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Abstract

The main purpose of this thesis is to use state of the art computational fluid dynamics

techniques to solve the problem of water-wind waves which are related to air-sea in-

teraction. In general, air-sea interaction is studied in a de-coupled manner where both

air and water phases are separate and the water phase is either considered as a smooth

or rough wall which is stationary or moving. However, in real ocean waves the air and

water are coupled. Mass, momentum, heat and energy exchange takes place mostly

on the surface waves and this process is culminated when the waves break. Numeri-

cal modelling to study these processes requires the solution of the full Navier-Stokes

equations along with capturing the interface boundary of the wave with high accuracy,

thereby helping us to understand the physical processes taking place on the air-water

interface and improve current wave modelling techniques. Our primary motivation is

two fold: (1) to investigate the accuracy and reliability of the state of the art numer-

ical techniques available for simulating free surface flows and model air-water wave

interaction and (2) to study various near surface physical processes taking place at the

transient, viscous, rotational and nonlinear air-water wave interface and understand its

effects on the momentum and energy exchange in wind waves.

The work presented in this thesis investigates a numerical model to solve the full

Navier Stokes equations required to model transient, viscous, rotational and nonlinear

water waves. The first step in the process is to model the water waves when the

average wind speed is zero. Various other physical aspects related to wave dynamics

are discussed for intermediate depth and deep water waves with different steepnesses.

They are compared with earlier experimental and theoretical works available in order
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to verify the accuracy of the model . The second step is to model these water waves

in the presence of wind blowing at different speeds and analyze its effects on various

near surface physical properties and its effect on the motions in the air and underlying

water.

The other purpose of this thesis is to investigate some very interesting aspects

related to wave dynamics such as vorticity and shear stress which are little studied

due to complexities surrounding near surface flow measurements and the lack of an

accurate analytical solution. The current work provides a tool for the application of

CFD techniques to reliably predict wind-wave interaction by using numerical modelling

techniques used in multi-phase flow environments.

The accuracy and convergence of the numerical technique used in this thesis is

illustrated by comparing the numerical results with analytical and theoretical results

available. The technique is demonstrated to be accurate in the simulation of two-

dimensional flows where turbulent effects are negligible. At higher wind speeds, the

use of suitable turbulence closure models is recommended.

The main conclusions drawn from the study are: (1) accurate simulation of two

and three dimensional, unsteady, viscous and nonlinear water waves is possible with

current CFD techniques; (2) The role played by shear stress and vorticity in the wind

wave interaction is important and cannot be ignored; (3) the vertical velocity gradients

observed inside the water in intermediate depth water waves are found to be stronger

than deep water waves; and (4) the effect of the bottom boundary on the magnitude

of free surface vorticity is not found to be high.
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Chapter 1

General introduction

1.1 Introduction

The study of water-waves, wind-waves, swell and air-sea interactions is a subject area

which interests a number of science and engineering disciplines. Structural engineers

designing off-shore and floating platforms want to study the influence of water waves

on the stability and wave impact forces on the platform. Naval engineers are interested

in finding out the drag on their ships and enhancing the ship design. Aeronautical and

mechanical engineers are interested in tracking the wake produced by the passing ships.

Atmospheric scientists are interested in studying the lower boundary of their domain

and the resulting effects of surface waves on marine boundary layers. Cloud physicists

are interested in formulating droplet clouds produced by the wind on the ocean surface.

Marine biologists are interested in finding out how the gas and mineral transfer takes

place between two surfaces and its effects on marine life, scientists modeling air-sea

interactions are more concerned about how the heat transfer, gas transfer and evapo-

ration takes place at the surface and model its effect in various budgets. Most of these

people are interested in the study of free-surface flows, which are complex and not yet

fully understood or captured with very high accuracy by any field observation, prac-

1
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Figure 1.1: Photograph of the open ocean with the wave breaking.

tical experimentation or numerical simulation. It is equally important to understand

coupled wind-wave interaction as it affects the transfer of heat, mass and momentum

near the surface. Many times theoretical studies rely upon the numerical simulations

and their comparison with experimental observations since analytical solutions to such

problems are not available unless simplified to the level of no merit practically while

experimental observation are difficult or impossible at such scales of time and space.

In the figure 1.1, a photograph from waves breaking in deep sea at Cape Reinga near

ewZealand is shown. This project is aimed at the better understanding of near sur-

face physical processes in water waves and wind waves by solving the full Navier-Stokes

equations and increasing our knowledge about energy and momentum exchange taking

plac in a coupled nonlinear air-s a interaction. This research will provide an effective

tool and methodology for future modeling of wave and coupled air-sea interactions.

Results of this project will be important to clarify the understanding of important

physical processes in a coupled nonlinear system.
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1.2 Literature review
3

1.2.1 Historical perspective of water-waves

Before we proceed with the numerical solution of water and wind waves, a review on

the origins of water-waves theory and work done up to the 20th century is both relevant

and insightful. A detailed review of the work done in the past is presented in Craik

(2004).

The first attempt to device a theory of water waves was made by Sir Issac Newton

(1687). His works were followed by Gravesande (1721) and Charles Bossut (1786),

while the equations of hydrodynamics were derived by Euler (1757a, 1757b, 1761).

Laplace (1776) reexamined wave motion and posed the general initial value problem

in Laplace (1799). Lagrange (1781, 1786) derived linearized governing equations for

small-amplitude waves and obtained the solution in the limiting case of long plane

waves in shallow water.

Gerstner (1802) gave the first exact nonlinear solution for waves of finite amplitude

in deep water. Young (1821) wrote extensively on tides, but briefly on waves. The

Cauchy-Poisson analysis was presented in 1827 and 1818 respectively and despite errors

in the fundamental equations, as highlighted by Dalmedico (1988), it is acknowledged

as an important milestone in the mathematical theory of initial-value problems.

Vince (1798) was one of the first British scientist to publish on Hydrodynamics.

Pratt (1836) had brief section on the equations of inviscid flow.

Those who published on water waves in the next few years were Green, Kelland,

Airy and Earnshaw. Kelland (1844) began his analysis by considering wave-motion in

a fluid of finite depth, on the hypothesis of parallel sections considering long waves in

shallow water. His formula correctly gives what is now commonly called the Stokes

frequency correction. Kelland's work is mainly remembered for his study of waves in

canals with nonrectangular cross sections. Earnshaw (1847) began with an interesting

and well-written introduction for solitary waves and arrived at the results for horizontal

velocity and water depth for the wave speed. Eventually, Rayleigh (1876) derived the
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correct approximate solution, retaining both dispersion and nonlinearity and further

observed that Earnshaw's solution is not irrotational. Although Airy's (1841, 1845)

main focus of interest was tidal phenomena, he also wrote a substantial section on the

Theory of Waves in Canals in 1841 and an Account of Experiments on Waves in 1845.

Much of the work is original and concerned with modelling observed or observable

phenomena. Airy gave the now-standard linear theory for plane waves and his theory

gives very good approximate prediction of water waves but it is not applicable to predict

steep waves and non-linear waves observed in the oceans.

1.2.2 Geophysical Fluid Dynamics in 20th Century

Sir Horace Lamb (1930) is reputed to be the first person to put forward almost all the

previous work in one place including his work describing linear mathematical models

governing water waves and the analytical theory for wind-waves. Jeffreys (1924b, 1924a,

1925) suggested that separation of the airflow might occur at each wave crest and

produce a region of low velocity and low pressure downwind of the crest. Thus there

would be a difference in pressure between upwind and downwind faces of the wave able

to transfer energy from the wind to the wind-waves. However, the generally observed

rate of growth of wind-waves is lower than Jeffreys (1924b) calculation. John Miles

(1957) presented seminal work on shear flow theory on the generation of surface waves

by wind. There are certain assumptions in shear flow theory by Miles (1957) such as air

flow is assumed to be inviscid, incompressible and has some specified mean shear flow

in the absence of waves. The disturbances in the air flow induced by the surface waves

are assumed to be two dimensional and small enough so that the equations of motion

are linearized. The turbulent fluctuations which must be present to maintain the mean

shear flow are neglected in the perturbation equations. The assumption is that the

water is inviscid, incompressible, irrotational and has small surface slopes along with

no mean drift currents. Furthermore, the wave speed is assumed to be unaltered by any

push by the wind and the wind speed is considered low compared to the wave speed.

All the above assumptions leads to inappropriate energy extraction and subsequently
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underestimate the wave growth due to wind-wave interaction. The theory is found to

under-predict the wave growth rate by a factor of 8 to 10 on comparing with fieldwork

studies by Snyder & Cox (1966), Barnett & Wilkerson (1967) and laboratory studies

by Bole & Hsu (1969). The resonance model of Phillips (1957) includes direct action

of turbulent pressure fluctuations on the water surface but neglects any interactions

between wave field and pressure field. It is an uncoupled model in the sense that the

response is assumed to be independent from excitation and the wind profile over the

waves is assumed to be logarithmic. Moreover, the theory by Phillips (1957) relies

on turbulent pressure fluctuations to provide a random force acting onto the wave

surface, ensuring wind-to-wave energy transfer and leading to a linear increase in wave

amplitude in time. However, most of the researchers have found this assumption invalid

in real ocean measurements. This proves that distribution of stress on the surface is

a function of the pressure field and also the coupled instability mechanism. Kinsman

(1965) has done detailed analysis about the effect of resonant wave and shear flow and

has written extensively about the combined model (resonance and shear flow) and the

nonlinear wind-wave model for surface waves.

1.2.3 Current knowledge in Water waves

Water waves can be studied by two broad ways: 1) Laboratory and ocean fieldwork

studies and 2) Analytical and numerical study.

1.2.3.1 Laboratory and ocean fieldwork studies

In the past, laboratory and fieldwork studies on water-wind waves have been carried out

for various parameters affecting momentum and energy exchange in the wind-waves.

The notable fieldwork studies in the open ocean have been carried out by Ursell (1956)

and he stated that "wind blowing over a water surface generates waves in the water

by a physical process which cannot be regarded as known" and concluded that "the

present state of our knowledge is profoundly unsatisfactory". Hasselmann et al. (1973)

presented well known JONSWAP spectrum for ocean waves with an emphasis on third
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order nonlinear interactions in wind waves, Snyder et al. (1981) carried out fieldwork

to measure direct input of energy and momentum from wind by measuring air pressure

fluctuations at finite heights above the surface waves and also compared it with previous

work done by Dobson (1971), Priestley (1965) and Elliot (1972). The temporal growth

rate of water waves estimated in that studies is given by

Pw 1 aE(O")
'1=-------

Pa O"E(O") at
(1.1)

where

'1= (0.2 - 0.3) (~5- 1) , (1.2)

E(O") is the radian frequency, 0" spectrum of wave energy, Pw and Pa are the water and

air density respectively, U5 is the wind speed at 5-m height and c is the wave phase

speed. Hasselmann & Bosenberg (1991) derived wave growth and decay rate from

fieldwork studies including swell effects.

Bole & Hsu (1969) used a laboratory wind-wave channel to study the response of

gravity waves in different wind speed conditions and compared it with Miles inviscid

shear flow theory of gravity wave growth. Similarly, Kawai (1977, 1979) also studied

wind-wave growth under various wind speeds in the wind-wave laboratory and con-

firmed the under-predictive nature of Miles theory on wind waves. Hsu et al. (1981)

and Hsu & Hsu (1983) carried out a set of experiments studying the energy and momen-

tum flux transfer from wind to mechanically generated water wave and concluded that

the turbulent Reynolds stresses make negligible contribution to momentum transfer at

the interface which can be considered aerodynamically smooth while emphasizing that

Miles formula underpredicts the wave-supported stress by several factors. Plant (1982)

compared several earlier laboratory, fieldwork and numerical studies and deduced a

growth rate parameter for wind waves which was used to calculate the momentum flux

from wind to wave which lies within a certain frequency range. Mitsuyasu & Honda

(1982) studied the wave growth under turbulent wind on mechanically generated water

waves and formulated a wave growth parameter. Cheung & Street (1988) developed the
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data set on the momentum transfer under range of surface conditions and revealed that

wind waves are not irrotational and the mean wave induced shear stress may contribute

to direct energy input from wind to mean and wave fields in water. Hatori & Toba

(1983) suggested two stages of transition of regular waves into wind waves starting

from irregularization and breaking followed by mutual coalescence of individual waves

through amplification of modulation. Papadimitrakis et al. (1986) found significant

contribution of mean shear stress to the momentum and energy transfer directly into

the currents and concluded that the momentum and energy transport processes are

wind-field dependent. The wave-induced pressure dominates the wave-supported mo-

mentum and energy transfer rates, however, it does not always dominate the transfer

of the corresponding total quantities to both waves and currents and may contribute

significantly to the energy transferred into currents. Banner & Pierson (1998) used the

PIV (Particle image velocimetry) technique to study tangential stress beneath a wind

driven air-water interface and found it in significant magnitude while emphasizing the

dominance of wave drag for longer time period. Thais & Magnaudet (1995a, 1995b)

studied orbital rotational motion and turbulence below laboratory wind water waves

and found that the rotational contribution plays a key role in the energy transfers be-

tween wave motion and shear flow. Mastenbroek et al. (1996) numerically calculated

the growth rate in wind waves but their model underpredicts the observed rate signifi-

cantly. Uz et al. (2002) found that the wind stress tends to be higher under decreasing

wind than under increasing wind at a given wind speed, mainly because the response of

short wind-wave spectra to varying wind forcing is delayed in time. Donelan(1999) and

Pierson et al. (2003) carried out laboratory and fieldwork studies on wind wave growth

and attenuation under the influence of wind forcing conditions from the opposite di-

rection using direct measurement of surface elevation and more recently Donelan et al.

(2006) measured the pressure growth term on waves and found that when the wave

steepness and wind forcing reaches the combined threshold value, the airflow detaches

from the wavy surface downstream of the crests, skips over the troughs, and reattaches

on the windward face resulting in an increased shift of the phase of pressure and its
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amplitude reduction.

8

1.2.3.2 Analytical and Numerical Study

The analytical and numerical studies in water waves is generally studied under three

broad categories:

1. Potential flow,

2. Inviscid rotational flow and

3. Viscous flow

1.2.3.3 Potential flow

The main characteristics of the potential flow are inviscid, irrotational velocity field and

exclusion of turbulence. In the case of Newtonian incompressible fluid, with volume V

conservation of mass and momentum is given by:

V.(pu)= 0 (1.3)

and

p(~;+u.vu) =-'VP+JLV2u-pg (lA)

Here, u stands for velocity vector, p is density of the fluid, p = pressure, JLstands for

the dynamic viscosity of the fluid and 9 is acceleration due to gravity.

For an irrotational flow, a velocity potential ¢ exists such that U='V¢. In an inviscid,

potential flow, the continuity and momentum equations for the flow are replaced by

the Laplace equation for the velocity potential

(1.5)
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and Bernoulli's equation for the pressure

a¢ 1 p
-- + -V'¢.V'¢+ - + g"l = 0at 2 p

(1.6)

Some analytical solutions can be found under corresponding kinematic, dynamic, lat-

eral and bottom boundary conditions, this is well documented in Lamb (1930), Milne-

Thomson (1994) and is also elaborately explained in Dean & Dalrymple (1984). The

boundary-discretization methods have been developed to numerically predict potential

flows. The boundary integral equation methods which simulate an inviscid, irrota-

tional overturning wave in two dimensions was utilized by Longuet-Higgins & Cockelet

(1976) and later by Dommermuth & Vue (1987a) for axisymmetric three-dimensional

problems. More recently Xu & Vue (1992) used the boundary integration equation

method for calculating plunging breaking waves in three-dimensions. Other forms of

the boundary discretization method involve the use of Cauchy's integral theorem to

obtain an integral equation. It has been modified and used by Grosenbaugh & Yeung

(1989) to study the unsteady bow wave generated by a forward moving two dimen-

sional body. Tsai & Vue (1995) used this formulation to study the interaction between

the free surface and the vortex-sheet shed by a surface piercing body. The primary

drawback encountered in these methods is observation of "sawtooth instability", the

cause of which is not precisely known and requires artificial smoothing or a re-gridding

scheme. Recently, Zhang et a1. (2006) have devised desingularized boundary integral

equation method to simulate two-dimensional wave propagation in a numerical wave

tank. However, little new information is revealed compared to earlier formulations

and the other limitation of the boundary integral methods is its inability to deal with

breaking waves. The high-order spectral method for nonlinear potential flow wave-

wave interactions was independently developed by Dommermuth & Vue (1987b) and

West et al. (1987). It analyses surface waves by modal and perturbation expansions,

albeit with higher-order in wave steepness and a large number of modes using fast

fourier technique in a pseudo-spectral treatment of nonlinear free-surface conditions.
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It is however found to be limited by the maximum wave steepness one can obtain.

The conventional mode-perturbation analysis is incapable of describing the wave-wave

interaction between widely separated wavelengths i.e. long wave and short wave in-

teractions. This raises doubt about the ability of higher order spectral methods to

accurately model wave-wave interactions. Apart from this, research on this subject

spans many years and is covered widely in several books and journals. A major hurdle

to the above potential flow assumption is that it does not include all the characteristics

of the flow. Hence, it is inaccurate for the flows with a boundary layer, which includes

water waves.

1.2.3.4 Inviscid rotational flow

According to Saffman (1981), if vorticity, w = 0 everywhere in an incompressible fluid,

then the fluid in reality ceases to be a fluid; it loses its infinite number of degrees of

freedom, which makes the infinite variety of fluid motion possible. In the past, there had

been several attempts to formulate vorticity in the inviscid solution for water waves. An

analytical solution is outlined in Lamb (1930) for inviscid water waves with vorticity, as

given by the exact solution of Gerstner's trochoidal wave theory (1802). Vanden-Broeck

(1996) used a boundary integral equation method to numerically compute the periodic

waves with constant vorticity. Teles da Silva & Peregrine (1988) used a boundary

integral method for periodic and solitary waves with constant vorticity. However, these

results are limited in application due to special vorticity distribution. More recently,

Constantin (2001) and Constantin et al. (2006) have tried to formulate the solution for

inviscid and rotational water waves, although few numerical results have been produced.

For a viscous low Reynolds number flow, the convection terms in the full Navier-Stokes

equations are dropped and original non-linear equations become linear, this allows an

analytical solution to be found for the water wave with small amplitude. The solution

for low Reynolds number viscous water waves is outlined in Kinsman (1965) and Lamb

(1930).
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1.2.3.5 Viscous flow

Although the above assumptions for water waves are valid under special circumstances,

in order to study near surface flow processes and surface features it is not adequate.

Hence, the most accurate way to study water waves is to discretize it as a viscous flow

with a free surface. The study of viscous flow requires solution of the full Navier-Stokes

equations.

The analytical study of viscous flow for water waves tries to formulate the viscous

effects and incorporate it into the wave formulation. This has been done by Basset

(1888), Boussinesq (1895) and Lamb (1930) in the past. The decay rate for finite

amplitude water waves was derived by Lamb (1930) using linearized Navier-Stokes

equations and is given by:
oa 2- = -211k aot (1.7)

where, a denotes wave amplitude, II is the kinematic viscosity of the fluid and k denotes

wave number. Viscous decay of wave amplitude is derived as a '" e(-2I1k
2
t). Several

attempts are made to include vorticity in order to include dissipation effects in the

potential flow solution. Ruvinsky et al. (1991) included a vortical component in the

kinematic boundary condition. Longuet-Higgins (1992) added vorticity effects by time

integrating the vortical component of the velocity. More recently, Joseph & Wang

(2004) and Wang & Joseph (2006) took vorticity into account in Bernoulli's equation

while using only the potential component of velocity in the kinematic condition.

The numerical study of viscous flow in the context of free surface flows is subdivided

into four main types based on spatial discretization technique into 1) Boundary-fitted

coordinate methods 2) Lagrangian methods with moving grids 3) Front-tracking meth-

ods and 4) Eulerian grid methods .
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1.2.3.6 Doundary fitted methods

12

Boundary fitted methods are usually associated with high-resolution simulations of

nonlinear free surface flows, where a complex physical domain is mapped on a regular

domain on which the transformed equations are solved after discretization. It is of-

ten possible to write a boundary-fitted mapping in analytical form when complicated

boundaries are not present. This has been done in the past by Dimas & Triantafyllou

(1994) using algebraic grid discretization while attempting nonlinear interaction of a

shear flow with a free surface in deep water. When the free surface becomes complex

and steep algebraic grids are impossible and no longer robust, a curvilinear grid is used

instead. Shanks & Thomson (1977) used elliptically generated boundary-fitted grids

for solving viscous free-surface flows. Yeung & Ananthakrishnan (1992) used a more

elaborate boundary-fitted method which is based on a variational formulation to study

the viscous free-surface flow due to oscillations of a two-dimensional floating body.

Boundary fitted methods become extremely complex for solving unsteady deforming

phase boundaries as the field equations and boundary conditions become complicated

and are best suited to relatively simple geometries.

1.2.3.7 Lagrangian methods with moving grids

The second class is Lagrangian methods where the moving grid follows the fluid. The

Lagrangian moving grid method was applied for computations of the breakup of a drop

by Oran and Boris (1987), simulations of unsteady two-dimensional motion of particles

by Feng et al. (1994, 1995), Hu(1996} and study of the deformation of a buoyant bubble

by Shopov et al. (1990). This method is fairly complex and computationally expensive

which limits the size of the domain it can model and has not been applied to prob-

lems related to water waves. Another Lagrangian formulation technique is Smoothed

Particle Hydrodynamics (SPH) method which is a relatively new development. This

technique was developed by Lucy (1977) and Gingold & Monaghan (1977) to simulate

non-axisymmetric phenomena in astrophysics. Several works pertaining its applica-
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tions in free surface flows are outlined by Monaghan (1994), Monaghan & Kos (1999)

and Dalrymple & Rogers (2005).

1.2.3.8 Front tracking methods

The third class is the front tracking technique using a fixed grid which is modified

near the front making a grid line to follow the interface which is marked by a separate

front. Glimm et al. (2001) developed this method. A specialized front tracking method

was developed by Trygvasson et al. (2001) for the computations of multiphase flows.

It uses a hybrid grid between front capturing and front tracking technique. While a

stationary regular grid is used for the fluid flow the interface is tracked by a separate

grid of lower dimension. However, unlike front tracking methods, where each phase

is treated separately, here all the phases are treated together by solving a single set

of governing equations for the whole flow field. The original version of this technique

was published by Unverdi & Tryggvason (1992). While this method gives qualitatively

similar results to VOF (Volume of Fluid), Marker and Cell and phase field method,

its use of explicit front tracking makes it generally more complex than other methods.

Moreover, there are relatively few attempts to apply this method in three dimensional

flows.

1.2.3.9 Eulerian grid methods

Several eulerian methods have been developed for capturing free surface. The earliest of

them is MAC (marker & cell) method by Harlow & Welch (1965) followed by the volume

of fluid (VOF) method by Hirt & Nicolas (1981). More recent developments include

the phase field method developed by Jacqmin (1999), the second gradient method from

Jamet et al. (2001) and the level set method by Sethian (1999). The marker and cell

was first developed by Harlow & Welch (1965) for interface tracking. Here, the fluid is

represented by a set of marker particles and their motion is determined by a weighted
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average of the velocity components through which these marker particles move and

hence enable the interface to be tracked automatically. The major constraints in MAC

are that it requires large number of marker particles, small grid size and very small

time step to accurately track the free surface. More recently MAC has been modified

and presented by Aulisa et al. (2004). It involves area conservation by redistribution

of marker particles by adding or removing them locally when required by interface

evolution. Since the simulation using MAC requires large number of particles for higher

resolution, the time steps required will often be very small. This limits its suitability

to model large domains.

The level set method was originally presented by Osher & Sethian (1988) and

extended by Sussman et al. (1994) combining the projection method with the level

set technique for application in bubble dynamics. The basic premise is to consider

interface ( as zero level set of function </>, defined as </>(x, t = 0) = D, where D is signed

normal distance from the interface to (t = 0). It is either positive or negative if x is

outside or inside the initial (t = 0). If the zero level set coincides with (t = 0), then

a equation for function </>(x, t) that contains the motion of interface (t) as level set

~~ +U 1V</> 1=0 (1.8)

where U is the speed of the interface ( in the outward normal direction and it is the

sum of interface propagation speed, the speed due to curvature and velocity normal to

the interface, Le. u.fr, where n= V</>/I V</> 1 is the unit vector normal to the interface.

The equation (1.8), for most free surface flows is similar to

ofat + (u.V)F = 0 (1.9)

here, u is velocity at the interface and F is discontinuous heaviside function which

takes values such as F = Ft in fluid 1, F = F2 in fluid 2 and Ft < F < F2 at the

interface. Since </> is a smooth function the above equation is easily solved numerically.

As the function </> is not a discrete representation of a Heaviside function H, it is not
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directly integrated forward in time, hence it is reconstructed at each time step from the

distance function <p. This method tends to loose the mass and has to be reinitialized

as suggested by Sussman et al. (1994). The conventional routines for reinitializing

a distance function are to find the contour <p = 0 and reset <p at all points close to

the front. This can distort the front leading to mass conservation errors. If we use

local geometric information to fix the level set position for reinitialization it becomes

similar to VOF method. More recently, Price & Chen (2006) used an improved level set

method to simulate the free surface for incompressible two-phase flows for various cases

like oscillating flow in a two-dimensional square tank, a breaking dam problem, sloshing

in a two-dimensional rectangular tank and a Wigley ship hull travelling in calm water.

Though the results are encouraging the authors have emphasized further validation to

be done. Losasso et al. (2006) comprehensively reviewed spatially adaptive techniques

for level set methods. They concluded that the original level set methods suffers from

numerical dissipation, but, higher order, hybrid and adaptive techniques have increased

the accuracy of the method.

Volume of fluid (VOF) was made popular by Hirt & Nicholas (1981) and is the

most widely used method for interface tracking to date. It has been developed and

applied for both incompressible fluid and compressible flows. The simplest type of

VOF method is simple line interface calculation (SLIC) by Noh & Woodward (1976).

However, the original VOF methods are obsolete nowadays as substantial development

has been carried out for improving its spatial and temporal accuracy to higher orders.

Rider and Kothe (1998) presented the historical and recent development in Volume of

Fluid Methods and developed a new more accurate piecewise linear interface construe-

tion(PLIC) method which is second-order accurate for the volume tracking of material

interfaces in two dimensions. The other notable earlier works in interface tracking are

those from Debar (1974), Chorin (1980), Barr & Ashurst (1984), Ashgriz & Poo (1991),

Parker & Youngs (1992), Li (1995), Rider & Kothe (1995), Pilliod & Puckett (2004),

Rudman (1997, 1998). Scardovelli & Zaleaski (1999) has reviewed the volume of fluid

methods in detail. Nielsen (2003) used VOF to predict green water loads on ships
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along with several case studies related to free surface modeling. Lopez et al. (2005)

presented an improved PLIC- VOF method for tracking thin fluid structures in two-

phase flows which was extended from the previous work by Lopez et al. (2004). The

method is based on using markers that are placed every time step at the mid-points

of cell interface segments in order to improve the accuracy of the interface reconstruc-

tion, although it can essentially be considered as a VOF-type method. More recently,

Schlottke & Weigand (2008) used VOF for Direct Numerical Simulation of evaporating

droplets using PLIC algorithm for interface reconstruction.

Basic features of Volume of Fluid methods. In the VOF method, at the be-

ginning a specified interface geometry is used to initialize the volume of fluid in each

computational cell which requires computing fluid volume containing fluids and inter-

face. This volume data is stored as volume fractions / which takes value of 0 or 1

for cells without interface and 0 < J < 1 for the cell containing the interface or free

surface. Since volume fraction is the only data containing interface information, the

interface needs to be reconstructed in order to extract the exact interface information.

This is done by forcing local volume conservation constraint. The interfaces are tracked

by evolving fluid volumes forward in time with solutions of momentum equations. The

interfacial geometry is determined from volume data, followed by interface reconstruc-

tion. The reconstructed interface is used to calculate volume fluxes required to integrate

volume evolution equations. The current work uses Volume of Fluid Method developed

by Zwart et al. (2002, 2007). In this method the reconstruction of interface is not

necessary. More detailed description on the topic is presented in Chapter 3.

1.2.3.10 Ocean surface waves

Baker (2001) carried out an extensive literature review on all the major work in the

area of wind-wave coupling. Accordingly, a standard assumption used by oceanogra-

phers studying mathematical aspects of wave turbulence is that the air and wave fields

can be decoupled, allowing standard hydrodynamic models using approximate wind

forcing terms to be used for wave predictions. The state of the art terms for forcing of
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waves by winds use a simple exponential growth parameter obtained empirically from

wave-tank measurements during the initial growth period of waves as in Plant (1982)

and Komen (1994). Some approximate models based on a perturbational solution of

the air flow equations by Miles (1957, 1993, 1996), Belcher (1993, 1994), Harris (1996),

Cohen (1999) typically underproduce even these measurements by significant factors.

Belcher (1998) has proposed the logarithmic relation for mean flow over hills and waves.

It includes the modeling of turbulent stresses based on a truncated mixing-length model

which leads to small, but non-zero stress perturbations above the hills, however, not

satisfying the boundary conditions. In his paper, Belcher (1998) does not include the

effects of viscosity, moreover a linear wave assumption with logarithmic wave growth is

not applicable to coupled wind-wave in a two-phase free surface flow. The effects of a

propagating wave on the turbulence in the air flow can be estimated using an extension

of the scale analysis developed for flow over hills. This model however, leads to under

prediction of the wave growth.

Although the oceanographic measurements with a satellite or airborne microwave re-

mote sensing are improving the scale and size of sea wave observations as noted by

Ulaby (1982), a comparison of sensor data with approximate hydrodynamic theories

using wind forcing models shows poor agreement as noted by Hara (1994). Several re-

cent models of the ocean surface wave spectrum based on both empirical data and

"decoupled" models for wind forcing effects such as Apel (1994), Durden (1985),

Elfouhaily (1997), Donelan (1987) show poor agreement in general. Recent work

by Gent (1976, 1977), Al-Zanaidi (1984), Maat (1992), Meirink (2000), Mastenbroek

(1996), Li (2000) and in recent past Sullivan (2000) has begun to address the problem

by using the improved models for wind-wave interactions through the use of numeri-

cal methods for air flow over a "water wave" boundary. The water wave considered

in these studies is a simple two-component Stoke's wave approximation, assumed to

propagate at a constant velocity without evolving under the action of wind forcing.

Although these studies have improved the understanding of air-flow effects, a means

to extrapolate these results in coupled wind-wave system evolving due to reaction on
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each other cannot be derived.

A commonly accepted view on geophysical flows over land surfaces assumes that the

surface roughness is sufficiently large that the fluid dynamics is independent of Reynolds

number. But Kitaigorodskii & Donelan (1984) and Harris et al. (1996) pointed out
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that the Reynolds number is likely to be important since oceanic conditions are often

either transitional or even smooth rather than fully rough, thus further adding to the

complexity of wind-wave interaction. In the past few years, studies using DNS (Direct

Numerical Simulation) as well as LES (large-eddy simulation) are performed to study

turbulent flows over wavy surfaces. Henn and Sykes (1999), Cherukat et al. (1998),

De Angelis et al. (1997) and Maass & Schumann (1994) considered turbulent flow

over sinusoidal surfaces driven by a pressure gradient. The use of pressure gradient

to drive the fluid has the potential of creating an error in the solution which will be

discussed later in the chapter 3. Maass & Schumann (1994) utilized finite-difference

DNS to study air flow structure over stationary sinusoidal waves and reported large

separation regions downstream of the wave crest. De Angelis et al. (1997) used pseudo-

spectral DNS to study the effect of wave boundary on the turbulence statistics and the

mean flow in the air. Cherukat et al. (1998) used spectral-element DNS to study the

flow over stationary sinusoidal waves with high wave slope. Gong (1996) used LES

to simulate turbulent flow developing over sinusoidal waves in a wind tunnel, Choi

(1992) employed DNS to study turbulent flow over streamwise oriented riblets. It

is worthwhile to note that in all the above cases, the wavy boundary is stationary

and hence not applicable to flow over the evolving water waves. Some of the salient

features in their observations were in momentum flux where a difference of about 40

percent was observed of square of friction velocity and hence it can be inferred that the

presence of moving wavy surface significantly alters the near-surface turbulent flux.

In proximity of the surface, the presence of moving waves leads to a more negative

average turbulent flux irrespective of the wave age. This indicates a complex wave-

turbulence interaction near the surface and that the wave-correlated flux is significant.

It is noted that the turbulent flux enhancement that occurs near the surface is greater
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than what might be inferred by the form stress. Also the near-surface winds accelerate

on the windward side of the wave because of a favorable pressure gradient and reach a

maximum speed in the vicinity of wave crest and finally decelerate on the leeward side

under the action of an adverse pressure gradient. For the small wave slope, the flow

remains attached and there are no separation points along the wave. The contours of

wave-correlated velocity and the flux field are also strongly dependent on the variation

of the critical layer height and the surface orbital velocities. The results also show

that the waves significantly influence mean flow, vertical momentum fluxes, velocity

variances, pressure and form stress depending on wave age and wave slope. However,

the important limitation of these works is that the waves do not evolve under the action

of the wind and hence the means to extrapolate the results to air-water wave interaction

should be treated with caution. According to Sullivan (2000), some other questions

which still persists are the influence of ocean waves on the height of the wave-induced

boundary layer, partitioning of vertical momentum flux between turbulent and wave-

induced components, modification of Monin-Obukhov similarity theory, role of wave age

in determination of surface drag and parameterizations of wave effects for large-scale

numerical models.

As per Jones (2001), since the air-sea interface is a sharp boundary between two

fluids we can model momentum from one of the fluids to the other as a drag force

per unit area at the sea surface. This is surface shear stress. The ocean waves that

propagate on this sharp boundary can transport momentum horizontally. Hence, it

becomes paramount to determine the interphase location accurately. Moreover, the

drag coefficient is not constant over the ocean. Since the real ocean waves are high

Reynolds number flows turbulent instabilities set in and physical viscosity is replaced

by turbulent viscosity. When the waves are forced by the wind, they can no longer be

accurately modeled as irrotational. The air flow does not have to remain attached to the

water surface and separation of the air flow has often been observed over wind-waves.

The surface displacement can be thought of as the sum of many fourier components

or sine waves and can be locally steep enough to induce separation without any of the
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individual fourier components being very steep. The power spectral descriptions of

wind-waves make the prediction of breaking difficult. The surface friction and pressure

gradients slow the air near the surface while momentum transported down the slope

speeds up the fluid. The flow separation occurs when the momentum flux towards the

wall is not sufficient to keep the fluid near the wall flowing in the same direction as

the free stream. With the flow separation or just acceleration and deceleration of flow

over the roughness elements, the horizontal component of the normal pressure on the

surface does not have to average to zero. To estimate the momentum flux we turn to

the experiments on the growth of the wind-waves. For short wind-waves such results

can be obtained in wind wave tanks because in the ocean the complexity of making the

measurements allows estimates of growth rate to be made only for longer wind-waves.

In his book, Jones (2001) has discussed elaborately about the causes and effects of

Unsteady turbulent boundary layer in oceans. His work provides a significant input to

current understanding in wind-wave coupling.

1.2.3.11 Mechanism of generation of wind-water waves

The generation of sea surface waves by the wind is one of the fundamental air-sea

interaction process which affects the global climate. As the wind starts blowing over

the calm ocean surface, we observe small eddies being generated and convected across

the ocean surface by the mean motion of wind. These eddies induce the pressure

fluctuations disturbing the water surface and eddies produced in the air enhance its

strength. Apart from this, shear stress is also exerted by the wind which leads to

nonlinear growth of wave. As it continues to grow in the open ocean, a quasi-balanced

stage is reached where energy obtained from the wind is lost by waves in the form

of wave-break. This stage is reached only when there is constant speed wind blowing

over a large portion of sea known as fetch. In a tropical cyclonic conditions, this stage

is not reached and due to the high variability of the wind, the sea is in a partially

developed state leading to constant changes in sea state. The vorticity produced as a

result of momentum exchange between wind and wave is equally important for analysis
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and can hold the key to separation in oceans producing nonlinear effects. Extensive

studies, physical modelling and experimental measurements have resulted in limited

understanding of the physics related to this nonlinear phenomena implicit in air flow

and sea surface wave evolution.

As mentioned earlier, nonlinear hydrodynamic codes have been tested previously,

but the air-forcing effects are modeled with empirical estimates without considering

the effects of the wave profile on wind forcing. The linear wave theory results in wave

growth estimations which are constant in time which is incorrect if an equilibrium

between wind and waves is to be obtained.

1.3 Motivation and objectives

Geophysical flows have a very big domain and complex operating mechanism and due

to its sheer size and complexity, the modelling assumptions are generally kept simple.

However, the basic nature of processes at the water surface is nonlinear and small scale.

In order to unravel the physics governing these small scale mechanism, we have to model

the wind-water waves very similar to that observed in real world which means reducing

the number of assumptions to absolute minimum. The advanced numerical techniques

and computing power available currently can be used to address the problem with high

accuracy and thereby improve our understanding of these complex interactions taking

place on the surface resulting in transient nonlinear growth of waves. The other in-

teresting aspects such as breaking waves and sea-spray transport over the ocean are

under investigation by several experts worldwide but it is not the subject of interest in

the current work. Instead we are interested in understanding the effect of viscosity and

rotational behavior in the air and water on the structures of vorticity and shear stress

observed near the free surface in a non-breaking wind-water wave system. Moreover,

the study of momentum and energy transfer between air and water requires know-

ing exact water wave structure which requires study of wave's temporal and spatial

characteristics. Hence, we are motivated by the problem of understanding the com-
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plex interactions taking place on the free surface when the wind blows over nonlinear

transient progressive waves. To summarize the brief review on the wind-waves, we can

conclude that there is a lack of any consistent theory on generation of wave by the wind.

The currently available theories needs further elaborations and validations. Moreover,

the available experimental data do not provide the accurate information on momen-

tum and energy transfer and subsequent growth rate terms leading to many different

growth estimates. These motivates us to present a more clear picture on important

mechanisms governing the small scale processes at wind-water wave boundary. The

main objectives of current research is to

• Simulate viscous, transient and non-linear water waves using Navier-Stokes equa-

tions.

• Numerically investigate the wave decay and the wave growth parameters based

on different wind speed conditions and compare them with experimental and

analytical methods.

• Estimate the total energy exchange in wind-water waves by investigating the

change in potential and kinetic energy densities in water which requires instan-

taneous tracking of the interface with high accuracy.

• In depth study of various physical parameters such as shear stress, vorticity,

energy dissipation, pressure etc. in wind-wave environment.

• Investigate the effect of evolving wind-water wave on the velocity observed in air

and viceversa.

• Present a numerical model which can be utilized to simulate different types of

waves and its evolution under different wind speed regime to investigate other

complex mechanisms observed in wind-water wave.

• Investigate the limitations and challenges facing the current free surface numer-

ical techniques.
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It is appropriate to give a brief overview of the use of computational fluid dynamics in

the free surface flow conditions and its scope in the present work. The computational

fluid dynamics is primarily a branch of science and engineering which operates on the

fundamental physical laws such as conservation of mass, momentum and energy along

with the solution of transport equations. Earlier its main applications were limited to

supersonic and jet flows. It has constantly undergone improvement and is now applied

to almost all disciplines of science and engineering varying from medical engineering to

ocean science. CFD methods were confined to the bounds earlier due to its intensive

computational requirements, but rapid growth in computing both in terms of capacity

of computers and numerical techniques has ensured its application from supercomput-

ing to desktop computing. Water waves are still one of the most intriguing processes

of nature. Oceans cover 70 % of the Earth surface and therefore have a significant

impact on the weather and climate in general. Most of the waves we observe in the

oceans are wind generated surface waves. The current ocean models like WAM, POM,

OPBL, ABLM, OCCAM (recent-yet to get comprehensive data) have not been able to

accurately model the boundary layer process occurring near the free surface in ocean

waves. It is highly desirable to model coupled wind-wave behavior observed in open

ocean in order to improve the accuracy of future air-sea interactions ocean models.

The fieldwork investigations in open oceans are very difficult and have no scope to

repeat after failure. However it is possible to model the wave-trains with similar at-

tributes in the laboratory wave tank using a wave-maker to create paddle waves of

the required frequency. The wind forcing from the wave maker side or the opposite

side can be modelled and this can give new insight into the transient wave growth and

micro-scale turbulence generated due to instability created by shear flows and pres-

sure fluctuations on the surface. The laboratory experiments face the same problem

of difficulty in measuring the near surface physical processes due to experimentallimi-

tations. However, numerical modelling of these laboratory waves with wind forcing is
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possible using widely used industrial CFD codes such as ANSYS-CFX, ANSYS-Fluent,

Star-CD, Flow-3d etc. Highly accurate interface tracking of free surface flows is still

a daunting challenge and subject to research in its own right. However, the recent

progress in numerical methods coupled with the use of higher order schemes and grid

generation have propelled the interest in simulation of multiphase free surface flows.

This study of water-waves uses the Navier-Stokes equations with kinematic, dynamic

and bottom boundary conditions to simulate wind-water waves. The advanced compu-

tational fluid dynamics techniques are applied to obtain high-accuracy while keeping

computational requirements to a minimum. The VOF (Volume of Fluid) method is used

to simulate the presence of fluid in each cell. The conservation of mass and momentum

equations are used to capture the water waves initially without any forced air flow over

the waves. This is the first case of our project which subsequently studies behavior of

water waves under various wind speeds and depth of water. The initial and boundary

conditions in air and water in the progressive waves are determined from calculation

of "complex potential" in air and water based on theory by Milne-Thomson (1994).

A detailed study of the mathematical model, numerical method and discretization is

presented in subsequent chapters.

1.4.1 Research tools

ANSYS-Fluent and ANSYS-CFX are two widely used 3-D Navier-stokes solvers in

CFD. ANSYS-Fluent has both segregated and coupled solvers incorporated using an

iterative finite volume method to solve the Navier-stokes equations. ANSYS-CFX is

a coupled finite element control volume solver and can be used with implicit scheme

of discretization. Both the solvers were tested earlier in the research to compare the

numerical results for transient free surface problem, dam-break problem and problem

dealing with the wave breaking. On comparing both solvers in various aspects such as

speed, accuracy, robustness and stability, ANSYS-CFX was found more suitable for the

free surface problem. Therefore, we decided to use ANSYS-CFX solver in the current

research.
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The free surface methods discussed earlier in the literature have several limitations

which includes maximum steepnesses that these methods can model, assuming fixed

or moving wavy boundary while imposing special conditions on the free surface or

outlet boundary conditions, considering the flow inviscid or irrotational, while some

methods requires higher computational power restricting the size of the domain it can

model. More recently several fixed grid methods have demonstrated the ability to model

viscous, rotational and nonlinear free surface flows with high-resolution and good mass

and momentum conservation properties which includes Zwart et al. (2007), Ubbink and

Issa (1999) and several others. For inviscid flows, boundary integral method developed

by Longuet-Higgins and Cokelet (1976) have been widely used in the past but it is

constrained by inviscid flow assumption and its inability to capture breaking waves.

Similarly, the limitations of other numerical methods are also discussed earlier.

A major interest for most researchers is slow waves and most of the experimental,

fieldwork and numerical modeling work have been concentrated in modeling these types

of waves. It is relatively easier to observe the energy exchange in slow waves and to

quantify it but it is also paramount to investigate energy exchange taking place in

fast waves as critical layer mechanisms are either observed or observable under these

waves. A stepwise increase in wind speed blowing over the water waves also enables us

to determine the approximate wind speed related to wave steepness when air overcomes

the energy dissipation in the water and start growing. The ability of numerical methods

to fully capture the turbulence is still under research and hence the results from the

study of turbulent flow over the waves should be treated with caution. Moreover,

oversimplification of the flow properties in the past have also lead to incorrect estimates

in the wind-wave environment.

1.5 Outline of thesis

The remaining thesis is structured as follows:
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In this chapter, the initial and boundary conditions used in the calculation are ex-

plained. The concept of governing equations for the two-fluid system are given in a

conservation form. These equations together with initial and boundary conditions are

used to describe the problem of two fluid water waves completely.

Chapter 3: Numerical method, its implementation and

simulation setup

A conservative finite element control volume scheme used for spatial and temporal

discretization of the governing equations for the water waves is explained. The setup

of simulation involving domain and grid creation is also presented.

Chapter 4: Interactions of water waves with zero average

wind velocities

The numerical results obtained from solution algorithm are presented and interpreted.

Three set of problems are solved, two deep water wave problems and one intermediate

depth water wave problem are solved when the average wind speed is zero. Upon

validation of results, two problems, one for deep water and one for intermediate depth

water wave are solved with three sets of wind speed conditions. The first set of results

for air-water interactions of water waves in intermediate depth and deep water waves

when the average wind velocity is zero is presented. Several different types of waves

with different wave steepnesses and water depth are also modelled and will be produced

in suitable technical publications.
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Chapter 5: Interaction of deep water waves with air blow-

ing at different velocities

The second set of results for the air-water interactions of deep water waves with air

moving at different wind speed is presented. Various phenomenons affecting air-sea

interactions are discussed and many lesser known physical parameters are plotted and

analyzed in detail.

Chapter 6: Interaction of intermediate depth water waves

with air blowing at different velocities

The third set of results for air-water interactions of intermediate depth water waves

with air moving at different wind speed is presented. Various phenomenons affecting

air-sea interactions are discussed and compared with deep water wave cases and no-

wind cases.

Chapter 7: Conclusions and future work

Thesis is summarized and the main conclusions and suggestions for future research are

given.



Chapter 2

Mathematical formulation

2.1 Introduction

As mentioned in the first chapter, the main aim of this research is to capture the wind-

water waves and analyze the related physics governing the growth and dissipation of

water waves under different wind speed regimes which are separated by a well defined

interface. A mathematical formulation describing the initial and boundary conditions

applied to the solution domain along with a description of general transport equation

and governing equations is the subject matter of this chapter.

The mathematical formulation of free surface flow problem is based on fundamental

conservation laws. It consists of equations which are valid in the domain and equations

which are valid on the boundary. The fluids are modelled as an homogeneous mixture

having, at the interface, a jump in properties such as density, viscosity etc. An indicator

function is used to mark each fluid and the region where this function undergoes a step

change is marked as interface. The purpose of the current work is to develop a method-

ology to simulate progressive water waves under different low wind speed regimes where

turbulent effects play negligible role in the energy exchange. The water waves studied

28
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in this research are dominated by inertial, pressure and gravitational forces and small

scale processes are resolved by using very small grid size. The approach used in this

study is general and applicable to both laminar and turbulent flows with high Reynolds

number, however for flows where turbulent effects are dominant, a suitable turbulence

model to capture turbulence is advised. In order to minimize the computational effort

required to simulate wind-water waves, we assume the presence of progressive water

wave train and presence of air over it depending upon average wind speed considered

for solution. The derivation of required initial and boundary conditions is done by

considering the waves at an interface approach using complex potential as described

in Milne- Thomson (1994). Section 2.2 describes the mathematical model for poten-

tial flow solution in water and air expanded from Milne- Thomson (1994). Section 2.3

briefly describes the general transport and governing equations for the water waves.

Section 2.4 details the boundary conditions applied to the problem.

2.2 Waves at an interface approach

A potential flow approach based on the theory of complex potential by Milne-Thomson's

(1994) waves at an interface is used to formulate the initial and boundary conditions

for coupled wind-wave flows similar to laboratory wind waves experiment described by

Mitsuyasu & Honda (1982).

2.2.1 The complex potential

Let ¢, 1/J be the velocity potential and stream function of the irrotational two-dimensional

motion of an inviscid liquid. The velocity components are then given by,

B¢ B1/J
U=-=-Bx By'

a¢ a'IjJ
V=-=--ay Bx

(2.1)
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The complex potential is given by,

w = ¢+i'ljJ (2.2)

Here, w is a holomorphic function of the complex variable z = x + iy.

2.2.1.1 Definition of a holomorphic function of z.

If ¢= ¢(x, y), 'ljJ= 'ljJ(x, y) are any functions of x and y, the combination of ¢+ i'I/J is

a function of the complex variable z = x + iy, in the sense that given z, there must

correspond to this value of z, one or more values of ¢+ i'I/J.

Hence, if we assume for w any holomorphic function of z, the corresponding real and

imaginary parts give the velocity potential and stream function of a possible two-

dimensional irrotational motion, and they satisfy the Laplace's equation. The mathe-

matical analysis is simplified by working with the complex potential instead of ¢ and

'I/J separately.

2.2.2 The complex velocity

From the complex potential w = ¢+ i'I/J we get

o¢ + i0'I/J = ow dw OZ = dw
ox ox ox = dz ox dz . (2.3)

Now,
o¢

U=--
ox'

o'I/J
v=-

ox
(2.4)

and therefore
dw .

-- =u-zv
dz

(2.5)

2.2.3 Initial and boundary conditions in the potential flow
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Figure 2.1: Boundary value problem for periodic water wave with air flowing over
the wave

2.2.3.1 Kinematic condition at the free surface.

Consider a propagating water wave of depth h as shown in figure 2.1 in which the wave

elevation is T}= T}(x, t). The axis of x is taken along the bottom in the direction of

propagation and elevation is measured from the undisturbed level.

The equation of the free surface is then y - T}- h = 0, and as the surface moves

with the fluid d(y - T}- h) / dt = 0, so that

8T} 81]-+u-=v.8t 8x
(2.6)

For the waves of small height and slope, upon linearisation, we can neglect ~, which

measures the slope of the wave profile, hence, from the above equation, the kinematical

surface condition for the waves at the free surfaces takes the form

81] 81jJ
=8t 8x

(2.7)
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here, v = ~. In the case of irrotational flow the profile of a progressive wave is given

by

TJ = asin(kx - at). (2.8)

where, a is wave amplitude, k is wave number, k = ¥, L is wavelength, (1 is angular

frequency, a = ¥, T is wave period and t is time. An elucidated description on the

elemental notions of a progressive wave can be found in Mei (1989), Kinsman (1965).

From (2.7), when y = h, the stream function 'IjJ is proportional to sin(kx - at). This

can be proven by mathematical simplification. Hence, to satisfy (2.7), by the complex

potential function, we get w = b cos(kz - at), giving 'IjJ = -b sin(kx - at) sinhkh at

the free surface. Substitution in (2.7) gives bksinhkh = aa, hence

ac
w = sinhkh cos(kz - at). (2.9)

where c = a / k is the speed of propagation.

The complex potential for a simple sine wave moving forward is given by considering

the axes of reference moving with the wave, the complex potential is deduced by writing

z' + ct for z and therefore the complex potential becomes

ac coskz'w=-....,......,~
sinhkh

(2.10)

If we superpose on the whole system a velocity c in the direction of the negative axis

of x, from right to left, the complex potential becomes,

, ac coskz'
w = cz + sinhkh . (2.11)

This system of equation represents a steady motion in which the force on any particle

is unaltered, for the addition of a constant velocity has no dynamical effect. For

applications taking origin in the undisturbed surface, which means z' = z+ih, dropping
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a constant cih, we get
cosk{z + ih)

w = cz + ac sinhkh . (2.12)

Now we consider a liquid of density p' and depth h' flowing with current velocity V'

over a layer of liquid of density p and depth h which flows with current velocity V and

take the axis of x in the interface which separates the fluids and which constitutes a

vortex sheet. In the initial model the fluids are bounded above and below by horizontal

planes, see figure 2.1.

To investigate the condition that a wave of specific elevation", = asin{kx - O't) is

propagating at the interface with velocity c = 0' jk, we impose the mass of fluid with a

velocity c in opposite direction which leads to a change in the velocities of the streams

to V' - c and V-c. From (2.12) the complex potential of the lower fluid(water) is

= -(V _ ) _ (V _ )cosk{z + ih)
w c z a c sinhkh . (2.13)

The complex potential for air is given by,

I __ (V' _) (V' _ )cosk{z - ih')
w - c z + a c sinhkh

'
. (2.14)

From the above set of equations 2.13 and 2.14 describing the complex potential in the

water and air, we can derive the boundary conditions in the water and air with current

in presence of wave. It is carried out as follows: Substituting the complex potential

z = x + iy into the equation 2.13 we get,

(V )( .) (V )cosk(x + iy + ih)w = - - c x + zy - a - c . .
smhkh

(2.15)

upon expansion, simplification and comparison with </> + il/J we get,

</> = -(V - c)x _ a(V _ c) coskxc~shk{y + h).
smhkh

(2.16)

Since we are in the fixed frame of reference, the above equations are modified to fixed
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frame of reference. In moving frame of reference,

_ 04> = u
ox

(2.17)

In the fixed frame of reference, it becomes

o(fi
-=-u
ox

(2.18)

Since, U = U + c, we get
o(fi o¢

--=--+c
ox ox

(2.19)

therefore,

(fi=¢-cx (2.20)

Replacing, 4> = (fi+ cx, in the fixed reference frame, we get the velocity potential (fiin

the flow as,

;.= (-V) _ (V _ )cos(kx).coshk(y + h)
'I' X a c sinhkh . (2.21)

Hence, velocity potential (fi, horizontal velocity component u, vertical velocity com-

ponent v and pressure distribution p for progressive wave with x = x - ct is given

by,

(fi= - V(x - ct) - a(V _ c) cosk(x - c~).coshk(Y + h). (2.22)
smhkh

Now, current in the water V = 0 gives,

__ o(fi _ k( )sink(x - ct)coshk(y + h)
u - ox - a c sinhkh . (2.23)

_ o(fi __ k( )cosk(x - ct)sinhk(y + h)
v - oy - a c sinhkh . (2.24)

(2.25)



Chapter 2: Mathematical formulation 35

The corresponding velocity potential 4>', horizontal velocity component u', vertical ve-

locity Vi and pressure distribution pi in the air is given by,

:i.' = _V'( _) (V' _ ) cosk(x - ct)coshk(y - hi)
'I' X et + a c sinhkh' . (2.26)

Now, with forced current in the air, we get

I = _ a~'= Vi k(V' _ )sink(x - ct)coshk(y - hi)
u ox + a c sinhkh' . (2.27)

I _ a~' __ k(V' _ )cosk(x - ct)sinhk(y - h')
v - ay - a c sinhkh' . (2.28)

pi = pi (~') _ p'(U'2 + V'2) _ p'gy. (2.29)

When there is no forced wind, V' = 0 and the corresponding initial and boundary

conditions can be derived. We use these equations to calculate initial velocity, pressure

and volume fraction distributions in the domain alongside the boundary conditions

for the volume fractions and velocity. These combined initial and boundary value

problems constitute a general model which is applicable to two fluid laboratory wind-

water waves ..

2.3 General transport equation

The fluid flow in the water waves can be described by three conservative equations,

namely, conservation of mass, momentum and energy. These laws hold true for any

fluid independent of their physical properties such as density, viscosity, compressibility

etc. The general form of the conservation equation for the time-dependent, fluid flow
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Figure 2.2: Volume of fluid

quantity <Phaving control volume 0 and surface area A shown in figure 2.2, is :

{ ~(1p<Pdn) dt + { {n.{p<pu)dAdtl~t ut n l~t lA

= { {n.{rV<P)dAdt + ( 18<1>dOdt.
i; lA i: n

(2.30)

If we consider infinitesimal volume, then equation (2.30) gives general conservative

differential equation in vector form:

8(p<p)-at + V.(pu<p) = V'.(fV<p) + 8<1> (2.31)

where, u = U, v or w, <Pcan stand for: temperature, chemical species, a turbulent

quantity or a velocity component in fixed cartesian coordinate system. Each <Pimplies

corresponding r, the diffusion coefficient and 8<1>is the source term which include

pressure and body forces. It is clear from equation (2.30) that boundary conditions

of domain are important for the conservation of flow quantity and these boundary

conditions are discussed in Section 2.4.
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2.3.1 Governing equations of fluid flow

The governing equation for conservation of mass is obtained by substituting <l> = 1, in

the equation (2.31). Since there is no chemical reactions or phase changes in the water

waves, this equation gives:
apat + v.(pu) = 0 (2.32)

where, u = ui+ vj. The transport equations for the conservation of momentum are

obtained on substituting <l> = u and <l> = v in equation 2.31. The expanded general

momentum equation in x and y direction is given by:

a a aat (pu) + ox (puu) + ay (pvu)

(2.33)

a a aat (pv) + ox (puv) + ay (pvv)

ap a (av) a ( av)=-pg--+- 1-"- +- It-ay ox ox ay ay (2.34)

here, g is the acceleration due to gravity and It is the coefficient of dynamic viscosity.

The water waves is a incompressible, two-fluid system satisfying mass and momentum

conservation equations. According to Unverdi & Tryggvason(1992) and Sussman et

al.(1994), modeling two fluids as a continuum requires p to be continuous and differen-

tiable over the domain while across the water surface p is discontinuous and differen-

tiable. Hence, according to Zwart et al.(2007), let the velocity components be given by

u and v at each point in space, fw, Pw and Itw represent the volume fraction, density

and viscosity of water respectively and fa, Pa and Ita represent the volume fraction,

density and viscosity of the air respectively. Therefore, in air fa = 1, fw = 0, in water

fa = 0, fw = 1 and in the cell which contains free surface 0 < fa < 1,0 < fw < 1.

Then for the 2-D unsteady flow, the full Navier-Stokes equations are given by

LEEDS UNIVERSITY UBRARY
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the continuity equation for water

(2.35)

the continuity equation for air

(2.36)

the momentum equation in the x direction

(2.37)

and in the y direction

where 9 is acceleration due to gravity. Mixture density Pm and mixture viscosity J.Lm

are calculated by

Pm = Pwfw + Pafa (2.39)

J.Lm = J.Lwfw + J.Lafa (2.40)

The volume continuity constraint requires that the volume fractions of air and water

must sum to unity, hence

fw + fa = 1 (2.41)
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The interface between the water and air is tracked by the solution of the volume of fluid

fw and fa. To summerise, the above mass and momentum conservation equations are

solved simultaneously along with the volume continuity constraint and the relations for

the density and dynamic viscosity given by equations 2.39 and 2.40 respectively. The

surface tension source term in the momentum equation is neglected in this study.

2.4 Initial and boundary conditions

To complete the mathematical model, it is necessary to specify the initial and bound-

ary conditions in the domain. An elaborate discussion on various types of boundary

conditions is found in Versteeg & Malalasekera(2007} and Patankar(1980}.

• Inlet: The inlet boundary is a boundary where either velocity or pressure distri-

bution is specified. We can also define mass flow rate at the inlet. The magnitude

of the velocity is usually known and is either applied normal to the boundary

or if velocity components in x, y and z directions are known, they are applied

accordingly. In order to simulate water wave, the inlet boundary condition is

specified from equations 2.23, 2.24, 2.25, 2.27, 2.28 and 2.29 and we can simulate

different wind speed conditions by changing the wind velocity.

• Outlet: The outflow boundary conditions are better applied on the locations

where the flow is relatively uniform and have small effect on the flow inside of

the domain. The outlet boundary conditions are given by pressure, velocity or

mass flow rate. The outlet boundary conditions also allow fluid to flow inside

the domain which is sometimes very essential for mass conservation in coupled

solvers.

• Wall boundary condition: The velocity of fluid on the non-moving and no slip

wall boundary condition is set to be zero. Hence, U,v = o. For a free slip wall

boundary condition, the normal wall velocity and shear stress T are equal to zero.

In the free slip wall boundary condition, the parallel velocity is computed and
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finite. We use no slip wall boundary condition in the current research domain.

• Symmetry plane: The symmetry plane boundary condition imposes the con-

straint which 'mirrors' the flow on either side of the boundary. The velocity

component in normal direction is set to zero, i.e. Un = O. The scalar variable

gradient normal to the boundary is also fixed at zero, i.e. ¥n = o.

• Initial conditions: For transient problems such as water waves, the initial con-

ditions are very important to achieve the faster convergence for the solution. The

initial pressure and velocity conditions are important as they are used by solver

code for subsequent time steps. Better initial conditions of pressure, velocity and

density reduces the computational effort.

2.5 Chapter summery

This chapter presented a mathematical model for the prediction of interfacial wind-

water waves. These differential equations are in a conservative form and discretized

with help of finite-element control volume technique applied in ANSYS-CFX solution

algorithm. This model combined with suitable initial and boundary conditions is used

to simulate time-dependent, viscous water waves, study the interaction taking place

in wind-water waves and analyse various physical quantities affecting the flow. The

numerical solution is inevitable to study such complex phenomenon as the analytical

solution available is not satisfactory.
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Numerical method, its

implementation and simulation

setup

3.1 Introduction

The numerical method used to solve the set of full Navier-Stokes equations described

in the previous chapter requires solution to partial differential equations representing

wind-wave domain in the form of mesh of nodes. This construction leads to a set of

coupled algebraic equations which are solved by a solution algorithm.

The discretization method in these study is an element based finite volume method

as described by Schneider & Raw (1987a) and Zwart et al. (2007). The earlier work

includes Schneider & Raw (1985a) and Prakash (1986). The major advantage of this

method is that it is designed to combine the strict conservation properties of finite vol-

ume method with the geometric flexibility of finite element method, Baliga & Patankar

41
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(1983). It can work with tetrahedral, prism or hexahedral elements. In this method a

polyhedral control volume is constructed around each mesh point, as shown in figure 3.1.

The subface between two control volume within each element is known as integration
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Figure 3.1: Element based finite volume discretization. Solid lines are element
boundaries and dashed lines divide the elements into parts. Black dotsfs) repre-
sent solution unknowns at the vertices and cross( x) represents integration points
where surface fluxes are evaluated. Shaded region is control volume around each
vertex.

point (ip) where fluxes are discretized. The finite element shape function determines

the pressure and velocity gradients from the nodal values while the advected variables

are calculated using an upwind-biased discretization method. The overall conservation

of flow properties with this treatment is found highly accurate for all flow conditions,

Schneider & Raw (1987b).

This chapter describes the discretization technique and treatment at the boundaries

for solution of coupled algebraic equations used by ANSYS-CFX solver. A second order
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ate.. ya)

Figure 3.2: An example of a face of a control volume and the normal unit vector.

scheme is used for time derivative and second order upwind-biased scheme is used for

advection variables. More details are included in section (3.3) related to equation

discretization.

3.2 Spatial discretization

A finite element control volume technique which uses interpolated nodal solution to

calculate the flux and integration point values is used to study the wind-wave interac-

tion. It uses a collocated variable interpolation while avoiding checker-board oscillations

found when the variables are collocated. This approach also simplifies computer pro-

gramming and is equally applicable to both structured and unstructured grids. As seen

from figure 3.1, let P be the upwind point and E and W denote the nodes located on

east and west to it. Then a polyhedral control volume is constructed around each node

as union of all the element sectors touching it. i.e. shaded region. The integration

points can be easily determined using shape functions. Consider the equation (2.30),

in order to evaluate control surface integration we need geometric quantities n and A

along with expressions for flux vectors (p4>u) and (rV4». The outward normal vector
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n and elemental surface area A is calculated using simple trigonometry and vector

algebra from the nodal coordinates of the grid. The required geometry parameters n

and A are calculated as follows. Consider the control volume face shown in figure 3.2

which describes the face for unstructured grid. The parameters for structured grid can

be calculated based on same formula. The face area is given by

here, ~x = Xb - Xa and ~Y = Yb - Ya. The normal unit vector to the surface is given by

n= ~i - ~x j. The spatial discretization is complete and the discretized finite volume

equations are constructed over this discrete space.

3.3 Equation discretization

We now consider the discretization of conservation equations (2.35}-(2.38). The con-

servative equations are integrated over each control volume and these volume integrals

are converted to surface integrals by Gauss' divergence theorem. The surface fluxes at

each integration points are evaluated in same manner for each control volumes adjacent

to it.

3.3.1 Continuity equation

When the implicit second-order backward Euler scheme is used for the time derivative,

the discrete representations of equation (2.35) and equation (2.36) in the water and air

are:

~ (~(pwfw}n+l - 2(pwfw}n + ~(pwfw)n-l) + L(PwuiAi}~+l(fw,iPt+1 = 0 (3.1a)
'P

n (3 ( , )n+l 2( ,)n 1( , }n-l) '"'( iAi}n+l u )n+l 0
8t 2 PaJa - PaJa + 2 PaJa + L..t PaU ip Ja,ip =

IP

(3.1b)
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here, n represents the volume of a control volume, A!p is the i component of area vector

A of a subface corresponding to integration point which is calculated as A = Aiei =

A leI + A2e2, u!p is the i component of velocity vector V which is equal to ui + vj, 8t

is the time step, n + 1, nand n -1 represents new and old time steps of the evaluated

quantity. We now have two unknown terms at integration points to be evaluated in

the above equations. Le. mass flux, {pwuiAi)7p+land {PauiAi)7p+1 and scalar quantity,

lume fracti fn+1 d l'n+lvo ume rac ton, w,ip an J a,ip .

The advection scheme used to evaluate fw,ip and fa,ip in term of neighbouring vertex

values is written in the form:

1>ip= 1>up+ (3V1> • R (3.2)

where ¢up is the upwind vertex value and R is the vector from the upwind vertex to

the integration point, ip, V 1> is calculated by averaging the adjacent nodal gradients.

The R is calculated as:

R = {Xip - xp)i + {Yip - yp)j

and V¢ is given by:

"A. 1 [(O¢. o¢.) (01). 01>.)]v 'I' = - -1 + -J + -1 + -J
2 ox ay p ox oy E

(3.3)

here,

(01)) = ¢E - ¢W (o¢) = ¢N - ¢8
ox p 2~x ay p 2~y

(o¢) = ¢EE - ¢p (01)) = ¢NN -1>P
oX E 2~x ay E 2~y

If (3= 0 in equation 3.2, this scheme is bounded first-order upwind scheme which can

be excessively diffusive. If (3= 1, this scheme is a second-order upwind-biased scheme,

but unbounded. For the continuity equations (3.1a) and (3.1b), a TVD scheme is used

to get (3 and ¢ip is bounded by the maximum and minimum values of ¢ among the

vertex's neighbours. It is similar to the method described by Barth and Jesperson
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(1989). An important advantage of this scheme as compared with other compressive

schemes based on controlled downwinding is that its compressiveness does not rely on

small timesteps. As a result, bigger time-step size can be used without affecting the

quality of interface representation. The mass flow flux in equation (3.1a) and (3.1b)

is calculated using pressure smoothing technique for flux through the face of control

volume developed by Rhie & Chow (1983). The advection velocity in (3.1a) and (3.1b)

is evaluated in the following manner. Let V and A represent velocity and area vector

which gives

(3.4)

where ut = u and u2 = v and

(3.5)

hence we get

(3.6)

To calculate the fluid velocity on the face of the control volume, Rhie & Chow (1983)

method is applied to the momentum equation. Let a represent coefficient of corre-

sponding velocity. For the control volume seen in figure 3.1, we can calculate it as

follows: at point P, E and ip,

(3.7)

gives

(3.8)

(3.9)

gives

(3.10)
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gives

ap Vip + (V P H)ip = (LanbVnb + Pmg n) ip (3.12)

Assuming that the terms on the right-hand side of equation (3.12) may be approxi-

mated by the weighted linear interpolation of the corresponding terms in the equations

(3.8) and (3.10), then we obtain,

hence,

Thus, the advection velocity is calculated as

(3.15)

and VP is calculated as
np _ o», oPjv --1+-ox ox (3.16)

Therefore, the velocity components in x and y direction are given by,

1 (" )1 n - 1 Pmg1n
Uip = -(-)-. L..J anbVnb + -(-)-. (VP - VP) + -( -)-.

~~ ~~ ~~
(3.17)

1 (" ) 2 n - 2 Pmg2n
ViP=-( -)-. L..JanbVnb +-( -)-. (VP-VP) +-(-)-.

~~ ~~ ~~
(3.18)

Hence when i= 1,2, we can write,

. 1 (" ) i n _ . Pmgin
~p = -(-)-. L..J anbV nb + -(-)-. (VP - VP)' + -(-)-.

~~ ~~ ~~
(3.19)
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The pressure gradients at integration points calculated using the discretized conti-

nuity equations are fully implicit, and therefore involves the product of implicit vari-

ables Vi and fw and fa at time level n + 1. By using Newton linearisation we get:

and

Hence, the continuity equations (3.1a) and (3.1b) are given by:

n (3( f )n+l 2{ f)n 1( f )n-l) '"' ( vn+l A n+1) In+1 08t 2 Pw w - Pw w + 2 Pw w + L...J Pw ip . ip (w,ip) =
'p

(3.20a)

and

~ (~(Pafa)n+1 - 2(Pafa)n + ~(Pafa)n-l) +L (PwVfp+1·A~+1) f(a~!) = 0 (3.20b)
Ip

3.3.2 Momentum equation

The discreet representation of momentum equations (2.37) and (2.38) is:

(3.21a)
ip ip

(3.21b)
ip ip
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here, ~ is the mixture stress tensor given by:

(3.22)

in the x-direction is equal to

'I (( au) (aui))rk = JLm axi + ax (3.23)

and in the y-direction it is equal to

'2 (( av ) (avi))rk = JLm axi + ay (3.24)

The viscous forces and the pressure term in momentum equation (3.21a) and (3.21b)

can be evaluated at the actual location of each integration point pressure values and

velocity gradients respectively using true tri-linear interpolation, or at the location

where each ip surface intersects the element edge using linear-linear interpolation. The

finite element shape functions used for the above purpose are calculated as follows:

Shape Functions

Consider a variable cP varying within an element as:

Nnode

cP= L NicPi
i=1

(3.25)

here, N, is the shape function for node i and cPi is the value of cP at node i. The

summation is over all nodes of the element. The main properties of shape functions

include:
Nnode

L Ni=l
i=l

(3.26)

at node i,
N, = 1 when i= i. N, = 0 when i i= j (3.27)
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Hence, the value of ~p in the momentum equations is evaluated as:

(3.28)

The velocity (ufp)n+1 and (vfp)n+1in the momentum flux term in (3.21a) and (3.22b)

is calculated using gradient reconstruction method shown in equation (3.2). The buoy-

ancy term is fully implicit. The set of equations (3.20a), (3.20b), (3.21a), (3.21b) and

(2.41) represents equations for volume fraction, velocity and pressure fields along with

two phases forming a coupled system of equations at each control volume. Assembled

into the global system, these coupled system of equations are solved simultaneously by

using an algebraic multigrid method developed by Hutchinson & Raithby (1986) and

Raw (1996).

3.4 Boundary conditions

The discrete representation of the boundary conditions defined in section (2.4) is shown

in this section. It is assumed that the specified boundary condition is valid along the

whole face. Consider a boundary surface for fluid flow boundary as shown in figure

3.3. There are 3 types of boundary conditions in the current problem namely: 1) fixed

value boundary conditions, 2) fixed gradient boundary conditions and 3}wall boundary

conditions. While considering the discretization of the equations in the fixed value

boundary conditions, the value of flow properties on the boundary face is calculated

and used directly in the implicit implementation. They are determined as follows:

3.4.0.1 Fixed value boundary condition

• Pressure equation: The pressure term in the boundary condition is calculated

directly. The momentum contributions from the surface pressure are given by

M~p=-lPdY (3.29)
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Figure 3.3: Typical boundary surface for fluid flow boundary.

by using the midpoint approximation, we obtain

(3.30a)

(3.30b)

here, M:v and M:v represent the momentum contribution in x and y directions

respectively. For a structured mesh, the face is vertical, hence ~Xl = ~X2 = 0

and ~Yl = ~Y2 = ~Y. The integration point pressures in equations (3.21a) and

(3.21b) are calculated by interpolation of nodal values.

• Diffusion term: The contribution of viscous or diffusive terms to the momen-

tum equation includes both the tangential and normal viscous stresses. The use

of midpoint approximation gives

(3.31a)

(3.31b)

where, 'Tnl, 'Tn2 and 'Ttl, 'Tt2 represent normal and tangential stress components

on each subface as illustrated in Figure 3.3. Now there are two unknowns at
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two integration points 'Tn and 'Tt at two respective integration points requiring

two boundary conditions. According to Schneider & Raw (1987a), a general

boundary condition in order to treat all the expected boundary conditions is

given by normal and tangential boundary condition equations which are given

by

a'Tn + bUn + cp = d (3.32a)

(3.32b)

where, the coefficients a, b, c, d, e, I, 9 and h are user defined constants accord-

ing to the boundary conditions and can be used for to simulate various boundary

conditions such as: (1) specified velocity, (2) pressure and velocity direction spec-

ified, (3) zero tangential velocity with zero normal stress and (4) zero tangential

stress with zero normal velocity. The equations specified in (3.20) are decom-

posed in their x and y components in order to comply with use of (u, v) as

unknown velocity fields. A more detailed reference on the boundary conditions

can be found in Raw (1985) and Schneider & Raw (1985b).

• Convection term:

Both the continuity and momentum equations contain a convection term. A

boundary control volume where two subcontrol volumes coincides are shown in

the figure 3.4. Let the boundary integration points be given by bipl and bip2 as

observed. The convective flow of 4> into the control volume is given by

ut =1P4>ui .dA (3.33)

where Aft is the contribution due to convective flux in the momentum equation,

dA is the surface vector directed out of the domain. In the continuity equation

the value of 4> = 1 and in momentum equation 4> = uj which is calculated through

the advection scheme as shown in equation (3.2) and u' is calculated through

Rhie-Chow (1983) interpolation scheme. Hence the midpoint approximation to
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Nl

Figure 3.4: Control volume boundary for convection term.

this integral is given by

(3.34)

where F is the mass flows into the domain.

3.4.0.2 Fixed gradient boundary conditions

In the case of a fixed gradient boundary condition the gradient of the flow property

over the face is specified, hence

(3.35)

where (V 4»b is specified gradient on the boundary. If the boundary condition is zero

gradient boundary condition it gives V4>= O. Similar to the fixed value boundary

conditions, the fixed gradient boundary conditions also contributes to the convective

and diffusive flux which are added in the source term.
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3.4.0.3 Wall boundary conditions

In the non-moving wall boundary conditions as described in section 2.4 have u and v

velocity of wall and fluid attached to it is set to zero. The volume fraction function at

the boundary has the value as specified for each fluid and is commonly the cell center

value of the cell, Le. fob = fop, where a stands for volume fraction of water and air

respectively, b is boundary and P is cell center value of the cell.

A brief description of the solution strategy is presented below.

3.5 Solution Strategy

The equations of motion in two-fluid water waves are coupled and the ideal way is

to solve them simultaneously for the whole domain. Although this approach takes

up a higher amount of memory because the solution matrix will be much bigger for

larger numbers of computational points, the advantages such as robustness, efficiency,

generality and simplicity outweighs the memory requirement. The system of equations

for solution is described below.

3.5.1 Coupled System of Equations

The set of discrete conservation equations can be written in the form:

L afb<f>fb = bi
nb;

(3.36)

where, <f>is the solution, b is the right hand side, a is the coefficients of the equation,

i is the number of nodes or finite volumes in the domain, nb is the neighbour, but

also includes the central coefficient multiplying the solution at ith location. For the
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coupled, 3D mass-momentum equation set, they can be expressed as:

nb
auu auv auw aup auW auA

avu avv avw avp avW avA

a~b = awu awv aww awp awW awA,
apu apv apw app apW apA

awu awv aWw awp aWW aWA

aAu aAv aAw aAp aAW aAA

(3.37)

and
nb

u

v

¢ib = w

p

fw

fA

bu

bv

bi =
bw

bp

bw

bA

3.5.2 The Coupled Solver

(3.38)

(3.39)

Segregated solvers by using the guessed pressure solves the momentum equation first

and obtains the equation for pressure correction. This procedure requires a large num-

ber of iterations and a careful selection of relaxation parameters for the variables. AN-

SYS CFX is a coupled solver which uses a fully implicit discretization of the equations

at any time step solving the Navier Stokes equations simultaneously.
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The solution procedure for the unsteady, two-fluid system is given by:

1. Initialise the solution fields and advance in time.

2. Solve the coupled system equations.

3. Check if the coefficient loop criterion is satisfied, if not iterate within the timestep

and go to step 2.

4. Check if the maximum time has been reached. If not advance in time and go to

step 2.

5. Stop

3.5.3 Linear Equation Solution

The current solver uses a Multigrid (MG) accelerated Incomplete Lower Upper (ILU)

factorisation technique for solving the discrete system of linearised equations. The

general matrix form of the linearised system of discrete equations described above is

written as:

[AH<I>] = [b] (3.40)

where, [A] is the coefficient matrix, <I> the solution vector and [b] is the right hand side.

The equation (3.38) is solved iteratively by starting from an approximate solution <l>n,

improved by a correction <1>' to give a better solution <l>n+l, i.e.

(3.41)

where <1>' is a solution of

(3.42)

and rn is the residual obtained from

(3.43)
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y

Figure 3.5: Sketch of the domain used in the simulation.

A desired accuracy is achieved by its repeated application. The efficiency of ILU solver

is improved by use of multigrid technique by Raw (1996).

3.6 Simulation Setup

The domain modeled in the numerical solution is similar to the one used in the ex-

perimental tudy by Mitsuyasu & Honda (1982). A 3-D and a 2-D representation of

the domain is shown in figure 3.5 and figure 3.6 respectively. The size of the domain

is 12 m long and O. m high, the mean depth of the water is h = 0.335 m and the

depth of the air is hi = 0.465m. The slope of the beach is 1/15 which has been used

in th exp rim ntal investigation in the past by Peirson et al. (2003) to minimize the

reflection from the right end of the domain. The frame of reference for our computa-

tions and analysis is a fix d cartesian coordinate system and is aligned to the bottom

of th solution domain near the inlet specified as (x,y) = (0,0) as shown in figure 3.6.
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Figure 3.6: Sketch of the domain used in the simulation.

The water waves are continuously generated at the inlet on the left end of the domain

and are allowed to travel along the positive x direction and dissipate on a beach at the

far right end of the domain. The wavelength for the water wave is calculated using

a dispersion relation given by 0'2 = gk tanh(kh). The numerical beach was modeled

as we found the evidence that the use of periodic boundary condition creates stronger

reflections from the end opposite to wavemaker and after some finite time period it

starts affecting the progressive wave and significantly alters the flow parameters inside

the solution domain. The other type of geometry using partial opening on the top in

the experimental setup used by Peirson et al. (2003) was found to alter the air pressure

in the domain which can lead to incorrect pressure distribution in the air domain and

affect the flow conditions. Since, we are using the boundary conditions derived from

the potential flow at the inlet, it is essential to allow the flow to develop into natural

wave state which it gains after travelling about one and half wavelength in +x direction

and the results presented here are calculated after that length and after several time

periods. Due to the asymmetry of velocity resulting in more fluid moving in the wave

direction under the wave crest than moving out under the trough region, there is a
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mean transport of water from the inlet and it is calculated by

11t+T rh+17 ac It+T
Q = T t J0 udy dt = Tsinh(kh) t sinh[kh + aksin( -ut)Jsin( -ut)dt (3.44)

and it is taken out by setting an outflow Un boundary condition on the slope, as

seen in figure 3.6. While calculating the energy density in the numerical solution, the

attenuation of wave due to no-slip wall observed in the experiment is taken out from

the numerical result as per the analytical expression mentioned in Mitsuyasu & Honda

(1982) as the numerical solution have symmetry boundary condition instead of no-slip

wall in the front and back.

3.6.1 Numerical Implementation

The implementation of grid which includes finite volumes and nodes is a very important

aspect in determining the accuracy of the numerical results. In order to accurately

capture the water waves which is a transient free surface flow with small amplitude

change, we require very small grid spacing. The alternative to this is the use of moving-

grid methods which are not considered in the project due to much higher computational

requirements and possibility of wave breaking on the beach. We started the analysis

using fine unstructured grid in the near interface region and gradually inflating in the

y-direction in the the air and water domain. The results for interface tracking with

unstructured grids are comparable to that obtained from structured grid while the

results for vorticity and shear stress distribution were found coarse in its distribution.

In order to make these results comparable to structured grid results, the grid size in

the unstructured grid has to be reduced in the y-direction in air and water which

increases the computational effort by a factor of 4 which is expensive compared to

structured grid results. Ansys ICEM CFD 5.1 is used to generate structured 1 cell thick

volume meshes. The structured mesh has some inherent advantages over unstructured

mesh with regard to number of computational points required being less, better mass

conservation, higher spatial resolution and having better mesh aspect ratio which are
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Figure 3.7: The overall grid view of the domain.

Figure 3.8: The detailed grid view of the domain.

important factor contributing towards accuracy of simulation. Hence, an structured

m sh is used for grid generation and near the free surface 16 grid points are distributed

in vertical direction in the wave height. In the air and under the water a non-uniform

m sh is used. On hundr d grid points are uniformly distributed in the x direction

per wav 1 ngth which produces mesh independent results. The grid structure in the

domain is shown in the figure 3.7. A detailed grid structure can be seen in the figure

3.. The maximum number of iterations per time step is kept 40 for the simulation

to qui kly converg to required accuracy and conservation target. After it the required

ac uracy is achieved within 15 it rations per time step for most of the simulation time

period.
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3.7 Conclusions

The finite element control volume discretisation of the governing equations for two-fluid

system such as water waves has been presented. The numerical implementation and

the simulation setup is also discussed.

This completes the derivation of numerical model for two-fluid interface which is

implemented for solving the full navier-stokes equations for water waves and wind

waves. The next chapter evaluates the model with analytical and experimental data

alongside some interesting discussion on the observation of various physical quantities

in water waves and wind waves.



Chapter 4

Interactions of water waves with

zero average wind velocities

4.1 Introduction

In the earlier chapters, a CFD methodology for capturing the interface between two

fluids and the associated flow fields was presented. We use these methodology for

capturing the free surface in wind-water waves and compare the results with analytical

and experimental data available.

The cases selected for the studies in this chapter are from well referenced paper of

Mitsuyasu & Honda (1982) on wind induced growth of water waves. The experimental

observations in these paper are also compared with analytical solution and will be

included in our comparison. The first case study in these category is the study of

interaction of water waves when the average wind velocity is zero i.e. air is present but

follows the water wave motion without forced convection.

We consider three most investigated cases in the work of Mitsuyasu & Honda (1982)

for the purpose of comparison. Case 1 is the intermediate depth water wave (hereinafter

62
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as Cl) in which the wave steepness is 2a/L = 0.06, hlL = 0.44, T = 0.7s. Case 2 is the

deep water wave (hereinafter as C2) in which the wave steepness is 0.06, hlL = 0.6,

and T = 0.6s. Case 3 (hereinafter as C3) is the deep water wave with a wave steepness

of 0.04, hlL = 0.6 and T = 0.6 s. Various physical aspects observed in the water waves

are discussed below.

4.2 Energy density

The energy in the water waves is of two types: the potential energy, as a result of free

surface displacement, and the kinetic energy, due to the orbital movement of water

particles. The total energy in the water waves and its propagation are important in

determining the total power available to be extracted from the water waves. Hence

it is important to study the effect of viscosity on the decay rate of the water wave.

The calculation of the potential energy density and kinetic energy density separately

in the water waves can provide valuable insight into the effects of viscosity on the wave

amplitude attenuation and orbital velocity in the water wave. Since the input wave at

the inlet is a potential flow, analytically, the total energy density at the inlet is given

by Eo = !Pwga2, Dean & Dalrymple(1984). The potential energy of a wave depends

on the free surface elevation and the "potential energy density" for a progressive wave

is given by
- 1lx+L PwgT/2PE=- --dx

L x 2
(4.1)

At the inlet, the potential energy density is given by

-- 1 2PEo = 4 Pwga (4.2)

A nondimensional potential energy density factor GpE is defined using the ratio of the

potential energy density and the total energy density at the inlet and it is given by

(4.3)
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The kinetic energy density in the waves is given by

-. 11X
+
L111 (u2 + v2)I\.E = L Pw 2 dx dy

x -h
(4.4)

At the inlet it is given by
-.- 1 2
I\.Eo = 4 Pwga (4.5)

This is equal to the magnitude of the potential energy of the potential flow. However,

the kinetic energy density obtained numerically by the use of equation (4.4) in the

solution domain is different from the analytical expression given by equation (4.5) as

a result of the dissipation caused by viscosity. The kinetic energy density factor in the

water waves is also calculated using the kinetic energy density and total energy density

at the inlet and it is given by

(4.6)

The total energy density, E, in the water wave is the sum of the potential and the

kinetic energy densities, hence

(4.7)

The total energy density factor is the sum of the potential energy density factor and

the kinetic energy density factor and is given by

(4.8)

The time averaged results for the total, potential and kinetic energy density factors

are calculated by

aT 1 iT (4.9)= T 0 aTdt

apE 1 iT (4.10)= T 0 apEdt

aKE 1 iT (4.11)= T 0 aKEdt
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Figure 4.2: Time averaged energy density factor vs x. Case C2.
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HjL T (s) ~theory ~exp ~num
0.06 0.7 1.83 x 10-4 1.65 X 10-4 1.727 X 10-4
0.06 0.6 2.38 x 10-4 2.10 X 10-4 1.914 X 10-4

Table 4.1: Exponential decay rate A; E = Eoexp(-~x)

On comparing the time averaged numerical results for the total, potential and

kinetic energy density factors in the intermediate depth water waves (case C1j figure

4.1) and deep water waves (case C2j figure 4.2), we found that the numerical results are

in good agreement with theoretical and experimental results described in Mitsuyasu

& Honda (1982). The main difference observed is in the wave energy density decay

rate in both cases for the same water depth. The deep water wave shows higher decay

rate than the intermediate depth water wave over the same distance traveled since the

deep water has more waves than the intermediate depth water over the same length

of the solution domain. This can be seen in Table 4.1 which shows the decay rate, A,

calculated from the time averaged total energy density factor, by fitting the relationship

E -=- = QT = exp( -Ax)
Eo

(4.12)

Theoretical and experimental values of Aj (Atheory and Aexp) are from Mitsuyasu

& Honda (1982). The decay rate calculated from numerical results (Anum) show very

good agreement with the theoretical and experimental values.

To better understand the physics leading to difference in decay rate, we analyze var-

ious aspects of viscous, nonlinear, rotational and transient water waves in the following

sections.
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Figure 4.3: Nondimensional pressure in the domain of potential flow in deep
water wave; case C2.

4.3 Pressure in the water waves

to pres nc of wave. The pressure is nondimensionalized as

The pressure inside the water waves include static pressure and dynamic pressure due

- p
p = Pwgh (4.13)

here, Pw is density of water, 9 is acceleration due to gravity and h is mean height of

water. Nondimensionalized pressure in the domain of deep water wave case of potential

flow and viscous flow are shown in the figure 4.3 and 4.4 respectively. To a large extent

in th horizontal direction, the pressure is uniformly distributed while increasing in

the vertical direction. The observed change in pressure inside the water is however

th presence of th waves.

unnoticeable due to presence of large hydrostatic pressure which exists even without

In order to visualize small dynamic pressure changes in the water wave due to
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Figur 4.4: Nondimensional pressure in the domain of viscous flow in deep water
wave; case C2.
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Figur 4.5: Pressure isolines in the domain of potential flow in deep water wave;
case C2.
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Figure 4.6: Pressure isolines in the domain of viscous flow in deep water wave;
case C2.
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Figure 4.7: Pressure isolines in typical wave of potential flow in intermediate
depth wa.ter wave; ca.se Cl.
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Figur 4.8: Pressure isolines in typical wave of viscous flow in intermediate depth
water wave; case C1.

.1::
<,

>- 0.5

0.1

0.4

0.3

0.2

0.2 0.4 0.6 0.8
x/L

1.2

1.1

0.2

0.1

o

Figure 4.9: Pr sure isolines in the domain of potential flow in deep water wave;
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Chapter 4: Interactions of water waves with zero average wind velocities 71

0.7

..r: 0.6 0.1
.......
>- 0.5

0.2
0.4

0.3
0.1

0.2 0.1 0.2

0.1

0 0
0 0.2 0.4 0.6 0.8

x/L

Figure 4.10: Pressure isolines in the domain of viscous flow in deep water wave;
case C2.

presence of the free surface displacement, we plot pressure isolines in the domain and

typical wave of intermediate depth and deep water waves as seen in figures 4.6, 4.8,

4.10 and compare it with its potential flow counterpart as seen in figures 4.5, 4.7, 4.9

respectively. The pressure isolines are calculated as follows

Pi=p-Pwg(h-y)
Pwga

(4.14)

here, y is v rtical direction and a is amplitude of waves. Dynamic pressure is a result of

contribu tion from free surface displacement and vertical acceleration which is 1800 out

f pha with fr e surface displacement, Dean & Dalrymple (1984). Dynamic pressure

response can be used to calculate the free surface wave height in the laboratory and

fi ldwork studi s and is also useful to know the change in associated orbital velocity in

the crest and trough of the wave. The pressure isolines in the domain of the potential

flowfor the deep water waves is shown in figure 4.5. It shows uniform distribution of the

pressure isolin s in the crest and trough indicating higher orbital velocity in the crest
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and lower orbital velocity in the trough of the wave. Numerical result for the pressure

isolines in the domain of viscous flow is shown in the figure 4.6. The distribution

of pressure isolines shows higher magnitude and extent in the crest of the wave while

showing a decrease in corresponding values in the trough of the wave, clearly indicating

an increase in water velocity in the crest and a decrease in the trough. Similarly, if

we consider a typical wave in case of an intermediate depth water wave and a deep

water wave as seen in figures 4.8 and 4.10 and compare it with pressure isolines in the

potential flow in figures 4.7 and 4.9 we observe the same phenomenon in a typical wave

irrespective of depth of the water.

4.4 Velocity vectors and streamlines in the wa-

ter waves

4.4.1 Velocity vectors

The velocity vectors in the water waves are important since its variation shows an

increase or decrease in the kinetic energy flux in the water waves. There is an orbital

movement of water in the presence of wave and velocity vectors are used to illustrate

it. The velocity is nondimensionalized by the wave amplitude a, wave number k and

wave speed c and is calculated as

_ u
u=-akc (4.15)

_ v
v=-akc (4.16)

In figure 4.11, the velocity vectors in water shows periodic feature of the wave.

To investigate further, velocity distributions in a typical wave in cases Cl and C2 are

plotted and compared with the analytical solutions of the corresponding potential flow.

The velocity vectors and contours of velocity magnitude for case Cl and case C2

as per the analytical solutions of the potential flow and the numerical results for the
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Figure 4.11: Nondimensional velocity vectors in the domain of viscous flow.

viscous flow are shown in figures 4.12, 4.13, 4.14 and 4.15 respectively. On comparing

these results we observe that for the viscous flow the velocity contours with the values

which are lower than 0.8 move to higher locations, this indicates that in most lower

parts of the water wave, the velocity of the viscous flow is lower than the potential flow

because of the resistance from the viscosity. We also observe that in the case of the

viscous flow the velocity becomes higher in the crest than that in the potential flow

because the resistance from the friction in the water decreases from the water into the

air and this allows a higher velocity in the crest.

4.4.2 Streamlines

To investigate further we plot streamlines in the water waves. The stream function( 'I/J)

for two dimensional flow in terms of flow velocity can be expressed as:

(4.17)
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Figure 4.13: Nondimensional velocity vectors in a typical wave of viscous flow;
case Cl.



Chapter 4: Interactions of water waves with zero average wind velocities 75

t \ '\t\\,, _

t , \ , -, __

I I I \ .... .... - - - ....

0.4

0.2

0.2 0.4 0.6 0.8
x/L

0.8

Figure 4.14: ondimensional velocity vectors in a typical wave of potential flow;
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Figure 4.15: Nondimensional velocity vectors in a typical wave of viscous flow;
case C2.
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Figure 4.16: Streamlines in the domain of viscous flow.

here, "f = (0, 0, 'IjJ) and u = (u, V, 0). In the cartesian coordinate system it is expressed

as,
a'IjJ

V=--ax (4.18)

The above formulation satisfy two dimensional continuity equation. Hence,

(4.19)

The stream function, 'IjJ, is nondimensionalized by wave amplitude a and wave speed c

(4.20)

Figure 4.16 shows instantaneous streamlines in the domain of case C2. It mostly

shows periodic and symmetric distribution of streamlines in the domain. For further

analysis, in case Cl and case C2, the streamlines in a typical wave are compared

with the analytical solution of the potential flow. Figures 4.17 and 4.19 shows the
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Figure 4.17: Streamlines in a typical wave of potential flow; case Cl.
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Figure 4.18: Streamlines in a typical wave of viscous flow; case Cl.
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Figure 4.20: Streamlines in a typical wave of viscous flow; case C2.
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streamlines in case Cl and case C2 produced by the analytical solution of the potential

flow. Figures 4.18 and 4.20 shows the streamlines produced by the numerical simulation

of the nonlinear viscous flow. Similar to the velocity contours in most parts of the

domain the streamlines of the viscous flow are located at higher places than those of

the potential flow. Under the trough, the viscous flow has smaller negative maximum

values for the stream function and under the crest it has higher positive maximum

values. This indicates that the fluid tries to move towards the crest where it encounters

less resistance.

4.5 Vorticity field

We now study the vorticity and shear stress in the domain. Wu (1995) presented a

general theory of interfacial vorticity dynamics, including the vorticity creation from

interface and mentioned the difference observed in the vorticity creation on a solid wall

and an interface. It is impossible to estimate boundary vorticity flux using a potential

solution as inviscid terms are self-balanced. In the potential flow, since the flow is

irrotational, vorticity is given by,

'\7xv=O (4.21)

The numerical results of the vorticity are obtained after solving the full Navier-Stokes

equations for the unsteady, nonlinear and viscous water waves. In order to reveal the

characteristics of the viscous flow, it is desirable to calculate the vorticity at every point

under the wave and this is given by

av au
W=---ax ay (4.22)

while the nondimensional vorticity is defined as

w = w/(2aka) (4.23)
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Figure 4.21: A representation of the behavior of the vorticity field with depth

According to Kinsman (1965) and Lamb (1930), for a low Reynolds number flow, the

analytical solution for the vorticity in water wave with small amplitude is given by

{( tv)! z- ~<7 t} i[kx+( tv)' z+ut]
Wan = -2akue W e (4.24)

where, II is the kinematic viscosity of the fluid, Z is the depth of water and Rw is the

wave Reynolds number, which is defined as

(4.25)

The behavior of the vorticity field is shown in figure 4.21. From the exponential of real

argument we can see that the vorticity is damped to zero exponentially in an oscillatory

manner with the increase in water depth z,

The vorticity profile produced by the inviscid rotational Gerstner wave can be found

from Lamb (1930)

W=
2a2 k2ue2kzo
1- a2k2e2kzo (4.26)

where Zo is a parameter given by

x = ~ + aekzo sinO
k

z = Zo - aekzo cos 0

(4.27)

(4.28)
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Figure 4.22: Nondimensional vorticity (w) of case Cl.

The vorticity is damped in the Gerstner's wave but does not produce oscillations, which

indicates that water rotates in the same direction in the whole domain.

The num rical results for the vorticity fields under the water waves for cases Cl, C2

and C3 are shown in figures 4.22,4.23 and 4.24 respectively. They reveal the oscillatory

distribution of the vorticity, which indicates that water rotates in different directions

in different parts of the domain. In these figures we observe a periodic thick layer

of active vorticity near the water surface. The magnitude of the vorticity becomes

smaller and reduces to zero with increase in the depth. In all the cases, the values

of nondim nsional vorticity are almost the same, this indicates that the vorticity w is

proportional to aka. Small variation in the vorticity near the bottom boundary is still

clearly visible in th intermediate depth water wave in case Cl as seen in figure 4.22,

to be visible.

while for the de p water waves in cases C2 and C3 the vorticity has become too small

We now analyze a typical wave to reveal the details of vorticity for the cases Cl,

C2 and C3. In both cases Cl and C2, referring to intermediate depth water waves and
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Figure 4.23: Nondimensional vorticity (LJ) of case C2.

Figure 4.24: Nondimensional vorticity (LJ) of case C3.
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Figure 4.25: Nondimensional vorticity (w) in a typical wave of case Cl.
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Figure 4.26: Nondimensional vorticity (w) in a typical wave of case C2.
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Figure 4.27: Nondimensional vorticity (w) in a typical wave of case C3.

deep water waves as seen in figures 4.25 and 4.26 respectively, the vorticity contours

show a similar magnitude of vorticity near the water surface. Along the free surface,

the vorticity changes from negative maximum at the trough to positive maximum at

the crest. The vorticity in the crest and trough is different in direction signifying

the 'anticlockwise' and 'clockwise' rotation of the fluid respectively. A layer of negative

vorticity extends from trough to trough and we observe from this layer down to the bed

that the layers with positive and negative vorticity reduces to smaller values with the

increas in the water depth. The minor difference between case Cl and C2, as observed

in figur s 4.25 and 4.26 respectively is that in the troughs, intermediate depth water

wave has higher vorticity because of effect of the bed. The vorticity in case C3 is

shown in figure 4.27. The distribution of vorticity in case C3, even with a different

wave steepn ss, shows much similarity with the previous two cases. We observe that

a layer with positive vorticity near the free surface in case C3 extends horizontally

further to the trough as compared with case Cl and case C2 and the large vorticity

layer is thinner for smaller ak compared with case Cl and case C2.
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Figure 4.28: In case Cl: x/L = 0, thick black line is the current numerical
simulation result, dotted line is the analytical solution for Gerstner's wave (Lamb
1930), grey line is the analytical solution of low Reynolds number flow (Kinsman
1965).
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Figure 4.29: In case C2: x/L = 0, thick black line is the current numerical
simulation result, dotted line is the analytical solution for Gerstner's wave (Lamb
1930), grey line is the analytical solution of low Reynolds number flow (Kinsman
1965).
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Figure 4.30: In case C3: x/L = 0, thick black line is the current numerical
simulation result, dotted line is the analytical solution for Gerstner's wave (Lamb
1930), grey line is the analytical solution of low Reynolds number flow (Kinsman
1965).

To further investigate the behavior of vorticity along the depth, nondimensional

vorticity vs nondimensional height is plotted at 5 different locations (x/L = 0, 0.25,

0.5, 0.75, 1) and compared with the analytical solutions given by Lamb (1930) for

the Gerstner's trochoidal waves and for the low Reynolds number flow as outlined by

Kinsman (1965). The analytical solutions are plotted at locations x/L = 0, 0.5 and

1 as they are the main region of interest. From figures 4.28, 4.29, 4.30, 4.31, 4.32,

4.33, 4.34, 4.35, 4.36, 4.37, 4.38, 4.39, 4.40, 4.41 and 4.42, we can observe a remarkable

similarity in vorticity behavior with the depth at various locations. The magnitude

of vorticity and thickness of vorticity layer predicted by the numerical solutions of

the viscous flow are much larger than the analytical solutions. The solution for the

low Reynolds number flow suggests a very thin layer of vorticity just below the water

surface and the vorticity generated on the water surface quickly reduces to zero. This

is because a low Reynolds number flow is a very viscous flow and viscosity not only

prevents the production of large vorticity but also slows down the rotation of the flow



Chapter 4: Interactions of water waves with zero average wind velocities 87

0.7

0.9

~0.8

0.6

0.5'---"__-"__-~-~-_'_-_'_-__'_----'--___..L---'
-5 -4 -3 -2 -1 0 2 3 4 5

roI(2akcr)

Figure 4.31: In case Cl: xjL = 0.25, thick black line is the current numerical
simulation result.

very rapidly in a very thin layer. On the other hand, the solution for the Gerstner's

wave is damped less quickly with depth but without oscillations. Both these solutions

are found inadequate at explaining the magnitude and direction of vorticity in terms

of correct understanding.

Figure 4.28, figure 4.29 and figure 4.30 depict the vorticity magnitude varying with

depth under the trough of the wave at xjL = 0 in three different cases. On comparing

them with analytical vorticity magnitude we observe much higher 'clockwise' rotating

vortices of viscous flow in all three cases. Moving further downstream to xjL = 0.25,

we observe, from figures 4.31, 4.32 and 4.33, that the magnitude of the vorticity at

the free surface is close to zero, but a thick vorticity layer and oscillatory behavior is

produced by viscous flow as expected while the magnitude of the vorticity is nearly the

same in all cases.

As we move towards the crest at xjL = 0.5, from figures 4.34, 4.35 and 4.36, we

observe the 'anticlockwise' rotation of water flow attributed to the positive vorticity

in a very thin region of the free surface. The maximum value of positive vorticity
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Figure 4.32: In case C2: x/L = 0.25, thick black line is the current numerical
simulation result.

0.9

0.7

~0.8

0.6

0.5 L....----I_---I._--L_--..L._---L_~ _ __'__ _,_ _ _'_____..J

-5 -4 -3 -2 -1 0 1 2 3 4 5
CJ)/(2akcr)

Figure 4.33: In case C3: x/L = 0.25, thick black line is the current numerical
simulation result.
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Figure 4.34: In case Cl: x/L = 0.5, thick black line is the current numerical
simulation result, dotted line is the analytical solution for Gerstner's wave (Lamb
1930), grey line is the analytical solution of low Reynolds number flow (Kinsman
1965).
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Figure 4.35: In case C2: x/L = 0.5, thick black line is the current numerical
simulation result, dotted line is the analytical solution for Gerstner's wave (Lamb
1930), grey line is the analytical solution of low Reynolds number flow (Kinsman
1965).
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Figure 4.36: In case C3: x/L = 0.5, thick black line is the current numerical
simulation result, dotted line is the analytical solution for Gerstner's wave (Lamb
1930), grey line is the analytical solution of low Reynolds number flow (Kinsman
1965).
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Figure 4.37: In case Cl: x/L = 0.75, thick black line is the current numerical
simulation result.
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Figure 4.38: In case C2: xjL = 0.75, thick black line is the current numerical
simulation result.
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Figure 4.39: In case C3: xjL = 0.75, thick black line is the current numerical
simulation result.
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Figure 4.40: In case Cl: x/L = 1, thick black line is the current numerical
simulation result, dotted line is the analytical solution for Gerstner's wave (Lamb
1930), grey line is the analytical solution of low Reynolds number flow (Kinsman
1965).
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Figure 4.41: In case C2: x/L = 1, thick black line is the current numerical
simulation result, dotted line is the analytical solution for Gerstner's wave (Lamb
1930), grey line is the analytical solution of low Reynolds number flow (Kinsman
1965).
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Figure 4.42: In case C3: x/L = 1, thick black line is the current numerical
simulation result, dotted line is the analytical solution for Gerstner's wave (Lamb
1930), grey line is the analytical solution of low Reynolds number flow (Kinsman
1965).

is observed on the free surface at the crest, moreover, the maximum positive value

observed on the crest is much higher than the maximum negative values at x/L = 0

and x/L = 0.5. Again much higher vorticity magnitude and thickness is observed than

predicted by the theories. We observe higher negative vorticity immediately below

the positive vorticity region which is very different from the analytical value. We also

observe other oscillations as we move along the depth. Moving down to the lee side of

the wave at x/L = 0.75 as seen in figures 4.37,4.38 and 4.39, the vorticity distributions

are nearly repeated in magnitude and rotation along the depth and similar to location

x/L = 0.25. As we move toward the end of the wave at x/L = 1, we observe in figures

4.40, 4.41 and 4.42 the vorticity pattern being repeated in magnitude and rotation

similar to that at x/L = O.
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Figure 4.43: Nondimensional shear stress (7') contours of case C1.

4.6 Shear stress

Nondimensionalized shear stress in the flow T is defined by

where

(au av)
Trn. = J.Lm ay + ax

(4.29)

(4.30)

The distributions of nondimensionalized shear stress in the domain for cases Cl,

C2 and C3 are shown in figures 4.43, 4.44 and 4.45 respectively. The shear stress in the

air regions above the free surface shows much less variation in all the three cases and

is small compared to the water, hence aiding the assumption about the magnitude of

shear stress being considered to be zero on the free surface in majority of the theoretical

studies. We observe that in all cases the shear stress distributions show high degree of

similarity. The most important feature is the existence of a periodic thick layer of shear
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Figure 4.44: Nondimensional shear stress (:r) contours of case C2.
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Figure 4.45: Nondimensional shear stress (:r) contours of case C3.
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Figure 4.46: Nondimensional shear stress (7) contours in a typical wave in case
Cl.
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Figure 4.47: Nondimensional shear stress (7) contours in a typical wave in case
C2.
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Figure 4.48: Nondimensional shear stress (1") contours in a typical wave in case
C3.

str ss und r the water surface. From the free surface to inside of the water, shear stress

increas s rapidly under the crest and trough. A negative shear stress layer is observed

near the crest and under this layer there is a positive shear layer. Under the crest, this

positive shear stress layer extends into a region extending to the bottom and under

the trough the positive shear stress layer oscillates to a negative shear stress region

extending to the bottom and the magnitude of shear stress becomes smaller with the

increase in the depth. Vyeobserve in all the 3 cases that a maximum shear stress which

is positive is inside the water but close to the free surface of the crest. Under the large

shear stress layer near the free surface, most of the domain of water wave is divided

into vertical stripes by vertical lines on which the shear stress is zero, in the stripes

under the crest the shear stress is positive and under the trough it is negative.

We analyze a typical wave from all three cases by a detailed observation. The

shear stress contours in one wavelength for cases Cl, C2 and C3 are shown in figure

4.46, 4.47 and 4.48 r sp ctively. In case Cl, we observe that positive shear stress layer
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is more evenly distributed under the trough than in case C2. Moreover, similar to

vorticity distribution in case C3, which has smaller wave steepness, a thinner negative

shear layer under the crest stretches to the trough where shear stress is positive. On

comparing case Cl with case C2 and C3, we observe that shear stress in intermediate

depth water is higher than that in deep water, namely in intermediate depth water,

shear stress on the surface of the bed is bigger than that in the deep water, therefore,

the bed has less effect on the flow in the deep water. Similar to vorticity distributions,

compared to case Cl and C2, in case C3, we observe a higher extent of the negative

shear stress region near the free surface and the a thin large shear stress layer due to

lower steepness value.

4.7 Closure

In this chapter the analysis of the numerical results obtained for the interactions of wa-

ter waves with air when the average wind velocity is zero were compared and discussed

with available experimental and analytical results. The numerical results of several less

studied aspects of water waves such as vorticity and shear stress were presented which

will be useful while analyzing the interactions of air with water waves under forced air

convection. The volume of fluid developed by Zwart et al. (2007) was able to capture

the free surface with high accuracy. The level of accuracy for interface capturing was

found quite satisfactory for simulating two fluid transient water waves. However we

also observed the interface smearing on the beach end where the wave breaks due to

relatively coarse mesh. The cases presented in these chapter also illustrated the ca-

pability of the solver to accurately predict the water wave interface. We now proceed

towards the main area of interest which is simulation of progressive water waves under

the action of wind.



Chapter 5

Interaction of deep water waves

with air blowing at different

velocities

5.1 Introduction

In this chapter we investigate the behaviour of water waves under the effect of air

blowing at different velocities in the case of deep water waves. We consider waves of

steepness 0.06 similar to the deep water waves studied in the chapter 4. The wind

velocities considered here are 1) average wind velocity, V' = 0, 2) V' = Umax, where

Umax is maximum velocity in water, 3) V' ~ 0.5c and 4) V' = c.

In the past, several studies have been carried out to simulate air flow over the water

waves and some of these have already been discussed in the chapter 1. Fulgosi et al.

(2003) carried out DNS study of turbulence with deformable air-water interface in the

capillary wave regime. However, this study had a very small domain, small wave slope

99
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and is not applicable to simulate strong topological changes and wave break. Several

experimental investigation have been carried out in the past to study the structure of

turbulent flow over the progressive waves; a paper by Hsu and Hsu (1983) is one of

them. They regarded the surface condition for wind as supersmooth and found that

the current supports lower mean turbulent shear stress relative to that supported by

a smooth flat plate and that the structure of wave-induced velocity field is sensitive to

the height of the critical layer. It was found that, the energy received by the wave is

mainly delivered by wave-induced pressure and wind turbulence has little contribution

in the direct energy input. We use fixed frame of reference as it is simple and flow

motion is relatively easy to visualize than the moving reference frame which may be

more difficult for flow visualization if the mean flow does not follow the waveform. The

main objective of current study is to improve our understanding on the structure of

the mean wind and wave fields. There are several unanswered questions regarding the

importance of surface orbital velocity and stokes layer at the interface and its effect

on the viscous sub-layer. The inviscid approximation of the potential flow and other

works do not provide a solution mechanism for momentum exchange between air and

water. Several other questions that we are looking to answer is how the structures of

mean flow, streamlines, pressure isolines, vorticity, shear stress change with the space

and time and its importance in accurate analysis of air-water exchange in presence

of wave. In the earlier chapter, we discussed the behaviour of viscous water waves

and analyzed the related flow behaviour in the water side of the domain excluding the

analysis of air side of the flow. Here, we will attempt to give a systematic description

of mean wind and wave fields in the cases when the average wind velocity is greater

than zero. In order to do this, we need to first look at the case of zero average wind

speed to explore wave-perturbed flow field and analyze the structure of the Stokes layer

under laminar conditions in the deep water waves. Then, the air flow is introduced

over the progressive water waves, but the wind speed is still within the range of V' = c.

At these wind speed, the critical layer does not have any significant role in describing

wave-induced flow fields and the waves can be considered fast waves. The effect of
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mean wind on the wave-induced flow and vice versa in this air-water system can be

discussed. At higher wind speeds the turbulent flow is much more complex and affected

by varied length scales which requires very high resolution grid than the computational

power available. The alternative is to use turbulence closure models which are equally

complex to verify and produces different results based on the ability of the model to

capture turbulence. Xu et al. {1994}used several turbulence closure schemes to predict

air flow over sinusoidal terrain and found that different turbulence closure schemes gave

different results and also found that higher order turbulence schemes produced better

results.

In this chapter, four case studies are discussed to get a detailed view of air-water

wave interaction in deep water. All the cases considered are low Proude number cases

which can be considered subcritical flow.

5.2 Case study 1: Zero average wind velocity,

V' = 0

In this case study, the motion in the air above deep water waves when average wind

velocity is zero is investigated. All the quantities are nondimensionalized as discussed

in the previous chapter. The discussion in this case is largely restricted to the air side

of the domain.

5.2.1 Velocity vectors and streamlines in the deep water

waves

5.2.1.1 Velocity vectors

The numerical results for velocity vectors in the air and water in the domain and a

typical wave are shown in figures 5.1, 5.2 and 5.3. In the case of viscous flow in

the deep water wave, along the x-axis, we observe that the movement of air follows
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Figure 5.1: Nondimensional velocity vectors in the domain of viscous flow in deep
water wave case; V' = O.
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Figure 5.2: Nondimensional velocity vectors in a typical wave of viscous flow
in deep water wave case; V' = 0, the lines are the contours of magnitude of
nondimensional velocity.
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Figure 5.3: Nondimensional velocity vectors in a typical wave of viscous flow in
deep water wave case in specified area; V' = o.
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Figure 5.4: Nondimensional velocity vectors in a typical wave of viscous flow in
deep water wave case with moving reference frame; u - c; V' = o.
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the orbital movement of water beneath it. We observe recirculations in the air above

the crest and the trough of the wave. These recirculations are mainly due to pressure

difference between the windward side and lee side of the wave causing the air to follow

the orbital movement in the water. We also observe small acceleration of air above the

recirculation in the trough of the wave due to push and pull effect at the front and

end of the recirculation zone. Figure 5.2 shows nondimensional velocity vectors and

nondimensional RMS (root mean square) velocity contours in a typical wave. Along the

y-axis in the air side the velocity progressively decreases as expected. The maximum

observed velocity in the air is nearly of same magnitude relative to maximum velocity

in the water which is observed near the crest of the wave. These results shows the

importance of ''wave induced" velocity components. When the wind is moving from

left to right these components are opposite in direction to the mean airflow in the

crest region and towards the airflow direction in the trough region. Similarly, figure

S.3 shows the specific area of interest in a typical wave. It clearly shows the separation

points where air changes its direction to follow the orbital movement in the water. In a

moving reference frame, the velocity vectors are as shown in figure S.4. The flow is seen

from right to left as wave velocity is relatively higher compared with mean velocity in

the air and water. In the water, we observe higher forward velocity in the crest region.

5.2.1.2 Streamlines

The streamlines in the air and water section of the domain is shown in figures 5.S, 5.6

and S.7. The streamline topology of mean flow field provides an good overall picture of

the flow in the water and air near the progressive wave. The streamlines are uniformly

distributed across the domain as expected. The recirculation in the air and orbital

movement in the water is also observed and are similar to that predicted by velocity

vectors. The analysis of streamlines in a typical wave shows that by locating "zero

stream function contour" on the surface we can actually know the precise location

where air changes its direction and follows the orbital movement in the water wave. A

more detailed area of interest near to the free surface is shown in the figure S.7.
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Figure 5.5: Str amlines in the domain of viscous flow in deep water wave case;
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Figur 5.6: Streamlines in a typical wave of viscous flow in deep water wave case;
V'=O.
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Figure 5.7: Streamlines in a typical wave of viscous flow in deep water wave case
in specified area; V' = O.

5.2.2 Dissipation function In the deep water waves

Th dissipation of energy in the water wave is primarily due to viscous stresses. The

effect due to viscous stresses as a result of deformation of fluid particle in progressive

water waves is calculated by dissipation function given by

{ [(au) 2 (av) 2] (au av) 2}
¢ = J.Lm 2 ax + ay + ay + ax (5.1)

and is nondimensionalized by,

{ [( )2 ( )2] ( )2}¢ J.Lm 2 au av au av
= J.Lw(2aka)2 ax + ay + ay + ax (5.2)

The plots of energy dissipation function in the domain and a typical wave are shown

in figures 5.8, 5.9 and 5.10.

The energy dissipation function in the domain shows high dissipation in the crest

and trough of the wave. The observed value of highest dissipation in the air is just above

the crest of the wave while the highest dissipation in the water is observed under the

water at some distance below the crest of the wave. The dissipation is also high in the

water below the trough of the wave while in the air above the trough the dissipation has

lower magnitude. We can attribute this behaviour to relatively higher orbital velocity
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Figur 5. : En rgy dissipation in the domain of viscous flow in deep water wave
a ; V' = O.
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Figur 5.9: sn rgy dis ipation in a typical wave of viscous flow in deep water
wav ea ; V' = O.
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Figure 5.10: Energy dissipation in a typical wave of viscous flow in deep water
wave case in specified area; V' = O.

in the water and air near the crest of the wave which leads to higher viscous effects in

those regions. A small increase in energy dissipation is also observed along x-axis as

the amplitude of the wav reduces due to attenuation.

5.2.3 Vorticity in the deep water waves

The vorticity distribution in the domain and a typical wave of deep water waves is

shown in th figures 5.11 and 5.12. As observed in figure 5.ll, vorticity is uniformly

distributed on ach wave along the length of the domain. The magnitude of vorticity

distribution in the air is much higher due to higher gradients observed in the air near

the interface due to low density and viscosity. The vorticity in the air and water quickly

reduces to zero along the depth. In a typical wave, the distribution of vorticity is shown

in th figur 5.12. We observe positive vorticity in the crest of the wave in both air

and water domain. The vorticity in the air above the crest is more than twice the

maximum vorticity observed in the water. A layer of positive vorticity can be seen

extending on both sides of wave crest till the air flow changes its direction at location

near x/L = 0.25 and 0.75. As we move forward towards the trough of the wave, a layer

of negative vorticity is observed both in air and water. Above this layer, a thin layer

of positive vorticity is seen which extends on both the trough and crest of the wave.

The maximum vorticity in the air above the crest and trough of the wave is more than
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Figure 5.11: Vorticity in the domain of viscous flow in deep water wave case;
V' =0.

twice the maximum vorticity observed in the water mainly due to higher gradient in

the air about the trough of th wave. We observe both negative and positive vorticity

layers in the air above the trough of the wave. A more specific details on the vorticity

near th free surface can be seen in figure 5.13.

5.2.4 Shear stress in the deep water waves

The sh ar stress distribution in the domain and a typical wave of deep water waves is

shown in th figures 5.14 and 5.15. As observed in figure 5.14, the shear stress shows

uniform distribution on each wave along the length of the domain as expected. Along

the x-axis in the air, we observe vertical strips of positive and negative shear stress above

the crest and trough of the wave respectively which are similar to those observed in the

water below the free surface. Figure 5.15 shows that the magnitude of nondimensional

shear stress in the air is nearly zero in crest and trough of the wave corroborating

the assumption about shear stress being considered zero on the free surface in major

theoretical studies done in the past including Lundgren & Koumoutsakos (1999). A

thin positive shear layer is also observed in the trough of the wave above the free surface

in the air. A detailed vi w of near surface shear stress can be observed in figure 5.16.
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Figure 5.12: Vorticity in a typical wave of viscous flow in deep water wave case;
V'=O.

-35 -30 -25 -20 -15 -10 -5 0 5 10

lA

1.2
<!2
>. 1

0.8
0 0.5 1.5

xlL

Figure 5.13: Vorticity in a typical wave of viscous flow in deep water wave case
in a specified area; V' = O.



Chapter 5: Interaction of deep water waves with air blowing at different velocities 111

-2.5 -2 -1 0 2 3 4 5 6

2
1.8
1.6
1.4

s: 1.2
-.. 1
>. 0.8

0.6
0.4
0.2
0
0 2 3 4

x/L

Figur 5.14: Shear stress in the domain of viscous flow in deep water wave case;
V'=O.
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Figure 5.15: Shear stress in a typical wave of viscous flow in deep water wave
case; V' = O.
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Figure 5.16: Shear stress in a typical wave of viscous flow in deep water wave
cas in a p ifi d ar a; V' = O.

5.3 Case study 2: V' == Maximum water velocity

< Wave speed, c

In this section, we discuss the numerical results obtained when a wind is forced over the

water waves with av rage wind velocity equal to maximum velocity in the water. We

choose this case to investigate the air-water wave interaction at very low wind speed

as the turbul nee effects ar very less. The wind is assumed to blow in same direction

as wav propagation. Both the air and water side of the domain will be discussed

simultaneously in this section.

5.3.1 Velocity vectors and streamlines in deep water waves

at very low wind velocity

5.3.1.1 v locity vectors

The numerical results for velocity vectors in the air and water in a typical wave are

shown in figures 5.17 and 5.18. The distribution of velocity vectors in the domain

is excluded as w- ob erve repeated velocity vector pattern throughout the length of

th domain. The observation of the contours of velocity magnitude from the figure

5.17 shows an increase in the velocity in the air above the crest and trough of the
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Figure 5.17: Velocity vectors in a typical wave of viscous flow in deep water wave
case; V' = maximum water velocity < c, the lines are the contours of magnitude
of nondimensional v locity.
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Figure 5.18: Velocity vectors in a typical wave of viscous flow in deep water wave
case in specifi d area; V' = maximum water velocity < c.
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Figure 5.19: Nondimensional velocity vectors in a typical wave of viscous flow in
deep water wave case with moving reference frame; u - c; V' = maximum water
velocity < c.

wave. This is due to additional push that air experiences apart from its own u velocity

component transferring momentum from the wave crest to the air immediately above

it. In the trough on the other hand due to low air velocity the general tendency

of air is to remain attached to the water surface but due to presence of wave and

recirculation above the trough, the air above the recirculation zone accelerates after

gaining additional momentum. From the contours of the velocity we also observe an

15% increase in the maximum velocity in the water near the crest of the wave which

is result of direct momentum exchange between air and water. Overall, we observe

a very small increase in water velocity than the case where average wind velocity is

zero. Above the crest of the wave, the forward moving air experiences higher drag due

to vertical velocity in the water and adverse pressure gradient leading to random air

movement. A more detailed velocity vectors are shown in the figure 5.18. In a moving

reference frame, the velocity vectors are shown in figure 5.19. It shows relatively higher

forward moving velocity near the free surface in both air and water.
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Figure 5.20: Str amlines in a typical wave of viscous flow in deep water wave
case; V' = maximum water velocity < c.

5.3.1.2 Streamlines

The numerical results for streamlines in the air and water in a typical wave are shown in

figur s 5.20 and 5.21. The observation of streamlines shows recirculation zone near the

trough of th wave similar to velocity vectors discussed earlier. The effect of orbital

veloci ty on the air above the crest and trough is visible. The streamlines shows an

increas and decrease in flux in the trough and crest region respectively. Thus at very

is moving at high velocity.

low wind spe d or incase of fast waves we will observe much higher drag than when air

5.3.2 Dynamic pressure isolines in water

The dynamic pr ssure isolines in the domain and a typical wave are shown in the

figures 5.22 and 5.23 respectively. The pressure isolines along the domain shows evenly

distribut d contours. We can observe the change in the dynamic pressure from the case

wher average wind velocity was zero (refer figure 4.6). The isolines observed in this
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Figur 5.21: Streamlines in a typical wave of viscous flow in deep water wave
case in specifi d area; V' = maximum water velocity < c.
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Figure 5.22: Pressure isolines in the domain of viscous flow in deep water wave
case; V' = maximum water velocity < c.
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Figure 5.23: Pr ssure isolin s in a typical wave of viscous flow in deep water wave
case; V' = maximum water velocity < c.

cas have increas d in the value near the crest of the wave and reduced to a lower value

near the trough of the wave indicating reduced velocity in the trough and increased

velocity in the crest of the wave. This difference in the isolines is mainly due to small

change in the wave profile and velocity in proximity to free surface of the wave.

5.3.3 Vorticity in the air and water

The vorticity contours in the domain and a typical wave are shown in the figures

5.24 and 5.25. Along the x-axis in the figure 5.24, we observe continuous layer of

negative vorticity in the water. In the air, near the crest of the wave, the extent of

the positive vorticity is reduced due to presence of air moving with finite velocity in

the forward direction which helps to reduce the anticlockwise rotation of air above the

crest of the wave. In the trough of the wave, we observe an increase in the clockwise

rotational movement of the air due to forward movement of air which has increases the

extent and magnitude of "negative" vorticity. The contour shown in a typical wave in

figure 5.25 shows the magnitude of positive and negative vorticity in the air and water
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Figure 5.24: Vorticity in the domain of viscous flow in deep water wave case; V'
= maximum water velocity < c.

region. The notable feature is the change of positive vorticity layer that is observed in

the water side of the crest of the wave (when the average wind velocity is zero) to a

negative vorticity layer when the air is blowing over the water wave. This is significant

observation as a result of air-water interaction and momentum exchange. In the air

of the trough of the wave, we observe a two times increase in the maximum value of

"negative vorticity" while in the water we observe an 50% increase in the maximum

negative value of vorticity as clockwise rotation caused by forward moving air helps

the corresponding clockwise rotation in the water. Along the x-axis, inside the water

below the negative vorticity layer, we can see a positive vorticity layer with a smaller

magnitude. In the air, high above the crest and trough we observe a positive vorticity

layer of higher magnitude than earlier case. Further along the depth in both air and

water, the vorticity is small. A more detailed view of vorticity can be seen in figure

5.26.

5.3.4 Shear stress in the arr and water

The shear stress contours in the domain of a typical wave are shown in the figures 5.27

and 5.28. Along the length of the domain in the figure 5.27, we observe a layer of

positive shear stress near the water surface. Below this layer vertical strips of positive
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Figure 5.25: Vorticity in a typical wave of viscous flow in deep water wave case;
V' = maximum wat r velocity < c.
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Figure 5.26: Vorticity in a typical wave of viscous flow in deep water wave case
in sp ifi d area; V' = maximum water velocity < c.
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and negative shear stresses are observed below crest and trough of the wave respectively.

The layer of negative shear stress that was observed in case with zero average wind

speed is replaced by positive shear stress layer in crest and trough of the wave. In the

air from the figure 5.27 we can observe vertical strips with small shear stress. In the

typical wave as shown in the figure 5.28, we see that the magnitude of positive shear

stress have increased by more than two times in the crest than the trough of the wave.

In the trough of the wave inside the water, the magnitude of maximum positive shear

stress is three times that observed in the case when average wind velocity is zero. In

the crest, the negative shear stress is replaced by positive shear stress which is more

than 4 times the maximum negative shear stress observed in the same region and more

than twice the maximum positive shear stress observed inside the water below the wave

in the case when average wind velocity is zero. Thus a larger shear is observed in both

crest and trough of the wave. Below the positive shear layer, shear stress structure,

magnitude and distribution patterns are not significantly different from the earlier case

when average wind velocity is zero. In the air, we observe a thin layer with large shear

stress just above the trough of the wave as a result of action of wind. This shear layer

extends from the leeward side to the windward side of the wave and the magnitude

of the shear stress is not large compared to that observed in water below it. A more

specific details can be seen in figure 5.29.

5.3.5 Energy density in the domain

The energy density variation along the length of the domain when the wind is blowing

with very low velocity over the deep water wave is shown in the figure 5.30. On

comparing the time averaged energy density variation shown in figure 5.30 with that in

figure 4.2, we observe that the energy density shows a small increase in the magnitude

along the length of the domain. In other words, although the wave has not grown but

the energy dissipation in the wave is reduced and the water waves have gained energy

which is equivalent to 2% of total wave energy from the wind above it. We also observe

that this gain of energy is in the form of constant increase in the kinetic energy inside
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Figur 5.27: h ar stress in the domain of viscous flow in deep water wave case;
V' = maximum water velocity < c.
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Figure 5.29: Shear stress in a typical wave of viscous flow in deep water wave
cas in specified area; V' = maximum water velocity < c.
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the wave which is due to orbital velocity in the water. The potential energy shows very

small variation in the energy density.

5.4 Case study 3: V'

velocity

0.5 c > Maximum water

In this section, we discuss the numerical results obtained when the wind is forced over

the water waves with average wind velocity equal to half of water wave velocity, c. We

chose this case to investigate the air-water interaction as a logical stepwise increase in

wind velocity in order to study the effect of higher wind speed on energy exchange.

Both the air and water sides of the domain will be discussed simultaneously in this

section.

5.4.0.1 Velocity vectors

The numerical results for velocity vectors in the air and water in a typical wave are

shown in figures 5.31 and 5.32. When analyzing the vectors and contours of magnitude

of nondimensional velocity in figure 5.31 we observe an increase in the maximum water

velocity in the crest of the wave and decrease in water velocity just above the bottom

boundary, which indicates that water reduces its velocity near the bottom and more

momentum transfer takes place below the crest and trough of the wave than in other

parts of the fluid. In the air, we observe higher mean velocity both in the crest and

above the recirculation zone in the trough of the wave. On comparing the velocity

contours in the water with low wind velocity case discussed earlier as seen in the figure

5.17 we observe higher extent of velocity contours of magnitude 0.6 extending from

the crest of the wave to the trough, indicating an increase in the orbital velocity of

the water below the crest and trough of the wave. We also observe that the extent

of velocity contours with higher magnitude has increased below the crest and trough,

which demonstrates the momentum exchange from the air to the water below it. A
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Figure 5.31: Nondimensional velocity vectors in a typical wave of viscous flow
in deep water wave case; V' = 0.5 c, the lines are the contours of magnitude of
nondimensional velocity.

more d tailed view of the velocity vector near the water wave is shown in the figure

5.32. In a moving reference frame the velocity vectors are seen in figure 5.33. It shows

recirculation in the crest and trough region of the wave in the air due to higher velocity

in the air. The movement of air is also seen more random than that observed in a fixed

reference frame.

5.4.0.2 Streamlines

The numerical results for streamlines in the air and water in a typical wave is shown in

figures 5.34. It shows all aspects discussed in the earlier subsection of velocity vectors.

A more detailed observation in the trough of the wave shows an decrease in the thickness

of the recirculation zone in the trough of the wav . This indicates that the tendency

in the air with the increase in wind speed is to attach to the water surface and thereby

reduce the size of the recirculation zone. The outcome of this phenomenon accelerates

the air above the trough faster than the mean wind velocity leading to an increase of
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Figure 5.32: Nondimensional velocity vectors in a typical wave of viscous flow in
deep water wave case in specified area; V' = 0.5 c.
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Figure 5.33: Nondimensional velocity vectors in a typical wave of viscous flow in
deep water wave case with moving reference frame; u - c; V' = 0.5 c.
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Figure 5.34: Streamlines in a typical wave of viscous flow in deep water wave
case; V' = 0.5 c.

mass flux in the region which can be observed from figure 5.34. On comparing the

streamlines with the earlier cases when average wind velocity is low or zero, above the

crest and trough we observe that wind has fully overcome the wave resistance of anti-

strong pressure gradient in recirculation zone in the trough of the wave.

clockwise moving water particles and is firmly attached to the wave till it encounters a

5.4.1 Dynamic pressure isolines in water

The numerical results for dynamic pressure isolines in the domain and a typical wave

ar shown in figure 5.35. Along the length of the domain, figure 5.35 shows higher

dynamic pressure isolines in the crest of wave than earlier cases corresponding to an

increase in effect of dynamic pressure in the crest. This increase is also uniformly

distributed along the whole domain in all the crest and trough region. Since, the

dynamic pressure isolines are very sensitive to small change in the pressure, we can

observe lot of variability in isolines below the wave. The higher dynamic pressure in

the crest signifies increased distribution of dynamic pressure below the crest region
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Figur 5.35: Pr ssure isolines in a typical wave of viscous flow in deep water wave
case; V' = 0.5 c.

which al 0 affects the region under the trough. It is worthwhile to study the sensitivity

of dynamic pressure as it is often used in the laboratory studies. Figure 5.35 shows

pressure in the water below the trough.

lower value of pressure isolines in the trough region indicating reduction in the dynamic

5.4.2 Vorticity in the air and water

The num rical result for the vorticity in the air and water in the domain and a typical

wave when the average wind velocity is O.5c are shown in figures 5.36 and 5.37 respec-

tively. In th water, we observe a layer of negative vorticity along the water surface.

VI< al 0 obs rve negative vorticity layer in the air just above the water surface, the

magnitude of which is highest in the trough and lowest in th crest of the wave. The

negativ vorti ity i diffused into the air progressively on each waves along the length

of the domain while the maximum positive vorticity in the air observed above the

trough on the windward side of the slope reduces progressively, indicating a diffusion

of vorticity in the air. The depth of diffusion of vorticity in the air is also observed to
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Figur 5.36: Vorticity in the domain of viscous flow in deep water wave case; V'
= 0.5 c.

be much higher than earlier cases. A typical wave shown in figure 5.37 shows higher

maximum magnitude of vorticity in the trough and on the slope on the windward side

indicating a dynamically active air region while in the crest of the wave a negative

vorticity is bserv d due to strong action of wind. This forward moving air flow with

n gative vorticity moves the positive vorticity in the crest region as observed in earlier

ca es (r fer figure 5.25) higher up and forms a negative vorticity layer by forcing the

air mass ncar the free surface to rotate in clockwise direction. The maximum value of

n gativ vorticity obs rv d in this case is 3 times of the maximum value observed in

the earlier ase with low wind velocity as seen in figure 5.25. In the water side near the

free surface, we observe higher negative vorticity in the crest and trough region while

positive vorticity in the water is moved inside the water below the negative vorticity

lay rand r due s in magnitude. In the lower region in the water we observe a very

small vorticity. The extent of diffusion of vorticity in the air is much higher than the

water. A mor specific details on vorticity can be seen in figure 5.38.

5.4.3 Shear stress in the air and water

Til numerical results for the shear stress in the air and water when the average wind

velocity is D.5e ar shown in figures 5.39 and 5.40. Along the length of the domain
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Figur 5.40: Shear stress in a typical wav of viscous flow in deep water wave
ase; V' = 0.5 .
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in a typical wave of viscous flow in deep water wave
,= 0.5 c.

b I w the fre surfa ,w b rv a layer of positive shear stress inside the water in

b h r st and trough. W al 0 obs rv a thin layer of negative shear stress of lower

rna nitud imm diat ly b low this positive shear layer. B low this negative shear layer

th crtical strips of p itiv and negativ shear stresses below the crest and trough of

th wa an b s n. In th air the positive hear tre is observed just above the

trough of th wa . Th anal i of a typical wave in figure 5.40 shows that in the air

h 'I atcr the positi shear lay r which is limited to the crest of the wave in the earlier

cas (r f r figur 5.2 ) now forms a ontinuous lay I' to the trough region in the water

an I xt nds t th r t of another wave. Thi positive shear layer is thicker at the

r t And pr grcssively become thinn I' as it reaches the trough. Similarly, the negative

shear la r which was Illy obs rv cl in id th water below the trough in the earlier

ea c (7 fer figur 5.2) an be en in th wat r below the positive shear layer in both

t rough an Ierst. This also indicate that the effect of viscosity in the wind wave case

is much higher than low or zero a rag wind velocity case. The maximum shear stress

ill tho ail' is about 14% of the maximum shear str s observed in the water. Although

th se rna nit udc is not v ry high, it I arly indicat s that air cannot be neglected when

t be wind is blowing at much high r wind speed and may hold key to understanding of

coupl I wind-v a bcha iour. mor p cific details can be seen in figure 5.41.
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Figure 5.42: Tim averaged energy density factor vs Xi V' = 0.5 c.

5.4.4 Energy density in the domain

The nergy d nsity variation along the length of the domain when the wind is blowing

with velocity equal to 0.5 c over the deep water wave is shown in the figure 5.42. On

omparing the time averag d energy density variation shown in figure 5.42 with that

in figur s 5.30 and 4.2, we obs rve that the nergy density of the wave shows increase

along the length of the domain. This increase is about 4% more than zero average

wind velocity case and about 2% more than low wind velocity case discussed earlier.

The pot ntial energy density factor does not show a major increase in the value while

kinetic energy in th water wav shows the most increase, which in turn contributes to

the total increas observed along the domain. These observations gives the vidence

of dir t energy exchange between air and water wave. This exchange is mainly by

mom ntum transf r from air to water resulting in increase of orbital velocity of the

wat r and producing the net iner ase in kinetic energy density of the water wave.
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5.5 Case study 4: V' = Wave speed, c

In this section, we discuss the numerical results obtained when the wind is forced over

water waves with an average wind velocity equal to water wave velocity, c. It is an

important case to investigate as the wind speed above this will certainly have higher

turbulent effects and waves can no longer be designated as fast waves. It has been

reported elsewhere by Hsu & Hsu (1981) that the critical layer effects can be seen

prominently around this wind speed condition and hence it is important to investigate

the wind-wave interaction at this wind speed.

5.5.0.1 Velocityvectors

The numerical results for velocity vectors in the air and water in a typical wave are

shown in figures 5.43 and 5.44. The observation of velocity contours shows higher

velocity in the air region and extremely small recirculation zone in the trough region

of the wave. The extent and magnitude of velocity in the water near the crest is higher

than earlier cases. We also observe higher velocity from the velocity contour in the

region of windward side of the water wave, indicating influx of momentum from air

which increases the orbital movement in the water leading to an increase in kinetic

energy inside the water wave. The observation of velocity vectors in figure 5.44 shows

that flow in the air remains attached to the free surface in most part of the wave due

to higher velocity in the air except in the small part near the trough. It also indicates

that after reaching a critical speed the air starts to dominate the flow leading to an

increase in air-water wave interaction and momentum exchange. The boundary layer

region near the free surface is more significant than other cases as the difference in the

velocity in the air and water waves is higher and wave surface acts as super smooth wall

to the airflow above it. In a moving reference frame as seen in figure 5.45, we observe

the velocity vectors with very small velocity indicating forward moving air with higher

velocity, Near the free surface we observe lower velocity in the air near the crest and

trough due to lower mean velocity under the water. Since the difference in velocity in
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Figure 5.45: Nondimensional velocity vectors in a typical wave of viscous flow in
deep water wave case with moving reference frame; u - c; V' = c.

the air and water is higher in this case, we observe higher shear stress at higher wind

speed than earlier cases.

5.5.0.2 Streamlines

The numerical results for streamlines in the air and water in a typical wave is shown in

the figure 5.46. The streamlines shows much lower effect of orbital velocity of water on

the airflow. It shows an increase in the velocity in both trough and crest of the wave.

Similar to the velocity vectors inside the water, it shows an increase in the velocity in

the crest of wave. The recirculation observed in the trough of the wave is extremely

small compared to earlier cases and the air flow can be practically considered attached

to the wave. The airflow is observed to be evenly distributed over the crest and the

trough of the wave.



Chapter 5: Interaction of deep water waves with air blowing at different velocities 136

2 1.4
1.8 1.2

1.6

1.4

1.2

~

0.2

0.5
xIL

1.5

Figure 5.46: Streamlines in a typical wave of viscous flow in deep water wave
cas; V' = c.

5.5.1 Dynamic pressure isolines in water

Th numerical results for pressure isolines in a typical wave is shown in the figure

5.47. Along the length of the domain we observe the distribution of pressure isolines.

The dynamic pressur isolines as observed in a typical wave shows maximum value in

the peak of the wave. An iner ase in the magnitude of pressure isolines indicates an

iner as in dynamic pressure in both crest and trough region of the wave. The isolines

r gion of th wav as compared to earlier cases.

in this case ha even distribution of dynamic pressure in both the crest and trough

5.5.2 Vorticity in the air and water

The numerical results for vorti ity in the domain of the water wave and a typical wave

ar shown in figur 5.4 and 5.49. Along the I ngth of the domain we observe an

in r as in thickness of the negative vorti ity layer in the water due to an increase in

velocity of the wind. W also observe in the air, a region of positive vorticity above
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Figure 5.47: Pressure isolines in a typical wave of viscous flow in deep water wave
case; V' = .

th negative vorticity layer above the trough of the wave. The magnitude of this

positive vorticity reduces along the length of the domain. We also observe diffusion of

vorticity in the air in the form of vorticity bubbles moving up above the slope on the

windward side of the wave near the crest of the wave into the air region above and

moving further up along the length. These vortex bubbles are evolved from the vortex

sheet n ar th interface and aft I' breaking it forms a distinct vorticity structure by

rolling. The diffusion of this vorticity is mainly due to the effect of viscosity. These

vortex structures are formed from the negative vorticity layer found over the trough of

the wave. When the wind velocity increases progressively the negative vorticity layer

thickens as seen from earlier cases and there is a reduction in resistance to movement

of air which h Ips to reduce the drag on the free surface. Inside the water below the

water surfac , we observe thicker negative vorticity layer along the length of the domain

while th magnitude of vorti ity quickly reduces to zero along the depth of the water.

Th magnitude of vorticity in a typical wave is shown in figure 5.49. It shows shift

of negativ vorticity layer just above the trough region towards the windward side on
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=

th slope of the wave whi h indi at that at higher v locity this region is dynamically

imp rtant ~ r mom ntum tran f r b twe n air and wat r. On comparing the case

with arlicr as s (ref r figur 5.37) w ob rve a 20% increase in negative vorticity

insid t h wat r in b th re t and trough of th wave. In the bottom we observe very

small vorticity ru arli l' as . Th positiv vorticity een near the top of the crest in

the wat l' in the cas f zer average wind velocity is clearly seen to be pushed down

int th wat r b th n gativ v rticity g nerat d due to air-water interaction and i

rcdistribut cl as th thick p itive vorticity lay r which extends along the length of the

wave. A m re detailed vi w is pre ent d in figure 5.50.

5.5.3 Sh ar tr s in the arr and water

h numerical r sul ts for the h ar tre in the domain of the water wave and a typical

wave ar sh wn in figures 5.51 and 5.52. In the air, a thick l' shear tress layer with

larg magnitude is obs r cd in th trougb of th wave as compared to artier case and

is s n to xt ne! to th Cl' st region n th wind, are! side of the wave. Above this

sh ar la er, t h magnitud is small in th air. car th crt, the shear str ss in the

ail' is small ill magnitud . We obs I've a thicker po itive bear stre s la er along the

length of the domain below the water wav on comparing it with earlier cas s (1' fer
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Figure 5.49: Vorticity in a typical wave of viscous flow in deep water wave case;
V' = c.
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Figure 5.50: Vorticity in a typical wave of viscous flow in deep water wave case
in specified area; V' = c.
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Figur 5.51: 8h ar tr s in the domain of viscous flow in deep water wave case;
V' = c.

figures 5.39 and 5.27), indi ating an increase in the shear effect near the free surface

in pr ne f wind with higher v locity. A n gative shear layer below the positive

11ar layer is ob rved to b similar to artier cases and vertical strips of positive and

n gativ sh ar tr ss are ob erved below the ere t and trough. The majority of shear

tr s in b th air and water is found to be oncentrated near the free surface of wave.

A m r d tail d vi w i pr ent d in figur 5.53.

5.5.4 En rgy density in the domain

Th variation of time averaged en rgy density along the length of the domain when

th wind i blowing with a velocity equal to c over the d ep water wave is shown

in th figur 5.54. On comparing the value of time averaged energy density in the

domain with the z 1'0 wind spe d ase (r fer figure 4.2, we ob erve 6% increase due

t energy ex hang betw n air and water wave. Similar to earlier cases, we observe

an in rca. in th kin tic n rgy den ity in the wave while the increase of potential

ncrgy density is marginal. Till is an important observation as the energy density

calculat cl in laboratory and fi Id measurements is potential energy density. It is also

worth mentioning that it is possibl that th kinetic energy inside the wave takes long r

time to make full transition to potential energy which requir s very long domain to be

1110 Icl cl in ord r t observe it. We also ob I've internal en rgy exchange between
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Figur 5.54: Tim av raged energy density factor vs x; V' = c.

kin tic and pot ntial en rgy in the water wave along the domain.

5.6 Summery graph of energy density factor ver-

sus average wind velocities

A urnm ry graph of nergy density variation at different places versus different average

wind velocities is shown in figure's 5.55, 5.56 and 5.57. We observe from figure 5.55 that

wh n average wind velocity is zero the wave relatively nearer to the inlet contains higher

en rgy than energy contained in the wave when the air is blowing over it. However,

as th distanc increases in figur 5.56 and figure 5.57 we observe an linear increase

in nergy den ity with increase in the air velocity and a linear decrease is observed

in the case wh 11 av rage wind velocity is zero. At all wind speed the major change

in total nergy density i mainly du to change in kinetic energy density in the wave.

This prov s that nergy exchang phenomenon between air and water wave has both
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spatial a w 11as tim d p nd nee. The results can be compared to similar laboratory

cxp riment and provide valuable input into the study of energy exchange in fast waves.

5.7 Nondimensional temporal growth rate at var-

ious wind velocities

A graph f nondirncnsional t mporal growth rate at various wind velocities is seen in

figur r::.5 . Th growth rate is extracted from the energy density data available in the

domain. As discuss d in the arli r chapter, the growth rate a' is affected by viscous

ncrgy di sipation. Hen ,a net growth rate is calculated by using the equation

xp(a' - 6.)x (5.3)
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wind-water waves.

where, A is the decay rate calculated in §4.2. The spatial growth rate 0' is converted

to the temporal growth rate f3 through the relation

(5.4)

where c is wave speed. The relation between nondimensional growth rate f3/ f and

average wind velocity is plotted in figure 5.58, where J is the frequency of the wave.

The growth rate shows linear increase with an increase in the wind velocity. The growth

rate term is negative when the wind velocity is zero due to the fact that the energy is

dissipated continuously from the start of the wave till the end of the test section. While

in the ca..ses when average wind velocity is higher the growth rate term is increasing

in the domain with an increase in the wind speed. Along with wind speed the other

factor which can affect the temporal growth rate is the wave steepness. However, it is

not discussed ill this work.
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5.8 Schematic of maximum near surface vortic-

ity in the air and water

Th sch maries of ncar surface vorticity in the air and water when the average wind

v locity i z r in d p water waves is hown in figures 5.59 and 5.62 respectively.

Both figur s sh w a p itiv vorticity in the air and water near the crest owing to

anti I kwis m v m nt of water particles. While in the trough we observe clockwise

rotati n of water parti I s, In th ere t, the rotation of air at zero wind velocity is in

anticl kwi dir tion following the rotation of water. Hence, we can observe positive

vorti ity in th air and wat r. A th wind peed is increased as se n in figures 5.61

and 5.63 th air starts interacting with the water primarily in the windward side and

Cl' st of th wav as wind xpcricnce the push due to convection as well as pull by the

cl kwis moving water in the trough f th wave. Th se effect creates higher gradients

in t h windward side of the wav re ulting in mol' convection and diffu ion of air on

t he win IW81' 1 sid producing mol' vorticity on th windward side of the wave at higher

will 1 speed. On the oth I' hand Oll the I eward side, the forward moving air experiences
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a push from the upward moving water in the opposite direction reducing the clockwise

movement of the forward moving air and as a result, in the leeward side, we observe

that the negative vorticity magnitude is lower compared to the windward side, which

signifies that the windward side of the wave is dynamically important region. In the

water in figure 5.63 we observe that with an increase in wind velocity, the positive

vorticity in the crest observed in the case when average wind velocity is zero, changes

to the negative vorticity showing an increase in magnitude. These increase can be

attributed to the push from the air affecting the vorticity in the water near the free

surface resulting in change in the direction of vorticity from anticlockwise to a clockwise

rotation. With an increase in the wind speed, the increase observed in the vorticity

magnitude in the water side of the wave is symmetric compared with the air side of

the wave. We also observe the diffusion of vorticity in both the air and water side of

the domain due to both spatial and temporal vorticity transport.

5.9 Closure

The results discussed in this chapter have shown several important aspects to be con-

sidered in the air water interactions in the deep water waves. The effect of viscosity

and rotational motion in wind wave interaction have been studied and discussed. The

energy density variation in presence of wind with different velocities is calculated and

discussed. It shows energy exchange between air and water wave. In the next chapter,

we move to intermediate depth water waves in order to study the effect of water depth

on the behaviour of water waves in the presence of wind with different velocities.



Chapter 6

Interaction of intermediate depth

water waves with air blowing at

different velocities

6.1 Introduction

In this chapter we investigate the behaviour of water waves under the effect of air

blowing at different velocities in the case of intermediate depth water waves. In order

to draw comparison, we consider the waves of steepness 0.06 which are similar to the

deep water waves studied in Chapter: 4 and 5. The ratio hi L is similar to intermediate

depth water waves in Chapter: 4. The average wind velocities considered here are 1)

V' = Oms-I, 2) V' = Uma.r, where Umoz is the maximum velocity in water, 3)V'(~ D.5c)

and 4) V' = c. The study of interaction of intermediate depth water wave with wind is

essential to study how the change in the depth of water affects the behaviour of water

waves.

150
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6.2 Case study 1: Zero average wind velocity,

V'=O

In the previous chapter, we analyzed the air-water interaction in deep water wave

system with air blowing at different velocities. In this case, we investigate the motion

in the air above the intermediate depth water waves when the average wind velocity

is zero. All the quantities are nondimensionalized as discussed in the chapter 4. We

restrict the discussion here to the air side of the domain as the water side of the domain

is already discussed in chapter 4.

6.2.1 Velocity vectors and streamlines in the intermediate

depth water waves

6.2.1.1 Velocity vectors

The numerical results for velocity vectors in the air and water in the domain and a

typical wave are shown in figures 6.1, 6.2 and 6.3. In the domain of viscous flow along

the length, we observe a periodic motion in the air following the orbital movement of

water beneath it. \Ve also observe recirculation of air above the crest and the trough of

the wave. This movement of the air is similar to the one observed in deep water waves

as plotted in figure 5.1. The maximum velocity in the air near the free surface is of

same magnitude as maximum velocity in the water beneath the wave. A typical wave

in figure 6.2 shows the nondimensional velocity contours in the air and water. The fluid

motion in the air mirrors that in the water and a gradual reduction in the velocity of

air is observed when the distance to the water surface increases. In the trough region,

in the air we see higher velocity than the maximum velocity in the water which is

expected in the most boundary layer phenomenon. A more detailed view of velocity

vectors is seen in figure 6.3. In a moving reference frame, the velocity vectors are

shown in figure 6.4. Here, the relative velocity in the air and water are nearly similar

in magnitude which results in relatively lower shear stress on the free surface in both
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Figur 6.1: Nondim nsional velocity vectors of viscous flow in the domain of
interm diate depth water wave case; V' = O.
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Figure 6.2: ondimensional velocity vectors of viscous flow in a typical wave of
interm diat depth water wave case; V' = O.



Chapter 6: Interaction of into dep. water waves with air blowing at different velocities 153

o 0.5
xIL

Figure 6.3: Nondimensional velocity vectors of viscous flow in a typical wave of
intermediate depth water wave case in specified area; V' = O.
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Figure 6.4: Nondimensional velocity vectors of viscous flow in a typical wave of
intermediate depth water wave case with moving reference frame; u - c; V' = O.
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Figure 6.5: Streamlines in the domain of viscous flow in intermediate depth water
wave case; V' = O.

the air and wat r. The smaller velocity vectors in the crest inside the water indicates

higher velocity in this region.

6.2.1.2 Streamlines

The str amlines in the air and water section are shown in figures 6.5 and 6.6. The

str amlines along the length of the domain are periodically distributed similar to deep

water wave case (refer 5.5). The streamlines in the air are also periodic on each wave

and the follows the orbital motion in the water. The examination of a typical wave

in figure 6.6 shows the location in the air where air changes its direction to follow the

orbital motion in the water below. The extent of movement in the air along the depth

is higher than d ep water waves since the longer wavelength of the intermediate depth

disturbs the air at greater height above the water surface.
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Figure 6.6: Strearnlin s in a typical wave of viscous flow in intermediate depth
water wav case; V' = O.

6.2.2 Dissipation function In the intermediate depth wa-

ter waves

Th plots of energy dissipation function in the domain and a typical wave are shown

in figures 6.7 and 6. . The dissipation function along the length of the domain shows

much higher eli sipation rate in the crest of the wave which signifies the effect of viscous

stre in the region. We also observe higher dissipation rate in the air above the crest

and trough of the wav as compared to deep water waves. The dissipation rate in the

air is quickly reduced to low I' values while we observe higher dissipation rate inside the

water. This is mainly due to duel effects of longer wave length of intermediate depth

water wave aff cting more area under water surface by orbital motion r sulting in higher

viscous dissipation and s condly, higher bottom boundary effects as the bottom wall

boundary is nearer to the wave which results in higher viscous effects on the orbital

motion in the water. The dissipation function of a typical wave is shown in figure 6. .

It shows the magnitude of the dissipation function in a typical wave and overlying air

region. We observ high magnitude in both water and air region above and below the
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Figur 6.7: En rgy di ipation in the domain of viscous flow in intermediate depth
wat r wav a ; V' = o.

Cl' t of th wav re p ctively. The trough of the wave indicates higher dissipation rate

in th wat r id while the air above the trough shows relatively lower dissipation rate.

Jong th d pth of the wave in the wat r below the crest, we observe linear reduction

in th di ipation rate while in the trough r gion below the higher dissipation layer, we

ob rv a small Jay r where the dissipation rate is lower which again increases along

th depth and r due s lin arly along the depth afterwards. A more detailed view of

n rgy di ipation i pr sented in figure 6.9.

6.2.3 Vorticity in the intermediate depth water waves

The vorti ity di tribution in the domain and a typical wave of the intermediate depth

water wave are shown in the figures 6.10 and 6.11. In the air and water, along the

1 ngth of the domain w observe the contours with both positive and negative vorticity

in the crest and trough. Along the depth in both air and water the vorticity quickly

reduc to a small value. The maximum vorticity near the free surface in the ail' as

s n in the figure 6.11 is more than twice the maximum vorticity observed in the water.

In the air, th positiv and negative vorticity Jayers are observed immediately above

th negative vorticity lay r in the trough of th wave. The magnitude of the negative

vort icity observ d abov th po itiv vorticity Jay r in the trough is much higher than

that bs rved in th de p water wa e in figure 5.12. In the crest the vorticity quickly

rcduc to a lower value along the depth of the air. The basic structure of vorticity
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i igur 6.1 orti ity in th domain of viscous flow in intermediated depth water
wa '=0.

obs rv cl in b th th air and water as shown in figure 6.11 and for the deep water waves

as shox n in figur 5.12 hows irnilariti . The difference between both types of waves

is in h d pth of v rti ity eli tributed in the air which i higher in the intermediate

d pth war I' wav du t long I' wavel ngth leading to higher velocity gradients in the

air. Th rti ity n ar th bottom boundary i very small as compared to the vorticity

n ar t the surra which sh w higher magnitude than that observed in deep water

\ f\ S.

6.2.4 h ar tr in th air and water

The sh ar str ss distribution in the domain and a typical wave of intermediate depth

\ at I' wa s ar shown ill th figures 6.13 and 6.14. Along the length of the domain in

th air as s Jl in figur 6.13, w ob I've uniformly distributed vertical strips of shear

stress with small magnitu I . In the air, the magnitude of this shear stress as seen in

figure 6.14 is small compared with that in the water. The structures of shear stress in

t h ' ail' and water arc found n arly identical in both deep water wave and intermediate

cl pt h wat '1' wav when th av rag wind velocity i zero. The vertical strips of positive

and negati e shear str ss ar id ntical to tho e found in ide the water mainly due to

the fact that air i following th orbital velocity in the water. A more detailed view of

sh Hr stress is se n in figure 6.15.
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Figur 6.13: Shear stress in the domain of viscous flow in intermediate depth
wat r wav ea e; V' = O.
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Figur 6.14: Sh ar stress in a typical wav of viscous flow in intermediate depth
wat r wave ase; V' = O.
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Figur 6.15: Shear str ss in a typical wave of viscous flow in intermediate depth
water wav as in specified area; VI = O.

6.3 Case study 2: V' == Maximum water velocity

< Wave speed, c

In this ection, w discuss the numerical results obtained when the air is forced over the

intermediate d pth water wave with an average velocity equal to maximum velocity in

the water. The domains of both the air and water side will be discussed simultaneously

in this ection.

6.3.1 Velocity vectors and streamlines in intermediate depth

water waves at very low wind velocity

6.3.1.1 Velocity vectors

The numerical results for the velocity vectors in the air and water in a typical wave are

shown in figures 6.16 and 6.17. The contours of velocity magnitude in figure 6.16 shows

an increase in mean velocity in the air just above the crest of the wave, while we also

observe a drop in the velocity in the air above the trough region. The orbital velocity

inside the water shows a small increase in the crest region and a small reduction in

the trough region of th wave. The velocity vectors distribution in the air is more

chaotic due to long r wav I ngth and higher velocity in the crest of the wave, thereby

producing a greater resistance to the forward moving air leading to disarray in velocity

distribution ncar the crest and the windward side of slope of the wave. The interaction
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Figure 6.16: Velocity vectors with velocity contours in a typical wave of viscous
flow in intermediate depth water wave case; V' = maximum water velocity < c.
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Figure 6.17: Velocity vectors in a typical wave of viscous flow in intermediate
depth wat r wave case in sp cified area; V' = maximum water velocity < c.

at low wind sp ed is much mor complex as both wind and wave tries to dominate the

fluid motion. A more detailed view of velocity vectors is seen in figure 6.17. In general,

the velocity vector distribution observed is not significantly different than deep water

waves. In a moving reference frame, the velocity vectors are seen in figure 6.18. In the

air abov th er st and trough, it shows relatively smaller size due to higher velocity

observ d in these region. The highest velocity in the air is observed above the trough

of the wave.
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Figure 6.18: Nondimensional velocity vectors of viscous flow in a typical wave
of intermediate depth water wave case with moving reference frame; u - c; V'=
maximum water velocity < C.

6.3.1.2 Streamlines

The numerical result for the streamlines in the air and water in a typical wave are

shown in figure 6.19. The streamlines indicates complex movement of air above the

wave. In the trough of the wave, the orbital motion in the water dominates the fluid

motion and forces the air above it to follow its path. The streamlines in the air are very

similar to those observed in deep water waves in figure 5.20. The velocity distribution

in the water near the crest of the wave in the intermediate depth water wave case is very

similar to deep water wave case. The differences between both the cases is observed

above the crest of the wave in the air. The streamlines in the air in the deep water

waves are more uniformly distributed than in the intermediate depth water wave. In

the intermediate depth waves, we observe an increased flux above the crest of the wave.

Similar to deep water waves, we observe the recirculation zone above the trough of the

wave.
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6.3.2 Dynamic pressure isolines in water

Th dynami pr ur i olin s in the domain and a typical wave are shown in the

figur s 6.20 and 6.21 r p tivcly. The pressure isolines along the length of the domain

shows p ri di distribution in the water. On comparing a typical wave shown in figure

6.21 with the ea when the average wind velocity is zero (refer figure 4.8) for the

interm diat d pth wat r, we observe higher magnitude of dynamic pressure in the

trough f th water, this may be due to the effect of bottom boundary. Since the

to ob rv larg variation in its magnitude and its structure inside the waves.

6.3.3 Vorticity in the air and water

Th vorticity contours in the domain and a typical wave are shown in the figures 6.22

and 6.23. Al ng th length of the domain in figure 6.22 we observe high positive

and negative vorticity contours diffus d in the air side of the domain due to longer

wavelength and in reas d effe t of viscosity. We also observe high negative vorticity
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Figure 6.20: Pressure isolines in the domain of viscous flow in intermediate depth
water wave case; V' = maximum water velocity < C.
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Figure 6.21: Pressure isolines in a typical wave of viscous flow in intermediate
depth water wave case; V' = maximum water velocity < C.
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layer in the trough of the wave and in the crest of the wave, on the air side, we observe

positive and negative vorticity layers. The vorticity produced near the free surface of

the wave is diffused into the air along the depth and both the positive and negative

vorticity layers are seen forming a circular bulbous structures by rolling of vortex sheet

and diffusing it into the air. Inside the water a thin layer of negative vorticity can be

seen running along the length of the domain below the free surface. Along the depth in

the water, vorticity quickly reduces to a lower value. The analysis of figure 6.23, shows

the change in the rotation of the fluid in the crest inside the water from positive vorticity

(refer 6.11) to negative vorticity due to the effect of wind forcing in the thin layer of

the free surface. This is similar to that observed in the deep water waves. Along the

depth below the crest, the vorticity magnitude quickly reduces while fluctuating from

positive vorticity to negative vorticity. In the air above the crest, the strong positive

vorticity in figure 6.11 is reduced to small positive vorticity showing a reduction of 50%

in the magnitude, while in the air in the trough region, we observe that the magnitude

of negative vorticity is four times of that observed when the average wind velocity is

zero. We find that the negative vorticity layer is stronger in the trough region in the air

of intermediate depth water wave than in the deep water wave as seen in figure 5.25.

Above the crest in the air, the maximum positive vorticity is half of maximum positive

vorticity observed in the deep water waves in figure 5.25. This also indicates higher

negative vorticity produced near the free surface in the case of intermediate depth water

waves. The rolled positive vorticity structures seen diffusing in the air in this case are

different than deep water case in figure 5.25 as these structures are not strongly visible

in the deep water waves. These vorticity structures which originally produced from

same vortex sheets can be seen moving away and diffusing independently into the air.

The vorticity diffusion observed here is a time dependent phenomenon and it is possible

that these structures could change if the numerical model runs for much longer time

which is computationally very expensive. A detailed view of vorticity is seen in figure

6.24.
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Figur 6.22: Vorti ity in the domain of viscous flow in intermediate depth water
wav a e; V' = maximum water velocity < c.
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Figur 6.23: Vorti ity in a typical wave of viscous flow in intermediate depth
wat r wav case; V' = maximum water velocity < c.
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Figur 6.2: Vorti ity in a typical wave of viscous flow in intermediate depth
wat r wav case in p ifi d area; V' = maximum water velocity < c.

6.3.4 Shear stress in the arr and water

Th h ar stre contours in the domain and a typical wave are shown in the figures

6.25 and 6.26. Along th length of the domain in figure 6.25, we observe very small

h ar tr s in th air side of the domain, while in the water below the free surface the

verti al strip f positive and n gative shear stress are observed below crest and trough

f th wav r spectivcly. The periodic distribution of shear stress is seen along the

domain. he typi al wave in figure 6.26 shows positive shear stress layer in the crest

of th wav inside the water unlike negative shear layer when average wind velocity is

Z ro; se figure 6.14. The po itive shear layer in the trough in figure 6.14 is changed

to negativ h ar layer due to the effect of wind in the thin layer near the free surface.

Along th d pth in the wat r we observe a linear decrease in the shear stress below the

r st and trough of th wave. In the air, the shear stress is very small near the crest

whil th magnitude of shear stress near the trough is equal to 5% of the maximum

hear str ss observed inside the water. It indicates a small but non negligible viscous

ffcct ill the air r gion abov the trough. Hence the viscous effects can be observed

v n at a low wind peed. On comparing the shear stress with the deep water waves

in figur 5.2 w obs rv that the magnitude and distribution of shear stress is similar

to th intennediat depth water waves. A detailed view of shear stress is seen in figure

6.27.
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Figur 6.25: Shear stress in the domain of viscous flow in intermediate depth
wat r wave case; V' = maximum water velocity < c.

2
1.8
1.6
1.4
1.2

.e 1>-
0.8
0.6
0.4
0.2

00 0.5 1.5
xJL

Figure 6.26: Sh ar str ss in a typical wave of viscous flow in intermediate depth
water wave ase; V' = maximum water velocity < c.
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Figure 6.27: Shear stress in a typical wave of viscous flow in intermediate depth
wat r wave case in specified area; V' = maximum water velocity < C.

6.3.5 Energy density in the domain

The energy density variation along the length of the domain when the air is blowing

with very low velocity over the intermediate water wave is shown in the figure 6.28.

On comparing the time averaged energy density variation with that in figure 4.1, we

obs rve that th energy density of the wave shows an small increase along the length

of the domain. The majority of this increase is observed in the kinetic energy of the

water wave while the increase in the potential energy is negligible. The total energy

density factor increases by about 2.5% as compared with case when the average wind

velocity is zero. These results are very similar to the energy exchange observed in the

deep water wave case strengthening the idea of direct input of momentum from the air

to the orbital motion of the water.
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Figure 6.28: Time averaged energy density factor vs x; V' = maximum water
velocity < C.

6.4 Case study 3: V' 0.5 c

In this section, we discuss the numerical results obtained when the average wind velocity

is equal to half of wave velocity, C. The choice of the cases is based upon the idea of

consistency in cases in both deep and intermediate depth water waves.

6.4.0.1 Velocity vectors

The numerical results for the velocity vectors in the air and water in a typical wave are

shown in figures 6.29 and 6.30 respectively. The contours shows an overall increase in

the velocity of fluid in the crest and trough of the wave, this is confirmed by downward

movement of the contour with a value of 0.2 to a lower location below the crest and

trough of the wave. We also observe an increase in the maximum velocity in the crest

region inside the wave and the velocity contour with a value of 0.8 now extends from

the crest to the trough in the whole region of wave. In the air, we observe an increase in
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Figure 6.29: ondimensional velocity vectors in a typical wave of viscous flow in
intermediate depth water wave case; VI = 0.5 c.
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Figure 6.30: Nondimensional velocity vectors in a typical wave of viscous flow in
interm diate depth water wave case in specified area; VI = 0.5 c.

the velocity above the trough region and the air accelerates on passing over the slope on

the le side of the wave, this is due to higher pressure gradient in the air coupled with

the fre surface mov ment providing additional momentum to the flow in the trough

region. The mean wind velocity in the trough region is higher as a result of additional

momentum it receiv s from fast moving wave alongside the forward moving air. The

bursts of random moving air that are observed when the wind velocity was lower in the

earlier case is not observed in this case and the airflow movement is similar to that in

free surface in figure 6.30.

d ep water waves as expected. A thin recirculation zone can be observed near to the
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Figure 6.31: Nondimensional velocity vectors of viscous flow in a typical wave of
intermediate depth water wave case with moving reference frame; u - C; V' = 0.5
c.

In a moving reference frame as seen in figure 6.31, we observe recirculations in

the air above the crest and trough region due to higher velocity in the air indicating

relatively high velocity regions. In the water near the crest, we observe smaller velocity

vectors due to increased momentum exchange between the air and water. This also

leads to a higher shear stress in the region compared with earlier cases.

6.4.0.2 Streamlines

The numerical result for streamlines in the air and water in a typical wave is shown in

figure 6.32. It shows an increase in the velocity in the water below crest and trough

and in the air, we observe that the air dominates the flow above the crest and the effect

of orbital movement of water on the airflow above is smaller compared to low wind

velocity case discussed in the earlier section. The thickness of the recirculation zone

is reduced more than the earlier case as air tries to remain attached to the surface of

the wave. In the water near the trough we observe streamlines of higher magnitude



Chapter 6: Interaction of into dep. water waves with air blowing at different velocities 174

O~--~------~------L-----~----~----~
0.5

x/L

1.4

1.2

0.6

0.4

0.2

1.5

Figure 6.32: Streamlines in a typical wave of viscous flow in intermediate depth
water wave case; V' = 0.5 C.

indicating less decrease in the water velocity in the trough region than the earlier cases.

6.4.1 Dynamic pressure isolines in water

The numerical results for dynamic pressure isolines in the air and water in the domain

and a typical wave are shown in figures 6.33 and 6.34 respectively. Along the length

of the domain as seen in figure 6.33, we observe a periodic distribution of dynamic

pressure isolines in the crest and trough of the wave. The dynamic pressure isolines in

the trough have lower magnitude than earlier cases. A typical wave in figure 6.34 shows

an increase in the magnitude of isolines in the crest and decrease in the trough of the

wave. This increased difference in the dynamic pressure between crest and trough of

the wave indicates larger effect of wave on the underlying water. On comparing it with

the earlier case 6.21 we obs rve an increase in the magnitude by 20% in the crest and

r duction of 50% in the trough. Thus with a progressive increase in the wind speed we

observe an increase in the magnitude of pressure isolines in the crest and a decrease in
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Figure 6.33: Pressure isolines in the domain of viscous flow in intermediate depth
water wave case; V' = 0.5 C.
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Figure 6.34: Pressure isolines in a typical wave of viscous flow in intermediate
depth wat r wave case; V' = 0.5 C.
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the trough of the wave.

6.4.2 Vorticity in the air and water

The numerical results for the vorticity in the air and water in the domain and a typical

are shown in figures 6.35 and 6.36. Along the length of the domain as seen in figure 6.35,

we observe higher negative vorticity in the air than earlier cases as seen in figures 6.22

and 6.10. Above the crest and trough in the air, we observe negative vorticity layers

corresponding to forward moving air with clockwise rotational movement. A positive

vorticity found immediately above the crest in the two earlier cases is visible higher up

in the crest with an increase in wind velocity and near the free surface of the water only

negative vorticity is visible. The diffusion of vorticity in the air is higher up along its

depth and inside the water there is a very thin layer of negative vorticity. A typical wave

in figure 6.36 shows a thicker high vorticity region in the trough of the air and water

as compared with previous case in figure 6.23. The distribution of negative vorticity

is seen on both trough and crest and the maximum magnitude of negative vorticity in

the air above the crest is 3 times that inside the water. In the trough region inside

the water, the magnitude of negative vorticity is twice the magnitude observed in the

earlier cases, indicating higher clockwise rotational movement of water particles while

the maximum negative vorticity observed in the trough region in the air is about 8

times of the maximum negative vorticity in the trough inside the water. In the air,

vorticity rolls in the trough region are similar to earlier case with low wind velocity.

On comparing it with the deep water wave case in figure 5.37, the vorticity rolls seen

in the current case are bigger in size and have higher maximum value. Thus we can

see that with a systematic increase in the wind speed, the air starts interacting with

the water in a thin region of the free surface, effectively changing the rotation of fluid

and exchanging the momentum and energy in this process with the underlying water.

Inside the water a thin layer of negative vorticity is seen along the length followed by

the layers of positive and negative vorticity quickly reducing to a very small value along

the depth. A detailed view of vorticity can be seen in figure 6.37.
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Figure 6.35: Vorticity in the domain of viscous flow in intermediate depth water
wave case; V' = 0.5 C.
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Figure 6.36: Vorticity in a typical wave of viscous flow in intermediate depth
water wav case; V' = 0.5 C.
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Figur 6.37: Vorticity in a typical wave of viscous flow in intermediate depth
water wave case in specified area; V' = 0.5 C.

6.4.3 Shear stress in the air and water

Th numerical results for the shear stress in the air and water in the domain of the

intermediate depth water wave and a typical wave are shown in figures 6.38 and 6.39.

Along the length of the domain in figure 6.38, below the water surface we observe

po itive and negative shear layers. Below these layers, we can see the vertical layers

of positive and negative shear stress distributed under the crest and trough which is

imilar to earlier cases. In the air, near the free surface we observe very thin positive

and negative shear layers above the trough of the wave. Above the crest in the air,

we do not observe a significant shear stress. In a typical wave as seen in figure 6.39,

we can see the increased magnitude of shear stress inside the water. The magnitude is

increased by about 15% than the earlier case. In the crest the negative shear stress layer

observed in the case when the average wind velocity is zero is now positive with higher

magnitude and the negative shear layer is pushed down deeper inside the water with

decreasing magnitude as a result of interaction between air and water. On comparing

with the deep water wave case the extent of positive shear layer in intermediate depth

wat r case is much smaller than the deep water case where the shear layer with high

magnitude is extended till the trough of the wave. This is mainly due to stronger

vertical velocity gradient in the intermediate depth water case which has a stronger

effect near the trough as the bottom boundary is nearer than that in the deep water
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Figure 6.38: Shear stress in the domain of viscous flow in intermediate depth
water wave case; V' = 0.5 c.

wave. A thin negative shear layer which was observed immediately below the positive

shear layer in the crest is not observed in intermediate depth case. A detailed view of

shear stress is seen in figure 6.40.

6.4.4 Energy density in the domain

The energy density variation along the length of the domain when the wind is blowing

with velocity equal to 0.5e over the intermediate depth water wave is shown in the

figure 6.41. On comparing the time averaged energy density shown in figure 6.41 with

that in figures 6.28 and 4.1, we observe that the energy density of the wave shows

increase in the value along the length of the domain. This increase is about 5% more

than zero average wind velocity case as seen in figure 4.1 and about 2.5% more than

low wind velocity case shown in figure 6.28. In this case, we observe an increase in

both kinetic and potential energy density factors contributing to an overall increase in

total energy density in the water. The increase in the intermediate depth water case is

higher since the number of waves interacting with the air is smaller which reduces the

rate of attenuation of waves and improves energy exchange from air to water.
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Figure 6.39: Shear stress in a typical wave of viscous flow in intermediate depth
water wave case; V' = 0.5 C.
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Figure 6.40: Shear stress in a typical wave of viscous flow in intermediate depth
water wave case in specified area; V' = 0.5 C.
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Figure 6.41: Time averaged energy density factor vs x; average wind velocity =
0.5 C.

6.5 Case study 4: V' == Wave speed, c

In this section, we discuss the numerical results obtained when the average wind velocity

is equal to wave velocity, C.

6.5.0.1 Velocity vectors

The numerical results for the velocity vectors in the air and water in a typical wave

ar shown in figures 6.42 and 6.43. The velocity contours shows an increase in the

velocity near the free surface inside the water. On comparing it with the earlier case in

figure 6.29 we observe an overall increase in the velocity of the water as the contours of

magnitude 0.2 and 0.4 moves down, indicating an increase in the water velocity. The

velocity vectors in the figure 6.43 shows an increase in the air velocity near the crest

of the wave, this is mainly due to high velocity in the air which overcomes the wave

resistance and distributes itself over the trough region. The bursts of velocity in the air

arc observed in the er st which are similar to earlier cases. The air near the trough has
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Figur 6.42: Nondimensional velocity vectors in a typical wave of viscous flow in
intermediate depth water wave case; V' = c.
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Figure 6.43: Nondimensional velocity vectors in a typical wave of viscous flow in
interm diate depth water wave case in specified area; V' = c.

higher velocity similar to the crest region. In the water we observe higher velocity in a

thin layer in the crest r gion due to momentum input from the air above it. This high

v locity layer is thicker compar d to the earlier cases. In a moving reference frame

as seen in figure 6.44, we observe that the air has higher relative velocity compared to

both wave and mean water velocity. Hence, we observe forward moving vectors in the

air while near the free surface due to low mean water velocity, the velocity in the air

quickly reduces near the free surface. This results in much higher shear stress in both

increase in the velocity in the water compared with earlier cases.

ail' and wat r. We also observe smaller velocity vectors in the crest region indicating
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Figure 6.44: Nondimensional velocity vectors of viscous flow in a typical wave of
intermediate depth water wave case with moving reference frame; u - C; V' = c.

6.5.0.2 Streamlines

The numerical result for the streamlines in the air and water in a typical wave is shown

in figure 6.45. It shows an increase in the mass flux in both the trough and crest of the

wave similar to the earlier cases. The recirculation seen in the trough of the wave is

very small as compared with earlier cases. The streamline value near the crest in the

water is higher than earlier cases indicating greater velocity of fluid in the region. The

orbital movement of water have smaller effect on the air moving over the wave when

the air is blowing at the speed of the wave.

6.5.1 Dynamic pressure isolines in water

The numerical results for pressure isolines in the domain of the water wave and a typical

wave are shown in figures 6.46 and 6.47 respectively. Along the length of the domain

we observe a periodic distribution of pressure isolines. We observe an increase in the

dynamic pressure in the crest and reduction in the trough of the wave which is similar

to earlier cases where we observe a stepwise increase in the dynamic pressure in the
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Figure 6.45: Streamlines in a typical wave of viscous flow in intermediate depth
water wave case; V' = C.

wave in the crest region and a reduction in the trough region with an increase in the

wind speed. The deep water wave cases also show similar behaviour. These isolines also

indicate that the dynamic pressure under the wave is very sensitive to small change in

in the crest and trough region of the water.

surface profile and needs to be highly accurate to measure correct pressure fluctuations

6.5.2 Vorticity in the air and water

The numerical results for vorticity in the domain of the water wave and a typical wave

are shown in figures 6.48 and 6.49. Along the length of the domain as seen in figure

6.48, the effect of vorticity is very prominent and diffused at much higher level in the

air above the wave. A layer of negative vorticity as a result of forward moving air is

thicker than the earlier cases and is distributed along the length in the air and water

region near the wave. Vyealso observe a positive vorticity layer above this negative

vorticity layer. This positive vorticity is diffused in the air above in form of rolls in

the slope region of windward side of the wave. From the figure 6.49 we also observe
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Figur 6.4 : Vorticity in the domain of viscous flow in intermediate depth water
wav case; V' = c.

negativ vorticity rolls bing diffused in the air alongside the positive vorticity rolls. In

a typical wave as seen in figure 6.49, we see that the magnitude of maximum negative

vorti ity is about 50% more than that observed in figure 6.36. The negative vorticity

region abov the erst and the trough region is much thicker than earlier cases. In

the wat r, the increase in the n gative vorticity in both the crest and trough region is

twic as ob erv d in figure 6.36. A layer of positive vorticity with small magnitude is

n below th negative vorticity region and near to the bottom we observe positive

and negativ vorticity regions as a r sult of effect of bottom wall boundary. A more

detailed view of vorticity is seen in figure 6.50.

6.5.3 Shear stress in the air and water

Th numerical results for the shear stress in the domain of the water wave and a typical

wav are shown in figures 6.51 and 6.52. Along the length of the domain in figure 6.51,

we ob erve a thick layer of positive shear stress insid the water. A layer of negative

sh ar str ss is ob erv d immediately below this positive shear layer and below this

negativ shear lay r we observe vertical strips of positive and negative shear stresses

along th depth under the crest and trough respectiv ly which are similar in structure

to arli r ea es while differing in the magnitude and extent. In th air, we observe the

layers of positive and n gative shear stresses in the trough. The magnitude of shear
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Figure 6.49: Vorticity in a typical wave of viscous flow in intermediate depth
wat r wav case; V' = c.
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Figur 6.50: Vorticity in a typical wave of viscous flow in intermediate depth
water wave case in specifi d area; V' = .
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Figure 6.51: Sh ar stress in the domain of viscous flow in intermediate depth
water wave case; V' = c.

tr s in figure 6.52 shows an increase of 30% than the previous case (refer figure 6.39)

in th trough region inside the wat r. In the crest region the increase is smaller. In the

air r gion in the trough, w observe more than 50% increase in shear stress magnitude

than earlier case in figure 6.39. In the air near the crest we observe an increase in

shear str s although the magnitude observed is smaller. As seen in the figures, the

viscous ffe ts acting in th air in the trough are not negligible in magnitude even when

the wind v 10 ity is not very high. With an increase in the wind velocity these shear

tres s incr ase to an order of that observed in the water and can have substantial

ff et on the fluid Bow ncar the interface. This shows that the shear stresses play a

very important role in air-wat r interaction at higher wind speeds. A more detailed

view f h ar stre s is seen in figure 6.53.

6.5.4 Energy density in the domain

Th energy density variation along the length of the domain when the air is blowing

with v locity equal to c over the intermediate depth water wave is shown in the figure

6.54. On comparing the valu of tim averaged energy density in the domain with

th zero average wind velocity case (refer figure 4.2), we observe 7% increase due to

en l'gy exchange b tw en air and water wave. The net gain in the energy is observed

with an lin ar iner as in the energy density in the water mainly due to iner ase in

kinetic n rgy of the water. The results shown here is an important proof of direct



Chapter 6: InterRction of into dep. water waves with air blowing at different velocities 189

2
1.8
1.6
1.4
1.2

tl
0.8
0.6
0.4
0.2

00 0.5 xlL 1.5

Figure 6.52: Shear stress in a typical wave of viscous flow in intermediate depth
water wave case; V' = c.
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Figur 6.54: Time averaged energy density factor vs Xi V' = C.

11 rgy xchange between air and water wave in the problem pertaining to air-water

wav int raction.

6.6 Summery graph of energy density factor ver-

sus average wind velocities

A summery graph of energy density vs average wind velocities in the cases of inter-

mediate d pth water wave are shown in figures 6.55, 6.56 and 6.57. Similar to deep

wat I' case discussed in arlier chapt r, we observe higher energy density in the wave

cl s to the inl t wh n average wind velocity i zero on comparing it with other cases.

Howev r, along th 1 ngth we can observe a linear rise in the energy density of the

fluid at various wind v locitie . The ri e in energy den ity in intermediate depth case

is slightly higher than deep water cases because of lower number of waves reducing the

t tal dissipation in the domain. In g neral w found that tills phenomenon is both time
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and space dependent and could serve as an important comparison point for laboratory

measur ments as well as simulation using other numerical technique.

6.7 Nondimensional temporal growth rate at var-

ious wind velocities

A graph of nondimensional temporal growth rate at various wind velocities for the

intermediat depth wind-water waves is seen in figure 6.58. All the quantities are

calculated as discussed in §5.7 and §4.2. The temporal growth rate term in this case

shows high r values when compared with deep water waves; figure 5.5 . This is mainly

du to the fact that for same length of th domain the intermediate depth waves has

small r number f wave r ulting in lower dissipation and thereby a higher relative

growth rate. With an incr ase in the wind speed, the growth rate term shows a linear

increas which is comparable with deep water waves. Hence, we can conclude that

both deep and intermediate d pth waves shows much similarity in charact ristic of
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wave growth rate term in the cases studied here. The cases studied here are limited

in steepn ss value and hence in order to extract a more generalized value for the wave

growth rate, more comprehensive simulations are an important requirement.

6.8 Schematic of maximum near surface vortic-

ity in the air and water

The schematic of near surface vorticity in the air and water when the average wind

v loeity is zero is shown in figures 6.59 and 6.60 respectively. We observe similar to

deep water waves that the rotation of fluid in the air and water both is in anti-clockwise

dir ction owing to movement of the fluid in the air and water. The rotation of fluid

changes at locations -7r /2 and 7r/2 shown in the figures where the vorticity magnitude

is zero in the air and water. The plot of near surface vorticity in the air and water when

the air is blowing over intermediate depth water waves is shown in figures 6.61 and 6.62

respectively. Figure 6.61 shows near surface distribution of maximum vorticity observed
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in the air. Similar to deep water waves, a change in vorticity sign is observed in the

crest of the wave when air is blown over water waves which signifies that the rotation of

fluid changes from anticlockwise to clockwise direction. It shows an sequential increase

in the negative vorticity magnitude with an increase in wind speed similar to deep

water waves. We also observe that the maximum vorticity magnitude is higher in

intermediate depth water waves compared with deep water waves. An increase in the

magnitude of negative vorticity with an increase in the wind speed is observed in figure

6.62. This is similar to deep water waves. Thus we can conclude that with an increase

in wind speed the air-water interaction becomes more prominent resulting in increase

in the negative vorticity in both the air and water. With further increase in wind speed,

higher magnitude of vorticity might be observable. These higher magnitude vortices

in the water and air can have significant impact on the air-water interaction at longer

time periods.

6.9 Closure

The results discussed in this chapter have shown several important aspects to be con-

sidered in air water interactions in the intermediate depth water waves. The effect of

viscosity and rotational motion in wind wave interaction have been studied and the

analysis found that the intermediate depth wave have higher bottom boundary effects

on the shear stress observed in the trough. The energy density variation in the presence

of wind with different velocities is calculated and discussed. The variation of energy

density shows energy exchange between the air and water wave which is similar to deep

water waves. In general, the energy density variation was found similar in line with

deep water waves except it showed an increase in the energy density mainly due to

lower number of waves dissipating energy for the same length of domain. In the next

chapter, we discuss short summery and conclusion derived from the current research.



Chapter 7

Conclusions and future work

7.1 Summery of numerical results

This section summarizes the numerical results obtained by solving the Navier-Stokes

equations for the water-wind waves using CFD technique. The numerical results agree

well with experimental and theoretical results of Mitsuyasu & Honda (1982). The

numerical model can be utilized for waves with different steepnesses, frequency or depth

of water. Several interesting features related to dynamics of the wave are presented

and its importance is highlighted. There are some significant observations regarding

the change in the magnitude and direction of near surface vorticity and shear stress

observed when we compare the case when average wind velocity zero with the cases

when average wind velocity is equal to or higher than maximum water velocity. We

observed that both vorticity and shear stress layers thickens with an increase in wind

speed and can significantly alter the near surface flow field at longer time periods. The

results are significant in terms of overall understanding of energy exchange taking place

between surface wave and air blowing over it as so far, potential flow approach has been

unable to quantify or effectively model, both near surface and near bottom boundary

197
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flow conditions. The research in this thesis has achieved its aim of understanding and

visualizing near surface physical and energy exchange processes taking place in wind-

wave environment. In terms of overall understanding of the wave dynamics, it has

provided a new and better understanding of vorticity, shear stress and energy exchange

and has increased our understanding of certain aspects in wind-water wave interaction.

The model presented in the thesis can be further developed to solve variety of wind-

wave conditions.

In Chapter 2, a mathematical formulation that describes the wave as an interface

between two different density fluids using potential flow approach and theory of com-

plex potential as described by Milne-Thomsen (1994) is presented and elaborated to

derive the initial and boundary conditions to be used in solution of full Navier-Stokes

equations. These initial and boundary conditions are later applied to a variety of water

wave and wind wave interaction flow conditions, the results of which are analyzed and

presented in later chapters. The elaborate discussion on the topic is avoided as the

potential flow solution is very well established and long studied. The general transport

equation used in the solution of N-S equations along with the governing equations for

the fluid flow is presented. The physical definition of various boundary conditions to

be used in the problem formulation are also presented.

In Chapter 3, the numerical method for the solution of full Navier-Stokes equations

to simulate wind-water wave interaction is explained. The discretization of mass and

momentum conservation equations solved in the coupled finite element control volume

algorithm is presented. The algorithm combines the geometric flexibility offered by

finite-element formulation and strict conservation properties of finite volume formu-

lation. It uses a vertex-centered method to define the control volume in the mesh

which has slightly higher storage requirements compared to cell-centered method. A

single cell, co-located grid arrangement is utilized for control volume discretization to

overcome decoupling of pressure and/or velocity. The problem of "checker-board" os-

cillations is handled by using the method similar to Rhie & Chow (1983). In order to

track the water wave interface the method developed by Zwart et al (2007) is used.
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The advection term is discretized using an upwind biased scheme and the transient

term is discretized using second-order backward Euler scheme which is considered very

robust and accurate. A coupled solver solves the equations for velocities u, v, w and

pressure p as a single system using a fully implicit discretization of the equation at any

given time step. This method has been found accurate and satisfactory when applied

to many other industrial problems related to interface tracking and is used here to

track the wind/water wave.

Chapter 4 presented the analysis of numerical results obtained from the solution

of Navier Stokes equations for intermediate depth and deep water waves with viscosity

when the average wind velocity is zero. On comparing the numerical results for time

averaged kinetic, potential and total energy density in the domain with the experimen-

tal and theoretical calculations presented in Mitsuyasu & Honda (1982), the results

agree well. Thus the accuracy of numerical model to predict the water surface and

velocity fields in the air and water is verified and found satisfactory. The numerical

results for velocity vectors, velocity contours, streamlines, pressure isolines, pressure,

energy dissipation are studied and compared with the potential flow in several cases.

The study of dynamic pressure isolines is carried out since the variation in pressure

due to presence of wave is mostly dynamic in nature and is difficult to grasp by study-

ing the combined pressure which consist of large static pressure due to depth of water

and dynamic pressure due to presence of wave. Other previously less studied aspects

in water waves such as shear stress and vorticity under the water wave are presented

and compared with the analytical solutions available. Several questions related to the

presence of vorticity and shear stress in the progressive water waves are answered. For

example, what is the maximum value of the vorticity and shear stress in the water

waves ? Are they symmetrical under the crest and trough ? How does the structure

and the behavior of vorticity and shear stress change with varying water depth and

how does it affect our understanding of wave dynamics? The results found that the

past analytical theories to predict the vorticity in the water waves under predict its

magnitude by the factor of 4. However the analytical theory does predict the oscillatory
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nature of the vorticity along the depth correctly which is similar to that predicted by

the numerical results. The study of vorticity is found to be very attractive to describe

high Reynolds number flow of water/wind waves. The effect of viscosity is observed

with the study of shear stress in the wave domain.

Chapter 5 considers another class of problem pertaining to air-sea interaction which

deals with the study of air flow over transient, nonlinear and progressive water waves

in deep water and examines the energy and momentum exchange between air and wa-

ter. The numerical results for velocity vectors, free surface, dynamic pressure isolines,

energy dissipation, shear stress, vorticity and time averaged energy density variation

along the domain are discussed. The numerical results found that the presence of wind

alters the direction and magnitude of vorticity near the free surface in the crest of the

wave both in air and water and increase the magnitude of vorticity in air and water

near the trough of the wave. An increase in the magnitude of vorticity is also observed

with an increase in wind speed. This is a significant observation from the numerical

results and can play a major role in enhancing the knowledge about near interface

processes governing the fluid flow behaviour in air-sea interaction. The results of shear

stress show the appearance of positive shear layer in crest of the wave which becomes

stronger, thicker and extends to the trough of the wave with the increase in the wind

speed. The study of energy density variation along the domain shows a reduction in

the energy dissipation of water waves on comparing with case when the average with

velocity was kept zero. When the average wind velocity equals the wave phase speed,

the wave is found to significantly reduce the loss of energy. Physically this means that

if the wind velocity is further increased than the wave phase speed it is possible to see

the wave growth over certain period of time. It however, transforms into turbulent flow

which is very difficult to verify. An alternative to this is to further reduce the mesh size

to very small value to capture the eddies with varied length scale including the smaller

ones which is computationally very expensive with the resources available.

In Chapter 6, we study another problem dealing with the interaction of transient,

nonlinear and progressive waves in an intermediate depth water with air blowing at
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various wind speeds in order to reveal energy and momentum exchange between air

and water. The wind velocity and wave steepness are defined in same manner as in

chapter 5 in order to help draw comparison between two cases when there is change is

depth of the water. The numerical results for velocity vectors, profile of free surface,

dynamic pressure isolines, energy dissipation, shear stress, vorticity and time averaged

energy density variation along the domain are discussed. The numerical results reveal

an increase in the velocity in the crest of the wave resulting in increase in the kinetic

energy density in the water. The analysis of vorticity showed the presence of vorticity

rolls which are formed from rolling of vortex sheet in the trough region and subsequently

diffused higher up in the air along the domain. These rolls also have negative vorticity

which are formed from the negative vorticity layer in the trough region and are diffused

in the air. These vorticity structures over the time period of testing produce nearly

same structures when time averaged over the wave period, however it may change over

the length and depth if we run the simulation for much longer time period which is

computationally very expensive exercise with the resources available. The maximum

shear stress observed in the trough of the intermediate depth water case is different in

magnitude for the case when the average wind velocity is low and the case when the

average wind velocity is D.5e which is mainly due to higher vertical velocity gradient in

the intermediate depth case due to effect of bottom boundary. The increase observed

in the shear stress in the water and air is sequential depending upon the wind speed.

When the average wind velocity is equal to c the maximum value of shear stress in the

air is about 10% of the maximum observed in the water and is not negligible. With

an increase in the wind speed the magnitude of shear stress can be of order similar

to the one in the water and can have substantially alter the flow structure near the

free surface. The energy density in the water in the domain shows an increase in net

energy gain as the attenuation due to dissipation is reduced and when the average

wind velocity is equal to the wave phase speed the total energy density shows an net

gain of 7% over the case when the average wind velocity is zero. This results show the

presence of direct energy and momentum exchange between air and water. In general
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many physical quantities show differences in magnitude with the change in the depth

of water. The measurable physical quantities like velocity, pressure etc show very small

difference in structure and magnitude while some hard to measure quantities such as

vorticity, shear stress etc highlight the subtle difference observed in the flow over the

deep water wave and intermediate depth water wave.

7.2 Concluding remarks

This thesis is concerned with the modeling of air-water wave interaction using Navier-

Stokes equations with the main aim of developing a numerical model to study the

hard to measure and difficult to visualize physical quantities that governs wind-wave

interaction for viscous, transient and nonlinear fast waves. In general, the real wind-

wave interaction problem is modelled with assumption that waves are either steady,

linear and inviscid which is contrary to the observed flow in nature. The work presented

in this thesis can be extended to be applied to water wave with different wave height,

steepness, water depth and varying air flow conditions as long as the turbulence is not

the major factor affecting the flow conditions. The application to other flow conditions

will require small modifications in size of the domain and location of high resolution

mesh to capture free surface accurately. These model although applicable to shallow

water waves cannot guarantee accuracy and stability for shallow water conditions as the

flow conditions are complicated due to large effect of viscosity and bottom boundary

and may require the use of turbulence closure model to capture range of fluctuations

produced in the flow field. The solution to full Navier-Stokes is the most accurate way

to study the problem of wind-wave interaction. However, at higher wind velocities it

will be necessary to employ the turbulence closure models. The VOF tracking scheme

employed in the solver is found accurate and is able to effectively capture the free

surface and produces mesh independent results when twelve nodes are included along

the wave height.

The quality of numerical results also depends upon the type of initial and boundary
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conditions provided as it could take longer time to solve if the initial conditions are

far away from the actual conditions. The other aspect of this thesis deals with study

of subtle physical quantities affecting the near-surface flow in wind-wave interaction. I

have found that the vorticity and shear stress quantities have higher magnitude than

previously analytical studies that the vorticity and shear stress should be considered

important when considering the problem of wind-wave interaction. These quantities

hold the key to understanding of the higher observed growth rate in laboratory and field

measurements. The other aspect dealing with study of energy exchange has revealed

that wind wave stops loosing the energy through dissipation when the wind velocity is

equal to wave speed and the major increase in the energy density is observed in the form

of increased momentum inside the water while the wave amplitude still does not show

an major increase. This could be mainly due to shorter computational domain and

may require much larger computational domain to report a significant change in wave

amplitude. These indicates that at low wind speeds initially the exchange between air

and water results in net increase in the kinetic energy of the water. At higher wind

speed the momentum exchange rate can be much higher and these increased kinetic

energy gets converted into potential energy via internal energy exchange and could

result in increase in wave amplitude. However, the role of turbulence is an important

factor to be considered while studying any energy exchange between wind and wave.

The results presented for vorticity and shear stress suffers from the lack of direct

experimental or fieldwork observations. A few experimental works are often concen-

trated on the study of vorticity observed in the breaking wave which may be very high

as compared with observed values in the non-breaking wave and hence un-comparable

with current numerical results. The limited theoretical work regarding the vorticity

behaviour with the depth is compared with the numerical results in Chapter 4. The

current development in use of PIV can capture the instantaneous flow field with high

resolution in a limited area. These velocity field data can be used to calculate the veloc-

ity gradient in the air and water giving shear stress and vorticity in the air and water.

The accurate measurements of near surface velocity and pressure fields in both air and
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water are required for effective comparison between numerical results and laboratory

field data for surface velocity, shear stress and vorticity as these quantities are impor-

tant in the boundary layer region which may affect the near surface flow field. The

numerical model presented here is very effective for studying the near surface processes.

This thesis presents a application of full Navier-Stokes equations to study the physi-

cal quantities governing the fluid flow in wind-wave interaction with high accuracy. The

results presented here shows that stable and accurate numerical results can be obtained

to study near surface physical processes for wind-wave conditions when turbulent field

is not very strong. The results show convergence with respect to the number of mesh

points and was found stable with increase and decrease in time step size within the

prescribed range. Therefore, it can be concluded that the numerical model presented

here for studying the wind-wave interaction problem is both efficient and sufficiently

accurate.

7.3 Future work

The possible future work related to the studies carried out in the current thesis could

present some interesting comparison for experimental and theoretical study for pressure

and shear drag in the wind waves. An accurate experimental future work related to

measurement of both pressure and shear drag is needed in order to compare the results

of pressure and shear drag obtained from numerical study. The numerical results for

pressure and velocity of this study can be further used to study the coefficient of drag

on the free surface for range of wind conditions presented in this study. To accurately

model the drag coefficient from experimental data an accurate velocity and pressure

measurements are required which can then be compared with the numerical results.

Several other possible directions of extending the work presented in this thesis include

blowing the wind from the opposite direction and blowing the wind obliquely at an

angle to observe the change in physical quantities presented in the current thesis. It

is also possible to look at a much longer domain to observe how these flow quantities
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change along the length in a longer domain. Another very interesting aspect to study

could be full 3D modeling of the flow field, however it is worthwhile to note that it is

computationally expensive. The future work should also include an accurate experi-

mental investigation of near surface velocity and pressure field which can be compared

with the numerical model results to reveal many other interesting aspects related to

wind waves and wave drag. Moreover, the numerical model should also be compared

with more accurate and comprehensive experimental and theoretical investigations for

wind-waves.
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