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This thesis is concerned with the classification of roughness into k- and d- type in tur-

bulent channel flow. Despite the practical importance of this type of flow, the literature

review suggest that advancements in the field have been slow due to the difficulty of

making accurate measurements close to the wall when using experimental methods. In

recent years, numerical modelling has provided a good alternative to studying this type

of flow. In this work, an Implicit Large Eddy Simulation (ILES) approach was devel-

oped to carry out numerical simulations for turbulent channel flow over rough surfaces.

The application was developed based on the Finite Element Method and implemented

using the Multi-Physics platform COMSOL. Verification and validation of the numerical

model was carried out to asses the predictive capabilities of the model, including sensi-

tivity analysis to quantify the uncertainty and comparison with results from literature to

validate the model. In our analysis, we considered rough surfaces with square and trian-

gular roughness elements with a constant roughness height and varying distributions of

the roughness elements. The results demonstrated that the model is capable of resolving

the coherent large eddy structures associated with the k- and d- type behaviours. The

classification reported here is based on the coherent structures associated with the k-

and d- type behaviours. Furthermore, we investigated the effects of roughness geometry

on the k- and d- type behaviours. To this end, flow visualizations were used to study

the interaction between the inner and outer layer of the flow. The results demonstrated

that the geometry of the roughness elements has little effect on the coherent structures

associated with the k- and d-type behaviours, these effects of the roughness geometry

are confined to the inner region. However, the results show that the roughness geometry

has a strong influence on the interaction between the inner and outer flow regions.
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Chapter 1

Introduction

1.1 Background

Turbulent channel flows are encountered in numerous fluid dynamic engineering appli-

cations. According to Lee et al [9] the roughness of the wall surface in turbulent channel

flow is an important design parameter because it influences characteristics such as the

transport of heat, mass and momentum. In terms of roughness effects, the concept of

standard roughness introduced in boundary layer theory, see Schlichting [10], led to a

widely accepted correlation between the roughness height and the roughness function.

However, it is important to mention here that using the standard roughness approach

is only an approximation. The author [10] points out that this approximation can only

describe the global values of the flow, and details of the wall layer of the flow could

not be described in this manner. Nevertheless, a major outcome of using the standard

roughness approach, based on the Colebrook formula and combined with experiments,

is known as the Moody diagram represented in figure 1.1.

Young et al. [1] explained that in fact the Moody diagram is a graphical representation

of the Colebrook formula, which is an empirical fit of the pipe flow pressure drop data.

This diagram presents the friction factor as a function of Reynolds number and relative

roughness for round pipes. A difficulty of using the Colebrook formula is that it is

implicit in the dependence on the friction factor. That is, for given conditions, it is not

possible to solve for the friction factor without some sort of iterative scheme. However,

with the use of modern computers such calculations are not difficult. Indeed, the most

cited work in channel flow literature is the Direct Numerical Simulation (DNS) of Kim

et al. [7]. In this work the authors [7] presented turbulence statistics in a fully developed

channel flow at low Reynolds number. Particular attention was given to the behaviour of

1
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Figure 1.1: Moody Diagram , see Young et al. [1].

turbulence correlations near the wall. The authors also reported a number of statistical

correlations which are complementary to experimental data for the first time.

Several authors (e.g Jimenez [11]) state that although the effects of surface roughness

on a turbulent boundary layer has been examined in many experimental and numerical

studies, knowledge of these effects remains incomplete. Piquet [12] notes that one of the

reasons for the slow progress in rough wall studies is that there are intrinsic difficulties in

measuring the flow near the roughness elements. Some of these difficulties are outlined

by Reynolds [13] and summarized in the points below:

• An accurate prediction of friction is possible only if experimental data is available

for the particular surface and flow conditions of interest;

• Some irregular surfaces have friction characteristics unlike those for sand-roughened

and commercially rough surfaces widely studied. Although the mean velocity dis-

tribution is expressed in terms of the distance from the wall, the effective wall

location is not readily apparent;
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• The flow near the wall sometimes dominates the heat and mass transfers between

the wall and the fluid. This approximation does not take into account the activity

among the roughness elements and the remnants of the viscous sub-layer;

• For some roughness geometries, no single dimension of the roughness serves to

define the friction characteristic or the scale of the logarithmic layer.

In recent years it became common practice to complement experiments with numerical

simulations to overcome some of the issues outlined above. According to White [14],

numerical analysis on a digital computer is an important method of simulating viscous

flows, often with nearly exact results. He explains further that immersed body problems

are currently solvable using the digital computer approach, as opposed to traditional ex-

periments. Traditionally, numerical simulations were carried out using Direct Numerical

Simulation (DNS), Large Eddy Simulation (LES) and Reynolds averaged Navier-Stokes

(RANS) models. In the context of the flow over rough surfaces, we are dealing with a

highly unsteady flow field. Therefore, one can rule out using RANS models to simu-

late this type of flow. DNS provides the most accurate means for simulating the flow

over rough surfaces, however, the computational costs of such an approach are very

high, even at low Reynolds number. On the other hand, LES resolves large scales of

the flow field solution, allowing better fidelity than RANS methods. It also models the

smallest scales of the solution, rather than resolving them as DNS does. This makes

the computational cost for practical engineering systems with complex geometry or flow

configuration attainable using modern digital computers.

1.2 The overall structures of turbulent channel flow

In turbulence literature, turbulent channel flow is generally classified as a wall-bounded

flow problem. Gad-el-Hak [2] states that in wall bounded flow, a multiplicity of coherent

structures have been identified mostly through visualization experiments and a number

of correlation measurements. By inspecting the distribution of viscous and turbulent

shear stresses in typical wall-bounded flows, the author [2] suggests the presence of

three distinct regions, as shown in figure 1.2. Each region is discussed in more detail in

the following subsections.

1.2.1 Viscous region

Near the wall, the viscous region could be subdivided into the viscous sublayer and the

buffer layer. According to Gad-el-Hak [2] the turbulent shear stress is nearly zero and
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Figure 1.2: Sketch showing the flow regions in wall-bounded flow, adopted from Gad-
el-Hak [2].

the flow is dominated mostly by the viscous stress in the viscous sublayer. This implies

that the only relevant quantities for scaling are the Kinematic viscosity (ν) and the

friction velocity (uτ ), see Jimenez [11] and Gad-el-Hak [2]. The buffer layer is where

both viscous and turbulence shear stresses are important and the peak production and

dissipation of turbulence kinetic energy occur [2]. Jimenez [11] explains further that

this layer is home to a non-linear self-sustaining cycle, and its mechanisms involves long

longitudinal streaks of high and low streamwise velocity, and shorter quasi-streamwise

vortices.

1.2.2 Constant Reynolds stress region

In this region, the viscous stresses are negligible and the momentum flux is accomplished

nearly entirely by turbulence [2]. Here, the only relevant length scale is the distance from

the wall, y, and the appropriate velocity scale is is the square root of the nearly constant

Reynolds stress, ((−uvmax)0.5). Thus, the mean velocity gradient may be expressed as

∂U

∂y
≈ (−uvmax)0.5

y
. (1.1)

The well known logarithmic velocity profile follows directly from integrating equation

1.1 and using the velocity at the edge of the viscous sublayer as a boundary condition.

This could be expressed as follows
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U
+

=
1

κ
lny+ +A, (1.2)

where the plus sign super-index denotes normalization by the viscous length scale (ν/uτ ),

κ is the Von Karman constant and A is an additive constant. Hence, this region is

generally refereed to as the log region, as shown in Figure 1.2. Based on the observations

that the total stress is approximately constant throughout the viscous and the log layers,

these regions are also known as the inner layer, see [2].

1.2.3 Outer layer

Beyond the log-region, an outer layer is formed and is generally characterized by a

diminishing turbulence shear stress [2]. For channel flow, the intermittency of turbulence

and interaction with potential free stream are absent. Therefore, the core region of a

channel flow differs from the outer layer of a growing boundary layer, see Schlichting

[10] and Pope [6]. According to Gad-el-Hak [2] the appropriate length scale in the core

region is half the channel height (H) and the mean velocity profile is characterized by

the velocity defect (Uc−U), where Uc is the centre-line velocity at the edge of the shear

layer.

1.3 Effects of roughness on turbulent channel flow

The best known early work into the effects of roughness are the experiments of Niku-

radues, which in turn led to the Colebrook formula and the Moody diagram [10]. The

results from these experiments demonstrated that the logarithmic velocity distribution,

equation 1.2, could still be used in the wall layer for rough surfaces. This observation

led to the concept of equivalent or effective sand roughness which is generally expressed

as

U
+

=
1

κ
lny+ +A−∆U+, (1.3)

where the first three expressions are from the equation of the smooth wall, equation 1.2,

and the last term is an offset usually called the roughness function. The concept of the

effective sand roughness and its subsequent extension to the Moody diagram remain a



Introduction 6

valuable tool in estimating the friction coefficient, based on the roughness height, for

turbulent channel and pipe flows.

In a more recent research, Jimenez [11] showed that roughness affects turbulent channel

flow by interfering with the operation of the buffer-layer viscous cycle discussed in the

previous section 1.2.1. The main effect is to change the additive constant A in equation

1.2. Also, because most of the turbulent energy is generated within the log layer, rough-

ness may also modify the whole flow if the roughness height is not negligible with respect

to the channel height [11]. In addition, subtler affects exist as well. Townsend [15] and

Jimenez [11] explain that it has been known for sometime that structures with outer

length scales penetrate into the buffer-layer region and suggested that those outer-layer

structures grow from hairpin eddies generated near the wall. Jimenez [11] argues fur-

ther that it is therefore possible that at least some rough walls may influence the whole

layer by modifying the form of the hairpins, and the behaviour of the roughness layer in

other cases may be directly modified by events coming from outside. Such observations

highlighted the limitations of using the similarity hypothesis, a widely used concept in

studying the flow over rough surfaces (see section 2.3).

More insight into the effects of roughness in turbulent channel flow was reported in the

experiments of Perry et al. [3], see section 2.1. In this work the authors focused on the

effects of the distribution of the roughness elements, while keeping the roughness height

constant. Based on the results from these experiments, a classification of the flow over

rough surfaces was proposed based on the effects that the distribution of the roughness

elements has on the mean flow. Perry et al. [3] classified roughness into k- and d- type.

The two types are briefly discussed in the following subsections.

1.3.1 k- type

This type of roughness is generally encountered when the distribution of the roughness

elements is sparse. Generally, this type of behavior was observed for roughness spacing

equal to approximately 3-4 times the roughness height, see Perry et al. [3] and Cui et

al. [8]. A sketch of the typical flow over a k- type surface is shown in figure 1.3. The

flow is generally characterized by the vortex shedding observed between the roughness

elements as a result of the separation and attachment occurring in the groove between

the roughness elements. It is important to note here that the effective roughness is

proportional to the roughness height (k) [3]. Hence the name, k- type roughness.
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Flow direction

Figure 1.3: Sketch of the flow over a k-type rough surface, adopted from Perry et al
[3].

1.3.2 d- type

For this type of surface, the distribution of the roughness elements is very narrow.

Generally this behavior is encountered when the distance between the two elements

is 0.5-2 times the roughness height. The sketch shown in figure 1.4 show a typical

flow pattern for the flow over a d-type surface. According to Jimenez [11] the usual

explanation for this type of behavior is that the grooves sustain stable recirculating

vortices that isolate the outer flow from the roughness layer. Perry et al. [3] state that

the effective roughness for this type of surface is not proportional to the roughness height

but the channel half-height (H) for channel flow or the pipe diameter (d) for the flow in

a pipe, hence the name d- type roughness.

1.4 Aim and objectives

The main aim of the research is to gain further understanding of the flow mechanics

involved in a channel flow with one sided roughness, in particular the flow properties of

the so called k- and d- type rough surfaces first proposed by Perry et al [3] and provide

insight to some of the open research questions in the topic. The open issues considered



Introduction 8

Flow direction

Figure 1.4: Sketch of the flow over a d-type rough surface, adopted from Perry et al
[3].

in this work are the limitations of the vortex shedding parameter, traditionally used to

classify roughness into the k- and d- type, and the effects of the roughness geometry on

the interaction between the inner and outer flow regions.

The above aim is achieved through the following objectives:

• To set up verify and validate a CFD methodology for channel flow with one sided

roughness and simulations of the effects of roughness geometry;

• Study the flow evolution in time by visualizing the flow field for the following

parameters; velocity streamlines, friction velocity, pressure gradient, instantaneous

velocity, non-dimensional wall distance y+ and Falco eddies;

• Investigate the effects of the roughness geometry on the coherent structures ob-

served in wall bounded flow using; velocity profile plots at different streamwise

locations, plots for the balance of reaction forces in the channel, and the flow

visualization data.

Following the achievement of the above objectives, a better understanding of the effects

on channel flow would be developed which would be helpful in numerous engineering

applications involving surface roughness.
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1.5 Contribution

The contribution of this research to the topic of turbulent flow over rough surfaces are

outlined in the following points:

• During the course of this research, a three-dimensional model of a channel flow

with one sided roughness was developed using RANS. The results were published

in a conference paper (see appendix D). The paper focused on the drag reduction

properties observed in the flow over riblets. This was achieved by comparing the

flow characteristics of k-, intermediate, and d- type rough surfaces arranged in

the transverse and streamwise directions. This paper provided an opportunity to

assess the limitations of using RANS to model this type of flow. Our results showed

that RANS could provide reasonable predictive capabilities when considering d-

type roughness. This is due to the steady nature of the flow between the roughness

elements. However, this was not the case for k- type roughness due to the highly

unsteady nature of the flow between the roughness elements. Hence, it became

evident that an unsteady solver was required to model the k- type behaviour more

accurately.

• Developed an application to carry out Large Eddy simulations based on the Finite

Element Method (FEM) using the commercial software COMSOL; Gresho and

Sani [16] argue that unlike the Finite Volume Method (FVM), the FEM has not

received the same level of attention amongst CFD researchers. The authors [16]

attribute this to the historical development of both FEM and FVM in CFD. During

the course of this research, it became evident that CFD software based on the FVM

method generally include a dedicated LES solver in addition to the traditional

turbulence models. Examples include the commercial software Fluent and the

open source software OpenFOAM. On the other hand, CFD software based on

the FEM does not include a dedicated LES solver. Examples include COMSOL

(commercial) and Elmer (open source). This could be seen as a reflection on the

current state of development that supports the argument of Gresho and Sani [16].

The motivation behind using the FEM was to emphasize the similarities of the

two methods and show that the FEM provide sufficient basis to carry out LES.

Our focus here was on an Implicit LES, which is described in detail for the FVM

by Grinstein et al [17].

• Provided a generalized verification and validation procedure that could be applied

to numerous problems in CFD. A survey of the literature concerned with the

verification and validation in CFD, e.g. Oberkampf and Trucnao [18], suggests that

the current methods used are insufficient. Specifically the method of qualitative
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graphical validation. In this work we used the concept of validation experiments

introduced by Oberkampf [19] to assess the uncertainty of the results and quantify

the predictive capabilities of the model.

• Given insight into the mechanics involving the interaction between the inner and

outer layers and the effects of roughness geometry in turbulent channel flow. Ac-

cording to Gad-el-Hak [2], the interaction between the inner and outer layers re-

mains an open research question in wall bounded flow. The ILES reported here

provided an opportunity to investigate this interaction in terms of the roughness

elements distribution and geometry. Here we have shown that the interaction is

highly influenced by the flow separation and attachment along the rough wall.

The results confirmed that the roughness geometry effects are confined to the in-

ner layer and demonstrated that the geometry imposes different flow separation

characteristics.

• Proposed the use of k- and d- type classification for engineering design applications.

It is the opinion of the author that despite the limitations of the k- and d- type

classification, it can still be used as a design parameter in engineering systems

to control the flow. Schlichting [10] and Djenidi et al. [20] already showed that

d- type roughness could be used to decrease the friction at the wall, and Cui et

al. [8] showed that k- type roughness gives the best momentum and heat transfer

exchange between the inner/outer layers.

1.6 Thesis structure

This thesis is divided into seven chapters. In this chapter we have briefly introduced

the problem under investigation. We have shown that despite the advancements in the

understanding of wall bounded turbulent flow in recent years, our knowledge of the

effects of roughness on wall bounded flow remain incomplete. In chapter 2 we review

some of the experimental and numerical work concerned with wall bounded turbulent

flow over rough surfaces and discuss the universality of Townsend’s similarity hypoth-

esis, which is widely used in rough wall investigations. Chapter 3 starts by describing

the theory and implementation of the Finite Element Method used to carry out the

numerical simulations. This chapter also includes a description of the model and the

developed application, based on the FEM software COMSOL. Chapter 4 focuses on the

verification and validation aspects concerned with numerical modelling. Here, a number

of procedures are described to ensure the adequacy of our numerical model and vali-

date its predictive capabilities. Results from the numerical simulations are presented in

chapter 5. The chapter starts by describing the methods used to collect the data and
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then analyses certain key flow parameters. Further discussion of the results is given in

chapter 6. First, the predictive capability of the ILES is discussed. Then, a discussion

into the coherent structures, roughness classification and effects of roughness geometry

is given. All major findings resulting from this research program are summarized and

future ideas are presented in chapter 7.



Chapter 2

Literature review

This review is intended to present some selected contributions to the study of rough wall

turbulence and the roughness classification. Textbooks on the topics of fluid mechanics

and turbulent flow generally include a chapter dedicated to internal flow and a section

on the effects of roughness, examples include Schlichting [10], White [14] and Young

et al. [1]. The classification of roughness into k- and d- type, first proposed by Perry

et al. [3], was the subject of a number of research articles, some of which are presented

in this chapter. It is important to note here that this review is not an exhaustive one,

but rather a selective one. The focus here is to outline the key research milestones and

give a brief description of the studies used in the validation of our numerical model.

A comprehensive list of literature available on the topic can be found in the review

paper of Jimenez [11] or any of the other papers cited in this chapter. In the first

two sections we present a brief description of experimental and numerical studies on

the topic. In the final section we discuss the universality issues related to Townsend’s

similarity hypothesis, widely used in rough wall studies.

2.1 Experimental work on turbulent flow over rough walls

Perry et al [3] performed tests in a return circuit closed working section wind tunnel type

for a range of Reynolds number based on the bulk velocity (Reb = 103−106). A long flat

plate was installed in the working section with a standard Prandtl tube placed near the

leading edge of the plate in order to obtain a reference dynamic head. A number of two

dimensional square roughness elements spaced along the plate were made removable so

that an element fitted with pressure-tapped pads could be inserted into the roughness

pattern. The pressure pads were made out of brass tubes soldered together and drilled

at varying distances up the height of the element. A pair of corresponding tubes from

12
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each side of the element were connected in turn to a manometer enabling the pressure

difference profile across the element to be measured. The flow over the rough surfaces

was investigated visually using a tufted probe, dye streaks and smoke. The wall shear

stress for the boundary layer over the roughness element was evaluated by analysing the

control volume around a single element. As mentioned earlier, these experiments were

the first to report the classification of rough surfaces into k- and d- type.

Djenidi et al [20] conducted experiments in a closed circuit-constant head vertical wa-

ter tunnel. On one of the walls, which was removable, a d- type rough surface was

mounted. Like the experiment of Perry et al. [3], the d- type rough wall consisted of

two dimensional elements of square cross-section. The value of Reynolds number, Reθ,

based on the momentum thickness θ was about 1000. A 3-component DANTEC fibre

optic LDA system was used in forward scatter mode. Only two component measure-

ments were made (two colours, blue and violet, were used), the streamwise velocity was

measured with the blue beam and the wall normal velocity was obtained using the violet

beam. Enhanced Burst Spectrum Analysers (BSA) were used for processing the photo

multiplier signals. The analogue outputs from the BSA were digitized into a computer

and stored for subsequent data reduction and analysis. Flow visualizations were carried

out using dye injection and filming with high speed video camera. A major outcome of

this research is the observation that that d- type roughness occasionally ejects the fluid

from the grooves between the roughness elements into the mean flow. This result was a

major contradiction to the assumption that the inner and outer regions of the flow are

isolated, as proposed by the similarity hypothesis.

Krogstad and Efros [21] preformed hot-wire experiments in an open return wind tunnel

on two different rough surfaces, where both roughness geometries belonged to the k-

type category. One test surface was made up of a woven stainless steel mesh screen and

the second surface consisted of lateral rods. Mean velocities were measured using a pitot

tube as well as a number of single and x-wire probes of different geometries, which also

provided Reynolds stresses and triple correlations. In this experiment, measurements

were made for the Reynolds number Reθ = 12800. This research addressed the limi-

tations of Townsend’s similarity hypothesis in describing the flow over a k- type rough

surface for external flows.

2.2 Numerical methods to simulate the flow over rough

walls

Leonardi et al [22] provided guidelines for modelling a two-dimensional rough wall chan-

nel flow using DNS. The flow configuration considered in this study was that of a fully
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developed turbulent channel flow with square bars at the bottom wall. The numerical

method solved the Navier-Stokes and continuity equations for incompressible flow in the

following form:

∂Ui
∂t

+
∂UiUj
∂xj

= − ∂P
∂xi

+
1

Re

∂2Ui
∂x2

j

+ Π

∇ · U = 0

where Π is the pressure gradient required to maintain a constant flow rate, Ui is the

component of the velocity vector in the i direction and P is the pressure. The Navier-

Stokes equations has been discretized in an orthogonal coordinate system using the

staggered central second-order finite-difference approximation. The discretized system

was advanced in time using a fractional-step method with viscous terms treated implic-

itly and convective terms explicitly. The large sparse matrix resulting from the implicit

terms was inverted by an approximate factorization technique. At each time step, the

momentum equations were advanced with the pressure at the previous step, yielding

an intermediate non-solenoidal velocity field. A scalar quantity Φ projects the non-

solenoidal field onto a solenoidal one. A hybrid low-storage third-order Runge-Kutta

scheme was used to advance the equations in time. The roughness was treated by the

efficient immersed boundary technique. This approach allows the solution of flows over

complex geometries without the need for computationally intensive body-fitted grids. It

consists of imposing Ui = 0 on body surface which does not necessarily coincide with

the grid. To avoid that, the geometry was described in a stepwise way, at the first grid

point outside the body, the second derivatives in the Navier-Stokes equations were dis-

cretized using the distance between the velocities and the boundary of the body rather

than using the mesh size. Periodic boundary conditions were applied in the streamwise

and spanwise directions, with no-slip condition at the walls. The DNS of Leonardi et al

[23] provided a new interpretation of d- and k- type behaviour by discussing the DNS

results for six different roughness spacings at three Reynolds numbers based on the bulk

velocity (Reb = 2800, 7000, 12 000). In this paper, the authors proposed an alternative

view to classifying k- and d- type behaviours based on the friction and pressure drags,

as opposed to the state of vortex shedding proposed by Perry et al [3].

Cui et al [8] investigated the turbulent flow in a channel with transverse rib roughness

on one wall using a Large Eddy Simulation (LES) with a Dynamic sub-grid-scale model
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(DSM). The three-dimensional, unsteady, incompressible, filtered continuity and Navier-

Stokes equations are solved with a DSM:

∂ui
∂xi

= 0

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

(
∂2ui
∂xj∂xj

)
− ∂τij
∂xj
− 1

ρ

∂P

∂x
δ1i.

Here, i = 1, 2 and 3, ui are the resolved velocity components (corresponding to u, v, w),ui =

ui−u′ where u′ are sub-grid-scale (SGS) components), xi are the Cartesian coordinates

(corresponding to x, y and z), p is pressure, ν is kinematic viscosity, ∂P
∂x is the mean

pressure gradient imposed in the streamwise direction to drive the flow, δ1i takes value

of one only when i = 1, and

τij = uiuj − ui uj

is the sub-grid-scale stress representing the effect of small-scale motions. Details of

the solution of the governing equations using a DSM are given by Cui et al [8]. It is

important to note here that a LES based on the FVM was used in this work [8], the

general steps involved could be outlined as follows:

• The governing equations in general curvilinear coordinates are discretized on a

non-staggered grid;

• A fractional-step method is employed and the pressure Poisson equation derived

from the equation of continuity is solved with multi-grid acceleration. Here, time

marching is semi-implicit with formal accuracy of second order in both space and

time;

• A mean pressure gradient is imposed in the streamwise direction to drive the flow.

The imposed gradient is adjusted to keep the Reynolds number based on the bulk

velocity Ub and half channel height constant at 10’000 for all the cases.

• Periodic boundary conditions are imposed in both streamwise and spanwise di-

rections. No-slip boundary conditions are applied at the top and bottom channel

boundaries.

In this work, the authors [8] demonstrated the predictive capability of LES in resolving

the k- and d- type flow patterns and showed that reasonable predictions could be made

for the resistance components (friction and pressure drags).
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2.3 Universality issues

In recent years, universality issues related to the similarity hypothesis have come un-

der scrutiny. The similarity hypothesis suggested by Townsend [15], when considering

turbulent shear flow, can be summarized in the following three fundamental hypotheses:

• The first hypothesis is one of similarity of flow structure at all high Reynolds

numbers, and it is best expressed in terms of a definite flow system whose boundary

conditions can be expressed non-dimensionally in terms of a linear dimension and

a velocity;

• The second hypothesis is that of self-preservation and asserts that, at any one

Reynolds number, the structure at all sections of the flow at right angles of the

direction of the mean flow are similar. This hypothesis, unlike that of Reynolds

number similarity, depends on the notion that the flow approaches a state of mov-

ing equilibrium which is determined by the broad features of the initial conditions;

• The third hypothesis is a corollary of the second. If a flow is self-preserving

through the action of a moving equilibrium, it must be expected that the final

self-preserving form will not depend on the details of the boundary conditions

of the flow, and that flows whose boundary conditions have similar properties of

symmetry and homogeneity will have similar self-preserving flows.

Using experiments, Townsend [15] was able to provide strong evidence that supports the

hypothesis of Reynolds number similarity and the inference from it that those parts of

the motion that are not directly affected by viscous stresses are independent of the value

of the fluid viscosity. The evidence also offers qualified support to the hypothesis of self-

preservation and moving equilibrium. By applying these principles to wall bounded flow,

Townsend introduced the concept that the turbulent motion close to the wall is always

in a condition of dynamical similarity determined by the wall stress and viscosity. This

concept is of fundamental importance in the theory of all wall flows, and its principle

application is to the treatment of the mean flow problem using the universal mean

velocity distribution as a starting point. According to Townsend [15], there is a great

deal of experimental evidence in support of this distribution (the law of the wall).

When considering a channel flow with smooth walls, the transfer of momentum from

the walls to the fluid takes place by the action of the tangential viscous stresses at the

wall. If the walls are not ideally smooth there is a possibility that momentum will be

transferred by the action of forces normal to the wall surface and that this transfer

may depend weakly, or not at all, on the fluid viscosity. If we consider flow in a definite
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channel with walls uniformly covered by roughness elements of small size compared with

the width of the channel, arguments similar to Reynolds number similarity can be used

to show that that there exists a constant stress layer whose motion is determined by

the wall stress, the viscosity, and if geometrically similar roughness considered, the scale

length of roughness.

Applying similar analysis to boundary layer flow, Townsend [15] was able to demonstrate

that for both channel and boundary layer flows, most of the turbulent energy production

and dissipation takes place in a thin layer close to the wall and that the shear stress

may be considered constant within it. The flow in this layer is in a state of absolute

energy equilibrium, and the motion is determined by the wall stress and viscosity. This

inner layer is similar in both flows, however, the outer layer in the boundary layer flow is

similar to wake flows. Townsend [15] explains that the turbulent motion in this region is

effectively unrestricted and the process of entrainment of the undisturbed fluid outside

the layer takes place by a process similar to those observed in wakes and jets. Some

studies, see Amir and Castro [24], Flack et al [25] and Jimenez [11] support Townsend’s

wall similarity hypothesis, which suggests that it is only the inner layer of the order of

roughness heights that is affected.

Other investigations, see Krogtad and Erfos [21] and Lee et al.[9], have suggested that

the entire boundary layer is affected by the roughness when the roughness geometry is

made up of long spanwise bars. Krogstadt and Antonia [26] suggested that the increased

inner/outer layer interaction in this case may be important due to significant spanwise

correlation along the roughness element, and that the length scales affecting the flow are

very limited compared to surfaces made up of three dimensional elements. Lee et al.[27]

and Krogstad and Erfos [21] explain that the problem has been further complicated by

the observation that the effects may be different for internal and external flow.

Jimenez [11] suggested that part of the controversies observed for turbulent boundary

layers may have been caused by lack of scale separation between the roughness length,

k, and the boundary layer thickness, δ. Based on simple estimates of how the roughness

affects the logarithmic layer, it was suggested that for roughness elements not to act

as individual obstacles submerged in a boundary layer, there should be a separation

of scales between k and δ of at least δ/k > 40. However, Jimenez [11] also pointed

out that experimental evidence indicates that this is an optimistically low limit. The

ratio suggested ensures that the roughness elements do not protrude further out than

approximately halfway through the logarithmic region in a zero pressure gradient case.

Furthermore, the roughness elements must be sufficiently large so that the near wall

flow is no longer affected by the viscous sub-layer. With a buffer region extending out to

y+ 50−60 for a smooth wall, the minimum roughness length for a fully developed rough
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boundary layer ought to be k+ > 50. Combined with the criterion of δ/k > 40 this

implies that the the Reynold’s number based on the boundary layer thickness should be

δ+ >> 2000, see [11].

Krogstadt and Antonia [26] studied the effect of spanwise bars on turbulent boundary

layers and found significant outer layer effects. They reported that the separation of

scale was δ/k ≈ 47, which is only slightly higher than the lower limit suggested by

Jimenez [11]. In order to investigate how the flow develops and if the δ/k restriction is

satisfied for the same type of surface geometry (k-type), Krogstad and Erfos [21] studied

the development of the rough wall boundary layer downstream of a step change in wall

condition. Based on first and second order statistics they concluded that after about

∆x/δ0 = 15, the inner rough wall layer had grown to the outer edge of the boundary

layer. Here, δ0 is the boundary layer thickness of the smooth wall boundary layer at the

step. Further downstream the outer layer appeared to have the same properties as that

of a fully developed smooth wall turbulent boundary layer.

Overall, our survey demonstrates that the so called d-type roughness generally adheres to

Townsend’s similarity hypothesis as demonstrated by Amir and Castro [24], and Jimenez

[11]. However, researchers focusing on k-type roughness in external flows suggested a

breakdown of this hypothesis , see Lee et al.[27] and Krogstad and Erfos [26].



Chapter 3

Theory and modelling

In this chapter we present the theory and modelling of fluid flow in a turbulent channel

using the Finite Element Method. In section 3.1 we define the physical system of interest.

Sections 3.2 and 3.3 are concerned with the theoretical aspects of modelling fluid flow.

Section 3.2 outlines the theory of solving the governing equations of the fluid flow using

the standard Galerkin method. This section also describes the theoretical considerations

regarding the geometry of the elements used in the discretization of the fluid domain.

Section 3.3 describes the theory used in boundary layer approximations including the

classification of boundary layers (based on the pressure gradients they impose) and gives

the theoretical solution for a boundary layer with zero pressure gradient. The model

used to carry out the simulations reported in this research is described in section 3.4.

Through the course of this research it became evident that this model provided sufficient

basis for a LES. In section 3.5 we present the possibility of developing an Implicit LES

using COMSOL. In the final section 3.6 we describe the modelling of the rough surfaces

considered in this research.

3.1 Physical system of interest

In our analysis we define a system as a set of of physical entities that interact and are

observable, where the entities can be a specified quantity of matter or a volume in space.

Here, the surroundings are defined as all entities and influences that are physically or

conceptually separate from the system. The system considered here is the flow in a

channel with one sided roughness, see figure 3.1. Here the system is defined using

the geometry, initial conditions and physical modelling parameters. The surroundings

are defined using the boundary conditions and system excitation. A specification of

the system and surroundings are given as follows; the geometry, shown in figure 3.1,

19
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describes a rectangular domain with height 2H and width 8H. Previous work by Cui

et al [8] demonstrated that such a domain is appropriate when considering the flow

over rough surfaces. The initial conditions applied throughout are those that describe

the velocity field at t=0. Here we assume that the fluid is at rest. The variables

that describe the physical modelling parameters are the velocity components (u,v) , the

pressure (p) and the fluid viscosity (µ). Following from Jimenez [11], the system of

interest here is the buffer layer. For a smooth surface this layer is home to a non-linear

self-sustaining cycle, which is responsible for generating most of the turbulent energy

in flows with moderate Reynolds number near the wall. The surroundings in this case

are the boundary conditions described by Γinflow and Γoutflow in figure 3.1. Later on

we will sub divide these boundaries into physical and fictitious. Here the surroundings

represent the limits of the flow for the smooth wall case. By introducing roughness,

we arguably add excitations to the self-sustaining cycle responsible for generating the

turbulent energy. Here we consider a channel with one sided roughness in order to study

the extent of the roughness effects.

2H

8H

Roughness region

Ω

Γinflow Γoutflow

Γwall

Γwall

Figure 3.1: Sketch of channel flow domain and boundaries (H = 1m).



Theory and modelling 21

3.2 Navier-Stokes Equations and the Finite Element Method

This section will describe the theory involved with solving the Navier-Stokes equations

using the FEM. First we will give a brief derivation of the governing equations in section

3.2.1 including the mathematical formulations of the problem under investigation. In

section 3.2.2 we give a brief description of the general approach (Galerkin) used in the

FEM to solve the governing equations, full details on the solution of the Navier-Stokes

equation using the FEM are given by Cuvelier et al. [4] and Gresho et al [16]. The

difficulties that arise from the discretization of the flow domian using the FEM are

addressed in sections 3.2.3, 3.2.4 and 3.2.5. Finally, sections 3.2.6 and 3.2.7 will outline

the general procedures used to obtain an approximate solution of the unsteady Navier-

Stokes equations.

3.2.1 Equations of Fluid Dynamics

Here, the equations describing the dynamics of fluid flow will be introduced. We will

give only a brief outline of the derivation of the equations from the basic principles of

conservation of mass and momentum. For complete derivation of these equations see

Landau and Lifshitz [28].

We start by mentioning that will be using the nabla notation

∇ =

∣∣∣∣∣∣∣∣
∂
∂x1
...
∂
∂xn

∣∣∣∣∣∣∣∣ .

For a scalar function φ, ∇φ denotes grad φ; for a vector u, ∇ · u denotes div u; for a

tensor σ with components σij (i, j = 1, · · · , n), ∇ · σ denotes vector with components

(∇ · σ)i =

n∑
j=1

∂

∂xj
σij .

The first principle is the conservation of mass which, according to Cuvelier et al [4], can

be expressed by;

∂ρ

∂t
+∇ · (ρu) = 0,

where ρ = ρ(x, t) is the fluid density, t the time and u = u(x, t) the velocity vector.
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From the balance of momentum, see [4], we obtain

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · σ + ρF, (3.1)

where σ is the stress tensor and F = F(x, t) denotes the body forces per unit mass.

Cuvelier et al [4] state that for a fluid it is convenient to regard the stress tensor σ as

the sum of an isotropic part (pI), having the same form of the stress tensor for a fluid

at rest with a hydrostatic pressure p, and a remaining non-isotropic part (D), termed

the deviatoric stress tensor caused entirely by the fluid motion:

σ = −pI +D with I = unit tensor.

To deduce the dependence of the deviatoric stress tensor on the local velocity gradients,

it is assumed that Dij is a linear function of the various components of the velocity

gradients and that the fluid is isotropic. Such a fluid is called a Newtonian fluid, see [4],

and its constitutive relation reads:

D = 2µ

(
e− 1

3
(∇ · u)I

)
with eij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

in which e is the symmetrical part of the velocity gradient tensor, known as the rate of

strain tensor, and µ is the fluid viscosity depending on temperature T (x, t). Substitution

into the momentum equation 3.2 then gives for the velocity

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ρF−∇p+∇ ·

[
2µ(e− 1

3
(∇ · u)I)

]
.

These equations are known as the Navier-Stokes equations for fluid motion. Assuming

the flow is incompressible and independent of temperature the Navier-Stokes equations

reduce to

ρ

(
∂u

∂t
+ u · ∇u

)
= ρF−∇p+ µ∇2u.

With the assumptions above, the equations of motion reduce to

∇ · u = 0

ρ
(
∂u
∂t + u · ∇u

)
= ρF−∇p+ µ∇2u.
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To this system of partial differential equations, which according to Cuvelier et al [4] is

parabolic in u , we add initial conditions

u(x, 0) = u0(x) , x ∈ Ω ∪ Γ

and boundary conditions of which we only consider Dirichlet and Neumann type in 2D.

Cuvelier et al. [4] state that for u we can prescribe one or two velocity components on

Γ (Dirichlet boundary condition):

ui prescribed on Γ, t ≥ 0

or one or two Neumann conditions which are conditions for the normal and/or tangential

components of stress:

σn ≡ (σ · n) · n =

2∑
i,j=1

σij ni nj = normal stress,

prescribed on Γ, t > 0,

σt ≡ (σ · n) · t =
2∑

i,j=1

σij ni tj = tangential stress,

prescribed on Γ, t > 0,

where n is the unit normal and t is the unit tangent on Γ as shown in figure 3.2.

Figure 3.2: Fluid region Ω and boundary Γ showing unit normal (n) and tangential
(t) adopted from Cuvelier et al. [4].

Finally, the time dependent version of the Navier-Stokes equations for incompressible

flow could be stated as follows:
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Find u = u(x, t) and p = p(x, t), x ∈ Ω ∪ Γ , t ≥ 0

such that

∇ · u = 0

ρ
(
∂u
∂t + u · ∇u

)
= ρF−∇p+ µ∇2u

with boundary conditions for u on Γ for t > 0 and initial

conditions for u in Ω ∪ Γ at t = 0.

3.2.2 FEM General Approach

Cuvelier et al. [4] state that for a 2D flow field in a Cartesian co-ordinate system the

equations of motion reduce to the momentum equation

ρ
∂ui
∂t
− µ∇2ui + ρ

(
u1
∂ui
∂x1

+ u2
∂ui
∂x2

)
+
∂p

∂xi
= ρFi,

i = 1, 2. (3.2)

Together with the continuity equation

∂u1

∂x1
+
∂u2

∂x2
= 0. (3.3)

Furthermore, the authors [4] show that the non-dimensional form of equation 3.2 could

be written as

∂ui
∂t
− 1

Re
∇2ui + u1

∂ui
∂x1

+ u2
∂ui
∂x2

+
∂p

∂xi
= ρFi,

i = 1, 2. (3.4)

To obtain a unique solution for equations 3.3 and 3.4 it is necessary to give both initial

and boundary conditions. The initial conditions consist of a given velocity at the initial

time t = 0 prescribed as follows

ui(x, t) = u0
i (x), i = 1, 2. (3.5)

It is important to mention that the initial velocity field u0
i (x) must satisfy the incom-

pressibility constraint (equation 3.3).

Throughout this section Dirichlet boundary conditions are assumed:

ui(x, t) = gi(x, t),x ∈ Γ, i = 1, 2. (3.6)
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Cuvelier et al. [4] states that it is easy to verify that the pressure in this case is fixed

up to an additive function of time (not space) i.e:

p(x, t) = pc(x, t) + c(t).

In order to prescribe the function c(t) we demand:∫
Ω
p dΩ = 0, for all t. (3.7)

For the solution of equations 3.3 and 3.4 with the initial (equation 3.5) and boundary

(equation 3.6) conditions the Galerkin method is applied. To this end equation 3.4 is

multiplied by arbitrary, time dependent, test functions vi and the continuity equation

3.3 by test function q, see [4]. Integration over the domain results in:

∫
Ω

∂ui
∂t

vi dΩ +

∫
Ω

[
− 1

Re
∇2ui + u1

∂ui
∂x1

+ u2
∂ui
∂x2

+
∂p

∂xi

]
vi dΩ =

∫
Ω
f vi dΩ, (3.8)

and ∫
Ω
q

(
∂u1

∂x1
+
∂u2

∂x2

)
dΩ = 0 (3.9)

Application of Gauss theorem, see [4], gives:∫
Ω

∂ui
∂t

vi dΩ +

∫
Ω

[
1

Re
(∇ui · ∇vi) + (u1

∂ui
∂x1

+ u2
∂ui
∂x2

)vi

]
dΩ−

∫
Ω
p
∂vi
∂xi

dΩ =∫
Ω
fi vi dΩ +

∫
Γ
(∇ui · n)vi dΓ−

∫
Γ
p vi ni dΓ, i = 1, 2

and ∫
Ω
q div u dΩ = 0.

According to Cuvelier et al. [4] the boundary integrals vanish due to the boundary

condition:

ui(x) = 0,x ∈ Γ. (3.10)

For the weak formulation of the problem (equations 3.3 to 3.7)the function spaces V0,

Vg and Q are introduced:
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• V0 is the space of vector functions v = (v1, v2) satisfying equation 3.10.

• Vg is the space of vector functions v = (v1, v2) satisfying equation 3.7.

• Q is the space of functions satisfying equation 3.9.

Then the weak formulation of the problem reads:

Find u(t) ∈ Vg and p(t) ∈ Q such that

∫
Ω

∂ui
∂t

vi dΩ +

∫
Ω

[
− 1

Re
(∇ui · ∇vi) + (u1

∂ui
∂x1

+ u2
∂ui
∂x2

)vi

]
dΩ−

∫
Ω
p
∂vi
∂xi

dΩ =∫
Ω
Fi vi dΩ, and

(3.11) ∫
Ω
q div u dΩ = 0.

(3.12)

For all v ∈ V0 and all q ∈ Q.

For the construction of the approximation of the solution, u1, u2 and p are written as lin-

ear combinations of time-independent basis functions with time-dependent coefficients,

see [4]:

ui(x, t) = ui0(x, t) +

∞∑
j=1

uij(t) φj(x),

p(x, t) =
∞∑
j=1

pj (t) ψj (x),

with

ui0(x, t) = gi(x, t), x ∈ Γ.

The basis functions φi are substituted for the test function vi (see equation 3.11) and

the test function q is replaced by ψi (see equation 3.12). According to Cuvelier et al. [4]

if we limit ourselves to approximate solutions, constructed by a finite number of basis
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functions i.e:

ũi(x, t) = ũi0(x, t) +
∞∑
j=1

uij(t) φj(x),

p̃(x, t) =
∞∑
j=1

pj (t) ψj (x),

then the following system of Galerkin equations remain:∫
Ω

∂ũ1

∂t
φi dΩ +

∫
Ω

[
− 1

Re
(∇ũ1 · ∇φi) + (ũ1

∂ũ1

∂x1
+ ũ2

∂u1

∂x2
)φi

]
dΩ−

∫
Ω
p̃
∂φi
∂x1

dΩ =∫
Ω
F1 φi dΩ, i = 1, 2, · · · , N.

∫
Ω

∂ũ2

∂t
φi dΩ +

∫
Ω

[
− 1

Re
(∇ũ2 · ∇φi) + (ũ1

∂ũ2

∂x1
+ ũ2

∂u2

∂x2
)φi

]
dΩ−

∫
Ω
p̃
∂φi
∂x1

dΩ =∫
Ω
F2 φi dΩ, i = 1, 2, · · · , N.

∫
Ω
ψi

(
∂ũ1

∂x1
+
∂ũ2

∂x2

)
dΩ = 0, i = 1, 2, · · · ,M.

In matrix-vector notation the above system could be written as:

M u̇ + S u +N(u) u + LTp = F,

L u = 0, (3.13)

where S is the diffusion matrix, N is the convective matrix, L is the continuity matrix,

u is the velocity vector, p is the pressure vector and F is the right hand side vector

which contain all the contribution of the source term, the boundary integrals as well as

the contribution of the prescribed boundary conditions. Here M is the so called mass

matrix, for 2D it can be expressed as:[
M1 0

0 M1

]
where

M1 (i, j) =

∫
Ω
φi φj dΩ and u̇ =

∂u

∂t
.
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Note that vectors u and p depend on time. Also, the solution of the above system

of equations 3.13 introduces two difficulties. Firstly, the non-linearity of the equations

require some iterative procedure to reach a solution. This will be addressed in the treat-

ment of non-linear terms sections. Secondly, the expression of the continuity equation

does not contain the unknown pressure, which introduces a number of extra complica-

tions that will be discussed in the necessary conditions for the elements and admissible

elements sections.

3.2.3 Treatment of the non-linear terms

In order to solve the system of non-linear equations 3.13, an iterative procedure is nec-

essary, see [4]. The most common type of such procedure is based on Newton methods.

Here, the Newton method was used to first linearise the the non-linear differential equa-

tions and then to discretize the resulting linear equations. Since it is the non-linear

terms in the equations of motion we are interested in we consider only the convective

terms. After linearisation of the convective terms the standard Galerkin method maybe

applied, resulting in a system of linear equations. An important question with respect

to iterative methods is how to find a good initial estimate, see [4]. In our analysis we

started with a low Reynolds number, as the initial estimate and increased it gradually

until the iteration process no longer converges. Such a process is generally called a

continuation method, see [4].

3.2.4 Necessary conditions for the elements

So far we have derived the standard Galerkin method and showed that it results in a

system of non-linear equations of the form given in equations 3.13. After linearisation,

this system can be written as, see [4]:

SU + N(Uk)− LTP = F,

LU = 0,

where Uk is the solution of the previous iteration. Cuvelier et al. [4] state that it is

necessary for the velocity that the approximations over the element-sides must be con-

tinues, whereas the pressure approximations may be discontinues. However, as discussed

earlier, the issue that the continuity equation (LU = 0) does not contain the pressure

unknowns remains to be resolved. The authors [4] explain that when using the FEM,

we have to demand that the pressure unknowns never exceed the velocity unknowns and

that this demand should be valid independently of the number of elements. This de-

mand restricts the number of applicable elements considerably. In order to satisfy this
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criterion, a generaly accepted rule is that the order of approximation of the pressure

must be one lower than the order of approximation of the velocity, see [4].

X

XX

Figure 3.3: Example of an admissible triangular element (O=Pressure, X=Velocity),
adopted from Cuvelier et al. [4].

Figure 3.3 shows an example of an admissible triangular element from [4]. In this

example the velocity unknowns are positioned in the mid-points of the sides. The velocity

approximation is linear but not continuous over the element boundaries. Cuvelier et al

[4] state that such an element is called non-conforming, and for this reason introduces

extra problems with the approximation. This will be addressed next, however, with

regard to the continuity equation the element satisfies the demand that there most be

more velocity unknowns than pressure unknowns.

3.2.5 Admissible elements

For two-dimensional applications the Taylor-Hood family of elements are characterized

by the fact that the pressure is continuous across the element [4]. A typical example is a

quadratic triangle, shown in figure 3.4, where the velocity is approximated by a quadratic

polynomial and the pressure by a linear polynomial. The quadrilateral counterpart of

this triangle is shown in figure 3.5.
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X

XX

XX

X

Figure 3.4: Taylor-Hood element, P2 − P1. [O=Pressure (Linear;3 nodal points),
X=Velocity (Quadratic;6 nodal points)], adopted from Cuvelier et al. [4].

This type of elements is very suitable for the Galerkin method. The triangular and

quadrilateral elements described here were used throughout this work to discretize the

fluid domain.

3.2.6 Solution of the system of linear equations

So far, we have shown that in each step of the non-linear iteration process it is necessary

to solve a system of linear equations of the shape:

Su− Ltp = F,

Lu = 0.

Here Su denotes the discretization of both the viscous terms and the linearised convec-

tive terms. Cuvelier et al [4] states that if the unknowns are numbered in the following

sequence; first all velocity unknowns and then all the pressure unknowns, it is clear that

the system of equations gets the shape as sketched in figure 3.6 provided an optimal

nodal point numbering is applied. Unfortunately this numbering is far from optimal as

the total profile is still very large, see [4]. A much smaller profile may be achieved if

pressure and velocity unknowns are intermixed [4]. Figure 3.7 shows a typical example
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X

X

X

XX

X

X

X

X

Figure 3.5: Taylor-Hood element, Q2 −Q1. [O=Pressure (Bi-linear;4 nodal points),
X=Velocity (Bi-quadratic;9 nodal points)], adopted from Cuvelier et al. [4].

of such numbering. Component-wise renumbering of the sequence of unknowns is given

by:

Degrees of freedom: u11, u12, u13, · · · ;u21, u22, u23, · · · ; p1, p3, · · ·
Nodal point-wise renumbering is given by:

Degrees of freedom: u11, u12, p1, u12, u22, u13, u23, p3, · · ·

According to Cuvelier et al [4], the resulting system of equations has a much smaller

profile than the one for the original system of equations.

3.2.7 Solution of the Navier-Stokes equations using the pressure cor-

rection method

According to Cuvelier et al. [4] the absence of a time-derivative from the linearised

equations 3.13 has the consequence that equations must be satisfied in every stage of

the time integration. An important consequence is that, if the equations are solved

in a coupled way explicit methods do not make sense [4]. With respect to the time-

integration, all the classical methods may be used. Of course, the solution of the coupled

equations introduces the same problems as for the steady case. As a consequence the
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[ ]Pressure

Velocity

Figure 3.6: Profile of the large matrix used to solve the system of linear equations,
adopted from Cuvelier et al. [4].

same type of solution procedure will be used. Hence it is quite usual to apply a segregated

formulation in order to solve these equations. The formulation used in this work is the

pressure-correction method.

Cuvelier et al. [4] states that the pressure correction method is a special method for

incompressible flows, the general procedure used here, see Guermond et al. [29], could

be outlined as follows:

Let u and p be the velocity and pressure variables and uc and pc the corrected velocity

and pressure variables, respectively. The pressure correction algorithm solves the Navier-

Stokes equations using the following steps:

1. Solve the sequence for all u components using the following equation:

ρ
∂u

∂t
+ ρunc · ∇un+1 = −∇pn +∇ ·

(
µ(∇un+1) + (∇un+1)T

)
+ F,

where the superscript index stands for the time step index, and ρ∂u
∂t is discretized

using a Backward Differentiation Formula (BDF) method up to the second order

where u values from previous time steps are replaced by uc values. At the first
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X
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Figure 3.7: An example of component-wise numbering applied to a quadrilateral
element, adopted from Cuvelier et al. [4].

order it is discretized it reads:
un+1 − uc
timestep

.

2. Solve Poisson’s equation to adjust pressure:

timestep∆(pn+1 − pn) = −∇ · ρun+1,

where ∆ is the Laplace operator.

3. Update the corrected velocity:

un+1
c = un+1 − timestep

ρ
∇(pn+1 − pn). (3.14)

This type of method is known as a segregated method. Several variants of the original

version have been developed (see Guermond et al. [29]). we note here that COMSOL

uses incremental pressure-correction schemes. In the next section we will give a general

description of the approach used for boundary layer approximation.
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3.3 Boundary layer approximation

In the previous section we have described the general approach for solving the unsteady

Navier-Stokes equations using the FEM. In this section we give a brief description of

the theory considering the approximation of boundary layers in channel flow. Before

describing the theory involving boundary layer approximations, we would like to point

out that the description presented in this section is only a brief one, full details are given

by Tritton [5]. Let us confine our attention to the two dimensional, steady boundary

layers to illustrate the general principles involved. Here we consider the boundary layer

forming on a flat wall (with the x-coordinate in the flow direction and y normal to the

wall), as shown in figure 3.8. A free-stream velocity outside the the boundary layer is

prescribed as a function of x.

x

y

L

u
v

u0

δ

Figure 3.8: Sketch showing the boundary layer formation in channel flow.

We denote the free-stream velocity by u0 and the pressure associated with it by p0. We

take the boundary layer to have a length scales L and δ in the x- and y- directions.

It is expected that that the velocity scales will also be different in different directions

and we denote the scales of u and v by U and V . Similarly, the order of magnitude of
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the pressure differences across the boundary layer in the y- direction may not be the

same as the order of magnitude to the imposed pressure difference outside the boundary

layer; we denote the scales of the former by Λ and the scale of the latter by Π. We now

consider each of the governing equations in turn, labelling the terms with their orders

of magnitude.

The continuity equation is

∂u

∂x
+
∂v

∂y
= 0 (3.15)

U

L

V

δ
.

The two terms must be of the same order of magnitude; fluid entering or leaving the

boundary layer at its outer edges must be associated with variations in the amount of

fluid traveling downstream within the boundary layer,

V ∼ Uδ/L; (3.16)

Hence, the velocity component normal to the wall is small compared with the rate of

downstream flow when the boundary layer is thin.

The x-component of the Navier-Stokes equation is:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂x2
+ ν

∂2u

∂y2
(3.17)

U2

L

V U

δ
∼ U2

L

Π

ρL

νU

L2

νU

δ2
.

The second expression for the order of magnitude of v ∂u∂y has been written using relation

3.16. The two parts of the inertia term are comparable with one another, the smallness

of V/U compensating for the more rapid variation of u with y than x. The two parts

of the viscous term are however of different sizes when δ/L is small, and ν ∂
2u
∂x2

may be

neglected.

The y-component of the Navier-Stokes equation is:

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

∂2v

∂x2
+ ν

∂2v

∂y2
(3.18)

UV

L
∼ U2δ

L2

V 2

δ
∼ U2δ

L2

Λ

ρδ

νV

L2
∼ νUδ

L3

νV

δ2
∼ νU

Lδ
.
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In both equations the pressure term will be of the same order of magnitude as the largest

of the other terms. This gives:

Π/ρL ∼ U2/L ∼ νU/δ2 (3.19)

Λ/ρδ ∼ U2δ/L2 ∼ νU/Lδ (3.20)

and so

Λ/Π ∼ δ2/L2. (3.21)

The pressure differences across the boundary layer are much smaller than those in the

x-direction. Accordingly, at any value of y the difference between (1/ρ)∂p/∂x and

(1/ρ)dp0/dx is much smaller than the significant terms in equation 3.18 and we may

replace the former by the latter giving

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp0

dx
+ ν

∂2u

∂y2
. (3.22)

Outside the boundary layer there is no variation with y and

u0
du0

dx
= −1

ρ

dp0

dx
, (3.23)

a result which could also be obtained from Bernoulli’s equation. Hence,

u
∂u

∂x
+ v

∂u

∂y
= u0

du0

dx
+ ν

∂2u

∂y2
. (3.24)

This equation together with

∂u

∂x
+
∂v

∂y
= 0 (3.25)

constitute the boundary layer equations-two equations in the two variables u and v.

3.3.1 Classification of boundary layers

Solutions of equations 3.24 and 3.25 requires u0(x) to be specified, both to give the

the third term in 3.24 and as a boundary condition for integration with respect to y.

This is why the solution of Euler’s equation for the particular configuration is needed

before the boundary layer can be analysed. Obviously, many different distributions of

u0(x) can arise. In the next section we shall consider the simplest case of all, when u0

is constant. A useful broad classification is given by the sign of du0/dx or, equivalently
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through equation 3.23, the sign of dp0/dx. When

du0/dx > 0 ; dp0/dx < 0 (3.26)

(the external flow is accelerating at the pressure decreases) one talks of a boundary layer

in a favorable pressure gradient. When

du0/dx < 0 ; dp0/dx > 0 (3.27)

(the external flow is decelerating as the pressure rises) one talks of an adverse pressure

gradient. One can, of course, have regions of each type of pressure gradient within a

given flow. Indeed, this is usually the case for the boundary layer on an obstacle.

Boundary layers in favorable pressure gradients are relatively thin. In a region of strong

enough pressure gradient the boundary layer thickness can decrease with distance down-

stream; the effect of the pressure gradient more than counteracts the viscous spreading

process. Here we note also that instability, leading to transition to turbulence, is delayed

by a favorable pressure gradient. Such a pressure gradient does not, however, introduce

flow phenomena qualitatively different from those occurring in boundary layers with

zero pressure gradient. The effects of an adverse pressure gradient are just the reverse

of those just described. Much more significantly, however, a boundary layer in such a

pressure gradient is prone to the phenomena of separation. It should be noted that the

effect of separation can be to modify the solution of Euler’s equation of the region out-

side the boundary layer. Consequently, u0(x) may differ from the form that one initially

assumes.

3.3.2 Zero Pressure Gradient (ZPG) solution

The simplest, and in a sense most fundamental, case is the one where the pressure

gradient is zero. Equivalently, u0 is constant; we consider the boundary layer beneath

a uniform flow. Such a boundary layer is readily observed on a thin flat plate set

up parallel to the free-stream; one wall of an empty wind-tunnel or water-channel is

sometimes used. The equations for this case are:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(3.28)

∂u

∂x
+
∂v

∂y
= 0 (3.29)
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with boundary conditions:

u = v = 0 at y = 0 (3.30)

u→ u0 as y →∞.

We look for a solution of the form:

u = u0g(y/∆) (3.31)

where ∆ is a function of x. That the solution should be of this form is an assumption.

It corresponds to the velocity profile having the same shape at all values of x, although

with a different scale in the y-direction, and is thus physically plausible. ∆ is directly

proportional to the boundary layer thickness, but it is convenient to define it slightly

differently from δ.

Equation 3.29 can be satisfied by introducing a stream function ψ such that

u = ∂ψ/∂y , v = −∂ψ/∂x. (3.32)

If we take

ψ = u0∆f(y/∆) (3.33)

then 3.32 gives 3.31 as required with

g = f ′ (3.34)

where the prime indicates differentiation with respect to

η = y/∆. (3.35)

The second of term equation 3.32 also gives

v = u0(−f + yf ′/∆)d∆/dx (3.36)

and further differentiation leads to

∂u

∂x
= −u0yf

′′

∆

d∆

dx
;
∂u

∂y
=
u0f

′′

∆
;
∂2u

∂y2
=
u0f

′′′

∆2
. (3.37)

Substitution into equation 3.28 then gives

u2
0

∆

d∆

dx
ff ′′ +

νu0

∆2
f ′′′ = 0. (3.38)
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If the solution is of the assumed form this must reduce to a total differential equation

in f as a function of η; i.e. the total coefficients must have the same dependence on x,

so that this cancels out:

u2
0

∆

d∆

dx
∝ νu0

∆2
(3.39)

and so

∆2 ∝ νx/u0 + const. (3.40)

It is convenient to choose the constant of proportionality and the origin of x so that

∆ = (νx/u0)1/2. (3.41)

Equation 3.39 now becomes

ff ′′ + 2f ′′′ = 0. (3.42)

The boundary conditions transform to

f = f ′ = 0 at η = 0 (3.43)

f ′ → 1 as η →∞.

The solution of this total differential equation has to be obtained numerically. The

resulting variation of f ′ with η, and so the velocity profile obtained numerically is com-

pared with the theoretical profile as shown in figure 3.9. This curve is known as the

Blasius profile.

It has the property that

f ′ = 0.99 when η = 4.99. (3.44)

The boundary layer thickness can be defined as

δ = 4.99(νx/u0)1/2. (3.45)

Other ways of writing this are

δ/x = 4.99Re−1/2
x and Reδ = 4.99Re1/2

x , (3.46)

where Rex = u0x/ν and Reδ = u0δ/ν. The boundary layer thickness is small when

the Reynolds number is large, as expected. This is, of course, a necessary condition
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Figure 3.9: Theoretical Blasius profile (from Tritton [5]) compared to the numerical
results obtained from the present simulations.

for the theory to apply. Also Reδ is large when Rex is large; there is no ambiguity in

talking about large Reynolds number. Figure 3.9 includes numerical results for different

values of Rex. The agreement with the theoretical profile is good, providing support

for the various approximations and assumptions made in the course of the theory. The

numerical results have been scaled to the coordinates η(= y(u0/νx)1/2) and f ′(= u/u0).

At higher values of the Reynolds number, the Blasius profile is unstable and the boundary

layer becomes turbulent. The instability depends on Reδ, which, as we can see from

equation 3.46, increases with Rex. Thus, any zero pressure gradient boundary layer

undergoes transition if it extends far enough downstream. However, provided that the

disturbance level is not too high, the range in which the Reynolds number is high enough

for boundary layer formation but low enough for laminar flow is significant.
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3.4 Model description

The model developed was based on the commercial FEM software COMSOL Multi-

physics V4.3. The modelling procedure is outlined in the following steps, see [30]:

1. Geometry

2. Definition of the Partial Differential equations (PDE’s);

3. Discretization;

4. Approximate solution of the PDE’s;

5. Post-Processing.

3.4.1 Geometry and boundary conditions

The geometry and boundary conditions used to describe the channel are given in figure

3.1, where H is the half channel height and equals 1m. The channel extends a distance of

2H in the spanwise direction and 8H in the streamwise direction. The roughness region

at the lower wall extends between 3H and 5H in the streamwise direction.

3.4.2 PDE’s definition

The software solves the following form of the Navier-Stokes and continuity equations

(compare with the equations of motion in section 3.2):

ρ
∂u

∂t
+ ρ (u · ∇) u = ∇

[
−pI + µ(∇u + (∇u)T )

]
+ F, (3.47)

ρ∇ · u = 0 (3.48)

The boundary conditions were implemented as follows:

• Wall (no-slip): This physical boundary was applied to the lower and upper walls.

Here the following expression is used to describe the boundary; u = 0. Details on

the variables and constraints used in the prescription of this boundary condition

are given in tables A.1 and A.2;
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• Inlet: Here we assume a parabolic velocity at the inlet, based on the assumption

that the flow is fully developed. Such a profile is obtained using the expression u0 =

uin6 y (1− y), where uin is the given inlet velocity. For the unsteady case a step

function was added to this expression as follows; u0 = uin6 y (1 − y)step(t[1/s]).

The expression used to describe the boundary is u = −u0n. This condition was

prescribed using the variables and constraints shown in tables A.3 and A.4;

• Outlet: Here we prescribe a pressure boundary assuming parallel flow with no

viscous stress. To this end we prescribe zero pressure, p = p0 = 0, along with

the following expression µ
[
∇u + (∇u)T

]
· n = 0. The boundary condition was

prescribed using the variable, constraint and weak expression given in tables A.5,

A.6 and A.7;

• The fluid properties in the flow domain are prescribed using the variables in table

A.8 (which includes the expressions for the stresses and the residuals), the shape

functions in table A.9, and the weak expressions in table A.10.

3.4.3 Discretization

Once the mesh has been generated, the fluid domain is described using two dependent

variables, velocity and pressure. The idea is to approximate the dependent variables with

a function that you can describe with a finite number of parameters, the so-called degrees

of freedom (DoF). Inserting this approximation into the weak form of the equation

generates a system of equations for the degrees of freedom. Considering the problem in

a two-dimensional domain, COMSOL Multiphysics forms the discretization of the PDE

in the following manner, see [30]: The starting point is the weak formulation of the

problem. First comes the discretization of the constraints,

• 0 = R(2) on Ω;

• 0 = R(1) on B;

• 0 = R(0) on P .

Starting with the constraints on the boundaries (B). For each mesh element in B (that

is, each mesh edge in B), consider the Lagrange points of some order k. Denote them by

x
(1)
mj , where m is the index of the mesh element. Then the discretization of the constraint

is:
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0 = R(1)
(
x

(1)
mj

)
.

That is, the constraints must hold pointwise at the Lagrange points. The Lagrange

point order k can be chosen differently for various components of the constraint vector

R(1), and it can also vary in space. The constraints on domains Ω and points P are

discretized in the same way. Note that nothing needs to be done with the points P .

One can collect all these pointwise constraints in one equation 0 = M , where M is the

vector consisting of all the right-hand sides.

COMSOL Multiphysics [30] approximates the dependent variables with functions in the

chosen finite element space(s). This means that the dependent variables are expressed

in terms of the degrees of freedom as:

ul =
∑
i

Uiφ
(l)
i ,

where φ
(l)
i are the basis functions for variable ul. Let U be the vector with the degrees

of freedoms Ui as its components. This vector is called the solution vector because it is

what you want to compute. M depends only on U , so the constraints can be written as

0 = M(U).

Now consider the weak equation:

0 =

∫
Ω
W (2)dA+

∫
B
W (1)ds+

∑
P

W (0)

−
∫

Ω
v · h(2)T µ(2)dA−

∫
B
v · h(1)T µ(1)ds−

∑
P

v · h(0)T µ(0),

where µ(i) are the Lagrange multipliers. To discretize it, express the dependent variables

in terms of the degrees of freedom as described earlier. Similarly, approximate the test

functions with the same finite elements (this is the Galerkin method):

vl =
∑
i

Viφ
(l)
i .
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Because the test functions occur linearly in the integrands of the weak equation, it is

enough to require that the weak equation holds when you choose the test functions as

basis functions:

vl = φ
(l)
i .

When substituted into the weak equation, this gives one equation for each i. Now the

Lagrange multipliers must be discretized. Let

Λ
(d)
mj = µ(d)(x

(d)
mj)w

(d)
mj ,

where x
(d)
mj are the Lagrange points defined earlier, and w

(d)
mj are certain weights. The

term

∫
B
v · h(1)T µ(1)ds,

is approximated as a sum over all mesh elements in B. The contribution from mesh

element number m to this sum is approximated with the Riemann sum

∑
j

φi(x
(1)
mj) · h

(1)T (x
(1)
mj)µ

(1)(x
(1)
mj)(w

(1)
mj) =

∑
j

φi(x
(1)
mj) · h

(1)T (x
(1)
mj)Λ

(1)
mj ,

where w
(1)
mj is the length (or integral of ds) over the appropriate part of the mesh element.

The integral over Ω and the sum over P is approximated similarly.

This means that one can write the discretization of the weak equation as;

0 = L−NFΛ,

where L is a vector whose i−th component is
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∫
Ω
W (2)dA+

∫
B
W (1)ds+

∑
P

W (0),

evaluated for vl = φ
(l)
i . Λ is the vector containing all the discretized Lagrange multipliers

Λ
(d)
mj . NF is a matrix whose i−th row is a concatenation of the vectors

φi(x
(d)
mj)h

(d)(x
(d)
mj)

T .

For problems using ideal constraints, NF is equal to the constraint Jacobian matrix N ,

which is defined as:

N = −∂M
∂U

.

To sum up, the descretization of the stationary problem is:

0 = L(U)−NF (U)Λ,

0 = M(U).

The objective is to solve this system for the solution vector U and the Lagrange multiplier

vector Λ. L is called the residual vector, M is the constraint residual and NF is the

constraint force Jacobian matrix.

The integrals occurring in the components of the residual vector L are computed ap-

proximately using a quadrature formula [30]. Such a formula computes the integral over

a mesh element by taking a weighted sum of the integrand evaluated in a finite num-

ber of points in the mesh element. The order of a quadrature formula on a triangular

element is the maximum number k such that it exactly integrates all polynomials of

degree k. For a quadrilateral element, a formula of order k integrates exactly all prod-

ucts p(ξ1)q(ξ2), where p and q are polynomials of degree k in the first and second local

coordinates respectively. Thus, the accuracy of the quadrature increases with the order.

On the other hand, the number of evaluation points also increases with the order. As

a rule of thumb, you can take the order to be twice the order of the shape function for

the finite element being used.



Theory and modelling 46

The discretization of a time-dependent problem is similar to the stationary problem;

0 = L
(
U, U̇ , Ü , t

)
−NF (U, t) Λ,

0 = M (U, t) ,

where U and Λ now depend on time t.

Consider a linearised stationary problem. The linearisation ’point’ u0 corresponds to a

solution vector U0. The discretization of the linearised problem is

K(U0)(U − U0) +NF (U0)Λ = L(U0),

N(U0)(U − U0) = M(U0),

where K is called the stiffness matrix and L(U0) is the load vector. For problems given

in general or weak form, K is the Jacobian of L:

K = − ∂L
∂U

.

The entries in the stiffness matrix are computed in a similar way to the load vector,

namely by integrating certain expressions numerically. This computation is called the

assembling of the stiffness matrix [30].

If the original problem is linear, then its discretization can be written as

KU +NFΛ = L(0),

NU = M(0).

Similarly, for a time-dependent model the linearisation involves the damping matrix

D = − ∂L
∂U̇

,

and the mass matrix

E = − ∂L
∂Ü

.

3.4.4 Solver

The discrete system of equations is solved using a non-linear solver. The non-linear

solver uses an affine invariant form of the damped Newton method as described by

Deuflhard [31]. One can write the discrete form of the equations as f(U) = 0, where
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f(U) is the residual vector and U is the solution vector. Starting with the initial guess

U0, the software forms the linearised model using U0 as the linearisation point. It solves

the discretized form of the linearised model f(U0)δU = −f(U0) for the Newton step δU

using the selected linear system solver ( f(U0) is the Jacobian matrix). It then computes

the new iteration U1 = U0 + λδU , where λ(0 ≤ λ ≤ 1) is the damping factor. Next, the

modified Newton correction estimates the error E for the new iteration U1 by solving

f(U0)E = −f(U). If the relative error in the previous iteration is still high, the code

reduces the damping factor λ and recomputes U1. The algorithm repeats the damping

factor reduction until the relative error is less than in the previous iteration, or until the

damping factor underflows the minimum damping factor. When it has taken a successful

step U1 the algorithm proceeds with the next Newton iteration.

The non-linear iterations terminate when the following convergence criterion is satisfied:

Let U be the current approximation to the true solution vector, and let E be the esti-

mated error in this vector. The software stops the iterations when the relative tolerance

exceeds the relative error computed as the weighted Euclidean norm:

err =

[
1

N

N∑
i=1

(|Ei|/Wi)
2

]1/2

. (3.49)

Here N is the number of degrees of freedom (DOF’s) and Wi = max (|Ui|, Si), where

Si is a scale factor that the solver determines based on the scaling method. Here we

considered automatic scaling where Si is the average of |Uj | for all DOF’s j having the

same name as DOF’s i times a factor equal to 10−5 for a highly non-linear problem, or

0.1 otherwise.

The solution procedure is outlined in the following steps:

1. Step 1: Grid generation;

2. Step 2: Compute Initial solution using (P1 +P1) discretization and Adaptive Mesh

Refinement (AMR);

3. Step 3: Use the final grid from step 2 to compute the final solution using (P2 +P1)

discretization;

3.4.5 Adaptive Mesh Refinement (AMR)

According to Anderson [32] an adaptive mesh is a grid network that automatically

clusters grid points in regions of high flow-field gradients; it uses the solution of the

flow-field properties to locate the grid points. The author [32] states that an adaptive
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mesh can be visualized as one which evolves in steps of time in conjunction with a time-

dependent solution of the governing flow-field equations, which computes the flow-field

variables in steps of time. Anderson [32] explains that during the course of the solution,

the grid points in the physical plane move in order to adapt to regions of large flow-

field gradients as these gradients evolve with time. Hence, the actual grid points in the

physical plane are constantly in motion during the solution of the flow-field and become

stationary only when the flow solution approaches a steady state [32]. An example of

mesh refinement used in our analysis is shown in figure 3.11.

a)

b)

Figure 3.10: An example of Adaptive Mesh Refinement (AMR); a) no AMR (8304
elements); b) AMR (20159 elements).
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The following general steps were followed to adaptively refine the mesh, see Zienkiewicz

et al. [33]:

1. Find the solution using an initial coarse mesh;

2. Select a suitable representative scalar variable and calculate the local and max-

imum and minimum curvatures and directions of these at all nodes. Here the

velocity gradient components (∂u∂x ,
∂u
∂y ) were used as the representative scalar vari-

able, the reason being that we are interested in the vortical structures;

3. Calculate the new element sizes at all nodes from the maximum and minimum

curvature;

4. Calculate the stretching ratio from the ratio of calculated maximum to minimum

element sizes. If this is very high, limit by a maximum allowable value;

5. Re-mesh the whole domain based on the new element size, stretching ratio and

the direction of stretching.

To use the above procedure, an efficient unstructured mesh generator is essential. Here

we use the advancing front technique operating on the background mesh principles to

carry out the simulations. The information from the previous solution in the form of

local mesh sizes, stretching ratios and stretching directions are stored in the previous

mesh and this mesh is used as a background mesh for the new one.
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3.5 The possibility of ILES

LES incorporates a form of turbulence modelling applicable when the large scale flows

of interest are time dependent, thus introducing common statistical models into the

formulation. An alternative approach to LES involves the use of CFD algorithms, such

as upwind scheme, which introduces intrinsic sub-grid turbulence models implicitly into

the computed flow. This scheme is called Implicit LES (ILES), see Pope [6], and is very

useful in practical flow computations because it does not need any explicit turbulence

models. Unlike explicit turbulence models, ILES requires a relatively small amount of

mesh system than DNS and can reproduce transition automatically from laminar flow

to turbulent flow as well as DNS.

In this approach, the flow is governed by the equations 3.47 and 3.48. We know that

by increasing the flows Re the numerical computations become unstable due to an in-

sufficient viscous diffusion and growing non-linear effect. Therefore, we usually need

a stabilization technique such as upwind scheme to damp out high wave number non-

linear disturbance which is generated by the non-linear convective term. In order to

solve these equations, the laminar flow interface of COMSOL is utilized. In addition,

a number of stabilization techniques were utilized, see table A.10. Here we utilized

streamline diffusion stabilization for which COMSOL uses the Galerkin Least Squares

(GLS) method. Moreover, we used crosswind diffusion which tries to smear out the

boundary layer so that it becomes just wide enough to be resolved by the mesh. To

obtain a sharper solution and remove the oscillations of the solution, the mesh needs

to refined locally at the boundary layers. Here we have to use a denser mesh near the

walls where the boundary layer develops in order to satisfy the no slip condition, as

shown in figure 3.11. Given that we do not violate the inherent molecular viscosity

effect when using numerical stabilization techniques, it can be expected to realize ILES

of the flow field in principle. It is important to mention here that the model presented

in this chapter is concerned with the ILES of two-dimensional turbulence. The validity

of ILES for three-dimensional turbulence has been validated in the work of Grinstein et

al [17]. However, little attention has been made to the two-dimensional case, see Kent

et al. [34]. An assessment of ILES for two-dimensional flow is given by Kent et al. [34],

where the authors developed ILES schemes based on the FVM and assessed them in

terms of weather and climate modelling.

Pope [6] states that the advantages of the ILES approach are that (for a given grid

size) as much as possible of the turbulent flow is represented explicitly by the LES

velocity field, and that energy is removed only where and when it is necessary to do so.

It is argued that the detail of how energy is removed is unimportant, just so long as

there is a mechanism to remove the energy from the smallest removed scales without
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contaminating the larger scale. A further advantage is that the time and effort required

to develop and test a residual stress model, used in explicit LES, are eliminated.

The primary disadvantage is that the modelling and the numerics are inseparably cou-

pled. This implies that for a given flow, the simulation results depend both on the

numerical method and on the grid used. It is not possible to refine the grid to obtain

a grid-independent solution (short of performing DNS). Another disadvantage is that

there is no representation or estimation of the subgrid-scale motions that can be used

for defiltering or in models for other subgrid-scale processes.
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3.6 Roughness modelling

The flow configuration considered here is a fully developed channel flow with square (see

figure 3.11) and triangular (see figure 3.12) roughness elements at the bottom wall and a

smooth upper wall. This configuration (one rough and one smooth) is chosen to remove

the symmetry effect when both surfaces are identical and allows a comparison between

between the smooth and rough walls, see Leonardi et al. [22].Several values of w/k have

been investigated, with k = 0.1 H. The values for w/k considered are shown in figure

3.13 for square roughness. Identical distributions were used for the triangular roughness

was used (not shown).

k

k

w

λ

Roughness crest plane

Figure 3.11: Sketch of the geometry of the rough surface (square).

The triangular elements have been considered for the same pitch to height ratio. Note

that w is not constant, so it is more appropriate to use λ to denote the distance between

the elements. Here, the cavity is slightly larger than the square cavity. The angle at the

base of the triangle is 60 degrees instead of 90 degrees for the square cavity. Circular

roughness elements were also considered in the course of this research. However, during

the verification process it became evident that such a geometry required a significantly

denser mesh to meet the convergence criteria presented in the next chapter.
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k

k

w

λ

Roughness crest plane

Figure 3.12: Sketch of the geometry of the rough surface (triangle).

 w/k = 1

 w/k = 17

 w/k = 7

 w/k = 3

Figure 3.13: Sketch of the distribution of roughness elements.



Chapter 4

Verification and validation

In scientific computing, verification and validation are the primary means to asses ac-

curacy and reliability in computational simulations. In a paper titled ’Verification and

Validation in Computational Fluid Mechanics’ Oberkampf and Trucano [18] state that

”The field of CFD, in general, proceeded along a path that is largely independent of

validation.” The authors argue that the present method of qualitative ’graphical val-

idation’ i.e., comparison of computational results and experimental data on a graph,

is inadequate. To this end, a number of verification and validation procedures were

adopted from Oberkampf and Roy [19] to asses the simulations predictive capabilities.

Figure 4.1 outlines the general procedure adopted and the general aspects considered at

Figure 4.1: Outline of the verification and validation procedures.

each stage. Here the grid generation procedures were presented in the previous chapter.

Section 4.1 will give a brief description of the AIAA building block approach and its

implementation to the problem under consideration. In section 4.2 we present the pro-

cedures (convergence test, Richardson extrapolation and Grid Convergence Index) used

in the verification process to quantify the various numerical errors. Finally, in section

54
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4.3 the concept of ’validation experiments’ given by Oberkampf and Roy [19] is used to

conduct sensitivity analysis to quantify the uncertainty of the results obtained from the

simulations before comparing them with results found in literature.

4.1 AIAA building block approach

The AIAA (American Institute of Aeronautics and Astronautics) building block ap-

proach divides a complex engineering system of interest into an arbitrary number of

progressively simpler tiers. The general approach is to divide the system into three

tiers; usually referred to as sub system, benchmark and unit. The strategy of the

tiered approach encourages assessment of the model at multiple levels of complexity and

physics coupling. In our analysis, the complete system of interest is the flow over a

rough surface. The complete system was subdivided into two sub systems; the core flow

and the flow near the wall, as shown in Figure 4.2. The sub systems are further divided

into a combination of benchmark cases and unit problems, combining these two tiers is

justified due to the basic nature of the model. In this lower tier the core flow, which is

part of the system surroundings, is assumed to have a fully developed flow characteris-

tics. On the other hand, the near wall flow is the sub system of interest in our analysis.

The benchmark cases and unit problems shown in figure 4.2 reflect the phenomena un-

der consideration. Starting with the simplest case, flow over a smooth surface, model

verification and validation were carried out before introducing roughness. Once the

simple case had been validated, different roughness geometries and distributions were

considered to find a model with the best predictive capability.

4.2 Verification

According to Oberkampf and Roy [19], solution verification addresses the question

whether a given simulation of a mathematical model is sufficiently accurate for its in-

tended use. It includes not only the accuracy of the simulation for the case of interest,

but also the accuracy of the inputs to the model and any post-processing of the model

results. Quantifying the numerical accuracy of scientific computing simulations is im-

portant for two primary reasons:

• As part of the quantification of the total uncertainty in simulation prediction;

• For establishing the numerical accuracy of the simulation for model validation.
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Flow over a rough surface
(Complete System)

Core flow
(Sub System)

Near wall flow
(Sub System) 

d-typek-typeSmooth

Fully developed flow

Benchmark cases

              +
    
    Unit problems

Figure 4.2: Outline of the AIAA building block approach.

Solution verification begins after the mathematical model has been embodied in a verified

code, the initial and boundary conditions have been specified, and any other auxiliary

relations have been determined. It includes the running of the code in a mesh, or a series

of meshes, possibly to a specified iterative convergence tolerance. Solution verification

ends after all post-processing of the simulation results are completed to provide the final

simulation predictions. Therefore, the following aspects of solution verification were

considered:

• Verification of input data; and

• numerical error estimation.

4.2.1 Verification of input data

Here, input data is defined as any information required for running the simulation.

Common forms of input data include:

• Input files describing models, sub-models and numerical algorithms;

• domain grids;
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• boundary and initial conditions;

• information on material properties;

• data used for sub-models; and

• CAD surface geometry information.

Input
files

Grid
Boundary
& initial

conditions

Material
properties

Sub
models

CAD
geometry

COMSOL
Multi-Physics

● Structured
● Unstructured

Inlet
● Velocity
● Pressure

● Water
● Air

Roughness
geometry

● Square
● Half-circle
● Triangle

Figure 4.3: Outline of the aspects considered in the input data verification process

The general aspects considered in the verification process are illustrated in figure 4.3. In

our analysis, verification of the input files was not necessary as the model was developed

based on a well established FEM algorithm. Further details about the implementation

of the FEM are given by Brookes and Hughes [35] and a comprehensive study into the

error estimations of the FEM is given by Stewart and Hughes [36]. The verification

of grid, material properties, sub-models and CAD geometry was carried out using a

convergence test adopted from Trott and Gobbert [37]. The convergence test procedure

can be summarized as follows:

• Problem statement: Assess the quality of Finite Element Method (FEM) solu-

tion quantitatively for all Lagrange elements with polynomial degrees 1 ≤ P ≤ 3

available in COMSOL;
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• Approach: Use guidance from the priori error estimate

‖u− uh‖L2(Ω) ≤ Chq , as h→ 0

with a constant C independent of h and the convergence order q > 0. Here, h is

the maximum side of the elements triangulation (mesh spacing);

• Goal: Confirm that solutions on a sequence of meshes, that are uniformly refined,

behaves as predicted by the error estimates;

• FEM theory for Lagrange elements: For linear Lagrange elements (P = 1),

the optimal convergence order is q = P + 1 = 2 in ‖u− uh‖L2(Ω) ≤ Chq = Ch2.

For Lagrange FEM with polynomial degree p = 1, 2, 3 we expect q = P + 1 in

‖u− uh‖L2(Ω) ≤ Chq = ChP+1.

The convergence test results for an unstructured domain grid are given in table 4.1,

where r is the refinement level, Err2 is the error obtained from equation 3.49, Err

is the square root value of Err2, Rr is the ratio of Err between two refinements and

Qr = log2Rr. The results show the minimum grid requirement to obtain a convergent

solution. For the cases we considered a grid with a minimum number of 2878 elements

(N) and 2nd order discretization (P2+P1) was required. Running the same test on a

structured grid (results not shown here) required a higher computational effort to achieve

convergence without any improvements in accuracy. Therefore, the unstructured grid

was used throughout our analysis.

P1+P1

r N DoF Err2 Err Rr Qr Uc Cf
0 550 1337 0.00054 0.0232379001 NA NA 0.01283 4.24E-004
1 916 1824 0.00079 0.0281069386 1.2095300587 0.274446623 0.01308 4.95E-004
2 1486 2814 0.00022 0.014832397 0.5277130022 -0.9221745648 0.01399 5.13E-004
3 2878 5175 0.00065 0.0254950976 1.7188791274 0.7814680972 0.01472 5.74E-004
4 4488 7836 0.0007 0.0264575131 1.0377490433 0.053457602 0.01488 5.92E-004
5 8146 13593 0.00031 0.0176068169 0.6654751256 -0.5875433533 0.01497 5.82E-004
6 19166 31650 0.00021 0.0144913767 0.8230548918 -0.2809394438 0.01498 5.98E-004

P2+P1
0 550 3241 1.50E-012 1.22474487139159E-006 NA NA 0.015 6.00E-004
1 916 5238 1.30E-012 1.14017542509914E-006 0.9309493363 -0.1032254387 0.015 6.00E-004
2 1486 8140 5.00E-012 2.23606797749979E-006 1.9611613514 0.9717082358 0.015 6.00E-004
3 2878 15091 5.20E-010 2.28035085019828E-005 10.1980390272 3.3502198591 0.015 6.00E-004
4 4488 22954 2.00E-010 1.4142135623731E-005 0.6201736729 -0.6892558116 0.015 6.00E-004
5 8146 40089 3.00E-010 1.73205080756888E-005 1.2247448714 0.2924812504 0.015 6.00E-004
6 19166 93544 6.00E-010 2.44948974278318E-005 1.4142135624 0.5 0.015 6.00E-004

P3+P2
0 550 7745 2.70E-010 1.6431676725155E-005 NA NA 0.015 6.00E-004
1 916 12559 1.20E-009 0.000034641 2.1081851068 1.0760015467 0.015 6.00E-004
2 1486 19581 2.60E-009 5.09901951359278E-005 1.4719601444 0.5577386087 0.015 6.00E-004
3 2878 36433 3.60E-009 0.00006 1.1766968108 0.2347426417 0.015 6.00E-004
4 4488 55527 6.30E-009 7.93725393319377E-005 1.3228756555 0.403677461 0.015 6.00E-004
5 8146 97269 5.60E-009 7.48331477354788E-005 0.9428090416 -0.0849625007 0.015 6.00E-004
6 19166 227181 1.60E-008 0.0001264911 1.6903085095 0.7572865864 0.015 6.00E-004

Table 4.1: Convergence test results for a plane channel: Minimum grid requirements
are N = 2878 with 15091 DoF and 2nd order discretization (P2+P1.)

The convergence test was also used to verify the choice of boundary and initial conditions.

Previous work using LES, see Cui et al [8], suggest that a pressure boundary at the inlet
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would provide an appropriate boundary condition. However, in our analysis, obtaining

a convergent solution using this boundary condition was difficult. Therefore, a velocity

boundary condition with a parabolic profile was used throughout as the inlet boundary

condition. In order to ensure minimum errors from information on material properties

we limited the input data to the fluid density and dynamic viscosity, instead of using

the default properties form the material library provided by the software.

We expected the sub-model used to simulate the flow near the wall would be a major

source of inaccuracy, especially when considering the flow over a rough surface. This

inaccuracy will be further investigated in the numerical error estimation procedure. Er-

rors arising from the CAD surface geometry information were minimized by considering

simple geometries. Arguably, the half circle is the most complex geometry considered

here. For this geometry, it was necessary to verify that the mesh density was sufficient

to give a reasonable approximation for a half circle geometry. Results of the conver-

gence test for the various roughness elements geometries for a k- type distribution are

given in table 4.2. The results show that circular roughness elements does not meet

our convergence criteria, therefore this roughness geometry was not considered in our

analysis.

4.2.2 Numerical errors

Numerical errors occur in every scientific computing simulation, and this needs to be

estimated in order to build confidence in the mathematical accuracy of the solution.

Oberkampf and Roy [19] give the following types of numerical errors;

1. Round off error;

2. iterative error; and

3. discretization error.

The approach used for assessing the effects of round off errors on the simulation was to

run the simulation with the desired precision, then re-run the simulation with higher

precision and compare the solutions. Note that the same mesh/time-step should be

employed for both cases, and when iterative methods are used then both simulations

should be iteratively converged to within machine precision. Results for the estimation of

round-off errors are given in table 4.3. The results show that the default tolerance 0.001

has a round-off error of approximately 10−2 and decreasing the tolerance improves the

accuracy at the cost of higher computational effort. To overcome the trade-off between
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Square(w/k = 17)

P1+P1

N Err2 Err Rr Qr

5139 0.000635486 0.0252088477 NA NA

12677 3.61E-005 0.0060054475 0.2382277687 0.274446623

30897 1.03E-005 0.0032026395 0.5332890716 -0.9070103309

P2+P1

N Err2 Err Rr Qr

5193 0.000457103 0.0213799673 NA NA

14368 5.52E-006 0.0023491914 0.1098781547 -3.1860235077

35700 1.06E-006 0.0010314553 0.4390682277 -1.1874829545

Circle(w/k=17)

P1+P1

N Err2 Err Rr Qr

5528 0.00014822 0.0121745636 NA NA

13438 2.42E-005 0.0049190751 0.4040452914 -1.3074110742

31294 9.58E-006 0.003094382 0.6290576852 -0.6687357751

P2+P1

N Err2 Err Rr Qr

5528 3.65E-005 0.0060406126

14261 3.72E-006 0.0019299585 0.319497159 -1.6461249923

33931 9.68E-007 0.0009838496 0.5097775715 -0.972060194

Triangle(w/k=17)

P1+P1

N Err2 Err Rr Qr

5245 0.000352715 0.0187807082 NA NA

13076 3.12E-005 0.0055898479 0.2976377613 -1.748370522

31405 9.31E-006 0.0030505672 0.5457334784 -0.8737315453

P2+P1

N Err2 Err Rr Qr

5245 0.000215969 0.0146958838 NA NA

14410 4.43E-006 0.0021055854 0.1432772238 -2.8031188062

35198 9.29E-007 0.0009638319 0.4577500975 -1.1273679016

Table 4.2: Convergence test results for the different roughness geometries with k-
type distribution.

Plane

Tolerance Err2 Err

0.001 1.30E-004 0.0114017543

0.0001 2.40E-006 0.0015491933

0.00001 2.40E-006 0.0015491933

0.000001 1.50E-007 0.0003872983

0.00000001 9.50E-009 9.7467E-005

Table 4.3: Round-off error estimation for the plane channel.
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computational effort and accuracy the default tolerance was decreased by an order of

magnitude (0.0001) and used throughout.

In practical scientific computing problems, it may difficult to apply iterative error esti-

mations. Oberkampf and Roy [19] explain that most scientific codes monitor iterative

convergence by examining the norms of the iterative residuals. The authors explain

that, since the iterative residual norm have been shown to follow closely with the actual

iterative errors for many problems, a small number of computations should be sufficient

to determine how the iterative errors in the results scale with the iterative residuals for

the cases of interest. The results in table 4.4 show that iterative error for the different

surfaces considered here is between 10−4 − 10−7.

Residual(u) Residual(v) Residual(p)

Plane -8.59366e-6 4.43079e-6 -4.57947e-7

d-type -3.17572e-5 -4.9997e-5 -5.83345e-6

k-type -5.02957e-5 -6.06775e-4 7.19508e-6

Table 4.4: iterative error estimation

Discretization errors were estimated using the the Richardson extrapolation and the

Grid convergence Index (GCI). A Detailed description of both methods could be found in

Oberkampf and Roy [19]. Here we present the general principles used in these methods.

The results for the convergence ratio, observed order of accuracy and the GCI are given

in table 4.5 for a plane channel flow. The convergence ratio (R) shows that oscillatory

convergence has been achieved. The apparent order of discretization matches the formal

order, which meets the criterion given for the observed order of accuracy. The relative

error and GCI show that the discretization errors are below 1%.

N uc(FEM) uc(Theory)
550 0.01283 0.015
916 0.01308 0.015

1486 0.01399 0.015

R(Convergence Ratio)
-0.9170836312

r21 e32 e21
1.6654545455 0.00091 0.00025

P(Apparent Order)
2.5328142096

Approximate Relative Error
1.0066555807

GCI
0.0001183712

Table 4.5: Verification data for a plane channel using the minimum grid requirements
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4.3 Validation

Oberkampf and Roy [19] outline the following three aspects when considering model

validation:

1. Quantification of the accuracy of the computational model results by comparing

the computed system response quantities (SRQs) of interest with experimentally

measured SRQs;

2. Use of computational model to make predictions, in the sense of interpolation or

extrapolation of the model, for conditions corresponding to the model’s domain of

intended use;

3. Determination of whether the estimated accuracy of the computational model

results satisfies the accuracy requirements specified for the SRQs of interest.

The first aspect deals with assessing the accuracy of the results from the model by

comparison with available experimental data. Here we also considered data from DNS

and LES. The assessment could be conducted for the actual system of interest or any

related system. In our analysis, we considered the centre-line velocity uc and the skin

friction coefficient as our SRQs. The second aspect deals with the model’s predictive

capability. It is important to mention here that aspect 2 does not deal with aspects

of adequacy or accuracy on the prediction, but focuses on the SRQs of interest for the

applications conditions of interest. The third aspect deals with (a) the comparison of

the estimated model relative to the accuracy requirements of the model for the domains

of the model’s intended for use, and (b) the decision of inadequacy of the model over

the domain of models’s intended use.

Oberkampf and Roy [19] argue that there are two viewpoints in the interpretation of

validation in terms of the three aspects listed above. One interpretation is called the

encompassing view of validation, where all aspects are addressed. The second is the

restricted view of validation, which considers each aspect of validation separately. In

our analysis, the encompassing view was adopted due to the relative simplicity of the

problem under investigation. The validation process starts with a number of validation

experiments, shown in table 4.6, where the results are then analysed to quantify the

uncertainty and compare the results with published data. Here, uncertainty was investi-

gated in terms of the input parameters, outlined in the verification section, and physical

uncertainty is concerned with validating the assumption that the flow is fully developed.
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System Input System of Interest Validation Experiments
Channel geometry (H, L) H=2 L= 5,6,7,8,9 [m].
Initial conditions (u, v) u=0 v= 1 ·e−4, 1 · e−5, 1 · e−6, 1 · e−7[m/s].
Fluid properties (ρ, µ) ρ = 1000 µ = 0.1, 1 · e−2, 1 · e−3, 1 · e−4, 1 · e−5[Pa · s].
No-slip (τw) SRQ calculate Cf .
Time step(∆t) suitable time step ∆t = 200, 20, 2, 0.2[s]
Surroundings Input
Inlet velocity (uin) uin = parabolic uin = 0.01, 0.025, 0.05, 0.075, 0.1[m/s].
Outlet pressure (p0) p0 = 0 Fixed [Pa].

Table 4.6: List of validation experiments used to quantify input uncertainty.

4.3.1 Input uncertainty

Input uncertainty for the different parameters considered, see table 4.6, was quantified

using sensitivity analysis. The data from the unsteady simulations were collected us-

ing point-probes at certain locations in the domain, see chapter 5. Here, we present

the results for one parameter, the channel length (L), to illustrate the quantification

procedure. Using the mean and the standard deviation (std), given in table 4.7, the

uncertainty of the data obtained for uc was below 1%. This suggests that the results

of the SRQ are relatively insensitive to the range of L considered here. A graphical

representation of the uncertainty is given in figure 4.4 using a histogram plot along with

the probability density function (PDF).

uc L=5 L=6 L=7 L=8 L=9

N=10

mean 0.1494 0.1494 0.1495 0.1496 0.1494

std 2.72E-004 2.28E-004 2.58E-004 2.91E-004 2.25E-004

N=30

mean 0.1494 0.1494 0.1495 0.1495 0.1495

std 2.10E-004 2.21E-004 1.87E-004 2.37E-004 1.85E-004

N=100

mean 0.1494 0.1494 0.1495 0.1495 0.1495

std 1.99E-004 1.87E-004 1.72E-004 2.24E-004 1.72E-004

Table 4.7: Results from the sensitivity analysis for parameter L (Theoretical uc =
0.15 [m/s]).

Similar analysis were conducted for all the parameters outlined in table 4.6, following

these analysis it was evident that the dynamic viscosity parameter (used to control the

flow Reynold’s number) has the largest influence on the accuracy. The results shown

in table 4.8 demonstrate that by increasing Reynolds number the errors become larger
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Figure 4.4: Histogram including PDF for the results obtained for uc using the Pa-
rameter L=8[m].

and the accuracy becomes lower. However, for the range of Reynolds number considered

here (150-15000) the model demonstrated reasonable predictive capabilities.

µ[Pa · s] Reb Cf Cf [38] Error % Accuracy %

1 150 0.085 0.08 5.8823529412 ±1.88

0.5 300 0.0389 0.04 2.75 ±5.48

0.2 750 0.0143 0.016 10.625 ±10.2

0.1 1500 0.00687 0.008 14.125 ±14.5

0.01 15000 0.00542 0.0073325044 26.0825534983 ±18.8

Table 4.8: Results for the Errors and uncertainty estimation for parameter µ.
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4.3.2 Physical uncertainty

Physical uncertainty was investigated using a validation study to confirm the assumption

that the flow is fully developed. Patel and Head [38] define the following criteria that

describe the characteristics of a fully developed flow:

• The skin friction coefficient is related to the Reynolds number by an established

law;

• The velocity distribution in the wall region follows the well known law of the wall;

• There is no intermittency present.

Here we consider the flow in a plane channel with Re range 300-3000. The results for

Re against Cf are shown in 4.5. The results show that profile for Cf obtained by our

model closely follows the empirical relation reported by Patel and Head [38].

Figure 4.5: Comparison of the empirical and numerical Cf for different Re.
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The velocity distribution in the wall region was obtained by collecting data from 10

measurement points which are located at mid-channel and extend from the wall to the

channel centre in the y-direction. Data for the streamwise velocity (u) was collected at

different time-steps. In order to obtain the velocity distribution near the wall, the data

from the measurement points were averaged and plotted in log-format, see figure 4.6.

The results confirm that the velocity distribution follows the law of the wall.

Figure 4.6: Comparison of the velocity distribution (U+) in log-format using theory
(law of the wall), experiment ([6]) and present simulation.

Comparison with the experimental data reported in Pope [6] is given in table 4.9. The

results show that the model over-predicts the value of U+ compared with the experi-

mental values. The maximum error was observed at the overlap region and the lowest

accuracy was at the viscous sublayer.

Location y+ U+ [6] U+[Model] Error % Accuracy%

Viscous sublayer 5 4.52599 5.2234 13.3516483516 ±0.1

Buffer layer 30 13.3945 15.6854046841 14.6053272469 ±0.006

Overlap region 50 14.8012 19.9743981134 25.8991439144 ±0.03

Outer layer 70 17.4924 22.1187152984 20.9158408884 ±0.024

Table 4.9: comparison of the simulation results for U+ with experiments from Pope
[6]
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Previous research by Patel and Head [38] had shown that channel flow has an intermit-

tent character in a certain region of Reynolds numbers close to the critical Reynolds

number. By this we mean that the flow is occasionally laminar and occasionally tur-

bulent. This intermittent behaviour plays an important role in the laminar-turbulent

transition, which Schlichting [10] classifies as a stability problem. Such a problem is

beyond the scope of this work. Here, the fully developed condition was imposed by

prescribing a parabolic velocity profile at the inlet.
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4.3.3 Dependence on Reynolds number

Further validation of our model was carried out by studying the dependence of certain

flow variables on Re. The objective of this study was to validate the results by comparing

them with the observations reported by Leonardi et al [23]. Here the effects of Reynolds

number on the wall shear stress and the pressure were investigated using line integration

to validate that the dependence of these variables decreases with increasing Reynolds

number. The friction and pressure drag were calculated using line integration along

the distance between two consecutive elements (λ). The frictional drag (Cf ) and the

pressure drag (P d) were calculated as the integrals of the wall shear stress and pressure

distributions along the wall as follows:

Cf = λ−1

∫ λ

0
〈Cf 〉~s · ~x ds (4.1)

and

P d = λ−1

∫ λ

0
〈P 〉~s · ~x ds, (4.2)

where s is a coordinate that follows the wall contour, ~n is a unit vector normal to the

wall, and ~x is the unit vector along x, angular brackets denote averaging with respect to y

and t. Figure 4.7 shows the dependence of frictional and pressure drags on the Reynolds

number (Reb). The results confirm that Cf decreases as Reynolds number increases and

Pd is independent of Reynolds number for all flow configurations considered. The same

observation was made using DNS by Leonardi et al [23].
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Figure 4.7: Dependence on Re for square (top) and triangular (bottom) roughness:
symbols = w/k (w/k = 1 = (◦), w/k = 3 = (×), w/k = 7(�) and w/k = 17 = (∗)); solid

lines = Cf and dashed lines = P d.



Chapter 5

Analysis and results

In this chapter we present the analysis and results from the numerical simulations.

Section 5.1 outlines the methods used to collect data. Section 5.2 is concerned with the

statistical properties of the flow. Here the velocity time-history data was used to plot

the autocorrelation, two-point correlation and the energy spectrum to give insight into

the statistical properties of the flow. In addition, the energy spectrum plots were used

to validate the claim that the model described in chapter 3 is capable of resolving the

large eddy structures, i.e. ILES. In section 5.3 we present visualizations of the evolution

of the flow field in time. We start be showing the mean velocity vectors and streamlines,

including a comparison with the LES of Cui et al. [8]. Then, we consider the evolution

of the streamlines in time for the different surfaces considered here and demonstrate how

the roughness geometry influences the ejection motion observed in the groove between

the roughness elements. In section 5.4 we present a detailed investigation into the effects

of surface roughness on the flow using velocity profile plots at different x-locations and

wall shear stress and pressure plots. The resistance components presented in this section

are used to identify the flow separation and attachment locations along the roughened

wall. Finally, section 5.5 presents the results for the visualization of the instantaneous

velocity flow fields.

5.1 Data collection

5.1.1 Point data

The data was collected by inserting point measurement probes at certain locations in

the flow domain. The sketch shown in Figure 5.1 illustrates the locations of the data

points. The points are distributed as follows:

70
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x
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Flow  
Direction

2H
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X/W=Top X/W=0.3 X/W=0.5 X/W=0.9

Figure 5.1: Sketch of an example of the locations of points and line probes used to
collect and plot the data.

• In the streamwise direction, the first point is located at the top of the roughness

element followed by three points at the groove between the elements. For these

points, the distance x is measured from the back face of the upstream element and

normalized by the spacing between the elements (w). Hence, x/w = 0.5 is at the

centre of the cavity between the roughness elements;

• In the spanwise direction, the distance y is measured from the wall and normalized

by half the channel height (H). The distribution considered here (y/H = 0.015,

0.34, 0.67, 0.1) corresponds to where we expect the different regions of the flow

described by the law of the wall (i.e. viscous region, buffer layer, log/overlap region

and outer/core region).

A similar approach was used to collect the data from the various surfaces considered

here. The data points where placed along a single roughness length (λ) in the middle

of the roughness region. Point data was used to collect the results of the velocity time

history which in turn was used to calculate the one- and two- point correlations used

to validate the statistical properties of the results. They was also used to calculate

the energy spectrum, which is useful in examining the resolved and modelled motions.

In addition, point data was also used to plot the wall shear stress and the pressure

distributions along λ for the various surface considered here.

5.1.2 Line data

In COMSOL, line data plots gives the measurements along a predefined line inserted at

certain locations in the flow domain. Line data was used to plot the velocity profile at
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different x-locations, see appendix C.2, that correspond the the different x/w distribution

shown in figure 5.1 and extend up to H in the spanwise direction. Line data plots were

also used to plot the balance between the reaction forces in the lower and upper walls (see

appendix C.5). Here the lines extend along the upper walls in the streamwise direction.

5.1.3 Visualization

Flow visualizations were obtained using COMSOL’s built-in post-processing tools. Here

two types of visualizations were utilized; streamlines and contour maps. Section 5.3 and

appendix C gives the velocity streamlines for the different flow configurations. The con-

tour plots were obtained for the following flow variables; streamwise velocity (u), span-

wise velocity (v), friction velocity (uτ ), pressure gradient (px) and the non-dimensional

parameter y+. The flow visualizations are given in appendix C
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5.2 Velocity and energy spectrum

5.2.1 Velocity time-history and autocorrelation

The velocity time history was collected using point plots for the different surfaces at

the locations shown in figure 5.1. Here we present the data for a plane channel in order

to validate the statistical properties of the data obtained from the simulation. It is

expected that as the flow evolves in time, the velocity components will eventually reach

a steady state regardless of the spanwise location. This was indeed the case as shown in

figure 5.2. The theoretical limits for the streamwise velocity, shown in figure 5.2, were

adopted from Pope [6]. For the location close to the wall (y/H = 0.015) we expect

the velocity to be within 10 % of the bulk velocity. In the channel centre (y/H = 1)

we expect the centre-line velocity to be uc = 3
2ub. For the spanwise velocity, the limits

presented in figure 5.3 follows from the assumption that the magnitude of v is orders of

magnitude smaller than u. Therefore, one could expect that v will eventually reach zero

as the flow becomes fully developed. However, we expect that this assumption would

not hold at the channel centre where the core flow is located as shown in figure 5.3.

Figure 5.2: Streamwise velocity (u) time history for a plane channel; solid line (mea-
surements), dashed line (theory).

The time history data was used to calculate the autocorrelation of the velocity to investi-

gate the statistical properties of the flow. Autocorrelation is a ’two-point correlation’ in

time, i.e. the correlation of fluctuation with a separation in time. If u
′

is the fluctuation,

the autocorrelation reads

B11(tA, t̂) = u′(tA)u′(tA + t̂), (5.1)
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Figure 5.3: Spanwise velocity (v) time history for a plane channel; solid line (mea-
surements), dashed line (theory).

where t̂ = tC − tA, is the time separation between time A and C. If the mean flow is

steady, the ’time direction’ is homogeneous and B11 is independent of tA. In this case

the autocorrelation depends only on the time separation (t̂) i.e.

B11(t̂) = u′(t)u′(t+ t̂), (5.2)

where the right hand side is time averaged over t. The normalized autocorrelation reads

Bnorm
11 (t̂) =

1

u2
RMS

u′(t)u′(t+ t̂). (5.3)

Based on the definitions given here, a Matlab script (see appendix B) was written to

plot the autocorrelation for u and v and compare them with the DNS of Pope [6] as

shown in figure 5.4. The results show that autocorrelations obtained using ILES follow

the same general trends observed for a typical autocorrelation plot. The deviation from

the DNS profile for a separation (s) below 1 was expected due to the limitation of ILES.

The autocorrelation plots were also useful in investigating the time scale of the large

eddies. A rapid drop from 1 to 0 indicates a short time time scale, where slower drop in-

dicates a larger time scale. For streamwise velocity, the shortest time scale was observed

at the channel centre (y/H = 1). As we move closer to the wall, the eddy time scale

becomes larger. Similar observations were made from the spanwise velocity, however,

the longest time scale was observed in the buffer region (y/H = 0.34).
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Figure 5.4: One point velocity-time correlation plots compared with the DNS of Pope
[6]: Top (u velocity), Bottom (v velocity).
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5.2.2 Two-point correlation

Two point correlations are useful when describing some characteristics of the turbulence.

We start by picking two points along the y axis, say yA and yC , and sample the fluctu-

ating velocity in the y direction. We can then form the correlation of u
′

at these points

as

B11(yA, yC) = u′(yA)u′(yC), (5.4)

often expressed as

B11(yA, ŷ) = (u′(yA)u′(yA + ŷ), (5.5)

where ŷ = yC − yA is the separation distance between point A and C.

It is obvious that if we move point A and C closer to each other B11 increases; when the

points are moved so close that they merge, then B11 = u′2(yA). If on the other hand we

move point C further and further away from point A, then B11 will go to zero.

It is convenient to normalize B11 so that it varies between -1 and +1. The normalized

two-point correlation reads:

Bnorm
11 (yA, ŷ) =

1

uRMS(yA)uRMS(yA + ŷ)
u′(yA)u′(yA + ŷ), (5.6)

where the subscript RMS denotes root-mean-square, which for u
′

is defined as

uRMS =
(
u′2
)1/2

(5.7)

A Matlab script was written to calculate the two-point correlations (see appendix B)

and the profiles for u and v were compared with the DNS of Kim et al. [7], as shown in

figure 5.5. The profiles obtained using ILES follow the same general trend of the DNS.

As with the autocorrelation, deviations from the DNS profile are expected due to the

limitations of the ILES.
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Figure 5.5: Two-point correlation velocity plots compared with the DNS of Kim et
al. [7]: Top (u velocity), Bottom (v velocity)
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5.2.3 Energy spectrum

One way to verify that the model resolves the turbulence properly, i.e. comparable to

LES, is to look at the spectra of the resolved turbulence. One can analyze the time

history of a variable, here its velocity, at a point and do a Fast Fourier Transform (FFT)

of that single to get the Fourier coefficient ai and then plot a2
i . Then you get the

frequency spectrum, i.e. how much energy resides in each frequency. The Matlab code

(given in appendix B) does a FFT of the fluctuating velocity,u
′
, (u =< u > +u

′
) and

plots a2
i . In a well resolved LES we want to have the cut-off in the inertial sub-range

where the kinetic energy decays as the wave number (or frequencies) up to the power of

-5/3. Therefore we want the resolved turbulence to have a behaviour like this for high

frequencies. As shown in figure 5.6 this is indeed the case.

Resolved Modelled 

Resolved Modelled

Figure 5.6: Energy spectrum at different y- locations showing the resolved and mod-
elled motions: Top (u velocity), Bottom (v velocity).
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5.3 Flow Evolution

5.3.1 Mean velocity vectors and streamlines

The mean velocity vectors at different locations in the channel were used to investigate

the velocity profile at different streamwise locations for the different rough surfaces.

Figure 5.7 shows that for w/k = 1 the velocity profiles appear similar regardless of

streamwise location, i.e. it exhibits a d-type behavior. The results, shown in figure 5.7

a), resemble the velocity profile in a flat channel with reduced height of H − k, similar

findings were reported by [8]. Cui et al. [8] explains that the roughness layer has little

impact on the core flow except that the roughness elements block the mass flow within

the roughness layer, displacing the flow up by a distance of the roughness height. The

velocity magnitude in the cavities between the roughness elements is small.

For w/k = 3, see figure 5.7 b), and w/k = 7, not shown, the roughness disturbs the mean

flow to a greater extent. Here, the results show that the velocity profiles at different

location differ significantly. Cui et al [8] explains that the flow responds to expansion and

contraction of the passage with deceleration and acceleration. Separation zones behind

the ribs are longer than for d-type roughness where they are necessarily of length w [8].

For w/k = 17 the roughness exhibits a k- type behavior. This was demonstrated by the

dependence of the velocity on the distribution on the streamwise location. Furthermore,

separation, reattachment, and further detachment occur in the grooves between the

roughness elements. The results clearly show the effectiveness of k-type roughness in

augmenting the momentum exchange between the roughness layer and the outer flow.

Streamlines for three roughness distributions are displayed in figure 5.8 and compared

with the streamlines from the LES of Cui et al. [8]. For d-type roughness, see figure

5.8 a), the streamlines beyond the roughness height are nearly parallel and a vortex fills

the cavity between the roughness elements. This vortex has similar properties to those

encountered in the Lid-Driven cavity problem, see [8]. For intermediate roughness,

see figure 5.8 b), a vortex of the same size as the groove (w) is formed between the

roughness elements. This vortex prevents the outer flow from reattaching to the channel

floor within the groove, and a smaller vortex with opposite circulation is found in the

lower corner behind the roughness element [8]. Streamlines above the cavity are still

nearly parallel except near the top of the roughness element.

Streamlines for k-type roughness, see figure 5.8 c), reveal a number of separation zones

associated with the roughness geometry. For the square elements a small separation zone

is formed on the top of the element as the sharp front edge of the square block deflects

the flow from the previous groove. A large separation region is downstream of the
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a)

b)

c)

Figure 5.7: Mean velocity vectors at different locations in the channel: a) d-type; b)
intermediate; c) k-type.
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a)

b)

c)

Figure 5.8: Mean streamlines for a) d-type, b) intermediate, and c) k-type compared
with Cui et al [8] (inset).
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square block accompanied by a a small vortex at the lower corner behind the roughness

element. The flow reattaches to the channel floor and detaches again, forming a vortex

upstream of the next roughness element. Interestingly, the reattachment point is about

four times the roughness height [8]. Though streamlines far away from the roughness

element are nearly parallel, in the lower half of the channel they undulate in response

to the roughness geometry.

5.3.2 Evolution of velocity streamlines in time

The evolution of the velocity streamlines in time for the various surfaces considered here

are given in appendix C.1. The results show the velocity streamlines at different time

steps. The streamline plots were useful in visualizing the recirculating motion formed

between the roughness elements close to the wall. The streamlines for the d-type surfaces

(w/k = 1) show that the recirculation between the grooves reaches a quasi-steady state

as the flow evolves over time. The ejection of fluid from the grooves onto the mean flow,

reported by Djenidi et al [20], was also observed here. The results demonstrate that

the roughness geometry has a strong influence on the direction of this ejection motion.

Figure 5.9 shows that the ejected fluid is projected at angle that follows the surface

contours. For square roughness, the fluid is ejected upwards following the 90 degree

sharp corners that make up the square elements. For triangular roughness, the fluid is

ejected upwards at a 60 degree angle. This suggests that square roughness will eject

the bulk of the fluid from the grooves directly onto the mean flow. On the other hand,

triangular roughness ejects the bulk of the fluid onto the next groove. The result is

that triangular roughness elements produce a more stable recirculation in the grooves

compared to the square elements.

For intermediate roughness (w/k = 3 and w/k = 7) the streamlines suggest a combina-

tion of d- and k- type behaviours. Our results show that for w/k = 3 d- type behaviour

dominates the flow, where for w/k = 7 k- type behaviour is dominant. The velocity

streamlines for w/k = 3 show that two recirculation regions are formed in the grooves

at t = 10s, where the recirculation spans the entire groove. As the flow evolves in time,

the flow is accelerated and the recirculation regions feed into each other and overshoot

into the next groove. Eventually, the flow reaches a quasi-steady state similar to the

one observed for the d- type surface. For w/k = 7, two recirculation regions are formed

within the grooves, however, their size does not span the entire groove. Once the flow

has reached the quasi-steady state, unstable recirculation that spans the entire groove

is formed. The recirculation is somewhat similar to the one observed over the w/k = 3,

however, the recirculation here is stretched due to the increase in distance between the

elements, hence why the recirculation becomes unstable.
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Flow 
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direction

Stable 
Recirculation region

Figure 5.9: Illustration of the fluid ejection observed over d-type roughness for square
and triangular roughness.

Results for the k-type roughness (w/k = 17) show that a recirculation zone behind the

roughness element is formed at t = 10s. The recirculation regions extends a distance of

approximately four times the roughness height downstream from the roughness element.

As the flow evolves, the recirculation region moves downstream until it eventually reaches

the second roughness element downstream and the fluid is ejected into the mean flow.

Figure 5.10 shows that the roughness geometry influences the direction of the fluid

ejection. The results demonstrate that for square roughness the recirculation is stretched

to span the entire groove at the final time step. On the other hand, a second recirculation

region is formed at the front side of the trailing element for triangular roughness.
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direction
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Figure 5.10: Illustration of the fluid ejection observed over k-type roughness for
square and triangular roughness.
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5.4 Effects of surface roughness

5.4.1 Velocity profile at different x-locations

The velocity profiles at different x-locations were used to further investigate the effects

of roughness and the roughness geometry on the mean flow. The velocity profile plots

within a single roughness distance (λ) are given in appendix C.2. The velocity profiles

were obtained using line plots in the locations outlined in figure 5.1 and the values of u

and v were normalized by the bulk velocity (ub). The profiles presented here are for the

Reynolds number 1.5× 104.

The results show that even though the flow field changes dramatically over the rough

wall, the streamwise velocity profiles are not affected beyond some distance (given in

table 5.1) from the bottom wall. This observation was made for both roughness geome-

tries considered here. The results for the spanwise velocity profiles are strongly affected

by the x-location and the roughness geometry. Based on these observations, we could

divide the flow over a rough surface into two regions; an inner region where the flow

depends on the roughness geometry, and an outer one where it is essentially independent

of the roughness geometry. An estimation of the extent of these layers could be made

using the velocity profile plots, as shown in figure 5.11 for square roughness and figure

5.12 for triangular roughness. Here we only consider the d-type surface for illustration.

The estimated locations of the inner/outer region overlap are given in table 5.1. Cui et

al. [8] states that the beginning of the outer layer is strongly related to the roughness

geometry and Reynolds number.

Surface vmax vmin Inner/outer location [y/H]

w/k = 1 (s) 0.015 -0.02 0.2

w/k = 1 (t) 0.013 -0.006 0.15

w/k = 3 (s) 0.01 -0.012 0.2

w/k = 3 (t) 0.012 -0.012 0.25

w/k = 7 (s) 0.012 -0.01 0.25

w/k = 7 (t) 0.01 -0.008 0.31

w/k = 17 (s) 0.045 -0.025 0.5

w/k = 17 (t) 0.085 -0.01 0.4

Table 5.1: Results for the magnitude of spanwise velocity and inner/outer regions
overlap location

The streamwise velocity profiles were extensively analysed in the work of Cui et al

[8]. Therefore, we focus our analysis here to the results obtained for the spanwise

velocity. The spanwise velocity was useful in further investigating the ejection and

sweeping motions observed in the flow over rough walls. The results in table 5.1 show the
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inner outer

Figure 5.11: Velocity profiles used to estimate the overlap location of the inner/outer
regions for square d- type roughness.

inner outer

Figure 5.12: Velocity profiles used to estimate the overlap location of the inner/outer
regions for triangular d- type roughness
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magnitude of the ejection (vmax) and sweep (vmin) for the different surfaces considered

here. The results show that for d- type roughness (w/k = 1) the square roughness has a

higher magnitudes of ejection and sweep compared to the triangular roughness. For k-

type roughness, however, triangular roughness has a higher magnitude for ejection and

square roughness has a higher magnitude for sweep. Overall, it could be argued that

the effects of the spanwise velocity are minimal compared to the streamwise velocity.

However, the results shown here demonstrate that the spanwise velocity profiles are

important in determining the locations and magnitude of the ejection and sweep motions

generally observed in the flow over rough surfaces. We have shown here that when

combining the two profiles, it is possible to estimate the location where the inner region

ends and the outer region begins.
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5.4.2 Wall shear stress and pressure

Figure 5.13 shows the wall shear stress distribution between successive roughness ele-

ments. The friction coefficient, Cf , is defined as:

Cf =
τw

0.5ρU2
b

, (5.8)

where the wall shear stress,τw, is calculated from the slope of the velocity at the wall.

Measurements were taken at six locations in the x -direction at the wall. The first

three points are located at the front side, top, and back side of the roughness elements.

In the cavity, three measurement points were located at x/w = 0.3, 0.5 and 0.9. The

results show that for both square and triangular roughness the friction coefficient at the

front and back sides of the roughness element is zero. Strong positive friction coefficient

was observed in the roughness region, the general trend observed for both surfaces is

the increase of Cf along the the front side to the top and a decrease along the top to

the backside. However, the maximum value is Cf varies with the different roughness

geometry. For square roughness, the magnitude of Cf is lowest for w/k =1 and increases

with the increase in w/k. However, for the triangular roughness the results show that

starting with w/k =1, Cf decreases for w/k =3 and 7 but reaches the maximum value

for w/k=17. At the cavity, both d-type surfaces, w/k = 1, show a uniform distribution

of Cf with a small negative value at the centre, x/w = 0.5. These results suggests that

for d-type roughness the cavity is filled with separated flow where Cf is negative on the

cavity floor. The reversed flow is weak, and the magnitude of Cf is small compared

to the intermediate and k-type roughness. The k-type behaviour, which is generally

associated with the sign reversals of Cf in the cavity (see Cui et al. [8]), was observed

for w/k = 7 over the square roughness, and w/k=3 for the triangular roughness.

Figure 5.14 displays the pressure distribution between two consecutive roughness ele-

ments. The pressure coefficient,Cp, is defined as:

Cp =
∆p

0.5ρU2
b

(5.9)

For the square roughness elements, the pressure distribution varies with the surface. For

w/k= 3 and 7 the pressure coefficient is non-zero at the front side, suggesting an adverse

pressure gradient. At the top w/k=3 Cp is zero but for w/k=7 the pressure coefficient

remains positive and reaches zero at the back side. For w/k=1 and 17 an adverse pressure
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Figure 5.13: Wall shear stress distribution along one roughness length (λ): Top
(square), Bottom (triangle).

gradient is observed at the front side and a favourable pressure gradient on the back

side. This trend was also observed for all the surfaces with triangular roughness. At the

cavity, the pressure coefficient is very small for all surfaces considered compared with

rough region. However, for square roughness with w/k = 7 and 17 a small favourable

pressure gradient was observed at x/w=0.9.

In order to visualize the friction layer formed, the wall shear stress measurements were

used to plot a contour map of the friction velocity defined as

uτ =

√
τw
ρ
. (5.10)
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Figure 5.14: Pressure distribution along one roughness length (λ): Top (square),
Bottom (triangle)

The flow evolution results, given in appendix C.3 and figure 5.15, show that the shape

of the roughness element has a strong influence on the interaction between the inner and

outer layers. For square roughness, the maximum friction velocity is located close to

the roughness crest plane for w/k=1 and 3, mainly at the leading edge of the roughness

element. There is limited interaction between the inner and outer layers. For w/k=7 and

17 the separation between the elements is large enough to expose the friction layer to the

mean flow, resulting in a strong interaction between the inner and outer layers. Details

of this friction layer are slightly different for the triangular elements, as shown in figure

5.15. Here a localised maximum was observed at the peak of the roughness elements.

Due to the shape of the roughness element the flow is decelerated as it approaches the

top from the front side and accelerated as it moves from the top along the backside.
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Here the interaction between the inner and outer layer does not take place along the

entire crest plane, a recirculation zone is formed at the peak of the roughness element

which interacts with the mean flow. Similar to the square roughness, for w/k=1 and 3

a relatively stable friction layer is formed above the crest plane resulting in a limited

interaction between the inner and outer layers and increasing the separation distance

between the roughness elements. This has the same effect of exposing the friction layer

to the mean flow.

A visualization of the evolution of the pressure gradients in the flow were also consid-

ered. The results given in appendix C.4 and figure 5.16 demonstrated that the roughness

geometry has little effect on the overall characteristics of the pressure gradients. How-

ever, it was observed the roughness geometry has a direct effect on the magnitude of the

pressure gradients. For d-type roughness, an adverse pressure gradient is formed at the

leading roughness element and the front side of the subsequent roughness elements. For

the square roughness, the magnitude of the pressure gradient is larger because of the

sharp corners present in the square geometry. The results show that replacing square

elements with triangular ones will reduce the pressure gradient by around 23 %.
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H
inner

outer

Friction layer

a)

Friction layer

b)

Figure 5.15: Visualization of the friction layer using the contour map of the friction
velocity (uτ =

√
τw/ρ).
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Adverse

Adverse

Favourable

Favourable

Figure 5.16: Visualization of the pressure gradient px normalized by (0.5ρu2b).
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5.4.3 Resistance components

The resistance components were plotted along the lower wall in the streamwise direction

using the reaction force operator reacf () in COMSOL. The reaction force operator

evaluates the reaction force at each node point where a constraint is applied. This

operator is useful when calculating integrals of reaction forces. Here the reaction force

in the streamwise reacf(u) and spanwise reacf(v) were used to investigate the separation

and reattachment along the rough wall. The separation condition used to analyse the

data in appendix C.5 is based on the arguments of Tritton [5]. Starting with the equation

for the rate of change of vorticity

Dω

Dt
= ω · ∇u+ ν∇2ω (5.11)

and considering a steady two-dimensional flow for simplicity is sufficient to illustrate

the principles involved, although the details of three-dimensional and unsteady flow are

considerably more complicated. The restriction to two-dimensional flow is simplifying

because it involves vorticity; since only one component of the vorticity is non-zero, we

can discuss it as a scalar. Furthermore, the term ω · ∇u = 0 in the vorticity equation

above; the argument is not complicated by the processes contained in this term. Only

advection (u · ∇ω) and viscous diffusion (ν∇2ω) of vorticity are involved.

Separation point Region of positive ζ

Figure 5.17: An illustration of the separation point and positive ζ region for square
roughness using velocity streamlines and vectors superimposed on the vorticity contour

plot

We take the coordinates as usual, x- the streamwise and y- the spanwise directions. The

non-zero vorticity is thus the z-component(ζ) governed by the equation
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Separation point Region of positive ζ

Figure 5.18: An illustration of the separation point and positive ζ region for triangular
roughness using velocity streamlines and vectors superimposed on the vorticity contour

plot

u · ∇ζ = ν∇2ζ. (5.12)

By definition,

ζ =
∂v

∂x
− ∂u

∂y
(5.13)

and consequently

∂ζ

∂y
=

∂2v

∂x∂y
− ∂2u

∂y2
. (5.14)

At the wall, y = 0, one has u = 0 and v = 0 for all x, giving

(∂v/∂x)y=0 = 0. (5.15)

Additionally the continuity equation

∂u

∂x
+
∂v

∂y
= 0 (5.16)



Analysis and results 96

implies that

(∂v/∂y)y=0 = 0 (5.17)

and thus

(∂2v/∂x∂y)y=0 = 0. (5.18)

Hence, at the wall

ζ = −∂u/∂u (5.19)

and

∂ζ

∂y
= −∂

2u

∂y2
. (5.20)

Tritton [5] explains that the location of separation could be identified by observing the

sign change of vorticity, (∂u/∂y)y=0 from equation 5.19. Therefore, separation involves

the existence of a region in which the vorticity has the opposite sign of that associated

with the flow as a whole. The key to understanding when separation may occur is to

understand how this reversed vorticity is introduced into the flow. Note that the mean

flow is in the positive x-direction and the distance from the wall is y+ and ζ is negative

in the oncoming flow. Hence, the region of reversed vorticity is one of positive ζ, as

illustrated in figure 5.23 for square roughness and figure 5.24 for triangular roughness.

Consider now how the x-component of the Navier-Stokes equations

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂p

∂x
+ ν

∂2u

∂x2
+ ν

∂2u

∂y2
(5.21)

simplifies close to the boundary. From considerations similar to those above about the

boundary conditions this becomes

−1

ρ

∂p

∂x
+ ν

∂2u

∂y2
= 0 (5.22)

at y = 0. Equation then gives

1

ρ

∂p

∂x
+ ν

∂ζ

∂y
= 0 (5.23)

at y = 0. The pressure gradient along the wall and the vorticity gradient normal to the

wall are thus related.
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It should be noted that equation 5.23 is not a general relationship but one that applies

specifically at the wall as a result of the boundary conditions. The action of viscosity

on vorticity is essentially one of diffusion down the vorticity gradient. The sign of the

vorticity gradient at the wall thus determines the sign of the vorticity being introduced

into the flow at the wall. Introduction of positive ζ into a flow predominantly negative

ζ thus requires a region on the wall over which ∂ζ/∂y is negative. Equation 5.23 tells

us that this corresponds to their being a region with

∂p/∂x > 0. (5.24)

The flow before the separation has been taken to be in the positive x-direction and

relation 5.24 therefore means that the pressure must be rising in the flow direction i.e.

adverse. Relation 5.24 is necessary but not sufficient condition for separation. Whether

diffusion of positive vorticity into the flow produces a region of positive vorticity de-

pends on whether this diffusion more than counter balances diffusion from the regions

of negative vorticity i.e. on the whole vorticity balance of equation 5.12. The important

point is that without this diffusion, there is no mechanism for a region of positive vor-

ticity to arise. According to Tritton [5], attachment could be viewed as the opposite of

separation.

Entry section Rough section Exit section

Lower wall

Upper wall

Flow
direction

Figure 5.19: Sketch showing the flow sections.

Based on the separation condition described here and the flow sections illustrated in

figure 5.19, the reaction forces from the upper and lower were plotted to investigate the

separation and attachment locations along the lower wall in the channel. Figure 5.20

shows an example of how the reaction force plots were used to determine the locations of
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Figure 5.20: An example showing how the separation and attachment were deter-
mined from the reaction force plots: S= separation, a= attachment.

separation and attachment for a d- type surface with square roughness. It is important

to note here that separation is a complex phenomena. Based on the data obtained here,

the separation observed over a rough surface could be classified as follows:

1. Primary separation: This is indicated by a sign reversal of both reaction forces

which correspond to the flow lifting up from the wall and generally observed to be

steady;

2. Secondary separation: indicated by a sign reversal of one of the reaction forces.

This type of separation appears downstream of the primary separation, and gen-

erally correspond to the separated flow attempting to reattach at the wall and is
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observed to be highly unsteady.

A sketch of the flow showing the separation and attachment locations for k- and d- type

surfaces is given in figure 5.21. The results demonstrate that the flow over the d-type

roughness is generally separated along the rough section of the flow and reattaches at the

exit section close to the trailing roughness element. In the case of k- type roughness, the

flow separates close to the leading roughness element and reattaches and then separates

again at the groove between the roughness elements. Similar observations were made

using LES by Cui et al [8].

Primary 
separation

Secondary 
separation

Attachment

Secondary 
separation Attachment

Primary 
separation

Figure 5.21: Sketch illustrating the locations of separation and attachment observed
over k- and d- type rough surfaces.

The effects of the roughness geometry on the separation and attachment are illustrated

in figure 5.22. The results demonstrated that the roughness geometry affects the location

of primary separation close to the leading roughness element. For square roughness, the

primary separation is located slightly upstream of the lower corner of the roughness

element. Secondary separation and attachment takes place at the top of roughness

element. The primary separation for the triangular roughness is located closer to the

corner of the leading element. Secondary separation occurs at the front side of the

roughness geometry and attachment at the occurs at the backside.
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S1

S2 a

S1

S2 a

Figure 5.22: Sketch illustrating the effects of roughness geometry on the separation
and attachment: S1 = primary separation, S2= secondary separation, a= attachment.
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5.5 Instantaneous velocity fields

The following definitions were used in analysing the instantaneous velocity fields ob-

tained using contour maps of the streamwise (u) and spanwise (v) velocities normalized

by the bulk velocity (ub), given in appendix C.6. It is possible to the classify the flow

in a channel on the basis of many criteria, here we focus on the criteria based on the

variation of the depth of certain flow regions (y) in time (t) and space (x). To this end

we consider two criterion based on time and space as follows:

• If time is the criterion, then the flow may be classified as either steady; which

implies that the depth of the flow region does not change with time (∂y/∂t = 0)

or unsteady; which implies that the depth does change with time (∂y/∂t 6= 0);

• Similarly, if space is used as the criterion, then the flow may be classified as

uniform, if the depth does not vary with distance (∂y/∂x = 0) or non-uniform, if

the depth does vary with distance (∂y/∂x 6= 0).

Negative/steady 
recirculation

Steady/uniform flow

Figure 5.23: Visualization of the steady recirculation region using u velocity contour
plot for d- type roughness.

The velocity fields for the square and triangular roughness were very similar. Therefore,

we only present the results for square roughness here. The results show that for d-type

roughness, see figure 5.23, a stable/steady negative recirculation forms in the cavity

between the roughness elements and the flow over the roughness crest plane is relatively

steady and uniform. The spanwise velocity contour plot (figure 5.24) shows that in the

cavity two regions of sweeping and ejection motion are formed within the cavity. The
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Ejection Sweep

Steady motion

Figure 5.24: Visualization of the steady motion using v velocity contour plot for
d-type roughness.

Unsteady recirculation

Steady/uniform flow

Figure 5.25: Visualization of the unsteady recirculation region using u velocity con-
tour plot for k- type roughness.
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SweepEjection

Figure 5.26: Visualization of the unsteady ejection and sweep motions using v velocity
contour plot for k- type roughness.

results demonstrate that the motion within the cavity is relatively steady despite the

strong interaction with the mean flow. For k-type roughness, the streamwsise velocity

plots show that the recirculation between the roughness elements is highly unsteady,

see figure 5.25. However, after two roughness heights in the spanwise direction the flow

is relatively steady and uniform. The spanwise velocity plots shows a steady sweeping

motion and unsteady ejection, see figure 5.26. Further investigation into the sweeping

and ejection motions will be discussed in the next chapter.



Chapter 6

Discussion

6.1 Predictive capabilities of the ILES model

The validation results in chapter 4 show that the results given for the base model (plane

channel) demonstrate reasonably good predictive capabilities. The results for Cf , given

in table 4.8, show an error below 30 % when compared to the experimental results

of Patel and Head [38]. Similar observations were made for U+, shown in table 4.9,

compared to the experimental results reported in Pope [6]. It is important to note here

that the results obtained for Cf had a much higher uncertainty compared to U+. This

observation demonstrates the models limitations in accurately predicting Cf . However,

this was expected as accurate measurements of the wall shear stress are difficult to obtain

without resorting to a full LES or DNS. The Re dependence study further validated the

models predictive capability by showing that the friction drag dependence on Reynolds

number decreases with the increase of the flow’s Reynolds number, as shown in figure

4.7.

The results for the autocorrelation (see figure 5.4) and two-point correlation (see figure

5.5) plots showed reasonable capability for predicting the statistical properties of the

flow. The energy spectrum plots, given in figure 5.6, shows the resolved and modelled

motions. This graph demonstrates the model’s capability in resolving the large scale

motions, which one would expect from any LES. The comparison of the streamlines

obtained from the current model and the LES of Cui et al. [8] (see figure 5.8) give

further confirmation that the model is capable of resolving these large scale motions

with reasonable accuracy.

It is important to mention here that the ILES described here is for two-dimensional

turbulence. Following from Kent et al. [34] the qualitative difference between three-

and two- dimensional turbulence could be outlined as follows:

104
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• For three-dimensional incompressible turbulence in neutral stratification, energy

is an important conservable quantity; on average, energy cascades downscale from

the large scales to the small scales.

• In contrast, two-dimensional incompressible flow has a material invariant, the (ab-

solute) vorticity, implying an infinite family of conserved moments of vorticity.

Here, the energy is transferred upscale and it is the enstrophy that cascades down

scale.

The authors explain further that the upscale transfer of energy might make ILES

less suitable for modelling two-dimensional turbulence; ILES tends to be less accu-

rate for three-dimensional turbulence in situations with significant upscale energy trans-

fer, such as near walls. On the other hand, the energy spectrum is much steeper in

two-dimensional turbulence than in three-dimensional turbulence, suggesting a stronger

slaving of small scales to large, which could make two-dimensional turbulence amenable

to the ILES approach.

Overall, the results demonstrate the models capabilities in predicting the qualitative

data of the flow. An accurate prediction of the quantitative data was difficult due to the

models limitations to two-dimensional turbulence. Improving the predictive capabilities

of the quantitative data will require implementing an explicit scheme to model the flow

near the wall.

6.2 Coherent structures

According to Gad El Hak [2], despite the extensive research work into coherent structures

in turbulent flow, no generally accepted definition of what is meant by coherent motion

has emerged. The author [2] provides two different views, the first is general and the

second more restrictive:

• A coherent motion is defined as a region of the flow over which at least one funda-

mental flow variable exhibits significant correlation with itself or another variable

over a range of space/or time that is significantly larger than the smallest local

scales of the flow;

• The restrictive definition states that a coherent structure is a connected turbulent

fluid mass with instantaneously correlated vorticity over its spatial extent.



Discussion 106

In general, the challenge here is to identify a coherent structure well hidden in an area

of random background when such a structure is present either in a visual impression of

the flow or in an instantaneous velocity or pressure data plots.

In wall bounded flow, the turbulence production process is dominated by the three kinds

of quasi-periodic eddies, see Gad El Hak [2]; the larger outer structures, the intermediate

Falco eddies and the near wall eddies. Typical flow regimes associated with wall bounded

flow are shown in figures 6.1 and 6.2 for d- and k- type surfaces. The figures include the

contour plots of the non-dimensional parameter y+. The illustrations show that, using

the contour plots, we were able to identify the different flow regimes that are observed in

a typical wall bounded flow and visualize the coherent structures formed within them.

The results given in appendix C.7 show the evolution of these coherent structures in

time.

Viscous sublayer

Core flow

Buffer 
layer

Log 
layer

Figure 6.1: Visualization of the flow regimes for a d- type surface using y+.

Figure 6.1 shows that for d- type roughness, the limit of the viscous sublayer coincides

with the the roughness crest plane and the flow in the log-law region is relatively stable.

On the other hand, k- type roughness shifts the extent of the viscous sublayer slightly

below the roughness crest plane. The result is a much active buffer layer, compared to

d- type, as illustrated by the turbulent spots observed in the log-law region, as shown

in figure 6.2.
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Viscous sublayer

Core flow

Buffer 
layer

Log 
layer

Figure 6.2: Visualization of the flow regimes for a k- type surface using y+.
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6.2.1 Outer structures

Visualization experiments reported in Gad El Hak [2] show large three dimensional

bulges that scale with the boundary layer thickness and extend across the entire bound-

ary layer. These eddies control the dynamics of the boundary layer in the outer region

such as entrainment, turbulence production and so forth. The large eddies are charac-

terized by a sharp interface and a highly contorted surface that exhibits a significant

amount of folding. They appear randomly (quasi-periodically) in space and time and

seem to be, at least for moderate Reynolds number, the residue of the transitional

Emonons spots, see Gad El Hak [2]. Visualization of the flow field close to the channel

centre confirmed that our model is capable of predicting the characteristics outlined by

Gad El Hak [2] for the outer structures , as shown in figure 6.3.

Figure 6.3: Visualization of the outer structures close to the channel centre.

6.2.2 Intermediate eddies

Intermediate eddies, also known as Falco eddies, are also highly coherent and three di-

mensional. They are named typical eddies because they appear in wakes, jets, boundary

layers and other flow types, see Gad El Hak[2]. The characteristic scales are obtained

from the magnitude of the mean vorticity in the region and its viscous diffusion away

from the wall. This viscous time scale, tν , is given by the inverse of the mean wall

vorticity

tν =

[
∂U

∂y

]−1

w

(6.1)

and the viscous length scale, lν , is determined by the characteristic distance by which

the spanwise vorticity is diffused away from the wall. This is given by

lν =
√
νtν . (6.2)
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Based on the visualization experiments in a wind tunnel reported in [2], the Falco eddies

appear to be an important link between the large structures and the near wall events.

From these experiments, fingerprints of typical Falco eddies were identified as pockets.

Further research by Splarat [39] confirmed that pockets are the signature of local wall-

ward motions, evidenced by spanwise divergence of streamlines, above regions of high

wall pressure. Low pressure regions, on the other hand, occur along lines of converg-

ing streamlines associated with outward motion. These motions are the sweep and the

ejection events , respectively. Visualizations of the Falco eddies are given in appendix

C.8 (using equation 6.2) and details of the ejection and sweeping motions were obtained

from the visualization of the instantaneous spanwise velocity fields, as shown in figures

5.24 and 5.26.

6.2.3 Near-wall eddies

The third kind of eddies exist in the wall region, where the Reynolds stresses is produced

in an intermittent fashion. Half of the total production of turbulence kinetic energy takes

place near the wall in the first 5 % of the boundary layer at moderate Reynolds number,

and the dominant sequence of intense organized motions there are collectively termed

the bursting phenomenon, see Gad El Hak [2]. To focus the discussion on the bursting

process and its possible relationship to other organized motions we refer to the schematic

in figure 6.4.

Qualitatively, the process begins with elongated, counter rotating, streamwise vortices.

The counter rotating vortices exist in a strong shear and induce low- and high- speed

regions between them . It was observed, see Gad El Hak [2], that the low speed regions

grow downstream, lift up, and develop (instantaneous) inflectional u(y) profiles. At

approximately the same time, the interface between the low- and high- speed fluid begins

to oscillate, signalling the onset of secondary instabilities. The low speed regions lift up

away from the wall as the oscillation amplitude increases, and then the flow rapidly

breaks up into a completely chaotic motion. The streak oscillation commences at y+ ≈
10 ,for a plane channel, and the abrupt break up takes place in the buffer, although the

ejected fluid reaches all the way to the logarithmic region. Because the breakup process

occurs on a very short time scale it is called a burst. Virtually all of the kinetic energy

in the near-wall region occurs during these bursts.

It was reported, see Gad El Hak [2], that the ejection phase of the bursting process is

followed by large scale motion of upstream fluid that emanates from the outer region

and cleanses (sweeps) the wall region of the previously ejected fluid. The sweep phase

is, of course, required by the continuity equation and appears to scale with the outer
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Low-speed streaks

u(y)
Inflectional profile

Instability mechanism

Oscillations u-v

Lift-up

EjectionsBreakup & mixing

Large-scale outer
 structures

Pockets

Sweep

?

?

?

Figure 6.4: Simplified sequence of the bursting process. The arrows indicate the
sequential events, and the ’?’ indicates less supporting evidence [adopted from Gad el

Hak [2]
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flow variables. The sweep event seem to stabilize the bursting site, in effect preparing it

for a new cycle. Similar observations were made from the visualizations of the velocity

streamlines (appendix C.1 and Instantaneous velocity plots (appendix C.6).

6.3 Roughness classification

Based on the results reported here, roughness can be classified based on the elements

distribution (w/k) as follows:

• For w/k ≤ 1 roughness exhibits a d- type behaviour;

• For 3 ≥ w/k ≤ 7 roughness exhibits both k- and d- type behaviours;

• For w/k ≥ 7 roughness exhibits k- type behaviour.

A graphical representation is presented in figure 6.5 that includes design applications

for each type. The results confirm that the early classification of roughness proposed by

Perry et al. [3] based on the state of vortex shedding is an over simplification. Using

the friction and pressure contributions to drag, as proposed by Leonardi et al. [23], is

a more comprehensive approach but requires a highly accurate numerical model. Here

we propose a classification based on the coherent eddy structures associated with the

different rough surfaces considered. Starting with d-type (w/k=1), the flow alternates

between no slip at the top of the roughness element and slip at the cavity. In this

case the cavity if filled with a steady recirculation region similar to the one observed in

the lid-cavity problem. As the distribution between the elements increases (w/k > 1)

this recirculation region is stretched and the recirculation becomes unsteady resulting

in a strong interaction between the inner and outer layers of the flow. For distributions

between w/k =3 and w/k = 7 the flow exhibits both k- and d- type characteristics. For

distributions larger than w/k = 7 the recirculating flow between the roughness elements

separates at the cavity floor and reattaches close to the roughness element downstream.

This results in the vortex shedding observed in the flow over k- type rough surfaces. The

graphical illustration given in figure 6.5 also shows design applications associated with

k- and d- type roughness that were reported in the literature concerned with the flow

over rough walls, see Djenidi et al [20], Cui et al [8] and Jimenez [11].

6.4 Effects of roughness geometry

Visualizations of the friction velocity (figure 5.15) and the pressure gradients (figure 5.16)

show how the roughness geometry affects the roughness (inner) layer. An investigation
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w/k = 1 w/k = 3 w/k = 7 w /k = 17

d- type Intermediate k- type

Drag reduction Effective exchange of momentum 
between inner/outer layers

Figure 6.5: Illustration of the roughness classification based on the distribution of
the roughness elements

into the resistance components demonstrated the different characteristics imposed by the

roughness geometry on the state of flow separation and attachment, as shown figure 5.22.

Comparison of the flow Reb, given it table 6.1, show that the overall increase in Reb is

relatively small compared to the smooth case. This confirms that the roughness geometry

has little effect on the mean flow for the entire range of Re considered here. However,

Plane w/k = 1 w/k=3 w/k=7 w/k=17

Reb Reb(s) Reb(t) Reb(s) Reb(t) Reb(s) Reb(t) Reb(s) Reb(t)

150 153 153 153 152 152 151 151 151

300 305 305 305 304 304 303 303 302

750 761 760 761 759 759 757 757 755

1500 1520 1518 1520 1517 1518 1514 1514 1512

15000 15218 15176 15159 15138 15144 15214 15192 15158

Table 6.1: Comparison of Reynolds number based on the bulk velocity Reb for the
plane and roughened channels: (s = square, t = triangular).

as we discussed in section 5.4, the effects of the roughness geometry are confined to the

inner layer of the flow. We have identified some of these effects by plotting the resistance

components along the wall to identify the separation and attachment locations, as shown

in figure 5.20. Visualizations of the pressure gradients revealed that the roughness
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geometry has a major influence on the location of the adverse and favourable pressure

gradients along the rough wall, as shown in 5.16.



Chapter 7

Conclusion

All of the major objectives of this research work have been satisfied. It has been demon-

strated that the FEM used by COMSOL is capable of conducting an Implicit Large Eddy

Simulation (ILES) for two-dimensional turbulent channel flow with one sided roughness

up to Reynolds number of order 104. This was a major outcome of this research as

COMSOL does not include a dedicated LES solver.

An investigation into the pressure and friction drags to the total stress, proposed by

Leonardi et al. [23], demonstrated a better approach to classifying roughness, as opposed

to the vortex shedding approach reported by Perry et al. [3]. However, the approach

proposed by Leonardi et al. [23] requires highly accurate measurements of the stresses

near wall, which is currently feasible only through DNS.

Results from the velocity profiles show that the flow over rough surfaces could be divided

into two regions; an inner (viscous and buffer regimes) and outer regions (logarithmic and

outer regimes). The velocity plots along different x- locations in the roughened channel

show that the roughness geometry effects are generally confined to the inner layer. The

results shown here suggest that the roughness geometry has a major influence on the

interaction between the inner and the outer layers. According to Gad el Hak [2], the

interaction between the inner and outer layers remains an open research issue in the

identification of coherent structures in wall bounded flow.

Further investigation into the effects of roughness geometry and distribution was carried

out by plotting the reaction forces along the rough wall. These plots were useful in

identifying the separation and attachment locations along the rough walls. Here we

have classified separation into primary and secondary. The results demonstrate that

regardless of the elements geometry, a primary separation point is formed at the leading
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roughness elements. It was observed that the secondary separation points differ with

the roughness geometry and distribution.

Visualization of the coherent structures associated with k- and d- type behaviour demon-

strated the predictive capabilities of the numerical model described here. Based on these

coherent structures, a roughness classification including design applications was given

in figure 6.5. This classification, albeit a limited one, is useful in design applications

involving rough surfaces.

Future work will focus on further developing the ILES approach reported here. In this

work we have demonstrated it’s capability to simulate the effects of roughness in wall

bounded flows. The analysis reported here could be extended to investigate the k- and

d- type behaviour in turbulent boundary layers. Recent research (see Krogstad [21]) had

suggested that despite the similarities between channel and boundary layer flows, the

roughness effects are different for each type of flow. Building on the research of Kent

et al [34] we propose an investigation into the effects of k- and d- type roughness on

turbulent boundary layers.



Appendix A

Data used to prescribe the

boundary conditions

Variable Expression Description Selection

ubndx 0 Velocity at boundary, x. Upper and lower walls

ubndy 0 Velocity at boundary, y. Upper and lower walls

ubndz 0 Velocity at boundary, z. Upper and lower walls

Table A.1: Variables used to prescribe the no-slip condition

Constraint Constraint force Shape function Selection

-u+ubndx test(-u+ubndx) Lagrange (quadratic) Upper and lower walls

-v+ubndy test(-v+ubndy) Lagrange (quadratic) Upper and lower walls

0 0 —- Upper and lower walls

Table A.2: Constraints used to prescribe the no-slip condition

Variable Expression Description Selection

u0 uin6y(1− y)step Normal inflow velocity Inlet boundary

ubndx -nojac(nx) u0 Velocity at boundary,x. Inlet boundary

ubndy -nojac(ny) u0 Velocity at boundary,y. Inlet boundary

ubndz -nojac(nz) u0 Velocity at boundary,z. Inlet boundary

Table A.3: Variables used to prescribe the inlet condition

Constraint Constraint force Shape function Selection

-u+ubndx test(-u+ubndx) Lagrange (quadratic) Upper and lower walls

-v+ubndy test(-v+ubndy) Lagrange (quadratic) Upper and lower walls

0 0 —- Upper and lower walls

Table A.4: Constraints used to prescribe the inlet condition
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Variable Expression Description Selection

p0 0 Pressure Outlet boundary

Table A.5: Variables used to prescribe the outlet condition

Constraint Constraint force Shape function Selection

-p + p0 test(-p + p0) Lagrange (linear) Outlet boundary

Table A.6: Constraints used to prescribe the outlet condition

Weak expression Integration frame Selection

p (-nx test(u) – ny test(v)) Material Outlet boundary

Table A.7: Weak expressions used to prescribe the outlet condition

Variable Description Expression Units Selection

ρ Density 1000 Kg/m3 Domain
µ Dynamic viscosity 1 - 0.001 Pa · S Domain

div~u Divergence of velocity ∂u
∂x

+ ∂v
∂y

1/s Domain

γ Shear rate
√

0.5(4 ∂u
∂x

2
) + 2( ∂u

∂y
+ ∂v
∂x

)2 + 4 ∂v
∂y

2
+ C 1/s Domain

‖u‖ Velocity magnitude
√
u2 + v2 m/s Domain

ωz Vorticity component ∂v
∂x
− ∂u
∂y

1/s Domain

Rec Cell Reynolds number
0.25 ρ

√
u2+v2 h

µ
1 Domain

Tx Total stress, x 2 µ ∂u
∂x

nx + µ ( ∂u
∂y

+ ∂v
∂x

) ny − p nx N/m2 Boundaries

Ty Total stress, y µ ( ∂v
∂x

+ ∂u
∂y

) nx + 2 µ ∂v
∂y

ny − p ny N/m2 Boundaries

Tz Total stress, z −p nz N/m2 Boundaries

Vx Viscous stress, x µ (2 ∂u
∂x

nx + ( ∂u
∂y

+ ∂v
∂x

) ny) N/m2 Boundaries

Vy Viscous stress, y µ (( ∂v
∂x

+ ∂u
∂y

) nx + 2 ∂v
∂y

ny) N/m2 Boundaries

Vz Viscous stress, z 0 N/m2 Boundaries

Vxx Viscous stress tensor,xx 2 µ ∂u
∂x

N/m2 Domain

Vxy Viscous stress tensor xy µ ( ∂u
∂y

+ ∂v
∂x

) N/m2 Domain

Vyy Viscous stress tensor yy 2 µ ∂v
∂y

N/m2 Domain

Vtest(xx) Viscous stress test tensor, xx 2 µ test( ∂u
∂x

) N/m2 Domain

Vtest(xy) Viscous stress test tensor xy µ (test( ∂u
∂y

) + test( ∂v
∂x

)) N/m2 Domain

Vtest(yy) Viscous stress test tensor yy 2 µ test( ∂v
∂y

) N/m2 Domain

Resu Residual, u ∂p
∂x

+ ρ u + ∂u
∂x

+ ρ v ∂u
∂y
− ( d

dx
(2 ∂u

∂x
) + d

dy
( ∂u
∂y

+ ∂v
∂x

)) µ N/m3 Domain

Resv Residual, v ρ u ∂v
∂x

+ ∂p
∂y

+ ρ v ∂v
∂y
− ( d

dx
( ∂v
∂x

+ ∂u
∂y

) + d
dy

(2 ∂v
∂y

)) µ N/m3 Domain

Resp Residual, p ρ div~u Kg/(m3 · s) Domain

Table A.8: List of variables used to prescribe the fluid properties in the flow domain

Name Shape Function Unit Description
u Lagrange (quadratic) m/s Velocity component, x
v Lagrange (quadratic) m/s Velocity component, y
p Lagrange (linear) Pa Pressure

Table A.9: List of shape functions used to prescribe the fluid properties in the flow
domain

Weak Expression Integration Frame Selection

(p− Vxx) test( ∂u∂x )− Vxy test( ∂u∂y )− Vyx test( ∂v∂x ) + (p− Vyy) test( ∂v∂y ) Material Domain

−ρ ( ∂u
∂x

u + ∂u
∂y

v) test(u)− ρ( ∂v
∂x

u + ∂v
∂y

v) test(v) Material Domain

−ρ div~u test(p) Material Domain
crosswind Material Domain
streamline Material Domain

Table A.10: List of weak expressions used to prescribe the fluid properties in the flow
domain
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List of Matlab scripts

B.1 One- and two- point velocity correlation and energy

spectrum
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26/01/15 17:49 C:\Users\Almajd\Desktop\ILES_validatio n\script_print.m 1 of 3

close all
clear all
 
%load data
load u_4point.dat   
 
u1=u_4point(:,2);
u2=u_4point(:,3);
u3=u_4point(:,4);
u4=u_4point(:,5);
 
% time step=0.1
dt=0.003;
n=length(u1);
% compute time array
t=dt:dt:n*dt;
 
%%%%%%%%%%%%%%%% plotting section %%%%%%%%%%%%%%%%%%%%%%%%%%
% plot u time-history
plot(t,u1)
hold
plot(t,u2, 'r--' )
plot(t,u3, 'G--' )
plot(t,u4, '--' )
xlabel( 't' )
ylabel( 'u' )
handle=gca
set(handle, 'fontsi' ,[20])
print u_time.ps  -deps
 
 
 
%Plot and calculate one-point corellation data
imax=500;
two_uu_1_mat=autocorr(u1,imax);
two_uu_2_mat=autocorr(u2,imax);
two_uu_3_mat=autocorr(u3,imax);
two_uu_4_mat=autocorr(u4,imax);
figure
plot(t(1:imax),two_uu_1_mat(1:imax), '-' )
hold
plot(t(1:imax),two_uu_2_mat(1:imax), 'r--' )
plot(t(1:imax),two_uu_3_mat(1:imax), 'g:' )
plot(t(1:imax),two_uu_4_mat(1:imax), 'k-.' )
 
handle=gca
set(handle, 'fontsi' ,[20])
%Calculate integral time scale
dt=t(1);
int_T_1=trapz(two_uu_1_mat)*dt
int_T_2=trapz(two_uu_2_mat)*dt
int_T_3=trapz(two_uu_3_mat)*dt
int_T_4=trapz(two_uu_4_mat)*dt
 
 



26/01/15 17:49 C:\Users\Almajd\Desktop\ILES_validatio n\script_print.m 2 of 3

%Plot and calculate two-point corellation data
Ru1u2= xcorr(two_uu_1_mat,two_uu_2_mat, 'coeff' );
Ru1u3= xcorr(two_uu_1_mat,two_uu_3_mat, 'coeff' );
Ru1u4= xcorr(two_uu_1_mat,two_uu_4_mat, 'coeff' );
Ru2u3= xcorr(two_uu_2_mat,two_uu_3_mat, 'coeff' );
Ru2u4= xcorr(two_uu_2_mat,two_uu_4_mat, 'coeff' );
Ru3u4= xcorr(two_uu_3_mat,two_uu_4_mat, 'coeff' );
figure
plot(Ru1u2)
hold
plot(Ru1u3, '--' )
plot(Ru1u4, ':' )
plot(Ru2u3, 'k--' )
plot(Ru2u4, 'k:' )
plot(Ru3u4, 'r:' )
%Calculate integral length scale
int_S_1=trapz(Ru1u2)*dt
int_S_2=trapz(Ru1u3)*dt
int_S_3=trapz(Ru1u4)*dt
int_S_4=trapz(Ru2u3)*dt
int_S_5=trapz(Ru2u4)*dt
int_S_6=trapz(Ru3u4)*dt
 
%Calculate and plot the energy spectrum%
 
 
umean1=mean(u1);
umean2=mean(u2);
umean3=mean(u3);
umean4=mean(u4);
 
% subtract the mean
u1=u1-umean1;
u2=u2-umean2;
u3=u3-umean3;
u4=u4-umean4;
% number of points in the fft
nmax=4546;
 
% compute RMS
n=length(u3);
urms=0;
for  i=1:n
   urms=urms+u3(i)^2/n;
end
urms=urms^0.5;
 
% time step (gives the right freq. on the x-axis)
dt=0.0033;
dt=0.0033;
[px,f]=pwelch(u1,nmax,[],[],1/dt);
[px1,f1]=pwelch(u2,nmax,[],[],1/dt);
[px2,f2]=pwelch(u3,nmax,[],[],1/dt);
[px3,f3]=pwelch(u4,nmax,[],[],1/dt);
plot(f,px)
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hold
plot(f1,px1, '--' )
plot(f2,px2, ':' )
plot(f3,px3, '-.' )
 
% add line with -5/3 slope
x=[1 10];
ynoll=0.1; 
y(1)=ynoll;
y(2)=y(1)*(x(2)/x(1))^(-5/3);
plot(x,y, 'r--' , 'linew' ,4)
 
 
 
title( 'spectrum of u' , 'fontsize' ,20)
xlabel( 'f' , 'fontsize' ,20)
ylabel( 'E(u)' , 'fontsize' ,20)
handle=gca;
set(handle, 'yscale' , 'log' , 'xscale' , 'log' )
set(handle, 'fontsi' ,[20])
print u_spectum.ps  -deps
%
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Data sets

C.1 Velocity streamlines
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a)

b)

c)

d)

e)

Figure C.1: Evolution of velocity streamlines for w/k = 1 (square): a) t=10.43 s, b)
t= 20.1 s, c) t=40.51, d) t=83.48 s, e) t=200 s.
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a)

b)

c)

d)

e)

Figure C.2: Evolution of velocity streamlines for w/k = 1 (triangle): a) t=10.32 s,
b) t= 20.67 s, c) t=40.14, d) t=80.07 s, e) t=200 s.
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a)

b)

c)

d)

e)

Figure C.3: Evolution of velocity streamlines for w/k = 3 (square): a) t=10.36 s, b)
t= 20.39 s, c) t=40.82, d) t=80.58 s, e) t=200 s.
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a)

b)

c)

d)

e)

Figure C.4: Evolution of velocity streamlines for w/k = 3 (triangle): a) t=10.18 s,
b) t= 20.33 s, c) t=40.65, d) t=80.59 s, e) t=200 s.
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a)

b)

c)

d)

e)

Figure C.5: Evolution of velocity streamlines for w/k = 7 (square): a) t=10.61 s, b)
t= 20.04 s, c) t=40.23, d) t=81 s, e) t=200 s.
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a)

b)

c)

d)

e)

Figure C.6: Evolution of velocity streamlines for w/k = 7 (triangle): a) t=10.43 s,
b) t= 20.58 s, c) t= 40.2, d) t=80.13 s, e) t=200 s.
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a)

b)

c)

d)

e)

Figure C.7: Evolution of velocity streamlines for w/k = 17 (square): a) t=10.3 s, b)
t= 20.61 s, c) t= 41.21, d) t=81.21 s, e) t=200 s.
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a)

b)

c)

d)

e)

Figure C.8: Evolution of velocity streamlines for w/k = 17 (triangle): a) t=10.44 s,
b) t= 20.59 s, c) t= 40.26, d) t=80.98 s, e) t=200 s.
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C.2 Velocity profile at different x-location

Figure C.9: Velocity profile at different x-location for w/k = 1 (square): Top(u-
velocity), Bottom (v- velocity)
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Figure C.10: Velocity profile at different x-location for w/k = 3 (square): Top(u-
velocity), Bottom (v- velocity)

Figure C.11: Velocity profile at different x-location for w/k = 7 (square): Top(u-
velocity), Bottom (v- velocity)
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Figure C.12: Velocity profile at different x-location for w/k = 17 (square): Top(u-
velocity), Bottom (v- velocity)

Figure C.13: Velocity profile at different x-location for w/k = 1 (triangle): Top(u-
velocity), Bottom (v- velocity)
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Figure C.14: Velocity profile at different x-location for w/k = 3 (triangle): Top(u-
velocity), Bottom (v- velocity)

Figure C.15: Velocity profile at different x-location for w/k = 7 (triangle): Top(u-
velocity), Bottom (v- velocity)
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Figure C.16: Velocity profile at different x-location for w/k = 17 (triangle): Top(u-
velocity), Bottom (v- velocity)
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C.3 Friction velocity uτ contour plots
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a)

b)

c)

Figure C.17: Flow evolution of the friction velocity (uτ ) in [m/s] for w/k = 1 (square):
a) 10.43 s, b) 102.82 s, c) 200 s
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a)

b)

c)

Figure C.18: Flow evolution of the friction velocity (uτ ) in [m/s] for w/k = 3 (square):
a) 10.36 s, b) 101.22 s, c) 200 s
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a)

b)

c)

Figure C.19: Flow evolution of the friction velocity (uτ ) in [m/s] for w/k = 7 (square):
a) 10.52 s, b) 100.38 s, c) 200 s
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a)

b)

c)

Figure C.20: Flow evolution of the friction velocity (uτ ) in [m/s] for w/k = 17
(square): a) 10.31 s, b) 100.59 s, c) 200 s
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a)

b)

c)

Figure C.21: Flow evolution of the friction velocity (uτ ) in [m/s] for w/k = 1 (trian-
gle): a) 10.32 s, b) 101.98 s, c) 200 s
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a)

b)

c)

Figure C.22: Flow evolution of the friction velocity (uτ ) in [m/s] for w/k = 3 (trian-
gle): a) 10.17 s, b) 100.91 s, c) 200 s
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a)

b)

c)

Figure C.23: Flow evolution of the friction velocity (uτ ) in [m/s] for w/k = 7 (trian-
gle): a) 10.42 s, b) 100.84 s, c) 200 s
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a)

b)

c)

Figure C.24: Flow evolution of the friction velocity (uτ ) in [m/s] for w/k = 17
(triangle): a) 10.41 s, b) 101.33 s, c) 200 s
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C.4 Pressure gradient px contour plots
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a)

b)

c)

Figure C.25: Flow evolution of the pressure gradient (px) for w/k = 1 (square): a)
10.43 s, b) 102.82 s, c) 200 s
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a)

b)

c)

Figure C.26: Flow evolution of the the pressure gradient (px) for w/k = 3 (square):
a) 10.36 s, b) 101.22 s, c) 200 s
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a)

b)

c)

Figure C.27: Flow evolution of the pressure gradient (px) for w/k = 7 (square): a)
10.52 s, b) 100.38 s, c) 200 s
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a)

b)

c)

Figure C.28: Flow evolution of the pressure gradient (px) for w/k = 17 (square): a)
10.31 s, b) 100.59 s, c) 200 s
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a)

b)

c)

Figure C.29: Flow evolution of the pressure gradient (px) for w/k = 1 (triangle): a)
10.32 s, b) 101.98 s, c) 200 s
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a)

b)

c)

Figure C.30: Flow evolution of the pressure gradient (px) for w/k = 3 (triangle): a)
10.17 s, b) 100.91 s, c) 200 s
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a)

b)

c)

Figure C.31: Flow evolution of the pressure gradient (px) for w/k = 7 (triangle): a)
10.42 s, b) 100.84 s, c) 200 s
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a)

b)

c)

Figure C.32: Flow evolution of the pressure gradient (px) for w/k = 17 (triangle): a)
10.41 s, b) 101.33 s, c) 200 s
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C.5 Resistance components line plots
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Figure C.33: Resistance components balance for w/k = 1 (square); Top (Resistance
(u)), Bottom (Resistance (v)).



Data sets 156

Figure C.34: Resistance components balance for w/k = 3 (square); Top (Resistance
(u)), Bottom (Resistance (v)).
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Figure C.35: Resistance components balance for w/k = 7 (square); Top (Resistance
(u)), Bottom (Resistance (v)).
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Figure C.36: Resistance components balance for w/k = 17 (square); Top (Resistance
(u)), Bottom (Resistance (v)).
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Figure C.37: Resistance components balance for w/k = 1 (triangle); Top (Resistance
(u)), Bottom (Resistance (v)).
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Figure C.38: Resistance components balance for w/k = 3 (triangle); Top (Resistance
(u)), Bottom (Resistance (v)).
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Figure C.39: Resistance components balance for w/k = 7 (triangle); Top (Resistance
(u)), Bottom (Resistance (v)).
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Figure C.40: Resistance components balance for w/k = 17 (triangle); Top (Resistance
(u)), Bottom (Resistance (v)).
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C.6 Instantaneous velocity contour plots

C.6.1 Streamwise velocity (u)
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a)

b)

c)

Figure C.41: Evolution of the streamwise velocity (u) for w/k = 1 (square): a) t =
10.43 s, b) t = 102.82 s, c) t = 200 s.
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a)

b)

c)

Figure C.42: Evolution of the streamwise velocity (u) for w/k = 1 (triangle): a) t =
10.32 s, b) t = 101.98 s, c) t = 200 s.
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a)

b)

c)

Figure C.43: Evolution of the streamwise velocity (u) for w/k = 3 (square): a) t =
10.36 s, b) t = 101.22 s, c) t = 200 s.
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a)

b)

c)

Figure C.44: Evolution of the streamwise velocity (u) for w/k = 3 (triangle): a) t =
10.17 s, b) t = 100.91 s, c) t = 200 s.
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Figure C.45: Evolution of the streamwise velocity (u) for w/k = 7 (square): a) t =
10.52 s, b) t = 100.38 s, c) t = 200 s.
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b)
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Figure C.46: Evolution of the streamwise velocity (u) for w/k = 7 (triangle): a) t =
10.42 s, b) t = 100.84 s, c) t = 200 s.
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b)
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Figure C.47: Evolution of the streamwise velocity (u) for w/k = 17 (square): a) t =
10.31 s, b) t = 100.59 s, c) t = 200 s.
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Figure C.48: Evolution of the streamwise velocity (u) for w/k = 17 (triangle): a) t
= 10.41 s, b) t = 101.33 s, c) t = 200 s.
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C.6.2 Spanwise velocity (v)
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a)

b)

c)

Figure C.49: Evolution of the streamwise velocity (u) for w/k = 1 (square): a) t =
10.43 s, b) t = 102.82 s, c) t = 200 s.
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a)

b)
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Figure C.50: Evolution of the streamwise velocity (u) for w/k = 1 (triangle): a) t =
10.32 s, b) t = 101.98 s, c) t = 200 s.
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a)

b)
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Figure C.51: Evolution of the streamwise velocity (u) for w/k = 3 (square): a) t =
10.36 s, b) t = 101.22 s, c) t = 200 s.
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a)

b)
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Figure C.52: Evolution of the streamwise velocity (u) for w/k = 3 (triangle): a) t =
10.17 s, b) t = 100.91 s, c) t = 200 s.
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a)

b)
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Figure C.53: Evolution of the streamwise velocity (u) for w/k = 7 (square): a) t =
10.52 s, b) t = 100.38 s, c) t = 200 s.
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a)

b)
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Figure C.54: Evolution of the streamwise velocity (u) for w/k = 7 (triangle): a) t =
10.42 s, b) t = 100.84 s, c) t = 200 s.
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a)

b)
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Figure C.55: Evolution of the streamwise velocity (u) for w/k = 17 (square): a) t =
10.31 s, b) t = 100.59 s, c) t = 200 s.
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a)

b)
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Figure C.56: Evolution of the streamwise velocity (u) for w/k = 17 (triangle): a) t
= 10.41 s, b) t = 101.33 s, c) t = 200 s.
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C.7 y+ contour plots
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a)

b)
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Figure C.57: Flow evolution of y+ for w/k = 1 (square): a) 10.43 s, b) 102.82 s, c)
200 s
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a)
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Figure C.58: Flow evolution of y+ for w/k = 3 (square): a) 10.36 s, b) 101.22 s, c)
200 s
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a)
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Figure C.59: Flow evolution of y+ for w/k = 7 (square): a) 10.52 s, b) 100.38 s, c)
200 s
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a)

b)
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Figure C.60: Flow evolution of y+ for w/k = 17 (square): a) 10.31 s, b) 100.59 s, c)
200 s
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a)

b)
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Figure C.61: Flow evolution of y+ for w/k = 1 (triangle): a) 10.32 s, b) 101.98 s, c)
200 s
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a)

b)
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Figure C.62: Flow evolution of y+ for w/k = 3 (triangle): a) 10.17 s, b) 100.91 s, c)
200 s
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a)

b)
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Figure C.63: Flow evolution of y+ for w/k = 7 (triangle): a) 10.42 s, b) 100.84 s, c)
200 s
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a)

b)
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Figure C.64: Flow evolution of y+ for w/k = 17 (triangle): a) 10.41 s, b) 101.33 s,
c) 200 s
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C.8 Falco eddies
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a)

b)

c)

Figure C.65: Flow evolution of the Falco eddies for w/k = 1 (square): a) 10.43 s, b)
102.82 s, c) 200 s
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Figure C.66: Flow evolution of the Falco eddies for w/k = 3 (square): a) 10.36 s, b)
101.22 s, c) 200 s
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Figure C.67: Flow evolution of the Falco eddies for w/k = 7 (square): a) 10.52 s, b)
100.38 s, c) 200 s
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Figure C.68: Flow evolution of the Falco eddies for w/k = 17 (square): a) 10.31 s,
b) 100.59 s, c) 200 s
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a)

b)
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Figure C.69: Flow evolution of the Falco eddies for w/k = 1 (triangle): a) 10.32 s,
b) 101.98 s, c) 200 s
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Figure C.70: Flow evolution of the Falco eddies for w/k = 3 (triangle): a) 10.17 s,
b) 100.91 s, c) 200 s
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Figure C.71: Flow evolution of the Falco eddies for w/k = 7 (triangle): a) 10.42 s,
b) 100.84 s, c) 200 s
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Figure C.72: Flow evolution of the Falco eddies for w/k = 17 (triangle): a) 10.41 s,
b) 101.33 s, c) 200 s



Appendix D

conference paper

199



European Congress on Computational Methods
in Applied Sciences and Engineering (ECCOMAS 2012)

J. Eberhardsteiner et.al. (eds.)
Vienna, Austria, September 10-14, 2012
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FLOW OVER K AND D -TYPE ROUGH SURFACES

Almajd A. Alhinai ∗, Andrzej F. Nowakowski

Sheffield Fluid Mechanics Group, Department of Mechanical Engineering, University of Sheffield,
S1 3JD, UK

∗e-mail: mep09aa@shef.ac.uk
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Abstract. Understanding the flow over rough surfaces is an important problem in fluids engi-
neering. Here, we present studies on turbulent flow over various roughness types. The rough
surfaces considered in this study were based on the k and d -type behaviour used to classify
the different roughness types. Previous results demonstrated that drag reduction can only be
achieved using d -type roughness arranged in the streamwise direction. This arrangement is
also known as flow over riblets. Obtaining an exact solution for such a problem is very chal-
lenging, therefore the problem was solved computationally using the finite element method. The
flow simulation cases considered for this study were; laminar, turbulent and fully turbulent. The
domain is represented by a channel flow with one sided profield roughness. Simulations were
carried out to study the k and d -type behaviour over transverse and streamwise roughness. We
were able to identify and benchmark the k and d -type behaviour for the flow over a transverse
surface. Some similarities between the transverse and the streamwise roughness were observed
in terms of k and d-type behaviour, mainly the production of stable vortices between the rough-
ness elements, but further research is required to fully identify and benchmark the k and d-type
behaviour in the flow over streamwise roughness.
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