mm above the bed. The setup parameters of the UDVP (see table 2.2) were selected
so that each probe measured a distance of 30.9 mm (bin 35) from a starting position 5

mm upstream of the probes.

The video camera is attached to a carriage setup on a track parallel to the tank in order
to retain the head of the current in the view finder as it propagates (see figure 2.3).
The camera view is initialised at the lock box just before the current is released and can

follow the current head the full length of the tank.

The tank is modified for the presence of roughness by using perspex inserts with the
required roughness elements, see figure 2.2 (f). There are four inserts for each roughness
type, each 1 m long and 0.198 m wide so that they fit into the first 4 m of the tank
from the lock partition. There are five roughness element shapes used in the present

study, namely, coarse sand (=2 mm diameter but true grain distribution unknown), 6

LEENS (INiverSi Y LIBRARY
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Figure 2.2: Photographs of different aspects of the flume setup. (a) The flume setup before
release (without the camera rigged), (b) Gravity current after release showing position of probes
with respect to the current, (¢) ~2 mm coarse sand roughness, (d) 6 mm diameter glass spheres

roughness, () 6 mm high, 12 mm apart perspex beams roughness, (¢) The flume with the beams
in place and sand inserts on the work surface.
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Figure 2.3: Camera and UDVP rig setup in the laboratory. (a) Camera rig and positioning facing

7

/

6 mm

the tank, (b) UDVP rig in the tank, (¢) Diagram of the different probe positions within the UDVP

rig (not to scale). The measurements relate to heights from the tank bed. The right hand side

with bold circles represent the standard probe setup, the light grey shows the configuration with

the probes close-packed and at the lowest setting near the bed. The left hand side dark grey
circles show the close-packed probe setting shifted up 5 mm.
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mm diameter glass spheres, and 6 mm square, 0.198 m long perspex beams configured
with three spacings. The former two roughness types and an example of the latter can
be seen in figures 2.2 (¢) — (e). The sand and spheres are chosen to represent a ‘grain’
type roughness and are randomly packed onto the perspex inserts using a thin layer of
clear low modulas silicon sealant. The beams are designed as an analogy to a ‘form’ type
roughness and are glued across the inserts perpendicular to the main direction of flow.
The three spacings between the elements are 12, 24 and 48 mm. These were chosen so
that the effects of increasing the spacing by an identical factor can be observed and so
that the differences between d and k-type element spacings can be discussed. Under the
classification of Perry et al. (1969), for an element height k, = 6 mm, a spacing of 12 mm
represents a d-type roughness while 24 and 48 mm are considered a ‘k-type’ roughness,
see section 1.3.3 for more details. Note that the faces of the beams are smooth. A closer
analogy to a natural roughness, such as a dune, would be a composite roughness type
whereby the element is made of a combination of grain and form type, for example,
sand roughened beams could be a subsequent approach. This has not been undertaken
in the present set of experiments since by breaking down the components of roughness
the present study aims to investigate the fundamental effects so that more complicated

configurations can hereafter be examined with this information.

In order to differentiate in the discussion between the different beam type cases, the fol-
lowing terminology is used as shorthand to describe the spacing in use: beamsneight.spacings
where beams is a qualitative description of the element, height is the maximum element
height k. (inm) and spacing is the ratio of the distance between adjacent elements and
the height w/k.. Thus the three configurations mentioned above can be expressed as

beamsg 2, beamsg 4 and beamsg g.

There were two other sets of experiments undertaken. The first of these was performed
to establish the effects that the less dense ambient fluid between the beam-type elements
has on the current. In order to generate a comparative dataset, the ambicnt fluid between
the elements was replaced by fluid of the same initial density as that of the current fluid
behind the lock partition. Thus removing the buoyancy effects generated by the density
difference with the less dense ambient fluid. This set of experiments was carried out for
the 5% density excess only and therefore fluid of this density was inserted between the
elements. These experiments with dense fluid within the gaps were performed for the

d-type beainsg 2 case and the k-type beamsg g case.

The final set of experiments involved reducing the total height to which the tank and
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lock-box were filled by half in order to observe the effect of increasing the bed roughness
height relative to the current height. Again these experiments were performed using only
the 5% density excess. However, all five bed roughness configurations were investigated.
Since the gravity current height in these cases is significantly reduced, the probes were
setup so that they could obtain the required data, i.e. the lowest probe configuration
shown in figure 2.3 (¢) was used whereby the probes were mounted at 6, 17, 27, 37 and

48 min.
Front position and internal velocity measurement

The front position of the current in time was measured using a Sony PAL DV video
camera, recording 720 x 576 pixels at 25 Hz. By analysing the video frame by frame,
the location of the gravity current front can be measured at the required time intervals.
The speed of the front in the constant phase is calculated by plotting the front position
in time and fitting a linear best fit line through the data using the greatest amount of
data points to gain the highest R? value. The gradient ‘%1 of this line gives the speed.
If all of the data points are used in the fit then the R? value decreases and it is assumed
that values that are not consistent with data within the constant speed phase are being
included. Hence, the speeds displayed herein for the smooth case are for the time period
from 0 within which R? is high and thus the current can be said to be within the constant
phase. Beyond this, the remaining data lies within a different phase. For consistency,

the same amount of data is used in the rough cases as in the smooth case.

Ultrasonic Doppler velocity profiling (UDVP) was used to measure the velocity field
within the gravity currents. The use of UDVP has been proven in its use in investigations
of gravity currents (Best et al., 2001). It can be used to measure negative and positive
components of velocity to which the probes are aligned in the flow, i.e. a horizontally

aligned probe will give readings for the downstream horizontal velocity component.

The UDVP transmits an ultrasound pulse in a straight line from the probe at a certain
frequency which in these experiments is 4 MHz. The transducers then switch almost
instantaneously from transmitting to receiving and the transducer receives the echo
reflected from the surface of small particles suspended in the flow. By detecting the
Doppler shift frequency as particles pass through the measurement volume, the flow
velocity can be calculated at one point. This is carried out simultaneously to obtain
velocity measurements along a profile. The return signal or echo detecting the shift
frequency is ‘gated’ at certain return times and enables the velocity to be measured

at 128 points (in this study, but this value can be changed) along the beam of the
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ultrasound. This effectively splits the length of flow through which the beam penetrates
into 128 measurement volumes or bins. The length of the measuring volume in the
experiments presented here was 0.74 mm. The height of the bin varies with the distance
from the transducer since it is a function of the beam divergence which in turn is a
function of the transducer size and ultrasound frequency. For the 4 MHz probes used,
beam divergence is 2.5° about the beam axis, i.e. 5° in total. The result of this is that
the beamn measurement volume increases with increasing distance from the probe. The
finite amount of time required in switching between transmitting and receiving means
that the first measurcment point is a minimum of 5 mmn from the tip of the probe.
This is the location of the first bin in these experiments. Thus the measurement window
covered by the ultrasound beam was 5 - 98.98 mm. For the streamwise horizontal velocity
data, an array of five 4 MHz ultrasonic probes was used which were multiplexed using
the UDVP logger. The time taken for each profile measurement is a function of the
maximum measurement distance and the finite time required for data processing and
switching between channels. With the current setup, the sampling time for each profile
was 39, 21 and 17 ms for 1, 5 and 10% currents, respectively, and the switching time
between the probes was 15 ms so that each of the profiles sampled at approximately
3.09 Hz for the 1% runs, 4.63 Hz for the 5% runs and 5.21 Hz for the 10% runs. The
parameters used by the UDVP for the streamwise horizontal velocity measurements in
the present experiments can be seen in table 2.2. For the vertical velocity data, one 4

MHz ultrasonic probe was used.

Bed roughness measurement

The bed roughness is measured using the velocity profile data. Below the velocity max-
imum of a current profile the current velocity diminishes to zero at the bed. Within
this inner region, below um,:, drag at the lower boundary creates a logarithmic velocity
profile where the von Karman-Prandtl log law of the wall applies (Kneller et al., 1999).
This can be written in terms of the equivalent roughness, k;, as

T _ sl
o = 25in - +85 (2.4)

where u, is the shear velocity, y is the height from the bed, the value 2.5 comes from the
von Karman constant and 8.5 is based on the sand grain pipe experiments of Nikuradse
(1933), and hence the k, value found using this method is an equivalent sand roughness
(Southard, 2006). By finding the zero velocity intercept of a least squares regression of

T vs lny for the velocity data below the maximum, and using equation (2.4) the value
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Frequency (MHz) 4
Transducer & probe diameter (mm) 5&8
Measurement window (mm) 5 - 08.98
Maximum velocity (mms™!) 99.2 I 248 l 348
Measurement bin length (mm) 0.74

Number of channels 128

Velocity resolution (mms™!) 0.781 | 1.953 I 2.740
Ultrasound velocity (ms~1) 1480
Sampling time for each profile (ms) | 39 l 21 ] 17
Delay time between profiles (ms) 15
Sampling frequency/probe (Hz) 3.09 4.63 5.21
Pulse repetition frequency (Hz) 1072 2681 3762
Number of profiles 3000
Channel width (mm) 5.92

Table 2.2: Parameters of the ultrasonic Doppler velocity profiler used in the present experiments.
Where three values are given, from left to right these correspond to 1%, 5% and 10% parameters.

of k; can be estimated.

Accuracy and errors

One source of error was in the accurate positioning of the probes. This was minimised
by rigging the probe mount so that it was held by fixed rails which kept it in place (see
figure 2.3 (b)). The positioning of the mount was checked before each run was carried
out. It is estimated that the error in the horizontal and vertical positioning of the probes

was not more than +1 mim.

Another source of error comes from parallax effects when capturing the video footage.
This is the distance related error when the measurement undertaken relies on the ‘field
of view’ as with video capturing systems (Tian et al., 2002). The error is reduced by
placing the device facing side on, perpendicular to the object of interest, i.e. the front

in the present study, and moving the camera steadily with the object.

The accuracy of the calculation of the k, values is dependent on the data that can be
captured below the nose; hence it is dependent on the number of UDVP probes below the
nose. For the experiments with the different bed roughnesses, there is some variability in
the number of probes that can obtain measurements below the velocity maximum, even
with the probe shift, because the current height is quite small relative to the probe size

and the position of w4z is still relatively close to the bed. In the smooth case it proved
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impossible to obtain UDVP probe data below the maximum since it was so close to the
bed, a technique with higher resolution like PIV or LDA is required for more accurate

measurement in this zone for this case.

Preparation and experimental procedure

The tank was prepared for each run by first being thoroughly rinsed to remove any salt
residue from previous runs that might alter the fluid density. The roughness elements,
if used, were then slotted into the bottom of the tank and the lock partition positioned
and scaled with grease to prevent leakages of dense fluid before it was released from the
lock. The main body of the tank was filled with fresh water as the ambient fluid, and the
saline solution prepared using table salt and fresh water to create density excesses of 1, 5
and 10% (checked with hydrometers) and dyed for visibility. Several of the 1% runs were
seeded with a negligible amount of kaolin clay to aid in velocity measurement accuracy
but not enough to significantly alter the density excess. The temperature of both fluids
was checked to be equivalent so that the governing density difference was generated only
by the difference in density due to concentration. The UDVP was checked for probe rig
positioning and correct measurement parameters in the logging computer. The camera

position was also checked and the name of the run recorded for ease of processing.

For the set of experiments to be used for analyses of the effects of the buoyant ambient
fluid between the elements, the dense fluid was inserted between the elements by first
filling the main body of the tank with fresh water as for the regular setup and then using
a syringe and pipe to carefully and slowly pump by hand the dense fluid into place to
minimise mixing with the displaced ambient. This dense fluid was dyed with purple dye

in order to visualise its movement once the current was released.

Once the above preparation and checks had been carried out, the lock box was filled with
the dense fluid. The UDVP and camera were started and the lock partition removed
manually as smoothly as possible to minimise disturbance to the free surface and thus
external flow effects on the current. For this reason the experiments required at least 2

people, one to remove the lock while another operated the camera.

On completion of each experiment, the data was downloaded to a PC and processed
through a filtering code (Keevil et al., 2006) to remove background noise and anomalous

spikes in the results for subsequent post-processing analysis.
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Figure 2.4: The position of the front as a function of time after release. Three runs for 1%, 5%
and 10% density excesses under identical smooth bed conditions.

2.4 Verification and validation

Quantitative verification was accomplished by repeating three runs with identical smooth
bed conditions and comparing them for each density excess. Figure 2.4 shows the position
of the front as a function of time under these conditions. It is clear from this figure that
the results are almost indistinguishable between runs for all densities. This illustrates
that the experiments are reproducible and subject only to the initial and boundary

conditions of the experiments and not to large errors.

In order to validate the experiments, the smooth cases are compared to existing ex-
perimental results. Rottman and Simpson (1983) showed that by normalising the front
position data with the lock length in space and in time' and plotting it on a log scale,
in the initial phase, the current front position collapses onto a line of slope 1 regardless
of the initial lock conditions. Evidence of this for the present experiments can be seen
in figure 2.5; the results presented are clearly consistent with the experimental data of
Rottman and Simpson (1983). For simple qualitative validation, figure 2.6 shows that
a gravity current with a smooth bed generated in the present experiments has typical

head features consistent with previous full height release experiments (compared here

fNote that o is defined as xo/v/g"ho and is verified in section 3.3.2.
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Figure 2.5: The normalised front position as a function of time for 1%, 5% and 10% experiments
under smooth bed conditions with the experimental data of Rottman and Simpson (1983). Time
was normalised using the expression to = zo/v/g’hg. The initial phase is represented by the line
of slope 1, the inviscid self-similar phase by the line with slope 2/3.

Figure 2.6: Visual verification of the present experiments. Laboratory gravity current propagat-
ing along a smooth horizontal surface. (a) Shadowgraph visualisation, from Simpson (1997) p.
148 and (b) video [rame [rom present experiments (5% density difference).
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to Simpson (1997) but there are many images of ‘typical’ gravity current heads in the

literature).

In the experimental tank configuration the roughness elements were stuck to 2 mm thick
perspex sheets which were placed in the bottom of the ‘smooth’ tank. This created a
2 mm step up at the lock partition since the bed of the lock-box was still smooth. In
order to verify that this did not have any significant effect on the results, a perspex
insert of the same thickness was created and inserted into the lock-box and the front
position was measured for an additional set of 5% density excess experiments with each
bed type. Figure 2.7 shows that there is no significant difference between the results

with or without the insert and therefore the experiments continued without the insert.

2.5 Results: Fluid velocity
2.5.1 Front position and speed

The effects of bed roughness and different initial density excess on the front

position and speed.

Figures 2.8 - 2.10 show that, for the most part, in the presence of any bed roughness
gravity currents do not propagate as far as in the smooth case, regardless of the initial
density excess of the fluid. The two anomalies to this general rule are the 1% density
excess currents propagating over coarse sand and spheres, shown in figure 2.8, where the
current position is almost identical to the smooth case at any given time. In the 5%
case, the fronts have travelled less distance over the grain-type beds and are therefore
moving slower than the smooth case but almost identically to each other (figure 2.9). In
the 10% case, the front position for current flow over the sand bed is again similar to
the smooth case but the equivalent data for the glass spheres is similar to that of the
beamss 2 case (figure 2.10). This is interesting since the beamsg2 configuration is the
closest packed case and the beams are of the same height as the diameter of the spheres,
perhaps suggesting a common roughness effect regardless of the shape of the roughness

itself. However, this observation is not supported by the results for the other densities.

The time at which the currents begin to slow down under the affects of roughness is
independent of the bed roughness type but the rate at which it propagates thereafter is
dependent, with the beam type roughnesses incurring a greater slowing effect. For this
type of roughness, the retarding effect on the flow increases with spacing in the 1% case

(figure 2.8) while for the two higher density currents (figures 2.9 and 2.10), a difference
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Figure 2.8: The front position as a function of time for a gravity current with a 1% density excess
with all six bed configurations.
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with all six bed configurations.
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Figure 2.10: The front position as a function of time for a gravity current with a 10% density
excess with all six bed configurations.

can be observed between the propagation of the front over the d-type and k-type beds
at later times. This is particularly exaggerated in the 10% case (figure 2.10) where the
data from the two k-type spacings diverges from the rest and this suggests a relationship
between the distance the current propagates with time and the type of spacing, d- or

k-type, at least for square beam roughnesses.

There is a significant difference observed in figures 2.8 - 2.10 in the time at which the
current begins to slow down for each of the three initial densities. However, if the time is
normalised with respect to the initial density excess using tp = wo/+v/¢"ho and displayed
on a log-log scale (figure 2.11), it can be observed that the data collapses particularly
well for the smooth and sand beds and also quite well for the other beds. This implies
that the relative position of the current at a given time is essentially independent of the

initial density of the current.

Front speeds calculated using the gradient, %f-, of the linear best fit of the front position
data in figures 2.8 - 2.10 are shown in tables 2.3 (¢) — (c). The values in these tables
were calculated based on a linear regression over the time period within which the data
from the smooth runs are estimated to be in the constant speed phase, as described in
section 2.3. It can be seen that the R? values for the rough cases are not consistently as

high over this time period. This consistent variation suggests that this is not the result
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spheres, (d) beamsg 2, (€¢) beamsg 4 and (f) beamsg s bed configurations.



(a) Smooth Sand Spheres
Speed (mm/s) 68.3 68.0 68.8
Fr 0.62 0.61 0.62
Re 8503 8466 8566
Inc/Dec (smooth) N/A -0.4% +0.7%
R? 0.9999 0.9999 0.9998
Beamsg 2 Beamsg 4 Beamseg s
Speed (mm/s) 67.6 66.2 65.4
Fr 0.61 0.60 0.59
Re 8416 8242 8142
Inc/Dec (smooth) -1.0% -3.1% -4.2%
R? 0.9995 0.9994 0.9992
) Smooth Sand Spheres
Speed (mm/s) 157.7 154.1 149.4
Fr 0.64 0.62 0.60
Re 19634 19185 18600
Inc/Dec (smooth) N/A -2.3% -5.3%
R? 0.9999 0.9999 0.9998
Beamsg o Beamsg 4 Beamsg g
Speed (mm/s) 148.1 145.3 145.9
Fr 0.60 0.59 0.59
Re 18439 18090 18165
Inc/Dec (smooth) -6.1% -7.9% -7.5%
R? 0.9997 0.9997 0.9994
(c) Smooth Sand Spheres
Speed (mm/s) 216.2 213.7 196.1
Fr 0.62 0.61 0.56
Re 26917 26606 24414
Inc/Dec (smooth) N/A -1.2% -9.2%
R? 0.9996 0.9998 0.9985__
Beams;; Beamsg 4 Beamsg g
Speed (mm/s) 195.2 194.6 194.1
Fr 0.56 0.56 0.55
Re 24303 24228 24166
Inc/Dec (smooth) -9.7% -10.0% -10.2%
R? 0.999 0.9997 0.9983

Table 2.3: Front speeds for all six bed roughnesses for (a) 1%, (b) 5%, and (c) 10% density
excess calculated using the first 60% of the front speed data where the smooth case is within
the constant speed phase. Also shown is the percentage increase or decrease in front speed with
respect to the smooth experiment.
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of measurement error but rather that the rough cases behave in a different manner to

the smooth case and are therefore not governed by the same flow regimes.

As expected, the speed of the current increases with the increase in the initial density
excess of the current. The 1% current propagates at a speed of only approximately 43%
of the 5% current front speed in the smooth case, and similar differences apply in the
rough cases. The 10% case shows an increase of approximately a third relative to the 5%
case. Other than the effect of the spheres on the front speed of the 1% density current,
tables 2.3 (¢) — (c) confirm that the presence of bed roughness has a slowing effect on the
current. The anomalous result is probably due to experimental error. Other than this
discrepancy. if the percentage decrease compared to the smooth case is considered. for
all densities it can be seen that the sand bed has the least retarding effect. The widest
spaced beamsg g case has the most significant slowing cffect in all except the 5% currents
but in this case the difference between this result and the slightly closer packed, beainse 4
case, is only 0.4%. Furthermore this suggests that there might be a maximum spacing
beyond which the effects of this type of bed roughness on the front speed do not change
substantially. Clearly, the grain type roughnesses have less effect than the beam-types,

even in the spheres case where the diameter is identical to that of the beams.

The Froude and Reynolds number at the front, calculated using Fr = 7;',"{07 and
Re = E-h%ﬂ, where v = 1 x 1078 m?s~! is the kinematic viscosity of fresh water at
20°C, can also be seen in tables 2.3 (a) — (¢). Clearly, when the Froude and Reynolds
numbers are calculated with these parameters, the currents can be classified as turbulent
and subcritical in all cases. The lower values for the 1% current are to be expected since
the density difference, and hence the buoyant driving force of the flow, is smaller. In
the 5% and 10% cases it can be seen that there is a decrease in Fr and Re under the
influence of any bed roughness. The coarse sand shows the smallest magnitude change in
these values, the spheres are the next most effective and the effect of the beams appears
to increase with increasing spacing. The data in tables 2.3 (b) and (c) also suggest a
possible connection between the spheres and the d-type beams, beamsg 2 and similarities
between the two k-type beam cases. Fr and Re are also calculated subsequently in
section 2.5.4, using the depth averaged values hg, and ug4,. The values presented here
give an indication of the cffect of the retardation at the front on these parameters using

a conservative value for h.
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Figure 2.12: The front position as a function of time for the 5% density excess with (D) and
without (A) dense fluid initialised between the roughness elements. Also displayed is the smooth
bed result for comparison.

Beamsg o Beamsg g
Speed (mm/s) 153.2 151.9
Fr 0.62 0.61
Re 19074 18912
Inc/Dec (smooth) -2.9% -3.7%
Inc/Dec (ambient) +3.4% +4.1%
R? 0.9999 0.9999

Table 2.4: Front speeds generated with a 5% density excess for a bottom boundary with beamsg 2
and beamsg g both with dense fluid initialised between the elements. Calculated using the first
50% of the front speed data. Also shown is the percentage increase or decrease in front speed
with respect to the smooth experiment and the percentage increase or decrease with respect to
the equivalent results for the regular cases with ambient fluid between the elements.

The effects on the front position and speed by the removal of the ambient

fluid from between the roughness elements

Figure 2.12 demonstrates the significant effect that replacing the ambient fluid between
the ronghness elements with dense fluid (5% cxcess) in the beamsg 2 and beamsg g cases
has on the distance travelled by the current. The gravity current still slows down but it

is able to maintain a higher speed than when buoyant ambient fluid was present. This
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implies that this less dense fluid is one of the principle retarding effects resulting from
the presence of bed roughness. However, the fact that the current does not revert to a
propagation speed similar to that of the smooth case implies that this is not the only
cause of the change in speed and there are other roughness effects present. Moreover, it
can be observed that the difference between the distance travelled by the current over
the two roughness element spacings is maintained and appears very similar regardless of

the density of the fluid between the elements.

For both element spacings, confirmation that the removal of the ambient fluid causes
the current speed to increase relative to the equivalent original experiments but decrease
relative to the smooth bed case can be seen in table 2.4. The presence of bed roughness
causes the current speed to reduce by 3-4% regardless of the buoyancy effects. The
equivalent experiments with ambient fluid in the cavitics (table 2.3 (b)) showed that the
roughness has a 6.1% and 7.5% reduction in front speed compared to the smooth case for
the beamsg o and beamsg s beds, respectively. This combined information implies that
the effects of buoyancy potentially contribute to about 50% of the reduction in front
speed while the remaining retardation results from other effects of the elements on the

current.

The effects on the front position and speed by decreasing the total fluid
height by half

A reduction in the height of the fluid in the tank effectively doubles the relative height
of the roughness elements. This provides insight into the affects of increasing the rough-
ness height on the propagation of the gravity currents. Due to time constraints, these

experiments were performed for the 5% density excess currents only.

Figure 2.13 shows the comparison of the front position as a function of time for all bed
roughnesses for a gravity current generated in half the original fluid depth. The sand and
spheres have similar slowing effects on the current, as observed in the full height case,
although the increased size of the spheres results in a slightly increased retardation. The
significantly increased slowing effects of the beam-type roughnesses are again highlighted
and it can also be observed that there is little difference in the front position of the current

for the two wider k-type spacings, as suggested by the 5% and 10% full height results.

The difference between the front positions of the full height and half height cases can be
seen in figure 2.14 for each of the bed roughness types. The data has been normalised

using zo and to = xo/\/gho which is dependent on the variable parameter hp. In
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Figure 2.13: The front position as a function of time for half fluid height release of a 5% density
excess gravity current and all of the six bed configurations.

Smooth Sand Spheres
Speed (mm/s) 111.4 104.3 99.5
Fr 0.64 0.60 0.57
Re 6935 6493 6194
Inc/Dec (smooth) N/A -6.4% -10.7%
Inc/Dec (full) -29.4 -32.3% -33.4%
R? 0.9999 0.9996 0.9998
Beamsg 5 Beamsg 4 Beamsg g
Speed (mm/s) 97.6 95.5 92.2
Fr 0.56 0.55 0.53
Re 6076 5945 5740
Inc/Dec (smooth) -12.4% -14.3% -17.2%
Inc/Dec (full) -34.1 -34.3% -37.9%
R? 0.9996 0.9994 0.9999

Table 2.5: Front speeds for all six bed roughnesses for half fluid height release of a 5% density
excess gravity current. Calculated using the first 49% of the front speed data where the smooth
case is within the constant speed phase. Also shown is the percentage increase or decrease in

front speed with respect to the smooth experiment and the percentage increase or decrease with
respect to the full tank height equivalent.
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Figure 2.14: The front position as a function of time for full and half fluid height releases of a 5%
density excess gravity current. Data is normalised using x¢ and tq since g is given by zo/ Vd'ho,
i.e. dependent on the changed parameter, ho. (a) Smooth, (b) sand, (c) spheres, (d) beamsg 2,
(e) beamsg 4 and (f) beamsg s.
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the smooth case, it can be observed in figure 2.14 (a), for the time period of these
experiments, the front position is approximately independent of the initial release height,
although this may change for later times. However, in the rough cases, figures 2.14 (b)
to (f), the two datasets do not collapse and hence additional effects can be attributed to
the increase in roughness height relative to the fluid depth. The beam-type roughnesses
had greater slowing effects on the full height currents compared to the grain roughness
types and this appears to be exaggerated when their relative height is increased, see
figures 2.14 (d) to (f). This is confirmed by the calculations of the percentage decrease
in front speed relative to the smooth data shown in table 2.5 compared to the equivalent

calculations shown in table 2.3 (b).

It should be noted that for roughness elements of this relative height and spacing, cer-
tainly for the beams and spheres beds, the height of the roughness elements (up to 6
mm) is at most an order of magnitude smaller than the conservative approximation of
the height of the current (hg/2 = 0.0625) and can be expected to be less. Therefore, the
effects observed thus far for this case could be categorised as the result of an array of
successive small obstacles in the path of the flow rather than that of a bed roughness.
Therefore, the effects of the elements on the fiow dynamics may be significantly different
to those expected from a smaller more typical bed roughness and an investigation and

characterisation of these affects are not sought further in the present study.

2.5.2 Horizontal velocity profiles

The effects of bed roughness and different initial density excess on the hori-

zontal velocity profiles

Time series contours of the streamwise downstream horizontal velocity results, generated
by the five horizontal probes, for all three initial density excesses can be seen in figures
2.15 - 2.17. Complementary downstream horizontal velocity profiles from this data are

shown in figures 2.18 - 2.20.

For a smooth run with a 5% density difference (figurc 2.16 (a)) the results reiterate that
the present study is consistent with what has been observed in previous experiments: A
head region is present with relatively constant velocities and a mean velocity maximum
near the bed. Large fluctuations in velocity are observed at the density interface behind
the head indicating the presence of billows, followed by a lower velocity ‘tail’ region
and a negative reverse flow above the gravity current where the ambient fluid is forced

upstream as it is displaced by the current. The mean velocity maximum in the head
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Figure 2.15: Time series contours of downstream horizontal velocity, v (mm/s) up to the max-
imum probe depth for a 1% gravity current with a standard probe configuration. (a) Smooth,

(b) sand, (¢) spheres, (d) beamsg 2, (€) beamsg 4 and (f) beamsg s.
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Figure 2.16: Time series contours of downstream horizontal velocity, v (mm/s) up to the max-
imum probe depth for a 5% gravity current with a standard probe configuration. (a) Smooth,
(b) sand, (¢) spheres, (d) beamsg 2, (¢) beamsg 4 and (f) beamsg s.
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Figure 2.17: Time series contours of downstream horizontal velocity, v (mm/s) up to the maxi-
mum probe depth for a 10% gravity current with a standard probe configuration. (a) Smooth,

(b) sand, (c) spheres, (d) beamsg 2, (¢) beamsg 4 and (f) beamsg s.
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in the 5% case is confirmed in figure 2.19 (a) to be very near the bed, as expected in
high Reynolds number flows (Simpson, 1972). This is different to the 1% run where the
Re value is lower and hence, as suggested by Simpson (1972) and confirmed in figure
2.18 (a), the mean velocity maximum is higher in the flow. This does not hold for the
equivalent results shown in figure 2.20 (a) where the velocity maximum is also raised
further from the bed despite the higher Reynolds number. This is probably a result of
the limited number of probes. Inspection of the corresponding time series contours in
figure 2.17 indicates that in general the higher downstream horizontal velocities are in
fact near the bed more consistently with this high density excess than the 1% case (figure

2.15 (a)).

For the 1% density excess, the time series contours in figure 2.15 show significant sim-
ilarities in the overall distribution of the downstream horizontal velocities compared to
the differences between the rough and smooth cases in the higher density experiments
(figures 2.16 and 2.17). Comparing the velocity profile through the current depth (figure
2.18 (a)) profile to figures 2.18 (b) — (d) for the bed roughened cases, again little differ-
ence can be seen in the general profile shape and the height, and indeed the value, of
Tmar Within the currents. This evidence along with the small changes in front position
and speed suggests that gravity currents such as those generated by the 1% initial den-
sity excess, which exhibit high ;42 positions and comparatively low basal velocities are

relatively unaffected by bed roughness.

In the cases with bed roughness applied to the 5% and 10% gravity currents, the typical
velocity structure is not observed as clearly as in the smooth case, see figures 2.16
(b) — (f) and figures 2.17 (b) — (f). In general, the presence of bed roughness results
in fewer regions of high velocity within the current, the head is less well defined and
it appears that the larger billows are not present. However, the frequency of smaller
instabilities at the density interface could be considered to have increased, suggesting
that those larger structures in that region in the smooth case have been broken down
or were unable to form. Near the bed, there are zones of very low positive or in fact
negative flow beneath the current head in the rough cases that are not present in the
smooth case. This could result from deflection or recirculation caused by the roughness
elements or from trapped ambient fluid and indicates an increase in mixing occurring in

this region.

The velocity profiles throughout the current depth shown in figures 2.19 and 2.20 indicate

that the presence of any type of roughness on the bed of a 5% or 10% current decreases
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Figure 2.18: Downstream horizontal velocity profiles at = 2.97 m as a function of depth for a
1% density difference, averaged temporally over 5 s and spatially over 3 bins. Profiles from right
to left of flow before the current head, in the head, in the body and in the tail for (a) smooth,
(b) sand, (c) spheres, (d) beamsg o, (€) beamsg 4 and (f) beamsg g.
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Figure 2.19: Downstream horizontal velocity profiles at £ = 2.97 m as a function of depth for a
5% density difference, averaged temporally over 5 s and spatially over 3 bins. Profiles from right
to left of flow belore the current head, in the head, in the body and in the tail for (a) smooth,
(b) sand, (c) spheres, (d) beamsg 2, (¢) beamsg 4 and (f) beamsg g.
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Figure 2.20: Downstream horizontal velocity profiles at z = 2.97 m as a function of depth for a
10% density difference, averaged temporally over 5 s and spatially over 3 bins. Profiles from right
to left of flow before the current head, in the head, in the body and in the tail for (a) smooth,
(b) sand, (c) spheres, (d) beamsg 3, () beamsg 4 and (f) beamsg g.
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the magnitude of the mean velocity maximum and, in the 5% case, raises the location of
Tmaz a&Way from the bottom wall (figures 2.19 (b) — (d)). As mentioned previously, this
may not be observed for the 10% case due to the experimental resolution. In general,

the rough cases elicit a more rounded profile with a less distinct density interface.

The Ty, values shown in figures 2.18 - 2.20 are significantly smaller than the front speeds
calculated in tables 2.3 (a) — (¢). In the 1% case, W4, is smaller by approximately a
third, relative to the front speed. This also holds approximately in the 5% and 10%
experiments, although not for the smooth case. For the 5% gravity current, the smooth
case shows a small increase in Tmee. For the 10% current, the smooth case shows a
decreased Timq: compared to the corresponding front speed but only by about 14%,
approximately half the percentage of the decrease observed with bed roughness present.
These data suggest that Ty, is significantly reduced relative to the front speed in the
rough cases. However, it is also likely that the probe array lacks the resolution to capture
the highest velocities within the flow, which would result in under-estimation of the mean

and maximum values.

The effects on the horizontal velocity profiles of the removal of the ambient

fluid from between the roughness elements

Figures 2.21 (b) and (d) display the times series contours of the downstream horizontal
velocity data for the 5% density excess gravity currents with the ambient fluid between
the roughness elements replaced by dense fluid. If these are compared to the smooth
bed result for this case (figure 2.16 (a)) it is clear that, as demonstrated previously, the
flow does not revert back to that over a smooth bed. The magnitude of the downstream
horizontal velocities are still reduced by the presence of the roughness elements and do
not form a coherent region within the head of the current as they do in the smooth case.
However, compared to the equivalent rough cases with ambient fluid in the cavitics,
figures 2.21 (a) and (c), there is evidence that the higher velocities are distributed low
down in the current depth, near the wall and the zones of very low or reverse flow are
significantly reduced. This might suggest that these zones are the result of overridden
ambient fluid trapped beneath the current ejecting from between the elements due to the
buoyancy difference between the fluids. There is some evidence to support this effect,
which is visible in the vertical velocity time series data that follows, although it is not

possible to determine if the relevant horizontal and vertical zones exactly coincide.

From figure 2.21 it can also be postulated that the removal of the ambient fluid from
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Figure 2.21: Time series contours of downstream horizontal velocity, © (mm/s) up to the max-
imum probe depth for a 5% gravity current with a standard probe configuration. (a) beamsg 2
with ambient fluid between the elements, (b) with dense flnid between the elements, (¢) beamsg g

with ambient fluid between the elements, (d) with dense fluid between the elements.

between the roughness clements has a more noticcable affect on the k-type bed roughness
(figure 2.21 (¢) and (d)) than the equivalent d-type case. Observe that the beamsg g case
shown in figure 2.21 (d) shows velocity values distributed much more like the smooth
case, although reduced in magnitude, than the beamsgs case in figure 2.21 (b). The
corresponding downstream horizontal velocity profiles for the data, shown in figure 2.22
(d), confirm this. It appears that with this wider element spacing the increased amount
of buoyant ambient fluid between the elements is able to significantly redistribute the
velocity field within the current, more so than for the d-type spacing where there are

more elements and thus smaller cavities.
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Figure 2.22: Downstream horizontal velocity profiles at * = 2.97 m as a function of depth for a
5% density difference, averaged temporally over 5 s and spatially over 3 bins. Profiles from right
to left of flow before the current head, in the head, in the body and in the tail for (a) beamsg >
with ambient fluid between the elements, (b) with dense fluid between the elements,(¢) beamsg g

with ambient fluid between the elements, (d) with dense fluid between the elements.
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The effects on the horizontal velocity profiles of decreasing the fluid height
relative to the bed roughness height by half

The velocity data obtained from the UDVP probes is somewhat irregular in this case
and therefore is not presented herein. Several repetitions were performed to verify that
the data was accurate within equipment error but the irregularity was shown to be
consistent. Inspection of the video footage shows that near the bin where the probe data
is collected. the current head in these reduced depth currents is very dilute, particularly
in the rough cases, and it is therefore possible that the probes are unable to accurately

record the reduced velocities.

2.5.3 Vertical velocity profiles

Initial tests with the UDVP probes showed that the vertical velocities were approximately
one third of the magnitude of the horizontal velocities. Therefore, since the UDVP
software does not allow different velocity limits for different probes, the vertical data was
obtained from a separate set of experiments performed within more appropriate limits.
Due to laboratory time constraints, these additional experiments were only performed
for the current with a 5% density excess but for all six bed configurations. This slight
discrepancy also means that the vertical and horizontal velocity data cannot be combined
to give two components of velocity at a point for one experiment. Therefore the vertical
data are presented separately but since the experiments have good reproducibility (see

figure 2.4) they can be considered with reference to the equivalent horizontal component.

Figure 2.23 shows the time series of the vertical velocity component as the gravity current
passes through the probe measurement window for the smooth bed case. This result
shows good agreement with typical readings for the vertical component observed in
equivalent smooth bed studies (e.g. Kneller et al., 1999). The time series contours in
figure 2.23 (f) show strong upward motion at the current front where the current fluid is
forced upward and back on itself by the ambient fluid ahead of the current. Further back
in the current, this strong vertical motion at the density interface has been broken down
due to the interfacial instability. Lower within the current, away from the interfacial
region there is little vertical motion where the current propagation is dominated almost

entirely by the streamwise horizontal component of velocity as seen in figure 2,16 (a).

Time series contours for the data obtained for all of the bed roughnesses for a 5%
density excess current can be seen in figure 2.24. It can be observed that there is an

overall reduction in the magnitude of the positive vertical velocities due to the presence of
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Figure 2.23: Time series of downstream vertical velocity, v (mm/s) for a 5% gravity current with
a smooth bed at the horizontal probe locations in the standard probe configuration. (a) Bottom
probe to (e) top and (f) vertical velocity component time series contours throughout the current
depth.
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Figure 2.24: Time series contours of downstream vertical velocity, v (mm/s) for a 5% gravity

current with a (@) smooth, (b) sand, (c¢) spheres, (d) beamsg 2, (¢) beamsg 4 and (f) beamsg s.
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any bed roughness. However, as was observed for the equivalent downstream horizontal
series, the sand roughness shows close similarities with the smooth case, compare figures
2.24 (b) to (a). For the remaining four bed types (figures 2.24 (¢) — (f)), the positive
vertical motion at the front is less confined to the interface than in those two cases and
also appears in the nose and head of the current. in regions that, for the smooth and
sand beds, show very little vertical motion. This point is supported by the observation
of slightly weaker downstream horizontal velocities in the head for the rough cases in

figures 2.16 (c) — (f) which could enable the increased presence of the vertical motion.

In addition to the increase in vertical motion within the nose region, positive vertical
motion near the bed further back in the current can be observed for the beam-type bed
configurations, figures 2.24 (d) — (f). It is possible that these regions might coincide
with the zones of much reduced horizontal velocities mentioned previously and therefore
result from the upward ejection of vortices of ambient fluid from between the elements
due to buoyancy. Notice that these near-wall zones of positive vertical motion do not
appear to be present in the grain type cases (figures 2.24 (b) and (c)) where there are
no explicit cavities in the bed roughness where a coherent vortex of ambient fluid could
become trapped. If the velocity components were coincident, or the vertical velocity
timme series data was available for the cases with the ambient fluid removed from between

the elements, further confirmation of this observation might be compiled.

Despite the reduction in the magnitude of the positive vertical velocities at the density
interface due to the presence of bed roughness, the higher velocities remain primarily
in this frontal locality where the intruding current fluid is forced into the ambient fluid.
However, this frontal interfacial region does not persist coherently as far back behind
the current front in the rough cases compared to the sand and smooth cases, compare
figures 2.24 (a) and (b) to (d) — (f). This suggests that it is being broken down by
fluctuations of the interfacial instabilities that form immediately behind the head which
consequently indicates that the interfacial instabilities are being generated sooner. closer
to the front in the rough cases than in the smooth case, potentially resulting in a shorter

head length.

2.5.4 Depth-averaged and i, values

The effects of bed roughness and different initial density excess on the depth-
averaged and k, values

The depth-averaged downstream horizontal velocity and height have been calculated
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(a) Smooth Sand Spheres
Uge (IMM/S) 47.7 47.8 46.6
hgy (1m) 62.9 45.7 50.9
Fru, 0.83 0.72 0.69
Red, 2050 2299 2306
Beamsg Beamsg 4 Beamsg g
Uy, (mmy/s) 50.7 42.9 40.0
hge (inm) 44.8 474 45.2
Fra 0.77 0.63 0.60
Reg, 2212 3028 1832
)] Smooth Sand Spheres
ude (mm/s) 136.6 98.7 87.6
h4e (mn) 40.3 53.2 53.2
Fry, 1.02 0.64 0.61
Reg, 5706 5356 4534
Beamsg 2 Beamsg 4 Beamsg g
U4, (mm/s) 103.3 94.7 91.7
hga (mm) 4358 422 60.7
Fryo 0.7 0.66 0.53
Regda 4814 4198 5883
(c) Smooth Sand Spheres
14, (mm/s) 170.7 121.2 143.5
h4a (mm) 45.9 4.3 44.5
Fry, 0.81 0.53 0.69
Regq 8613 5924 7035
Beamsg 2 Beamsg 4 Beamsg g
uga (mmn/s) 127.7 128.2 124.2
haa (mm) 4.0 56.4 61.7
Fra 0.62 0.56 0.51
Reg, 6210 7806 8424

Table 2.6: Depth-averaged values for (a) 1%, (b) 5%, and (c) 10% density difference. Fr and Re
calculated using 14, and hg,.

using 5 probes in the current head over 5 s and 3 bins using equations (2.1) and (2.2),
respectively. Mean values for the flow Reynolds numbers (Re4,) and Froude numbers
(Frg,) were calculated using these values. Tables 2.6 (a) — (¢) show these results for
the 1%, 5% and 10% gravity currents, respectively. The depth-averaged velocities are
in general approximately 35% smaller than the corresponding front speeds and slightly
smaller than the velocity maxima ,,,, displayed with the velocity profiles. However,

it must be noted again that the velocity profiles are likely to be missing the highest
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velocity zones and therefore significantly underestimating the flow speeds. The ug, of
the 1% currents show varying responses to the bed roughness, relative to the smooth
case, but the magnitude of the effects are for the most part significantly smaller than
for the higher density currents. In the 5% and 10% cases, the depth-averaged velocity
of the gravity currents flowing over rough surfaces is significantly decreased relative to
the smooth case. In fact, the magnitude of the decrease is over 25% under most rough
bed conditions. There does not appear to be any clear trend in the exact magnitude
of the decrease in ug4, relative to the smooth case for a particular bed type or spacing.
Therefore, it would appear that for an improved indication of those cffects, the front
speed results should be observed since the depth-averaged data at present only indicates

that there is a general decrease in velocity.

The depth-averaged height data, hg,, shown in tables 2.6 (a) — (c) also proves incon-
clusive. In the 1% case, it appears that there is a significant overall decrease in the
height relative to the smooth current height. However, the 5% data suggests an overall
increase in height, varying from about 5% to 50%, with no apparent trend in the data
with respect to the roughness type or spacing. The 10% case suggests that under the in-
fluence of coarse sand, spheres and the d-type beams the height decreases a small amount
while for the k-type beds, the height is more significantly increased. Again. these results
highlight the sensitivity of this method of calculating the depth-averaged values on the

number of data points available.

The k, values calculated using equation (2.4) can be seen in figure 2.25 with the velocity
data below the velocity maximum used to calculate them. At the present resolution, the
k, data is inconclusive. It does not show any specific indication of correlations between
the increase and decrease in value with the density or the bed type. It is encouraging
that the order of magnitude of the values agree in some cases, for example the 1% and 5%
cases for the spheres roughness (figures 2.25 (¢) right and middle) and the 5% and 10%
cases of the beamsg 2 roughness (figures 2.25 (d) middle and left) but this does not hold
for all of the data. Note that there is no data available for the 5% smooth case since there
was no probe data available below the velocity maximuin of the current. It should also be
noted that these are ‘best fit” values that have been calculated with at least four probe
values where possible, including the velocity maximum. The data is subject to some
error due to its method of calculation, i.e. by combining the data from two experiments
with a probe shift and as a result some ‘clustering’ of the values is apparent undermining
the fit of the line. For this reason, the data from these probe ‘shifted’ experiments were

not used in the velocity profiles previously. Data right down to the bed is not available
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Figure 2.25: (Previous page) Downstream horizontal velocity values in the current head below
the velocity maximum at £ = 2.97 m averaged over 5 s and 3 bins, plotted on a semi-log scale
with a linear regression extended to calculate the y intercept and hence k, using equation (2.4).
Data is compiled from two laboratory experiments under identical conditions, with a probe shift.
Results left, middle and right are for the 1%, 5% and 10% density excess currents, respectively.
(a) Smooth. (b) sand, (c) spheres, (d) beamsg 2, (¢) beamsg 4 and (f) beamsgg. No data was
available below the velocity maximum for the 5% smooth case.

at the current resolution and thus the extrapolation to the intercept could be subject to
a significant error. In future studies, finer resolution data would increase the accuracy
of the calculation, but since other areas of the present investigation require k, values
then the current data is presented. In fact, it might be possible to provide an indication
of the appropriateness of the values calculated here from the numerical predictions that

follow.

The effects on the depth-averaged values of the removal of the ambient fluid

from between the roughness elements

Beamsg 5 Beamsg g
g, (mm/s) 106.1 97.7
hg, (mm) 53.3 48.5
Fraa 0.66 0.64
Rey, 5897 5037

Table 2.7: Depth-averaged values for a 5% density difference gravity current with ambient fluid
between the elements replaced with dense fluid. Fr and Re calculated using u4, and hg,.

The depth-averaged downstream horizontal velocities were calculated in the current head
over the 5 probes and for 5 s and 3 bins for the experiments with dense fluid between the
elements. The results are presented in table 2.7. Compared to the smooth case, decreases
in uq4, of 22% and 29% again confirm that the buoyant ambient fluid trapped between
the elements is not the sole cause of the effects of the bed roughness on the current.
Similar to the results for the rough cases with ambient fluid between the elements, the

internal uq, is approximately one third slower than the front speed.
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2.6 Results: Turbulence

The downstream horizontal root mean squared velocities, uqy,,, have been calculated

using the following equation:

Urms = l:';; Z(ui - ﬁ)z] 2 (25)
i=1]

where n is the number of observations, u; is the downstream horizontal velocity at a
point and % is the time averaged at a point downstream horizontal velocity. The results
shown in figures 2.26 (a), 2.27 (a) and 2.28 (a) within the current head have a typical
smooth bed gravity current w,ms profile (Buckee et al., 2001) with reduced values at
the mean velocity maximum and an increase at the interface where more mixing occurs
due to interfacial instabilities. At the head, the 1% current shows little change from
the smooth profile and magnitude of ., under the sand and beamsg s bed conditions,
figures 2.26 (b) and (d). However, for the spheres and the k-type beam roughnesses,
figures 2.26 (c), (¢) and (f) the profile appears ‘straightened’ to give an almost constant

urms value throughout the current depth.

For the 5% current, the effects are more substantial. It appears that in the smooth case
the change in uy,, with depth is much more variable than in the rough bed cases with
distinct maxima and minima. Although more significant than in the 1% case the profiles
in the rough cases (figures 2.27 (b) — (f)) do not vary with height as dramatically as
the smooth case. This observation also holds for the 10% density cxcess (figure 2.28).
These results suggest that the turbulence is being redistributed throughout the current
depth in all rough bed cases, regardless of the initial density excess of the current. The
reduced u,ms at the density interface at the top of the current compared to the smooth
case, suggests reduced turbulence fluctuations in this locality which could be indicative
of the damnping of the billows instabilities that are typically present in this region and

has previously been implied in the velocity data.

The most significant difference between the different density excesses is that the 5% case
appears to show an increase in tym, near the bed under rough bed conditions while the
1% and 10% cases show very little change from the smooth case. It is possible that this
is indicative of an effect due to the density excess. Where the 1% case is significantly
slower, due to the reduced buoyant driving force, it does not appear to feel the effects
of the bed roughness as significantly as the 5% case. Conversely, the 10% case has such
an increased driving force that again those currents may be affected differently by the

bed roughness. This observation perhaps suggests that there is a ‘transitional’ density
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Figure 2.26: Downstream horizontal root mean squared (rms) velocity profiles as a function of
depth for a 1% density difference, averaged temporally over 5s and spatially over 3 bins. Profiles
from right to left of flow before the current head, in the head, in the body and in the tail for (a)
smooth, (b) sand, (c) spheres, (d) beamsg 2, () beamsg ; and (f) beamsg s.
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Figure 2.27: Downstream horizontal root mean squared (rms) velocity profiles as a function of
depth for a 5% density difference, averaged temporally over 5s and spatially over 3 bins. Profiles
from right to left of flow before the current head, in the head, in the body and in the tail for (a)
smooth, (b) sand, (c) spheres, (d) beamsg 2, (e) beamsg 4 and (f) beamsg g.
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Figure 2.28: Downstream horizontal root mean squared (rms) velocity profiles as a function of
depth for a 10% density difference, averaged temporally over 5 s and spatially over 3 bins. Profiles
from right to left of flow before the current head, in the head. in the body and in the tail for (a)
smooth. (b) sand, (c) spheres, (d) beamsg 2, (€) beamsg 4 and () beamsg g.
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excess at which the near-wall region of the current will be affected more than higher or

lower excesses.

2.7 Discussion

Some discussion of the experimental results has been undertaken simultaneously with
the presentation of the data in the present chapter to enable interpretation of the differ-
ent measurements independently. This section combines the results of the present set of
experiments and discusses them with reference to variables considered to be of key influ-
ence in the effects of bed roughness: initial density excess, roughness type, the spacing
of the beam-type roughness, the cffect of the removal of ambient fluid at the bed and
change in roughness clement height relative to fluid height. Finally a brief discussion of

the measurement techniques is included.

The effects of bed roughness on gravity currents of initial density excesses of

1%, 5% and 10%

The results for the 1%, 5% and 10% density excesses show that the primary effect of
bed roughness is to reduce the speed at which the gravity currents propagate. The
nature and magnitude of this effect is critically dependent on the type of roughness
and its configuration on the bed, as discussed subsequently. Currents flowing over bed
roughness still propagate at a constant speed in the same manner as the smooth case for
an initial period before undergoing a slowing transition which varies depending on the
roughness type. The front position data collapses well for the constant speed phase for
cach bed type regardless of the initial density (figure 2.11) even though the roughness
effects on the internal flow dynamics for the 1% case are relatively small. Therefore,
it can be said that the distance that a current will travel over a given roughness type
during this constant speed phase scales with the density difference, as commonly observed
in existing smooth bed investigations and as observed by Peters et al. (1997) in their

constant flux study on roughness effects.

In general, the presence of bed roughness results in fewer regions of high velocity dis-
tributed within the current, the head is less well-defined and it appears that the larger
billows are not present. The results suggest that this is due to the increased presence
of smaller instabilities at the density interface that may either break down or prevent

the formation of larger billows. There does not appear to be a significant increase or
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decrease in the magnitude of the vertical velocities relative to the horizontal velocities
in the presence of bed roughness, rather there is an overall reduction in both velocity
components and the roughness affects the distribution of the velocities*. In the case of
the horizontal component this results in a redistribution of horizontal velocities about
the velocity maxima such that the profile appears more rounded, less skewed towards
the maximum. The mean velocity maxima, 4., are smaller and further from the bed
compared to the smooth case. Therefore it can be confirmed that the location of the
velocity maximum is a function of the bed roughness, as predicted by both Kneller et al.
(1999) and Buckee et al. (2001). In the vertical direction, an overall reduction in the
magnitude of the positive vertical velocities is observed in the presence of any bed rough-
ness. In fact, the present experiments indicate that when a rough bed is present there is
significant positive vertical motion present within the nose and the head of the currents,
not solely at the front and density interface as typically observed in the smooth case.
Moreover, these new internal regions of vertical motion can be correlated with regions of
reduced downstream horizontal velocities and may result from deflection or recirculation
caused by the roughness elements or the upward ejection of vortices of ambient fluid from
between the elements due to buoyancy. These mechanisms will all result in increased
mixing within the head. Conversely, despite the increased vertical activity within the
head, the frontal interfacial region is reduced and does not extend coherently as far back
behind the current as observed in the smooth case. One likely result of this process is

that the current head length is shorter when travelling over a rough surface.

These characteristics of a rough bed are not as clearly observed for the 1% density excess.
This does not mean that the bed roughness is not affecting the current flow, rather it
may be attributed to the already elevated location of @me, in the smooth case for this
low density and the subtlety of the changes not being captured with the current probe
resolution. Moreover, the ‘lightness’ of the fluid in this case will limit the interaction of
the current with the elements, as discussed below. For the 1% density excess currents,
whilst the front position at a given time, and thus the speed of the current, is affected by
the presence of bed roughness, the downstream horizontal velocity field distribution does
not appear to have changed considerably. This indicates that the roughness is having
only a limited affect and is not interacting with higher regions of the flow. However, this
could be predicted since the current is ‘lighter’ and therefore the ambient Auid will not be
as influential in this case. To take affect, the ambient fluid at the bed relies on buoyancy

induced by the density difference with the current when it is overridden. In the 1% case,

!Based solely on the 5% current studied, which is assumned here to be representative.
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this buoyancy force is weaker because the density difference between the ambient and the
current is smaller and since the current dilutes during propagation due to other means
of entrainment, for example at the density interface, the density difference also reduces,
possibly to the extent that the ambient fluid between the elements does not incur enough
buoyancy to eject. Hence, reduced effects on the internal flow structure at this density
excess and exaggerated effects on the flow structure in the 10% case. This mechanism
is similar to that observed by Peters et al. (1997) with reference to roughness effects
on heavier and lighter currents. They found that lighter currents tended to float over
the roughness elements with little interaction, while as the density increased the heavier
fluid interacted more strongly with the roughness. It is not possible to determine at this
stage if there is a scaling that can describe the increase in the magnitude of the effects
on the flow structure as the initial density excess of the current increases but since the
front position data collapses it is possible that there is an appropriate scaling that would

enable a similar operation to be performed on the internal velocity structures.

The root-mean-squared velocities suggest that the turbulence has also been redistributed
more uniformly throughout the current head depth and is less localised at the velocity
maxima and the interface in the rough cases. The sphere and beam type roughnesses
potentially cause the large structures at the interface to be broken down or remain small.
These smaller structures that replace the large billows in these cases form more quickly
behind the head of the current and this implies that the head is smaller in length than for
the smooth case. Most of the effects on the internal flow structure can be attributed to the
presence of the ambient fluid beneath the current and are discussed further subsequently.
However, it is also possible that the reduction in the vertical and downstream horizontal
velocity components due to the presence of roughness might coincide with an increase
in the magnitude of the lateral velocity component that is not resolved in the present
dataset. The cause of the shortening of the length of the current head in the presence
of roughness is difficult to establish without vertical velocity data for the cases with the

effects of the ambient fluid removed.

The effects of bed roughness types

The distance that the gravity current travels is affected by the type of roughness and
its configuration on the bed. The grain roughnesses had a limited effect on the current
speed (= 5% at most), while the form roughnesses were much more influential (up to

=~ 10%) with the k-type roughness having a more pronounced effect than the d-type
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roughness. In fact the sand case has been shown to have very little effect overall and
maintains velocity distributions very similar to the smooth case. This could be expected
since the coarse sand represents the smallest roughness ‘height’ at ~ 2 mm. In this
case the reduced amount of overridden ambient fluid is likely to have less effect and the
roughness effects are probably solely generated by the increase in surface friction due to
the close packing and irregularity of the sand. The spheres case has a greater effect at
retarding the current and changing the internal structure, more like the most densely
packed beamsg 2 case. This is to be predicted since the spheres have the same diameter
as the beams height, i.e. 6 mm, and the spherical shape means that close packing, such
as with the coarse sand. can only be achieved to a certain extent and this implies that
although the surface friction may still be high there is an increase in the amount of
ambient fluid in the cavities. These cavities will not be as large or regular as in the
beam type cases but the similarity between this case and the beamsg 2 bed results could
indicate a similarity in the effective roughness of these two bed types, regardless of their

very different shapes.

The principal difference in the grain and form roughness types appears to be the mag-
nitude of the disruptions to the velocity flow structure in the near wall regions. These
variations may be predominantly attributed to the volume of ambient fluid that is over-
ridden by the current and either trapped between the roughness elements or more im-
mediately entrained into the head. However, these variations could also be attributed to
the interactions between the flow and the roughness elements themselves, or the packing
of the elements. The effects of packing on the grain type bed roughnesses are beyond
the scope of the present study. However, this would be an interesting extension to the
current dataset. The experiments performed herein that replaced the ambient fluid be-
tween the beam type clements with dense fluid have proven the significance of the cffects
of the presence of the trapped ambient fluid on the beam roughness types. It would be
interesting to perform a set of equivalent experiments with a thin film of dense flnid over

the grain type elements to determine the existence and magnitude of similar effects.

The effects of bed roughness spacing and the presence of the trapped ambient

fluid between the elements

The changes to the front speed as a result of bed roughness are clearly important.
However, the significance of the changes to the internal velocity structure that have been

proven to result from the trapped ambient fluid could also have huge implications for
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sediment transport in gravity currents. The interaction of the overridden ambient fluid
and the roughness elements with the current is particularly important for understanding
and characterising the effects of bed roughness on gravity currents in comparison to
single phase rough flows, since the buoyancy forces induced by this ambient fluid are not
present in the latter but are of fundamental importance to any gravity current study.
The removal of the ambient fluid at the bed proved that this is the predominant cause
of disruptions to and redistribution of the velocity field within the current head and
an increase in mixing and entrainment in this region, and hence forms a significant
contribution to the retardation of the flow. In fact, the front speed data suggests that
the trapped ambient fluid contributes to approximately 50% of the reduction in front
speed. However, it is not the only cause and there are other roughness effects, although
these appear primarily to be slowing effects at the front with less impact on the internal
flow structure. These other effects could be attributed to a loss of energy to maintain
the vortical motion in the fluid trapped between the elements regardless of its density.
However, it is necessary to perform very high resolution experiments with details of the
flow dynamics between the roughness elements to confirm this. Hence, the subsequent

use of CFD to enable predictions of the finer flow structures in these regions.

Overall. the retardation of the gravity current increases with the increase in the beam
roughness element spacing. However, the gravity current propagation over d-type and
k-type beam roughnesses show different characteristics. The front position at a given
time for the two k-type cases used in the present study (beamsg 4 and beamsgg) appear
to be quite similar, suggesting that there is a critical spacing above which increasing the
distance between the elements has little effect’. The effects of the k-type element spacing
penetrate higher into the current depth, possibly since the volume of buoyant ambient
fluid that is released from between the clements in these cases is more significant and is
therefore potentially not entrained as quickly into the overflowing current. In the d-type
case the volume of cjected fluid packet will be small by comparison and therefore can
be expected to be broken up and entrained more quickly lower in the head causing less

disruption.

The front position data suggests that the difference in retardation of the current under
the influence of the d-type and k-type roughness is not due to the trapped ambient fluid.

As mentioned above, without this fluid the currents are faster but the difference between

$This general rule will hold up to a point. When the elements become too far apart the flow dynamics
will revert to that over a smooth bed with the highly dispersed elements representing very small individual
obstacles in the path of the current.
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the d-type and k-type front positions at a given time remains approximately the same.
The =50% contribution to the reduction in speed due to the trapped ambient fluid holds
for both element spacings. Since it cannot be attributed to the presence of the trapped
ambient fluid, the difference in the spacing types could be a result of the loss of energy
to maintain the vortical motion between the elements. As the gap between the elements
is larger in the k-type case, it stands to reason that it requires more energy to maintain
a vortex in motion in that locality. In fact, due to the separation that can occur at an
element in the k-type case, it is possible that two primary vortices develop, one at the
downstream face of an element and the other at the upstream face of the adjacent one.
In the d-type case, the gap is so reduced that there is only one principal vortex and less
energy is required to maintain the rotation. Therefore the current does not lose as much

energy in this process and a greater speed can be maintained.

Converscly, the removal of the ambient fluid from between the elements does show sig-
nificant differences in the resulting internal velocity structure for the currents with the
d-type and k-type element spacings. Both show a lower velocity maximum, probably as a
result of the reduced surface friction. However, the d-type case shows little change in the
internal velocities. This is likely to be caused by the close packing of the elements such
that the surface friction still has significant effect. On the other hand, the k-type shows
a dramatic change, partly as a result of the exaggerated reduction in surface friction for
this case. Moreover, because the larger volume of ambient fluid trapped between the
elements in the equivalent regular case caused such disruption to the flow structure in
the overflowing current that its removal is much more apparent than the removal of the

small volumes of ambient trapped in the d-type case.

Note that after some time or distance, as the current dilutes through mixing and en-
trainment, the density difference between the current and the trapped ambient fluid will
reduce. Thus the strength of the buoyancy force at the bed will diminish and so will the
cffects of the overridden ambicnt fluid on the current. At this point, the flow structure
may change and eventually stabilise, perhaps similar to the 1% density case where the
density difference is much smaller from the start. For longer-lived gravity currents. such
as those in submarine channels that may last for days, the buoyancy effects should pri-
marily manifest in the head and the initial parts of the current body. Once dense fluid
replaces the lighter fluid between the elements, the more distal parts of the gravity cur-
rent will exhibit very limited buoyancy effects. As a consequence of this, the influence of
bed roughness on gravity currents will potentially change both spatially and temporally.

Therefore, an interesting extension to this investigation would be to study the effects of
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changing the density of the fluid that is initialised between the bed roughness elements.

The effects of decreasing the fluid height relative to the bed roughness height
by half

The results showed clearly that the effects of the bed roughness on the front position
and speed are dependent on the current height. However, by reducing the total fluid
height by half. it is probable that the relative height of the beam roughness elements
meant that they interacted with the current more like a series of obstacles. As such,
the cwrrent was subject to significant blocking effects from the beam-type elements that
are not present when the roughness is small relative to the current height. Therefore,
the flow dyvnamics could be expected to be significantly altered and not representative
of the effects of roughness. An investigation of the effect of the height of the roughness
elements on the propagation of gravity currents with increased resolution would enable
further definition as to what height constitutes roughness effects and what results in the

effects of an array of obstacles.

Measurement techniques

The use of the video capture technique was proven to be relatively simple but very
successful for establishing the front location and hence the front speed of the currents.

It also supplies useful visual aids for interpretation and records.

The results confirm that the UDVP velocity measurement technique enables relatively
easy 1D measurement of the downstream horizontal velocity component of lock-release
gravity currents as has been shown previously (Best et al., 2001). Even with only five
probes, the typical gravity current profile can be generated for the smooth cases for 1%,
5% and 10% density excess currents. For clarification of the change in the downstream
horizontal velocities with depth and higher resolution of flow structures within the time
series contours measurements with several more probes, or a higher resolution technique
like PIV or LDA would be beneficial. Despite initial problems with constraining the
vertical velocity probes, the data from the single probe was satisfactory. However, it
would again be beneficial to implement another measurement technique that would en-
able coincident velocity component readings at a point with sufficient accuracy. This
would also provide data for the calculation of more accurate fluctuating velocities and
hence Reynolds stresses and turbulent kinetic energy which would allow, for example,

better determination of the fate of the billows at the interface.
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For calculation of k, values, particularly in the 5% case where the current mean velocity
maximum is typically closer to the bed, and as should also be observed for the 10% case
with greater resolution, a technique like PIV would again be useful. This would enable
greater resolution to obtain more data points below the maximum for indication of the

present measurement accuracy.

Summary

This chapter has presented the results of a set of experiments designed to establish the
fundamental influence of form and grain roughness on saline lock-release gravity currents
with different concentrations of 1-10%. The experiments have demonstrated that the
presence of any bed roughness reduces the distance covered by the current before it
deviates from the initial constant speed phase and enters subsequent slower phases. This
transition occurs earlier with increasing bed roughness effects. The infiuence of the bed
roughness also manifests in the internal flow dynamics. For the heavier currents (5% and
10%) the height of uma. is clearly increased, as previously theoretically predicted, while
its magnitude is smaller. The magnitude and patterns of the vertical velocity distribution
within the current head also change dramatically as a consequence of bed roughness. The
interfacial instability generated at the front does not persist coherently as far back into
the following flow in the rough cases, which suggests that the length of the head of
the current is typically shorter. Within the head itself, regions of high positive vertical
motion are present associated with regions of reduced downstream horizontal activity.
In particular, in the beam roughness cases these regions of high vertical velocity near the
bed may represent the ejection of vortices of buoyant ambient flnid iuto the overlying
head. These modifications to the velocity fields correspond to variations in turbulence.
In the presence of bed roughness more uniform redistribution of turbulence is observed

within the head. relative to the smooth cases.

The type of bed roughness, grain or form, plays a fundamental role in defining the
magnitude and nature of the changes to the gravity current dynamics. The small-scale
grain roughness shows little influence on the internal flow dynamics but does increase
the basal friction. The larger-scale grain roughness shows similarities in its affects to
the closest spaced d-type form roughness, having increased influence on the internal flow
structure. However, it is the k-type form roughnesses that have the most significant
impact on the current since with increasing length of the cavities between the elements.

the impact of the trapped ambient fluid increases.
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In order to assess the relative impact of the increased roughness (and the resulting
frictional increase) and the influence of the buoyancy forces produced by the trapped
ambient fluid, the cavities between the beams were filled with fluid of the same initial
density as the current. The results of this exercise demonstrate that each of these effects
contributes to = 50% of the retardation of the flow, relative to the smooth currents.
Finally, an attempt was made to estimate the k, values for each of the bed roughness
types in order to characterise them in such a way that similar values may be implemented

in the subsequent CFD work (see chapter 4).

These manifold effects on flow speed, flow structure and turbulence distribution, demon-
strated with saline currents, can be expected to have significant analogous consequences
for sediment transport in particle-laden gravity currents. Furthermore, long duration
currents will be susceptible to the spatial and temporal changes in the influence of the
bed roughness, in particular the reduced impact from buoyant trapped ambient fluid

with time.

The present resuits are expanded in chapters 5 and 6 where 2D and 3D CFD techniques
are applied to examine the effects of such bed roughnesses on the finer details of gravity
current dynamics. The CFD simulations in those chapters are partially validated by the

dataset provided by these experiments.



Chapter 3

Depth-averaged theoretical model

3.1 Introduction

This chapter introduces a depth-averaged (1D) model. Existing models and theories are
discussed and terms for the inclusion of bed roughness are outlined. This is followed by
a derivation of the governing equations and the assumptions and boundary conditions
applied. The method of characteristics solution procedure implemented in the present

study is explained and applied to smooth and rough bed cases.

The results of these models for the smooth and rough cases are then presented and
validation with experimental data has been performed for the smooth case. Also included
are the results of implementing different conditions at the front in the smooth case.
Complete flow profiles of the characteristics are displayed for currents generated with
ho/H < 0.5. The depth and velocity profiles throughout the domain extracted from
these results show the evolution of these parameters after rclcasc for flow over rough and

smooth surfaces.

3.2 Literature review

Earlier mathematical models, such as those of Von Karman (1940) and Benjamin (1968)
have already been mentioned in section 1.3. However, these represent only the earliest
of extensive theoretical studies over several decades, continuing to the present day. The
governing equations are essentially the same but it is the treatment of them and the

parameters included that differ.

Simplified theoretical models have been developed with extensive use of shallow water

theory and the shallow water equations. The governing equations and their solutions.
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along with some terms that may be applied or considered for the effects of bed roughness
are covered in the present review. A good review of the application of the shallow
water equations to gravity currents can be found in Moodie (2002). There is much
discussion in the existing literature with reference to the use of suitable front conditions
required by some methods, including that of the present study. Alternative reviews of
this contentious topic can be found, for example, in Marino et al. (2005). A review of

fully depth-resolved models can be found in chapter 4.

In hydraulics, terms accounting for bed roughness are included in the resistance coeffi-
cient. A detailed review of resistance in open channels, with substantial discussion of

bed roughness. can be found in Yen (2002).

3.2.1 Governing equations and solution methods

The principal governing equations for incompressible, laminar fluid flow are the Navier-

Stokes equations:

Ou; Oup 1 op 2
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for i, = 1,2.3. The assumption that the flow is incompressible is valid since the
fluids involved are water and saline, neither of which are highly compressible under the

conditions in the present study.

Depending on the problem to be solved, this set of equations can be reduced to involve
only the terms necessary for a specific situation. They are commonly reduced to the Euler
equations in two or three dimensions. Through the assumption of shallow water theory*
most investigators reduce the equations further to give the shallow water equations in
one or two layers (e.g. Hoult, 1972 or Rottman and Simpson, 1983, respectively, among
many others). Although the hydrostatic assumption involved in the derivation of the
equations is violated at the front and cannot hold until a short while after release when
modelling lock exchanges. Shin et al. (2004) note that it allows analytical theory to be
developed and it has been proven numerous times to be valid in most cases. They suggest
that it appears that various approximations are not that important to the description

of the bulk propagation of the current if that is the requirement of the study. Cases

*Essentially that & << L for h a typical current height and L a typical length scale (Acheson, 1990).
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and methodology when non-hydrostatic forces cannot be circumvented are discussed in

section 3.2.4.

The shallow water equations can be solved using long-time similarity solutions when
enough time has passed so that the effects of the initial release no longer govern the flow
dynamics. Fannelop and Waldman (1972) and Hoult (1972) solved the depth-averaged
version of the equations in one and two layers, respectively. Their results have been
discussed by Grundy and Rottman (1985) with attention to how rapidly the similarity
solutions become relevant as a solution method after the initial phase of collapse, i.e.
the value of the earliest ‘long-time’. Gratton and Vigo (1994) also solve the one layer
system. developing the work of Grundy and Rottman (1985) further and reassessing
certain aspects of it. They find that there are four types of sclf-similar solution that

depend on the criticality of the flow.

Rottman and Simpson (1983) studied the initial phases of flow generated by the changing
balance of forces for gravity currents created in a lock-exchange tank with a “fixed lid".
A fixed lid condition can be applied to the top boundary so that the combined height of
the current fluid and the lighter fluid above it is constant. This essentially implies that
the ambient fluid is deep in comparison to the current so that the effect of the current
on the free surface will be negligible and vice versa. This is a common assumption and
has been used often in previous studies (e.g. Bonnecaze et al., 1993; Klemp et al., 1994;
Montgomery, 1999; Shin et al., 2004). An alternative method is to include the free
surface in the governing equations with the introduction of a variable to describe it and
the assumption that pressure is zero on this fluid interface (e.g D’Alessio et al., 1996;

Montgomery, 1999; Moodie et al., 1998; Moodie, 2002).

Rottman and Simpson (1983) use the one-dimensional, two-layer shallow water equations
and initial conditions associated with an instantaneous release from a lock with an initial
dense fluid height (ho) and length (xp) specified and the velocity set to zero throughout
the domain. The boundary conditions imply that the current is symmetrical about the
end wall and the velocity is zero at the walls. They use the method of characteristics (see
for example, Ames (1965) or Abbott (1975), also described in section 3.5) with a front
condition modified from Benjamin (1968), to derive and solve an ordinary differential
equation that relates the velocity of the current to its height. The validity of their
results is limited to ho/H < 0.5, where H is the constant height of the ambient fluid.
Within this linit, however, the characteristic results show good agreement with their

experimental results. The initial method in the present study follows this theory and is



93

detailed more expansively in section 3.3. Klemp et al. (1994) furthered their work with
an additional condition for the criticality of the flow for hg/H > 0.5. Shin et al. (2004)
also derived an additional condition and a slightly different front condition to account

for partial depth releases and those with ho/H > 0.5.

D Alessio et al. {1996) include a free surface in their shallow water equations and derive
them in two and three dimensions but reduce them to the one dimensional case for solv-
ing. They solve them in ‘full’ one dimensional form along with a non-dimensionalised,
weak-stratification model (where p2/p1 << 1) using a finite difference method with the
MacCormack scheme (LeVeque, 1997). This is an explicit, conservative, second-order
accurate method involving a forward difference followed by a backward difference. Arti-
ficial viscosity is included to dampen oscillations. They also solve their weak stratification
model using a siinilarity solution method, the method of characteristics and a Godunov
method (LeVeque, 1997) to compare it against the full set of equations and show the
spectrum of solution methods applicable for solving such a model. This method does
not use a front condition, instead the front is analogised with a discontinuity in the flow.
Although the observed dynamics at the front show that this is clearly not the case (e.g.
Simpson, 1972) and that without a front condition entrainment, turbulence and other
non-shallow-water effects at the front cannot be accounted for, it is another means of
capturing the front. Also, discontinuous solutions for conservation laws have been well
studied and the method enables a completely theoretical model to be developed without
the need for empirical results. The same authors also solved the shallow water equations
in three layers using the finite difference method and the MacCormack scheme for the

modelling of intrusive gravity currents (D’Alessio et al., 1997).

Bonnecaze et al. (1993), among others, solve the shallow water equations in one and
two layers with a similar one dimensional system to Rottman and Simpson (1983) but
with alterations for a particle driven gravity current. They include another equation
for the volume fraction occupied by the particles which includes a settling velocity and
modification to the reduced gravity, making it a function of this fraction. This set of
equations can be reduced to the homogeneous case when required by setting the voluine
fraction appropriately. The one layer case is studied since in nature it is usually a
small denser current intruding into a relatively deep ambient fluid. Hence, the effect
of the ambient fluid is considered negligible and is not included in the solution process.
However, there is little data available for real life comparisons and when the size of the
advancing current is more comparable to the height of the ambient fluid, as is the case

in most experimental setups, the effects of the ambient fluid cannot be neglected. Thus
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the two layer equations are necessary. Bonnecaze et al. (1993), Bonnecaze et al. (1996)
and Bonnecaze and Lister (1999) use a front condition derived from the work of Huppert
and Simpson (1980). based on an empirical Froude munber, with a finite difference
method. In their method, they nondimensionalise their governing equations and apply
a two-step Lax-Wendroff scheme, second-order in time and space. Several investigators
have included other additional terms for different channel geometries or different current
specifications. For example source terms to include a slope in the tank can be included
accounting for the increase in friction that occurs in this case (Bonnecaze and Lister,

1999; Moodie et al., 1998; Montgomery, 1999; Montgomery and Moodie, 1999).

Similar to Bonnecaze et al. (1993), Moodie et al. (1998) also include additional terms
and an additional equation for the motion of particles in the flow. Howcver, the work
conducted by Bonnecaze et al. (1993) on particle driven gravity currents and subsequent
work using similar methods (Bonnecaze and Lister, 1999, Engblom et al., 2001) has been
repudiated by Moodie et al., 1998. They find, through dimensional analysis, that due to
non-hydrostatic forces generated by the presence of terms describing the particles, the
shallow water equations are not valid for the solution of the problemn when the density
difference between the fluids is solely generated by particles suspended within the current
and not supported by an additional uniform difference in the interstitial fluid density as

well. Further discussion follows in section 3.2.4.

Montgomery (1999) showed that the shallow water equations can be written as a system
of hyperbolic conservation laws including forcing or source terms when necessary. A
numerical method of solution is guaranteed not to converge to non-solutions if it can
be written in conservation form (LeVeque, 1997). A simple way of assuring this is to
start with the partial differential equation (PDE) in conservative form and then use fi-
nite difference discretisations as usual. If the scheme converges to a solution then it is a
‘weak solution’ of the conservation laws (LeVeque, 1997). Montgomery (1999) derives a
two-dimensional system for two-layer, thin top or bottom layer, weakly-stratificd fluids,
free surface and fixed lid cases. The hyperbolicity of the system of equations is proven
and jump conditions are created to couple the lower and upper layer equations on either
side of the discontinuity using methods for Rankine-Hugoniot jump condition derivation
(Montgomery and Moodie, 2001). A second-order accurate and total variation dimin-
ishing (TVD) relaxation scheme for solving a system of hyperbolic conservation laws
including forcing or source terms is derived by modifying a method developed by Jin and
Xin (1995). A generalisation of this method can be found in Montgomery and Moodie

(2003) where the scheme is proven for an initial value problem (IVP), using Burgers’
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equation as an example, and for an initial boundary value problem (IBVP) using the
two-layer shallow water equations in one dimension with forcing terms for slope and
frictional drag. Several other theoretical studies, using the shallow water equations for
compositional and particulate currents with and without source or forcing terms, have
been carried out using this method (Moodie et al., 1998; Montgomery and Moodie 1998,
1999; Moodie, 2002; Antar and Moodie 2003, 2005). However, a rigorous comparison of
most of this work with experimental or even other validated theoretical results has yet

to be undertaken.

A different theoretical model for fixed volume releases, is derived through the use of ‘box
models’ where the current is considered to take the shape of a series of non-entraining
rectangles or ‘boxes’ with constant cross-sectional area (Huppert and Simpson, 1980;
Hallworth et al., 1996; Hogg et al., 2000). The shallow water equations are not used
explicitly but shallow water theory is applied. This method is useful for simpler analyses
of the currents and is usually used in conjunction with experimental studies where a
more detailed profile of the current is not necessary for comparison. It does not require

a numerical method of solution.

3.2.2 The front condition

The theoretical determination of the speed of the gravity current has been attempted
in many ways and is often the focus of a theoretical or experimental study. A simple
approximation of the horizontal velocity, u, can be made from the basic balance of energy
of a dam break (Simpson, 1997). In this situation, the gravitational potential energy

lost must equal the kinetic energy gain thus implying:

mu? h )
S (33)

i.e.
u=1/gh (3.4)

where 1 is the mass, h/2 the mean height of the centre of gravity and g the magnitude
of the gravitational acceleration. Clearly, this can be extended to the flow of two fluids
with a density difference between them. This difference, no matter how small, will
reduce the driving force on the fluid to below normal by Ap/p where Ap is the density
difference. Since the gravitational presence is one of the main driving forces, this will
modify equation (3.4) as follows:

u=+/g'h (3.5)
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where ¢ = gAp/p. There appears to be some discrepancy in the exact form of this
density difference. If p; is the density of the current and p, the density of the ambient

fluid, some authors use a reduced gravity given by

(Von Karman, 1940; Benjamin, 1968; Simpson and Britter, 1979; Bonnecaze et al., 1993;
Klemp et al., 1994: Peters, 1999). While others use one of the form

(D’Alessio et al., 1996: Moodie et al., 1998; Montgomery. 1999; Shin et al., 2004; Marino
et al., 2005). However, for small densities, this difference is marginal. Moodie and
Pascal (2001) point out that equation (3.7) is particularly useful for the special case of

an air/water interface where p — 0, as in dam break problems.

Von Karman (1940), through the assumption of conservation of energy and the applica-
tion of Bernoulli’s equation to steady, irrotational flow, determined an equation for the

velocity of the progression of the front of the form:

= /2¢h (3.8)

Benjamin (1968) defined a dimensionless constant for the flow of an air-filled cavity into

a liquid, in terms of the depth of the cavity as follows:

(H — h)(2H - h) 39
\/ ’Ti H(H+h) (3.9)
where H is the total depth of the cavity and liquid. For application to gravity cur-
rents. Benjamin (1968) found D, = /2. Thus, although rejecting the theory behind

the calculation of Von Karman (1940), the same conclusion for u (equation (3.8)) has
been reached. Equation (3.9) has been proven by Klemp et al. (1994) to be a reliable
description of the front propagation for an inviscid problem. They found, however, that
it lacks the capacity of a full set of equations to account for surface drag and mixing on

the interface and hence overestimates the speed when compared to laboratory data.

Rottman and Simpson (1983) among others use the front condition of Benjamin (1968)
which is derived later in this chapter. Other theoretical and experimental front conditions
have been derived and imposed. For example, Huppert and Simpson (1980) postulated

the expression
1.19/¢’h; for h/H < 0.075
u=g Y d / ? (3.10)
(1) * Vg'R for h/H < 0.075
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hased on experimental results, while Shin et al. (2004) derived the expression

o= [(1- 1)’ a1

using a similar method to Benjamin (1968) but taking into account a control volume
including both sides of the current interface, the theoretical solution h = hy/2 and
the Boussinesq assumption. This condition has the advantage that it contains no free

parameters.

3.2.3 Rough boundary terms

Although there is little other existing litcrature specifically on the application and ef-
fects of bed roughness on gravity currents, these effects are considered frequently in
hydraulic engineerng studies of open channel and pipe flow (e.g. Chow, 1959, Liggett,
1975, Streeter and Wylie. 1983, French, 1994). In particular, the use of the Chezy or
Manning equations, developed in 1769 and 1889, respectively, for computation of the
average velocity of the flow, includes a resistance coefficient that can be specified to
describe the type of roughness present. These equations were first derived for uniform,
steady flow but they have become widely used in non-uniform and unsteady flow (French,
1994). Using open channel flow theory the velocity of a uniformn flow can be computed

approximately using a semi-empirical uniform flow equation of the form

@ = CyHA,SE (8.12)

where @ = average velocity, Hpqq = hydraulic radius of the channel, Sy = channel
longitudinal slope, which can be considered as the friction slope, Sy, C = resistance

cocfficient and A and B = cocflicients.

The Chezy form of equation (3.12) has been found to have parameters A = B = %

and Cy = Chezy C to be determined by measurement or estimate. In the Manning
equation, A = %, B=jand Cy = n—}” where npr = Manning resistance coef ficient
and the equation is entirely empirical. Note that the coefficients ny; and Cy are related

by the equation
1 4

Also, these coefficients are not dimensionless. The Chezy Cy has dimensions of accel-

eration, i.e. m/s? and the Manning n (np) has dimensions s/m!/3. Clearly, equation



98

(3-12). in both of the forms defined above, can be rearranged to determine the friction
slope when the other parameters are known or estimated. Hence enabling one method

of developing a simple means of including a form of roughness on the bed.

The estimation of the coefficients is the primary difficulty in the prediction of resistance
(Yen, 2002). Theoretically, one would expect that coefficients of resistance would de-
pend on the Reynolds number of the flow, the boundary roughness and the shape of the
channel. More details of the definition of the resistance coefficient can be found in Rouse
(1965). One of the first pioneers of the effects of wall roughness on the flow was Niku-
radse (1933), who investigated the flow through sand-roughened pipes. Further effects
on pipes were explored by Moody (1944) among others. In pipe flow, the dimensionless
Darcy-Weisbach friction factor (see Streeter and Wylie, 1983 pp. 227-229), f;. is used

to determine the resistance. This is obtained by using the Darcy-Weisbach equation for
pipes:

L u?
hy = fomg (3.14)

where D;,=inside diameter of the pipe, L=length of the channel under consideration

and ii=the average velocity of the flow. This can be written as

__ /8
4=/ =V HraqS .
i To d (3.15)

for flow in open channels (Streeter and Wylie, 1983). On comparison with the Chezy

form of equation (3.12), we obtain

Cy =+ (3.16)

where the friction factor, fo, is dctermined through the samce method as for flow in
pipes. i.c. using diagrams correlating relevant How variables (e.g. Nikuradse, 1933,
Moody. 1944, Streeter and Wylie, 1983). For idealised straight rough channels at high
Re numbers fp is mainly a function of bed roughness. For smooth channels it is a function

of Re (Rouse, 1965; Yen, 2002).

There is no general equation to determine the value of the resistance coefficient for any
given flow characteristics. Discussion of the use of the Chezy, Manning and Darcy-
Weisbach expressions can be found in Moody (1944) and Yen (2002), for example. Yen
(2002) suggests that there is no real advantage in using one of them over another. The

advantage of fo is that it is directly related to the development of fluid dynamics. Chezy
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Cy is the simplest and has the longest historical usage and the Manning n has the
advantage that it is almost constant, almost independent of flow depth, Re or roughness

height for fully developed turbulent flow over a rigid rough surface.

In defining fo, the equivalent roughness height, k,, conceived by Nikuradse (1933) is
frequently used since it can be calculated from the velocity profile of the flow, independent
of any contextual variations. k, has been discussed previously in section 1.3.3. In the
context of bedforms the definition of k, is slightly more complex. Yen (2002) suggests
that large bedforms behave similar to large roughness elements and can be described
as a ‘macroroughness’. If these are considered as large-scale densely distributed fixed
elements, then technically they can be characterised by ks, however, it is unlikely that
this single value will be able to accurately represent the cffects of size, shape and spatial

distribution. Added to this is the passibility of flow scparation.

One solution is to perform a ‘linear separation’ (Yen, 2002) where the resistance coef-
ficient is split into ‘grain’ roughness and bedform or ‘form’ roughness. This concept is
presented and methodology is discussed by Van Rijn (1984). k, is split into the compo-

nents K. grain and Ky form, defined respectively by the following:
ku,yrain = 3Dgo (3.17)

and
ks.form =11A (1 - 6—250) (3.18)

where Dg is the grain particle diameter, A = bedform height, ¥ = % and A is the
bedform length. The final k, value is then simply the sum of these two grain and form
components, i.e. k, = kygrain + Ks form. This can be substituted into the relevant

equation to calculate the resistance coefficient.

For density currents, Middleton (1966b) adapts expression (3.16) to give

H= 5 (3.19)

where ¢’ is now the reduced gravity as defined previously and f is made up of the resis-
tance from the bottom and sides of the channel (fp) and from the fluid interface (fint)
and is given by:

w

f=lt+Tam

fint (3-20)
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where W is the width of the channel. fy is determined as above by analogising the
current to a river flowing over a chosen type of roughness element. f;,: is more difficult
to predict since it depends on the physical state of the interface (French, 1994 p. 544;
Middleton, 1966b). Middleton (1966b) only predicts it in a ‘semi-quantitative’ manner
and suggests. from his experimental evidence, that it decreases with decreasing Fr and

increasing Re.

Peters (1999) generated a spread rate model using similar a methodology to Didden and
Maxworthy (1982):

1
i. g\ *®
X=k (m tt (3.21)

where k is a constant of proportionality, @ = UH, the product of the mean velocity and
height scale for the layer. Further, g is a rough-surface-reduced gravity term for the
bottom layer that accounts for the decrease in mean layer density due to the mixing of

the current with the ambient fluid trapped in the spaces between the elements, defined by
g5 = g, (3.22)

where g/, is the gravity, reduced by the difference between the densities of the fluid in the
current and the spaces between the beams and a) is a buoyancy flux reduction factor
that accounts for the decrease in mean layer density due to the mixing of these two

fluids, given by
2

=2+(r’3:;)

where hp is the height of the rib. The term vy is an effective viscosity that allows for

1273 (3.23)

the effect of roughness, defined by
CII
Vers = @ (3.24)
where the friction coefficient C” is defined using an cwnpirical expression that relates it

to the ronghness scale for flows over a fully rough plate (Mills and Huang, 1983):

o = (2635 + 0618m L)
= | 2.630 + 0. HE (3.25)

Here L is a length scale and k, is the equivalent grain roughness of sand, correlated to
transverse ribs with the formula

[3.4-3.7(,,‘7) 0‘”]

ks = h’R (326)
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for roughness arrays with 8/d = 2 where s is the ‘pitch’, the sum of the rib width and

the space between the ribs, and d is the rib width.

In analytical studies, the shallow water equations have been solved for gravity currents
with frictional drag terms but not specifically for low over a homogeneous bed roughness
(e.g. Hatcher et al., 2000; Hogg and Woods, 2001). A significant amount of work has
also been undertaken in theoretically modelling one- to multi-layer flows over obstacles
using shallow water theory. In these investigations, in contrast to the above models, the
bed topography is described more explicitly using a variable that accounts for the height
of the bed. The inclusion of such an influence is relatively simple. however, the solutions
become more complicated and the possible violation of the hydrostatic assumption must
be addressed, see section 3.2.4. For steady one- and multi-layer flows, details can be
found in, for example, Baines (1984), Lawrence (1993) and Zhu and Lawrence (1998).
Additionally, Baines and Guest (1988) consider blocking effects on similar flows. For
gravity currents there is the added complexity of modelling transience and the frontal
phenomena. Examples can be found in Lane-Serff et al. (1995) for flow over obstacles
and Montgomery and Moodie (2003) for flow over a sinusoidal bed, although the latter
is not validated.

3.2.4 The hydrostatic assumption

As mentioned previously in this review, and discussed in more detail in subsequent
sections, the one or two layer shallow water equations are used to describe gravity cur-
rents theoretically. Shallow water theory implies that vertical length scales are small in
comparison to horizontal length scales and therefore vertical accelerations are small in
comparison to horizontal ones. Thus, we can assume that the pressure at any point is
effectively equal to the static pressure due to its depth below the free surface. Along
with the dynamic boundary condition of a continuous pressure field across the interface
the pressure fields in each layer are derived and these imply that the horizontal pressure
gradients driving the flow are independent of depth and thus so are the horizontal ve-
locities. Hence the flow is described as hydrostatic. This assumption cannot hold at the

front of the current and hence front conditions are required to complement the theory.

It is particularly relevant to consider this assumption in light of the present topic since
topography could introduce effects that would make predictions based on shallow-water
theory in error (Moodie, 2002). It has been indicated in single and multi-layer flows

that if the topography in question is sufficiently long and smooth so that horizontal
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scales are much larger than vertical scales, the flow can still be assumed hydrostatic
(Baines. 1984). However, if the bed topography causes significant excitation of verti-
cal components so‘that the streamline curvature deflects by a magnitude of order one,
the hydrostatic assumption is no longer valid (Zhu and Lawrence, 1998). This can be
interpreted. with reference to gravity currents, to hold when a current encounters a to-
pography with magnitude of order one (O(1))t (Moodie, 2002) or a slope much greater
than 1/10 (Montgomery, 1999).

Moodie et al. (1998), Moodie (2000) and Moodie (2002) also discuss the implications
of including particles in the equations on the hydrostatic assumption. They suggest
that particulate forms of the shallow water equations are valid for the case when the
interstitial fluid is equal or less dense than the ambient, only if the particle equation
is ‘decoupled’ from the main governing equations. The justification for this is that if
the particles and their settling velocities are driving the flow then vertical structures in
the horizontal velocity field are unavoidable and this can be proven by scaling analysis.
However, it must be noted that the results of Bonnecaze et al (1993) and Bonnecaze
and Lister (1999) show good agreement with experimental data, despite violating this

rule.

A non-hydrostatic ‘correction’ has been developed (Antar and Moodie, 2003; Antar and
Moodie, 2005). However the added complexity means that the equations including this
addition were not solved without other assumptions, limiting the applicability of the
model. The results do not appear to have been validated with experimental data and

the correction does not appear to have been adopted in subsequent studies.

3.2.5 Summary

The shallow water equations have clearly been successfully used to model gravity cur-
rents. There are several methods of solution available and the choice of method partly
depends on whether a front condition is to be applied or avoided. The study into appro-
priate front conditions has been extensive and is still an active research topic. The ideal
model] would be two-layer with a free surface and not subject to hydrostatic constraints
requiring a front condition. However, this is not realistic in a depth-averaged model.
particularly when this is not the sole purpose of the study, rather the purpose is to get

a good depth averaged prediction for the current height, front speed and location at a

tWhere the magnitude of the topography is calculated from the ratio of the maximum height of the
bed to the upstream ambient fluid depth.
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time. Since the present investigation seeks to model the resultant effects of bed roughness
through the resistance coefficient method, rather than modelling the bed topography as
an explicit variable, the hydrostatic assumption should not be in significant danger of
violation. However, the characterisation of the roughness coefficient is also subject to
significant ongoing research and is not easily defined. In the present study, the method
of characteristics was used to solve the 2-layer shallow water equations, after Rottman
and Simpson (1983) with the front condition of Benjamin (1968). The bed roughness
was characterised using a roughness coefficient with arbitrarily chosen values in order to

test the method.

3.3 Smooth boundary theory

In order to understand and interpret any work including boundary roughness it is nec-
essary to generate a smooth boundary control model. The Navier-Stokes equations
accurately describe fluid flow. Hence, with some assumptions and the application of
known theory, the shallow water equations for flow in two layers can be derived as a
model with the attributes required for a specific problem. This section covers the neces-
sary assumptions and theory and leads to the derivation of the equations relating to the

smooth bed case.

3.3.1 Shallow water theory and assumptions

For the mathematical formulation, the model is simplified by considering a two-dimensional
gravity current propagating along a rigid horizontal surface assuming no mixing occurs
and that the flow is inviscid. Inviscid fluid theory completely neglects the effect of fric-
tion generated by the surface over which the front is advancing. In this way, the lobe and
cleft instability, as mentioned in section 1.3.1, will be absent but the formation of billows
will still occur. Thus neglecting more complicated three-dimensional mechanisms, but
retaining the basic two-dimensional profile of the gravity current. Clearly, in modelling
real fluids, frictional forces will always be present and have to be accounted for but useful
approximations to various aspects of a gravity current, for example the front speed, may

be determined from applying inviscid theory.

The assumption of no mixing, imposed on the fluids, implies that the interface between
them can be analogised with a free surface. Thus the fluid particles on the interface

must remain on the interface. Using Acheson (2003) the kinematic condition at a free
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surface is derived to describe this phenomenon:

Let F(x.y,t) = y — h(z,t) where y is the vertical height of a fluid element from the
bottom boundary and h(x,t) is the height of the free surface. Postulate that F(x,y,t)

remains constant for any particular element on the free surface. Thus, it follows that

DF 9F
or = o +(u-V)F=0 on y=h(zt) (3.27)

Substituting F(z,y.t) into equation (3.27) gives

OF Oh OF oh OF

T e Ymr U% =v (3.28)
Hence equation (3.27) is equivalent to the condition
% o ul - = h(at
5 tign =V on Y= (z,t) (3.29)

After the dense fluid is released from the lock box, the height of this denser fluid decreases
substantially and the length the fluid covers horizontally increases with time. Thus, the
characteristic horizontal length scale of the flow, L, is much larger in magnitude than

the vertical scale, h, i.e. h << L, and the flow can be defined as ‘shallow’.

Shallow water theory assumes that: The fluid is well mixed vertically with a hydrostatic
pressure gradient; the density of the flow is constant and therefore the problem is con-
sidered incompressible; viscosity is negligible; and the depth of the fluid is very small in
comparison to the characteristic length of the body of water (Acheson, 1990).

3.3.2 The governing equations

The equations necessary for the solution of this problem, with mixing between the dense
and ambient fluids at the interface neglected, are derived from the Navier-Stokes equa-
tions for incompressible, laminar fluid flow. In a general three-dimensional tensor form

these are given by:

) "z, pom +vVeu; + F; (3.30)

Oui _
(")_Z,' =0 (3.31)

fori,j =1,2,3.
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For two-dimensional, inviscid flow, equations (3.30) and (3.31) reduce to the Euler equa-

tions:

Ju; Ou; 10p
Ft--*_Ula’_.l:j = -;&:‘FF; (3-32)

Ou;
52 =" (3.33)

for i,j = 1,2 and where F; = (0, —g) is the buoyancy force.

In component form, equations (3.32) and (3.33) can be re-written as:

Ou  Ou u  10p
‘5t-+ Uf'é-; —'U-é-!; = —;a (334)

R LR R (3.35)

+—=0 (3.36)
Now, rearranging the continuity equation (3.36) and integrating with respect to y gives:

% + f(z.) (3.37)

v= -y

Since there is no velocity in the vertical direction on the bottom horizontal boundary.,

the condition v = 0 at y = 0 can be imposed implying that f(x,t) = 0. Thus

0
v= -—ya—z (3.38)

At y = h(x, t) the kinematic boundary condition applies. Hence, on equating (3.38) with
(3.29) at y = h(x,t) one obtains:

f)ﬁ+u§£+h%—0 3.39
ot o T (3.39)

For conservation of mass, equation (3.39) must hold in both of the layers.

The interface between the two fluids can be analogised to a free surface varying gradu-
ally with small curvature so that, by the assumption of shallow water, compared with
gravitational acceleration, g, the acceleration in the vertical direction can be ignored.
This hypothesis is verified at the end of this section through a non-dimensional analysis

of the equations.
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By neglecting the acceleration in the vertical direction, equation (3.35) becomes

0=-12_, (3.40)

Thus the vertical pressure distribution is rendered essentially hydrostatic. On integra-

tion with respect to y, this yields:
p=—pgy + fu(z.t) (3.41)

If the pressure is given by p = po(x,t) on the interface of the two fluids at y = hy(z,t),
then

p=pg(h1 - y) + po (3.42)

an hydrostatic relation between the pressure in the layer and its thickness. Thus, in the

upper layer, where y > h; and the density of the fluid is p3, equation (3.42) becomes:

p=p29(h1 —y) + po (3.43)

and likewise for y < h; and density p;, in the bottom layer,
p=p1g(h1 —y) + po (3.44)

Equation (3.34) can now be written in the form:

Du__l(?po_ Ohy

Dt~ por Yox (3.45)

From equation (3.45). it can be seen that the rate of change of u for any element in the
fluid is independent of y. Thus, if u is initially independent of y then it will remain so,

implying that u and h are dependent on x and ¢ only.
Hence equation (3.34) can be written:

Ju Ou _ 1 apo 6h1

M iy (346)
Thus the set of equations (3.34)-(3.36), for the two layers, becomes:
ouy Ouy _ 1 dpo Oh,
2 T T Thor ok (3.47)
Ouy Ouy 10py oIy
T T T (348)
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8h1 0 8111

E— + up a£ h1 B =0 (3.49)
Ohy Ohs Ou
B + ug——— Dz + h28—2 =0 (3.50)

where the subscripts 1 and 2 indicate the bottom and top layers, respectively. Equations

(3.47)-(3.50) are the ‘Shallow Water’ equations for one-dimensional flow in two layers.

For this problem, equations (3.47)-(3.50) are subject to the following initial conditions:

ho (0 <z < o) at t=0
hi(z,t) = (3.51)
0 (zo<ux)
and the boundary conditions:
u(z=0,t)=0 (3.52)
Ohy
i 0 (3.53)

Verification of the neglect of vertical acceleration through a non-dimensional

analysis

Let L be a characteristic length scale and hgp a typical value for h;(x,t). Considering
the second and fourth terms of equation (3.46), the non-dimensional value for u can be
derived as u ~ (ghg)'/2. On comparison with the first term of the same equation, a
typical time scale, ¢t ~ L/ (gho)}/2, is obtained. Applying these known non-dimensional
variables to the continuity equation (3.36), gives a non-dimensional value for v, namely
(gho)/?ho/L. For shallow water theory to be applicable, ho << L and hence v << u,
thus v is negligible in comparison to u. If the non-dimensionalised terms are then applied
to equation (3.35), it can be seen that all terms on the right hand side of this equation,
those of the vertical acceleration, are of order gh3/L? and are therefore very small in
comparison with the gravitational acceleration, g, on the left hand side. Hence, the

vertical acceleration of the elements in the fluid is neglected.

3.3.3 Simplification of the governing equations using the Boussinesq
approximation

Let H be the total height of the ambient fluid where
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H = hy(x,t) + ho(z,t) (3.54)

and H is constant due to the assumption of a fixed lid, see section 3.2.1. Equating
equations (3.49) and (3.50) and using the commutative nature of derivatives, we obtain:
O0H 0
B + aj(ulhl + ushg) =0 (3.55)
Since H is constant, integrating with respect to  and imposing the condition that both

velocities vanish at x = 0, implies the condition:
uihy + ughy =0 (3.56)

The pressure at the interface, pp(z,t), is eliminated by multiplying equations (3.47) and
(3.48) by p; and pg, respectively, and subtracting the equation resulting from the first

multiplication from that resulting from the second to obtain:

3111 6u2 6u1 6u2 _ 6h1
g~ gt — g = g(p2 - PI)E (3.57)

Equations (3.54) and (3.56) can be rearranged to yield hs and u2 in terms of H, h; and
u;. Thus equation (3.57) becomes:
Ou, H+ hy ouq , gru?] Ohy _
(1+m)6t +[1 ra(H—hl)]ul&c [g (1+a) i —3_:£_—0 (3.58)
with the introduction of non-dimensional parameters a = hy/(H — h;) and r = py/p,

where ¢ = (|p1 — p2])/p1 is the reduced gravity.

Assuming that the relative density variations are not too large, i.e. Ap/p << 1, the
Boussinesq approximation can be invoked, which in simple terms means that density
variations are retained in the gravitational forces but neglected in the advection terms.
For this reason, 7 is set as 1 except where it multiplies g. On division by (1+a), equation

(3.58) can be written:

Buy By hy h ) Ohy
Bt +(1 20)‘!116 {1_[H+(1_I1) ?E:I}-g——=0 (359)

Thus two simultaneous equations for the dependent variables h; and u; have been de-

rived:

)
;‘t‘ +(1 2a)u1—-+g(1 —b)ﬂh—’ =0 (3.60)
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Bhl 6h1 O-u,l
where
_h | v} hi\ "2
b=g+ 75 (1 F) (3.62)

The equations must be solved subject to the initial and boundary conditions (3.51) -

(3.53) given at the end of section 3.3.2.

3.3.4 The front condition: smooth boundary

The height and velocity at the front of the gravity current cannot be determined by the
governing equations. At the front, the vertical acceleration and viscous dissipation will
be important since it is here that the heavier fluid is forcing its way into the lighter
finid. Thus the shallow water equations, as derived in section 3.3.2 using the hydrostatic

assumption and neglecting vertical acceleration and viscous effects, are invalid.

To overcome this problem, an independently derived front condition is imposed. Vari-
ous front conditions have been derived and implemented, as discussed in section 3.2.2.
Some are constructed theoretically while others rely on empirical values. In the present
work, the front condition is derived through the theory of flow force balance as used
by Benjamin (1968), thus continuing the methodology of Rottman and Simpson (1983).
Benjamin (1968) noticed that after the initial slump, the flow propagates along the hori-
zontal boundary in a similar way to an air-filled cavity advancing into a liquid. Without

loss of generality through this analogy, the flow force balance can be determined:

Consider figure 3.1. If the cavity is considered stationary to the oncoming liquid, at 0
a stagnation point occurs where the flow encounters it. Upstream, where the liquid fills
the height of the channel and is unaware of the displacement, it has depth H and the
velocity is constant u;. Far downstream, under the free surface created by the cavity,
the flow is also constant with height hy and velocity u}. If the density of the liquid is p
and that of the cavity is negligible, ignoring viscosity and surface tension as for shallow
water theory and assuming conservation of energy, Bernoulli’s equation for a steady flow
can be applied:

1
p+ Epf + pgy = constant on a streamline (3.63)

where p is the pressure and u is the fluid velocity. Applying the theorem along the

upper boundary, with the velocity and pressure zero at 0, the pressure far upstream can



Ll Ll LS ’ 4 ’ s
0 \ Cavity
\ h,
l.‘.'.’ H 4
h .
V4 Ky PV VA

Figure 3.1: Model proposed by Benjamin (1968) for steady flow past a cavity analogised to the
gravity current phenomenon. O is the stagnation point.

be determined as py = —3pu®. The pressure in the liquid below this boundary has a

hydrostatic variation with depth and so the total pressure can be written
1
p=po+3p9H (3.64)

Hence, the total pressure force across the channel far upstream can be written
1 1
ps =poH + 5pgH* = Sp(~ulH + gH?) (3.65)

The total flow force is given by the momentum flux plus the pressure force. Thus, the

flow force in the upstream region is given by cquation (3.65) + pulH, i.e.
1 9 2
k= 5/’(“11'1 +gH"®) (3.66)

The same theory must also hold far downstream but with zero pressure on the upper

surface. Thus the flow force in this region is given by
1
F=p (u?hg + §gh§) (3.67)

Now, these two forces must equate since the flow force does not vary in a steady flow
when there are no external horizontal forces present. Thus, setting equation (3.66) equal

to equation (3.67), we obtain

1 1 1
EufH —uPhy = §gh§ -3 H? (3.68)

By conservation of mass: u; H = u{hy. Therefore, from equation (3.68), it follows that

h3 — H?

2 —3 A ————————
M = ghe g o

(3.69)

This can easily be written in terms of the height of the cavity, using hg = H — h;. namely
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u = \/2 Z%Z(l h1/H)ghy (3.70)

This result is generated for a smooth free surface due to the nature of the cavity being
filled with air. In the actual problem, for two liquids, the free surface is broken up at
the front and turbulence is generated and hence viscous dissipation occurs as mentioned
above. To account for this event, u; is modified by a factor k', say, where k'? = %2 and

3 is an empirical constant.

Applying this modification to equation (3.70), at the front of the gravity current in this
investigation. gives the front condition
A2 h /H 3
f '
————(1-hy/H)¢'h .
Uy = 2 1+h /H hf/ )g f (371)
where hy(t) is the front depth, uf(t) is the front speed and the reduced gravity term

¢ is introduced due to the density difference between the two liquids. Note that when

(3% = 2, the result for a cavity flow is obtained.

3.4 Rough boundary theory

In deriving the shallow water equations for smooth boundaries, assumptions were made
that neglected any effect that the frictional forces might have on the problem. It is now
necessary to reintroduce the appropriate factors for the model incorporating the surface
roughness. The frictional resistance manifests itself in the form of shear along the walls
of the channel and, as required in this study, the bottom. This section discusses the

inclusion of a bed roughness by implementing a Chezy type equation.

3.4.1 Chezy type equations

Chezy’s equation for the average velocity of a uniform flow can be written as
u= CH v I:{,-adS() (372)

where H.qq is the hydraulic radius, Sp is the channel longitudinal slope, to be taken as
the frictional slope Sy. Cy is the resistance coefficient given by the Chezy constant,
Cu = ﬁ where f is a friction factor to be specified, with reference to pipe flow
theory, depending on the roughness of the bed (French, 1994).
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3.4.2 Chezy’s equation applied to the shallow water equations

The inclusion of terms for the shear in shallow water theory results in the equation of

general form

~ g7 - 95 (3.73)

where S; is the frictional slope. Application of the Chezy equation (3.72) with So = Sy

implies that the frictional slope can be written as

;=R 3.74
=K .
/ Hrad ( )
where

-1 f

K= C?, = 89 (3.75)

The error in assuming that the hydraulic radius H,,q can be taken as the depth h is

small (Liggett, 1975) therefore we obtain the following expression

2
Sy = —“T (3.76)

Substituting equation (3.76) into equation (3.73), the general form for the conservation

of momentum in a hydrostatic pressure ficld becomes

%ti +u-g—ua: = —%% - g% - gR’-?;l—z (3.77)
In order to extend this theory to two layers, the physics of the situation must be consid-
ered. Clearly, the gravity current of the denser fluid will be affected by the introduction
of bed roughness, thus the shear term must figure in the equation for this layer. How-
ever, as the less dense fluid over-rides the denser current, it will also be affected. Since
the interface is the region where the effects will be transmitted from the one fluid to
the other, similar shear terms, in each of the fluids, are included to account for this.

However, when the fluids are travelling at the same speed, the shear interaction at the

interface must vanish so that the terms applied here must be modified to be of the form

- 1
plgnmh (378)
where p, is the density of the denser finid and u; and up are the speeds of the different
fluids. Applied to each layer at the interface, the terms must be equal and opposite. On

the bottom boundary, if the fluid is moving in the positive direction, then the shear will
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Figure 3.2: Sketch of the resistant forces of Chezy type acting on two liquids of different densities
where p; > p2 and u; > ua.

be in the negative direction, counteracting the motion near the wall. If the denser fluid
is travelling faster than the less dense fluid above it then, in the reference frame of the
less dense fluid, i.e. bringing the less dense fluid motion to rest, the flow will still be
moving in the positive direction. Thus, the shear on the more dense fluid side of the
interface will operate in the negative direction. Therefore, the shear in the less dense
fluid side of the interface will be equal but in the opposite direction, i.e. positive. A
sketch to this effect is shown in figure 3.2, where and «, 4 and o are the values of & for

the bottom boundary, the fluid interface and the top boundary, respectively.

Note that if the velocity of the less dense fluid is faster than that of the more dense fluid,
i.e. if ug > uj, then the shear terms at the interface will be in the opposite directions to
those shown, in each layer. If the channel is open there will be no effects felt on the free
surface of the less dense fluid. However, if the channel is enclosed, as for example, flow
in a rectangular pipe. then the rounghness can also be applied at the top boundary with
effect on the less dense fluid. Also, if ug is flowing towards the left i.e. in the negative
direction, as we are modelling in the present problem, then the rough term on the top
boundary must be in the opposing direction to the flow and so will be positive. The

terms for the top boundary will be included here but can be neglected if required.

Incorporating these terms into equations (3.47) and (3.48), the equations governing the

fluids in the two layers can be written

o, ouy _ Opo Ohy u} (u1 — up)?
PGy TPt G = e = g - CIQPIQB—I - CZ’YPIQ“—h'l—— (3.79)

Ouy Jus _ Opo Ohy u? (uy — uz)?
gy Tt = = g + 03040295 + Cﬂmy——h?— (3.80)
ohy oh, Ou,
a5 g +h1—a =0 (3.81)
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Ohs Ohs dus

rr +u U= +h26 =0 (3.82)
where the constants Cp, C2 and C3 take values of either unity or zero. When C3, C; and
Cj are zero, these equations revert to the smooth boundary form, and when they are all
unity roughness will be applied at the bed, the interface between the dense and ambient
fluid and the top wall, as shown in figure 3.2. In the solution of equations (3.79)-(3.82).

the majority of the terms will simplify in the same way as for the smooth boundary the-

ory. Beginning with the subtraction of equation (3.80) from equation (3.79), to obtain

duy Oug oy Suy
PG TPy g - pla s (3.83)

2 1 1 2
=g(p2 - m)— - Cxamy - Coyprg(ur — ug)? | — + —| — Caopag=2
h hl h-2 hyg

Using the Chezy form for the roughness coeflicients, equation (3.75), we have,

- fl - fa _ Sa
a= 89’ v = 89 and o= 89 (3.84)

where, f1, f2 and f3 are friction factors specified using generally excepted values from

pipe How analysis. Applying the same transforms for hp and u2 as used in the smooth

bed theory:
h
hy = H - hy, up = — ; = ;“ (3.85)
we obtain
H+h
(1+ra) [1—r (H+hi)] ‘%— [9’—(1+a)3"‘1] O (386

2
~gi [Colsra® +Cufy + Cafo(1 4 0)’]

where r = p2/p1 and a = hy/(H — h;). Applying the Boussinesq approximation (i.e.
r = 1 where it does not directly multiply g), and dividing by (1 + a) gives the following

result

Bul 611. _ hl h] -2 uf 6’11

ul

= ~3Ha [Csfza® + C1 fi + Cafo(1 + 6)P]
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Hence, the two equations for the calculation of h; and u; for flow over a rough surface

are as follows

61& 3’(1] 6h1 u2 Y : 3
—&l +(1- 2a)u1¥ +4(1 - b)m‘- = —-B—I—Il-; [C:;j"ga,'3 +Ci1fi+Cafa(l+ a)g} (3.88)
6h1 6h] 6-u1 _
5 tuigs thig =0 (3.89)
where ) )
NS
ey 3t () 50

Equations (3.88) and (3.89) must be solved subject to the same initial and boundary

conditions (3.51) - (3.53) as for the smooth boundary theory given in section 3.3.2.

3.4.3 The front Condition: rough boundary

Since similar theory and assumptions have been applied in the rough boundary case as
for the smooth boundary, a front condition will also be required in this case. An identical
condition will not necessarily apply since the 3 term does not take into account the effect
of any rough elements on the front. However, it is dependent on hy which is calculated
from values within the main body of the flow which will be subject to the effects of the
rough termns and thus in the present study, the problem will be solved implementing the

‘smnooth’ front condition, expression (3.71).

Shin et al. (2004) derived a front condition using a similar method to Benjamin (1968)
but taking into account a control volume including both sides of the current interface,
the theoretical solution h = hy/2 and the Boussinesq assumption. This condition is given
by

i
up = [(1—%) g'hfr (3.91)
Unlike condition (3.71), it contains no free parameters and is found explicitly using
values calculated during the solution procedure. Thus the effects of the rough terms on
the front should be transmitted through these values without the nced for specification
of 4. It is possible that the theory of Shin et al. (2004) could be used to derive a rough

front condition with no free parameters and this remains for future study.
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3.5 Method of characteristics: smooth case

The flow in this problem is transient so the motion will move in phases dependent on
the balance of the forces in the flow at that time, as discussed in section 1.3.1. In each
phase different flow phenomena occur in different regions of the fluid. The method of
characteristics essentially supposes that the domain under investigation can be filled with
curves that describe the natural flow phenomena for these regions so that the dependent
variables, often the fluid velocity or concentration, can be determined throughout. The

following theory is derived with reference to Ames (1965).

General form for two simultaneous partial differential equations

Consider the velocity components u and v of the flow, given by the solutions of the two

simultaneous first-order equations of the form

Su Ou o i)
P5;+Q$+R§+S-a-§ =T (3.92)
du ,0u v Ov
Iyam+Qay+R'aw+S-a—y—T (3.93)

Given sufficient initial and boundary conditions, it is supposed that the solution is known
in some region bounded by a curve I' along which the values of u and v are known. In
order to to continue the solution throughout the rest of the domain adjacent to this

curve, we look for partial derivatives of « and v.

Since it is assumed that u and v are known on T', along I' one can state:

Ou Ou
du = -6_1'61: + -3;6_1; (394)
. Ov v .

Thus a system of four equations relating to the unknowns %, %";, gﬁ and %T; has been

obtained and in matrix form, can be written:

dr dy 0 0 gu du
0 0 dr dy Ju d
L I (3.96)
P Q R S & T
/ ! v
P Q R S 5 T
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which is of the form

Ar=c (3.97)

This systemn of equations can be solved for a unique solution, giving an identical direc-
tional derivative above and below the curve T, unless the determinant of the matrix A of
coefficients of the partial derivatives is zero, for which there will be no unique solution.

Setting the determinant of the matrix to zero, it can be written in the form:
Q'S - QS')ds® + QR — QR+ PS' — P'Sldzdy + [PR— PRldy?* =0  (3.98)
which is a quadratic equation that can be solved for %:

dy 2 dy _
A(E) +Ba;+C—0 (3.99)

where A= [PR- PR),B=[QR' - Q'R+ PS — P'S] and C = [Q'S - QS5'].

If B? > 4AC, the discriminant is positive and the equations are said to be hyperbolic.
The solutions will be real and distinct giving the slopes for two real curves from which the
curves themselves can be drawn for each point and across which the partial derivatives are
not determined. These curves, £ and 7, say, are characteristic lines, or characteristics, for
u and ». If the discriminant is negative there are no real solutions so no real characteristic
directions and equations (3.92) and (3.93) are said to be elliptic. If it is zero then there

are two identical solutions and the equations are classified as parabolic.

The variation of u and v along the characteristics can also be determined. In (3.96),
column vector ¢ can be substituted into any column of the determinant matrix as stated
by the elementary theorem implemented in the method by Ames (1965) thus giving an

equation along each characteristic £ and 7 relating the functions u and v:

E,¢du+ Fyedv+ G, edy =0 (3.100)

Equation (3.100) and the solutions of (3.99) can be solved using a numerical method for
integrating ordinary differential equations, such as the Runge-Kutta or Adams methods
as suggested by Ames (1965). In the special case where T and T” are zero, Gpe=0in
equation (3.100).
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Application to the present smooth case

The two simultaneous equations (3.60) and (3.61) obtained in this problem can be writ-

ten in the form of equations (3.92) and (3.93) as follows:

Oh ony Oh 1 8u1 Bul

o TG tOg thigy =0 (3.101
8h1 0 6u1 _
at +4(1 -~ )am R'—+u1(1 -2a)-——0 (3.102)

ie.

P =1 P =0
Q = u Q = gd01-b
R =0 R =1 (3.103)
S = S = (1-2a)u

and z and y are analogous to t and z, respectively.

Along the curve I':

_Ohy g, | Oy

bhy = Lot + =z (3.104)
Ou ou

uy = at‘at+a—‘5r (3.105)

Thus, for this problem, the system of equations is given, in matrix form Az = c, as:

d dz 0 0 % dhy
0 0 at dz % du,
= (3.106)
1 w0 hy % 0
0 J(1-5 1 wu(l-2a) Su 0
If the determinant of the matrix of coefficients is zero, i.e.
dt dr 0 0
0 0 dt dx
=0 (3.107)

1 u 0 hl
0 g(1-b 1 wu(l-2a)

the quadratic equation (3.99) is obtained for dx/dt:
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dz\? dx
A (R?) +B—+C=0 (3.108)

where, on substituting in the coefficients (3.103), A = -1, B = 2(1 — a)y; and C =
g'hi(1 —b) — (1 —2a)u?. The discriminant of this equation dictates the type of equation

and the type of roots it has:

B?—4AC = 4(1-a)%d - 4(=1)[g'h1(1 - b) — (1 - 2a)u?] (3.109)
= 4u? — 8au? + 4a®u? ~ 4u? + 8au? +49'h1 (1 - b)

= 4fa*u? +g'h(1-b)

where 9
b=.’}‘.{‘.+gll%.(1_%)—, 0<%’<1 (3.110)
We note the following:
hy u’f 2 2,2 ’
as 7 —0, b— Fyid thus B? — 4AC — 4(a’u? + ¢'hy) > 0 (3.111)
as ’_1‘11 1, b—1, thus B?— 4AC — 4a%: > 0 (3.112)

Therefore, expression (3.108) has two distinct roots and the equations (3.92) and (3.93)

are hyperbolic. The solutions of (3.108) are given by:

dx
E = (l - a)ul F [a2u% + g,hl(l - b)]%

Thus the directions of the n and £ characteristics are given by:

o oz

Zl =, 2= 3.113
ot |, ot |, (3.113)

where
Az = (1= a)us F [a®u + ¢'hy (1 — b))2 (3.114)

Substituting the column vector ¢ into the determinant of the coefficient matrix A, and

equating to zero. gives:
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dt dhy 0 0
0 du; dt dr
=0 (3.115)
1 0 0 h1
0 0 1 u(l-2a)
ie.
(=hy)duy + [(1 — 2a)uy — — dhy =90 (3.116)
dt (3

Notice that since T = T’ = 0, this is analogous to the special case of equation (3.100).
Rearranging equation (3.116) and using equation (3.113) yiclds the first-order ordinary
differential equation for the variation of w3 and h; along each of the characteristics:

duy

(_hl)dhl

+(1-2a)uy — Az =0 (3.117)
Thus the problem has been simplified to solving the ordinary differential equation (3.117)
for u; and h, using the expression (3.114) and the initial and boundary conditions (3.51)-

(3.53).

3.5.1 Generation of initial flow regions in the domain

At time t = 0 a singularity occurs because the speed of the gravity current is defined
by the initial conditions with u; = 0 and height h; = hg, but the front condition must
also be initialised at ¢ = 0 and cannot agree with the condition u; = 0 at that time.
Therefore, although it is possible to generate the characteristics for the region where the
variables are known, nothing is given for calculating the characteristics in the rest of this
part of the domain except for the front condition. The front speed itself is given simply
by the rate at which the distance travelled by the current in the z-direction changes with
time, uy = %f- However, the value of u; is unknown without prior knowledge of the

height, hy, of the front.

The value of u; is known to be zero on = = 0 and the derivative boundary condition (3.52)
implies that h; be a constant there, take h; = hy. Thus, the gradient of the characteristic
curve at this location can be determined from equation (3.114) and a characteristic line
can be drawn. For clarity, the values of r and t are normalised, z, by using length
scale xo, the initial length of the denser fluid behind the lock, and ¢ using the time scale
to = xo/VdTo. Solving the equations for the negative value of A generates a straight
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line which, for the case when ho/H — 0, has the normalised endpoints (1,0) and (0.1). In
general, this line will always have endpoints (1,0) and (0,t;n¢), where time ¢;,; indicates
the time, normalised by ty, where this line intersects the t-axis or, physically. when the
first backward propagating wave hits the end wall. Beneath this line will be a region of
constant state with characteristics parallel to this bounding one. This occurs because
the values of u; and h; are known initially and on the boundary, and are the same at
every point on the boundary within the region of constant state. Thus the gradients
are known and identical for each point along the boundary in this region. The positive,
n, lines will also have identical gradient but in the opposite direction. Thus, when the
positive and negative characteristics intercept each another, the value of u; and h; will
not change and hence the gradient will not change. In this way the boundary values are
propagated throughout the region and so the characteristic curves are a mesh of straight
lines, of constant, identical values of u; and hy, parallel and perpendicular to that initial

line.

The region of constant state does not continue beyond the boundary characteristic since
the front condition takes effect and this disagrees with the condition u; = 0 as applied
thus far. Hence, this line is the last known characteristic and its values of u; and h,
can be used as the starting point for the integration to obtain the characteristics for the

other regions between the end wall and the front.

The ordinary differential equation (3.117) is solved for the positive characteristic since it
is the values of u; and h; along the n curves that are required. In the region of constant
state, the positive characteristics are a set of parallel lines along which u; and h; are
constant and identical to each other. When these lines leave this region, the values of u,
and h; change and are therefore unknown. Integrating equation (3.117) along n between
the last known values and those given by the front condition, the value of u; at the
front and hence the range of integration are determined. The required values of u; and
hi in the region between the front and the characteristics of constant state can thus be
found using these results. Moreover, these curves will remain parallel since the range of

integration along one of them is identical to the next.

When the 5 and § characteristics intercept, they must both have the same values for
uy and h,. However, since the 7 curves are parallel, every point of interception along
one § characteristic will have the same values for u; and h;. Thus, the £ characteristics
will be a set of straight lines, each with different gradients. Hence, solving the ODE

(3.117) for the positive characteristic curves (),.) enables the negative gradients for the
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£ characteristics to be calculated and this set of lines can then be drawn. The final value
for u; is also the velocity at the front, uy, thus its value can be used with uy = %’; to

find the location of the front.

The Fortran NAG routine DO2AGF is used to integrate the ordinary differential equation

(3.117) using the known values and an initial guess for the front height.

Implementation of the Fortran NAG routine DO2AGF

The ODE requiring solution by DO2AGF is given in section 3.5 by equation (3.117),

namely

hl(—ill'l +(1-2a)uyy — Az =0 (3.118)
dhy

From the conditions established in sections 3.3.2 and 3.3.3, it is known that

ur=0 at hy =ho (3.119)

and the front condition, for a given hy, is given by

22— hs/H ,
ugr = [%ﬁﬁéﬁ(l - hf/H)g hf] (3.120)

The factor that is unknown is for which range of k¢, the front condition giving u; holds.
Hence for this problem, n = 1, n, = 1 and there is just one parameter q;, the upper value
of the range of integration. The parameter is thus included in the range and boundary
condition subroutines as the upper endpoint and matching point in the former and within
the calculation of the upper endpoint of the range evaluating y; (the front condition) in
the latter. Thus, in the terminology of the NAG routine, with hy analogous to r and uy

to y, the ODE is given by:

dr 1
& = =~ (- 20 (3.121)
where
T
a= T A = (1~ a)y ¥ [a®® + ¢'z(1 - b))} (3.122)
and
b_£+_92.(1_’” -2 (3.123)
T H g¢H E) .
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The conditions are in terms of the parameter ¢;:

T = o, y=0 (3.124)
r= = ﬁ_22__q_1/£(1_ /H)g' : (3.125)

An estimate for q; is entered into the program, along with two error values. These control
the bound on the local error in the components of the solution during the integration,
the convergence testing of the components of the solution at the matching point in the
Newton iteration and the convergence testing on the parameter in the Newton iteration.
They also control the perturbation of the parameter when approximating the derivatives
of the components of the solution with respect to that parameter to be used in the
Newton iteration. If the guess is good then results will be generated for the front speed
and the residuals. as printed by the program, can be considered for accuracy. Thus the
initial estimate and the error values can be altered until an acceptably small residual
is determined. In this work, the results with residuals of magnitude smaller than 106

were used.

The program can be modified to print results for Ay and uy for as many values as
required in the range from xy to ¢; so that these values can be used to calculate the
slope of the gradients for the characteristic lines of the flow and thus enable the plotting
of the characteristics. These can then be compared with those obtained by Rottman and

Simpson (1983) and the accuracy of the theoretical results established.

The flow profile as generated by NAG results

The characteristics drawn from results generated by the Fortran NAG routine DO2AGF
show a simple wave region, generated from the negative gradient, adjacent to the initial
region of constant state. Physically, this implies that this constant state, region R;
in figure 3.3, is a region where the fluid has not yet been affected by the disturbance
created by the removal of the lock partition. Subsequently this disturbance initiates
the propagation of the current forwards and an expansion wave back towards the end
wall of the tank. hence the occurrence of the simple wave region, region R; in figure
3.3. The existence of this region is in accordance with the theorem that states: “In a
solution containing constant state regions the regions adjacent to constant states are

always simple waves.” As proven, for example, by Jeffrey and Tanuiti (1964). Another
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x/x,

12

Figure 3.3: Characteristic diagram for the case when ho/H = 0 and 3 = 1 showing the simple
wave region. Beyond t/t, = 1, the results are invalid. Regions R, Ra, and Rj3 correspond to
an initial region of constant state, a simple wave region and a further region of constant state,
respectively. tp is a time scale given by zo/v/g"hq.

region of constant state, established in a similar way to the other, occurs immediately
behind the current front. The € characteristics are parallel to the final characteristic,
determined using the front condition, and the 5 curves become a set of parallel lines
perpendicular to the ¢ lines. This region, R3 in figure 3.3, encompasses the region of

constant flow immediately behind the front, between the front and the nearest wave.

The flow profile after t/ty = ¢;,; (where t;,; = 1 in the case shown in figure 3.3) is not
determined using Fortran NAG routine DO2AGF. This is due to the more complicated
procedure that is necessary for evaluating complex regions that have been shown to occur

(Rottman and Simpson, 1983) outside the regions already outlined.

3.5.2 Solution of the characteristic equations for ¢ > t;,,

The Fortran NAG routine DO2AGF is sufficient for determining the characteristics within
the initial region but it cannot be used beyond this phase where it is necessary to include

further boundary conditions for the interaction of the backward propagating simple wave
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with the end wall of the tank. Thus, it is necessary to implement a numerical scheme to

solve the characteristic equations, as undertaken in this section.

Outline of numerical scheme

The method of characteristics produces four equations for the solution of the problem

given by (3.113) and (3.117). These can be written in the general formn

%fT = A'(h1(z. 1), u1(z, 1)) ‘;—: = B'(hi(z,t), u1(z, 1)) (3.126)
¢ n
3—% ) = C'(hy(z,t). u1(z.t)) gz—i . = D' (hi(z,t), u1(z, t)) (3.127)

and are to be solved numerically. Generally, consider any two adjacent points I and J,
say, on the curve I' on which the values are known. Then, the 5 characteristic curve
from point I must at some point, K, intersect with the £ characteristic curve from point

J, see figure 3.4.

Since equations (3.126) and (3.127) depend on the
solutions u; and h; and the location of K in the
(r,y) plane at that point, all these values must

be determined. Once the values of u; and hy are

known, the location of the point follows. There are
several methods of numerically integrating ordi- I
nary differential equations. Ames (1965) suggests
some of the most common methods: The Runga-

Kutta method, Adams method and the corrected Figure 3.4: The method of characteris-

tics, diagram for the solution process.

r method. T ifferenti i ,
Euler m he four differential equations can Values at T and J are known.

be approximated by relations of the form

IK — 17‘] 1 TK — XTI 1

—— == A' 4 - 7 » /

ik —t, g E)+A V) P 5[B'(K) + B'(1)] (3.128)
Uik — U1y 1 Ui — U 1
e e C' K / 1K 17 == / J
K =t~ 3lCE)+C'V)] e 3l + DD (3.129)

where A’(K) implies the value of 4’ (h1(z,t),u1(z,t)) at the point K. The set of equations
(3.128) and (3.129) are solved by an iterative process.

The Fortran NAG routine can generate as many values as required at time t/to = tine,

where the ficst of the backward propagating waves meets the end wall, i.e. where the
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inclusion of the additional boundary condition is necessary. Thus we essentially have as
many initial values along this line as we choose for the continuation of solution throughout
the rest of the domain. Since the position of the front at this time is also known and we
know that the & characteristics in the region of constant state between the front and the
first forward propagating wave are parallel to the { characteristic of the wave, we can

find as many points as necessary to give initial values throughout the domain at time

tint .

The equations (3.128) and (3.129) for this problem are rearranged for simpler implemen-

tation in the numerical scheme as follows:

zg -z — JA(K)+ ANty + 3B (K) + B/t

s 3B'(K) + B'(D)] - §[A'(K) + A'(J)] (3.130)
ek = ot GG + A ) (3.131)
_uw —wy = §(C(K) + C' ()]s + D/ (K) + D' (D)]has
e LD/(K) + D'(J)] + L[C'(K) + C'(JI)] (3.132)
MK = %[C’(K) +C'(N(hik — hy) (3.133)

where
A(hi(z.t),ur(z,t)) = A-=(1-a)u; —[a®u? + M1 - b)]%

B'(hi(z.t),us(z,1)) = A= (1 - a)uy + [a%u} + g'hy(1 - b)]3

C'(hi(z.t),uy(z,t)) = (7;1-) (1 —2a)u; ~ A_]
Dimune0) = () 0- 200 -]

i.e. four equations in four unknowns.

Once the values of all the boundary adjacent points have been determined, their solutions
can be used to find the values at the subsequent points, such as K, and so on, generating
a net over the entire domain, for which values are known at every point. This net can

be refined to evaluate more points within the domain if required.
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The numerical solution process

The numerical method works by taking the average of the known values at two adjacent
points at t = t;,, to estimate the value of u;, h;, x and ¢ at a point forward in time.
These initial guesses and the values at the known points are then input into the equations
(3.130)-(3.133) to find values of u;, hy, T and ¢ at the new point. The new values replace
the initial guesses and the difference between these and the values from the previous
iterative step is found. The iteration proceeds until this difference is reduced to the

desired accuracy, here 10712

The procedure continues using the values at the next known point to generate an initial
guess for another new point, until it has worked through the known data set. It then
advances so that the next ‘column’ of data can be found using these new values and so
on. Thus the information is carried along the characteristics to subsequent time steps
throughout the domain. Note that steps in time and space are not specified in this

method, they are determined using the same process as for the other variables.

As the solution progresses across the domain, the conditions at the boundaries must be
accounted for. Hence, at every other step forward, these conditions are brought into the
calculations. On the z = 0 boundary, the end wall of the domain, these conditions are
included through altering the equations used to solve on the boundary. The derivative
boundary condition (3.53) basically implies a symmetry condition at the end wall. Thus,
with the values of u; and & known, we need only use the two equations that describe
the negative characteristic curves intersecting the = 0 boundary to find the unknowns
hy and ¢. In this case, equations

HA(K) + A(D)]ty — 2y
HA(K)+ A(J)]

13 (3.134)

%[C’(K) + C'(J)]hu - uiJ
He(E)Y + C'(J))

hak (3.135)

where

Ah(@t),u(z,t) = A= (1-a)yu - [o®d + ¢g'hi(1 - D))}
1
Cthu@t) = (5)0- 200 -]
1
Alternatively, the equations can be solved in a larger domain, symmetrical about the

t-axis, but u; and = must still be imposed on this line since u = 0 on z = 0 must still
hold here.
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The upper boundary that describes the front of the current, is slightly more complicated:
Initially, the speed of the front, u; is known as a result of the the NAG method. The
front is described by the line z = ust + xo while it is in the initial phase of the flow.
However, once the first of the characteristic curves of the reflected waves intercepts with
the front. this speed is no longer constant. The waves are travelling at a speed faster than
the front and so they overtake it. Hence, the wave becomes the ‘new’ front and it can
no longer be described by a straight line since every time one of these waves intercepts

it, the values on it will change.

The positive characteristic equations for the point at the front found on the previous
step can be used to give two equations, but two more are necessary since all four vari-
ables are unknown for the new front point. The front is not a characteristic curve so
the characteristic equations do not hold along it. However, the front condition must still
hold and the speed of the front can still be described by dx/dt = us. Thus, using these
two expressions with the characteristics we have obtained sufficient equations to be able

to solve for the new front value:

% = B'(hi(z.t),u(z.0)) (3.136)
)
.3% = D) (3.137)
w = E(hy(a.t) (3.138)
dz ’
T, = Flse) (3.139)
where
B'(hi(x,t),uy(z,t)) = Ay = (1 - a)uy + [a®ud + ghy(1 - b)]’%
D'(hy (z,t),uy(z,t)) = (-}-}1-) (1 - 2a)u; — AL]
and
29 _ 3
E(et) = [Tl - /H) (3.140)

i.e. the front condition that must be satisfied at the new point.

These equations can then be included in the iterative scheme, re-written as follows:
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3(B'(K) + B'(Dtr — 3|E'(K) + E'(D)|ts + 25 — 21

wes B + B - JEK) + EQ) (3141)

Tk = zy+ %[E'(K )+ E'(I)](tx - ty) (3.142)
_wk —uy + 3[D'(K) + D'(D}hr

e = D) + D)) (3.143)

ug = E'(K) (3.144)

Once the variables have been found at this point, the scheme can continue as usual using
the negative characteristic equations from this new point to contribute to finding the

top of the next step and then carrying out this top boundary method again.

3.6 Method of characteristics: rough case

The method of characteristics cannot be used in exactly the same way for the solution of
the problem with a rough bed. The additional terms included to describe the roughness
mean that the general form of the characteristic ODE, equation (3.100), cannot be
reduced to the special case.

Application to the present rough bed case

The two simultaneous equations (3.88) and (3.89) obtained in this case can be written
in the forin of equations (3.92) and (3.93) as follows:

Oh, Ohy Ou, Ouy

3’11 ahl 6"-1.1 Bu 'u,2
05 +9(1=-52 + Bgt v ui(1-20) = = — =1 [Cafsa® + Cify + Cafall + a)?]
(3.146)
i.e.
P =1 P =0
Q= w Q = 4Q1-b
R =0 R =1 (3.147)
S = h S = (1-2a)u
T = 0 T = F
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where
p— 2 - . «
f= ~-8_}}c: (C3f3a® + C1fr + Cafo(1 + 0)?)] (3.148)

and z and y are analogous to ¢ and z, respectively.

Along the curve T

Ohy | Ohy

Shy = —_

hy 5 8t + o dx (3.149)
6u1 c’)u1

duy = Wét + -(:)—;5.’5 (3.150)

Thus, for this problem, the system of equations is given, in matrix form Az =¢, as:

d¢ dr 0 0 . dhy
0 0 dt dzx on du
L I e (3.151)
1 ux 0 hl %‘L 0
0 Jd(1-b 1 u(l-2a) %’% Fi

As for the smooth case, we require that the determinant of the matrix of cocfficients
vanish. Since this matrix is identical to the smooth equivalent, this determinant will be
the same, implying that the characteristic directions for both cases are identical. Thus

the directions of the n and & characteristics are given by:

ox oz
% Ay, %), = Al (3.152)
where
Az = (1 - a)uy F [a2ud + ghy(1 - b)]2 (3.153)

The process differs on substituting the columu vector ¢ into the determinant of the co-
efficient matrix A since the term 7 is now present. Equating this new coefficient matrix

to zero, gives:

dt dh; 0 0
0 du; dt dz
=0 (3.154)
1 0 o0 hy
0 f 1 w(-2a)
i.e.
1)duy + (1—2a)u1——‘i— dhy = Fhydt (3.155)
UE3
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This expression is no longer in the form of the special case equation (3.100) generated
for the smooth case. However, rearranging equation (3.155) and using equation (3.152)

does yield an expression for the variation of u; and h; along each of the characteristics:

duy -, dt
h]% - (1 ol 2&)“1 + A:F = fhla (3.156)

Thus the problem has been simplified to solving equation (3.156) for u; and h;, including
terms for the effects of a rough boundary, using the expression (3.153) and the initial
and boundary conditions (3.51)-(3.53).

3.6.1 Solution of the characteristic equations for t/t; > 0.05

The form of the ordinary differential equation required for solution by the method of
characteristics involves the unknown independent variable ¢ which means that the equa-
tion cannot simply be integrated using the NAG routine DO2AGF, as performed to find
the front value in the smooth case. Solution of the characteristic equations cannot be
carried out directly from ¢ = 0 due to the singularity that occurs at the initial release. As
a result of this, the data generated using the NAG routine DO2AGF for the smooth case
is used to construct a set of initial conditions at a small time, t/tg = 0.05 say. This is
a reasonable assumption since it is not expected that the roughness will have significant
affects immediately after the fluid is released, indeed the experimental front speed data
supports this. The solution process advances with the numerical scheme to solve the
characteristic equations with the rough terms included and the NAG generated data to
initialise the variables uy, h;, = and t. The smooth case can also be solved using this
method whereby the numerical scheme is implemented at an earlier time than ¢ = t;,,;.
This gives a means to check that the numerical scheme is resolving the initial regions
which it did not need to find before. A similar scheme to that outlined in section 3.5.2

is used with modifications to account for the additional terms.

Outline of numerical scheme

As in the smooth case, the method of characteristics produces four equations for the so-
lution of the problem given by (3.152) and (3.156). These can be written in the general

form as follows:
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A'(hy(x,t), uy (2, )

B'(hl (z,t), w1 (x,t))

C'(h(z.t), u1(z,1)) + F'(h)(z,t), u (z,1))

D'(hi(z,t). wy(2.t)) + F'(hy (2, 1), us (2, 8))

(3.157)

(3.158)

(3.159)

(3.160)

The rough terms are contained in the function F'. These four differential equations can

be approximated by relations of the form

IK — g
tk —ty
IK — I}
tx -
UKk — U1y
hix - hy

UK — Uiy
hix — b1t

SAK) + A'(J)

2B'(K) + BU(D)

1 ' Limvige tk —ts
5[C'(K) +C(D) + 2[F'(K)+F'(J)]hlk y

1 ., 1 ' K
51D/ (K) + D/(1)] + 5[F'(K) M vy s

i

(3.161)

(3.162)

(3.163)

(3.164)

where A’(K) implies the value of A’(h)(z,t), u1(z,t)) at the point K. The set of equations

(3.161)-(3.164) are solved numerically using the iterative process.

The Fortran NAG routine can generate as many values as required at time t/to = 0.05.

Thus we essentially have as many initial values along this line as we choose for the

continuation of solution throughout the rest of the domain.

The equations (3.161)-(3.164) for this problem are rearranged for simpler implementa-

tion in the numerical scheme as follows:
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o zy— o= A + AWty + 3(BK) + B'(D]ts (3.165)
K §B/(K)+ B'(D)] - §[4(K) + A(J)] |

ok = o+ SAK) + AWDl(tx — ) (3.166)

upy — wyr - $[C'(K) + C'(J)}h1s + §[D'(K) + D' (D)]har + 31F'(J) - F'(D]tk
3[D'(K) + D'(J)] + 3[C'(K) + C'(J)]

h”\’ =

(3.167)

wg = wuy+ %[C’(K) + C’(J)](h]}( - hlJ) + %[F’(K) + F’(J)](tK - tJ) (3.168)

where
A'(hy(x,t). ug(z.t)) = A-=(1-a)u — [a®uf + g'h1(1 - b)]%

M = (1 —a)uy + [a¥d + g’ (1 - b))2

B’(hl(:t,t), uy(zx, t))

C'(hy(z,t). uy(z.t)) = (hil) [(1 = 2a)u; — A_]
D’(h](:l?,t).ul (:E. t)) = (7:.:) [(1 - 2(1)’!41 - /\+]
2
F(h(z.t),mz,t) = 's% [C3f3a® + Cif1 + Cafa(l + a)?)

The numerical solution process is carried out using the same method as in the smooth
case, covered in section 3.5.2, but with slightly different equations for the boundaries so
that the roughness terms are included. On the z = 0 boundary, u = 0 but t and h,
are unknown. The process requires the negative characteristic equations to iterate on in
order to find these values. These are given by:

§A'(K) + A D]ty — s
HA(K) + A'(J)]

(3.169)

F[C'(K) + C'(N)]h1s + 3[F'(K) + F'(D))(ts — tK) — wyy
oK) + o)

hk = (3.170)

The values on the front must also be found as before using the known front definition
dz/dt = uy and the front condition uy along with the positive characteristics from the

last deterinined point nearest the front. These conditions are rearranged and included
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in the scheme in the form:

§1B'(K) + B'(Dts — 3|E'(K) + E'(J)}ts + 2y — x4

e = JBK) + B - JIE(K) + E'()] (3.171)

ek = a0+ FlEK) + Bk - 1) (3.172)
oy o K uud 3[D'(K) + D'(Djhiy + 3[F(K) + F'(D)(tx — ts)

. JD'&) + D (D) (3.173)
wx = E(K) (3.174)

Once the values of the variables have been found at this front point, the scheme can
continue as usual using the negative characteristic equations from this new point to

contribute to finding the top of the next step and then this method is performed again.

3.7 Results
3.7.1 Validation

The theoretical results must be compared to experimental data if their validity is to be
obtained. Figure 3.5 shows a comparison of the present theory with that of Rottman
and Simpson (1983) and their experimental data for partial to full height lock releases.
It is clear that a value of 3% = 2 in the front condition does not give close agreement with
the experiments. If this value is arbitrarily changed to 1 then much better agreement is
obtained. However, as Shin et al. (2004) points out, there is no theoretical justification
for this choice, it is simply altered for better agreement. For 32 = 1 the results from this
work and that of Rottman and Simpson (1983) are directly comparable.

The front condition derived theoretically by Shin et al. (2004) was also implemented,
with the method of characteristics, for comparison with the theoretical results. This
condition has no free parameters so it will not require new empirical expressions when a
front condition is sought for the rough bed case. The excellent agreement between the
present work implementing this front condition can be seen with the experimental data

of Rottman and Simpson (1983) and Shin et al. (2004) in figure 3.6.

In order to produce a more visual confirmation of the validity of the present theory, the
model was simulated using the experimental configuration of Gladstone et al. (2004).

The dataset therein contains photographs of lock release experiments at different times
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Figure 3.5: Theoretical results from the present theory (PT) with 42 = 1 and 2 and Rottman and
Simpson (1983) (RS83) with 4 = 1. Experimental results of Rottman and Simpson (1983). (a)
The front speed and (b) the front height during the initial phase of collapse plotted as a function
of hg/H. Diamonds are the total measured depth of current behind the front and triangles are
depth of the unmixed current layer. neither are true front height.

and enables a rare qualitative comparison of the theoretical depth profiles and their ‘real’
equivalents. This comparison is presented in figure 3.7. This figure also highlights the
1D limitations of the theory, in particular with respect to the mixing and entrainment
present at the density interface between the current (blue) and the ambient (clear) fluids.

However, despite the limitations, the agreement is remarkably good.

The relationship for the front speed found by Huppert and Simpson (1980) can also be
imposed as the front condition for use in the method of characteristics. Their version
incorporated analytical and empirical methods, essentially depending on a Fr number,
calculated empirically, of 1.19. This value has been used for the generation of the data
shown in figure 3.8. However, other studies have found different Fr numbers, for exam-

ple, Fr=1 (Shin et al., 2004) or Fr= /2 (Benjamin, 1968). This front condition could
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Figure 3.6: The front speed during the initial phase of collapse plotted as a function of ho/H.
Theoretical results from the present theory (PT) with the front condition of Shin et al. (2004)
(S04) and the experimental and theoretical results of Shin et al. (2004).

also be useful for application to the rough case if Froude numbers were calculated from
experimental data for flow over a rough bed. However, difficulties in accurate measure-
ment of height can make this method subject to greater errors, as shown by the different

existing Fr values for the smooth case.

The normalised front speeds and front heights for different release height ratios generated
using the three different front conditions are displayed in figure 3.8. The variation in the
experimental results in figure 3.8 (b) is duc to the differences in location when measuring
the height of the current. It can be seen that the results generated using the Shin et al.
(2004) front condition are in much better agreement for all release heights than they
are for those using the Rottman and Simpson (1983) or Huppert and Simpson (1980)
conditions for both the front speeds and the front heights. Moreover, the conservative
analytical half height solution, hy = ho/2 is proven to be a good approximation to the
height of the front.
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Figure 3.7: Photographs of the experiment from Gladstone et al. (2004) and corresponding
theoretical depth profiles from the present theory using the front condition of Shin et al. (2004).

Huppert and Simpson (1980) published results for a range of 18 ‘two-dimensional’ exper-
iments for full and partial depth currents. They used these experiments for comparison
with their box model theory and showed reasonable agreement. The results for the two
front conditions used thus far with the box model and experiments 7 and 9 from Huppert
and Simpson (1980) can be seen in figure 3.9. Table 3.1 displays the parameters for these

two experiments.

It can be seen that the solution using the shallow water equations solved with the method
of characteristics gives results in better agreement with the experimental data than the
box model equivalent. However, the present theory using the front condition of Shin

et al. (2004) is close to this result. It is difficult to see differences in accuracy between
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Figure 3.8: Theoretical results from the present theory (PT) using the front conditions of
Rottman and Simpson (1983) with 3* = 1, Shin et al. (2004) (SO4), Huppert and Simpson
(1980) (HS80) with the analytical value hy = hg/2. Experimental results of Rottman and Simp-
son (1983) and Shin et al. (2004). (a) The front speed and (b) The front height during the initial
phase of collapse plotted as a function of ho/H.

Exp. No. || ho H ho/H g g
7 15.0 44.0 0.34 39.1 9.4
9 15.0 44.9 0.33 39.2 64.8

Table 3.1: Parameters of two-dimensional experiments No. 7 and 9 carried out by Huppert and
Simpson (1980).

the two present methods although that of Rottman and Simpson (1983) is consistently
slower than the Shin et al. (2004) version and is not in such good agreement for earlier

times.
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Figure 3.9: The length of a gravity current as a function of time found with the present theory
(PT) using front conditions of Rottman and Simpson (1983) with 3% =1 and Shin et al. (2004).
Experiments 7 and 9 and the box model results by Huppert and Simpson (1980).

3.7.2 Complete flow profiles

Smooth bed

The solutions generated by the NAG method and the numerical scheme can be combined
to create a complete profile of the flow domain. The characteristic lines of the flow can
be drawn to depict a visual model of the lock release process and the gravity current
initiation and propagation. Characteristic diagrams generated by the combined results
from the NAG method and the numerical scheme can be seen in figure 3.10*. The
diagrams have been created by interpolating the results onto a uniform mesh and tracing
the characteristics by projecting the gradients from one point, forward by a small time

step, in search of the next nearest point.

The front position calculated by the present theory is plotted on the characteristic dia-
gram reproduced from Rottman and Simpson (1983) figure 3.10 (a) showing that the two
results are in good agreement and verifying that the method has been implemented cor-

rectly. The characteristic lines displayed in figure 3.10 (b), and drawn using the present

‘Note that the figures in this section have all been generated using a value 3> = 2 in the front
condition. Changing this parameter has little effect on the essential profile of the flow, its specification is
more relevant, however, when more accurate values of the variables throughout the domain are required
for comparison with the results from experimental and numerical simulations.
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Figure 3.10: Characteristic diagrams for ho/H =~ 0 and ho/H = 0.5 using the front condition
of Rottman and Simpson (1983) with 3 = 2. (a) hy/H =~ 0 reproduced from Rottman and
Simpson (1983) with front position of present theory (x) and (b) ho/H =~ 0 and (¢) ho/H = 0.5
both using present theory.

theory, do not coincide exactly with those in (a), although they represent the same case.
This is because the method for presenting the data selects which lines it displays at
fixed intervals for presentational clarity. From the diagrams shown in figure 3.10, it is
clear that the regions of the flow are comparable even if specific diagrammatical lines
are not present. Rottman and Simpson (1983) do not display diagrams for other cases
on the basis that they are expected to be similar and therefore figure 3.10 (¢) cannot
strictly be verified. However, similarities between the cases can be seen in figures 3.10

(b) and (¢) and show that, although the different cases develop uniquely and have dif-
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ferent front speeds. they form similar flow regions. It is apparent that gravity currents
generated with different initial release height ratios up to ho/H = 0.5 begin with an
identical reaction to the lock release but differ primarily due to the time it takes for the
backward propagating wave to reach the end wall, ¢;,,. since this is the catalyst for the
subsequent changes to the flow profiles. For height ratios above 0.5 the present theory

requires alterations to account for different flow dynamics discussed in section 3.7.3.

In general. the characteristic diagrams can be divided up into the regions that typically
describe the structure of the current. Regions R) 23 have been discussed in section 3.5.
In figure 3.10, the regions Ryse can now be observed. The reflected wave that occurs
when the backward progpagating wave reflects off the end wall of the lock bax has been
identificd in reality and in the laboratory (Keulegan, 1958; Rottman and Simpson. 1983).
The characteristic of this wave, bounding regions Rz and Rj, is not a straight line as
in the simple wave region since, upon intersection with the other lines from the simple
wave, its gradient changes causing both itself and the characteristic lines leaving the
simple wave region to curve. This occurs identically for all the reflected waves creating
a region of complex state. Ry. Physically this can be seen as the initial siinple wave
refiected back from the end wall colliding with other expansion waves propagating back
from the shock of the initial release. Clearly, this alters the characteristics of both of the

waves involved in the collision.

The set of curves representing the reflected waves, continue to propagste in this manner
away from the end wall, until they cross the final characteristic of the simple wave region
into the other region of constant state, Ry in figure 3.3. When the characteristic curve
of the first reflected wave encounters a characteristic within this region, the values of u,
and h; and thus the gradients of both characteristics, change again. This occurs at every
subsequent intersection between the wave and the curves in the constant state region.
Moreover, since in R3 the lines are parallel to each other, although the influence of the
reflocted wave causcs them to curve, they remain parallel. This has the effect that the
gradients of the reflected characteristics that intersect with them do not change along one
curve and thus they become a set of straight lines each of different gradient, i.e. another
simple wave region. Rs. This occurs physically when the calm region immediately behind
the head gets disturbed by the waves approaching the front. Finally, when the reflected
wave catches up with the front, the front begins to slow down from its previous constant
speed. Thus, since the values at the front are constantly changing, another region of
complex state, Rg. is formed.
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Rough bed

Diagrams of the characteristic curves in the rough case, compared to the smooth bed
are shown in figure 3.11. A roughness of f; = fo = f3 = 0.1 was prescribed on the bed
ouly, the bed and the interface and on the bed, interface and top wall, results for which
are shown in figures 3.11 (b). (¢) and (d), respectively. It can be observed that when any
roughness is present the front travels more slowly. Figure 3.11 (c) shows that when the
effects of roughness at the interface are also included, the current is further retarded.
This is confirmed in subsequent sections. When C3 = 1 there are little noticeable affects.
This is as desired since these effects will be felt in the overlying fluid and are transferred
to the gravity current through the interfacial condition which has already been activated.

With respect to the flow regions identified in the smooth cases, it appears that these are
still present. However, subtle differences can be observed. The simple waves that occur
on release of the lock are either reduced in quaatity or propagate significantly quicker
back to the end wall. The last of these waves is seen to reflect at t/tg = 6 in figure
3.11 (b) (and sooner in figure 3.11 (c)), while in figure 3.11 (a) this occurs at t/ty =~ 9.
In the rough case when only C) = 1, the front appears to remain at a fairly constant
speed until the first of these reflected waves intersects with it, as in the smooth case.
When C; = 1, the front appears to slow more rapidly, perhaps due to the roughness
effects themselves. It must be noted that the initial conditions, at a very small time.
were calculated using the smooth equations, even for the the rough cases as discussed
in section 3.6.1. Therefore, in the rough cases, the solution may undergo an adjustment
period within which the modifications to the equations due to roughness take affect.
This could also be the reason for the apparent lack of constant speed period shown in
figure 3.11 (c).

In addition to altering the location of the roughness. in order to test the sensitivity of
the model to the roughness size, the values of f;, f2 and f; were also modified. The
two other values selected were half (0.05) and double (0.2) the value used in figures 3.11
(b) - (d). These were applied to the bed only. ie. Cy =1, C; = C3 = 0. figure 3.11
(b). The diagrams of the characteristic curves for these cases arc shown in figurc 3.12.
As obeerved when the influence of roughness on the interface was included, when the
magnitude increases the simple wave region diminishes or, rather, the time at which the
backward propagating waves refiect off the end wall of the lock gets earlier. Also, the
front appears to diverge from a constant speed earlier as the roughness effects increase.
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Figure 3.11: Characteristic diagrams for ho/H = 0.5 using the front condition of Rottman and
Simpeon (1983) with 52 = 2 and (a) a smooth bed. Rough cases with f, = f; = f; = 0.1 (b)
Ci1=1,C=Cy=0,(0)C,=Cy=1,Cs=0and (d)C, =Cy =C3 = 1. Where C,, C; and
Cs indicate rough (1) or smooth (0) influence on the bed, interface and top wall, respectively.
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Figure 3.12: Characteristic diagrams for ho/H = 0.5 using the front condition of Rottman and
Simpson (1983) with /3 = 2 with roughness on the bed, i.e. C; =1, C2=C3=0. (a) f; =0.05,
(0) fi = 0.2. Where C1, C; and Cj indicate rough (1) or smooth (0) influence on the bed,
interface and top wall, respectively.

3.7.3 Depth and velocity profiles

Smooth bed

Depth profiles of the currents display a one dimensional outline of the denser fluid as it
dcvelops through time and arc presented in figure 3.13. The backward propagation of the
waves from the release at ¢ = 0 can be seen along with the ‘shock’ of the collision with
the end wall, the size of which depends on the initial release height of the fluid. After
this time, as the current propagates along the tank it retains a constant front height
with an identical depth region behind it which implies the presence of a deeper head
region. This remains until t/to = 5 (or t/tp = 9 for ho/H = 0.5) after which the height
behind the front deteriorates, consequently suggesting deterioration of the head shape
at this later time. It can also be observed in figure 3.13 that as the current propagates
its tail remains attached to the end wall with a depth significantly smaller than the head
region. Corresponding velocity profiles are shown in figure 3.14. These indicate a
steady increase in the velocity from the rear of the current to a maximum near the front.
This maximum is initially constant and then begins to decrease at later times. Moreover,

the maximum is initially distributed through the head region of the current, as defined
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Figure 3.13: Theoretical depth profiles using the front condition of Rottman and Simpson (1983)
with 3% = 2. (a) ho/H =0, (b) ho/H = 0.5, (c) ho/H = 1.

Figure 3.14: Theoretical velocity profiles using the front condition of Rottman and Simpson
(1983) with 3% = 2. (8) ho/H =0, (b) ho/H = 0.5, (c) ho/H = 1.
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above, not solely at the current front. It then decreases at the same time as the head
begins to lose depth and potentially deteriorate.

A slight discrepancy occurs when comparing the depth profiles for the ho/H = 0.5 case.
However, this can be attributed to differences in mesh size and iterative procedure. The
methodology used in this work can be shown to produce a similar result if less points are
used in the numerical scheme and the order of accuracy of the iterative process is reduced
considerably. Note that when the number of points on the initial line generated by the
NAG routine is greater than 100, there is very little change in the results, indicating a
good degree of mesh independence in the present work.

Figures 3.13 and 3.14 (c) show that using the method of characteristics, multivalued
solutions are generated in the ho/H =~ 1 case in the depth and velocity profiles. In fact,
this occurs for any initial to ambient height ratio greater than 0.5. Essentially, this means
that the backward propagating waves generated upon removal of the lock partition are
travelling faster than the backward propagating motion on the undisturbed interface at
ho. With reference to the characteristic diagrams, figure 3.10, this implies that the simple
wave region R, is expanding into the lower constant state region R;. Physically, this is
seen in the formation of a shock or bore for greater partial depth releases instead of the
rarefaction wave seen with lower values of hg/H. The specific criteria for the occurrence
of this shock have been explored by e.g. D’Alessio et al. (1996). In particular, they
found that the fractional depth occupied by the denser fluid does play a crucial role
in the development of the bore. The method of characteristics breaks down for these
increased depths and requires further conditions or constraints to solve the problem.

Rottman and Simpson (1983) attempted to incorporate a hydraulic jump model into
their theory but chose not to present their work. Several authors (Bonnecaze et al.,
1993; D’Alessio et al., 1997) have successfully modelled the ho/H =~ 1 case using finite
difference methods which can account for the ‘hydraulic jump’. Klemp et al., 1994 and
Shin et al., 2004 have extended the application of the method of characteristics to full
height releases by including additional conditions in the method. Essentially this involves
the application of a front condition on the backward propagating wave that bounds the
undisturbed region so that it is always faster than the backward propagating waves on
the interface travelling towards it from the release point. This effectively reduces the
problem of the bore back to one of an expansion wave that the method can resolve as
for the smaller depth releases. However, this extension was not performed in the present
study and remains as further work. Therefore, the theory and results discussed herein



147

@ 1 ®
t/tg =0,0.5,1,15,2,3,..11
° 4] * ] "’ )

f_ 08 0.5 >
) anl

0 0

0 2 4 ) 8 10 0 2 4 8 8 10
x/xo

t/tg =0,0.5,1,1.5,2,3,...11

Figure 3.15: Theoretical depth profiles for ho/H = 0.5 using the front condition of Rottman and
Simpeon (1983) with * = 2 and (a) a smooth bed. Rough cases with f; = f, = fy = 0.1 (b)
Ci=1,C=Cys=0,(c)Cy=Ca=1,Cs =0and (d) C), = C; =Cs = 1. Where C,, C; and
Cs indicate rough (1) or smooth (0) influence on the bed, interface and top wall, respectively.

are valid for ratios 0 < ho/H < 0.5.

Rough bed

Theoretical 1D depth and velocity profiles are shown with roughness present in figures
3.15 and 3.16, respectively. Both of these figures confirm that the roughness influenced
current does not propagate as far in the same time period as the smooth case. As for
the smooth case, the depth of the current front at later times is significantly reduced,
however, when any roughness is present, the current body does not thin as substantially
as the smooth equivalent and at later times, is almost the same depth as the head.
In fact, when the roughness is included on the interface also (figure 3.15 (c)), this is
exaggerated to the extent that the current is deeper behind the front and is almost of
uniform depth throughout back to the tail. In all rough bed cases, the head region that
was previously defined behind the current front in the smooth case is deeper than the
front itself. In laboratory gravity currents this is physically observed, the current has
a deep head and a reduced height nose. These characteristics are not picked up by the
smooth case, probably due to lack of drag in the equations. Therefore, this difference
in the smooth and rough cases observed in the theoretical depth outlines in figure 3.15
suggests that in the presence of roughness the head height behind the current further
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Figure 3.16: Theoretical velocity profiles for ho/H = 0.5 using the front condition of Rottman
and Simpson (1983) with 3? = 2 and (a) a smooth bed. Rough cases with f; = f, = f3 = 0.1 (b)
Ci=1C;=Cs=0,(c)Ci =Ca=1,Cs=0and (d) C, = C2 =Cs = 1. Where C;, C; and
Cs indicate rough (1) or smooth (0) influence on the bed, interface and top wall, respectively.

increases and the rounding of the head towards the front becomes more exaggerated.

The velocity profiles presented in figure 3.16 show that the deeper region behind the
head observed in the corresponding depth profiles in figure 3.15, is slower fluid than
the front itself. This head region is still clearly defined as faster than the rest of the
current behind it but it does not maintain the same speed as the front as in the smooth
case. The front velocity clearly decreases sooner with a rough bed than a smooth bed.
When there is only roughness on the bed (3.16 (b)), this decrease occurs at t/t; = 3,
while in the smooth case, this value is approximately 8. This is exaggerated further
when the interfacial roughness effects are included and the current begins to lose speed
almost immediately. Again, in the above, little difference is observed with or without
the roughness included on the top wall.

The theoretical depth and velocity profiles presenting the effects of changing the mag-
nitude of the roughness are shown in figures 3.17 and 3.18, respectively. It can be seen
that reducing the roughness value to fi = 0.05 produccs significantly less cffect on the
flow (figures 3.17 and 3.18 (a)), although even at this value, the depth of the current
behind the head is slightly increased and the corresponding velocity is decreased. The
increased roughness magnitude, f; = 0.2, shows a further decrease in current speed and
height that occurs sooner than the cases with smaller roughness values (figures 3.17 and
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Figure 3.17: Theoretical depth profiles for ho/H = 0.5 using the front condition of Rottman
and Simpeon (1983) with 32 = 2 with roughness on the bed, i.e. C; =1, C; = C3 = 0. (a)
S =0.05, (b) f; =0.2. Where C}, C; and Cj indicate rough (1) or smooth (0) influence on the
bed, interface and top wall, respectively.

Figure 3.18: Theoretical velocity profiles for ho/H = 0.5 using the front condition of Rottman
and Simpeon (1983) with 3% = 2 with roughness on the bed, i.e. C; =1, C; = C3 = 0. (a)
f1 = 0.05, (b) f1 =0.2. Where C1, C; and Cj indicate rough (1) or smooth (0) influence on the
bed, interface and top wall, respectively.
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Figure 3.19: Position of the gravity current front as a function of time for hg/H = 0.5 using the
front condition of Rottman and Simpson (1983) with /42 = 2. Results shown are for a smooth
bed and rough cases with fi = fo = fs = 0.1 and Cy = 1 with €2 = C3 =0, C; = C; = 1 and
Cs =0 and C, = C3 = C3 = 1. Where 1, C3 and Cj indicate rough (1) or smooth (0) influence
on the bed, interface and top wall, respectively.

3.18 (b)). Moreover, when the roughness effect is increased, the current front height
decreases to the extent that it is lower than the rest of the head and indeed the current
body and tail. The eurrent depth observed in figure 3.17 (b) is almost uniform for later
times. It appears that the slowing effects of the bed roughmness cause the current fluid to
be redistributed more evenly along the current length, rather than accumulating in the

head as in the smooth case.

3.7.4 Front position

The effects of bed roughness on the front position of a gravity current are shown in figure
3.19. As observed in the characteristic diagrams and the depth and velocity profiles, the
current front does not propagate as far in the same time period under the influence of
roughness on the bed (Cy). However, with roughness of this magnitude (f; = 0.1), the
current does appear to propagate with the same constant speed as the smooth case until
t ~ 7.5 when the rough case slows. When the effects of roughness are also felt at the
interface, this retardation is exaggerated and deviates from the constant speed sooner at

t ~ 5.
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Figure 3.20: Position of the gravity current front as a function of time for ho/H = 0.5 using the
front condition of Rottman and Simpson (1983) with 32 = 2. Results shown are for the smooth
case and with roughness on the bed i.e. C; =1, C; = C3 = 0 with f; = 0.05, f; = 0.1, f; = 0.2,
fi =04 and f; = 0.8. Where C), Cz and Cjy indicate rough (1) or smooth (0) influence on the

bed, interface and top wall, respectively.

Figure 3.20 shows the effect of changing the magnitude of the roughness value f; on the
position of the front over time, compared to the smooth case. It can be observed that the
reduced value enables the front to maintain its speed while the increased value decreases
the distance that the current can propagate in the same time period. Due to the ease of
processing this dataset, additional values of f; = 0.4 and 0.8 have also been included to
highlight the influence of the bed roughness. Therefore, it is also apparent from figure
3.20 that the time period over which the current maintains an approximately constant
speed is reducing as the magnitude of the bed roughness increases, i.e. the current is

slowing earlier.

3.8 Discussion

The results presented above indicate that the method of characteristics with the inclusion
of a front condition gives good agreement with experimental front speeds and heights
and provides a good approximation to the position of the front of a gravity current.
The characteristics of the flow can easily be displayed along with the depth and velocity

profiles along the current and have been confirmed to show a good interpretation of a
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laboratory current. The depth profile results agree qualitatively with the experimental
observations of Gladstone et al. (2004) and with Shin et al. (2004) for a gravity current
released from a lock with an aspect ratio (ho/H < 1), who found that smaller release
heights have a more noticeable depression behind the head, therefore a more pronounced
raised head and a shallower tail. These good agreements, although qualitative, highlight
the value of these 1D models. The information generated from these results can be
used to identify areas of interest in subsequent, more complex, studies and indeed aid
interpretation of the experimental result.

Adopting the methodology derived in the smooth case with the front condition of
Rottman and Simpson (1983), the rough boundary terms have been shown to have
significant influcuce on the flow. These 1D results suggest that the presence of bed
roughness causes a more rounded current head that is deeper behind the front and a
greater current depth extending back to the tail. This is physically explicable since, as
the current is being retarded, the slumping fluid is slower, as shown, and therefore ap-
pears to spread more evenly over the length of the current rather than rushing towards
the head leaving a shallow tail and creating a ‘head-heavy’ current as in the smooth
case. Moreover, modifications to the current head were observed in the experiments in
chapter 2, the most relevant here being the shortening of the head length. It is difficult
to confirm this with a 1D illustration of the depth but the present theory does suggest
a more rounded and perhaps shorter head region behind the front for earlier times.

Under the influence of bed roughness, the 1D gravity currents eventually propagate at
a slower speed than the smooth equivalent but they still propagate at a constant speed
for the initial period of time before slowing. The extent of this period has been shown
to depend on the magnitude of the roughness on the bed, decreasing with increasing
magnitude as might be expected. It also depends on whether the interfacial influence is
included. When this factor is activated. the current slows much earlier. The retention
of this constant speed phase in the rough cases is in qualitative agreement with the
experimental results reported herein, which also observed that the current moved at a
similar speed to the smooth case for a period, before slowing. The size of the decrease in
speed in the physical experiments was shown to be dependent on the type of roughness,
which could correlate to increasing magnitude of roughness value in the present theory.
Also in qualitative agreement with the experimental observations for the rough cases, is
the reduced downstream velocity behind the front. This was observed for all rough cases
and is supported in the theory presented here.
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The solutions implementing the front condition derived by Shin et al. (2004) appear in
closer agreement with experimental data than the same method using the front condition
of Rottman and Simpeon (1983) or box models of Huppert and Simpson (1980) for
the smooth case. This maybe because it is & more theoretical derivation with no free
parameters or ambiguous values. It is possible that this theory could be extended to
incorporate the effects of bed roughness at the front. This would be an interesting
extension to the present study since it would highlight the affects of using the smooth
front condition on the current results, as done at present.

These results provide evidence that the inclusion of additional terms into the 2-layer
shallow water equations to describe the ‘frictional’ effects of bed roughness directly at
the bed and the influcnce at the interface between the dense and ambient fluids produce
significant results on the current propagation, cven in a simplified 1D model that docs
account for the buoyancy induced changes due to the over-ridden ambient fluid. These
predictions further confirm that roughness effects on gravity currents should not be ig-
nored in theoretical models. The immediate implications of these results for real life
sediment-laden gravity currents are thicker, slower currents than predicted by smooth
models, potentially resulting in more deposition further upstream and more evenly dis-
persed sedimentation along the current length. Further examination of the flow dynamics
with CFD are reported in chapters 5 and 6 enabling further assessment of this interpre-
tation.
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Chapter 4

Depth-resolved numerical
simulations: Methodology

4.1 Introduction

The previous chapter presented results from depth-averaged, simplified theoretical mod-
els. This chapter describes the governing equations and numerical schemes used with
the commercial software FLUENT to generate fully depth-resolved models for gravity
current flows over smooth and rough surfaces in two and three dimensions. The general
model is second order accurate in time and space and a turbulence model is used for
closure of the guverning equations. Two different methods for the inclusion of bed rough-
ness are proposcd along with procedures for verification and validation of the numerical
calculations. Full verification, validation with experimental data (see chapter 2) and the
results of the 2D and 3D simulations can be found in chapter 5.

4.2 Literature review

The application of depth-resolved 2D and 3D numerical models to the study of gravity
currents has become increasingly common during the last few decades and continues to
advance with the advance of computing capabilities and the consequent development
of more sophisticated models. Models for turbulence closure of the Reynolds-A veraged
Navier-Stokes (RANS) equations are continually being improved upon, while the increase
in computational power available also means that the ability to resolve gravity current
simulations at increasingly high Reynolds numbers with less assumptions has become a
more obtainable reality, for example, Large Eddy Simulations (LES) or Direct Numerical
Simulations (DNS). Despite technological advances and 1nodel development, there is no
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oune definitive model for non - linear flows such as gravity currents (Straka et al., 1993).
Models have to be appropriately selected for the required analyses, for example, prioritis-
ing quantitative accuracy or speed of solution or qualitative visualisation might influence
model selection. The increasing use of 2D and 3D numerical modelling as an analyti-
cal and predictive tool has encouraged the development of commercial CFD software to
facilitate modelling and reduce the need for advanced programming specialisation, for
example. FLUENT. These packages also undergo continual development and testing of
their capabilities, as highlighted by the present study.

This review aims to cover some of the fundamental developments in the numerical mod-
elling of gravity currents and to discuss some of the choices made when selecting solution
methods for a study and the merits and drawbacks of these methods. To the author’s
knowledge there is no one document summarising the existing research on the application
of numerical models to gravity currents. Rigorous tests of the accuracy of direct numer-
ical simulations with various solution methods and grids are summarised in Straka et al.
(1993). However it should be noted that this work is over a decade old and substantial
advances in computer power mean that modelling capabilities have increased and an up
to date review would be beneficial. The inclusion of bed roughness in the numerical mod-
els is discussed herein. A summary of CFD of single-phase flow over rough surfaces can
be found in Patel (1998), which also highlights the difficulties involved in modelling bed
roughness computationally. To date there is little existing work to warrant an equivalent

compilation for gravity currents.

4.2.1 Governing equations: RANS vs. LES and DNS

Turbulent flows are characterised by fluctuating velocity fields which cause the fluctua-
tion and mixing of other flow quantities such as momentum, encrgy and species. It is the
scale of these fluctuations that is the main cause of computational expense. The general
governing equations that describe turbulent fluid flow are the Navier - Stokes equations.
DNS is when all scales of motion are fully resolved in space and time. The smallest
turbulent scales with high frequencies can be too computationally expensive to simulate
using DNS in practical engineering calculations without access to substantial computing
processes. Reynolds averaging the Navier - Stokes equations involves decorposing the
flow quantities into mean and fluctuating components, substituting these expressions into
the full set of equations and then takes a time average to obtain the Reynolds-averaged
Navier-Stokes equations. The small scales are removed and therefore this system of
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equations is more computationally economical. However, the averaging process creates
additional unknown variables that require the modelling of turbulence transport for clo-
sure, thus limitations are incurred and a ‘turbulence model’ must be carefully chosen to
represent the flow dynamics. There is no single turbulence model that is universally ac-
cepted as being superior for all classes of problems (FLUENT, 2006). A general overview

of the derivation and uses of several existing turbulence models can be found in Hartel

(2000).

In order to include the different flow phases of the current and ambient fluids, supple-
mentary equations for context-specific model scalars or species transport have also been
added (e.g. Straka et al., 1993 and Imran et al., 2004, respectively), in addition to the
mass and momentum conservation equations, and solved either directly or in Reynolds -
averaged form. Equations for the transport of concentration and temperature variables
are particularly important in the study of gravity currents and are the common method
for modelling the dense underlying fluid (e.g. Baum et al., 1995 and Straka et al., 1993,

respectively).

Gravity currents have been modelled relatively successfully with the RANS equations
and a turbulence model for lock-release (Chen and Lee, 1999; Zhang et al., 2001; Cantero
et al., 2003; Bombardelli et al., 2004; Corney, 2005), lock-exchange (Klemp et al., 1994;
Kanarska and Maderich, 2003) and flux induced (Bournet et al., 1999; Kassem and
Imran, 2001; Imran et al., 2004; Kassem and Imran, 2004) conditions over smooth beds.
Of these, the two equation k — ¢ turbulence model modified for buoyancy has been most
widely used with near wall treatment using standard wall functions (Bournet et al.,
1999; Chen and Lee, 1999; Kassem and Imran, 2001; Imran et al., 2004; Kassem and
Imran, 2004). However, the study of Zhang et al. (2001) used an enhanced wall function
method with two equations for wall adjacent motion. Other turbulence closure models
that have been implemented with similar success are the two equation k — ! model
(Kanarska and Maderich, 2003), a Newtonian model for the viscous stresses (Cantero
et al., 2003; Bombardelli et al., 2004) and a first order closure scheme that depends
on the relative strengths of stratification and shear (Klemp et al., 1994). All of these
models have been shown to display typical gravity current characteristics and to compare
reasonably well to experimental data for front velocities (within known dimensional
limitations if the model is 2D, see section 4.2.3) and mean velocity profiles. In fact,
Kanarska and Maderich (2003) show that their model compares well qualitatively to the
DNS of Hartel et al. (2000b). However, fully accurate solution of small scale turbulence
structures and correspondingly precise turbulence profiles are beyond the capabilities of
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these models. This is exemplified in Fukushima and Watanabe (1990) where the k — ¢
model underpredicts the turbulence kinetic energy and dissipation distribution within

the flow.

An alternative approach that bridges the gap between DNS and RANS simulations is
large eddy simulation (LES), whereby the large eddies are explicitly resolved using ‘fil-
tered’ Navier-Stokes equations (see Hartel (2000)). The full Navier-Stokes equations are
manipulated mathematically to remove eddies that are smaller than the size of a filter,
which is often the size of the grid (Patterson et al,, 2005). Although additional un-
known terms still result in the need for modelling to achieve closure, similar to Reynolds-
averaging, the smaller scales that require modelling tend to be more isotropic and less
affected by features that govern the main body of the flow, like boundary conditions,
than the larger eddies that are now fully resolved. The consequences of this filtering
process are large eddy simulations that directly solve less turbulence but at higher reso-
lution thus reducing the error introduced by modelling. However, to accurately resolve
the energy containing turbulent eddies in time and space for high Reynolds number flows
requires significantly greater computer resources than the RANS approach with a tur-
bulence model. But, in comparison to DNS, gravity current simulations using LES are
generally computationally quicker and can reach a higher range of Reynolds numbers
while retaining good qualitative experimental comparison, as shown by Patterson et al.
(2005). A 2D study by Ooi et al. () showed good agreement with the experimental re-
sults of Hacker et al. (1996) but with resolution of billows right up to the front which is
questionable. Baum et al. (1995), Rehm et al. (1995) and Fleischmann and McGrattan
(1999) also successfully modelled gravity current transport in building fires with LES
with good comparison to experimental data. The most extensive work using LES to
model gravity currents is in the oceanic modelling of saline undcrflows (Ozgtkmen and
Chassignet, 2002; Ozgdokmen et al., 2003, 2004a, 2004b, 2006, 2007; ()zgdkmen and
Fischer, 2008). They use a 3D non-hydrostatic, spectral element model that combines
the high order accuracy of spectral element methods with finite element methods, which
enables two methods of achieving convergence: refinement of the grid elements or in-
crease of the polynomial degree used in the intra-element interpolation. A minimum
number of elements can be used so that the shape of the domain geometry is adequately
captured, then the spectral truncation degree is increased for convergence ((zgikmen
et al, 2004b). A known benefit of spectral methods is their lack of numerical dissi-
Pation and dispersion errors which is important in problems with propagation of high
flow variable gradients and mixing as found in gravity currents. Although slightly dated
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now, the review undertaken by Straka et al. (1993) finds that high order spectral type
schemes perform better than many other methods if the mesh refinement is adequate or
even marginal, however these methods were virtually unusable at low mesh resolution
due to the amount of computational noise produced. Other monotonic schemes suffered
from damping characteristics resulting in less accurate flow features and slower velocities,

however, they were able to solve at all levels of mesh refinement.

DNS typically requires fine resolution in order to achieve a converged solution of turbulent
fluid motion (Straka et al., 1993). Therefore, as the Reynolds number of the flow and
hence the turbulence, increase, further refinement is necessary to retain accuracy. As this
continues, the computational cost eventually becomes prohibitive and even modern day
parallel processing systems are incapable of solution. Consequently, careful consideration
of the scheme used for treatment of the governing equations is necessary to optimise
computational expenditure. The first high resolution direct numerical simulation of
gravity currents in 2D was carried out for a lock-exchange flow by Hartel et al. (1997).
This was improved upon and extended to 3D by Hartel et al. (2000b) and Hartel et al.
(2000s) for an in depth study of velocities, front speeds and the lobe and cleft instability.
It was further modified for a lock-release study with the inclusion of particles by Necker
et al. (2002) and Necker et al. (2005). They use a mixed spectral/spectral element
approach similar to that described previously. The spectral based methodology has been
applied to non-Boussinesq lock-release currents (Birman et al., 2005) with successful
experimental validation. Recently Cantero et al. (2008a;2008b) also performed DNS of
depositional particulate density currents in order to study the effects of particle inertia
using a psuedo-spectral method. To the author’s knowledge, all of the DNS studies of
gravity currents have been carried out using spectral/spectral element methods, only
LES and RANS models requiring turbulence closure have been undertaken using other

approaches such as finite volume methods.

Onc final consideration that should be taken into account when selecting the turbulence
model, and is of particular relevance to the present study, is the physical boundaries of
the domain. For example, the presence of non-smooth bounding wall geometries will
incur further turbulence modelling complexities. Some relevant cases are discussed in

section 4.2.5.
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4.2.2 Initial and boundary conditions

Numerical simulations are usually used in conjunction with experimental data for valida-
tion and therefore the initial and boundary conditions should reflect the tank setup that
has been used. However, some aspects of the experimental configuration present further
difficulties in numerical modelling, for example, a free surface is nearly always present at
the upper boundary of the domain. The most commonly used method of modelling the
free surface is to use a fixed rigid lid and apply no flux, symmetry flow conditions along
this boundary. Some studies use no-slip boundaries (Hartel et al., 2000b; Hartel et al.,
2000a; Necker et al., 2002; Necker et al., 2005) based on the fact that impurities in the
fluids in laboratory flows make a free surface act as a no-slip surface (Britter and Simp-
son, 1978) and several have included equations to model the surface elevation (Harlow
and Welch, 1965; Daly and Pracht, 1968; Fukushima and Watanabe, 1990; Kanarska
and Maderich, 2003). However, validation with experimental data shows that the error
incurred in using a simple fixed lid, symmetry boundary appears to have little effect on
the accuracy of results. In nearly all CFD studies the bottom wall and, if 3D, often
the side walls are set with no-slip boundary conditions since this is perceived as more
physical unless the difference in slip and no-slip conditions is of specific interest (Hartel
et al., 2000b). For the modelling of a more complex bed with, for example, a form or
grain roughness (or both) present, the boundary conditions can play an important part
in accounting for these features in a model. Section 4.2.5 covers this aspect in more
detail.

The flow inducing mechanism is an important initial condition that needs careful cal-
ibration in numerical modelling. For lock-release and lock-exchange cases, the flow is
typically initialised at rest throughout the domain and when the simulation starts, grav-
itational effects on the density difference between the cells initialised with higher density
and those with lower values, instigate immediate reaction within the domain, analogous
to instantaneous release of fluid from the lock. Thus flow commences instantaneously.
However, some turbulence initialisation is often required, although values are not often
stated explicitly in model descriptions and choice of magnitude appears to vary: Chen
and Lee (1999) and Zhang et al. (2001) initialise turbulence kinetic energy and dissipation
with negligibly small values of O(10~"m?s~2) while Corney (2005) uses a larger value of
0(10~*m?s~2). To the author’s knowledge there is no experimental data available with
lock release initial conditions from which to obtain empirical values of initial turbulence
parameters. Fukushima and Watanabe (1990) quote a value of about 1 x 10~"m?s~2
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for turbulence kinetic energy within the tank measured prior to a flux induced release.
Necker et al. (2002) and Necker et al. (2005) impose weak turbulence disturbances in the
velocity field in the vicinity of the interface in order to enhance the breakdown of the
flow into 3D after release. Necker et al. (2005) carried out a study of the influence of this
initial turbulence in their work on particle driven currents. They increased the initial
turbulence kinetic energy in the domain with all other conditions identical and found
that the main effect is strongly enhanced mixing within the current fluid and stronger
initial turbulence fields which lead to earlier breakdown of the coherent vortices that
form behind the head of the current. However, these only result in minor differences in
overall flow development reflected in slightly higher front velocities maintained at later
times with higher initial kinetic energy. They postulate that the lack of substantial flow
altering effects is due to the turbulent motion that exists prior to release being quickly
damped by dissipation from the flow acceleration during the formation of the current
front.

In addition to turbulence perturbations, Hartel et al. (1997), Hartel et al. (2000b), Hartel
et al. (2000a), and Birman et al. (2005) use an initial density field with an error function
profile whilst Straka et al. (1993), Hartel et al. (1997) and Bongolan-Walsh et al. (2006)
apply an initial temperature profile to the domain. Ozgokmen et al. (2004b), Ozgskmen
et al. (2004a) and Ozgokmen and Fischer (2008) also use a lateral sinusoidal salinity
perturbation in their initial flux induced conditions to facilitate transition into 3D flow,
see figure 4.1 (a) p. 165. In flux induced currents, a velocity profile is imposed at
the inflow, for example Imran et al. (2004) and Kassem and Imran (2004) impose plug
flow velocity conditions. Ozgtkmen et al. (2004a), Ozgdkmen et al. (2004b), Ozgdkmen
and Fischer (2008) and Bongolan-Walsh et al. (2006) use a time-dependent velocity
profilc dependent on the propagation speed of the gravity current with reversed flow in
the overlying fluid to prevent recirculating flow at the inlet or thinning of the density
current downstream which can occur due to inadequate rate of supply (ézgﬁkmen etal,
2004b), see figure 4.1 (f) p. 165. Fukushima and Watanabe (1990) also impose a velocity
profile inflow from empirical data, however, their results do not model the return flow

accurately which could be due to an insufficient return flow condition.

4.2.3 2D vs. 3D models

One of the first studies dedicated specifically to the numerical modelling of gravity cur-
rents was undertaken by Daly and Pracht (1968), with the intention that their 2D nu-
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merical study could be used as a useful aid to analytical models. While a 2D model
fulfills this purpose, 3D models extend this to provide a solution where analytical meth-
ods are far more complicated without limiting assumptions. Birman et al. (2005) use a
2D model to confirm which of the physical scenarios generated in parallel experimental
work (Lowe et al., 2005) is observed in reality. Thus, if their 2D model gives clear con-
firmation of the physics, an extension to 3D is unnecessary unless further detail beyond
the capability of 2D is of interest. Several models in 2D have been developed since that
of Harlow and Welch (1965) and Daly and Pracht (1968) and are able to resolve the
basic low characteristics for carly times (up to approximately 10 nondimensional time
units (Necker et al., 2002)). Hartel et al. (2000b) demonstrate that a 2D DNS model can
reliably predict integral values such as the Froude number and also more subtle aspects
of the flow such as the elevation of the nose and details of the flow structure within the
gravity current head (note that this is a DNS simulation). However, the accuracy of
the flow characteristics and the resulting data have been shown to diverge from the 3D
and experimental datasets for later times (Necker et al., 2002). Although several other
variables affect the magnitude of this deviation from the ‘true’ data (e.g. grid resolution,
RANS/DNS, solution schemes etc.) it is generally acknowledged (e.g. Hartel et al., 1997
Necker et al., 2002; Cantero et al., 2003; Patterson et al., 2005) that this is primarily due
to the unphysical retention of the large vortices or billows that are not broken down into
smaller scales as a consequence of the two-dimensionality of the simulation and hence
absence of necessary 3D mechanisms. The resultant effect is increased entrainment of
fresh water into the underflow so that the salt water is excessively diluted and the current
cannot retain its speed leading to underestimation of the front velocity. The presence of
this lateral component of velocity, particularly within the large billows at the interface,
is clearly visualised in the results of a 3D simulation carried out by Cantero et al. (2003).
Quantitative differences in concentration resulting from this limitation have been illus-
trated by Necker et al. (2002) in & comparison of the concentration of a 2D simulation
with the centreline of a 3D equivalent.

The main limitation to 3D simulations is the computational cost. As mentioned pre-
viously, even with the modern day supercomputers, the increased mesh size and hence
number of calculations necessary during computation can result in prohibitively high
processing requirements. For example, Hartel et al. (2000b) use a 2D mesh of resolution
768 x 91 (69888 cells) but their 3D mesh has about 4.25 million grid points for simula-
tions at comparative low Reynolds numbers (710 and 750 respectively). Consequently,
the Reynolds number dependent, fine meshed, 3D direct numerical gravity current sim-
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ulations are extremely limited in the range of Re values that can be studied, while in 2D
they can achieve a range of Re values which enables the study of effects of changes in Re
and more interesting high Re cases. The difference in real time cost is also substantial,
as illustrated by the work of Ozgokmen et al. (2004b) who carried out 2D LES that
took about two hours on 16 processors, while their 3D equivalent runs took 9 days on 32
processors. Moreover, if the effects of particles are included in the flow, as in the recent
work of Cantero et al. (2008a; 2008b), the computational cost increases further since the
mesh must be finer. Thus, even with modern computing power, a 2D model is adopted
so that DNS can be performed. Hence, despite known limitations, 2D approximations
are still used as a less computationally expensive approach to investigate the general
behaviour of gravity currents.

4.2.4 Independent codes vs. commercial codes

Several studies document the development of independent codes for the solution of the
equations governing gravity current motion. As modern computing capabilities advance,
the ability to generate complex fluid flow models to simulate physical flow processes,
before further actions are undertaken in reality, has increased demand for codes that are
more flexible and commercially accessible, hence the development of commercial CFD

software.

The earliest gravity current models date back several decades (Harlow and Welch, 1965;
Daly and Pracht, 1968) but independent numerical models for similar phenomena, for
example, jets or plumes, were developed previous to this. Straka et al. (1993) summarises
the results of several researchers who have modelled a gravity current phenomenon with
independent DNS codes implementing different schemes. These codes can take consid-
erable time to write and modify and can be very variable in accuracy and dependent
on mesh and method chosen (Straka et al., 1993). They are often complex and difficult
to understand by anyone other than the code developers. The immediate advantages of
commercial software are that several modelling algorithms are usually available for time
and space discretisation, scalar transport equations for variables such as concentration
can easily be added and there are a variety of models available for turbulence closure of
the RANS. Added to these, is the flexibility to change the ‘physical effects’ in the model
with the click of a button to allow the incorporation of almost any physical behaviour
(De Cesare et al., 2001). There are drawbacks however and in a comparative study,
Bombardelli et al. (2004) state that independent codes give a more true solution to the
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Navier-Stokes equations despite the fact that they might not look as physically represen-
tative of the experiments as the commercial code generated result. In their simulations,
the comnmercial codes exhibit damped characteristics due to increased numerical diffusion
applied in these codes in order to increase chances of convergence and hence appear more
physical. They used 20500 nodes for their independent code and 58500 for their com-
mercial code and found that mesh refinement resulted in no change for their own code
but large changes with the commercial code, thus commercial code requires many more
cells to achieve the same qualitative results as the independent code. Bombardelli et al.
(2004) postulate that these limitations are due to numerical limiters and ‘stability tricks’
present in commercial codes to increase robustness resulting in numerical over-damping
which is particularly inadequate for instability driven flows such as gravity currents. It
should be noted that this study does only compare one independent and one (unnamed)
commercial code when, as mentioned previously, there is no generally accepted definitive
model for simulating gravity currents and there are various modelling options and solu-
tion methods available that may alter this comparison. For example, most commercial
code enables the inclusion of user-defined functions which are particularly useful for flex-
ibility in defining source terms, variable flow scalars and other modifications required.
The results of Bombardelli et al. (2004) imply that commercial codes require the same

careful validation and verification as is necessary for all numerical codes.

Some other work has been carried out on gravity cwrrents using commercial codes.
Bournet et al. (1999) studied a plunging gravity current using the commercial soft-
ware PHOENICS with the RANS and a k — £, buoyancy modified turbulence model.
They found that their model seemed capable of reproducing entrainment values within
the range of the existing experimental values and reasonable agreement with the known
characteristics of plunging currents. However, lack of laboratory and ficld studics at the
time meant that they had to validate their model primarily using another semi-empirical
modd without access to data describing mean flow properties or local flow structures
which are essential for model formulation and input values. De Cesare et al. (2001)
used CFDS-CFX-4 (now ANSYS-CFX) to model sedimentation from turbidity currents
entering reservoirs. The study used the RANS with a k — ¢ turbulence model and an
additional equation for the concentration that incorporated a particle settling velocity.
They also applied user defined modules for sedimentation and erosion. Their results
showed good agreement with the lateral spreading of a clay-laden laboratory current.
Corney (2003) conducted an in depth study in 2D and 3D using the commercial software
FLUENT and discusses several solution schemes and options available for that user in-
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terface. The results are vigorously verified and validated and limitations are observed
and acknowledged. Chen and Lee (1999), Zhang et al. (2001), Imran et al. (2004) and
Kassem and Imran (2004) have also modelled gravity current flow using FLUENT with
different conditions and domain configurations. Chen and Lee (1999) and Zhang et al.
(2001) found good agreement with their results and the general features observed in the
laboratory, however their work is only first order accurate in time which has subsequently
been shown to limit validity (Corney, 2005). Imran et al. (2004) and Kassem and Imran
(2004) simulated the flow of a flux initialised current in straight and sinuous, open and
confined channels. There was no reference to grid accuracy tests for verification of the
models but they do acknowledge that their results should be treated with caution until
validated with laboratory data. The analytical and experimental model of Corney et al.
(2006) contradicts Kassem and Imran (2004) thus highlighting the importance of verifi-
cation and validation. It is interesting to note that in a discussion of Corney et al. (2006),
Imran et al. (2008) retrospectively present a qualitative examination of the influence of
changing the grids on the predictions of Kassem and Imran (2004).

4.2.5 Modelling of bed roughness

To the authors knowledge, there is very little gravity current literature that explicitly ex-
amines the effects of bed roughness on the dynamics of gravity currents using numerical
simulations. There have been several studies that model the spread of gravity currents
over topography in planform but without detail of the internal flow structure (e.g. De Ce-
sare et al., 2001, Ozsoy et al., 2001). Ozgtokmen et al. (2003) have numerically modelled
the salinity and temperature distributions and velocity field of the gravity current that
occurs over a natural bed at the Red Sea outflow but this is a case-specific study and
they did not aim to quantitatively study the effects of different roughness parameters
on the flow. In subsequent studies (6zgﬁkmen et al., 2004b; ézgﬁkmen et al., 2004a)
a more analytical approach has been adopted to study the effects of a small scale, O(1
km) (domain size is 10 km long by 2 km wide), ‘bumpy’ bed on entrainment in gravity
currents. Their ‘Nek5000’ code has been used to solve non-hydrostatic governing equa-
tions using a spectral element method (see section 4.2.1 for discussion of this approach).
The bumpy bed is generated by creating a mesh fitted to the geometry. The bumps
are included by specifying a wavenumber factor and an amplitude factor which describe
the frequency and the elevation and depression of the bumps about the horizontal plane
origin, see figure 4.1 (b) — (€). More recently, this study has been extended (Ozgdkmen
and Fischer, 2008) to encompass a rougher bed generated using a similar sinusoidal per-



Figure 4.1: (a) The smooth bed model, (b) — (e) the ‘bumpy’ bed roughness models and (f) the
initial conditions of ézgiikmen et al. (2004a). The domain size is 10 kmx2 km such that the

bumps are of order O(1 km).

turbation to the bottom boundary of the domain and the same numerical approach,

boundary conditions and the majority of the parameters as the previous studies.

Advanced quantitative modelling of bed roughness effects on flow dynamics has been car-
ried out down to very small scales using DNS in 2D and 3D for flow in square ducts with
Reynolds numbers up to =~ 10000. Although this work is not specific to the simulation
of gravity current propagation, it is a highly resolved, rigorously verified example of the
inclusion of bed roughness in turbulent channel flow and several studies are particularly
relevant to the beam-type roughness used in the present study and for illustrating the
progression to modelling more complex forms like dunes. Cui et al. (2003b). Ashrafian
et al. (2004), Krogstad et al. (2005), Ashrafian and Andersson (2006) and Ikeda and
Durbin (2007), among others, successfully use a body-fitted grid around the beam sur-
face which doesn’t require additional forcing function techniques. Cui et al. (2003a)
uses this method for modelling flow over a wavy wall and Yue et al. (2005) and Yue
et al. (2006) apply it to a fixed dune shaped geometry. Several other studies do imple-
ment additional forcing techniques, most notably using the ‘immersed boundary method’
(Fadlun et al., 2000) for the inclusion of 2D square beam-type roughness in 2D and 3D
domains (e.g. Leonardi et al., 2003a, Orlandi et al., 2006) or an analogous ‘force field’
method for 3D flow over a 2D wavy bed (Cui et al., 2003¢). This method allows the
solution of flows over complex geometries without the need of computationally intensive
body-fitted grids. They are particularly useful for irregularly shaped roughness where

body fitted grids would result in grid deformation and introduce additional instability.
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The presence of the elements in the domain is modelled by setting the velocity inside
the boundary and on the surface of the body (which does not necessarily coincide with
the grid) to be zero and then calculatiug the velocity at the first point outside the body
with a linear interpolation with the velocity at the second point outside the body. It
is necessary to increase the number of points in the vicinity of the element in order to
describe the contour of its surface accurately. For example, Orlandi et al. (2006) use a
mesh of 400 x 160 x 128 with 30 points of almost uniformn spacing within the rough layer
and then 130 points above in a nonuniform spacing i.e. nearly 20% of the vertical points
are within the rough layer. The integration of the governing equations requires only 5%
more CPU time with immersed boundaries than without them (Leonardi et al., 2003b).
The results of Cui et al. (2003¢) which compare a body fitted mesh and a force field
method show little difference for flow over a wavy wall. However, their example and the
above studies are for simple 2D geometries that do not result in high cell deformation
with a body fitted method and hence its limitations are not tested.

The numerical modelling of flow in roughened ducts also highlights aspects that require
additional consideration for the modelling of bed roughened gravity currents. As dis-
cuseed previously (section 4.2.3) it is well known that 2D numerical simulations with
smooth bed conditions result in inadequate resolution of the large vortices and therefore
3D models that include lateral vortex degeneration mechanisms are required for greater
accuracy. Leonardi et al. (2004) showed that, for flow in beam-roughened ducts, tur-
bulent vortical structures appear larger in the lateral direction due to the presence of
the elements, suggesting a further requirement in 3D modelling of an equivalent grav-
ity current flow. Ikeda and Durbin (2007) agree that because the flow is blocked by
the roughness elements, the lateral velocity fluctuation is intensified and this cannot be
shown by a 2D model. Studies of the performance of RANS with a turbulence model
against LES and DNS have also been carried out in the context of single phase flow in
beam - ronghened ducts and in channels with fixed dunes. In one LES study, Yoon and
Patel (1996) state that the RANS methods are inadequate for modelling the production
of coherent structures in flow over fixed dunes. However, they also find a limitation
to the LES, it does not adequately account for the upstream flow history. In a com-
parison with LES, Cui et al. (2003b) state that mean velocity profiles calculated with
RANS and a turbulence model represent the flow with reasonable accuracy but that
there are significant differences between turbulence kinetic energy (TKE) distribution
from experimental results and those calculated with the RANS method. Contradictory
TKE distributions around the elements have also been observed when compared to DNS
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(Ikeda and Durbin, 2007).

The study of Ikeda and Durbin (2007) compares the RANS closed with an eddy viscosity
model to DNS, although it should be noted that the RANS model is essentially only
8 2D domain while the DNS is 3D. Their results found that the RANS model gives
the wrong slope for the log layer velocity profile. They suggest that a reason for this
could be that RANS models are calibrated with and dependent on smooth wall data
that may not have the correct empirical value to capture the averaged flow over the
beamn roughness when the geometry is fully resolved. The DNS shows smoothed vortex
streaks parallel to the wall for a smooth surface and highly irregular vortex streaks in
the rough case. The RANS model does not have the capability to predict the log law
displacement caused by these vortices, it is reliant on empirical input which is based
on smooth walls and cannot capture the effect of altered turbulence structure. The
RANS solution also exhibits an elongated reattachment region between widely spaced
elements leading to discrepancies in the modelling of the flow dynamics within the space
between the elements with erroneous consequences for the near bed modelling of the flow
field. Related to this, Cui et al. (2003b) suggest that the RANS approach modified for
roughness is suitable for elements with large distances between them but not for closely
spaced roughness because it does not account for the effects of spacing. Note that it has,
however, been shown that to a first approximation, the closure scheme need not depend
on the type of roughness (Leonardi et al., 2003a).

Several CFD studies on flow in open channels and ducts have also investigated ways
of implementing a more irregular, non-homogeneous roughness. While all of the above
studies apply a no-slip boundary condition on their rough surfaces, some also incorporate
the effect of grain type roughnesses as well as the principle form type discussed above.
A model that can account for any form roughness with any additional grain roughness
is the ultimate aim of many of these studies, including the present work. The main
question for the inclusion of grain type roughness is one of how turbulence is to be
modelled. Proper treatment of the essential features of the low demands a numerical
method that is robust enough to resolve separating and reattaching flow over a surface of
complex geometry, and a turbulence model that is sufficiently accurate to describe such
flows and take into account sand grain roughness (Yoon and Patel, 1996). A strict DNS
would be almost impossible since the mesh size required to resolve down to the scale
of coarse sand, for example, would be prohibitively expensive. The RANS equations
with a turbulence model for closure offer a comparatively simple means of including
grain roughness through the wall functions or in boundary conditions while retaining a
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reasonable size mesh. Yoon and Patel (1996) use the RANS with a k — « model for flow
over a fixed dune with roughness prescribed through a boundary condition on w. It should
be noted. however, that this model has been shown to be inadequate for the modelling for
gravity currents (Corney, 2005). In a similar study, Durbin et al. (2001) use a modified
k — € model with a two-layer approach near the wall and a boundary condition on k.
The former find that their model predicts velocity and turbulence fields and pressure and
friction distributions and flow separation details in general agreement with experimental
data. The latter generates slightly better agreement for these parameters. Durbin et al.
(2001) also highlight a limitation of the k — £ model in its inability to describe the near-
wall zone, essential to this type of study. Hence they use a two-layer approach rather
than wall functions or a ‘low Reynolds number’ maodification.

The primary concern with the use of wall functions is the range of application of the
‘log-law’ used to model the turbulence near the wall and more disconcertingly, the lack
of agreement amongst researchers as to the specification of the two law constants «, the
Von Karman constant, and B whose values in the past have ranged from 0.4 - 0.438
and 5.5 - 6.17, respectively. A summary of different arguments and approaches can be
found in (Patel, 1998). Despite these limitations, the k — ¢ model is widely used in many
areas of fluid dynamics and thus methods for modifying and optimising it for different
applications are widely sought after. For example, for atmospheric flow over hilly terrain
Kim and Patel (2000) and Kim et al. (2000) found that, in particular, the RNG k — ¢
model with a body-fitted grid and roughness specified in the wall functions gave good
agreement with experimental data for the location of separation and reattachment points
and thus the reattachment length (Kim and Patel, 2000). There was also reasonable
agreement with field data for models of four different hill topographies (Kim et al.,
2000). They conclude that their RNG model is suitable for prediction of local scale wind

flow over hilly terrain with or without flow separation.

Although the above methods find good ‘general’ agrcement, the RANS methods have
been shown to be inferior for the resolution of coherent structures about dunes, as men-
tioned in section 4.2.1. With this limitation and the prohibitive expense of DNS, LES
models have been developed that show better agreement with the important features of
the flow. Cui et al. (2003c) carried out a LES study implementing a method that de-
composes the roughness into resolved (form) and subgrid (grain) scale roughness, similar
to flow decomposition performed in LES. Their idea is that larger, resolved roughness
effects the low momentum and energy dependent on a specific roughness configuration
that might be unique to that case study, whereas subgrid scale roughness has less impact
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and is expected to have more common features in a variety of problems and can therefore
be described more generally. Cui et al. (2003c) use a body-fitted grid and a force field
method, as discussed previously in this section. The non-resolved subgrid roughness
is modelled by a random force distribution which involves the specification of a drag
coefficient. Their results show good agreement with experimental data.

Obviously, with the frontal phenomena and instabilities due to stratification involved in
modelling gravity currents, the results and treatments used in flow in ducts may not hold
equivalently. Gravity currents are highly transient due to the continual entrainment of
ambient fluid and they are known to undergo transitions into different regimes at various
stages of propagation. In the presence of roughness, it is highly probable that these
transitions will be modified in some way incurring further modelling requirements. It
should also be taken into account that the aforementioned numcrical models of flow in
ducts are relatively recent research and still restricted by a limited amount of laboratory
work on the topic available for validation (Cui et al., 2003b) despite the fact that research
into flow in roughened pipes has been carried out for several decades and, in general,
has less flow complexities than gravity currents, as highlighted above. To the author's
knowledge, this is the first study to address the lack of both laboratory and numerical
data in the research of gravity current flow over bed roughness and hence does not seek
to achieve such a high resolution within the timescale of the present study.

4.2.6 Summary

Numerical modelling of complex non-linear flows such as gravity currents is a continually
advancing discipline, highly dependent on the computational power available. Clearly, for
the greatest accuracy independently coded, 3D DNS should be carried out. however, this
is not always feasible without coding specialists and access to several processes running
in parallel. 2D RANS with a turbulence model for closure is within the processing
capabilities of even a single processor PC and has been shown to model gravity current
dynamics with reasonable accuracy when treated with careful analysis and awareness of
the model limitations. Similarly, when a commercial code is used, the validity of resuits
is reliant on careful model verification and knowledge of the limitations of the code.

There is a continually expanding amount of literature which documents increasingly high
resolution research on the dynamics of gravity current propagation over smooth surfaces.
However, only a handful of numerical studies have been carried out on the effect of a
more natural bottomn boundary or bed roughness. To the author's knowledge, only the
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studies of Ozgokmen et al. (2004a) aud Ozgokmen and Fischer (2008) have attempted to
carry out any quantitative analysis on the effects that different roughness configuration
might have on gravity currents but sufficient experimental or field data has yet to be
provided for full validation of these studies. Detailed analyses of roughness effects on
equivalent single-phase flow in ducts indicate that care should be taken when using 2D
RANS models particularly with regards to turbulence kinetic energy distributions near

the elements.

4.3 Model setup
4.3.1 General model setup and the lock-box geometry

Continuity and momentum equations

The governing equations are the Navier-Stokes equations for fluid flow, as mentioned pre-
viously. Including the continuity equation, for three-dimensional, unsteady flow, they
can be written as the following set of equations:

7]
5tV (w=0 (4.1)
%+V-(pnn)=—Vp+V-(7)+Pg+E (4.2)

o

where p is the pressure, g is the gravitational acceleration, F is the external body force
(set a8 zero in the present study) and 7 is the stress tensor given by

2
F=p [(Vu+ Vi) - 3V- gl] (4.3)
where 4 is the molecular viscosity and I is the unit tensor.

This is the general system of equations to be used to model flow mass and momentum.
Additional equations to model the two phases of the flow and their interaction and the
required turbulence parameters are presented in sections 4.3.2 and 4.3.3, respectively.

Numerical geometry, initial and boundary conditions

The numerical domain geometry is generated in the mesh generation package GAMBIT
(see FLUENT, 2006 for details). It is maintained as similar to the experimental setup as
possible and encompasses a sub-domain that represents the lock-bax within which cells
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Figure 1.2: Numerical tank geometry with dimensions for the smooth case. Dense fluid (blue)
initialised to the left of the lock with volume fraction 1 and ambient fluid (grey) to the right with
volume fraction 0. The free surface, treated with a symmetry condition is shown in red and the
measurement location is the line Bin 35. Expanded section shows initial part of the 45x417 mesh
with emphasis that the cell length is twice the height. For 3D geometries the domain extends

0.2 m laterally (y) and dy = 0=.

are partitioned (see section 4.3.2) from the rest of the domain to represent the denser
current fluid; a free surface analogy; and a measurement ‘line’ representing Bin 35 (see
later in this section). The mesh used is a hexahedron mesh that divides the domain into
rectangular or cuboid cells, depending on whether the mesh is 2D or 3D respectively.
The cells have height dz, length 6z = 2§z and width dy = §z. The factor two stretch in
the streamwise direction enables reduction of computational cost and since the direction
of flow is primarily horizontal, except at the front, the accuracy of the simulation in
the main body of the flow should not be compromised. Note that Corney (2005) uses
a factor four stretch in the streamwise direction which further decreases computational
expense. However, it has been shown that mesh stretching in the streamwise direction
may significantly disturb turbulent eddies and therefore adversely affect resultant statis-
tical quantities (Ikeda and Durbin, 2007). The stretch factor also has implications when
a rough geometry is included in the bottom wall (see section 4.3.4.1) since an increasing
stretch factor decreases the number of cells present in potentially complex flow regions
between and above the roughness elements, thus decreasing the resolution and therefore

the accuracy in these areas. Since one of the methods of including bed roughness in the
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domain requires a body-fitted mesh (see section 4.3.4.1), it is essential that the cells fit
the geometry without unnecessary distortion. To be consistent with this case, meshes
with the same maximum® number of cells in z, y and z are to be used for the smooth
boundary domain. All length scales of a cell are proportional to the roughness element
height, k., = 0.006 m. Based on this value, two domains were generated with meshes
of 84(x84) x 834 (z x y x 2, where y is only of relevance if the domain is 3D) and
168(x 168) x 1668 cells. In the smooth case another coarser mesh of 42(x42) x 417 cells

was also included for verification purposes, see section 4.5.

The principle features of the domain can be seen in figure 4.2. Gravitational accelera-
tion, g, is specified as (0.0,-9.81) ms~2 and the velocity components are all initialised as
zero throughout the domain, i.e. u. The density of water is set to 998.2 kgm™3 and the
viscosity of water is set to 0.001003 kgm~=s~!. For initialisation of turbulence variables,
see section 4.3.3. The boundary conditions on the bottom and ends of the domain are
get to be no-slip, given by

u=0 (4.4)
A no flux condition holds on the top boundary in order to create an analogy with a

free surface (see section 4.2.2) and thus the following condition, equivalent to a free-slip,
symmetry boundary, is imposed:

Ou _ ov _
w=0, Y i (4.5)

It is possible to model a free surface, for example using another multiphase flow model for
the interaction of water and air, however, this would cause further computational expense
and the disturbance to the free surface during experiments was seen to be negligible. It
should also be noted that in a deep submarine context, the free surface would be far
above the current and again its effects would be negligible.

A further condition on the model is the time step. This prevents information passing
all the way through one computational cell in a single time step and thus prevents loss
of information and inaccurate solution. The condition i8 spccified using the Courant-
Friedrichs-Lewy (CFL) limit given by the following expression:

uat

o < 1 (4.6)

where U is a characteristic velocity scale of the simulation given by / Tho/2. 6t is the
size of the time-step and dx is the streamwise length of a cell. The streamwise length

*Some rows or columns of the domain will have voids where there are no cells due to the presence of
the roughness geometry, thus the number of cells along them will fall below the maximum.
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Mesh No. cells 82(= éy = 1/26z) (m) ot (s)
Coarse 42 x 417 0.006 0.02
Mediumn 84 x 834 0.003 0.01
Fine 168 x 1668 0.0015 0.005

Table 4.1: The number of cells used in the mesh of the domain and the vertical length of a cell
corresponding to that mesh tabulated with the respective time-steps. The meshes are defined as
coarse, medium sud fine for qualitative description. The number of cells is given only for two
dimensions since the number of lateral cells is identical to the vertical. The values of 4z are
proportional to the height of the roughness elements when a body-fitted domain is used and 6t is
calculated using dr and a characteristic velocity defined by \/m in the present study. Note
that the coarsest mesh is only used in the smooth case for the purpose of verification.

scale is used in preference to the vertical or lateral equivalents since this is perceived as
the primary direction of flow. Using equation (4.7) and a value of ér dependent on the
particular mesh in use, the value of the time-step Jt can be calculated. In the present
study, the time-step is multiplied by a ‘safety’ factor of 1/2 for all simulations as used
by Daly and Pracht (1968) and Corney (2005). i.e. half the CFL limit. This results in

an actual time-step given by

oz
8t =or 4.7)

Note that if U is replaced by uy, found empirically, the limit given by equation (4.6) still
holds since the characteristic velocity scale, U, is always greater than the experimental
value of uy due to its use of the conservative approximation hy = ho/2. For example, for
a 5% excess density current with the tank dimensions of the present study and éz = 0.012
(i.e. the 42 x 417 coarse mesh), U = 0.248 ms~!, while u; = 0.153 ms~! (see section 2.5)
resulting in time-steps calculated using equation (4.7) of 6t = 0.02 s and 8t = 0.04 s,
respectively. A summary of the number of cells, their dimensions and the corresponding
time-steps used for each mesh can be found in table 4.1.

4.3.2 Multiphase flow model

FLUENT has three integral multiphase flow options, the Euler, mixture and volume of
fiuid (VOF) models which use an Euler-Euler approach whereby the phases are consid-
ered interpenetrating continua, and a discrete phase model that uses an Euler-Lagrange
alternative in which the governing equations are solved for the fluid phases and then a
dispersed phase is solved by tracking particles through the calculated flow field. This
latter method is not suitable for liquid-liquid flows, such as gravity currents, or scenarios

where the secondary phases have high volume fractions since the number of particles re-
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quired, and hence the computational cost, becomes prohibitively large. Under rigorous
analyses, it has been shown that none of these models can truly account for the mixing
that occurs within a gravity current flow and generally tend to over-(mixture model) or
under-(VOF model) estimate this process (Corney, 2005). The nature of the multiphase
flow models available also limits the accuracy of the entire simulation to first order in
time, which has substantial effects on the validity of the results (Corney, 2005).

Scalar transport equation

To overcome these limitations in the model, Corney (2005) developed a method for the
inclusion of a second phase of flow by adding a time dependent transport equation for
the concentration, C, given by the following:

2+ (p4C) = V- (p5,9C) (48)
where x, = 5.22 x 10~° m?s"1 is the coefficient of the diffusivity of the salt solution in
water (Gebhart et al., 1988). Note that the FLUENT solver requires a “mass diffusivity”
that is specified as 5.2106 x 10~® kgm?s~1. If the density of the ambient and current
fluids and the diffusivity of the saline solution in water are assumed to be constant, it is
possible to generate a gravity current by modelling the transport of concentration with
the above cquation (4.8) and a uscr-defined source term, i.c. by specifying a function
for pg+ F in equation (4.2) that is dependent on C. However, Corney (2005) proved
that the current model is more accurate since it enables the density to vary in space and
time and the diffusivity, x,, to be a function of turbulence which is a more intuitive,
physical condition since the turbulence should enhance the mixing of the saline gravity
current with the surrounding water. Hence, the present method sets F = 0 and models
the transport of concentration throughout the domain with equation (4.8) and maps this
to the density field using a user-defined function (UDF's), written in the C programming

language, given by
p=puw(l - C) +p,C (4.9)

For the fluid in the domain, equation (4.9) means that when C = 0, the density reduces
to the density of clear water, gy, and increases linearly to p,, the initial and maximum
density of the gravity current, when C = 1. In order to enable the effects of turbulence
on the diffusivity of the saline fluid in the water a turbulent diffusivity, x¢, was added to
the laminar diffusivity, x,. The fluid viscosity, v, in the momentum equations is modified
when turbulence is present so that the viscosity distribution is variable throughout the
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flow field. Thus, the expression v + 14, where v, is the eddy viscosity, is used so that v,
can be defined separately, dependent on the model. The turbulent diffusivity of salt into
the ambient water can be expressed in the same way and therefore in equation (4.8) x,
is modified to read (x, + x¢). x¢ can be calculated using the Schmidt number, Sc, which
is the ratio of the turbulent eddy viscosity to the turbulent diffusivity of mass, given by

Sc=— (4.10)

To determine an exact value for Sc would require experimental information beyond the
capabilities and time of the present study. However, it has been shown that the exact
value of Sc does not effect the results (Rehm et al., 1995). It still remains to specify
a value for the calculation of x;. Hartel et al. (2000b) state that the Schmidt number
should be of order one and adopt the value Sc = 0.71 in their simulations. Hence, the
present study uses a value of Sc = 0.7.

Initialising the ‘second phase’

The second phase, which represents the dense current fluid, is created by ‘patching’ a
region into one end of the domain within which the volume fraction or concentration of
fluid, C, in the cells is initialised as 1, while in the rest of the domain it is initialised as
0. Thus, by equation (4.9), dense fluid is initialised in this region creating the lock-box,
see figure 4.2.

4.3.3 Turbulence model

Reynolds-Averaged continuity and momentum equations

Since this study requires the use of a turbulence model and does not intend to use LES
or DNS, Reynolds-Averaging is performed. The solution variables are decomposed into
the mean (time-averaged) and fluctuating components, for example for the horizontal
velocity:

u=t+u (4.11)

where ¥ and u' arc thc mcan and fluctuating parts, rcspectively. Equation (4.11) and
similar expressions for the other two components of velocity, the pressure and concen-
tration are substituted into the exact Navier-Stokes equations, (4.8) and (4.3), and a
time average is taken resulting in the Reynolds-Averaged Navier-Stokes equations, as
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discussed in section 4.2.1. Further details of the averaging pfocess can be found in Har-
tel (2000) or FLUENT (2006). Equations (4.3) and (4.2) become (in cartesian tensor

form):
dp , Opu; _
ot z; 0 (4.12)
Bpui | Opuiv; _ _Op _8_[ (a,,u.- dou; 2. Bpw O, —=r
ot + 81‘,' - 81?.'+8:L'j » Bg:j + Oz, 35‘1 oz, +E(—P“:u;))] (4.13)

where the overbar has been dropped for simplicity. They have a very similar form to
the exact equations but the solution variables now represent time-averaged values. The
obvious difference is the additional terms that represent the effects of turbulence, i.e.
the Reynolds stresses, —pu/u/ in equation (4.13). These must be modelled in order to
achieve closure of equation (4.13). For most of the RANS based turbulence models, not
including the Reynolds stress model (RSM), FLUENT uses a Boussinesq approach to
model the Reynolds stresses and lower computational cost. This involves the following
expression that relates the stress terms to mean velocity gradients:

_,;;5;..= e (g—:j + %) - g (k + m%) 0ij (4.14)
where £ is the turbulent kinetic energy which is calculated using a transport model, de-
pendent on the turbulence model selected and ; is the turbulent viscosity, and function
which depends on the turbulent variables solved by the turbulence model. The main lim-
itation of the Boussinesq approach lies in the assumption that this value is an isotropic
scalar quantity which does not always hold. The RSM model avoids the necessity for this
by solving seven equations (five in 2D) including the transport of the Reynolds stresses
and the dissipation rate. However this is computationally more expensive on average
and using FLUENT has been found to take longer to converge in some cases and require
50-60% more CPU time and 15-20% more memory compared to k — w and k — £ models
(FLUENT, 2006).

Turbulence transport equations

The turbulence model used in the present study is the RNG k — £ model given by the
following equations for the transport of the turbulence quantities turbulence kinetic en-
ergy, k, and turbulence dissipation ¢:

8pk = Opku; o Ok
-8T+ &t" = EL'-; (akueffbx—j) +Gr+Gp—pe— Yy + Si (4.15)
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8p€ Opeu; _

0 Oe 2
8‘ 81‘. 81' (a:l‘eff&t ) + Cley (Gk + C3.Gy) - Czep% -R.+S. (4.16)

The unfamiliar terms present in these equations are defined as follows:

G represents generation of mean TKE due to mean velocity gradients and is defined as
—puju M"‘ which can be expressed in a manner consistent with the Boussinesq approach
in the form

Gy = 2#;3.‘,‘3.‘_,' (4.17)

where S is the mean rate-of-strain tensor (s™1).

G) represents the production of turbulence due to buoyancy and is given by the equation:

(4.18)

where Pr, is the turbulent Prandtl number. TKE tends to be augmented in an un-
stable stratification, Gy > 0, but the buoyancy cffects suppress turbulence in a stable
stratification, G, < 0. Note that equations (4.18) and (4.17) hold for all k — £ models.

The term Y, in equation (4.15) represents the ‘dilation dissipation’ and describes the
way that compressibility effects turbulence. It is given by the equation:

Yo =2peM? (4.19)

where M, is the turbulent Mach number, described as M; = |/% and , is the speed of
sound. This function is not relevant in the present study since the flow is incompressible,

however, it is included here for completion.

The scale elimination procedure in RNG theory resuits in the following differential equa-

tion for turbulence viscosity:

k
where © = p.gp/p and C, = 100. Integrating this equation enables the model to ac-
curately describe how the effective turbulent transport varies with effective Reynolds
pumber so that it can handle low Reynolds number and near-wall flows more efficiently.
At the high Reynolds number limit, equation (4.20) results in the following expression

-l (21)
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where C, = 0.0845 has been derived using the RNG theory and is notably close to the
standard k — £ model value of 0.09. By default, FLUENT adopts equation (4.21) to
calculate the cffective viscosity, however, it is an option to use equation (4.20) where low
Reynolds number dynamics are involved.

The term R, in equation (4.16) makes the RNG model more responsive to the effects
of rapid strain and streamline curvature than the standard model and is given by the

following:

Cupr3(1 = na/m0) €2
1+ Bomd k

where 1, is equivalent to Sk/e, o = 4.38 and 3 = 0.012. Thus, depending on the
magnitude of the strain, S, either 5, < no or 1, > 1o resulting in a positive or negative

R. =

(4.22)

contribution to equation (4.16), respectively.

The inverse effective Prandtl numbers, a; and a, are derived analytically by the RNG
theory and calculated using the following formula:

0.6321 0.6321

o — 1.3929 a + 2.3929 _ M
1-1.3929 1+2.3929 iy (4.23)

and in the high Reynolds number limit, where u/pu.rs < 1, ax = a¢ =~ 1.393.

The model constants Cj, and Cj. are also derived analytically by the RNG theory and
have default FLUENT values of 1.42 and 1.68, respectively. Si and S, are user-defined

source terms.

The RNG k - & model has been used with success in previous research on gravity currents
(see section 4.2.1) and is suggested by Corney (2005) to be the most appropriate of the
RANS turbulence models available in FLUENT, with respect to accuracy and compu-
tational cost!. The RNG k — € model differs from the standard k — ¢ model through
the additional terms and functions in the transport equations for k and £ ((4.15) and
(4.16), respectively) and in the model constants. It is derived using a rigorous statistical
technique called renormalisation group theory (Choudhury, 1993). The influential addi-
tional term, R, (equation (4.22)), appears in the ¢ equation and significantly improves
the accuracy for simulations of rapidly strained flows. While the standard model uses
user-specified constants for the turbulent Prandtl numbers, the RNG theory adopts an
analytical formula, equation (4.23). It also provides an analytically derived formula for
the effective viscosity that accounts for low-Reynolds-number effects, equation (4.20).

tCorney (2005) carried out a rigorous test on the accuracy of all of the turbulence models available
in FLUENT and differcnt muitiphase obtions for modelling lock-release gravity currents.
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The changes also result in the inclusion of the effects of swirl on turbulence, enhancing
the accuracy for swirling flows. Due to these extra terms and functions and a greater
degree of non-linearity, simulations undertaken using FLUENT have been found to take
10-15% more CPU time that with the standard k£ — £ model (FLUENT, 2006). How-
ever, where the standard model is known to be slightly over-diffusive the RNG model is
designed so that under high rates of strain the turbulent viscosity is reduced. Although
this means that the model is more susceptible to instability, since the stabilising effects of
diffusion are reduced, the result is a model that is more responsive to important physical
instabilities such as time-dependent vortex shedding.

Initialisation of k and ¢

For unsteady calculations using a k — &€ model, as in the present study, the solution after
a sufficient amount of time has elapsed should be independent of the initial values of
k and £. However, for better convergence and thus a more cost efficient simulation it
is beneficial to prescribe reasonable initial estimates for k and . In the majority of
experiments fluid is initially ‘quiescent’ and therefore there is little attention given to
the values of these variables prior to flow commencement and with reasonable cause: k
would predictably be so small that very high specification equipment would be required
to carry out this analysis and thus it is often taken as negligible. In general, FLUENT
(2006) suggests initialising with a fully developed turbulence state, which for complex
flows (defined in this context as flows with multiple in/outlets and boundary conditions)
it recommends specifying the initial values in terms of turbulence intensity, I;, where an
intensity between 5-10% should be considered in the fully turbulent regime. With this
parameter, an initial guess for k can then be calculated using the following formula:

k = 15(LU)? (4.24)

where U is the characteristic mean velocity magnitude of the problem, i.e. U = /¢ho/2.
In order to calculate an initial guess for ¢, the condition that the eddy viscosity, iy =
C,,A';, is large in comparison to the molecular viscosity, u, is implemented. This is based
on the assumption that in fully developed turbulent flow, 4., given by equation (4.21), is
approximately two orders of magnitude larger than ut. Hence, an initial approximation
for £ can be calculated from the following equation:

¥Note that Chen and Lee (1999) state that u, < 0.001 which would imply the opposite of the
condition suggested by FLUENT (2006). They do not specify the exact input values that they use as
a result of this. only that they are ‘negligibly small’ therefore it is not possible to qualify if this is a
supcerficial error or not.
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The estimated initial conditions for 1% and 5% density excess gravity currents, calculated

with the tank geometry of the present study can be seen in table 4.2.

p excess k (m%s~2) e (m%s73)
1% 46 x107°% - 1.84 x 1074 1.78 x 1076 - 2.85 x 10~
5% 23x1071-92x%x10"1 446 x 107 - 7.13 x 1074

Table 4.2: The range of initial estimates for & and € for the present study, calculated using
equations (4.24) and (4.25) as suggested by FLUENT (2006), for gravity currents with initial
density excesses of 1% and 5%. The equations assume turbulence intensity in the range of 5-10%
thus implying fully developed turbulence. The values shown represent the limits of this range.
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Figure 4.3: Contours of concentration at ¢ = 9.5 s calculated using the simulation conditions
of Corney (2005) after Hacker et al. (1996) experiment 1. The tank was 3.5 x 0.2 m with lock
dimensions zy = 0.3 and H = 0.2. The value of turbulence kinetic energy used to initialise the
calculations increases by an order of magnitude from (a) 0.01 to (&) 0.000001 m~2s~2. (b) shows
the result obtained by Corney (2005).

As discussed in section 4.2.2, Corney (2005) uses a value of 0.001 to initialise k and &
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Figure 4.4: Contours of concentration at ¢ = 6 s calculated using the simulation conditions of
Corney (2005) after Hacker et al. (1996) experiment 2. The domain is 3.5 x 0.4 m with lock
dimensions zy = 0.4 and H = 0.4. The value of turbulence kinetic energy used to initialise the
calculations increases by an order of magnitude from (a) 0.01 to (e) 0.000001 m~2s~ 2. (b) shows
the result obtained by Corney (2005).

which appears to have been selected arbitrarily. However, calculations using the above
conditions with a 1% density excess and a 0.1 m high tank (i.e. 2y = 0.1), as used in that
study suggest that values for k and ¢ should lie within the ranges 1.84x 107> —7.36 x 10~°
and 2.85 x 107° — 4.57 x 108, respectively. i.e. at least two orders of magnitude smaller
than used. Thus, although the solution should be independent of the initial values of
k and ¢ aflter sufficient time has elapsed and if convergence at each time step has been

monitored, clearly this is not the case.

In order to study the effects that these values are having on the solution, two of the
experiments of Hacker et al. (1996) (experiments 1 and 2 therein) were computed with
the same model as used by Corney (2005) (model UDS; 5 therein) but with k and ¢
both initialised with values of 0.01, 0.001, 0.0001, 0.00001 and 0.000001. According to
equations (4.24) and (4.25) with the density excess and tank height from the experiments

of Hacker et al. (1996), k and ¢ should be initialised within the ranges shown in table 4.3.
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Exp. no. k (m3s~2) € (m?s~3)
1 45%x10%-18x10"* 1.71 x 106 - 2,73 x 10~3
2 90x10"%-36x10"4 6.83 x 107 - 1.09 x 10~4

Table 4.3: The range of initial estimates for k and ¢ for experiments 1 and 2 of Hacker et al. (1996),
calculated using equations (4.24) and (4.25) as suggested by FLUENT (2006). The equations
assume turbulence intensity in the range of 5-10% thus implying fully developed turbulence. The
values shown represent the limits of this range.

Corney (2005) uses comparisons with these experiments as part of the validation process
for his model, however it can be seen in figures 4.3 and 4.4 that there is a substantial
difference in the solution domain for initial values k£ = ¢ < 0.0001. It can be seen in
table 4.3 that a value of 0.0001 is of the samne order of magnitude as the upper limit
of the range suggested by FLUENT (2006). Once below this value little change can be
observed which implies that the upper limits calculated using I; = 10% in equations
(4.24) and (4.25) are a good guide for maximum initial values of k and ¢. In the present
study, a value of k = £ = 0.000001 was used.

Wall functions

Simulations of wall-bounded turbulent flows require careful treatment in the near-wall
region. In this part of the domain, very near the wall, where the no-slip, no-flux bound-
ary conditions must hold, turbulence is damped. However, as distance from the wall
increases, large increases in the gradients of the flow variables occur and vigorous mo-
mentum and scalar transport result in increased production of turbulence kinetic energy.
Typically, these near-wall characteristics are identified by a boundary layer divided into
three layers: a viscous sublayer, an cuter layer and a buffer layer in which the forces
governing the former two layers are of equal importance and the transition from one to
the other must occur. As a result of these characteristics, the walls are a primary source
of mean vorticity and turbulence and therefore inaccurate modelling of this near-wall
region has significant implications for the validity of the numerical solutions. Gravity
current propagation is governed by the ‘nose’ region which is highly dependent on the
bottom boundary (Simpson, 1972; Hartel et al., 2000b). Thus, accurate treatment of
the near-wall region which is subject to substantial spatial and temporal variations, is
of tantamount importance in the present study.

For exact computation of the flow under examination, the governing equations have to

be solved throughout the entire domain right up to the boundaries. If a low Reynolds
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number model is used (e.g. the Spalart-Allarmas model) the flow field is solved up to
the walls but these methods introduce further modelling uncertainties and require very
fine meshing in the near-wall region to resolve the high spatial gradients with potentially
massive increase to the computational cost. They have also been shown inadequate for
modelling gravity currents (Corney, 2005). Alternatively, there are several turbulence
models (k — €, RSM, LES) specifically derived to capture high Reynolds number flow
that cannot represent the viscous layer since they neglect important viscous effects near
the wall and treat the boundaries with wall functions that effectively bridge the gap to
overcome this problem. This method depends on placing the first grid point near the
wall within the fully turbulent logarithmic layer, i.e. y* > 11.225 where y* is a dimen-
sionless wall unit given by

L
y+ = ﬂL—r-y (4.26)

where u, is the shear velocity defined using the wall shear stress, 7, by /7o/p5. Nu-
merous experiments have proven that the law-of-the-wall is valid in this layer, and hence
the following equation can be used to find the wall shear stress,

u 1, pu,
o nlﬂ p y+Cr (4.27)

where C, = 5.5. If y* < 11.225, i.e. within the viscous sublayer, the wall shear stress is
calculated by treating the flow as laminar.

Due to the complex spatial and temporal variations at the wall involved in gravity current
propagation, ideally a dynamic mesh would be used that can ensure that the first grid
point is located within the logarithmic layer. However, strict boundary layer mesh would
be dependent on the physical flow and therefore not subject to mesh refinement required
by most verification procedures which would involve the inevitable relocation of this vital
grid point and possibly subsequent solution misrepresentation. The present study uses
wall functions and does not implement a dynamic meshing hence care must be taken
when conducting refinement studies to check that the first grid point near the wall falls
within the logarithmic layer.

$The boundary layers can be subdivided with y* < 5 lying within the viscous layer, 5 < y* < 30 in
the buffer layer and 30 < y* < 300 in the logarithmic layer however it is quite common to dispose of
the buffer layer by linking the linear velocity profile in the viscous sublayer to the logarithmic velocity
profile in the inertial (logarithmic) sublayer adopting an abrupt change from purely viscous stress to
purely turbulent stress at y* n 11.225 (Tennekes and Lumley, 1972).
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4.3.4 Bed roughness

Different methods for the inclusion of bed roughness within the domain have been dis-
cussed in section 4.2.5. In order to compare to the experimental data and to obtain a
range of roughnesses, including more natural roughness like dunes, methods that allow
the inclusion of a form or a grain type roughness or a combination are used. A body-
fitted mesh is used for the larger scale form roughness and a law-of-the-wall model for

the grain roughness.
4.3.4.1 Body-fitted approach

The body-fitted mesh approach has been adopted successfully in previous studies for
single-phase flows, see section 4.2.5. Since the cells used in the present study are rectan-
gular (or cuboid in 3D) and proportional to the size of the bodies (roughness elements),
rigorous body fitting equivalent to that performed in these previous studies is not neces-
sary and no cell distortion occurs. However, the principle involved in the approach, i.e.
changing the mesh to incorporate voids representing the bed geometry (in comparison to
wsing a ‘force field’ method) still holds, and hence the term ‘body-fitted’ is maintained
in the present context. The majority of the mesh geometries used in the present study
represent the beam type roughness. As in the experimental work in section 2, the beams
have dimensions 0.006 x 0.006 m and have been designed so that they have no lateral
variation enabling direct comparison of 2D and 3D results. One interest of the present
study is in the quantitative analysis of the effects of element spacing on gravity currents.
As mentioned in chapter 2 the following terminology is used as shorthand to describe
the element in use: beamspeight,spacing: Where beams is a qualitative description of the
element, height is the maximum element height k. (mm) and spacing is the ratio of
the distance between adjacent elements and the height w/k,. For example, beamsg
refers to the beam type roughness with equal height and spacing of 6 mm. The coarsest
mesh used with this method is the equivalent of the 84 x 834 ‘medium’ mesh used in the
smooth case. It is not possible to use the 42 x 417 mesh since the height of the cells in
that case is identical to that of the elements and for the beamsg 2 case, also identical to
the spacing between them.

A diagram of the domain mesh and cell configuration with roughness elements included
via the body-fitted approach can be scen in figure 4.5. The length scales that are used
in the quantitative analysis of the roughness effects of the beam-type roughness are also
depicted. It can be seen that the cell dimensions have not been altered in the vicinity
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Figure 4.5: Numerical tank geometry with dimensions for the rough cases. Dense fluid (blue)
initialised to the left of the lock with volume fraction 1 and ambient fluid (grey) to the right
with volume fraction 0. The free surface, treated with a symmetry condition is shown in red and
the measurement location is the line Bin 35. Expanded section shows mesh in the lower half of
the domain in the vicinity of the lock partition. The wall geometry to the left of this divide is
smooth while to the right the computational mesh has been fitted to the roughness geometry.
The geometry shown is the beamg2 beam roughness along with the length scales used in the
quantitative analysis of roughness effects in chapter 5. The mesh equivalent for a smooth bed
is the 84 x 834 ‘medium’ mesh, this is the coarsest mesh used in the body-fitted approach to
modelling the bed roughness. For 3D geometries the domain and the roughness elements extend
0.2 m laterally (y) with no variations in this direction.

of the elements. This is because any clustering or grading of the cells in these regions
would involve further cell stretching and the associated negative effects of increased
diffusion, or require mesh adaption incurring additional computational expense beyond
the processing capabilities of the present study. In fact, a graded mesh where cells
near the top boundary of the domain were chosen too large could result in substantial
inaccuracies in the modelling of the ambient return flow and consequently the inaccurate
computation of the gravity current itself in other regions. Hence, without a vigorous
analysis of different mesh grading ratios it would be difficult to select an appropriate

mesh to avoid these complications.

Limitations

The method is limited by the shape of the bodies or elements that can be fitted without
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cell distortion or mesh refinement. The present work uses a quad mapping to mesh the
domain. For example, to model a hemispherical roughness element with rectangular
cells, a stepped pyramid analogy would initially be used. Obviously, the accuracy of
the analogy increases with the decrease in cell size and the subsequent increase in the
number of ‘steps’ in the pyramid, such that it tends towards a hemisphere as the cell
size becomes very small. However, the computational cost increases in proportion to
the decrease in cell size. In the present work, rectangular cells are used for all of the
roughness types modelled with the body-fitted approach, hence the coarse sand and glass
spheres are not covered.

The most inhibiting limitation results from the number of cells that can be fitted between
the roughness geometry. In order to model the secondary motion that is assumed present
between the elements, enough cells must be placed in this region. However, since wall
functions are being used, the mesh must not violate the y* conditions essential for wall
functions to hold (see section 4.3.3). Note that this limitation might suggest better use
of a different turbulence model, however, (Corney, 2005) showed that a high Reynolds
number turbulence model is required to capture the turbulent core of the flow and
therefore wall functions are required.

4.3.4.2 Law-of-the-wall approach

This method also essentially enables the inclusion of a grain type roughness that can be
used alone or in conjunction with the body-fitted approach to generate a composite (grain
+ form) roughness on the bed (e.g. Durbin et al., 2001). As has been used in models for
single-phase flow the FLUENT software provides the option to include roughness at the
boundaries by specifying an equivalent roughness height (or physical roughness height
if a grain roughness is used), k,, and a roughness constant, c,, in the conditions panel
for the boundary required. This activates extra terms in the wall functions which are
used by the governing equations during solution hence altering the low dynamics. The
law-of-the-wall, given for the smooth case by equation (4.27), for the rough boundary is
now given by the following

u _1, pu,
; = ;lnTy +C, - AB (4.28)

where AB represents the velocity shift away from the mean velocity distribution for a
smooth bed. As discussed previously, there is no generally accepted universal roughness
function valid for any type of roughness but for sand grain roughness and similar acale,
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homogeneous roughness elements, AB can be correlated to the dimensionless roughness
height k; = 84 k, is a sand grain roughness height (or equivalent roughness height)
calculated empirically as in section 2.3. Turbulent flow is classified into three regimes
identified by the value of k;. Thus, AB is defined differently depending on the perception
of the flow at the boundary:

Hydrodynamically smooth: k < 2.25

AB=0 (4.29)
Transitional: 2.25 < k} < 90
1. [kr -225 .
AB=in [_-57_'75___ + c,k;"] 8in0.4258(Ink; — 0.811) (4.30)
Fully rough: k' > 90
AB = %ln(l +eok}) (431)

The method of calculation for ¢, is undefined (FLUENT, 2006) except that a value of 0.5
is proposed to agree with the results of Nikuradse (1933) for sand roughened pipes. They
suggest higher values, 0.5 < ¢, < 1 might be more appropriate for other roughnesses, for
example ribs and wire mesh. Without and accurate guideline, in the present study c, is
assumed to lie between 0 and 1 and is thus taken as 1 to imply maximum effect. Given
the roughness parameters, the solver calculates AB(k]) using one of the formulae given
by equations (4.29), (4.30) and (4.31) to modify equation (4.28) and hence calculate the
shear stress at the wall and other wall functions. Although it does not physically alter
the geometry of the domain, when used in 2D this method enables the incorporation of
more 3D effects since the k, values are generated directly from experimental data and
hence are subject to 3D flow dynamics.

Limitations

One limitation of this method is that the chosen roughness height, k,, cannot be higher
than the distance to the centroid of the wall adjacent cell in order to be properly incor-
porated into the wall functions. This means that the mesh either has to be adapted so
that the wall adjacent cell is larger than the general mesh size if a small mesh is required,
or that the roughness height for the simulation has & maximum dependent on the mesh
in use. The former of these solutions would mean a decrease in resolution near the bed

which is not acceptable in the simulation of gravity currents in which accurate solution
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of the flow dynamics near the bed are particularly important to the main body of flow.
Further problems with resolution would arise with inter-element cells when using this
method in conjunction with the body-fitted approach. Thus, in the present study. the
range of k, values and hence grain roughness modelled with this approach is restricted
to those that are smaller in height than the distance to the centroid of the wall adjacent
cell, e.g. 0.0015 for an 84 x 834 mesh.

Another drawback of this method is the dependency on empirical values and the law-of-
the-wall asswnption. It has been contested that the equivalent roughness, k,, is a bad
parameterisation of roughness resulting in very different roughness geometries having
very different effects on the turbulent stresses but with nominally identical roughness
functions (AB)(Krogstad and Antonia, 1999). Hence risking misrepresentation of the
required roughness with potentially serious inaccuracies in the flow ficld. The use of
the law-of-the-wall is also still under dispute in single-phase flow applications. However,
gince there is no consensus on an alternative approach and DNS is not an option, the
law-of-the-wall method, with an equivalent roughness k, value is adopted as one method

in the present study.

4.4 Solution procedure
4.4.1 Numerical schemes

FLUENT uses a control-volume based technique that divides the domain into discrete
control volumes using a computational grid. The governing equations are integrated over
each control volume to generate algebraic equations for each dependent variable. These
discretised equations are linearised and the resulting system of equations is solved to
obtain updated values of the dependent variables in each computational cell. A descrip-
tion of all the available numerical schemes including the linearisation and discretisation
schemes used in the present study can be found in most comprehensive CFD texts, for
example Hartel (2000), and more specifically, at FLUENT (2006) and are therefore not
covered in detail herein.

The QUICK scheme was used for the solution of the momentum equations and transport
equations for scalar and turbulence quantities. A second order accurate, implicit time-
stepping scheme was used for the temporal integration of the governing equations. The
PRESTO! scheme was used for the pressure interpolation and the SIMPLE scheme was
used to treat the continuity equation for pressure-velocity coupling. The under-relaxstion
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factors were defined as the following: pressure 0.3, density 1. body forces 1, momentum
0.7 and concentration 0.2.

4.4.2 Solver

In the present study a segregated solver is used in FLUENT to solve the governing inte-
gral equatious for the conservation of mass and momentum, concentration and turbulence
quantities. As the name suggests, the equations are solved sequentially, i.e. segregated
from each other. This is an implicit solver with the following steps performed at each

iteration:

1. Fluid properties updated: Including the user-defined fluid density and diffu-
sivity. If this is the first calculation the values are based on the initialised solution.

2. Velocity field updated: u,v and w momentum equations solved in turn with

current values of pressure and face mass fluxes.

3. Pressure and velocity fleld corrected: Velocities in step 2 may not satisfy the
continuity equation, thus a ‘Poisson-type’ equation is derived from the continuity
and linearised momentum equations to determine the pressure correction. The
solution of this equation gives the necessary corrections for the pressure and velocity
fields and face mass fluxes such that continuity is satisfied.

4. Concentration and turbulence fields updated: Using the previously updated
values of the other variables.

5. Check for iterative convergence.
6. Stop: If convergence has been achieved, solution stops and proceeds to the next

time-step. If not, steps 1-5 are repeated.

Several iterations of this solution loop are usually required before a converged solution
is obtained because the governing equations are non-linear and coupled.

4.4.3 Data capture

A virtual ‘line surface’ is located within the computational domain in the same position
as the bin in the laboratory experiments and exports text data files of the required flow
variables every quarter of a second (except in the 42 x 417 case where the time step
size prevents multiples of 0.25 and is sct to record every fifth of a second). This line
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is purely for post-processing purposes, it is not a boundary entity and the rest of the
computational domain is unaware of its presence. The data is reported at the points
where the line intersects a cell face and hence at regular intervals since the mesh is not
graded. Note that these points do not necessarily correspond to the exact locations of
the probes in the experiments and hence the data is either presented for the depth of
the entire flow domain at every cell height or in post-processed form, interpolated to
compare more exactly with the experimental data. Which presentation format is used
depends on the analysis required. The solver is set to export text data files of flow
variables throughout the entire domain after every three minutes of flow time. A UDF
finds the frout position of the current cvery quarter of a sccond (again except in the
42 x 417 cell case) and exports its location to a text file. Post-processing of the text data
files is performed using Matlab scripts.

4.5 Model verification and validation procedures

4.5.1 Verification

A CFD simulation may have the physical characteristics of the required flow but this
does not automatically mean that it is verified to truly represent the original governing
equations (Bombardelli et al., 2004). In fact, when the governing partial differential
equations of a problem are transformed into finite difference equations, they cannot be
considered truly equivalent due to truncation errors introduced in the transformation.
These errors can result in some numerical schemes solving a set of equations that are
not consistent with the actual governing equations. In the present study. three methods
of model verification are employed: Monitoring of the flow variable residuals during
iteration which is used as a convergence parameter during solution and an analytical
method by which a grid convergence index (GCI) for the meshes is calculated using
a mesh refinement/coarsening technique (Roache, 1994) in order to verify spatial and
temporal convergence. The actual process of verification of the models is carried out for
2D and 3D models in chapters 5 and 6, respectively.

Iterative convergence

The segregated solver is implicit and therefore the calculations are dependent on initial
guesses which are iterated upon until convergence is achieved. Iterative convergence can
be monitored within the FLUENT solver by calculating the sum of the residuals of each
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of the conserved variables after each solver iteration. With infinite computer precision,
the residuals will vanish as the solution converges. With realistic levels of precision,
the residuals decay to a small value and then level out. When the residual decreases
by a specified order of magnitude the solution is said to have iteratively converged. In
the present study, the level of convergence is set to three orders of magnitude. In this
way the results do however depend on the residuals of the early iterations and therefore
on the suitability of the initial guess. If the initial guess is not good for some reason,
the initial residuals will be very large and whatever reduction in order of magnitude has
been selected to quantify convergence, convergence is not guaranteed. Conversely, a very
accurate initial guess would result in little decrease in residuals and hence several orders
of magnitude decrease could not be expected.

The procedure for monitoring the residuals is the same for all conserved variables and is

demonstrated for u:

After discretisation, the conservation equation for u at a cell p can be written as

Gplup = Z Gublinb + b (4.32)
nb

where ay, is the centre coefficient for the cell, a,,; are the influence coefficients for the
neighbouring cells and b represents the source term including boundary conditions. Note
that the above notation is standard notation in control volume methods (Versteeg and
Malalasekera, 1995). The residual R* that is calculated by the segregated solver is the
summation of the imbalance in equation (4.32) over all the computational cells p. This
can be expressed as follows:

R =) |3 cnum +b—apup (4.33)
cellsp| nb

where R* is called the ‘unscaled’ residual. Convergence is difficult to judge without
scaling, take for example the computational lock-box domain of the present study, there
is no inlet flow condition for u (or any of the other variables) with which to compare
the residual. 'To overcome this, FLUENT uses a scaling factor to represent the variables
throughout the domain in order to scale the residual equation (4.33). With this scaling
employed, the ‘scaled’ residual can be defined as

= Zcellc p lan GnbUnp + b — aP“P'
Dcella p laptip]

This is the residual formula used as an indicator of iterative convergence for all variables.

R (4.34)

For the continuity equation, the scaled residual for the segregated solver is defined by
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the following expression

Ren

Eél‘": (4.35)

which represents the continuity residual calculated for the nt* time step scaled with the
largest value of the continuity residual in the first five iterations. Note that the super-
script con should not be confused with meaning concentration, for which the residual is
written RC.

Spatial convergence

Dependence of the numerical solution on the computational grid must be determined in
order to establish errors that may result from simulations using a particular mesh size.
Strictly, spatial convergence implies complete mesh independence, however, depending
on the problem in question, this is not always possible without a comprehensive, compu-
tationally demanding study. Therefore, the means to quantitatively describe the level of
spatial convergence are desired, for example the ‘grid convergence index’ (GCI) approach
proposed by Roache (1994) used by (Corney, 2005) and in the present study. However,
even with this approach, computational expense is high if the procedure is performed
for all numerical parameters and escalates as the number of mesh refinements increases.
For expense to be minimised while retaining an efficient verification methodology in the
present study, three variables u, w and C' were chosen to quantify spatial convergence of
the flow field with three second order mesh refinements 42 x 417, 84 x 834 and 168 x 1668.
The principle of the method proposed by Roache (1994) is that if & numerical scheme is
truly second order accurate then the errors should reduce with the square of the mesh
size. Hence, the error in the spatial resolution can be quantitatively verified (Roache,
1997). What is required is to verify the fidelity of a numerical solution at a certain mesh
resolution to the true solution. However, the exact solution is rarely obtainable and hence
the error using a chosen mesh cannot be calculated by comparison. Consequently, the
fidelity of the solution with the current mesh is quantified relative to numerical solutions
of the same equations computed on different meshes. This idea translates analytically to
a modified version of the Richardson extrapolation technique which the grid convergence
index is based upon. Methods based on Richardson extrapolation of the results from
systematic mesh refinement analysis are considered as acceptable methods of truncation
error evaluation (ASME, 1993), hence their use for verification in the present study. The
method is as follows:
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Richardson extrapolation assumes that the numerical solution (i.e. the solution of any
variable throughout the domain), ¢, computed with a first order method with a grid
spacing 0z, can be represented in series form by

& = o + 9162 + g201% + g3dz® + ... (4.36)

where g;,3... are defined throughout the domain and independent of any discretisa-
tion and ¢, represents the exact solution to the original equations. For a second order
method, g3 = 0. Hence, if a solution ¢ is obtained from a fine mesh (6z;) and ¢; is
obtained from a coarser mesh (6z2), the leading order term in equation (4.36) can be
eliminated and a value for g; can be calculated. Then a more accurate solution for ¢,
can be determined by substituting this updated g2 into equation (4.36). Roache (1994)
shows that this exact solution can be approximated in terms of a correction to the fine
grid solution, ¢, by the following expression

mzm+%i% (4.37)

where ¢ = 8r2/67, is the grid refinement ratio and higher order terms have been dropped.
For example, if a coarse mesh is doubled (or a finc mesh is halved) then ¢ = 2 and equa-

tion (4.37) gives

6~ (4.38)

o _#
3 3

This approximation is third order accurate. For the general case, where ¢ is not neces-

sarily 2 and a @** order numerical method is used, (4.37) can be written as

¢zm+%ﬁ% (4.39)

which is (@ + 1)* order accurate. This level of accuracy can be shown to hold in two
and three dimensional simulations as long as ¢ and @ are fixed in all space and time
directions (Roache, 1994). Based on the foregoing approximations, the GCI for a fine
mesh can be defined in the following way:

Using equation (4.39), the fractional fine mesh error estimate E), is given by

€

By = ——

(4.40)

where e = (¢2 — ¢1)/¢1. The actual fractional fine mesh error is given by
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=89 (4.41)

T 6.

Roache (1994) shows that A, can be written in terms of E using the following expression
Ay = E) + O(6z™+™  E}) (4.42)

where g = 1 if forward or backward differences have been used in the discretisation
and wy = 2 if central differences have been used. Therefore, we can say that E; is an
‘ordered error estimator’ and represents a good approximation to the actual error A, if
E; « 1. It follows from equation (4.40) that the GCI for a fine mesh can be given by

3Iel

GCl[fine grid) = -

(4.43)

where the coefficient 3 is recommended by Roache (1994) and has been used in previous
verification calculations (e.g. Hardy et al., 2003; Corney, 2005). The GCI of the coarse
grid can then be given by

GCl|coarse grid] = ¢ GClI|fine grid) (4.44)

The problem of division by zero can be encountered in these analyses. This is elimi-
nated by calculating the GCls only at cells containing é1 > 0.01¢1 mer, Where ¢; g, is
the maximum absolute value of ¢; in the whole domain at the current time step. As
mentioned previously, due to computational restrictions, the GCIs for the velocity com-
ponents and concentration are calculated in the present study and performed at time
t = 6 8. This time was chosen so that the gravity current has had time to develop but
is short enough to minimise computational expense. All GCIs herein are presented as

percentages.

Temporal convergence

The above procedure for the spatial convergence holds for assessing the dependence of
the numerical solution on the time-step size since all the simulations are second order
accurate in space and time and a refinement ratio of order two is applied (Roache, 1994).
The equivalent time-steps for the above meshes are 0.02, 0.01 and 0.005 s.
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4.5.2 Validation

Essentially, the full potential of a code as a general tool cannot be validated. It is only
the calculations carried out with that code that are subject to validation. In the present
study, validation of all numerical solutions is undertaken rigorously, with comparison
to the experimental datasets from the present laboratory work (see chapter 2) for the
fundamental velocity and turbulence profiles within the flow in the smooth and rough
cases. It should be noted that validation is limited by the inevitable error incurred during
the experiments with which the numerical calculation is being compared. The immediate
limitation of laboratory studies is the scale. Ideally, data for use in validation would be
obtained at a field scale but the length scales required for this study cannot typically be
setup in the laboratory. Data from the field is subject to the specific conditions of the
locality and due to the highly spontaneous and transient nature of gravity currents and
their relative inaccessibility (for example, consider data collection from active submarine
currents), is often impossible to obtain.

One of the advantages of using CFD is that the data obtainable from the simulations can
often cover a much wider range of flow variables and statistics than an equivalent exper-
imental study, particularly with respect to 3D data sets. Where sufficient experimental
data is available for a flow variable, numerical results are validated. However, where
appropriate, results that cannot be fully validated due to limited experimental data for
that flow variable are still presented as a predictive foundation for future study. For
example, without PIV or high resolution data, the secondary motion of the flow in the
region of the roughness elements cannot be captured in the laboratory, so there is limited
data for accurate validation of the numerical flow fields in that vicinity. However, it is
important that this data is presented since it is expected to have substantial influence

on the main current flow field.

Some simulations have no experimental equivalents either in the present study or others
to date where laboratory time and equipment availability do not permit an experimen-
tal study. However, despite the lack of experimental data, the numerical simulations
have been undertaken to seek relationships between variations in the distribution, shape
and relative size of the roughness elements and the resulting gravity current dynam-
ics. Although results from these models cannot be validated within the scope of this
investigation, they can be analysed with reference to the diffcrcnces between other ex-
perimental runs and their numerical counterparts and implications for further effects of
bed roughness on gravity currents can be deduced and are left open for future study.
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Chapter 5

Depth-resdlved numerical
simulations: 2D model results

5.1 Introduction

The previous chapter presented the computational methodology used in the 2D and 3D
numerical simulations, including the verification and validation procedures. This chapter
presents the results of the depth-resolved 2D numerical simulations calculated using the
commercial CFD software FLUENT. The 3D model results are presented in the next
chapter. Several important observations resulting from the 2D simulations that do not
have a 3D equivalent are discussed here. The full discussion of the combined 2D and
3D numerical results can be found in section 6.8. However, for ease of reading and
to highlight features that may be explained by the subsequent 3D model, the salient
predictions of the simulations so far are also summarised. The CFD study herein allows
further detailed insight into the processes induced by the presence of bed roughness and
enables the generation of turbulence kinetic energy and concentration fields which are
not available from the present experiments. Detailed emphasis is given to the effects of
the ambient fluid between the elements. Verification and validation with experimental
data have been rigorously completed and are presented in detail.

5.2 Outline of models

The exact setup of the models has been explained in detail in chapter 4. The tank dimen-
sions are directly comparable to the experimental setup and the initial conditions for all
simulations represent a gravity current with the equivalent of a 5% initial density excess.
For all of the geometries considered, the walls have the ‘no-slip’ condition except the
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No. Mesh Bed type Exp. equivalent
1 42 x 417 Smooth Y
2 84 x 834 Smooth Y
3 168 x 1668 Smooth Y
4 168 x 1668 Beamsg ; N
5 84 x 834 Beamsg 5 Y
6 168 x 1668 Beamsg 2 Y
7 84 x 834 Beamsg 4 Y
8 168 x 1668 Beamsg ¢ Y
9 168 x 1668 Beamsg,g Y
10 168 x 1668 Beamsg 16 N
11 168 x 1668 Beamsg; (D) Y
12 168 x 1668 Beamsg g (D) Y
13 42 x 417 k4,0.00075 N
14 42 x 417 ks0.0015 Y
15 42 x 417 ks,0.003 N

Table 5.1: 2D numerical simulations undertaken in the present study. Tank dimensions are
directly comparable to experimental data. The initial conditions for all simulations represent a
gravity current with the equivalent of a 5% initial density excess in the laboratory. All walls
have the ‘no-slip’ condition except the top wall which has a ‘symmetry’ condition. ‘D’ means
that dense fluid is also initialised between the roughness elements. Mesh relates to the maximum
number of cells in the vertical and horizontal directions. Also included is whether there exists
an experimental equivalent for validation (Y) or not (N).

top boundary which has a ‘symmetry’ condition. All of the 2D numerical simulations
carried out in the present study are listed in table 5.1, including the mesh resolution
(mazimum cells vertically x maximum cells horizontally), the bed type and whether
a corresponding experimental dataset is available for validation. The simulation of two
additional beam roughness spacings, beamsg ;* and beamsg 6 (No. 4 & 10), were under-
taken to complement the other three beam-roughened cases and enable further analysis
of the effects of spacing and the relevance of d-type and k-type configurations to gravity
current dynamics. The three mesh resolutions for the smooth case (No. 1 - 3) and two
for the beamsg 2 (No. 5 & 6) and beamsg 4 (No. 7 & 8) are used for verification. These
two beams cases were chosen to represent a d-type and k-type bed respectively. Note
that there is no coarse mesh in the body-fitted rough cases because the longitudinal
dimension of the cells in this case is greater than the roughness element width and so

*This terminology was defined in chapter 2 and is used as shorthand to describe the element in use.
It was definod as follows: beamapsigae,spacing Where beams is a qualitative description of the element,
height is the maximum element height k. (mm) and spacing is the ratio of the distance between adjacent
elements and the height w/k,. For example, beamss,) refers to the beam type roughness with equal height
and spacing of 6 mm.
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cannot be fitted to the elements. The choice of mesh is discussed in the next section.

5.3 Verification

Iterative convergence

Iterative convergence is monitored by calculating scaled residuals for each of the vari-
ables by solving equation (4.34) ((4.35) for continuity) every iteration, as explained in
full in section 4.5 in the previous chapter. When the residuals all decrease below the
critical level, chosen herein to be 103, convergence is assumed to have been achieved for
that time step and the solution procedure continues. Evidence of this process is shown
in figure 5.1 for time steps between 6 s and 7 s for the smooth domain with the coarsest
(42 x 417) mesh. It can be observed clearly that although the initial guess each time
step is somewhat inaccurate, after subsequent iterations the solution is consistently sat-
isfying the convergence criteria for all variables each time step. Equivalent convergence
characteristics are observed for the 84 x 834 and 168 x 1668 resolutions and in the rough

case. However, since they are similar it is of no additional benefit to present them all.

Spatial and temporal convergence

The spatial and temporal convergence of a simulation are parameterised jointly herein
by the grid convergence index (GCI) as detailed in section 4.5. The results for the three
mesh resolutions used for the smooth case in the present study, generated by a factor
2 refinement, can be seen in table 5.2 for the horizontal and vertical velocity variables
and the user-defined scalar (concentration), i.e. u, v and C respectively. The GCIs are
calculated using linear interpolation! of the results of a finer mesh onto the next coarsest
mesh, except for the 42 x 417 model where no finer mesh is available and therefore the
GCI of the 84 x 834 mesh must be used. For the rough case, as mentioned in section 5.2
it was not possible to use the coarsest mesh, therefore the GCIs were calculated using
the two finer meshes. In this case, the GCI for the finer of these two meshes, 84 x 834,
cannot be calculated by comparison to the next coarse mesh and is therefore generated
using the 168 x 1668 GClIs. Using this characterisation of the error in the different
grids it appears that there is substantially more error incurred with the coarsest mesh,
particularly with respect to the concentration field. In order to examine the GCIs more
thoroughly in the context of the actual gravity current model, the concentration field for

tCorney (2005, p. 61) discusses the implications of the use of different interpolation techniques and
concludes that linear interpolation is suitable in these studies.
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Figure 5.1: Iterative convergence shown in the form of residuals, calculated as given in chapter

4 for the 42 x 417 resolution mesh for the smooth case. The convergence criteria, 103, below

which the residuals are assumed to indicate convergence is shown in red.
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(a) GCI (%)

Mesh u v C Time/Flow minute
42 x 417 414.8 515.5 1839.0 00:07:30
84 x 834 103.7 128.9 459.7 00:45:00

168 x 1668 62.9 107.4 197.5 07:20:00
(b)

84 x 834 254.3 372.6 1063.0 00:45:00

168 x 1668 63.6 93.1 137.1 05:36:40
(c)

84 x 834 207.2 4224 890.9 00:45:00

168 x 1668 51.8 105.6 1424 05:40:00

Table 5.2: Grid convergence indices (GCI) calculated as given in chapter 4 for each mesh resolu-
tion in (a) the smooth case, and for a bottom wall with (b) beamsg s (d-type) and (c) beamss 4
(k-type). These values are used as an indication of spatial and temporal convergence for a factor
2 grid refinement. The approximate wall clock time (hh : mm : ss) for one minute of computa-
tional flow time on a single processor (3 GHz) PC is also shown for each mesh resolution as an
indication of the temporal and computational cost incurred per simulation. The time steps in
increasing refinement were 0.02 s, 0.01 s and 0.005 s and the simulations calculate a total of 30
s flow time.

each mesh is shown in figure 5.2 for the smooth bed model. It can clearly be observed
that as the mesh is refined, the model develops more defined Kelvin-Helmholtz billows.
Billows of this clarity are not observed in the laboratory experiments. However, they
have been observed in other 2D studies (e.g. Bombardelli et al., 2004) and there is
substantial evidence that they are a result of the two-dimensionality of the simulations
and the lack of sufficiently dissipative mechanisms therein (e.g. Cantero et al., 2003).
In fact, it is thought that they are characteristic of the ‘true’ solution of the 2D gravity
current calculations (Bombardelli et al., 2004). Although this more accurate process
representation means that more detailed processes are being resolved and smaller scale
flow structures are being captured, it also causes problems with regards to establishing
spatial and temporal resolution convergence. There is no theoretical or experimental
data available to accurately predict the full range of length scales encompassed within
the gravity current problem and thus confirm that grid convergence has been achieved.
One solution is to continue increasing the mesh resolution of the model but it has been
shown in a previous attempt (Corney, 2005, p. 60) that this leads to a decrease in the
quality of the GCls with the result that they lie outside the asymptotic range, i.e. they
do not decrease by a factor of 1/p® (Roache, 1994). Based on the approximate wall clock
time taken to calculate one minute of computational flow time, see table 5.2, simulations
on finer meshes would also incur prohibitive computational cost, beyond the scope of the
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Cmaz = 1.0, Conin = 0.0 t=30s

(a)

(b)

(¢)

y (m)

0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2 22
X (m)

Figure 5.2: UDS (concentration), C, fields at t = 3 s resulting from the 2D simulations for the
smooth bed with three mesh refinements: (a) 42 x 417, (b) 84 x 834 and (¢) 168 x 1668. Red and
blue are high and low concentration, respectively. Maximum and minimum values are displayed

at the top of the figure
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Figure 5.3: (a) Position of the current front as a function of time generated from the 2D numerical
simulations. Three mesh refinements (42x417, 84 x 834 and 168 x 1668) are shown for the smooth
case. (b) Comparison of the downstream horizontal velocity, u, profiles for the smooth bed case
for the total domain depth at one location (‘bin 35') generated from the 2D numerical simulations

for three mesh refinements: 42 x 417, 84 x 834 and 168 x 1668.

computational resources available.

The GCls in table 5.2 have highlighted the problems involved with accurately modelling
a physically complex flow, such as a gravity current, numerically. Clearly the unphys-
ical coherence of the Kelvin-Helmholtz billows is a numerical phenomena that must be

acknowledged and treated cautiously until the means to assess them becomes available,
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perhaps with the increase in computational power. However, despite the process rep-
resentation, the agreement between the meshes in terms of front position as a function
of time is reasonably good, see figure 5.3 (a). Calculating the smooth front speeds
from these results gives, 163.2 mms 1, 156.4 mms~! and 155.0 mms?! for the 42 x 417,
84 x 834 and 168 x 1668 meshes, respectively. There is an issue with the validity of
the finer meshes when used with the wall functions in the RANS model since when the
velocity profiles within the head are considered, see figure 5.3 (b), there is an irregularity
near the bed. This is not present in a typical velocity profile through a gravity current
and it becomes apparent that for the finer meshes the condition for the wall functions to
hold at the boundary has been violated, i.e. y* < 11.225 as explained in section 4.3.3.
An example calculation of y* (equation (4.26)) in the near-wall region for each mesh
resulted in values of 26.8, 10.9 and 5.37 for the 42 x 417, 84 x 834 and 168 x 1668 meshes,
respectively proving that the violation has certainly occurred with the fine mesh. After
careful consideration of these results, the 42 x 417 mesh was chosen in favour of the

84 x 834 and 168 x 1668 meshes.

5.4 Flow evolution

The evolution of the UDS or concentration field for the smooth case can be seen in
figure 5.4 at 3 s intervals. After release, the current propagates forward as a body of
high concentration fluid. A sharp front and a distinct head region are observed and
billows can clearly be identified behind the head at the density interface between the
dense fluid in the current body and the overlying ambient. As time progresses, the
mixing between the ambient and the current increases, induced by the billows at this
interface. The high concentration current becomes more elongated and shallower and
the billows become more dilute due to this mixing and diffusion but they maintain their
coherence (12 - 18 8). After 21 s, the billows appear much more diffuse and the body
of the current is significantly shallower. The head remains distinct from the rest of
the current but much dilution has occurred such that the highest concentration fluid
is & thin layer at the bottom of the head. An irregularity in the form of a wave-like
disturbance in the high concentration fluid within the current body can be seen in these
2D concentration fields and apparently remains stationary from 18 - 24 s. This *blip’
appears to be the result of a large, probably unphysical. billow retained at the density
interface directly above it. After 27 s, both the billow and the blip have more or less
dissipated. This phenomenon could be percieved as a bore or an interfacial wave as Ooi
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Figure 5.4: The evolution of the concentration field every 3 s up to 30 s for 2D numerical
simulation of the smooth case. Red and blue are high and low concentration, respectively,

maximum and minimum values are displayed at the top of the figure.

et al. (2005) interpret from their 2D LES. However, it is likely that this is an attribute
of the two-dimensionality of their mnodel and that of the present study. Notice that it is
at about this distance that the slowing of the front occurred (figure 5.3 (a)) indicating
a correlation between the unphysical size and lack of motion of the irregularity and the
retardation of the current. When compared to the experimental data in section 5.5.1
it is observed that the reduction in speed of the current in the CFD at this point is

})l‘(‘lllilllll‘(‘.

In the following results, the flow evolution of a simulation. as shown for the smooth
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case in figure 5.4, is not presented explicitly for each bed since it is presumed of greater
interest to consider more specific internal dynamics of the currents that can be better
quantified in order to analyse the effects of bed roughness. With this in mind, the results
are presented henceforth primarily in two ways. Firstly, after 9 s for comparison of the
different beds at an early flow time when all the currents can be approximately considered
to be beyond the influence of the initial slumping dynamics but still propagating at a
constant speed, certainly in the smooth case. Secondly, at a later time dependent on
when the head of each current passes through ‘bin 35’ (3.22 m) where the experimental
dataset was sampled in the laboratory. Thus, the currents can be analysed at both an
early and later stage of propagation, and evidence of evolution between the two times can
be obtained. Also, coordination of the numerical results with the experimental results
at the bin enables the numerical results to complement the experimental data and aid

interpretation without large spatial or temporal discrepancies.

5.5 Velocity validation
5.5.1 Front position and speed

The effects of the spacing of bed roughness elements on the front position
and speed

The experiments and depth-averaged model presented thus far (see chapters 2 and 3)
established that the presence of roughness on the bed causes the current to propagate
more slowly than over a smooth surface. It can be seen in figure 5.5 that this also holds
for the numerical simulations. The FLUENT results show good agreement, up to about
10 s, for the smooth and body-fitted boundaries. However, beyond this time, compared
to the experimental data, the numerical predictions all show a premature slowing of the
current. In the smooth case, the current has been observed to move at a constant velocity
in the first ten lock-box lengths of the tank (z = 10z, e.g. Rottman and Simpson (1983)
and the present study. see section 2.4) after which it undergoes a trausition to a slower
speed. Figure 5.5 suggests that the simulations are able to model this phase of constant
speed but that they begin to decrease in speed too early. This inaccurate traunsition
occurs earlier as the spacing of the roughness elements increases. However, as found in
the experimental results (chapter 2), an earlier transition is a characteristic of increased
element spacing although it appears to occur at about the same time for all spacings. This
implies that the difference in the numerical predictions is not necessarily dependent on
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Figure 5.5: Position of the front as a function of time resulting from 2D numerical simulations
compared to the equivalent experimental results for (@) a smooth bottom wall and bottom walls
with (b) beamsg 2, (¢) beamsg 4, and (d) beamsg g.

the bed change but mainly a result of the two-dimensionality of the simulations as found
by other investigators (e.g. Cantero et al., 2003). Therefore with acknowledgement that
the 2D computations have limitations, the results can be considered valid representations

of their experimental equivalents.

The corresponding front speeds for the data are displayed in table 5.3. 39% of the smooth
dataset was well correlated to represent the constant speed phase. Therefore the same
percentage of data was also used to calculate comparative speeds for the rough cases. The
percentage difference between these speeds with respect to their experimental equivalent
and the smooth simulation are also included. It can be seen that in this constant speed
region, despite the premature decrease at later times, the smooth case actually produces
a faster current than the corresponding experimental case but only by 3.4%. The front
positions of the current with the beamsgs and beamsg 4 boundaries show very good
agreement, however, the beamsgg case shows an increased error. This is probably due to

the fact that, for the calculation as for the experimental data, 39% of the data is taken



206

Smooth Beamsg ) Beamsg 2
Speed (mm/s) 163.2 148.7 146.2
Fr 0.66 0.60 0.59
Re 20319 18513 18202
Inc/Dec (exp) +3.4% N/A -1.1%
Inc/Dec (smooth) N/A -8.9% -10.4%
__R;z_ - 0.9998 1 0.9997 0.9993
e Beamsg 4 1 Beamsg g Beamsg, 16
Speed (mm/s) 142.6 138.6 141.8
Fr 0.58 0.56 0.57
Re 17754 17256 17654
Inc/Dec (exp) -1.7% -4.9% N/A
Inc/Dec (smooth) -12.6% -15.1% -13.1%
R? 0.9983 0.996 0.9968

Table 5.3: Front speeds resulting from 2D numerical simulations of a gravity current generated
with a 5% density excess for a smooth bed and all of the beam roughnesses calculated using the
first 39% of the front speed dats where the smooth case is within the constant speed phase. Also
shown is a Froude number calculated using Fr = 7;'7"‘&03 and a Reynolds number calculated using

Re = 31—';33 and percentage increase or decrease in front speed with respect to the experimental
equivalent where available and the percentage increase or decrease in front speed with respect to
the smooth numerical equivalent.

based on good correlation for the period of constant speed for the smooth case, rather
than the constant speed relative to this specific case.

It is clear from figure 5.6 and table 5.3 that in general the front speed decreases in the
presence of any bed roughness and the magnitude of the decrease is dependent on the
element spacing with an increase in the distance between the beams leading to a greater
decrease in the speed. This was also found in the experiments. It it can be observed
that the predictions for beamsg ¢ and beamsgs are almost identical. This suggests
that the critical element spacing w/k, =~ 7 (where w = distance between elements and
k, = element height, which is always 0.006 m herein) above which few changes to the
flow dynamics arc observed in open channel and pipe flows (Cui et al., 2003b; Leonardi
et al., 2003b; Ashrafian et al., 2004; Ikeda and Durbin, 2007) might also hold in the
gravity current context. Measurement of the reattachment length at the bed between
two elements further confirms this, see section 5.5.2. With reference to d-type (beamsg
and beamsg2) and k-type (beamsg 4, beamsgg and beamsg 15) spacings, there does not
appear to be a noticeable impact on the front speed that enables definitive differentiation
between these two classifications. However, it is interesting to note that there is some
similarity between the predictions for the beamsg 2 and beamsg 4 surfaces. This perhaps
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Figure 5.6: Position of the front as a function of time resulting from 2D numerical simulations
with a smooth bottom wall, and bottom walls with beamsg,;, beamsg 2, beamsg 4, beamsg 5 and
beamsg, 16.

indicates that the classification of a middle ‘intermediate’ bed roughness configuration
(w/k, = 4), as some investigators have postulated (Chow, 1959; Cui et al., 2003b),
could be justified. When the velocity fields throughout the entire domain are considered
in the next section, the differences hetween the bed types are more obvious and the
data predicts that the flow ficlds for the beamse s boundary are more like the k-type
cases. This does not repudiate these observations made for the front positions but
rather suggests that the beamsg 4 case has some d-type and some k-type attributes as

an intermediate classification would imply.

The effects of the presence of less dense fluid between the roughness elements
on the front position and speed

In the laboratory, two experiments were undertaken with fluid of the same initial density
as the current (i.e. 5% excess) injected between the roughness elements for the beamag 2
and beamsgs beds in order to try and identify the contribution of the fluid in these
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Figure 5.7: Position of the front as a function of time resulting from 2D numerical simulations
(N) of a gravity current generated with a 5% density excess for a bottom boundary with beamsg 2
(Bg.2) and beamsg s (Bg,s) both with dense fluid initialised between the elements (D). (a) with
experimental equivalents (E) and (b) with the models without dense fluid between the beams (A)
and the smooth case for reference.

gaps to the flow dynamics of the overflowing current. Simulations equivalent to these
configurations were also performed numerically. The resulting front positions of the
currents as a function of time and the experimental equivalents, can be seen in figure 5.7
(a). Again, the agreement is very good for early times. At later times, the d-type case is
observed to be slightly inaccurate due to the aforementioned premature decrease in speed.
Conversely, the k-type bed is not only faster than the regular case with ambient fluid in
the gaps but faster than the d-type numerical simulations and both of the experimental
cases, almost equal to the smooth case. In this case, it is possible that the energy losses
due to lateral motion, which is not possible in 2D, is necessary for accurate retardation

of the flow.

The good agreement with corresponding experimental data for the constant phase is
reflected in the front speeds calculated from the data shown in table 5.4. The FLUENT
prediction is only =~ 1% faster than the experimental result in the d-type case and ~ 3%
faster in the k-type. Comparing the model with dense fluid between the elements to the
equivalent with ambient fluid and the smooth result, see figure 5.7 (b), it is clear that
the presence of the less dense fluid between the elements contributes to a reduction in
the speed but is not the only cause of the decrease in speed, i.e. the entrainment of
the ambient fluid between the elements as the current flows over is significant but so
are the elements themselves. This agrees with the experimental observations presented

in chapter 2. If the reduction in speed with respect to the smooth case is considered
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Beamsg » Beamsg g
Speed (mm/s) 154.8 157.1
Fr 0.63 0.63
Re 19273 19559
Inc/Dec (Exp) +1.04% +3.4%
Inc/Dec (smooth) -5.1% -3.7%
R? 0.9999 0.9999

Table 5.4: Front speeds resulting from 2D numerical simulations of a gravity current generated
with a 5% density excess for a bottom boundary with beamss ; and beamsg g both with dense
fluid initialised between the elements. Calculated using the first 39% of the front speed data.

Also shown is the Fr calculated using Fr = g"‘ho/2 and Re calculated using Re = utI:o£2 and

the percentage increase or decrease in front speed with respect to the experimental equivalent
and the percentage increase or decrease in front speed with respect to the smooth numerical
equivalent.

in the d-type case, it can be observed that there is a ~ 5% reduction with dense fluid
between the elements which increases to a =~ 10% reduction with ambient fiuid between
the elements. Although these magnitudes are slightly exaggerated in comparison to
the experimental equivalent (= 3.5% and = 7%, respectively), they essentially produce
the same conclusion, namely that during the period of constant speed, there is an ap-
proximately 50:50 split governing the reduction in speed due to the presence of beam
roughness, = 50% can be attributed to buoyancy effects of the ambient fluid trapped
between the elements and the other = 50% to other effects resulting from presence of the
elements. This statistic also holds approximately for the k-type case in the experimental
result. However, the 2D numerical results do not agree and find that, while removal of
the ambient fluid between the elements reduces the speed by =~ 4%, the total effect of
the beams with this ambient fluid increases this reduction to =~ 15%. It is possible that,
as mentioned above, this is a result of the different spacings being subject to different
magnitudes of lateral motion, therefore the 3D model data should provide a conclusive
result. This does not hold at later times where inspection of figure 5.7 (b) suggests that,
the ambient fluid between the elements results in increasingly reduced front positions,
most notably in the k-type case.

The effects of the the law-of-the-wall method for specifying the bed roughness
on the front position and speed

The results presented thus far have been generated from the data using the body-fitted

mesh method for the inclusion of bed roughness. To examine the performance of the
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Figure 5.8: Position of the front as a function of time resulting from (a) the 2D numerical
simulation with a bed roughened using the law-of-the-wall method with k¢ = 0.0015 and the
experimental (E) and numerical (N) equivalent beamsg > (i.e. k, ~ 0.0017) and (b) the 2D
simulations with &, = 0.0075, 0.0015 and 0.003.

law-of-the-wall method, the 42 x 417 mesh was used with a k, value of 0.0015. This
is almost equivalent to the experimental beamsgo case for which it was established in
chapter 2 that k, =~ 0.0017, and is therefore compared to that experimental data and
the body-fitted method numerical equivalent. The results of the simulation for the front
position as a function of time can be seen in figure 5.8 (a). The law-of-the-wall method
appears to show very good overall agreement, although it is interesting to note that the
body-fitted method agrees better for early times while the law-of-the-wall method shows
better agreement at later times. This is possibly because the body-fitted method resolves
the rotating fluid between the elements and, similar to the billows at the interface, these
are not broken down cfficiently since a 3D mechanism is necessary for this to occur
and consequently the current slows down unphysically. However, by specifying a k,
value which has been generated from experiments and thus by nature is subject to 3D
mechanisms, the decrease in front speed that results from higher resolution with the finer

mesh used in the body-fitted model, does not occur.

The results of an investigation to examine the sensitivity of the method of specifying a
ky value on position of the front as a function of time are shown in figure 5.8 (b). The
ks = 0.0015 value was halved and doubled with the result that the smaller value causes
less of a slowing effect on the current and the larger value increases the retardation,
as expected. Thus, it can be confirmed that the simulations are sensitive to the value

prescribed through implementing the law-of-the-wall method.
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Umar = 269.3, Umin = -170.0 mm =90s

(a)

Figure 5.9: Horizontal velocity component, u, fields at £ = 9 s resulting from the 2D simulation
with (a) smooth bottom wall and (b) beamsg 1, (c) beamsg 2, (d) beamsg 4, (€) beamsg g and (f)
beamsg 1. Downstream motion is from left to right. Red and blue are high and low velocities,

respectively. Maximum and minimum values are displayed at the top of the figure.

5.5.2 Velocity structure

The effects of the spacing of bed roughness elements on the velocity structure

Figures 5.9 and 5.10 show the velocity fields for horizontal and vertical motion throughout
the domain, respectively. In both rough and smooth cases the horizontal and vertical
motion at the front of the current is almost identical. However, within the head, for the

5.9 (b) = (f)), the horizontal velocity maximum appears

bed-roughened cases (figures
to be located higher in the current than in the smooth case. Further disruption has
occurred to the horizontal motion near the bed and within the return flow (negative)
of ambient fluid above the primarily downstream horizontal flow (positive) of the main

current body. Figures 5.9 and 5.10 also confirm that, as mentioned previously, the effects

of the d-type and k-type spacings can be observed in the velocity fields. The two d-type
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Figure 5.10: Vertical velocity component, v, fields at t = 9 s resulting from the 2D simulation
with (a) smooth bottom wall and (b) beamss 1, (¢) beamsg 2, (d) beamsg 4, (¢) beamsg g and (f)
beamsg 1. Downstream motion is from left to right. Red and blue are high and low velocities,

respectively. Maximum and minimum values are displayed at the top of the figure.

cases, figures 5.9 and 5.10 (b) and (c), depict very similar flow fields for this classification
of bed. The k-type cases, figures 5.9 and 5.10 (d) — (f), also show close similarity within
the velocity domain and, as mentioned previously, are noticeably different to the d-type
case. The d-type cases show significant disturbance to the tail of the current, unlike
the smooth or the k-type cases. Increased disruption to the return flow above can also
be observed, again this is apparently more substantial than in the smooth or k-type
cases. These features correspond to increased magnitude in the regions of high positive
and negative flow visible in the vertical velocity fields (figures 5.10 (b) and (¢)) which
collectively indicate the presence of strong billows in the vicinity of these fluctuations
at the density interface. In the smooth and k-type simulations (figures 5.10 (a) and
(d) = (f), respectively), the regions of high negative or positive vertical velocities appear

more diffuse than for the d-type models. It can also be observed that the distribution of
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the horizontal and vertical velocity fields in the k-type cases, at this early time, appear to
show quite strong similarities to the smooth case compared to the d-type case, although,
as the spacing increases to the widest spacing, figure 5.10 (f), the disturbances once

again increase in magnitude.

Figure 5.10 shows very clearly the strong upward motion of the ambient fluid as it is
forced aside by the oncoming current. The corresponding negative motion confirming
that the fluid flows back over the head of the current can be seen at the current fronts in
figure 5.9. Additionally, note that the vertical motion is not confined to the extremity
of the very front of the current but also shows fluid pushed upwards ahead of the front.
However, in this region, the horizontal motion at the front that was observed to force the
ambient fluid backwards over the head, can now be seen to ‘push’ the fluid immediately
in front of the current resulting in a ghost-like front before the true one. Although this
could in part be attributed to numerical diffusion at the front, it is likely that it is in
fact representing of a realistic phenomena that has been observed experimentally (Felix
and Peakall, 2006). In the smooth case (figure 5.9 (a)), the horizontal pushing motion is
slightly reduced compared to the rough cases, this is likely to be because the current is
shallower and more streamlined so that the ambient fluid is more easily forced upwards

over the current.

The velocity vector field in the head of the gravity current in the vicinity of the roughness
elements can be seen in figure 5.11. Note that the elements themselves are represented
by NaN? in the datasets. Therefore the linear interpolation used to produce the contours
causes loss of definition of their true shape but doeg not influence the rest of the data.
Rotating vortices trapped between the elements can be observed in the d-type cases,
figures 5.11 (a) and (b). In the closest spaced case, beamsg; (figure 5.11 (a)), these
vortices are weaker and no disturbance to the flow above the elements occurs. When this
spacing is doubled (figure 5.11 (b)), the vortices are considerably stronger but still there
is no clear disturbance to the overflowing current. As the spacing increases to beamsg 4
(figure 5.11 (c)) vortices can still be observed at the downstream faces of the elements but
they do not. fill the whole gap. This suggests that flow separation is occurring at the top
of each element and the separating flow is attempting to reattach in the space between
the elements and generating a vortex beneath it at the downstream face. Disturbance
to the overlying flow is now evident although it does not extend far above the top of the

{NaN, or ‘not a number’ is usually used to indicate an attempted operation on invalid values, for
example. the square root of a negative number. It is used here rather than zero so that mean values are
not affected and so that there are no true holes in the dataset for ease of processing.
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Figure 5.11: Vectors of velocity magnitude and contours of UDS (concentration) distribution
in the current head in the vicinity of the roughness elements at ¢ = 9 s resulting from the
2D simulation with (a) beamsg, (b) beamsg 2, (¢) beamsg s, (d) beamsgg and (e) beamsg 6.
Note that the elements are represented by NaN (‘not a number’) in the datasets, therefore the
linear interpolation used to produce the contours causes loss of definition of their true square
shape. Downstream motion is from left to right. Red and blue are high and low concentration,

respectively. Maximum and minimum values are displayed at the top of the figure.

elements. Further increasing the spacing to the beamsg g and beamsg 16 cases (figures
5.11 (d) and (e), respectively) gives rise to distinct flow separation at the top of an
element with reattachment further downstream between that element and the adjacent
one. This creates a larger rotating vortex at the downstream face of the element and
potentially a smaller vortex at the upstream face of the subsequent element. However, at
the current resolution, the postulated secondary smaller vortex is not clear and can only
be inferred by the small region of stationary flow at the upstream face of the element
which appears to deflect the primary downstream flow in the gap upwards and over the
element apex. Increased distortion to the flow field above the elements can clearly be

observed in both cases.

The concentration contours in figure 5.11 are mainly for reference. However, they also
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Figure 5.12: Horizontal velocity component, u, fields at the approximate time the head passes
through ‘bin 35" where the vertical profile data is read (shown as a line) resulting from the
2D simulation with (a) smooth bottom wall and (b) beamsg;, (¢) beamsg 2, (d) beamsg 4, (€)
beamsg g and (f) beamsg 16. Downstream motion is from left to right. Red and blue are high
and low velocities, respectively. Maximum and minimum values are displayed at the top of the

figure.

confirm that the dense spacing of the elements in the d-type cases enable the vortices to
maintain the less dense fluid trapped between the elements while high concentration fluid
passes above, despite the lack of strength apparent in these gaps. In the k-type cases, the
lighter fluid does not appear to be maintained between the elements. Instead, there is a
greater amount of light fluid potentially entrained due to the strong flow separation that
occurs which can ‘engulf’ the less dense fluid downstream of the element. Thus different
flow dynamics for the entrainment of the lighter ambient fluid beneath the head can be
expected for the d-type and k-type cases. Further effects on concentration resulting from

~

the presence of the bed roughness are presented in section 5.7.

As discussed in section 1.3.3, in open chanuel and pipe flow studies with beam-roughened
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walls a critical spacing, w/k, = 7, has been established, above which changes to the
spacing have less effects on the flow. In particular, the size of the reattachment length
between two adjacent roughness elements remains constant. In the present study the
distance between the elements used in the beamsg g and beamsg, g cases lie just above
and at more than double this threshold, respectively. The propagation of the front as
a function of time was shown in the previous section to be almost identical for these
two spacings. This indicates that the effects are not changing substantially above this
critical level for gravity currents. Aalculations of the reattachment lengths, predicted
from the velocity vector fields give further evidence of this with values of 3.8k, and 4k,.,
respectively, which are in good agreement with existing single-phasc flow results that
found a value of about 4k, (Cui et al., 2003b)S.

The horizontal and vertical velocity ficlds in the vicinity of the current at later times
can be seen in figures 5.12 and 5.13, respectively. As mentioned previously, the data is
presented in order to correspond to the time that the head of the current reaches the
location at which the vertical profiles are read during the experiments (i.e. ‘bin 35, 3.22
m from the lock-box end of the tank). Differences between d-type and k-type in both the
vertical and horizontal flow fields can still be observed at these times but they are now
less significant. The d-type bed configuration appears to produce a horizontal velocity
field with high velocities extending further back into the current body and tail than any
of the other beds. In the k-type case the velocity field extends upstream far behind
the head but is more diffuse, lower velocities can be observed in the tail region. Both
classifications show reduced negative velocities in the return flow above the current.

The difference between the rough cases and the smooth case is clearer at this later
time. The current body has elongated with time as for the rough cases but not as
extensively. As for the early time, the smooth simulation retains the disruptions within
the current body and high return flow above the current in the horizontal field and
distinct fluctuations in the vertical ficld (figure 5.12 (a) and figurc 5.13 (a), respectively)
indicating maintained coherence in the billows at the density interface. The only strong
vertical motion remaining in the rongh cases (figures 5.13 (b) — (f)) is the positive motion
of the ambient fluid being forced upwards at the front, most other vertical motion appears
to have been damped. The pushing motion in the fluid ahead of the front observed at

the earlier time can still be seen at these later times.

Notice that at both early and later times, the velocity field of the beamsg 4 case appears

$hote that there is some variation in this result, Cui et al. (2003b) suggests a value of about 4k.,
while Tkeda and Durbin (2007) find a value of 4.5k, and Leonardi et al. (2003b) report a value of 4.8k,
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Figure 5.13: Vertical velocity component, v, fields at the approximate time the head passes
through ‘bin 35" where the vertical profile data is read (shown as a line) resulting from the
2D simulation with (a) smooth bottom wall and (b) beamsg . (¢) beamsg 2, (d) beamsg 4, (€)
beamsg s and (f) beamsg 6. Downstream motion is from left to right. Red and blue are high
and low velocities, respectively, maximum and minimum values are displayed at the top of the

figure.

to conform to the k-type characteristics, and not the d-type (figures 5.9-5.13 (d)). Thus
the velocity field prediction shows no indication of this bed representing an intermediate

spacing configuration.

The downstream horizontal velocity profiles within the current head at ‘bin 35°, which
corresponds to the vertical lines shown on the velocity field data at later times, can be
seen in figure 5.14. Where available, the experimental equivalents are also displayed.
Note that in the experiments the probes are rigged above the elements, with the element
top taken to be zero for data analysis. Therefore, the numerical results shown are from
the first cell above the top of the elements. From figures 5.14 (a), (¢) and (e) it can be

seen that the data from the numerical simulations shows very good agreement with the
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Figure 5.14: Downstream horizontal velocity, u, profiles within the current head resulting from
2D numerical simulations with the equivalent experimental results where available. Results for
(a) a smooth bottom wall, and bottom walls with (b) beamsg ;. (c) beamsg 2. (d) beamsg 4. (€)
beamsg s, and (f) beamsg y6.
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experimental results. The agreement in figure 5.14 (d) is not as good with respect to
the distribution of the velocity about the maximum, probably as a result of the probe
resolution missing the true maximum location in the experiments. Despite this, the value

of the velocity maximum, %4z, is in very good agreement.

The numerical results predict that the location of the velocity maximum moves further
away from the bed with an increase in the roughness element spacing from beamsg;
to beamsg g (figures 5.14 (b) — (e)). The magnitude of the maximum is also reduced.
although the value at this maximum only shows slight variability between rough bed
configurations. The beamsg ¢ case (5.14 (d)) displays a different velocity profile in
which the current near the bed is similar to the other rough cases but the velocity
maximum appears to represent an atypical ‘surge’ at about 40 mm from the bed. Without
cxperimental confirmation it is difficult to say if the irregular profile is a consequence
of the numerical computation or of the substantially larger spacing between adjacent
elements. The latter could occur since, with elements spaced at 96 mm apart, the current
has more time to adjust after reattachment to the bed before it encounters the next
roughness element. This adjustment could modify the velocity distribution throughout
the current depth more than the smaller spacings. Note that the propagation of the front
of the current for this case (figure 5.6) was shown to be almost identical to the beamsg g

case but they appear to have different internal flow dynamics.

A comment must be made on the location at which these vertical profiles are read. The
bin is always located in the same position, at 3.22 m from the lock. However, the varying
spacing of the elements means that this location may lie at the top of a roughness element
or somewhere in the gap between two adjacent elements. Therefore, it is possible that
the profiles could be affected by this discrepancy. Inspection of velocity profiles read
above an element and in the adjacent cells upstream and downstream of the elements
in the vicinity of the bin produced no distinguishable difference in the profile of the
overflowing current. Notc that below the top of the clements in the gaps, a negative flow
was observed. However, since the experimental data is read from level with the top of
the elements, only the profiles of the numerical prediction from this point and above are
presented for validation purposes. Evidence of the negative flow, which is generated by
the trapped vortices, has already been presented in figure 5.11. This lack of distinction
between motion above the element or in the gaps means that comparison of the profiles
regardless of location is valid. This does not hold for the turbulence kinetic energy

profiles as shown in section 5.6.
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Figure 5.15: Horizontal velocity component, u, fields at ¢ = 9 s resulting from the 2D simulation
with (a) smooth bottom wall, and (b) beamsg o with dense fluid initialised between the elements,
(¢) beamsg 2, (d) beamsg g with dense fluid initialised between the elements and () beamsg 5. Red
and blue are high and low velocities, respectively. Maximum and minimum values are displayed

at the top of the figure.

The effects of the presence of less dense fluid between the roughness elements

on the velocity structure

The velocity fields after 9 s for the rough cases with dense fluid replacing the ambient
fluid between the elements show strong similarities with the smooth case, compare (b)
and (d) with (a) in figures 5.15 and 5.16. The horizontal velocities show that there are
still fluctuations at the bed but the disruption to the overlying fluid has been reduced.
The regions of high positive and negative vertical motion are more diffuse than in the
regular case with ambient fluid filling the space between the elements (figures 5.15 and
5.16 (¢) and (¢)), again they are more like the smooth case. However, the position of
the horizontal velocity maximum appears to extend further back into the body of the

current similar to the regular rough cases.

Figures 5.17 (a) and (b) show the simulated velocity and concentration fields in the vicin-

ity of the roughness elements for a d-type bed roughness (beamsg ) with and without
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Figure 5.16: Vertical velocity component, v, fields at t = 9 s resulting from the 2D simulation
with (@) smooth bottom wall, and (b) beamsg 2 with dense fluid initialised between the elements,
(¢) beamsg 2, (d) beamsg g with dense fluid initialised between the elements and (¢) beamsg 5. Red
and blue are high and low velocities, respectively. Maximum and minimum values are displayed

at the top of the figure.

dense fluid initialised between the elements. Despite the obvious difference in the con-
centration of the fluid trapped between the elements, there is little apparent difference in
the velocity. It can be observed in figure 5.17 (a) that the trapped fluid is marginally less
dense than the highest concentrations observed in the overflowing fluid. This suggests
that there is minimal entrainment of the ambient fluid occurring at the front. However,
in the k-type case (figure 5.17 (¢)), this entrainment appears to occur to a lesser extent,
with less contrast in the fluid concentration between the elements compared to the over-
lying dense current. Inspection of figures 5.17 (¢) and (d) shows that flow separation
at the upstreamn corner of the top of the elements appears to occur in the k-type case,
with or without ambient fluid initially between the roughness elements. However, the
motion between the elements is weaker in the case with dense fluid in the cavities and
the disruption to the overflowing fluid that results from the motion around the elements

is significantly reduced compared to the regular case with ambient fluid between the
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Figure 5.17: Vectors of velocity magnitude and contours of UDS (concentration) distribution
in the current head in the vicinity of the roughness elements at ¢ = 9 s resulting from the

2D simulation with (a) beamsg 2 with dense fluid initialised between the elements and (b) the

regular beamsg 2 case with ambient fluid between the elements, (¢) beamsg g with dense flnid

initialised between the elements and (d) beamsg s. Red and blue are high and low concentration,

respectively. Maximum and minimum values are displayed at the top of the figure.

elements. These observations suggest that although comparable flow separation is oc-
curring. the strength of the reattachment at the bed between the elements is weaker.
Instead, the downward motion in the reattachment region appears to be diminished,
perhaps ‘cushioned’ by the higher concentration fluid in this location compared to the

more disruptive buoyant characteristics of the less dense fluid in the regular case.

If the horizontal and vertical velocity fields at later times are considered, see figures
5.18 and 5.19 respectively, it becomes apparent that although the cases with dense fluid
between the roughness elements appeared similar to the smooth case at earlier times, at
later times they are more like the predictions with ambient fluid in the cavities. Vertical
motion (figures 5.19 (b) and (d)) has been substantially damped except at the head and
the horizontal velocity fields (figures 5.18 (b) and (d)) within the current indicate that
downstream propagating motion extends further back into the tail of the current than

in the smooth case. Reduced return flow in the ambient fluid above the current can also
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Figure 5.18: Horizontal velocity component, u, fields at the approximate time the head passes
through ‘bin 35" where the vertical profile data is read (shown as a line) resulting from the 2D
simulation with (a) smooth bottom wall, and (b) beamsg o with dense fluid initialised between
the elements, (¢) beamsg 2, (d) beamsgg with dense fluid initialised between the elements and
(e) beamnsg g. Red and blue are high and low velocities, respectively. Maximum and minimum

values are displaved at the top of the figure.

be observed and again bears closer resemblance to the rough cases with ambient fluid
between the elements than the smooth case, although the d-type case does retain smooth

characteristics in this respect.

Corresponding velocity profiles for the numerical simulations for the cases with dense
fluid initialised between roughness elements are shown in figure 5.20. Figures 5.20 (a)
and (b) confirm that the numerical results agree well with distribution of the velocities
for the experimental data and the value of the velocity maximum. Particularly good
agreement is observed in the overall profile shape predicted in the beamsg, case and
there is little difference in the value of @, achieved in the beamsgg case compared
to the experimental equivalent. Figures 5.20 (¢) and (d) demonstrate that the presence
of the dense fluid between the elements causes the current profile to tend towards that

of the smooth case, with the velocity maximum occurring lower in the flow such that



224

( ) Umaz = 13.2, Upmin = -66.1 mm L=210 .9
a
(( ) t=220s
)
(e)
(d) t=220s
©) t=210s
€
5 e
> 0.1
0
2 25 3 3.5 4

X (m)

Figure 5.19: Vertical velocity component, v, fields at the approximate time the head passes
through ‘bin 35" where the vertical profile data is read (shown as a line) resulting from the 2D
simulation with (a) smooth bottom wall, and (b) beamsg » with dense fluid initialised between
the elements, (¢) beamsg 2, (d) beamsgg with dense fluid initialised between the elements and
(e) beamsgg. Red and blue are high and low velocities, respectively. Maximum and minimum

values are displaved at the top of the figure.

the profiles almost represent an average of the smooth and the regular rough cases.
The profile does not entirely revert to that of the smooth case. This implies that the
fluid between the elements contributes strongly to the current dynamics but there are
also other mechanisms present as was postulated previously from the front speed results
(section 5.5.1). Note that here was no distinguishable difference observed between the

flow profiles in the results taken above an element or above the gap between two elements.

The effects of the law-of-the-wall method for specifying the bed roughness

on the velocity structure

The velocity fields using the law-of-the-wall method for bed roughness with k, = 0.0015.
equivalent to the beamsg 2 case, can be seen in figures 5.21 and 5.22. Strong similarities

with the smooth case can be observed by comparing (a) and (b) in figures 5.21 and 5.22.
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Figure 5.20: Downstream horizontal velocity, u, profiles within the head of the current resulting
from (a) the 2D simulation and experimental equivalent with a bottom wall of beamsg » (Bg )
with dense fluid initialised between the elements; (b) the 2D simulation and experimental equiv-
alent with a bottom wall of beamsg s (Bg,s) with dense fluid between the elements; (¢) the 2D
simulation with a smooth bottom wall and a bottom wall of beamsg» with (D) and without (A)
dense fluid initialised between the elements; and (d) the 2D simulation with a smooth bottom
wall and a bottom wall of beamsg s with (D) and without (A) dense fluid initialised between the
elements.

There is little disturbance to the ambient return flow and the location and streamwise
distribution of the velocity maximum. This could in part be attributed to the fact
that the law-of-the-wall method essentially uses an identical domain configuration to the
smooth case, except for the change of kg value at the wall. Despite this, some disruption
to the horizontal flow at the bottom boundary can be seen in figure 5.21 (b), and in
figure 5.22 (b) an increase in the vertical velocities are also present, perhaps causing the

disruptions in the vicinity of the bottom boundary.

The velocity fields at a later time for the law-of-the-wall bed can be seen in figures 5.23
and 5.24. As for the early time, little difference can be observed between the k, method
and the smooth case. The vertical field shows clear fluctuations within the current body

albeit slightly weaker but not as reduced as the body-fitted method and the horizontal
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Figure 5.21: Horizontal velocity component, u, fields at ¢t = 9 s resulting from the 2D simulation
with (a) smooth bottom wall and with (b) a k, value on the bottom wall (k, = 0.0015) which
is the approximately equivalent value of (¢) beamsg 2. Red and blue are high and low velocities,

respectively, maximum and minimum values are displayed at the top of the figure.
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Figure 5.22: Vertical velocity component, v, fields at ¢ = 9 s resulting from the 2D simulation
with (@) smooth bottom wall and with (b) a k, value on the bottom wall (ks = 0.0015) which
is the approximately equivalent value of (¢) beamsg 3. Red and blue are high and low velocities,

respectively. Maximum and minimum values are displayed at the top of the figure

field is distributed very similarly to the smooth bed case.

The downstream horizontal velocity profile data at the bin for the simulation using the
law-of-the-wall method can be seen in figure 5.25. The law-of-the-wall method produces
a slightly different velocity profile to the experimental and body-fitted equivalent cases.

The value of the velocity maximum is greater and located lower within the head region



Umar = 179.2, Upin = -124.6 mm t=1921.0s

(a)

t=230s

Figure 5.23: Horizontal velocity component, u, fields at the approximate time the head passes
through ‘bin 35" where the vertical profile data is read (shown as a line) resulting from the 2D
simulation with (a) smooth bottom wall and with (b) a ks value on the bottom wall (ks = 0.0015)
which is the approximately equivalent value of (¢) beamsg . Red and blue are high and low

velocities, respectively. Maximum and minimum values are displayed at the top of the figure.
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Figure 5.24: Vertical velocity component, v, fields at the approximate time the head passes
through ‘bin 35" where the vertical profile data is read (shown as a line) resulting from the 2D
simulation with (a) smooth bottom wall and with (b) a k, value on the bottom wall (k, = 0.0015)
which is the approximately equivalent value of (¢) beamsg>. Red and blue are high and low

velocities, respectively. Maximum and minimum values are displayed at the top of the figure.

and the distribution of the velocities about this maximum is smaller and tends towards

the smooth profile.
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Figure 5.25: Downstream horizontal velocity, u, profiles within the current head resulting from
the 2D simulation (N) and equivalent experimental (E) result for the rough case with the beamsg »
and for the 2D simulation with the approximately equivalent ks = 0.0015 value on the bottom
wall and with &k, = 0.0075 and 0.003.

5.6 Turbulence structure

Turbulence kinetic energy (TKE) profiles cannot be generated for the experimental re-
sults since the horizontal and vertical components of the velocity at a point are not
known simultaneously for one specific experiment due to the limitations in the velocity
range of the UDVP required for accuracy. One of the benefits of the numerical simu-
lations is that this data is available. The velocity data has been shown to be a good
prediction of the experimental equivalents and thus it can be postulated that the TKE
data is of equal ability. However, the results for TKE remain unvalidated and as such

should be treated with some caution until confirmed with an experimental dataset.
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Figure 5.26: Turbulence kinetic energy, k, fields at t = 9 s resulting from the 2D simulation
with (a) smooth bottom wall, and (b) beamsg ;, (¢) beamsg 2, (d) beamsg 4, (¢) beamsg g and (.f)
beamsg 16. Red and blue are high and low TKE, respectively. Maximum and minimum values

are displayed at the top of the figure

The effects of the spacing of bed roughness elements on the turbulence struc-

ture

The turbulence kinetic energy (TKE) fields predicted for the early stage of gravity current
propagation over each bed are presented in figure 5.26. There is a distinct region of
high magnitude TKE just above the bottom boundary in the head that increases with
increasing spacing between the elements (figures 5.26 (b) — (f)). Possibly as a result of
this, increased levels of TKE can also be seen further from the bed within the body of
the gravity current and in particular penetrating into the head and towards the front
of the current, also increasing as the roughness element spacing increases. Note that at
this time (9 s), the d-type rough bed cases have higher values of TKE at the density

interface above the current body than at this location in the smooth case.
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Figure 5.27: Turbulence kinetic energy, k, fields at the approximate {ime the head passes through
‘bin 35’ where the vertical profile data is read (shown as a line) resulting from the 2D simulation
with (@) smooth bottom wall, and (b) beamsg ;. (¢) beamsg 2, (d) beamsg 4, (€) beamsg s and (f)
beamsg 16. Red and blue are high and low TKE, respectively. Maximum and minimum values

are displayed at the top of the figure.

The differences between d-type and k-type can clearly be observed in figure 5.26 (b) & (¢)
and (d) — (f), respectively. The d-type case shows strong TKE at the density interface
where the billows are formed and lower TKE at the bed while the k-type case shows
high values at the bed within the head and at the interface although the magnitude of
these values varies for different spacings. In the k-type case, distinct areas of high TKE
can be observed localised about the individual elements beneath the head. This is not

so evident for the d-type case.

In the TKE fields at later times, shown in figure 5.27, it can be observed that in the
smooth case (figure 5.27 (a)) there is still high TKE at the density interface above the

current body maintaining the presence of coherent billows in this locality. The strong
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Figure 5.28: Turbulence kinetic energy, k, profiles for the total domain depth resulting from 2D
numerical simulations with a smooth bottom wall and bottom walls with beamsg ;. beamsg 2.
beamsg, ¢, beamsg g and beamsg,1g.

TKE maintaining the large unphysical billow can clearly be observed to the rear of
the current. In the rough cases, the localised TKE in the billows which confirms their
coherence has dissipated and a damped region of high TKE has formed behind the head
that does not extend as far into the current body as in the smooth case. The TKE is
substantially reduced in this region for the two widest k-type roughness spacings (figures
5.27 (e) and (f)). but not for the beamsgs case. Mixing in the head is seen to have
decreased significantly in the d-type cases and in the beamsg, 16 case (figures 5.27 (b). (c)
and (f), respectively) but is still high and localised about the elements in the other two
k-type cases (figures 5.27 (d) and (e)), although the magnitude is somewhat reduced.

Figure 5.28 enables comparison of the TKE profiles through the tank depth (shown as a
vertical line in figure 5.27) for the smooth bed and each of the regular body-fitted beam-
roughened cases. In order for these profiles to be consistent with the vertical velocity
profiles, and therefore used as a predictive tool to compliment the experimental data,
they were generated from numerical data read at bin 35 (3.22 m from the lock-box end
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Figure 5.29: Turbulence kinetic energy, k, profiles in the vicinity of ‘bin 35’ resulting from
2D numerical simulations with bottom walls with (a) beamsg,;, (b) beamss 3, (c) beamsg. 4, (d)
beamsg g and (e) beamsg 16. From left to right the vertical profiles represent data in four locations,
namely, one in the cavity just upstream of an element, two at the top of an element and one in
the adjacent cavity just downstream of an element.

of the tank). For models generated with the beamss 2, beamsg 4 and beamsg g bed types,
the bottom cell lies on top of a roughness element. Hence the first data point is within
the cell adjacent to the top of the element, not at the bed in the gap. However, in the two
other cases, the TKE profile is shown right down to the bed. Due to this discrepancy,
profiles in the cells above, upstream and downstream of an element in the vicinity of the
bhin arce shown in figure 5.29 and should be cousidered in conjunction with the predictions

in figure 5.28.
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In all cases investigated, a TKE miniina occurs in the vicinity of the velocity maximum
with an increase towards the interface and towards the bed. as has typically been observed
in experimental gravity currents (e.g. Kneller et al., 1999). Figure 5.29 confirms that
there is no distinguishable effect on the vertical distribution of the TKE in the main body
of flow away from the top of the elements, if the data is taken above the elements or
from within the gap between them. However, there are differences in the low dynamics
immediately above the elements as will be discussed subsequently. This again shows
that the effects of the elements does not penetrate high into the current. Considering
levels of TKE at the velocity maximum for the rough cases, an increase with increasing
spacing occurs, except for the beamse,1¢ case where it is almost identical to the smooth
case. The distance from the bed for this minimum turning point in the TKE profile
also increases with increasing spacing except again for the beamsg ;¢ case which agrees
in height with the beamsg 2 case. At the density interface above the current body, there
is no consistent increase or decrease in magnitude dependent on element spacing that is
obvious from the profiles in figure 5.28. The smooth case has the highest TKE in this
region and beamsg 1, the lowest. This turning point occurs lowest in the flow profile for
the smooth case. For the bed-roughened cases, it is located at almost identical distances
from the bed regardless of element spacing, except for the beamsg 16 case which occurs

higher in the current.

The main effects of bed roughness on the vertical TKE profiles can be observed to
occur near the bed, as indicated by the TKE fields in figure 5.27. The results shown in
figure 5.28 suggest that the TKE can increase dramatically in this region with increasing
element spacing and then decrease abruptly down to the bed. The smooth boundary
condition results in a TKE value that is greater than that of the velocity maximum but
lower than the value at the interface and continues increasing down to the bed. Figure
5.28 shows that in the presence of the roughness elements another turning point occurs
in the profile near the bed. For the d-type cases (beamsg; and beamsg ), the value at
this point is again greater than the velocity maximum but smaller than the TKE at the
density interface. However, in figure 5.29 (a) for the beamsg ; case, it can be observ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>