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ABSTRACT 

Slip is a harmful phenomenon in railway. It causes the wear of wheel rail contact 

surface and mechanical stress of the traction system. Moreover, it may affect the 

stability of the whole system. The study is concerned with the development of a 

novel slip detection and re-adhesion control using practical position encoder. 

In detail, this thesis presents a powered wheelset system driven by an induction 

motor associated with vector control unit. The wheelset models developed from the 

study include a comprehensive model which involves longitudinal, lateral and yaw 

dynamics, a distributed parameter model and a lumped parameter model with 

simplified longitudinal dynamics. The dynamics of a wheelset is studied and 

compared in normal conditions and slip conditions. Simulation results show typical 

torsional vibration occurs when slip happens. 

Two possible approaches of slip detection based on the vibration phenomenon are 

discussed. The first one monitors the torsional torque to detect the slip based on the 

direct torsional torque measurement. In the second approach, a Kalman filter based 

slip detection method is presented and evaluated in different operation conditions. 

Finally a re-adhesion control scheme is developed based on the Kalman filter. The 
". 

effectiveness of this approach is demonstrated using comprehensive computer 

simulations. 
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1 INTRODUCTION AND LITERATURE REVIEW 

1.1 Electrical Traction System 

1.1.1 Constitution of a Traction System 

The general diagram of a traction system is shown in Figure 1.1. It has been divided 

into four major parts. 

Control 
system 

1 

~ Power Transmission & 

supply driving sys. ~~ A 
~ ~ 

Wheel rail contact 

Figure 1.1 General block diagram of a traction system 

As the diagram displays, the tractive effort for railway vehicles is generated from 

wheel-rail contact. It is the most fundamental principle for a conventional railway to 

utilize a steel wheel on a steel rail to transmit all the forces including traction, 

braking and guidance [1]. Some power supplies generate either DC or AC power 

sources for electrical traction systems. Furthermore, the transmission and driving 

system include driving motors and gear transmissions which are capable of carrying 

out control actions such as speed varying, torque adjustment etc. Apart from that, a 

control system is used to control the operational features of power supply, 

transmission and driving systems to enhance the system stability and protect the 

system. 
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1.1.2 Traction Motors 

In the early days of electrical traction, both DC motors and AC motors have been 

used. The smoothly-speed-tuning features of the DC motor made it a favoured choice 

up to 1960 [2]. However, the commutator of DC motors needs regular maintenance 

which increases operational costs and reduces the reliability. 

With the development of modem power electronics and microprocessor control 

technology, 3-phase AC motors have become an efficient alternative to DC motors: 

Induction Motors 

Applications of induction motors in traction systems were once restricted by the 

constant voltage and frequency power supplies. The development of power electronic 

converter (PEC), which can provide variable voltage and frequency supplies, make 

induction motors a more favorable choice for vehicle traction applications than DC 

motors. Vector control strategies of induction motors allow fast torque dynamics, and 

give high performance in traction control. Cage induction motors have been widely 

used in railway systems such as metro railways in Germany & Switzerland and 

LondonlParislBrussels Eurostar trains [3]. 

Synchronous Motors 

The synchronous motor is another type of AC motor implemented in railway traction. 

The most well-known application is in the French TGV train. More recently, 

permanent magnet synchronous motors have been the subject of research interest and 

have become a strong candidate for railway traction [4]. 

1.1.3 Traction System with Induction Motors 

Traction systems with induction motors can be divided into two different categories: 

single-inverter single-induction-motor system and single-inverter multiple-induction­

motor drive system. Even though there is an increasing research interest in different 

single-inverter multiple-induct ion-motor drive systems such as in the Japanese and 

Korean high speed railway system [5][ 6], single-inverter single-induction-motor 
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system is still a conventional driving system utilized in many railway systems [7]. In 

the latter system, driving the motors individually improves the re-adhesion control 

performance and makes the maintenance of the wheels easier [8]. Therefore, the 

research is focused on a single-inverter single-induction-motor system. 

One of the main types of induction motor drives is a voltage-source inverter (VSI) 

fed induction motor drive [3]. The VSI can be switched to generate variable voltage, 

variable frequency (VVVF) power supply which is often used to realize the 

speed/torque control of the induction motors together with a vector control unit. The 

DC link voltages of the VSI vary from 750 V to 3 kV in different countries and 

regions. According to [3], the widely used VSI fed induction motor traction systems 

in Europe are fed with DC supply voltages up to 1.5 kV. 

1.1.4 Control of Induction Motors 

Control schemes for induction motors can be divided into two major categories: 

scalar control and vector control. 

Scalar Control 

Scalar control deals with the scalar quantities which are represented by magnitude 

alone [9]. The popular scalar control method is the coordinated voltage-frequency 

~ /1; control which imposes constant relationship between stator frequency and 

voltage through feed forward control. This control strategy is traditionally used in 

those occasions which do not require high precision speed control and fast response 

dynamics. 

Vector Control 

Vector control strategies make it possible to allow induction motors to achieve a fast 

dynamic response, in a similar manner of a separately excited DC motor. Vector 

control is also known as Field Oriented Control (FOC). It was proposed by Hasse [10] 

and Blaschke [11], and now widely applied in the railway industry [5]. 
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There are three flux space-phasors in the induction motor: rotor flux linkage, air-gap 

flux linkage and stator flux linkage. The vector controlled induction motor drives can 

be categorized through the methods of using different flux linkage vector for 

orientation [12]. Vector control is performed by attaching a rotating frame along one 

of the flux linkage directions to realize decoupling of torque and flux related current 

components. Among the three orientations, rotor flux linkage orientation can give a 

simplified current decoupling [2]. Usually in vector control, the flux is kept constant 

to give a fast torque response, since flux variation tends to be very slow. 

To realize the flux orientation, it is essential to obtain the position of the flux. On one 

hand, the flux position is either directly measured by using sensors such as Hall 

sensors [11] and search coils [13], or from the flux estimations. On the other hand, 

indirect vector control determines the flux position from rotor position and slip 

frequency. The rotor position can be attained directly through a position sensor and 

the slip frequency can be calculated from the demand. 

Vector control can be also grouped into sensor or sensorless schemes. Control 

schemes with position sensors use the direct measurement of rotor position to 

determine flux linkage position, while sensorless control schemes use different speed 

observers to estimate the rotor speed. Sensorless vector control has earned a lot of 

research interest, especially by the single-inverter multiple-motor systems as 

presented in [14]. 

.. 
1.2 Wheelset Arrangement 

A wheelset comprises of two wheels being connected onto an axle. Even though 

there are cases using independent wheels such as in the Spanish high-speed train, the 

Talgo express and tracked vehicles in coal mines, most conventional rail vehicles use 

a solid axle wheelset [1]. Each wheel of the wheel set has a coned or profiled tread 

with a flange on the inside as shown in Figure 1.2. For simplification, the wheel is 

considered as cone shaped in most wheelset dynamics studies [15]. Meanwhile, as a 

powered wheelset, a traction motor is mounted on the wheelset to drive the wheels 

through a gear box. 
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tread 

flange 

Figure 1.2 Wheelset on rails 

As Figure 1.3 shows, the wheel rail contact is simplified to linear profiles with a 

single contact point [15]. 

actual profile simplified profile 

Figure 1.3 Actual and simplified wheel rail contact profile 

1.3 Slip Phenomenon and Consequences 

1.3.1 Creepages and Creep Forces 

As Figure 1.4 shows, the local elastic deformations, such as contractions and 

expansions of the wheel and rail, generate a tangential force F, to the wheel rail 

contact plane [1]. F" also known as creep force, induces microslip or creepage. 

Creepage can be expressed in terms of the velocity difference between two bodies in 

contact divided by the mean velocity [1]. In this thesis, the creepage in the 

longitudinal direction is defined as: 
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(1.1) 

where, A is the creepage, Vw is the wheel linear speed and v. is the vehicle forward 

speed. A is also referred to as slip in some works. The creep phenomenon 

contributes to stable transmissions of the propulsive force [6], and is essential to 

transmit the motor torque into vehicle movement [16]. 

N 
Wheel 

1 
Forward 

Contract~ F; ~pansion 

Figure 1.4 Creep phenomenon between wheel and rail 

The value of creep force is determined as 

F; = pN (1.2) 

where, p is the creep force coefficient, N is the normal load. Creep force F; varies 

in time, even though the normal force N is constant. In practical systems, the creep 

force is subject to large and uncertain variations due to different contact 
~ 

environments, such as contaminations and weather. The vehicle speed and creepage 

will affect the resultant creep force as well. 

In many railway vehicle modelling for steering or stability control studies, the creep 

force coefficients are normally taken as constants, for example in steering controls 

[ 1 7], in stability analysis [18] or in bogie fault detections [19] . However, the 

nonlinear relation of the overall creep force at the contact point with creepage is 

concerned in the research regarding the re-adhesion control strategies development. 
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1.3.2 Slip phenomenon and Consequences 

Typically, the trend of the fundamental relationship between creep force 

coefficient Ji and creepage A can be described through different slip curves as show 

in Figure 1.5 which can be obtained based on a general creep force coefficient model 

according to [20] and [21]: 

(1.3) 

where, Jiso and Jido' k 1/1 and k 1/2 are the curve tuning parameters depending on the 

rail surface conditions. 

Ji 
Jimaxl 

stable: slip 

Figure 1.5 Wheel rail contact characteristics 

The maximum value of each curve, also known as the adhesion coefficient, gives the 

adhesion level available at certain contact condition. High adhesion coefficient 

indicates a dry/good contact condition, while a low adhesion coefficient is related to 

a poor contact condition such as wet or oily rail. Wheel slip frequently happens in the 

low adhesion conditions. 

Each curve can be partitioned into stable and unstable regions by the maximum point. 
-

In the stable region, the curve has positive slope, and vehicle can operate stably in 

this region. The linear part section of the stable region is also known as low creep 

section. The nonlinear section of the stable region is known as the large creep section. 
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In the large creep section, the creep force approaches saturation [22]. By contrast, in 

the unstable region, also known as the slip region, the curve has negative slopes. The 

more creepage, the less creep force is obtained in the unstable region. The vehicle is 

normally required to operate in the low creep section where a stable transmission is 

guaranteed. 

However, the slip curves shown in Figure 1.5 present rather idealized curves. The 

value of the creep force coefficient varies with external conditions, but 

measurements from many experimental studies have indicated that the creepage­

creep force relations in practice broadly conform to the ideal curves [23]. As a result, 

the slip curves have been widely used in railway vehicle dynamic studies. In this 

thesis, look-up tables are generated to represent different wheel rail contact 

conditions. 

Slip happens when the driving torque from the motor is higher than the adhesion 

level in the present contact condition. In the slip condition, wheel speed will increase 

much faster than the vehicle's since the creep force is limited by the adhesion level. 

The excessive slip causes heavy wear of wheel and rail, shortens lives of relevant 

elements and also brings operational difficulties. Therefore, re-adhesion control is a 

necessity to ensure stable vehicle performance and prevent excessive wear of wheel 

and rail. 

1.4 Literature Review 

Generally, re-adhesion control includes two fundamental Issues: the detection of 

wheel slips and torque control for re-adhesion. Before 1980s, the slip control 

performance was highly dependent on the driver's skills [16]. With the development 

of automatic control strategies and electronics technologies, gradually, slip detection 

and torque adjustment can be controlled by microprocessors with online signal 

processing which gives good response to the abnormal conditions. Although some 

measures such as sand or friction modifiers can be applied to wheel rail interface to 

increase adhesion in traction [24], the re-adhesion controls for the electrical vehicles 

are implemented associated with torque controllable traction motors, and different 

approaches have been studied. 

8 



1.4.1 Conventional Re-adhesion Control Based on Wheel Speeds 

Conventional re-adhesion control schemes, which were developed to detect slip and 

compensate the poor rail adhesion effort without the exact information of the wheel 

rail contact condition, use the creep speed criteria or acceleration criterion to detect 

the slip. The creep speed is defined as the speed difference between the driving 

wheel and the vehicle. Therefore, the primary important issue for the conventional 

scheme is the speed measurement. Regularly, the angular speed of a wheel is 

obtained through a position encoder installed at one end of the wheel axle or traction 

motor axle [25]. Since it is difficult to obtain vehicle speed appropriately by directly 

measuring it, the raw train speed is usually taken as the minimum value among 

several axles. The raw train speed is either used directly to calculate creep speed 

[7][25][26][27][28] or allowed to increase or decrease by the train acceleration rate 

when it is lower or greater the trailer car's speed respectively [29][30]. No matter 

which method is used, the multi position encoder measurement is required for the 

conventional re-adhesion control. 

In the creep speed criteria, the slip condition is indicated when the creep speed is 

higher than the preset threshold [26][27][28][29][30]. The lower the threshold value, 

the faster slip condition is detected. Typical threshold value is 0.1 km/h [27]. Some 

experimental results also show the threshold value may be up to 2 km/h (Shinkansen 

trains) [26]. A small threshold value may guarantee the vehicle will not slip heavily 

by scarifying the tractive efficiency where the creepage is far below the adhesion 

level [22]; meanwhile, high threshold value may result in the delay of slip detection. 

Different torque control strategies are proposed based on creep speed criteria. 

The slip velocity feedback torque control in [27] imposes the torque by feeding back 

the creep speed through a constant gain. Speed difference control is a method for 

reducing the torque according to the difference between creep speed and the 

reference creep speed [25][28]. The reference creep speed can be given fixed based 

on real field tes! results [25] or given as a linear function of vehicle velocity [28]. 

According to [29], the speed difference control only works when the slip speed is 

very small and suitable for early inhibition of wheel slip development. 
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Pattern control is used to reduce the torque according to a pre-defined pattern 

[29][30]. The driving torque is reduced by a certain pre-defined pattern to regain 

adhesion when a slip conditions is indicated. Once the creep speed is found to be 

lower than a threshold (usually lower than the one which is used to detect the slip), 

the re-adhesion is considered to be achieved. The driving torque is either kept at the 

current level (simplest logic), or gradually increased in a pre-defined pattern to make 

more utilization of the adhesion condition. The pattern control is also used for small 

slip corrections and to large extent depends on proper selection of threshold values. 

Acceleration criterion is also used to detect the slip especially when all the wheels 

slip simultaneously in severe slip conditions. In [7], the re-adhesion control is 

realized by watching the acceleration rate of the wheel speed and reduced the torque 

by an amount which is proportional to the square of the creep speed. 

Based on these conventional anti-slip methods, typical hybrid control re-adhesion 

control schemes were proposed where conventional re-adhesion control methods are 

blended as introduced in [29][30]. The control subsystems (speed difference control, 

pattern control and acceleration criterion) are activated according to different slip 

levels. Usually, the creep speed threshold for the speed difference control is lower 

than that of the pattern control. The acceleration criterion is used as the top level of 

hybrid control. The calculated acceleration rate is compared to the pre set 

acceleration limit to active a further torque reduction by a certain pattern to secure 

good adhesion regardless the severity of wheel slip. 

1.4.2 Re-adhesion Control Based on Disturbance Observer 

A lot of work has been tried to detect the slip and control the torque on the 

identification of wheel rail contact conditions. The slip condition or the optimal 

operation region can be pointed out by studying the slope of the creep force. Besides 

direct measurement of the creep force [31], there are several ways to estimate the 

creep force as a disturbance to the traction motor. 

In [32][33][34], the creep force is considered as the load torque of the motor. 

Therefore, the creep force can be estimated from the driving torque and the motor 
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rotating speed with a low pass filter to eliminate the nOise caused by taking 

derivative of wheel speed. In [6][35][36][37], the disturbance observers assume the 

time derivative of the creep force be zero, and establish full order state space 

observer to estimate creep force with the wheel angular speed information. 

When creep force is known, the creep force coefficient can be calculated as well as 

the time derivative of the creep force, which can be further used for slip detection 

and optimal re-adhesion control. The optimal adhesion condition relies on the 

maximum point of the slip curve, where the derivative of creep force to creepage is 

zero. According to [33], when the accelerating vehicle encounters a wheel-rail 

contact condition drop and develops a slip status, the time when the derivative of 

creep force (dE; / dt) is equal to zero and the time when the derivative of the creep 

force to creepage (dE; / d A ) is equal to zero are almost identical, so it is possible to 

examine zero time derivative of creep force to detect the peak point of the slip curve. 

In [36], a high pass filter is designed to estimate the time derivative of the creep force, 

but no further anti slip control method is introduced. In most of the works 

[6][31][34][35], steepest gradient method is proposed to obtain the optimal creep 

speed, which can be fed to an simple PI controller to derive the torque adjusting 

amount with extra knowledge of actual creep speed from the measurement. Some 

others establish a PI controller directly by employing the time derivative of the creep 

force as the input [32] [33][37]. 

The advantage of the disturbance observer lies in the fact that it gives the possibility 

to detect the optimal creepage without the calculation of creepage. However, the time 

derivative of the creep force can not be estimated correctly when the creep force 

changes quickly caused by sudden slip [34]. 

1.4.3 Non-classic Re-adhesion Control Methods 

Due to the non-linearity and high noise contaminated facts of slip, there are some 

non-classical methods to treat this problem such as fuzzy logic based control [38] by 

examining the time derivative of creep speed together with time derivative of creep 

force. In [39], wavelet analysis is used to pre-process the data for fuzzy logic 
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controller, where the wheel acceleration signal is decomposed to a noise-free 

approximation part and a detail part with noise. Based on the noise free part, the 

wheel acceleration tendency is estimated and differentiated to identify the slip 

tendency. 

1.4.4 Summary 

The strategies of existing re-adhesion control schemes mentioned in the last section 

mainly rely on 

(1) Representative speed variations in slip condition. Since the major driving 

effect is consumed in speeding up the wheel set speed rather than the vehicle 

in slip condition, the wheel set speed is to increase much faster than vehicle's. 

By monitoring speeds of wheel set and vehicle, slip condition can be detected 

and prevented. 

(2) Nonlinear wheel rail contact feature. Wheel rail contact feature can be 

expressed though slip curves. The maximum points of the curves mean not 

only optimal operation points but also dividing points of normal conditions 

and slip conditions. By detecting the turning point of wheel rail contact 

curves where the slope is zero, the slip can be prevented and the system can 

be held in optimal operation condition. 

The constraints of these approaches are: 

(1) Multiple speed sensors are required. Even though some work has been done 
fY 

to estimate train speed directly from wheel velocity measurement [40] and 

several approaches used GPS [41][42], it is still difficult to obtain vehicle 

speed properly and precisely. In many applications, several speed sensors are 

required to be installed other than the powered wheelset. These will increase 

the cost and the complexity of the tractive unit. 

(2) Disturbance sensitivity. Besides the noise caused by the power inverter and 

position sensor, harsh operation environment and complex operation 

dynamICs of railway vehicle also introduce unwanted disturbances to the 

system. Therefore, it is difficult to identify the precise dividing point for the 

normal and slip conditions [23], which results in reiterative action of control 

system and finally reduces the average tractive effort for the railway vehicle. 
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1.5 Kalman Filter in Railway Applications 

The Kalman filter was developed by both Kalman and Bucy [43][44] to treat "the 

problem of estimating the state of a linear stochastic system by using measurement 

that are linear functions of the state" [45]. In railway technologies, the major 

applications of Kalman filter are in the areas of: 

(1) Sensor fusion for train tracking and localization. Kalman filtering is widely 

used to obtain a robust train speed measurement through a smart fusion of 

different kind of sensors, such as eddy current sensors [46], odometer and 

inertial sensors or GPS [47][48], Doppler radar [49], axle-generator [50], or 

from a Human speaker [51]; 

(2) Suspension condition monitoring. Kalman filter gives good solutions to 

monitor the vehicle suspensions conditions and detect the fault based on 

noisy on-board measurement as presented in [19] and [52]; 

(3) Active steering issues. In [53], [54], Kalman filters were used to estimate the 

state variables for active steering controls for railway vehicles; 

(4) Wheel-rail adhesion level estimation. In [55], a linear Kalman filter was 

designed to estimate the wheel-rail low adhesion levels by using the 

response of vehicle to track irregularities, and the drop of the adhesion level 

can be indicated based on the estimation results of Kalman filter. 

In these applications using Kalman filter, the most relevant ones to the re-adhesion 

control study are the presented in [50] and [55]. However, in [50], the slip detection 

and compensation strategies were actually a conventional re-adhesion approach on 

which finally it was based the speed variation observation. In [55], even though a 

low wheel-rail adhesion level can be indicated, it cannot figure out whether a slip 

happens or not. 

1.6 Research Approach of This Thesis 

The research proposes a novel indirect slip detection and re-adhesion control 

approach by exploring how wheelset reacts dynamically to the changes in contact 

conditions. The study starts from the dynamics study of a wheelset model 

considering the elastic coupling of the shaft, which is different from most of the 
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existing schemes. The natural torsional modes of the wheelset are studied to find the 

primary natural mode. Based on the dynamics of the wheel set, several slip detection 

strategies are introduced and evaluated in different conditions. Special attentions 

have been given to the Kalman filter based slip detection scheme with the practical 

position encoder. The further developed re-adhesion control approach based on 

Kalman filter requires fewer sensors than the existing anti-slip schemes, and robust 

to noise and external disturbances. All the simulations are carried out in the 

environment of MA TLAB/SIMULINK. 

1. 7 Thesis structure 

There are 7 chapters in this thesis: 

Chapter 1 gives a background study of electric traction system, wheel set arrangement 

and slip phenomena and its consequences. Then the literature review gives a 

comprehensive introduction of the existing re-adhesion control strategies for 

electrical vehicle, where the features and limitations of the strategies are summarized. 

After that, there is a brief review on the Kalman filter applications in railways system, 

followed by the arrangement of this thesis. 

In chapter 2, the induction motor model and its vector controller based on indirect 

rotor flux linkage oriented control scheme are introduced, which is important for a 

fast torque response to achieve re-adhesion. 

In chapter 3, the wheelset dynamic modelling is presented, where a comprehensive 

model including longitudinal, lateral and yaw dynamics is firstly introduced and 

followed by a distributed parameter model and a lumped parameter model with 

simplified longitudinal dynamics. The natural torsional modes of the wheelset are 

found based on the distributed parameter model. The dynamics to the external torque 

of each mode are studied and compared, based on which the primary torsional mode 

is highlighted. The lumped parameter wheelset model which contains the rotational 

and primary torsional mode lays the foundation for the further slip detection and 

controller design. The distributed and lumped parameter models are compared at the 

end in the dynamic description and simulation results respectively. 
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Chapter 4 contains the dynamics study of the lumped parameter whee I set model. The 

dynamics of the wheel set with different natural torsional frequency are studied in 

different wheel rail contact conditions. The torsional oscillations at the wheelset 

natural frequency are considered as an indexing phenomenon of the wheel set in slip 

condition. The stability analyses based on the linearised wheel set model are carried 

out and indicate the link between the torsional oscillations in slip condition and the 

system instability. 

Chapter 5 deals with the slip detection based on the torsional oscillations. The 

method of direct monitoring torsional torque based on ideal measurement is 

introduced, where two post data processing methods treating the vibration signals are 

introduced and compared. Then a Kalman filter based slip detection scheme is 

proposed and evaluated with different wheel set axles as well as in different 

conditions including the cases where a practical position encoder is involved. 

In chapter 6, a complete re-adhesion scheme based on Kalman filter is developed and 

the performances of the scheme are evaluated for different wheels axles and different 

wheel rail contact conditions. The performances with a practical position encoder are 

also evaluated. Finally the dynamics of the comprehensive wheelset model which 

considers the longitudinal, lateral and yaw dynamics couplings are investigated in 

slip conditions. The feasibility of the re-adhesion scheme is examined in this 

complex dynamic environment. 

Chapter 7 provides the conclusions and suggestions for further study. Here, a 

summary of this thesis is given. The conclusions are drawn where the novelties and 

advantages of the developed re-adhesion scheme are put forward. Finally, some 

suggestion·s for further work are displayed. 
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2 MODELLING OF THE INDUCTION MOTOR 

AND ITS DRIVE 

The three phase induction motors are one of the major driving motors for railway 

traction system nowadays. With the development of power electronic technologies, 

high performance control unit of induction motors can be implemented at a relatively 

low cost level [56]. In this study, an induction motor with an indirect vector control 

scheme acts as the major actuator to carry out the re-adhesion control demand. 

In this chapter, the model of a three-phase induction motor is introduced. Indirect 

rotor flux linkage oriented control (FOC) scheme is presented. Then a position 

encoder commonly used in railway industry is introduced to the FOC scheme. 

Finally, a complete tractive unit with a PWM inverter-fed induction motor is 

presented. 

2.1 Modelling of the Induction Motor 

2.1.1 Three-Phase Mathematical Model of the induction motor 

It is assumed that three-phase stator windings (A, B, C) and rotor windings (ar, hr, cr) 

are distributed symmetrically, and air-gap MMF (magneto-motive force) distribution 

of any single phase winding is sinusoidal. The permeability of the stator and rotor 

iron is assumed to be infinite; saturation, iron losses, end-windings and slot-effects 

are neglected [57]. 
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A 

Figure 2.1 ABC (stator) and arbrcr (rotor) coordinate systems 

Figure 2.1 gives a three phase coordinate system for stator and rotor: ABC represents 

the stator coordinate, which is a static frame with three phases distributed 1200 from 

one another; arbrcr represent the rotor coordinates, which is a rotating frame with 

three phases displaced 1200

• Or is the rotor electrical angle. 

Equation of Flux Linkage in Three Phase Coordinate System 

The flux equation is given as [58]: 

(1.4) 

In the flux equation: 

'l/ARC =['l/A 'l/B 'l/eY is the array of stator flux linkage; 

'l/arbrer = ['l/ar 'l/br 'l/er r is the array of rotor flux linkage of referred to stator; 

iABC = riA iR ic r is the array of stator phase currents; 

iarbrcr = [iar ibr (r Y is the array of rotor phase currents; 

Lss is the stator self inductance matrix: 

_1-1 
2~m 

1..m + 1.., 
-t1..m 
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where Lim is the inductance corresponding to air-gap primary flux linkage of the 

stator; and ~I is the leakage inductances of the stator. 

Lrr is the rotor self inductance matrix referred to the stator: 

l
~m +L21 -t~m -t~m J 

Lrr = -~~m ~ml+L21 -t~m 
-I~m -I~m Lim +L21 

(\.6) 

where, L21 is the rotor leakage inductance referred to the stator. 

Msr is the mutual inductance matrix from the rotor to the stator: 

[ 

~m cosBr ~m cos(Br +120°) ~m cos(Br -1200)] 

Msr = ~m cos(Br -120°) ~m cosBr ~m cos(Br + 120°) 

~m cos( Br + 120°) ~m cos( Br -120°) ~m cos Or 

(\,7) 

Mrs is the mutual inductance matrix from the stator to the rotor: 

~m cos( Or -120°) ~m cos( Br + 1200)] 

~m cosBr ~m cos(Br -120°) 

~m cos( Br + 120°) ~m cos Or 

(\.8) 

Equation of Voltage in Three phase Coordinate System 

The voltage equations of the stator and rotor windings are [58]: 

(\.9) 

where, VAHC = [VA VB Vc r is the array of the voltages of the stator; 

T 
V b = [v Vb v] is the array of the voltages of rotor referred to the ar.rer or r r 

stator; 

the stator; 

~J is the stator resistance matrix, 1j is the phase resistance of 

1j 
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~ l is the rotor resistance matrix, and r2 is the phase resistance 

'2 
of rotor referred to the stator. 

Substituting flux equation (1.4) into the voltage equation (1.9) it gives: 

(1.10) 

or: 

(1.11) 

Motion Equation o/tlle rotor 

The electromagnetic torque of the induction motor r: is generated by the interactions 

of stator magnetic field and induced rotor magnetic field and is given as [58]: 

r: = -np~m[(iiar + iBihr + iCier) sin Or + (iibr + iBier + iCiar) sin(Or + 120°) 

+ (iAier +iBier +iciar)sin(Or -120°)] 

where, np is the pole pair number. 

The mechanical dynamics of the motor is governed by [58]: 

(1.12) 

I d 20 D dOr .-!!!.... __ r =T -TL -_.- (1.13) 

np dt2 e np dt 

where, TL is the load torque, 1m is the moment inertia of the rotor and D is the 

windage and viscous damping coefficient. 

Usually, the damping torque caused by windage and friction is neglected [59]. 

Defining rotor electrical angular speed as OJm = dJ; , the final motion equation of the 

induction motor is: 

(1.14) 
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2.1.2 Induction Motor Model in Stationary Two Phase Coordinate 

System 

Equations (1.4), (1.10) and (1.14) are the three basic equations to describe the cage 

induction motor. The inductances involved are functions ofBr , and this makes the 

equations difficult to solve. To simplify the solving process and make the dynamic 

features more obvious, transformations between different coordinate system are 

developed. Figure 2.2 defines a stationary afJ frame which is a two phase coordinate 

system with axis a being fixed along the stator A axis and the axis f3 being vertical 

to the axis a. 

A 

Figure 2.2 ABCI afJ frame 

Transformation Matrix 

The variables in these two frames can be transferred usmg the transformation 

matrixes. The transformations are made under the restrictions to keep the power 

unchanged before and after transformation. One of the widely used transformation 

matrix is to keep the power unchanged before and after the transformation [60]. 

According to that, the transformation matrix from stator ABC coordinates and afJ 

frame is C3s-i : 
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1 
1 1 

2 2 

C -~ 0 
Jj Jj 

3s-2 - 3" 2 2 
( 1.15) 

1 1 1 

J2 J2 J2 
The transformation matrix from afJ frame to the ABC system is C2-3s: 

1 0 
1 

J2 

~ 1 Jj 1 
C =- J2 

(1.16) 
2-3s 3 2 2 

1 J3 1 

2 2 J2 
The transformation matrix from rotor arbrcr coordinates to afJ frame is C3r-2: 

[ 

coser coscer -120°) coscer +120
0

)] 

C3r- 2 = ~ -sin er -sinCer -120°) -sinCer + 120°) 

. 1/J2 1/J2 1/J2 
(1.17) 

The transformation matrix from afJ frame to rotor arbrcr coordinatesis C2-3r: 

-siner 
1 

coser .J2 

C2- 3r =~ -sinCer -120°) 
1 

coscer -120°) J2 
(1.18) 

-sinCer + 120°) 
1 

cosCer + 120°) Ji 

Equations in afJ Frame 

The equations to describe the induction motor in the afJ frame are known as 

Stanley's equation, which is very useful to solve transient problems [61]. The voltage 

equation is [58]: 

Val 1j + pLs 0 pLm 0 ial 

VpI 0 rl + pLs 0 pLm iPl 
= ( 1.19) 

Va2 pLm OJmLm r2 + pLr OJmLr ia2 

Vp2 -OJmLm pLm -OJmLr r2 + pL, iP2 
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where. 

1: suffix for quantities of the stator 

2: suffix for quantities of the rotor 

For end short circuited squirrel cage induction motor, va2 = vp2 = O. 

The flux equations are: 

If/ al Ls 0 Lm 0 ial 

If/ PI 0 Ls 0 Lm ipi 
= 

If/ a2 Lm 0 Lr 0 ia2 

If/P2 0 Lm 0 Lr iP2 

Then the stator currents can be given as: 

where, 

L2 L2 L L 
R=r1 +~r2'L =L --..!!!...·A=~r· B=~ L2 'a L' L2 2' L 

r r r r 

The electromechanical torque is given as: 

nL . 
T: = npLm(iplia2 -ipial) = ~ m (ipllf/a2 -ZalIflP2) 

r , 

The motion dynamic equation is the same as equation(1.14). 

2.1.2 Simulation Results of an Induction Motor 

(1.15) 

(2.16) 

(1.17) 

(1.23) 

The correctness of the induction motor model is evaluated by the simulation results. 

The parameters of the induction motor, which are taken from a practical light duty 

traction motor, are given in Table 2.1: 
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Variables Definitions and values 

PN Rated power (250 kW) 

UN Rated voltage (660 V) 

IN Rated frequency (80 Hz) 

lj Stator phase resistance (0.0442 n) 

r2 Rotor phase resistance referred to the stator (0.0665 n) 

~m Inductance corresponding to air-gap primary flux linkage 

(1.342xlO-2 H) 

Lis . Stator leakage inductance (6.650 x 1 0-4 H) 

L'r Rotor leakage inductance referred to the stator ( 6.680 x 10-4 H) 

np Pole pair number (3) 

1m Rotor (including gearbox) moment of inertia (4.4 kgm2
) 

Table 2.1 Parameters of the motor 

The model established in MATLAB/Simulink is shown in Figure 2.3. The simulation 

is carried out under the conditions: 

(l) The motor is fed with a three phase balanced power supply with 

magnitude 380 V and frequency 60 Hz; 
, 

(2) The load torque is given as a step signal with a magnitude 800 Nm, 

stepping at t= 1.2 s; 

(3) The initial speed of the rotor is 0; 

(4) The damping is o. 
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Figure 2.3 Simulation model ofthe induction motor 
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The variables observed are the stator currents, electromagnetic torque and rotor 

speed, which reflect the motor dynamic status and will affect the tractive 

performance when a mechanical load is included. 

Figure 2.4 gives phase A stator current waveform. Figure 2.5 gives the close shot of 

phase A stator current in time range O~O.5 sand 1 ~ 1.5 s. Figure 2.6 gives the rotor 

speed waveform. 
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Figure 2.4 Overview the Phase A stator current 
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Figure 2.5 Close shot of Stator current 0- 0.5 sand 1- 1.5 s 

When the voltages are first applied, the rotor speed is zero, and the currents running 

through stator windings build up the fundamental magnetic field which rotates at the 
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synchronous speed. At the very beginning when rotor is still stationary, the magnetic 

field cuts the rotor conductors at synchronous speed, which is the highest relative 

speed. Then the high e.m.f., which is induced by magnetic field cutting the rotor bars, 

produces high currents in the rotor, so high stator currents are required to balance the 

rotor currents during starting period as can been seen in close shot O~O.5 s in Figure 

2.5. 

The induced currents in rotor generate rotor rotating magnetic field which acts 

together with original stator rotating magnetic field to produce the air-gap primary 

magnetic field. The interaction between the air-gap magnetic field and rotor 

magneto-motive force generates torque which pulls the rotor picking up its speed as 

shown in Figure 2.6. As the rotor speed increases, the relative speed, which is known 

as the slip speed between the rotor and the air-gap magnetic field, decreases, and the 

e.m.f. in the rotor conductor falls. Therefore when motor reaches steady state in no­

load period, only small rotor currents are required to maintain small electromagnetic 

torque as shown in Figure 2.7 which is needed only to overcome the mechanical and 

harmonic losses of the motor as shown in the close shot of stator current between 

1 ~ 1.5 s before a load torque is added at t= 1.2 s. 
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Figure 2.6 Rotor speed 

1.5 2 

When the mechanical load is added to the motor, the magnetic torque of the motor is 

temporarily lower than the load torque. The speed of the rotor falls as shown in 

Figure 2.6 at t=1.2 s when a load torque is added. Then the slip speed increases. The 
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induced e.m.f. in the rotor increases and so do the induced currents. When the motor 

reaches the new balanced status, the rotor rotates at a lower speed as shown in Figure 

2.6. On the other hand, the stator currents increase to compensate the increase in the 

rotor currents as shown in the close shot of the stator current in time period 1-1.5 s 

in Figure 2.5. 

Figure 2.7 gives the waveform of the electromagnetic torque of the motor. At the 

starting period, there is an oscillation due to the alternating cutting of the air-gap 

magnetic field to the rotor when the rotor speed is low. When the rotor speed is 

pulled up, the torque rises to a maximum torque known as pull out torque then drops 

to a low value as the rotor approaches synchronous speed and operates at steady state 

in the no load condition. When there is load added, the electromagnetic torque is 

increased to obtain a new balance status. 
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Figure 2.7 Electromagnetic torque 

The study of the simulation results of the induction motor gives a physical insight of 

the induction motor behaviour. Also the results show that the model can deliver 

anticipated dynamics. 
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2.2 Field Oriented Control 

2.2.1 Rotor Flux Linkage Oriented Vector Control 

Field-oriented Control (FOC) is a well developed speed/torque control strategy 

which is widely used in many applications including railway industry. In this section, 

the rotor flux linkage orientation control is introduced and will be utilized as a basic 

torque control unit in the re-adhesion controller design. 

In the rotor flux linkage oriented vector control, a rotating d-q frame is defined as: d­

axis is fixed along the direction of rotor flux linkage'l/2 and q-axis is vertical to d-

axis as illustrated in Figure 2.8. The transformation from ABC three-phase frame to 

d-q rotating frame can be carried out in two steps: 

(1) transformation from ABC frame to stationary afJ frame and; 

(2) transformation from stationary afJ frame to rotating d-q frame. 

The transformation can be used to decouple the torque and flux related currents so 

that the induction motor can be controlled like separately excited DC motors. 

q 

A 

Figure 2.8 dq coordinate system 
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In the last section, the transformation between ABC frame to afJ frame has been 

introduced. Taking the stator current variables for example, the transformation from 

afJ frame to d-q frame is: 

(1.24) 

where, C afJ-dq = [co~ OJ sin OJ] is the transformation matrix from afJ frame to d-q 
-smOJ cosOJ 

frame. 

In d-q frame, the rotor flux linkage component on each axis is given as: 

( 1.25) 

(1.26) 

The d-q currents of the stator can be expressed as: 

. 1f/2 Lr • 
'dJ =---ld2 

Lm Lm 
(1.27) 

( 1.28) 

The voltage equations of the rotor are described as: 

(1.29) 

(1.30) 

where, 

{J)s: slip angular frequency of the motor. 

The d-q currents of the rotor can be derived from equation (1.29) and (1.30): 

(1.3\ ) 

Then iqJ can be given as: 

(1.32) 
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where, 

r; : rotor time constant T2 = Lr / '2 ; 

The electromagnetic torque of the induction motor can be expressed as: 

Te = npLmCiq)id2 -iq2 id)) (1.33) 

For the steady state operation condition, 1f12 is constant. Hence, id2 is zero according 

to equation (1.29): 

(1.34) 

The stator current along d axis is: 

(1.35) 

By substituting (1.31) iq2 into (1.33), the torque equation is transformed to: 

(1.36) 

By substituting (1.32) OJs into (1.36), then another form of the torque equation is 

formed: 

(1.37) 

It is obvious that in the steady state operation condition Te is -proportional to the 

stator currentiq) • So the control of the torque can be carried out by controllingiq) and 

the corresponding q axis stator current is 

. Lr T 
lq) = e 

npLmlfl2 
(1.38) 

In the d-q frame, the flux and torque of the induction motor can be controlled 

separately through the control of the related stator currents. Figure 2.9 shows the 

diagram of rotor flux linkage Foe scheme. There are three basic steps to carry out 

this scheme: 
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(1) Generate stator current demands in d-q frame i;) and i;) according to 

equations (1.35) and (1.38) based on given flux demand '1'; and torque 

demand T;; 

(2) Generate the stator voltage demands v; and v; from PI controllers on the 

acknowledgements of real stator currents. Note: in this thesis, the stator 

currents are assumed to be measured by ideal current sensors. 

(3) Transform the voltages v; and v; to ABC three-phase frame on the 

acknowledgements of the position of rotor flux linkage 8) . 

* 
Flux .* Vd VAIBIC 

ldl 

demand ~ d-q current r PI I ~ 

"I I * 
--. 

.* Vq d-q~ABe 
Torque demand lql 

f-+ 
, 

PI 1 

demand generator 'I , 
8) T 

lql ldl 

I ABe~d-q ' .. 
iABe 

I 

Figure 2.9 Rotor flux linkage FOe scheme 

There are different ways to obtain the position of the rotor flux linkage 8) : direct or 

indirect which are distinguished by locating'l'2 directly calculating it or indirectly 

from synchronous speed. In this study, the indirect FOe vector control with the use 

of a position encoder is considered as the drive for induction motor, since railway 

vehicles are usually equipped with position encoders on the wheel axle ready for use. 

2.2.2 Indirect FOe Scheme 

The d-q frame rotates synchronously with the rotor flux linkage. The angular position 

8) can be obtained: 

(1.39) 
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where, (0] is the synchronous speed and can be obtained through: 

(l.40) 

where, (Omech is mechanical angular frequency of the rotor. 

From equation (1.32), the slip angular frequency can be given as: 

Lm 1 . 
(Os =-'-'lq] 

I; '1/2 
(1.41 ) 

Usually, (Os is calculated from the demand value of stator current instead of actual 

stator current values [62]. 

Figure 2.10 gives a schematic diagram of the indirect control scheme. Aiming to 

study the performance of the dynamic response based on this indirect control scheme, 

simulation is carried out giving the flux demand and torque demand as two step 

signals: the flux demand stepping at t = 0.2 s and steady value 1 Wb and the torque 

command changing at t = 1.0 s and steady value 1500 Nm. The initial motor speed is 

zero. 

Flux .* Ud VAIBIC 
Id 

3-phase 
demand --. d-q current I PI .~ r---

I 
demand .* uq r--- Induction 

Torque lq dq/ABC 
-+ generator 4 PI I ~ motor 

demand I 
". 

labc 

(Os lq Id 

,_., 4 cos e] 
ABC/dq 

sine] 
--+ 

(Om 

-

Figure 2.10 Indirect field-oriented control scheme 
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The flux response and the torque response are shown in Figure 2.11 and Figure 2.12 

respectively . 

. ~ 1 
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Figure 2.11 Rotor flux linkage demand and observed 
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Figure 2.12 Torque demand and torque produced 

The flux response shows a time delay about 1 second which is determined by the 

rotor time constant. The torque response is fast with some pulsations which are the 

result of compromise between speedy response and lower overshoot. The pulsations 

of the torque are acceptable in railway application since railway vehicle is a high 

inertia system. 
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2.2.3 Modelling of the Position Encoder in FOe Scheme 

For the FOC scheme, the rotor position can be obtained through measurement. The 

most common type of the rotary position sensor is a sensor that scans a toothed 

wheel on the motor shaft or gearbox [63]. Considering the harsh operation 

conditions in railway application and for the interest of compact structure and cost, 

usually it is very difficult to realize a sensor with as many pulses per rotation as the 

encoder has in other industry applications [30]. Typically the resolution of position 

encoders used in traction applications is less than 100 pulses per revolution [23]. It is 

considered that the position encoder is installed on the wheel axle, so the actual rotor 

position will be proportional to the wheel angular position by the gear ratio Rg . 

A position sensor is modelled to include the inaccuracies from actual measurement 

into the vector control scheme. The real wheel position Ow information comes from 

an integration of the wheel speed liJw , and then the equivalent pulses number N p can 

be calculated for a certain position sensor with nps pulses/rev resolution. The rotor 

position from the position sensor is given as 

The maximum absolute error caused by the position sensor is 

2;r 
max(PS _error) =-

nps 

(1.42) 

(1.43 ) 

Introducing a position encoder with resolution 100 pulses/rev into the indirect FOe 

scheme shown in Figure 2.10, and carrying out simulation under the same condition, 

the electromagnetic torque, shown in Figure 2.13, reveals the noise due the 

truncation errors when counting the pulse number which results in a stepwise 

waveform of the rotor position. 
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Figure 2.13 Torque demand and torque produced (with position encoder) 

2.3 Modelling of a PWM Inverter 

As introduced in Chapter 1, the induction motor drive equipped with a voltage source 

inverter is one of the major types for railways traction. PWM (pulse width 

modulation) is a key part of vector control with voltage source inverters [56] to 

provide the voltages according to the demand and thus to realize the control. 

+ ------------~-------r------_, 

4 

3 5 

A 
~------~------~------~B 

1------oC 

Figure 2.14 PWM inverter 

A PWM inverter is modelled as shown in Figure 2.14. The DC link voltage is set 

as V DC = 1.5 kV, which is one of the standard DC power supply in railway application 

as introduced in Chapter 1. The PWM trigger pulses for each leg are generated by 

comparing a 1 kHz triangular carrier waveform with the corresponding stator voltage 

demand. The use of fast IOBT switch devices is assumed, and therefore the 
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switching delays are neglected. The diagram of a PWM inverter-fed induction motor 

drive is presented in Figure 2.15. 
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Figure 2.15 PWM inverter-fed induction motor drive 

Figure 2.16 presents the torque response for this system. It shows a fast response but 

with moderate switching noise which are around multiples of 1 kHz generated by the 

inverter which was studied and proved to have little interference with the further 

developed slip detection scheme. 
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Figure 2.16 Torque generated (Indirect FOe scheme with PWM) 

36 



2.4 Summary 

Re-adhesion control for AC traction system is ultimately to control the driving motor 

torque. The vector controlled induction motor can give a fast response for the torque 

demand and thus to guarantee the torque adjustment from the re-adhesion controller 

can be carried out in time. The drive system introduced here lays the foundation for 

further mechanical study and controller development. 
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3 MECHANICAL MODELLING 

For a basic study, a single powered wheelset, with a driving motor mounted on its 

axle, is used. As Figure 3.1 shows, two wheels are mounted at the ends of an axle. As 

introduced in Chapter 1, the wheels are considered as two rigid cones. The induction 

motor is connected to the right hand side wheel through a gearbox, which provides 

the traction for 114 of a typical vehicle. Hence, right hand side has a larger inertia 

which is the combination of the wheel and driving motor. Connections between the 

wheelset and bogie in the longitudinal direction are assumed to be solid, as the 

stiffness is normally very high and the associated dynamics is not of significant 

relevance to this study [23]. Besides, the mechanical losses and backlash effect of the 

gear box are considered insignificant [23] and neglected in this study. 

Left 

wheel 

Figure 3.1 Wheelset 

Gearbox 

Right 

wheel ,. 

In this chapter, the wheel rail contact mechanics is introduced under the 

consideration of the elastic coupling of the shaft. At first, the wheel rail contact 

mechanics is introduced. A comprehensive wheelset dynamics which considers the 

longitudinal, lateral and yaw dynamics is introduced and will be used in 

comprehensive performance assessments. However, simplifications are introduced 

where only longitudinal dynamics on straight track is considered in the design of the 

slip detection and re-adhesion control. Based on the simplifications, the wheelset is 

treated as a distributed parameter system as well as a lumped parameter system. The 
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analysis based on the distributed parameter model of the wheel set studies the 

possible torsional natural modes and their responses to the external torque. The 

lumped parameter system is developed to consider only the primary torsional mode 

for the controller design. The two different models of a wheel set are presented and 

compared, and the analysis shows the consistency of these two models. The 

significance to clarify the torsional natural modes of the wheel set will become clear 

in the study of wheel set dynamics in different contact conditions, and further re­

adhesion controller development. 

3.1 Wheel Rail Contact Laws 

Tractive forces of a railway vehicle come from the wheel rail rolling contact. Figure 

3.2 shows a whee I set standing on straight rails [15]. The coordinate system oxyz 

moves synchronously with the wheelset: origin 0 is constrained along the central line 

of the track; the x-axis points along the rails in the rolling direction also known as 

longitudinal direction; the y-axis, lateral direction, is 90° lag to complete a right-hand 

coordinated system; the z-axis points vertically upwards. The angular displacement 

of the wheelset about oz is denoted by. the yaw angle tPw' positive anti-clockwise, the 

correspond velocity is ¢w .Let the lateral displacement of the wheelset be denoted 

by Yw' and then the lateral velocity is Yw. Track irregularity, also introduces a 

displacement y, to the vehicle in the lateral direction, hence velocity Y,. v is defined 

as the forward speed of the vehicle. Usually, the track input to .the vehicle from the 

track can be defined in terms of four variables: vertical profile, cross level, lateral 

alignment and gauge, and can be presented in the form of spectral densities which 

can be used as inputs to mathematical models [1]. 
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Right rail 

x-axis, 
rolling direction 

Left wheel 

Figure 3.2 Wheelset standing on the rails 

3.1.1 Creepage in Longitudinal Direction 

The longitudinal creepage depends on whether the left or the right wheel is 

considered. As shown in Figure 3.3 , a wheel set is depicted by "'a rigid double cone; 

the rails are modeled by two parallel cones 2Lg apart [15]. The conicity of each 

wheel is denoted by angle r . 
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Figure 3.3 Wheelset as a double cone on the cone rails 

The radius of each wheel at the center position where Y = 0 is ro' so the contact 

radius of left and right wheels can be given as: 

Left wheel: 1[ ='0 + r(yw - Yt) 

Right wheel: rr ='0 - r(yw - Yt) 

(3.1) 

(3.2) 

Considering that the vehicle operates along a straight line, the equivalent linear speed 

of each wheel is 

(3.3) 

(3.4) 

where, OJI is the angular velocity of the left wheel, and OJr is the angular velocity of 

the right wheel. 

Based on the definition of longitudinal creepage given in equation (1.1), the basic 

longitudinal creepages of the two wheels are: 

I 
1 vwl -v 

Left whee : Axl I =~-- v (3.5) 

I 
1 vwr-v 

Right whee : Axr I = --""--
- v (3.6) 

Besides, the yaw movement will contribute to the longitudinal creepages in opposite 

direction for the two wheels: 

(3.7) 
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· Lg¢w 
RIght wheel: Axr 2 = ---

- v 

So the resultant longitudinal creepages of the two wheels are: 

or 

v -v L (k 
Left wheel: Ax' = w' + -g-

Right 

v v 

h I
. ~ _ vwr-v _ Lg¢w 

w ee . Axr -
V V 

Ax' = {O,ro -v + [Lg¢w _ (O,Y(Yw - YI)] 
v v v 

A = {Orro -v 
xr 

V 

[Lg¢w _ (OrY(Yw - YI)] 
V v 

3.1.2 Creepage in Lateral Direction 

(3.8) 

(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

The creepage in lateral direction A is formed by two parts [15]. The first part is y 

contributed by the relative lateral velocity of the center of the wheelset along lateral 

direction. The second part is caused py the yaw movement. So the resultant Ay is 

gIven as 

(3.13) 

Normally, YI is ignored when considering lateral creepage in practice. Thus the 
v 

lateral creepage of the wheels is 

A = Yw_A. 
y 'f/w 

V 
(3.14) 

3.1.3 Creep Forces and Dynamics 

The creep forces of both wheels are given as 

(3.15) 

F',r = f.1r · N (3.16) 
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where N is the normal force of the wheel, F;I and F;r are the creep forces of left 

wheel and right wheel respectively; f-ll and f-lr are the creep force coefficients of 

left wheel and right wheel respectively. 

As introduced in Chapter 1, the relationship between creep force ratio f-l and 

creepage A, can be described through slip curves as show in Figure 1.5. In the curve, 

the creepage A is the resultant value combined of longitudinal and lateral creepages 

[64][21]: 

(3.17) 

From the contact forces F;I and F;r' their components along longitudinal and lateral 

directions can be given as: 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

where, F;I x and F;I are the creep forces in the longitudinal direction and lateral 
- -Y 

direction of the left wheel respectively, F;r x and F;r y are the creep forces in the 
- -

longitudinal direction and lateral direction of the right wheel respectively. 

The yaw motion of the wheelset is governed by 

(3.22) 

where I ws is the wheelset yaw inertia, kw is yaw stiffness of the springs which 

connect the wheel set to the bogie. 
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The lateral dynamics are governed by 

(3.23) 

where, mws is the wheelset mass, ~ is the centrifugal force which is taken into 

account when the vehicle operates on a curve, Tm is the gravitational force 

component on a track with a cant angle. 

The longitudinal dynamics of the vehicle are: 

(3.24) 

3.1.4 Simplification of the Wheelset Dynamics 

For the re-adhesion control design which is focused primarily on the forward tractive 

performance, some assumptions are given in the initial stage of the dynamic study: 

(1) Vehicle is accelerated along a straight and level track. So there is no Tm 

and 7;, involved for the time being. 

(2) The more dominant terms of the longitudinal creepage AXL = O1,ro - v and 
v 

1 O1r ro -v ·d d 
/LxI? = are conSl ere . 

v 

(3) As the longitudinal dynamics is the major concern, lateral and yaw 

dynamics are not included at this stage. 

In the next two sections, the wheelset is simplified as a system of one shaft with two 

unequal end inertias, and only the longitudinal and rotational dynamics are 

considered. To treat the wheelset as a distributed parameter model aims to obtain its 

natural torsional modes. The dynamics response to the natural modes is also studied 

which shows the significance of the first order natural torsional mode. 
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3.2 Distributed Parameter Model of the Axle and Wheels 

3.2.1 Natural Modes of the Wheelset 

In this section, the wheel set is treated as a shaft having circular cross section with 

two end inertias as shown in Figure 3.4. In the traction system studied in this thesis, a 

driving motor is mounted on the right hand side of the wheelset, and hence inertias at 

the two ends are different. 

. _. -. _. _. _. _. _. _._. _. _. _. _. _. _. _._._.- ._. _. _.- .++---+x=L 

~------L 
I 

Figure 3.4 Distributed parameter wheelset 

For the sake of simplification, it is assumed that only the torsional effects are present, 

and the shaft is made of homogeneous, isotropic and elastic material. The material 

variables of this wheelset model used in this section are given in Table 3.1: 

Variables Definitions 

p Density 

G Shear modulus "'. 

r Shaft radius 

L Shaft length 

J = (Jr/2)r 4 Polar moment of area of the shaft 
.-' 

I, Left end moment of inertia 

Ir Right end moment of inertia 

Table 3.1 Material variables of the wheelset 

The free vibration of the shaft is described by the partial differential equation [65]: 
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(3.25) 

where, 

e: angular rotation of shaft 

Hence, the resultant problem is given as 

a
2
e(x,t) = a 2 a

2
e(x,t) ,a = fGp 

at2 ax2 ,,~ 
(3.26) 

The boundary conditions of each end are given separately [66]. 

On the left hand side, x = 0, 'oCt) is the external torque acting at left end. For the 

wheel set studied, 'oCt) is from the wheel rail creep force: 

OJ ae(O,t) ( ) _ I [ie(o,t) 
---'-+'0 t - I 2 

ax at 
(3.27) 

Equation (3.27) may be: 

ae(o,t) + I" (t) = k a
2
e(0,t) 

ax Jo 0 at2 
(3.28) 

where k = ~ and I" (t) = '0 (t) 
'0 GJ Jo GJ 

Substituting equation (3.26) into equation (3.28), gives: 

ae(o,t) I" ( ) _ 2k a
2
e(0,t) 

--'---+JO t -a 0 2 
ax ax 

(3.29) 

On the right hand side, x = L , 'L (t) is the external torque acting at right end which is 

from the resultant effect of the driving torque from motor and creep force from wheel 

rail contact: 

G 
ae(L,t) ( )' I a2e(L,t) 

- J +'L t = ax r at2 (3.30) 

Equation (3.30) maybe changed to: 

_ ae(L,t) + I" (t) = k a
2
e(L,t) 

ax J L L at2 (3.31) 

I , (t) 
where, kl = _r and It (t) = _1_, -

, GJ GJ 

Substituting equation (3.26) into equation (3.31), gives: 
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_ aO(L,t) {" ( ) _ 2k a
2
0(L,t) 

--'---'-+ JL t - a L 2 ax ax 
(3.32) 

To obtain the natural modes, the external torque is set to zero. The angular function 

is assumed and a solution is in the form [67] 

00 

O(x,t) = L 8 n (x)Pn (t) (n = 1''''(0) (3.33) 

For each components in the summation, introducing equation (3.33) to equation 

(3.25) and separating variables, gives 

_1_!!.-[a2 d8n(X)] = _1_ d
2 
Pn(t) , 0 < x < L 

8 n(x) dx dx Pn(t) dt2 (3.34) 

or 

(3.35) 

where, -P; is the separation constant, and can be determined by equation (3.35) 

with the boundary conditions. There will be a set of infinite number of P values, 

which relate to the natural modes of the system. 

The solutions are of the form 

Pn(t) = An cos(aPnt) + Bn sin(aPnt) 

8 n (x) = en cos(Pnx) + Dn sin(Pnx ) 

(3.36) 

(3.37) 

Moreover, the boundary conditions under free load condition can be expressed in 
" 

equations (3.38) and (3.39): 

Left end x = 0: 

a8n(O,t) = a 2k a
2
8 n(O,t) 

ax 0 ax2 (3.38) 

Right end x = L: 

a8n(L,t) = -a2k
L 

a
2
8 n(L,t) 

ax ax2 (3.39) 

Substituting 8: = -P;8n to the boundary conditions, it gives: 

Left endx = 0: 

(3.40) 
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Right endx = L: 

(3.41 ) 

It is obvious that these boundary conditions depend on the eigenvalues fin . 

From the E) n (x) form in equation (3.36), its first derivative is: 

E)'(x) = -fJnCn sin fJnx + fJnDn cos fJnx (3.42) 

Combining equation (3.42) with the boundary conditions, it can be obtained 

Cn 1 
Dn = - a 2 kofJn 

(3.43) 

(3.44) 

Then the eigenvalues fJn can be obtained graphically as shown in Figure 3.5 [66]. 

. . a 2(k + k )/3. . 
The mtersectIon of curve 1: y = tan(fJnL) and curve 2: y = 4 k Ok ~ n determmes 

a ° LPn -1 

corresponding Pn ' and the natural frequencies (in Hz) is given as 

!, = aPn 
n 2Jt (3.45) 

2 

or-~r---+-----~~------~----~~------~------~~ 

-1 Curve 2 

-2 

Figure 3.5 Eigenvalue distribution 
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The resonant frequency of the axle torsional mode in railway vehicle typically ranges 

between 40-80 Hz [23]. Here, a wheelset system with natural torsional mode of 

middle 60 Hz is studied. According to [68], [69], a set of shaft parameters and end 

inertias are given in Table 3.2 which results in a 60 Hz wheelset shaft. Changing the 

shaft radius to a lower value leads to a less stiff shaft if the other parameters are kept 

the same. 

Variables 

p 

G 

r 

I 

J = (7T/2)r 4 

Definitions and values 

Density (7.8xI03 kg/m3) 

Shear modulus (80.77 Gpa) 

Shaft radius (0.09 m) 

Shaft length (1.435 m) 

Polar moment of area of the shaft 

Left end moment of inertia (62.8 kgm2
) 

Right end moment of inertia (133.2 kgm 2
) 

Table 3.2 parameters of the 60 Hz wheelset system 

The eigenvalues need to be determined. The first ten fin s obtained graphically are: 

[0 0.1169 2.1955 4.3848 6.5740 

8.7633 10.9530 13.1420 15.3310 17.5200] 

The corresponding natural frequencies (in Hz) of the system are:'" 

[060 1.12xl03 2.24x103 3.37x1Q3 

4.49x1Q3 5.60x1Q3 6.73x103 7.85x103 8.97xI03
] 

(3.46) 

(3.47) 

So the first torsional natural frequency of this shaft system is 60 Hz. The first ten 

ens are given in the form 

(3.48) 
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3.2.2 Dynamic Response to External Torque 

Firstly, no external torque is considered, and z(x,t) satisfies 

a2z 2 a2z 
-2 =a -2 +g(x,t) at ax (3.49) 

Let g(x,t) can be expanded using E>n(x) 

'" 
g(x,t) = L E>n(x)gn(t) (3.50) 

I 

From equation (3.35), the final dynamic expression for Pn(t) under (3.49) condition 

will be 

(3.51 ) 

To seek the solutions when considering external input, it is to find functions ho(x) 

and hL (x) such that [67] 

z(x,t) = B(x,t) + ho (x)fo (t) + hL (x)ft (t) (3.52) 

and it is required 

(3.53) 

Hence 

(3.54) 

To satisfy the boundary conditions 

(3.55) 

k ---a2z azl 
L at2 x=L - ax x=L 

(3.56) 

the following conditions need to be met 

h~(O)fo(t) + h~ (O)ft (t) - koho (0)10 (t) - kohL (O)iL (t) = fo(t) (3.57) 

and 
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If the initial conditions are zero which are e( x, 0) = 0 and ae I = 0 , it gives 
at 1=0 

co 

z(x,O) = ho (x)fo (0) + hL (x)fr(O) = LPn(O)en(x) (3.59) 

(3.60) 

Since fo(t) and fL(t) are independent of each other, and in general there is no 

constraint on these functions and their derivatives, we must have 

ho(0)=0,~(0)=1,ho(L)=0,~(L)=0, hL(0)=0,h~(0)=0,hL(L)=0,h~(L)=-1. It 

is also required thath;(O)=O,h;(L)=O, h2(0) =0 and h2(L)=0 later. To satisfy 

these conditions, ho(x) and hI. (x) can be given as 

(3.61) 

and 

h( ) 
__ ( -L) 6(x-L)3 8(x-L)4 3(x-L)5 

,x- X + 2 + 3 + 4 L L L 
(3.62) 

These give one group of descriptions how the external torque effects distribute along 

the shaft, and these can be expanded using 8 n (x) . 

In equation (3.36), 8 n (x) is in the form 

(3.63) 

In general, it is set en = 1 , n = 1,2 ... , and then the boundary condition gives 

Dn = _a2 ko13n . Defining 

(8n,8m) = f 8 n (x)8m (x)dx = - ~~ f 8 n (x)8: (x)dx (3.64) 

Integrating by parts twice (whenn ~ m): 

(1- 13; ) (8 8 ) 
f3~ n' m 

~- ~~ [8n(L)8~(L)-8n(0)8~(0)-8~(L)8m(L)+8~(0)8m(0)] 

Using the boundary conditions (3.40) and (3.41), equation (3.65) becomes 

(3.65) 

(8n, 8 m) = -a2 (kL 8 n(L)8m(L) + k08 n(0)8m(0», m ~ n (3.66) 
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Even though 8(x) is not orthogonal, a function hex) can still be expanded in the 

form 

'" 
hex) = LYn8 n(x) = LYn8 n(x)+ Ym8m(x) (3.67) 

n=l n"'m 

Then 

(3.68) 
n",m 

U sing equation (3.66) 

(h,8m) = -a2k,8m(L) LYn8 n(L) -a2
ko8 m(0) L Yn 8 n (0) + Ym (8m,8m) (3.69) 

n",m 

Using (3.67), and evaluated at x = 0 and x = L , 

Solving for Ym' it gives 

where 

Let 

'" 
ho(x) = Lan8 n(x) 

'" 
h;(x) = Lcn8 n(x) 

I 

'" 
hL(x) = Lbn8 n(x) 

'" 
h;(x) = Lbn8 n(x) 

Using (3.71) and the boundary restrictions ofho(x) andh, (x) , an and bn are given 

(ho,8n) 

an = 118nl12 

b = (h",8n ) 

n 118nl12 
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(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

(3.78) 



Also 

_ (h;,en) + a2(k/~m(L)h;(L) + koem(O)h;(O)) 
cn - 2 

. lien II 
(3.79) 

d = (h;,en)+a2(kLem(L)h/,(L)+koem(0)h~(0)) 
n IIen l1 2 

(3.80) 

By settingh;(O) = 0, h;(L) = 0, h~(O) = 0 and h~(L) = 0, the expressions of cn anddn 

will be made simple, and those are met by equations (3.61) and (3.62). Then it gives 

(3.81 ) 

(3.82) 

Substituting the expansions into g(x,t) in equation (3.54), it gives 

Let the Laplace transform of Pn (t) be p,,(s). Then equation (3.51) is transformed to 

S2 p" (s) - sPn (0) - Pn (0) = _a2 P; p" (s) - a 2 (cnF'o (s) + dnFL (s)) 

+ s2(anF'o(s) + bnFL (s)) -s(anfo(O) + bjL (0)) - (anio(O) +bh (0)) 
(3.84) 

But 

(3.85) 

and 

(3.86) 

Hence 

Rearrange equation (3.87), it gives 

a 2fJ2 a 2 
P"(s)=(1- 2 ; 2)(anF'o(s)+bnFL(s))- 2 2n2 (CnF'o(s) + dnFL(S)) (3.88) 

S +a Pn S +a Pn 

Using 

cO 

O(X,S) = L en (x)P"(s) - ho(x)F'o(s) - hL (X)FL (s) (3.89) 

I 
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and to (t) = To (t) ,It (t) = T L (t) , it is obtained 
GJ GJ 

e( ) ~ 1 (cn+P;an () dn+P;bn ())Dt.() X,S = L... -- 2 2 2 To S + 2 2 2 TL S ~n X (3.90) 
1 J p s + a Pn s + a f3n 

Finally using (3.77) and (3.81) 

e(x s) = _1_~ (8n(0) To(S) + 8 n(L) TL (s) )8 (x) (3.91) 

, J P 7" 118
n 

112 S2 + a 2 
P; 118

n 
112 S2 + a 2 

P; n 

Based on the 60 Hz wheelset which is introduced in the last section, the dynamic 

response is studied considering the first ten modes given in equation (3.48). Since the 

higher order modes are out the frequency range of interest. Using equation (3.91), the 

general solution is given as 

. e(x s) ~ _1_I(8n (0) To(S) + 8 n(L) TL (s) )8 (x) 
, J P 1 118

n
l12 

S2 +a
2p; 118

n
l12 

S2 +a
2p; n 

10 

= I( 2 fPn
02 2 TO(S) + 2 fPnL2 2 TL(S))8n(x) 

1 S + a Pn S + a Pn 

(3.92) 

The first ten fPno sand fPnL s are given in Table 3.3. 

fPno fPnL 

0.0050694 0.0050694 

0.0107082 -0.0050642 

0.0000220 0.0000103 

0.0000055 -0.0000106 

0.0000024 0.0000082 

0.0000014 -0.0000066 

." 0.0000009 0.0000055 

0.0000006 -0.0000046 

0.0000004 0.0000040 

0.0000003 -0.0000035 

Table 3.3 First ten fPno and fPnL values 
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It shows that the major effective modes are the first two. Even the third one has little 

effect on the dynamics. The first one, zero mode, describes the constant torsional 

angle and fixing distributions along the shaft. The second one is the major torsional 

mode which is considered in the lumped parameter model. 

3.3 Lumped Parameter Model of a Wheelset 

From the analysis of the wheel set dynamics using distributed parameter model, it is 

shown that only the linear and the first torsional modes of the wheel set are the 

primary dynamics motions. Therefore, a simplified lumped parameter system will 

make it easier for slip dynamic study and further controller design. 

3.3.1 Lumped Parameter Model 

In the lumped parameter model of the wheel set, the shaft is considered as a spring 

with finite torsional stiffness ks as shown in Figure 3.6. 

Left wheel Right wheel 

Figure 3.6 Lumped parameter wheelset 

The right wheel is driven directly by an induction motor, and its dynamics are given 

as 

I dOJr 
T m - Ts - 'rtr = r-­

dt 
(3.93) 

where Tm is the driving torque fed by the induction motor, r: is the torsional torque 

along the shaft, T,r is the tractive torque contributed by the wheel-rail contact force 

on the right hand side, and OJr is the angular velocity of the right wheel. 
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The left wheel is driven by the torsional torque, 

dOJ, 
J:-Tt/ =1,­

dt 
(3.94) 

where T;, is the tractive torque from the wheel-rail contact on the left hand side, and 

OJ, is the angular velocity of the left wheel. 

The torsional torque along the shaft is determined by the difference in rotation 

between the two wheels 

(3.95) 

where C is the material damping of the shaft, usually very small, and considered as 

zero in the following analysis if not specially indicated. 

The vehicle is driven by the total tractive effort: 

M dvv = (T;r + T;,)/ 
v dt fro 

(3.96) 

where ro is the wheel radius, and Vv is the forward vehicle speed. 

Choosing state variable as x = [OJr OJ, Os]T, where Os = f( OJr - OJ, )dt , then the system 

can be described as: 

k, 1 
0 0 0 1 

[i]= 
Ir 

[~]+ 
Ir 

Ir 

ks I~ [T. ] 0 0 0 Tm+ 0 
I, 

0 
I, T;, 

1 -I 0 0 0 

(3.97) 

'--v--' 

v- BI '---v-----' 
Al CI 

The torsional natural frequency can be found using 

r 1 k I, +Ir 
In=2'" s II 

'" , r 

(3.98) 
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3.3.2 Comparisons of Two Wheelset Models 

Comparisons of a 60 Hz wheelset are carried out as follows to show the consistency 

of the distributed parameter model and the lumped parameter model. The end inertias 

of both models are the same. For numerical comparisons, the results of the left wheel 

dynamics are given. Similar outcome can be obtained for the right wheel. 

From the mathematical descriptions of the lumped parameter model, the left wheel 

rotational speed is given as 

( ) Irs2 + ks T ks (T T) 
OJ'_Lumped S = - [I 1 2 k (I I)] tI + [I I 2 + k (I + I)] m - Ir 

S , rS + s ,+ r S 'rs s' r 
(3.99) 

or 

1 2 ks ~ -s +-
I, k (IIJrI ) Ttl + :J(I

r 
I) (Tm - 1',r) 

[ 2 s '+r] [2 s '+r] SS + SS +~~~~ 
IJr IJr 

(3.100) 

For the distributed parameter model of the wheelset, only considering the first two 

modes, the left wheel rotational speed, which is the derivative of its left end angular 

displacement, is given as 

That is 

" . 
[qJo181 (0) + qJ0282 (0)] S2 + a 2 pi qJOl81 (0) 

OJ(X;O)_DiSlribuleAs) = s[ S2 + a 2 pi] To 

[qJL1 8 1 (0) + qJL282 (0) ]S2 +a2 
piqJu81 (0) 

+ S[S2 + a 2 pi] TL 

(3.102) 

where, Pn is given in (3.46), qJnO and qJnL are given in Table 3.3, To = -1'" , and 

The data shown III Table 3.4 give the comparison of coefficients of the 

corresponding terms in equation (3.99) and (3.101). The relative errors of 

corresponding coefficients between the distributed model and lumped parameter 
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model are lower than 0.05%. The errors come from the calculation errors when 

obtaining the natural modes of the distributed parameter system. 

Distributed parameter system lumped parameter system 

1/ I[ =0.0159 

k) I/r = 721.98 

-----
ksl I/r = 721.98 

afi2 =376.17 

Table 3.4 Comparison of two wheelset models 

Time history simulations are also carried out to compare these two models. Figure 

3.7 shows a diagram of the lumped parameter model and Figure 3.8 shows that of the 

distributed parameter model. 

Ww 

r-r-----t>lVt 

creep 
forceR 

L-----------------+iVt 

creep 
foreeL 

Figure 3.7 Simulation model of the wheelset as a lumped parameter model 
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.----tolK· >--~TR 

1 Tm 
Tm 

Allgular SPEED_Leftl----------, 

A1lgu1ar SPEED RIGHT 

Ww 

FrL f----4---, 

~--r----r_---_+~~ 

Ww creep 
forceR 

F~I--+-------~ 

L..-----.JVt 

creep 
CorceL 

Figure 3.8 Simulation model of the wheelset as a distributed parameter model 

The same driving torque is fed to the lumped parameter model and distributed 

parameter model respectively. The contact conditions are the same for both systems, 

and slips happen after t = 4 s. The right wheel and left wheel speeds are obtained 

from lumped parameter model and right end (x = L) and left end (x = 0) are 

calculated from distributed model for making comparisons. 

45 

40 

35 
,-... 
CIl 30 ::0 ro 
~ 25 '-" 

"C 
0 20 0 
0.. 

tZ) 15 

10 

50 1 
2 Time (s) 3 4 5 

Figure 3.9 Wheel speeds from lumped model 
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~ 20 
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10 ---------------

50~------~1~------~2~------~3~-------4~------~5 

Time (s) 

Figure 3.10 Wheel speeds from distributed model 

Figure 3.9 and Figure 3.10 give the speeds from which it can be found that the 

speeds of both wheels are so close to each that they overlap each other. The results 

show that the dynamics of the two systems are close to each other in normal 

condition, where the difference is kept about 0.05%. After a slip occurs, the speed of 

the distributed parameter model increases faster than that of the lumped parameter 

model. It is because the negative slope of the contact slip curve expedites the 

reduction of creep force, thus even a small difference between the speeds at the 

beginning of slip occurrence will be widened when the speeds increase in the slip 

condition. 

0.06r-~--------~----------,_----------~----------_, 

0.04 

-.. ;2j 0.02 

g 
til 

"1:j 
Q) 

01----------; 

& -0.02 
(/) 

-0.04 

-0.06~--------~--------~~--------~~------~ 
3.9 4 4.1 4.2 4.3 

Time (s) 

Figure 3.11 Wheel speed difference (OJr - OJ,) from the lumped model 
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Figure 3.12 Wheel speed difference ((i)x=L - (i)x=o) from the distributed model 

Figure 3.11 and Figure 3.12 give the speed differences between two end wheels from 

the lumped parameter system and distributed parameter system respectively. In both 

figures, there are oscillations when contact conditions are changed. The frequencies 

of the oscillation for both systems are the same, which is 60 Hz, but the oscillation 

from the distributed parameter model is of a higher magnitude than that of the 

lumped parameter model because of the higher creepage of the distributed parameter 

model. 

3.4 Summary 

In this chapter, the comprehensive wheelset model which contains longitudinal, 
'" lateral and yaw dynamics are introduced which will be used for the evaluation of the 

further developed re-adhesion scheme. Some simplifications are given to emphasize 

the forward tractive performance. Then a distributed parameter wheel set model is 

studied to find the possible torsional modes and followed by an introduction of a 

lumped parameter model which contains the rotational mode and the primary 

torsional mode. The comparisons of the distributed parameter model and the lumped 

parameter model of the wheelset show a high level of consistency. So the following 

dynamic study will focus on the lumped model of the wheelset which is adequate for 

the controller design. 
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4 ASSESSMENT OF WHEELSET DYNAMICS 

Based on the lumped parameter model of the wheel set given in Chapter 3, the 

dynamics of the wheel sets with different natural torsional modes between 40-80 Hz 

are studied and compared in normal and slip conditions, which provides a basis for 

the proposed slip detection approach. In the end, eigenvalue distributions of different 

operation points are studied to show a vital link between the dynamics in slip 

conditions and the system stability. 

4.1 Dynamics of the Wheelset Driven by an Induction Motor 

4.1.1 Simulation Model of the Wheelset Driven by an Induction 

Motor 

The diagram of the wheel set system driven by an induction motor is shown in Figure 

4.1. 

I Flux demand I .. 
I ld Tm 

d-q 
~ 

Vector ~ 3-phase I--t Wheelset 

r* current •• ~ Induction model lq Torque e controller I-
~ 

, 
demand ~ motor 

demand 

1 labc TL 

(Om 

Figure 4.1 Diagram of the wheelset system driven by an induction motor 

In this model, the electromagnetic torque produced by the induction motor is fed to 

the wheelset though a gearbox with gear ratio Rg : 

(4.1) 
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The motor is mounted on the right hand side of the shaft as introduced in Chapter 3, 

driving right wheel directly. So the load torque of the motor will be the sum of the 

tractive torque due to right hand side wheel rail contact and the torsional torque 

along the shaft divided by gear ratio: 

(4.2) 

4.1.2 Demands and Parameters Used in the Simulation 

The torque demand is designed in a manner as shown in Figure 4.2, which includes a 

jerk limited period. The jerk of the vehicle will be restricted within a certain service 

value which will not cause passenger discomfort [70]. In some papers and works, the 

upper limit of the jerk is suggested to set as 0.5 m1s3 or 0.45 m1s3 [71] [72]. After the 

jerk limited period, the torque demand is kept constant for a constant acceleration of 

the vehicle. When the speed exceeds the base speed, the torque is reduced inversely 

to the speed which lies in the constant power region for further speed increasing until 

the vehicle reaches its expected operation speed. 

Te* 

Temax 

Term 

a 

Jerk limited 
region 

.' :'. 
,I I 

! , 

/ : 
,I I 

Constant torque 
region 

Constant 
power 

region 

Constant speed r~gion 

~~ __ l ___________________ ' ______________ _.._--
l I 

.... l : 

t 

(motor spee ) 

t 

Figure 4.2 Torque demand profile 
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In Figure 4.2, the torque demand is divided into four different regions in the time 

sequence: 

(l) to - to : jerk limited region. 

(2) to - tb: constant torque region, hence constant vehicle acceleration until 

driving motor reaches its base speed Olb ; 

(3) tb - te : constant power region, torque demand decreased inversely 

proportional to the motor speed until the motor reaches it maximum 

speed Olmax , maximum power P = T:max . Olb = T:rm • Olmax ; 

(4) ~ te: constant speed region, constant vehicle speed, and also constant motor 

speed. 

In the simulations, a torque demand shown in Figure 4.3, is used unless specified 

otherwise. In Figure 4.3, to is set as 1.5 s to give enough time for the flux building up 

to its demand value. There is to -to = 2 s jerk limited period with the jerk 

value 0.38 m/s3 
• Usually to' to are kept fixed in the simulations, but tb and te are 

varied according to different operation conditions. In constant torque region, the 

torque value is1500 Nm. 
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b1200 
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~I 

I 
I 
I 
I 
I 
I 
I 
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Time (s) a b 

Figure 4.3 Torque demand 
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The flux demand is a step signal, stepping at /=0.2 s with steady state value I Wb. 

In the simulation, look-up tables are used to model different slip curves shown in 

Figure 4.4 to Figure 4.6. There are three groups of curves: ell and c12, c21 and c22, 

c31 and c32. Each group describes one specified wheel rail contact condition. In each 

group, the one with the higher value is related to a good contact condition, and the 

other is related to a poor contact condition. 

~ 
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0.35 
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Figure 4.4 Slip curves group 1 
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Figure 4.5 Slip curves group 2 
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Figure 4.6 Slip curves group 3 

4.1.3 Simulation Results of Wheel set Dynamics 

0.3 0.4 

In this section, dynamics of the wheel set with 60 Hz torsional mode is studied in 

different contact conditions and speeds followed by the studies of different wheel sets 

which is 40 Hz and 80 Hz. 

Firstly, the dynamics of the wheelset system with a torsional natural frequency of 

60 Hz are studied. The wheel rail contact condition is given by the slip curves shown 

in Figure 4.4. cll is given as the initial contact condition. Att = 4 s, the contact 

condition is switched from cll to c12. Then a slip occurs. The contact conditions of 

the left and right wheel rail contact are kept the same. The initial speed of the vehicle 

is set tolO kmlh. 

1500 

,-.., 

~1000 
v 
g. 
I-< 500 

~ 

0". 
1 

~ 

2 Time (S)3 4 

Figure 4.7 Motor torque (60 Hz, sudden change,lO km/h) 
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Figure 4.7 shows the motor output torque. Due to the effect of the vector control unit 

of the induction motor, the output torque follows the torque demand shown in Figure 

4.3 well, but contains a lot of noise due to the PWM inverter and the position sensor. 

Angular velocities of both wheels and equivalent vehicle angular velocity are shown 

in Figure 4.8. When the slip occurs, the wheel velocities rise much faster than that of 

the vehicle. Most of the driving energy is consumed in accelerating the wheel instead 

of the vehicle which is one of the typical features of the slip phenomenon. The 

creepage is much higher in the slip condition than that in the normal condition, hence 

the term slip ratio. The wheel velocities keep on increasing if there are no anti-slip 

measures as shown in Figure 4.9. Many anti-slip controllers use this feature to detect 

slip: when the measured slip ratio is higher than a pre-defined threshold, a slip 

condition is assumed. 
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Figure 4.8 Wheel and vehicle angular velocities (60 Hz, sudden change, 1 0 km/h) 
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Figure 4.9 Creepage (60 Hz, sudden change, 1 0 kmlh) 
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Figure 4.10 Right side tractive torque (60 Hz, sudden change, 1 0 km/h) 
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Figure 4.11 Left side tractive torque (60 Hz, sudden change, 1 0 km/h) 
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Figure 4.10 and Figure 4.11 show the tractive torque from the right hand side and the 

left hand side respectively. They follow a similar pattern due to the same contact 

condition set in the simulation. Tractive torque from right hand side contains a lot of 

noise, because the right wheel is driven directly by the motor torque. The tractive 

torque of the left wheel is much cleaner than that of the right hand side due to the 

filter effect of the wheel set shaft. 

It is clear that before a slip occurs, the majority effort of the motor torque is applied 

to drive the vehicle. When the wheel rail contact condition is changed, the adhesion 

level limits the torque that can be delivered to the vehicle. The tractive torque at the 

wheels drops to a very low level initially and then increases slightly due to the 

increased creepage, after which the creepage is increased beyond the maximum 

adhesion point and the tractive torque reduces due the negative slope of the slip 

curve. 

It can be noticed that there is a region after t = 4 s in which the tractive torque 

becomes a straight line. The reason is that in the serious slip conditions when 

creepage is higher than the limit of the slip curve (0.4 here), the tractive torque is 

kept as the final value coming from the slip curve. It is true that from the 

equation (1.3) it can be seen that when creepage A approached infinite, the creep 

force coefficient approaches a constant value. 
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Figure 4.12 Torsional torque overview (60 Hz, sudden change, 1 0 kmlh) 
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Figure 4.13 Torsional torque close shot 3,8~4.5 s (60 Hz, sudden change, 1 0 kmlh) 

However, in slip conditions, the wheelset operates in the unstable region of the 

creepage-creep force coefficient curve, where the damping effect of the creep forces 

to the wheelset dynamic modes becomes negative, leading to sustained oscillations in 

the system. Figure 4.12 shows the overview of the torsional torque of the wheel set 

shaft. Before t = 4 s, when the vehicle operates in normal condition, the torsional 

torque delivers the driving toque to the left wheel stably and closely follows the 

pattern of the driving torque. After t = 4 s , when the slip occurs, the torsional torque 

loses the ability to stably transfer the driving toque. Torsional vibrations occur as can 

be seen from the close shot of the torsional torque between 3.8-4.5 s shown in Figure 

4.13. The vibrations are at the natural frequency of the wheelset shaft which is 

60Hz. 

The observation of occurrence of the torsional vibrations in slip conditions leads to 

the development of a completely new approach for the wheel slip detection, which is 

the main innovation ofthe study. The phenomenon has been reported in the past [73]. 

However, more rigorous checks and theoretical analysis are first conducted to 

confirm the link between torsional stability and contact conditions. 

To confirm that the frequency of torsional vibration occurring in the slip condition is 

purely determined by the wheel set system natural frequency, two more wheelset 

models are tested: one with natural frequency 40 Hz and the other 80 Hz. The 

simulations are carried out using the same contact conditions which are given in 
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Figure 4.4, and the initial speed is 10 kmlh. The torsional torque in the time period 

3.8-4.5 s of 40 Hz system is shown in Figure 4.14. It shows that after! = 4 s, when 

slip occurs, torsional vibration appears, and the frequency is 40 Hz. A similar result 

is obtained from the model of 80 Hz as shown in Figure 4.15. 
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Figure 4.14 Torsional torque close shot (40 Hz, sudden change, 1 0 kmlh) 
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Figure 4.15 Torsional torque close shot (80 Hz, sudden change, 1 0 km/h) 

Simulations are also carried out to confirm that the torsional vibrations occur in 

different slip conditions. Based on the wheel set system with 60 Hz natural frequency, 

wheel set dynamics will be studied in different wheel rail contact profiles: c21 and 

c22 given in Figure 4.5, c31 and c32 given in Figure 4.6. The simulations are carried 

out using these two different groups of slip curves, switching from higher ~ne to the 
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corresponding lower curve at t = 4 s to develop slip conditions, and the initial speed 

is 10 kmIh. The torsional torque in each case is shown in Figure 4.16 and Figure 4.17. 

The close shot of each torsional torque shows the torsional vibrations of 60 Hz after 

t = 4 s. So it is clear that, for the different contact profiles, torsional vibrations 

appear at the natural frequency of the whee I set when there is a wheel slip. 
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Figure 4.16 Torsional torque close shot (60 Hz, c21) 
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Figure 4.17 Torsional torque close shot (60 Hz, c31) 

Furthermore; the study checks the cases where the wheel rail contact condition is 

always kept poor rather than a sudden change. Simulations are carried out with a 

60 Hz wheelset model, initial speed 1 0 kmIh, but the wheel rail contact is kept low as 

defined by curve c12 in Figure 4.4. Figure 4.18 gives the wheels' and vehicle's 
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angular velocities and Figure 4.19 gIves the torsional torque waveform in this 

condition. It shows that due to the poor wheel rail contact condition, slip happens 

shortly after the torque demand is added, and the wheel shaft starts to oscillate at the 

natural frequency. 
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Figure 4.18 Wheel and vehicle angular velocities (low condition, c 12,10 kmIh, 60 Hz) 
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Figure 4.19 Torsional torque (low condition, c 12, 1 0 kmIh, 60 Hz) 
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Figure 4.20 gives the wheels and vehicle angular velocities and Figure 4.21 shows 

the torsional torque when the initial speed is 1 00 kmIh. The vibration at the natural 

frequency shows up as well, and the slip occurs almost as soon as the motor torque is 

applied. It appears that the slip is more likely to occur at a higher speed for the same 

conditions as suggested in [74]. 
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Figure 4.20 Wheel and vehicle angular velocities (low condition, c 12, 1 00 km!h, 60 Hz) 
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Figure 4.21 Torsional torque (low condition, c 12, 1 00 km!h, 60 Hz) 
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4.2 Dynamic Analysis of the Wheelset in Different Conditions 

Theoretical analyses based on linearised contact models are carried out to support the 

findings from the computer simulations. The locus of the eigenvalue is studied when 

the operation points are moved along the slip curve in different conditions. 

4.2.1 Linearization of the Wheelset Model 

In equation (3.97), T,r and T" have nonlinear relationships with creepage A. which 

are determined by the wheel and vehicle speeds. Since the vehicle inertia is much 
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larger that of the wheels, the vehicle speed may be considered constant. Expanding 

Taylor series about an operation point of ArO and AIO ,gives 

right wheel: I;r = I;r / ,t~A,.o + ~ / ,t~A,.o • L1Ar (4.3) 

or 

I;r = I;ro + kr . L1Ar (4.4) 

and 

left wheel: I;I = I;I/ ,t~Ato + ~ / ,t~Ato • L1AI (4.5) 

or 

I;I = I;IO + kl . L1AI . (4.6) 

where kr and kl are the slopes of the slip curve at the operation points of the right 

and left wheel respectively. 

ConsideringL1A
r 

= OJr -OJrO and L1AI = OJI-OJIO , then equations (4.4) and (4.6) can be 
OJv OJv 

changed to: 

(4.7) 

(4.8) 

where 

Substituting I;r and I;I into equation (3.97), leads to 

-~ _ k, 1 1 
0 0 

Ir Ir 

[~]+ 
Ir Ir 

[;'~o ] . [W'] _ k2 k, 1 

p :: = 
0 0 0 (4.9) 

II II II 
TtlO 

1 -1 0 0 0 0 

v v 

A2 B2 
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Characteristic polynomial of A2 is given as: 

k k k k kk k +k lsI -A I = S3 + (-L + -1.. )S2 + (_s + _s + _1_2 )S + k 1 2 

2 Ir 1/ Ir 1/ 1// s 1// 
(4.10) 

There are three eignvalues of the characteristic equation. Since it is difficult to give 

the general polynomial expressions of these eigenvalues, the eigenvalues are 

calculated out using different sets of kl and k2' and hence to give the root locus of 

the system as follows. 

4.2.2 Dynamic Analysis Based on the Linearized Wheelset Model 

Stability analysis is carried out through studying the eigenvalue migration III 

different conditions, based on linearised models at different operating points along 

the creep-creep force curve as illustrated in Figure 4.22 
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Figure 4.22 Relationship of tractive torque and slip ratio 

Firstly, it is assumed that the left and the right wheel rail contact conditions are the 

same, the vehicle speed is 10 kmlh and the natural frequency of the wheelset is 60 Hz. 

Figure 4.23 shows the movements of the eigenvalues when the operating points 

moves along the curve as the arrows orientate. In the stable region where the curve 

has a positive slope, the positive damping keeps all the modes concerned stable (as 

indicated by '* '). However, when the operating point moves beyond the maximum 

adhesion value, there are two unstable modes (as indicated by '0 '). One is the 

torsional mode of the axle which is indicated by a pair of unstable conjugate poles, 
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and the other is the common rotation of the two wheels indicated by the unstable pole 

on the real axis. 
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Figure 4.23 Eigenvalue migrations with contact conditions (10 km/h, 60 Hz) 
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Figure 4.24 Eigenvalue migrations with contact conditions (100 km/h, 60 Hz) 
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Figure 4.24 gives the eigenvalue movements when the speed is at 100 km!h. A 

similar result is obtained, but it appears that the dynamic modes are closer to the 

imaginary axis at higher speeds and therefore the torsional mode is easier to excite. 

On the other hand, a less rigid axle brings lower natural modes of the system. Figure 

4.25 gives the eigenvalue distribution at the same condition of Figure 4.23, but with a 

40 Hz wheel set model. It shows a similar trend of the destabilizing effect as the 

operation point moves into the slip region. 
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Figure 4.25 Eigenvalue migrations with contact conditions (10 km!h, 40 Hz) 

When the two wheels operate in different conditions, e.g. one side of the wheelset 

operates at stable region while the other in the slip region, the stability will be 

determined by the overall effect of contact conditions. It is possible that the wheel set 

system will become unstable even though one side is working within the stable 

region. Figure 4.26 gives the eigenvalue distributions in such conditions. There are 

two different trends of the migrations which relate to the two contact conditions at 

wheels. The ones indicated by '*' in Figure 4.26 describe the eigenvalue 

distribution when the left wheel operates in slip condition but the right wheel 

operates in normal condition. The ones indicated by '0' are obtained in the condition 
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where the right wheel slips but the left wheel does not. Overall, the side slip is more 

difficult to excite and sustain: it only happens when the stable operating side has 

much higher dT, / d A value. 

Figure 4.26 Eigenvalue migrations with wheels on different conditions (10 kmIh) 

4.3 Summary 

From the simulation results and the dynamic analysis of the wheel set dynamics in 

different conditions, it is obvious that there is a close link between the wheel slip and 

the wheel set torsional vibration. Some previous work also suggested that wheel set 

torsional vibrations would be caused by the loss of adhesion [73][75]. This link is 

explored in this study to develop a new and effective slip detection scheme. 
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5 SLIP DETECTION 

As introduced in Chapter 4, the torsional mode of a wheelset is severely affected by 

the contact conditions. Thus, the slip condition can be detected via monitoring 

torsional vibration information. It is therefore possible to detect the slip conditions by 

monitoring the status of the torsional mode. 

In this chapter two approaches are studied. One is based on the direct measurement 

of the torsional torque, and the other is concerned with the development of a Kalman 

filter that estimates the torsional torque variations from wheel speed measurements. 

The signals (either measured or estimated) are then processed to extract the 

component at the frequency of the dominant torsional mode. No re-adhesion control 

is used in this chapter, which will be presented in chapter 6. 

5.1 Slip Detection via Monitoring Torsional Torque 

Torque sensors will be required to measure the torsional torque. Strain gauges are 

widely used in railway vehicle status monitoring [76], and non-contact digital rotary 

torque measurement solutions with high accuracy and resolution, using "Surface 

Acoustic Wave" technology is becoming available for railway applications as well 

[77] where a piezoelectric device is sticked on the surface of the-shaft to pick up the 

torsional deformations. In the following analysis, it is assumed that the torsional 

torque is measured through a rather accurate torque sensor. 

Figure 5.1 shows a measured torsional torque for the wheelset with a torsional mode 

of 60 Hz. The result is obtained under the contact condition shown in Figure 4.4 

where the adhesion coefficient is reduced from 0.4 to 0.04 at t = 4 s , and the initial 

speed is 10 kmIh. 
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Figure 5.1 Torsional torque measured (60 Hz, sudden change, I 0 km/h) 
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The vibration is obvious in the measured torsional torque waveform, but post 

processing is needed to detect the natural frequency component. Two methods are 

studied. One is based on frequency domain analysis using the running FFT method, 

and the other uses a combination of filters. 

5.1.1 Running FFT Method 

Running FFT analysis carries out FFT analysis over a windowed section of the 

measured signal. From the spectrum of each FFT analysis, the component at the 

natural frequency is picked out. By comparing the time history of the magnitude at 

the specified natural frequency, the slip condition can be detected. 

The outcome of the running FFT processing on the torsional torque signal in Figure 

5.1 results in the time history of the magnitude at the natural frequency, which is 

60 Hz here as shown in Figure 5.2. The FFT analysis is computed over a 0.2 s time 

windowed signal which is updated every 0.05 s. In each frame of the FFT analysis 

result, the component of the natural frequency component is picked up. It is obvious 

that when slip happens after t = 4 s , the magnitude increases rapidly due the 

appearance -of torsional oscillations. By setting a threshold, e.g. 50 Nm, the slip 

condition can be indicated within 0.5 s. 
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Figure 5.2 Magnitude information of torsional torque of specified natural frequency 

using running FFT (60 Hz) 

The running FFT method is a widely used method to deal with vibration signals. It is 

effective and most straight forward, but it is also computationally intensive and 

increases the complexity of the control system, compared to the time domain filtering 

as shown in the next section. 

5.1.2 Filter Combination Method 

As shown in Figure 5.3, the torsional torque signal is fed to a band-pass filter, which 

is designed to extract the component at the natural frequency. Then through a 

rectifier and a low-pass filter with a low bandwidth, the magnitude of the natural 
" 

frequency component can be obtained. 

Measured Bandpass 
.. - -. 

signal 

Lowpass Magnitude 

Figure 5.3 Filter combination method 

The band-pass filter is designed as a basic second order band-pass filter 

BP= HoPs 
S2 + ps + mg (4.11) 
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where, (i)o is the centre frequency, P is the bandwidth, and Ho is the maximum 

magnitude of the filter. For the 60 Hz wheelset shaft, the bandwidth is set as 3 Hz, 

Ho = 1, the bode plot of which is· shown in Figure 5.3. The bandwidth of the low 

pass filter is set as 1 Hz. 
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Figure 5.4 Bode diagram of a band-pass filter 

For the input signal given in Figure 5.~, the final magnitude at the output of the low 

pass filter is shown in Figure 5.5. It is again clear that the magnitude of the natural 

frequency component increases in the slip condition while it is nearly zero in the 

stable operation condition. 
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Figure 5.5 Magnitude result of torsional torque of the natural frequency 

using filter combination method (60 Hz, sudden change,) 0 kmlh) 
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5.1.3 Evaluation of Different Wheelset and in Different Conditions 

Firstly, wheelset shafts with two different natural frequencies are studied: one is a 

40 Hz shaft and the other is an 80 Hz shaft. In both simulations, the contact condition 

is set as defined in Figure 4.4, and the condition is changed from a good case to a 

poor case at t = 4 s to initialize slip conditions. The initial speed for both cases is 

10 kmIh. In the simulations, the running FFT analysis and the bandpass filter centre 

frequencies are tuned to the corresponding wheelset natural frequency. 

For the 40 Hz wheelset, the torsional torque is gIven in Figure 4.14, and the 

magnitudes of the natural frequency component using the running FFT method and 

the filter method are shown respectively in Figure 5.6 and Figure 5.7. Those show 

the consistency of these two methods, there is a clear increase in the vibration 

magnitude in slip condition after t = 4 s. 
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Figure 5.6 Magnitude information of torsional torque of specified natural frequency 

using running FFT (40 Hz, sudden change,lO km/h) 
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Figure 5.7 Magnitude result of torsional torque of the natural frequency 

using filter combination method (40 Hz, sudden change, I 0 kmlh) 

For the 80 Hz wheel set, the torsional torque is shown in Figure 4.15, and the 

magnitudes of the natural frequency component using the running FFT method and 

the filter method are shown respectively in Figure 5.8 and Figure 5.9. Again the 

results show that either of the methods is expected to give the magnitude information 

for slip detection. 
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Figure 5.8 Magnitude information of torsional torque of specified natural frequency 

using running FFT (80 Hz, sudden change, I 0 kmlh) 
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Figure 5.9 Magnitude result of torsional torque of the natural frequency 

using filter combination method (80 Hz, sudden change, 1 0 km/h) 

Secondly, the performances are assessed at different speeds and with tractive effort is 

applied when the vehicle is already on a track with poor contact conditions. Figure 

5.10 and Figure 5.11 give the magnitude of the natural frequency component when 

the initial speed of the vehicle is 10 kmlh. Figure 5.12 and Figure 5.13 give the 

magnitude of the natural frequency component when the initial speed of the vehicle 

is 100 kmlh. For both cases, using either the running FFT method or the filtering 

method the occurrence of the torsional vibration due to slip can be detected in time 

by observing the magnitude variation. It is also noticed that the rate of the increase of 

the magnitude in these two cases are lower that those of the sudden change cases, 

which is because of the lower driving torque in the jerk limited region. 
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Figure 5.10 Magnitude information of torsional torque of specified natural frequency 

using running FFT (60 Hz, low contact condition, 1 0 km/h) 
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Figure 5.11 Magnitude result of torsional torque of the natural frequency 

using filter combination method (60 Hz, low contact condition, 1 0 kmlh) 

500 

~ 400 
8 
6 300 
(I) 

"0 .a .- 200 s:: 
0.0 
C\l 

~ 100 

q.5 2 2.5 3 3.5 4 4.5 

Time (5) 

5 

5 

Figure 5.12 Magnitude information of torsional torque of specified natural frequency 

using running FFT (60 Hz, low contact condition, 100 km/h) 
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Figure 5.13 Magnitude result of torsional torque of the natural frequency 

using filter combination method (60 Hz, low contact condition, 1 00 km/h) 
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The magnitude analyses in different conditions show the effectiveness of the idea to 

detect the slip based on the torsional vibrations in slip conditions. Both data 

processing methods presented give consistent results of the magnitude at the natural 

frequency. However, the time domain filtering method is probably preferred in 

practice for its simplicity and will be used as the main magnitude extraction method 

in the following analysis. 

Although the torsional torque gives a good and direct possibility for slip detection, it 

requires torque measurement instrumentation which will increase the cost and 

structure complexity. Thereafter, a Kalman filter is developed to provide an 

estimation of the vibration signals from the measurement of wheel speed which is 

normally available in modern traction systems. 

5.2 Slip Detection based on the Kalman Filter 

5.2.1 Principle of the Kalman filter 

The Kalman filter is an effective technique to estimate the states of a dynamic system. 

The measuring devices give the required measurements with certain noise. With the 

knowledge of the inputs and outputs from the physical system, a Kalman filter can 

give the optimal estimation of the system states. 

Given an observable linear control system 

:i = Ax+ Bu +w (4.12) 

y = Cx+ Du +u (4.13) 

where, the dynamics are subject to random disturbances wand the measurements are 
.-

subject to random noise v. Kalman filter is designed to solve the optimal estimator 

problem: Construct a full state observer which minimizes the combined effect of the 

disturbances and the noise, thus providing a "most likely" estimate of the system 

state [78]. ~he processes are Gaussian white noise processes which means firstly null 

mean value 

E(w) =0 E(u) = 0 (4.14) 

Secondly, fixed covariance value 
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and mutually uncorrelated 

E(WWT) = Qif 

E(uuT
) = Rif 

(4.15) 

(4.16) 

(4.17) 

Then the problem is to construct a state estimate x that minimizes the steady state 

error covariance 

P = lim E{ (x - x)(x - X)T} 
/ ..... '" 

The optimal solution is the Kalman Filter which constructs an output injection: 

i = Ax+ Bu + L(y-Cx-Du) 

where the filter gain L is determined by solving an algebraic Riccati equation. 

5.2.2 Small Signal Model for the Wheelset System 

(4.18) 

(4.19) 

Wheel rail contact laws are highly nonlinear, but linearised models are desired for 

the Kalman filter design. Recalling the wheel set model given in equation (3.97), the 

state space description of the wheel set system is 

x=A1x+B1u+C1u2 (4.20) 

where x = [lOr lO, Bs]T, the input vector u = [Tm 0 Or, and u2 = [T,r T" r· 

Let Xo be the static operation point, then 

(4.21) 

Let the transient variables be x = Xo + ~x , and input be u = Uo + Au and 

u2 = u 20 + Au2 • Then the variation is described: 

(4.22) 

From equation (4.3), ~T,r and ~T" are given as kr ·~A.r and k,·~~. As the vehicle 

speed can be considered constant, ~T,r and ~T" are written as: 
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11 OJ 
I1T = k ._r = k\ . 11 OJ 

~ r r (4.23) 
OJ. 

(4.24) 

Finally, the linear small signal model is given as: 

_!:.L 0 _ ks 1 
12 12 -

[ ~W'l [ ~m'l 
Jr 

Ai = 11~, = 0 
_ k2 ks 

11 OJ, + 0 I1Tm 
1\ 1\ 

l1(}s t1..(}s 0 
1 -1 0 

(4.25) 

'----v--' 
y B 
A 

The measurement available is the rotational speed of the wheel on the traction motor 

side and therefore the output equation is: 

(4.26) 

To simplify, re-define x = [I1OJr t1..OJ, t1..B.lT andu=[I1Tm 0 Or. The small signal 

model can be expressed as 

i=Ax+Bu (4.27) 

y=Cx (4.28) 

where matrixes A, B and C are given in equations (4.25) and (4.26). 
fI' 

5.2.3 Kalman Filter Based on the Small Signal Model 

Based on the small signal model described in equations (4.27) and (4.28), a Kalman 

filter as shown in Figure 5.14 is constructed according to equation (4.19). The input 

of the system is the driving torque variation I1Tm• The measurement input is the right 

wheel speed variation I1OJr• Zero initial conditions are considered. The outputs of 

the Kalman filter are the variations of the three state variables: the right wheel speed 

variation I1wr , the left wheel speed variation I1w, and the torsional torque 

variation 11T. • With some loss of dynamic accuracy, but great savings in 
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computational effort, it is often possible to use a stationary Kalman filter, with which 

the Kalman gain is pre-computed and held constant in the filtering process [79]. So 

in the following study, the Kalman gain L is pre-computed based on the model 

equation and a set of covariance values Qkfand RkJ which are given as Qkf = 1 x 1 06 

and RkJ = 1 x 1O-{i . 

J 
A 

X 

Figure 5.14 Estimation based on Kalman filter 

In matrix A, k] and k2 values are determined by the slope of slip curves and the 

vehicle speed. So these may results in different sets of data. Through simulations, it 

is found that the smaller k] and k2 which are determined by the regions near the peak 

of slip curves can bring better estimation results which will be proved in the next 

section. In the following study, k] and k2 are kept fixed unless especially specified 

as 

(4.29) 

.. 

5.2.4 Estimation Results of the Kalman filter 

The performance of the Kalman filter is assessed using the contact condition defined 

by Figure 4.4 which is changed from the good one to the poor one at t = 4 s , and the 

initial speed is 10 kmlh. The sampling interval is set as Ims. 

Figure 5.15 shows the right wheel speed variation which is fed to the Kalman filter 

as the measurement input. 
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Figure 5.15 Right wheel speed variation IlOJr (60 Hz, sudden change,10 kmlh) 

Figure 5.16 is the driving torque variation llTm that may be used as the input of the 

Kalman filter. As it shows, llTm contains primarily noise which is caused by the 

PWM and the position sensor in the vector control scheme. The mean value of this 

signal is 2 Nm which is very close to zero. Therefore llTm is set to zero in the 

Kalman filter directly. This procedure will reduce the noise of the estimation and 

complexity of the filter structure without affecting the correctness of the estimation. 
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Figure 5.16 Driving torque variation llTm (60 Hz, sudden change, 1 0 kmlh) 
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Figure 5.17 shows the estimation of right wheel speed variation. Compared with the 

the original results of the right wheel speed variation obtained by simulation of the 

drive system given in Figure 5.15, it shows a good match. 

0.035 
,-... 
00 

-= 0.03 
C'j 
~ 
'-' 0.025 s:: 
.9 ...... 0.02 C'j 

.~ 

:> 0.015 
"'0 

Q) 
Q) 0.01 
0.. 

r./J 
0.005 

g.5 4 
Time (s) 

4.5 5 

Figure 5.17 Estimation of right wheel speed variation (60 Hz, sudden change, 1 0 kmlh) 

Figure 5.18 and Figure 5.19 compare the original result of the left wheel speed 

variation obtained by simulation of the drive system and estimated left wheel speed 

variation. It can be seen that the estimation suppresses the magnitude but still retains 

the oscillation information. 
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Figure 5.18 Original left wheel speed variation (60 Hz, sudden change, I 0 kmlh) 

93 



0.04 

,,-., 0.035 
rn --"'C 0.03 
C\l .... 
'-' 0.025 = 0 
.~ 0.02 
·C 

C\l 0.015 ;;. 
"0 0.01 Q) 

Q) 
0.. 

r/) 0.005 

g.5 4 4.5 5 
Time (s) 

Figure 5.19 Estimation of left wheel speed variation (60 Hz, sudden change, 1 0 km/h) 

Figure 5.20 is the original torsional torque variation obtained by the simulation and 

Figure 5.21 gives the estimation result of torsional torque variation. Although the 

oscillation magnitude is also attenuated, the estimation gives the torsional vibration 

information in the slip condition which can be proved to be sufficient for the 

detection as shown later. 
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Figure 5.20 Original torsional torque variation (60 Hz, sudden change, 1 0 kmlh) 
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Figure 5.21 Estimation of torsional torque variation (60 Hz, sudden change, 1 0 kmlh) 

A comparison study is carried out to investigate the effect of different k, and k2 

values to the estimation results. Another two sets of k, and k2 values are tried. The 

large value set is derived from the linear region of the creep-creep force curve as 

(4.30) 

The estimation of the torsional torque variation based on this set of date is given in 

Figure 5.22. It shows a fast response but with large offset of the results. Since the 

system matrix determined by this set of data is far different from the one in slip 

conditions where k, and k2 are smaller. 
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Figure 5.22 Estimation of torsional torque variation 

(60 Hz, sudden change, 1 0 kmlh, k, = k2 = 2 x 104 
) 
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The other lower value set comes from the saturation region as 

kJ = k2 = 0.8x103 (4.31) 

The estimation of the torsional torque variation based on this set is given in Figure 

5.23. It shows a similar result as in Figure 5.21 but with a slower response. From the 

comparison, it can be seen that choosing kJ and k2 values from the saturation region 

can give a better result than those in the linear region. 
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Figure 5.23 Estimation of torsional torque variation 

(60 Hz, sudden change, I 0 kmlh, kJ = k2 = 0.8x103 ) 

Then, the 40 Hz and 80 Hz system are considered. Running the simulations 

considering the contact conditions given in Figure 4.4 with sudden changes at 
, 

t = 4 s and initial speed 10 kmIh, the original torsional torque variations obtained by 

simulation are shown in Figure 5.24 and Figure 5.26 respectively. The Kalman filter 

estimating results are shown in Figure 5.25 and Figure 5.27 respectively. Both the 

results confirm that the Kalman filter can work properly in different wheel set model 

with different natural frequency. 
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Figure 5.24 Original torsional torque variation (40 Hz, sudden change, 10 kmlh) 
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Figure 5.25 Estimation of torsional torque variation (40 Hz, sudden change, 10 kmlh) 
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Figure 5.26 Original torsional torque variation (80 Hz, sudden change, 10 kmlh) 
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Figure 5.27 Estimation of torsional torque variation (80 Hz, sudden change, 10 kmlh) 

5.2.5 Slip Detection Based on the Kalman Filter 

The estimated torsional torque can be used to replace the direct measurement from 

the axle. The filter method which is introduced to extract the magnitude information 

from oscillation signals can be also used to deal with the estimated torsional torque 

variation information. 

Figure 5.28, Figure 5.29 and Figure 5.30 give the magnitude of the natural frequency 

component based on the estimation of torsional torque variation from the Kalman 

filter for the wheelset axles at different torsional frequencies. The increase of the 

magnitude in the slip condition is clear and the trend is consistent with the result 

shown in Figure 5.5. 
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Figure 5.28 Natural frequency component magnitude of torsional torque estimation 

from filter method (60 Hz, sudden change,] 0 kmlh) 
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Figure 5.29 Natural frequency component magnitude of torsional torque estimation 

from filter method (40 Hz, sudden change, 10 kmlh) 
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Figure 5.30 Natural frequency component magnitude of torsional torque estimation 

from filter method (80 Hz, sudden change, 10 km1h) 

Similar simulations are carried out by keeping the contact conditions always low 

instead of sudden changes. Figure 5.31, Figure 5.32 and Figure 5.33 give the actual 

torsional torque variation, estimated torsional torque variation using Kalman filter 

and the magnitude history of the natural frequency component respectively with the 

initial speed 10 kmIh. For the initial speed to 100 kmJh, the corresponding results are 

shown in Figure 5.34,Figure 5.35 and Figure 5.36. The results confirm again that the 

Kalman filter based method can give enough information to detect the torsional 

vibration appearance in slip conditions. 
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Figure 5.31 Original torsional torque variation (60 Hz, low contact condition, 10 kmlh) 
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Figure 5.32 Estimation of torsional torque variation (60 Hz, low contact condition, 10 kmlh) 
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Figure 5.33 Natural frequency component magnitude of torsional torque estimation 

from filter method (60 Hz, low contact condition, 10 kmlh) 
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Figure 5.34 Original torsional torque variation (60 Hz, low contact condition, 100 km/h) 
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Figure 5.35 Estimation of torsional torque variation (60 Hz, low contact condition, 100 kmlh) 
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Figure 5.36 Natural frequency component magnitude of torsional torque estimation 

from filter method (60 Hz, low contact condition, 100 kmlh) 
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5.3 Effect of Practical Position Encoder 

5.3.1 Speed Calculation Based on Position Encoder 

As introduced in the FOe control strategies for induction motors, a position sensor is 

used to obtain the rotor speed/position. Because of the harsh operational conditions 

for railway vehicles and the issue of cost, it is very difficult to realize a sensor with 

as many pulses per revolution as the encoder has in other industrial applications [25]. 

In the following studies, a 100 pulse/rev encoder is considered. 

A basic way to calculate speed is to count pulses over a fixed time period. The pulse 

counted from the encoder is sampled at a fixed rate as Ims. 

By differentiating the encoder pulse in each sampling period, the motor speed can be 

obtained [80]. The block diagram of this method is shown in Figure 5.37. 

I Pulse 
number 

The speed is given as 

i-T-----+I + 

Figure 5.37 Basic velocity calculation method 

(4.32) 

where, Np is the pulse number counted in a fixed period, tv is the time interval to 

update Np value, nps is the resolution of the position encoder. 

The performance of this method is evaluated using a testing ramp speed signal and 

the results is shown in Figure 5.38 wheretv is set as 5 ms and the resolution of the 

position sensor is 100 pulses/rev. 
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Figure 5.38 Velocity estimation against test speed signal (method I) 

The second method shown in Figure 5.39 is developed from the first one: calculating 

speed using average pulse number change in a fixed interval, for example 1 ms , 

defined as Ivo' The average is calculated in a longer time window M· Iv (M is an 

integer), for example 5 ms. In a consecutive M· tvo time window, the information of 

the pulse number is updated every Ivo intervaL That means the latest pulse number 

information is used to calculate the speed. 

Munits: Sum 

2" Pulse Pulse Average 
(-)/tvo 

OJ 

number 
difference 

(l/M) 
nps 

calculation up 

over tvo 

Figure 5.39 Velocity calculation using average pulse number variation 

Figure 5.40 gives the estimation results using the same ramp test signal and same position 

sensor of resolution of 100 pulses/rev, and tvo is set as lms, M is taken as 5. 
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Figure 5,40 Velocity estimation against test speed signal (method 2) 

3 

The third method is to estimate the velocity based on the pulse width. The pulse 

width is measured using a high frequency clock with period r::. The resultant velocity 

IS gIven as 

2;rr/nps 
OJ =-'---'-

Nc .r:: (4.33) 

where, Nc is the pulses counted from ~he high frequency clock. Setting r::as O.Olms, 

the estimated result is given in Figure 5.41. It shows a good estimation of the 

velocity speed in a certain speed range which is lower than 100 radls in this case. 
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Figure 5,41 Velocity estimation against test speed signal (method 3) 
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The error between the test signal and the estimated result is increasing with the speed 

which is due to the limitation of the clock frequency. The accuracy of speed 

estimation in the higher speed range can be improved by increasing the frequency of 

the clock or measuring pulse width between two or more pulses of the encoder as 

illustrated in Figure 5.42. By taking into account the time interval between pulses in 

addition, the position sensor resolution can be also doubled shown in Figure 5.42 

which is useful for low speed measurement. So for the nps pulses/rev position sensor, 

it can be actually used as a position sensor with 2nps pulses/rev resolution. On the 

other hand, in the high speed range, the nps pulses/rev position sensor can be used as 

equivalent position sensor with resolutions of t nps pulses/rev, t nps pulses/rev and so 

on. 
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position sensor 
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Figure 5.42 Counting method in different speed range 

High frequency 

Clock (Tc) 

High speed range 

The comparison of the velocity estimations shows that the first two methods 

introduce a lot of resolution noise, but the third one gives better estimation and less 

noise. So the third method will be used to estimate the driving wheel speed in the 

following evaluation. 

5.3.2 Slip detection based on Kalman Filter using Practical Sensor 

Even though the third method can give a good estimation of the speed, there is still 

some resolution noise. The noise can be reduced by adding a low pass filter before 

the speed signal is fed to the Kalman filter [81]. 
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The estimated torsional torque variation using the encoder is given in Figure 5.43 

where there is a sudden reduction of the adhesion coefficient at t = 4 s. Compared 

with the one without the position sensor in Figure 5.21, it shows that the position 

sensor introduces a lot of noise in the Kalman filtering. However, the trend of 

increase of the magnitude in the slip condition is consistent with the one without 

encoder. 
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Figure 5.43 Estimation of torsional torque variation with 

position sensor (60 Hz, sudden change, 10 kmlh) 

After post data processing using the filtering method, the magnitude of the natural 

frequency component of the estimated torsional torque variation is given in Figure 

5.44. It shows that magnitude increases obviously in slip,..condition which is 

consistent with the result shown in Figure 5.28 but with a higher value in normal 

condition due to the introduction of position sensor. By setting a proper threshold, a 

slip condition can be indicated in time. 
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Figure 5.44 Natural frequency component magnitude of torsional torque estimation 

from filter method with position encoder (60 Hz, sudden change, 10 kmlh) 

A comparison of different position sensors is carried out under the same condition 

obtaining the result in Figure 5.44. The natural frequency component magnitudes of 

torsional torque estimation with position encoders with resolution of 60 pulses/rev, 

100 pUlses/rev, 200 pulses/rev are compared as shown in Figure 5.45. The high 

frequency clock is O.Olms. It shows that all these sensors can generate a proper 

calculation of the magnitude in this speed range. In the following study, a position 

sensor with 100 pulses/rev is used. 
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Figure 5.45 Comparison of different position sensors 
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For the wheelset with different torsional stiffness, the magnitudes of the natural 

frequency components are shown in Figure 5.46 and Figure 5.47 respectively. The 

results show that, even with the position encoder, the magnitude trends are consistent 

with the previous corresponding results without position encoder. 
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Figure 5.46 Natural frequency component magnitude oftorsional torque estimation 

from filter method with position sensor (40 Hz, sudden change, 10 km/h) 
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Figure 5.47 Natural frequency component magnitude of torsional torque estimation 

from filter method with position sensor (80 Hz, sudden change, 10 kmlh) 

Similar conclusions can also be drawn for the conditions where the adhesion level is 

always low on the track. Figure 5.48 gives the magnitude of the natural frequency 
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component when the initial speed is set as 10 km/h. Figure 5.49 gives the magnitude 

of the natural frequency component when the initial speed is set as 100 km/h. 
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Figure 5.48 Natural frequency component magnitude of torsional torque estimation 

from filter method with position sensor (60 Hz, low contact condition, 10 kmlh) 
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Figure 5.49 Natural frequency component magnitude of torsional torque estimation 

from filter method with position sensor (60 Hz, low contact condition, 100 kmlh) 

The results confirm clearly the feasibility and consistency of detecting the slip by 

monitoring the magnitude of the natural frequency component based on the Kalman 

filter with practical sensors. For practical applications, a threshold must be selected 

carefully and probably tuned on line to determine the level of the magnitude above 

which wheel slip is considered to have occurred. 
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5.4 Summary 

Two slip detection methods are presented and evaluated in different conditions. The 

results show the consistency and feasibility of both methods. Special attention has 

been given to the Kalman filter based slip detection with the practical position 

encoder, and it shows the slip condition can be indicated in time when the threshold 

is set properly. 
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6 RE-ADHESION CONTROL SCHEMES 

A re-adhesion control scheme is proposed based on the vibration phenomenon. When 

slip condition is detected from monitoring the vibration signal, it enables a torque 

control unit to generate a torque reduction command which is fed back to the vector 

control unit of the induction motor. When the symbolic vibration disappears, it 

indicates that the system has recovered from the slip condition and regained adhesion 

in the current wheel rail contact condition. 

To realize a re-adhesion control, the critical issue is to determine how much torque 

needs to be reduced. In this chapter, a torque reduction rule is firstly introduced. 

Then the performances of the re-adhesion scheme are evaluated with ideal and 

practical encoders respectively. Finally, the performances are studied based on the 

comprehensive wheelset dynamics. 

6.1 Re-adhesion Control based on Kalman filter 

In this section, the basic idea of the re-adhesion control scheme is presented and 

initially assessed using the ideal position measurement. 

6.1.1 Re-adhesion Control model based on Kalman filter 

As introduced in Chapter 5, a properly designed Kalman filter can gIve good 

estimation of torsional torque variation which provides an important index of slip 

condition. It is clear that the magnitude in normal condition is close to zero, while in 

the slip condition, the magnitude increases due to the occurrence of the torsional 

oscillations. A reduction of the tractive effort applied to below the level of the 

adhesion is_ clearly necessary, but the amount of the torque reduction must be set 

properly. A PI control unit is developed to perform this function. The diagram of the 

re-adhesion control scheme is given in Figure 6.1. 
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Figure 6.1 Block diagram for re-adhesion control based on Kalman filter 

The dashed framed part is the re-adhesion controller based on the Kalman filter. The 

motor speed is fed to the Kalman filter. The estimated torsional torque variation 

t:.T:_e.l'1 is then fed to the combined filtering unit to extract the magnitude of the 

natural frequency component Tmag. In the threshold detection unit, Tmag is compared 

to a rather small threshold which can be set to 5-10 Nm. An enabling command will 

be generated and fed to the PI controller when Tmag is greater than the threshold. 

Through a PI controller, a torque reduction amount is determined from Tmag : 

(6.1) 

6.1.2 Re-adhesion Performance 

A simulation is carried out using the wheelset with the torsional mode of 60 Hz. The 

contact condition is given in Figure 4.4 with a sudden change from a good case to a 
-

poor one at t = 4 s. The magnitude of the natural frequency component used for slip 

detection and torque reduction is shown in Figure 6.2. 
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By choosing suitable threshold value (10 Nm in this case) and PI controller 

parameters, a torque reduction demand is generated and sent to the input of the motor 

controller. Hence the motor output torque which drives the wheel is reduced as 

shown in Figure 6.3. 
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Figure 6.3 Motor torque (60 Hz, sudden change, 10 km/h) 

The resultant effect of the re-adhesion can be observed from the speeds signals as 

shown in Figure 6.4. It can be seen that after slip happens, the creepage reaches as 

much as 70% within 0.4 s before being detected. Once the slip condition is detected, 

the motor torque is reduced due to the fast response of vector controller. It takes 
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about 1.6 s to withdraw the splitted wheel speed back to the vehicle speed due to the 

action of the re-adhesion scheme, and then the vehicle is accelerated stably in the 

new contact condition. 

Figure 6.4 Wheels and vehicle angular speeds (60 Hz, sudden change, 10 km/h) 

Figure 6.5 presents an overview of the torsional toque variation. From the close shot 

of the time period 3.8-4.4 s given in Figure 6.6, it is clear that, after the contact 

condition is suddenly changed at t = 4 s , torsional vibrations appear which indicates 

a slip condition. Figure 6.7 gives the close shot of the torsional torque during the 

time period 5.5-6.1 s where the system regains adhesion. The absence of the torsional 

torque vibration after about 5.96 s indicates that the system is no longer slipping due 

to the effect of the re-adhesion control scheme. The waveform ~f the torsional torque 

confirms that the torsional torque vibrations will only appear in the slip conditions. 
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Figure 6.5 Torsional torque (60 Hz, sudden change, 10 kmlh) 
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Figure 6.6 Close shot of the torsional torque (3.8-4.4 s, 60 Hz, sudden change, 10 kmlh) 

5000~------~------~------'-------~-------r-------, 

8 4000 

b 
Q) 3000 
g. 
t) 2000 ..... 
~ 

.~ 1000 ~~ 

~ 0 ~V~ 
-1000~----~~----~~--~~~--~~~L---~----~ 

5.5 5.6 5.7 5.8 5.9 6 6.1 
Time (s) 

Figure 6.7 Close shot of the torsional torque (5.5-6.1 s, 60 Hz, sudden change, 10 kmlh) 

Figure 6.8 illustrates the effectiveness of the re-adhesion scheme for the wheel set 

with a softer shaft where the Kalman filter related parameters and the filter 

parameters are tuned to extract the 40 Hz component, the wheels' speed and vehicle 

speed are shown in Figure 6.8. The slip condition is detected almost as soon as the 

condition changes within 0.1 s. It takes a bit longer to actually reduce the wheel 

speed where the maximum creepage reaches about 120%. However, once the amount 

of torque is reduced enough, it only takes 0.8 s for the wheel speeds to be drawn back 

to the speed of vehicle. 
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Figure 6.8 Wheels and vehicle angular speeds (40 Hz, sudden change, to kmlh) 

Similarly, Figure 6.9 confirms that this re-adhesion control scheme can work for the 

80 Hz system as well. As it shows, the wheel slip is detected and a complete re­

adhesion is achieved within 2 seconds. In this case, a second (smaller) slip occurs but 

is quickly detected and eliminated by the controller, which is clearly evidence that 

the system works very closely to the optimal point of the slip curves. 

22 

20 

";ii' 1 a 

~16 
!-< 
'-' 
{j14 

Q) 

&12 

C/.l10 

a 

6 
2 3 4 5 6 

Time (s) 
7 B 9 

Figure 6.9 Wheels and vehicle angular speeds (80 Hz, sudden change,tO kmlh) 

Finally, considering the initially low contact condition, the re-adhesion control 

scheme can also work in cases where the initial speed is set to 10 kmlh and 100 km/h 

respectively. Figure 6.1 0 gives the performance of the re-adhesion scheme when the 

initial speed of the vehicle is 10 km/h and Figure 6.11 shows the performance when 

the initial speed is 100 kmIh It is noticed that the wheel slips tend to be less severe 
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than the sudden change conditions where the maximum creepages are less than 15% 

because of the relative low driving torques to the wheelset. On the other hand, the 

torsional vibrations are smaller and less sensitive to the slip conditions. However, the 

results show that the proposed re-adhesion scheme delivers a robust performance. 
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Figure 6.10 Wheels and vehicle angular speeds (60 Hz, low contact condition, 10 kmlh) 
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Figure 6.11 Wheels and vehicle angular speeds (60 Hz, low contact condition, 100 kmlh) 

6.2 Assessment with Practical Sensing 

In this section, the re-adhesion scheme based on Kalman filter will be evaluated 

under the consideration of practical sensing. The resolution the position encoder used 

in the study is 100 pulses/rev. 
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The position encoder introduces resolution noise into the scheme, the Kalman filter 

estimated results have higher value than those with ideal position sensors stated in 

Chapter 5. Therefore a higher threshold value is needed. By properly setting the 

threshold and tuning the PI controller for torque reduction control, satisfactory re­

adhesion performances can be achieved. 

Figure 6.12 presents the re-adhesion scheme performance with the practical encoder, 

where the shaft torsional mode is set to 60 Hz. The simulation is carried out with a 

60 Hz system. The contact condition is defined by Figure 4.4 with a sudden change 

from a good condition to a poor condition at t = 4 s , and the initial speed is 10 km/h. 

The results shows that the total recovery only takes less than 1.5 s with the maximum 

creepage less than 70%, which delivers a faster re-adhesion performance without the 

position sensor. 

20 

18 
,-... 
til 16 
~ 
I-< 

14 '-' 
til 

"'0 
(I) 12 (I) 

0.. 
if) 

10 

8 

6 
2 3 4 5 6 7 8 9 

Time (s) ". 

Figure 6.12 Wheels and vehicle angular speeds with 

practical sensor (60 Hz, sudden change, 10 kmlh) 

Figure 6.13 and Figure 6.14 present the performance of the re-adhesion control 

scheme with practical sensors for 40 Hz and 80 Hz axles respectively. Both cases 

show the re-adhesion can be achieve within 1.5 s, which are faster than those without 

position sensors. The faster response is mainly due the higher value of the estimation 

output from the Kalman filter based on the practical position sensor which results a 

higher output of the PI controller for the torque reduction. 
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Figure 6.13 Wheels and vehicle angular speeds with 

practical sensor (40 Hz, sudden change, 10 km/h) 
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Figure 6.14 Wheels and vehicle angular speeds with 

practical sensor (80 Hz, sudden change, 10 km/h) 

Figure 6.15 and Figure 6.16 give the results for the 60 Hz axle with initially low 

contact condition but different initial speeds. One is 10 km!h and the other is 

100 kmlh. Both the results show that the re-adhesion control scheme can work 

properly. The slip conditions can be detected and be recovered within 2 seconds. 
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practical sensor (60 Hz, low contact condition, 100 km/h) 

6.3 Assessment with the Comprehensive Wheelset Model 

A comprehensive wheelset model has already been introduced in Chapter 3, although 

a wheelset model with simplified longitudinal dynamics is used to develop re­

adhesion controller. In this section, the dynamics of a comprehensive wheelset model, 

where the yaw and lateral dynamics are taken into account, will be used to evaluate 

the performance of the developed re-adhesion controller. 
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6.3.1 Wheelset Dynamics based on Comprehensive Wheelset Model 

The complete dynamic model of the wheel set as described in Chapter 3 is built in 

Simulink, a block diagram of which is shown in Figure 6.17. The additional 

parameters of the model are given in Table 6.1. 
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Figure 6.17 Simulation model for the comprehensive wheelset model 

Variables 

r 
L-

g 

Definitions and values 

Wheelset mass (2714 kg) 

Wheelset yaw inertia (1397 kgm2
) 

Yaw spring stiffness (5 x 106 N/m) 

Conicity of wheel (0.2 ) 

Half gauge length (0.7175 m) 

Table 6.1 Parameters for comprehensive wheelset model 
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In addition to the longitudinal and rotational motions, the dynamics of the wheel set 

yaw and lateral modes are also included in the comprehensive model. The creepages 

and hence creep forces in the yaw and lateral directions are results of the wheel set 

responding to the track input excitation and will affect the performance of the re­

adhesion control, as the total contact force is limited by the maximum adhesion 

available a the same wheel-rail contact point. 

Simulation is carried out using the contact condition defined in Figure 4.4 with a 

sudden change at t = 4 s. The initial speed of the vehicle is set at 10 kmIh. The track 

irregularity shown in Figure 6.18 is generated to represent the track misalignment 

Yt of a typical mainline [82] and the corresponding velocity YI given in Figure 6.19. 
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Figure 6.18 Track irregularity YI 
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Figure 6.20 gives the resultant disturbances to the longitudinal creepage. It shows 

that in the stable operation condition before t = 4 s, the disturbance is very small. 

When a slip condition is developed, a vibration appears. This vibration reflects a 

sustained yaw and lateral oscillations. The oscillations with a frequency of 9.5 Hz 

show that, the loss of adhesion also causes the instabilities in lateral and yaw motions. 

Therefore a good re-adhesion control scheme is also desirable in the point of view of 

vehicle stability. 
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Figure 6.20 Longitudinal creepage disturbance (60 Hz, sudden change, 10 kmlh) 

However, the longitudinal creepage is still dominated by the wheel spinning in the 

slip condition as shown Figure 6.21. The trend of the longitudinal creepage is 

consistent with the one with the simplified wheel set model: rather small in normal , 
conditions and increasing in slip conditions. It is clear that additional wheelset 

instability does introduce obvious pulsations in longitudinal creepage which is not 

revealed in the simplified wheelset model. 
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Figure 6.21 Longitudinal creepage (60 Hz, sudden change, 10 km/h) 

Figure 6.22 presents the waveform of the torsional torque. Due to the interactions 

between lateral, yaw and longitudinal motions, the torsional torque in the stable 

condition is subjected to large variations which are different from the one based on 

the simplified model. Also certain oscillations show up in the torsional torque which 

is due to fact that two wheels of the wheelset operate at different contact conditions. 

However, the indexing oscillation at the wheelset torsional natural frequency still 

happens when slip occurs, which can be seen in the close shot given in Figure 6.23. 

So it is expected that the re-adhesion control scheme based on torsional vibration 

phenomenon will still work properly in the conditions where substantial interferences 

exits. 
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Figure 6.22 Torsional torque with longitudinal disturbance (60 Hz, sudden change, 10 kmlh) 
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Figure 6.23 Close shot of torsional torque with longitudinal disturbance (60 Hz, sudden 

change, 10 km/h) 

6.3.2 Re-adhesion Control Performance for the Comprehensive 

Wheelset Model 

Figure 6.24 shows that the re-adhesion control scheme based on Kalman filter works 

in comprehensive operation conditions of railway vehicle. 
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Figure 6.24 Wheels and vehicle angular speeds with disturbances 

(60 Hz, sudden change, 10 kmlh) 

The results show that the first slip condition is detected and get recovered within 2 

seconds with the maximum creepage less than 70%, and it takes about 1 second to 

recover from the second small slip. 
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6.4 Summary 

A re-adhesion control scheme is developed based the estimation from the Kalman 

filter. The effectiveness of this scheme is evaluated in different conditions and with 

practical sensors. The results show that the re-adhesion can be achieved within 2 

seconds after slip happens in most cases. Furthermore, an assessment has been 

carried out based on the comprehensive model which shows that the developed re­

adhesion scheme can work effectively even though there are dynamic disturbances. 
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7 CONCLUSIONS AND FURTHER WORK 

7.1 Conclusions 

The aim of this research is to carry out the dynamic study of a wheel set, which is 

driven by a vector controlled induction motor in different conditions and develop a 

novel re-adhesion control approach that uses imperfect position sensors. The task is 

fulfilled by several steps as summarized here. 

At the first step, an induction motor is modelled, and its drive based on an indirect 

vector control scheme is developed. Vector controlled induction motors are widely 

used in railway AC traction systems, and are normally capable of delivering fast and 

accurate torque dynamic responses which are essential to ensure a rapid torque 

reduction in the latest re-adhesion control techniques. 

The second step is concerned with the modelling of the wheel set. The study of the 

distributed parameter model of the wheel set reveals the natural torsional modes of 

the system, and the numerical analysis of the system dynamic response to the 

external torque excludes the higher order torsional mode (second and higher) since 

the angular responses of higher order torsional modes are nearly zero. Based on these 

results, a lumped parameter model of the wheel set which pays special attention to the 

first order natural torsional mode is introduced. The numerical comparison of the 

dynamic response of the distributed parameter model and the lumped parameter 

model is carried out as well as the comparison of simulation results and shows the 

consistency of the two models. A comprehensive model which includes the 

longitudinal, lateral and yaw dynamics is also introduced. Some simplifications were 

given to the comprehensive model for the convenience of controller design. 

Therefore, the lumped parameter system was taken as the basis for further dynamic 

study and ~ontroller design. 

Additionally, based on the lumped parameter model of the wheelset, the dynamics in 

different wheel rail contact condition are investigated. The torque demand to the 

motor is given in a predefined pattern which includes a jerk limit period. Through 
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comparing the dynamics in normal and slip statuses, it is found that intensive 

torsional oscillation appearance in the slip condition is a typical phenomenon for slip 

status. Further studies are carried out in different conditions such as wheel sets with 

different torsional stiffness, different wheel rail contact conditions and different 

speeds. The results show that the torsional vibrations occurring in slip condition are 

the intrinsic torsional modes which are determined by the wheel set construction and 

independent of vehicle operation conditions. The stability analyses based on the 

linearised wheelset model illustrate the link between the torsional vibration and the 

system instability. 

Then, two methods dealing with vibration signals are introduced. Running FFT 

method is a straight forward method to analyze vibration signals but computing 

intensive .. Time domain filtering method is more suitable for industry application 

because it is effective, easy to implement and costs less. Both of these methods are 

capable of extracting the magnitude information of the component at the torsional 

vibration frequency. 

Two approaches are studied to detect the slip based on the torsional vibration 

information. The first approach is based on the measurement of the torsional torque, 

but requires extra torque measurement instrumentation. The slip detection is carried 

out by observing the magnitude of the torsional torque component at the wheel set 

natural frequency. The feasibility of slip detection using torsional torque 

measurement is studied in different conditions, such as wMelsets with different 

stiffness, different contact conditions and different speeds. The simulation results 

show that the slip conditions can be detected very fast based on torque measurement. 

The second approach, a Kalman filter is designed to estimate torsional torque 

variation which contains enough torsional vibration information for slip detection. 

The design of the Kalman filter is investigated by considering the wheel rail contact 

nonlinearities, and shows that the coefficients near the saturation region of the slip 

curve can give a better matched estimation. The validity of the slip detection scheme 

based on Kalman filter is evaluated in different conditions with ideal position 

encoders initially. Then the scheme is further evaluated on the practical position 

encoders where the estimated results have higher magnitude than those with ideal 
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position sensors. The simulation results in different conditions show that even with 

practical position sensors, the Kalman filter based slip detection can indicate the slip 

condition in good time. 

Finally, a re-adhesion control scheme is developed based on the Kalman filter. The 

estimated torsional torque variation from the Kalman filter is not only used to 

indicate the slip condition but also fed to a PI controller to determine the torque 

reduction amount. The generated torque reduction amount is fed back to the vector 

control unit of the induction motor to adjust the motor output until are-adhesion 

status is achieved. The performances of the re-adhesion scheme are evaluated in 

different conditions with practical sensors, and show that the re-adhesion can be 

achieved within 2 seconds in most cases and the wheelset operates at an optimal 

status thereafter. Furthermore, dynamics of the comprehensive wheel set model 

where complex dynamics is involved are studied and the feasibility of the re­

adhesion scheme is also evaluated in return. However, there are difficulties to 

achieve a good re-adhesion performance in the high speed range based on the 

comprehensive model. 

The most relevant results and conclusions that have been drawn from this work are: 

(1) The first order torsional mode is the primary torsional mode of a wheel set 

shaft. 

(2) Self-excited torsional vibration appears in slip conditions. The frequency of 

the vibration is purely determined by the primary torsional mode of the 

wheelset shaft. 

(3) A slip condition can be detected rapidly and directly by monitoring torsional 

torque based on the torque measurement in different operation conditions 

and for different wheel set axles. 

(4) A proper designed Kalman filter can give good estimation of the torsional 

torque variation which contains the torsional vibration information. The 

detection method based on Kalman filter can detect the slip condition in time 

and requires only one position measurement which is usually equipped in 

railway vehicles. 

(5) The developed re-adhesion control scheme based on the Kalman filter can 

help the system regain adhesion shortly after a slip condition is detected and 
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optimal (or nearly optimal) adhesion is attained in the re-adhesion status in 

different operation conditions. 

(6) The re-adhesion scheme based on Kalman filter can work properly with 

practical position sensor and also under dynamic disturbances. 

The contribution of this work is to shed light on the wheel set mechanical dynamics 

rather than study the speeds which are widely used in conventional re-adhesion 

schemes. In the wheel set dynamics study, the elastic coupling of the shaft is 

considered which makes it different from most re-adhesion control scheme 

considering rigid shafts. The developed re-adhesion approach only requires a single 

position encoder with low resolution which is commonly used in railway vehicles, 

and immune from the noise and disturbances which are unavoidable in practical 

operation. Furthermore, the proposed scheme can work properly in different 

conditions, whether the slip develops slowly or occurs severely by sudden change. 

7.2 Further Work 

It is considered that the following work would be interesting for future research: 

(1) Further study on the re-adhesion characteristic based on comprehensive 

model especially in high speed range. 

(2) Suitability studies in different railway bogies. Different mounting methods 

of the driving and transmission unit may result in different damping effect 

to the torsional mode. The damping effect in this thesis was considered 

neglectable which was suitable for a specified group of railway vehicles, 

while some others may have extra damping used to protect the system from 

excessive vibrations. So it is useful to carry out some comparison studies of 

different systems to define the applicability and expansibility of this 

approach. 

(3) Experimental verification. It is important to verify scheme's validity 

through experiments. On a hardware platform, practical issues of the 

scheme such as Kalman filter implementation and tuning of control 

parameters will need to be examined carefully. 

(4) Optimization study. This aspect of work is aimed to achieve a fast and 

optimal re-adhesion dynamics which may include the adjustment of PI 
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controllers, selection of a proper threshold adaptively based on the 

acknowledgement of the vehicle speed. 

,. 
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RE-ADHESIO~ COlUROL BASED O~ WHEELSET DY]I\A~rrCS 
L~ RAILWAY TRACTIO~ SYSTE~I 

J H Yo, T X Mei, D A Wilson 

171e Univerliity of Leedli, liK 

Abstract: This paper demonstrates how wheelset dynamics is affected by wheel-rail 
contact nonlinearities. Based on vibration phenomena due to wheel slip, two detection 
methods are proposed, both utilizing wheel speed informanon. One uses a running FIT 
to detect spectrum variation of a particular frequency component while the other uses 
bandpass and low pass filters to obtain magnitude information of the frequency interest. 
A re-adhesion scheme which is based on slip detection is developed. The simulation 
results show that this re-adhesion control scheme can detect slip effectively and improve 
traction stability. Cop)right C 1006 UK4.CC 

Keywords: re-adh ... ~ion control wheelset dynamics, vibration. nonlinearity. stability 

1. INTRODUCTION 

The knowledge of adhesion force through wheel-rail 
contact is of primary importance in railway traction. 
systems. Generally. adhesion force has nonlinear 
features which are related to the creep value and are 
strongly affected by wheel-rail contact conditions 
such as dry!wet. dust/leaves and so on. \\-'ben the 
mechanical torque transmitted to the wheel is much 
higher than the maximum adhesion torque thaI can be 
obtained from wheel-rail contact, the wheel will lose 
adhesion, and slip will occur. Slip is harmful in 
traction operations since it will increase the wear of 
wheel and rail. increase mechanical stress in the 
system. affect stability and, fi.lfthermore, lead to poor 
traction performance. Therefore re-adhesion schemes 
are required to reduce the risk of slip. 

Dismrbance observers are often used to detect slip 
conditions (Kadowaki, et a! .• 2002; Woo-Seok Kim, 
et 01 .• 1999). In these papers, traction torque is treated 
as a disturbance torque. and estimated either through 
zero/first-order observers (Kadowaki. tit a! .• 2002) or 
through state observers (Woo-Seck Kim. tit 01., 1999) 
using motor speed and torque information. Besides, 
hybrid anti-slip methods. which used slip speed, 
wheel speed and acceleration infom18tioll. were 

introduced in some papers (Don-Young Park.. tit 01 .. 
1999; Hyoun-Chul Choi and Suk-Kyo Hong. 2002). 
Those controllers have difficulty obtaining 
satisfactory performance, and also require accurate 
measurement of wheel slip. On the other hand, most 
disni!bance obsen;ers are established on the 
a~sumption of rigid shaft coonectiOll. and the 
performances of such anti-slip schemes based on a 
disturbance observer are to a large extent affected by 
noise in the system. 

In this paper, a wheelset model is established and its 
dynamics onder stable and slip conditions are studied 
lind compared. Based on this, novel slip detection 
methods are proposed. In addition. a torque control 
unit is adopted for a vector controlled three phase 
induction motor to achi...,,~ re-adhesion. 

2. WHEELSET MODEL 

In order to analyse slip phenomenon in the traction 
system, a wheelset model is established as shown in 
Fig.1. The right side driving wheel is driven by an 
inverter-fed induction motor and connected to the 
other wheel through II shaft, which is considered to 
have finite torsional stiffness. 
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Fig. 1 Diagram of simplified wheelset 

The dynamics of the system are governed by 
equation~ (1) to (3). Equation (I) de~cribes the 
dynamics of the right wheel, which is driven by an 
induction motor tluough a gear box; (2) describes the 
motion of left wheel; (3) is the description of the 
torsional torque, and (4) gives the general form of the 
traction torque. 

T,.-T,-T" =J, dCfJr 

dt 
dtq 

T, -1'., =J1-­
dt 

(1) 

(2) 

T, =k,J(alr-~)dt+c(aI,-~) (3) 

T,=JI.M,g.r (4) 

where, T.. is the driving torque transmitted from the 

motor through a gearbox, T, is the torsional torque, 

TIT is the traction torque contributed by the right side 

wheel-rail adhe~ion, Td is the traction torque 

contributed by the left side wheel-rail adhesion, J, 

and J1 are moment of inertias of right and left side 

respectively, k, is the torsional stiffness of the shaft c 

is the viscous damping of the shaft, and ai, and tq are 

the angular velocity of the nght and the left wheel 
re~pectively. /-I is called the traction coefficient, and 

its maximum value is called adhesion coefficient. 
M" is the equivalent vehicle mass of each wheel. In 
this paper it is asstIDled that each wheel shares vehicle 
mass evenly. 

Since the damping of the system is very small, we 
asswne that c = 0 .Then the state equation of this two 
inertia system is given by (5) where the state 

variables are cho~en as x = [ai, ~ 8,]T 

with 8, defined as 8, = J (ai, - IV; )dt : 

o 0 -i 

[i]= 'I ' ; =H T.+ : 
~ 0 0 

o 

7;](5) 
~ 1; 
o 

Then, the oahU'll1 frequency f. of the tv.'o inertia 

system is given by: 

f. =.2...l' + k, 
2lf J: J, 

(6) 

In equation (10), the traction torques Tr and r.. have 

nonlinear properties and are detenuined by whl"el-rail 
contact characteristic, which can be exprl"ssed as 
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group of slip curves as shov.n in Fig.2. Each slip 
curve gives a rule for how the traction coefficient 
varies with slip ratio, which is defined in equation (7) 

where A. is slip ratio, ai, is equivalent angular 

speed of thl" vehicle at thl" contact point. 

.< = tD. -tv. (7) 

tD" 
In Fig,2, curve I with the higher- adhesion coefficient, 
can be considered as a dry condition which indicates 
a good contact, and cnrve II represents a very 
wet/snowy condition as a poor ca~. It can be seen 
that the traction coefficient varies nonlinearly with 
slip ratio. The left side of the maximum point is a 
stable region where thl" slip CIlf1;e has a positiVI" slope, 
and on the other side, the traction coefficient 
decreases as the slip ratio increases. Hence, a slip 
condition is associated with negative slope. 

stable 

I1r- ___ ~IP~ __ 

A. 
Fig. 2 Profile of adhesion characteristics 

An approximation of traction torque can be obtained 
tluough linearization of the slip CUf1,'es. Equation (8) 
and (9) give such approximation of thl" right and left 
hand side traction torque: 

~T .. = k1ACfJ, (8) 

~Td = k24~ (9) 

here. kl and k2 are ~-alues related to slopl"s at the 

operating points of the right and left whed on their 
respI"ctive slip curves. 

Using (8) and (9), the small signal model is given as: 

[~]= 
-~ 0 ~ 

J, J, 

=] 0 .:~ 5. (10) 
~ ~ M, 

-I 0 

"------v-----' 
AI 

It is clear from equation (10) ~ and kl add extra 

damping to the system, and their values are closely 
related to the stability of the system. Generally, 
positive ~ and k2 values indicate a stab II" condition, 

and negative ones denote an unstable condition, 
which give rise to self-excited vibrations. 

A simulation model was built in SIMULTh.'K together 
with the SimPowerSystems toolbox to model the 
induction motor vector control unit as shown in Fig. 3. 



Fig. 3 Simulink diagram of inverter-fed induction 
motor ttaction sy~tem 

3. SLIP PHE~O~NON A..'l"D DETECTION 
METHOD 

In this section., the results of simulation are given to 
smdy wheel~et d)'Ilamics in slip condition. and based 
on that two detection methods are presented. 

3.1 Slip ph(momenon 
In all ~imulations, the torque demand of motor T: 
was as showll in Fig.4. 

T,' 
erk : cOll~tant 

limtted: acceleration 

lime 

Fig 4 Torque demand profile 

At a specified time e.g. t=4.5s. the wheel-rail contact 
condition is changed from a dry case to a poor case to 
de\'elop a slip condition. Fig. 5 gives the wheel-rail 
wheel rail adhesion data used in the simulation. At 
t=4.5s the contact curves of both wheels are switched 
from curve CD to curve (~). 

(~I 

"Qt---;;j;:'--;;"-;---=OC--~~ " dIP 1::0 ~ I) 4 

Fig. 5 Contact curves used in Simulation 

Table I gi\'es the motor and \'ehicle parameters used 
in simulation. All the results are given and analysed 
with a shaft namral frequency of 40 Hz unless stated 
otherwise. 

Ta hie I Simulation parameters 

f. 
1500Nm 40H;; 
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Fig.6 shows speeds of both wheels and vehicle from 
the simulation results. It is obvious that after t=4.5s 
when the contact condition is switched to a poor one. 
wheel speed rises much faster than that of vehicle. 
and slip happens. 

Fig.7 shows the torsional torque. It can be seen that 
when ~lip occurs a ,,;bration appears. The frequency 
of this \;bration is 40Hz. which is the natural 
frequency of the two inertia torsional system. 

-1oP&J. $<)6 C' .~ ., C;roJ '" __ 

~') 

Fig.7 Torsional torque 

From equation (10), it is known that k. and kl affect 

system stability. In the simulation., two sets of Ai and 

kJ were used. Table 2 gives one set of ~ and 

kJ values. They are obtained from the stable 
operating conditions in the simulation. The 
corresponding engeu\1llues of matrix Al in (10) are 
also given in the table. It is clear that all engenvalues 
are real and negative, ~d this confinns that the 
system is stable. 

Table 2 k,ulnd k. yalue$ and eigen\1llu('s (~table) 

eigen\'alues 

2.43e5 2.43e5 -22.39,-1813,-3835 

Table 3 gives the other set of Ai and kl ' and they are 

obtained from slip operation condition. One of the 
eigen\1llues is positi\'e real. and the others are 
complex conjugate with po~itive real part. Hence, the 
system is unstable. The oscillation frequency obtained 
from the imaginary part of complex eigenvalues is 



40Hz,. and this agrees with the nanlfal frequency of 
the toBional system 

Table 3 k, ~..tyallles and eigenvalues (slip) 

rigenvallles 

-2175.8 -2175.8 22.23,14.38+ 250.77i 

In practice, when a vehicle is built, the nanual 
frequency of wheelset axles is fixed. So this typical 
vibration can be used as a indication of slip condition. 

3.2 Slip detection method using nmning FFT 

When a torsional vibration occurs, the speeds of two 
wheels are directly affected. Such vibrations can be 
detected from speed information. Fig. 8 r.hows the 
difference ben,'een the nght wheel and left one. It 
shows tllat the tOBional vibrations affect the speeds, 
and that makes it possible to detect the slip. 

nM\m~~W~~W 
i ;,0:-<:'" -~~ ·-(6"i-··-~;'-·*,·j ,,~ ,,":.. ,;, ·--.·.---If",-·-~" 

Iime{.) 

Fig.S WavefOlm of speed difference 

In tllis section, a nuuullg FFT is used to detect the 
vibration from information of the speed difference 
benveen the right wheel and left wheeL The running 
FFT uses a 0.2s window to extract the information. 
From the FFT, the magtutude of the natural frequency 
component is determined. \\'hen the value exceeds a 
threshold, slip has been assumed to occur. Fig.9 
shows magtlitude of the natural frequency component. 
\\'hen slip occurs, the magnitude increases due to 
torsional vibration. Sening a 1ll8gnitude of 0.1 as the 
threshold, slip can be detected after 0.25, which 
would be satisfactory in practical situation. 

i[_-== __ ~ 
~"" .J ~.. '" "'" • .." t~s) lOCo 

Fig.9 Results ofFFT analysis with 
shaft natural frequency 40Hz 
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To demonstrate that frequency of the vibration when 
slip occurs is directly determined by the shaft 
parameters. The shaft natural frequency is changed to 
60Hz. FigJO shows the speed difference of the two 
wheels. The result shows the vibrations of tills 
frequency at slip condition. 

.e 0 . 

.; 
8 • 

~ "~----------------l;: 
~ 

l a-

~ . i! 

8 

j 
.;; 

l 
;r 

II I 
I 

i i 

Fig. I 0 speed difference "''ith 
shaft nanual frequency 60Hz 

Fig. II giv~s the 1ll8gnimde of 60Hz component. And 
once again,. the slip condition can be determined after-
0.2s. 

J 1 , 
timoN 

F ig.l! Results of FFT analysis with 
shaft nanual frequency 60Hz 

3.3 Slip detection method IIsingfilte1's 

In tills section, another method is introduced to obtain 
VIbration magnitude as shown in Fig.!2. A band-pass 
mter is used to extract th~ sigtlals of the shaft natural 
frequency. Then, the absolute values are obtained. 
After tllat a low pa~s filter ",'ith a very low cut off 
frequency is used to catch ~ magnitude augment due 
to torsional vibration. 

Fig. 12 Slip detection 

Fig. 13 and 14 show the results applying this method 
with the shaft frequency 40 Hz and 60Hz. In both 
cases, the results r.how the magnitude increase in slip 
condition and they agree well with nIfUllng FFT 
analYSIS. With appropriate threshold ",alues, the slip 
condition could again be rapidly detected. 
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Fig. 13 Estimation of vibration magnitude with 
shaft natural frequency 40Hz 
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Fig. 14 Estimation of .... ibration magninlde with 
shaft natural frequency 60Hz 

3. RE-ADHESION COXTROL 

A torque control unit is added to correct the motor 
torque demand such that when shp condition is 
detected, the demand is reduced. 

When re-adhesion is achie,'ed which is indicated by 
the disappearance of vibrations, the present torque 
demand is kept to maintain this stable traction level. 
The amount of toque reduction is determined by 
applying the slip ratio which is obtained from 
equation (7) to a PI wtit as shown in equation (11): 

K 
7;..t(s) = (K .. +--lV.(s) (11) 

s 
Here, Kp and K/ are the propomonal and integral 

parameters respectively, and need to be tuned 
appropriately. 

Fig.l5 gives the wheels and vehicle speeds, and 
shows that rapidly increasing wheel speeds are drawn 
back to vehicle's withm 3 seconds due to the action of 
re-adhesion scheme, and then increase stably in the 
new contact condition. Fig.l6 gives the torsional 
torque, and shows that the torsional vibration 
disappears when re-adhesion is achieved. 

~ :~--~--,~\ -'-:Wheelsa 'i ~, , \k;;. 

-= "'. ( \, 
'i ,n " '''. 
~'. I ~~-
<Il 1~ ~, • 

.5 .n vehicle 
S, • 
i D -~-----r----.---.-. -t~,--;---J 1(> 

time(s) 

Fig.lS Angular speeds of both wheels and vehicle 
with shaft nanlral frequency 40Hz 
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lime (s) 

Fig.16 Torsional torque with 
shaft natural frequency 40Hz 

Fig.17 shows IlUIguirude of the narurai frequency 
component from the running FFT anal~ls reswr.., and 
this is used to inrucate slip and re-adhesion condition 
in the simulation. Fig. 18 mows the estimatlon of 
vibration maguinlde using filter method and it agrees 
well with running FFT results . 

.. 
" 

~ '0 
to • 

~ . 
... ~ 

time(s) 
Fig.l7 Results ofFFT analysis with 

shaft narural frequency 40Hz 

N 
L-~~ __ ~~;V~ __ r-~'-~~'~-~'-+-~'"'-~_ °0- & •. T to 

Imle(s) 

Fig 18 estimation ohibration magnitude with 
shaft narural frequency 40Hz 

4. CONCLUSION AND FURTHER WORK 

In this paper, a wheelset model has been presented. 
Based on the study of its dynamics, it is observed tbat 
a typical self-excited torsional vibration appears in 
slip conditions. Then effective slip detection methods 
have been developed using this vibration infonnation. 
The flCSt method uses a running FFT to det=nine the 
spectrum of the speed difference at a given insrance. 
The magnitude of the specified frequency component 
is then selected from the FFT data. The second 
method uses a combination of bandpass and low pass 
filters to obtain magnitude information of the 
specified frequency component. Simulation res,lIts 
show that both methods indicate the slip conrutlO1l in 
a timely fashion. Bas~d on the slip detection scheme, 
a torque control scheme was introduced to reduce the 
torque to enable the wheelset system to regain 



adhesion after a slip condition is indicated. The 
simulation results show that the re-adhesloD scheme 
can bring the slipping s~tem back to 11 stable 
condition within 3 seconds. and then eKert appropriate 
traction effort after re-adhe.ion. 

The plllnned future work will concentrate on two 
aspects: one is to study the pos~ibility of detecting the 
shaft vibration from the motor operating parameters 
such as stator CUITent'i, and the other issue of illteorf!"st 

is to try using vibration paramet .. rs drrectly to adjust 
the motor torque demand. 
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Abstract: This paper propo~s a radically new approach for the detection of wheel slip/slide, which may provide an 
important alternative and advantageous technique in tractioulbraking control systems to maximise the use of adhesion in 
poor contact conditions. Instead of the direct measurement of speed difference between wheels and the train, the 
propo~ed concept explores the variations in wheelset d)'Uamic properties caused by condition changes at the wheel-rail 
contact and therefore detects slip conditions from the d)'Uamic behaviour of a wheelset indirectly. In this study, the 
configuration of a typical traction system is u~ed, consisting of an induction traction motor (with a~sociated power 
inverter and field-orientated control) connected to a wheelset via a gearbox, but the developed technique may be al.o 
applied to braking control systems. Non-lineae wheel-rail contact laws are used in the simulations. and linearised 
models at different contact conditions are developed to enable a detailed analysis of the key d)'Uarnic properties. 
Simulation results are produced to support the proposed idea. The main aim of the study is to present the basic principle 
and theoretical background of the novel concept, although some of the fundamental issues for practical implementations 
are also discussed. 

1. INTRODt:CTION 

Wheel slip/slide is caused by the tractive or braking 
effort exceeding the maximlUll adhe~ion available at 
tlle wheel-rail contact. which typically occurs in poor 
weather c.onditions andlor due to contaminations on 
track surface. It is a serious problem in railway, not 
ouly because it may compromise vehicle/passenger 
safety, but also cause operational difficulties and 
increase the cost of maintenance for flat/damaged 
wheels. 

Tackling the problem involves two nmdamental issues, 
which are the slip/slide detection and anti-slip control. 
Con\'entional techniques for the detection of wheel 
slip/slide rely on the direct measurements of slip ratio 
(relative speed between a wheel and the train) and/or 
wheel rotational acceleration [1-4]. However, there are 
a number of practical constraints of the detection 
approaches. e.g. 

• The requirement of robust/reliable sensors for the 
harsh working eu\'ironment limits the accuracy of 
position/speed measurement. Typically the 
resolution of position encoders used in traction 
applications is less than 100 pulses per revolution, 
which is particularly problematic for low speed 
measurement. 

• The output of the encoders can be affected by the 
vertical dynamics of the wheelsetibogie. because 
the way the sensors are normally mOlUlted 

• The absolute speed of the train is normally 
obtained from a trailer bogie (or axle). but the 
provision of a reliable train speed is a problem 
when all axles are affected. e.g. in braking. 

• Contact conditions at the wheel-rail interface are 
subject to large variations and the relation between 
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the creepage and contact force (the slip curve, or 
tbe creep - creep force curve) can be \'ery different 
in different conditions. Therefore it is difficult to 
identify the precise point of the slip ratio for the 
maximum adhesion. 

It must be noted that the overall approach to detect and 
control the slip is in fact not the ideal option. It would 
be muclt more valuable to detect the adhesion a\'ailable 
at the wheel-rail interface so that appropriate tractive or 
braking may be applied without causing the wheel 
slip/slide at all. However, this would be also 
scientifically much more challenging and so far th~ 
are no feasible solntions. 

Ouce a slip/slide condition is detected, anti-slip/slide 
measures are normally applied to reduce 
tractive/braking effort to below the adhesion level until 
the adhesion is restored. The control can be achieved 
with the feed-forward approach using a predefmed 
pattern for traction effort reduction. or with a feedback 
method to control the slip ratio (to a pre-determined 
value), or a contbination of both [1-4]. However. there 
is no guarantee that the use ofavailable adhesion at the 
wheel-rail interface is optimised in practice because of 
the difficulties to detect/identify the maximum 
adhesion and corresponding slip ratio. The detection 
based on the estimation of the slope at different 
operating points of II slip curve studied in II number of 
papers is probably the most relevant technique to date, 
but there seems to be little report on the practicality 
and effectiveness of the approach [5. 6]. 

Additional measures may be used to improve the 
adhesion level at the wheel-rail interface. The use of 
sand machines. often installed on 10comoti\-e5, has 
been for many years a popular and effecti\'e means to 



lUc.rease the traction. MOTe recently specially 
fonnulated chemicals (friction modifiers) are reported 
to ha .... e the effect of adhesion enhancetne'nt, although 
some tests have produced results that are less 
supportive [7, 8]. At Il,e system (infrastructure) leveL it 
is also possible to improve the track conditions (e.g. by 
removing the contaminations), although currently 
known techniques are in general expensive and/Of 
impractical for implementation. 

This paper ~tudies 8n indirect approach for the wheel 
slip de'tl"ction which explores how a whee1set reacts 
dynamically to change'S in cotltact conditions. The 
study will provide a detailed analysis on how the 
changes in contact conditions can substantially affect 
t11e dynamic properties of a wheelset, and propose and 
assess a technique to detect wheel slip by identifying 
the variations in wheelset behaviours. There is no need 
for t11e meaSUfe'ment of slip ratio and/or estimation of 
creep forces at the whed-rail interface. 

The paper is organised as follows. The configuration of 
the traction system used in the study is prese'nted and 
mathematical models are providf'd lU s<"Ction 2. Section 
3 describe's the nmdammtal properties of whe'el-rail 
contact forces and how the contact laws are modelled. 
Section 4 provides a de'tailed theoretical analysis on 
how wheelset dynamic behaviour may be affected by 
differmt contact conditions. Simulation results and 
performance' evalual10n are presmted in section 5. A 
no .... el concept for the detection of wheel slip/slide 
de'rived from the studies is presented in section 6, and 
key conclusions are dravo,n in section 7. 

2. SYSTE:\I A:XD :\IODELLI:\'G 

For the basic study, a simple single whedset is used 
which involves a convmtional solid axle wheelset 
powered by an AC traction motor. A three-phase 
induction motor is cOllUe'cted to one side of the wheel 
via a gearbox for the provision of traction (for dIe 
whe'eiset and Yo of a typical vehicle). COImections 
between the wheelset and the bogie/vehicle in the 
10lIgitudinal direction are a\swue-d to be solid, as d,e 
stiffness is normally very high and the associated 
dynamics is not of Significant relevance to tlus study. 

wbeel wheel 

Fig. 1 Wheehet configuration used ill t11e study. 

However, the axle flexibility is considered in this study 
and the resonant frequency of dIe axle torsional mode 
typically ranges be-tween 40-80Hz. This is differmt 
from many other studie\, where the stiffness of the 
wheelset axle is ofte'll neglected and a rigid axle is 

149 

assumed. The significance to include the torsional 
dynamics will bf'Come clear in the following sections. 

Fig. 2 gi .... es a schematic diagram of the models 
developed (in STh1L'LLINK) for the study. The models 
for the induction motor and power inverter are standard 
and available from the Matlab power toolbox. A v<"Ctor 
control sche'llle (as shown in the dotted box) is also 
impleme'llted to ensure good responses in the control of 
motor torque and flux. which is commonly ~d in 
modern traction systems. 

}-, I Slip~& I 
~ . ~COIIIIJrol . 

.----.1J 

Fig. 2 Block dIagram of the system model. 

In the study of t11e proposed slip detection technique 
(indicatf'd in the shaded black in Fig. 2), the focus is 
t11e mechanical dynamics of the wheelset and the 
relevant mat11ematical models are given in equations 1-
3. 

(J .. +n2J"'t):.,R =n·T.,-T, .... -rR . FR_crp(YR. t ) 
(l) 

(2) 

(3) 

Equation 1 represents the rotational mode of the wheel 
on the right hand side. which also includes the rotor 
mechanics of the traction motor. Equation 2 is for the 



rotational mode of the left wheel and Equation 3 
represents the forward motion of the wheelset and a 
quarter of the vehicle. Mechanical losses or backlash of 
the gearbox are considered ill~ig1llficant for the study 
and are not included in the modd [9]. The lateral and 
yaw motions of the wheel!oet are not modelled for 
simplicity, but additional longitudinal creepages due to 
track irregularities are considered in the form of 
random disturbances. 

The link between the wheel rotations and the forward 
motion is established via the contact forces at the 
wheel-rail interface which is explained below. 

3. WHEEL-RAIL CO~T ACT 

The wheel-rail contact mechanics involves the contact 
forces caused by so-called "creepages" between the 
wheel and rail surfaces which are small relative 
velocities resulted from elastic deformation of the steel 
at the point of contact. The overall creep force at the 
contact point is a non-linear function of the creep and 
limited by the adhesion available. Typically, a creep -
creep force curve can be partitioned into three chfferent 
sections as illustrated in Fig 3 - the low creep or the 
linear section (before F 0); the large creep or the non­
linear section (between F 0 and F .,); and the slip or 
unstable region (beyond F.,J. 

F 

1 F, 
Po • 

I I k
FIII 

I I 

: : ---------------------
I I 
I I 
• I 

i~. _ ..... ; .... -[sTtp a;ci~~t;;bi;l·-··-_····· __ · __ • 
: ___ .::~on ___ J 
I 

· · · Creep 

Fig. 3 A typical (idealised) creep - contact force curve. 

Howe'ver, the properties of the curves are subject to 
large and Wlcertain variations due to condition changes 
at tIle two contacting surfaces, such as contaminations, 
weather, wheel dynamic loading. and vehicle speed. 
Not ouly tIle maxinmm adhesion available and the 
corresponding creep are difficult to predict, but also the 
initial slope in the linear region can be seriously 
affected. 

Furtbermore. the curve in Fig. 3 presents a rather 
idealised contact force characteristics. Measurements 
from many experimental studies have indicated that the 
creep - creep force relations in practice broadly 
conform to tbe ideal curves, but there appear to be a 
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degree of randomness in the variation of actual creep 
forces as shown in Fig 4 [10). 

For co1llputer simulations in the snuly, look-up tables 
are generated and use to represent different contact 
conditions where random variations may be included. 

0.4 

0.3 

~ 0.2 

.: 1::="'1 0.1 

0 
0 5 10 15 20 25 30 .. r~ 

Fig. 4 Measured '\is ideal curves 

4. WHEELSET DYNAMICS A.."D SLIP 
DETECTIO~ 

The contact forces play a key role in providing the 
basic wheelset functions such as the guidance control 
and the delivery of tractive effon. but also are a 
dominant factor affecting wheelset behaviours. 
However those effects are highly dependent upon the 
creep characteristics which may vary considerably ch!e 
to the abo,-e mentioned UIlcertaintles in contact and 
track conditions, and different wheelset motions react 
differently to the changes. 

In nonna! conditions where adhe&ion level is high, 
contact forces at the wheel-rail interface are principally 
proportional to creepages (operating in the low creep 
and linear region) and the creep coefficients are 
normally of large "alues. The large creep coefficients 
(in the order of MNs) result in very effective damping 
to all dynamic motions of a wheelset, \1\'ith the 
exception of the kinematic mode (not modelled in the 
snuly) which 1llust be stabilised using additional 
measures in suspensions. In low adhesion conditions. 
on the otIler hand, it is much more likely that a 
wheelset would operate in the non-linear or even the 
unstable region of the slip "turve. where the damping 
effect is significantly lower (or becomes negative). 
Consequently the stability margins of the dynamic 
motions are much weakened, 

A stability analysis based on the linearization of the 
creep - creep force curves (as illustrated in Fig 3) at 
individual operating points is U&ed to study how the 
wheelset dynamic beha,,'iours are affected by different 
contact conditions. Fig. 5 rohows the migration of 
eigenvalues ,,'ith the increase of the creep, where the 
two wheels are assumed to have the same creepage, the 
wheelset speed is 30tn!s and the resonant frequency of 



the torsional mode is set to a lowly 40Hz. In the linear 
(low creep) region of the creep Clllve. the positive 
damping keeps all the modes concerned clearly stable 
(as indicated by '*'). However, once the creep is 
increased beyond the peak value (as indicated by '0'), 
there are potentially two lUlstable modes. One. is the 
torsional mode of the axle which is indicated by the 
pair of the llilstable conjugate poles. The odler is the 
common rotation of the two wheels indicated by the 
tlUstable pole on the real axis. 

The lise of a more rigid axle will obviollsly increase the 
frequency of the torsional mode. but the general trend 
of the destabilising effect in large creep remains similar 
as ~-idendy shown in Fig 6. 
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Fig. 5 Eigffivalue migrations VI';th contact conditions 
(Vs=30m/s; f=40Hz; adhesion coeff=O.l) 
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Fig. 6 EigeD\'alue migrations with contact conditions 
(Vs=3Om/s; f=60Hz; adhesion coeff=O.1) 
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Fig. 7 Eigenvalue migrations with contact conditions 
(Vs=lm/s; f=40Hz; adhesion coeff=O.I) 
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The adhesion coefficient at low speeds is in general is 
higher than that at high speeds on comparable track 
conditions, but the when pushed towards the adhesion 
limit and! or the slip region, the torsional mode of a 
wheelset appears to encotmter the similar instability 
problem as indicated in Fig 7. 

When the two wheels of a whee1set are in different 
creep conditions, e.g. f11UIling on curves track where a 
different longitudinal creep forces are often produced. 
it is possible that one side of the wheelset experiences a 
positive damping and the other side negative. The 
stability will be determined by the overall effect of the 
contact forces and it is possible that the wheelset 
becomes tlUstable ~-en if one of the wheels may still be 
operating in the stable region of the contact curve as 
shown in Fig 8. 

4OOr--------------------------, 
200 .-: ... '. 

0 • 0 • 0 

0 __ 

-200 •• • .... ., 
-400 

-400 -200 0 200 

Fig. 8 Eigenvalue migrations - two wheels on differ=t 
points of the creep curve (Vs=30m1s) 

A system becoming unstable or marginally stable 
would obviously lead to undesirable oscillations. Even 
when a wheelset is lighdy damped, sustained vibrations 
may still be produced in practice because disturbances 
present in the system (in particular those related to the 
track roughness) would keep exciting the torsional 
mode before previous responses die out. 

There have been a number of reports that, when 
operating in slip regions. locomotiYe5 as well as E.\1U 
vehicles may experience se .... ere mechanical vibrations 
in the wheel&et assembly and b"ansmission systems [9]. 
For example. a study based on Class 9110comoti"es in 
the UK reveals an unstable torsional mode for the 
wheelset axles \Ulder the loss of adhesion [11 J 
However the 'Iiibrations hll¥e been largely considered 
as a 'problem'. because they may lead to component 
failllle or rail corrugation. There have been attempts to 
design away the problem. e.g. via the use of damping 
in the gearbox suspensions [9]. 

5. SI:\IrLATIO~ RESrLTS 

Based on the models presented in sections 2 and 3, 
simulation results are produced to support the 
theoretical studies. No anti-slip conb"ol is used in the 
computer simulations so that a comparison of the 
whee1set dynamic behaviours in different contact 



conditions is not hindered by additional external 
interferences. 

Figs 9 and 10 show the re<>pon~es in the torsional 
torque of the wheelset axle at a starting s-peed of Imls 
and 30m's respectively. A low level of the adhe~ion is 
u~ed and a tractive effective is gradually increased 
(from zero). In Fig 9. an oscillation clearly develops at 
around t=L2s, where the applied tractive effort starts to 
exceeds the adhesion available at the wheel-rail 
interface. The oscillation is sustained but not divergent 
as the creep curve u~ed in the simulation become 
alinost flat in very large slips and the damping effect 
become negligible. At a higher speed, a similar trend of 
oscillations can be observed as sho~ll in Fig 10 and the 
magnitude of the oscillation appear to grow with the 
increase of the tractive effort, although there seems to 
be a less clear cut between the stable and unstable 
conditions. 
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~ 
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Fig. 9 Torsional torque - starting on low adhesion 
(Vs = Im1s) 

2.5 r---------------, 

2.0 

0.5 

o ~~ __ ~ _________ ~ 

0.5 TUlU! 

Fig. 10 Torsional torque - starting on low adhesion 
(Vs= 30m/s) 

When a wheelset/vehicle experiences a sudden change 
of contact conditions, e.g. going through a bad patch 
where the adhesion is substantially lower than other 
track sections, the incited oscillations can be much 
more dramatic as shown in Figs II and 12 - the peak­
to-peak variation of the torsional torque can be as high 
as 2/3 of that of dIe applied tractive effort. 

The high level of sensitivity of the whedset torsional 
mode to changes in contact conditions makes the 
monitoring of the axle oscillations an ideal means to 
detect wheel sliplslide. A direct measurement of the 

torsional torque would be desirable and SlYaight­
forward for implementation, if the issue of practical 
sensing can be satisfactorily rer.olved. 

3.5 

1.5 

2.7 2.9 Time}.! 3.3 3.5 

Fig.11 Torsional torque - sudden reduction of adhesion 
(Vs= Imls) 

3.5 ,.--------------, 

I.S 

o.s '------_____ ..... _---' 
2.7 3.3 3.5 

Fig. 12 Torsional torque - sudden reduction of 
adhesion (VS = 30m!s) 

Alternatively. it is possible to consider the 
development of appropriate estimation r.olutions iliat 
would only require more conventional sensor 
measurements such as the motor current andlor speed. 
Figs 13 and 14 demonstrate how the q-axis current of II 
vector controlled traction motor can be affected by the 
wheel slip. The oscillations are still present, but the 
magnitude is at such a low level that a more 
sophisticated use of the current measurement will 
probably have to be developed to improve the 
sensitivity for slip detection. 

518 r----------------, 
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Fig. 13 q-axis current of the lYaction motor (VS = Im1s) 
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Fig. 14 q-axi' C\UTenl oflhe traclion molor (Vs= 30mls) 

6. PROPOSED DETECTIO~ SCHE:\IE 

Whilst the desire to overCODle the 'unwauted' and 
pOTential damaging oscillations is naMal ill mechallical 
design, the link between the leo.·d of damping (or 
stabihty) for the torsional mode of a wheelsel and the 
whed-rail contacl conwtlons provides an excellent 
opportunity for conllol engineers to explore III the 
pursuit of altemauve slip derecuon and anti-shp conllol 
methods. which is the basis of Ibis study. As long as 
the wheel slip!slide is effecuvely preo.'ented. there will 
be no long lasting oscillations and associated damages 
to be expected. 

No detailed solutions are offered m the srudy, but two 
ponlblhues are proposed below. Fig 15 shows a basic 
scheme for Ille detection for wheel slip!slide. In the 
5unplest fonn. the torSIOnal torque m the wheel set axle 
would be measured and processed 10 retam the signals 
at the frequency of the torsional oscallations only, The 
vibrations may then be used to reduce the lIaclton 
deuland (in a pre-defUled manner) until the re-adhesion 
is restored. One of the big challenges for this scheme 
would be the issue of reliable and cost effective 
sensing and lIamruisslon of the axle torque because of 
the harsh working en,-ironment. Howeo.'er. Ibis is 
achieo.'able with recent advances in sensing 
technologies, e.g. a rotary torque lIansducer based on 
the so-called Surface Acoustic Wave technology 
(which is essentially 'frequency dependent' sllam 
gauges to measure the change in resonanl frequency 
caused by an applied shaft stram) is reported to offer a 
low cost and non-contact solution Illat appears to meet 
all the measuremenl requiremeDI$ in terlll$ of accuracy, 
bandWidth. robustness and EMC issues [12]. 

Alternatively. it is possible to explore the use of 
measurements that are easier to obtam. e.g. DIOtor 
speed and/or current. as me axle \"tbrations will affect 
me wheeL'motor speed and me generation of the back 
emf in Ihe molor. However those sigllals are expected 
10 be far less sensitive thall Ihe direct measurement of 
me axle torque and more sophlsllcated data processing 
techniques such as the use of state observers will be 
needed to amplify/esllmate relevant parameters. Eg. 16 
indicates how a state-observer may be constructed. 

where eilher the estimated states or the residuals may 
be explored for me slip detection. 

Fig. 15. Basic delectlon scheme 

Eg. 16 The use ofstate observers 

7. CO~CLl'SIO~S 

A new concept for me delection of wheel slip/slide fOl" 
railway apphcations has been presented in Ibis paper. 
With tl!e belp of theoretical analysis and computer 
simulations, the MUdy has clearly established an 
explicit link between me dynamic beha,'iour of 
whee1\l't axles and conditions changes at me wheel-rail 
contact which forms me critical foundation for the 
proposed detection concept. 
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Almo\lgh the paper is not focussed on me development 
of a final 'solution' that tan be readily apphed to 
railway vehicles. it has deDIOnstrated the poteutials and 
advantages of me new scheme that are not possible 
with the current practices: 

• No need for accurate measurement of absolure 
vehicle speed or me slip ratio 

• Maximum (or near maximum) adheSion is 
ensured regardless of the uncertainties. 

• The potential for a fast and reliable detection of 
wheel slip! slide 



Further srudies are clearly required to tackle 
practicalities and other implementation issues. 
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APPEN"DIX: SY:\IBOLS 

FL_rrp 

FI._rrp 

id 
i, .. 
Id .. 
I, 

IR, iT, IJ, 
J",r 

Creep force at the left wheel 
Creep force at the right wheel 
d axis current of the motor 
q axis current of the motor 
d axis curreut demand 
q axis current demand 
Motor phase ClUTent 
MOlllent of inertia of the rotor and gearbox 
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Kl..s) 
~(s) 

k: 

Controller for d-axis current 
Controller for q-axis current 
TorMonal stiffuess 
Mass of the vehicle 

m"" Mass of the wheelset 
Gear ratio 
Radius of the left wheel 
Radius of the right wheel 
Motor torque 
Torsional torque 
Vehicle speed 
d axis voltage demand 
q axis voltage demand 
Rotational speed of the left wheel 
Rotational speed of the right wheel 
Creepage of the left wheel 
Creepage of the right wheel 



APPENDIXC 

Copy of the paper: 

"A Mechatronic Approach for Anti-slip Control in Railway Traction" 

T X Mei, J H Yu, D A Wilson 

To be published at 1 i h International Federation of Automatic Control World 

Congress, July, 2008, invited and submitted 

155 



A l\It"cilatronic Approach for Anti-slip Control in Railway Traction 

T X l\Iei"'* J H Yu"', D A Wibou· 

,. School of Electronic and EI"ch"ica! EngimulI"ing, The Univtlrsil}, of Iuds, 
leeds IS] 9JI', UK (ITe!: 44 113 3431066; tl-mail: t.x.mlli@!uds.ac.llk). 

Ab$tract: This paper presents a novel mechatronic approach for the detection of wheel slip/slide and anti­
slip control in railway traction systems, to enable an optimal use of adhesion in poor contact conditions. 
The proposed teclUlique explores the variations in wheelset dynamic properties caused by condition 
changes at the wheel-rail contact and detects slip conditions from the torsional resonant vibrations of the 
wheelset axle indirectly. The modeling of a typical traction system. consisting of an induction traction 
motor (with associated power inverter and field-orientated control) connected to a wheebet via a gearbox. 
is introduced. The development of the slip detection and control scheme is presented. and the effectiveness 
of the proposed technique is demon$trated using computer simulations. 

I. INTRODUCTION 

Railwav traction is a complex mechatronic system. as the 
tractio~ motors lIud the a.ssociated controls have to work in 
harmouy with the complex mechanical loads especially at the 
wheel-rail interface. \\'hee1 slip/slide occurs when applied 
tractive effort exceeds the level of maxinlUm adhesion 
available at the wheel-rail interface. e.g. in poor weather 
conditions or with contaminated tracks. Apart from the 
potential impact on normal operations of a rail network. the 
wheel slip/slide causes wldesirable wear to both wheel!track 
surfaces and increases the requirements!costs of maintenance. 
Most conventional wheel slip protection schemes involve 
measures to limit the amowlt of slip ratio (relative speed 
betwe~l a wheel and the train) to a set value that is 
sometimes necl"ssary to be tuned on line. and in more 
extreme cases to control the wbeel rotational acceleration 
below a pre-defined threshold [Park el al. 200 I; Schwartz et 
al. 1997; Watanabe et ai, 1997; and Yasuoka et al. 1997]. The 
performance of those schemes is affected by the limited 
accuracy of the encoders used in the traction systems. which 
is typically less than 100 puhes per r",,"olutioll. as well as 
difficulties related to a reliable measuremffit of ve1tic1e 
absolute speed in slip/slide conditions. 

Furthermore, the wheel-rail contact characteristics are subject 
to large variations, and it is difficult to ensure optimal use of 
the available adhesion because there is no fixed relationship 
between the slip ratio and the maximwn adhesion. There 
have been studies on the use of so-called disturbance 
observers to detect the longitudlllal creep forces and hence to 
derive the rate of change on tlle slip curve [Kadowaki. et al .• 
2002; Kim. et a1.. 1999] with the aim to optimise the control 
of slip ratio. However there seems to be little reported on the 
practicality and effectiveness of the approach. 

Additional measures may be used to improve tlle adhesion 
level at the wheel-rail interface. The use of sand machines. 
often installed on locomotives. has been for many years a 
popular and effecti\'e means to increase the traction_ More 

recently specially formulated chemicals (friction modifiers) 
are reported to haV., the effect of adhesion enhan~t, 
although some tests have produced results that are less 
supportive [McEwen. 2003; and Waring. 1994]. At the 
system (infrastructure) level it is also possible to improve the 
track conditions. e.g. by removing the contaminations. 
although currendy knOVlo"ll techniques are in general apen,ive 
and/or impractical for implementation. 

This study investigates an indirect approach for the wheel slip 
detection which explores how the wheelset dynamics are 
affected by changes in contact conditions. The study 
demonstrates how the torsional mode of a conventional solid 
axle wheelset may be linked to the wheel slip/slide and 
consequently proposes a novel technique to detect wheel slip 
by identifying tlle variations in wheebe! lorsional vibrations. 
There is no need for the measurement of slip ratio and/or 
estimation of creep forces at the wheel-rail interface. 

Some of the fllldings have been published previously. A 
fundamental examination of the . concept and the feasibility 
for real applications was discussed in [Mei et ai, 2006]. 
followed by a study on possible control solutions in [Yu et al. 
2006]. This study presents the latest results from the research 
project, in particular the development of practical slip 
deteclion and re-adhesion control strategies. 

The paper is organised as follows. The configuration of the 
traction syslem used in the study is presented and 
mathematical models are pro\'ided in section 2. Section 3 
describes the fundamental properties of wheel-rail contact 
forces and gives an analysis on how wheelset dynamic 
behaviour may be affected by different contact conditions. 
The development of a novel anti-slip control scheme and 
perfonnance assessment is presented in section 4. and key 
conclusions are drawn in section 5. 

2. SYSTEM k'ID MATHEMATICAL MODELS 

A standard configuration as illustrated in Fig 1 is used in the 
study. which involves a convenl1onal solid-axle wheelset 
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connected to an AC traction motor through a traction 
gearbox. A typical three-phase induction motor is used for 
the provision of traction for the wheelset and v.. of a typical 
vehicle. Connections between the wheelset and the 
bogie!vehicle in the longitudinal direction are assumed to be 
solid, as the stiffness is nonnally very high and the associated 
dynamics is not of significant relevance to this smdy. 

wheel 

Fig. 1. Wheehet configuration 

The spring k, in Fig. 1 represents the equivalent stiffness for 
the first torsional mode of the wheelset. The frequency is 
typically about 60Hz. but can '-ary between perhaps 40Hz for 
a soft axle and to arollJld 80Hz for a more rigid one. 

An overall diagram of the mathematical models is shown in 
Fig 2. The models for the induction motor, the power 
electronics and the usociated vector control scheme are 
fairly standard, some of which are available from 
SL\1ULINK SimPower toolbox [Yu et a12006]. 

Motor 
cWYent 

Load (vehicle & 
wheelset ma.sses) 

Fig. 2. Block diagram of the system models 

However, the mechanical models of the systems are much 
more complex. One of the key issues is the modelling of die 

wheel-rail contact forces. as it provides the es.attial link 
between the output of the traction motor and the mechanical 
load. The wheel-rail contact mechanics involves the contact 
forces caused by so-called creepages between the wheel and 
rail surfaces which are small relati,-e velocities resulted from 
elastic defonnation of the steel at the point of contact. The 
overall creep force at the contact point is a non-linear 
function of the creepage and limited by the available 
adhesion. Measurements from many experimental studies 
have indicated that the creep - creep force relations follow a 
general trend as indicated in Fig. 3 [Polach., 2003]. Typically, 
a creep - creep force curve can be partitioned into three 
different sections - the low creep or the linear section (of the 
initial slope); the large creep or the non-linear section (before 
the peak point); and the slip or unstable region (beyond the 
peak point). 

0.4 

03 

-:- '. 
0' 

.: 1==-1 0' 

0 

0 5 '0 ,~ 20 25 30 .. [%J 

Fig. 3. Creep - creep force curve 

Also. the overall contact force at the wheel-rail interface is 
affected by creepages in both longitudinal and lateral 
directions. Apart from the creep forces necessary to produce 
the tractiYe effort which are in the longitudinal direction only 
and are largely equal between the two wheels of a pow~d 
axle, there are additional creepagC$ due to the wheelset 
motions (e.g. yaw and lateral) and contact geODletries. The 
longitudinal creep forces of the two wheels of the same 
wheelset in this case produce a yaw toque but no net traction 
effort. Because all the creepages are developed at the same 
contact patch, there will obviously be dynamic interactions 
and the overall contact force is constrained by the adhesion. 

Furthenoore. the properties of the curves are subject to large 
and uncertain variations due to condition changes at the two 
contacting surfaces, such as contaminations. weather. wheel 
dyuanuc loading. and vehicle speed. Not only the maximum 
adhesion available and die corresponding creepages are 
difficult to predict, but also the initial slope in the linear 
region can be seriously affected. 

,. 
For computer simulations in the study. a number of look-up 
tables are generated and used to represent different contact 
conditions. Those are somewhat idealised, but they provide 
essential features of wheel-rail contact laws [Polach. 2003]. 

The dynamics of the wheelset axle in lhe rotational direction 
should strictly be modelled using a distributed parameter 
model. but it can be readily demonstrated that the only two 
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dominant modes are necessary to be included in the study -
the common rotation of the wheelset (rolling forward) and 
the first torsional mod .. between the two wheels. A sinlplified 
mechanical modd is giv .. n in equations 1-4. representing the 
rotation of the right wheel. rotation of the I .. ft wheel and 
longitudinal motion of the wheelset (and the vehicle). 

. 
J,. 6JL = T"" - rL ·FL_<71' (YL,t) (2) 

(3) 

(4) 

where. T. is the driving torque transmitted from the motor 
through a gearbox. T,.,. is the torsional torque, FR-a-p is the 
creep force at the right wheel and FL-op is that at the left 
wheel, J. and J"'I are moment of inertias of wheel and 
motorigearbox respectively, m" and mb are wheelset and 
vehicle masses respectively, n is the gearbox ratio, k, is the 
torsional stiffness and c, ~esents the material damping of 
the axle, ruR and ruL are the angular velocity of the right and 
the left whed respectively, flB, is the relative rotation 
between dIe two wheels, rl and J1 are dIe creepages at the 
right and left wheels. 

TIle interactions with the lateral and yaw motions of the 
wheelset are considered in the full performance assessment, 
although the models are not given in the paper as they are not 
concerned with the control design. 

3. WHEEL-RAIT. CONTACT A.'JD SYSTEM DYNAMICS 

The contact forces are essential in the provision of the 
guidance control IWd the delivery of traction for railway 
vehicles, bnt can produce undesirable dynamic effects under 
more extreme contact conditions. When the adhesion level is 
high, contact forces at the wheel-rail interface are 
approxinlately a linear function of the creepages (i.e. in the 
low creep and linear region) and the creep coefficients are 
normally large. The large creep coefficients (in the order of 
MNs) provide a high leYei of damping to all dynamic 
motions of a wheelset, with the exception of the kinematic 
mode (related to the yaw and lateral modes of the wheehet) 
which are in practice stabilised as a part of the design for 
primary saspensions. In low adhesion conditions, it is much 
more likely that a wheelset would operate in the non-linear or 
even the un.table region of the slip cun,-e, where the damping 
effect is significantly lower (or becomes negative). 

A stability lWalysis to study how the wheelset dynamic 
behaviours are affected by different contact conditions is 
carried out based on the linearization of dIe creep - creep 
force curves at individual operanng pomts. Fig. 4 shows the 
migration of eigenvalues wiib ibe increase of the creepage, 

where the two wheels are asswned to have the same 
creepage, dIe wheelset speed is 30mls and the resonant 
frequency of ibe torsional mode is set to 60Hz. In the linear 
(low creep) region of the creep curve, the positive damping 
keeps all the modes concerned clearly stable (as indicated by 
'.'). However, once the creep is increased beyond the peak 
value (as indicated by '0'), there are potentially two unstable 
modes. One is the torsional mode of the axle which is 
indicated by the pair of the unstable conjugate poles. The 
oiber is the common rotation of the two wheels indicated by 
the unstable pole on the real axis. Sintilar obsen-ations may 
be made with axles at different torsional frequency and at 
different speed/contact conditions [Mei et at. 2006]. 

400 -
200 

0 ..... -_ ... 
-200 

-400 --400 -200 0 100 

Fig. 4. Eigem-alue migrations with contact conditions 
(Vs=30m1s; f=60Hz; adhesion coeff=O.l) 

Because ibe existence of sustained external disturbances to 
the railway vehicles, in particular those related to the track 
inputs, an unstable or even lightly damped wheelset would 
lead to potentially damaging oscillations at II frequency that 
is very high for a mechanical system. In the railway industry, 
ibe VIbrations have been largely considered as a 'problem' 
that must be overcome, because they may lead to component 
failure or rail corrugation [Hardwood et al, 1991 and Lu et al, 
1996]. 

However, the link between ibe le\'el of damping (or stability) 
for the torsional mode and the wheel-rail contact conditions 
provides an excellent opportunity for control engineers to 
explore in the pursuit of alternati\'e slip detection and anti­
slip control meibods. This paper will build upon the general 
principle of the novel slip detection that have been introduced 
before [Mei et al 2006 and Yu et al 2006]. and present more 
technical detail on the control design and performance 
assessment. 

4. CONTROL SYSTEM DESIGN AND ASSESSMENT 

4,] Slip dlltflction with aX/fi bas«J stmSor 

If a reliable sensor can be provided to measure direcdy the 
torsional torque in the axle, the vibration signals at the 
resonant frequency would clearly provide an easy solution to 
for detecting wheel slip. This may be achieved by the use of 
some fairly standard data processing techniques as shown in 
Fig. 5. The band pass fil~ can be designed to provide a 
narrow pass band for the frequency of the torsional mode to 
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avoid pos~ible interferences from other dynamic modes in the 
system. TIIC~ low pass filter is used to remove !he effect of !he 
change of traction effort from !h.. traction motor. The 
threshold will have to be carefully tuned to provide a reliable 
detection of whed slip and in the meantinle avoid fal~e 

detection. 

Sensor 

O~\1tPUl Bandpa .. r 
filter 

'--___ ....I 

Fig. 5. 'Wheel slip detection with axle based sensors 

Figw-e 6 shows how th .. magnirude of !he torsional vibration 
(!he output of the low pass filter) is linked to the wheel slip, 
where the maximum adhesion coefficient is changed from 0.4 
to 0.05 at the tinle of 4s. 
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§) 
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~ 
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0
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Fig. 6. Magnitude change of !he tofiional motion 

One of dle main practical challenges for Ibis scheme wonld 
be !he issue of reliable and cost effective sensing and 
transmission of the axle torque, because of !he harsh working 
en\-u-onment. TIlis may become possible wi!h recent 
advances in sensing technologies, e.g. a rotary torque 
transducer based 011 !he so-called Surface Acoustic Wave 
technology (which is essentially 'frequency depelldent' strain 
gauges to measure dle change ill re~onallt frequency caused 
by an apphed shaft strain) is reported to offer a low cost and 
non-contact solution [Anon, 2001]. 

4.2 Slip deTtictioll with speed stlnsor 

For practical applications. bowever, it is obviously desirable 
to mininus .. !he use of senSOfi and reduce costs. In dlis study 
the measurement of !he axle speed, which is nonually 
provided in rail traction systems, is explored in the 
de\'elopment of a Kalman filter that estimates the tOfiional 
~ibrations. 

To reduce the complexity of the Kalman filter, a liuearised 
model is derived to represent the key features of the wheelset 
dynamics as given in equations 5 and 6. 

Y=[l 0 Ol[~::l 
l!O. 

(6) 

where addtlional variables JI. (=J •. +n1 J. ) and JL (=J.,.) are 
moment of inenias of right and left wheels respectively, and 
}" represents the output measurement; and k/ and k, are the 
rate of change on the creep-creep force curve corresponding 
to the creepag<$ at !he tv.'o wheels. 

This is clearly a small signal model which, in a strict sen~e, is 
only valid at defined operatiog poiut(s) on a particular creep­
creep force curve and therefore a Kalman filter obtained from 
!he model should ideally only be used to provide estimations 
under the particular condition. It is possible to design and use 
a bank of Kalman filters to cover a wide range of contact 
conditions, but this would substantially increase !he system 
complexity. For sinlplicity, a single Kalman filter is designed 
using !he model givea in eqs 5 and 6 in the proposed scheale. 
but the values of kJ and k, are tuned to provide balanced 
estimations in the saturation region of !he creep - creep force 
curves that is critical for a fast slip detection . 

Fig. 7. Torsional motion from full simulation model ,. 
A COU1parison of !he original and estimated torsional motions 
is given in Figs 7 and 8. Although a close match is not 
achieved in Ibis case, !he Kalman filter provides an 
estimation that captures the essential yibrations which is 
sufficient to detect the occurrence of a wheel slip. 
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Fig. 8. E.timated t<mional motion from Kalman ftIter 

4.3 RfI-odhfJSion COl/frO I 

The overall readhesion control scheme is .hown in Fig. 9. 
The Kalman filter provides an estimation of the torsional 
torque of the wheelset axle from the measurement of the 
rotational speed of one of the wheels. An additional input of 
the output torque from the traction motor may also be needed, 
which can be provided from the motor torque controller. The 
output of the Kalman filter is processed to obtain the 
magnitude of the torsional vibrations at the resonant 
frequency (as shown in Fig. 5). Once a wheel slip is deemed 
to have occlUTed by the dIre .. hold detector, the torque 
reduction control will be switched on to reduce the torque 
demand below the adhesion available at the whed-rail 
interface. The level and speed of the torque reduction are 
made to be dependent on d,e level of the magnitude of the 
estimated torsional torque, and an integral term is also needed 
to help and maintain the torque demand at an appropnate 
level even after a re-adhesion is achieved and there is no 
longer a wheel slip. A hysteresis control for the switching 
would help to increase/restore d.e original torque demand 
after the contact condition has improved. 

Fig. 9. Readhesion control scheme 

4.4 Pfl7fo17nanCfIS in different conditions 

The worst case scenario for wheel slip is if there is a sudden 
reduction of adhesion on the track when there is a high levd 
of tractive effort applied. Fig. 10 compares wheel and 
(equivalent) vehicle angular velocities during the vehicle 
acceleration from an initial speed of 10kt1l!b. At the time 
t=4s, the adhesion of the track is reduced to well below the 
tractive effort. and consequently a severe wheel slip occurs 
and the slip ratio reaches as much as 60010 in less than O.5s 
before being detected. The re-adehsion control is clearly 
effective in reducing the torque output from the motor rapidly 
and the recovery time takes about 1.55. 

If the adhesion is already low when a tractive effort is applied 
and increased gradually, the wheel slip (when it occurs) tends 
to be less severe as the net torque driving on the wheelset is 
relatiwly low. On the other band the torsional vibrations ",ill 
also be smaller and less sensitive to slip conditions. However, 
the proposed control scheme appears to deliver a robust 
performance. in different conditions as illustrated in Figs. II 
and 12. At the low (initial) speed of 10km'h. the peak slip 
ratio reaches approximately 20'l'O and the wheel slip is 
quickly detected and a complete re-adhesion is achieved 
within a fraction of a second. At the higher speed of 
100kmih, the peak slip ratio is about 14% but the recovery 
time takes some\1Oo'hat longer as the system has to overcome a 
higher level ofkinernatic energy stored in the wheelset. 

20r-~--------r---------~-------' 

18 

VeIL 
8 

e~2~~3---4~~~~.--~O--~7--~8~~8 
TIme 

Fig. 10. Re-adhesion control- reduced adhesion at t=4s 
(initial vehicle speed of 10kt1l!h) 

13.r------------------------------, 
12 

6 8 7 8 8 
Time 

Fig. 11. Re-adbesion control - low adhesion from t=Os 
(initial vehicle speed of IOkt1l!h) 

160 



84~----------------------------~ 
82 

'" ;aBO 

e 
,";78 
.", 

~78 
VJ 

2 3 

vehicle 

5 8 
Time 

7 8 10 

Fig. 12. Re-adhe~ion control-low adhe~ion fium Os (initIal 
vehicle "Peed of 100kmih) 

For the wheelset with a different axle stiffness. the centre 
frequency of the bandpass filter used for detecting the 
resonant \'ibration of d,e axle must obviously be tuned to 
coincide with the different torsional frequency. Fig 13 shows 
the simulation results using a more rigid axle where the 
tomona! frequency is changed from 60 to 80Hz. Again the 
detection of a wheel slip and a complete re-adhesion are 
achieved in Ie .. than 2s. In this. a second (smaller) wheel.lip 
is observed which is quickly detected and eliminated by the 
controller - a clear e\"idence that the system operates very 
closely to the maximum adhesion region on the creep-creep 
force curve which is expected. 
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Fig. 13. Re-adhesion control - reduced adhesion at t=4s (a 
more rigId axle. initial vehicle speed of 10kmll 

5. CO)<CLUSIONS 

EffectiYe use of the maxim\l1ll adhesion available without 
causing any damaging wheel slip is an mlponant and 
challenging requirement in railway traction. A new concept 
for the slip detection and fe-adhesion control has been 
presented in this paper. Unlike conventional anll-slip control 
techniques. the new control strategy does not require the 
measurement of train speed or the slip ratio. which can be 
problematic to obtain in practice. Because the slip detection 

is based on the observation that the wheel slip is closely 
linked to the wheelset torsional ,-;'brations. it inherently 
enables an optinlal use of the adhesion regardless of the 
uncertaintie&t'variations of the conract characteristics. 
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