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Abstract 

To dat.e the influence of bed roughness Oll the propagation and dynamics of gravity cur­

rents has been largely neglected. A llew physical modelling dataset has been compiled, 

which details the fundamental affects of several bed roughnesses on lock-release gravity 

currpnts. Five bed configurations werp chosen encompassing 'grain' and 'form' type ele­

ments at a range of spacings. 1%, 5% and 10% initial dpnsity excesses were studied and 

the effect of removing the buoyant ambient fluid between the elements examined. Obser­

vations due to changing the current depth relative to the element height were also made. 

Ultrasonic Doppler velocimetry profiling (UDVP) and video capture techniques were 

used to analyse streamwise and vertical velocity structures and the affects on the front 

speed and distance travelled by the current. A 10 depth-averaged model solves modified 

2-layer shallow water equations using the method of characteristics to obtain tempo­

ral velocity and depth evolution for a current under the influence of a general roughness 

quantity. 2D and 3D depth-resolved CFD simulations use the commercial software FLU­

ENT to solve the RANS equations and transport of a scalar for the dense current with 

the RNG k - € turbulence model. The CFD predictions were well validated by the new 

experimental dataset and provide supplementary predictions of concentration, lateral 

motion and activity in the vicinity of the roughness elements. Comparison of 20 and 30 

models resulted in the conclusion that the 3D model is vital for accurate simulation of 

internal dynamics of gravity current propagation over beam type bed roughness. In gen­

eral, the distance that the front travels decreases with any bed roughness present .. This 

reduction increases with element spncing. The streamwise mean velocity profiles show 

a reduced velocity maximum further from the bed. Decreased entrainment results from 

breakdown of larger billows. Also observed is a thicker current, a rounder profile and a 

shorter, diluted head. Areas of increased vertical motion within the current. associated 

with decreased horizontal motion are observed, indicative of t'j('diollS of ambieut fluid 

from bet.ween t.he elements. The presence of t.his fluid is f011nd to contribute to ::::: 50% of 

the current retardation. There are also similarities with the effects of bed roughness in 

open channel and pipe flows, most notably there is a critical element spacing (11'/ kr ::::: 7) 

where the effects of roughness are greatest (where w is element spacing and kr is ele­

ment height). The experimental and numerical results demonstrate that the application 

of existing models that rely on experimental validation with smooth beds to situations 

where a rough boundary is present may lead t.o significlUlt errors. 
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Chapter 1 

Introduction 

1.1 The significance of gravity currents and bed roughness 

Gravit.y ClllT(~nt.s, or densit.y Cllrnmt.s, 0('(:111' dnp t.o t.he effed of the gravitational force 

on two bodies of fluid where differences in the fluid density resulting, for example, from 

concentration or temperature discontinuities, cause flow propagation to occur in a direc­

t.ion normal to that of gravity. The phenomena can oceur with liquids or gases moving 

into less dense liquids or gases that are in motion or quiescent. The density difference 

need only be a few percent but can be much greater. Gravity currents can be invisible, 

propagating as a cold front in an exchange with warm air. Often they occur in particu­

late form as 'turbidity' currents. For example in landslides, the flow is not made up of 

one uniform fluid, instead it carries thousands of small and large particles in suspension. 

The implications can be substantial, for example, submarine landslides on ocean floors 

can gouge large channels in the seabed and impact on the human environment by dam­

aging submarine infrastructure. Avalanches, where the densit.y difference is generated 

by thousands of tiny particles of powder-snow suspended in the air, are another example 

of a gravity current. Again they can present a serious hazard to the human environ­

ment. Man-made gravity currents are observed in industrial situations. such as. the 

accidental release of dense gas which might be poisonous or explosive; and oil spills on 

the sea (Hoult, 1972; Fannelop and Waldman, 1972) both of which result in severe and 

potentially wide-spread environmental impact. The modelling and subsequent increased 

understanding of these phenomena dearly has significant. benefits, be it for human or 

environmental safety reasons or the efficient management of various scenarios natural 

and man-made. 
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We need only consider the foregoing examples to understand the relevance of investigat­

ing the influence of bed roughness on gravity currents. The sea floor is not smooth, an 

avalanche path is rarely so, more typically encompassing mountainsides, forests and, in 

a worst case scenario, residential areas. A cold front can occur over a variety of terrain. 

If a heavier than air gas is released from an industrial setting, there is a high possibility 

that this will be in or near an urban environment so the surface that it interacts with will 

not be smooth. A number of questions arise: What is the effect of this surface? Does it 

have an effect at all? Will it slow the current or speed it up? Will particulate currents 

hchave diH·t'rent.ly? \Vhat if the roughncss is sparse or what if it is dense? And so on. 

To investigate and increase understanding of the various and complex fundamental flow 

dynamics of gravity currents the general approach has been to simplify the situation by 

8..'lsuming that the bed is essentially smooth. The present investigation does not intend 

to prove that these studies are in error, but to extend them by asking: What influence 

does bed roughness have on the dynamics of gravity currents? 

1.2 Definition of bed roughness 

Bed roughness is classified in the present st.udy by arrays of elements that occur at 

intervals such that an adjacent element influences the gravity current before the flow 

dynamics have fully adjusted to the effects of the previous element and complete flow 

blocking does not occur, i.e. the elements are not considered stand alone obstacles. 

For exmnple, a dtyscape including tall and low buildings over which a sea breeze is 

propagating may be described as bed roughness while one single building should not. 

1.3 Literature review 

This section is intended to provide a general overview of the physical attributes of gravity 

currents and a discussion of known effects of different types of roughness and investiga­

tions that have been performed to date. Reviews of specific methods, theoretical and 

experimental, can be found at the start of the corresponding chapters. 

An excellent general compilation of fundamental knowledge on gravity currents can be 

found in Simpson (1997) or summarised in Huppert (2006). Moodie (2002) gives a 

summary of some different methods of theoretical models and highlights restrictions 

on the theory. The most detailed study of bed roughness effects on gTavity currents 
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to date is Peters and Venart (2000), and Jimenez (2004) gives a review of turbulent 

flows over rough walls for open channels. It must. be highlighted that the fundamental 

characterisation of bed roughness and its effects is still a highly active area of research 

in pipe and channel flows, despite several decades of work. The complexities of natural 

roughness have proven to be extremely difficult to characterise (Rouse, 1965; Yen, 2(02). 

A substantial amount of literature concerns the development of models for particle­

driven or turbidity currents. Since the methodology of the present study involves non­

particulate, saline cnrrents, this review does not specifically cover previous studies in 

this area. However, an overview of the dynamics and structure of particle-driven and 

turbidity currents can be found in Kneller and Buckee (2000). 

1.3.1 The anatomy of gravity currents 

Characteristic gravity current shape 

The anatomy of a gravity current is particularly complex. The primary component of 

motion is away from the point of release and parallel to the bed. At the leading edge, 

a frontal zone forms which, creates a sharp dividing interface between the twu !iuids. 

The basic shape of the current has been discussed and developed through observations 

in many studies. Von Karman (1940) proposed a model, as shown in fignre 1.1, with 

theory based on Bernoulli's equation applied to steady, irrotational flows. However, 

this theory was rejected by Benjamin (1968) due to the assumption of conservation of 

energy required for such derivations being unjustifiable, thus the wholly irrotational flow 

required for a profile, such as shown in figure 1.1, is not possible. Von Karman (1940) 

did note the existence of a distortion in the interface of the real flow profile. He also 

correctly established the existence of a 'head' at the front of the gravity current that had 

a crest higher than the main body of the flow although, as proven again by Benjamin, a 

head wave of this shape cannot actually occur under the assumption of energy conserving 

flow. Keulegan (1957) carried out ext.ensive experimental studies on gravity currents and 

directly observed the existence of a. breaking wave region behind the 'head' of the current. 

From the observations of Keulegan (1958), Benjanlin (1968) constructed a modified form 

of a gTavity ClUTcnt shown in figure 1.2. Keulcgan (1957, 195~) observed that when the 

front is at great depths or moving at high speed, the deflected waters at the head will form 

eddies, waves will be generated on the interface and intense mixing occurs. Benjamin 

(1968) also proved the inevitability of wave-breaking OIl the backward side of the head 

and therefore the energy losses that would ensue. He detail .. many of the ma.in fea.tures 
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----~ V 

Figure 1.1: The form of the head of a gravity current propagating over a horizont.al surface as 

suggested by Von Karman (1940). 
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Figure 1.2: The form of t.he head of a gravity current propagating over It horizontal surface as 

suggested by Benjamin (1968). 

of gravity currents through the application of the theory of flow force balance to an 

air-filled cavity and the liquid into which it is advancing. Through analogy with these 

results, he draws conclusions for the interaction of two fluids of different densities. The 

one considerable difference between the cavity flow and that of the gravity current is the 

wave-breaking process. This turbulent motion generates significant mixing between the 

two fluids of a gravity current and thus causes 108S of defiuition of the density interface. 

However, for the propagation of a 'bubble', the interface will remain a smooth surface. 

Investigations in lock release cases with varying initial lock length to initial height ratios 

(xolho) have shown that the head shape changes as the ratio increases or decreases about 

1 (Hacker et al .. 1996). More recently it has been established that the head shape also 

changes with the ratio of initial current height to ambient height ratios (hoi H) in fixed 

volume (lock-release and lock-exchange) flows. Shin et ai. (2004) carried out a range of 

experiments for hoi H between 0.11 and 1 and found for full height releases the current 

is practically uniform in depth like a constant flux case. Smaller release heights have a 

more noticeable depression behind the head, therefore a more pronounced raised head 

with a clearer slope on the density interface of the main body of the current. 

The Reynolds number (Re) of a gravity current can also affect the current shape and 

is an important consideration if analogies are to be made with 'real' currents. Schmidt 

(1911) found that for Re ;S 1000, the current morphology is dependent on Re but for 

Re ~ 1000 similar characteristics can be observed regardless of changes in Re. Keulegan 
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(1957, 1958), Simpson and Britter (1979) and Parsons and Garda (1998) agTee with this 

observation although they notice that slight increases in Froude number (Fr) have been 

observed for Re greater than 1000. Discussion of Fr and the relevance to scaling can also 

be found in Kneller and Buckee (2000). For very small Re ;S 10 Simpson and Britter 

(1979), found that the head is not distinct. 

Mixing and entrainment 

The Illixing between the current and ambient fluids is a result of gravitational and shear 

iIL'5tabilities at the gravity current head (Simpson and Britter, 1979). Simpson (1972) 

analysed the effects of the bottom boundary on the head of a gravity current studying 

the forms of these instabilities. The two main types are billows (resembling Kelvin­

Helmholtz instabilities) and a complex shifting pattern of lobes and clefts, see figure 1.3. 

Billows are vortices caused by the breaking waves as established by Benjamin (1968) 

and theorised by Prandtl (1952). They appear, in basic form. as rolls of fluid along 

the density interface in the region of velocity sheaI above the front. Slightly different 

structured billows have been observed to form dependent on low or high Re (Parsons 

and Garcia, 1998). Benjamin (1968), through the flow force balancing theory has shown 

that the breaking waves behind the head will remain when the theory is reduced to 

a two-dimensional case thus implying the retention of billows. This is confirmed by 

Britter and Simpson {1978} and Patterson et al. (2005) using a slip boundary to create 

a '20' current. However, it has been shown that in the three-dimensional case, there is 

a mechanism for the dissipation of billows (Hacker et al., 1996; Cantero et al., 2003) not 

present in 20. 

The lobe and cleft formation occurs due to the effects of instabilities at the bottom 

boundary on the front. Their existence proves the three-dimensional nature ofthe How. 

Simpson (1972) concluded that they are generated by less dense fluid over-ridden by 

the denser fluid, see figure 1.4. The buoyancy force induced by the lighter fluid has 

the effect of disrupting the billows and thus affects the mixing of the head at the top. 

It also raises the foremost point of the gravity current above the surface, thus moving 

the stagnation point beneath the head. Hartel et al. (2000b) found that the stagnation 

point is behind and slightly below the nose and does not coincide with it as previously 

thought (figure 1.4). They calculated the volume flux of the overrun fluid and found 

it to be very small and to decrease 8.'1 Re increases. Since the energy available for a 

buoyancy-driven instability downstream of the head. such as that suggested by Simpson 
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Figure 1.3: Sketch of the instabilities and three-dimensional motion in a gravity current head, 

after Simpson et al. (1977). (i) Billows forming behind the head, and (ii) cleft with lobes forming 

either side. 
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Figure 1.4: Schematic of a gravity current head, after Simpson (1972) where If is total fluid 

depth, 0 the st.agnation point, h the current head height, p th£' ambient fluid dpllsity and ttl and 

U2 are the streamwise velocity of the current and amhient liuitis, respectively. 

(1972), depends on the amount of fluid entrained, Hartel et al. (2oo0b) conclude that 

this cannot be the primary mechanism for the generat.ion of lobes and clefts. Inst.ead, 

they suggest that they form due to a local instability generated at the leading edge of the 

current. This is illustrated in more detail using stability analysis and direct numerical 

simulations in Hartel et al. (2000a). although there exists insufficient experimental data 

to confirm these analyses. 

Simpson and Britter (1979) found that for a constantly fed flow, whether surface stress is 

present or not, the fluid in the gravity current is mixed outside the current head behind 

it forming a mixed layer above the current body. Hence a thick velocity and density 

interface between the g,Tavity current and the ambient fluid is formed. In both constant 

flux and fixed volume cases, the fluid in the head is initially unmixed even during the 

initial slumping stages of the lock release (Hallworth et aI., 1996). However, for fixed 

volume releases, the mixing and internal structure of the flow is different and has been 
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shown to be dependent 011 the aspect ratio of the fluid in its initial state. Hacker et al. 

(1996) use a ratio defined by the lock height to lock lengt.h ho/xo, whereas Hallworth 

et al. (1996) use lock length to lock height xo/ho. For ease of comparison, it is taken as 

xo/ho here. Hacker et al. (1996) found that for larger aspect ratios (> 1), mixed fluid 

is detrained from the head and replaced by denser fluid from the body of the current 

until no more unmixed fluid is available and the head is eroded. With an aspect. ratio 

of unity, Kelvin-Helmholtz billows mix deeply into the current and produce a region of 

stratification between a main vortex and the head. Eventually the vortex loses its energy 

and the current becomes analogous to that generated by the larger aspect ratio. A small 

aspect ratio « 1) current has a head height comparable to its body depth. There is 

little supply of dense fluid behind the head and so the billows break directly into a region 

of mixed fluid. Gradually all the fluid in the current becomes mixed but denser fluid 

in the head maintains a leading front until eventually the stratification extends into the 

head. Hallworth et al. (1996) found that gravity currents with identical initial cross­

sectional areas but different 8..'1pect ratios are diluted at different times and so propagate 

at different speeds. Also, the entrainment of ambient fluid into the current is spatially 

non-uniform, it occurs mostly at the head and decreases monotonically with increasing 

initial volume behind the gate. Hallworth et al. (1996) noticed the occurrence of 'abrupt 

transitions' in the flow, i.e. when the current head changes abruptly from dense to dilute. 

This mechanism is explained by Amy et al. (2005) and is dependent on the concentration 

and Re of the current. However, it is peculiar to laboratory generated currents and has 

not been observed in natural currents. 

In a more quantitative study. Ellison aud Turner (1959) found that for flow down inclines, 

entrainment decreases as the Riclumlson number (Ri) increases and is negligible for 

Ri > 0.8. 

The height of the current 

Difficulties in choosing the location within the current to measure the height have been 

encountered in many experimental studies (e.g. Marino et ai., 2005) and can have sub­

stantial repercussions on subsequent analysis. For example, the Froude number (Fr) 

requires the height of the current to be known. A value of h just behind the head where 

flow can be shallower will give a larger Fr than deeper h measurements taken elsewhere. 

Shin et al. (2004) suggests that Fr in the current body should be calculated using a 

height taken from a region away from non-hydrostatic influences. Re also varies with 
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height. One Re value can be calculated in the head and a different one in the body of 

the current (Peters, 1999). It can be calculated using the total height of the fluids but 

since it is the Re of the current that is of interest it is more commonly calculated using 

ho/2, the maximum height of an energy conserving current (e.g. Shin et al., 2004). 

In the laboratory, the height of the current depends on the experimental method and if a 

fixed volume lock exchange is used it will depend on the aspect ratio of the flow. In this 

case, differences are observed in the current height, for example, between dense body 

height, total dense and mixed layer height, head height and nose height (Simpson, 1972). 

Benjamin (1968) noted that for energy conserving flow, in his cavity model theory, the 

liquid must occupy half the space between the top and bottom planes of the channel for 

the steady flow without energy losses, i.e. h = ~H. Flows with h < !H are possible 

with energy losses but flows with h > !H are not possible without some external source 

of energy. Analysis of energy conserving gravity current flow performed by Shin et al. 

(2004) found that the only non-trivial case is h = ho/2. i.e. for an energy conserving 

partial depth release, the height of the current after release is half its initial lock depth 

before release. 

Benjamin (1968) found a theoretical maximum current to ambient height ratio (h/ H) 

of 0.347 for fixed volume releases including energy losses. An identical result was found 

by Klemp et al. (1994) and the experiments of Simpson and Britter (1979) obtained a 

maximum value of 0.33. However, Shin et al. (2004) proved that ratios of hi H > 0.347 

are possible with lock exchange flows. The previous theoretical values are derived through 

shallow water theory and consideration of the speed of the characteristics analogous to 

a piston problem. However, shallow water theory is not valid at the front when' n011-

hydrostatic forces are present so a constant depth and front velocity faster than the 

maximum characteristic speed is a possibility (Shin et al .. 2004). 

The correlation of the nose to head height rat.io (d,,/hh) with Re for a current in t.he 

range 300 ~ Re ~ 10000 can be given by 

~: = O.61Re-O.23±O.1 (1.1) 

(Simpson, 1972). Subsequent studies agree with this relationship and it is important for 

understanding the instabilities generated at the front that depend on the nose height 

and stagnation point (Simpson and Britter, 1979; Hartel et al., 2000b; Cantero et al., 

20078). 
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The bore 

The formation of a bore is another feature of lock release currents. Rottman and Simpson 

(1983) observed an expansion wave propagating back from the disturbance generated 

by removal of the partition which upon collision with the upstream end wall reflects 

back towards the current front. The nature of this refledion has been the subject of 

much discussion. Rottman and Simpson (1983) found that it is dependent on the initial 

dense fluid to ambient height ratio (hoi H) and specified that there was a difference for 

hoi H > 0.5. Klemp et al. (1994) showed that it takes the form of a rarefaction wave 

for hoi H ~ 0.5 but becomes a bore for hoi H > 0.5 as reversed flow and subsequent 

interaction with the end wall increase. D'Alessio et al. (1996) gives hoi H = 0.5 for 

the condition on formation of the bore but this is a theoretical value and subject to 

simplifiC'ations used in the derivation (Moodie, 2002). Shin et al. (2004), through different 

theoretical analysis, found that a bore will form for releases greater than h{.1 H = 2/3. 

This value agrees with observations in the region of 0.7 from experiments (Rottman and 

Simpson, 1983). 

Typical gravity current profiles over a smooth bed 

Gravity current flow over a smooth bed has been examined intensively. The internal 

structure of the current is discussed, for example, in Kneller et al. (1999) and Zhu et al. 

(2006). Typical results for the internal downstream horizontal and vertical velocities can 

be seen in figure 1.5 (a), with sketches of characteristic profiles of downstream horizontal 

velocity, density and turbulence kinetic energy throughout the depth of the current head 

(1.5 (b) and (c)). The arrival of the head is defined in the velocity time series by a sharp 

increase in both the vertical and horizontal velocity components. The billows behind 

the current head can be identified as large structures within the downstream horizontal 

velocity data. The vertical vclocitiCR arc significant.ly smaller than the horizontal com­

ponent with the majority of vertical motion at the front where the current forces itself 

into the ambient fluid. The concentration profile shows high concentration fluid lower 

in the profile, identifying the high density of the gravity current and low concentration 

above in the ambient fluid. Over a smooth bed, the velocity maximum is typically low 

down in the flow profile, which can be modelled from this point down to the bed using a 

log-law profile (Kneller et al., 1999). The location of the turbulence kinetic energy min­

imum is typically observed to coincide with the velocity maximum and the turbulence 

kinetic energy typically attains maximum values at the density interface and near the 
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Figure 1.5: Typical results for saline lock-release laboratory gravity currents propagating over 

smooth surfaces after Kneller et ai. (1999). (a) Time series of downstream horizontal and vertical 

velocit.y, (b) sketch ofhorizolltal velocity and density profiles through the current depth, (c) sketch 

of turhnlence kinetic energy profile through the cnrrent. depth. 
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Figure 1.6: Velocity vector field, generated by PIV data within a gravity current head, adapted 

from Zhu et al. (2006). Solid black line represents the approximate outline of the gravity current 
head. 
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bed (Kneller et al., 1999; Best et al., 2001). 

Zhu et al. (2006) produced vectors of velocity at points within a gravity current head 

(figure 1.6) from experimental particle image velocimetry (PIV) data. The strong down­

stream horizontal component of velocity is evident within the current fluid, with weaker 

negative velocities at higher depths in the overlying ambient fluid. The front is clearly 

identified by the strong upward motion to the right of the image. The billows can also be 

observed behind the head, created by the shear at the density interface between the cur­

rent and ambient fluid. Chapter 2 provides further discussion of methods for gathering 

experimental datasets. 

1.3.2 The front position and speed 

Establishing the speed of the front is one of the primary objectives in many gravity 

current analyses. Despite being a long-standing component of gravity current research, 

the complexity of the instability in the flow dynamics at the front mean that the position 

and hence the speed of the current front is still a priority topic to date. An up-to-date 

and detailed discus .. c;ion can be found in Cantero et ai. (2007b). 

Clearly the speed of the front will change from the instigation of the motion to the 

eventual quiescence. Since the flow in this problem is transient, the motion moves in 

phases dependent on the balance of the forces in the flow at that time (Huppert and 

Simpson, 1980; Didden and Maxworthy, 1982; Rottman and Simpson, 1983; Marino 

et al., 2005; Cantero et al., 2007b). For a full height ratio current (Le. ho / H = 1), 

when a lock part.ition is suddenly removed t.he fluid at the front collapses in an initial 

slumping phase (Huppert and Simpson, 1980) of constant front velocity before a ba.lance 

of buoyancy and inertial forces dominat.es the flow (Rottman and Simpson, 1983). From 

the results of Rottman and Simpson (1983), Hallworth et al. (1996) specify the empirical 

expression for the length travelled before slowing begins (xs) as 

Xs = 3 74ho + . H' Xo 
(1.2) 

The current advances along the horizontal surface in this inviscid self-similar phase with 

a decreasing speed proportional to t- 1/ 3 (Hoult, 1972). The buoyancy-inertia balance 

is maintained so long as the inertia forces are large in comparison to the viscous forces 

that result from the shear generated at the interface between the fluids and by contact 

with t.he lower boundary. When this balallce no longer holds, it has been found that a 
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current moving along a rigid boundary will have length of order 

(1.3) 

and the flow is said to enter the buoyancy-viscous regime (Didden and Maxworthy, 1982: 

Huppert, 1982). The speed of the front has been found to further decrease in the viscous 

self-similar phase with t-4/ 5 (Huppert, 1982). 

For low Re currents, the inertia-buoyancy regime is shorter or can appear absent (Hup­

pert and Simpson, 1980; Amy et al., 2005; Marino et al., 2005; Cantero et al., 2007b). 

Cantero et al. (2007b) found that whether the flow undergoes the transition from slump­

ing phase to viscous phase via the inertial phase or not depends on the initial Re of the 

flow and the size of the release. For larger releases, with high Re, the slumping phase is 

maintained for longer and the inertial phase is apparent. When the current is generated 

from a continuous flux source (e.g. Simpson and Britter, 1979, Peters et al., 1997), the 

initial slumping phase does not occur and the first flow regime is the inviscid self-similar 

phase. 

Systems of governing equations that describe the flow can be derived and solved either 

analytically or numerically for the velocity and other quantities rl-'quired for different 

models relating to gravity currents. These have been investigated extensively by previous 

authors and the subject is covered in more depth in section 3.2.1. 

1.3.3 Bed roughness 

In many oreal' studies of gravity currents, the macroscale characteristics of the bed are 

given, such as the slope or substantial ridges or steps, but a truer physical characterisa­

tion of the bed is omitted. In some cases this is justified since the bed can be classified 

as hydraulically smooth but whether this has been formally established in anyone in­

vestigation or is simply an assumption is often not presented in the data or perhaps has 

not been considered. With this in mind, it would be of significant benefit to compile a 

detailed database of known natural occurrences of gravity currents with details such as 

the speed, spread, depth and concentration of the current and finer dctail-; of the bed 

such as the presence of, for example, bed forms, and the height and distribution of these 

'roughness elements'. This task was not performed in the present study due to the time 

constraints involved in compiling such information, partiCUlarly since the details of an 

event are not always provided by one source and therefore rigorous searches and cross­

referencing are required. Moreover, the spontaneity of natural gravity currents means 



13 

that collection of field data is difficult. 

In the case of turbidity currents, it is common practise to analyse deposits and infer 

flow processes that might result in the formations observed. The stratification of de-­

posits in rock outcrops and the orientation of larger particles can be used retrospectively 

to deduce finer details such as the nature of turbulence in the flow. Data from recent 

events or laboratory studies can then be used to support any hypotheses. Similar in­

verse hypotheses could therefore be used the generate more detailed datasets of the flow 

dynamics in the presence of bed roughness. An exanlple of the above is the pyroclastic 

currents that resulted from the eruption of Mt. Vesuvius in AD 79 and destroyed the 

Roman town of Herculaneum (e.g. Sigurdssoll et at., 1982; Gurioli et al., 2002). This 

context represents an urban roughness condition at the bed. Results indicate that some 

of the buildings would be classified as obstacles rather than a roughness since they cause 

substantial flow deflection. However, the effects of several 'small' steps between 0.1-0.5 

m high have been observed and the. resulting turbulence and particle deposition from the 

current in relation to these steps has been suggested by analysing the facies in the lee 

of the steps. A step of height 0.5 m that was not high enough to affect the entire flow 

was found to induce an abrupt flow transition inducing the settling of heavier particles 

and partial removal of fine material. A series of smaller steps up to 0.4 m high were 

purported to result in an increase in flow turbulence, in this case instigating a transition 

from non-turbulent to turbulent transport. The inclusion of the effects of the urban 

roughness caused a change in the interpretation of some of the deposits to be described 

as the results of flow transformations in response to irregularities at the bed (Gurioli 

et al., 2002). 

Until recently most model investigations into gravity currents have considered the flow 

over a smooth rigid boundary. Flow down slopes (e.g. Middleton 1966a, 1966b, Britter 

and Linden, 1980), flow over or through obstacles (e.g. Rottman et ai., 1985, Hatcher 

et al., 2000), flow over permeable surfaces (e.g. Marillo and Thomas, 2002) and various 

ot.her a."peds affecting these important phenomena have been studied but there has been 

lit.tle attent.ion applied to charact.erising t.he flow over It homogeneously rough surface. 

The most notable studies to date are those of Peters (1999), Kubo (2003), Ozgokmen 

et al. (2004a) and Ozgokmen and Fischer (2008). Peters (1999) performed experiments 

of constant flux gravity currents of different densities flowing over square roughness el­

ements, Kubo (2003) carried out experiments and a numerical st.udy of particle-driven 

gravity currents flowing over 'humps' as a bedform analogy, and Ozgokmen et al. (2004a) 

and Ozgokmen and Fischer (2008) simulated oceanie overflows (stratified saline gravity 
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currents) over a sinusoidal bed topography. These studies are discussed further subse­

quently. 

It should be noted that the presence of elements on the bed does not immediately imply 

that the bed is rough, even if they meet the general description of bed roughness given, 

for the present study, in section 1.2. In typical boundary layer flows, if the elements 

are small and within the boundary layer or the flow is laminar then the flow dynam­

ics will not feel the effects of the roughness. As the fiow increases in turbulence, i.e. 

the Reynolds number increases, the effect of the roughness can still remain within the 

hydraulically smooth regime until a critical level is reached and the roughness begins 

to take effect. As the Reynolds number continues increasing, the roughness effects in­

crease proportionately in a transitional regime where the dynamics are dependent on the 

Reynolds number and the geometry of the roughness elements. Within the boundary 

layer, the viscous sublayer thickness reduces due to the diminiRhing damping effect of the 

wall on the flow until the sublayer can no longer be maintained and the flow is considered 

fully rough. The roughness effects are approximately constant, independent of further 

increases in Re and proportional to a roughness Reynolds number. This theory was first 

established by Nikuradse (1933) who classified the different regimes of the flow as hy­

draulically smooth, transitional and fully rough ba."Ied on a roughness Reynolds number 

for sand grain roughness. Note that for a given surface, as the boundary layer thickness 

and Reynolds number change, the classification of that surface can change, even from 

effectively rough to hydraulically smooth. Further details of the effects of roughness on 

the boundary layer can be found in textbooks, for example Chow (1959), Schlichting 

(1960) 811d Cebeci and Bradshaw (1977). 

Different types of roughness 

Naturally occurring roughness, depending 011 the scale, can constitute almost any array 

of objects over which a fluid flows. Therefore, it is not possible to explicitly identify ev­

ery different type. In order to understand the effects of roughness on fluids, a variety of 

artificial elements have been used experimentally and theoretically, resulting in the cat­

egorisation of different roughness 'types' the varying effects of which can be related back 

to the natural environment. This use of artificial elements is justified by the complexity 

of natural roughness (Rouse, 1965). 

The investigation of the effects of bed roughness on flows in pipes, ducts and in open 

channels spans several decades and continues to date (Jimenez, 2004). III all of these 
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contexts, the roughness elements can take a variety of forms, for example natural coarse 

sand or man-made steel rivets. There is an obvious divide between 'grain' type roughness 

and 'form' type roughness whereby the roughness could be characterised by either of 

these or both. A flat bed of coarse sand would be categorised as a grain type roughness, 

a series of triangular shaped ridges in an otherwise smooth bed would be a form type 

roughness, combine these as a dune field and the result is a composite grain and form 

type bed roughness (Van llijn, 1984). 

In most roughness studies, reference is given to the fundamental work of Nikuradse 

(1933) which was based on the effects of coarse sand in pipes. In the pursuit of charac­

terising all roughnesses, the results of Nikuradse (1933) have been used for decades to 

generate a theoretical roughness type, the so-called 'equivalent sand roughness height', 

"8 *. Essent.ially this involves relating t.he roughness effeds of a study back to the results 

of Nikuradse (1933). Thus the effect.s of that roughness on the flow are known based 

on the effects of an equivalent sand roughness. Grain type roughnesses correlate well to 

this representation, as might be expected. However, there is substantial debate as to the 

effective representation of form type roughnesses by a single ks value. Rouse (1965) and 

Yen (2002) query how one value can describe the effects of the size, shape and spatial dis­

tribution of larger roughness elements such as bedforms. In particular, if flo\\' separation 

occurs around an element., changes to the flow dynamics could be significantly more than 

ks can prescribe (Yen, 2002). In turbulent boundary layer studies, it has been contested 

that the equivalent roughness, ks, is a bad parameterisation of roughness resulting in 

very different roughness geometries having very different effects on the turbulent stresses 

but with nominally identical roughness functions (e.g. Krogstad aud Antonia, 1999, Or­

landi and Leonardi, 2008). Hence risking misrepresentation of the required roughness 

with potentially serious inaccuracies in the flow field. With this is mind, Orlandi and 

Leonardi (2008) recently suggested that bed roughness would be better parametrised in 

terms of its affects on t.llrblllC'nce characteristks of the flow. 

For singlo-phA..c;e flow conditions it is known that rod roughness perpendicular to the flow 

which involve a gap between one element and the adjacent one can be categorised into 

'd-type' and 'k-type' roughnesses depending on the length scales presumed to represent 

the flaw over them. This idea was established by Perry et al. (1969) who characterised 

k-type roughness by a roughness function dependent on the Reynolds number based on 

·Note that this does not always have to be an equivalent sand roughness height, it can be related to 
other known result.~ but since Nikursdse (1933) was a very thorough study it appears to be the ID08t 

commonly used. 
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Figure 1.7: Sketches of the reacti011 of tIle flow to different l.H:'d spacings for single-phase pipe or 

open chann€'1 flows ov€'r squar€' beams. (a) After Chow (1959) and (b) numerical data of Cui ct 
al. (2003). Both !:lhow d-type (i) and k-~ype (iii) element. spa.cings and the possible intermediate 

spacing (ii). 

shear VE'locity and on a length associated with the size of the roughness. The fnnction 

describing the d-type roughness was found to depend on the diameter of the pipe and not 

on tIl(' roughnc\ s scale ann give's rise' to niffcrent flow rlyn ami cst . Physical descriptions of 

flow dynamics corre. ponding very well with these three categories were observed previou 

to Perry et al. (1969). Chow (1959) suggested three categories for the description of flow 

over a b am-type roughness: isolated-roughness flow , wake-interference flow and quasi­

smooth shown in figmes 1.7 (a) (i), (ii) and (iii), respectively. Of these, figures 1.7 

(a) (i) and (iii) represput d and k-type roughness effected flows, respectively, but Chow 

(1959) id ntifie wake-interferenc flow independently of the others. More recently, the 

el ment spacing to height ratio, w j kr' has been used in research to categorise roughness 

into d or k-type, although this appears to be under discussion. For example, Leonardi 

et al. (2003b), Leonardi et al. (2004) and Ikeda and Durbin (2007) suggest a value of 

wjkr 2: 3 for a roughne s to be described as k-type after the work of Bandyopadhyay 

(10 7), while ui et al. (2003b) suggest a value of w/kr 2: 4 ba.<;ed 011 the work of Talli 

(19 7) and Okamoto ,t al. (1993). However, they a.lso consider an intermediate type 

ronghnrs. da. sification of tL'jkr = 4, which suggests agreell1eut with the observations of 

Chow (1959), . E'e fig,11rf' 1.7 (a) and (b) Ui). 

tThese result!! have still not b n proven explicitly and hence are still not fully understood. particularly 

for the d-type lise but they are still very commonly usect to describe roughness element spacings (Jimenpz, 

2004) . 
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The flow dynamics over a d-type roughness are typified by vortices trapped between the 

elements that are not. easily released into the overlying flow (e.g. figure 1.7 (b) (i)). The 

elements do not penetrate the flow and therefore it resembles that of flow in a smooth 

channel. It has been shown that the coherent structures ~uld turbulence intensities are 

very similar to the smooth-walled case (Perry et al., 1969; Leonardi et al., 2004). It is 

only d-type roughness that has been applied to gravity currents to date. In particular, 

Peters et al. (1997), Peters (1999) and Peters and Venart (2000) investigated the flow 

of constant flux saline gravity currents over a d-type beam roughness (w/kr = 1). They 

ohs('rved trapp(~d vortkes of recirculating fluid between the elements that are typical of 

sillglc-pha.<;e Hows over this roughness type as mentioned above. 

The k-type flows are characterised by separation and reattachment occurring within the 

distance between two adjacent clements (e.g. figure 1.7 (b) (iii)) and the ejection of 

larger and more frequent eddies into the overflow (Perry et al., 1969). There is strong 

interaction between the roughness elements and the main body of flow and therefore 

both the height of the roughness elements and the space between them are crucial pa­

rameters (Ashrafiall et al., 2004). Leonardi et al. (2003b) find that when w/kr is large 

enough the reattachment length is not influenced by the presence of other elements. 

This critical spacing is generally agreed to be w/kr :::::: 7 (Cui et al., 2003bj Leonardi 

et al., 2003bj Ashrafian et al., 2004j Ikeda and Durbin, 2007). There is some variation 

in results of research into the value of the corresponding reattachment length: Cui et al. 

(2003b) suggest a value of about 4kr while Ikeda and Durbin (2007) find a value of 4.5kr 

and Leonardi et al. (2003b) report a value of 4.8k,.. For roughness spacings below the 

critical wiler value, the upstreanl face of the next element acts as a vertical blocking wall 

causing an adverse preslnrre gradient resulting in a shortened reattachment length. A 

larger reattachment length implies larger eddy development at the downstream wall of 

an element and therefore increased strength of the outward ejection of these eddies into 

the main body of the flow. Hence wi kr :::::: 7 can also be interpreted as representative of 

the spacing for which the maximum strength of ejection occurs (Leonardi et al., 2004). 

Similar results would have significant implications for gravity current propagation. par­

ticularly with respect to entrainment. Leonardi et al. (2004) find that in the vicinity of 

the elements, flow structures are less elongated t.han for flow over a smooth wall and as 

w / kr increases, the coherence is further reduced in the streamwise direction and attains 

a minimum when wlkr :::::: 7. Finally, for larger values of w/kr , the normal wall motion 

induced by the roughness is confined to smaller regions and the overlying fluid dynamics 

are once again similar to those encountered above a smooth wall (Leonardi et al., 2004). 
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The so-called intermediate flows are characterised by separation with a recirculating 

eddy about the same size as the cavity between the elements with reattachment on the 

upstream face of the adjacent element and the overflow affected by the ejected eddies. 

refer to figure 1.7 (b) (ii). This flow description agrees with that of Chow (1959) for wake­

interference flow shown in figure 1.7 (a) (ii), and also agrees with the results of Leonardi 

et al. (2004) where for 3 < w/k,. < 7 the effects of the wall on coherent structures and 

turbulence intensities extends approximately 2kr - 5kr above the top of the elements. 

In an attempt to further characterise the bed roughness for single-phase open-channel 

flows, Schlichting (1936) derived a 'solidity' function. This is defined by the total pro­

jected frontal roughness area per unit wall-parallel projected area. It was found that 

the effeds of the roughncss incrcased until there was It solidity of about 0.15 and then 

decrea."ed since the elements start to shelter each other so the roughness effects of in­

dividual elements lessen. d-type flows have a solidity of about 0.5 in the extreme limit 

of mutual sheltering (Schlichting, 1936). Rouse (1965) found optimum 'concentration' 

between 15-20% produced the greatest resistance, in good agreement with the solidity 

values of Schlichting (1936). Values below approximately 15% caused the resistance to 

vary in direct proportion to the concentration of the roughness elements with the con­

stant of proportionality varying with the relative drag of individual roughness elements. 

This line of research caused Rouse (1965) to query the reliability of estimating roughness 

parameters based on the results of Nikuradse (1933) since the exact concentration of the 

elements used in that study is unknown and even using a reasonable approximation, does 

not agree with the results of Rouse (1965). 

It must be noted that very recently, Orlandi and Leonardi (2008) have suggested, perhaps 

controversially, that the characterisation of roughnesses to date should be discarded and 

a new approach adopted. They suggest, through the results of an extensive range of 

direct numerical simulations that roughness is bett.er parametrised through its impact 

on turbulence in the near wall region. In particular, through the root mean square of 

the wall normal velocit.y fluctuat.ion at the element. crest.s. In their work, Orlandi and 

Leonardi (2008) have created a databa..<;e of 'numerical experiment.al' dat.a for different 

roughness types for reference. Clearly, categorisation of a roughness type is not a simple 

task and is subject to considerable ongoing research. 

More 'natural' elements, like the macroscale bedforms suggested by Yen (2002), have 

been used by Kubo (2003) to study the effects of three adjacent 'humps' on a lock­

release particle-driven gravity current. The hump geometries were 1.2 or 3.6 em high 
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Figure 1. : R nIt of numerical tudy by Yue et al. (2006) of open channel flow over a fixed 

dun using LES. (a) - (l) shows consecutive timesteps highlighting the development and life-Lime 

of vortices (V) and the approximate location of the reattachment point (R). 

with symm trical slop s ither side of a peak of horizontal length -0 cm or 100 cmt. The 

aspe t ratio (height to wavelength) were between 0.006 and 0.036. In the terms of duct 

flow , w/kr valu s approximated using the wavelength, since the humps are symmetric, 

and the height, W re found to be ~ 27 < w/kr < 167. Therefore, the humps could po­

tentially be cat gori ed as k-type. However, this should only be applied 100 ely as their 

proximi ty is augmented by the effi cts of the up and downward slopes which could result 

in an th r clas ·ifi 'ation being more appropriate. The topography applied by Ozgokmen 

et al. (2004n) and Ozgokmell and Fischer (200 ), using a bumpy bed described numer­

ica.lly using sillu oidal perturbations also represents more natural elements. However, 

in Ozgokmen and Fi cher (200 ) in particular, the close proximity of the bumps results 

in recirculating yortices obs(>rved in tht> flow field similar to those seen between d-type 

clements. 

i Note that in I nbo (2003) there is some ambiguity in the slope dimensions. The text implie: that 

it is th slope itself thllt is 50 or 100 cm. However. the diagram in fig11T0. 2 (b) and the values of 'hump 

length ' in table 1 (c) thf'rcin suggest that it is in fact the horizontfll distance from the peak to the hot tom 

of th slopC'. 
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In open channel flows, the effects of a single fixed dune and arrays of bed forms have been 

investigated. For example, Vue et al. (2005. 2006) performed high resolution numerical 

simulations to analyse t he streamlines of flow round such an element and showed good 

a.greement with experimental data. An example of their results can be seen in figure 

1.8 and highlight that for non-adjacent dunes, where there is a gap between upward and 

downward slopes. coherent structures exist which could perhaps be analogi sed to those 

occurring in the widely spaced k-type beam cases (see figure 1.7 (b) (iii)). 

The height of the roughness elements in relation to the overlying fluid has a substantial 

impact on the flow dynamics in pipe and duct flows, particularly on the modelling of 

turbulence bowldary layers. The relative height is important because the channel half 

height should be at least 40k,. (Jimenez, 2(04) if the dired effects of the rougllllcss ell-.... 

ments on the overflow nrc not required in the model, i.e. the roughness lies solely within 

the boundary layer. The critical spacing value w/kr :::::: 7 was obtained for roughness 

heights 5 - 10% of the channel height and have been shown to hold for a roughness 

height of only 1.7% of the channel height (Ashrafian et al., 2004; and Krogstad et al .. 

2005). In gravity current studies, the principle body of fluid in motion over the roughness 

elements is the current and therefore, as all approximation, the conservative assumption 

that hI = 11,0/2 can potentially be used to calculate the roughness height as a percentage 

of the current height for experimental currents§. For Kubo (2003), the height of their 

humps corresponds to 6-18% of the channel depth, or 12-36% of the conservative current 

depth. However, they note that this causes at least 10-30% blocking effects on the cur­

rent which, in the present study, is more indicative of a series of obstacles rather than 

roughness elements. 

The anatomy of gravity currents propagating over rough surfaces 

The significnnee of the lower boundnry on gravity enrrents has been implied in section 

1.3.1 (Britter and Simpson, 1978; Simpson and Britter, 1979). The earliest record of 

roughness effects on gravity currents, to the author's knowledge, is in experiments un­

dertaken by O'Brien and Cherno (1934), as cited by Keulegan (1957). No difference was 

found in the velocity of the salt water between tests run in a channel with a hard wood 

bottom painted with red lead and a channel with a bottom covered with coarse sand. 

However. the small velocities in the saline laboratory gravity currents mean that viscous 

layers within the flow adjacent to the walls will be sizeable (Keulegan, 1957). Clearly, 

§In the present study, kr of the beam-type bed-roughness corresponds to ~ 2.5% of t.he tank height 
and ~ 5% of the gravity current height. 
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(a) 

(b) 

Figur 1.9: Reproducti n of the reprebentative tracings from video frame analyses from Hallworth 

et al. (It !J6). Salinc 10 k-r 1 asc gravity current flow ovcr (a) a bed of coarse granules of ~2 mm 

diameter (clots) and (b) over a smooth bed (bla.ck). Designed to show the relat,ive cross-sect.iollal 

shape 01' th head (black). Dark grey layer behind the head represents fluid in the current body 

that. has been som what diluted. Light grey represents highly lIlixed lluid . 

for l'Oll!l;llllC'liS to t.ake c'ffect , the si",c' of the l'ollgh dClIlcutli in relation to the size of the 

tank and th possibl velocity seales must be considered. 

The profile of til(' heao is expect.eo to change wit.h t.Jw introouction of roughness on 

the bed. Hflllworth et al. (1996) performed expcrimcnts with saline lock-release gravity 

current with a thin layer of granules of diameter ;::::2 mm on the bed (although they 

do not. state if they weI' fixed or moveable) . They found that the shape of the head is 

depend nt on the roughl1 55, see figure 1.9 and, that entrainment is much higher, more 

than doubl that of th mooth ase at approximately 20 dimensionless units downstream 

of th point where utrairunent commenced. The thickness of the current behind the 

head illcrcas d relative to the head in the rough case which, they comment, is physica.lly 

r a 'onabl in term' of turbul nee generated at the bed. 

Th r suIt .. of tel' (1999) how that hcad and layer heights increase with increasing 

surfac roughn s and develop in a similar way to smooth smface flows , i.e. after an 

initial growth tlicy stabilise. Th difference between the head heights with smooth and 

rongh b ds in that litndy is consid red to be the result of the increased entrainment at the 

front whi h indue s additional mixing as the nose interacts with each roughness element. 

Thomp.oll t nl. (2007) fouud that a gravity current induced by a sea breeze flowing 

over an urban roughu ., ( T W York City, maximum height 200 m over Manhattan) 
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has a head height that rallges from about 2.5 to over 7 times the body height over the 

urban landscape while over their 'smooth' grassland conditions, it's consistently only 2-3 

times the body depth, i.e. the ratio of head height to body height has approximately 

doubled. This result contrasts with the observations of Hallworth et oL (1996) who 

suggested that thi ratio should decrease in the presence of roughness. This could be 

a result of several physical differences. The sea breeze model is a temperature induced 

current at a large scale and based on many specific parameters, including ambieut cross 

winds, irregular topographical features. temperature fluxes from the urban gTid model 

and other variables. IIallworth et al. (1996) investigate a saline, laboratory scale model 

flowing into a quiesccnt ambient and over a regular, granular surface. 

In a r cent numerical study, Ozgokmen and Fi cher (2008) concluded that the distribu­

tion of entrainment in the case of rough bottomed gravity currents is totally different to 

tho 'e with smooth beds. They suggest that entrainment initiates earlier due to vertical 

motion induced by the roughness, hut also finishes earlier, due to the increasing effects of 

forlll drag. The overall result of thi process is that the lllass of ClUTent reml'lillS similar 

to that of the smooth case but with different entrainment characteristics. They observe 

that the interfacial instabilities become less pronounced and tend towards the spatial 

scales of the roughlless clement ' beneath the current. However, it should be noted that 

the magllitude of their roughn ss is of the sam order 8S the current depth ill mo .. t of 

th('ir cru ('s and their flow initiates with a prc-stratifi('d saline current. 
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In the presence of bed roughness the velocity maximum should move further from the 

bed (Kneller et al., 1999). The equivalent velocity profile of a single-phase flow through 

a pipe or a duct has a profile, for example shown in figure 1.10, with a logarithmic profile 

holding below the velocity maximum, similar to that below a gravity current nose. It 

can be seen in figure 1.10 t.hat in the presence of a beam t.ype bed roughness on one 

wall of the duct, the maximum shifts further from the bed, as predicted for the gravity 

current case. It is possible that other observations from duct and open channel flows will 

also hold for gravity currents in the cont.ext of bed roughness, for example the effects of 

clemeut spnciug shown in figure 1.10 and discussed previously. 

In a larger scale study, Petersen and Ratcliffe (1989) ran heavier than air gas (HTAG) 

tests over rough sm-faces and found that cloud dilution can be greatly enhanced by 

increasing the size of the surface roughness. Concentrations were 2 to 6 times less over 

an urban area, and 8 to 25 times less downwind of a processing facility in an urban 

area. \Vhen studying the effects of the rough elements on the concentration in the head, 

Peters et al. (1997) observed that when the dilution is such that the density difference 

reduces to only 10% of the ma.ximum for that current, the head still remains intact. Their 

normalised front position data collapses well indicating that the position of the current 

as a function of time, scales with the density difference for all bed types. They found 

that near the end of the channel, the normalised mean head concentration in the flows 

over the rough surfaces were at least 20 times less than the equivalent smooth surface 

flow. They also noticed that. with increasing roughness size, the normalised mean fluid 

density difference in the head decreased almost asymptotically. Their results show that, 

the contribution of trapped packets of lighter fluid in the rough cases, is much more 

significant to the head dilution and thus deceleration of the current than Simpson (1972) 

and Simpson and Britter (1979) allow for. 

Sea breeze froutal passages have been retarded by up to 50% (~ 5 ms- l ) as they approach 

New York City due to the urban boundary conditions (Thompson et al., 2007). As 

discussed in section 1.3.2, the velocity of the gravity current depends on which are the 

dominating forces act.ing on it at the time and therefore which flow regime it is within. 

Ozgokmen and Fischer (2008) observed a constant pha.'le where the initial propa.gation 

speed is constant for all cases, followed by a decrease in speed with the increase in 

the amplit.ude of their roughness configuration. They suggest that the reduction in 

speed due to roughness is a result of the increased form drag from the elements. Peters 

(1999) found that even for the smallest roughness elements (6 mm), there was a 50% 

decrease in the distance to viscous transition compared to the smooth case. However, 



24 

Figure 1.11: Visualisation of f'xperiments with It gravity current. propagating over It d-type rough 

surface. Peters and Venart (2000). (a) 'Light' current propagating over a rough bed, (b) 'Heavy' 

currf'nt propagating over a rough bed. 

this distance only decreased slightly between the smallest (6 mm high) and largest (25 

nUll high) roughlless scales used. III the buoyancy-inertia regime, the initia.l front velocity 

decreased linearly with roughness scale (Peters, 1999) and deceleration rates increased in 

the lmoya.lIcy-viscous rcgimc. This is ('ollfirIllcd by Peters and Venart (2000), although 

previously, Peters et al. (1997) found that there is no inertia dominated regime, i.e. the 

viscous dominated decelerating regime takes over straight away. This contrasting view 

is apparently an inconsistency in these works since the experimental setup and all other 

conditions appear identical. 

Peters et al. (1997) and Peters and Venart (2000) attributed the deceleration to the 

less dense fluid trapped beneath the current in the cavities between the beams. This 

fluid became entrained and mixed into the denser fluid, thus reducing the density excess 

and weakeniug the buoyancy flux, i.e. the driving force of the flow. When the density 

difference between the emrent and t.he ambient fluid is small, the currellt is able to 

lift above the roughness elements so that this mixing effect and the consequeut current 

dilution does not occur to such an extent, see figure 1.11 (a). Thus the light current 

mailltaill ' its density and it: speed for 101lger and the flow dynamics are more analogous 

to that over a smooth surface but still slightly slower due to energy loss to the trapped 

vortices ( 'huw, 1959) . For a 'heavy' current (figure 1.11 (b)), the interaction with the 

trapped lighter ambiellt fluid is much more vigorous su tha.t the dilution is increased over 

the length of the chaHuel and the current will decelerate more rapidly. 

Kuho (20m) found that under the influence of (,he hump topography the current did not 

travel as far as smooth cases ill the same time period and deposition from the ClllTellt 

occurred much sooner and more so on the stoss (upstream) slope of the humps. The 

stllciy did 110t measure intf'rnal experimental vf'loeit.y fielcis or concentrat.ion so f'ffert.s 

Oll iutcrual dynrunics that might shed light on this issue are not available a11d further 
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investigation is necessary. Unfortunately, this is beyond the scope of the present study 

but would be an interesting extension. 

1.3.4 Summary 

The investigation of the fundamental effects of bed roughness is still a highly active 

research topic in pipe and open channel flows, despite several decades of dedicated re­

search. The complexity involved in modelling bed roughne...-,s effects on any flow should 

not be underestimated. With such a quantity of work incorporating or focussing entirely 

on t.he dfC'("ts of ronghness, it 8ho1110 be app~U"ent that. significant effects will also be 

important in the gravity current arena. The added complication of density differenct',s 

and the consequent intricate frontal dynamics result in a highly complex phenomena 

for expt'rimental or numerical modelling. However, with these differences in mind, it is 

possible that several of the observations for single-phase flows through roughened pipes 

might also hold for gravity current flows, qualitatively if not quantitatively. 

From the sparse studies that have been performed on the effects of bed roughness on 

gravity current.s and potential effects from relevant pipe and open channel studies, the 

following might be expected and will be considered in the present study: 

• A velocity maximum occurring further from the bed, higher in the current depth. 

• Reduced current speed. 

• Reduced concentration within the current head. 

• Increased entrainment, particularly from ambient fluid beneath the head. 

• Increase (or decrea.<!e) in the current depth, dependent on the roughness and other 

parameters. 

• Effects due to the height of the roughness relative to the fluid height. 

• Effects due to different types of roughness elements, for example grain and form 

roughnesses. 

• Varying effects due to the roughness element configuration and spacing. 



26 

1.4 Aims of this thesis 

The global aim of this thesis is to use experimental and numerical methods to 

create a knowledge database of the fundamental dynamics and flow structure 

of lock-release gravity currents flowing over rough surfaces and to discuss the 

implications for this case. 

To the author's knowledge, as demoJl.'ltrated in the previous section, there is little existing 

work dedicated to understanding the effects of bed roughness on lock release sravity 

currents. With this objective in mind, this thesis has three primary investigatory aims: 

1. To <.:arry out a reproducihle and easily modified sct of expcriments in order to 

compile anew, accurate data set to extend and compliment the existing smooth 

bed studies. This data will be analysed in an experimental context and used for 

rigorous theoretical comparison. 

2. To study existing depth-averaged gravity current models and mathematical forms 

of including bed roughness in order to create a model for the rough surface and to 

fully validate this model using available data. 

3. To use the CFD conunercial software FLUENT to study the fully depth-resolved 

forms of the governing equations, including modifications for bed roughness. in 

order to create 2D and 3D numerical models and to fully validate this model using 

experimental data. 

1.5 Thesis outline 

This thesis is split into seven chapters, including the current chapter one. Essentially, 

it is designed so that chapter two addresses aim one, chapter three covers aim two, and 

chapters four, five and six fulfill aim three. Chapter seven concludes the present study. 

Chapter 2 Chapter 2 contains a review of some of the existing experimental literature 

on methods and techniques for studying gravity currents, including roughness. The 

experimental methodology used in this study is outlined and measurement techniques 

explained. Results and observations for t.he fundamental flow structures and dynamics of 

gravity currents flowing over bed roughness are presented. The chapter concludes with 

a discussiun of the effediveness of the techniques used, the effeets of hed ruughness, and 

the subsequent implications of these results. 
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Chapter 3 This chapter introduces the depth-averaged (10) model used in the present 

study. Existing models and theories are discussed and terms for the inclusion of bed 

roughness are outlined. This is followed by a derivation of the governing equations 

and the assumptions and boundary conditioIL'3 applied. The method of characteristics 

solution procedure is explained and applied to the smooth and the rough bed cases. 10 

results are presented and validated with existing experimental data in the smooth case. 

A concluding discussion analyses the effectiveness of the solution method, the value of 

10 models and the theoretical effects of bed roughness. 

Chapter 4 Existing literature implementing fully depth-resolved numerical models is 

reviewed along with some work to date on the inclusion of bed roughness in such studies. 

The essential geometry of the simulations is outlined and models for the multiphase. tur­

bulent nature of the flow are discus..c;ed. Two methods for the inclusion of bed roughness 

are explained and the solution method and model verification and validation procedures 

are covered. 

Chapters 5 &: 6 The results of the depth-resolved numerical models are split between 

these two chapters into 2D model results and 3D model results. Both include an outline 

of the simulations performed herein and the models undergo rigorous verification and 

validation with experimental data where available. Chapter six concludes with a discus­

sion of the data and numerical techniques and the implications with regards to the effect 

of bed rougluless on gravity currents. 

Chapter 7 This concludes the present study with a summary of the fundamental 

effects of bed roughness on gravity currents that have been established through the 

use of experimental and numerical modelling herein. Implications derived from these 

conclusions are presented. Satisfaction of the aims of the thesis is demonstrated and 

conclusions are drawn 011 the tecluliques used ill the investigation. Finally, suggestions 

for future work are proposed. 
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Chapter 2 

Experimental investigation: 

Smooth and rough surfaces 

2.1 Introduction 

In this chapter the experimental methodology used in this study is outlined and the mea­

surement techniques are explained. A brief review of relevant methods and techniques is 

included. Results and observations for the fundamental flow structures and dynamics of 

gravity currents flowing over bed roughness are presented. The chapter concludes with 

a discussion of the general effects of bed roughness with attention given to the effects of 

varying diffcrcnt parameters, namely, the initial deusity of the current, the removal of 

ambient flnid from between the roughness dement.s and the height of t.he fluid relat.ive 

to the clement height.. Comments are also included on the effectiveness of the techniques 

used herein. 

2.2 Literature Review 

Laboratory experiments on gravity currents and analogous phenomena have been carried 

out for more than half a century. The results of many of these studies have been discussed 

in section 1.3. This review aims to cover some conunon methods and measurement 

techniques used for research on homogeneous currents as in the present study. Further 

description of experiments, techniques and applications can be found in Simpson (1997) 

and in Kneller and Buckee (2000). 
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2.2.1 Experimental configuration 

The flume 

The simplest fiUIllt' for gravity current experiments is a loek-release or lock-exchange 

tank* whereby the dense fluid that will form the ellrrent is separated from the less dense 

ambient by a removable partition at a certain distance along the tank which creates a 

lock box. If the experiments require no end-wall effects then the partition is positioned 

in the centre of the tank (lock-exchange, Grobelbauer et al., 1993; Shin et ai., 2004; Lowe 

et al., 2005; Tanino et al., 2005). If the end-wall effects are of interest, for example if the 

dynamics and effects of the bore are also under study then the lock length is shorter so 

that the baekward propagating flow reflects off the end wall (creating the bore) and the 

current propagates towards the opposite 'far end wall' (lock-release, Keulegan, 1957,1958; 

Simpson, 1972; Rottman and Simpson, 1983; Hacker et al., 1996; Kneller et al., 1999; 

Zhu et al., 2006). For experiments on axisymmetric gravity currents a cylindrical lock 

containing the denser fluid is placed in the centre of the tank, surrounded by the anlbient 

fluid and then removed to release the CWTellt (Huppert, 1982). Alahyari and Longmire 

(1996) used a novel lock 'sector', Le. a wedge shaped volume, which allowed them to set 

up their Ul(~I\Sllring (~qllipnl(mt effidently and with better flow coverage. 

Other methods of simulating gravity currents experimentally involve rclca."lillg dense fluid 

from a reservoir suspended above the tank (Ellison and Turner, 1959; Hallworth et al., 

1998; Best et al., 2001). The fluid is released as a jet and evolves into a. typical current 

once it hits the bottom of the tank. This method is useful for gathering experimental 

data of the current in the constant phase but the initial conditions simulated by the 

lock-release or lock-exchange methods are absent. 

A continual flux current can be generated by pumping the dense fluid int.o the ambient 

fluid from one end of the tank, with an outflow weir at the opposite end enabling the 

displaced water to overspill (Dritter and Simpson, 1978; Simpson and Britter, 1979; 

Peters, 1999; Peters and Venart, 2000; Buckee et al., 2(01). This method also removes 

the initial adjustment of the current as it leaves the lock and no bore forms. This 

configuration is used when the inviscid self-similar or viscous phases are of interest, 

where a fully formed current, independent of any slumping or bore effects, is required. 

Huppert (1982) carried out. continual flux axisymetric experiments by pouring dense fluid 

(silicone oils) into the centre of a perspex sheet to record the spreading rates. 

'Note t,hat in Kneller and Buckcc (2000) they do Tlot diff(Jrentiate between a lock-release and lock­

exchange tank. This is however an important consideration for moddlinA honndR.rY effects on t.he flow. 
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Natural and laboratory gravity currents are typically subject to 'no-slip' 011 boundaries. 

To understand some of the features of the current it is useful to be able to control this 

condition. Thus, experiments have been designed in order to simulate inviscid flow, or 

'tree-slip' on the walls of the tank. The use of a moving floor ahead of the advancing 

current has the desired effect (Britter and Simpson, 1978; Simpson and Britter, 1979; 

Parsons and Garcia, 1998). Less dense fluid is pumped into the tank from the same eud 

as the moving floor, i.e. in the opposing direction to the oncoming denser current which 

is pumped into the tank from below. The floor moves at the same speed as the ambient 

ftuid so that it ma.illtains the deuser ftuid at rest (an 'arrested wedge') on the fixed floor 

downstream of the moving conveyor. Another means of creating free-slip is to generate 

an ovt'rflow whert'by the current is relea.."lcd into a denser ambient and thus the current 

propagates along the surface (Ellison and Turner. 1959; Didden and Maxworthy, 1982; 

Hallworth et al., 1996). However, unless this is required to model a natural process, this 

method can incur additional errors due to free surface effects. 

Sets of experiments have also been undertaken on slopes (Ellison and Turner, 1959; 

Middleton, 1966a; Buckee et al., 2001) and porous beds (l\1arino and Thomas, 2002) to 

study the effects of more natural topographies OIl gravity currents. Slopes are commonly 

generated ul'ling a 'tilting' tank where the slope angle can be varied for comparative 

analyses. Marino and Thomas (2002) used a flume with a false mesh floor raised from 

the tank floor to create a porous bed over (and through) which their lock-release current 

flowed. 

The fluids 

A saline solution with a fresh water ambient is the simplest means of creating a density 

difference for the study of the typical gravity current structure. The solution density 

can be changed with ease and experimental measurement remains ullcomplicated by the 

presence of particles. Best et al. (2001) showed that sediment-free studies are in many 

ways a good analogy for low den<:>ity sediment bearing currents so this simple method 

can potentially be used to study the effects of a broad range of conditions. The addition 

of alcohol (propan201) or sodium iodide can be used to reduce t.he ambient fluid densit.y 

or increase the current density, respectively (Kneller et al. 1997, 1999; Lowe et al., 2(05). 

Ga.'!eous gravity currents ean be generated, for example, for heavier-than-air-gas (HTAG. 

Petersen, 1987, 1989) and smoke propagation studies. However, it is common for these 

studies to use saline or liquid because it is easier and often less dangerous to handle (e.g. 
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Fleischmann and McGrattan, 1999; Weng et al., 2002). Fluid temperature also creates 

a density difference and is particularly relevant to atmospheric studies, for example, 

cold fronts. However, like gases, laboratory experiments are harder to set up using this 

method tUld often analogised to saline work. 

In addition to chauging the fluid density, the viscosity of the current solution can be 

simply increased by adding sugar to the current fluid (Keulegan, 1957; Simpson, 1972). 

For studies of much higher viscosities Huppert (1982) used silicone oils and Amy et al. 

(2005) used glycerol. 

Bed roughness 

In nature, bed roughness might be a grain type roughness such as sand or gravel or 

a form type such as ripples or dunes, as discussed in section 1.3.3. In the laboratory, 

simplified versions of these roughnesses have been studied extensively for their effects on 

pipe and open channel flow including different grades of sand, grooves, different shaped 

riblets and wire gTids (see Jimenez, 2004 for an overview of pipes). Flow over dunes and 

ripples have been studied extensively, for example Maddux et al. (2003a, 2003b) studied 

the dynamics of a turbulent continual flux flow in a flume over a bed of 3D fixed dunes 

with 1 nun mean diameter coarse saud but little has been done specifically on gravity 

currents. 

In the gravity current literature, Hallworth et al. (1996) used a thin layer of granules 

with a mean grain diameter of about 2 rum for an entrainment study but did not go into 

detail on how these granules were included in the tank setup. Peters (1999) and Peters 

and Venart (2000) studied the effects of 'd-type' beams perpendicular to the flow using 

beams of sizes 6, 13, 19 and 25 mm square pinned to the bed of the tank and a continual 

flux current pumped over them. In a lock-release particle-driven gravity current study, 

Kuho (2003) looked at the effects of a ramp followed by a series of 'humps' on sediment 

deposition. However, the material and method by which the topography is included is 

not stated. Moreover, the height of the topography relative to the fluid mclUlS blocking 

occurs which is characteristic of arrays of obstacles, rather than bed roughness. See 

chapter 1 for further background on bed roughness studies. 
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2.2.2 Data capture and measurement techniques 

Typical physical characteristics and current height 

Photography aJld video capture techniques provide a relatively simple 'dataset' to physi­

cally observe any qualitative changes to the flow dynamics resulting from the laboratory 

configuration in use. They can be used as pointers to potential changes or factors of 

interest in a quantitative study and aid in the interpretation of quantitative results. 

A higher resolution method for visualising the typical current shape, including the inter­

facial mixing and billows, is laser induced fluorescence (LIF, Parsons and Garcia, 1998; 

Peters, 1999; Peters and Venart, 2000). The fluid is illuminated using a dye that fluo­

resces at the wavelength of the laser light and features of the flow are captured with a 

high speed video camera. It can be effectively combined with particle image velocime­

try (PIV) to give a fully qualitative and quantitative dataset. The billows and current 

outline can also be visualised using shadowgraphs and bromide paper (Simpson, 1997; 

Lowe et al., 2005) which can give good interfacial definition for observing the billows. 

This method has al-ro been used for the study of lobes and clefts (Simpson, 1972) and 

to obtain height readings, as described below. 

Accurate measurement of the height is important in laboratory work for the calculation 

of Froude numbers and Reynolds numbers, which give au indication of the effects of scale 

on the results when comparing to natural currents. However, since the density interface 

is typically a poorly defined region of high mixing. establishing the upper boundary of 

the currC'nt t.o measure t.hC' height is a difficult. t.ask. There arC' also notorious problems 

with choosing where along the length of the current to take measurements (Shin et al., 

2004). Due to these discrepancies, care must be taken to be consistent when using these 

techniques and to be clear where the measurements have been taken. Qne simple method 

is to mark the height of whichever part of the curreut is required on the side of the tank 

as accurately as possible, at required times (Keulegan, 1958; Middleton, 196680). Clearly 

this method is subject to human error and difficulties with interfacial definition but it 

gives a simple indication of the height. Video capture or photography and shadowgraphs 

can be used to record the current and then measure the height from the video frames, 

thus reducing human error and the need for time coordination (Simpson and Britter, 

1979; Simpson, 1997). Simpson (1972) performed experiments using slit lighting with a 

fluorescing dye to measure the nose height. 

A more theoretically defined method is to use the data from velocity measurements and 
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integrate them over the depth to obtain a depth-averaged velocity and height, using the 

equations: 

uh = JUdY 

u
2h = J u2dy 

following the method of Ellison and Turner (1959). 

Density, concentration and entrainment 

(2.1) 

(2.2) 

Measuring the changing concentration levels of the current during experiments enables 

the study of mixing and entrainment which are essential to the distribution of energy in 

the flow and ultimately the transport of sediment.. For homogeneous currents, Didden 

and :Vlaxworthy (1982) and Parsons and Garda (1998) used conductivity probes and 

Keulegan (1957, 1958) used parallel wire electrodes with success. With the advance of 

laser technology, LIF has become all accurate non-intrusive method for visualising the 

flow and measuring concentration (Peters, 1999; Peters and Venart, 2000). 

Hallworth et al. (1996) used a novel neutralisation technique with an alkaline current 

and an acidic ambient. Universal pH iudicator solution turns the acid red (pH < 4) and 

the alkaline purple (pH> 10) and regions of mixing are shades in between depending 

011 the ratio of add to alkaline in the mixed fluid. ThulS the volume fraction of oue fluid 

to the other can be calculated by measuring the pH in these mixed regions to give a 

quantitative value for concentration and mixing. 

Another relatively simple method is to record light attenuation in a dyed current (Hacker 

et al., 1996). A light is placed on one side of the tank directed perpendicular to the cur­

rent through the flume side walls. A video camera captures the current and the light 

from the other side of the tank. The film is processed and in regions of the current where 

the dye is darker, light has been attenuated and current fluid is thus more concentrated. 

The amount of light that is emitted can be calculated and is proportional to the concen­

tration and hence the amount of mixing occurring. 

Front position and speed 

The position of the front as a flUlction of time for lock-release (or lock-exchange) experi­

ments is a simple and useful dataset to compile for indication of any immediate effects of 

the tank configuration 011 the current. The front position and speed are frequently used 

to validate theoretical methods (e.g. Rottman and Simpson, 1983) so their accuracy is 
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essential. Plotting the front position as a function of time establishes which phase of the 

flow the current is governed by in the time period of interest, where the phase transitions 

oceur and hence any differences in these transitions for different flow conditions. The 

front speed is calculated for the constant speed phase from the front position data. 

A common method for capturing the front position is to record the experiments with 

a video camera from flow initiation over the required time period or distance and to 

measure the distance that the front has travelled along the tank at regular intervals in 

time or space (Middleton, 1966a; Didden and Maxworthy, 1982; Rottman and Simpson, 

1983; Lowe et al., 2005). Since many experimental techniques involve the use of video 

cameras for the study of other flow characteristics or as an experimental record this data 

is often readily available. A similar method involves marking the position of the front 

on the tank or noting the time at regular time or space intervals, respectively. 

Velocity 

There are intrusive and non-intrusive techniques for measuring the internal velocities in 

gravity currents. PIV is a laser based non-intrusive method that has been successfully 

used to study all three components of velocity in gravity currents to a high level of 

accuracy (Zhu et al., 2006). Kneller et al. (1997,1999) and Buckee et al. (2001) used laser 

Doppler anamometry (LOA), another non-intrusive technique, to obtain downstream 

and vertical velocities with a velocity resolution of ±2 nUlls-i. However, laser ba.'led 

equipment is expensive, requires the refractive indices of the fluids to be matched, cannot 

be used with particles and can be complex to setup depending on the facilities available. 

Consequently, if a study is not primarily interested in gaining high resolution internal 

velocity data then other techniques are more commonly used. Acoustic methods such as 

ultrll.'Sonic Doppler velocity profiling (UDVP, Best et al., 2001) are simpler to implement 

but this is an intrusive method so has to be setup so a.'l to minimise the interference with 

the flow dynamics. The UDVP method also only captures the component of velocity 

along which the transducers are aligned (see section 2.3) so in order to obtain a 3D 

dataset, i.e. three components for one point, three probes are required, one directed 

along each axis. However, since the largest component of velocity in gravity currents 

is along the downstream horizontal (assuming the component is aligned parallel with 

the bed), after the initial slumping phase, data from probes 011 this axis can give a 

good indication of the effects of the condition under investigation on the current before 

a more complex method is applied. Particle tracking velocimetry (PTV) is another 
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simpler method than PIV or LOA but gives similar accuracy (Thomas ct al., 2003). It's 

simplicity is due to the use of halogen lamp light rather than lasers. The light illuminates 

partides carried by the flow and images for particle tracking are obtained using a video 

camera and recorded as a luminescence signal. 

'lUrbulence 

The term 'turbulence' covers several variables. e.g. root mean-squared velocities (urms ), 

turhulent kinetic energy, etc. and can be llleaslued in different ways depending on 

which or how many of these da,tasets are required. The question of whether a flow is 

turbulent or not is typically determined by calculation of a flow Reynolds number llsing 

a. characteristic velocity and length scale of the flow and the fluid's dynamic viscosity: 

Re = ULjv (2.3) 

Note that this value can vary substantially depending on which values of U and L are 

taken. Flows with Re ;:: 2000 are considered turbulent. The calculation simply requires 

the use of measurement techniques previously outlined to obtain the necessary parame­

ters in equation (2.3). However, for a more detailed study of the turbulence structure, for 

example calculation of Reynolds stresses, high resolution velocity data in more than one 

dimension is required to determine more accurately the scale of the turbulent fluctua­

tions within the flow. More sensitive equipment, such as anemometers (e.g. LOA Kneller 

et ai., 1997; Kneller et ai., 1999; Buckee et al., 2001) are used for resolution down to small 

length scales and velocity capture methods such as PlV can obtain three-dimensional 

data and UOVP has high enough resolution to calculate the root mean square velocity 

in one dimension and for the study of the fundamental turbulence structures within the 

flow (e.g. t.he presence of turbulent interfacial instabilities can be readily observed from 

this data (Best et al., 2001)). 

2.2.3 Summary 

Gravity currents are highly complex flow processes. Hence experimental studies of them 

advance as the ability of new technology to capture higher resolution data and thus finer 

details increases. Since bed roughness effects are a relatively unstudied topic in this 

subject, the present experiments aim to create an accurate preliminary dataset using the 

simpler flow measurement techniques outlined in the foregoing review. Additional tech­

niques have been applied when considered essential in understanding the fundamental 

cffcds of roughncss. 
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Fig'me 2.1: Sketch of the tank cOllfiguration and dimensions used in the present study. The sand, 

spheres and beams roughness elements are mounted on perspex sheels 2 mm lhick and placed 

in the bot lom of the tank covering a 4 m long region from the lock partition. Dimensions of the 

beam!> roughness are shown. 

In light of the PI' sent literature, simple bed roughness s have been used to study a 

variety of roughness type in order to create initial datasets for several 'bedforms' that 

can be expanded on in future work. 

2.3 Experimental methodology 

All experiment h rein were carried out in the SOfby Environmental Fluid Dynamics 

Laboratory at t.he Univ rsity of Leens. The flume Lank used was designed specifically 

for th' study of lock-release density currents. sec figures 2.1 and 2.2 (a) aud (b). It is 

fixed to tll' wall of the laboratory Oll adjustable bracket!; aud is constructed as one unit 

with a plunge tank at one end with an outlet pipe. There are two lock partitions, one at 

either ('no , .0 that studies of reflect.ed currents (bores) can also be lmdertakcn. There is 

a fresh wat l' ource with a hose imlllediately above the tank for filling. 

Tank configuration and dimensions 

Th Bum i u d with just one lock partition in place at the right hand end. It is 5 m 

long from lock partition to lock partition, 0.2 m wide and 0.3 In high, filled with fresh 

water to a maximum depth of 0.25 III in the present experiments. Th lock box is 0.25 

m long. 0.3 In high and 0.2 ill wide 0 that when filled to 0.25 m it creates a 2D lock box 



Tank height, H' 

Ambient fluid height, H 

Flow temperature 

Initial current density, Pi 

Initial ambient density, P2 

Tank width, W 

Tank length, L 

Initial current height, ho 

Lock length, Xo 

Current volume 
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0.3 m 

0.25 m 

:::::: 18°c 

999.2/1048.11/1098.02 kg/m3 

998.2 kg/m3 

0.2m 

5m 

0.25 m 

0.25 m 

12.5 I 

Table 2.1: Initial conditions typical of all experiments. The three values shown for the initial 
current density represent thrtle excesses over the ambient, namely 1%, 5% and 10%. 

length to initial fluid height aspect ratio (xo/ho) of 1 and an initial current to ambient 

height ratio (ho/ H) of 1. These specifications are summarised as initial conditions in 

table 2.1. 

Five vertically aligned UDVP probes are set up 3 m from the lock partition at the half­

width of the tank (W /2 = 0.1 m) and directed along the centre plane of the current. The 

probes were mounted in a rig with 3 different configurations depending on the run (see 

figure 2.3 (b) and (e)). For a standard run, they were at 6,27,48,68 and 89 rum above 

the bed. To obtain more data points below the nose of the front, in order to calculate 

ks values, the probes were mounted at 6, 17, 27, 37 and 48 mm and then shifted up 5 

rum to 11, 22, 32, 42 and 53 rum in a second repeat experiment. One vertical probe is 

positioned at 2.89 m from the lock partition, at the tank half-width with the probe tip 

190 mm above the bed. The setup parameters of the UDVP (see table 2.2) were selected 

so that each probe measured a distance of 30.9 rum (bin 35) from a starting position 5 

mm upstream of the probes. 

The video camera is attached to a carriage setup on a track parallel to the tank in order 

to retain t.he head of the current in the view finder as it propagates (see figure 2.3). 

The camera view is initialised at the lock box just before the current is released and can 

follow the current head the full length of the tank. 

The tank is modified for the presence of roughness by using perspex inserts with the 

required roughness elements, see figure 2.2 (I). There are four inserts for each roughness 

type, each 1 m long and 0.198 m wide so that they fit into the first 4 m of the tank 

from the lock partition. There are five roughness element shapes used in the present 

study, namely, coarse sand (~2 mm diameter but true grain distribution unknown), 6 

iIY utSKAKy 



38 

Figure 2.2: Photographs of different aspects of the flume setup. (a) The flume setup before 

relea..c;e (without the camera rigged), (b) Gravity current after release showing position of probes 

with respect to the current, (c) ::::::2 mm coarse sand roughness, (d) 6 mm diameter glass spheres 

roughne s, (e) 6 mm high, 12 mm apart perspex beams roughness, (e) The flume with the beams 

in place and sand insert.s on the work !:lurface. 
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(b) 

I · .. 

111 mm 
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O· ................ · .. ~i 
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Figure 2.3: Camera and UDVP rig setup in the laboratory. (n) Camera rig and positioning facing 

the tank. (b) UDVP rig ill the lank, (c) Diagram of the different probe positions within the UDVP 

rig (not to scale). The measurements relate to heights from the tank bed. The right hand side 

wilh bold eird . ' repro 'ent the !:itandard probe setup, the light grey shows the c011iiguratiOlI wi th 

the probes clo e-packed and at the lowe. t setting near tIlE' bed. The left hand side dark grey 

circles show the c1ofle-packed probe seiling shifted up 5 mm. 
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mm diameter glass spheres, and 6 mm square, 0.198 111 long perspex beams configured 

with three spacings. The former two roughness types and an example of the latter can 

be seen in figures 2.2 (c) - (e). The sand and spheres are chosen to represent a 'grain' 

type roughness and are randomly packed onto the perspex inserts using a thin layer of 

clear low modulas silicon sealant. The beams are designed as an analogy to a 'form' type 

roughness and are glued across the inserts perpendicular to the main direction of flow. 

The three spacings between the elements are 12, 24 and 48 mm. These were chosen so 

that the effects of increasing the spacing by an identical factor can be observed and so 

that the differeuces hetween d and k-typ(! clement spacings call be discussed. Under the 

classificat.ioll of' Perry et al. (1969), for an element height. kr = 6 mm, a spacing of 12 mIn 

represents a d-type roughness while 24 and 48 mm are considered a 'k-type' roughness. 

see section 1.3.3 for more details. Note that the faces of the beams are smooth. A closer 

analogy to a natural roughness, such as a dune, would be a composite roughness type 

whereby the element is made of a combination of grain and form type, for exanlple. 

sand roughened beams could be a subsequent approach. This has not been undertaken 

in the present set of experiments since by breaking down the components of roughness 

the present study aims to investigate the fundamental effects so that more complicated 

configurat.ions can hereaft.er be examined with t.his information. 

In order to differentiate in the discussion between the different beam type cases, the fol­

lowing terminology is used as shorthand to describe the spacing in use: beamSheight.spadng, 

where beam.'! is a qualitative description of the element, height is the maximuIll element 

height kr (mm) and spacing is the ratio of the distance between adjacent elements and 

the height wi kr. Thus the three configurations mentioned above can be expressed as 

beruIlSf),2, beam86,4 and beams6,8. 

There were two other sets of experiments undertaken. The first of these was performed 

to estahlish the effects that the less dense amhient fluid hetween the beam-type elements 

has on the current. In order to generate a comparative dataset, thc ambient fluid betwecll 

t.he' dement.s was replaced by fluid of t.he same init.ial densit.y as that. of t.he currC'nt. fluid 

behind t.he lock partition. Thus removing the buoy~mcy effects generated by the density 

difference with the less dense ambient fluid. This set of experiments was carried out for 

the 5% density excess only and therefore fluid of this density was inserted between the 

elements. These experiments with dense fluid within the gaps were performed for the 

d-type beams6,2 case and the k-type bealllS6,8 case. 

The final set of experiments involved reducing the total height to which the tank and 
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lock-box were filled by half in order to observe the effect of increasing the bed roughness 

height relative to the current height. Again these experiments were performed using only 

the 5% density excess. However, all five bed roughness configurations were investigated. 

Since the gravity current height in these cases is significantly reduced, the probes were 

setup so that they could obtain the required data, i.e. the lowest probe configuration 

shown in figure 2.3 (c) was used whereby the probes were mounted at 6, 17, 27, 37 and 

48 nun. 

Front position and internal velocity measurement 

The front position of the current in time was measured using a Sony PAL DV video 

camera, recording 720 x 576 pixels at 25 Hz. By analysing the video frame by frame, 

the location of the gravity current front can be measured at the required time intervals. 

The speed of the front in the constant phase is calculated by plotting the front position 

in time and fitting a linear best fit line through the data using the greatest anlOunt of 

data points to gain the highest R2 value. The gradient cJ:;t of this line gives the speed. 

If all of the data points are llsed in the fit then the R2 value decreases and it is assumed 

that values that are not consistent with data within the constant speed phase are being 

included. Hence, the speeds displayed herein for the smooth case are for the time period 

from 0 within which R2 is high and thus the current can be said to be within the constant 

phase. Beyond this, the remaining data lies within a different phase. For consistency, 

the same ~unount of data is used in the rough cases as in the smooth case. 

Ultrasonic Doppler velocity profiling (UDVP) was used to measure the velocity field 

within the gravity currents. The use of UDVP has been proven in its use in investigations 

of gravity currents (Best et al., 2001). It can be used to measure negative and positive 

components of velocity to which the probes are aligned in the flow, i.e. a horizontally 

aligned probe will give readings for the downstream horizontal velocity component. 

The UDVP transmits an ultrasound pulse in a straight line from the probe at a certain 

frequency which in these experiments is 4 MHz. The transducers then switch almost 

instantaneously from transmitting to receiving and the transducer receives the echo 

reflected from the surface of small particles suspended in the flow. By detecting the 

Doppler shift frequency as particles pass through the measurement volume, the flow 

velocity can be calculated at one point. This is carried out simultaneously to obtain 

velocity measurements along a profile. The r('turn signal or echo detecting the shift 

frequency is 'gated' at certain return times and enables the velocity to be measured 

at 128 points (in this study, but this value can be changed) along the beam of the 
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ultrasound. This effectively splits the length of flow through which the beam penetrates 

into 128 measurement volumes or bins. The length of the measuring volume in the 

experiments presented here was 0.74 mm. The height of the bin varies with the distance 

from the transducer since it is a function of the beam divergence which in turn is a 

functioll of the transducer size and ultrasound frequency. For the 4 MHz probes used, 

berun divergence is 2.50 about the beam axis, i.e. 5° in t.otal. The result of this is that 

the beam measurement volume increases with increasing distance from the probe. The 

finite amount of time required in switching between transmitting and receiving means 

that thc first IllCustU'ClUcnt point is a IllilliulUlll of 5 nUll from the tip of the probe. 

This is the location of the first bill in these experiment.s. Thns the measurement window 

covered by the ultrasound beanl was 5 - 98.98 mm. For the streanlwise horizontal velocity 

data, an array of five 4 MHz ultrasonic probes was used which were multiplexed using 

the UDVP logger. The t.ime taken for each profile measurement is a function of the 

maximum measurement distance and the finite time required for data processing and 

switching between channels. With the current setup, the sampling time for each profile 

was 39. 21 and 17 ms for 1, 5 and 10% currents, respectively, and the switching time 

between the probes was 15 IllS so that each of the profiles sampled at approximately 

3.09 Hz for the 1% runs, 4.63 Hz for the 5% runs and 5.21 Hz for the 10% runs. The 

parameters used by the UDVP for the streamwise horizontal velocity measurements in 

the present experiments can be seen in table 2.2. For the vertical velocity data, one 4 

MHz ultrasonic probe was used. 

Bed roughness measurement 

The bed ronghnf'ss is mea.'1uroo llsing the velocity profile data. Below the velocity max­

imum of a current profile the current velocity diminishes to zero at the bed. Within 

this inner region, below Umax , drag at the lower boundary creates a logarithmic velocity 

profile where the von Karman-Prandtllog la:w of the wall applies (Kneller et al .• 1999). 

This can be written in terlns of the equivalent roughness, k:s , as 

u y 
- = 2.51n-

k 
+ 8.5 

U.. '8 

(2.4) 

where u" is the shear velocity, y is the height from the bed, the value 2.5 comes from the 

von Karman constant and 8.5 is based on the sand grain pipe experiments of Nikuradse 

(1933), and hence the ks value found using this method is rul equivalent sand roughness 

(Southard, 20(6). By finding the zero velocity intercept of a least squares regression of 

u vs Iny for the velocity data below the maximum, and using equation (2.4) the value 
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Frequency (MHz) 4 

Transducer & probe diameter (nun) 5&8 

Measurement window (mm) 5 - 98.98 

Maximum velocity (mms- 1) 99.2 248 348 

Measurement bin length (mm) 0.74 

N umber of channels 128 

Velocity resolution (nuns-I) 0.781 1.953 2.740 

Ultrasound velocity (ms-l) 1480 

Sampling time for each profile (lllS) 39 21 17 

Delay time between profiles (ms) 15 

Sampling frequency/probe (Hz) 3.09 4.63 5.21 

Pulse repetition frequency (Hz) 1072 2681 3762 

Number of profiles 3000 

Channel width (mm) 5.92 

Table 2.2: Parameters of the ultrasonic Doppler velocity profiler used in the present experiment.s. 

Where three values are given, from left to right these correspond to 1%, 5% and 10% parameters. 

of k" can be estimated. 

Accuracy and errors 

One source of error was in the accurate positioning of the probes. This was minimised 

by rigging the probe mount so that it was held by fixed rails which kept it ill place (see 

figure 2.3 (b)). The positioning of the mount was checked before each run was carried 

out. It is estimated that the error in the horizontal and vertical positioning of the probes 

was not more than ± 1 nun. 

Another source of error comes from parallax effects when capturing the video footage. 

This is the distance related error when the measurement undertaken relies on the 'field 

of view' as with video capturing systems (Tian et at., 2002). The error is reduced by 

placing the device facing side on, perpendicular to the object of interest, Le. the front 

in the present study, and moving the camera. steadily with t.he object. 

The accuracy of the calculation of the ks values is dependent on the data that can be 

captured below the nose; hence it is dependent on the number of UDVP probes below the 

nose. For the experiments with the different bed roughnesses. there is some variability in 

the number of probes that can obtain measurements below the velocity maximum, even 

with the probe shift, because the current height is quite small relative to the probe size 

and the position of U max is still relatively close to the bed. In the smooth case it proved 
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impossible to obtain UDVP probe data below the maximum since it was so close to the 

bed, a technique with higher resolution like PIV or LDA is required for more accurate 

lJleasurement in this zone for this case. 

Preparation and experimental procedure 

The tank was prepared for each run by first being thoroughly rinsed to remove any salt. 

residue from previous runs that might alter the fluid density. The roughness elements, 

if used, were then slotted into the bottom of the tank and the lock partition positioned 

and sealed with gn~ase to Ill'('Vent Ipakages of dense fluid bd'ore it was released from the 

lork. Th(' main body of the tank was filled with fresh water as the ambient fluid, and the 

saline solution prepared using table salt and fresh water to create density excesses of 1, 5 

and 10% (checked with hydrometers) and dyed for visibility. Several of the 1% runs were 

seeded with a negligible amount of kaolin clay to aid in velocity measurement accuracy 

but not enough to significantly alter the density excess. The temperature of both fluids 

was checked to be equivalent so that the governing density difference was generated only 

by the difference in density due to concentration. The UDVP was checked for probe rig 

positioning and correct measurement parameters in the logging computer. The camera 

position was also checked ruld the name of the run recorded for ease of processing. 

For the set of experiments to be used for analyses of the effects of the buoyant ambient 

fluid between the elements, the dense fluid was inserted between the elements by first 

filling the main body of the tank with fresh water as for the regular setup and then using 

a syringe and pipe to carefully and slowly pump by hand the dense fluid into place to 

minimise mixing with the displaced amhient. This dense fluid was dyed with purple dye 

in order to visualise its movement once the current was released. 

Once the above preparation and checks had been carried out. the lock box was filled with 

the dense fluid. The UDVP and camera were started and the lock partition removed 

manually as smoothly as possible to minimise disturbance to the free surface and thus 

ext('rnal flow ('£fects on the current.. For this reason t.he experiments required at least 2 

people, one to remove the lock while another operated the camera. 

On completion of each experiment, the data was downloaded to a PC and processed 

through a filtering code (I<eevil et al., 2006) to remove background noise and anomalous 

spikes in the results for subsequent post-processing analysis. 
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Figure 2.1: The position of the front as a function of time after release. Three runs for 1%,5% 
and 10% density excesses under identical smooth bed conditions. 

2.4 Verification and validation 

Quantitatiye verification was accomplished by repeating three runs with identical smooth 

bed conditions and comparing them for each dcnsity cxcess. Figme 2.4 shows the pOflition 

of the front as a function of time under these conditions. It is clear from this figme that 

the results are almost indistinguishable between runs for all densities. This illustrates 

that the experiments are reproducible and subject only to the initial and boundary 

conditions of the experiments and not to large errors. 

In order to validate the experiments, the slllooth cases are compared to existing ex-

perimental re ults. Rottman and Simp on (1983) showed that by normalising the front 

position data with the lock length in space and in timet and plotting it on a log scale, 

in the initial plllli:ie, the cmrcnt front position collapses onto a line of slope 1 regardless 

of the initial lock conditions. Evidence of tltis for the present experiments can be seen 

in figurC' 2.!'>; thC' l'C'flllltfl prC'sC'nteo arC' clearly consistC'ut with the experimental data of 

RottmAn and Simpson (19 3). For simple qualitative validation, figure 2.6 shows that 

a gravity current with a smooth bed generated in the present experiments hB.! ' typical 

head features consistent with previous full height release experiments (compared here 

t Note that to is defined as .co / ../ilTiO and is verified in section 3.3.2. 
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Figure 2.5: The normalised front position as a function of time [or 1%, 5% and 10% experiments 

under smooth bed conditions with the experimental data of Rottman and Simpson (1983). Time 

was normalised Ilsing the expres ion to = xo/,;grTiQ. The initial phase is represented by the line 

of slope 1, the inviscid self-similar phase by the line with slope 2/3. 

Figure 2.6: Vismtl verification of the presellt eXperill lt'lItS. Laboratory gravity current propagat­

ing along a smooth horizontal surface. (a) Shadowgraph visualisation, from Simpson (1997) p. 

14 and (b) vidt'o frame li·om present. expt'riment.R (5% dt'l1sily ci.iITereJlce). 
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to Simpson (1997) but there are many images of 'typical' gravity current heads in the 

literature) . 

In the experimental t.ank configuration the roughness elements were stuck to 2 mm thick 

perspex sheets which were placed in the bottom of the 'smooth' tanl{. This created a 

2 mm step up at the lock partition since the bed of the lock-box was still smooth. In 

order to verify that this did not have any significant effect on the results, a perspex 

insert of the same thickness was created and inserted into the lock-box and the front 

position was measured for an additional set of 5% density excess experiments with each 

bed type. Figure 2.7 shows that there is no significant difference between the results 

with or without the insert and therefore the experiments continued without the insert. 

2.5 Results: Fluid velocity 

2.5.1 Front position and speed 

The effects of bed roughness and different initial density excess on the front 

position and speed. 

Figures 2.8 - 2.10 show that, for the most part, in the presence of any bed roughness 

gravity currents do not propagate as far as in the smooth case. regardless of the initial 

density excess of the fluid. The two anomalies to this general rule are the 1% density 

excess currents propagating over coarse sand and spheres, shown in figure 2.8, where the 

current position is almost identical to the smooth case at any given time. In the 5% 

case, the fronts have travelled less distance over the grain-type beds and are therefore 

moving slower than the smooth case but almost identically to each other (figure 2.9). In 

the 10% case, the front position for current flow over the sand bed is again similar to 

the smooth case but the equivalent data for the glass spheres is similar to that of the 

beamS6,2 ea."lt' (figm't' 2.10). This is intt~rest.illg sinet' the beaIllS6,2 t:OnfiguratioIl is the 

closest packed case and the beams are of the same height as the diameter of the spheres, 

perhaps suggesting a common roughness effect regardless of the shape of the roughness 

itself. However, this observation is not supported by the results for the other deIL'5ities. 

The time at which the currents begin to slow down under the affects of roughness is 

independent of the bed roughness type but the rate at which it propagates thereafter is 

dependent. with the beroD type roughnesses incurring a greater slowing effect. For this 

type of roughness, t.he ret.arding effect on the flow increases with spacing in the 1% case 

(figure 2.8) while for the two higher density currents (figures 2.9 and 2.10), a difference 
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Figure 2.7: The front position a.s a function of time, normalised using.ro and to = xo! Vg'ho, for 

a 5% density excE'SS with and wi thout an inserted perspex sheet in the lock box for (a) smooth, 

(b) sa.ud, (c) spheres, (d) beal1lS6.2, (e) beams6,.1 and (1) bemlls6,8 bed configmat.ions. otE'that 

the inHert i::; not present in the smooth case, it is included for completion. 
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with all six bed configurations. 

4.---~----~--~----~--~----~--~----. 

3.5 

3 

2.5 

1.5 

• 0.5 • • • 0 
0 5 

A 

v 

o 

10 15 20 25 
t (s) 

30 

Smooth 
Sand 
Spheres 
Beams6,2 
Beams6,4 
Beams6,8 

35 40 

Figure 2.9: The front position as a function of time for a. gravity current with a 5% density excess 
wit.h all six bed configurat.ions. 



50 

4r-----~----~----~----~------~----~ 

3.5 

3 

2.5 

1.5 

0.5 

o 
o 

• • 

; ! 0 ~ Ie 

~ A V 0 II 

• A V O· 
+ V O· 

.;. ~ ~ II 

• '" 0 
+ VII' 

; & 11 
+ t 11 

+ t II 

• t • • • 4. 
+ • 4. 

+ i 

i • t e 
t i 

• 
5 10 

Smooth 
+ Sand 

'" Spheres 
v Beams6,2 
0 Beams6,4 

Beams6,8 

15 20 25 

t (8) 
30 

Figure 2.10: The front position as a function of time for a gravity current with a 10% density 

excess wit.h all six bed configurations. 

can be observed between the propagation of the front over the d-type and k-type beds 

at later times. This is particularly exaggerated in the 10% case (figure 2.10) where the 

data from the two k-type spacings diverges from the rest and this suggests a relationship 

between the distance the current propagates with time and the type of spacing, d- or 

k-type, at least for square beam roughnesses. 

There is a siguificant difference observed in figures 2.8 - 2.10 in the time at which the 

current begins to slow down for each of the three initial densities. However, if the time is 

normalised with respect to the initial density excess using to = :ro/ J!lho and displayed 

on a log-log scale (figure 2.11), it eall be observed that the data collapses particularly 

well for the smooth and sand beds and also quite well for the other beds. This implies 

that the relative position of the current at a given time is essentially independent of the 

initial density of the current. 

Front speeds calculated using the gradient, ~, of the linear best fit of the front position 

data in figures 2.8 - 2.10 are shown in tables 2.3 (a) - (c). The values in these tables 

were calculated based on a linear regression over the time period within which the data 

from the smooth runs are estimated to be in the constant speed phase, as described in 

section 2.3. It can be seen that the R2 values for the rough cases are not consistently as 

high over this time period. This consistent variation suggests that this is not the result 
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(a) Smooth Sand Spheres 

Speed (mm/s) 68.3 68.0 68.8 

Fr 0.62 0.61 0.62 

Re 8503 8466 8566 

Inc/Dec (smooth) NjA -0.4% +0.7% 
R2 0.9999 0.9999 0.9998 

Bearns6,2 Bearns6,4 BearrlS6,8 

Speed (mm/s) 67.6 66.2 65.4 

Fr 0.61 0.60 0.59 

Re 8416 8242 8142 

Inc/Dec (smooth) -1.0% -3.1% -4.2% 
R2 0.9995 0.9994 0.9992 

(b) Smooth Sand Spheres 

Speed (mm/s) 157.7 154.1 149.4 

Fr 0.64 0.62 0.60 

Re 19634 19185 18600 

Inc/Dec (smooth) NjA -2.3% -5.3% 

R2 0.9999 0.9999 0.9998 

Bearns6,2 Beams6,4 Bearns6.8 

Speed (mm/s) 148.1 145.3 145.9 

Fr 0.60 0.59 0.59 

Re 18439 18090 18165 

Inc/Dec (smooth) -6.1% -7.9% -7.5% 

R2 0.9997 0.9997 0.9994 

(c) Smooth Sand Spheres 

Speed (mm/s) 216.2 213.7 196.1 

Fr 0.62 0.61 0.56 

Re 26917 26606 24414 

Inc/Dec (smooth) N/A -1.2% -9.2% 

R2 0.9996 0.9998 0.9985 

Beams6,2 Beams6,4 Beams6.8 

Speed (mm/s) 195.2 194.6 194.1 

Fr 0.56 0.56 0.55 

Re 24303 24228 24166 

Inc/Dec (smooth) -9.7% -10.0% -10.2% 
R2 0.999 0.9997 0.9983 

Table 2.3: Front speeds for all six bed roughnesses for (a) 1%, (b) 5%, and (c) 10% density 

excess (~alculated using the first 60% of the front speed data where the smooth case is within 

the constant speed phase. Also shown is the percentage increase or decrease in front speed with 
respect to the smooth experiment. 
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of measurement error but rather that the rough cases behave in a different manner to 

the smooth case and are therefore not governed by the same flow regimes. 

As expected, the speed of the current increases with the increase in the iuitial density 

excess of the current. The 1% current propagates at a speed of only approximately 43% 

of the 5% current front speed in the smooth case, and similar differences apply in the 

rough eases. The 10% case shows an increase of approximately a third relative to the 5% 

case. Other than the effect of the spheres on the front speed of the 1% density current, 

tables 2.3 (a) - (c) confirm that the presence of bed roughness has a slowing effect 011 the 

current. The anomalous result is probably due to experimental error. Other than this 

discrepancy. if the percentage decrease compared to the smooth case is considered. for 

all densities it can be seen that the sand bed has the least reta.rding effect. The widest 

spaced beams6,8 case has the most significant slowing effect in all except the 5% currents 

but in this case the difference between this result and the slightly closer packed, beams6,4 

case, is only 0.4%. Furthermore tins suggests that there might be a maximum spacing 

beyond which the effects of this type of bed roughness on the front speed do not change 

substantially. Clearly, the STain type roughnesses have less effect than the beam-types, 

even in the spheres ca..,e where the diameter is identical to that of the beams. 

The Froude and Reynolds number at the front, ca.lculated using Fr = ~ and 
yg'ho/2 

Re = Uf/~o/2, where II = 1 x 10-6 m2s-1 is the kinematic viscosity of fresh water at 

20°C, can also be seen in tables 2.3 (a) - (c). Clearly, when the Froude and Reynolds 

numbers are calculated with these parameters, the currents can be classified as turbulent 

and subcritical in all cases. The lower values for the 1 % current are to be expected since 

the density difference, and hence the buoyant driving force of the flow, is smaller. In 

the 5% and 10% cases it can be seen that there is a decrease in Fr and Re under the 

influence of any bed roughness. The coarse sand shows the smallest magnitude change in 

these values, the spheres are the ne.xt most effective and the effect of the beams appears 

to increa..ore with increasing spacing. The data in tables 2.3 (b) and (c) also suggest a 

possible eonnection between the spheres and the £I-type beams, beams6,2 and similarities 

between the two k-type beam cases. Fr and Re are also calculated subsequently in 

section 2.5.4. using the depth averaged values hda and Uda. The values presented here 

give an indication of the effect of the retardation at the front on these parameters using 

a conservative value for h. 
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Figure 2.12: The front position as a function of time for the 5% density excess with (D) and 
wit.hout (A) dense fluid initialised between the roughness elements. Also displayed is the smooth 

bed result for comparison. 

Beams6.2 Beams6,8 

Speed (nun/s) 153.2 151.9 

Fr 0.62 0.61 

Re 19074 18912 

Inc/Dec (smooth) -2.9% -3.7% 

Inc/Dec (ambient) +3.4% +4.1% 
R2 0.9999 0.9999 

Table 2.4: Front speeds generated with a 5% density excess for a bottom boundary with beams6,2 

and beams6.8 both with dense fluid initialised between the elements. Calculated using the first 
50% of the front speed data. Also shown is the percentage increase or decrease in front speed 

with respect to the smooth experiment Ilnd the percentage increase or decrease with respect to 

the equivalent results for the regular cases with ambient fluid between the elements. 

The effects on the front position and speed by the removal of the ambient 

fluid from between the roughness elements 

Figure 2.12 demonstratf's the significant effect that replacing the ambient fluid between 

the roughness elements with dense fluid (5% ('xc('.'!s) ill the bcams6,2 and beams6,8 cases 

has on t.he distance travelled by the current. The gravity current still slows down but it 

is able to maintain a higher speed than when buoyant ambient fluid was present. This 



55 

implies that. this less dense fluid is one of the principle retarding effects resuhing from 

the presence of bed roughness. However, the fact that the current does not revert to a 

propagation speed similar to that of the smooth case implies that this is not the only 

cause of the change in speed and there are other roughness effects present. Moreover, it 

can be observed that the difference between the distance travelled by the current over 

the two roughness element spacings is maintained and appears very similar regardless of 

the density of the fluid between the elements. 

For both element spacings, confirmation that the removal of the ambient fluid causes 

the current speed to increase relative to the equivalent original experiments but decrease 

relative to the smooth bed case can be seen in table 2.4. The presence of bed roughness 

causes the current speed to reduce by 3-4% regardless of the buoyancy effects. The 

eqnivalent experiments with ambient fluid in the cavities (table 2.3 (b)) showed that the 

roughness has a 6.1 % and 7.5% reduction in front speed compared to the smooth case for 

the beams6.2 and beams6,8 beds, respectively. This combined information implies that 

the effects of buoyancy potentially contribute to about 50% of the reduction in front 

speed while the remaining retardation results from other effects of the elements on the 

current. 

The effects on the front position and speed by decreasing the total fluid 

height by half 

A reduction in the height. of the fluid in the tank effectively doubles the relative height 

of the roughness elements. This provides insight into the affects of increasing the rough­

ness height on the propagation of the gravity currents. Due to time constraints, these 

experiments were performed for the 5% density excess currents only. 

Figure 2.13 shows the comparison of the front position as a fUIlction of time for all bed 

rouglmesse8 for a gravity current generated in half the original fluid depth. The sand and 

spheres have similar slowing effects OIl the current, as observed in the full height case, 

although the increased size of the spheres results in a slightly increased retardation. The 

significantly increased slowing effects of the beam-type roughnesses are again highlighted 

and it can also be observed that there is little difference in the front position of the current 

for the two wider k-type spacings, as suggested by the 5% and 10% full height results. 

The difference between the front positions of the full height and half height cases can be 

seen in figure 2.14 for each of the bed roughness types. The data has been normalised 

using Xo and to = :I:o/../i1TiO which is dependent on the variable parameter ho. In 



56 

4r---~----~--~----~--~----~---. 

Smooth 
+ Sand 

'" Spheres 

0.5 v Beamsa,2 
0 Beamsa,4 

Beamsa,8 

10 20 30 40 50 60 70 
t (8) 

Figure 2.13: The front position as a function of time for half fluid height release of a 5% density 
excess gravity current and all of the six bed configurat.ions. 

Smooth Sand Spheres 

Speed (mm/s) 111.4 104.3 99.5 

Fr 0.64 0.60 0.57 

Re 6935 6493 6194 

Inc /Dee (smooth) N/A -6.4% -10.7% 

Inc/Dee (full) -29.4 -32.3% -33.4% 
R2 0.9999 0.9996 0.9998 

Beams6,2 Beams6,4 Beams6,8 

Speed (mm/s) 97.6 95.5 92.2 

Fr 0.56 0.55 0.53 

Re 6076 5945 5740 

Inc/Dee (smooth) -12.4% -14.3% -17.2% 

Inc/Dee (full) -34.1 -34.3% -37.9% 
R2 0.9996 0.9994 0.9999 

Table 2.5: Front speeds for all six bed roughnesses for half fluid height release of a 5% density 

excess gravity current. Calculated using the first 49% of the front speed data where the smooth 

case is within the constant speed phase. Also shown is the percentage increase or decrease in 

front speed with respect to the smooth experiment and the perc.entage increase or decrease with 
respect to the full tank height equivalent. 
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the smooth case, it can be observed in figure 2.14 (a), for the time period of these 

experiments, the front position is approximately independent of the initial release height, 

although this may change for later times. However, in the rough cases, figures 2.14 (b) 

to (f), the two datasets do not collapse and hence additional effects can be attributed to 

the increase in roughness height relative to the fluid depth. The beam-type roughnesses 

had great.er slowing effects on the full height currents compared to the grain roughness 

types and this appears to be exaggerated when their relative height is increased, see 

figures 2.14 (d) to (I). This is confirmed by the calculations of the percentage decrease 

in front speed relative to the smooth data shown in table 2.5 compared to the equivalent 

calculations shown in table 2.3 (b). 

It should be noted that for roughness elements of this relative height and spacing, cer­

tainly for the beams and spheres beds, the height of the roughness elements (up to 6 

mm) is at most an order of magnitude smaller than the conservative approximation of 

the height of the current (ho/2 = 0.0625) and can be expected to be less. Therefore, the 

effects observed thus far for this case could be categorised as the result of an array of 

successive small obstacles in the path of the flow rather than that of a bed roughness. 

Therefore, the effects of the elements on the flow dynamics may be significantly different 

to those expected from a smaller more typical bed roughness and an investigation and 

characterisation of these affects are not sought further in the present study. 

2.5.2 Horizontal velocity profiles 

The effects of bed roughness and different initial density excess on the hori­

zontal velocity profiles 

Time series contours of the streamwise downstream horizontal velocity results, generated 

hy the five horizontal prohes, for all three initial density excesses can he seen in figures 

2.15 - 2.17. Complementary downstream horizontal velocity profiles from this data are 

shown in figures 2.18 - 2.20. 

For a smooth run with a 5% density diffcrcnce (figure 2.16 (a)) the results reiterate that 

the present study is consistent with what has been observed in previous experiments: A 

head region is present with relatively constant velocities and a mean velocity maximum 

near the bed. Large fluctuations in velocity are observed at the density interface behind 

the head indicating the presence of billows, followed by a lower velocity 'tail' region 

and a negative reverse flow above the gravity current where the ambient fluid is forced 

upstream as it is displaced by the current. The lIlean velocity maximulIl in the head 
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Figure 2.15: Time s ries contours of dowllstream horizontal velocity, 1.t (millis) lip to the max-

imum probe depth for a 1 % gravity current with a staudru'd probe configuratioll. (a) Smooth, 

(b) sand, (c) spher!'s, (d) beamSa.2. (f') beamSij.4 and (I) beamsij.8. 
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Figure 2.16: Time series contours of downstream horizontal velocity, u (mlll/s) up to the max­

imum probe depth for a 5% gnwity current with a stalldard probe coTlfiguratiOlI. (a) Smooth, 
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in the 5% case is confirmed in figure 2.19 (a) to be very near the bed, as expected in 

high Reynolds number flows (Simpson. 1972). This is different to the 1% run where the 

Re value is lower and hence, as suggested by Simpson (1972) and confirmed in figure 

2.18 (a), the mean velocity maximum is higher in the flow. This does not hold for the 

equivalent results shown in figure 2.20 (a) where the velocity maximum is also raised 

further from the hed despite the higher Reynolds number. This is probably a result of 

the limited number of probes. Inspection of the corresponding time series contours in 

figure 2.17 indicates that ill general the higher downstream horizontal velocities are in 

fact near the bed more consistently with this high density excess than the 1% case (figure 

2.15 (a)). 

For th(~ 1 % dt:n..'!ity excess, the time series contours ill figure 2.1.5 show significant siru­

ilarities in the overall distribution of the downstream horizontal velocities compared to 

the differences between the rough and smoot.h cases in the higher density experiments 

(figures 2.16 and 2.17). Comparing the velocity profile through the current depth (figure 

2.18 (a)) profile to figures 2.18 (b) - (d) for the bed roughened cases, again little differ­

ence ('an be seen in the general profile shape and the height, and indeed the value, of 

uma;r within the currents. This evidence along with the small changes in front position 

and speed suggests that gravity curnmts such as those generated by the 1% initial den­

sity excess, which exhibit high umax positions and comparatively low basal velocities are 

relatively unaffected by bed roughness. 

In the cases with bed roughness applied to the 5% and 10% gravity currents, the typical 

velocity structure is not observed as clearly as in the smooth case, see figures 2.16 

(b) - (f) and figures 2.17 (b) - (f). In general, t.he presenee of bed roughness results 

in fewer regions of high velocity within the current, the head is less well defined and 

it appears that the larger billows are not present. However, the frequency of smaller 

instabilities at the density interface could be considered to have increased, suggesting 

that those larger structures in that region in the smooth case have been broken down 

or were unable to form. Near the bed, there al'e zones of very low positive or in fact 

negat.ive flow bf'neat.h the current heRd in t.he rOllKh CIl.'leS that aloe not present in the 

smooth cssc. This could result. from defiection or recirculation caused by the roughness 

elements or from trapped ambient fluid and indicates an in(,rease in mixing occurring in 

this region. 

The velocity profiles throughout the current depth shown in figures 2.19 and 2.20 indicate 

that the presence of any type of roughness on the bed of a 5% or 10% current decre~ 
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Figure 2.1 : Dowll~trel.llll horiZUlltal velocity profile~ at x = 2.97 m as a function of depth for a 

1 % density difference, avera.ged temporally over 5 s and spatially over 3 bins. Profiles from right 

Lo left of flow before the current head, in Lhe head, in the body and in the tail for (a) smooth. 

(b) sand, (c) spheres, (d) bea111s6,2, (e) bea111~6.4 and (I) bea111s6 ,S. 
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Figure 2. 19: Downstrealll horizontal velocity profiles at J' = 2.97 m as a [unction of depth for a 

5% density difference, averaged temporally over 5 s and spatially over 3 bins. Profiles from right. 

10 len of flow before l.he rmrenl head. in (,he head, in Ule body and in t.he lail for (a) smooth, 

(b) sand, (c) spheres, (d) beam 6.2, (e) beamS(l,4 and (I) beams(j,8. 
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Figure 2.20: DowlIl;tre(llll horiZOlltal yc10ciLy profiles tit x = 2.97 m as a function o[ depth [or a 

10% densily difference, averaged temporally over 5 s and spatia lIy over 3 bins. Profiles from right 

to left of now before the current head , in Lhe head, in the body and in the tail for (a) smooth, 

(b) sand, (c) spheres, (d) beams6,2, (e) beams6,4 and (f) beamsc;,s. 



66 

the magnitude of the mean velocity maximum and, in the 5% case, raises the location of 

Umax away from the bottom wall (figures 2.19 (b) - (d)). As mentioned previously, this 

may not be observed for the 10% case due to the experimental resolution. In general, 

the rough cases elicit a more rounded profile with a less distinct density interface. 

The Umar values shown in figures 2.18 - 2.20 are significantly smaller than the front speeds 

calculated in tables 2.3 (a) - (c). In the 1 % case, umax is smaller by approximately a 

third, relative to the front speed. This also holds approximately in the 5% and 10% 

experiments. although not for the smooth case. For the 5% gravity current, the smooth 

case shows a small increase in Umax. For the 10% current, the smooth case shows a 

decreased umax compared to the corresponding front speed but only by about 14%, 

approximately half the percentage of the decrease observed with bed roughness present. 

These data suggest that Umax is significantly reduced relative to the front speed in the 

rough cases. However, it is also likely that the probe array lacks the resolution to capture 

the highest velocities within the flow, which would result in under-estimation of the mean 

and maximum values. 

The effects on the horizontal velocity profiles of the removal of the ambient 

fluid from between the roughness elements 

Figures 2.21 (b) and (d) display the times series contours of the downstream horizontal 

velocity data for the 5% density excess gravity currents with the ambient fluid between 

the roughness elements replaced by dense fluid. If these are compared to the smooth 

bed result for this case (figure 2.16 (a)) it is clear that, as demonstrated previously, the 

flow does not revert hack to that over a smooth hed. The magnitude of the downstream 

horizontal velocities are still reduced by the presence of the roughness elements and do 

not form a coherent region within the head of the current as they do in the smooth case. 

However, compared to the equivalent rough cases with anlbient flllirl in the cavities, 

figures 2.21 (a) and (c), there is evidence that. the higher velocities are distributed low 

down in the current depth, near the wall and the zones of very low or reverse flow are 

signifiealltly reduced. This might suggest that these zones are the result of overridden 

ambient fluid trapped beneath the current ejecting from between the elements due to the 

buoyancy difference between the fluids. There is some evidenee to support this effect, 

which is visible ill the vertical velocity time series data that follows, although it is not 

possible to determine if the relevant horizontal and vertical zones exactly coincide. 

From figure 2.21 it can also be postulated that t,he removal of the ambient fluid from 
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Figure 2.21: Time series contours of downstream horizontal velocity, 1t (mmjs) up to the max­

imum probe depth for a 5% gravity current with a i:it.andard probe configura\.ion . (a) beams6,2 

with ambient flllid b('t.we('n the ('Iements, (b) with d('ns(' fluid b('(we€'llihe el('m(,l1is, (c) bcams(J. 

with Cl.llIhiclIt fluid hCtWCCll thc c1ClIlCllti:i, (d) wit.l! dClIi:ic fluid bctWCCll thc demcllts. 

between the roughness clements has a lUore noticeable affect 011 the k-type bed roughness 

(figlln' 2.21 (c) and (d)) than the equivalent d-type case. Observe that the beams6, case 

shown in fi?,ltr<~ 2.21 (d) shows velocity values distributed much more like the smooth 

case. although reduced in magnitude, than the bea111s6,2 case in figure 2.21 (b). The 

corresponding downstream horizontal velocity profiles for the data, shown in figure 2.22 

(d), confirm this. It appears that "'ith this wider elemellt. spacing the increased amount 

of buoyant ambient fluid between the elements i able to significantly redistribute the 

velocity field within the current, more so than for the d-type spacing where there are 

more elements and thus smaller cavities . 
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The effects on the horizontal velocity profiles of decreasing the fluid height 

relative to the bed roughness height by half 

The velocity data obtained from the UDVP probes is somewhat irregular in this case 

and therefore is not presented herein. Several repetitions were performed to verify that 

the data was accurate within equipment error but the irregularity was shown to be 

consistent. Inspection of the video footage shows that near the bin where the probe data 

is collected. the current head in these reduced depth currents is very dilute, particularly 

in the rough cases, and it is therefore possible that the probes are unable to accurately 

record the reduced velocities. 

2.5.3 Vertical velocity profiles 

Initial tests with the UDVP probes showed that the vertica.l velocities were approximately 

one third of the magnitude of the horizontal velocities. Therefore, since the UDVP 

software does not allow different. velocity limits for different probes, the vertical data was 

obtained from a separate set of experiments performed within more appropriate limits. 

Due to laboratory time constraints, these additional experiments were only performed 

for the current with a 5% density excess but for all six bed configurations. This slight 

discrepancy also means that the vertical and horizontal velocity data cannot be combined 

to give two components of velocity at a point for one experiment. Therefore the vertical 

data are presented separately but since the experiments have good reproducibility (see 

figure 2.4) they can be considered with reference to the equivalent horizontal component. 

Figure 2.23 shows the time series of the vertical velocity component as the gravity current 

passes through the probe measurement window for the smooth bed case. This result 

shows good agreement with typical readings for the vertical component observed in 

equivalent smooth bed studies (e.g. Kneller et aI., 1999). The time series contours in 

figure 2.2:! (f) show strong upward motion at the current front where the currt'nt fluid is 

forced upward and back on itself by t.he ambi(mt fluid Mead of t.he current. Further back 

ill the current, this strong vertical mot.ion at. the density interface has been broken down 

due to the interfacial instability. Lower within the current, away from the interfacial 

region there is little vertical motion where the current propagation is dominated almost 

entirely by the st.reamwise horizontal c.omponent of velocity as seen in figure 2.16 (a). 

Time series contours for the data obtained for all of the bed roughnesses for a 5% 

density excess current call be seen in figure 2.24. It can be observed that there is an 

overall reduction in the magnitude of the positive vertical velocities due to t.he presence of 
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any bed roughness. However, as was observed for the equivalent downstream horizontal 

series, the sand roughness shows close similarities with the smooth case, compare figures 

2.24 (b) to (a). For the remaining four bed t.ypes (figures 2.24 (c) - (f)), the positive 

vertical motion at the front is less confined to the interface than in those two cases and 

also appears in the nose and head of the current. in regions that, for the smooth and 

sand beds, show vcry little vertical motion. This point is supported by the observation 

of slightly weaker downstream horizontal velocities in the head for the rough cases in 

figures 2.16 (c) - (f) which could enable the increased presence of the vertical motion. 

In addition to the increase in vertical motion within the nose region, positive vertical 

motion near the bed further back in the current can be observed for the beam-type bed 

cunfigurations, figurt-'S 2.24 (d) - (f). It is possible that these regions might coincide 

with the zones of much reduced horizontal velocities mentioned previously and therefore 

result from the upward eject.ion of vortkes of ambi('nt fluid from between the elements 

due to buoyancy. Notice that these near-wall zones of positive vertical motion do not 

appear to be present in the grain type cases (figures 2.24 (b) and (c)) where there are 

no explicit cavities in the bed roughness where a coherent vortex of ambient. fluid could 

become trapped. If the velocity components were coincident, or the vertical velocity 

time series data was available for t.he cases with the ambient fluid removed from between 

the elements, further confirmation of this observation might be compiled. 

Despite the reduction in the magnitude of the positive vertical velocities at the density 

interface due to the presence of bed roughness, the higher velocities remain primarily 

in this frontal locality where the intruding current fluid is forced into the ambient fluid. 

However, this frontal interfacial region does not persist coherently as far back behind 

the current front in the rough cases compared to the sand and smooth cases, compare 

figures 2.24 (a) and (b) to (d) - (f). This suggests that it is being broken down by 

fluctuations of the interfacial instahilities t.hat. form immediately behind t.he head which 

consequently indicates that the interfacial instabilities are being generated sooner. closer 

to the front in the rough cases than in the smooth case, potentially resulting in a shorter 

head length. 

2.5.4 Depth-averaged and 1<8 values 

The effects of bed roughness and different initial density excess on the depth­

averaged and kif values 

The depth-averaged downstream horizontal velocity and height have been calculated 
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(a) Smooth Sand Spheres 

Uda (mm/s) 47.7 47.8 46.6 

hda (mm) 62.9 45.7 50.9 

Frdo 0.83 0.72 0.69 

Reda 2050 2299 2306 

Beams6,2 BeamS6.4 BealllSfl,8 

Ucla (mm/s) 50.7 42.9 40.0 

hcla (mm) 44.8 47.4 45.2 

Froo 0.77 0.63 0.60 

Reoo 2212 3028 1832 

(b) Smooth Sand Spheres 

Uoo (mm/s) 136.6 98.7 87.6 

hda (mm) 40.3 53.2 53.2 

Frcla 1.02 0.64 0.61 

Redo 5706 5356 4534 

Beams6,2 Beams6,4 Beamsa,8 

Uda (mm/s) 103.3 94.7 91.7 

hoo (mm) 43.8 42.2 60.7 

Frda 0.7 0.66 0.53 

Reoo 4814 4198 5883 

(c) Smooth Sand Spheres 

Uoo (mm/s) 170.7 121.2 143.5 

hoo (mm) 45.9 44.3 44.5 

Frdo 0.81 0.53 0.69 

Reoo 8613 5924 7035 

Beams6,2 BeanlS6,4 BeaIllSfl,8 

uoo (rum/s) 127.7 128.2 124.2 

hoo (mm) 44.0 56.4 61.7 

Froo 0.62 0.56 0.51 

Reda 6210 7806 8424 

Table 2.6: Depth-averaged values for (a) 1%, (b) 5%, and (c) 10% density difference. Fr and Re 

calculated ut;ing ttda and hda. 

using 5 probes in the current head over 5 sand 3 bins using equations (2.1) and (2.2), 

respectively. Mean values for the flow Reynolds numbers (Retia) and Froude numbers 

(Frda) were calculated using these values. Tables 2.6 (a) - (c) show these results for 

the 1%, 5% and 10% gravity currents, respectively. The depth-averaged velocities are 

in general approximately 35% smaller than the corresponding front speeds and slightly 

smaller than the velocity maxima Umax displayed with the velocity profiles. However, 

it must be noted again that the velocity profiles are likely t.o be missing the highest 
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velocity zones and therefore significantly underestimating the flow speeds. The Uda of 

the 1% currents show varying responses to the bed roughness, relative to the smooth 

cast', but t.he magnitudt' of the effects are for the most part significantly smaller thau 

for the high(~r density currents. In the 5% and 10% cases, the depth-averaged velocity 

of the gravity currents flowing over rough surfaces is significantly decreased relative to 

the smooth C8.'i<'. In fact. the magnitude of the decrease is over 25% under most rough 

bed conditions. There does not appear to be any clear trend in the exact magnitude 

of the decrease in Uda relative to the smooth case for a particular bed type or spacing. 

Therefore, it would appear that for lUI improved indication of those effects, the frout 

speed results should be observed since the depth-averaged data at present only indicates 

that there is a general decrease in velocity. 

The depth-averaged height data, hda, shown ill tables 2.6 (a) - (c) also proves incon­

clusive. In the 1% case, it. appears that there i8 a significant overall decrease in the 

height relative to the smooth current height. However, the 5% data suggests an overall 

increase in height, varying froIU about 5% to 50%, with no apparent trend in the data 

with respect to the roughness type or spacing. The 10% case suggests that under the in­

fluence of coarse sand, spheres and the d-type beams the height decre8.'ies a small amount 

while for the k-type beds, the height is more significantly increased. Again, these results 

highlight the sensitivity of this method of calculating the depth-averaged values on the 

number of data points available. 

The ks values calculated using equation (2.4) can be seen in figure 2.25 with the velocity 

data below the velocity maximum used to calculate them. At the present resolution, the 

kll data is inconclusive. It does not. show any specific indication of correlations between 

the increase and decrease in value with the density or the bed type. It is encouraging 

that the order of magnitude of the values agree in some cases, for example the 1% and 5% 

(:ases for the spherl"S roughness (figures 2.25 (c) right and middle) and the 5% and 10% 

cases of the beB.I1lS6.2 roughne$ (figurt'.'i 2.25 (d) middle and left) but this does not hold 

for all of the data. Note that there is no data available for the 5% smooth case since there 

was no prohe dA.tA. available helow the velocity maximum of the eurrent. It should al~o he 

not.ed that t.hese are 'best fit' values that have been calculated with at least four probe 

values where possible. including the velocity maximum. The data is subject to some 

error due to its method of calculatioll, i.e. b'y eombining the data froUl two experiments 

with a probe shift and as a result some 'clustering' of the values is apparent undermining 

the fit of the line. For this reason, the data from these probe 'shifted' experiments were 

not lL'Ied ill t.he velodty profiles previously. Data right down to t.he bed is not available 
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Figure 2.25: (Prrt';Olls page) Downstream horizontal velocity values in the current head below 

the velocity maximum at .r. = 2.97 III averaged over 5 sand 3 bins, plotted on a semi-log scale 

with a linear regrt'Ssion extl'l1ded to calculate the y intercept and hence k. using equation (2.4). 

Dut.a is compill.>d from two laboratory experiments under identical conditiolls, with a probe shift. 

Rt'Suits left, middlc and right are for the 1%, 5% and 10% density excess currents, respectively. 

(a) Smooth. (b) sand. (c) sphert'S, (d) beams6,2. (e) beams6.4 and (I) beams6,8' No data was 

availablt· below thc velocity maximum for the 5% smooth case. 

at the current resolution and thus the extrapolation to the intercept could be subject to 

a significant eITor. In future studies, finer resolution data would increa.'le the accuracy 

of the c.alculation, but since other areas of the present investigation require ks values 

then the current data is presented. In fact, it might be possible to provide an indication 

of the appropriatcnes.'5 of the values calculated here from the numerical predictions that 

follow. 

The effects on the depth-averaged values of the removal of the ambient fluid 

from between the roughness elements 

Beams6,2 Beams6,8 

?loo (mm/s) 106.1 97.7 

hoo (mm) 53.3 48.5 

Froo 0.66 0.64 

Redo 5897 5037 

Table 2.7: n(~pth-averagl.>d values for a 5% density difference gravity current with ambient fluid 

bet.ween the elements replaced with dense fluid. I<'r and Re calculated using tit/a and hda. 

The depth-averaged dowllstream horizontal velocities were calculated in the current head 

over the 5 probes and for 5 s and 3 bins for the experiments with ncnsc ftllirl betwCt'Il t.he 

elements. The results are presented in table 2.7. Compared to the slllooth case, decreases 

in Uda of 22% and 29% again confirm that the buoyant ambient fluid trapped between 

the elements is not the sole cause of the effects of the bed roughness on the current. 

Similar to the result.s for the rough cases with ambient fluid between the elements, the 

internal Uda is approximately one third slower than the frout speed. 
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2.6 Results: Turbulence 

The downstream horizontal root mean squared velocities, U rms , have been calculated 

using the following equation: 

(2.5) 

where n is the number of observations, Uj is the downstream horizontal velocity at a 

point and ii is the time averaged at a point downstream horizontal velocity. The results 

shown in figures 2.26 (n), 2.27 (n) and 2.28 (n) within the current head have a typical 

smooth bed gravity current U rm .. profile (Buckee et al., 2001) with reduced values at 

the mean velocity maximwn and an increase at the interface where more mixing occurs 

due to interfacial instabilities. At the head, the 1% current shows little change from 

the smooth profile and magnitude of Urffl8 under the sand and beams6,2 bed conditions. 

figures 2.26 (b) and (d). However, for the spheres and the k-type beanl roughnesses, 

figures 2.26 (c), (e) and (I) the profile appears 'straightened' to give an almost. constant 

Urm.9 value throughout the current depth. 

For the 5% current, the effects are more substantial. It appears that in the smooth case 

the change in Urm.ll with depth is much more variable than in the rough bed cases with 

distinct. lllaxinui. and minima. Although morc significtUlt than in the 1 % ease the profiles 

in the r01lgh ('a."Ni (figtlrNi 2.27 (b) - (I» do not vary with height as dramatically as 

the smooth case. This observation al'lO holds for the 10% densit.y (,XCNl.'1 (figur(' 2.2~). 

These results suggest that the turbulence is being redistributed throughout the current 

depth in all rough bed cases, regardless of the initial density excess of the current. The 

reduced ttrrM at the density interface at the top of the current compared to the smooth 

case, suggests reduced turbulence fluctuations in this locality which could be indicative 

of the damping of the billows instabilities that are typically present ill this region aud 

ha.'i previously been implied in the velocity data. 

The most significant difference between the different density excesses is that the 5% C8.'Ie 

appt~a.rs to show an increase in Urma near the bed under rough bed conditions while the 

1 % and 10% cases show very little change from the smooth case. It is possible that this 

is illdic:alive of an effect due to the density excess. Where the 1 % ease is significantly 

slower, due to the reduced buoyant driving force, it does not appear to fE'el the effects 

of the bt'd roughness 88 significantly 88 the 5% case. Conversely, the 10% case has such 

an incrt'A'Ied driving force that again those currents may be affeded differently hy the 

bed roughness. This observation perhaps suggests thnt there is a 'trEUlsitiollal' density 
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Figure 2.26: Downstream horizontal root mean squared (rms) vdocity profiles u.s u fUI1l:tioll of 

depth for /l 1% dE'nsity differencE', averaged temporally over 58 and spatia.lly over 3 bins. Profiles 

from right. 1,0 left of How before the current head, in the head, in the body and in the tail for (a) 

smooth, (b) sand, (c) IIpher~, (d) bcamlltl.2. (e) beamS(j.,J and (f) beamS(j.Ij. 
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Figure 2.27: Downstream horizontal root mean squared (rrns) vdodty profiles UJ:! a fUlldioll of 

dept.h for a 5% dE'tlsity difference, averaged temporally ovpr 5s and spat.ially over 3 bins. Profiles 

from right. to left. of flow before the current head, in t.he head, in the body and ill t.he t.ail for (a) 

smooth, (b) sand, (e) spheres. (d) beamstl.2. (e) beams6 . .t and (f) beamstl.!I' 



80 

~~ ~ ) ~ ~ ~ 
I(a~L:L:'7 =\ 

o 0 0 o~---------o 50 100 0 50 100 0 50 100 0 50 100 

Urms (mm/s) 

(b) 

I:L:! : ~20 ~) 20 

o o~-------- o~--------
o 50 100 0 50 100 0 50 100 

Urms (mm/s) 

80 

60 

50 

(c) 
80 

-60 

1, 40 
~ 20 

:~ ~ 40 

20 

80 

60 

40 

20 ) ~> 
O~------o 50 100 

Urms (mm/s) 

(d) 

O~------­

o 50 100 
o 
o 

!~L ~'-)---- ~ o 50 100 0 50 100 0 

Urms (mm/s) 

50 50 

50 100 00 50 

100 

100 

100 

I(~L:L:I \ : 
.~ ~ ~~ ~ 

o 0 0 o~---------o 50 100 0 50 100 a 50 100 0 50 100 
Urms (mm/s) 

(I) 

I~L ;L ~'----~ __ ~~ 
o 50 100 0 50 100 0 50 100 00'----5-0 --100 

Urms (mm/s) 

Figure 2.28: Dowllstream horizontal root mean squared (rms) vt>!odty profilt>s I\S 1\ function of 

dt!pth for n 10% Ut'lu;ity difft:n'ncc, uveragcd klUpomlly over G s and spatially OVl~r :i hins. Protiln. 

from right to left of flow before the current head, in the head, in the body and in the tail for (a) 

tlmooth. (b) sand. (c) sphert-'li, (d) bealllS(;.2, (e) beams6,4 and (f) beams6.tI. 
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excess at "'hich the near-"'all region of the current will be affected more than higher or 

lower excesses. 

2.7 Discussion 

Some discussion of the experimental result.s has been undert.aken simultaneously with 

the presentation of the data in the present chapter to enable interpretation of the differ­

ent measurements independently. This section combines the results of the present set of 

experiments and discusses them with reference to variables considered to be of key influ­

ence in the effects of bed rouglmess: initial density excess, rouglmess type. the spacing 

of the hewu-type roughness, the effect. of the removal of wuhieut fluid at. the hed and 

('hallg~ in roughness clement height rdativ(~ to fluid height.. Finally a brief discussion of 

the measurement techniques is included. 

The effects of bed roughness on gravity currents of initial density excesses of 

1 %, 5% and 10% 

The results for the 1%, 5% and 10% density excesses show that the primary effect of 

bed roughness is to reduce the speed at which the gravity currents propagate. The 

nature and magnitude of this effect is critically dependent on the type of roughness 

and its configuration 011 the bed, as discussed subsequently. Currents flowing over bed 

roughness still propagate at a constant speed in the same manner as the smooth case for 

an initial period before wldergoing a slowing transition whidl varies depending on the 

roughness type. The front position data collapses well for the constant speed phase for 

each h{.'<i type rcgardle.ss of the initial density (figure 2.11) even though the roughness 

effectl'i on th(' int.ernal flow dynamics for the 1% ea."c are r('lat.ively small. Therefore, 

it can be said that the distance that a current will travel over a given roughness type 

during this constant speed phase scales with the density difference, as commonly observed 

in existing smooth bed investigations and as observed by Peters et al. (1997) in their 

const.ant. flux st.udy on roughness effects. 

In general, the presence of bed roughness results in fewer regions of high velocity dis­

tributed within the (:urrellt, the head is less well-defined and it appears that the larger 

billows are not present. The results suggest that this is due to the increased presence 

of smaller instabilities at the density interface that may either break down or prevent 

the formation of larger billows. There does not appear to be a significant increase or 
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decrease in the magnitude of the vertical velocities relative to the horizontal velocities 

in the presence of bed roughness. rather there is an overall reduction in both velocity 

components and t.he roughness affects the distribution of the velocities;. III the case of 

the horiwntal component this results in a redistribution of horizontal velocities about 

the velocity maxima such that the profile appears more rounded, less skewed towards 

the maximum. The mean velocity maxima, Umax, are smaller and furt.her from t.he bed 

compared to the smooth case. Therefore it can be confirmed that the location of the 

velocity maximum is a function of the bed roughness, as predicted by both Kneller et al, 

(1999) and Budeee et al, (2001). In t.he vertical direction, an overall reduction ill the 

magnitude of the positive vertical velocities is observed in the presence of any bed rough­

ness. In fact, the present experiments indicate that when a. rough bed is present there is 

significant positive vertical motion present within the nose and the head of the currents. 

not solely at the front and density interface as typically observed in the smooth case. 

Moreover. these new internal regions of vertical motion can be correlated with regions of 

reduced downstream horizontal velocities and may result from deflection or recirculation 

caused by the roughness elements or the upward ejection of vortices of ambient fluid from 

between the elements due to buoyancy. These mechanisms will all result in increased 

mixing within the head. Conversely, despite the increased vertical activity within the 

head, the frontal interfacial region is reduced and does not. extend coherently as far back 

behind the current as observed in the smooth case. One likely result of this process is 

that the current head length is shorter when travelling over a rough surface. 

These characteristics of a rough bed are not as clearly observed for the 1 % density excess. 

This does not mean that the bed roughness is not affecting the current flow, rather it 

may he attrihuted to the already elevated location of 'umax in the smoot.h case for this 

low density and the I!Iubtlety of the chaJlges not being captured with the current probe 

resolut.ion. Moroovnr, t.he' 'lightnC' .... "· of the fluid in t.his ('fISC will limit the interaction of 

the current with the elements, as discussed below. For t.he 1% density e.xcess currents, 

whilst the front position at a given time. aud thus the speed of the current, is affected by 

the presence of bed roughness, the downstream horizontal velocity field distribution does 

not appear to have changed considerably. This indicates that the roughnes..,> is having 

only a limited affect and is not interacting with higher regions of the flow. However, this 

could be predicted since the current is 'lighter' and therefore the ambient fluid will not be 

a.'> influential in this ca.'!C. To take affect, the ambient fluid at the bed relies on buoyancy 

induced by the density difference with the current when it is overridden. In the 1% case, 

lBased solely on the 5% current studied, which is A..'lSumoo here to he representative. 
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this buoyancy force is weaker because the density difference between the ambient and the 

current is smaller and since the current dilutes during propagation due to other means 

of entrrumUE'Jlt, for example at the density interface. the density difference also reduces, 

possibly to the extent that the ambient fluid between the elements does not incur enough 

buoyallcy to eject. Hellce, reduced effects 011 the illternal flow structure at this density 

excess and exaggerated effects on the flow structure in the 10% case. This mechanism 

is similar to that observed by Peters et al. (1997) with reference to roughness effects 

011 heavier and lighter currents. They found that lighter currents tended to float over 

the roughness elements with little interaction, while as the density increased the heavier 

fiuid illb~rnd.(xl morc strongly with the roughness. It. is not possible to determine at this 

stage if the.re is a scaling that can describe the illcrea,<;e in the magnitudE' of the effects 

on the flow strudure as the initial density excess of the current increases but since the 

front positioll data collapses it is possible that there is an appropriate scaling that would 

enable a similar operation to be performed on the internal velocity structures. 

The root-mean-squared velocities suggest that the turbulence has also been redistributed 

more uniformly throughout the current head depth and is less localised at the velocity 

maxima and the interface in the rough cases. The sphere and beam type roughnesses 

potentially cause the large structures at the interface to be broken down or remain small. 

These smaller structures that replace the large billows in these cases form more quickly 

behind the head of the current and this implies that the head is smaller in length than for 

the smooth case. Most of the effects on the internal flow structure can be attributed to the 

presence of the ambient fluid beneath the current and are discussed further subsequently. 

However, it is also pos..'lible that the reduction in the vertical and downstream horizontal 

velocity components due to the presence of roughness might coincide with an increase 

in the magnitude of the lateral velocity component that is not resolved in the present 

dataset. The cause of the shortening of the length of the current head in the presence 

of ronghness is diffknlt. to establish withont vert.ic:al velocity data for the cases with the 

effects of the ambient fluid removed. 

The effects of bed roughness types 

The distance that. the gravity current travels is affected by the type of roughness and 

its configuration on the bed. The grain roughnesses had a limited effect on the current 

speed (~ 5% at Illost), while the form roughnesses were Illuch more influential (up to 

~ 10%) with the k-type roughness having a more pronounced effect than the d-type 
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roughness. In fact the sand case has been shown to have very little effect overall and 

maintains velocity distributions very similar to the smooth case. This could be expected 

sinc.e the coarse sand represents the smallest roughness 'height' at ~ 2 mm. In this 

case the reduced amount of overridden ambient fluid is likely to have less effect and the 

roughness effects are probably solely generated by the increase in surface friction due to 

the c1o..'lC packing and irregularity of the sand. The spheres case has a greater effect at 

retarding the current and changing the internal structure, more like the most densely 

packed beanlStl.2 case. This is to be predicted since the spheres have the same diameter 

as the be.run.<; height, Le. 6 mm, and the spherical shape means that close packing, such 

as with the coarse saud. can only be achieved to a certain extent and this implies that 

although the surface friction may still be high there is an increase in the amount of 

ambient fluid in the cavities. These cavities will not be as large or regular as in the 

bewn type C8S(>S but the similarity between this case and the beamstl.2 bed results could 

indicate a similarity in the effective roughness of these two bed types, regardless of their 

very different shapes. 

The principal difference in the grain and form roughness types appears to be the mag­

nitude of t.he disruptions to t.he velocity flow structure in the near wall regions. These 

variations may be predominantly attributed to the volume of ambient fluid that is over­

ridden by the current and either trapped between the roughness elements or more im­

mediately entrained into the head. However, these variations could also be attributed to 

the interactions between the flow and the roughness elements themselves, or the packing 

of the elements. The effects of packing on the grain type bed roughnesses are beyond 

the scope of the present study. However, this would be an interesting extension to the 

current dataset. The experiments performed herein that replaced the amhient fluid he­

twccn the hcam type clcmcnts with dense fluid have proven the signific~U1ce of the effects 

of the prC'Senre of t.he trapped ambient fluid on the beam roughness types. It would be 

interesting to perform a set of equivalent experiments with a t.hin film of dC'Ilsl' fluid ov('r 

the grain type elements to determine the existence and magnitude of similar effects. 

The effects of bed roughness spacing and the presence of the trapped ambient 

fluid between the elements 

The ChWlges to the front speed ft. .. a result of bed roughness are clearly important. 

However, the significance of the changes to the internal velodty structure that have been 

proven to result from the trapped ambient fluid could also have huge implications for 
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sediment transport in gravity currents. The interaction of the overridden ambient fluid 

and the roughness elements with the current is particularly important for understanding 

and charf\.(·terisillg the effects of bed roughness on gravity currents ill comparison to 

single phase rough flows, since the buoyancy forces induced by this ambient fluid are not 

present in the latter but are of fundamental importance to allY gravity current study. 

The removal of the ambient fluid at the bed proved that this is the predominant cause 

of disruptions to and redistribution of the velocity field within the current head and 

an increast' in mixing and entrainment in this region, and hence forms a significant 

contrihution to the retardation of the flow. In fa.ct, the frout speed data suggests that 

t.he t.rapped ambient fillid cont.ributes to approximately 507c. of the reduction in front 

speed. However, it is not the only cause and there are other roughness effects, although 

these appea.r prima.rily to be slowing effects at the front with less impact on the internal 

flow structure. These other effects could be attributed to a loss of energy to maintain 

the vortical motion in the fluid trapped between the element.s regardless of its density. 

However. it is necessary t.o perform very high resolution experiments with details of the 

flow dvnamics between the roughness elements to confirm t.his. Hence, t.he subsequent 

use of CFD to enable predictions of the finer flow structures in these regions. 

Overall. the retardation of the gravit.y current increases with the increase in the beam 

roughness element spacing. However, the gravity current propagation over d-type and 

k-typc beam roughnesses show different. characteristics. The front position at a given 

time for the two k-type cases lL..oo in the present study (beamS6.4 and beams6.8) appear 

to be quite similar. suggesting that there is a critical spacing above which increasing the 

distanee between the elements has little effect§. The effeets of the k-type element spacing 

penetrate higher into the current depth, possibly since the volume of buoyant ambient 

fluid that is rdc8.')(-d from hetwccn the dements in these C8.')CS is more sigllificant and is 

therefore potentially not entrained as quickly into the overflowing ClUTcnt.. In t.he rl-typ(, 

('11.<;(' t.h(' VOhllllP of ('j('dro fluid packet will bc small by comparison and therefore can 

be expected to be broken up and entrained more quickly lower in the head causing less 

disruption. 

The front position data suggests that t.he difference in retardation of the current under 

the influence of the d-type and k-type roughness is not due to the trapped ambient fluid. 

As mentioned above. without this fluid the current.s are faster but the difference between 

SThis general rule will hold up to a point. When the elements become too far apart the flow dynamics 
will revert to that over a smooth bed with the highly dispersed elements representing very small individual 
ohstftCles in the path of the current. 
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the d-type and k-type front positions at a given time remains approximately the sanle. 

The :::::50% contribution to the reduction in speed due to the trapped ambient fluid holds 

for hoth element spacings. Since it cauIlot be attributed to the presence of the trapped 

ambient fluid, the difference in the spacing types could be a result of the loss of energy 

to maintain the vortical motion between the elements. As the gap between the elements 

is larger in the k-t.ype case, it stands to reason that it requires more energy to maintain 

a vortex iu motion in that locality. In fact, due to the separation that cau occur at an 

element in the k-type case, it is possible that two primary vortices develop, one at the 

downstream fnee of an element and the other at the upstream face of t.he adjacent one. 

In the d-type case, the gap is so reduced that there is only one principal vortex and less 

energy is required to maintain the rotation. Therefore the current does not lose as much 

energy in this process and a greater speed can be maintained. 

Conversely. the removal of the ambient fluid from between the elements does show sig­

nificant differences in the resulting internal velocity structure for the currents with the 

d-type and k-type element spacings. Both show a lower velocit.y maximum, probably as a 

result of the reduced surface friction. However, the d-type case shows little change in the 

internal velocities. This is likely to be caused by the close packing of the elements such 

that the surface friction still has significant effect. On the other hand, the k-type shows 

a dramatic chauge, partly as a result of the exaggerated reduction in surface friction for 

this case. Moreover, because the larger vol tune of ambient fluid trapped between the 

element.s in the equivalent regular case caused such disrupt.ion to the flow structure in 

the overflowing current that its removal is much more apparent than the removal of the 

small volumes of ambient trapped in the d-type case. 

Note that after some time or distance, as the current dilutes through mixing and eu­

traimnent, the density difference between the current and the trapped ambient fluid will 

reduce. Thus the strength of the buoyancy force at the bed will diminish and so will the 

effects of the ovcniddcn ambient fluid 011 the CUlTont. At this point, the tlow structure 

may change and eventually stabilise, perhaps similar to the 1% density case where the 

d~nsit.y differ~n('e is much smaller from the start. For longer-lived gra.vity currents. such 

as those in submarine Ch8JUlCls that may last for days, the buoyancy effects should pri­

marily ma.nifest in the head and the initial parts of the current body. Once dense fluid 

rephu:cs the lighter fluid bet.ween the elements, the more dist.al parts of the gravity cur­

rent will exhibit very limited buoyancy effects. As a consequence of this, the influence of 

bed roughness on gravity currents will potentially change both spatially and temporally. 

Therefore. an interesting extension to t.his investiga.tion would be to study the f'fff'cts of 
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changing the density of the fluid that is initialised between the bed roughness element.s. 

The effects of decreasing the ftuid height relative to the bed roughness height 

by half 

The results showed clearly that the effects of the bed roughness on the front position 

and speed art' dependent on the current height.. However, by reducing the total fluid 

height by half. it is probable that the relative height of the beron roughness elements 

meant that they interacted with the current more like a series of obstacles. As such, 

the c:urf(~llt wn." s\lbje<~t. t.o signific:allt blocking effects from t.he beam-type elements that 

are not present when the roughness is small relative to the current height. Therefore, 

the flow dynamics could be expected to be significantly Altered and not representative 

of the effect.s of roughness. An investigation of the effect of the height of the roughness 

elements on the propagation of gravity currents with increased resolution would enable 

further definition as to what height constitutes roughness effects and what results in the 

effects of an array of obstacles. 

Measurement techniques 

The use of the video capture technique was proven to be relatively simple but very 

successful for establishing the front location and hence the front speed of the currents. 

It also supplies useful visual aids for interpretation and records. 

The results confirm that the UDVP velocity measurement technique enables relatively 

easy ID measurement of the downstream horizontal velocity component of loek-release 

gravity currents &<j has been shown previously (Best et al., 2(01). Even with only five 

probes, the typical gravity current prufile can be generated for the smooth cases for 1%, 

5% AJld 10% dcmsit.y excess currents. For clarification of the change in the downstream 

horizontal velocities with depth and higher resolution of flow structures within the time 

series contours measurements with several more probes, or a higher resolution technique 

like PlY or LDA would be beneficial. Despite initial problems with constraining the 

vertical velocity probes, the data from the single probe was satisfactory. However, it 

would again be benefidal to implement another measurement technique that would en­

able coincident velocity component readings at a point with sufficient. accuracy. This 

would also provide data for the calculation of more accurate fluctuating velocities and 

hence Reynolds stresses and turbulent kinetic energy which would allow, for example, 

better determination of the fate of the billows at the interface. 
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For calculation of ks values, particularly in the 5% case where the current mean velocity 

ma.ximum is typically closer to the bed, and as should also be observed for the 10% case 

with greater resolution, a technique like PIV would again be useful. This would enable 

greater resolution to obtain more data points below the maximum for indication of the 

present measurement accuracy. 

Summary 

This chapter has presented the results of a set of experiments designed to establish the 

fllllda.mcmt.al illfhtel1(,c of form and grain roughness on saline lock-release gravity currents 

with diff~r('nt concentrations of 1-10%. The experiments have demonstrated that the 

presence of any bed roughness reduces the distance covered by the current before it 

deviates from the initial constant speed phase aud enters subsequent slower phases. This 

transition occurs earlier with increasing bed roughness effects. The influence of the bed 

roughness also manifests in the internal flow dynamics. For the heavier currents (5% and 

10%) the height ofUmax is clearly increased, as previously theoretically predicted, while 

its magnitude is smaller. The magnitude and patterns of the vertical velocity distribution 

within the current head also change dramatically as a consequence of bed roughness. The 

interfacial instability generated at the front does not persist coherently as far back into 

the following flow in the rough cases, which suggests that the length of the head of 

the current is typically shorter. Within the head itself, regions of high positive vertical 

motion are present associated with regions of reduced downstream horizontal activity. 

In particular. in the bewn roughness cases these regions of high vertical velocity near the 

bed may represent the ejection of vortices of buoyant ambient fluid iuto the owrlying 

hm\.Ci. These modifications to t.he velocity fields correspond to variations in turbulence. 

In the presence of bed roughness more uniform redistribution of turbulence is observed 

within the head. relative to the smooth cases. 

The type of bed roughness, grain or form, plays a fundamental role in defining the 

magnitude and nature of the chWlges to the gravity current dynamics. The small-scale 

grain roughness shows little influence OIl t.he internal flow dynamics but does increase 

the basal friction. The larger-scale grain roughness shows similarities in its affects to 

the closest spaced d-type form roughness, having increased influence on the internal flow 

structure. However, it is the k-type form roughnesses that have the most significant 

impact on the current since with increasing length of the cavities betwCt'n the elements. 

the impact of the trapped ambient fluid increases. 
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III order to assess the relative impact of the increased roughness (and the resulting 

frictional increase) and the influence of the buoyancy forces produced by the trapped 

ambient fluid, the cavities between the beams were filled with fluid of the same initial 

delll'.lityas the current. The results of this exercise demonstrate that each of these effects 

contributes to ::::: 50% of the retardation of the flow, relative to the smooth currents. 

Finally, an attempt was made to estimate the ks values for each of the bed roughnes.'i 

types in order to characterise them in such a way that similar values may be implemented 

in the subsequent CFD work (see chapter 4). 

These manifold effects on flow speed, flow structure and turbulence distribution, demon­

strated with saline currents, can be expected to have significant analogous consequences 

for sediment transport in particle-laden gravity currents. Furthermore, long duration 

currents will be susceptible to the spat.ial and temporal changes in t.he influence of the 

bed roughness, in particular the reduced impact from buoyant trapped ambient fluid 

with tinle. 

The present results are expanded in chapters 5 and 6 where 2D and 3D CFD techniques 

are applied to examine the effects of such bed roughnesses on the finer details of gravity 

current dynamics. The CFD simulations in those chapters are partially validated by the 

dataset provided by these experiments. 
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Chapter 3 

Depth-averaged theoretical model 

3.1 Introduction 

This chapter introduces a depth-averaged (ID) model. Existing models and theories are 

discussN and terms for the inclusion of bed roughness are outlined. This is followed by 

a derivation of the governing equations and the assumptions and boundary conditions 

applied. The method of characteristics solution procedure implemented in the present 

study is explained and applied to smooth and rough bed ca..-.es. 

The results of these models for the smooth and rough cases are then presented and 

validation with experimental data has been performed for the smooth case. Also included 

are the results of implementing different conditions at the front in the smooth case. 

Complete flow profiles of the charaderistics are displayed for currents generated with 

hoi H s 0.5. The depth and velocity profiles throughout the domain extracted froUl 

these results show the evolution of these parameters after release for flow over rough ulld 

smooth surfaces. 

3.2 Literature review 

Earlier mathematical models, such as those of Von Karman (1940) and Benjamin (1968) 

have already been mentioned in section 1.3. However, these represent only the earliest 

of extensive theoretical studies over several decades, continuing to the present day. The 

governing equations are essentially the same but it is the treatment of them and the 

parameters included that differ. 

Simplified theoretical models have been developed with extensive use of shallow water 

theory and the shallow water equations. The governing equations and their solutions. 
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along with some terms that may be applied or considered for the effects of bed roughness 

are covered in the present review. A good review of the application of the shallow 

watf'r equations to gravity currents call be found in Moodie (2002). There is much 

discussion in the existing lit.erature with reference to the use of suitable front conditions 

required by some methods. including that of the present study. Alternative reviews of 

this cont.entious topic ean be found, for example, in Marino et al. (2005). A review of 

fully depth-resolved models can be found in chapter 4. 

In hydraulics, terms accounting for bed roughness are included in the resistance coeffi­

cient. A detailed review of resistance in open channels, with substantial discussion of 

bed roughness. can be found ill Yen (2002). 

3.2.1 Governing equations and solution methods 

The principal governing equations for incompressible, lanlinar fluid flow are the ::'\avier­

Stokes <'quations: 

(3.1) 

(3.2) 

for i,j = 1.2.3. The assumption that the flow is incompressible is valid since the 

fluids involved are wat.er and saline, neither of which are highly compressible under t.he 

conditions in the present study. 

Depending 011 the problem to be solved, this set of equations can be reduced to involve 

only the terms necessary for a specific situation. They are commonly reduced to the Euler 

equations in two or three dimensions. Through the assumption of shallow water theory· 

most investigators reduce the equations further to give the shallow water equations in 

one or two layers (e.g. Hoult, 1972 or Rottman and Simpson, 1983, respectively, among 

many others). Although the hydrostatic assumption involved in the derivation of the 

equations is violated at the front and cannot hold until a short while after release when 

modelling lock exchanges. Shin et al. (2004) note that it allows analytical theory to be 

developed and it has been proven numerous times to be valid in most cases. They suggest 

that it appears t.hat various approximatioJls are not that important to the description 

of the bulk propagation of the current. if that is the requirement of the study. Cases 

"Essentially that II « L for" 1\ typical CUl"rl:'nt height and L a typical length scale (Acheson, 1990). 
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and methodology when non-hydrostatic forces caunot be circumvented are discussed in 

section 3.2.4. 

The shallow water equations can be solved using long-time similarity solutions when 

enough time has passed so that the effects of the initial release no longer govern the flow 

dynamics. Fannelop and Waldman (1972) and Hoult (1972) solved the depth-averaged 

version of the equations in one and two layers, respt-'dively. Their results have been 

discussed by Grundy and Rottman (1985) with attention to how rapidly the similarity 

solutions become relevant as a solution method after the initial phase of collap..'le. i.e. 

the value of the earliest 'long-time'. Gratton and Vigo (1994) also solve the one layer 

system. developing the work of Grundy and Rottman (1985) further and reassessing 

cert.ain wspeds of it. They find that there are four types of self-similar solution that 

depend on the crit.icality of the flow. 

Rottman and Simpson (198a) studied the initial phases of flow generated by the changing 

halance of forces for gravity currents created in a 10ck-excllCLuge t.ank with a 'fixl~d lid'. 

A fixed lid condition can be applied to the top boundary so that the combined height of 

the current fluid and the lighter fluid above it is constant. This essentially implies that 

the ambient fluid is deep in comparison to the current so that the effect of the current 

on the free surface will be neglisible and vice versa. This is a common assumption and 

has been used often in previous studies (e.g. Bonnecaze et al., 1993; Klemp et ai., 1994: 

Montgomery, 1999; Shin et ai., 2004). An alternat.ive method is to include the free 

surface in the governing equations with the introduction of a variable to describe it and 

the assumption that pressure is zero on this fluid interface (e.g D'Alessio et al .. 1996: 

Mont.gomery, 1999: Moodie et al., 1998; Moodie, 2002). 

Rottman and Simpson (1983) use the one-dimensional. two-layer shallow water equations 

and initial couditions associat.ed with all inst.antaneous release from a lock wit.h an initial 

dense fluid height (Ito) and length (xo) specified and the velocity set to zero throughout 

the domain. The boundary conditions imply that the current is symmetrical about the 

end wall and the velocity is zero at the walls. They usc the method of characteristics (sec 

for example, Ames (1965) or Abbott (1975), also described in section 3.5) with a front 

('ondit.ion modifiM from Denjamin (196R), t.o derive and solve an ordinary differential 

equation that relates the velocity of the current to its height. The validity of their 

results is limited to hoi H < 0.5, where H is the constant height of the ambient fluid. 

\Vithin this limit, however, the charaderistic results show good agreement with their 

experimental results. The initial method in the present study follows this theory and is 
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detailed more exp~U1sively in section 3.3. Klemp et al. (1994) furthered their work with 

an additional condition for the criticality of the flow for hoi H > 0.5. Shin et al. (2004) 

also derived an additional condit.ion and a slightly different front condition to acCOWlt 

for pa.rtial depth releases and those with hoi H > 0.5. 

D'Alessio et ai. (1996) include a free sW"face in their shallow water equations and derive 

them in two and three dimensions but reduce them to the one dimensional case for solv­

ing. They solve them in 'full' one dimensional form along with a non-dimensionalised, 

weak-st.rat.ification model (where P'l/ PI < < 1) using a finite differE'nce met.hod with the 

MacCormack scheme (LeVeque, 1997). This is an explicit, conservative, second-order 

accurate method involving a forward difference followed by a backward difference. Arti­

fidal vis(x~ity is iududl~d to dampen oscillations. They also solve their weak stratification 

Illodel using a silllilarity solution method, the method of characteristics and a Godunov 

method (LeVeque, 1997) to compare it against the full set of equations and show the 

spectrum of solution methods applicable for solving such a model. This method does 

not use a front. condition, instead the front is analogised with a discontinuit.y in the flow. 

Although the observed dynamics at the front show that this is clearly not the case (e.g. 

Simpson, 1972) and that without a front condition entrainment, turbulence and other 

non-shallow-water effects at the front cannot be accounted for, it is another means of 

capturing the front. Also, discontinuous solutions for conservation laws have been well 

studied and the method enables a completely theoretical model to be developed without 

the need for empirical results. The same authors also solved the shallow water equations 

in three layers using the finite difference method and the MacCorm8(~k seheme for the 

modelling of intrusive gravity currents (D' Alessio et al., 1997). 

Bonnecaze et al. (1993), among others, solve the shallow water equations in one and 

two layers with a similar one dimensional system to Rottman and Simpson (1983) but 

with alterations for a pa.rticle driven gravity current. They include another tc'quation 

for the volume fraction occupied by the particles which includes a settling velocity and 

modification t.o the rmllced gravity, makiul?; it. fL function of t.his fraction. This set of 

equations can be reduced to the homogeneous case when required by setting the volwne 

fraction appropriately. The oue layer case is studied since in nature it is usually a 

small denser current intruding into a relatively deep ambient fluid. Hence, the effect 

of the ambient fluid is considered negligible and is not included in the solution process. 

However, there is little data available for real life comparisons and when the size of the 

advancing current is more comparable to the height of the ambient fluid, as is the case 

in most experimental setups, the effects of the IUnbiellt. fluid cannot be neglected. Thus 
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the two la~'I:'r equations are necessary. Bonnecaze et al. (1993), Bonnecaze et al. (1996) 

and Bonnecaze and Lister (1999) use a front condition derived from the work of Huppert 

and Simpson (1980). hnsed on an. empirical Froude number, with a finite difference 

method. In their method, they nondimensionalise their governing equations and apply 

a tw~step Lax-\Vendroff scheme, second-order in time and space. Several investigators 

have indudC'd other additional terms for different channel geometric.'! or different current 

specifications. For example source terms to include a slope in the tank can be included 

accounting for the increase in friction that occurs in this case (Bonnecaze and Lister, 

1999; Moodie et al., 1998; Montgomery, 1999; Montgomery and Moodie, 1999). 

Similar to Bonnecaze et aI. (1993). Moodie et al. (1998) also include additional terms 

and an. additional equation for the motion of particles in the flow. However, the work 

conduded by BOllnecaze et al. (1993) on particle driven gravity current.s and subsequent 

work using similar methods (Bonnecaze and Lister, 1999, Engblom et al., 2(01) has been 

repudiated by Moodie et al., 1998. They find, through dimensional analysis, that due to 

non-hydrost.atic forces generated by the presence of terms describing the particles, the 

shallow water equations are not valid for the solution of the problem when the density 

difference between the fluids is solely generated by partides suspended within the current 

and not supported by an additional uniform difference in the interstitial fluid density as 

well. Further discussion follows in section 3.2.4. 

Mont.gomery (1999) showed that the shallow water equatioIls can be written as a system 

of hyperbolic conservat.ion laws including forcing or source t.erms when necessary. A 

numerical method of solution is guaranteed not to converge to non-solutions if it can 

be written in conservation form (LeVeque, 1997). A simple way of assuring this is to 

start with the partial differential equation (PDE) in conservative form and then use fi­

nite difference discretisatiollS as usual. If the scheme converges to a solution then it is a 

'weak solut.ion' of t.he conservation laws (LeVeque, 1997). Montgomery (1999) derives a 

two-dimensional system for two-layer, thin top or bottom layer, weakly-stratified fluidlS, 

fn'e surface and fixed lid C8.'lNl. The hyperbolicit.y of the system of equations is proven 

and jump conditions are created to couple the lower and. upper layer equations on either 

side of the discontinuity using methods for Rallkine-Hugoniot jump condition derivation 

(Montgomery and Moodie, 2(01). A second-order accurate and total variation dimin­

ishing (TVD) relaxation scheme for solving a system of hyperbolic cOllservation laws 

including forcing or source terms is derived by modifying a method. developed hy Jill and 

Xin (1995). A generalisation of this method can be found in Montgomery and Moodie 

(2003) where the scheme is proven for an initial value problem (IVP), using Burgers' 
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equation as an example, aud for an initial boundary value problem (IBVP) using the 

two-layer shallow water equations in one dimension with forcing terms for slope and 

frictional drag. Several other theoretical studies, using the shallow water equations for 

compositional and partkulate currents with and without source or forcing terms, have 

been carried out using this method (Moodie et al., 1998; Montgomery and Moodie 1998. 

1999; Moodie, 2002; Alltar and Moodie 2003, 2005). However, a rigorous comparison of 

most of this work with experimental or even other validated theoretica.l results has yet 

to be undertaken. 

A different theoretical model for fi.xed volume releases, is derived through the use of 'box 

models' where the current is considered to take the shape of a series of non-entraining 

rectangles or 'boxes' with constant cross-sectional area (Huppert and Simpson, 1980; 

Hallworth et aI .• 1996; Hogg et al., 2000). The shallow water equations are not used 

explicitly but shallow water theory is applied. This method is lL'3eful for simpler analyses 

of the currents and is usually used in conjunction with experimental studies where a 

more detailed profile of the current is not necessary for comparison. It does not require 

a numerical method of solution. 

3.2.2 The front condition 

The theoretical determination of the speed of the gravity current has been attempted 

in Illany ways and is often the focus of a theoretical or experiment.al study. A simple 

approximation of the horizontal velocity. u. can be made from the basic balance of ellergy 

of a dam break (Simpson, 1997). In this situation, the gravitational potential energy 

lost must ('qual the kinetic energy gain thus implying: 

i.e. 

mu2 h 
-- =1ng-

2 2 

U= J9h 

(3.3) 

(3.4) 

where TTl is the lU8S.'1, h/2 the lUean height of the centre of gravity and 9 the magnitude 

of the gravitational a.c('el(~ration. Clearly, this can be extended to the flo\1\' of two fluids 

with a density difference between them. This difference, no matter how small, will 

reduce the driving force on the fluid to below normal by tl.p/p where ~p is the densit.y 

differmce. Since the gravitational presence is one of the main driving forces, t.his will 

modify equation (3.4) as follows: 

u = J!jih (3.5) 
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where 9' = g~p/ p. There appears to be some discrepancy in the exact form of this 

density difference. If PI is the density of the current and P2 the density of the ambient 

fluid. some l\udlOrs use a reduced gravity given by 

(3.6) 

(Von Karman, 1940; Benjamin, 1968; Simpson and Britter, 1979; Bounecaze et al., 1993; 

Klemp et al.. 1994: Peters, 1999). While others use one of the form 

(3.7) 

(D'Alessio et al .• 1996: Moodie et al., 1998; Montgomery, 1999; Shin et al., 2004; Marino 

et ai., 2005). However, for small densities, this difference is marginal. Moodie and 

Pascal (2001) point out that equation (3.7) is particularly useful for the special case of 

all air/water interface where P2 -+ 0, as in dam break probleJns. 

Von Karman (1940), through the assumption of conservation of energy and the applica­

tion of Bernoulli's equation to steady, irrotational flow, determined an equation for the 

velocity of the progression of the front of t.he form: 

(3.8) 

Benjamin (1968) defined a dimensionless constant for the flow of an air-filled cavity into 

a liquid, in terms of the depth of the cavity as follows: 

u 
D. = v'g'h = [

(H - h)(2H - h)] 
H(H + II) (3.9) 

where H is the total dept.h of the cavity and liquid. For application t.o gravity cur­

rents. Benjamin (1968) found D. = J2. Thus, although rejecting the theory behind 

the calculation of Von Karman (1940), the same conclusion for u (equation (3.8)) has 

been reached. Equation (3.9) has been proven by Klemp et al. (1994) to be a reliable 

description of the front propagation for an inviscid problem. They fOlmd, however. that 

it lacks the capacity of a full set of equatiolls to account for surface drag and mixing 011 

the interface and hence overestimates the speed when compared to laboratory data. 

Rottmlul !l.nd Simpson (1983) among others use the front condition of Benjanlill (1968) 

which is derived later in this chapter. Other theoretical and experimental front conditions 

have been derived and imposed. For example, Huppert and Simpson (1980) postulated 

the expression 

{ 
1.19y'!1hj for h/ II < 0.075 

tt= 1 

(11) - 3 J9'7i for hi II < 0.075 
(3.10) 
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based on experimental results, while Shin et al. (2004) derived the expression 

(3.11) 

using a similar method to Benjamin (1968) but taking into account a control volume 

including both sides of the current interface, the theoretical solution h = ho/2 and 

the Boussinesq assumption. Tius condition has the advantage that it contains no free 

parameters. 

3.2.3 Rough boundary terms 

Although there is little other existing literat.ure specifically on the application and ef­

f~cts of bed ronghness on gravity currents, these effects a.re considered frequently in 

hydraulic engineerng studies of open channel aJld pipe flow (e.g. Chow, 1959, Liggett, 

1975, Streeter and Wylie. 1983, French, 1994). In particular, the use of the Chez), or 

Manning equations, developed in 1769 and 1889, respectively, for computation of the 

average velocity of the flow, includes a resistance coefficient that can be specified to 

describe the type of roughness present. These equations were first derived for uniform. 

steady flow but they have become widely used in non-uniform and unsteady flow (French, 

1994). Using open channel flow theory the velocity of a uniform flow can be computed 

approximately using a semi-empirical uniform flow equation of the form 

(3.12) 

where u = average velocity, Hrad = hydraulic radius of the clumnel, So = channel 

longitudinal slope, which can be considered as the friction slope, Sf, C = resistance 

co~fficiC'nt and A and B = co~fficicnt.s. 

The Chezy form of equation (3.12) has been found to have parameters A = B = ! 
and CH = Chezy C to be determined. by measurement or estimate. In the Manning 

equation, A = j, B = ~ and CH = n~J where nM = J.lanning re.~istance coef fident 

and the equation is entirely empirical. Note that the coefficients nhf and CH are related 

by the equation 

C - 1 Hi H-- orad 
nAt 

(3.13) 

Also, these coefficients are not dimensionless. The Chezy CH has dimensions of accel­

eration, i.e. rn/s2 and the Manning n (TIA-r) has dimensions s/m1/ 3. Clearly, equation 
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(3.12). in both of the forms defined above, can be rearranged to determine the friction 

slope when the other parameters are known or estimated. Hence enabling one method 

of developing a simple means of including a form of rouglUless on the bed. 

The estimation of the coefficients is the primary difficulty in the prediction of resistance 

(Yen, 2(02). Theoretkally, oue would expect that coefficients of resistance would de­

pend on the Reynolds number of the flow, the boundary roughne.ss and the shape of the 

channel. More details of the definition of the resistance coefficient can be found in Rouse 

(1965). One of the first pioneers of the effeds of wall roughness on the flow was Niku­

radse (1933), who investigated the flow through sand-roughened pipes. Further effects 

on pipes were explored by Moody (1944) among others. In pipe flow, the dimensionless 

Darcy-Wei<;bach friction factor (see Streeter and Wylie, 1983 pp. 227-229), fo. is used 

to determine the resist.ance. This is obtained by using the Darcy-Weisbach equation for 

pipes: 

L u2 

h,=fo-­
Din 2g 

(3.14) 

where Din =inside diameter of the pipe, L=length of the channel under consideration 

and u=the average velocity of the flow. This can be written as 

'il = f89 VHradS VTo (3.15) 

for flow in open channels (Streeter and Wylie, 1983). On comparison with the Chezy 

form of equation (3.12), we obtain 

(3.16) 

where the friction factor. fo, is determined through the same method as for flow ill 

pipes. i.e. llsing diagrams ('OlTdatillg rt'h~v/'\llt. flow wll.'iables (e.g. Nikuradse. 1933. 

Moody. 1944. Streeter and Wylie, 1983). For idealised straight rough channel .. at high 

Re numbers fo is mainly a function of bed roughness. For smooth channels it is a function 

of Re (Rouse, 1965; Yen, 2(02). 

There is no general equation to determine the value of the resistance coefficient for any 

given flow characteristics. Discussion of the use of the Chezy, Manning and Darcy­

Weisbach expressions can be found in Moody (1944) and Yen (2002), for example. Yen 

(2002) sugg('8ts that there is no real advantage in using one of them over another. The 

advantage of fo is that it is directly related to the development of fluid dynamics. Chezy 
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ell is the simplest and has the longest historical usage and the Manning n has the 

advantage that it is almost constant, almost independent of flow depth, Re or roughness 

height for fully developed turbulent flow over a rigid rough surface. 

In defining /0, the equivalent roughness height, kill conceived by Nikuradse (1933) is 

frequently used since it can be calculated from the velocity profile of the flow I independent 

of any contextual variations. ks has been discussed previously in section 1.3.3. In the 

context of bedforms the definition of ks is slightly more complex. Yen (2002) suggests 

that large bedforms behave similar to large roughness elements and can be described 

as a 'macroroughness'. If these are considered as large-scale densely distributed fixed 

elements, then technically they can be characterised by ks, however, it is unlikely that 

this sillgk value will he ahle to al~cun\,tcly represcnt the cffects of size, shape and spatial 

distribution. Adderl to this is tIl(' possibility of flow separation. 

One solution is to perform a 'linear separation' (Yen, 2002) where the resistance coef­

fkkllt is split. int.o ·grH.iu' rouglllwss lUul bedform or 'form' roughness. This concept is 

presented and methodology is discussed by Van llijn (1984). k.~ is split into the comper 

nents k~,grain and ks,form, defined respectively by the following: 

ks,grain = 3D90 (3.17) 

and 

(3.18) 

where Doo is the grain particle diameter, A = bedform height, q, = ~ and ;\ is the 

bedform length. The final ks value is then simply the sum of these two grain and form 

components, i.e. ks = ks,grain + ks,form. This can be substituted into the relevant 

equation t.o calculate the resistance coefficient. 

For density currents, Middleton (1966b) adapts expression (3.16) to give 

(3.19) 

where g' is now the reduced gTavity as defined previously and I is made up of the resis­

tance from the bottom and sides of the channel (10) and from the fluid iuterface (lint) 

and is given by: 
w 

I = 10 + W + 2ft lint (3.20) 
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where lV is the width of the channel. 10 is determined as above by analogising the 

current to a river flowing over a chosen type of roughness element. lint is more difficult 

to predict since it depends on the physical state of the interface (French, 1994 p. 544; 

Middleton, 1966b). Middleton (l966b) only predicts it in a 'semi-quantitative' manner 

and suggests. from his experimental evidence, that it decreases with decreasing Fr and 

increasing Re. 

Peters (1999) generated a spread rate model using similar a methodology to Didden and 

Maxworthy (1982): 

( 

" 3 ! X=k YsQ) t! 
l/e!1 

(3.21) 

where k is a constant of proportionality, Q = U H, the product of the mean velocity and 

height scale for the layer. Further, g: is a rough-surface-reduced gravity term for the 

bottom layer that accounts for the decrease ill mean layer density due to the mixing of 

the current with the ambient fluid trapped in the spaces between the elements, defined by 

g" = 0: g' s b s (3.22) 

where g~ is the gravity, reduced by t.he difference between the densities of the fluid in the 

current and the spaces between the beams and O:b is a buoyancy flux reduction factor 

that accounts for the decrease in mean layer density due to the mixing of these two 

fluids, given by 
2 

O:b = --..,.--.... 
2+(~) 

(3.23) 

where hn is the height of the rib. The term l/ef! is an effective viscosity that allows for 

the effect of roughness, defined by 

G" 
l/e!f =-Q 4 

(3.24) 

whert~ t.1w frkt.ioll ('oeftidt'llt. e" is ciefiut'<i using an Plllpirkal exprt'ssioll that. relat(~ it 

t.o the roughncss scale for flows over a fully rough plat.e (Mills and Huang, 1983): 

( L) -257 
e" = 2.635 + O.6181n ks (3.25) 

Here L is a length scale and kB is the equivalent grain roughness of sand, correlated to 

transverse ribs with the formula 

(3.26) 
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for roughness arrays with sid = 2 where s is the 'pitch', the sum of the rib width and 

the space between the ribs, and d is the rib width. 

In analytical studies, the shallow water equations have been solved for gravity currents 

with frictional drag terms but not specifically for flow over a homogeneous bed roughness 

(e.g. Hatdler et al., 2000; Hogg and Woods, 2001). A significant amount of work has 

also been undertaken in theoretically modelling one- to multi-layer flows over obstacles 

using shallow water theory. In these investigations, in contrast to the above models, the 

bed topography is described more explicitly using a variable that accounts for the height 

of the bed. The inclusion of such an influence is relatively simple, however, the solutions 

become more complicated and the possible violation of the hydrostatic assumption must 

be addressed, see section 3.2.4. For steady one- and multi-layer flows, detailli t',an he 

found in, for example, Baines (1984), Lawrence (1993) and Zhu and Lawrence (1998). 

Additionally, Baines and Guest (1988) consider blocking effects on similar flows. For 

gravity currents there is the added complexity of modelling transience and the frontal 

phenomena. Examples can be found in Lane-Serff et al. (1995) for flow over obstacles 

and Montgomery and Moodie (2003) for flow over a sinusoidal bed, although the latter 

is not validated. 

3.2.4 The hydrostatic assumption 

As mentioned previously in this review, and discussed in more detail in subsequent 

sections, the one or two layer shallow water equations are used to describe gravity cur­

rents theoretically. Shallow water theory implies that vertical length scales are small in 

comparison to horizontal length scales and therefore vertical accelerations are small in 

comparison to horizontal ones. Thus, we can assume that the pressure at any point is 

effectively equal to t.he static' pressure dne to its depth below the free surface. Along 

with the dynamic boundary condition of a continuous pressure field across the interface 

the pressure fields in each layer are derived and these imply that the horizontal pressure 

gradients driving the flow are independent of depth and thus so are the horizontal ve­

locities. Hence the flow is desclibed as hydrostatic. This assumption cannot hold at the 

front of the current and hence front conditions are rt'quired to complement the theory. 

It is particularly relevant to consider this assumption in light of the present topic since 

topography could introduce effects that would make predictions based 011 shallow-water 

theory in error (Moodie, 2(02). It has been indicated in single and multi-layer ftcn\·s 

that if the topography ill quest.ion is sufficiently long and smooth so that horizontal 
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scales are much larger than vertical scales, the flow can still be assumed hydrostatic 

(Baines, 1984). However, if the bed topography causes significant excitation of verti­

cal components so that the streamline ('urvature deflects by a magnitude of order one, 

the hydrostatic assumption is no longer valid (Zhu and Lawrence, 1998). This ca.n be 

interpreted, with reference to gravity currents, to hold when a CllTent encounters a to­

pography with magnitude of order one (O(l»t (Moodie, 2002) or a slope much grea.ter 

than 1/10 (Montgomery, 1999). 

Moodie et aI. (1998), Moodie (2000) and Moodie (2002) also discuss the implications 

of including particles in the equations on the hydrostatic assumption. They suggest 

that particulate forms of the shallow water equations are valid for the case when the 

interstitial fluid is ('qual or less dcnsc t.han t.he a.mhient, only if the particle equation 

is 'decoupled' from the main governing equations. The justification for this is that. if 

the particles and their settling velocities are driving the flow then vertkal structures in 

the horizontal velocity field are unavoidable and this can be proven by scaling analysis. 

However, it must be noted that the results of Bonnecaze et al. (1993) and Bonnecaze 

and Lister (1999) show good agreement with experimental data, despite violating this 

rule. 

A non-hydrostatic 'correction' has been developed (Antar and Moodie, 2003; Autar and 

Moodie, 2005). However the added complexity means that the equations including this 

addition were not solved without other assumptions, limiting the applicability of the 

model. The results do not appear to have been validated with experimental data and 

the correction does not appear to have been adopted in subsequent studies. 

3.2.5 Summary 

The shallow water equations have clearly been successfully used to model gravity cur­

rents. There are several methods of solution available and the choice of method partly 

depends on whether a front condition is to be applied or avoided. The study into appro­

priate front conditions has been extensive and is still an active research topic. The ideal 

model would be two-layer with a free surface and not subject to hydrostatic COI1'>traints 

requiring a front condition. However, this is not realistic in a depth-averaged model. 

particularly when this is not the sole purpose of the study, rather the purpose is to get 

a good depth averaged prediction for the current height, frout speed and location at a 

tWhere the magnitude of the topography is calculated from the ratio of the Illaximum height of the 
bed to the upst.ream ambient fluid depth. 
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time. Since the present investigation seeks to model the resultant effects of bed roughness 

through the resistance coefficient method, rather than modelling the bed topography as 

an explicit variable, the hydrostatic assumption should not be in significant danger of 

violation. However, the characterisation of the roughness coefficient is also subject to 

significant ongoing research and is not easily defined. In t.he present study, the method 

of characteristics was used to solve the 2-layer shallow water equations, after Rottman 

and Simpson (1983) with the front condition of Benjamin (1968). The bed roughness 

was characterised using a roughness coefficient with arbitrarily chosen values in order to 

test the method. 

3.3 Smooth boundary theory 

In order to understand and interpret any work including boundary roughness it is nec­

essary to generate a smooth boundary control model. The N avier-Stokes equations 

accurately describe fluid flow. Hence, with some assumptions and the application of 

known theory, the shallow water equations for flow in two layers can be derived as a 

model with the attributes required for a specific problem. This section covers the neces­

sary assumptions and theory and leads to the derivation of the equations relating to the 

smooth bed case. 

3.3.1 Shallow water theory and assumptions 

For the mathematical formulation, the model is simplified by considering a two-dimensional 

gravity current propagating along a rigid horizontal surface assuming no mixing occurs 

and that the flow is iuviscid. Inviscid fluid theory completely neglect:; the cffed uf fric­

tion generated by the surface over which the front is advancing. In this way, the lobe and 

cleft instability, as mentioned in section 1.3.1, will be absent but the formation of billows 

will still occur. Thus neglecting more complicated three-dimensional mechanisms, but 

retaining the bask two-dimensional profile of the gravity current. Clearly, in modelling 

real fluids, frictional forces will always be present and have to be accounted for but useful 

approximations to various aspects of a gravity current, for example the front speed, may 

be determined from applying inviscid theory. 

The assumption of no mixing, imposed on the fluids, implies that the interface between 

them can be allalogised with a free surface. Thus the fluid particles on the interface 

must remain 011 the interface. Using Acheson (2003) the kinematic condition at a free 
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surface is derived to describe this phenomenon: 

Let F(.c. y, t) = y - h(x, t) where y is the vertical height of a fluid element from the 

bottom boundary and h(x, t) is the height of the free surface. Postulate that F(x, y, t) 

remains constant for any particular element on the free surface. Thus, it follows that 

~ = c;: + (y . V)F = 0 on y = h(x. t) (3.27) 

Substituting F(x, y. t) into equation (3.27) gives 

of oh 
tL- = -tL-ax ax' 

of 
V-=V 

Oy 
(3.28) 

Hence equation (3.27) is equivalent to the condition 

oh {)h 
at + U ox = v on y = h(x, t) (3.29) 

After the dense fluid is released from the lock box, the height of this denser fluid decreases 

substantially and the length the fluid covers horizontally increases with time. Thus, the 

characteristic horizontal length scale of the flow, L, is much larger in magnitude than 

the vertical scale, h. i.e. h « L, and the flow can be defined as 'shallow'. 

Shallow water theory assumes that: The fluid is well mixed vertically with a hydrostatic 

pressure gradient; the density of the flow is constant and therefore the problem is con­

sidered incompressible; viscosity is negligible; and the depth of the fluid is very small in 

comparison t.o the characteristic length of the body of water (Acheson, 1990). 

3.3.2 The governing equations 

The equations necessary for the solution of this problem, with mixing between the dense 

and a.mbient fluids at the interface neglected, are derived from the Navier-Stokes equa­

tions for incompressible, laminar fluid How. In a general three-dimensional tensor form 

these are given by: 

for i,j = 1,2,3. 

~Ui = 0 
{)Xj 

(3.30) 

(3.31 ) 
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For two-dimensional, inviscid flow, equations (3.30) and (3.31) reduce to the Euler equa-

tions: 

(3.32) 

(3.33) 

for i,j = 1,2 and where Fi = (0, -g) is the buoyancy force. 

In component form, equations (3.32) aud (3.33) can be re-written as: 

ou au {Ju 1 {)p 
-+u--v-=---
8t ax ay pox (3.34) 

&v av &v 1 op 
-+u- - v- = --- - g 
8t ox Oy POy' 

(3.35) 

(3.36) 

Now, rearranging the continuity equation (3.36) and integrating with respect to y gives: 

{)u 
t' = -y- + f(x, t} ax (3.37) 

Since there is no velocity in the vertical direction on the bottom horizontal boundary, 

the condition v = 0 at y = 0 call be imposed implying that f(x, t} = O. Thus 

au 
v=-y­ax (3.38) 

At Y = h(x, t) the kinematic boundary condition applies. Hence, on equating (3.38) with 

(3.29) at y = h(x, t) one obtains: 

ah oh ou 
- +'IL-+h- =0 at ax ox (3.39) 

For conservation of mass, equation (3.39) must hold in both of the layers. 

The interface between the two fluids can be analogised to a free surface varying gradu­

ally with small curvature so that, by the assumption of shallow water, compared with 

gravitational acceleration, g, the acceleration in the vertical direction can be ignored. 

This hypoth~iH is verified ut the end of this section through a non-dimensional analysis 

of the equations. 
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By neglecting the acceleration ill the vertical direction, equation (3.35) becomes 

Hlp 
O=----g 

p{)y 
(3.40) 

Thus the vertical pressure distribution is rendered essentially hydrostatie. On integra,­

tion with respect to y, this yields: 

p = -pgy + f*(x, t) (3.41) 

If the pressure is given by p = Po(x, t) on the interface of the two fluids at y = hI (x, t), 

then 

p = pg(h1 - Y) + Po (3.42) 

an hydrostatic relation between the pressure in the layer and its thickness. Thus, in the 

upper layer, where y > hi and the density of the fluid is P2, equation (3.42) becomes: 

(3.43) 

and likewise for Y < hi and density PI, in the bottom layer, 

(3.44) 

Equation (3.34) can now be written in the form: 

Du 1 {)Po {)h} 
-=----g-
Dt p ax ox 

(3.45) 

From equation (3.45), it call be seen that the rate of chaJlge of u for any element in the 

fluid is independent of y. Thus, if u is initially independent of y then it will remain so, 

implying that u and h are dependent on x and t only. 

Hence equation (3.34) can be written: 

Thus the set of equations (3.34)-(3.36), for the two layers, becomes: 

Out Oul 1 apo ahl 
-+Ul-=----g-
&t {)x PI o:r . ox 

(3.46) 

(3.47) 

(3.48) 
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ohl ohl h 01/.1 
-+U1-+ 1-=0 at OX OX 

(3.49) 

(3.50) 

where the subscripts 1 and 2 indicate the bottom and top layers, respectively. Equations 

(3.47)-(3.50) are the 'Shallow Water' equations for one-dimensional flow in two layers. 

For this problem, equations (3.47)-(3.50) are subject to the following initial conditions: 

and the boundary conditions: 

(0 S x S XO) 

(XO < x) 

Ul(X = O,t) = 0 

Ohli - 0 ox x=O -

at t = 0 
(3.51 ) 

(3.52) 

(3.53) 

Verification of the neglect of vertical acceleration through a non-dimensional 

analysis 

Let L be a characteristic length scale and ho a typical value for hI (x, t). Considering 

the second and fourth terms of equation (3.46). the non-dimensional value for u call be 

derived as U ,..., (g14:J) 1/2 . On comparison with the first term of the same equation. a 

typical time scale, t '" L/(g14:J) 1/2 , is obtained. Applying these known non-dimensional 

variables to the contiuuity equation (3.36), gives a non-dimensioual value for v, namely 

(g14:J)l/2ho/L. For shallow water theory to be applicable, ho «L and hence v «u, 

thus v is negligible in comparison to u. If the non-dimensionalised terms are then applied 

to equation (3.35), it can be seen that all terms 011 the right hand side of this equation. 

those of the vertical acceleration, are of order gha/ L2 and are therefore very small ill 

comparison with the gravitational acceleration, g, on the left hand side. Hence, the 

vertkal arecleration of t.he clements in the fluid is neglcded. 

3.3.3 Simplification of the governing equations using the Boussinesq 
approximation 

Let H he tIll' total height of the amhient fluid where 
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(3.54) 

and H is constant due to the assumption of a fixed lid, see section 3.2.1. Equating 

equations (3,49) and (3.50) and using the commutative nature of derivatives. we obtain: 

(3.55) 

Since If is constant, integrating with respect to x and imposing the condition that both 

velocities vanish at x = O. implies the condition: 

(3.56) 

The pressure at the interface, Po(x, t), is eliminated by llluitiplying equations (3.47) and 

(3.48) by PI and />2, respectively. and subtracting the equation resulting from the first 

multiplication from that resulting from the second to obtain: 

Equations (3.54) and (3.56) can be rearranged to yield h2 and tt2 in terms of If, hJ and 

ttl, Thus equation (3.57) becomes: 

aUl [ (H+h l )] 8tt1 [, 3
Tttf]ahl (l+ra)-+ l-ra UI-- 9 -(I+a) - -=0 

Ot H - hi ax H ax (3.58) 

with the introduction of non-dimensional parameters a = htl(H - ht} and r = {>2/ PI. 

where g' = (IPI - />21)/PI is the reduced gravity. 

Assuming that the relative density variations are not too large, i.e. t1p/p« 1. the 

Boussinesq approximation can be invoked, which in simple terms means that density 

variations are retained in the gravitational forces but neglected in the advection terms. 

For this reason, r is set as 1 except where it multiplies g. On division by (l+a). equation 

(3.58) cau be written: 

- + (1 - 2a)Ul- + 9 1 - - + 1 - - - - = 0 lJu} Oul, { [hI ( hi) -2 uf 1 } ahl 

at ax H Ii 9' If ax (3.59) 

Thus two simultaneous equations for the dependent variables hi and Ul have been de­

rived: 

aUI aUI oh 
ll4 + (1 - 2a)ul-a + 9'(1 - b)--2. = 0 
Vt X ax (3.60) 
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ah! ah! h aUj 0 -+u}-+ }-= at ax ax (3.61) 

where 

(3.62) 

The equatioll.."! must be solved subject to the initial and boundary conditions (3.51) -

(3.53) given at the end of section 3.3.2. 

3.3.4 The front condition: smooth boundary 

The height and velocity at the front of the gravity current cannot be determined by the 

governing equations. At the front, the vertical acceleration and viscous dissipation will 

be important since it is here that the heavier fluid is forcing its way into the lighter 

fluid. Thmi the shallow water tlquatiolls, as deriwd in section 3.3.2 using the hydrostatic 

assumption and neglecting vertical acceleration and visco1L'; effeds, are invalid. 

To overcome this problem, an independently derived front condition is imposed. Vari-

011S front conditions have been derived and implemented, as disclL'lSed. in section 3.2.2. 

Some are constructed t.heoretically while others rely on empirical values. In t.he present 

work, the front condition is derived through the theory of flow force balance as used 

by Benjamin (1968), thus c.ontinuing the methodology of Rottman and Simpson (1983). 

Benjamin (1968) noticed that after the initial slump, the flow propagates along the hori­

zontal boundary in a similar way to an air-filled cavity advancing into a liquid. Without 

loss of generality through this analogy, the flow force balance can be determined: 

Consider figure 3.1. If the cavity is considered stationary to the oncoming liquid, at 0 

a stagnat.ion point occurs where the flow encounters it. Upstream, where the liquid fill"! 

the height of the channel and is unaware of th(~ displacement, it has depth H and the 

velocity is constant Ul. Far downstream, under the free surface created by the cavity, 

the flow is also constant with height h2 and velocit.y u~. If the density of the liquid is p 

and that of the cavity is negligible, ignoring viscosity and surface tension as for shallow 

water theory and assuming conservation of energy, Bernoulli's equation for a steady flow 

call be applied: 
1 2 

P + '2 py:. + pgy = constant on a streamline (3.63) 

where p is the pressure and l! is the fluid veloeity. Applying the theorelll aloug the 

upper boundary, with the velocity EUld pressure zero at 0, the pressure far upstrerun can 
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Figurc :.U: Modcl propoSlod hy Benjamin (1968) for steady flow past a cavity aualogised to the 

gravit,y current phenomenon. 0 is the stagnation point. 

be determined as Po = -!Pl!2. The pressure in the liquid below this boundary has a 

hydrostatic variation with depth and so the total pressure clm be written 

1 
P=PO + -pgH 

2 

Hence, the total pressure force across the channel far upstream can be written 

(3.64) 

(3.65) 

The total flow force is given by the momentum flux plus the pressure force. ThlL'i. the 

fluw furc(~ in the up!;trealll region is given by equation (3.65) + Im~H, i.e. 

(3.66) 

The same theory must al.so hold far dowIlstream but with zero pressure on the upper 

surface. Thus the flow force in this region is given by 

(3.67) 

Now, these two forces must equate since the flow force does not vary in a steady flow 

when there are no external horizontal forces present. Thus, setting equation (3.66) equal 

to equation (3.67), we obtain 

1 2 fJ 1 2 1 2 
-uIH - UI h2 = -gh2 - -gH 
222 

(3.68) 

By cOllservatioll of mass: uIH = U~h2' Therefore, from equation (3.68), it follows that 

2 h~ - H2 
Ul = gh2 H(h2 _ 2H) (3.69) 

This can easily be written in terms of the height of the cavity, using h2 = H - hI. namely 
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UI = (3.70) 

This result is generated for a smooth free surface due to the nature of the cavity being 

filled \\;th air. In the adual problem, for two liquids, the free surface is broken up at 

th{' front and turbulence is generated and hence viscous dissipation occurs as mentioned 

above. To account for this event, Ul is modified by a factor k', say, where III = ~ and 

t1 is all empirical constant. 

Applying this modification to equation (3.70), at the front of the gravity current in this 

investigation. gives the front condition 

(3.71) 

where hf(t) is the front depth, uf(t) is the front speed and the reduced gravity term 

9' is introduced due to the density difference between the two liquids. Note that when 

{32 = 2, the result for a cavity flow is obtained. 

3.4 Rough boundary theory 

In deriving the shallow water equations for smooth boundaries, assumptions were made 

that neglected any effect that. the frictional forces might have on the problem. It is now 

necessary to reintroduce the appropriate factors for the model incorporating the surface 

roughness. The frictional resistance manifests itself in the form of shear along the walls 

of the channel and, as required in this study, the bottom. This section discusses the 

inclusion of a bed roughness by implementing a Chezy type equation. 

3.4.1 Chezy type equations 

Chezy's equation for the average velocity of a uniform flow can be written as 

(3.72) 

where H rad is the hydraulic radius, So is the channel longitudinal slope, to be taken as 

the frictional slope Sf· CH is the resistance coefficient given by the Chezy constant, 

CH = JFi. where f is a friction factor to be specified, with reference to pipe flow 

theory, depending on the roughness of the bed (French, 1994). 
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3.4.2 Chezy's equation applied to the shallow water equations 

The inclusion of t.erm.', for the shear in shallow water theory results in the equation of 

general form 

au au l8po ah -+u- = --- -g- -gS, at Ox p Ox ax 
(3.73) 

where Sf is the frictional slope. Application of the Chezy equation (3.72) with So = S, 

implies that the frictional slope can be written as 

(3.74) 

where 
_ 1 f 
K,= - =-C1 89 

(3.75) 

The error in assuming that the hydraulic radius Brad C8Jl be taken as the depth h is 

small (Liggett, 1975) therefore we obtain the following expression 

(3.76) 

Substituting equation (3.76) into equation (3.73), the general form for the conservation 

of moment 11m in a hydrostatic pressure field becomes 

au au lava ah _u2 

- +u- = --- -9- -9"'­at ax pax ax h 
(3.77) 

III order to extend this theory to two layers, the physics of the situation must be consid­

ered. Clearly, the gravity cunent of the denser fluid will be affected by the introduction 

of bed roughness, thus the shear term must figure in the equation for this layer. How­

ever, as the less dense fluid over-rides the denser current, it will also be affected. Since 

the interface is t.he region where the effects will be transmitted from the one fluid to 

the other. similar shear t.erms, in eadl of the fluids, are included to account for t.his. 

However, when the fluids are travelling at the same speed, the shear interaction at t.he 

int.erface must vanish so that the terms applied here must be modified to be of the form 

(3.78) 

where PI is the densit.y of the denser fluid and Ul 8JId U2 arc t.he speeds of the differ('nt 

fluids. Applied to each layer at the interface, the t.erms must be equal 8Jld opposite. On 

the bot.tom boundary, if the fluid is moving in the positive direct.ioll, then the shear will 
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Figure 3.2: Sketch of the resistant forces of Che'.lY type actillg 011 two liquids of differellt deusities 

where PI > P'l and ttl> U2· 

be in the negative direction, counteracting the motion near the wall. If the denser fluid 

is travelling faster than the less dense fluid above it then, in the reference frame of the 

less dense fluid, i.e. bringing the less dense fluid motion to rest, the flow will still be 

moving in the positive direction. Thus, the shear on the more dense fluid side of the 

interface will operate in the negative direction. Therefore, the shear in the less dense 

fluid side of the interface will b(' equal but in the opposite direction, i.e. positive. A 

sketch to this effect is shown in figure 3.2, where and cr, .., and (7 are the values of K for 

the bottom boundary, the fluid interface and the top boundary, respectively. 

Note that if tht> velocity of the It>ss dense fluid is faster than that of the more dense fluid, 

i.e. if U2 > u), then the shear terms at the interface will be in the opposite directions to 

those shown, in each layer. If the channel is open there will be no effects felt on the free 

surface of the less dense fluid. However, if the channel is enclosed, as for example, flow 

in a recta.ngular pipe. then the roughness can also be applied a.t the top boundary with 

effect on the less dense fluid. Also, if U2 is flowing towards the left i.e. in the negative 

direction, as we are modelling in the present problem, then the rough term on the top 

boundary must be in the opposing direction to the flow and so will he positive. The 

terms for the top boundary will be included here but can be neglected if required. 

Incorporating these terms into equations (3.47) and (3.48), the equations governing the 

fluids ill the two layers can be written 

(3.79) 

(3.80) 

8h} 8h1 au} 
- +ul-+h1 - =0 at ox 03.: 

(3.81) 
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(3.82) 

where the coru;tants C1 , C2 and C3 take values of either unity or zero. When Cb C2 and 

Ca are zero. these equations revert to the smooth boundary form, and when they are aU 

unity roughness will be applied at. t.he bed, the interface bet.ween the dense and ambient 

fluid and the top wall, 8.') shown in figurc 3.2. In thc solutioll of equations (3.79}-(3.82). 

the majority of the terms will simplify in the same way as for the smooth boundary the­

ory. Beginning with the subtraction of equation (3.80) from equation (3.79), to obtain 

UsiuJ!; tIll' CIH~zy form for t.he rouglllwSH (·()('Hid(~nt.s, equat.ion (3.75), we have, 

It a= -, 
8g 

h 
')'= -

8g 
and fa 

~=-
8g 

(3.83) 

(3.84) 

where, It, hand h are friction factors specified using generally excepted values from 

pipe How H.ualysis. Applying the same transfoml!; for h2 and U2 as used in the smooth 

bed theory: 

(3.85) 

we obtain 

Qui [ (H + h})] QuI [, 3rU~] Ohl (l+ra)-,-+ l-ra Ul-- 9 -(l+a) - -
at H - hI OX H OX 

(3.86) 

where T = (>2/ PI and a = hd(H - hd. Applying the Boussinesq approximation (Le. 

T = 1 where it does not directly multiply g), and dividing by (1 + a) gives the following 

result 

- + (1 - 2a)ul- + 9 1 - - + 1 - - - -Qui Ou}, { [hi ( hi) -2 u~ l} ohl 

{)t ox H H g'H ox (3.87) 
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Hence, the two equations for t.he calculation of hi and UI for flow over a. rough snrfa.cc 

arc as follows 

01'1 tn£), )8h1 u~ [, 3 )3]) fJt + (1 - 2a)Ul ax + 9 (1 - b ox = - 8Ha C8ha' + Cdl + C2h(1 + a' (3.88 

oh) oh} h ou} 0 -+Ul-+ )-= 
at ax ox (3.89) 

where 

b = !!:!. + u~ (1 _ hl)-2 
H g'H H 

(3.90) 

Equat.ions (3.88) and (3.89) must be solved subject to the sanle initial and boundary 

conditions (3.51) - (3.53) as for the smooth boundary theory given in section 3.3.2. 

3.4.3 The front Condition: rough boundary 

Since similar theory and assumptions have been applied in the rough boundary case as 

for the smooth boundary, a front condition will also be required in this case. An identical 

condition will not necessarily apply since the f~ term does not take into account the effect 

of any rough elements on the front.. However, it is dependent on hJ which is calculated 

from values within the main body of the flow which will be subject to the effects of the 

rough terms and t.hus in the present study, the problem will be solved implementing t.he 

'smooth' front condition, expression (3.71). 

Shin et aI. (2004) derived a front condition using a similar method to Benjamin (1968) 

but taking into account a control volume including both sides of the current interface. 

the theoretical solution h = ho/2 and the Boussinesq assumption. This condition is given 

by 

(3.91) 

Unlike condition (3.71), it contains no free parameters and is found explicitly using 

values calculated during the solution procedure. Thus the effects of the rough terms on 

the front should be transmitted through these values without the u('Cd for specifieatiull 

of {3. It is possible that the theory of Shin et al. (2004) could be used to derive a rough 

front condition wit.h no free parameters and this remains for future study. 
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3.5 Method of characteristics: smooth case 

The flow in this problem is transient so the motion will move in phases dependent on 

the balance of the forces in the flow at that time, as discussed in section 1.3.1. In each 

phase differ£'nt flow phenomena occur in different regions of the fluid. The method of 

characteristics essentially supposes that the domain under investigation can be filled with 

curves that describe the natural flow phenomena for these regions so that the dependent 

variahles, uften the fluid velocity or concentration, call he determined throughout. The 

following theory is derived with reference to Ames (1965). 

General form for two simultaneous partial differential equations 

Consider the velocity components u and v of the flow, given by the solutions of the two 

simultaneous first-order equations of the form 

au au av av 
p- + Q- + R- + s- = T 

ax By ax By 
(3.92) 

pi au Q' au nI EJv s' av T' -+ -+n-+ - = ax {)y ax {)y 
(3.93) 

Given sufficient initial and boundary conditions, it is supposed that the solution is known 

in some region bounded by a curve r along which the values of u and v are known. In 

order to to continue the solution throughout the rest of the domain adjacent to this 

curve. we look for partial derivatives of u and v. 

Since it is assumed that u and v are kllown on r, along r one can state: 

au au 
6u = -6x + -6y 

ax {}y 
(3.94) 

~ avE av. 
u'V = -oX + -6y ox {)y . (3.95) 

Thus a system of four equations relating to the unknowns ~, t, ff; and ~ has been 

obtained and in matrix form, can be written: 

dx dy 0 0 lJu du ax 
0 0 dx dy lJu dv 1fY = (3.96) 
P Q R S &/J 

Fx T 
P' Q' R' S' {h. T' By 
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which is of the form 

A:r=c (3.97) 

This system of equations can be solved for a unique solution, giving an identical direc­

tional derivative above and below the curve r, unless the determinant of the matrix A of 

coefficients of the partial derivatives is zero, for which there will be no wlique solution. 

Setting t.he determinant of the matrix to zero, it can be written in the form: 

[Q'S - QS'jdx2 + [QR' - Q'R + PS' - P'Sjdxd:1J + [P'R - PR'jdy 2 = 0 (3.98) 

which is a quadratic equation that can be solved for ~: 

(
dy )2 dy 

A - +B-+C=O 
dx dx 

(3.99) 

where A = [P'R - PR'], B = [QR' - Q'R + PS' - P'S] and C = [Q'S - QS']. 

If B2 > 4AC. the discriminant is positive and the equations are said to be hyperbolic. 

The solutions will be real and distinct giving the slopes for two real curves from which the 

curves themselves can be drawn for each point and across which the partial derivatives are 

not determined. These curves, ~ and 1}, say, are characteristic lines, or characteristics, for 

u and tJ. If the di.'.icrirninant is negative there are no real solutions so no real characteristic 

directions and equations (3.92) and (3.93) are said to be elliptic. If it is zero then there 

are two identical solutions and the equations are classified as parabolic. 

The variation of u and v along the characteristics can also be determined. In (3.96), 

column vector c can be substituted into any column of the determinant matrix as stated 

by the elementary theorem implemented in the method by Ames (1965) thus giving an 

equation along each characteristic ~ and 1J relating the functions 'U and v: 

(3.100) 

Equation (3.100) and the solutions of (3.99) can be solved using a numerical method for 

integrat.ing ordinary differential equations, such as the Runge-Kutta or Adams methods 

as suggested hy Ames (1965). In the special case where T and T' are zero, G.,,( = 0 in 

equation (3.100). 
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Application to the present smooth case 

The two siIllultaneomi equations (3.60) and (3.61) obtained in this problem can be writ­

ten ill the form of equations (3.92) and (3.93) as follows: 

(3.101) 

(3.102) 

i.e. 

p = 1 pi 0 

Q = Ul Q' = g'(1 - b) 

R = 0 R' = 1 (3.103) 

S = hI S' = (1 - 2a)uI 

T = 0 T' = 0 

and x and y are analogous to t and x, respectively. 

Along the curve r: 
(3.104) 

(3.105) 

Thus, for this problem. the system of equations is given, in matrix form Ax = c, as: 

dt dx 0 0 ~ dILl 

0 0 dt dx ~ dUI 
= (3.106) 

1 UI 0 hI ~ 0 

0 g'(1 - b) 1 ul(I - 2a) ~ 0 

If the determinant of the matrix of coefficients is zero, i.e. 
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A (llx)2 Bel:!! C = 0 
dt + dt+ (3.108) 

where. on substituting in the coefficients (3.103), A = -1, B = 2(1 - a}ul and C = 

g' h 1 (1 - b) - (1 - 2a )ui. The discriminant of this equation dictates the type of equation 

aud the type of roots it has: 

where 

B2 - 4AC = 4(1- a)2u~ - 4(-1)[g'h1 (1 - b) - (1 - 2a)tt~1 

= 4u~ - 8au~ + 4a2u~ - 4ui + 8au~ + 4g'hI(1 - b) 

= 4[a2u~+g'hl(l-b)1 

b = hI + tt~ (1 _ hI)-2 
H g'H H ' 0< ~ < 1 

We note the following: 

as ~ --+ 1. b --+ 1, thus B2 - 4AC --+ 4a2tt~ > 0 

(3.109) 

(3.110) 

(3.111) 

(3.112) 

Therefore, expression (3.108) has two distinct roots and the equations (3.92) and (3.93) 

are hyperbolic. The solutions of (3.108) are given by: 

Thus the directions of the '1 and ~ characteristics are given by: 

axl at ,., = ..\+, (3.113) 

where 

(3.114) 

Substituting the column vector c into the determinant of t.he coefficient matrix A, and 

equating to zero. gives: 
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dt dh l 0 0 

0 dUI dt dx 
=0 (3.115) 

1 0 0 hI 

0 0 1 ttl(1- 2a) 

i.e. 

(-h,)du,+ [(1- 2a)u, - ':.I.J dh, = 0 (3.116) 

Notice that since T = T' = O. this is analogous to the special case of equation (3.100). 

Rearranging equation (3.116) and using equation (3.113) yield!; tlw first-order ordinary 

differc'ntiHI equation for the variation of HI and hi along each of the characteristics: 

(3.117) 

Thus the problem has been simplified to solving the ordinary differential equat.ion (3.117) 

for UI and hi using the expression (3.114) and the initial and boundary conditions (3.51)­

(3.53). 

3.5.1 Generation of initial flow regions in the domain 

At time t = 0 a singularity occurs because the speed of the gravity current is defined 

by the initial conditions with ttl = 0 and height hi = ho, but the front condition must 

also be initialised at t = 0 and C8.lUlot agree with the condition UI = 0 at that time. 

Therefore. although it is possible to generate the characteristics for the region where the 

variables are known, nothing is given for calculating the characteristics in the rest of this 

part of the domain except for the front condition. The front speed itself is given simply 

by the rate at whidl the dist8.l1ce t.ravelled by the current in the x-direction changes with 

time, uf = ;. However, the value of uf is unknown without prior knowledge of the 

height, h"~ ofthe front. 

The value of UI is known to be zero on x = 0 and the derivative boundary condition (3.52) 

implies that hi be a constant there. take hi = ho. Thus. the gradient of the characteristic 

curve at t.his locat.ion can be determined from equation (3.114) and a characteristic line 

C8.l1 be drawn. For clarity, the values of x and t are normalised, x, by using length 

scale xo, the initial length of the denser fluid behind the lock, and t using the time scale 

to = xo/.;grTiO· Solving the equations for the negative value of .L generates a straight 
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line which, for the case when 11,0/ H - 0, has the normalised endpoints (1,0) and (0.1). In 

general, this line will always have endpoints (1,0) and (O,tint)' where time tint indicates 

the time, normalised by to, where this line intersects the t-axis or, physically, when the 

first backward propagating wave hits the end wall. Beneath this line will be a region of 

constant state with characteristics parallel to this bounding one. This occurs because 

the values of ttl and hJ are known initially and on the boundary, and are the same at 

every point on the bowldary within the region of constant state. Thus the gradients 

are known and identical for each point along the boundary in this region. The positive, 

TJ, lines will al<;o have identical gradient but in the opposite direction. Thus, when the 

positive and negative characteristics intercept each another, the value of ttl and hI will 

not change and hence the gradient will not change. In this way the boundary values are 

propagated throughout the region and so the characteristic curves are a mesh of straight 

lines, of constant, identical values of UI and hI, parallel and perpendicular to that initial 

line. 

The region of constant state does not continue beyond the boundary characteristic since 

the front condition takes effect and this disagrees with the condition UI = 0 as applied 

thus far. Hence, this line is the last known characteristic and its values of ttl and hI 

can be used as the starting point for the integration to obtain the characteristics for the 

other regions between the end wall and the front. 

The ordinary differential equation (3.117) is solved for the positive characteristic since it 

is the values of ttl and hI along the TJ curves that are required. In the region of constant 

state. the positive characteristics are a set of parallel lines along which ttl and hI are 

constant. and identical t.o each other. When these lines leave this region, the values of ttl 

and hI change and are therefore unknown. Int.egrating equation (3.117) along TJ between 

the last known values and those given by the front condition. the value of ttl at the 

front and hence the range of integration are determined. The required values of ttl and 

hI in the region between the front and the characteristics of constant !ltate can thus be 

found using these results. Moreover, these curves will remain parallel since the range of 

integration along one of them is ident.ical to the next. 

When the TJ and ~ characteristics intercept, they must both have the same values for 

"1 and h 1· However, since the 1/ curves are parallel, every point of interception along 

one { charact.eristic will have the same values for "1 and hI' ThlL<;, the ~ characteristics 

will be a set of straight lines, each with different gradients. Hence, solving the ODE 

(3.117) for the positive characteristic curves (-\+) enables the negative gradient.s for the 
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~ characteristics to be calculated and this set of lines can then be drawn. The final value 

for Ul is also the velocity at the front, uf, thus its value can be used with ul = ~ to 

find the location of the front. 

The Fortran NAG routine D02AGF is used to integrate the ordinary differential equation 

(3.117) using the known values and an initial guess for the front height. 

Implementation of the Fortran NAG routine D02AGF 

The ODE requiring solution by D02AGF is given in section 3.5 by equation (3.117), 

namely 

(3.118) 

From the conditions established in sections 3.3.2 and 3.3.3, it is known that 

UI = 0 at hI = ho (3.119) 

and the front condition, for a given hI, is given by 

(3.120) 

The factor that is unknown is for which range of hI, the front coudition giving 1Lf holds. 

Hence for this problem, n = 1, nl = 1 and there is just one parameter ql, the upper value 

of the range of integration. The parameter is thus included in the range and boundary 

condition subroutines as the upper endpoint and matching point in the former and within 

the calculation of the upper endpoint of the range evaluating Yi (the front condition) in 

the latter. Thus, in the terminology of the NAG routine, with hI analogous to x and uf 

to y, the ODE is given by: 

where 

x 
a=~~_ 

(H - x)' 

and 

dx 1 
- = -[A,!, - (1 - 2a)y] 
dy x 

(3.121) 

(3.122) 

(3.123) 
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The conditions are in terms of the parameter q]: 

X=Xo, y=O (3.124) 

(3.125) 

An estimate for ql is entered into the program, along with two error values. These control 

the bound on the local error in the components of the solution during the integration, 

the convergt'nce testing of the components of the solution at the matdling point in the 

Newton iteration and the convergence testing on the parameter in the Newton iteration. 

They also control the perturbation of the parameter when approximating the derivatives 

of the compollt'nts of the solutioll with respect to that parameter to be used in the 

Newton iteration. If the guess is good then results will be generated for the front speed 

and the residuals. as printed by the program, can be considered for accuracy. Thus the 

initial estimat.e and the error values can be altered until an acceptably small residual 

is determined. In this work, the results with residuals of magnitude smaller than 10-6 

were used. 

The prop;ral11 can be modified to print results for hf and uf for as many values as 

required in the range from Xo to ql so that these values can be used to calculate the 

slope of the gradients for the characteristic liues of the flow and thus enable the plotting 

of the characteristics. These can then be compared with those obtained by Rottman and 

Simpson (1983) and the accuracy of the theoretical results established. 

The flow profile 88 generated by NAG results 

The characteristics drawn from results generated by the Fortran NAG routine D02AGF 

show a simple wave region, generated from the negative gradient, adjacent to the initial 

region of constant state. Physically, this implies that this constant state, region Rl 

in figure 3.:i, is a region where the fluid has not yet been affected by the disturbance 

created by the removal of the lock partition. Subsequently thL"! disturbance initiates 

the propagation of the current forwards and an expansion wave back towards the end 

wall of the tank. hence the occurrence of the simple wave region, region R2 in figur(' 

3.3. The pJ(isteIlCe of this region is in accordance with the theorem that states: "In a 

solution containing constant state regions the regions adjacent to constant states are 

always simple waves:' As proven, for example, by Jeffrey and Tanuiti (1964). Another 
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Figure 3.3: Characteristic diagram for the ease when hoi H = 0 and (3 = 1 showing the simple 

wave region. Beyond tltu = 1, the results are invalid. Regions R1 , R2 , and Ra correspond to 
an initial region of constant state, a simple wave region and a further region of const.ant state, 

respectively. to is a time scale given by xol J9'7i0. 

region of constant state, established in a similar way to the other, occurs immediately 

behind the current front. The ~ characteristics are parallel to the final c.haracteristic, 

determined using the front condition, and the 'fJ curves become a set of parallel lines 

perpendicular to the ~ lines. This region, R3 in figure 3.3, encompasses the region of 

constant flow immediately behind the front, between the front and the nearest wave. 

The flow profile after tjto = tint (where tint = 1 in the case shown in figure 3.3) is not 

determined using Fortran NAG routine D02AGF. This is due to the more complicated 

procedure that is necessary for evaluat.ing complex regions that have been shown to occur 

(Rottman and Simpson, 1983) outside the regions already outlined. 

3.5.2 Solution of the characteristic equations for t > tint 

The Fortran KAG routine D02AGF is sufficient for determining t,he characteristics within 

the initial region but it cannot he used beyond this phase where it is necessary to include 

further bOundary COnditiolL ... for the interaction of the backward propagating simple wave 
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with the end wall of the tank. Thus, it is necessary to implement a numerical scheme to 

solve the characteristic equations, as undertaken in this section. 

Outline of numerical scheme 

The method of characteristics produces four equations for the solution of the problem 

given by (3.113) and (3.117). These can be written in the general form 

dxl dt 'T/ = B'(h1(x,t),Ul(X,t» (3.126) 

~~ll = D'(hl(X,t),Ul(X,t» 
1 'T/ 

(3.127) 

and are to be solved numerically. Generally, consider allY two adjacent points I and J, 

say, 011 the curve r 011 which the values nrc kUOWll. Then, the 11 characteristic curve 

froUl point I must at some point, K, intersect with the ~ characteristic curve from point 

J, sec figure 3.4. 

r 

Since equations (3.126) and (3.127) depend on the 

solutions UI and hi and the location of K in the 

(x,y) plane at that point, all these values must 

be determined. Once the values of 'UI and hI are 

known, the locatioll of the point follows. There are 

several methods of numerically integrating ordi­

nary differential equations. Ames (1965) suggests 

some of the most (:ommon methods: The Runga­

Kutta method. Adams method and the corrected 

Euler method. The four differential equations can 

be approximated by relations of the form 

Figure 3.4: The method of charaderis­

tics, diagram for the solution process. 

Values at [ and J are known. 

XK - XJ = ![A'(K) + A'(J)] 
tK - tJ 2 

'UIK - 'Ul.d. = ![C'(K) + C'(J)] 
hlK - hlJ 2 

:I'K - Xl = ![B'(K) + B'(I)] 
tK - t1 2 

(3.128) 

'UIK - 'Ull = ![D'(K) + D'(I)] 
hlK - hll 2 

(3.129) 

where A'(K) implies the value of A'(hl (x, t), 'Ul (x, t» at the point K. The set of equations 

(3.128) and (3.129) are solved by an iterative process. 

The Fortran NAG routine can generate 8S many values as required at time tlto = tint, 

whe1't~ the fil'~t. uf the hack ward propagating waves meets the eud wall, i.e. where the 
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inclusion of the additional boundary condition is necessary. Thus we essentially have as 

many initial values along this line as we choose for the continuation of solution throughout 

the rest of the domain. Since the position of the front at this time is also known and we 

know that the ~ characteristics in the region of constant state between the front and the 

first forward propagating wave are parallel to the ~ characteristic of the wave. we can 

find as many points as necessary to give initial values throughout the domain at time 

The equations (3.128) and (3.129) for this problem are rearranged for simpler implemen­

tation in the numerical scheme as follows: 

where 

xJ - Xl - ![A'(K) + A'(J)]tJ + ~[B'(K) + B'(J)]tl 

i[B'(K) + B'(l)]- i[A'(K) + A'(J)] 

= XJ + ~[A'(K) + A'(J)](tK - tJ) 

UIJ - Ull - ![C'(K) + C'(J)]hlJ + ![D'(K) + D'(J)]hll 
= 

~[D'(K) + D'(J)] + ![C'(K) + C'(J)] 

= UlJ + ~[C'(K) + C'(J)](hlK - hlJ) 

A' (hI (x. t), UI (x, t» = .L = (1 - a)ul - [a2ui + g'hl(l- b)]! 

B'(hl (x. t), Ul (x, t» = [ 2 2' ]1 A+ = (1 - a)ul + a Ul + g ht{1 - b) 2' 

C'(hdx. t), Ul (x, t» = (:1) [(1 - 2a)Ul - A-I 

D'(hl (x. t), Ul (x, t» = (:1) [(1 - 2a)Ul - A+I 

i.e. four equations in four unknoWllS. 

(3.130) 

(3.131) 

(3.132) 

(3.133) 

Once the Values of all the boundary adjacent points have been determined, their solutions 

can be used to find thl' valuf's at thc l'llbseqllcnt point.s, such 8S K 1 , and so on. generating 

a net over the entire domain, for which values are known at every point. This net can 

be refined to evaluate more points within the domain if required. 
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The numerical solution process 

The numerical method works by taking the average of the known values at two adjacent 

points at t = tiut to estimate the value of uI, hI, x and t at a point forward in time. 

These initial guesses and the values at the known points are then input into the equations 

(3.130)-(3.1:J3) to find values of UI, hI. x and t at the new point. The new values replace 

the initial guesses and the difference between these and the values from the previous 

iterative step is found. The iteration proceeds until this difference is reduced to the 

desired accuracy, here 10-12 . 

The procedure continues using the values at the next known point to generate an initial 

guess for another new point, wltil it has worked through the known data set. It then 

advances so that the next 'column' of data can be found using these new values and so 

on. Thus the information is carried along the characteristics to subsequent time steps 

throughout the domain. Note that steps in time and space are not specifit..'<1 in this 

method, they are determined using the same process a.., for the other variables. 

As the solution progresses across the domain, the conditions at the boundaries must be 

acCOllllted for. Hence, at every other step forward, these conditions are brought into the 

calculations. On the x = 0 boundary, the end wall of the domain, these conditions are 

included through altering the equations used to solve on the boundary. The derivative 

boundary condition (3.53) basically implies a symmetry condition at the end wall. Thus, 

with the values of UI and x known, we need only use the two equations that describe 

the negative characteristic curves intersecting the x = 0 boundary to find the unknowns 

hI and t. In this case, equations 

where 

~[A'(K) + A'(J)]tJ - XJ 

t[A'(K) + A'(J)] 

t[C'(K) + C'(J)]hlJ - Ul.T 

t[C'(K) + C'(J)] 

A'(hl(X,t),udx,t» = .L=(1-a)ul-[a2u~+g'hl(1-b)]~ 

C'(hl(X,t),Ul(X,t» = (~l) [(1- 2a)uI - '\-1 

(3.134) 

(3.135) 

Alternatively, the equations can be solved in a larger domain, symmetrical about the 

t-axis, but Ul and x must still be imposed on this line since u = 0 on x = 0 must still 

hold here. 
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The upper boundary that describes the front of the current, is slightly more complicated: 

Initially, the speed of the front, ttf is known as a result of the the NAG method. The 

front is described by the line x = uft + Xo while it is in the initial phase of the flow. 

However, once the first of the characteristic curves of the refiected waves intercepts with 

the front. this speed is no longer constant. The waves are travelling at a speed faster than 

the front and so they overtake it. Hence, the wave becomes the 'new' front and it can 

no longer be described by a straight line since every time one of these waves intercepts 

it, the values on it will change. 

The positive characteristic equations for the point at the front found on the previous 

step can be used to give two equations, but two more are necessary since all four vari­

ables are unknown for the new front point. The front is not a characteristic curve so 

the characteristic equations do not hold along it. However, the front condition must still 

hold and the speed of the front can still be described by dx/dt = ufo Thus, using these 

two expressions with the characteristics we have obtained sufficient equations to be able 

to solve for the new front value: 

where 

and 

:1,1 = B'(hl (x, t), UI (x, t)) 

dUll D'(hl (x, t). ttl (x, t)) = 
dhl 11 

ul = E'(hf(X. t)) 

dxl E'(hf(X, t)) = 
dt front 

B'(hI(x,t),Ul(X,t)) = A+ = (1- a)Ul + [a2ui + g'hl(l- b)lt 

D'(hl(x, t), Ul(X, t)) = (;1) [(1 - 2a}UI - A+l 

i.e. the front condition that must be satisfied at the new point. 

(3.136) 

(3.137) 

(3.138) 

(3.139) 

(3. 140} 

These equations (!all then be included in the iterative scheme, re-written as follows: 
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= ![B'(K) + B'(l)]tl - ![E'(K) + E'(J)]tJ + XJ - XI 

tK ![B'(K) + B'(I)] - ![E'(K) + E'(J)] 
(3.141) 

XK = XJ + ~[E'(K) + E'(J)](tK - tJ) (3.142) 

hlK = 
U1K - Ull + ![D'(K) + D'(I)]hll 

![D'(K) + D'(J)) 
(3.143) 

U1K = E'(K) (3.144) 

Once the variables have been found at thi'l point, the scheme can continue as usual using 

the negative characteristic equations from this new point to contribute to finding t.h(' 

top of the next step and then carrying out this top boundary method again. 

3.6 Method of characteristics: rough case 

The method of characteristics cannot be used in exactly the same way for the solution of 

the problem with a rough bed. The additional terms included to describe the roughness 

mean that the general form of the characteristic ODE, equation (3.100). cannot be 

reduced to the special case. 

Application to the present rough bed case 

The two simultaneous equations (3.88) and (3.89) obtained in this case C8Jl be written 

ill the form of equations (3.92) 8Jld (3.93) as follows: 

oh1 ahl OaUl haUl 0 -+Ul-+ -+ 1-= at ax 8t ax (3.145) 

i.e. 

p = 1 pi = 0 

Q = 'ttl Q' = g'(1 - b) 

R = 0 H = 1 (3.147) 

S = hI S' = (1 - 2a)ul 

T = 0 T' = 7 
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where 

(3.148) 

and x and y are analogous to t and x, respectively. 

Along the ('urve f: 

(3.149) 

(3.150) 

Thu'), for this problem, the system of equations is given, in matrix form Ax = c, as: 

dt dx 0 0 ~ t dh l 

0 0 dt dx ~ dUl 
= (3.151) 

1 UI 0 hI ~ 0 

0 9'(1 - b) 1 uI(1 - 2a) au 
~ 7 

As for the smooth case, we require that the determinant of the matrix of ('ocfficicnts 

vanish. Since this matrix is identical to the smooth equivalent, this determinant will be 

the same, implying that the characteristic directions for both cases are identical. Thus 

the directions of the TJ and ~ characteristics are given by: 

ax I =). at -
~ 

(3.152) 

where 

(3.153) 

The process differs on substituting the column vector c into the determinant of the c0-

efficient matrix A since the term 7 is now present. Equating this new coefficient matrix 

to zero, gives: 

dt dh1 0 0 

0 dUI dt dx 
=0 (3.154) 

1 0 0 hI 

0 7 1 uI(1 - 2a) 

i.e. 

(-hj)duj + [(1 - 20)U1 - ': I 1 dh, = 7h, dt 
t '1,(, 

(3.155) 
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This expression is no longer in the form of the special case equation (3.100) generated 

for the smooth case. However, rearranging equation (3.155) and using equation (3.152) 

does yield all expression for the variation of UI and hI along each of the characteristics: 

dUI () - elt hl- - 1 - 2a Ul + A=r = fh l -dh} h} 
(3.156) 

Thus the problem has been simplified to solving equation (3.156) for UI and h}, including 

terms for the effects of a rough boundary, using the expression (3.153) and the initial 

and boundary conditions (3.51)-{3.53). 

3.6.1 Solution of the characteristic equations for tlto > 0.05 

The form of the ordinary differential equation required for solution by the method of 

characteristics involves the unknown independent variable t which means that the equa­

tion cannot simply be integrated using the NAG routine D02AGF, as performed to find 

the front value in the smooth case. Solution of the characteristic equations cannot be 

carried out directly from t = 0 due to the singularity that occurs at the initial release. As 

a result of this, the data generated using the NAG routine D02AGF for the smooth case 

is used to c.onstruct a. set of initial conditions at. a small time, tlto = 0.05 say. This is 

a reasonable assumption since it is not expected that the roughness will have significant 

affects immediately after the fluid is released, indeed the experimental front speed data 

supports this. The solution process advances with the numerical scheme to solve the 

characteristic equations with the rough terms included and the NAG generated data to 

initialise the variables Ut. hI, x and t. The smooth case can also be solved USing this 

method whereby the numerical scheme is implemented at an earlier time than t = tint. 

This gives a means to check that the numerical scheme is resolving the initial regions 

which it. did not. need to find before. A similar scheme to that outlined in sectioll 3.5.2 

is used with modifications to account for the additional terms. 

Outline of numerical scheme 

As in the smooth case, the method of characteristics produces four equations for the s<>­

lution of the problem given by (3.152) and (3.156). These can be written in the general 

form as follows: 
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:I( = A'(hl (x, t), ul (x, t)) (3.157) 

:I~ = B'(hICx, t), ul (x, t)) (3.158) 

dUll C'(hl (x. t), UI (x, t» + F'(h l (x, t), ul (x, t» = (3.159) dh l ( 

dUll = D'(hl (x, t). UI (x, t» + F'(h l (x, t), UI (x, t» (3.160) 
dh l 

" 

The rough terlUS are contained in the function F'. These four differential equations can 

be approximated by relations of the form 

XI< - XJ ~[A'(K) + A'(J)] (3.161) = tl< - tJ 

XI< - XI ~[B'(K) + H'(l)] (3.162) = tl< - tl 

UIK - UlJ ![C'(K) + e'(J)] + ![F'(K) + F'(J)] tK - tJ (3.163) = hlK - hlJ 2 2 hlK - hlJ 

"II< -"1/ ![D'(K) + D'(l)] + ![F'(K) + F'(l)) tK - tl (3.164) = hlK - hu 2 2 hlK - hu 

where A'(K) implies the value of A'(h l (x. t), UI (x, t» at the point K. The set of equations 

(3.161)-(3.164) are solved numerically using the iterative process. 

The Fortran NAG routine can generate 88 many values 88 required at time tlto = 0.05. 

Thus we essentially have 88 lDany initial values along this line as we choose for the 

continuation of solution throughout the rest of the domain. 

The equations (3.161)-(3.164) for this problem are rearranged for simpler implementa­

tion in the numerical scheme 88 follows: 
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tK = 
XJ - XI - ![A'(K) + A'(J)]tJ + ![B'(K) + B'(I)]tl 

(3.165) 
![B'(K) + B'(I)] - !IA'(K) + A'(J)] 

XK = XJ + ~[A'(K) + A'(J)](tK - tJ) (3.166) 

hlK = 
UIJ - tlll- i[C'(K) + C'(J)]hlJ + i[D'(K) + D'(I)]hll + iIF'(J) - F'(I)]tK 

i[D'(K) + D'(J)] + !IC'(K) + C'(J)] 
(3.167) 

UIK = ttlJ + ~[C'(K) + C'(J)](hIK - hlJ) + ~[F'(K) + F'(J)](tK - tJ) (3.168) 

where 

A'(h1(:r, t). U1(X. t» = .L = (1 - a)u1 - [a2u~ + g'h1(1 - b)]t 

B'(h1 (x, t), ttl (x, t» = ~+ = (1 - a)u1 + [a2u~ + g'h1(1 - b)]t 

C'(h1 (x, t). tll (x. t» = (:1) [(1 - 2a)U1 - ~-] 

D'(h l (x, t). Ul (x, t» = (:1) [(1 - 2a)UI - ~+] 
2 

F'(hl(x. t), U1(X, t» Ul [ 3 3] = - 811a C3i3a + Cd1 + C2h(1 + a) 

The numerical solution process is carried out using the same method as in the smoot.h 

case, covered in section 3.5.2, but with slightly different equations for the boundaries so 

that, the roughness terms are included. On the x = 0 boundary, U = 0 but t and hI 

are unknown. The process requires the negative characteristic equations to iterate on in 

order to find these values. These are given by: 

_ i[A'(K) + A'(J)]tJ - XJ 
tK - t[A'(K) + A'(J)] 

= ;[C'(K) + C'(J)]hlJ + iIF'(K) + F'(J)](tJ - tK) - UIJ 
!IC'(K) + C'(J)] 

(3.169) 

(3.170) 

The values on the front must also be fOWld as before using the known front definition 

dx/dt = uf and the front condition uf along with the positive characteristics from the 

last determined point nearest the front. These conditions are rearranged and included 
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in the scheme in the form: 

!IB'(K) + B'(I)]tl - !IE'(K) + E'(J)]tJ + XJ - XI 

tK = !IB'(K) + B'(I)]- ![E'(K) + E'(J)] 
(3.171) 

XK = XJ + ~[E'(K) + E'(J)](tK - tJ) (3.172) 

UtK - tJll + i[D'(K) + D'(I)]hll + ~IF'(K) + F'(I)](tK - tJ) 
= ![D'(K) + D'(I)] (3.173) 

UIK = E'(K) (3.174) 

Once the values of the variables ha.ve been found at this front point, the scheme can 

continue as usual using the negative characteristic equations from this new point to 

contribute to finding the top of the next step and then this method is performed again. 

3.1 Results 

3.7.1 Validation 

The theoretical results must be compared to experimental data if their validity is to be 

obtained. Figure 3.5 shows a. comparison of the present theory with that of Rottman 

and Simpson (1983) and their experimental data for pa.rtial to full height lock releases. 

It is clear that a value of /32 = 2 in the front condition does not give close agreement with 

the experiments. If this value is arbitrarily changed to 1 then much better agreement is 

obtained. However, as Shin et al. (2004) points out, there is no theoretical justification 

for this choice, it is simply altered for better agreement. For {32 = 1 the results from this 

work and that of Rottman and Simpson (1983) are directly comparable. 

The front condition derived theoretically by Shin et al. (2004) was also implemented, 

with the method of characteristics, for comparison with the theoretical results. This 

condition has no free parameters so it will not require new empirical expressions when a 

front condition is sought for the rough bed case. The excellent agreement between the 

present work implementing this front condition C8Jl be seen with the experimental data 

of Rottman and Simpson (1983) and Shin et al. (2004) in figure 3.6. 

In order t.o prodUl~c a morc visual confirmation of the vulidity of the present theory, the 

model wa." Rimulatro using the experimental configuration of Gladstone et al. (2004). 

The dataset therein contains photographs of lock release expflrimflnts at diff'prent times 
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Figure 3.5: Theoretical results from the present theory (PT) with f'J2 = 1 and 2 and Rottman and 

SimptlOn (1983) (RS83) with {32 = 1. Experimental results of Rottman and Simpson (1983). (8) 

The front speed and (b) the front height during the initial phase of collapse ploUed as a function 

of hoi H. Diamonds are the total measured depth of current behind the front and triangles are 
depth of the unmixed current layer, neither are true front height. 

and enables a rare qualitative comparison of the theoretical depth profil~ and t.heir 'real' 

equivalents. This comparison is presented in figure 3.7. This figure also highlights the 

ID limitations of the theory, in particular with respect to the mixing and entrainment 

present at the density interface between the current (blue) and the ambient (clear) fluids. 

However, despite the limitations, the agreement is remarkably good. 

The relationship for the front speed found by Huppert and Simpson (1980) can also be 

imposed a ... i the front condition for use in the method of characteristics. Their version 

incorporated analytical and empirical methods, essentially depending on a Fr number, 

calculat.ed empirically. of 1.19. This value has been used for the generation of the data 

shown in figure 3.8. However. other studies have found different Fr numbers, for exam­

ple, Fr=1 (Shin et al., 2004) or Fr= v'2 (Benjamin, 1968). This front condition could 
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Figure 3.6: The front speed during the initial phase of collapse plotted as a function of hoi H. 
Theoretical reHults from the present theory (PT) with the front condition of Shill et al. (2004) 

(S04) and the experimental and theoretical results of Shin et al. (2004). 

also bE' useful for application to the rough case if Froude numbers were calculated from 

experimental data for flow over a rough bed. However, difficulties in accurate measure­

ment of height can make this method subject to greater errors, as shown by the different 

existing Fr values for the smooth case. 

The normalised front speeds and front heights for different release height ratios generated 

wnllg the t.hree differeut frout conditions are displayed iu figure 3.S. The variation in the 

experimental rcsult~ in figure 3.8 (b) is due to the diffcrences in location whcn measuring 

the height of the current. It can be seen that the results generated using the Shin et aI. 

(2004) front condition are in much better agreement for all release heights than they 

are for those using the Rottman and Simpson (1983) or Huppert and Simpson (1980) 

conditions for both the front speeds and the front heights. Moreover, the conservative 

analyticAl half height solution, h / = ho/2 is proven to be a good approximation to the 

height of the front. 
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Figur ' 3.7: PhotogJ'nph~ of thC' expC'rimC'nt from Gladstone et. al . (2004) and corresponding 
theor ~linll dt'pth profiles from the prc,'cut theory using thc front condition of Shin et al. (2004). 

Huppert and 'imp on (19 0) published results for a range of 18 'two-dimensional' exper­

im nt for full and partial d pth currents. They used these experiments for comparison 

with lhC'ir box model th('ory 8Jld showed reasonable agreC'rnent. The results for the two 

frollt ('omlitioll ' U ' xi thu ' far with the box model811d experiments 7 and 9 from Huppert 

amI , imp~oll (19 0) can be e n in figure 3.9. Table :3.1 displays the parameters for the e 

two .xpC'rim llb. 

It an b . 11 that the 'olution using the shallow water equations solved with the method 

of chnrnrtC'ri.'tics givC' - results ill better agreement with the experimental data than the 

bo. ' model 'quiw\] nt. !low 'vel', the present theory using the front condition of Shin 

et al. (2004) i::; doe to thi::; result . It is difficult to see differences in accuracy between 
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Figur :3. : Th<'or tical r' 'nils from t he present theory (PT) using the front conditions of 

nottman and imp on (19 3) with (32 = 1, Shin et al. (2004) (804) , Huppert and Simpbon 

(19 0) (II 0) with th(' analytical valne hJ = ho/2. Experimental results of Rottman and Simp­

:,ion (19 3) und hin d al . (2001). (a) The front speed and (b) The frout height during the initial 

pha.'l(> of ('ollap~e plot tt'd tIS a fUllction of hoi H. 
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Tabl(' 3.1: ParamC't('rs of t wo-rlime11sional experiments No. 7 and 9 carried out by Huppert and 

SiIllP~Oll (19 0). 

the two pr s 'at Ilwtilod .. although that of Rottman aud Simpson (1983) is consistently 

slow l' than til 'hin et al. (200-1) version and is not in such good agreement for earlier 

t iJllt's . 
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Figure 3.9: The length of a gravity current as a function of time found with the present theory 

(PT) using front conuitions of Rottman and Simpson (1983) wit.h {j2 = 1 and Shin pi al. (2004 ). 

Experiments 7 and 9 and the box model results by Huppert and Simpson (1980). 

3.7.2 Complete flow profiles 

Smooth bed 

The solutions generated by the NAG method and the numerical scheme can be combined 

to create a complete profile of the flow domain. The characteristic lines of the flow can 

be drawn to depict a visual model of the lock release process and the gTavity current 

initiation and propagation. Characteristic diagrams generated by the combined results 

froIn t h(' ! AG method and the llul'llprical scllPme can be seen in figure 3.1O~ . The 

diagrams have be 'll created by interpolating the results onto a uniform mesh and tracing 

the characteri tic by projecting the gradients from one point, forward by a small time 

st,ep. in search of the next nearest point. 

The front position calculated by the present theory is plotted on the characteristic dia­

gram reproduced from RoLLman and Simpson (1983) figure 3.10 (a,) showing that the two 

results are in good agTeement and verifying that the method has been implemented cor­

rcrtly. The' rhara,rtrristir line'S displa'ye'd in fignrc 3.10 (b), and drawn using the present 

t Tote that the figures in this section have aJl been generated ubillg a value /32 = 2 in the front 

condition. Changing this parameter has little effect on the essential profile of the flow , its specification is 

more relevant , however , wheu more accurat.e values of the variables throughout the domain are required 

for comparisoll with the results from experimental anonumericnl simulations. 
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Figure 3.10: Characteristic diagrallls 1'0), hoi H ~ 0 and ho i H = 0.5 using the front condition 

of Rottman and imp50n (19 3) with I j2 = 2. (a) hoi II ~ 0 rE-produced from Rottman and 

SiUlpsolJ (19 3) with [rout positioll of present theory (x ) ami (b) hol H ~ 0 alld (e ) hol H = 0.5 

both tlsing prE-sent theory. 

theory, do not coincide exactly with those in (a), although they represent the same case. 

This is becau. e the method for pre enting the data selects which lines it displays at 

fixed interval for PI' scntationaJ clarity. From the diagrams shown in figure 3.10, it is 

clear that the r giOll of the flow are comparable even if specific diagrammaticaJ lines 

are not pre nt . Rottman and Simpson (1983) do not display diagrams for other case 

011 the basi ' that they arc expected to be siluilar and therefore figure 3.10 (c) cannot 

stri ·tly be verified. However, similarities between the cases can be seen in figure 3.10 

(b) and (c) Imel show thaL. alLhough tlie differcllL C'a."es df'velop nniquely and have dif-
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ferent front .pt't'ds. they form similar flow regions. It is apparent that gravity currents 

geDenlted with difl't'ftUt initial release height ratios up to hoi lJ = 0.5 begin with an 

ideutic-al nw-tiou to tb .. lock ~lf',ue but differ primarily due to the time it takes for tht' 

backward propagating waw to reach the end wall, tint. since this is the catalyst for the 

aubeequt"nt duwges to the flaw profiles. For height rati08 above 0.5 the present theory 

requirt?8 ailC'l'alioM to acrount for different flow dynamics discussed ill section 3.7.3. 

In pueral. the characteristic cfia&rama can be divided up into the regions that typically 

deacribe the stlucture of the current. Regious Rl.:I,3 have been discussed in section 3.5. 

In figure 3.10, the regions Ra.a,e can now be observed. The reflected wave that occurs 

whell the backward pI'OIPBPtiog wave reflects off the end wall of the lock box bas been 

identified iu n·a!ity Blul in the laboratory (Kcull'gR.Il, 195~; Rottman and Simpson. 1983). 

The characteristk of this wave, bounding regions R2 and R3, is not a straight line 88 

in the simple waw region since, upou intersection with the other lines from the simple 

wave. its gradient changes causing both itself and the characteristic lines leaving the 

simple we\'{' region to curve. This occurs identically for all the reflected waves creating 

a resion d complex state. Rt. Physically this can be seen 88 the initial simple wave 

re8ected bade from the end wall rolliding with other expansion waves propagating back 

from the .. hode of the initial reJeue. Clearly, this alters the characteristics of both of the 

waws im'Olved in the collision. 

The let of CUI"VCfi repnwentiDi the reflected waves, continue to propagate in this manner 

away from the md wall, until they cross the final characteristic of the simple wave region 

into the other retPoo of conatant state, ~ in figure 3.3. \\"hen the characteristic C\II'W 

of the &rat refltrled wa\'e encountmtl a characteristic within this region, the values of ". 

aod hI and thus the gradients of both characteristics. change again. This occurs at e\-wy 

subeequent intenectlou between the wave and the curves in the constant state region. 

MQI"e(M!I". since in R3 tbt' linN are parallel to each other. although thf' infiuen('{' of the 

rcfil'Ctcd waY\' cauaca them to curve, they remain parallel. Thili hllti till' l'ffl'Cl that tbl' 

K1'adicmtA of th .. rnflC'ftM ('hlU'8l'tt'l'iAtiNi tbat, int~rfl('('t. with them do not change along one 

MlI'W IUld tilt.,. t hto!y bfooomfO" 1W!t, of At.rRight linffl «"Nh of diff«"rt',ut gradient. i.e. IUlOthn 

simple wave regioo. Rt,. This occurs pbysiC'.ally when the ".aim region immediately behind 

the bead pta disturbed by the waves approaching the front. Finally. when the reflected 

wave catd1e8 up with the front. the front begins to slow down from its prt'ViOUB roustaDt 

speed. Thus. Ilinn' t.he values at tbe front are oonstant.ly changing, anothf'.r region of 

complex stare, 1lG. is formed. 



142 

Rouch bed 

Diagrams of the cbaracteristic curves in the rough case, compared to the smooth bed 

are shown in figure 3.11. A roughness of It = h = h = 0.1 was prescribed on the bed 

ooIy, the bed and the interface and on the bed, interface and top wall, results for which 

1ft showu in figurel3.1l (6), (c) and (d), respectively. It can be observed that when any 

fOlIIbnees is preteut the front trawls more slowly. Figure 3.11 (c) shows that wheu the 

effects of rougbut88 at the interface are also included, the current is further retarded. 

This is confirmed in subsequent 8e('tiOlL'i. When C3 = 1 there are little noticeable affects. 

This is u deei~ since these effects wiU be felt in the overlying fluid and are transferred 

to the gravity current through the interfacial condition which has already been activated. 

With respect to the ftow regions identified in the smooth cases, it appears that these are 

still present. Ilowew.r, suhtle difl'erences can be observed. The simple waves that occur 

on release of the lock are either reduced in quantity or propagate significantly quidccr 

.ok to tb«' ('od WI\ll. Tbr. 1ut of th(18C~ WBVtlH is 8(~ll1 tu r('flld at tlto ~ 6 iu fig1U't~ 

3.11 (6) (and MOnM' in ~~ 3.11 (c», whUp. in figure 3.11 (a) this occun at t/fo :::: 9. 

In the rough cue when only C • .. 1, the front appears to remain at a fairly constant 

speed until tht' first of these reflected waves intt'rsects with it, 88 in the smooth case. 

When C2 = I, the front appears to slow more rapidly, perhaps due to the roughneJ8 

e8'ects themaelves. It must be noted that the initial conditions, at a very small time. 

were ca1cu1ated using the smooth equations, even for the the rough cases 88 discUS8ed 

in aectioo 3.6.1. Therefore, in the rough cases, the solution may undergo an adjustment 

period within which the modifications to the equations due to roughness take affect. 

ThJa could abIo be the reuon for the apparent lack of constant speed period shown in 

figure 3.11 (c). 

In addition to altering the location of the roughness, in order to test the sel18itivity of 

the model to the roughness size, the values of 11, h and /3 were also modified. The 

two other values selected were half (0.05) and double (0.2) the value used in figures 3.11 

(6) - (d). Thl'8e wt'I'e applied to the bed only, i.e. C1 = I, C2 = C3 = O. figure :U 1 

(6). The diagramB of the characteristic curvet! for these (,.ase8 arc shown in figure 3.12. 

As ~ whr.u thf' inftu('nN' of rOllghnf'M on t.hf' intorfN'e wa.s included, when the 

magnitude iDcn1eses the simple wave region diminishes or, rather, the time at which the 

bedcward propagating WBVftI reftect oft' the end wall of the lock gets earlier. Alao, the 

front appears to diverge from a constant speed earlier 88 the roughness effects increase. 
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Fipre 3.11: Cbarederiatic: diqranw for ho/H = 0.5 UBing the front condit.ion of Rott.man and 

Sbnpeon (1983) with iP - 2 and (a) a smooth bed. Rough C8lIetI with h = 12 = h = 0.1 (6) 

O. - I, C, - Cs - O. (r.) C1 - C., - 1. Cs - 0 and (d) C. = O~ = Cs = 1. Where C •• C, and 
C. lncilc-at(> rough (1) or amooth (0) lnthlMC'<' on thC1 bOO, intm1RCe and top wall. reepectively. 
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Figure 3.12: Characteristic diagrams for holR = 0.5 using the front condition of Rottman and 

Simpson (1983) with Ifl = 2 with roughness on the bed, i.e. 01 = 1, C2 = Oa = O. (a) It = 0.05, 
(6) It = 0.2. Where OJ. 02 and 03 indicate rough (1) or smooth (0) influence on the bed, 

interface and top wall, respectively. 

3.1.3 Depth and velocity profiles 

Smooth bed 

Depth profiles of the currents display a one dimensional outline of the denser fluid as it 

develops through time and arc presented in figure 3.13. The backward propagation of the 

waves from the release at t = 0 can be seen along with the 'shock' of the collision with 

the end wall, the size of which depends on the initial release height of the fluid. After 

this time, 88 the current propagates along the tank it retains a constant front height 

with an identical depth region behind it which implies the presence of a deeper head 

region. This remains until t/to ~ 5 (or t/to ~ 9 for ho/H = 0.5) after which the height 

behind the front deteriorates. consequently suggesting deterioration of the head shape 

at this later time. It can also be observed in figure 3.13 that as the current propagates 

its tail remains attached to the end wall with a depth significantly smaller than the head 

region. Corresponding velocity profiles are shown in figure 3.14. These indicate a 

steady increase in the velocity from the rea.r of the current to a maximum near the front. 

This maximum is initially constant and then begins to decrease at later times. Moreover. 

the maximum is initially distributed through the head region of the current, as defined 
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Figure 3.13: Theoretical depth profiles using the frout ooudition of Rottman and Simpson (1983) 

with rJ2 = 2. (a) hoi HAlO, (b) hoI H = 0.5, (e) hoI H ~ 1. 
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Figure 3.14: Theoretical velocity profiles using the front condition of Rottman and Simpson 

(1983) with tJ2 = 2. (a) holH ~ 0, (b) ho/H = 0.5, (e) holH ~ 1. 
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above, not solely at the current front. It then decreases at the same time as the head 

begins to lose depth and potentially deteriorate. 

A slight discrepancy occurs when comparing the depth profiles for the hoi H = 0.5 case. 

However, this can be attributed to differences in mesh size and iterative procedure. The 

methodology used in this work can be shown to produce a similar result if less points are 

used in the numerical scheme and the order of accuracy of the iterative process is reduced 

considerably. Note that when the number of pOints on the initial line generated by the 

NAG routine is greater than 100, there is very little change in the results, indicating a 

good degree of mesh independence in the present work. 

Figures 3.13 and 3.14 (c) show that using the method of ch8l'acteristia., multivalued 

solutions are generated in the hoi H ~ 1 case in the depth and velocity profiles. In fact, 

this occurs for any initial to ambient height ratio greater than 0.5. Essentially, this means 

that the backward propagating waves generated upon removal of the lodt partition are 

travelling faster than the backward propagating motion on the undisturbed interface at 

110. With reference to the characteristic diagrams, figure 3.10, this implies that the simple 

wave region R2 is expanding into the lower constant state region RI. Physically, this is 

seen in the fonnation of a shock or bore for greater partial depth releases instead of the 

rarefaction wave seen with lower values of hoi H. The specific criteria for the occurrence 

of this shock have been explored by e.g. O'Alessio et 41. (1996). In particular. they 

found that the fractional depth occupied by the denser fluid does play a crucial role 

in the development of the bore. The method of characteristics breaks down for these 

increased depths and requires further conditions or constraints to solve the problem. 

Rottman and Simpson (1983) attempted to incorporate a hydraulic jump model into 

their theory but chose not to present their work. Several authors (Bonnecaze et al., 

1993; D'Alessio et al., 1997) have successfully modelled the hoi H ~ 1 case using finite 

difference methods which can account for the 'hydraulic jump'. Klemp et 41., 1994 and 

Shin et al., 2004 have extended the application of the method of characteristics to full 

height releases by including additional conditions in the method. Essentially this involves 

the application of a front condition on the backward propagating wave that bounds the 

undisturbed region so that it is always faster than the backward propagating waves on 

the interface travelling towards it from the release point. This effectively reduces the 

problem of the bore back to one of an expansion wave that the method can resolve as 

for the smaller depth releases. However, this extension was not perfonned in the present 

study and remains as further work. Therefore, the theory and results discussed herein 
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Cs indicate rough (1) or smooth (0) influence on the bed, interface and top wall, respectively. 

are valid for ratios 0 < hot H ~ 0.5. 

Roush bed 

Theoretical 10 depth and velocity profiles are shown with roughness present in figures 

3.15 and 3.16, respectively. Both ofthese figures confirm that the roughness influenced 

current does not propagate 88 far in the same time period 88 the smooth case. As for 

the smooth case, the depth of the current front at later times is significantly reduced, 

however, when any roughness is present, the current body does not thin 88 substantially 

88 the smooth equivalent and at later times, is almost the same depth 88 the head. 

In fact, when the roughness is included. on the interface also (fignre 3.15 (e», this is 

exaggerated to the extent that the current is deeper behind the front and is almost of 

uniform depth throughout back to the tail. In all rough bed cases, the head region that 

was previously defined behind the current front in the smooth case is deeper than the 

front itself. In laboratory gravity currents this is physically observed, the current has 

a deep head and a reduced height nose. These characteristics are not picked up by the 

smooth case, probably due to lack of drag in the equations. Therefore, this difference 

in the smooth and rough C88e6 observed in the theoretical depth outlines in figure 3.15 

suggests that in the presence of roughness the head height behind the current further 
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.. 'igure 3.16: Theort'tkal velocit.y profiles for ho/H = 0.5 using the front condition of Rottman 

and SimpllOn (1983) with {J2 = 2 and (0) a smooth bed. Rough C&8eS with II = h = h = 0.1 (b) 

Cl = 1. C2 = C3 = 0, (c) Cl = C2 = 1, C3 = 0 and (d) C1 = C2 = Ca = 1. Where C1, C2 and 
Cs indicate rough (1) or smoot.h (0) influence on the bed, int.erface and top wall, respectively. 

increase6 and the rounding of the head towards the front becomes more exaggerated. 

The velocity profiles presented in figure 3.16 show that the deeper region behind the 

head observed in the corresponding depth profiles in figure 3.15, is slower fluid than 

the front itself. This head region is still clearly defined as faster than the rest of the 

current behind it but it does not maintain the same speed as the front as in the smooth 

case. The front velocity clearly decreases sooner with a rough bed than a smooth bed. 

When there is only roughness on the bed (3.16 (b)), this decrease occurs at t/fo ~ 3, 

while in the smooth cue, this value is approximately 8. This is exaggerated further 

when the interfacial roughness effects are included and the current begins to lose speed 

almost immediately. Again, in the above, little difference is observed with or without 

the roughness included ou the top wall. 

The theoretical depth and velocity profiles presenting the effects of manging the mag­

nitude of the roughness are shown in figures 3.17 and 3.18, respectively. It can be aeen 

that reducing the roughness value to 11 = 0.05 produces significantly less effect on the 

flow (figures 3.17 and 3.18 (a)), although even at this value, the depth of the current 

behind the head is slightly increased and the corresponding velocity is decreased. The 

increased roughness magnitude, 11 = 0.2, shows a further decrease in current speed and 

height that occurs sooner than the cases with smaller rouglmess values (figures 3.17 and 
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Figure 3.17: Theoretical depth profiles for ho/H = 0.5 using the front condition of Rottman 

and Simpson (1983) with rP = 2 with roughness on the bed, i.e. C1 = 1, C2 = C3 = O. (0) 

It = 0.05, (6) It = 0.2. Where ell C2 and C3 indk.ate rough (1) or smooth (0) influence on ,.he 
bed, interface IUld top wall, respectively. 

(~ 'iim11 
~ D.: 

o 246 8 
x/xo 

(6) 

10 

tfta ",0.5,1,1.5,2,3, ... 11 
~ 

2 4 6 8 10 

Figure 3.18: Theort't.ical velocity profiles for ho/H = 0.5 using the front condition of Rottman 

and Simpson (1983) with tJ2 == 2 with roughness on t.he bed, i.e. C1 = 1, C2 = Cs = O. (0) 

h = 0.05, (6) h = 0.2. Where Cl, C2 and C3 indicate rough (1) or smooth (0) influence au the 
bed, interface and top wall, respectively. 
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Figure 3.19: Position of the gravity current front as a function of time for hoi H = 0.5 using the 

front condition of Rollman and Simpson (1983) with !J2 = 2. Results shown are [or a smooth 

bed and rough cases with it = h = h = 0.1 and C1 = 1 with C2 = C3 = 0, C1 = C2 = 1 and 
CJ = 0 and C1 = C2 = Ga = 1. Where G1 , C2 and C3 indicate rough (1) or smooth (0) influE'ncE' 
on the bed , interface and top wall. respectively. 

3.18 (b)) . Moreover , when the roughness effect is increased, the current front height 

decreases to the extent that it is lower than the rest of the head and indeed the current 

body and tail. T1H' currcnt d0.pt.h obscrvcd in figur0. 0.17 (b) is almost uniform for later 

time'S. It appcar. that. t.he slowing p.fff'cts of tl1f' ben ronghness cause the current fluid to 

be redistributed more evenly along the current. length, rather than accumulating in the 

head as in the smooth case. 

3.7.4 Front position 

The effects of bed roughness all the front position of a gravity current are shown in figure 

3.19. As ob erved in the characteristic diagrams and t.he depth and velocity profiles, the 

current front does not propagate as far in the same time period under the influence of 

roughness all the bed (C1). However, with roughness of this magnitude (II = 0.1), the 

current does appear to propagate with the same constant speed as the smooth case until 

t ~ 7.5 wllPll tllP rough ea~e HlowH. "\iVlwll the effeeLH of rongllllt'HH are also felt at the 

interface, this retardation is exaggerated and deviates from the constant speed sooner at 

t ~ 5. 
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Figure 3.20: Position of the gravity current front as a function of time for ho i H = 0.5 using the 

front condition of Rottman and Simpson (1983) with /;2 = 2. Results shown are for the smooth 

case and with roughness on the bed i.e. C1 = 1, C2 = C3 = 0 with !I = 0.05 , !I = 0.1, fl = 0.2, 

h = 0.4 and II = O . . Where C1 , C2 and C:3 indicate rough (1) or smooth (0) influence on the 

bed, interface aud top wall. respectively. 

Figure 3.20 shows the effect of changing the magnitude of the roughness value II on the 

position of the front over time, compared to the smooth case. It can be observed that the 

reduced value enables the front to maintain its speed while the increased value decreases 

the distance that the current can propagate in the same time period. Due to the ease of 

processing this datru et, additional values of h = 0.4 and 0.8 have also been included to 

highlight the iufiuence of the bed roughness. Therefore, it is also apparent from figure 

3.20 that the tillle period over which the current maintains all approximately COil tant 

speed is reducing as the magnitude of the bed roughness increases. i.e. the current i 

slowing earlier. 

3.8 Discussion 

The results pr&>ented above indicate that the method of characteristics with the inclusion 

of a front condition give good agreement with experimental front speeds and height. 

flud provides a good approximation to the position of the front of a gravity current. 

The characteristics of the flow can easily be displayed along with the depth and velocity 

pl'oLill'~ alollg th(' ('\llTl'ut ~Ulcl have heell couiinn('(l t,o show a good interpretation of a 
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laboratory current. The depth profile results agree qualitatively with the experimental 

obeervations of Gladstone et al. (2004) and with Shin et aI. (2004) for a gravity current 

released frow a lock with an aspect ratio (ho/H < 1). who found that smaller release 

heights have a more noticeable depression behind the head, therefore a more pronouna!d 

raised bead and a shallower tail. These good agreements, although qualitative, highlight 

the value of tht'Se 1 D models. The information generated from theae results can be 

uaed to identify 8I'e88 of interest in subsequent, more complex. studies and indeed aid 

interpretation of the experimental result. 

Adopting the methodology derived in the smooth cue with the front condition of 

Rottman and Simp8Ol1 (1983). the rough boundary terms have been shown to have 

aipifil:ant inflU(llU:C 011 th,' Bow. These ID retlults suggest that the presence of bed 

roughneas caU8l'fJ a more rounded cWTent head that is deeper behind the front and a 

greater current depth extending back to the tail. This is physically explicable since. as 

the current is being retarded, the slumping Buid is slower, as shown. and therefore ap­

pe8I"S to spread wore evenly over the length of the cWTent rather than rushins towards 

the head leaving a shallow tail and creating a 'head-heavy' current as in the smooth 

cue. Moreovft', modifications to the current head were obsened in the experiments in 

chapter 2. the mOlt relevant here being the shortening of the head length. It is difficult 

to confirm this with a ID illustration of the depth but the present theory does sugest 

a more rounded and perhaps shorter head region behind the front for earlier times. 

Under the influence of bed roughness. the ID gravity currents eventually propagate at 

a slower speed than the smooth equivalent but they still propagate at a COJl8tant speed 

for the initial period of time before slowing. The extent of this period has been shown 

to depend on the magnitude of the roughness on the bed, decreasing with increasing 

magnitude as might be expected. It also depends on whether the interfacial influence is 

included. When this factor is activated. the current slows mum earlier. The retention 

of tltis COllBtant speed phase in the rough cases is in qualitative agreement with the 

experimental results reported herein, which also observed that the current moved at a 

similar speed to the RDlOOth case for a period, before slowing. The size of the decrease in 

speed in the physical experiments was shown to be dependent. on the type of rougbne88, 

which could correlate to increasing magnitude of roughness value in the present theory. 

Also in qualitative agreement with the experimental observations for the rough cases, is 

the reduced downstreRIll velocity behind the front. This was observed for all rough caaes 

and is supported in the theory presented here. 
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The lOlutiona iruplementiug the front condition derived by Shin et al. (2004) appear in 

cIoeer agreement with experimental data than the same method using the front condition 

of Rottmau and Simpsoll (1983) or box models of Huppert and Simpson (1980) for 

the 8IDooth cue. This ~be because it is a more theoretical derivation with no free 

parameters 01' ambiguous values. It is possible that this theory could be extended to 

iDcorporate th .. t"Jf«"ts of bed roughness at the front. This would be an interesting 

extension to the present study since it would highlight the affects of using the smooth 

&out CODditioD OIl the current results, 88 done at present. 

These reBulw provide evidence that the inclusion of additional tenDs into the 2-layer 

aballow water equations to deecribe the 'frictional' effects of bed roughness directly at 

the bed aud lh(! inJIu('U('C at the intcrfaL'C hetween the dCWiC and IWlhit'.nt fluids produce 

.apifkant mntlta on th(' current propagation, even in a simplified 10 mod~1 that d~ 

accouot for the buoyaocy induced changes due to the over-ridden ambient fluid. Tht'Sf' 

predictiona further confirm that rougbness effects on gravity currents should not be ig­

nored in theoretical models. The immediate implications of these results for real life 

MJdiment-laden gravity currents are thicker, slower currents than predicted by smooth 

models. poteDtially resu1tlng in IJlOl'e deposition further upstream and more evenly w. 
per.t sedimentation along the current length. FUrther examination of the flow dynamial 

with CFD are reported in chapters 5 and 6 enabling further 888e88ment of this interpre­

tation. 
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Chapter 4 

Depth-resolved numerical 
simulations: Methodology 

4.1 Introduction 

The previous chapter pretJellted reeults from depth-averaged, simplified theoretical mod­

els. This chapter deecribee the governing equations and numerical schemes used with 

the commercial BOftware FLUENT to generate fully depth-resolved models for gravity 

current 80W1 (Net smooth and rough surfaces in two and three dimensions. The general 

model is second order accurate in time and space and a turbulence model is used for 

c:loeure of the governing equatious. Two different methods for the inclusion of bed rough­

nt'lll Am pl'OpOfM'd along with procMllrcs for verifica.t.ion and validation of the numerical 

calMliatiollR. F\dJ verifiration, validation with f'.xperimentai data (see chapter 2) and the 

reeults of the 20 and 3D simulations can be found in chapter 5. 

4.2 Literature review 

The application of depth-resolved 20 and 3D numerical models to the study of gravity 

currents bas become increasingly common during the last few decades and continues to 

advance with the advance of computing capabilities and the consequent development 

of more aophisticated models. Models for turbulence closure of the Reynolds-Averaged 

Navier-Stoba (RANS) equations are continually being improved upon, while tbe increaae 

in computatiODBl power available also means that the ability to resolve gravity current 

simulations at increasingly high Reynolds numbers with less assumptions has become a 

moreobtaiDable reality, for example, Large Eddy Simulations (LES) or Direct Numerical 

Simulations (DNS). Despite technological advances and model development, there is DO 
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ODe definitive model fOl' nOD -linear flows such 88 gravity currents (Straka et 01., 1993). 

Models have to be appropriately selected for the required analyses, for example, prioritis­

big quantitative accuracy or speed of solution or qualitative visualisation might influence 

model selection. The increasing use of 20 and 3D numerical modelling as an analyti­

cal and predictive tool has encouraged the development of commercial CFO software to 

facilitate modelling and reduce the need for advanced programming specialisation. for 

example. FLUENT. These packages also undergo continual development and testing of 

their capabilities. as highlighted by the present study. 

This review aims to cover some of the fundamental developments in the numerical mod­

elling of gravity currents and to discuss some of the choices made when selecting solution 

methods for a study and the merits and drawbacks of these methods. To the author's 

knowledge there is no one document summarising the existing research on the application 

of numerical models to gravity CUlTents. Rigorous tests of the accuracy of direct numer­

ical simulations with various solution methods and grids are summa.rised in Straka et al. 

(1993). However it should be noted that this work is over a decade old and substantial 

advances in computer power mean that modelling capabilities have increased and an up 

to date review would be beneficial. The inclusion of bed roughness in the numerical mod­

ela is discussed herein. A summary of CFD of single-phase flow over rough surfaces can 

be found in Patel (1998), which also highlights the difficulties involved in modelling bed 

roughness computationally. To date there is little existing work to warrant an equivalent 

compilation for gravity currents. 

4.2.1 Governina equations: RANS VB. LES and DNS 

'lUrbull."llt flows are characterised by Buctuating velocity fields which cause the Budua­

tion and mixing of other flow quantities 81l('h 8fI momp.ntum, en('.rgy and species. It is the 

scaJe of these fluctuations that is the main cause of computat.ional expense. The general 

governing equations that describe turbulent fluid flow are the Navier - Stokes equations. 

ONS is when all scales of motion are fully resolved in space and time. The smallest 

turbulent scales with high frequencies can be too computationally expensive to simulate 

using ONS in practical engineering calculations without access to substantial computing 

prooeseee. Reynolds averaging the Navier - Stokes equations involves decomposing the 

flow quantities into mean and fluctuating components, substituting these expressions into 

the full set of equations and then takes a time average to obtain the Reynolds-averaged 

Navier-Stokes equations. The small scales are removed and therefore this system of 
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equations is more computationally economical. However, the averaging process creates 

additional unknown variables that require the modelling of turbulence transport for c1~ 

sure, thus limitations are incurred and a 'turbulence model' must be carefully chosen to 

repreaent the flow dynamics. There is no single turbulence model that is universally ac­

cepted 88 being superior for all classes of problems (FLUENT, 2006). A general overview 

of the derivation and uses of several existing turbulence ruode1s can be found in Hartel 

(2000). 

In ordel' to include t.he different llow phases of the current. and ambient. lluids, supple­

mentary equations for context-epecific model scalars or species transport have also been 

added (e.g. Straka et al., 1993 and lmran et aL, 2004, respectively), in addition to the 

JD8III and momentum cooservation equations, and solved either directly or in Reynolds -

averaged form. Equations for the transport of concentration and temperature variables 

are particularly important in the study of gravity currents and are the common method 

for modelling the dense underlying fluid (e.g. Baum et al., 1995 and Straka. et aL, 1993, 

respectively). 

Gravity currents have been modelled relatively successfully with the RANS equations 

and a turbulence model for lock-release (Chen and Lee, 1999; Zhang et al., 2001; Cantero 

et al., 2003; Bombardelli et al., 2004; Corney, 20(5), lock-exchange (Klemp et al., 1994; 

Kanarska and Maderich, 20(3) and flux induced (Boumet et aI., 1999; Kassem and 

Imran, 2001; Imran et al., 2004; Kassem and Imran, 20(4) conditions over smooth beds. 

Of these. the two equation k - E turbulence model modified for buoyancy bas been most 

widely used with near wall treatment using standard wall functions (Boumet et aI., 

1999; Chen and Lee, 1999; Kassem and Itman, 2001; Imran et aI., 2004; Kassem and 

Imran.20(4). However. the study of Zhang et al. (2001) used an enhanoed wall function 

method with two equations for wall adjacent motion. Other turbulence closure mode1s 

that have been implemented with similar success are the two equation k - I model 

(Kanaraka 8ud Maderich, 20(3), a Newtonian model for the viscous stresses (Cantero 

et aI., 2003; Bombardelli et al., 20(4) and a first order dosurc SC'ht'mc that depends 

on t.hf'! ~llLti"" IIt~ngtM of IItratifiC'Ation Rnd shpM (Klpmp et aI., 1994). All of these 

models have been shown to display typical gra.vity current characteristiai and to compare 

reasonably well to experimental data for front velocities (within known dimensional 

limitations if the model is 2D, see section 4.2.3) and mean velocity profiles. In fact, 

K8Ilarska and Maderich (2003) show that their model compares well qualitatively to the 

DNS of Hartel et 01. (2000b). Uowever, fully accura.te solution of small scale turbulence 

structures and correspondingly precise turbulence profiles are beyond the capabilities of 
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these models. This is exemplified in Fukushima and Watanabe (1990) where the k - e 

model underpredicts the turbulence kinetic energy and dissipation distribution within 

the flaw. 

An alternative approach that bridges the gap between DNS and RANS simulations is 

large eddy simulation (LES). whereby the large eddies are explicitly resolved using 'fil­

tered' Navier-Stokes equations (see Hartel (2000». The full Navier-Stokes equations are 

manipulated mathematically to remove eddies that are smaller than the size of a filter, 

which is often the size of the grid (Patterson et 01., 2(05). Although additional un­

known terms still result in the need for modelling to achieve closure, similar to Reynol~ 

avenging, the smaller scales that require modelling tend to be more isotropic and less 

affected hy ft'.atures that gCM.'fll the main body of the How, like boundary conditions, 

than the larger eddies that are now fully resolved. The consequcnc~ of this filtering 

prooess are large eddy simulations that directly solve less turbulence but at higher res0-

lution thus reducing the error introduced by modelling. However, to accurately resolve 

the energy containing turbulent eddies in time and space for high Reynolds number flows 

requires significantly greater computer resources than the RANS approach with a tur­

bulence model. But, in comparison to DNS, gravity current simulations using LES are 

senerally computationally quicker and can reach a higher range of Reynolds numbers 

while retaining good qualitative experimental comparison, as shown by Patterson et 01. 

(2005). A 2D study by Ooi et 01. 0 showed good agreement with the experimental f&. 

suIts of Hacker et 01. (1996) but with resolution of billows right up to the front which is 

questionable. Baum et 01. (1995), Rebm et 01. (1995) and Fleischmann and McGrattaD 

(1999) also successfully modelled gravity current transport in building fires with LES 

with good comparison to experimental data. The most extensive work using LES to 

model gravity currents is in the oceanic modelling of saline underflows (OzgBkmen and 

Chaasignet, 2002; ()zgookmen et 01., 2003, 2004a, 2004b, 2006, 2007; OzgOkmen and 

Fischer, 20(8). They use a 3D non-hydrostatic, spectral element model that combines 

the high order accuracy of spectral element methods with finite element methods. which 

enables two methods of achieving convergence: refinement of the grid elements or in­

crease of the polynomial degree used in the intr~lement interpolation. A minimum 

number of elements can be used 80 that the shape of the domain geometry is adequately 

captured, then the spectral truncation degree is increased for convergence (Ozgokmen 

et al., 2004b). A known benefit of spectral methods is their lack of numerical dissi­

patioll and dispersion errors which is important in problems with propagation of high 

flow VlUiablt" gradients and mixing as found in gravity currents. Although slightly dated 
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now, the review undertaken by Straka et al. (1993) finds that high order spectral type 

schemes perform better than many other methods if the mesh refinement is adequate or 

even marginal, however these methods were virtually unusable at low mesh resolution 

due to the amount of computational noise produced. Other monotonic schemes suffered 

from damping characteristics resulting in less accurate flow features and slower velocities, 

however, they were able to solve at all levels of mesh refinement. 

DNS typically requires fine resolution in order to achieve a converged solution of turbulent 

fluid motion (Straka et al., 1993). Therefore, as the Reynolds number of the flow and 

hence the turbulence, increase, further refinement is necessary to retain accuracy. As this 

continues, the computational cost eventually becomes prohibitive and even modern day 

parallel processing systems are incapable of solution. Consequently, careful consideration 

of the scheme used for treatment of the governing equations is necessary to optimise 

C'omputational expenditure. The first high resolution direct numerical simulation of 

gravity currents in 2D was carried out for a lock-exchange flow by Hartel et al. (1997). 

This was improved upon and extended to 3D by Hartel et al. (200Gb) and Hartel et al. 

(2OOOa) for an in depth study of velocities, front speeds and the lobe and cleft instability. 

It was further modified for a lock-release study with the inclusion of particles by Necker 

et al. (2002) and Necker et al. (2005). They use a lni.xed spectral/spectral element 

approach similar to that described previously. The spectral based methodology has been 

applied to non-BoussinCSQ lock-release currents (Birman et al., 20(5) with successful 

experimental validation. Recently Cantero et al. (2008a;2008b) also performed DNS of 

depositional particulate density currents in order to study the effects of particle inertia 

using a psuedo-spectral method. To the author's knowledge, all of the DNS studies of 

gravity currents have been carried out using spectral/spectral element methods, only 

LES and RANS models requiring turbulence closure have been undertaken using other 

appr08('hos suC'h as finitt' volume met.hods. 

One final consideration that should be taken into account when selecting the turbulence 

model, and is of particular relevance to the present study, is the physical boundaries of 

the domain. For example, the presence of non-smooth bounding wall geometries will 

incur further turbulence modelling complexities. Some relevant cases are discUS8ed in 

section 4.2.5. 
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4.2.2 Initial and boundary conditions 

Numerical simulations are usually used in conjunction with experimental data for valida­

tion and therefore the initial and boundary conditions should reflect the tank setup that 

has been used. However, some aspects of the experimental configuration present further 

difficulties in numerical modelling, for example, a free surface is nearly always present at 

the upper boundary of the domain. The most commonly used method of modelling the 

free surface is to use a fixed rigid lid and apply no flux, symmetry flow conditions along 

this boundary. Some studies use no-slip boundaries (Hartel et al., 2OOOb; Hartel et al., 

2OOOa; Necker et 01., 2002; Necker et al., 2005) based on the fact that impurities in the 

fluids in laboratory Bows make a free surface act as a no-slip surface (Britter and Sim~ 

son, 1978) and several have included equations to model the surface elevation (Harlow 

and Welch, 1965; Daly and Pracht, 1968; Fukushima and Watanabe, 1990; Kanarska 

and Maderich, 20(3). However, validation with experimental data shows that the error 

incurred in using a simple fixt..'<.llid, symmetry boundary appears to have little effect on 

the accuracy of results. In nearly all CFD studies the bottom wall and, if 3D, often 

the side walls are set with no-slip boundary conditions since this is perceived 88 more 

physical unless the difference in slip and no-slip conditions is of specific interest (Hartel 

et al., 2OOOb). For the modelling of a more complex bed with, for example, a fonn or 

grain roughness (or both) present, the boundary conditions can play an important part 

in accounting for these features in a model. Section 4.2.5 covers this aspect in more 

detail. 

The Bow inducing mechanism is an important initial condition that needs careful cal­

ibration in nwnerical modelling. For lock-release and lock-exchange cases, the flow is 

typically initialised at rest throughout the domain and when the simulation starts, grav­

itational effects on the density difference between the cells initialised with higher density 

and those with lower values, instigate immediate reaction within the domain, analogous 

to instantaneous release of fluid from the lock. Thus flow commences instantaneously. 

However, some turbulence initialisation is often required, although values are not often 

stated explicitly in model descriptions and choice of magnitude appears to vary: Chen 

and Lee (1999) and Zhang et 01. (2001) initialise turbulence kinetic energy and dissipation 

with negligibly small values of O(1O-7m2s-2) while Corney (2005) uses a larger value of 

O(1O-4m2s-2). To the author's knowledge there is no experimental data available with 

lock release initial conditions from which to obtain empirical values of initial turbulence 

parameters. Fukushima and Watanabe (1990) quote a value of about 1 x 10-7m2s-2 
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for turbulenre kinetic energy within the tank measured prior to a flux induced release. 

Necker et 01. (2002) and Necker et al. (2005) impose weak turbulence disturbances in the 

velocity field in the vicinity of the interface in order to enhance the breakdown of the 

flow into 3D after release. Necker et 01. (2005) carried out a study of the influence of this 

initial turbulenre in their work on particle driven currents. They increased the initial 

turbulenre kinetic energy ill the domain with all other collditioll8 identical and found 

that the main effect is strongly enhanced mixing within the current fluid and stronger 

initial turbulence fields which lead to earlier breakdown of the coherent vortices that 

form behind the head of the current. However, these only result ill minor diffcreuceH in 

overall flow devdopmcnt reflccted in slightly high(',f front velocities maintained at later 

times with higher initial kinetic energy. They p<l8tulate that the lack of substantial flow 

altering effects is due to the turbulent motion that exists prior to release being quickly 

damped by dissipation from the flow acceleration during the formation of the current 

front. 

In addition to turbulence perturbations, Hartel et 01. (1997), Hartel et al. (2OOOb), Hartel 

et al. (2OOOa), and Birman et 01. (2005) use an initial density field with an error function 

profile whilst Straka et al. (1993), Hartel et 01. (1997) and Bongolan-Walsh et al. (2006) 

apply an initial temperature profile to the domain. Ozg5kmen et al. (2004b), OzgOkmen 

et al. (2004a) and OZgOkmen and Fischer (2008) also use a lateral sinusoidal salinity 

perturbation in their initial flux induced conditions to facilitate transition int.o 3D flow, 

see figure 4.1 (a) p. 16.1). In flux induced currents, a velocity profile is imposed at 

the inflow, for example Imran et al. (2004) and Kassem and Imran (2004) impose plug 

flow velocity conditions. OzgOkmen et al. (2004&), Ozg5kmen et 01. (2004b), 6zgokmen 

and Fischer (2008) and Bongolan-Walsh et ai. (2006) use a time-dependent velOCity 

profile dependent on the propagation speed of the gravity current with reversed flow in 

the overlying fluid to prevent redrC'ulat.ing flow at the inlet or thinning of the density 

current downstream which can occur due to inadequate rate of supply (Ozgijkmen et 01., 

2004b), see figure 4.1 (f) p. 165. Fukushima and Watanabe (1990) also impose a velocity 

profile inflow from empirical data, however, their results do not model the return flow 

accurately which could be due to an insufficient return flow condition. 

4.2.3 2D va. 3D models 

One of the first studies dedicated specifically to the numerical modelling of gravity cur­

rents was undertaken by Daly and Pracht (1968), with the intention that their 2D nu-
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merical study could be used as a useful aid to analytical models. While a 2D model 

fulfills this PUI'p08e, 3D models extend this to provide a solution where analytical meth­

ods are far more complicated without limiting assumptions. Birman et al. (2005) use a 

2D model to confirm which of the physical scenarios generated in parallel experimental 

work (Lowe et aI., 20(5) is observed in reality. Thus, if their 2D model gives clear con­

firmation of t.he physics, an extension to 3D is unnecessa.ry unless further detail beyond 

the capability of 2D is of interest. Several models in 2D have been developed since that 

of Harlow and Welch (1965) and Daly and Pracht (1968) and are able to resolve the 

basic flow cllRraCtt.'listiUJ for e&rly tiwC8 (up to approxillaately 10 nondimensional time 

units (Necker et aI., 2002}). Hartel et aI. (2000b) demonstrate that a 2D DNS model can 

reliably predict integral values such as the Froude number and also more subtle aspects 

of the flow 8uC'h as the elevation of the nose and details of the flow structure within the 

gravity current head (note that this is a DNS simulation). However, the accuracy of 

the flow characteristics and the resulting data have been shown to diverge from the 3D 

and experimental datasets for later times (Necker et aI., 20(2). Although several other 

variables affect the magnitude of this deviation from the 'true' data (e.g. grid resolution, 

RANS/DNS, solution schemes etc.) it is generally acknowledged (e.g. Hartel et aI., 1997; 

Necker et aI., 2002; Cantero et aI., 2003; Patterson et aI., 20(5) that this is primarily due 

to the unphysical retention of the large vortices or billows that are not broken down into 

smaller scales as a consequence of the two-dimensionality of the simulation and hence 

absence of necessary 3D mechanisms. The resultant effect is increased entrainment of 

fresh water into the underflow so that the salt wat.er is excessively diluted and the current 

cannot retain its speed leading to underestimation of the front velocity. The pn!8eDCe of 

this lateral component of velocity, particularly within the large billows at the interface, 

is clearly visualised in the results of a 3D simulation carried out by Cantero et al. (2003). 

Quantitative differences in concentration resulting from this limitation have been illu. 

trated by Necker et aI. (2002) in a comparison of the concentration of a 2D simulation 

with the centreline of a 3D equivalent. 

The main limitation to 3D simulations is the computational cost. As mentioned pre­

viously, even with the modern day supercomputers, the increased mesh size and hence 

number of calculatious necessary during computation can result in prohibitively high 

processing requirements. For example, Hartel et aI. (2000b) use a 2D mesh of resolution 

768 x 91 (69888 cells) but their 3D mesh has about 4.25 million grid points for simula­

tions at comparative low Reynolds numbers (710 and 750 respectively). Consequently, 

the Reynolds number dependent, fine meshed, 3D direct numerical gravity current sim-
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ulations are extremely limited in the range of Re values that can be studied, while in 20 

they can achieve a range of Re values which enables the study of effects of changes in Re 

and more interesting high Re cases. The difference in real time cost is also substantial, 

&8 illustrated by the work of OzgOkmen et aI. (2004b) who carried out 20 LES that 

took about two hours on 16 processors. while their 30 equivalent runs took 9 days on 32 

processors. Moreover, if the effects of particles are included in the flow, as in the recent 

work of Calltero et aI. (2008&; 2008b), the computational cost increases further since the 

mesh must be finer. Thus, even with modern computing power, a 20 model is adopted 

so that DNS can be performed. Hence, despite known limitations, 2D approximations 

are still used 88 a less computationally expensive approach to inveJtigate the general 

behaviour of gravity currents. 

4.2.4 Independent codes V8. commercial codes 

Several studies document the development of independent codes for the solution of the 

equations governing gravity current motion. As modern computing capabilities advance, 

the ability to generate complex fluid flow models to simulate physical flow processes, 

before further actions are undertaken in reality, has increased demand for codes that are 

more flexible and commercially accessible, hence the development of commercial CFO 

software. 

The earliest gravity current models date back several decades (Harlow and Welch, 1965; 

Daly and Pracht, 1968) but independent numerical models for similar phenomena, for 

example, jets or plwnes, were developed previous to this. Straka et aI. (1993) summarises 

the results of several researchers who have modelled a gravity current phenomenon with 

independent DNS (,:odes implementing different schemes. These codes can take consid­

erable time to write and modify and can be very variable in accuracy and dependent 

on mesh and method chosen (Straka et al., 1993). They are often complex and difficult 

to understand by anyone other than the code developers. The immediate advantages of 

commercial software are that several modelling algorithms are usually available for time 

and space discretisation, scalar tr&llSport equations for variables such 88 concentration 

can easily be added and there are a variety of models available for turbulence closure of 

the RA.~S. Added to these, is the flexibility to change the 'physical effects' in the model 

with the click of a button to allow the incorporation of almost any physical behaviour 

(De Cesare et al., 2001). There are drawbacks however and in a comparative study, 

Bombardelli et aI. (2004) state that independent codes give a more true solution to the 
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Navier-Stokes equations despite the fact that they might not look as physically represen­

tative of the experiments as the commercial code generated result. In their simulations, 

the commercial codes exhibit damped characteristics due to increased numerical diffusion 

applied in these codes in order to increase chances of convergence and hence appear more 

physical. They used 20500 nodes for their independent code and 58500 for their com­

mercial code and found that mesh refinement resulted in no change for their own code 

but large challges with the commercial code, thus commercial code requires many more 

cells to achieve the same qualitative results as the independent code. Bombardelli et al. 

(2004) postulate that these limitations are due to numerical limiters and 'stability tricks' 

present in commercial codes to increase robustness resulting in numerical over-damping 

whkb is partkularly inadequate for instability driven flows such 88 gravity currents. It 

should be noted that this study does only compare one independent and one (unnamed) 

commercial code when, as mentioned previously, there is no generally accepted definitive 

model for simulating gravity currents and there are various modelling options and solu­

tion methods available that may alter this oomparison. For example, most oommercial 

code enables the inclusion of user-defined functions which are particularly useful for flex­

ibility in defining source terms, variable flow scalars and other modifications required. 

The results of Bombardelli et 41. (2004) imply that commercial codes require the same 

careful validation and verification 8.8 is necessary for all numerical codes. 

Some other work has been carried out on gravity currents using commercial codes. 

Boumet et al. (1999) studied a plunging gravity current using the commercial soft­

ware PHOENICS with the RANS and a k - €, buoyancy modified turbulence model. 

They found that their model seemed capable of reproducing entrainment values within 

the range of the existing experimental values and reasonable agreement with the known 

characteristics of plunging currents. However, lack of laboratory and field studies at the 

time meant that they had to validate their model primarily using another semi-empirical 

mood without oc,CNlS to data det'lc.ribing mean flow propcrtiet'l or local flow stmctllres 

which are essential for model formulation and input values. De Cesare et al. (2001) 

used CFOS-CFX-4 (now ANSYS-CFX) to model sedimentation from turbidity currents 

entering reservoirs. The study used the RANS with e. k - e turbulence model and au 

additional equation for the concentration that inoorporated a particle settling velocity. 

They also applied user defined modules for sedimentation and erosion. Their results 

showed good agreement with the lateral spreading of 8. clay-laden laboratory current. 

Corney (2005) conducted an in depth study in 20 and 3D using the commercial software 

FLUENT and discusses several solution schemes and options available for that user in-
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terface. The results are vigorously verified and validated and limitations are obsen-ed 

and acknowledged. Chen and Lee (1999), Zhang et aI. (2001), Imran et aI. (2004) and 

Kassem and Imran (2004) have also modelled gravity current flow using FLUENT with 

different conditions and domain configurations. Chen and Lee (1999) and Zhang et aI. 

(2001) found good agreement with their results and the general features observed in the 

laboratory. however their work is only first order accurate in time which has subsequently 

been shown to limit validity (Corney, 2005). lmran et aI. (2004) and Kassem and lmran 

(2004) simulated the How of a flux initialised current in straight and sinuous, open and 

l-'Onfiuc..'<l cluwuel8. Tht:I'C was 110 reference to grid accuracy tests for vcrificatioo of the 

models but they do acknowledge that their results should be treated with caution until 

validated with laboratory data. The analytical and experimental model of Corney et aI. 

(2006) contradicts Kassem and Imran (2004) thus highlighting the importance of verifi­

cation and validation. It is interesting to note that in a discussion of Corney et al. (2006), 

Imran et aI. (2008) retrospectively present a qualitative examination of the influence of 

changing the grids on the predictions of Kassem and Imran (2004). 

4.2.5 Modelling of bed roughness 

To the authors knowledge, there is very little gravity current literature that explicitly ex­

amines the effects of bed roughness on the dynamics of gravity currents using numerical 

simulations. There have been several studies that model the spread of gravity currents 

over topography in planform but without detail of the internal flow structure (e.g. De Ce­

sare et aI., 2001, Ozsoy et aI., 20(1). OZgOOkmen et aI. (2003) have numerically modelled 

the salinity lUid tempera.ture distrib\ltion.~ aud wjodty field of the gravity current that 

occurs over a natural bed at the Red Sea outflow but this is 8 case.specific study and 

they did not aim to quantitatively study the effects of different roughness parameters 

on the ftow. In subsequent studies (OzgOkmen et aI., 2004b; OzgOkmen et aI., 2004&) 

a more analytical approach has been adopted to study the effects of 8 small scale, 0(1 

km) (domain size is 10 km long by 2 km wide), 'bumpy' bed on entrainment in gravity 

currents. Their 'NekSOOO' code has been used to solve non-hydrostatic governing equ. 

tions using 8 spectral element method (see section 4.2.1 for discussion of this approacll). 

The bumpy bed is generated by creating a mesh titted to the geollletry. The bumpe 

are included by specifying a wavenumber factor and an amplitude factor which describe 

the frequency and the elevation and depression of the bumps about the horizontal plane 

origin, see figure 4.1 (b) - (e). More recently, this study has been extended (Ozgokmen 

and Fischer, 20(8) to encompass a rougher bed generated using a siInilar sinusoidal per-
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(a) (b) (c) 

(d) (e) (j) 

x=t x::l .O 

Figure 1.1: (a) The smooth bed model , (b) - (e) the 'bumpy' bed roughness models and (f) the 

initial conditions of Ozgokmpn et al. (2004a). The domain size is 10 km x 2 kill such that thf' 

humps are of ordf'1" 0(1 km) . 

turbation to the bottom bounda.ry of the domain and the same numerical approach, 

boundary cOlldition .. c; and the majority of the parameters as the previous studies. 

Advanced quantitative modelling of bed roughness effects on flow dynamics has been car­

ried out down to very :nnall scales using DNS ill 2D and 3D for flow in square ducts with 

Reynolds IlUl1lbcn; up to ~ 10000. Although this work is not specific to the simulation 

of gravity current propagatioll, it is a highly resolved, rigorously verified example of the 

inclusion of bed roughness in t urlmlent. channel flow and several studies are particularly 

relevant to the beam-type roughness used in the present study and for illustrating the 

progression to modelling more complex forms like dunes. Cui et al. (2003h). Aslu'afiall 

et ai. (2004), Krogstad et ai. (200!)), Ashrafian and Andersson (200G) find Ikeda and 

Dlll'biu (2007). nmong others, sl1('('cssflllly usc a body-fi ttcd grid around the beam ur­

face which doesn't require additional forcing function techniques. Cui et al. (2003a) 

uses thi method for modelling flow over a wavy wall a.nd Vue et ai. (2005) and Vue 

et al. (2006) apply it to a fixed clune sha.ped geometry. Several other studies do imple­

lIleut additional forcing teclllliqucs. most notably using the 'immersed boundary method' 

(Fadlun et ai., 2000) for the inclusion of 2D square beam-type roughness in 2D and 3D 

domains (e.g. Leonardi et al., 2003a, Orlandi et ai., 2006) or an analogous 'force field ' 

method for 3D fto\\' over a 2D wavy bed (Cui et al., 2003c). This method allows the 

olution of flows over complex geometries without. the need of computationally intensive 

body-fittf'd grids. They are parLiculcu'ly useful for irregularly shaped roughne. where 

body fitted grids would result in grid deformation and introduce additional instability. 
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The presence of the elements in the domain is modelled by setting the velocity inside 

the boundary and on the surface of the body (which does not necessarily coincide with 

the grid) to be zero and then (~culating the velocity at the first point outside the body 

with a linear interpolation with the velocity at the second point outside the body. It 

is necessary to increase the number of points in the vicinity of the element in order to 

describe the coutour of its surface accurately. For example. Orlandi et aL (2006) use a 

mesh of 400 x 160 x 128 with 30 points of almost uniform spacing within the rough layer 

and then 130 points above in a nonuniform spacing i.e. nearly 20% of the vertical points 

are within the rough layer. The integration of the governing equations requires only 5% 

more CPU time with immersed boundaries than without them (Leonardi et aL. 2003b). 

The results of Cui et al. (200.~) which compare a body fitted mMh and a force fit"ld 

method show little difference for flow over a wavy wall. However. their example and the 

above studies are for simple 20 geometries that do not result in high ooll deformation 

with a body fitted method and hence its limitations are not tested. 

The numerical modelling of flow in roughened ducts also higblights aspects that require 

additional consideration for the modelling of bed roughened gravity currents. Aa w. 
cu.ed previously (section 4.2.3) it is well known that 2D numerical simulations with 

smooth bed conditions result in inadequate resolution of the large vortices and therefore 

3D models that include lateral vortex degeneration mechanisms are required for greater 

accuracy. Leonardi et al. (2004) showed that, for flow in beam-roughened ducts, tur­

bulent vortical structures appear larger in the lateral direction due to the presence of 

the elements, suggesting a further requirement in 3D modelling of an equivalent grav­

ity current flow. Ikeda and Durbin (2007) agree that because the flow is blodced by 

the roughness f'Jements, the lateral velocity fluctuation is intensified and this cannot be 

shown by a 2D model. Studies of the performance of RANS with a turbulence model 

against LES and ONS have also been carried out in the context of single phase flow in 

bf'ADl - roughmoo ductJl IIlld ill rhNlUom with fixM dum'S. In one LES study, Yoon and 

Patel (1996) state that the RANS methods are inadequate for modelling the production 

of coherent structures in flow over fixed dunes. However, they also find a limitation 

to the LES, it does not adequately 8L'count for the upstream flow history. In a com­

parison with LES. Cui et al. (2003b) state that mean velocity profiles calculated with 

RANS and a turbulence model represent the flow with reasonable accuracy but that 

there are signifirant differences between turbulence kinetic energy (TKE) distributioD 

from experimental results and those calculated with the RANS method. Contradictory 

TKE distributions around the elements have also been observed when compared to DNS 
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(Ikeda and Durbin, 20(7). 

The study of Ikeda and Durbin (2007) compares the RANS closed with an eddy viscosity 

model to DNS. although it should be noted that the RANS model is essentially only 

a 2D domain while the DNS is 3D. Their results found that the RANS model give; 

the "TOng s1opt' for the log layer wolocity profile. They suggest that a reason for this 

could be that RANS models are calibrated with and dependent on smooth wall data 

that may not have the correct empirical value to capture the averaged flow over the 

beam roughness when the geometry is fully resolved. The DNS shows smoothed vortex 

streaks parallel to the wall for a smooth surface and highly irregular vortex streaks in 

the rough case. The RANS model does not have the capability to predict the log law 

displacement caused by these vortices, it is reliant on empirical input which is based 

on smooth WRIts and ran not ('aptllr~ t.h~ ~ffcct of altm-cd turbulence structure. The 

RANS solution also exhibits an elongated reattachment region between widely spaced 

elements leading to discrepancies in the modelling of the flow dynamics within the space 

between the elements with erroneous consequences for the near bed modelling of the flow 

field. Related to thi8, Cui et 01. (2003b) suggest that the RANS approach modified for 

roughness is suitable for elements with large distances between them but not for cloRely 

spaced roughness bec-ause it does not account for the effects of spacing. Note that it has, 

however, been 8hown that to a first approximation, the closure scheme need DOt depend 

OIl the type of roughness (Leonardi et 01., 2003&). 

Several CFD studies on fiow in open channels and ducts have also investigated ways 

of implementing a more irregular, non-homogeneous roughness. While all of the above 

studies apply a no-slip boundary condition on their rough surfaces, some also incorporate 

the effect of grain type roughnease8 as well 88 the principle form type discusaed above. 

A model that can account for any form roughness with any additional grain roughness 

is the ultimate aim of many of these studies, including the present work. The main 

question for the inclusion of grain type roughness is one of how turbulence is to be 

modelled. Proper treatment of the essential features of the flow demands a numf!lica1 

method that is robust enough to resolve separating and reattsrhing flow over ft, HUrfaN! of 

complex geometry, and a turbulence modE'J that is sufficiently accurate to describe such 

flows and take into account sand grain roughness (Yoon and Patel, 1996). A strict DNS 

would be almost impossible since the mesh size required to resolve down to the scale 

of coarae sand, for example, would be prohibitively expensive. The RANS equations 

with a turbulence model for closure offer a comparatively simple meaDS of including 

grain roughness through the wall functions or in boundary conditions while retaining a 
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reasonable size mesh. Yoon and Patel (1996) use the RANS with a k - w model for flow 

over a fixed dune with roughness prescribed through a boundary condition on w. It should 

be noted. however. that this model has been shown to be inadequate for the modelling for 

gravity currents (Corney, 20(5). In a similar study, Durbin et al. (2001) use a modified 

k - E model with a two-layer approach near the wall and a boundary condition on k. 

The former find that their model predicts velocity and turbulence fields and pressure and 

friction distributions and ftow separation details in general agreement with experimental 

data. The latter generates slightly better agreement for these parameters. Durbin et 01. 

(2001) also highlight a limitation of the k - E model in its inability to describe the near­

wall zone, essential to this type of study. Hence they use a twG-layer approach rather 

than wall functions or a 'low Reynolds number' modifi('ation. 

The primary concern with the use of wall functions is the range of application of the 

'log-law' uaed to model the turbulence near the wall and more disconcertingly, the lack 

of agreement amongst researchers as to the specification of the two law constants Ie, the 

Von Karman constant, and B whose values in the past have ranged from 0.4 - 0.438 

and 5.5 - 6.17, respectively. A summary of different arguments and approaches can be 

found in (Patel, 1998). Despite these limitations. the k - e model is widely used in many 

areas of fluid dynamics and thus methods for modif)ing and optimising it for different 

applications are widely sought after. For example, for atmospheric flow over hilly terrain 

Kim and Patel (2000) and Kim et al. (2000) found that, in particular. the RNG k - E 

model with a body-fitted grid and roughness specified in the wall functions gave good 

agreement with experimental data for the location of separation and reattachment points 

and thus the reattachment length (Kim and Patel, 2000). There was also reasonable 

agreement with field data for models of four different hill topographies (Kim et aI., 

20(0). They conclude that their RNG model is suitable for prediction of local scale wind 

flow <M'.f hilly tnrrain wit.h or without flow separat.ion. 

Although the above mcthods filld good 'gelleral' agJ'CCmcllt, the RANS methods have 

been shown to be inferior for the resolution of coherent structures about dunes, as men­

tioned in section 4.2.1. With this limitation and the prohibitive expense of DNS, LES 

models have been developed that show better agreement with the important features of 

the flow. Cui et 01. (2OO3c) carried out a LES study implementing a method that de­

composes the roughness into resolved (form) and subgrid (grain) scale roughness. similar 

to flow decomposition performed in LES. Their idea is that larger, resolved roughness 

effects the flow momentum and energy dependent on a specific roughness configuration 

that might be unique to that case study, whereas subgrid scale roughness has less impact 
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and is expected to have more common features in a variety of problems and can therefore 

be described more generally. Cui et aI. (2OO3c) use a bodY-fitted grid and a force field 

method. as discussed previously in this section. The non-resolved subgrid roughness 

is modelled by a random force distribution which involves the specification of a drag 

coefficient. Their results show good agreement with experimental data. 

Obviously. with the frontal phenomena and instabilities due to stratification involved in 

modelling gravity currents, the results and treatments used in flow in ducts may not hold 

equivalently. Gravity currents are highly transient due to. the continual entrainment of 

ambient fluid and they are known to undergo transitions into different regimes at various 

stages of propagation. In the presence of roughness, it is bigbly probable that these 

trausitiou.'t will hc wodifit!d in sonlC way incurring further modelling requirements. It 

should also be taken into account that the aforementioned numcric-.al models of flow in 

ducts are relatively recent research and still restricted by a limited amount of laboratory 

work on the topic available for validation (Cui et 01., 2003b) despite the fact that rasearcb 

into flow in roughened pipes has been carried out for several decades and, in general, 

has less flow complexities than gravity currents, as highlighted above. To the author's 

knowledge, this is the first study to address the lade of both laboratory and numerical 

data in the research of gravity current flow over bed roughness and hence does not seek 

to achieve such a high resolution within the timescale of the present study. 

4.2.6 Summary 

Numerical modelling of complex non-linear flows such as gravity currents is a continually 

advancing discipline. highly dependent on the computational power available. Clearly. for 

the greatest accuracy independently coded, 3D DNS should be carried out. however, this 

is not always feasible without coding specialists and access to several processes running 

in parallel. 2D RANS with a turbulence model for closure is within the processing 

capabilities of even a single processor PC and bas been shown to model gravity current 

dynamics with reasonable accuracy when treated with careful analysis and awareness of 

the model limitations. Similarly, when a commercial code is used, the validity of results 

is reliant on careful model verification and knowledge of the limitations of the code. 

There is a continually expanding amount of literature which documents increasingly high 

resolution research on the dynamics of gravity current propagation over smooth surfaces. 

However. only a handful of numerical studies have been carried out on the effect of a 

more natural bottom boundary or bed roughness. To the author's knowledge, only the 
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studies of OzgOkmen et al. (2004&) and Ozgaiunen and Fischer (2008) have attempted to 

carry out any quantitative analysis on the effects that different roughness configuration 

might haw on gravity currents but sufficient experimental or field data has yet to be 

provided (QI' full validation of these studies. Detailed analyses of roughness effects on 

equivalent singl.pbase Bow in ducts indicate that care should be taken when using 2D 

RANS models particularly with regards to turbulence kinetic energy distributions near 

the elements. 

4.3 Model setup 

4.S.1 General model setup and the lock-box geometry 

Continuity and momentum equations 

The governing equations are the Navier-Stokes equations for fluid flow, 88 mmtion~ p~ 

viously. Including the continuity equation, for three-dimensional, unsteady flow, they 

can be written as the following set of equations: 

{Jp 
-+V'(PW=O IJt 

8~Jl. + v. (PU) = -Vp+ V· <'> + PI. + E 

(4.1) 

(4.2) 

where p is the pressure, I. is the gravitational acceleration, E is the external body force 

(set as zero in the present study) and , is the stress tensor given by 

(4.3) 

where I' is the molecular viscosity aud 1 is the unit tensor. 

This is the general system of equations to be used to model Bow mass and momentum. 

Additional equations to model the two phaBes of the Bow and their interaction and the 

required turbulence parameters are presented in sections 4.3.2 and 4.3.3, respectively. 

Numerical pometry, lDitlal and boundary conditions 

The numerical domain geometry is generated in the mesh generation padcage GMmIT 

(see FLUENT, 2006 for details). It is maintained as similar to the experimental setup as 

possible and encompasae8 a sub-domain that represents the lock-box within which cella 
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Figure 1.2: Ulllerical tank geometry with dimensions for the smooth case. Dense fluid (blue) 
illitialised to the left of the lock with volume fraction 1 and Cl.llIbiellt fluid (grey) to (.he right with 
volullle fraction O. The free surface, treated with a sYlllmetry cOlldition is shown in red and the 
measurement location is lhe line l3in 35. Expanded section shows initial part of the 45 x417 mesh 

with emphasis that the cell length is twice the height. For 3D geometries the domain extends 
0.2 m laterally (y) and oy = 0;:,. 

are partitioned (see section 4.3.2) from the rest of the domain to represent the denser 

current fluid: a free surface analogy; and a measurement 'line' representing Bin 35 (see 

later in this section). The mesh used is a hexahedron mesh that divides the domain into 

rectangular or cuboid cells, depending 011 whether the mesh is 2D or 3D respectively. 

The ells have height ()Z, lellgth rl.7: = 2()z and width iiy = rlz. The factor two stretch in 

the streamwise directioll enables reduction of computatiollal cost and since the direction 

of flow is primmily hori7.ontal , except at the front , the' accuracy of the imulation in 

the maiu booy of the flow should not be compromised. Note that Corney (2005) us 

a factor four stretch in the streamwise direction which further decreases computational 

expense. However, it has been shown that mesh stretching in the streamwise direction 

may significantly disturb turbulent eddies and therefore adversely affect resultant statis­

tical quftlltitie (Ik da and Durbin, 2007). The stretch factor also has implications when 

a rough geometry is included in the bottom wall (see section 4.3.4.1) since an increasing 

stretch factor decreases the number of cells present in potentially complex flow regions 

b tween and above the roughness elements, thus decreasing the resolution and therefore 

the accuracy in th se areas. Since one of the methods of including bed roughness in the 



172 

domain requires a body-fitted mesh (see section 4.3.4.1), it is essential that the cells fit 

the geometry without unnecessary distortion. To be consistent with this case, meshes 

with the same maximum· number of cells in x, 11 and % are to be used for the smooth 

boundary domain. All length scales of a cell are proportional to the roughness element 

height, kr = 0.006 m. Based on this value, two domains were generated with meshes 

of 84( x 84) x 834 (x x 11 x %, where 11 is only of relevance if the domain is 3D) and 

168( x 168) x 1668 cells. In the smooth case another coarser mesh of 42( x42) x 417 cells 

was also included for verification pUrp06e8, see section 4.5. 

The principle features of the domain can be seen in figure 4.2. Gravitational accelera­

tion, fl' is specified as (0,0,-9.81) ms-2 and the velocity components 8I'e all initialised as 

zero throughout the domain, i.e. y. The density of water is set to 998.2 kgm-3 and the 

viscosity of water is set to 0.001003 kgm-1s-l. For initialisation of turbulenre variables, 

see section 4.3.3. The boundary conditions on the bottom and. ends of the domain are 

set to be no-slip, given by 

(4.4) 

A no flux condition holds on the top boundary in order to create an analogy with a 

free surface (see section 4.2.2) and thus the following condition, equivalent to a free.slip, 

symmetry boundary, is imposed: 

w=o, 8u 
-=0 
{Jz 

8v 
-=0 
{Jz (4.5) 

It is possible to model a free surface, for example using another multiphase flow model for 

the interaction of water and air, however, this would cause further computational expense 

and the disturbance to the free surface during experiments was seen to be negligible. It 

should also be noted that in a deep submarine context, the free surface would be far 

above the currt'.nt. and again its effects would be negligible. 

A further condition on the model is the time step. This prevents information passing 

all the way through one computational cell ill a single time step and thus prevents 1088 

of information and inaccurate solution. The condition is specified using the Courant­

Friedricbs-Lewy (eFL) limit given by the following expression: 

U6t 1 
ox < (4.6) 

where U is a characteristic velocity scale of the simulation given by J !lha!2. ot is the 

size of the time-step and ox is the streamwise length of a cell. The streamwise length 

"Some rOWII or columna of the domain will have voids where there are no cella due to the preeeoee of 
the roughneM geometry. thul the number of cella along them will fall below the maximum. 
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Mesh No. cells 6%(= 6" = 1/26x) (01) 6t (8) 

Coarse 42 x 417 0.006 0.02 

Mediwn 84 x 834 0.003 0.01 

Fine 168 x 1668 0.0015 0.005 

'Iable 4.1: The number of cells WJed in the mesh of the domain and the vertical length of a cell 

corresponding to that mesh tabulated with the respective tim~fit.~JlfI. Th~ mftlbf'S are definM "'"' 
coa1lle, medium Bud fine for qualitative dt'llK.Tiption. The number of ceUs is given only for two 

dimensions since the number of lateral cells is identical to the vertical. The \'&lues of {jz are 
proportional to the height of the roughness elements when a body-fitt.fld domain is used and {jt is 
calculated lUling 6r and R chan~ctcristic velocity defined by .jg'ho/2 in the present study. Note 
that the coaI'1IeIIt Dlesh i8 only used in the smooth case for the purpose of verification. 

scale is used in preference to the vertical or lateral equivalents since this is perceived as 

the primary direction of ftow. Using equation (4.7) and a ,'8lue of cSx dependent on the 

particular mesh in use, the value of the time-step 6t can be calculated. In the present 

study, the time-step is lDultiplied by a 'safety' factor of 1/2 for all simulations 88 uaed 

by Daly and Pracht (1968) and Corney (2005). i.e. half the eFL limit. This results in 

a actual tinuHtep given by 

cSt = ox 
2U (4.7) 

Note that if U is replaced by u /' found empirically. the limit given by equation (4.6) still 

holds since the characteristic velocity scale, U, is always greater than the experimental 

value of tAl due to its use of the conservative approximation hi = 110/2. For example, for 

a 5% excess density current with the tank dimensions of the present study and 6z = 0.012 

(i.e. the 42 x 417 coarse mesh). U = 0.248 108-
1

, while ul = 0.153 ms-1 (see section 2.5) 

resulting in tUJ:.steps calculated using equation (4.7) of ot = 0.02 s ad 6t = 0.04 8, 

respectively. A summary of the number of cells. their dimensions ad the COlTe8pODding 

tinuHteps used for each mesh can be found in table 4.1. 

4.3.2 Multlphase flow model 

FLUENT has three integral multiphase flow options, the Euler, mixture and volume of 

ftuid (VOF) models which use an Euler-Euler approach whereby the phases are consid­

ered interpenetrating continua. ad a discrete phase model that uses a Euler-Lagrange 

alternative in which the governing equations are solved for the fluid phases ad then a 

dispenJed phase is solved by tracking particles through the calculated flow field. This 

latter method is not suitable for liquid-liquid flows, such 88 gravity currents, or scenarios 

where the secondary phases ha.ve high volume fractions since the number of particles re-



174 

quired. and hence the computational cost, becomes prohibitively large. Under rigorous 

analyaee, it has been shown that none of these models can truly account for the mixing 

that occurs within a gravity current flow and generally tend to over-(mixture model) or 

under-(VOF model) estimate this process (Corney, 2005). The nature of the multiphase 

flow models available also limits the accuracy of the entire simulation to first order in 

time. whit-h has substantial effects on the validity of the results (Corney, 2005). 

Scalar trllDllPOrt equation 

To overcome these limitations in the model, Corney (2005) developed a method for the 

inclusion of a second phase of flow by adding a time dependent transport equation for 

the concentration. C, given by the following: 

8pC - + V· (pJC) = V· (plt,VC) 
8t 

(4.8) 

where Ie, = 5.22 x 10-9 m2s-1 is the coefficient of the difl'usivity of the salt solution in 

water (Gebhart et aI., 1988). Note that the FLUENT solver requires a "mass difl'usivity" 

that is specified as 5.2106 x 10-6 kgm2s-1. If the density of the ambient and current 

fluids awc.l the c.liffusivity of the saline solution in water are 888llIDed to be CODBtaat. it is 

possible to generate a gravity current by modelling the transport of concentration with 

the above t'quation (4.8) and a 118cr-dcfincd 8OttrC'.(l term, i.e. by specifying a fuDction 

for PI + E in equation (4.2) that is dependent on C. However. Corney (2005) proved 

that the current model is more accurate since it enables the density to vary in space and 

time and the diffusivity, It" to be a function of turbulence which is a more intuitive, 

physical condition since the turbulence should enhance the mixing of the saline gravity 

current with the surrounding water. Hence, the present method sets £. = 0 and models 

the transport of concentration throughout the domain with equation (4.8) and m&p8 this 

to the density field using a user-deftned function (UDFs), v.ntten in the C programming 

laDguage, given by 

p = Pw(l - C) + pgC (4.9) 

For the fluid in the domain, equation (4.9) means that when C = 0, the density reduces 

to the density of clear water, Pw. and increases linearly to Pg, the initial and maximum 

density of the gravity current. when C = 1. In order to enable the effects of turbulence 

on the diJfuaivity of the saline fluid in the water a turbulent diffusivity, Itt, was added to 

the laminar c.lilfWJivity, Ie,. The fluid vi8t:osity, II, in the mOIn611twn equations is moc.lified 

when turbulence is present 80 that the vi8C08ity distribution is variable throughout the 
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flow field. Thus, the expression II + lit. where lit is the eddy viscosity, is used so that lit 

can be defined separately, dependent on the model. The turbulent diffusivity of salt into 

the ambient water can be expressed in the same way and therefore in equation (4.8) K" 

is modified to read (It. + Itc). Itt can be calculated using the Sehmidt number, Sc, which 

is the ratio of the turbulent eddy viscosity to the turbulent diffusivity of m88S, given by 

Sc=~ 
Itt 

(4.10) 

'Ib determine an exact value for Sc would require experimental information beyond the 

capabilities and time of the present study. However, it has been shown that the exact 

value of Sc does not effect the results (Rehm et al., 1995). It still remains to specify 

a value for the calculation of Itt. Hartel et al. (2000b) state that the Schmidt number 

should be of order one and adopt the value Sc = 0.71 in their simulations. Hena!, the 

present study uses a value of Sc = 0.7. 

IDltlallaina the 'eecond phMe' 

The second phase, which represents the dense current fluid, is created by 'patching' a 

region into one end of the domain within which the volume fraction or concentration of 

fluid, C, in the cells is initialised as I, while in the rest of the domain it is initia11aed as 

O. Thus, by equation (4.9), dense fluid is initialised in this region creating the lock-box, 

see figure 4.2. 

4.3.3 Turbulence model 

Reynolct.A verapd continuity and momentum equatioDB 

Since this study requires the use of a turbulence model and does not intend to uae LES 

or DNS, Reynolds-Averaging is performed. The solution variables are decomposed into 

the mean (tim ..... aventged) aud ftUt1.uatiug t.'OlllpOl1eU~, for example for the horizontal 

velocity: 

u =11+u' (4.11) 

where V and u' are the mean and fluctuating parts, respectively. Equation (4.11) and 

similar expressions for the other two components of velocity, the pressure and concen­

tration are substituted into the exact Navier-Stokes equations, (4.8) and (4.3), and a 

time average is taken resulting in the Reynolds-Averaged Navier-Stokes equations, as 
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discussed in section 4.2.1. Further details of the averaging process can be found in Har­

tel (2000) or FLUENT (2006). Equations (4.3) and (4.2) become (in cartesian tensor 

form): 

(4.12) 

8f1Ui 8ptJtuj __ 8p ~ [(8fJUi 8puj _ ~ .. 8PUI .!!.... _ -,-, )] 
at + 8x; - 8:r. + 8:rj I' Ox; + Ox. 36,) Ox, + 8x; (pu.uj ) (4.13) 

where the overbar has been dropped for simplicity. They have a very similar form to 

the exact equations but the solution variables now represent time-averaged values. The 

obvious difference is the additional terms that represent the effects of turbulence, i.e. 

the Reynolds stresses, -pu~u~ in equation (4.13). These must be modelled in <rder to 

ad1ieve closure of equation (4.13). For most of the RANS based turbulence models, not 

including the Reynolds stress model (RSM), FLUENT uses a Boussinesq approach to 

model the Reynolds stresaes and lower computational cost. This involves the following 

expression that relates the stress terms to mean velocity gradients: 

(4.14) 

where Ie is the turbulent kinetic energy which is calculated using a transport model, de­

pendent on the turbulence model selected and II-t is the turbulent viscosity, and function 

which depends on the turbulent variables solved by the turbulence model. The main lim­

itation of the Boussinesq approach lies in the assumption that this value is an isotropic 

scalar quantity which does not always hold. The RSM model avoids the necessity for this 

by solving seven equations (five in 2D) including the transport of the Reynolds stresses 

and the dissipation rate. However this is computationally more expensive on average 

and using FLUENT has been found to take longer to converge in some cases and require 

50-60% more CPU time and 15-20% more memory compared to Ie - wandie - E models 

(FLUENT, 20(6). 

Turbulence tr8D8pOl't equations 

The turbulence model used in the present study is the RNG k - E model given by the 

following equations for the transport of the turbulence quantities turbulence kinetic en­

ergy. k, and turbulence dissipation E: 

(4.15) 
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The unfamiliar terms present in these equations are defined as follows: 

Gic represents generation of mean TKE due to mean velocity gradients and is defined as 

-p,,!u~~ which can be expressed in a manner consistent with the Boussine&q approach 

in the form 

(4.17) 

where S is the mean ra~f-strain tensor (s-I). 

G6 represents the production of turbulence due to buoyancy and is given by the equation: 

G6 = -!Ii...!!!..... 8p 
pPr, Ox. 

(4.18) 

where Pr, is the turbulent Prandtl number. TKE tends to be augmented in an 00-

stablr. stratifi<-.ation, G6 > 0, but thr. buoyancy effects suppress turbulence in a stable 

Atratifi('.ation, Gb < O. Note that equations (4.18) and (4.17) hold for all k - E models. 

The term Ym in equation (4.15) represents the 'dilation dissipation' and deacribes the 

way that compressibility effects turbulence. It is given by the equation: 

(4.19) 

where M t is the turbulent Mach number, described as M, = ~ and a. is the speed of 

sound. This function is not relevant in the present study since the flow is incompressible, 

however, it is included here for completion. 

The scale elimination procedure in RNG theory results in the following differential equa­

tion for turbulence viscosity: 

d ( rk ) - 1 72 v dil 
..jliI - . v'tL. 1 + Cv 

(4.20) 

where v = #Jell/It and C" ::= 100. Integrating this equation enables the model to ac-

curately describe how the effective turbulent transport varies with effective Reynolds 

number 80 that it can handle low Reynolds number and near-wall flows more efficiently. 

At the high Reynolds number limit, equation (4.20) results in the followiDg expression 

(4.21) 
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where Gil = 0.0845 has been derived using the RNG theory and is notably close to the 

standard k - E model value of 0.09. By default, FLUENT adopts equation (4.21) to 

calculatc thc effective vhJcosity, however, it is an option to use equation (4.20) where low 

Reynolds number dynamics are involved. 

The term R. in equation (4.16) makes the RNG model more responsive to the cff(.'Ctai 

of rapid strain and streamline curvature than the standard model and is gi\'eIl by the 

following: 

(4.22) 

where fl. is equivalent to SkIE, 110 = 4.38 and Po = 0.012. Thus, depending on the 

magnitude of the strain, S. either fl. < 110 or fl. > '10 resulting in a positive or negative 

contribution to equation (4.16). respectively. 

The inverse effective Prandtl numbers, O:k and 0:£, are derived 8D8lytically by the RNG 

theory and calculated using the following formula: 

1 
0: - 1.3929 1°.6321 I Q + 2.3929 1°.6321 = -.l!-
1 - 1.3929 1 + 2.3929 /Jell 

and in the high Reynolds number limit, where 1J/1Je11 <: 1, Qk = a,. I=::: 1.393. 

(4.23) 

The model constants Ct£ and C2£ are also derived 8D8lytically by the RNG theory and 

have default FLUENT values of 1.42 and 1.68, respectively. Sk and Se are user-defined 

source terms. 

The RNG k - E model has been used with success in previous research on gravity currents 

(aee section 4.2.1) and is suggested by Corney (2005) to be the most appropriate of the 

RANS turbulence models available in FLUENT, with respect to accuracy and compu­

tational costt . The RNG k - E model differs from t.he standard k - E model through 

the additional terms and functions in the transport equations for k and E «4.15) and 

(4.16), respectively) and in the model C01l8tants. It is derived using a rigorous statistical 

technique called renonnalisation group theory (Choudhury, 1993). The influential addi­

tional term, R. (equation (4.22», appears in the E equation and significantly impr~ 

the 8C('uracy for simulations of rapidly strained flows. While the standard model uses 

user-specified constants for the turbulent Prandtl numbers, the RNG theory adopts an 

aualytical formula, equation (4.23). It also provides an analytically derived formula for 

the effective vUK!OIIity that &C(.~unt.tl for low-Reynolds-number efi'e<..1.s, equation (4.2O). 

to>mey (2006) carried out a JiIoroWI test on the ea:uracy of all of the turbulence modele available 
'" FT.tTF.NT alld different muklphBIIC optiot .. for modelling lock-releaae gravity cummta. 
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The changes also result in the inclusion of the effects of swirl on turbulence, enhancing 

the ac("uracy for swirling flows. Due to these extra terms and functions and a greater 

degree of non-linearity. simulations undertaken using FLUENT have been found to take 

10-15% more CPU tilne that with the standard k - E model (FLUENT, 20(6). How­

ever. where the standard model is known to be slightly over-diffusive the RNG model is 

designed 80 that lUlder high rates of strain the turbulent viscosity is reduced. Although 

this means that the model is more susceptible to instability, since the stabilising effects of 

diffusion are reduced, the result is a model that is more responsive to important physical 

instabilities such 88 time-dependent vortex shedding. 

Initialisation of k and E 

For unsteady calculations using a k - E model, 88 in the present study, the solution after 

a sufficient amount of time has elapsed should be independent of the initial values of 

k and E. However, for better convergence and thus a more cost efficient simulation it 

is benefidal to prescribe reasonable initial estimates for k and E. In the majority of 

experiments fluid is initially 'quiescent' and therefore there is little attention given to 

the values of these variables prior to flow commencement and with reasonable cause: II: 

would predictably be so small that very high specification equipment would be required 

to carry out this analysis and thus it is often taken 88 negligible. In general, FLUENT 

(2006) suggests initialising with a fully developed turbulence state, which for complex 

flows (defined in this context as Bows with multiple in/outlets and boundary conditions) 

it recommends specifying the initial values in terms of turbulence intensity, It. where an 

intensity between 5-10% should be considered in the fully turbulent regime. With this 

parameter. an initial guess for k can then be calculated using the following formula: 

(4.24) 

where U is the characteristic mean velocity magnitUde of the problem, i.e. U = v'1I 110/2. 

In order to calculate an initial guess for E, the condition that the eddy viscosity. lit = 

c"t;. is large in comparison to the molecular viscosity. p., is implemented. This is based 

on the assumption that in fully developed turbulent flow, /It, given by equation (4.21), is 

approximately two orders of l'IUIgDitude larger than 1'*. Hence, an initial approximation 

for E can be calculated from the following equation: 

-Note that Chen ud Lee (1999) Rate that ,..c < 0.001,.. which would imply the opposite of the 
coDditlon aua-ted by FLUENT (2006). They do Dot specify the exact input values tbat tbey use .. 

a rewlt of this. only that they are 'neglillbly small' therefore it is Dot p<aible to qualif.y if this is a 

II1Ipcrftclal error or "ot. 



180 

(4.25) 

The estimated iuitial conditions for 1 % and 5% density excess gravity currents, calculated 

with the tank geometry of the present study can be seen in table 4.2. 

p exccss k (m2s-2 ) c (m2s-3) 

1% 4.6 x 10-5 1.84 x 10-4 1. 78 X 10-6 - 2.85 X 10-5 

5% 2.3 x 10- 4 - 9.2 X 10- 4 4.46 X 10- 5 - 7.13 x 10- 4 

Tahle 1.2: The range of initial estilllates for k and e for the present st.udy, calculated using 

equations (4.24) and (4.25) as suggested by FLUENT (2006), for gravity currents with initial 

dt'n::.ity exct>b::.es of 1 % and 5%. The equations assume turbulence intensity in the range of 5-10% 

thus implying fully developed turbulence. The values shown represent the limits of this range. 

1.2 1.4 1.6 

0.2 0.4 0.6 0.8 1.2 1.4 1.6 

0.2 0.4 0.6 0.8 1.2 1.4 1.6 

0.2 0.4 0.6 0.8 1.2 1.4 1.6 

0.2 0.4 0.6 0.8 1.2 1.4 1.6 
x (m) 

Figure 1.3: Contour' of concentration at t = 9.5 s calculated using the simulation conditions 

of COr1l(,Y (2005) after Hacker ('t al. (1996) experiment 1. The tank was 3.5 x 0.2 m with lock 

dimen:siom; .1"0 = 0.3 aad H = 0.2. The value of turbulence killetic energy u:sed to initialibe the 
calculations incr('as('s by an ord{'r of magnitude from (a) 0.01 to (e) 0.000001 m-2s-2 . (b) shows 

til' result obtain'd b' Comey (2005). 

A· di' 'U ·s<'C.i ill ·c tioll 4.2.2, Corney (2005) uses a value of 0.001 to initialise k ~Uld € 
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(c) t 
~~~~~ __ ~ __ ~~UL~ __ ~ 

0.3 
0.2 
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(d) t 
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 
x (m) 

Figure 4.1: Contours of concentration at l = 6 s calculat.ed using the simulation conditions of 

Corney (2005) after Hacker et al. (1996) experiment 2. The domain is 3.5 x 0.4 m with lock 

dimensions .ro = 0.4 and H = 0.4. The value of turbulence kinetic energy used to initialise the 

calculations increases by an order of magnitude from (a) 0.01 to (e) 0.000001 m- 2s- 2 . (b) shows 

the result obtained by Corney (2005). 

which appears to have beeu selected arbitrarily. However, calculations using the above 

condit.ion with a 1% density excess and a 0.1 m high tank (Le. ho = 0.1). as used in that 

study suggest that values for If and c should lie within the ranges 1.84 x 10-.5 -7.36 X 10-5 

and 2. 5 x 10-6 - 4.57 X 10- 6 , respectively. i.e. at least two orders of magnitude smaller 

than u ed. Thus, although the solution should be independent of the initial value of 

k aud E after sufficient time has elaps('d and if eonvergence at each Lime step has been 

mouitor d, clearly this is not the case. 

In order to study the effeds that t.hese wllues ax'e having on Lhe solution, two of the 

expcrimcnts of Hacker et al. (1996) (experiments 1 and 2 therein) were computed with 

the am mod I as used by Corney (2005) (model U DS2.2 therein) but with k and E 

both initiali ed with values of 0.01, 0.001 , 0.0001, 0.00001 and 0.000001. According to 

eq1lations (4.24) and (4.25) with the density excess and tank height from the experiments 

of Hacker ct al. (1996), k and E should be initialised withill the ranges shown in table 4.3. 
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Exp. no. k (m2s-2) E (m2s-3) 

1 4.5 x 10-6 - 1.8 X 10-4 1.71 X 10-6 - 2.73 X 10-5 

2 9.0 X 10-6 - 3.6 X 10-4 6.83 X 10-6 - 1.09 X 10-4 

Table 4.3: The range oCinitiall!8timata for k and E for experiments 1 and 2 of Hacker et al. (1996), 

calculated using equations (4.24) and (4.25) 88 suggested by FLUENT (2006). The equations 

888UD1e turbulence intensity ill the range of 5-10% thus implying fully developed turbulence. The 

values shown represent the limits of this range. 

Corney (2005) uses comparisons with these experiments 88 part of the validation process 

for his model, however it can be seen in figures 4.3 and 4.4 that there is a substantial 

difference in the solution domain for initial values k = E < 0.0001. It can be seen in 

table 4.3 that a value of 0.0001 is of the same order of magnitude as the upper limit 

of the range suggested by FLUENT (2006). Once below this value little change can be 

observed which implies that the upper limits calculated using It = 10% in equations 

(4.24) and (4.25) are a good guide for maximum initial values of k and E. In the present 

study, a value of k = E = 0.000001 was used. 

Wall functions 

Simulations of wall-bounded turbulent flows require careful treatment in the near-wall 

region. In this part of the domain, very near the wall, where the no-slip, no-flux hound­

ary conditions must hold, turbulence is damped. However, as distance from the wall 

inCl"C'.MM, large incrMMlfl in the grlidientIJ of t.he flow variables occur and vigorous m0-

mentum and scalar transport result in increased production of turbulence kinetic energy. 

Typically, these near-wall characteristics are identified by a boundary layer divided into 

three layers: a viscous 8ublayer, an outer layer and a buffer layer in which the forces 

governing the former two layers are of equal importance and the transition from one to 

the other must occur. As a result of these characteristics. the walls are a primary source 

of mean vorticity and turbulence and therefore inaccurate modelling of this near-wall 

region has significant implications for the validity of the numerical solutions. Gravity 

current propagation is governed by the 'nose' region which is highly dependent on the 

bottom boundary (Simpson. 1972; Hartel et 01., 2OOOb). Thus, accurate treatment of 

the near-wall region which is subject to substantial spatial and temporal variations, is 

of tantamount importance in the present study. 

For exact computation of the flow under examination, the governing equations have to 

be solved throughout the entire domain right up to the boundaries. H a low Reynolds 
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number model is uJed (e.g. t.he Spalart-Allarmas model) the flow field is soh'ed up to 

the walls but these methods introduce further modelling uncertainties and require very 

fine meshing in the near-wall region to resolve the high spatial gradients with potentially 

massive increase to the computational cost. They have also been shown inadequate for 

modelling gravity currents (Corney, 2005). Alternatively, there are several turbulence 

models (k - E. RSM, LES) specifically derived to capture high Reynolds number flow 

that cannot represent the viscous layer since they neglect important viscous effects near 

the wall and treat the boundaries with wall functions that effectively bridge the gap to 

uvcn:OU1C tbi8 probleUl. Thiti Ulethod dept.'tlds 011 placing t.he first grid point near the 

wall within the fully turbulent logarithmic layer, i.e. 1/+ > 11.225 where 1/+ is a dimen­

sionless wall unit given by 

+ pUT' 
1/ =-1/ 

JJ 
(4.26) 

where tiT' is thn shear velocity dnfinoo using the wall shear stmls, Tw , by ..;:;;TPi. Nu­

merous experiments have proven that the law-of-the-wall is valid in this layer', and heoce 

the following equation can be used to find the wall shear stress, 

U 1 PUT' - = -In-1/ + CT' 
tiT' K. JJ 

(4.27) 

where C., = 5.5. If 1/+ < 11.225, i.e. within the viscous 8ublayer. the wall shear stress is 

calculated by treating the flow as laminar. 

Due to the complex spatial and temporal variations at the wall involved in gravity current 

propagation, ideally a dynamic mesh would be used that can ensure that the first grid 

point is located within the logarithmic layer. However t strict boundary layer mesh would 

be dependent on the physical flow and therefore not subject to mesh refinement required 

by most vmfication procedures whil'.h would involve the inevitable relocation of this vital 

grid point and possibly subeequent solution misrepresentation. The present study U8e8 

wall functioDS and does not implement a dynamic meshing hence care must be taken 

when conducting refinement studies to check that the first. grid point near the wall falls 

within the logarithmic layer. 

'The boundary layen can be subdivided with ,+ !S 5 lying within the viecoua layer. 5 < ,+ ~ 30 in 

.. he buffer Iayur aud 30 < II + < 300 in the logarithmic layer however it is quite common to dilpoae of 

thf! buffer 1~1'.r by linJcinK the lineAl' velodtr profile in thp. viacoua 8ubla;yer to the Ioprithmic velocity 

proftle In .. he InerLlai Cqarlthmlc) aublayer adopting an abrupt chanp &om purely viIcoua at ... to 
purely 'urbuleat at ..... at ,+ ... 11.225 (1ennekea and Lumley, 1972). 
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4.3.4 Bed roughness 

Dift'r.rr.nt mrthodH for t,bn indtl,'don of bfld rotlghn«'1lR wit.hin t.he domain have been dis­

ctUJ&ed in section 4.2.5. In order to compare to the experimental data and to obtain a 

range of rougbnesBBB1 including more natural roughness like dunes, methods that allow 

the inclusion of a form or a grain type roughness or a combination are used. A body­

fitted mesh is used for the larger scale form roughness and a law-of-the-wall model for 

the grain rough".. 

".S.".1 Body-fttted approach 

The body-tit ted mesh approacll has been adopted successfully in previous studies for 

single-phase flows, see section 4.2.5. Since the cells used in the present study are rectan­

gular (or cuboid in 3D) and proportional to the size of the bodies (roughness elements), 

rigorous body titting equivalent to that performed in these previous studies is not nece&­

IBlY and no cell distortion occurs. However, the principle involved in the approach, i.e. 

chaDging the mesh to incorporate voids representing the bed geometry (in comparison to 

llHing " 'fCd"C:tl fidel' nwthod) Ktill huldH, lUul btlIU:tl tllt! t(lnll 'lxKly-fittod' is maintaiued 

in the present context. The majority of the mesh geometries used in the preaent study 

represent the beam type roughness. As in the experimental work in section 2, the beams 

have dimensious 0.006 x 0.006 m and have been designed 80 that they have no lateral 

variation enabling direct comparison of 20 and 3D results. One interest of the present 

study is in the quantitative analysis of the effects of element spacing on gravity currents. 

As mentioned in chapter 2 the following terminology is used 88 shorthand to describe 

the element in use: beam8hei,ht •• pacin" where beams is a qualitative description of the 

element, height is the ma.ximum element height kr (mm) and spacing is the ratio of 

the distance between adjacent elements and the height w/kr. For example. beamse.l 
refers to the beam type roughness with equal height and spacing of 6 Mm. The coarsest 

mesh used with this method is the equivalent of the 84 x 834 'medium' mesh used in the 

smooth case. It is not poesible to use the 42 x 417 mesh since the height of the cells in 

that caae is identical to that of the elements and for the bea.JnSG.2 case, al80 identical to 

the spacing between them. 

A diagram of the domain Ilmsh and cell configuration with rougbness elements included 

via th(' body-fitted approam ('an be seen ill figure 4.5. The length scales that are used 

in thf' qll8DtitatiVf! analysis of the rOllghn6NI f'.ffectfl of the beam-type roughness are aIao 

depicted. It can be seen that the cell dimensions have not been altered in the viciDity 
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Figure 4.5: Numerical tnnk geometry with dimensions for the rough cases. Dense fluid (blue) 

initialised to the left of the lock with volume fraction 1 and ftmbiem Ouid (grey) to the right. 

with volume fi'actioll O. The free surface, treated with a symmetry condition is shown in red and 

the measurement location is the line Bin 35. Expanded sect.ion shows mesh in the lower half of 

the domain in the vicinity of the lock partition. The wall geometry to the left of this divide is 

smoot h whill' to t.hl' right t hp. comput.ational l1l0.sh has hl'cn fitt.ed to the roughness geometry. 

The geonwtry shown is the beam6,2 beam roughness along with the length scales used in the 

quantit.ative analy is of roughness effects in chapter 5. The mesh equivalent for a smooth bed 

is the 4 x 34 ' lIH'diulll' mesh. this is the coarsest mesh used in the body-fitt.cd approach to 

modelling the bed roughness. For 3D geometries the domain and the roughness elements extend 

0.2 OJ laterally (y) with no variations in this direct.ion. 

of the elemelltl'L This is because any clustering or grading of the cells in these regions 

would involv further cell stretching and the associated negative effects of increased 

diffusion, or require mesh adaption incurring additional computational expense beyond 

the proces iug capabilities of the present study. III fact, a graded mesh where cells 

near the top boundary of the domain were chosen too large could result in substantial 

illaccuracies in the modelling of the ambient return flow and consequently the inaccurate 

computatioll of the gravity current itself in other regions. Hcncc, without a vigorous 

anfl.l,vsL of diff<-r{'])t 111('sh grading ratios it would be difficult to select an appropriate 

mesh to avoid the e complications. 

Limitations 

The mcthod is limited by the shape of the bodies or clements that call be fitted without 
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cell distortion or mesh refinement. The present work uses a quad mapping to mesh the 

domain. For example. to model a hemispherical roughness element with rectangular 

cells. a stepped pyramid analogy would initially be used. Obviously, the accuracy of 

the analogy incre&8E!6 with the decrease in cell size and the subsequent increase in the 

number of 'steps' in the pyramid, such that it tends towards a hemisphere as the cell 

size becomes very small. However, the computational cost increases in proportion to 

the decrease in cell size. In the present work, rectangular cells are used for all of the 

roughness types modelled with the body-fitted approach, hence the coarse sand and glass 

spheres are not covered. 

The most inhibiting limitation results from the number of cells that can be fitted between 

the roughness geometry. In order to model the secondary motion that is assumed present 

between the elements, enough cells must be placed in this region. However, since wall 

functions are being used, the mesh must not violate the y+ conditions essential for wall 

functions to hold (see section 4.3.3). Note that this limitation might suggest better use 

of a different turbulence model. however, (Corney, 2005) showed that a high Reynolds 

number turbulence model is required to capture the turbulent core of the flow and 

therefore wall functions are required. 

4.3.4.2 Law-of-th .. waIl approach 

This method also essentially enables the inclusion of a grain type roughness that can be 

used alone or in conjunction with the body-fitted approach to generate a composite (grain 

+ form) rollghMf!8 on the bed (e.g. Durbin et aL, 20(1). As has been used in models for 

single-phase flow the FLUENT software provides the option to include roughness at the 

boundaries by specifying an equivalent roughness height (or physical roughness hejght 

if a grain roughnees is used), k" and a roughness constant, Cit' in the conditions panel 

for the boundary required. This activates extra terms in the wall functions which are 

used by the governing equations during solution hence altering the flow dyuamit's. The 

law-of-the-wall, given for the smooth case by equation (4.27). for the rough boundary is 

now given by the following 

11 I, PUT' C - = - n-y + T' - f1B 
tiT' I(. JJ (4.28) 

where AB represents the velocity shift away from the mean velocity distribution for a 

smooth bed. As discU88ed previously, there is no generally accepted universalroughQM8 

nmction valid for any type of roughness but for sand grain roughness and similar acale, 
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homogeneous roughness elements, t1B can be correlated to the dimensionless roughness 

height k: = ¥-. k. is a sand grain roughness height (or equivalent roughness height) 

calculated empirically as in aection 2.3. Turbulent flow is classified into three regimes 

identified by the value of k:. Thus, t1B is defined differently depending on the perception 

of the flow at the boundary: 

Hydrodynamically smooth: k: S 2.25 

t1B=O (4.29) 

TraD8ltlonal: 2.25 < k: S 90 

1 [k: -2.25 +]. + t1B - ;;In 87.75 + c.k. BmO.4258(lnk .. - 0.811) (4.30) 

Fully roach: k: > 90 

(4.31) 

The method of calculation for c. is undefined (FLUENT, 2006) except that a value of 0.5 

is proposed to agree with the results of Nikuradse (1933) for sand roughened pipes. They 

suggest higher values. 0.5 < c. < 1 might be more appropriate for other roughnesses. for 

example ribs and wire mesh. Without and accurate guideline. in the present study c .. is 

888umed to lie between 0 and 1 and is thus taken 88 1 to imply maximum effect. Given 

the roughness parameters, the solver calculates t1B(k:) using one of the formulae given 

by equations (4.29), (4.30) and (4.31) to modify equation (4.28) and hence calculate the 

shear stress at the wall and other wall functions. Although it does not physically alter 

the geometry of the domain, when used in 2D this method enables the incorporation of 

more 3D effects since the k .. values are generated directly from experimental data and 

hence are subject to 3D flow dynamics. 

Llmltations 

One limitation of this method is that the chosen roughness height. k., cannot be higher 

than the distance to the centroid of the wall adjacent cell in order to be properly incor­

porated into the wall functions. This means that the mesh either bas to be adapted so 

that the wall adjacent cell is larger than the general mesh size if a small mesh is required, 

or that the roughness height for the simulation has a maximum dependent on the mesh 

in use. The former of these solutions would mean a decrease in resolution near the bed 

which is not acceptable in the simulation of gravity currents in whim accurate solution 
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of the ftow dynamics near the bed are particularly important to the main body of ftow. 

Further problems with resolution would arise with inter-element cells when using this 

method in conjunction with the body-fitted approach. Thus, in the present study. the 

range of k. values and hence grain roughness modelled with this approach is restricted 

to thoee that are smaller in height than the distance to the centroid of the wall adjacent 

cell. e.g. 0.0015 for an 84 x 834 mesh. 

Another drawback of this method is the dependency on empirical values and the law-of­

~wall 888wnption. It has been contested that the equivalent roughness, k., is a bad 

parameterisation of roughness resulting in very different roughnEIIS geometries having 

very different e1£ects on the turbulent stresses but with nominally identical roughness 

Cunctiol18 (~B)(Krogstad and Antonia, 1999). Hence risking misrepresentation of the 

required roughness with potentially serious inaccuracies in the ftow field. The \lSC of 

the law-of-the-wall is also still under dispute in single-phase ftow applkations. H~VN, 

since there is no oonseDSUS on an alternative approach and DNS is not an option, the 

law-of-the-wall method, with an equivalent roughness k. value is adopted 88 one method 

in the present study. 

4.4 Solution procedure 

4.4.1 Numerical schemes 

FLUENT uses a control-volume based technique that divides the domain into discrete 

control volumes using a computational grid. The governing equations are integrated over 

each control volume to generate algebraic equations for each dependent variable. These 

discretised equations are linearised and the resulting system of equations is solved to 

obtain updated values of the dependent variables in each computational cell. A descrip­

tion of all the available numt'.rical schemes including the linearisation and discretisation 

schemes used in the present study can be found in most comprehensive CFD texts, for 

example Hartel (20(0), and more specifically, at FLUENT (20(6) and are therefore not 

covered in detail herein. 

The QUICK scheme was used for the solution of the momentum equations and transport 

equations for scalar and turbulence quantities. A second order accurate, implicit time­

stepping scheme was used for the temporal integration of the governing equations. The 

PRESTO! scheme was used for the pressure interpolation and the SIMPLE acheme was 

used to treat the continuity equation for press~ve1ocity coupling. The under-relaxatioo 
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factors were defined as the fonowing: pressure 0.3. density 1. body forces I, momentum 

0.7 and concentration 0.2. 

4.4.2 Solver 

In the present study a segregated solver is used in FLUENT to solve the governing inte­

gral equatioU8 for the conservation of Dl888 and momentum, concentration and turbulence 

quantities. As the name suggests, the equations are solved sequentially, i.e. segregated 

from each other. This is an implicit solver with the fonowing steps performed at each 

iteration: 

1. Fluid properties updated: Including the user-defined fluid density and diffu­

sivity. If this is the fint calculation the values are based on the initialiaed solution. 

2. Velocity fleld updated: U,v and w momentum equations solved in turn with 

cunent values of pressure and face m888 fluxes. 

3. Preeaure aDd velocity fteld corrected: Velocities in step 2 may not satisfy the 

continuity equation, thus a 'Poisson-type' equation is derived from the continuity 

and linearised momentum equations to determine the pressure correction. The 

solution of this equation gives the necessary corrections for the pressure and velocity 

fields and face 111888 fluxes 8uch that continuity is satisfied. 

4. Concentration aDd turbulence ftelda updated: Using the previously updated 

values of the other variables. 

5. Check for iterative convergence. 

6. Stop: If convergence bas been achieved, solution stops and proceeds to the next 

time-step. If not, steps 1-5 are repeated. 

Several iterations of this solution loop are usually required before a converged solution 

is obtained becanse the governing equations arc non-linear and coupled. 

4.4.3 I>ata ~ttuNe 

A virtual 'line surface' is located within the computational domain in the same position 

88 the bin in the laboratory experiments and exports text data files of the required flow 

variables every quarter of a second (except in the 42 x 417 case where the time step 

llizc prcVL'Ilbt wultipl~ of 0.25 and is set to rl-'Cord every fifth of a second). This line 
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is purely for post-pl'OOl!aJing purposes, it is not a boundary entity and the rest of the 

computational domain is unaware of its presence. Tbe data is reported at tbe points 

where the line inter8ects a cell face and hence at regular intervals since tbe mesh is not 

graded. Note that these points do not necessarily correspond to the exact locations of 

tbe probes in the experiments and bence tbe data is eitber presented for the depth of 

the entire flow domain at every cell beight or in post-processed form, interpolated to 

compare more exactly witb the experimental data. Which presentation format is used 

depends on the analysis required. The solver is set to export text data files of flaw 

variables throughout tbe entire domain after every three minutes of flow time. A UDF 

finds th~ frout position of the current every quart<U' of a second (again except in the 

42 x 417 cell (,aM!) and exports its 1000.ation to a tt'.xt file. Post-processing of the text data 

files is performed using Matlab scripts. 

4.5 Model verification and validation procedures 

4.5.1 Verification 

A CFD simulation may have the pbysical characteristics of tbe required flow but this 

does not automatically mean that it is verified to truly represent the original governing 

equations (Bombardelli et aI., 20(4). In fact, when the governing partial differential 

equations of a problem are transformed into finite difference equations, they caunot be 

considered truly equivalent due to truncation errors introduced in the transformation. 

These errors can result in some numerical schemes solving a set of equations that are 

not cousistent with the actual governing equations. In the present study. three methods 

of model verification are employed: Monitoring of the flow variable residuals during 

iteration which is used as a convergence parameter during solution and an analytical 

method by which a grid convergence index (GCI) for the meshes is calculated using 

a mesh refinement/coarsening technique (Roache, 1994) in order to verify spatial and 

temporal convergence. The actual process of verification of the models is carried out for 

2D and 3D models in chapters 5 and 6, respectively. 

Iterative c:onverpnC8 

The segregated solver is implicit and therefore the calculations are dependent on initial 

guesses which are iterated upon until convergence is achieved. Iterative convergence can 

be monitored within tbe FLUENT solver by calculating the sum of the residuals of each 
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of the cooserved variables after each solver iteration. With infinite comput.er precision, 

the residuals will vanish 88 the solution converges. With realistic levels of precision, 

the residuals decay to a small value and then level out. When the residual decreases 

by a specified order of magnitude the solution is said to have iteratively converged. In 

the present study, the level of convergence is set to three orders of magnitude. In this 

way the results do however depend on the residuals of the early iteratious and therefore 

on the suitability of the initial guess. If the initial guess is not good for some reason, 

the initial residuals will be very large and whatever reduction in order of magnitude has 

been selected to quantify convergence, convergence is not guacanteed. Conversely, a very 

accurate initial guess would result in little decrease in residuals and hence several orders 

of magnitude decrease could not be expected. 

The procedure for monitoring the residuals is the same for all conserved variables and is 

demonstrated for u: 

After discretisation, the conservation equation for u at a cell p can be written 88 

Opu" = L anbUnb + b (4.32) 

"" 
where a" is the centre coefficient for the cell, am, ace the influence coefficients for the 

neighbouring cells and b represents the source term including boundary conditions. Note 

that the above notation is standard notation in control volume methods (Versteeg aDd 

Malalasekera, 1995). The residual nu that is calculated by the segregated solver is the 

summation of the imbalance in equation (4.32) over all the computational oella p. This 

can be expressed 88 follows: 

~ = ~ ~anbUnb+b-apu" (4.33) 

cell." "" 
where R" is called the 'unsealed' residual.. Convergence is difficult to judge without 

scaling, take for example the computational lock-box domain of the present study, there 

is no inlet flow condition for u (or any of the other variables) with which to compare 

the residual. 1b overcome this, FLUENT uses a scaling factor to represent the variables 

throughout the domain in order to scale the residual equation {4.33}. With this 8C81ing 

employed, the 'scaled' residual can be defined as 

RU _ Ecell. piE"" anbUnb + b - Opu,,1 
- Ecell .. " IOpUpI 

(4.34) 

This is the residual formula used 88 an indicator of iterative convergence for all variables. 

For the continuity equation, the scaled residual for the segrt..-gak-cl solver is defined by 
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~ 
~ 

(4.35) 

which represents the continuity residual calculated for the nth time step scaled with the 

largest value of the continuity residual in the first five iterations. Note that the super-

8Crlpt con should not be confused with meaning concentration, for which the residual is 

written ~. 

Spatial convergence 

Dependence of the numerical solution on the computational grid must be determined in 

order to establish errors that IIl"f result from simulations using a particul8l' mesh size. 

Strictly, spatial convergence implies complete mesh independence, however, depending 

on the problem in question, this is not always possible without a comprehensive, compu­

tationally demanding study. Therefore, the means to quantitatively describe the level of 

spatial convergence are desired, for example the 'grid convergence index' (GCI) approach 

proposed by Roache (1994) used by (Corney, 2005) and in the present study. However, 

even with this approach, computational expense is high if the procedure is performed 

for all numerical parameters and escalates as the number of mesh refinements increases. 

For expense to be minimised while retaining an efficient verification methodology in the 

present study, three variables u, w and C were chosen to quantify spatial convergence of 

the flow field with three second order mesh refinements 42 x 417, 84 x 834 and 168 x 1668. 

The principle of the method proposed by Roache (1994) is that if a numerical aeme is 

truly second order accurate then the errors should reduce with the square of the mesh 

size. Hence, the error in the spatial resolution can be quantitatively verified (Roache, 

1997). What is required is to verify the fidelity of a numerical solution at a certain mesh 

resolution to the true solution. However, the exact solution is rarely obtainable and hence 

the error using a chosen mesh cannot be calculated by comparison. Consequently, the 

fidf!lity of thf" liOlution with thf" currf!nt mf!Rh is qn8.lltififld rf"lative to numerical solutions 

of the same equations computed on different meshes. This idea translates analytically to 

a modified version of the Richardson extrapolation technique which the grid convergence 

index is based upon. Methods based on Richardson extrapolation of the results from 

syatematic mesh refinement analysis are considered as acceptable methods of truncation 

error evaluation (ASME, 1993), hence their use for verification in the present study. The 

method is as follows: 
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Richardson extrapolation assumes that the numerical solution (i.e. the solution of any 

variable throughout the domain). tP, comput,ed with a first order method with a grid 

spacing 6x, can he represented in series form by 

(4.36) 

where 91,[/2 ... are defined throughout the domain and independent of any discretis&­

tion and tP. represents the exact solution to the original equations. For a second order 

method, !/1 = 0, Hence, if a solution t/>t is obtained from a fine mesh (6z1 ) and tP2 is 

obtained from a coarser mesh (6X2). the leading order term in equation (4.36) can be 

eliminated and a value for !12 can be calculated. Then a more accurate solution for tP. 
can be determined by substituting this updated 92 into equation (4.36). Roache (1994) 

shows that this exact solution can be approximated in terms of a corm;tiou to the fine 

grid solution, tPl, by the following expression 

(4.37) 

where (J = 6%2/62'1 is the grid refinement ratio and higher order terms have been dropped. 

For cxample, if a C'OaI'tW mesh is doubled (or a fine m<'8h is halved) then (J = 2 and equa­

tion (4.37) gives 

4q)1 t/>2 t/J. ~ - --3 3 (4.38) 

This approximation is third order accurate. For the general case, where (/ is not neces­

sarily 2 and a fDth order numerical method is used. (4.37) can be written 88 

(4.39) 

which is (fD + 1 )th order accurate. This level of accuracy can be shown to hold in two 

and three dimensional simulations 88 long 88 (J and fD are fixed in all space and time 

directions (Roache. 1994). Based on the foregoing approximations, t.he Gel for a fine 

mesh caD be defined in the following W8\Y: 

Using equation (4.39), the fractional fine mesh error estimate Ell is given by 

(4.40) 

where e = (t/>2 - tPl )/tPl. The actual fractional fine mesh error is given by 
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(4.41) 

Roache (1994) shows that Al can be written in terms of EI using the following expression 

(4.42) 

where a70 = 1 if forward or backward differences have been used in the discretisation 

and a70 = 2 if central differences have been used. Therefore, we can say that El is an 

'ordered error estimator' and represents a good approximation to the actual error Al if 

EJ <: 1. It follows from equation (4.40) that the GCI for a fine mesh C8D be given by 

GOII/ine grid) = 31el 
,,1:17 - 1 (4.43) 

when the coefficient 3 is recommended by Roache (1994) and has been used in previous 

verification calculations (e.g. Hardy et 41., 2003; Corney, 20(5). The GCI of the coarse 

grid C8D then be given by 

GOIlcoarse grid] = f/I:I7GCII/ine grid] (4.44) 

The problem of division by zero can be encountered in these analyses. This is elimi­

nated by calculating the GCls only at cells containing tbl > O.OlcPI,mo:r. where t/>t,moz is 

the maximum absolute value of <PI in the whole domain at the current time step. As 

mentioned previously. due to computational restrictions, the GCIs for the velocity com­

ponents and concentration are calculated in the present study and performed at time 

t = 6 s. This time was chosen 80 that the gravity current has had time to develop but 

is short enough to minimise computational expense. All GCIs herein are presented as 

percentages. 

'lempora! convergence 

The above procedure for the spatial convergence holds for assessing the dependence of 

the numerical solution on the time-step size since all the simulations are second order 

accurate in space and time and a refinement ratio of order two is applied (Roache, 1994). 

The equivalent time-steps for the above meshes are 0.02, 0.01 and 0.005 8. 
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4.5.2 Validation 

Essentially. the full potential of a code as a general tool cannot be validated. It is only 

the calculations carried out with that code that are subject to validation. In the present 

study, validation of all numerical solutions is undertaken rigorously, with comparison 

to the experimental datasets from the present laboratory work (see chapter 2) for the 

fundamental velocity and turbulence profiles within the flow in the smooth and rough 

cues. It should be noted that validation is limited by the inevitable error incurred during 

the experiments with which the numerical calculation is being compared. The immediate 

limitation of laboi"atory studies is the scale. Ideally, data for use in validation would be 

obtained at a field scale but the length scales required for this study cannot typically be 

setup in the laboratory. Data from the field is subject to the specific conditions of the 

locality and due to the highly spontaneous and transient nature of gravity currents and 

their relative inaccessibility (for example, consider data collection from active submarine 

currents), is often impossible to obtain. 

One of the advantages of using CFD is that the data obtainable from the simnlations can 

oftcu cover a much wider raoge of flow variables and statistics than an equivalent exper­

imental study. particularly with respect to 3D data sets. Wh~J"(! Htlffid(wt expmm(!ntal 

data is available for a flow variable, numerical results are validated. However, where 

appropriate, results that cannot be fully validated due to limited experimental data for 

that flow variable are still presented as a predictive foundation for future study. For 

example. without PIV or high resolution data, the secondary motion of the flow in the 

region of the roughness elements cannot be captured in the laboratory, so there is limited 

data for accurate validation of the numerical 80w fields in that vicinity. However. it is 

important that this data is presented since it is expected to have substantial influence 

on the main current flow field. 

Some simulations have no experimental equivalents either in the present study 01' others 

to date where laboratory time and equipment availability do not permit an experimen­

tal study. However, despite the lack of experimental data, the numerical simulations 

have been undertaken to seek relationships between variations in the distribution, shape 

and relative size of the roughness elements and the resulting gravity current dynam­

ics. Although results from these models cannot be validated within the scope of this 

investigation, they can be analysed with reference to the differences bctwren other cx­

perimentall1lD8 and their numerical counterparts and implit'ations fOl' further effer.ts of 

bed roughness on gravity currents can be deduced and are left open for future study. 
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Chapter 5 

Depth-resolved numerical 

simulations: 2D model results 

5.1 Introduction 

The previous chapter presented the computational methodology used in the 2D BDd 3D 

numerical simulations, including the verification and validation procedures. This chapter 

presents the results of the depth-resolved 2D numerical simulations calcu1ated using the 

commercial CFD aoftware FLUENT. The 3D model results are presented in the next 

chapter. Several important observations resulting from the 2D simulations that do not 

have a 3D equivalent are discussed here. The full discussion of the combined 2D BDd 

3D numerical results can be found in section 6.8. However. for ease of reading BDd 

to highlight features that may be explained by the subsequent 3D model, the salient 

predictions of the simulations 80 far are also summarised. The CFD study herein allows 

further detailed insight into the processes induced by the presence of bed ronghness and 

enables the generation of turbulence kinetic energy and concentration fields which are 

not available from the present experiments. Detailed emphasis is given to the effects of 

the ambient fluid between the elements. Verification and validation with experimental 

data have been rigorously completed and are presented in detail. 

5.2 Outline of models 

The exact setup of the models has been explained in detail in chapter 4. The tank dimen­

&ions are directly comparable to the experimental setup and the initial conditions for all 

simulations represent a gravity current with the equivalent of a 5% initial deusity excea 

For all of the geometries considered, the walls have the 'n~8lip' condition except the 
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No. Mesh Bed type Exp. equivalent 

1 42 x 417 Smooth Y 
2 84 x 834 Smooth Y 

3 168 x 1668 Smooth Y 

4 168 x 1668 l3eamss.l N 

5 84 x 834 13eamss.2 y 

6 168 x 1668 Beamss.2 y 

7 84 x 834 Beamse,4 y 

8 168 x 1668 Beamsc;,4 Y 

9 168 x 1668 Bea.mso,8 y 

10 168 x 1668 BeamB6,16 N 

11 168 x 1668 Beamse,2 (D) Y 

12 168 x 1668 Bea.mso,8 (D) Y 

13 42 x 417 k.,O.OOOT5 N 

14 42 x 417 k.,o.ooll; y 

15 42 x 417 k.,O.OO3 N 

Table 5.1: 20 numerical simulations undertaken in the pre&ent study. 'lank dimensions are 

directly comparable to experimental data. The initial conditions for all simulations represent a 

gravity current with the equivalent of a 5% initial density excess in the laboratory. AU walls 
have the '~slip' condition except the top wall which has a 'symmetry' condition. '0' means 

that dense fluid is also initialiaed between the roughness elements. Mesh relates to the maximum 

number of cells in the vertical and horizontal directions. Also included is whether there exists 
an experimental equivalent for validation (Y) or not (N). 

top boundary which has a 'symmetry' condition. All of the 2D numerical simulations 

carried out in the present study are listed in table 5.1, including the mesh resolution 

(maximum cells vertically x maximum cells horizontally), the bed type and whether 

a corresponding experimental dataset is available for validation. The simulation of two 

additional beam roughness spacings, beamse,l* and beamse,16 (No. 4 & 10), were under­

taken to complement the other three beam-roughened cases and enable further analysis 

of the effects of spacing and the relevance of d-type and k-type configurations to gravity 

current dynamics. The three mesh resolutions for the smooth case (No.1 - 3) and two 

for the beams&.2 (No. 5 & 6) and bea.mB6.4 (No. 7 & 8) are used for verification. TheBe 

two beams C88e8 were chosen to represent a d-type and k-type bed respectively. Note 

that there is no coarse mesh in the body-fitted rough cases because the longitudinal 

dimension of the cells in this case is greater than the roughness element width and 80 

-This terminology WIll defined in chapter 2 and is UJed 88 shorthand to describe the element in U88. 

It W8II dcflllod .. followw: 6eo"",,, .. ~,Ile •• ,,.,.jnll where beo"", is a qualitative delcription of the e1emeot, 
height Is the maximum element beicht Ie,. (nun) and apacing is the ratio of the distance between adJacent 
elementa and the heilht w/~· For example, beamse.l refers to the beam type rougtwe. with equal hei&ht 
and apecilll of 6 mm. 
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cannot be fitted to the elements. The choice of mesh is discussed in the next section. 

5.3 Verification 

Iterative convergence 

Iterative convergence is monitored by calculating scaled residuals for each of the vari­

ables by solving equation (4.34) «4.35) for continuity) every iteration, 88 explained in 

full in section 4.5 in the previous chapter. When the residuals all decrease below the 

criticalleve1, chosen herein to be 10-3 , convergence is assumed to have been achieved for 

that time step and the solution procedure continues. Evidence of this process is shown 

in figure 5.1 for time steps between 6 s and 7 s for the smooth domain with the C08l'8e&t 

(42 x 417) mesh. It can be observed clearly that although the initial guess each time 

step is somewhat inaccurate, after subsequent iterations the solution is CODSistently sat­

isfying the convergence criteria for all variables each time step. Equivalent convergence 

characteristics are observed for the 84 x 834 and 168 x 1668 resolutions and in the rough 

case. However, since they are similar it is of no additional benefit to present them all. 

Spatial and temporal converpnce 

The spatial and temporal convergence of a simulation are pa.ra.meteriaed jointly herein 

by the grid convergence index (Gel) as detailed in section 4.5. The results for the three 

mesh resolutions used for the smooth case in the present study, generated by a factor 

2 refinement, can be seen in table 5.2 for the horizontal and vertical velocity variables 

and the uaer-defined scalar (concentration), i.e. u, v and C respectively. The Gels are 

calculated using linear interpolation t of the results of a finer mesh onto the next coarsest 

mesh, except for the 42 x 417 model where no finer mesh is available and therefore the 

Gel of the 84 x 834 mesh must be used. For the rough case, as mentioned in section 5.2 

it was not possible to use the coarsest mesh, therefore the Gels were calculated using 

thf! two finf!l' mf'Shf'JR. In thifl ('.Me, the Gel for the finn of thf'.fle two DlEl8hes, 84 x 834, 

cannot be calculated by comparison to the next coarse mesh and is therefore generated 

using the 168 x 1668 Gels. Using this characterisation of the error in the different 

grids it appears that there is substantially more error incurred with the coarsest mesh, 

particularly with respect to the concentration field. In order to examine the GCIs more 

thoroughly in the context of the actual gravity current model, the concentration field for 

tCorney (200&. p. 61) d~ the implications or the UIe of different interpoJa&.ion LechniqW!ll and 

CODclu<* that linear interpolation la suitable in theee studies. 
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(a) GCI (%) 

Mesh t& v C TimefFlow minute 

42 x 417 414.8 515.5 1839.0 00:07:30 

84 x 834 103.7 128.9 459.7 00:45:00 

168 x 1668 62.9 107.4 197.5 07:20:00 

(b) 

84 x 834 2M.3 372.6 1063.0 00:45:00 

168 x 1668 63.6 93.1 137.1 05:36:40 

(e) 

84 x 834 207.2 422.4 890.9 00:45:00 

168 x 1668 51.8 105.6 142.4 05:40:00 

Table 5.2: Grid convergence indices (Gel) calculated 88 given in chapter 4 for each mesh retlOlu­

tion in (0) the smooth case, and for a bottom wall with (6) bea.mse.2 (d-type) and (c) bea.mse .• 

(It-type). These values are used as an indication of spatial and temporal convergence for a factor 

2 grid refinement. The approximate wall clock time (hh: mm : 88) for one minute of computa­

tional ftow t.ime on a single processor (3 GHz) PC is &lao shown for each mesh resolution &8 an 
indication of the temporal and computational cost incurred per simulation. The time steps in 
increasing refinement were 0.02 8, 0.01 8 and 0.005 8 and the simulations calculate a total of 30 

8 flow time. 

each mesh is shown in figure 5.2 for the smooth bed model. It can clearly be observed 

that 88 the mesh is refined, tbe model develops more defined Kelvin-Helmholtz billows. 

Billows of this clarity are not observed in the laboratory experiments. However, they 

have been observed in other 20 studies (e.g. Bombardelli et m., 20(4) and there is 

substantial evidence that they are a result of the two-<iimensionality of the simulations 

and the lack of sufficiently dissipative mechanisms therein (e.g. Cantero et aL, 20(3). 

In fact, it is thought that they are characteristic of the 'true' solution of the 2D gravity 

current calculations (BombardeUi et 01., 20(4). Although this more accurate process 

representation means that more detailed processes are being resolved and smaller scale 

ftow structures are being captured, it also causes problems with regards to establishing 

spatial and temporal resolution convergence. There is no theoretical or experimental 

data available to accurately predict the full range of length scales enoompassed within 

the gravity current problem and thus confirm that grid convergence has been achieved. 

One solution is to continue increasing the mesh resolution of the model but it has been 

shown in a previous attempt (Corney, 2005, p. 60) that this leads to a decrease in the 

quality of the GCls with the result that they lie outside the asymptotic range, i.e. they 

do not decrease by a factor of 1/(/" (Roache, 1994). Baaed on the approximate wall clock 

time taken to calculate one minute of computational ftow time, see table 5.2, simulations 

on finer meshes would also incur prohibitive computational cost, beyond the acope of the 
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case. (b) omparisoll of the dowui;tream horizontal velocity, It, profiles for the slIIooth bPd case 

for the tolal domain depth at one location ('bin 35') generated from the 2D numerical imulation 

ror three mesh renuemenLs: 42 x 417, 84 x 831 and 1G8 x 1668. 

('ompul ntiollal rcsourC(' cwailal>lc. 

The G 1 in table 5.2 have highlighted the problems involved with accurately modelling 

a physically complex flow such as a gl'avity current, llumerically. Clearly the uuphy -

ical coh'r ue' of the Kelviu-llelmholtz billows is a numerica.l phenomena that mu t b 

acknowl dg d and treat d cautiously until the means to assess them becomes available, 
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perhaps with the increase in computational power. However. despite the process rep­

resentation, the agreement between the meshes in terms of front position as a function 

of time is reasonably good, see figure 5.3 (a). Calculating the smooth front speeds 

from these results gives, 163.2 mms-1, 156.4 mms- 1 and 155.0 mms-1 for the 42 x 417, 

84 x 834 and 168 x 1668 meshes, respectively. There is an ~ue with the validity of 

the finer meshes when used with the wall functions in the RANS model since when the 

velocity profiles within the head are considered, see figure 5.3 (b). there is an irregularity 

near the bed. This is not present in a typical velocity profile through a gravity current 

8lld it ht.'C.:ollles apparent that for the finer meshes the condition for the wall functions to 

hold at the boundary has been violated, i.e. 1/+ < 11.225 as explained in section 4.3.3. 

An example calculation of 11+ (equation (4.26») in the near-wall region for each mesh 

resulted ill values of 26.8. 10.9 and 5.37 for the 42 x 417, 84 x 834 and 168 x 1668 meshes. 

respectively proving that the violation has certainly occurred with the fine mesh. After 

careful consideration of these results. the 42 x 417 mesh was chosen in favour of the 

84 x 834 and 168 x 1668 meshes. 

5.4 Flow evolution 

The evolution of the UDS or concentration field for the smooth case can be seen in 

figure 5.4 at 3 s intervals. After release, the current propagates forward as a body of 

high concentration fluid. A sharp front and a distinct head region are observed and 

billows can clearly be identified behind the head at the density interface between the 

dense fluid in the current body and the overlying ambient. All time progresses, the 

mixing between the ambient and the current increases, induced by the billows at this 

interface. The high concentration current becomes more elongated and shallower and 

the billows bcromc more dilute due to this mixing and diffusion but they maintain their 

coherence (12 - 18 s). After 21 s, the billows appear much more diffiLc,c and t.hr. body 

of the current is significantly shallower. The head remains distinct from the rest of 

the current but much dilution has occurred such that the highest concentration fluid 

is 8 thin layer at the bottom of the head. An irregularity in the form of a wave-like 

disturbance in the high concentration fluid within the current body can be seen in these 

2D concentration fields and apparently remains stationary from 18 - 248. This 'blip' 

appears to be the result of a large. probably unphysical. billow retained at the density 

interface directly abow it. After 27 s, both the billow and the blip have more or less 

dissipated. This phenomenon could be percieved as a bore or an interfacial wave 88 Ooi 
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et al. (2005) interpret from their 2D LES. However, it is likely that this is an attribute 

of the two-dim 11 'ionality of their model and that of the present study. Notice that it is 

at about thi ' distance that the slowing of the front occurred (figure 5.3 (a) ) indicating 

a corr latioll i>ctW(,Cll the unphysica.l size and lack of motion of the irregularity mld the 

r tm' lation of the current. When compared to the experimental data in section 5,5,1 

it i ' ob ' r\' that the reduction in speed of the current in the CFD at thi point i 

pr('lIlat U1' .. 

In the following n~' lllt -, the flow evolution of a simulation, a ' shown for the smooth 
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case in figure 5.4, is not presented explicitly for eat'h bed since it is presumed of greater 

interest to consider more specific internal dynamics of the currents that can be better 

Quantified in order t.o analyse the effects of bed roughness. With this in mind. the results 

are presented henceforth primarily in two ways. Firstly. after 9 s for comparison of the 

different beds at an early flow time when all the currents can be approximately considered 

to be beyond the influence of the initial slumping dynamics but still propagating at a 

constant speed, certainly in the smooth case. Secondly, at a later time dependent 011 

when the head of each current passes through 'bin 35' (3.22 m) where the experimental 

dataset was sampled in the laboratory. Thus, the currents can be analysed at both an 

early and later stage of propagation, and evidence of evolution between the two times can 

be obtained. Also, coordination of the numerical results with the experimental results 

at the bin enables the numerical results to complement the experimental data and aid 

interpretation without large spatial or temporal discrepancies. 

5.5 Velocity validation 

5.5.1 Front position and speed 

The effects of the spacing of bed roughness elements on the front position 

and speed 

The experiments and depth-averaged model presented thus far (see chapters 2 and 3) 

established that the presence of roughness on the bed causes the current to propagate 

more slowly than over a smooth surface. It can be seen in figure 5.5 that this also holds 

for the numerical simulations. The FLUENT results show good agreement, up to about 

10 s, for the slllooth and body-fitted boundaries. However, beyond this time, compared 

to the experimental data, the numerical predictions all show a premature slowing of the 

current. In the smooth case, the current h88 been observed to move at a constant velocity 

in the first ten lock-box lengths of the tank (x ~ 10xo, e.g. Rottman and Simpson (1983) 

and the present study. see section 2.4) after which it undergoes a transition to a slower 

speed. Figure 5.5 suggests that the simulations are able to model this phase of constant 

speed but that they begin to decrease in speed too early. This inaccurate transition 

occurs earlier 88 the spacing of the roughness elements increases. However, 88 found in 

the experimental results (chapter 2), an earlier transition is a characteristic of increaaed 

element spacing although it appears to occur at about the same time for all spacings. This 

implies that the difference in the Dumerical predictions is not necessarily dependent OD 
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Figure 5.5: Position of the front as a fUllction of time resultiug from 2D numerical ::.imulation::, 

compared Lo the equivalent experimental results for (a) a smooth bottom wall and bottom walls 

with (b) beams6.2, (c) beamss.4, a.nd (d) beams6,8. 

the bed change but mainly a result of the two-dimensionality of the simulations as found 

by other iuve tigators (e.g. Cantero et at., 2003). Therefore with acknowledgement that 

the 2D computations have limitations, the results can be considered valid representations 

of their experimental equivalents. 

The COlTcl:lponding frout speeds for the data are displayed in table 5.3. 39% of the smooth 

dataset w,1..' WE'll correlated to represent the constant speed phase. Therefore the ame 

perccntage of data was also used to ca.lculate comparative speeds for the rough cases. The 

p rcentage difference between these speeds with respect to their experimental equivalent 

and th smooth simulation are also included. It can be seen that in this constant speed 

rrgioll. d spitc thr prrll1aturc decrefll>e at later times, the smooth case actually produces 

a fal>ter current th~U1 the corresponding experimental case but only by 3.4%. The frout 

po, iliou. of th(' C\UTeut with the beamSa,2 and beams6A boulldarie show very good 

agT(,(\JllCnt\ howevcr. the bCflIllS6, case shows an increas('d ('rror. Thi is probably due to 

th \ fact that, for the calcula.tioll as for the experimental data, 39% of the data is taken 
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Smooth Be8JllS6,1 Bearnsci,2 
Speed (mru/s) 163.2 148.7 146.2 

Fr 0.66 0.60 0.59 

Re 20319 18513 18202 

Inc/Dec (exp) +3.4% N/A -1.1% 

Inc/Dec (smooth) N/A -8.9% -10.4% 

R2 0.9998 0.9997 0.9993 

Bea.mse,4 Be8JllScJ,8 Bea.rnss,16 

Speed (mm/s) 142.6 138.6 141.8 

Fr 0.58 0.56 0.57 

Re 17754 17256 17654 

Inc/Dec (exp) -1.7% -4.9% N/A 
Inc/Dec (smooth) -12.6% -15.1% -13.1% 

R2 0.9983 0.996 0.9968 

Table 5.3: Front speeds resulting from 20 numerical simulations of a gravity current generated 

with a 5% deDl:lity excetlll for a smooth bed and all of the beam roughnesses calculated using the 

first 39% of t he front speed d&ta where t,he smooth <:lure is within the constant speed phase. Also 

shown is a Froude number calculated using Fr = ......:.- and a Reynolds number calculated using vg1ho/ 3 

Re = .. ,":/3 and percentage increase or decrease in front speed with respect to the experimental 

equivalent where available and the percentage increase or decrease in front speed with respect to 

the smooth numerical equivalent. 

based on good correlation for the period of constant speed for the smooth case, rather 

than the constant speed relative to this specific CASe. 

It is clear from figure 5.6 and table 5.3 that in general the front speed decreases in the 

presence of any bed roughness and the magnitude of the decrease is dependent on the 

element spacing with an increase in the distance between the beams leading to a greater 

decrease in the speed. This was also found in the experiments. It it can be observed 

that the predictions for be8JJl8G,16 and bea.m86,8 are almost identical. This suggests 

that the critical element spacing w / Ie,. RS 7 (where w = distance between elements and 

Ie,. = element height, which is always 0.006 m herein) above which few changes to the 

flow dynami('.8 ArC observed in open ('hannel and pipe flows (Cui et ai., 2003b; Leonardi 

et ai., 2003b; Ashrafian et al., 2004; Ikeda and Durbin, 2(07) might. also hold in the 

gravity current context. Measurement of the reattachment length at the bed between 

two elements further confirms this, see section 5.5.2. With reference to d-type (be&IllS6,) 

and be&IDScI,2) and k-type (beam86,4, bealDS6,8 and beamss,16) spacings, there does not 

appear to be a noticeable impact on the front speed that enables definitive differentiation 

between these two classifications. However, it is interest.ing to note that there is some 

similarity between the predictions for the betunS(;,2 and bearnsc;,4 surfaces. This perhaps 
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Figure 5.6: POtiition of the front 88 a function of time resulting from 2D numerical simulations 

with a smooth bottom wall, IUld bottom walls with beamSO,b beamso,2. beamse.4, bearnse,s and 

beamse,16. 

indicates that the classification of a middle 'intermediate' bed roughness configuration 

(w/k,. ~ 4), 88 some investigators have postulated (Chow, 1959; Cui et al., 2003b), 

could be justified. When the velocity fields throughout the entire domain are considered 

in the next section, the differences hetween the bed types are more obvious and the 

data predicts that the flow fields for the bC8I1186,4 boWldary are more like the k-type 

cases. This does not repudiate these observations made for the front positions but 

rather suggests that the be8lIl86.4 case has some d-type and some k-type attributes as 

an intermediate classification would imply. 

The effects of the presence of less dense fluid between the roughness elements 

on the front position and speed 

In the laboratory, two experiments were Wldertaken with fluid of the same initial density 

88 the current (Le. 5% excess) injected between the roughness elements for the beamae.2 

and beams6,8 beds in order to try and identify the contribution of the fluid in tbe8e 
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Figure 5.7: Position of the front as a function of time resulting from 2D numerical simulations 

(N) of a gravity current generated with a 5% density excess for a bottom boundary with beams6.2 

(B6,2) and beam '6,8 (B6,M) both with dense fluid initialised between the elements (D). (a) with 

experimental equivalenLs (E) and (b) wil h the models without. dense Ouid bet.ween t.he beams (A) 

and the smooth case for reference. 

gap.' to the flow uyuulll.in; of the overflowiug current. Simulations equivalent to these 

coufiguratious W('l'(' also IH'rfornwd IluIU('l'ically, TIl() rmmlt.ing front positions of the 

currents as a function of time and the experimental equivalents, can be seen in figure 5.7 

(a), Again, the agreement is very good for early times, At later times. the d-type case is 

observed to be slightly inaccurate due to the aforementioned premature decrease in speed, 

Conversely, the k-typc bed is not only faster than the regular case with ambient fluid in 

the gap::; but faster than the d-type numerical simulations and both of the experimental 

case , almost equal to the smooth case. In this case, it is possible that the energy losses 

due to tat 1'81 motion. which is not possible in 2D, is necessary for accurate retardation 

of the flow , 

The good agrcclll Ilt with corresponding experimental data for the constant pha.c;e is 

reElected in the front sp eds calculated from the data shown in table 5.4. The FLUE~T 

prediction i ouly ~ 1 % fa ... ')ter than the experimental result in the d-type ca.')e and ~ 3% 

fasLer in the k-Lypc, Comparing the model with dense' fluid between the elements to the 

equival nt with ambient fluid and the smooth result, see figure 5.7 (b) , it is clear that 

thE' p1'e:I:'11(,1:' of thl:' less dense fl \lid bet ween the elements contributes to a reduction in 

the pe d but i not the only causc of the decrease ill speed , i.e. the entraimncnt of 

th(' ambi('nt fluid b('twcen the clements as tIl<' current flows over is si~nificant but so 

are the lement · them'elve . Thi agrees with the experimental ob ervations pre ented 

in chapt r 2, If the reduction in peed wit.h respect to the smooth cru'e i~ considered 
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Bea.nlS6.2 BeaJ'IlStl.8 

Speed (mmjs) 154.8 157.1 

Fr 0.63 0.63 

Re 19273 19559 

Inc/Dec (Exp) +1.04% +3.4% 

Inc/Dec (smooth) -5.1% -3.7% 
R2 0.9999 0.9999 

Table 5.4: Front speed!! resulting from 20 numerical simulations of a gravity current generated 

with a 5% density excess for a bottom boundary with beamso.2 and bea.mse.8 both with dense 
fluid initialised between the elements. Calculated using the first 39% of the front speed data. 
Also shown is the Fr calculated using Fr = ~ and Re calculated using Re = u,ho/2 and 

Vf/'ho/2 II 

the percentage increase or decrease ill front speed with respect to the experimental equivalent 

and the percentage increase or decrease in front speed with respect to the smooth numerical 

equivalent. 

in the d-type case, it can be observed that there is a :::::s 5% reduction with dense fluid 

between the elements which increases to a :::::s lO% reduction with ambient fluid between 

the elements. Although these magnitudes are slightly exaggerated in comparison to 

the experimental equivalent (:::::s 3.5% and :::::s 7%, respectively), they essentially produce 

the same conclusion, namely that during the period of constant speed, there is an ap­

proximately 50:50 split governing the reduction in speed due to the presence of beam 

roughness, :::::s 50% can be attributed to buoyancy effects of the ambient fluid trapped 

between the elements and the other :::::s 50% to other effects resulting from presence of the 

elements. This statistic also holds approximately for the k-type case in the experimental 

result. However, the 2D numerical results do not agree and find that, while removal of 

the ambient fluid between the elements reduces the speed by :::::s 4%, the total effect of 

the beams with this ambient fluid increases this reduction to :::::s 15%. It is possible that, 

as mentioned above, t.his is a result of the different spacings being subject to different 

magnitudes of lateral motion, therefore the 3D model data should provide a conclusive 

result. This does not hold at later times where inspection of figure 5.7 (b) suggests that, 

the ambient fluid between the elements results in increasingly reduced front positions, 

most llotably in the k-type case. 

The effects of the the law-of-the-wall method for specifying the bed rougbneaB 

on the front position and speed 

The results presented thus far have been generated from the data using the body-fitted 

mesh method for the inclusion of bed roughness. To examine the performance of the 
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Figure 5. : Position of the front as a function of time resulting from (a) the 2D numerical 

simulation with a bed roughened using the law-of-Lhe-wall method with k .• = 0.0015 and the 

experimental (E) and numerical (N) equivalent beal11S6,2 (i.e. k~:::::: 0.0017) and (b) the 2D 

simllJalion~ with k .• = 0.0075, 0.0015 and 0.003. 

law-of-the-wall method, the 42 x 417 mesh was used with a ks value of 0.0015. This 

is almost equivalent to the experimental beams6,2 case for which it was established in 

chapter 2 that ks :::: 0.0017, and is therefore compared to that experimental data and 

the body-fitted method numerical equivalent. The results of the simulation for the front 

po itioll as a function of time can be seen in figure 5.8 (a). The law-of-the-wall method 

appears to how very good overall agreement, although it is interesting to note that the 

body-fitted melhod agrees better for early times while the law-of-the-wall method shows 

better agreement at later times. This i~ possibly because the hody-fitted method resolves 

tIll' rotatill~ fluid bclwecu the dClllcllts and, similar to the billows at the interface, these 

<U"(' not brok!'n clown dficiently sinc!' a :lD mechanism is n!'cc. sary for this to occur 

and con.'cquclltly the currellt slows down unphysically. However, by specifying a ks 

value which 11a . b('ell generated from experiments aud thus by nature is subject to 3D 

mechanism. , the ({('crease in front speed that results from higher resolution with the finer 

mesh used in th body-fitted model , does not occur. 

The re ult of all investigation to examine the sensitivity of the method of specifying a 

k8 value 011 position of the front as a fUllction of tillle are ShOWll in figure 5. (b). The 

kli = 0.0015 value was halv d and doubled with the result that the smaller value cause 

less of a slowing effect on the current and the larger value increases the retardation. 

as expected. Thus, it cau be confirmed that. t.he simulations ar(' sensitivC' to the value 

pr "crib d tlu'ough impl 1l1enting the law-of-the-wall method. 
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Figure 5.9: Horizontal velocity component, 71 , field:i at t = 9 s result.ing from the 2D simulation 

with (a) sJIlooth bottom wall and (b) beams6.1, (c) beamsU,2. (d) beams6.4 , (e) beamsu.tl and (I) 
bcambu.16' Down ·trcam Illotion is from left to right. Red and blue arc high and low velocities. 

respectively. l\ laximum and minimulll values are displayed at. the top of the figure. 

5.5.2 Velocity structure 

The effects of the spacing of bed roughness elements on the velocity structure 

Figur s 5.9 and 5.10 show the velocity fields for horizontal and vertical motion throughout 

the domain, re 'pectively. III both rough and smooth cases the horizontal and wrtical 

moLiOll at th front of the current is almost identical. However. within the head, for the 

bcd-roughened cases (figures 5.9 (b) - (I)), the hor izontal velocity maximum appear 

to be located higher in the current thau in the smooth case. Further disruptioll hru; 

OCCUlT d to the horizontal motion near the bed and within the return flow (negative) 

of ambicnt fluid above the primarily downst.rcam horizontal flow (positive) of the main 

current body. Figure 5.9 and 5.10 also confirm that , as mentioned previously. the effect 

of th d-typ<, !UKi k-type pacings can be observed in the velocity fields . The two <I-type 
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Figme 5.10: ertical velocity component, v, fields at t = 9 .9 resulting from the 2D simulation 

with (a) smooth bollom wall and (b) beams6.1, (c) beams6,2. (d) beams6,4, (e) bearns6,ll and (J) 
beams(J.IG' Down 'trcam motion is from left to right. R.ed and blue are high and low velocities. 

respectively. laximum and minimum values are displayed at. the top of tlte figure. 

cases, figures 5.9 aud 5.10 (b) and (c), depict very similar flow fiplds for this c:lassification 

of bed. The k-type cases. figures 5.9 and 5.10 (cl) - (f), also show close similarity within 

the velocity domain and, as mentioned previously, are noticeably different to the d-type 

CHl 'e . Thl' d-Lype C(lliCS SllOW siguifieant disturlmnce t.o the tail of the current, unlike 

th 'mooth or the k-type cases. Increased disruption to the return fiow above call also 

b ob 'erv d, again this is apparently more substantial than in the smooth or k-type 

ea . The e features correspond to increased magnitude in the regions of high positive 

and ncgativ How visible in the vertical velocity fields (figur s 5.10 (b) and (c)) which 

coll ctiv ly indicate the presence of strong billows in the vicinity of these fluctuation 

at the den ' it ' interface. In the smooth and k-t'ype simulations (figures 5.10 (a) and 

(d) (J), r<'sp('('tiV<'ly). the rcgions of high ncgative or positive vertical velocities app<'ar 

more diffu than for th d-typ models. It can also be observed that the distributioll of 
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the horizontal and vertical velocity fields in the k-type cases, at this early time, appear to 

show quite strong similarities to the smooth case compared to the d-type case, although, 

as the spacing increases to the widest spacing, figure 5.10 (f), the disturbances once 

again increase in magnitude. 

Figure 5.10 shows very clearly the strong upward motion of the ambient fluid as it is 

forced aside by the oncoming current. The corresponding negative motion confirming 

that the fluid flows back over the head of the current can be seen at the current fronts in 

figure 5.9. Additionally, note that the vertical motion is not confined to the extremity 

of the very front of the current but also shows fluid pushed upwards ahead of the front. 

However, in this region, the horizontal motion at the front that was observed to force the 

ambient fluid backwards over the head, can now be seeu to 'pwm' the fluid inlDlediatcly 

in front of the current resulting in a ghost-like front before the true one. Although this 

('ould in part bt'! attributoo to numerical diffusion at thE'! front, it is likely that it is in 

fact representing of a realistic phenomena that has been obeened experimentally (Felix 

and Peakall, 20(6). In the smooth case (figure 5.9 (a», the horizontal pushiDg motion is 

slightly reduced compared to the rough cases, this is likely to be because the current is 

shallower and more streamlined so that the ambient fluid is more easily forced upwards 

over the current. 

The velocity vector field in the head of the gravity current in the vicinity of the roughness 

elements can be seen in figure 5.11. Note that the elements themselves are represented 

by NaN* in the datasets. Therefore the linear interpolation used to produce the contours 

causes 1088 of definition of their true shape but does not influence the rest of the data. 

Rotating vortices trapped between the elements can be observed in the d-type cases, 

figures 5.11 (a) and (b). In the closest spaced case, beaDlS6,l (figure 5.11 (a», these 

vortices are weaker and no disturbance to the flow above the elements occurs. When this 

spacing is douhled (figure 5.11 (b», the vortices are considerably stronger but still there 

is no clear disturbance to the overflowing current. As the spacing increases to l>ea.u186,4 

(figure 5.11 (c» vortices can still be observed at the downstream faces of the elements but 

th.-y do not. 611 the wholE'! gap. This suggf'St.s that. flow ~parat.ion is occurring at the top 

of each e1ement and the separating flow is attempting to reattach in the space between 

the elements and generating a vortex beneath it at the downstream face. Disturbance 

to the overlying Bow is now evident although it does not extend far above the top of the 

'NaN. or 'not a number' ill Wiually uaed to indicate an attempted operation on invalid values. b 

example. the square root of a negative number. It 18 uaed here rather than zero 80 that mean values are 

not affected and 80 that tht'l'e are no tru~ holes in the dataset for eMe of P1'OCC!IItrinI. 
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Figure 5.11 : Vedors of velocity magnitude and contours of UDS (concentration) distribution 

in the current head in the vicinity of the roughness elements at t = 9 s resulting from the 

2D simulation with (a) ueams6.J, (b) ueams6,2, (c) ueams6,4, (d) beallls6,8 and (e) bealll~6 .1 6. 

Note that the elements are represented by NaN ('not a number') in the datasets , therefore the 

lineal' interpolation used to produce the contours causes loss of defillition of tllcir true square 

shape. Downstrpam motion is from left to right. Red and blue are high and low concentration, 

respectively. lYJaximum and miuimuJ11 values are displayed at. the lop of lhe figure . 

elements. Further iucreasing the spacing to the bearns6,8 and beams6,16 ease's (figure'S 

5.11 (d) and (c) , respectively) gives rise to distinct flow separation at the top of an 

el ment with r attachment further downstream between that element and the adjacent 

OIlC. This rcatcs a larg<'f rotating vortex at the downstream face of the element and 

pot 'ntially a 'maller vortex at the upstream face of the subsequent element. However, at 

th CtuT llt r olution, the postulated secondary smaller vortex is not clear and can only 

be inf('rrcd by the small region of stationaJ:y flow at the upstream face of the element 

which appear to deflect the primary downstream flow in the gap upwards and owr the 

elem nt apex . In reas d distortion to the flow field above the elements can clearly be 

01 s('rv cl ill both cas s. 

Th ollceutratioll coutours in figure 5.11 art' mainly for reference. However, they also 



(a) 

(b) 

(c) 

(d) 

(e) 

(1) 

0.2 

0.1 

o 

0.2 

0.1 

0 

0.2 

0.1 

0 

0.2 

0.1 

0 

0.2 

0.1 

0 

,...... 0.2 
~ 
;:.., 0.1 

0 

215 

Urn." = 179.2, U mm = -124.6 mm 

2 2.5 3 3.5 

t = 21.0 s 

4 
t = 24.0 s 

~""" --------.. ---.-------.~ .. --.. --..... -.. ---... -.---..... _-- .-
2 2.5 3 3.5 4 

t = 25.0 s 

~~ ..... . 
2 2.5 3 

2 2.5 3 

2 2.5 3 

3.5 

3.5 

3.5 

4 
t = 25.0 s 

4 
t = 27.0 s 

4 
t = 27.0 s 

~~ .. 
2 2.5 3 3.5 4 

x (m) 

Figure 5.12: Horizontal velocity component, 1l, fields fl.! Lhe fl.pproximaLe Lime the head passes 

tln'ough 'hill 33' wilCre t.he vertical profile data is read (shown as a line) resulting from the 

2D simulation with (a) smooth bottom wall and (b) beams(J,l , (c) beams6.2, (d) beall1S6,.j, (e) 

iwams6 ,8 and (I) beams(J,16 ' Downstream motion il:i from left to right . Red and blue art' high 

and low v locitic', r'sp ctively. Maximum and minimum values are displayed at the top of the 

figure. 

confirm thttt the demie 'pacing of the f>lements in the d-type casf>S f>nable the vortices to 

maintain the less dense' fluid trapped between the elements while high concentration fluid 

pas - s above, de pite the lack of strength apparent in these gaps. In the k-type cases, the 

lighter fluid does not appear to be maintained between the elements. Instead, there is a 

gt-ealer Rmo\.1lll of light fluid potrntially entrained due to the strong flow separation that 

o Ul'S whi h call engulf' the less dense fluid downstream of the element. Thus different 

flow dymunin., for the entrainment of the lighter alllbient fluid beneath the head can be 

cXIJt't'kd for the d-typl' alld k-type cI:I.')cs. Further effects ou concentration resulting from 

the prcst'll' of til bed roughness are preseuted in section 5.7. 

A", diHcu.s{'d ill ::; 'c(iou 1.3.3, iu open ChUUlld and pipe How studies with be~Ull-roughencd 
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walls a critical spacing, wllc,. ~ 1, has been established, above which changes to the 

spacing have less effects on the flow. In particular, the size of the reattachment length 

between two adjacent roughness elements remains constant. In the present study the 

distance between the elements used in the beamss.8 and beamss.16 cases lie just above 

and at more than double this threshold, respectively. The propagation of the front as 

a function of time was shown in the previous section to be almost identical for these 

two spacings. This indicates that the effects are not changing substantially above this 

critical level for gravity currents. Aalculations of the reattachment lengths, predicted 

from the velocity VL'Ctor fields give further evidence of this with values of 3.SIc,. and 41c,., 

respectively, which are in good agreement with existing singlo-phasc flow rt'Sults that 

found a value of about 4k,. (Cui et 01., 2003b)§. 

The hori1.ontal and vcrtkal velocity fields in the vicinity of the current at later times 

can be Sf!en in figures 5.12 and 5.13, respectively. As mentioned previously, the data is 

presented in order to correspond to the time that the head of the current reaches the 

location at which the vertical profiles are read during the experiments (i.e. 'bin 35', 3.22 

m from the lock-box end of the tank). Differences between d-type and k-type in both the 

vertical and horizontal flow fields can still be observed at these times but they are now 

less significant. The d-type bed configuration appears to produce a horizontal velocity 

field with high velocities extending further back into the current body and tail than any 

of the other beds. In the k-type case the velocity field extends upstream far behind 

the head but is more diffuse, lower velocities can be observed in the tail region. Both 

classifications show reduced negative velocities in the return flow above the current. 

The difference between the rough cases and the smooth c.ase is clearer at this later 

time. The current body has elongated with time 88 for the rough cases but not as 

extensively. As for the early time, the smooth simulation retains the disruptions within 

the current hody and high return flow ahove the current in the horizontal field and 

distinct fluctuations in the vertical field (figure 5.12 (a) and figure 5.13 (a), respectively) 

indicating maintained coherence in the billows at the density interface. The only strong 

vP.rtic-.a1 mot.ion rp.maining in t.hp. rough ca.cl~ (figurf".fil 5.13 (b) - (f» is the positive motion 

of the ambient fluid being forced upwards at the front, most other vertical motion appears 

to have been damped. The pushing motion in the fluid ahead of the front obeerved at 

the earlier time can still be seen at these later times. 

Notice that at both early and later times, the velocity field of the beam.scl,4 case appears 

'note that there Is some variation in this result, Cui et til. (2003b) suggesta a value of about 4kr, 
wlltlt' Ikeda and nurbill (2007) find a value of 4.5k,. and Leonardi et til. (2003b) report a value of 4.8k.-. 
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Figur' 5.13: Vcrtical velocity component, v , fields at the approximate time the head pa.c;ses 

tbrough 'hill 3j' wllcl'c tile vcrtic(ll profile uata i!; read (!;l-Iowl1 as a line) resulting from the 
2D 'imulation with (a) smooth bottom wall and (b) beams(J,l' (c) bCam!;6.2, (d) beamS6.4 , (e) 

heam~6 . and (I) beams6,16' Downstream Illotion i!; from left to right. Red and blue are high 

and low \' locitie~, rcsp 'ctively, maximum and minimum value!; are displayed at the top of the 

figure . 

to conform to the k-type characteristics, and not the d-type (figures 5.9-.5.13 (d)) . Thus 

the velocity field prediction shows no indication of this bed representing an intermediate 

pacing configuration . 

The downstream horizontal velocity profiles within the current head at 'bin 35" which 

corr ponds to the vertical lines shown on the velocity field data at later times, can be 

seen ill figure 5.11. 'Where avrulable, the experimental equivalents are also displayed . 

1'\ote that ill tit cxp<'fim<'l1t' the probes are rigged above thc elements, with the element 

t p taken to l> If, 'fO for da.ta analysis. Therefore, the numerical results shown are from 

tbe first cell ahow tll(' Lop of LIlt' dements. From figlU'es 5 .H (a) , (c) and ( ) it can be 

s n that tiH' datil from the Hum rical simulatiolls shows vcry good agTc mCllt with the 
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experimental results. The agreement in figure 5.14 (d) is not as good with respect to 

the distribution of the velocity about the maximum, probably as a result of the probe 

resolution missing the true maximum location in the experiments. Despite this, the value 

of the velocity maximum, uma;r, is in very good agreement. 

The nwnerical results predict that the location of the velocity maximum moves further 

away from the bed with an increase in the roughness element spacing from bea.mss,l 

to be&lD86,8 (figures 5.14 (b) - (e)). The magnitude of the maximum is also reduced. 

although the value at this maximum only shows slight variability between rough bed 

configurations. The be&lll86,16 case (5.14 (d» displays a different velocity profile in 

which the current near the bed is similar to the other rough cases but the velocity 

maximum appears to represent an atypical 'surge' at about 40 mm from the bed. Without 

cxprrimcntal confirmation it is difficult to say if thc irregular profile is a COIl8Cqucnre 

of the numerical computation or of the substantially larger spacing between adjacent 

elements. The latter could occur since, with elements spaced at 96 mm apart, the current 

has more time to adjust after reattachment to the bed before it encounters the next 

roughness element. This adjustment could modify the velocity distribution throughout 

the current depth more than the smaller spacings. Note that the propagation of the front 

of the current for this csse (figure 5.6) was shown to be almost identical to the beamBcl,8 

case but they appear to have different internal flow dynamics. 

A comment must be made on the location at which these vertical profiles are read. The 

bin is always located in the same position, at 3.22 m from the lock. However, the varying 

spacing of the elements means that this location may lie at the top of a roughness element 

or somewhere in the gap between two adjacent elements. Therefore, it is possible that 

the profiles could be affected by this discrepancy. Inspection of velocity. profiles read 

above an element and in the adjacent cells upstream and downstream of the elements 

in the vicinity of the hin produced no distinguishahle difference in the profile of the 

overflowing current. Note that below the top of the clements in the gaps, a negative flow 

was observed. However, since the experimental data is read from level with the top of 

thf> p.lp.mp.nt.s, only thp. profiles of thp. DllD1P.rical predict-ion from this point and above are 

presented for validation purposes. Evidence of the negative flow, which is generated by 

the trapped vortices, has already been presented in figure 5.11. This lack of distinction 

between motion above the element or in the gaps means that comparison of the profiles 

regardless of location is valid. This does not hold for the turbulence kinetic energy 

profiles as shown in section 5.6. 
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Figur' 5.15. Horizontul velocity component, U, fields at t = 9 s resulting from the 2D simulation 
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nnd blue are high Ilnd low velocities, respectively. Maximum and minimulll "alues are displayed 

at lh lop of t h fir,urt'. 

Th if ·t of t h pr nc ofl d ense fluid b etween the roughness ele m e nts 

on ture 

The \"doc:ity firieL aftc:r 9 s for the rough cases with dense fluid replacing the ambient 

fluid b tw 11 th 1 III nt how trong similarities with the smooth case. compare (b) 

and (d) with (0) iu figures 5.15 and 5.16. T he horizontal velocities show that there are 

still fluctuatioll. at the brd but the disruption to the overlying fluid has been reduced. 

11 r' 'ioll. of high P 'itiv' lUld It gativ vertical motion are more diffuse than in the 

((·guhu· ('H .... {· wit L tUllhi('ut fluid filliug t.h l:' space between the elements (figure 5.15 and 

".16 ((.) ami (I ». again tIt. nre morc like the smooth case. However, the po~ition of 

the' h li:l.()utnl \"c1 'ity lIu\,:'imUIll appem's to extend furt.her back iuto the body of the 

cmrc'ut :-imilnl' to t 11 r gulnr rongh ('n. 

ism ,~ r, 17 (a) HlId (b) ' h w th 'imulatcd velocity and concentration fields in the viciu­

ity f th r nghn 'ss 1 'lll nt · for ad-type b d rOllghn ' (b alns(t2) with and without 
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Umal = 115.4. Vmm = -105.3 mm. t = 9.0 s 
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FiglU" 5.16: V('l'tical v'locity COlllpOlH.'nt, v, fields at t = 9 s resulting from the 2D simulation 

with (a ) sill th b tlom wall . and (b) bCaJllS6,2 with dense fluid initialised bet, ween thE' elements, 

(e) bt'lImsij.:.!' (d) b 'aIllSij . with dell. e fhud initiAlised brtween the clements and (e) beamsc; , . Red 

and blu an' high and low velocities, resp clively. Maximum and minimum values are displayed 

at the top of t h fi gure. 

dense fI\lid initialis d betwe n t he clements. Despite the obvious difference in the con­

e ntration of th fluid trapp d between the elements, there is little apparent difference in 

tbt, "{'iocit . It CUll Ot' obserV<'d ill figure 5. 17 (a) t hat the trapped fluid is marginally less 

dcn:o; tlum rhe high .st concentrations observed in the overflowing fluid. Thi uggests 

th ther i minimal entrainment of t he ambient flui d occurring at the front. However, 

ill the k-tvpt· c c (figlU'<' .1.17 (e)) , this entrainment appears to occur to a I ser extent, 

wi I h i, ,' 'out n~ t ill tllt' flu id (' 11 entration betwccn the clem llts compared to the oYcr­

lyiuF, d n. e CUlTt.'llt Illsp Lion of figures S.li (c) and (d) shows that flow separation 

nt the uldn'fUn (,01'111.' r of Ih(' top of the elements appears to occur ill the k-type case. 

with 01 without Hlllhit'llt fluid init ially hetween the rouglmcss clement . However, the 

moti n b{'twN' J1 thC' C'lc1llC'nt. i~ wNtkC')' in t he rase with dcns(' fluid in the cavities and 

t h di~ll1pt ioll to t})(' (wC'rfiowillp; fluid that. rC'sults from t il(' motion around the elements 

is sigllifi n 1l1th' \('<111('(·<1 ('(l\llj)Hrl'd to tlJ(' rcgul l1l' rase with ambient fluid between the 
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Figur' 5.17' \', tor of velocity magnitude and contours of UDS (concentration) distribution 

ill tht> current hE'ad in th vicinity of thE' roughness E'lements at t = 9 s resulting from the 

2D illluJali II with (a) beam '6.2 with dense fluid initialised between the elements and (b) the 

r('gular b amsU,2 ('n..:;(' with ambiC'nt. flnio hC'twC'('l1 t.hC' d~mC'ntR, (c) beams6.8 with o('n. (' flnicl 

initia\i~'d b ,tW( '11 tIl(' e\t'1llt'uts and (d) beams6.8. Red and blue arc high and low concentration. 

r sp<'<'th' Iy. ~ln.xillllllll nnd minimum values are displayed at the top of the figure. 

I ill nt '. Th 01 'ervations ugg st that although comparable flow eparation is oc-

curring. tilt' stn I\gth of tit reattachlllent at the bed betwccn the elements is weaker. 

111. tad, th> dowllwm-d Illotion ill tit> reattachment region appears to be diminished, 

p rhap 'cu:.hi n d ' by the higher concentration fluid in this location compared to the 

morc di:ruptiv(' bu '!lnt dwrad ri~tics of the less dense fluid in the regular case. 

If th horizontal. and vertical velo ity fields at later time ' are considered. ee figure ' 

5.1 11d v.19 1':-'1> ti,'c!Y, it b COlllPS appro' ilL that although the cases with dense fluid 

I ,tw ' ll th 'roll IIll 'S ' '\ClIl llt ' app ared similar to the smooth case at earlier time, at 

later tiw ~ th '~U·t.' WOl' lik the pr dictions with ambient fluid in the cavities. Vertical 

molioll (fi~\trl'~ lUll (b) and (d)) has beell suh, tantially damped axcept at the head and 

th hori711ntal \,,1 ity fi Id~ (6gur s 5.1 (b) and (d)) withiu the cm-rent indicate that 

cto\\'n~tr am propHt!,atillp; III ti next nds further back into the tail of the cm-rent than 

ill tlH' ~lIl(}()lh l'H.'i('. H('(ilu'l'd rdmu fiuw ill tIl(' aJubi('uL fluid above the current can al 'o 



(a) 

(b) 

(c) 

(d) 

(e) 

0.2 

0.1 

o 

0.2 

0.1 

0 

0.2 

0.1 

0 

0.2 

0.1 

0 

,-.. 0.2 
~ 
;:.., 0.1 

0 

223 

Umar = 179.2, U rn ... = -124.6 mm 
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Figure 5.1 : Horizontal velocity component, u, fields at the approximate time the head passes 

through 'bin 35' where the vertical profile data is read (shown as a line) resulting from the 2D 

simulatioll wilh (a) mooth bottom waIL aJl(I (b) beamsG,2 wi.th dens<' f!illd init.iRlised bctw<,en 

the elements, (c) beamtoG,2, (d) beamsG. witll dellse fluid illitialised betweell the elements alld 

(e) beaJJJ~.8 . Red and blue are high and low velocities , respectively. Maximum and minimullI 

value's are' di. play<,d a t t.he top of tll!' figme' . 

be observed and again bears closer resemblance to the rough ca.';(~S with <lllluicut fluid 

between the elemellts than the smooth case, although the d-type ca..c;e does retain smooth 

characteristics ill this rC'spect. 

CorrespoJldil1~ velocity profiles for the I1ml1eriral sinmlations for the cases with dense 

fluid initiali cd between roughnC'ss clements are shown in figure 5.20. Figures 5.20 (a) 

and (b) confirm that the numerical results agree well with distributioll of the velocities 

for the experimental data and the value of the velocity maximum. Particularly good 

agTeel11ent is ob erved in the overall profile shape predict.ed in the beams6,2 case and 

there is little difference in the value of Uma.I: achieved in the beamsG,8 case compared 

to the experimental <'quivruellt. Figures 5.20 (c) and (d) demonstrate that the presence 

of the dense fluid between the clements causes t.he current profile t.o tend towards that 

of the 'l1l00th case, with the velocity maximum occurring lower in the flow such that 



(a) 
0.2 

0.1 

0 

(b ) 
0.2 

0.1 

0 

(c) 
0.2 

0.1 

0 

(d) 
0.2 

0.1 

0 

(e) 
,-. 0.2 
~ 
;:.., 0.1 

0 

224 

t'mar = 73.2. l'm,,, = -66.1 mm 
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Figur 5.19: VC'rtical velocity component. v, fields at the approximate time the head passcs 

through 'bill 35 ' \\ here' til(' ycrtical profile data is read (shown as a line) resulting from the 2D 

silJlulalion with (a) Illoolh bottom wall, alld (b) bcams(J,2 wit.h dense fluid initi<1\iscd bC'twc('n 

the elements, (c ) h amS(J ,2, (d) beamS().8 witli dense f1uiu iliitia,lised between the elements and 

(e) b amS(; .. Rt-'d and blue are high and low velocities, respectively. Maximum and minimulll 

valllC', arC' di:-.pla~Trl a t I h(' top of the fi!1;tlIt" . 

tIl<' JlI'ofil<-:-. ahuo:-.t repres('ut an awrage of the smooth awl the regular rough cases. 

ThC' profik doC's not f' tltircly rf'Vf'rt, to that. of t 11(' smoot.h (;asc. This implies that the 

fluid betweell t h(' cI lIH'llt ('ontributes strongly to the current dynamics but there are 

al 0 other ill han isms pre ent as was postulated previously from the front speed results 

(seetioll f> .:),} ). ot (' that ht'rf wa"l 110 distinguishable difference observed between the 

flow profil .~ in the r ~ults takcn abovc an clemcnt or above the gap between two element. 

Th it ct of tIl law-of-the-wall method for specifying the bed roughness 

on the v 10 ity ' tru tur 

The v(,lodty fidds using tIlt' law-of-tlH'-wall mel,hod for bed roughness with ks = 0.0015. 

ql1ivllJCllt to tli( l>l'allls ,2 ('l\.';c , ('1::\11 be seen in figures 5.21 and 5.22. Strong similariti<'S 

with thm til 'U:-' c all b \ 01 ~ 'rv'd by comparing (a) and (b) in figures 5.21 and 5.22. 
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Umax = 134.8, umax = 133.0 mm/ s 
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Figure 5.20: Dow11 II' HIli horizontal w!1ocit,y, tt, profiles within the head of the current resulting 

from (a) lh(' 2D simulation and E'xperimental equivalent. wit.h a bottom wall of beams6,2 (B6,2) 

with d 11 'fiuid imtiali. cd b t.ween the elements; (b) the 2D simulation alld experimental equiv­

al nt with a bottom waH of beamS6,tl (BIi ,s) with dense fluid bet.ween the elements; (c) the 2D 

simulatioll with a mooth boltom wall and a bottom wa'!l of heams{),2 with (D) and without (A) 

dplIs(' fluid illitiali:-.('d h('lWl't'lI tltp ('\elllellts; alld (d) the 2D simulation with a smooth bottom 

wall and H bottolll wtlll of Uealll::;6.8 with (D) and without (A) dense fluid initialised between t.he 

ele1Jlents. 

Ther b little disturbance to the ambient return flow and t.he location and streamwise 

distrihution of the velocity maximum. This could in part be attributed to the fact 

that th ' law-of-the-w~tll Illl'thod e::;::;cntially uses au identical domain configuration to the 

mo til CC\::; ,ex pt for til hang of ks value at the wall. Despite this. some disruption 

to the horizontal flow t\t the bottol11 boundary CaJl be seen in figme 5.21 (b), and in 

figur 5.22 (b) all in r a '(' ill the vertical velocities are also present, perhaps causing the 

di::;ruptions in th vicinit , of th bottom bOlmdary, 

The velocit ' fi Id~ tal t r tim for th law-of-the-wall bed can be seen in figures 5.23 

and 5.211. As for the \;'arly tim, little difference call be observed between the ks method 

and ll1(' SUlOl)t h ('","(', TIl(> v('rlical field 'hows clear fluctuaLions within the current body 

alb i .. Iightl \ ak r but not as r due .d as the body-fitted method and the horizontal 



(a) 

(b) 

0.2 
0.15 

0.1 
0.05 

0.2 
0.15 

0.1 
0.05 

(c) 0 .25 
'"' 0.2 .!. 0 .15 
:... 0.1 

0.05 

0 .2 

0.2 

0.2 

0.4 0.6 0.8 

0.4 0.6 0.8 

0.4 0.6 0.8 

226 

1.2 

1.2 

1.2 
x (m) 

1.4 

1.4 

1.4 

1.6 1.8 2 2.2 

1.6 1.8 2 2.2 

1.6 1.8 2 2.2 

Figure 5.21 : Horizolltal velocity component, tt , fields at t = 9 s resulti ng from the 2D simulation 

with (a) Slllooth bottom wall ami with (b) a k. value on the bot,(,om wall (ks = 0.0015) which 

is lhe approxillla t 'Iy 'quivul 'nt value of (c) beamsG.2. Red a nd blue are high and low velocities, 

r sp eliv Iy, ma;ximull1 and minimum values are displayed at the top of the figure. 
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Figure 5.22 : er( iel-\I v lo.ity ornponent. t', Helds at t = 9 s resulting from the 2D simulation 

with (a) lll olh bottom wall und with (b) a k8 value on the bottom wall (k. = 0.0015 ) which 

is Lh(' approxinmt('1 . ('qui\'!\1 nl vnlll of (c) beamS{i,2. R.ed and blue are high and low velocities, 

r p' tiv 'Iy. ~hL"imum an i minimulll min's are displayed at the top of the' figure'. 

fi II i di:tribut 1 v r ' imilarly to the smooth bed case. 

TIlt' dowlls( reillll horizoutal wlocity profile data at the bill for t he simulation using the 

law-of-thc-wall m th d can be cen in figure 5.25. The law-of-the-wa1l1l1ethod produces 

a slightly dif~ reut \elocity profil to (,}1(' exp rimental and body-fitted equivalent cases. 

Til VHllI f (h(' \('10 ity llUl 'iUUll ll is gr ntcl' and located lower within the head region 
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Figure 5.23: Huril.Olllul v'locity component, U, fields at the approximat I' t,ime the head passes 

tbrough 'hill 35' when' t ill' vertical profile dClla i!:i rea.l! (/Sbown as a line) resulting from the 2D 

simulation wilh (a) "mouth bottom wall and with (b) a kA value on the bottom wall (k .• = 0.0015) 

which is the approximat Iy quivalent value of (c) beams6.2 . Red and blue are high and low 

velociti re p ~livt'ly. 1uxilllUIll aud minimum values are displayed at the top of t.he figme. 
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Figure 5.21: Vertical \' 'Iucity compoD 'nt , v, fields at the approximate time the head passes 

through 'bill :l!) .. dWfC> Ih(' vPftiral profllc dala is read (shown as a line) resulting fTom the 2D 

simulation with (a)mooth bottom wall and with (b) a ks value 011 the bottom wall (k. = 0.0015) 

which is th . npproximal'ly quival('nt value of (c) beams6.2. Red and blue are high and low 

vdocitic;" re p{ 'lh 'Iy. JUXillllllll amI minimulll values are displayed at the top of the figure . 

and the distriblltioll of th vdoeities about this lIHLximulU is smaller and tends towards 

th smooth pr file . 
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Figure 5.25: Down trealll hori.wntal velocity, tt, profilrs within the current hrfld rrsulting from 

the 2D sillllliatioll ( ) and eql1i"alent experimental (E) result, for the rough case with the beamSij,2 

alld for th' 2D .illlulalioll with the approximately equivalent k .. = 0.0015 value 011 the bottom 

wall and with k. - 0.0075 and 0.003. 

5.6 Thrbulence structure 

Tnrlml('l1n: kill!'! ic ('lH'r~v (TKE) profiles canllot 1H' gellerated for the experimental re­

.'ults since tilt' horizontal and v rtical components of the velocity at a point are not 

known imultaneously for one p cific experiment due to the limitations in the velocity 

runge of till' un P }"(,C]llired for accuracy. One of the benefits of the numerical simu­

latioll.' i' that this dnta is available. The velocity data has beell shown to be a good 

pr dictioll of til xp 'rimclltal equivalents and thus it call be postulated that the TKE 

data is of equal ability. How vel'. the results for TKE remain unvalidated and as such 

should he tn'ate(\ ,dth ,ome ca.ution uutil confirmed ''lith an experimental dataset. 
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Figure 5.26: Thrbuleu(,(, kinetic energy, k, fields at t = 9 s resulting from the 2D simulation 

with (a) . IlIooth bottom wall, and (b) beams6,1, (c) beams6,2, (cl) beams6,4, (e) beams6.8 and en 
bcums(>.!fj . Red lind blu(' m'e high and low TI';:E, respectively. Ma.."(imum and minimum values 

are dbpltly I III tht' top or tll(:' figure . 

Th It ct of th pa ing of b d roughness elements on the turbulence struc-

tur 

The tnrhnlellcc kinetic eu<:'rgy (TKE) fieldH predicted for the early stage of gravity current 

propagati Jl \' r ach bed a1' pr€'sented in figure 5.26. There is a distinct region of 

high magllitud TK ju 't abov th bottom boundary in the head that increases with 

in<T<:'asil1g spacing 1)( tW( en t h(' elements (figures 5.26 (b) - (J)). Possibly as a result of 

thi" ill T ,(\:-; xi 1,\,·1 ' of TI\E 'CUI also be seell further from the bed within the body of 

th' gravit · turr llt mid in parti ular p lletratillg illto the head alld towards the frollt 

of th lilT nt , allio ill rea 'iug a the roughness element spacing increases. Note that at 

this tim(, (9:-;) the d-t p rough bed cas s hav higher values of TI<E at the density 

illt rfa" HI ov· th' 'U1T 'ut b 1y than at this location in the smooth case. 
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Figure 5.27: Turhul 'nce kin 'tic 'llcrgy, k, fields at. I.he' approximaLe Lime' the hea.d passes I.hrough 

'hill 35' wlwr . lilt' vt'rlical profile data i~ l'c,td (showll as a lille) resulting from the 2D simulation 

with (a) ~1l1ooth bott 111 wall, and (b) bcams(J.l . (c) bcams(J ,2, (d) beamsG.4, (e) beams6.8 and (I) 
h am~(J.J(J. Red and blue are high and low TKE, respectively. l\1a..ximum and minimum values 

ar' dil:>pluy ~ at lh ' top of tht' figure. 

Th differ He b lwe 11 d-type and k-type can clearly be observed in figure 5.26 (b) & (c) 

and (d) - (I), r specli ely. Th d-typc ca..c;e shows strong TKE at the density interface 

wh rC' tIl hillows IU'C' fOl'lU('d ami lower TKE at the bed while the k-type case shows 

high valu ,. at the bed within the head and at the interface although the magnitude of 

t h('.(' valn('~ "ruiC'~ f( r <iiffC'l'cnt spacings. III tIl(' k-t.ype case, distinct areas of high TKE 

can bobs TV II ('Ali d about tIl individual elements ben('ath the head. This is not 

so >vid lIt for til d-t 'P , eas '. 

III th(· Kl~, fil'lds at lut('r times, shown in figure 5.27, it can be observed that in the 

smooth ca:;c (figure 5.27 (0)) th rc i. still high TKE a.t the density interface above the 

CUlT nt b dy maintaining th pr enc of coherent billows in thi locality. The strong 
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Figure 5.28: Thrbulence kinetic energy, k, profiles for the total domain depth resulting from 2D 
numerical simulations with a smooth bottom wall and bottom walls with beamscs,l. beanlStl,2. 

beamII6,4, beamscI,s and beaIIUI6,16' 

TKE maintaining the large unphysical billow can clearly be observed to the rear of 

the current. In the rough cases, the localised TKE in the billows which confinns their 

coherence has dissipated and a damped region of high TKE has formed behind the head 

that does not extend 88 far into the current body as in the smooth case. The TKE is 

substantially reduced in this region for the two widest k-type roughness spacings (figures 

5.27 (e) and (f). but not for the be8lllS6 .• case. Mixing in the head is seen to have 

decreased significantly in the d-type cases and in the bea.DlS6,16 case (figures 5.27 (b). (e) 

and (f), respectively) but is still high and localised about the elements in the other two 

k-type cases (figures 5.27 (d) and (e», although the magnitude is somewhat reduced. 

Figure 5.28 enables comparison of the TKE profiles through the tank depth (shown as a 

vertical line in figure 5.27) for the smooth bed and each of the regular body-fitted beam­

roughened cases. In order for these profiles to be consistent with the vertical velocity 

profiles, and therefore used as a predictive tool to compliment the experimental data, 

they were generated from numerical data read at bin 35 (3.22 m from the lock-box end 
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Figure 5.29: Thrbulence kinetic energy, k, profiles in the vidnity of 'bin 35' rc8ulting from 
2D numerical simulations with bottom wa.lls with (a) beam8tJ,1. (b) bearnsti.:l, (c) beamS6.4, (d) 
beaDuIe.8 and (e) be&l1Ul6.16. J:orom left to right the vertical profiles represent data in four locations, 
namely, one in the cavity just upstream of an element, two at the top of an element and one in 

the adjacent <.-avity just downstream of an element. 

of the tank). For models generated with the beanlS6.2, bea.IllS6,.( and be&lIlS6,8 bed types, 

the bottom cell lit'S on top of a roughness element. Hence the first data point is within 

the cell adjacent to the top of the element, not at the bed in the gap. However, in the two 

other cases, the TKE profile is shown right down to the bed. Due to this discrepancy, 

profiles in the cells above, upstream and downstream of an element in the vicinity of the 

hill arc tJiluwu in figurc 5.29 8Ud should he <.:otlsidcroo in conjunction with the predictions 

in figure 5.28. 
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II. all cases investigated, a TKE minima. occurs in the vicinity of the velocity maximum 

with an increase towards the interface and towards the bed. as has typically been observed 

in experimental gravity currents (e.g. Kneller et al., 1999). Figure 5.29 confirms tha.t 

there is no distinguishable effect on the vertical distribution of the TKE in the main body 

of 80w away from the top of the elements, if the data is taken above the elements or 

from within the gap between them. However, there are differences in the How dynamics 

immediately above the elements as will be discussed subsequently. This again shows 

that the effects of the elements does not penetrate high into the current. Considering 

levels of TKE at the velocity maximum for the rough cases, an increase with increasing 

spacing occurs, except for the beamse,16 case where it is almost identical to the smooth 

case. The distance from the bed for this minimum turning point in the TKE profil~ 

also increases with increasing spacing except again for the bea.mss,16 case which agrees 

in height with the beamss,2 case. At the density interface above the current body, there 

is no consistent increase or decrease in magnitude dependent on element spacing that is 

obvious from the profiles in figure 5.28. The smooth case has the highest TKE in this 

region and beamss.l. the lowest. This turning point occurs lowest in the 80w profile for 

the smooth case. For the bed-roughened cases, it is located at almost identical distances 

from the bed regardless of element spacing, except for the beamss.16 case which occurs 

higher in the current. 

The main effects of bed roughness on the vertical TKE profiles can be observed to 

occur near the bed, as indicated by the TKE fields in figure 5.27. The results shown in 

figure 5.28 suggest that the TKE can increase dramatically in this region with increasing 

element spacing and then decrease abruptly down to the bed. The smooth boundary 

condition results in a TKE value that is greater than that of the velocity maximum but 

lower than the value at the interface and continues increasing down to the bed. Figure 

5.28 shows that in the presence of the roughness elements another turning point occurs 

in thr profile nra t.he boo. For the cl-type cases (br.aIIlS6.1 and hean:tss.2), the value at 

this point is again greater than the velocity maximum but smaller than the TKE at the 

density interface. However, in figure 5.29 (a) for the bea.IIl8fl.l case, it can be observed 

that this turning point is representative of the flow dynamics between the elements and 

this does not occur above the elements (middle two profiles of figure 5.29 (a)). In fact, 

above an element, the beamss,l case is similar to the smooth bed in both the upstream 

and downstream cells and in the upstream cell of the be&lD86,2 case i.e. a maxima does 

not occur and the TKE continues increasing down to the boundary but remains smaller 

than the maximum at the density interface. The k-type beds (bea.mse.4, beam.ss,8 and 
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bearnS6,16) have near-wall turning points both above the elements and upstream and 

downstream of the elements with greater magnitude than the value at the interface in 

the bearnss.16 case and significantly greater magnitudes in the be&llUl6,4 and ~,8 

cases, i.e. the maximum of the entire vertical TKE profile in the k-type cases occurs 

just above the bed and not at the interface. For all roughnesses, in the gap between the 

elements (figure 5.29, lefthand and righthand profiles), the TKE decreases substantially 

from the maxima just above the bed down to the bed itself. Figure 5.29 highlights that 

the increase in spacing increases the likelihood of a maxima in TKE occurring above the 

elements. FUrther, 88 the spacing increases, the magnitude of this maxima appears to 

increase, except for the beamse,16 case. 

The case that appears to be an exception to the general trends observed above is the 

be8lllS&.16 cuc, and this was also fotmd in the vertical velocity profiles. In this case, 

the magnitudes of the maxima at the bed and the interface are very similar regardless 

of whether the profile is read above the element or in an adjacent gap (figure 5.29 (e». 

The lower location of the TKE minima suggests that perhaps this case is regaining some 

attributes of the smooth case but the high maxima near the bed shows that it is also 

still under the influence of the individual roughness elements. 

The effects of the presence of less dense ftuid between the roughness elements 

on the turbulence structure 

Figure 5.30 shows the TKE field for the cases with and without dense fluid initialised 

between the roughness elements after 9 s. Once the buoyant fluid between the elements is 

eliminated, there is a substantial change to the TKE field throughout the domain and it 

becomes similar to that for the smooth bed (compare figures 5.30 (b) with (a». However, 

the increased level of TKE immediately behind the head that occurs for the other rough 

cases at this time and a slight increase at the bed can still be observed. Notice that 

with the ambient fluid removed there is also a closer similarity between the TKE fields 

over the d-type and k-type beds, although the k-type case still shows increased TKE 

in the head. The localised TKE about the elements in the k-type case is significantly 

smaller, 88 might be predicted since the dellse fluid between the elements is about the 

same concentration 88 the highly concentrated overlying current and therefore 'cushions' 

the current from some of the effects of the roughness elements allowing it to 80at more 

smoothly over the top, i.e. the removal of the surface friction at the bed by the gaps 

between the elements is more effective when there is dense fluid in these gaps. 
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Figure 5.30: 'I\ll'bulcnce kin 'tic ellergy, k, fields at, t = 9 s resulting from the 2D simulation with 

(a) smooth bottom wall, and (b) b amSU.2 with dense fluid initialised between the elements, (c) 
beallJ (; .2. (cl) h >a.IIl~(j. with n(,l1s(' fluid. initialis('a b('t.w('('n the clements and (e) beams6.8. Red 
and bill arC' high and low T KE, I' pectively. Maximum and minimum values are displayed at 

the top of til figure 

At latC'1' tim ~ whC'lI the current is a.pproximately passing through the bin location, as 

een aft r 9 , th cu hioning effect felt at the head is such that the TKE is more 

ubstantially reduced nt the bed in both the d-type and k-type cases compared to the 

equivalent predictions ,,-ith ambient fluid between the clements, see figure 5.31. The d­

type cas has r taia d tronger TKE distributed along the density interface, indicating 

coherenc ill til htructures in this region similar to the smooth case, while the k-type 

casc ha~ Hot alld diHpla 'H 'imilcu- str cull\vise distl'ibutiou of T KE within the current body 

as th r gular k-typ cas . at the density interface, a.lthough with greater magnitudes. 

The profile's ill figure 5.32 confirm thn(, (,he turbulence kinetic encrgy distribution within 

the UTT nt i ub tal1tiall - aff ct d by t he introduction of the dense fluid between the 

el lllcnt ' . Til . r ,nIts for this c/'\5 closely resemble t,he smooth data., particularly the 

valne at the v('ll city nu\XillltUll. t. th dCllsity intcffacc, the magnitude of the TKE 

tlgrc('s mol' ('\o;;l'ly with tit 1 Wl'f valllC' of the bemlls6,2 case than the smooth case but 
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Figur 5.31: 'I\trbul '!lce kill tic en 'rgy, k, fields at the approximate time the head passes t.hrough 

'bin :35 ' ",11<'1'e tIl(' \" rlical profile> data is read (shown as a line) resulting from the 2D simulation 

with (a)mooth bottom wall, and (b) bClIllJSa ,2 with drl1Rc fluid initialisrd brtwccn thr rlcmrnts. 

(e) bcamsb.2, (d) b('amsa. wirh delis!:! fluid initialised between the elelllellts and (e) beams6.tl. 

Red alld blue ur ' hip;h aJl(I low TKE. respectively. MaximullI ami lllillimum values are displayed 

at I he> to)) of I he fif,!;lIre'. 

it still oc ill" at aimilar. malleI' distance from the bed as in the latter case. Unlike 

the' smooth profi1('. tIl<' third turning point oo('s occur at. the bed, although the value of 

TKE at this point is not a high as in the case with buoyant fluid between the elements. 

It can al 0 be ob~er\' cl that th profile for the k-type case is more qualitatively similar 

to both of the' d-typ cas~' with th maximum TKE now at the interface and reduced 

at th b d , whilr th profil for th regular k-type cases show~ the maximUJIl at the bed. 

Again , th tr t. of the locati 11 about an lement at which the profiles are read can be 

cOl1."!id I' d. IIow('ve'r. t h '. . how that t.he same general trends as recorded in the cases 

with Rl1lbi('llt fluid b('tw(' n the cl lll('ut also hold here and no further significant effects 

than t h se. howl1 in fip;ur 5.32 can be observed. 
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Figure 5.32: Turhulence kinetic energy, k, profiles for the total domain depth resulting from 

lh(' 2D .. illlllllllioll wit h fI :omoot h bottom wall and It bottom wall with the beamSij,2 (Bij,2) and 

b 'mll~, (8t;. ) wilh (0) Illill witllout (A) (.k1li:iC fluid illitialiscd between tlJ(' roughness elements. 

Th f th law-of-thc-wall method for specifying the bed roughness 

on th turbul nc ' tructure 

h(' Tl{E fil'ld throl1ghollt tIl(' dOlllain Hft('l' !). shows that. tIl<' law-of-the-wall method is 

again vbihly tllon' billlilar to the smooth case, rompaTC figure 5.33 (b) to (a). However, 

it app al' that in tbi' cas , the maximum TKE at the interface has shifted to the back 

of th emr Ilt \\h('reas ill th(' smooth case it is more central and in the body-fitted case 

it b ju!-.t lwhill(1 tIt<' b(,Hd. In fignrc 5.34, at the lat('r times, greater differences can 

b bl .n 1 b tw en the law-of-the-wall prediction and the smooth case in the form of 

slightl)- incfCn ..... ( d TKE appar('nt n fir the bed and decreased TKE in the region of the 

billows Itt tll<' dClIsity intcrf<1(,c, although the distribution of TKE here i still analogous 

to th ~\Uooth c 'e. Til Imp; unphysical billow that was observed in the eyolution of 

tile slllO tb ('1I .... ('. S('ctiOll 5.4, is 1\1 0 prc eut in the ks model. 

The vertical profiles usill~ the law-of .. t he-wall method for the bed roughness can be 

S('t'll ill figlU"t' 5.:~5 mHl cOllfinll tht' similarity wilh the smooth cast> in the viciuity of thf' 
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Figur ' 5.33: Thrbul nee kinetic energy, k, contours at t = 9 s resulting from the 2D simulation 

with (0) :,JIloolh bOllom wall , and with (b) a ks value on the bot.t.om wall (k. = 0.0015) which 

is the approximately (,Quivalcnt value of (c) beamsG,2' Red Ilnd blue are high and low TKE. 
respectively. lnximum and minimum values are displayed at the top of the figllTe. 
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t hro\lgh 'bill :l5 ' wll 1(' the vertieal profile data is read (shown as a line) re 'ulting from the 2D 

::,illlulatioll with (0) hllloolh bottolll wall, alld with (b) a. "'s value on the bottom wall (k. = 0.0015) 

which i~ tilE' approxilllHl Iy t'qui\"al Ilt value of (c) beams6,2' Red and blue are high and low TKE, 

r 'bl)(' ,tiv 'ly ~h ximulll nlld lIlinilllUIlJ values are displayed a.t the top of the figure . 
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Figure 5.35: TUrbulence kinetic energy. Ie, profiles within the current head resulting from the 2D 

Rimlll"t,ion wit.h " Rmooth bOO IUld for the eqllivBif'nt, body-fitt.ed rough case with the bea.mss,2 
and for the 2D simulation with the approximately equivalent kIf value on the bottom wall (k. = 
0.0015). 

velocity maximum, as for the velocity profiles themselves. The vertical TKE distribution 

more closely resembles the smooth case than the rough case. At the density interface, 

the location of the TKE maximum is at approximately the same distance from the bed 

88 in the smooth case but some agreement with the equivalent rough case can be seen 

in the value at this maximum. At the bed, the use of k. increases the TKE but does 

not account for the turning point that had been observed to occur in this region in the 

body-fittoo (,.8..<Kl. 

5.7 Concentration 

One of the significant benefits of the CFD simulations is that concentration data is 

readily available for all of the bed roughnesses. Concentration data from the present 

experiments is not available for validation of the simulations. Therefore the numerical 

concentration results are considered 88 an indicative tool and are used 88 such to aid 
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Figlll'(, :3 .36: D ( Ollccntrntion), C fit'ltls at t = 9 s resulting from the 2D simulation with (a) 
smooth hot tom wall and (b) bemmi6,l, (c) beams6,2. (d) beams6,4, (e) beamH6,8 and (f) beams6.16. 

Red and bIn' arc high !Iud low concentration, respectively. Ma.ximum and minimum values are 

di1>playt'd at the top of the figure . 

under tauding in conj\ln tiOll with valida,ted data. 

f t h p a ing of b ed roughness elem ents on the concentration 

The user dcilll('(l :-'('ulal' or (,OllCt'lltl'utiolJ fields a.ft.cr 9 s call be seen in figure 5.36. It is 

ilJllllediar('lv X}lP<UI'llt that therl' is H lack of defi ni tiol1 i ll the billows at the interface in 

th 'mooth a' . This ould b attributed to the lower resolution used in this simulation 

or thi, ould nbo indiC'n.t gren.tf'r dilu\,ion occurring at the density interface. The large 

ullphY 'i 'al billo\\, ' pr ('nt withill th density interface above the body of the current 

occur in all cas . balls th 2D natur of the simulations means that the 3D mechanism 

Jl('c('ssary for tit ir dgclI ration is not present. In all of the rough models generated with 

th body-fitt dill' h . figur s S.3G (b) - (f), the head of the current is more diluted than 
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Figur. 5.:37: ( olle 'utration), C, fidrls at t,h(' approximate t.im(' t.llP hpftd pass('s through 

'hill 35' whet ' the vl'rlkul profile ul:lla io; reau (SlJOWlI as a line) resulting from the 2D simulation 

with (it) ~lIlooth bottom \ all and (b) bcallls6,l, (c) beams6.2, (d) beams6,4, (e) beamsG,8 and (f ) 
h ami-a.la. Red and hluE' arE' high amI low concenlrat.ion, respectively. l\1a.'(imum and minimum 

valu('/> arc tiipll.lycd at til ' top of til ' figure. 

for th mouth Cic ., (n). However, higher concentration fluid is distributed streamwise 

within tlU? current boel ' which crumot be seen in the slllooth case. This occurs to a 

gI'('Htel' <~Xl('llt fot the k-l p<' rouglmcti ' elt'lllellL tipa,ciugs, figmcs 5.36 (d) - (J) , while 

the d-typ ' hcu:.. figlU'l" 5.3G (b) l;Uld (c), maiutain a higher concentration of dense fluid 

within th h a I. In the c1-typ case, the billows can be observed as well-defined smgC's 

of COlL lLtrnti 11 at til illtC'rfacc that Me of a similar scale to the current depth and 

corr late with he c1ititurU'lllCC to th high concentration at the bed. In the k-type case, 

th bill ws a1' more dilut and th r fore less powerful and as a result the region of high 

(' ncelltntti 11 n ar th bed within th body is less distorted. 

Figur 5.:37 how!> the di tribution of th ('one ntration fields in the vicinity of the current 
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at later times. It can be observed that in the rough cases, the highest concentration 

regions are not within the head region but extend upstream along the body and the 

tail of the current actually increasing in concentration towards the rear of the current. 

In the smooth case, the head is shallower than in the rough cases and composed of a 

layer of high concentration fluid near the bed and a thinner layer of dilute concentration 

above. As for early times, the dilution of the head in the rough cases appears to have 

increased with increasing roughness elemeIlt spacing except at the widest bea.IIl.S6,16 case 

(figure 5.37 (f) where the head is slightly less dilute. This is possibly due to the current 

being able to revert to some smooth characteristics betweeIl the elements. Notice that 

although the h(,M has significaIltly reduced cOIlceIltration levels, the distinct head shape 

('an still bf' observed to be supplied by dense fluid to the rear. This was also observed in 

the experimental results of Peters and Venart (2000) for constant flux gravity currents 

over rough surfaces. 

Little evidence of billows can be observed at the density interface in the rough cases, 

as found for the velocity aIld TKE fields. In fact, behind the head, the current appears 

to be becoming stratified in the body and the tail without the billows to maintaiIl the 

mixing aIld entrainmeIlt in this region. This is not the case with the smooth bed. The 

large unphysical billow CaIl be observed but even if this is dissipated by lateral motion, 

smaller billows are still present, mixing the density interface and the high concentration 

fluid would still appear to be retained nearer the head of the current and not to extend 

upstream as in the rough cases. However, it should be noted that in section 5.4, figure 

5.4 showed that at still later times the current in the smooth case does extend upstream 

but the high concentration is retained near the head and the billows continue to mix the 

amhient aIld current fluid at the density interface. This continued mixing is probably 

what prevents stratification in this case aIld enables the higher concentration fluid to 

be maintained near the head where mixing is negligible in this case. Conversely, with 

the rough beds, the continued mixing at the head aIld negligible mixing at the interface 

results in a dilute head and an extended body. 

Vf'!I'tkai profilf'S of concentration throughout. t.he domain depth at the bin are shown 

in figure 5.38. In the smooth case, an almost linear increase in concentration can be 

observed from the density interface at the top of the current d09/D to the bed, confirming 

that the high concentration fluid is at the bed as observed in the concentration fields. 

In the rough cases, higher concentrations can be observed at the density interface at 

the top of the current head. increasing slightly with increasing spacing. Using this 

approximate distance of the interface from the bed as an estimate of the height of the 
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Figure 5.~: Concentration profiles for the total domain depth resulting from 2D numerical 

simulations wit.h a smooth bottom wa.ll and bottom walls wUh bearnse,l, beam86,2, beam86,4, 

beamSG,8 and beamse.us· 

head, figure 5.38 also suggests that the height increases slightly with increasing spacing. 

As for the smooth case, in the rough cases there is an increase in concentration below the 

interface but it is non-linear and a maxima occurs in the lower part of the head below 

which the concentration decreases substantially down to the bed. This concentration 

maxima appears to decrease with increasing element s~ing, except for the l>ea.mS6,16 

cue where an irregular increase is apparent. The nonlinear profile observed for the rough 

C&IIetI cOllfintbi that dilutiOIl due to the roughueti8 elements O{,'curs at the bed and causes 

higher concentration fluid to be forced higher into the head. The location of the highest 

roncC'.ntrat.ion fluid appC'.&r8 to correlate with the location of the velocity maximum. being 

jnst below it.. Thill indk.at.es that mixing of thp dense fluid is hindered in this region, 

perhaps implying a slow diffusion zone similar to the observations of Buckee et al. (2001). 

However, since the higher concentration fluid is heavier, buoyancy requires that it sink 

below the lower concentrations. In the smooth case this is observed as a layer of high 

concentration at the bed seen in figures 5.38 and 5.37 (a). but in the rough cases, this 

meaD8 that the high concentration fluid is subject to mixing from the roughness elements. 
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Thus the high concentrations are diluted and the vertical profile is as sholl'm in figure 

5.38. 

To obtain another quantitative means to analyse the temporal evolution of the con­

centration. the cumulative percentage of the domain that is above specified levels in 

concentration was {',a1culated as a function of time and is shown in figure 5.39. At the 

start of the simulation, t = 0 s, the percentage of the domain with concentration lev­

els within the gravity current (C > 0.01) is the percentage of the domain that is in 

the lock box. i.e. 5%1. For all the bed configurations, this percentage increases with 

time. This increase must be a result of entrainment and mixing of high concentration 

cWTent with the ambient fluid. Except for the constant increase in the percentage of 

the domain at the lowest concentration level, after about twelve seconds the percent­

age of the domain within which lies concentration levels up to 0.6, for the body-fitted 

mesh roughenro r.ases (figures 5.39 (b) - (I)), becomes almost constant (this is included 

within the data for percentage of cells containing concentrations of 0.5 and above in 

figure 5.39). Cells containing concentration above these levels (i.e. C > 0.6) continue 

decreasing. In all rough cases investigated with ambient fluid between the elements, 

the OCCWTence of concentration levels above 0.9 decreases to zero within the first ten 

seconds. In the smooth case (figure 5.39 (a)), concentrations of this level and above are 

maintained for longer. However, after approximately 12 s the percentage of cells with 

concentration levels above 0.3 decreases to a constant level, which is below that of all 

the rough cases. This implies that after this time a higher percentage of the gravity 

CWTent with a smooth boundary is actually more dilute than the currents with rough 

boundary couditioDS. This can be explained in conjunction with the velocity fields. In 

the smooth case, the high concentration fluid is maintained in the current head and there 

are strong coherent billows that form behind it and cause entrainment and dilution at 

the density interface. These billows are not maintained in the k-type case and therefore 

th" flow if! abl" to fltratify in t.he body behind the h"M without the disruptions at the 

interface. The head continues to be diluted but it has a tail of higher concentration fluid 

88 a buoyancy source. Thus, the dilution dynamics of the smooth case and the k-type 

case are different with the smooth case retaining higher concentrations for longer but 

apparently undergoing continual dilution at all concentration levels and the rough cases 

losing high concentration fluid quickly but then stabilising. 

After the total 30 8 of flow time, it appears that about 30% of the domain is above 

.The tank Is 0.25 m blgh and I) m lonl and the lock box is 0.25 m long. Therefore the lock box 
amounta to 5% by volume of the tank. 
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Figur' 5.39: 0 (CoIlCl'l1tmt ion). C, as 1\ function of tim(' given as a cumulative percentage 

of til' tolul dOllHlill with (a) Sill loth \)oilollJ wa.ll and (b) beams6,1, (c) beams6,2. (d) beams6,4. 

(1') bcnmsu. !\nd (J) bcnmsU,lU' The data ('ololUed red represents the percentage of cells in the 
dOlllaiu t hilt ('ontaiu concentration levels that meet the minimum C'J'iteria to be considered within 

the grnvity (,lIl'rt'nl t'ntity. I'hr data b low this Iinr represents cumulative concent.ration levels 
frotH 0.1 IIlIlla\)o\'p (open squHl'ei» tt,) 0.9 alld above (filled squares). 
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th COliC 'utration lcvel to be considered withiu the gravity current for the smooth case 

and the d-typ C~· ' . s e figmes 5.39 (a) - (c) . In the k-type cases, t his level is slightly 

r duce<l , implying r du('e<! l(>vels of mixing. Again, this could be attributed to the 

damping of the billo'" at the interface so t hat the significant dilution process for this 

(,aI> i ' b en ath the head but ince the density difi'erence between the head and the 

ambi lit is :0 rNiu eel ev 1l thi otu'(,C of cntrainmcnt, at this later t ime, is reduced. It is 

intere tiug that th ' k-t ,p ca~es maiutain a slight ly greater percentage of cells at higher 

cone ntration I v is for longer than the d-type cases. Consider the 60% concentration 

level. this practically di 'appears after 20 s for d-type but levels otI at a slUall but almost 

constaut p rcclltag for th k-typ . 

The effi t of t h pr ence of less dense fluid between the roughness elements 

on the can ntrat ion 
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Figll\, . 5.40. LTD ( on(,(,lltration), C, fields at /. = 9 s resulting from the 2D simulation with 

(n) l>llloolh bottom wHlI Hlld (b) beams6,2 with dense fluid initialised between the elements, 

(c) b'llIlLo.;(j,:l . (d) b('llIllS(j , with dens Ouid initialised between t.he elements and (e) beams6,8' 

R('d and 1>1\1(' tlrt' hip,h and low ('011 {'nlrHtion. reHpect ively. Maximum and minimum value ' are 

displa),,,d at the top of th" figure . 



(a) 
0.2 

0.1 

0 

(b) 
0.2 

0.1 

0 

(c) 
0.2 

0.1 

0 

(d) 
0.2 

0.1 

0 

( ) 
E 0.2 
= 
"" 0.1 

0 

247 

Cmaz = 1.0, Crnon = 0.0 

- ~ ---, 
2 2.5 3 

2 2.5 3 

-----;-----.. ---:--:. - ...... --~. 

2 2.5 

2 2.5 

2 2.5 

3 

3 

3 
x (m) 

3.5 

3.5 

3.5 

3.5 

3.5 

t = 21.0 s 

4 
t = 22.0 s 

4 
t = 25.0 s 

4 
t = 22.0 s 

4 
t = 27.0 s 

4 

Figur 5 .,11: D (olle 'Iltration). C, fields at the approximate time the head passes through 

'bin :35' whrre til(' vertical profile data is read ( hown as a line) resulting from the 2D simulation 

with (a) mooth holtolll wall alld (b) bCCllTls6,2 with dense fluid initialised bC'twceJ] t.he elelTlents , 

(c) beams(j,2, (d) t eams(j, with d lise fluid initialised between the eleltlellts and (e) beams6.!j. 

Red ulld blu 'tll hio-h and low COllccntration, respectively. Maximum and minimum values are 

cli, playt'Ci a\ Ihe lOp of Ihe fignr!' . 

III tht' (·a .... (' wlH'r(' tIl<' aUlbieut finid betW(,Cll the dement.s is substit.ut.ed for dells(' fluid, 

SN' figlll'<' .1.10 (b), tlH' billows me morC' diffuse. This suggests t.hat, c.ert.ainly in the d-type 

cas s. he brlUu-rough 1I<,d b d has stronger billows paltially due to the buoyant. less 

d llS (mbi llt fluid b iug trapp <.l betwe n the elements. It can also be observed for both 

d-typ<, and k-l ' j> ('. that the head remain highly concentrated, as in the smooth 

eM , but til . Il\ain bod,' of the CUlT nt bchiud the head also has high concentrations at 

th bed . b. nro ~ r th beam-rough ned cases. This can be explained by the constant 

source of c\('use fluid pn'S('llt b('hw(,ll the el('mellts in these cases which maintains the 

hrad ~tt n high C'OIl(' .ntl'ntion amI is not available in the runs over the regular beams 

rouglm " \Vh n~ 1. dense fluid bel w the head causes significantly increased levels of 

dilnti 11 in th lUT nt h nd nud body. 

Figm 5Al::.h W:-. th <.li. lributioll of the oncelltration fields in the vicinity of the current 
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Figure 5.42: Concentration profiles for the total domain depth resulting from 20 numerical 
simulations for a smooth bottom boundary and bottom walls with beamSs.2 (B6.2) and beamss.8 
(Bu) with (D) and without (A) denae fluid initialised between the elements. 

at the later times for the simulations with and without dense fluid betv.'een the elements. 

Figures 5.41 (b) and (d) show that despite the constant source of dense fluid between 

the elements, the current head has still been diluted in these cases similar to the smooth 

case, although not as much as the regular rough beds. This is probably because although 

there is a constant source of dense fluid between the elements, at later times it has a 

substantially higher density than the overflowing current and therefore the current floats 

over the top of it and cannot entrain it by buoyancy; thus the current cannot readily 

increase its concentration. The simulations with dense fluid between the elements agree 

more closely with their regular rough bed equivalents in the upstream extent of the 

current behind the head than with the smooth case. Like those cases, the billows are 

clearly damped or wry dilute which has allowed the current fluid to stratify behind 

the head. However, the head of the current itself is shallower than the regularly rough 

cases and composed of reduced quantities of dilute fluid, more like the smooth case. 

This implies that the rougbness elements themselves, and not the buoyant ambient fluid, 

e&U8e the elongation and stratification upstream of the head of the current. However, 
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Figure 5. 13: U ' (ConcentraLion), C, fields at t = 9 s resulting from the 2D simulation with 
(n) !>l11ooth bottom wall and with (b) a k~ value on the bottom wall (k. = 0.0015) which is the 
approximately equival nt value of (c) beallls6,2. Red and blue are high alld low concentrat.ion, 
r spccliv('ly. lax.ill111111 and minimum values are displayed at the top of the figure. 

as ob el'ved at arly tim s, the ambient fluid does cause the dilution of the head and 

ther fore it , tlb. <'quent increase in size at later times. 

The verti al cone ntration profiles at the bin for the cases with dense fluid initialised 

betweell the ('lelll(,lIts are shown ill figure 5.42. It is immediately apparent that the 

removal of th buoyant ambient fluid from between the roughness elements removes the 

mixing at th bed and cau - the profiles to agree more closely with the smooth case 

with a layer of high cOllcentration fluid at the bed, In fact, in the d- type case, very good 

agr m Ilt can b '\I with the concentration distribution above a smooth bed. 

Th re ·ts of tb law-of-the-wall method for specifying the bed roughness 

on th on ntration 

The c'oll( '(' lllratiun fi(' lds for the la.w-uf-Lhe-wall bed roughness condition after 9 scan 

he St'l'll ill ligm'(' 5 . 1;~ (b). Icarly, the result resembles the smooth case, (a), more 

dost'iy than til(' u(J(iy-fittt'd rasp, (c). However, an increase in the size of the billows at 

th<' int('l'fa('(' t hat occurs ill the body-fit.ten cqnivalent can be observed as can a slight 

d .('reN> . ill ('011(' ,Iltrntion within tIt head and an increased strearnwise distribution of 

high l' C IlC ntration fluid at the bed, At later times, figure 5.44 shows tha.t the ks 

In th d !; ill maintail ' 1 ' ,t -imilarity with the smooth case. 

ig1uP 5 ,.Chow~ th v'rti 1 (' 11(' lltratioll through the current head for the law-of-the-
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Figure 5.11 : 0' ( ollcentration), C, fields at ilL the approximate Lime the hf'Cld passes j.hrongh 

'hill 35' wlal'\(' tltl' Yl'rlinli prolill' data i:; read (:;ltOWIl as a liue) result.ing from the 2D simulation 

with (a) smooth bollolll wall and wiLh (b) a k,. value 011 the bottolll wall (ks = 0.0015) which i:; 

th approximately cqui\'al nt value of (c) beltlllS6,2. Red and blue are high and low concentration, 

re~pectively. 1u..xillllll1l and miuimUlll values are displayed at the top of thc figurc . 

wall method compared with the smooth bed and rough body-fitted Inethod equivalent. 

Again. as ' 11 for oth r variables, specifying a ks value for the bed roughness results in 

a current with very -imil31' interual dyuamics to the smooth case. A slight reduction in 

COllcentratioll can be ObSNvcd at the bed but a. l1laxima further in tlH' flow with a. dilute, 

mix d regioll ben atb it i ' uot prescllt. 

5.8 Discus Ion 

Thc low('r ('ompntatiou"l ost illcurrcd in 2D simulatiolls allowed further models to be 

gellcmt' 1 with clo ' r roughness clement d-type spacing (beams6,1 ) and a much wider k­

typr spacing (b (UllS6 , 1 u) · This enables further insight illto the effects of element spacing 

that is Hot HVHilHhlr frow th experimcntal study and is not performed in 3D due to 

th ill T a ' d t Illporal uud computatiollal cost. The present 2D results agree with some 

open dUUllld ~t\\di('s in findillg It spacillg of w/A:r :::::: 4 (beams6,4) that could be classified 

HS 'illtCl'Jl1l'oiatr'. Tlus spacing . hows some fiow charactrristics in common with the 

d-typc en · ' Bud oth r ' ill onUllOll with the k-type cases. The 2D simulations herein 

show t hM thl' cl proxim.it ' of th elcmellts in the beams6,1 and beanlS6.2 spacings 

caUSl' l'otlltillg Buid to hcn>u1C trapped h 'ueath the eUlTeuL In these cases, the ~uubient 

thud is trapp' tI 1'01' iOllf.?,('l' ,ulIl tlll'l'I' is lit.tk elisl'llpt.ioll observc() in the fiow fidel of 
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Figure 5.45: COllccntration profiles for the total domain depth resulting from 2D numerical 
simulatiolls with a smooth bottom boundary and with k,. = 0.0015 specified on the bottom wall 

and the body-fitted method equivalent (beamll6,2)' 

tht' overfl~ing fluid. The head of the current. is diluted but not as quickly as in the 

k-type cases. Howewr, energy must be lost to maintaining the vortices in motion. In 

the k-type cases (be81D86,8 and beaIllB6,16) separation occurs at the top of the elements 

and reattaches downstream, before the next element is encountered. The disruption to 

the flow field penetrates higher into the current, the TKE is increased and the head is 

diluted. In the intermediate case, the fluid is not trapped in vortical motion as in the 

d-type C88C but neither does it reattach between the elements without significant effects 

from the dowllstreaJll clement. The overall effects arc a combination of the two cases. 

The results predict that in the presence of bed roughness the front speed decreases and 

the magnitude of the decrease depends on the spacing with wider spacings leading to a 

greater decrease in speed, These predictions agree well with the experimental findings 

of the present study. The two widest spacings (be8JllS6,8 and berullS6.16) show very 

similar development of the front position with time, which indicates a critical spacing 

of w / kr == 7, as observed for open channel flows. Further evidence of the existence of a 
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critical spacing and the similarity with open channel flows over bed roughness is observed 

in the reatt.achment lengths upstream of the elements. These have a value of ::::: 4kr for 

the two widest spacings, in approximate agreement with several open channel studies. 

In open channel flow these critical values define the criteria beyond which increasing 

the spacing has little changing effect on the flow dynamics. This critical spacing is 

probably due to the elements being far enough apart such that the downstream element 

does not interfere with the reattachment that occurs after separation from top of the 

upst.ream element, such that the over-flowing fluid becomes similarly affected regardless 

of the spacing. Interestingly, despite the similarities in the front. position, the widest 

be8l1lS6.16 (,Mf' shows severN irregularities in the internal flow profiles. This is could 

result from the presence of the buoyant ambient in gravity currents that does not exist 

in open clwmel cases. The predictions for the widest beaIll8(;.16 may also indicate an 

UpPt'f spacing limit beyond which the flow dynamics undergo further transitions, perhaps 

because the elements are 80 far apart that the flow is able to partially revert back to 

smooth characteristics in the cavities. 

The fonawing observations will be confirmed or modified in the subsequent chapter once 

the 3D numerical data is available for clarity. They are presented here simply to sum­

marise the foregoing work and highlight the salient points brought to light by the 2D 

simulations. 

• The 20 simulations agree well with the experimental data for the distance that 

the front travels over a period of time in the constant speed phase but the slowing 

transition occurs prematurely and is exaggerated in the rough cases. Unphysical 

billows and a stationary wave-like structure are observed in the smooth case and 

it is likely that the 3D model is needed to disperse these features. Conversely, the 

removal of the buoyant ambient fluid from between the elements in the be8.lll86,8 

case caused the current to propagate further in the simulation than in the labora­

tory equivalent. Since the flow slows prematurely in the simulations with ambient 

fluid in the cavities this fluid must cause significantly increased lateral motion that 

the 20 model cannot resolve. 

• The 50:50 split governing the reduction in speed that was observed in the exper­

imental data is confirmed for the d-type case. The split was postulated to result 

from ~ 50% due to the presence of ambient fluid between the elements and ::::: 50% 

due to other roughness effects. In the experimental data this was also observed in 

t.he k-type C'.ase. It is probable that the 3D resolution is required to model the in-
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creased lateral flow dynamics in the k-type case that the 2D model cannot account 

for. 

• The agreement between the 2D numerical and experimental velocity profiles is very 

good and confirms a decreased velocity maximum located further from the bed. 

This result implies that a 2D model may be adequate if an approximate internal 

velocity profile is required. 

• The positive downstream and vertical motion ahead the gravity current front indi­

cat.('S that fluid is b<'ing forced ahead of the front as a 'ghost front'. The effective 

range of this motion increases in the presence of bed roughness. 

• Increased TKE is predicted in the head of the current in the rough cases. In the 

k-type cases the TKE is particularly high at the bottom of the head and localised 

around the roughness elements. In the smooth and d-type cases, there is high TKE 

at the interface where billows are more coherent. This increase in TKE in the head 

is priulluily ('~'U«l(l by tlu~ (M~ITidd(~n ambient, fluid, although some of tlw effec·t is 

due to the elements themselves. This is particularly true for the k-type cases. 

• The head is more dilute in all of the rough cases and the level of dilution increases 

with spacing. This coincides with the increased TKE and is primarily due to the 

trapped ambient fluid. The higher concentration fluid is distributed streamwise 

behind the head and appears to be becoming stratified, particularly in the k-type 

(./Ut('H. This lik(~ly result.s from the diffuse density int.erfa(~ in these cases, where 

large hillows are not present to disrupt the current body. 

• Despite increased dilution, the current maintains a distinct head region, which is 

shorter, deeper and more rounded in profile. This is probably caused by entrain­

ment at the bed causing continual dilution. Since the velocity maximum is further 

from tilt· ht.-d, the higher concentration fluid that is fed to the head from the body 

is forced higher. Since this fluid is heavier than the dilute fluid at the bottom of 

the head, buoyancy forces eause it to sink and become diluted by entrairunent and 

mixing clue to the elements at the bed. 

• The simulation implementing the law-of-the-wall method for generating numt'.rical 

bed roughness showed good agreement with the experimental results for the front 

position and the simulations were shown to be sensitive to the choice of value, 

which indicates the potential of this method as a simple meallS of proscribing bed 

roughness ill simulations. However, the internal distributions of velocity, TKE and 
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concentration shO\\"ed very little difference from the smooth case. This may be 

because describing the multiple effects of bed roughness with one value is subject 

to signili<-aut errors, which may be exaggerated for gravity currents due to the 

ambient ftuid trapped between the elements. 
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Chapter 6 

Depth-resolved numerical 

simulations: 3D model results 

6.1 Introduction 

The previous chapt.er presented the results of the depth-resolved 20 numerical simu­

lations calculated using the commercial CFD software FLUENT and included a. brief 

discussion and comments on the performance of this 20 model. This chapter presents 

the results for the 3D model and discussion 8Jld 8Jlalysis of the performance of the 20 

model compared with the 30 model. A combined discussion of both CFD models herein 

can also be found at the end of the chapter. The 30 results focus primarily on two 

bed roughnesses. representing one d-type and one k-type configuration. More detailed 

emphAAiR is giw.n t.o th('! eft'frls of the ambient fluid between the elements. Verification 

and validation with experimental data have again been rigorously completed and are 

presented in detail. 

6.2 Outline of models 

The 3D numerical simulations carried out in the present study are listed in table 6.1 in­

cluding the mesh resolution (maximum cells ve'rtically x maximum cells horizontally) 

and the 001 type. The 30 simulations were chosen to compare directly to equivalent 2D 

numerical and experimental results for validation. Since they are more computationally 

and temporally expensive, simulations of the extra cases included in the 20 versions 

have not been performed except for the model implementing the law-of-the-wall method 

with k. = 0.0015 to again enable comparison of the two methods of incorporating bed 

roughness. The three mesh resolutions for the smooth c.ase (No.'s 1 - 3) are used for 
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No. Mesh Bed type 

1 42 x 16 x 417 Smooth 

2 42 x 17 x 417 Smooth 

3 84x33x834 Smooth 

4 84x33x834 Bea.mst;,2 
5 84x33x834 Bea.mst;.8 
6 84 x33x 834 Beamsa,2 (D) 

7 84 x33x 834 ~.8(D) 

8 42 x 17 x 417 k",O.OO15 

Table 6.1: 3D numerical simulations undertaken in the present study. Tank dimensions are 
directly complU'able to experiments. The initial conditions for all simulations represent a gravity 

current with the equivalent of a 5% initial density excess in the laboratory. All walls have the 
'n~lilip' condition except the top wall which has a 'symmetry' condition. 'D' means that dense 

fluid is also initialised between the roughness elements. Mesh relates to the maximum number 
of cellli in the vertical, lateral and horizontal directions. All simulations have experimental and 

2D equivalents for validation. 

verification. Choice of mesh is discussed in section, 6.3. 

The number of cells increases dramatically from 20 to 30. Therefore the 30 simulations 

were performed using FLUENT in parallel on eight processors on the 'White Rose Grid'. 

Since the domain configurations used in the present study were relatively simple in design, 

the grid and processing tasks were divided betweeu the processors using FLUENT's auto­

partitioning facility. 

6.3 Verification 

Iterative convergence 

Iterative convergence is monitored for the 3D case in a similar manner to the 20 equiv­

alent case but the calculation of the scaled residuals now includes the third, lateral 

component. Again. when the residuals all decrease below a critical level. chosen herein 

to be 10-3, convergence is asswued to have been achieved for that time step and solution 

proceeds. Evidence of this process is shown in figure 6.1 for time steps between 6 s and 7 

s for tbe smooth domain with a coarse (42 x 17 x 417) mesh. As for the 20 model, it can 

be observed clearly that although the initial predictions of the variable values each time 

step are somewhat inaccurate, after subsequent iterations the solution is consistently 

satisfying the convergence criteria for all variables at each time step. Equivalent conver­

gence t'haracteristics are seen for the 84 x 33 x 834 resolution and for the rough cases. 

However. 88 in the 2D model, they are similar and it is therefore assumed WlDecessary 
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Figlll(' 6.1: It('rutin- rOllH'rgl'llC" ::.howll ill the form of residuals, calculated a.B given in chapter 4 

for til t2 x 17 Hi n'",o\lIlion Illl':.h for til<' :.mooth case. The convergPllce criteria, 10-:1, bdow 

which lhl' n,.,idllllb un' a,,"llllwd to iJldit'alc convergence is shown in red . 
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to pre&>nt all of them. 

Spatial and temporal converpnce 

The spatial and temporal convergence of a simulation were parameterised jointly in the 

2D model by using the grid convergence index (Gel), see section 5.3. However, in the 3D 

sJUooth bed (,.&Se, the dimensions of the cells means that they cannot divide the lateral 

measurement of the domain in the coarse case. Therefore the cell dimensions have been 

slightly altered in this case resulting in either 16 or 17 cells laterally. The smooth bed 

simulations using both of these lateral resolutions were indistinguishable, and therefore 

the 42 x 17 x 417 mesh W88 used. As a result of this indivisibility, the Gel has not been 

calculated since the medium mesh (84 x 33 x 834) cannot. be said t.o be refined by t.he same 

factor in each dimension. The prohibitive computational expense involved in refining the 

mesh further means that the 3D extension to the fine case that is used for verification in 

the 2D smooth case and in the 2D body-fitted mesh rough cases cannot be used in the 

3D case. The coarse mesh takes approximately 24 hours to complete the computation on 

the eight parallel processors while for the medium mesh this increases to approximately 

six days. Therefore, with the fine mesh, where the number of cells escalates to almost 

20,000,000, the computation incurs an unfeasible temporal cost. Despite this, verification 

of the use of the coarse mesh for the smooth bed is performed with the medium mesh 

using the supplementary checks also performed in the 2D case. 

In the rough cases, 88 in the 2D model, it is not possible to use the coarsest mesh for 

the body-fitted mesh method since the lateral and streamwise dimensions of the cells 

prevent them fitting around a roughness element (beam). As mentioned above, the fine 

mesh that was used in the 2D case is now prohibitively expensive in 3D and therefore 

the medium mesh (84 x 33 x 834) is used in all subsequent simulations and verification 

is carried out by comparison to the 20 equivalent (,,age. Although this is not infallible 

and ('.annot confirm or repudiate grid independence, it does give some indication of the 

perfonnance of the model without entering into an in depth verification study which 

is not poesible within the temporal scope of this investigation. Since it is relevant to 

discuss the results of the 3D model with reference to the experimental data and the 2D 

numerical data, for clarity aud to avoid repetition, the verification of the 3D results is 

presented alongside the validation in the following sections. 
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Figure 6.1: trcHillwi:,;c po 'ition of thc front as it function of time for the smooth bed. (a) The 

2D mod -I ( I x 31) und the equival 'ilL 3D version (8-1 x 33 x 834) with the experimental data 

and (b) tht' 3D r :uIt with tht' coarse mesh (-12 x 17 x 417) and the mediwn mesh (84 x 33 x 834). 

that th urr Ilt i very 'ymm tricallaterally about the centreplane of the domain. This 

is probably dll to th(' l'<'Soiution 11 d laterally for the coarse mesh. The billows me 

captured clearly CIt tit d 'Jlsity interface and the elongation of the current with time can 

be s ell. The high COlle ntration, 0.9. disappears after about 18 s and the lobe and cleft 

fOl'luatioll \)('('OIIl('S apparent at. about this time at the centreplane of the front. The 

o 'ClllTCIlCC of ollly OIW 'I 'ft in this simulatioll is probably the result of USillg a relatively 

COal'S' grid with a tUl'hul'ul' - model , rather thall a filler lllesh (e.g. Corney, 2005) or the 

fiuc scak r<'soil1tion of D, '. . The' loucs 1'1110 ddt.s 00 not O(,C'1lI' before this time for the 

sallH' rNI..,",Oll. 

6.5 ¥ locity validation 

6.5.1 Front po itiol1 and speed 

Th 

roughn 

m nt '· 

n th front position and speed of the d-type and k-type bed 

nft uration with and without ambient fluid between the ele-

It ('all 1>t> ~t't'1l ill fi!l;Ul't' GA (a) that at early times there is very little difI'erence in the 

rSlllts of th(' 2D mId 3D 1110d Is for the mooth CMe. However , for later times, the 

·Only 011(' ('XiUllplp nf <'ilt'h Iwd ('\as:,ifiration, d- Iypp 01' k-type, is considered in the 3D model with 
their ('xj)edlll 'utili IIlId 2D 'quivnl lit:>. Helice, to avoid repetilive figure:; the re:sult::; of tIle regular 

~illlllldtioll" ami of tho 'with Ul'lI:,l' (Juiu l'cpludllg thc (J.lIIUiCllt {juid LctwcclI thc CIClIIClIt:s mc prCbclItcd 

billlUltt\ll u~I~' for tIl(' aD lIIut\('1 I'llther thuII tieparatiug them as was done in the 2D. 
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simulation cOlllpar<'d to tht' 'quivulcnt l'xpcrimcntal rCt:iults [or bottom walls with (a) bcams6.2 

and (b) hams!>. wilh lIms(' fluid bet,w('el1 the roughness t'lemenLs. 

3D mod 1 j:., not l\ .... ~usc ptiblt' to the prematme slowing of the current that occurs in 

2D 81HI therdon h;1..", very g( od agr ement with the experiment.al elat.a. Figure 6.4 (b) is 

evid '11 'C' f th good ngr 'Ill 'Ilt b twccn the coarse mesh and the medium mesh, showing 

an (>x 11 nt le\ 1 of III sh ind p ndt'nc for the front speed. 

\V)H'1l Iwd rOllghnC'ss is pr(" nt, figure 6.5 shows (,haL t I1f' 3D model is still susceptible to 

th plematur sl wing at lat r tim . that occurred in the 2D model for both the d-type 

and k-t \1)(' ('I\.'> s. I h \\,('\' .1'. it is HOW able to maintain a faster speed. The simulated 

gravity CHln'lll i:- st ill no( qllite nhl(' to retaiu the samc front position as observed ill the 



263 

Smooth BeanlS6,2 BeaIIlS6,8 

Speed (mm/s) 163.7 147.0 144.0 

Fr 0.66 0.59 0.58 

Re 20381 18302 17928 

Inc/Dec (exp) +3.7% -0.7% -1.3% 

Inc/Dec (smooth) N/A -10.2% -12.0% 

R2 0.9998 0.999 0.9982 

Table 6.2: Front speeds resulting from 3D numerical simulations of a gravity current generated 
with a 5% density excess for a smooth bed and the two d-type and k-type beam rougbnesses 
(beamse.2 IUld heanllle,8. respectively) calculated using the first 39% of the front speed data 
where the smooth calle iii within the constant speed phase. Also shown is the percentage incre8&l 
or decrease in front speed with respect to the experimental equivalent where available IUld the 
percentage incre&tie or decrease in front speed with respect to the smooth numerical equivalent. 

Beamst;,2 Bea.mss,8 
Speed (mm/s) 155.9 154.8 

Fr 0.63 0.63 

Re 19400 19273 

Inc/Dec (Exp) +1.7% +1.9% 

Inc/Dec (smooth) -4.8% -5.4% 

R2 0.9998 0.9996 

Table 6.3: Front speeds resulting from 3D numerical simulations of a gravity current generated 

with a 5% density exce8!l for a bottom boundary with bea.msc;,2 and 00a1lll!cl,8 both with dellile 
ftuid init.il\liIIM oot.WC'm t.ht' t'lementR. Calculat.ed lUting the first. 39% of t.he front Rpred dat.a . 

.A1IIo llhown is the percentage increaae or decrease in front speed with respect to the experimental 
equivalent and the percentage increase or decrease in front speed with respect to the smooth 

numerical equivalent. 

experimental data at later times but in the initial period of constant speed, the prediction 

has improved, see table 6.2. It can be observed that the d-type bed configuration (figure 

6.5 (a» shows closer agreement with the experimental data than the k-type model (figure 

6.5 (b». It is possible that in the k-type model there is increased lateral motion and 

although the 30 has captured some of this, the lateral resolution may not be high enough 

to resolve the necessary mechanisms to dissipat.e the effects of the retarding dynamics 

on the current. Since it was predicted in the 20 model that the k-type cases have more 

diffuse billows, " .. hich do not require high lateral dissipation, it can be postulated that it 

is increased lateral motion between the roughness elements in this case that causes this 

effect. Evidence of this is presented in section 6.5.2. 

The front position for the cases with dense fluid initially replacing the ambient fluid 

between the t'lements is shown in figure 6.6. The d-type case (figure 6.6 (a» which was 
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Figure 6.7: P08ition of the front as a function of time resulting from 3D numerical simulations 

for bottom walla with beal1l8G.2 and beamse.8 with (D) and without (A) dense fluid between the 
roughness elements. 

also susceptible to the premature slowing in 20 can now be seen to efficiently maintain 

its position. In fact, the agreement between the 3D model and the experimental data is 

exceptionally good. Comparison of figure 6.6 (a) with the rough bed with ambient fluid 

between the elements and its experimental equivalent, shown in figure 6.5 (a), indicates 

that it is the presence of the ambient fluid between the elements that is causing the 

premature retardation compared to the experiment in the d-type case. In the k-type 

case (figure 6.6 (b)) the agreement between the 3D and the experimental data is not 

quite as good but it does show an improvement on the 2D, which for this case was shown 

to over-estimate the front speed. The better agreement compared with the experimental 

data can also be seen in table 6.3 for the initial period of constant speed. This supports 

the suggestion made in section 5.5.1 that this case requires the lateral motion to remove 

energy from the front and thus slow the current more accurately. 

Figure 6.7 highlights the signifi('.ant effect that removing the ambient fluid from between 

the cll:WCUts luloli 011 the front pootion. The cases with dcnsc fluid between the elements 

clearly undergo a much later transition than the regular rough cases. Note that in the 

d-typc ('.asc, with dense fluid bet.wren t.he elements, the gravity current is now predicted 

to propagate faster than the k-type equivalent, unlike the prediction shown by the 2D 

model (figure 5.7). It is also apparent from the 3D model that there is less difference 
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Figur 6. : Position of the front at; a fllnction of time resulting from the 3D numerical simulation 

wi th tl lX'd rotlJl;h Ill' j II ing tht, luw-of-! he-wall method with k .• = 0.0015 and the experimental 

(E) twd 3D llUIlll'rical (. ) 'quin\lcnt bcamS() ,2 (i.e. k .• >:::: 0.0017). 

ill th positioll of tIl(' frollt for these cru;es compa.red to the beds with ambient fluid 

betw II the ('1(,llH'utl>. This implies lhat the presence of the ambient fluid increases the 

diff('r('ntiatioll b('tw(' It tIl<' two classifications of ('lement . pacing. 

The r ult , in tabl .. 6.2 and 6.3 how that in the initial period of constant speed the 3D 

model ngn with the eXll( rim lItnl data ill suggesting that the presence of the ambient 

fluid betw 11 the lemnt' on tributes to ~ 50% of the reduction in current front speed 

of roughn ,. and this implies the elements themselves cause the rest 

of the rdlln\! t iou . :\gn l'llll'ut for the d-type calSe was abo found in the 2D model but 

tllc k-typc C<I .. -" predictcd ill Tl'il.')cd dfl'ds due to the trapped ambient (see section 5.5.1). 

How v 1'. ru showll a1>O\ ,th 2D model for the k-type case with dCllSl' Hnid between 

tlH' 1 nl .ut s all lIot (':-;timatC' the front position as accurately as the 3D model and with 

the latentl llIotioll pn-'('lIt thb statistic Appears to hold. Note that as found in the 2D 

mod 1. this do . not 11 t'ssarily hold at lat I' times. 

Th ire b of th law- f-the-wall method for specifying the bed roughness 

011 th fr nt P ' i ion and 'P d 

Figur(' 6. ....110":-. till' pn'dictiolls frolll the 3D model illlplementing the law-of-the-wall 

ll)('tlwd for ~pt'l' ifyillp, lwd rtlllgllll ":-1 along the bottom boundary. The model does not 
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show good agreement with the 20, or the 30 body-fitted equivalent models. The period 

of const.ant front speed which has shown good agreement with the experimental equiva.­

lents for most of the models is misrepresented in this case and results in a faster current. 

At later times, the front position is also exaggerated in comparison to the 20 model and 

the 3D body-fitted equivalent and does not appear to represent a good choice of model. 

As mentioned previously, this could be a result of the inability of the method to cope with 

form-type roughness and it is perhaps more suitable for describing grain-type roughness. 

The better agreement in the 2D case may result from the lack of lateral mechanisms in 

that case. The large billows that form at the density interface cause the 20 model to be 

retarded in the smooth case. These are also present in the k. model which would imply 

that this model is also subject to premature slowing. Therefore the good fit apparent in 

the 2D law-of-the-wall model is slightly false since it is an attribute of the restrictions of 

20 modelling. When these restrictions are removed in the 3D model and lateral motion 

is resolved, the k. value is shown be less effective at slowing the current accurately. 

6.5.2 Laterally averaged horizontal and vertical velocity structure 

The efFects on the laterally averaged horizontal and vertical ve10clty structure 

of the d-type and k-type bed roughness configurations with and without 

ambient fluid between the elements 

As demonstrated above, the 2D and 3D front speed data can easily be compared. How­

ever. for the vertical profiles through the current depth and for the flow field data, it 

is necessary to transform the laterally variable 3D datasets into 2D for comparison. To 

achieve this, it is poesible to either select one plane laterally or to width average the data 

over the lateral extent of the domain. The most obvious solution in the present study is 

to choose one plane at the lateral centreplane since this corresponds to the location of 

the probes from which the experimental datasets were generated. Figure 6.9 shows, in 

the smooth case, that there is little difference between the choice of 3D representation 

after 9 s, except perhaps in the billows where the centreline option (figure 6.9 (b» ap­

pears to be in slightly better agreement with the 20. However, in the rough boundary 

cases, if, for example, the d-type rough case is considered, figure 6.10 shows that there 

is a significant difference between the two options. The reason for this discrepancy is 

the formation of a cleft at the front lying approximately at the lateral centreplane (p~ 

sented in detail in section 6.7). The low lateral resolution and use of a turbulence model 

prevents the formation of many lobes and clefts at the front 88 occurs naturally. Hence, 
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UIOl(' l('pn "( 11111 t i \(' Chili'll t ('l'i~l\t iOll of t 11(' dOlllaill takillg into Hccount lateral variatioll. 

Tlwl .fon' tIl! I' 1'\' lilts I\r ' pr('~('lIt('d in the followiug ~ dioll. Figures 6.11 and 

(i,12 sh()\ tilt' \1 l'Iil'lI\allcl hmizoutitl w\ocitv fif'lcls in the vicinity of the current after 9 
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Figure 6.11 : Horizontal velocity component, U, fields at t = 9 s resulting from the 3D simulation 

with (a) . mooth bottom wall. and (b) bcams(),2 with dense fluid initialised between the elements, 

(c) beamsO,2. (d) UeaJllS6, with elm. c ftnid initiClliscd between the dements and (e) beamsO,8' R.ed 

and blue are high and low velocities, respectively. Maximum and minimum values are displayed 

at Lhe Lop of the figure . 

s. As ill til 2D CelSC, it can be observed that the current appears to move as a highly 

concentrated utity within the domain and does not extend upstream tow~u'ds the end­

wall at this time. High horizontal velocities call be seen in the head and lower velocities 

in the body and tail of the current for all configurations (figure 6.11). However, unlike 

the 2D ase, ignificant. reduction in the horizontal velocity can already be observed at 

the tail end of the currents. III the rough cases, this is increased and is exaggerated 

in the C8S{,S wilhout ambient fluid between the clements (figures 6.11 (b) and (d)). If 

the corresponding vertical motion observed in figures 6.12 (b) and (d) is considered, a 

diiIel'pnt. pat t pm ill the vertical fluctuations at. the density interface in these cases call be 

SCClI, compured Lo the rcgulaJ'ly rough cases (figures 6.12 (c) and (e)). These potentially 

indicate smaller but ' trollger billows at the density interface and reduced motion within 

thC' ('urrC'nt bony b(,llC'a.th it. , whell the ambient fluid has been initially removed from be­

tweell the elements. Conversely. for the regulHJ' cases, the billows are weaker but larger 
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Figur 6.12. Vertical v 'locity COlllpOl1ellt, v, ficlds at t = 9 s resulting from the 3D simulation 

with (0) smooth bottom wall, a.nd (b) bcams6,2 with dense fluid initialised between the elements, 

(c) beaIW'ti,2. (d) h 'U11ISb , with lcnl'c fluid initialised between the clements and (e) beamsG,s. Red 

and blu(' arl' high and low \'elocities, r('spectively. !\Ia .. ximul11 and minimllm values are displayed 

at lhe top of th figure . 

and pCllctrat(' into thc current body, aud hence a higher horizontal motion is apparent in 

th ca '(' '. Thi highlight ' the lack of lateral dissipation in the 2D model. The billows 

could Hot be dis:ipated Interally and therefore all cases demollstrated larger billows of 

varyiJlg strellgth which p .net,rated tit current body. 

Noti e thal fip;ures 6.11 and 6.12 confirm the presence of fluid being pushed ahead of 

th ClIlTCllt fronl for nil !\scs, as wns observed in the 20 model (figures 5.15 and 5.16). 

How vcr, th tf('ctiv range of thi motion appears to have diminished with the inclusion 

of 3D d. J1mw . This iudkat s that the increase previously observed in this region was 

lik ly flo rt'S III t of t}1<.' 20 lint m(' of the mockl. 

The v 10 ity field ' at later times are presented in figures 6.13 and 6.14. As in the 20 

r('~mlts, this dntn is pres nt >d ill ord r Lo correspond to the time that the head of the 

CUlT llt ill hp rific a reaches th location at which the vertical profiles are read in 

th xp rim ntHl . tup (i. . bin 35' 3.22 m from the lock-box end of the tank), It can be 
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Figure 6.13: Horizontul \. 'lority component, u , fi('lds at th(' approximate tim(' the head paSH'S 

IhlOUgl1 'bill :35 ' wht'rt' lltt' \'erlica\ profile data is read (shown as a line) rt'sulting from thE.' 3D 

il11ulation with (a) 11100th boltolll wall, and (b) beaIIls6.2 with dense fluid iniLialised between 

th(' el menh, (e) heams6.:.!, (d) beams6,8 with <1E.'ns(' fluid initialis('d bf'twwn thf' f'\f'mf'nts and 

(e) bealll~(j .. R '<.1 und blue ar high and low \'elocities, respectively, Ma.ximuIIl and minimum 

\'aI1l(,5 arc displa '(>d at the top of' til<' fignr . 

ob' rved that th smooth cas still has high horizontal velocities distributed well into the 

body and tail of lh(' current at this later time. It can be qualitatively observed that the 

velocity fi Id in the body of the current is of approximately the same depth as the current 

head. 11 w v r. in the rough cases, th region of high positive horizontal velocity appear 

to be cl(,(,\H'r ill th(> ('\IlTf'llt head ami Higllificalltly shallower ill the current upstrel:Ull of 

it , diffu ing upward ' to t he interface wi th the ambient return flow. In this shallower tail 

r giOll, the v 10 ity i .. al 'o .'low r, mo t of the high velocity being in the head itself and 

it extend:, ba k fmther npstr('am than in the smooth ca...:;e, as observed in the 2D model. 

In comparison to th 2D model, the lateral extension in the 3D simulation appear to 

enable more del nil t be ca.pt Ul'("d. nnd thus greater clarity at these later times when 

nllH'1J diffll~ion ha." 0( '( '111'1'(' (1. III (,Olltra:.;t to previous obs(,l'vat.iolls (figure' :>,l!'l). th(' 

V('rtiral v(')ority fi(')(ls for thc rongh b('d rase's display ftnctuationl; behind the current 
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Figure 6.11: V 'rt ical v >locit~r (,OlJl pOll ell t , U, fidds at the approximat.e time' the he'ad passes 

through 'hin :35 ' when:' lhe wrtinu profile data i~ read (~h()wn as a line) resulting from the 3D 

simulatioll with (a) ~lliooth botLolII wall, and (b) beamSa.2 with dense fluid initialised between 

tIlE' el m nts, (r) b<>amS(l,2. (d) bcamsC;,8 wit h dense flu id ini1.ialispd be1.ween the elpmpnl sand 

(e) beam Ii, . Red und blue ttr high and low velocities, respectively. Maximum and minimum 

yalues arC' <ii, played at t.he top of t he fignre. 

head t,hat are charac teri lic of the presence of billows (figures 6. 14 (b) - (e)). Thus 

implying thal th 3D model hru enabled the rongh cases to retain more coherence in 

th ' billows. rath 'r tlnlll illcreasillg their dil:isipation . However, it is also possible tha.t the 

laterrumotioll ha..., a tivated other flow dynamics in the rough bed cases, for example, the 

lob }uld cl ft instability, that ha..c:; illcreru ed the presence of the billows. These billows 

do not ' xtC'lld alollg the current lellgth as they are observed to do ill the smooth case 

(figurE' 6.14 (a)). and th y ar re trict d to the region immediately behind the head 

of the IllT ut . This suggc t. that they are damp ed before they call propagate further 

up~tr 'alii alollg th · l 'UlTl'!lt body. Notice that this damping cffect is also characteristic 

of t.h cas s \ ith nrns fluid initial ised brtweel1 t he ronghness clp.ments (figures 6.14 (b) 

and (d)) implying th, t thi: i a result of the presence of the ronghness elements and not 

all ('ffret of tlw (llIlbi('nt fluid tt'app('cl between thcm. The lack of vertical motion in the 
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FigW'{' 6.15: Down::,trcam horizontal velocity, 'U, profiles wit.hin the current, head for flow OVC'f a 

smooth 'urface, reultiug from (a) 2D aud 3D numerical simulations with the equivalent experi­

mental rc lilt::" and (b) 3D nUlllerical simulations using the coarse and medium meshes. 

rough cas " i . . th abs nce of billows, upstream of the head in the tail, and the greater 

horizontal lllOlllUltlllll in this region is also indicative of stratification behind the head 

when rougluw ' . i · pr~eut. 

Figmc 6.15 (a) sho",.s the vertical velocity profiles through the current depth at the 

location of bill 35 (3.22 III from the lock-box eud of the tank) for the smooth bed. They 

how good agr III nt between the 2D and the 3D predictions but no better agreement 

with the experimental data. Figure 6.15 (b) shows t.he difference between the coarse and 

1U diUlU lll(' '11. Oucc again it appears that violation of the wall functions has occurred 

and 011 calculation of an approximate y+ value within the head at the bed for the coarse 

and m diulll m 5h . re 'lut in values of y+ ~ 22.6 and y+ ~ 11.28, respectively. Although 

thf' e rc ' ult do 11 t indicate trict violation of y+ in the mecl.iul11 mesh, the profile is 

irregular. illct' tht' prcdicte I front locations of both the coarse and the medium mesh 

show good agr 111 nt with the experimental data and in order to be consistent with the 

2D C(I.',e, the COHl'sC lllC'sh wa..., again adoptC'd. 

The down tl' am horizontal \' locity profiles through the flow depth at the bin are com­

pared to the 2D llIod('1::; i1l fignres 6.16 and 6.18 (a) and (b) for the rough beds with 

and without ambient Auid bct"'een the elements , respectively. For both the d-type and 

k-typ b d bin 3;) Ii . at the element top. However, as for the 2D model, inspection of 

tll(' v('l'ticnl profilt's abow, np,'trpI:UIl I1nd downstream of an element showed no distill­

gui hab) diff r )lCt' in th effe t. on the overflowing current which is used for validation 

with the t'xpprimental data. 
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r 'plotted from ui ct al. (2003b). (a) Above It cavity and (b) above a beam. The top boundary 

is hubjed \0 the Ilo-slip ('oudi tion . 
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Figure 6.1 : D()wlI~t ream horir.ontal v(>[ocily. H. profiles withill nIP head of t.1w CllrrC'nt. rpslllting 

from (0) the :lD !-oimlllntioll and experimental equivalent with a bottom wall of beams6.2 with 

dellse fluid init ialist'd bt't\\'t't'JI the elements; (b) the 3D simulation and experiment.al equivalent 

with a bottom wall of beam ·G.t! with dmse fl11id bet ween the clementI'; (c) the 3D simulation with 

a ~ll1o()th hottom wall And a boLtom wall of beams6.2 (B6,2) with (D) and without (A) dense 

fluid initialised bC'twC'en the clements; and (d) the 3D simulation with a smooth bottom wall and 
a bottom wall of b amS6.8 (B6,H) wit,h (D) and wit.hollt. (A) denRe fluie! initillliRed bet.ween t.he 

clCllwnts. 

Thc profile:. fur the regular bed::> with alllbieut fluid betwecll the elements show good 

agreement with the 2D model predictions for both d and k-type beds but no superior 

agrC' 11l('llt with th ('xperimental result (figure 6.16). An irregular surge below the 

velocity maximum, ncar the bcd, appears to occur in both configurations that is not 

apparent in the 2D. It is difficult to prove whether this is a genuine attribute of the 

velocity dbtrihl1tioJl o\"('r rough beds or a violation of y+, as occurred in the smooth 

model. ]f example y+ value' m" calculated for these beds, results of 10.5 aJld 12.5 

are ohtained for d-type mld k-typ onfiguratiolls, respectively. Although these values 

iuciicllt pot(,lltinl violnJioll of the wall fUllctions, it has been observed in pipe flow studies 

that irr gular fl'aturc~ in the vertical flow profiles, such as this, can be physical. Figure 
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6.17 shows the vertical profile for the data of LES simulations and experimental data 

of Cui et al. (2003b) and Okamoto et al. (1993), respectivelyt. Flow profiles above the 

beam (figure 6.17 (b» clearly show an irregularity near the bed similar to that observed 

in figure 6.16. The variable densities throughout the domain in the case of gravity 

currents mean that it is difficult to say whether this phenomenon might be exaggerated 

or suppressed in comparison to the single phase case in pipes. In the present study, 

the experimental data has insufficient points in the vertical profiles to generate a higher 

resolution profile of the horizontal velocities through the flow depth. However, it can 

be observed from the current experimental data that there is an increase in velocity in 

the same locality of these numerical surges near the bed so they may be present but 

not adequately resolved. Coarsening the mesh so that it is well within the limits for 

the wall functions to operate without contention of y+ would also aid understanding of 

the profiles. However, as mentioned previously, the mesh cannot readily be coarsened 

without changing the size of the roughness elements or the cells and so this cannot be 

cllecked without substantial further investigation with different meshes. 

In the case with dense fluid between the elements, the agreement with the 2D is not 

as good for the k-type case (figure 6.18 (b» and again it cannot be said to show better 

agreement with the experimental equivalents. Figures 6.18 (c) and (d) confirm that, 

as for the 2D model (figures 5.20 (c) and (d», the cases where dense fluid has been 

initialised between the elements have profiles that appear to represent a compromise 

between the smooth and the regularly rough cases. Notice that the surge at the bed is 

not as distinct in these cases. 

The effects on the laterally averaged horizontal and vertical velocity structure 

of the law-of-the-wall method for specifying the bed roughness 

The hori7.ontAl /\Del vcrtir.al w.locity fiplcls after 9 s for the law-of-the-wall method of 

specifying bed roughness az-e shown in figures 6.19 (b) and 6.20 (b). Comparison with the 

smooth case and the body-fitted equivalents «a) and (c) respectively in figures 6.19 and 

6.2O) confinns the 20 observations that the internal dynamics remain almost identical 

to the smooth case. At the later time when the current head passes through the bin 

(figures 6.21 (b) and 6.22 (b)), slight differences can be observed, the horizontal velocities 

are distributed differently in the tail region and penetrate higher into the domain depth. 

There are also regiol1s of lower velocity near the bed, not observed in the smooth case. 

tThedata of Cui et 01. (200.1b) and Okamoto et 01. (1993) have been replotted with the axes excbanged 

in the present Atudy 110 that it is directly comparable to the vertical profiles displayed herein. 
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Figure 6.19: Ilorizolllal velocity component, U, fields at t = 9 s resulting from the 3D simulation 

with (a) ~lllOoth b )lIom wall, and wiLh (b) a k,. value on Lhe bottom wall (ks = 0.0015) which 

is tll(' approximat('ly qllivalent value of (c) beamS(l,2. Red and blue are high and low velocities. 
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re:.pt>ct i\,ply. htxillllllll Illld minimum values are displayed at the lop of t lw fig1ll'e. 
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Fig\ll'C 6.21 : Horizontal vdocit . component, u, fields at the approximate time the head passes 

throllgh 'bin 35' "hcr(' the \'ertical profile dat.a is read (shown as a line) result ing from the 3D 

siUlulation willi (a) "mooth bottom wall, aud with (b) a ks va.lue on t.he bottom wall (ks = 0.0015) 

which is Lll(' approximately equivalent. value of (c) beams() ,2' R.ed and blue are high and low 

velocities, r pedively. Ia.ximulIl and minimullI values are displayed at the LOp of the figure. 
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Figurc 6.22: V 'l'ti al Yelocity component, v, fields at the approximate Lime thf' head passes 

tlllOll~h ' ],111 ;j:j ' wl1<"I"l' tlie V<.'rtiC<l1 profile dat.a is read (shuwn as a. line) resulting from t.he 3D 

simulation wilh (a) :-.mooth bottom wall. and with (b) a ks value on the bottom wall (ks = 0.0015) 

which i~ tilt' I\pproxilllatt'ly t'quivalent value of (c) heams6,2. Red and blue are high and low 

veloeilie~, r '~p 'cliwly. !'.laxillllllll and millimul1l values are displayed at t.h<.' top of t.he figure . 
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umax = 113.6, umax = 130.8 mm/ s 
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Figun' 6.23: Down~tr{'am horizontal velocity, lL, profiks within t,he- current head re-sulting from 

(a) the 2D and 3D numerical simulation with ks = 0.0015 value on the bottom boundary, and (b) 

the num 'rical simulation ( ) and equivalent experimental (E) result for the rough case with the 

heam!-6.2 and for I he 3D :-.iIllulc\t,ion wit,h the approximat,ely equivalent k .• = 0.0015 value on the 

bottom wall. Red and blue arc high and low velocities, respectively. Ma.x:imum and minimum 

values aTe eli 'played at lhe lop of the figure . 

The vertical. wlO('ities also show some difference in distribution of the fluctuations at 

the illt<,rfacl' at. t.his Inter time compared to the smooth case. However, they do not 

displayimilar characteristics to the numerical beams6.2 equivalent. The difference in 

propagl\tioll s[wed of the Cllfreut from the 2D model (figure 5.23) is readily apparent 

from the vel dry fi('\ds since the head of the current in the ks case is now shown to reach 

the bin at almo·t the alne time (~21 s) as the smooth case, 3 s earlier than the d-type 

equivalPlll (figun' 6.21). 

The vertical profile through the flow depth of the horizontal downstream velocity can 

be 5een ill figlU'P ().2~~ fur the law-of-Llu'-wall method of specifying bed roughness. On 

comparison to the 2D model (Jigure 6.23 (a)), the profile is ohserved to he shallower 

alld with a 'Jightl,v higher velocity ma..'dmum located lower in t.he profile, nemer the bed . 

Figur 6.23 (b) ('onfirl1l~ that this method is unable t.o reproduc(' t.he V<'rt.ical flow profiks 

ac(·uralely. 

6.5.3 Lateral velocity structure 

Slic s through tit, domaiu of cros~-stl'eam vectors of latera.l and vertical velocity can be 

seen for the 'iUooth ru,e in figur 6,24. Figures 6.25 and 6.26 display equivalent figures 

for the d-type (,H~e with and without ambient fluid between the roughness elements and 
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Figun' 6.21: Latcrul slir's of the tank depth for the smooth bottom boundary. (a) Velocity 

magnitudc \' r[or::, of \' rlical and lateral velocity components at 'bin 35', and (b) lateral concen­

tratioll field a.t thi::, location for refcr lI(,C. (c) Equivalent vectors upstream at 2.52 m, and (d) 
(,OlJ('Cl1tra l ion fh'ld at this loration. Rcd and blu(> are high and low concentration, respectively. 

Down trl'UIll Illotion i towurd I,he reader. 

figur 6.27 and 6.2 ar an analogous set for the k-type bed. In all five of these figures, 

(a) and (b) ar bli carr 'ponding to the velocity and concentration data, respectively, 

at tlJ(' bill 10('H iOIl at the approximnte time the current hea.d passes through (vertical 

line h \Vll n th lat rally averaged flow field data) and (c) and (d) correspond to a. 

atioll lIptr('am at 2. <":2 m in tIl current body at the same time. Thus, motion in the 

head ancl hody of the cnrTPut cau b(' compared. 

III tlie <,un 'Ill 11 ad over a '111oolh bed, figure G.24 (a) shows that vertical motion is 
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Figure 6.25: Lat'ral i>licci> of the tank depth for the bottom boundary with beamsG.2. (a) 

V(>lo('ity mngnitude n~c tors of vertical and lateral velocity components at 'bin 35' , and (b) lateral 

COll(·t'lltrBtioll odd at this IO('l.,tioll fot'rcfcl'CllCC. (c) Equivalent vectors upstream at 2.52 m, and 

(d) (,ClllcClltration fiC'ld at this location . Red and blue are high and low concentration, respectively. 

Down trt'tlllI Illotion i towan.! · til(;! reader. 

ignifi antly stronger than lat ral motion . This is primarily observed in the positive 

vertical flo\\' of the ambi nt fluid as it is forced above the forward propagating current. 

Thcn' is \. r: lit t Ic blt(,l'H1 JUotioll ill this overlying region. However, at t.he interface 

b tWCCIl tit, mubient Hud the current and withill t he current head, some lateral motion 

is appar lit . This motion appears symmetrical about the centreplane, indicating the 

po:-;sihl pr S('II(, f a ckft and h JlCC 10ucs at the front. F\llther back in the tail, the 

lateral motion i ll1U h trongcr (figure 6.24 (e)) at the density interface where the diffuse 
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Figure 6.26: Lat<'ml ~Iicl'.' of th ' tank depth for the bottom boundary with beams6,2 and dense 

fluid iniliali.l'cl b('I\\'I'<'II tlte {'lemmCs. (0) Velocity magnitude vectors of vertical and lateral 

velocity compol1ent~ at 'bin 35 ', and (b) latcral conccntration field at this location for refereHce. 

(c) Equivnl nl vcclors I1p~t ream at 2.52 m, and (d) concentration field at this location . Red and 

blu ar' high and low concentration, respectively. Dowm;iream motion is towards the reader. 

billows I\H' prc's('nt. Thll~ the present study agrees with other investigators that there 

i nifi ant en ugh lat ral motion in the b illows to require a 3D model to accurately 

simulate th ir dynnmiC's. The lower two rotating cells that can be observed below the 

lnrg<' rotors of tll(' billows n >T<'<' qualitatively with the silllulations of Imran et al. (2004)t 

t Tl il> inter!'.. tinp; to notl' that, to thl' author's know.leclge, there is very little existing experimental or 

JlUIII 'ri .!ll clottl 011 tht' latcml mot iO.ll within a gravity current in a channel. In the numerical studies, of 

whi It tit 'l' ' Hl" lIl1 illcrl,!\..,ing IUIIOUlIt. only Cantero et al. (2003, 2007b), Irnran ct (II. (2004) and Corney 

fI III. (2006) pr '. 'nt illl!lgcs and <Ii ussion of tltis component. 
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Figure 6.27: Lat'raJ ... liet's of the tank depth for the bottom boundary with beamsG.8. (a) 
('locity mngnitlld(' \( tors f verlical and lateral velocity components at 'bin 35', and (b) lateral 

collu'lltrutioTl hlld ut thi:, IOlHt101I for rdel't'llc('. (c) Equivalent ,"cctors upstream at 2.52 111 , and 

(d) (,()ll('putratioll field I\t thi. Im'lI! iOIl. Rpd and blue arp high and low concentration, respectively. 

Down"tH'1I1l1 motion i toward!-. the reader. 

for ft w ill a onfillnl hann I. Although it hould be noted that in that study the current 

b pump ~l t ~t 'ad~' stat and th l' i ' no other motion apparent at the interface. 

l the h 'ad in all of h \ rough c" '(' . strong upward motion in the ambient fluid can still 

be oU:,.elveu (fi~Ul . (;.2:)-(1.2' (a) Hnd (b)). Above the body of the current the strong 

Int IIlI UI I iOIl ol>.'o( 1'\'«1 ill t h . mooth cas<' i not npparent ill the rough ('a es (compare 

tigurp_ ).2.t H and (d) with figurC" 6.25-6.2 (c) alld (d)) indicating that the large 

illt rfacial hillow art' 11 t pr s nt . lust ad, there is strong positive or negative vertical 
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Figure 6.2 : Latl'ral ~li(,(~ti of the tank depth for the bottom boundary with beams6,8 and dense 

fl11id inil iAlisHI \)('1 WN' II 1 hI' plp1l1pnl s. (0) Velocity magnitude vectors of vertical and lateral 

velocity o11lponent~ at ' bin 35" and (b) lateral concelltration field at this location for rcfcrcllCc. 

(c) Eqnivnl<'nt \' rtors IIp::.lr am at 2.52 m, and (d) concentration field at this location. Red and 

blu art' high am! low COil 'enlration, re~pectively. Downstrea.m motiolJ is towards t.he reader. 

motioll nhan' t h <klJ:-.ity iut .rface snggcsting the prescnce of undula.tions affecting the 

ambi nt r turn tI w in thi r gion. lthough, the regular d-type case with ambient fluid 

b('twt'<'l1 t Il ' ('\<'Ill(,lIt:- shows It different distribut.ion of this llIotion. 

Within th h ad of th ('uncnt , figure 6.24-6.27 (a) show distinct lateral motion near the 

C lltr lin S III ntioll abov, this suggests the pre ence of a cleft and thus lobe and 

(')('ft fOfllwt i 11 H\ tit f1' ut. III the d-type a.nd k-type cases with ambient fluid between 

th 1 m Ilt . thi ' obs n 'atiol1 i uppol'ted by figures 6.25 (b) and 6.27 (b) , respectively, 
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wherein a 'deft' of less dense fluid can be seen in the vicinity of the centreline at the bed. 

Strong asymmetry about the centreplane can also be observed in these cases. Although 

these cl18racteristics are less apparent for the smooth case and the bea.InS{;.2 bed with 

dense fluid between the elements, the concentration data in section 6.7 confirms that 

lobes and clefts are being formed. 

The lateral activity observed in the k-type bed with dense fluid in the gaps (figure 6.28) 

appears to be reduced. The flow field and concentration distributions within the current 

head, shown in figures 6.28 (a) and (b), are very similar to the smooth case but the 

lateral and vertical motion within the current body is negligible with the roughness 

present, implying that nearly all motion above the beams in this case is streamwise. 

SynW1(!trical motion ahout the (!entrcplallc is visible ill figures 6.28 (a) and (b)but is 

very W<'.ak. The' conrentration data in section 6.7 confirms that there is no clear cleft 

forming at the front in this case. 

AIHO of illtC'ff!St. iu figllI'(!H 6.24-6.28 are the effed~'1 of the lWlbit!nt fluid inttlfadion wit.h 

the ctllTt>nt. WhtD the ambient fluid is removed from between the elements, the lateral 

motion and the appearance of the 'cleft' of less dense concentration at the bed are much 

weaker or disappear (compare 6.25 alld 6.27 (a) and (b) to figures 6.26 and 6.28 (a) and 

(b». Thus, the ingestion of the less dense fluid at the front contributes to the lateral 

motion and hence potentially to the lobe and cleft instability. However, as noted in other 

studies (e.g. Hartel et al., 2000a), the ingestion of ambient fluid is not the sole cause 

of the lobe and cleft instability. This observation is supported by the lobe and cleft 

formation in the d-type case with the ambient fluid removed from between the elements. 

Some ambient fluid may still be ingested at the front but this would also occur in the 

k-type case whicl1 at the times shown has not formed a cleft. It is more likely that the 

lobes and clefts are augmented by the surface friction that is still present in the d-type 

case due to the density of the roughness elements. III the k-type equivalent case, this 

surface friction is decreased due to the sparsity of the elements and at the cavities the 

current ill 'c~u8hioncd' by the dense fluid providing fl frictionless surface. 

Plan view slices laterally through the tank can be seen for the smooth bed and the 

body-fitted rough beds in figures 6.29-6.33. In the rough (,.aBes, the slices move from the 

bed (a) to immediately beneath the crest of the roughness elements (b). In the smooth 

case, figure 6.29 (a) is also wall-adjacent. However, due to the lower vertical resolution 

in this case, the data in the next slice, figure 6.29 (b), corresponds to a location above 

the height of the elements. The gravity current front can be identified approximately in 
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Figure 6.29: Plan view of velocity magnitude vectors of downstream horizontal and lateral ve­

lodty (:ompollt.'11t.ti in the first two layers of cells ahove the bed in the vicinity of 'bin 35' (solid 

line) for the smooth bottom boundary. (a) Nearest the bed and (b) the layer above. 
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Figure 6.30: Plan view of velocity magnitude vectors of downstream horizontal and lateral ve­
locity component.!! in the first four layers of (:ells above the bed in the vicinity of 'bin 35' (solid 

line) for the bottom boundary with beanlS6.2. (a) Nearest the bed and (b) beneath the crest of 

t.h" rollghnf'NI "lem"nl.s whirh ('I\n be ident.ififfi by pl\fallel rt'!gions of still motion. 

the figttroH by th(! region b(wond whi('h Illotion is signifi<'.antly reduced. 

In the rough cases with ambient fluid initialised in the cavities between the elements 

(figuros 6.30 I\lld 6.32) significant la.teral motion can be obst>.rved between the elements 

and in the overflowing current where the 'cleft' was shown to be forming (figures 6.25 

and 6.27 (a». The flow field in both cases is asymmetrical. For the d-type bed, negative, 

upstream motion near the bed (figure 6.30 (a» and the positive downstream motion in 

the plane above (figure 6.30 (b» indicate the presence of vortices filling the ga.ps be­

tween the elements. For the k-type bed, figure 6.32 (a) shows a recirculating region at 

the downstream face of the elements and a stagnation region (for these lateral and down­

stream velocity components) where the fluid that separated at the top of the upstream 

element reattaches at the bed. These dynamics are also present in the cases with dense 

8uid between the elements but with comparatively minimal effects on the overflowing 
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Figure 6.31: Plan view of velocity magnitude vectors of downstream horizontal and lateral ve­

locity components in the first four layers of cells above the bed in the vicinity of 'bin 35' (solid 

line) for the bottom boundary with bealllS6.2 and dense fluid initialised between the elements. 

(0) Nearest the bed and (b) beneath the crest of the roughness elements which can be identified 

by parallel regions of still motion. 
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Figure 6.32: Plan view of velocity magnitude vectors of downstream horizontal and lateral va-
1000ity romponentR in the fil1lt four layers of cellR above t.he bed in the vicinity of 'bin 35' (solid 

line) for the bottom boundary with be8lll86,8. (0) Nearest the bed and (b) beneath the crest of 

the roughness elements which can be identified by parallel regions of still motion. 
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Figure 6.33: Plan view of velocity Dlagnitude vectors of downstream horizontal and lateral ve­
locity l'OlIlponellts ill the first four layers of cells a.bove the bed in the vicinity of 'bin 35' (solid 

line) ror the bottom boundary with beamB6,8 a.nd dense fluid initialised bet\\'een the elements. 
(a) Nearest the bed and (b) beneath the crest of the rolllhness elements which can be identified 

by parallel regions of at.nI motion. 

current. Again, increased lateral motion in the cases with ambient fluid between the 

elements is CODfirmed. 

In the smooth case, the downstream velocity is substantially higher than the cross­

stream motion. Combined with figure 6.24 this implies that within the head of a current 

flowing over a smooth bed lateral motion is weak relative to vertical and downstream 

components and therefore a 20 model could achieve a good degree of accuracy. It is the 

billows behind the head in this case that require 3D mechanisms. This also holds true 

for th(· k-typt· bed wit.h dewm fluid b(~tweell the nlemellts. Even the trapped rotating 

vortices between the elements are primarily 20 in this case (figure 6.3.~ (a) and (b)). 

Moreover, the lack of lateral motion higher in the flow above the current body (figure 

6.28) implies that the majority of the flow dynamics within the current with this bed 

configuration are 20. Although, the front speeds have been shown to be susceptible to 

20 limitations. requiring the loss of energy provided in the 3D model. 

6.6 Turbulence structure 

The effects on the turbulence structure of the d-type and k-type bed rough­

nelll configurations with and without ambient fluid between the elements 

The turbulence kinetic energy fields after 9 s for all of the beds investigated, exoept 

the law-of-the-wall method, are shown in figure 6.34. No significant difference can be 

observed between the laterally averaged 3D prediction and the 20 model for the smooth 

bed case (figure 5.30). In all of the rough cases there is increased TKE in the current 
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Figurc 6.31: l\lrblll 'nc • kinctic '11 'rgy, k, Aelds at t = 9 s resulting from the 3D simulation with 

(a) hJllooth hottom wall. and holt om walls with (a) smooth bott.om wall and (b) beam 6.2 with 

0('11:-' fluid initiflli. "ct b('tw(,(,J1 th(' deul<'nts, (c) beams6,2, (d) beams6,8 with dense fluid initialis('d 

b tw n thr ('I Jllrnts fllld (r) ben1l1sij . . Red and blue are high and low TKE, respectively. 

Maximum and minimum valu s are displayed at the top of the figure . 

body ('x(,f'pt tIl<' k-t~l) case with dense fluid between the elements (figure 6.34 (e)). 

In th' h 'Hd of the curreut, compm' d to the 2D model, converse magnitudes can be 

obsel"VPd. The ('aM'~ with amuiellt fluid iu the cavit.ies (figures 6.34 (c) and (e)) have 

l"cdu('{'d 1 \' Is of TKE in th(' head while the cases with dense fluid therein show increased 

Tl E (figure · 6.3.,1 (b) and (d)). 

The striking prediction showll ill figure 6.34 (e) is that. even after 9 s, the TKE within 

th curr nt flowing ov r the regular k-typc bed is substantially less than observed in 

the 2D versiOll (figure !) . :~O (e)). Although high pockets of TKE can still be seen in the 

localit . of th{' ronghll{,:-lS clements beneath the head. Again this highlights the necessity 

of resolvillg 3D III chani. 'ms ill thili casc. III the 2D d-type ease, high TKE was observed 

in tItp {,UlTPut lmltl. Tll(' :~D (·quivalcuL (figme 6.~}4 (c)) predicts reduced TKE ill the 

hCHd Itbo\'{' (h(' ('kll1l'llts but regions of high TKE localised around the clements as ill 

the k-t 'I' ('ast' . his is likl'ly to be a result of the improved resolution of skin friction 



(a) 

(b) 

(c) 

(d) 

( ) 

0.2 

0.1 

0 

0.2 

0.1 

0 

0.2 

0.1 

0 

0.2 

0.1 

o 

E 0.2 

~ 0.1 

o 

18 

18 

18 

18 

1.8 

2 9 

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 
t = 22.0 s 

~ ...... 
.. -. .... . ...... ----- - - -

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3 .6 3.8 
t = 24.0 s 

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 
t = 22.0 s 

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 
t = 26.0 s 

• 
-. -. ~---

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 
x (m) 

Figur' 6.35: Turhul '11<':' kin 'tie ell'rgy. k, firl<ls at t.he approximate time the head pa..<;ses through 

'bill :~5 ' Wht'l~ lllt' n'di!'!l! prolilt' uella i!:lI't'Clu (ShOW11 as 1;1, line) resulting from the 3D simulation 

with (a) ~lIIoolh bottolll wall. alld (b) b 'UIllS6,2 with dense fluid initialised between the elements, 

(c) h nl1J~b.2. (d) b(nms(l.~ with elms(' Ol1irl initialisl'd between t.he element$ and (e) beams6,8' 

Red al1d hlu • aI" high ulld low KE. r !:lpect.ively. Maximum and minimum values are displayed 

at t h(' top oJ t 11<' fi'II),('. 

effeel::. in :3D. 

At later tim(., th 2D and :m modd for the smooth case (figures 5.31 and 6.35 (a), 

r p lively) l-lhow additional difference but the distribution of TKE is still maintained 

within th billows at th dE'llsity iutE'rfacE'. For the rough cases, the elongated region 

of K at the d('llsit . int('rfac(', b('hiud the head, observed in the 2D case is much less 

t'Xlt'1l iv ill 3 (fi~llr{'s 6.35 (b) - (e)) and differentiation between d-type and k-type, 

ll. ing th<' III gnillld of thi. upstream elongation that was suggested from the 2D model 

prdi<:tiom" is Il \ong{'J' rt,j VHut. However, the general qualitative agreement between 

th 2D and 3 m d Is at th later time is reasonably good. 

The . JIllIll(' l' r giOll of high TK behilld thC' head observed ill the 3D models corresponds 

to th location of th bill \ S at this later time, as predicted by the downstream horizontal 

(UHI vt'rti(·.u \'('locity fidd~ iu H('('tiou 6.5 .2. T he 2D aua :~D lIlodels agree that the high 
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Figure 6.36: Thrbulence kinetic energy, k, profil~ for the total domain dept.h resulting from 2D 

and 3D numeric-.al simulations with a smooth bottom wall. 
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Figure 6.37: Thrbulence kinetic energy. k, profiles for the total domain depth resulting from 2D 
and 3D numerical simulations for bou.om walls with (a) beamSfl.2, and (b) beamSS.8 with dense 

fluid initialised betwet.>n the elements. 

TKE observed in the head near the bed at early times has reduced significantly in both 

d-type C~ Rnd thc k-typl~ cage with dense fluid betwecn the clements but is maintained 

in the regular k-type case (figure 6.35 (e». Unlike the early time, the d-type case and 

both ('.8A('S with d('D.'I(l fluid br.twoon thr. r.lr.mcnts show TKE distributions similar to the 

head region of the smooth case as they pass through the bin. 
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Figure 6.38: Thrbulence kinetic energy, k, profil~ for the tot.al domain depth r~lllting from 2D 
and 3D Ilumericalliimulatiolll! for bottom walls with (a) ooamS6.2, and (b) OO&0186,s. 

Vcrtic.:al TKE profil(~ through the flow depth at the bin are shown for the 20 and 30 

modds of the smooth bed in figure 6.36. As the corresponding TKE field suggested, 

there is little distinguishable difference between the models. Figure 6.37 presents the 

equivalent data for the d-type 8ud k-type bed configurations with dense fluid initialised 

ill the gaps. The 30 model predicts the removal of the turning point at the bed that 

occurs in the k-type case but otherwise little difference is observed between the 20 and 

30 models. Compared to the cases with ambient fluid in the gaps, lateral motion is 

suppressed and therefore a 20 model can achieve reasonable accuracy. 

Figure 6.38 presents the data for the d-type and k-type bed configurations ",;th ambient 

fluid initialised in the gaps. In these cases, more distinct differences between the 20 and 

3D models can be observed. The most distinguishable difference is that the high TKE 

is not localised just at the top and bottom of the current head but now appears to be 

more greatly distributed below the top maxima and this indicates mixing penetrating 

into the top of the current head. This can also be observed in the TKE fields (figures 

6.35 (c) and (e». The 3D model predicts for both configurations that the TKE has not 

increased as substantially at the bed as was implied by the 20 model, which indicates 

that lateral dissipation has probably occurred due to the 3D dynamics. Conversely, at 

the density interface, the TKE appears to have increased, particularly in the d-type case. 

The maximum TKE value is still inverted from the density interface to just above the 

bed in the k-type case but the magnitude has decreased compared to the 2D model. 

Note that the differences a.pparent at the bed may not be due to the limitations of the 20 

model. As noted in section 5.6, certainly in the d-type case, the vertical TKE distribution 
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Figure 6.39: Thrbulence kinetic energy, k, profiles in the vicinity of 'bin 35' resulting from 3D 

Ilumerical simulations with bottom walls with (a) bea.m8t!,2 wit h dp-Df!e. fluid bp-t.ween t.hE' plp-mentH, 

(b) beanlS6.2. (c) beamS6.s with delUit~ fluid uetWt..'tm the elements and (d) beam86.8. From left to 

right the vertical profiles represent data in three locations, namely, one in the cavity just upstream 

of an element. one at the top of an element and one in the adjacent cavity just downstream of 

an element. 

just abcwe thf' boo dt'pends on whether t.he profile is t.aken above the element or not and 

also, if above the element, whether it is through the cells at the upstream or downstream 

comer. In the 3D model the resolution is coarser and there is only one cell above an 

element. Therefore variation in the location of the profiles occurring above the element 

are not observed. Despite this observation, vertical profiles of TKE through the flow 

depth taken above, upstream and downstream of an element in the vicinity of the bin 
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Figure 6"10: Turbul Ilt" kin 'ti . ellergy, k. fit"ld. at, t. = 9 s resulting from the 3D simulation 
with (it) "Ill( oth hottom wall and with (b) a k. value on the bot t.om wall (k. = 0.0015) which 

i ' th' appr xilllut 'ly ·quintl·lIt valu> of (c) bCttIllS(l,2. Red and blue are high and low TKE, 

r sp eli" I '. l\1n.ximum and minimum \-allies are displayed at the top of the figure. 

dougg st thar th turning point that occurred above the beam in the 2D models does 

not in fact ,Ill' in tlli location and occurs only in the gaps, see figure 6.39. However, 

thi figur do mint in th ob ervation made from the 2D model and the TKE fields 

and the k-type case with dense fluid between the elements have 

higher TI E at th , top f the head while the regular k-typc configuration has maximum 

valu ' at til l~ . gain, th' similarity betweell the two cases with dense fluid in the 

gaps an b ob' 1'\' • \\'ithout a high resolution experimental dataset through the flow 

d<,pth. it i~ diffkult to ('stablish whether the turning point at the bed that occurs in the 

2D mod I i a g nuin phy "i al attribut,e of the flow over the element top or a result of 

a lack of )I:\.lt'ral flow dYlll:I.mi . 

Th urbul nc structure of the law-of-the-wall method for 

h b d r ughn 

Th(' '1'1 E fi ,lei fnr the law-of-thc-wall model after 9 s is shown in figure 6.40 (b). A slight 

illcr ' .. ill K ~ ot th' b lapp m ' to b present in the 3D model tha.t was not resolved 

ill 2 (fif,ur fi .:n (b)) 1 ut illlllO't otllt'r I' sp cts the models are in good agreement and 

show (hnt (Il(' It w-of-th '-wall lll( lhod pI' diets a TKE distribution very similar to the 

m tit c . f" h . al b 11 'h \Vn for other flow variables. At later times, the models 

diwlP,(' :;Jip,htl . ~Ulcl ill tht' aD model (fig\lI'(, 6.41 (b)) the TKE fields in the locality of the 
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r) p 'div ·Iy. :\iuxilllUIll ulld llIiuill1UIII values are displayed at t.he' top of the figure. 
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Figur' ,12 lurbu\('ll • kin 'tic (,lll'rgy. k, profiles for the total domain depth resulting from 

2D and :JD llllllWl'icnl ... illlul!\t i n with k~ = O.OOlfi sp('f'ifiecl on the bot,tom wall, and t.he 3D 

1I\111l('ri( el1 "lIl1\lI!Hioll of {lit' bocJy-Httt'd equivalent (bealllsG.2, and a smooth bottom boundary). 

billows I\t tIll' illt, 1£\('(' nr,' diff('l'('ul to 111<' slllooth ras(' but still show strong coherence 

ill tIl(' hill< w. , Ilnlikl' t}w (quiv lrnt borly-fittrrl be:a.ms6,2 casr (figure: GAl (c)). 
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Th \" rt i al TK I r fil , for the Jaw-of-thc-wall method are shown in figure 6.42. The 

3D mod I . till 1Illdl'r timate ' th magnitude of the TKE at the interface but it has 

imprO\ d II the 2D mod .1. lIo\\' \' r, the increase in TKE at the bed is too high 

compar to th 1 odr-fitt d qui valent and the locations of the maximum at the top of 

th h ad and th minimum in th vi inity of the velocity maximum are very sim.ilcu: to 

th .'IUO tit ( '1\:,('. 

6.7 on ntration 

6.7.1 La raIl a ra d concentration distribution 

Th 

and 

betw n 

(a) 
0.2 

015 
0.1 

005 

(b) 0.25 
02 

0 .15 
01 

0.05 

(c) 0.25 
0.2 

0 .15 
0.1 

005 

(d) 025 
0.2 

015 
01 

0 .05 

( ) 025 
,... 02 
E 015 
:... 0.1 

005 

rally averaged concentration distribution of the d-type 

c or 1.0. mi" = 0.0 

02 04 06 

0 .2 04 0.6 

0.2 04 0.6 

0.2 0.4 0.6 

02 04 06 

configurations with and without ambient fluid 

- --~ 0.8 

0.8 

0.8 

0.8 

0.8 

1.2 

1.2 

1.2 

1.2 

1.2 
x (m) 

1.4 1.6 

1.4 1.6 

1.4 1.6 

1.4 1.6 

1.4 1.6 

t = 9.0 s 

1.8 2 2.2 

1.8 2 2.2 

1.8 2 2.2 

1.8 2 2.2 

1.8 2 2.2 

Figur ' ). 13: 'O lll'l ' lllmti 1II) . C , Ii ~lds uL t = 9 s resulting from the 3D simulation with 
(0) !'I JU()oth h()fln lll \\1\11. nnll bottom wnlls with (b) brams(j .2 with dense fluid initialised between 

Ill(' t'1('lIlt "I--, (r.) hI IJll"h.l. (d) ht'tUlI~I ;. 1I with dens(" nuid initialiRecl between t.hf. elemen(.s and (e) 

nl'ltll1. . • R~~l a nd hili!' lU I' hi!l,h I\nd low cOllccnt.nl.tion , respectively. Ma.ximum and minimum 

\'1\1111':> IIr eli. pI " \ I II I t i lt' t <lp or I h ... Ii I!,u rl' . 
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FigUl(' 6. 11 : n: (COJl(:l' lItrutiou), C , fidd. fit the flpproximatr time the head passes through 

'bill :35 ' wltt·'t' ILl wtl inll prolilt:' d!lla i~ 1't'(l.U (showll CIS a Ii Tie) resulting from the 3D simulation 

with «(I ) "'Jllouth h !tOIll wull. flud (b) b 'cUll '6.2 with dense fluid initialised between the elements, 

(c) b am ... !> ,:.! wit h01l1, (d) b('nlllS6. wil11 dpm;p finirl init.illliSf'd bel Wf'pn I.he elf'mpnl s and (e) 

bt?UIII"'t i.1< witho ut R ~ tint! bIll' Hr' high Hml low concent.ration, respectively, Maximum and 

minilllUIll \<lltH·... n displnwd al tltt' top of t.hr figure , 

Figur '. n ,hm '. th lat nul' av rag d oncentration field in the vicinity of the current 

nft r 9 !'i . • WI 1'\'('d ill tll 2D model, aU of the simulations show gravity currents 

with \Y '11 d 'till' l. hip;h 011 ntration head region and a shallower, more dilute body 

with mixing du to th' l ill W ' b hind the head along the density interface. The 2D 

moch-} (fi!l.\ll(' f) . 10) npp 'm'~ to bl' a good representation of the concentration for the 

SIn oth (' and t lll' t\\' b d ' with d n c fluid between the elements. There are more 

bill W HPJHU' Ilt \t th d nity iIlt dace in the 3D rough cases (figures 6.43 (b) and (d)) 

1m th.V Ill ' ('aptlU'l l <}Ill\litntiwl . by the 2D model. 

For th t\\' r ·guhu'l. rough ., til agreement is not quite as good, compare figures 

5.1.0 nlld (). 13 (c) I ud (t ). 01" th d-typ case, the 2D model predicts the overall distri­

butioll ( f tIl(' '011('('1\ rnti 11 r '<~olltlbly well but retain. ' higllC'r concentration ftuid within 

th' ·\tlTC·llt heud whill' tit· . D III del 'how' that it is more dilute in this locality and 
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Figure 6.45: Concentration profiles for the total domain depth resulting from 2D and 3D numer­

ical simulations with a smooth bottom wall. 

higher further back. In the k-type case, the regions of high concentration appears rea­

sonably accurate in 2D but the dilution in the top and back of the current head has been 

exaggerated. Again these results imply that the lateral motion is necessary to accurately 

capture the characteristics of the fully rough beds. 

Figures 6.44 (c) and (e) show dramatic dilution within the head of the gravity currents 

flowing over rough bOWldaries compared to the smooth case (figure 6.44 (a», and thus 

confirm this observation in the 2D case (figures 5.18 (c) Wid (e». As observed in section 

6.4, at later times in the smooth case (figure 6.44 (a», the 3D model removes the 

Wlphysi<'.al retention of a large billow and corresponding disruption to the current body 

that was present in the 2D model (figure 5.41 (a». With this removed. the 3D model 

of the smooth bed predicts regular billows at the interface and a thin layer of high 

concentration fluid within the cun'ent hody helow them. The head of the current remains 

partially stratified with a thin layer of high concentration fluid at the bott.om and dilute 

fluid abo\'(! but t.hp. ron('(lntration is maint.ained at higher levels. The good agreement 

in the current head between the 2D and 3D models in the smooth case can be observed 

in the vertical profile data obtained at the bin location (the vertical lines in figure 6.44) 

that is presented in figure 6.45. 

For the C.88es with dense fluid between the elements, figures 6.44 (b) and (d), the vertical 
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Figure 6.46: Conrentrat,ion profiles for the total doma.in depth resulting from 2D and 3D numer­

ical simulations for bottom walls with (a) bealllStl,2 and (b) beamSfj,8. 
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Figure 6.47: Concentration profiles for the total doma.in depth resulting from 2D and 3D numer­
ical simulations for bottom walls with (a) beamSfi,2 and (b) beamSfl,8 with dense fluid initialised 

between the elements. 

profiles at the bin (figure 6.47) show that the 2D model is capable of remarkably good 

repretieJltatiou of the (~u(:eutration field at the time the current head passes through 

the bill (Ht~~ figure 5.42). III fad, this is also, ill general, true for the rough C8BeS with 

ambient fluid in th~ cavities, shown in figures 6.44 (e) and (e), and in figure 6.46. The 

main diftCrepancy in t.he concflnt.rat.ion fields is t.hat thfl 2D model does not capture 

a similarly shaped current head. This is probably because, as observed previously, it 

cannot resolve the billows that have been shown to occur in this locality and therefore it 

does not account for the redistribution of concentration that results from them, as in the 

3D model. The vertical profiles show that in the d-type case with ambient fluid between 

the elements, the reduction in concentration at the bed which occurs for the 2D model, 
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Figtu'(' 6. 1 ; on ntl'llti n pr files for the total domain depth resulting from 3D numerical 

simulation ... for H "lIIoolh bottolll boundary and bottom walls with beams6,2 (B6,2) and beams6.8 

(Bo. ) with (D) Rllt! without (A) ucnsc fluid initialised bctwccn the elements. 

is not oh:-('l'\('d for bot It rOllglm ss types ill the 3D case. This implies that dilution near 

tIL bed ill thi i not tt::i n ute as the 2D model suggests. However, this does not 

!legate t IH' fa(,t that t 11('1'1' is a, sigllificant reduction compared to the smooth case and, 

oVPTHIl. (1](' dilllt iOll wit hill the head ill the rough CcL'3eS with ambient fluid between the 

clem l1ts i dramatkall' acc lcrat d. Figure 6.48 confirms this and furtehr highlights 

the similru it · hctwl' 11 tht' slllooth ('a~e and the rough beds with dense fluid between 

tIl(' d(,llH'Ilt. . Thb illlpJit'. t hat although the overridden ambient fluid only contributes 

~ 50% to till' r'tar<iutioll of the current, it is the primary cause of the dilution within 

tlll' CIll'l'Cllt In od . 

As wm; g Ilcmtl'<.\ ill the 2D mod I, cumulative percenta.ges of the concentration through­

out the clolllaiu 1\...., 1:\ hmctlOll of time are presented in figure 6.49. Comparison of the 

pr«lictioJ1~ fol' til(' i'l)\\gh (·l\.."l'S with the 2D and 3D models (figures 6.49 (b) and (d) 

vcrsus (.) nJld ( ). r ~P( ·th 'ly) indicate that most of the observations ma.de for the 2D 

version abo hold t1'll ' for th{ ~~D. Til re were no distinguishable differences in the smooth 

CuM' nlld hl'lIc'c lilt' 2D W1':-.iOll is uot ('('plotted here. The most siguificant variatioll in 

t})(' ro\ll;h ( '.1\ .... ,.,.. i" ill tIll ' alllOllut of cklls(' finid r('lllainiug aftrl' 30 s for both d and 

k-t ypt' C'Ollfip;IU III inll~ . III hot 11 modt>ls it is apparf'ut that as Soon 1\.<; t hI" flow is rf'lea.c;f'd, 

tIl(' ]><'1(' IIlH!/,I~ of the dOlllniu thflt ('outaimi high concentration fluid decTc8ses and the 
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Figure 6. 19: ( llc('lltrntioll), C, us a function of time given as a cumulative percentage 

of th total dOlllain with «(I) :.JJloolh boltom wall a.nd (b) beams6,2 (2D), (c) beams6.2 (3D), (d) 
!J 'um:'(j. (2D) 1111<1 (t ) be 111lt-1) , (3D). Tb' data coloured red represents the percentage of cells 

in til(' domnill thnt (' ntnill ('on('('llt mtion I vel:> that me('t the minimum criteria to be considered 

within III ' v.Hwity CUlT 'lit 'Jlllt '. Tit· dala below this line represents cumulative concentration 

I('w]'" frolll n.I IInclaho\l' (npC'1I ::;'1llar(,8) lO 0.9 and above (filled squares). 

p rcenlag f 1 W (Oll(' lltrati 11 fluid increase as would be anticipated from mixing and 

utminl1H'llt 01 Hlllbi<'lIt fluid . However, th decrease in high concentration fluid in the 

3D mod .. ) 0 'CUI 11101' I wly Bnd while in the 2D versions after 20 s the percentage 

of th dOllltUll fib \ th 0.5 llccntratioll I vd is much reduced, in the 3D models, 

t lw }(,\'('I 111\: iU(,I ' f st'd n (Ui, i.e. t.h 1'(' is more dense fluid remaining in the domain. 

'pit th ' iner ' ill d n fillid r maining within the clll'rent, the slight decrease in 



301 

overall percentage of fluid considered to be within the current (C > 0.01) that occurred 

for t.he k-type case in the 2D model (figure 6.49 (d) can still be observed in the 3D 

predktion (figure 6.49 (e)) but is also apparent in the d-type case (figure 6.49 (e». As 

mentioned in the 2D model results (section 5.7), it appears that in the smooth case, the 

high concentration fluid is maintained in the current head and there are strong coherent 

billows that form behind it and cause entrainment and dilution at the density interface. 

These billows are not maintained as coherently in the rough cases and therefore the flow 

is able to stratify in the body behind the head without the disruptions at the interface. 

Again, the improvt-'tl resolution of the flow dYllalllks within the billows means that the 

3D model does not cause as much interfacial entrainment in the rough cases through 

unphysical charar.t.eristiC'.8 and so the high concentration fluid in the current body and 

tail is reasonably undisturbed. The head continues to be diluted but it has a tail of 

higher concentration fluid as a buoyancy source. Thus, the dilution dynamics of the 

smooth case and the rough cases are different with the smooth case retaining higher 

concentrations for longer but apparently undergoing continual dilution at all concentra.­

tion levels. In contrast, the rough cases lose high concentration fluid quickly but then 

stabilise. Similar characteristics were predicted by Ozgokmen and Fischer (2008) in their 

numerical simula.tions of oceanic overflows. 

The effects on the laterally averaged concentration distribution of the law­

of-the-wall method for specifying the bed roughness 

The concentration fields using the law-of-the-wall method at early and later times are 

shown in figures 6.50 and 6.51, respectively. The vertical (~oncentration through the 

bin as the head passes through that location, corresponding to the vertical line in figure 

6.51, is shown in figure 6.52. AU three of these images provide evidence that there is very 

little difference between the 2D and 3D models (compare figures 5.43-5.45 and figures 

6.50-6.52) using this method and little difference using either model between this case 

and the smooth bed. It is clear that the ks method cannot model the internal dilution 

and fundamental changes to the concentration distribution and other flow dynamics that 

occur in the presence of the form roughness, failing to model the dilution in the head. 

6.1.2 Lateral concentration distribution 

Figure 6.53 shows 3D isosurface representations, for the smooth bed case, of two con­

centration levels within the current head after 9 s and at the time the current passes 
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Figure 6.52: onc('ntration profi\('s for th(' total domain depth resulting from 2D and 3D numer­

ical simulations with k .• = 0.00] 5 specified on l he boLlom wall, the 3D numerical simulation with 

the houy-fittcull1<'thod equivulent (bCillIlStl .2) and a smooth bottom boundary. 

through the bill. Til . 0.25 smfa('e captures featmes of the current outline while the 0.9 

surface show the location of high concentration fluid. The symmetry along the lateral 

celltr<'plauf' ('all clearly he observed at both times. At 9 s the billows are large and 

coherent and w('\l-ddll1ed b . the 0.25 concentration surface. High concent.ration fluid is 

still PI" 'cnt ill til 'urrcllt head. At 21 s, the approxima.te time tha.t the cmrent head 

pas. e..'i though th bin. the billows me much more dilute, with the presence of the 0.25 

level significantl . reduced and restricted to the stronger structmes immediately behind 

the head. The pr ~C1l('t' of I 's dilute billows is inferred by the contour lines on the faJ: 

wall. The 0.25 con utration surface within the head is smaller and the high concentra­

tioll surfHcc hn~ di:-.appt'cU'('d as n result of dilution. Formation of a cleft at the front, as 

implied by the vector of lat rall11otion (figures 6.24 and 6.29) can be observed creating 

two s. mlllC'tricn\ loh('~ nbont the ccntreplaue. 

Equival 'ut 3D iUtH {" withill the current heads of the d-type and k-type cases with and 

with Hlt IUllhi('ut fluid lW\W('t'll Ule dE'll1ents can be seen in figures 6.54 aJld 6.55 at 9 s 

~Uld Int<'r ti1lll':-'. r(,~»l'cti\'('ly. Evcll nfter 9 s the high concentration surface in the rough 

ca.<.;('1-i with mllbil'ut Haiti lWtW(,('ll tl1<' ('1('llH'uts (figures G.G4 (b) and (d)) has already been 

reduced tomaH pocket~ trapp d b tween the roughness elements. The ht'an profile a.t 

this (,Ariy tilll . r<,pn M'ut('d by thf' 0.25 surfa.ce can be seen to extend upstream further 
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Figure 6.53: oDS (Concentration), C , field in the head of the current for the smooth case. (a) 

after 9 ~, (b) at 21 ~, the approximate time the head passe~ through 'bin 35 ' where the vertical 

profile da.ta i~ rcad (shown <1..-; a planc) . I~osurfi:lCCS ~how collcentration levels 0.25 (grey) and 0.9 

(red). Line of (,O lltOur levels 0.01 at the density interface then at illterV'dis of 0.1 from 0.1 to 0.9 

are included at the far wall. 

than in the smooth case and those with the dense fluid between the roughness elements 

(figure 6.54 (a) and (c)). The 0.25 concentration surface also highlights the increased 

amount of lower concentration fluid beneath the head in the cases with ambient fluid 

between the elements as a result of ingestion at the nose. This process is maintained and 

perhaps enhanced at the later time. Conversely, the head profiles are not maintained at 

later times. Figures 6.55 (b) and (d) demonstrate the dramatic difference in the evolution 

of the gravity current heads for the d and k-type roughnesses with ambient fluid between 

the clements. Certainly at the 0.25 concentration level, the head of the current in the k­

type cas ' has become significantly shorter ill length and more rounded, with a prominent 

head and nose. The d-type beds and the equivalent k-type bed with dcm;(' fluid b('twc('ll 

the elemellts (figures 6.55 (a), (b) and 6.55 (c), r€'spectiv€'ly) retain a more elongated 

head shape similar to the smooth case (figures 6.53 (b)) . 

A. cOllld be expected, there is more dense fluid trapped between the elements at 9 s in 

the cases with this high concentration fluid initialised in that location. It is interesting 
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Figure 6.51: UDS (Concent.ratioll), C, field in the hea.d of t.he current aft!:'r t = 9 8 for beams6,2 

with (a) dense fluid initially between the elements, (b) with ambient, and for beams6.8 (c) wit.h 

dense flujd initially between the elements, and (d) with ambient. Isosurfaces show concentration 

levels 0.25 (grey) and 0.9 (red). Lines of contour levels 0.01 at the density interface then at 

intervals of 0.1 frol11 0.1 to 0.9 are included at t.he far wall. 
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l('v\'ls 0.25 (grey) lind 0.9 (red). Lines of contour levels 0.01 at Lhe density interface then at 

intl'lVIIl of 0.1 from 0.1 to O.U ar' included at the fHot" wall. 
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that the fluid can be observed to remain trapped beneath the current for longer in the d­

type case, maintaining its presence further upstream at the bed. At later times, however, 

the high concentration fluid appears also to have been diluted sufficiently so as not. to 

produce a coherent surface at the 0.9 concentration level, except between the elements 

ahead of the current. in those cases where dense fluid was initialised in the cavities. 

The possible presence of lobes and clefts was noticed in the lateral velocity structure 

at the later times in the vicinity of the bin (figures 6.24-6.27 and 6.29-6.32). The cleft 

has not formed by 9 s in the smooth case, which may be a result of the lack of lateral 

resolution in that mesh. However, figure 6.54 shows that in the rough cases, a cleft and 

the corresponding lobes have formed by this time in all cases except the k-type config­

uration with deuse fluid betweeu the elemeuts (figure 6.54 (e». This process continues 

and can be observed at later times too where it could be implied that if lateral resolu­

tion pennitted, more lobes and clefts would form in the rough cases with ambient fluid 

between the elements (figures 6.55 (b) and (d»). It is also apparent from figure 6.55 (e) 

that a cleft still cannot be observed in the k-type case with dense ftuid in the gaps, as 

suggested in figures 6.28 and 6.33. 

6.8 Discussion 

The outstanding result of the 20 aud 30 CFO presented herein is confirmation that, 

when present, the effects of bed roughness on gravity currents cannot be neglected, 

and therefore current models based on smooth theory are not adequate under these 

conditions. The experimental results in chapter 2 demonstrated convincingly that bed 

roughness has significant affects on gravity currents. The salient points observed therein 

were slower front speeds decreasing with increasing bed roughness, breakdown of the 

large instabilities at the density interface, a shorter and thicker current head with a 

reduced velocity maximum further from the bed and regions of high positive vertical 

motion associated with regions of reduced downstream horizontal activity along with 

many ot.her inftmmcflfI on t.he vertical and downstream flow field distributions. The 

CFO, in general, has shown excellent agreement with the expe.rimental data. Moreover, 

the CFn confirms the approximately equal contribution of the ambient fluid and the 

presence of surface friction to the retardation of the current in the constant speed phase. 

The novelty of the CFO is its ability to provide additional insights into the roughness 

effects. Significant dilution of t.he head both at early and late stages of the flow has 

been predicted with increased preservation and stratification of higher concentratioPS of 
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fluid v.ithin the C'urrent body due to the breakdown of the large interfacial instabilities, 

and a larger region of faster water pushed ahead of the current compared to the smooth 

surfaced case. The turbulence kinetic energy is shown to generally increase within the 

head. Earlier commencement of lobe and cleft generation is predicted and potential 

trends resulting from the spacing of the elements have been identified. The mechanisms 

for many of these affects are postulated and discussed in detail below in which the CFD 

corroborates the suggestion that many of the present gravity current models, based 

on smooth surface approximations, are inappropriate for many natural and industrial 

contexts. 

The effects of the presence of the ambient fluid between the elements 

The results show t.hat once the ambient fluid between the elements is replaced with dense 

fluid, the level of dilution within the current head and body decreases. This is to be 

expected since when the head of a gravity current propagates along a smooth surface then 

the surface friction from the bottom boundary is continuous. Therefore the current has a 

slightly raised nose that causes a small amount of the ambient fluid to be overridden and 

entrained due to the buoyancy difference between this fluid and the current (Simpson and 

Britter, 1979). Pt>ters et al. (1997) showed for continuous flux currents that t.his process 

is dependent on the surface roughness, the presence of which contributes signifiC'.antly to 

the mixing within the current. The cavities between the elements essentially create holes 

in the bottom boundary and therefore reduce the continuous surface friction present in 

the s1Dooth bed case. These cavities are not bottomless and fluid is trapped within 

them and induced into vortica1 motion which removes energy from the current and thus 

still providC'll " slowing r.fffrt. Whfln t.hiR fluid is ICRR denRe, as in the regular case 

where ambient fluid is initialised between the elements, there are also buoyancy effects 

generated due to the lower density of the trapped fluid and the higher density of the 

overflowing current. Therefore, despite the removal of surface friction at a cavity, when 

the gravity current 809.'8 over it, the fluid within the current is subject to intrusions in 

these localities from the buoyant fluid, partiCUlarly ill the head where ambient fluid is 

overridden at the front and the density difference is large, certainly for early times. As a 

result, the quantity of ingested less dense fluid is increased and it can be demonstrated 

that the velocity maximum is forced further from the bed and retarding mechanisms are 

increased. The lobe and cleft instability and the asymmetry of the front propagation are 

potentially augmented. Conversely, when dense ftuid replaces the initial ambient ftuid 

between the elenlents, the buoyancy effects are removed and thus a cushioning effect can 
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occur in the gaps which, for the overflowing current, amounts to more efficient removal of 

the surface friction at the bed. The current can therefore maintain higher concentrations 

for longer and is primarily subject to mixing due to instabilities at the density interface. 

However, the currents do not propagate at speeds similar to, or greater than, the smooth 

case probably due to energy losses to the vortices that still occur in the trapped fluid or 

other non-ambient induced effects of the roughness elements. 

The fluid into which the ambient fluid is mixed in the head and the near-wall region 

of the body of thE' current will be the highest density fluid. Therefore the subsequent 

entrainment causes a reduction ill the highest concentration fluid and an almost imme­

diate decrease in the high concentration fluid in the current, as shown in the cumulative 

percp.ntage results for the rough cases. Thus, a decrease in the buoyant driving force of 

the ClllTt'nt OCCllrs, as reflected by the front speeds. However, as time progresses and the 

concentration of thE' fluid in the current body decrea.se.s, the den.sity difference between 

the ambient fluid and the overflowing current and therefore the buoyancy effects will also 

decrease and hence the mixing and dilution at the bed will reduce. This explains why the 

percentage of the domain at higher concentrations becomes more or less constant after a 

certain time in the rough cases. With the reduced billows at the density interface in the 

rough cases, the flow is also able to stratify within the body and the tail of the current, 

creating a more or less undisturbed source of dense fluid that can feed the current head. 

Thus despite the low dilution in the head, its definition is maintained and the current 

continues to propagate. 

Despite the entrainment of ambient fluid into the bottom of the current, the percentage 

of fluid wit.hin the gravity current (i.e. concentration levels in the domain of C > 0.01) 

has been predicted to be slightly less in the rough cases than in the smooth case. Since 

the billows at the interface in the rough cases are significantly reduced, this confirms 

that more entrainment and mixing occurs due to int.erfacial instabilities than at the bed. 

It also shows that this entrainment mechanism is greater in the smooth case since the 

p('rccntagc of flllid in t.he gravity Cllrrent increases and the amount of high concentration 

fluid dP.Crf>.II.'IeR but. with little contribut.ion from t.he processes near the bed (Simpson 

and Britter, 1979). If the interfacial processes were as efficient in the rough cases then, 

coupled with the entrainment at the bed, it could be expected that the percentage of 

fluid within the current would be higher than in the smooth case but this is not the case. 

In fact, the billows at the interface are more diffuse. It is particularly interesting that 

the overall result here is that the total amount of fiuid in smooth and rough currents is 

actually very similar but with very different entrainment characteristics. This prediction 
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is supported by similar observations by Ozgokmen and Fischer (2008). These predictions 

also imply that interfacial entrainment and mixing, although greater than the processes 

at the bed within the current head, do not have such a significant effect at reducing the 

current speed as those processes caused by the presence of roughness, which dilute the 

velocity core. 

The effects of roughness element spacing 

The smooth case is subject to unbroken surface friction for the entire length of its prop­

agation down the tank and lobes and clefts form. In the d-type case, the elements are 

relatively clt'n.cwly spacro so that there is still sufficient surface friction for the lobes and 

clefts to generate and the current also slows due to the removal of some of its energy to 

maintain the fluid trapped between the elements in rotation. In the k-type case, surface 

friction is so reduced that the lobes and clefts only form convincingly due to the presence 

of the ambient fluid between the elements. The current still slows down, again due to 

the loss of energy to power vortices in the cavities, regardless of the fluid density therein. 

Despite the increased removal of surface friction by placing dense fluid in the cavities 

in the k-type case. this case is slower than the equivalent d-type configuration. In this 

case, the energy removal must come from lateral motion since in the corresponding 2D 

case the k-type current retains faster propagating speeds. 

In singl~pha.se pipe flow investigations over this type of square beam roughness, the 

vortices that occur between the elements have been observed to eject into the overflow. 

The strength of the 'ejections' increases until the critical spacing wile,. R:l 7 is attained, 

after which it remains more or less COJlstant (Cui et al., 2003bj Leonardi et al., 2003b; 

Ashrafian et al .• 2004; Ikeda and Durbin, 20(7). Evidence that this critica1spacing also 

applies to gravity currents has been presented. Therefore, it is highly likely that this 

observation also holds for gravity currents. In fact, it can be postulated that it will be 

enhanced due to the added buoyancy difference of these multi-phase flows. The fluid 

is ejected from between the elements within the current head and increases the mixing 

and therefore the turbulence kinetic energy in the head, 88 the results have shown and 

is particularly evident in the k-type cases where this critical value can be applied. In 

the present numerical and experimental results, the resolution means that it cannot 

be determined if distinct ejections occur or if the ambient fluid betweeIl the elements 

is simply gradually mixed into the current. However, in the CFD, trapped regions 

of lower concentration fluid are not observed further back beneath the current body 
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implying that these pockets of fluid may eject into the overlying flow. As the current. 

head dilute'S, the difference between the density of the current and the overridden ambient 

fluid also reduces. Therefore, the buoyancy force reduces and so it can be inferred that 

any ejections due to this force will only occur early on in propagation or progressively 

further back in t.he flow, behind the current head. However, ejection of fluid doe'S not 

only occur due to buoyancy, 88 demonstrated by their presence in single phase problems. 

Therefore, mixing induced by the ejecting vortices may continue regardless of the head 

dilution. A ONS study or a significantly higher resolution version of the current approach 

with furtbt'.r investigation into enhancing the wall functioIls is required t.o (~onfirIll th.is. 

The widest element spacing (beam.s6,16) shows a slightly different phenomena to the 

other k-type results. Although the front speed indicates that. it (''Onforms to the flow 

over elements at the critical spacing suggested above, the profil~ and flow fields show 

evid~nce of difff'.rent internal dynamics that have shown agreement with aspects of the 

smooth case 88 well as rough bed characteristics. It is possible that for larger values 

of wlk,., as has been found for singl&-phase flows, the normal wall motion induced by 

the roughness is confined to smaller regions and the overlying fluid dynamics are once 

again similar to those encountered above a smooth wall (Leonardi et al., 2004). The 

be8.lIl8G.16 result herein is a 2D prediction (no 3D simulations were performed). Thus, it 

is also possible, with the lateral motion available in 3D, that other flow dynamics may 

be resolved. which can further explain this case. 

The law-of-tbe-wall method 

The numerical models using a body-fitted mesh have been discussed thus far. The law-of­

the-wall model appears able to predict front speeds over bed roughness more accurately 

than the body-fitted equivalent in 20 but for most other variables cannot account for 

the changes to the internal dynamics due to the presence of form roughness elements. 

However, this good front speed result is largely a false agreement and it has been shown 

to be more likely that the result is benefitting from the premature slowing of the current 

due to 2D limitations. Once the model was extended to 3D, the lateral dynamics were 

resolved and reduction in the effectiveness of the method could be observed. 

Some of the discrepancies could be because the internal dynamics presented are char­

acteristic of a beam-type bed roughness and cannot therefore be generated when the 

roughness is categorised by a k. value. Different bed roughness configurations might 

result in the same front speeds with the result that more accurate agreement for this 
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parameter is p06Sible while masking very different internal dynamics. This concern has 

been raised previously. see section 4.3.4.1 or Krogstad and Antonia (1999). It is possible 

that this method could be more accurate for grain type roughnesses since the original 

k. model was correlated to sand grains (Nikuradse, 1933) and the roughness elements 

in these cases are perhaps less likely to affect the flow individually as the beam-type 

roughness appe81'8 to do. Therefore, the combination of the two methods of modelling 

bed roughness, using a body-fitted mesh to describe the form roughness and a k. value 

to describe the grain roughness is still plausible but has not been tested in the present 

study. 

This work has identified that there are substantial limitations to modelling larger rough­

ness heights with the k. method due to the coarseness of mesh required at the walls. 

However, if the roughness is small and the k. valuc is known then, with careful vcrifi­

cation procedures in place. the cell size of the mesh could be scaled to accommodate 

the roughness criteria at the bed and optimise computational and temporal costs. This 

could be beneficial compared with the refinement required to implement a body-fitted 

mesh on a small bed roughness. 

Model performance 

Validation of the 20 and 3D models with the experimental data has resulted in the 

conclusion that the 3D model is demonstrably better. In fact, it is vital for accuracy 

that a 3D model is adopted to simulate gravity current propagation over beam type bed 

roughness, since the lateral fluid mechanics are substantially increased. This should be 

expected, since the presence of transverse beams is likely to force the lateral motion of 

some of the fluid that interacts with them. Figure 6.56 highlights the salient differences 

between the 20 and 3D models. The 2D model is able to accurately predict vertical 

velocity EUld concC!ntrat.ion profiles and the fundamental qualitative observation of a 

diluted head and a concentrated body in the rough cases. However, the 3D model 

excels with improved front propagation, realistic physical features at the upper density 

interface and no unphysical fixed waves within the body. Moreover, the lobe and cleft 

instability, which is 3D by nature, is generated (although increased lateral resolution 

would improve this) and is augmented by the lateral activity increased under the influence 

of bed roughness. 
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Figure 6.56: Schematic of flow pOOCes8E'.8 within a gravity current head for flow over rough surfaces 

simulated using (a) a 2D model and, (b) a 3D model. Highlighted aspects draw attention to (i) 

improved speed with 3D model, (ii) presence of lobes and clefts (perhaps dependent on mesh 
resolution), (iii) accurate profiles in both 3D and 2D predictions, (iv) removal of unphysical 
billOWll at the density interface, and (tJ) removal of unphysical stationary waves with the 3D 

model. 

Summary 

The CFO concludes the results of the present investigation, within which the influence 

of form and grain roughness on gravity currents has been demonstrated for the first 

time. A wide range of flow v811ables have been shown to be influenced by the presence 

of roughness. These include propagation rates, location of the velocity maximum, head 

height. entrainment and concentration within the head and body of t.he current, magni­

tude of water pushed ahead of the current, turbulence kinetic energy distribution in the 

current head and the lobe and cleft instability. Figure 6.57 presents the first schematic 

description of the principal effects of bed roughness on gravity currents. Namely, de­

creased speed and a raised velocity maximUm, increased depth, breakdown or lack of 

generation of larger billows at the density interface resulting in decreased entrainment, 

increased ambient fluid pushed ahead of the front, incre.ased amount of ambient fluid 

ingested beneath the head, significant dilution in the head with higher concentration 

levels retained in the current body and loss of energy to vortices between the elements. 
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Also clarified are the principal differences in the effects of the d-type and k-type spac­

ing of the roughness elements. Namely, a shorter head length and augmentation of the 

aforementioned ('haracteristics. 

This investigation has also illustrated that whilst 2D models are relatively accurate for 

smooth b01m<iaries, the 3D model is demonstrably better, particularly for the rough bed 

cases, and shows an excellent match with the experimental datasets. The 3D model 

is required to capture the more complex flow dynamics and has provided further new 

information to supplement the experimental data and resolve the more detailed flow 

structure and mechanics in the gravity current flow over bed roughness. 

Figure 6.57: (Next page) Schematic of flow processes within a gravity current head, adapted 
from Simpson (1972). (a) Flow over a smooth bed, (b) over a d-type rough bed and (c) over a k­
type rough bed. Highlighted aspects draw attention to (i) decrease in speed and raised velocity 
maximum, (ii) increased depth, (iii) breakdown or lack of generation of larger bi\1ows at the 
density interface with decreased entrainment, (iv) increase in ambient fluid pushed ahead of the 
front, (v) inrr~NWl amount. of ambi~nt fluid ingf!f'lt.oo b~nea.t.h t.he h~a.d augmenting lobe and 

cleft formation, (vi) significant dilution within the head fluid but higher levels retained in the 
body, (vii) 1088 of energy to vortices between elements, and (viii) shorter head length (k-type 
roughnetlll ol1ly). 
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Chapter 7 

Conclusions 

7.1 Introduction 

The results of t.he present study on the influence of bed roughness on lock-release gravity 

currents have been presented and discussed in the foregoing chapters. This chapter 

concludes the present study. Firstly, the reader is reminded of the original aims of the 

thesis and testimony of fulfillment of these aims. The overall conclusions of this study 

and the implications of the effects of bed roughness on gravity currents are stated and 

conclusions have been drawn on the performanee of the experimental and numerical 

techniques used for this investigation. Finally, further work for the development and 

extension of the investigation of bed roughness is suggested, based on the findings of the 

present study. 

7.2 The aims of the thesis 

The global aim of this thesis was to use experimental and numerical meth­

ods to create a knowledge database of the fundamental dynamics and flow 

structure of lock-release gravity currents flowing over rough surfaces and to 

discuss the implications for this case. 

To the author's knowledge, there was little existing work dedicated to understanding the 

effects of bed roughness on lock release gravity currents. With this in mind, this thesis 

had three primary investigatory aims: 

1. To carry out a reproducible and easily modified set of experiments in order to 

compile anew, accurate data set to extend and compliment the existing smooth 

bed studies. This data will be analysed in an experimental context and used for 
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rigorous theoretical comparison. 

2. To study existing depth-averaged gravity current models and mathematical forms 

of including bed roughness in order to create a model for the rough surface and to 

fully validate this model using available data. 

3. To use the CFD commercial software FLUENT to study the fully depth-resolved 

forms of the governing equations, including modifications for bed roughness, in 

ordt>I to create 20 and 30 numerical models and to fully validate this model using 

experimental data. 

To address these aims, a new fundamental experimental dataset has been presented. This 

essentially comprises front positions, vertical and horizontal downstream velocity data 

and photographic footage of lock-release gravity currents propagating over five rough 

surfaces representing grain, d-type and k-type bed roughnesses. This has been extended 

to qwwtify the eff(..'Cts of h(..'<1 roughuCS8 with changes ill current density, height and 

the effect of dense fluid between the clements in controlling the dynamics of the d-type 

and k-type cases. This data has enabled the calculation of depth-averaged heights and 

velocities, Froude numbers, Reynolds numbers and equivalent roughness values, ks, for 

each set of conditions. 

A 10 depth-averaged model has been developed which extends current smooth models 

using 2-layer shallow water theory and the method of characteristics with new terms to 

account for the bed roughness effects at the bed and, if required, on the interface and top 

boundary. The model has been validated using available data and the extension for bed 

roughness shows convincing qualitative agreement with experimental roughness effects. 

The symbiotic relationship between experimental work and CFO has been highlighted in 

the present study. The experiments provide effective validation for the numerical models 

and in return the CFD is able to extend the velocity data and predict concentration 

fields and turbulence mechanics that are fundamental to the interpretation of gravity 

current flow over rough surfaces. Thus, the primary investigatory aims of this project 

have heeu aL'Colllplishl.'<1 and confinu that the propOtil.'<! glohal aim has been achieved. 

7.3 The effects of bed roughness on gravity currents 

Figure 6.57 prf'SCnted the first schematic description of the principal effects of bed rough­

ness on gravity currents. The following remarks are the principal conclusions for the 
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present study and directly address the question of what influence bed roughness has on 

the dynamics of gravity currents. The reader is referred to figure 6.57 for illustration of 

the majority of theee points. 

Slows and deepens the current. The presence of any bed roughness reduces the 

distance travelled by the current before phase change occurs. Caused by increased tur­

bulence mixing in the head due to increased ingestion of ambient fluid beneath the 

nose. The velocity core of the current is broken down and redistributed which creates a 

rounded, deeper flow profile wit.h a velocity maximum further from the bed. 

Removal of larp instabilities at the density interface decreases entrainment. 

The Kelvin-Helmholtz billows at the density interface are either broken down or unable 

to fonn, particularly in the k-type case. Dilution in the head causes the front to slow 

which decreases the shear at the interface and thus removes the large instabilities. The 

significant ruinlt of thi!> proc'tlS8 L'i the substantial decrease in entrainment. 

Overridden ambient fluid has significant effects on the internal flow structure. 

Increased regions of vertical motion are present within the currents and can be associated 

with reductions in horizontal motion which may represent eje<:tious of buoyant. fluid at 

the bed into the current. The disruption due to the presence of this fluid increases with 

the wider beam type element spacings since there is a greater volume of ambient fluid 

ejected into the flow which is less likely to be entrained near the bed and more likely to 

penetrate higber into the current depth. 

Increaaed lateral motion and augmentation of lobe and cleft instability. The 

beam type roughness elements signifir.antly increase lateral motion, particularly at the 

base of the current. This and the presence of the ambient fluid between the roughness 

elements augments the production of the lobe and cleft instabilities. In the k-type case, 

these are the predominant mechanisms causing this illstability. In the d-type case, the 

increased surface friction due to the greater number of roughness elements is also a 

contributory factor. 

s:::::s50% of lou of front speed is due to overridden ambient fiuid. However, the 

in('.reased entrainment of ambient fluid at the bed is not the sole contributory factor 

effecting the flow in the presence of roughness. The remaining effects are likely due to 

loss of energy to the vortices trapped between the elements which occur independent of 

the density of tWs trapped fluid. 

The general rule w / k,. s:::::s 7 holds for gravity currents. This has been established 
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for pipe and duct flows and appears also to hold for gravity currents. Beyond this value 

the time the current takes to propagate a distance is almost independent of the spacing 

and similar reattachment lengths of approximately 4A;. have been observed. This means 

that if the value of wlkr can be identified for a rough bed then theoretically there are a 

set of typical flow characteristics that can be assumed to hold within the gravity current. 

Small-ecale grain roughness shows little effect. The coarse sand shows little influ­

ence on the internal flow dynamics but does increase the basal friction. The larger scale 

grain type roughness showed similarities in effects with the closest spaced d-type beams 

case. 

Dependency on the ratio of roughness element height to current depth. In­

creasing the relative height of the elements has signific.a.ntly greater impact on the current. 

3D mode111q is required. Validation of the 2D and 3D models with the experimental 

data has resulted in the conclusion that the 3D model is vital for accurate simulation of 

internal dynamics of gravity current propagation over beam type bed roughness, since 

the lahll'al fluid w(!l1uwics are substantially increased.. 

These wide-ranging influences on the flow speed, flow structure, turbulence distribution 

and flow (~volutiou of gravity currents illustrate the fundamental importance of including 

bed roughness when determining the properties of these complex flows. The remIts 

presented herein clearly demonstrate that the application of existing models that rely 

on experimental validation with smooth beds to situations where a rough boundary is 

present may lead to significant errors. In reality, where the majority of these currents are 

particulate, such 88 turbidity currents, there is also the potential for feedback processes. 

7.4 Implications 

This study has proven that the effects of bed roughness on gra.vity currents is significant. 

The results can be applied in many industrial and natural settings. In a geomorphological 

context, river dunes have wavelength to height ratios characterised by hd = 0.0677>.°·8098 

(Ashley, 1990). In shallow canyon, sub-marine settings, dunes have also been identified. 

The dimensions of these features have been described similarly to those in rivers by 

hd. = 0.0677>.°·8089 (Flemming, 2000). They can therefore be categorised as a k-type bed 

roughness. However, the resulting values of wiler are typically greater than 16, which is 

beyond the maximum used in the present study but would suggest limited influence on 

thE' flow dynami<'8. EVf'n if they lay within the scope of this work, dunes have attributes 
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that have not been 8S8eSSed herein. III particular, their asymmetry and the combination 

of grain and form roughness. These characteristics could form the basis for a future 

extension to this study. 

The most detailed dataset of gravity current Bow over dunes is that for the Monterey 

Canyon. where Bows on the order 30 m thick (Xu et al. 2004,2008) have been observed 

in conjWlction with dWles of wavelength to height ratios of approximately 18 - 50 (Xu 

et al .. 2008). The dunes are approximately 1-2 m high, which results in a relative 

roughness height of 3-7%. This is small compared to the present study where Bow 

depths of approximately 40-60 mID encountered obstacles of height 6 mm producing 

relative roughness heights of 10-15% (5-10% concentrations). This, and the wide k-type 

spacing suggests that the dune roughness might not be that important in the Monterey 

MCamplr. nnd similar settings. However, in n different context, the results of Gurioli 

et aI. (2002) showed that even small steps 0.1-0.5 m high affected the turbulence and 

particle deposition of the pyroclastic overflow, although unfortunately the Bow depth is 

unknown. In open channel flows, effects were observed for roughnesses as small as 1.7% of 

the channel height (Ashrafian et al. (2004); Krogstad et al. (2005», and are postulated to 

be effective for channel half heights up to 4Ok,., suggesting that roughness effects should 

not be neglected even at such small seales, but need investigating further. Moreover, 

particulate currents with sand grade material will have high basal concentrations, relative 

to the saline current in the present study. Therefore, basal roughness will likely have 

a more pronoWlced effect, as demonstrated in Gurioli et ai. (2002) where a step of 0.5 

m, not high enough to affect the entire flow, was found to induce the settling of heavier 

particles and partial removal of fine material. This highlights a key extension to the· 

present work into roughness effects on particulate flows. 

In the deep sea, there is very little information on bed roughness. This is primarily due 

to the limited amount of high resolution multi-beam data and, moreover, the vertical 

resolution of even high resolution multi-beam. To fully comprehend gravity currents 

in such settings, the results of this study recommend that the magnitude and type of 

roughness be examined from detailed multi-beam datasets. 

In industrial environments, the presence of bed roughness will have implications for 

smoke propagation or the release of heavy gases. For example, in transport tunnels 

where a fire accident may take place, 8 smoke (heat) generated gravity current propagates 

along the top of the tunnel and can cause a major hazard to tunnel users. Roughness 

on the walls of the tunnel would cause the propagation speed of the smoke to reduce. 
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The implications in this case might be detrimental or beneficial to the tunnel occupants 

and would be an interesting extension in that context. Another major hazard where 

roughness effects should be studied is that of avalanches. Powder-snow avalanches are 

a form of gravity current and are commonly managed using 'avalanche fences', which 

are known to slow their advance. The present study could have implications, with 

further investigation, for factors such as the spacing of these fences and thus their overall 

performance. 

Implications derived from the effects of bed roughness that have been observed and 

predicted in the present study, and with further investigation may represent effects in 

the foregoing examples, are suggested below. 

• Bed rOllghnf'S.~ It>Ms to incrt>.ased ejections into the flow at the bottom boundary. 

This augments dilution at the bed in saline currents but, conversely, may increase 

entrainment of bed material in natural flows. Buoyant ejections will enhance the 

mixing and vertical transport of particles to higher regions within the flow. This 

will impact significantly on the vertical distribution of the particles. 

• Hight>..r Umoz positions will result in a reduction in basal shear stresses and may 

therefore reduce erosion. However, this may be offset by the increased turbulent 

ejections mentioned above. Higher Umax positions may also influence the nature of 

the secondary flow within sinuous channelised currents (Corney et ai., 2006, 2008; 

Keevil et ai., 20(6). 

• For saline currents, the smooth cases are driven by high concentrations in the 

head. Since there is little disruption the high concentration fluid is maintained in 

this region while the current behind is gradually diluted by the large interfacial 

billows. Eventually the dense fluid behind will become very dilute and without 

the continual supply of concentrated fluid, the head will also become dilute and 

the current will disperse. In the rough cases because the interfacial billows are 

reduced, the high conct>Jltration fluid to the rear is not diluted as quickly and so 

the body stratifies early on and the head has a continual feed of concentrated 

fluid to keep it maintained. However, the head becomes dilute very quickly due to 

ba..w entrainment of ambient fluid and loses energy to vortices trapped beneath 

it, which slow the current. In saline cases, this may imply that although slower, 

the rough cases may actually achieve greater run-out distances than the smooth 

cases since they appear more stable. However, this would strongly depend on 

the speed of dilution of the head or body in the smooth case or rough cases, 
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respectively, Le. which loses its driving force sooner. These mechanisms imply very 

different entrainment characteristics compared to previous models and suggests 

that previous work has for the most part over-estimated entrainment rates and has 

implications for the stratification in particulate currents, with the upper part of 

the body potentially less dilute than previously predicted. 

• The substantial reduction of concentration and velocities in the head and the shift 

of higher concentrations to the body of the current in rough cases have implications 

for the grading of sediment in particulate current deposits, although it is difficult 

to assess the relative strengths of the mechanisms. 

• In the particulate cases, the billows over a smooth bed have been postulated to 

penetrate the body sufficiently to suspend sediment from the bed (Kneller et al., 

1999), which means that they provide a concentration supply to the current, as well 

as the means for its reduction by entrainment of ambient, achieving a balance. This 

would imply that the smooth currents would transport sediment loads composed 

of a combination of the sediment that was initially in suspension, plus that picked 

up by the billows during propagation. However, in the rough cases, the reduction 

in the billows and shear below the head would imply that it is relatively unlikely 

that significant amounts of sediment would be lifted from the bed, either in the 

head or the body. Therefore, in the rough case, the balance is achieved due to lack 

of these mechanisms. Consequently this implies that the currents would be more 

likely to transport material that they were composed of at flow initiation and not 

pidt up lWd transport significant amounts of othex stl<iiment during propagation. 

• There are implications following the above for particulate current run-out distances, 

although it is again difficult to assess the relative strengths of the mechanisms. 

Slower currents may lead to earlier and potentially greater sediment deposition, but 

reduced entrainment will result in the ability to achieve longer run-out distances. 

Moreover, the ahove does not aceount for flow transitioIls which will also impact 

on deposition and run-out distances. 

7.5 Techniques 

The experimE".ntal method using UDVP and video capture has been proven ideal for the 

efficient generation of quantitative datasets. The experimental setup is readily repeatable 

and could be easily reproduced and adjusted for extensions to the present study. 
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The ID depth-averaged model predictions showed good agreement with available smooth 

bed data and encouraging qualitative comparison with features observed experimentally. 

The techniques used were well validated for the smooth case. The front condition is cur­

rently derived from smooth theory and the method also requires more complex extensions 

to account for full depth releases. However, as it stands this model has demonstrated 

that there is potential to adapt ID models relatively simply to account for the ID effects 

of bed roughness on gravity currents using existing expressions in pipe and open channel 

literature . 

The 2D and 3D model setup using FLUENT successfully calculate the propagation and 

flow dynamics of a lock-release gravity current over smooth and rough surfaces. There 

are limitations in the turbulence model with regards to the wall functions being violated 

that must be considered and result in difficulties in checking the spatial and temporal 

convergence. Process representation increases with each mesh refinement which is es­

sentially a positive result but means that accurate quantitative verification of one mesh 

using a coarser or finer mesh is less convincing. Without the ability to compute direct 

numerical simulations on successively finer meshes these limitations remain a hazard of 

modelling gravity currents numerically. However, by performing careful verification and 

validation the results from the less computationally intensive models used in the present 

study have been optimised in their capacity as predictive tools. 

Modelling the bed roughness using a body-fitted mesh produces velocity profiles with 

particularly good accuracy and provides evidence of more realistic velocity profiles and 

concentration and turbulence distributions than the law-of-the-wall method. The limi­

tation of this method is the shape of the roughness restricting the mesh or vice versa. 

Using a k. value avoids limitations of cell shape but still has problems with reproducing 

internal dynamics accurately and has limits on the size of its value due to mesh resolution 

near the wall. 

For accuracy, a 3D model should be used that can better resolve the lobe and cleft in­

stability and Kelvin-Helmholtz billows and their accurate turbulent dissipation. This is 

particularly true in the bed-roughened cases since there are increased turbulence struc­

tures and lateral motion at the bed. 
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7.6 Future work 

• It would be highly informative to compile a detailed database of known natural 

occurrences of gravity currents with details such as the speed, spread, depth and 

concentration of the current and finer details of the bed such as the presence of, for 

example, bed forms, and the height and distribution of these 'roughness elements'. 

• Field data of bed roughness should be collected to assess the performance of all of 

the models. 

• A laboratory project to obtain higher resolution data, for example from PIV or 

LDA would fmable analyses of the det.ailed ftow charact.eristics at the bed, par­

ticularly turbulence structures and concentration fields. This would confirm the 

accuracy of the klJ values and further validate the CFO models. 

• Natural currents are more commonly particulate. Therefore investigations includ­

ing particles, similar to that of Kubo (2003), should be developed further in both 

experiments and CFO simulations in order to establish the exact cffrets of bed 

roughness on sedimentation and sedimentary ftow processes. 

• Further investigation of the mechanisms controlling the roughness effects is nec­

essary. For example, for the grain type beds could also be tested with a thin 

layer of dense ftuid initialised between the elements. Tracer or particle tracking 

experiments could also be performed. 

• The 10 depth-averaged model predictions showed good agreement with available 

smooth bed data and encouraging qualitative comparison with features observed 

experimentally. A study developing the rough front condition theory, coupled with 

high resolution experimental data would make an excellent future project. 

• AB computational power increases, large eddy and direct nmnerical simulations 

will be increasingly possible and will enable further detail of ftow processes in the 

inftuential near wall region down to substantially smaller scales. 

• The use of different roughness types would also be of interest. For example, non­

homogeneous roughness; different shaped beams; a combination of grain and form 

roughness. Again, similar theoretical and experimental techniques, as adopted 

herein, could be modified to accommodate different roughuesses relatively simply. 
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