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Abstract

This thesis is about the economic evaluation of interventions for air pollution control. It is

structured around three major components. First, a critical analysis of current methods for

health impact quantification in the environmental health literature. Second, the development

of a Markov model of the health impacts of long-term exposure to air pollution, using the

quality-adjusted life year as health metric, in order to evaluate the cost-effectiveness of

reducing air pollution in England. Third, evidence synthesis and COPD incidence estimation

by severity stage, in order to parameterize the model developed.

I demonstrate that the current approach to quantifying the health benefits from air

pollution reduction leads to substantially biased estimates. By ignoring interactions between

morbidity and mortality impacts, including differential susceptibility to risk by health status,

it overestimates the change in morbidity cases and underestimates life expectancy effects.

I also show that current European guidelines for uncertainty analysis in assessments of air

pollution control interventions underestimate decision uncertainty and may misguide air

quality strategies.

My Markov model fully captures, for the first time, the lifetime impact of air pollution

exposure on individuals’ quality and length of life, and identifies the joint health care budget

impact of a reduction in chronic morbidity and premature death. Air quality improvement

has important health implications. In London, investing up to £500 million to reduce

fine particulate concentrations by 1 µg/m3 (i.e. by 7%) is highly likely to be cost-effective,

whether the investment is funded by the NHS or through taxation. If this improvement were

to cost more than that, however, funding through taxation is more likely to be cost-effective

than funding via the NHS, since consumer willingness to pay for a QALY is higher than the

estimated NHS expenditure required to deliver one QALY. The optimal level of pollution

reduction, as well as the decision about whether and for how long to delay investments, is

therefore expected to depend on the source of financing.
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Preface

On completion of my Baccalaureat, I hesitated between Medical and Business

studies and finally opted for the latter, driven by the perspective to travel

around the world and work abroad. I was seventeen back then...

The highroad for entry to leading Business schools in France is through

two or three years of “classes preparatoires” which pave the way for the com-

petitive entry exams to each school. The preparation consists of fast-pace in-

tensive learning of a range of subjects such as: maths, programming, history,

philosophy, languages, in short, everything but business studies. It is also

characterised by a particular teaching approach where getting negative marks

and being told that you are “as thick as clotted cream” is not uncommon, but

solely designed to spur excitement towards learning more and working even

harder. I guess it worked for me as, at the time, I felt I had never learned so

much in all my life. The working methods which I acquired during those two

years of preparation proved to be precious throughout the entire course of my

academic studies.

After completing my business studies, I settled for a committed job in the

city of London as admittedly, over the years I had compromised on my wish

to travel the world. Whilst the position was stimulating, I soon realised deep

down that I had no real enthusiasm for what I was doing, although this would

take up a great amount of my time and energy.

At that point I began to think seriously about something I had always felt a

great concern for: our natural environment, but yet until then, had not really

considered orienting my career towards. So after two years in asset manage-

ment I enrolled on the MSc in Environmental Economics at the University of

York. I am glad I dared to take this step.
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In the course of familiarising with the concept of ecosystem services, I be-

came very interested in the economic implications of the linkages between our

natural environment and human health. This PhD thesis is the result of my

desire to nurture this interest. It focuses on one particular aspect: the air we

breathe. I hope however, to have the opportunity in the future to work on

many other interconnections between our health and natural ecosystems and

the economic benefits of rebuilding or maintaining these relationships, espe-

cially in a context where due to man-made global warming the Earth’s climate

is set to change at an increasing pace.

I wish to thank my parents for supporting my decisions and for being there
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Chapter 1

Introduction

Environmental threats, in a broad sense, are estimated to be responsible

for 23% of premature deaths globally (Prüss-Üstün & Corvalán, 2006). My

PhD research aims to support decision-making pertaining to the evaluation of

environmental health interventions (EHI), which are government interventions

designed to improve population health by reducing environmental hazards.

This thesis draws from quantification techniques used in the health economics

literature, in order to address a number of methodological challenges associ-

ated with the quantification of health benefits and costs of EHIs and proposes

a complementary approach to the economic evaluation of this type of inter-

ventions.

To achieve this objective, I chose to focus on EHIs of outdoor air pollu-

tion control. This choice was underpinned by the following three rationales.

First, outdoor air pollution is ubiquitous, i.e. everybody is exposed to it to

some extent. As a result, it is a major driver of ill-health globally, ranking as

the 9th risk factor out of a total of 43 by attributable burden of disease for

the year 2010 (Lim et al., 2012). Whilst the greatest health burden is borne

by countries in East and South Asia, which are typically characterised with

high concentrations of air pollutants, outdoor air pollution remains an impor-

tant public health issue in developed countries, insofar as no safe level of air

pollution has been identified. In England, which is the focus of this thesis,

chronic exposure to current levels of air pollution was recently estimated to be
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responsible for 25,000 premature deaths annually (Gowers et al., 2014).

Second, the costs of abating air pollution are considerable. For instance,

in the US, the Environmental Protection Agency estimated that the annual

costs of the National Ambient Air Quality Standards exceeded $ 80 billion

annually (US EPA, 1999). This puts decision-makers under great pressure to

assess whether further air quality efforts are worthwhile, and bestow particular

economic importance to improvements in the validity and accuracy of estimates

of the health benefits associated with air pollution control.

Third, quantification of health impacts associated with a reduction in pop-

ulation exposure to an given environmental hazard requires quantitative evi-

dence of associations between exposure and health effects. The health impacts

of exposure to outdoor air pollution have been intensively quantified by epi-

demiological studies (Medina et al., 2013). Interventions of air pollution con-

trol are therefore perfect candidates to support the analysis and development

of an alternative approach to economic evaluation of EHIs. Whilst outdoor

air pollution is constituted by a mixture of pollutants, particulate matter is

considered to adversely affect population health more than any other air pol-

lutant (WHO, 2014) and accordingly, this thesis focuses on fine particulate air

pollution (PM2.5).

My research contributes to knowledge pertaining to the economic evalua-

tion of air pollution control interventions in several ways: (i) by evaluating

and identifying two major limitations associated with the traditionally used

method to health benefit quantification, including its impact on predictions’

validity; (ii) by developing an approach based on Markov modelling that fully

captures, for the first time, air pollution’s joint impact on quality and length of

life and on health care costs; (iii) by performing systematic searches and sta-

tistical analyses of the epidemiological evidence base pertaining to a selected

set of health endpoints and (iv) by developing an approach to address both

underdiagnosis and late diagnosis issues that characterise chronic obstructive

pulmonary disease, so that the public health benefits of reducing the risk of

developing this disease as a result of air quality efforts are correctly quantified;

(v) by providing estimates of impacts that inform decision-making about the
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UK air quality strategy.

This thesis is structured as follows. Chapter 2 reviews the literature rel-

evant to the economic evaluation of air pollution control interventions. It is

structured in three parts pertaining to: (i) the epidemiological evidence base,

with a focus on study design and statistical approaches to effect estimation;

(ii) decision-making tools used in the environment and health policy fields and

their respective theoretical underpinnings; (iii) the methodology to quantify

health benefit and valuations approaches currently used in economic evalua-

tions of air pollution control interventions.

Chapter 3 pertains to the first essential step to policy evaluation: impact

quantification. This chapter is addressed to the wide audience of health im-

pact assessment practitioners for environmental policies. It focuses on the

limitations associated with the current approach to quantification, where mor-

bidity and mortality are quantified separately and argues for a simultaneous

quantification of impacts using Markov modelling.

Chapter 4 relies on the simultaneous approach to quantification advocated

in Chapter 3 and develops a Markov Model to refine the understanding of air

pollution control benefits. It assesses life expectancy gains but also improve-

ments in quality of life, using the quality-adjusted life year (QALY) as health

metric, and evaluates the total health care budget impact of a decrease in both

morbidity and premature mortality. This is the first study to fully capture par-

ticulate air pollution’s influence on the individual’s baseline quality of life, life

expectancy and level of susceptibility to adverse effects, which are crucial to

perform a cost per QALY analysis of air pollution control interventions.

Chapters 5 and 6 aim at charaterising parameter uncertainty pertaining to

the estimation of the health benefits and health care resource impacts of air

pollution control. The obtained parameters are fed into the Markov model de-

veloped in Chapter 4. Chapter 5 develops a coherent probabilistic framework

to estimate the age-specific annual probability of being diagnosed at a given

stage of COPD and applies it to the general population of England. Chapter

6 performs a systematic review and two meta-analyses of the association be-

tween long-term exposure to particulate air pollution and respectively all-cause

mortality and lung cancer.
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Chapter 7 presents the results from the application of the model developed

in Chapter 4 to the UK, in order to support the UK air pollution strategy. It

evaluates the cost-effectiveness of air pollution reduction in London, whether

such an intervention would be funded by the NHS or via general taxation.

Finally, Chapter 8 concludes the thesis. Its aims are fourfold: (i) to restate

the overall structure of the thesis; (ii) to underline the contributions of the

work undertaken; (iii) to highlight its limitations and (iv) to outline some

avenues for further research.
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Chapter 2

Review of literature

2.1 The adverse health effects of outdoor air pollution

2.1.1 Outdoor air pollution: background

Air pollution results from the release in the atmosphere of a mixture of: (i)

gases and vapour-phase compounds, such as nitrogen oxides (NOx), sulphur

dioxide (SO2), ammonia (NH3), volatile organic compounds and (ii) particu-

late matter, which is a mixture of liquid and solid compounds (Brook et al.,

2010). These compounds are either emitted directly in the atmosphere or result

from the atmospheric interaction of primary air pollutants with sunlight and

water vapour. Particulate matter for instance, is constituted both by directly

emitted elemental and organic carbon and by secondarily formed pollutants

resulting from chemical reactions between SO2, NOx, NH3 and organic gases

in the atmosphere (US EPA, 2012).

Air pollution is mostly the by-product of human activity (WHO, 2014).

Primary air pollutants are essentially generated by fossil fuel combustion for

power generation and transportation, but also result from various industrial

processes (e.g. cement plants, smelters, paper and still mills) as well as road
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dust, fertiliser use, livestock farming and biomass and waste burning (US EPA,

2012).

The awareness of the deleterious health impacts of air pollution at popu-

lation level, and not only as a cause of occupational disease, started to grow

in the 20th century, following a series of acute episodes of air pollution when

unfavourable weather conditions increased the concentrations of air pollutants

emitted from nearby factories (Jun, 2009). In particular, the upsurge in death

rates in the Meuse valley (Belgium) during a 4-day long sulphuric fog in De-

cember 1930 (Firkey, 1936) and the increase in death rates and respiratory

symptoms in Monongahela valley (Pennsylvania) during a short episode of

heavy smog in 1948 (Schrenk et al., 1949) provided the first pieces of evidence

on the potential toxicity of air pollution at community level. These events

were followed by London’s great smog in December 1952, which is estimated

to have led to 3,000 premature deaths in the three weeks following the event

and to 12,000 premature deaths until a year later (Bell & Davis, 2001). This

serie of acute air pollution episodes greatly contributed in arousing awareness

of the harmful effects of air pollution and spurred governments in enacting

the first national pieces of air pollution legislation, e.g. UK Clean Air Acts of

1956 and 1968, US Clean Air Act of 1970 which introduced the first National

Ambient Air Quality Standards.

Much of the epidemiological effort on identifying the health risk posed by air

pollution has focused on particulate matter (PM). Particulates are constituted

by hundreds of chemicals and greatly vary in size and shape (US EPA, 2012).

They are classified in terms of their aerodynamic diameter range. The three

size fractions are PM10, i.e. particles less or equal to 10 µm in diameter; PM2.5,

i.e. particles less or equal to 2.5 µm in diameter and PM0.1, i.e. particles less

or equal to 0.1 µm in diameter. PM10 are commonly referred to as coarse

particles, PM2.5 as fine particles and PM0.1 as ultra fine particles.

The effect of particles less or equal to 10 µm in diameter have been inten-

sively investigated since they cannot be filtered by the nose and upper airways

and thus, penetrate into the respiratory system, while the fine fraction also

pass into the blood stream (Marchwinska-Wyrwal et al., 2011). PM2.5 are

expected to be more harmful than PM10 since they have a longer life period,
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penetrate deeper into the human organism as well as into indoor environments

and carry more toxic compounds, e.g. sulphates, nitrates, acids, metals (Pope

III & Dockery, 2006). While PM0.1 are expected to be the most harmful, due

to the lack of monitoring of these particulates, to date the evidence base for

this pollutant is essentially based on laboratory-based toxicological studies.

2.1.2 Epidemiological studies: challenges and design typology

Challenges

Statistical analysis for causal inference of air pollution health effects in

human is challenging for two main reasons. First, since controlled randomisa-

tion of individuals to air pollution exposure is possible only under very strict

and limiting conditions, statistical analysis is overwhelmingly based on ob-

servational studies. The latter require extensive covariates adjustment and

sophisticated modelling techniques to control for factors that may confound

the association between air pollution exposure and health effect, where the

choice of confounding variables will depend on study design (Dominici et al.,

2003). Second, exposure measurement error appears inevitable as individual

exposure to air pollution exposure is typically proxied by levels of ambient

concentrations. Although exposure misclassification is not expected to pose a

threat to studies’ internal validity as participants should theoretically have an

equal likelihood to be assigned an inaccurate estimate of exposure, it affects

studies’ statistical power and can lead to imprecise estimates of health effects

(Raaschou-Nielsen et al., 2013).

The choice of epidemiological study design is motivated by the time-scale

of exposure to be investigated, namely short-term or long-term i.e. cumula-

tive. The latter determines the temporality of the health effect to be esti-

mated: acute or chronic and the source of variation in air pollution exposure
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to be exploited: temporal and/or spatial. In practice four main types of epi-

demiological study designs have been used to build evidence of air pollution

effects: time series, case-crossover, cross-sectional studies and cohort studies.

The health outcomes investigated by the first epidemiological studies were

typically death and hospitalisations. In recent years, however, continuous out-

comes such as changes in lung function (Eisner et al., 2010) and in levels of

coronary atherosclerosis (Adar et al., 2013) for instance, have also been in-

vestigated. Study design and the nature of health outcome investigated (e.g.

binary or continuous) drive the choice of statistical method for data analysis.

Studies of short-term changes in pollution

Time-series and case-crossover studies measure the change in daily counts

of deaths and rare morbidity events (e.g. hospitalisations) over a time window

of a few days, following a short-term peak in pollutants concentrations.

Time-series associate daily population-averaged exposure levels to count of

health outcomes, where the bias from data aggregation is expected to be small

if health effects are small and the frequency of disease outcome is low (Wake-

field & Salway, 2001). Whilst the statistical designs of the earliest time-series

were simple with count data being modelled using Poisson regression, adequate

control for time-dependent covariates (e.g. seasonality, weather) increasingly

became a primary concern. Since the mid-1990’s, generalised additive models

using non parametric smoothing have been extensively used to control for nat-

ural time-dependent fluctuations in mortality that would confound estimates

of air pollution adverse effect (Pope III & Dockery, 2006).

The case crossover design consists in matching individuals’ exposures at

time of death/morbid event with exposures during one or more control periods

in a retrospective case-control design, where each case represents his/her own

control. It exploits the individual’s variation in exposure over time using con-

ditional logistic regression. Unlike time-series, case crossover studies control

for seasonality and temporal trends in mortality by design through carefully

chosen control periods, rather than by statistical modelling with smooth func-
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tions (Dominici et al., 2003). Since the case-crossover design relies on events

at the individual level, as opposed to population-averaged counts of events, it

may be useful to investigate individual-level effect modification or susceptibil-

ity. The main drawback of this design, however, is that results can be sensitive

to the choice of periods used as controls (Pope III & Dockery, 2006).

Studies of long-term cumulative exposure

Whilst information about the acute health effects of pollution peaks is im-

portant, the understanding of the cumulative impact of long-term air pollution

is key to evaluate air pollution public health burden. The analysis of health

impacts from long-term exposure to air pollution typically exploits spatial vari-

ation in exposure between geographical areas over time. Two main types of

study design have been used by epidemiologists to study both binary and con-

tinuous health outcomes associated with cumulative exposure to air pollution:

cross-sectional studies and cohort studies.

Cross-sectional studies associate data on individuals health status (e.g. dis-

ease prevalence) and pollution concentration levels measured at a single point

in time. Whilst these studies are informative, they proxy long-term pollu-

tion exposure with actual air pollution concentrations (Brunebreef & Holgate,

2002) and oversimplify long term impacts (Sunyer, 2001). Consequently, al-

though cohort studies are expensive and time consuming, they are considered

the best source of epidemiological evidence of the long effects of exposure to

pollution (Pope III & Dockery, 2006)

Cohort studies associate long-term exposure with health outcomes by ex-

ploiting cumulative variation in individuals’ exposure between geographical

locations. Prospective cohort studies are preferred for their ability to control

for individual risk factors measured at enrolment, such as age, smoking his-

tory including passive smoking, occupational exposure to pollutants, drinking

habits, diet, BMI and so forth. Unlike cross-sectional studies, cohort stud-

ies consist in following individuals over time to measure the time to adverse

health event. The statistical analysis of time-to-event typically relies on the
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Cox proportional hazard model, with the baseline hazard function being strat-

ified by sex, age and, in the US, race. In addition to adjusting for individual

risk factors, controls for area-specific potential confounding factors has been

increasingly performed, although they do not seem to significantly alter esti-

mates of effect (Krewski et al., 2009; Crouse et al., 2012).

As mentioned earlier, exposure measurement error is inherent in using es-

timates of exposure based on measures of pollutant concentrations captured

by fixed monitors. To obtain finer spatial contrasts in exposure, most co-

hort studies use geographic information systems-based statistical methods to

account for small-scale spatial variations in pollution concentrations. These

methods, which fall into three categories: (i) interpolation methods, (ii) land

use regression models or (iii) dispersion modelling are described in Chapter 6.

Natural experiment studies

The body of epidemiological evidence on the health effects of air pollution

exposure is also built on natural experiments using a before/after study design

and, when a control group is available, a difference in differences approach. In

addition to a number of studies of unplanned events such as strikes (Pope III,

1996; Pope III et al., 2007; Parker et al., 2008), planned interventions resulting

in either abrupt or progressive changes in air pollution concentrations have

been intensively investigated.

Studies of planned actions are commonly referred to as “accountability stud-

ies”. They aim to identify one or more causal effects in the “accountability

chain” that links regulatory actions to various policy-relevant outcomes. The

causal chain has at least five sequential stages: (1) regulatory action or any

other planned action, (2) change in air pollutants emissions levels, (3) change

in ambient air quality, (4) change in exposure/dose, (5) human health response

(HEI, 2003). Most accountability studies however, have focused on the link-

ages between (3) the change in ambient air quality and (5) human health (van

Erp & Cohen, 2009).

As underlined by the reviews of van Erp & Cohen (2009); Bell et al. (2011);
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Giles et al. (2011) and van Erp et al. (2012), very diverse past interventions of

outdoor air pollution reduction have been analysed. Examples of intervention

include: (i) emission restrictions in cities hosting Olympic games (Friedman

et al., 2001; Lin et al., 2011); (ii) local regulations such as the ban on domestic

coal use in Dublin in 1990 (Clancy et al., 2002) or restrictions on fuel sulphur-

content in Hong Kong in 1990 (Hedley et al., 2002); (iii) the introduction of

measures to decrease traffic congestion (Currie & Walker, 2011; Kelly et al.,

2011); (iv) national policies such as the Clean Air Act in the US (US EPA,

1997, 1999, 2011).

Retrospective analyses of past interventions of air pollution control are of-

ten confronted with issues such as potential unmeasured confounding by oth-

ers health stressors than pollution, the choice of appropriate time period be-

fore/after intervention and of control groups and limited data availability on

both air quality and health outcomes (van Erp et al., 2012). A recent study

of the impact of the congestion charging scheme on air quality in London

(Kelly et al., 2011) further underlines such challenges. Investigators found it

extremely difficult to attribute changes in air pollution concentrations to the

congestion charge as other traffic interventions were implemented in parallel

to its introduction.

Nevertheless, natural experiment studies do provide compelling evidence

about the actual health benefits associated with past decrements in air pollu-

tion and valuable information regarding the decrease in health risk over time.

For instance, the ban on domestic coal use in Dublin in 1990, was found to

result in a 36 µg/m3 (70%) decline in black smoke (a former measure of PM).

This was associated with a significant decrease in cardiovascular deaths (-

10.3%, 95%CI -12.6 - 8%) and respiratory deaths (- 15.5%, 95%CI -19.1 -

11.6%) in the first year after the ban (Clancy et al., 2002). Importantly, no

rebound in cardio-pulmonary mortality was observed in the subsequent years.

With regards to infant health, Currie & Walker (2011) found that the intro-

duction of an electronic toll collection in the northeastern states of the US

(E-ZPass), which led to a sustained reduction in traffic congestion, was asso-

ciated with reduced premature birth (by 6.4 - 8.6%) and low birth weight (by

7 - 9.3%) in babies of mothers living within 2 kilometers from a toll plaza,
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relative to babies of mothers living 2-10 km from a toll.

2.1.3 Epidemiological evidence: a selection of key findings

Preliminaries

Whilst there remains numerous uncertainties, epidemiological studies per-

formed over the last decades have enabled to shed light on a number of adverse

health impacts associated with exposure to air pollutants, particulate pollu-

tion in particular. This section discusses some key results from a selection

of studies, in order to give a flavour of the range of mortality and morbidity

effects associated with respectively acute and chronic exposure to particulate

matter. Thorough reviews of epidemiological evidence and suspected mecha-

nistic pathways may be found in Anderson et al. (2012); Spirić et al. (2012);

Brook et al. (2010); US EPA (2009, 2004b).

Although a number of epidemiological studies have investigated the health

effects of air pollution exposure on children, especially with regard to lung

development - see Shannon et al. (2004) and Eisner et al. (2010) for a review

- most studies have focused on adults. Nevertheless, more recently, epidemi-

ological studies investigated air pollution impacts on fetal health and found

association with low birth weight, premature birth and event a greater risk of

autism (Pedersen et al., 2013; Raz et al., 2014).

Measure of excess risk

The effect of air pollution exposure on health is typically measured as a

relative risk (RR), a hazard ratio (HR), or less commonly, as an odds ratio

(OR). A ratio equal to 1 means that there is no association between hazard
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exposure and adverse event. The RR is the ratio of risks, i.e. of probabilities,

of adverse health event among the exposed and non-exposed group. For time-

to-event data, HRs are a more appropriate measure as they are derived from

instantaneous event rates in each group, conditional on survival at time t.

Studies using the logistic regression to analyse data, such as case crossover

studies typically express results with odds ratios. The latter are ratios of the

probability of event occurrence and the probability of non-occurrence of event.

Since odds and probabilities are related, where Odd = Pr/(1−Pr), the relative

risk is a function of the odd ratio and of the probability of event occurrence

in the unexposed group Pr0, such that RR = OR/(1 − Pr0 + Pr0OR). If

Pr0 ≤ 10% and OR value is comprised between 0.5 and 2.5, the OR is quasi

equivalent to a RR (Sistrom & Garvan, 2004).

Evidence from studies of short-term exposure

Since the 1990’s, more than 100 single-cities daily time series and case cross-

over studies exploiting relatively small changes in daily levels of air pollution

have been carried out (Pope III & Dockery, 2006). The results of many of

these studies have been pooled in meta-analyses, e.g. Levy et al. (2000); Steib

et al. (2003), to improve the accuracy of effect estimates. Furthermore, in

order to address potential city selection bias, multi-city daily time-series were

conducted, the largest and most notorious ones being the National Morbidity

Mortality and Air Pollution Study (NMMAPS) in the US and Air Pollution

and Health (APHEA) in Europe. Further description and discussion of these

studies can be found in Brunebreef & Holgate (2002).

Overall evidence from studies of short-term exposure of air pollution sug-

gests that a 10 µg/m3 increase of ambient concentrations of PM10 and PM2.5

in the preceding 1 to 5 days before event, is associated with an increase in

mortality by 0.4% to 1% and does not support the hypothesis of a threshold

to health effects (Brook et al., 2010). In this context, a threshold refers to a

level of air pollutant concentration, below which no health impact is found.

As underlined by Pope III & Dockery (2006), given that relatively small in-
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crements in air pollution over a few days is unlikely to lead to a large increase

in daily mortality, the fact that studies of short-term exposure consistently

found a small but significantly positive effect at relatively low concentrations

is impressive. In addition, numerous time-series and case crossover studies

consistently found that short-term elevations in particulate pollution were as-

sociated with respiratory and cardio-vascular hospital admissions (US EPA,

2004b; Mustafic et al., 2012).

Evidence from studies of long-term exposure

Mortality:

The two most prominent prospective cohort studies of mortality, which have

been extensively reanalysed under the lead of the Health Effects Institute and

which follow-up duration has been extended several times are: the Harvard Six

Cities (HSC) cohort and the American Cancer Society (ACS) cohort. The HSC

cohort was constituted by 8,096 white adults aged between 25 and 74 years at

enrolment, who were randomly sampled between 1974 and 1977 from six US

cities characterised with large spatial contrasts of air pollution. The first study

of the HSC cohort (Dockery et al., 1993) had 14-16 years of follow-up whereas

the latest extended analysis (Lepeule et al., 2012) relied on a follow-up period

of 33 years. The ACS cohort was based on the ACS Cancer Prevention Study

II (CPS II), an on-going prospective study of mortality based on 1.2 million

of adults aged at least 30 years old (with at least one family member aged 45

years or more) who voluntarily enrolled in 1982. Risk factor data from CPS

II was linked with ambient PM2.5 concentrations for 359,000 subjects from 61

metropolitan areas for the period 1979-1983 and for 500,000 subjects from 116

metropolitan areas for the period 1999-2000. The latest analysis of the ACS

study has a follow-up of 18 years (Krewski et al., 2009).

Many other cohort studies of mortality were conducted both in the US and

in other parts of the world (Canada, Europe, China). The complete list and

a description of such studies is presented in Chapter 6. These studies over-

whelmingly suggest that concentrations of PM2.5 are significantly associated
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with an excess risk of premature mortality, in particular from cardiovascular,

pulmonary and lung cancer causes. For instance, based on the latest extended

analysis of the ACS cohort, Krewski et al. (2009) reported that a 10 µg/m3 in-

crement of PM2.5 is associated with a 6% (95% CI of HR: 1.04 - 1.08) increase

in all-cause mortality, a 24% (95% CI of HR: 1.19 - 1.29) increase in death

from ischaemic heart disease and a 13% (95% CI of HR: 1.06 - 1.23) increase

in death from lung cancer.

In general, risk estimates from cohort studies of mortality are an order of

magnitude higher than effect estimates from studies of short-term exposure to

air pollution. This is an important finding as it contradicts with the hypoth-

esis of short-term harvesting, according to which air pollution would solely

impact the frailest individuals by bringing their deaths only a few days for-

ward. Indeed, if harvesting explained most of air pollution effect, then impacts

on death rates in the long run would be negligible, which is clearly not the

case (Pope III & Dockery, 2006).

Extended analyses of cohort studies and repeated cross-sectional analyses

have also provided an opportunity to evaluate the change in health risk associ-

ated with long term changes in air pollution. Pope III et al. (2009) found that

reductions in particulate pollution across various US counties over a two-decade

period (1980s and 1990s) were associated with half to a full year increase in life

expectancy, after controlling for changes in socio-economic, demographic, and

proxy smoking variables. The observed changes in life expectancy appeared

consistent with indirect estimates based on cohort studies results. Laden et al.

(2006); Schwartz et al. (2008) exploited the fact that concentrations during the

extended follow-up period of the Harvard Six Cities cohort were lower than

during initial analysis. Their studies suggested that the excess mortality risk

of air pollution was essentially associated with exposures as short as one to

two years before event and thus, were relatively quickly reversible.

Finally, epidemiological studies also found that, at particulate concentration

levels present in developed countries (e.g. between 5 and 35 µg/m3), health

effects increase linearly with increments in exposure and no threshold below

which there would be no adverse effect on health was found (Pope III et al.,

2011; Lepeule et al., 2012; Crouse et al., 2012).
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Morbidity:

Cohort studies were also used to investigate the impact of air pollution

on the development of chronic respiratory and cardiovascular conditions. For

instance, Abbey et al. (1995) used data from the Health and Adventist and

Smog Study (ASHMOG) to look at the development of new cases of chronic

bronchitis associated with PM2.5 exposure (RR of 1.81, 95%CI: 0.98 - 3.25 per

45 µg/m3 increment in PM2.5). Miller et al. (2007) exploited data from the

Women’s Health Initiative to analyse the effect of air pollution exposure on the

risk of first cardiovascular events for menopausal women (HR of 1.24, 95%CI:

1.09 - 1.41 per 10 µg/m3 increment in PM2.5). In the US, the Multi-Ethnic

Study of Atherosclerosis and Air pollution (MESA-Air) was launched in 2004

in order to investigate the progression of cardiovascular disease associated with

air pollution exposure over a 10-year period. In 2008, the European Study of

Cohorts for Air Pollution Effects (ESCAPE), involving more than 30 cohorts of

studies across Europe, was launched with a view to investigate the relationship

between long-term exposure to PM and NO2, with several morbidity health

endpoints.

The relatively few cohort studies of morbidity have been complemented by

a number of cross-sectional studies. For instance, Zemp et al. (1999) relied

on the Swiss study on air Pollution and lung disease in adults (SAPALINDA)

to investigate the association between long term exposure to PM10 (proxied

by PM10 data for the year 1993) and the prevalence of reported respiratory

symptoms across eight areas in Switzerland characterised with differing levels

of air pollution. The authors found that an 10 µg/m3 increment in average

annual level of PM10 concentration was associated with an OR of 1.33 (95%

CI: 1.14 - 1.55) for breathlessness day or night. Schikowski et al. (2005) used

consecutive cross-sectional studies performed between 1985 and 1994 in seven

areas of Germany as part of the Study on the Influence of Air pollution on

Lung function, Inflammation and Ageing (SALIA) to assess the role of air

pollution on the development of chronic obstructive pulmonary disease among

55 year old women and found a OR of 1.33 (95%CI: 1.03 - 1.72) associated

with a 7 µg/m3 increment in five years mean of PM10.
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2.1.4 Epidemiological evidence: main conclusions

The adverse effects of outdoor air pollution in health have been documented

since the early 20th century and have led to the first major regulatory interven-

tions of air pollution control by the second half of the 20th century. Although

the body of epidemiological evidence is extensively underpinned by observa-

tional studies, study designs and statistical approaches to data analysis have

been greatly refined and adverse effects on the cardio-respiratory systems have

consistently been found across studies. This strongly supports the hypothesis

that exposure to air pollution causes adverse health effects.

Whilst the effects of acute exposure were the focus of the first wave of

epidemiological studies, which relied on time-series and case crossover designs,

over the last decades, large-scale expensive cohort studies have been conducted

to investigate the effects from long-term cumulative exposure. Findings from

cohort studies of mortality, which have primarily focused on adults of the

general population: (i) contradict the hypothesis of short-term harvesting,

according to which air pollution would solely impact the frailest individuals

by bringing their deaths a few days forward; (ii) support the hypothesis that at

concentrations prevailing in developed countries, health effects increase linearly

with increase in exposure; (iii) suggest the absence of a concentration threshold

below which there would be no health effect.

Finally, as underlined by section 2.1.3, which aimed at providing a brief

overview of the range of health effects associated with both acute and long-

term exposure to air pollution, the body of epidemiological evidence keeps on

growing. This bestows particular importance on systematic reviews and meta-

analyses of epidemiological findings, in order to ensure that decision-making

pertaining to air quality targets is based on all available relevant evidence.
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2.2 Evaluating air pollution control interventions: the-

oretical background

2.2.1 Interventions’ key characteristics

In light of epidemiological findings mentioned in section 2.1.3, and of the fact

that air pollution exposure is ubiquitous, interventions of air pollution control

clearly represent public health interventions (Reisnik & Zeldin, 2005). Whilst

possibilities of adapting to air pollution such as locating densely populated

areas away from busy roads should not be neglected (Giles et al., 2011), owing

to the high dispersion of air pollutants, abating emissions appears to be the

key response to the environmental health threat of outdoor air pollution.

Pollution results from the release in the environment of a pollutant load

that, by far, exceeds the waste assimilative capacities of natural ecosystems.

Air pollution abatement will therefore also improve ecosystems’ health, for

instance by reducing the deposition of acidic particles and polycyclic organic

matter, which damage trees, lakes and their aquatic life (US EPA, 2004a).

Consequently interventions of air pollution control overlap with environmental

policies, which aim to protect public health against the harmful effects of

environmental degradation and prevent, reduce or mitigate the negative effects

of human activities on ecosystems (McCornick, 2001).

Improving air quality is costly. In the US, for instance, the EPA estimated

that nationwide pollution abatement costs were in the range of about $80

billion per year (US EPA, 1999). Typically interventions of air pollution control

are expected to be associated with a high up-front costs. For example, the UK

Department of Transport recently pledged to commit a minimum of £200

million to support the early market for ultra low emission vehicles, in order

to help achieve London’s ultra low emission zone (Department for Transport,

2014).

This substantial use of scarce resources requires to assess whether further

efforts in decreasing air pollution are expected to be worthwhile if compared
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with other courses of action such as “business as usual”. The comparative

analysis of costs and consequences of alternative actions, with view to support

the choice between competing uses of scarce resources, constitutes an economic

evaluation (Drummond et al., 2005).

However, should actions taken to reduce outdoor air pollution be evaluated

as public health interventions or as environmental interventions? In light of

the overlap between these two types of interventions, the economic evalua-

tion of air pollution control somewhat lies at the intersection of environmental

economics and health economics. The two disciplines, however, have been de-

veloped for different decision contexts and as a result, have differing theoretical

foundations.

2.2.2 Differing decision contexts

Environmental interventions

Goods and services derived from natural ecosystems, such as clean air,

often have no property rights attached to them and their misuse and result-

ing damages to third parties cannot be compensated by a market transaction

(Freeman et al., 1984). Environmental policies are generally designed to cor-

rect for such market failures since if left uncorrected, they may lead to socially

harmful over-exploitation and degradation of natural resources, as illustrated

by Hardin (1968)’s “Tragedy of the Commons”. The latter involved herdsmen

using a common pasture for grazing their cattle. Individually, the herdsmen

would have no incentive to prevent overgrazing since they would not themselves

benefit from holding back their own cattle. However, the collective impact of

their self-interested strategies proved disastrous to their community in the long

run.

Pollution, like any other uncompensated externality, creates a wedge be-
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tween the private costs and the social costs of production and consumption

and ultimately, a loss of social welfare (Pigou, 1920). Some economists, argued

that externalities could be internalized via bargaining over pollution rights be-

tween polluters and their victims (Coase, 1960). However, air pollution vic-

tims are typically too large in number and too different in terms of income

and geography to be able to organise themselves as a single agent for bargain-

ing. Therefore it is now widely acknowledged that government intervention for

pollution-control is a necessity (Mendelsohn, 2002; Ostrom, 2003).

Environmental interventions generally aim to internalize the external costs

of pollution into private costs. This can be done via command and control

polices, such as air pollution targets, quotas and bans or market based policies,

such as Pigouvian taxes or tradeable pollution permits. As a consequence,

EHIs of air pollution are typically regulatory interventions whose costs are

expected to primarily fall on the polluter.

The objective of the economic evaluation of environmental policies is to as-

sess policies’ efficiency in addressing externalities, by evaluating whether their

social benefits are worth seeking given their social opportunity cost embedded

in the best possible alternative use of resources (Boardman et al., 2006). There

are two good reasons to suppose that the socially optimal level of air pollution

is above zero: (1) pollution controls typically have non-zero opportunity costs

and (2) natural ecosystems typically provide waste-sink services that can cope

with a certain level of pollution (Turner et al., 1994). Therefore, economic

evaluations of pollution-control EHIs also aim to inform questions pertaining

to the optimal scale of pollution-control programmes, whereby the socially op-

timal level of pollution is reached when the marginal abatement cost equals

its marginal benefit.

Public health interventions

The World Health Organisation defines public health as: “all organized

measures to prevent disease, promote health, and prolong life among the pop-

ulation as a whole” (WHO, 2015). The scope of public health interventions
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is extremely broad, including for instance vaccination, occupational safety,

healthy-behaviour promotion and their impacts typically go beyond health

care budgets. Nevertheless, presumably due to historic links between medical

and public health services, public health evaluations have often been carried

out using a health care evaluation paradigm (Wanless, 2004; McDaid & Needle,

2009).

Public expenditure on health care is generally designed as an alternative

to market provision, rather than as a way of regulating market provision to

correct for market failure. It is typically justified as a way of addressing equity

concerns (e.g. difficulties that the poor and the sick would face in buying

health insurance) and market failures due to informational asymmetries.

The fact that relevant public sector entities are endowed with a budget

to achieve health implicitly suggests that population health is a worthwhile

output, and that the role of economic evaluation is to identify the most cost-

effective way to produce it. From this point of view, that however is not

shared by all (Pauly, 1995), economic evaluations of health care programmes

do not seek to maximise social welfare but aim to optimally allocate a pre-

determined health care budget across competing programmes (Gold et al.,

1996; Drummond et al., 2005).

2.2.3 Decision-support tools

Cost Benefit Analysis

Different objectives require different decision-support tools. Assessing whether

an environmental policy achieves a socially optimum level of pollution con-

trol requires to compare, at the margin, the present value of all benefits and

costs accruing to society. As a consequence, the economic evaluations of envi-

ronmental policies have extensively relied on the cost-benefit analysis (CBA)
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framework.

CBA values all opportunity costs and benefits using the common money

metric. In welfare economics, a good is considered valuable insofar as it gen-

erates utility to some individuals who, assuming the traditional axioms of

consumers preferences (completeness, reflexivity and transitivity), will be will-

ing to trade consumption for it. Therefore individuals’ preferences for goods

are revealed in the market-place by their willingness to pay (WTP) for them

and the appropriate social value of a programme’s benefits is the sum total

of individuals’ WTP for it (Boardman et al., 2006). Alternatively, especially

in the context of a reduction in the good or service to be valued, individual’s

preferences can be revealed by individuals’ “willingness to accept” the loss of

benefits against compensation.

CBA is grounded in neoclassical welfare economic theory. It is often justi-

fied in terms of the Kaldor-Hicks compensation test, from which the potential

Pareto efficiency rule was derived as a decision rule for accepting policies. The

Kaldor-Hicks criterion suggests that a policy represents a potential Pareto im-

provement, and thus will increase efficiency, as long as those who will win

from the implementation of a policy could potentially compensate those who

will lose, while still being better-off (Boardman et al., 2006). An alternative

justification for CBA is in terms of a utilitarian social welfare function (SWF)

representing a social objective of maximising the sum total of individual wel-

fare. Either way, the basic idea is that a policy should be adopted as long as

its net social benefits are positive.

Cost Effectiveness Analysis

Economic evaluations of public health interventions and health care tech-

nologies have commonly relied on cost-effectiveness analysis (CEA), which con-

sists in comparing the incremental costs of an intervention to its incremental

health benefits. CEA is commonly considered from a social decision making

point of view, as a tool to maximize an explicit societal objective, such as

maximizing the present value of population health, subject to an exogenous
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budget constraint (Paulden & Claxton, 2012). For public health, such ap-

proach is exemplified by WHO’s CHOICE 1 initiative, which is intended to

support the allocation of limited resources across public health interventions.

Consequently, health outcomes are commonly combined into a single compos-

ite index, such as disability-adjusted life years (DALYs) or quality-adjusted

life years (QALYs), in order to compare the cost-effectiveness of competing

interventions and support resource allocation (Drummond et al., 2005).

QALY and DALY encapsulate morbidity and mortality effects in one single

indicator by multiplying life expectancy estimates with health-related quality

of life weights that characterise health states or disability conditions (Gold

et al., 2002). The DALY was developed to compare the health burden of dis-

eases or risk factors globally. Whilst the DALY has also been recommended for

economic evaluations of public health interventions in low- and middle-income

countries (Gates foundation’ reference case, NICE International (2014)), the

QALY has been routinely used for economic evaluations of public health in-

terventions and health care technologies in high income countries (Drummond

et al., 2005; ISPOR, 2013). The QALY will therefore be the focus of the

present thesis, which relies throughout on a UK case study.

Computation of the QALY requires two elements. The first is quality of life

weights associated with a particular health condition. By convention, health-

related quality of life weights (HRQoL) are anchored on a interval scale from 1

(perfect health) to 0 (death) and health states considered to be worse than dead

have a negative value. Several methods may be used to obtain the HRQoL

scores of health-related quality of life. The three main approaches are: (i)

visual analogue scales, where individuals rank in a line the various health

states representing the health-related quality of life continuum; (ii) time trade-

off, where individuals have to choose between living a certain period of time

with a given health condition versus living a shorter period of time but in a

improved state of health; (iii) standard gamble, where individuals are required

to choose between living a given health state or living in a better health state

with a particular risk of death (Gold et al., 2002). To compute a QALY,

disease duration is multiplied by its attached HRQoL score, so that living

1CHOosing Interventions that are Cost-Effective
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with a condition associated with quality weight x for T years amounts to Tx

QALYs. The QALY therefore assumes linear substitution between quality and

quantity of life and has interval scale properties such that, for example, a gain

from 0.2 to 0.5 is equally valuable as a gain from 0.6 to 0.9. (Gold et al., 2002).

Finally, it should be underlined that QALY-based CEA was initially referred

to as cost-utility analysis. However since CUA can be seen as a type of CEA

(Drummond et al., 2005), nowadays most authors do not specify the distinction

between the two. Accordingly, this thesis solely uses the term CEA.

2.2.4 Monetizing health benefits

In a CBA framework

Individuals’ WTP to obtain a good such as clean air, or alternatively to

avoid damages such as pollution, is an estimate of the change in consumer

surplus measured by the Hicksian demand function (Boardman et al., 2006).

For instance, the WTP for better air quality or for improved health represents

the income that could be taken from a person so that her utility would get

back to its level before the improvement (equivalent variation). Since neither

health nor environmental services are traded in markets, their WTP value (or

shadow price) can be either revealed through consumers’ trade-offs in surrogate

markets (e.g. via hedonic pricing methodology) or elicited through contingent

valuation or choice modelling surveys, which involve hypothetical scenarios.

For health risk, the risk-wage trade-offs observable in the labour market

have been extensively researched in hedonic models in order to derive a value

of statistical life (VSL) from wage premiums for risks of death by occupational

accident. VSL corresponds to individuals’ aggregated WTP for a small change

in survival probabilities (Chestnut & de Civita, 2009). VSL values, however,

appear to be context specific and their estimates vary greatly (Drummond
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et al., 2005). Recent meta-analyses found mean VSL values ranging from re-

spectively $ 2.8 million (Miller, 2000) to $ 6.7 million (Viscusi & Aldy, 2003).

This wide range of VSL values partially stems from the difficulty to control

for workers’ lack of full information or cognitive bias regarding job risk, self-

selection according to differing levels of risk aversion and labour markets im-

perfections such as unions’ bargaining powers (Boardman et al., 2006).

In this context, although they are potentially prone to bias associated with

the use of hypothetical scenarios, contingent valuation studies (which focus on

the non-market good as a whole) and choice experiments (which focus on spe-

cific attributes of the non-market good), provide a complementary source of

valuation for specific improvements in health. These stated-preferences meth-

ods however, do also exhibit huge variation in estimates. Further discussion on

the strengths and weaknesses of revealed and stated preferences can be found

in Fujiwara & Campbell (2011).

Alternatively, when there is not enough information to derive a demand

function for a good, there exists a set of another techniques, which do not aim

to measure true changes in social welfare but still provide useful information

for CBA. These techniques, referred to as damage or production-function ap-

proaches, rely on observable market information and include replacement cost,

averted expenditure and cost-of-illness studies. Whilst cost of illness studies

can encompass direct medical costs (physician service, hospital care and drugs)

and productivity costs (loss workdays), they do not account for the value of

pain and psychological suffering, quality of life impacts (e.g. restricted lifestyle)

and typically ignore caretakers expenditures. Therefore, they are expected to

understate the true changes in social welfare (Bell et al., 2008).

In a CEA framework

The use of a composite health index such as the QALY is sufficient to

compare the cost-effectiveness of health care technologies, based on their in-

cremental cost effectiveness ratio (ICER), e.g. £x/QALY . However, in order

to drive investment or dis-investment decisions, health care technologies’ cost-
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effectiveness performances need to be compared against a benchmark, known

as cost-effectiveness threshold or cut-off value. The application of a decision-

rule, whereby a health care technology costing more than the agreed cut-off

value for every QALY it delivers should not be funded, effectively consists in

applying a monetary value to health (Phelps & Mushlin, 1991).

According to the social-decision making perspective, the value of health

is revealed by the health care budget constraint, which represents the health

displaced by a given investment (Claxton et al., 2006). The NHS budget

constraint can be seen as a partial expression of a latent social welfare function,

and its shadow price corresponds to how much society is willing to pay for

health that is generated by a collectively funded health care system (Claxton

et al., 2007). In the UK, NICE uses a cost-effectiveness threshold range of

£20,000 - 30,000 per QALY gained for health care technology assessments

(NICE, 2013). However, recent empirical work suggests £13,000/QALY may

be a more correct benchmark (Claxton et al., 2013).

As an alternative to this supply-sided approach to health valuation, a

branch of health economics has applied welfare economic methods to obtain

WTP values for a QALY, a recent review of which can be found in Ryen &

Svensson (2014).

Ultimately, the choice of source of money value to monetize QALY impacts

in CEA should be driven by the opportunity cost of intervention. If the latter

is borne by the NHS, then the money value of a QALY should be informed

by the cost-effectiveness of the health care to be displaced by the investment,

as embedded in the budget constraint (Claxton et al., 2007). By contrast, if

the intervention is funded by raising new tax revenue, private consumption

will be displaced and thus, the source of valuation should be the utility loss of

foregone private consumption that is equivalent to the willingness to pay for a

QALY (Ryen & Svensson, 2014).

Value judgments embedded in the choice of monetization approach

There appears to be two main ways of valuing health benefits in economic
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evaluation: either by relying on the budget constraint of the health care system

(supply-sided approach) or by relying on consumers’ willingness to trade con-

sumption for health that is revealed or elicited by their trade-offs in surrogate

or hypothetical markets (demand-sided approach). While the former assumes

that the health care budget is optimally defined by a socially-legitimate au-

thority. The latter is too underpinned by value judgments.

There are indeed a number of issues pertaining to the application of stan-

dard welfare economic theory as a source of societal value of outcomes. Firstly,

as aggregated WTP is dependant on society’s wealth distribution, if costs and

benefits are borne by people in different wealth groups associated with differing

marginal utilities of money, the application of the potential Pareto principle

could lower aggregate utility (Boardman et al., 2006). This issue can how-

ever, be addressed by using a common general population value for benefits or

by deriving distributional weights from the elasticity of marginal utility, e.g.

by expressing the marginal utility of each quantile of the income distribution

as a percentage of the average marginal utility, thus moving towards a social

welfare justification of CBA (Fleurbaey et al., 2013).

Secondly, the economic axioms of rationality that define individuals as

utility-maximisers have repeatedly been shown to be often violated by a large

body of work in experimental economics. Furthermore, even if the assumption

of individuals’ transitive preferences were not violated, (Arrow, 1951) demon-

strated that the aggregation of two or more individuals’ preferences between

three or more alternatives may fail to maintain an transitive social ordering of

options.

Finally, the necessary conditions for achieving a first-best Pareto optimum

are generally not fulfilled in some sectors of the economy due to second-best

distortions, such as uncorrected externalities, monopolistic power etc. In such

case, the theory of second-best asserts that seeking first-best Pareto optimality

may reduce social welfare instead of increasing it, especially if there is insuf-

ficient information about the degree and direction of the divergence of the

second-best optimum (Ng, 2004).

Whilst these limitations do not suggest the need to forsake welfare economic

theory and its application altogether, they highlight that, just as the claim of
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optimality of public agencies’ existing budget allocations is rooted on social

value judgements, so too are welfarist prescriptions for social choice (Claxton

et al., 2007). In other words, valuing health in terms of its consumption value

(collective WTP) or at the shadow price of the budget constraint imposed on

the health care system, inevitably implies social value judgments.

2.3 Economic evaluations of interventions of air pollu-

tion control

2.3.1 Ex-ante accountability studies

In addition to the large number of retrospective evaluations of past inter-

ventions of air pollution control (section 2.1.2), the health effects associated

with hypothetical policies of air pollution reduction have also been intensively

evaluated. These ex-ante modelling studies are also qualified as accountability

studies. Examples include impact analyses of complying with WHO guidelines

in Hong Kong (Hedley et al., 2008), of reducing emissions from the industry

and power sector in the Yangtze Delta River in China (Zhou et al., 2010),

of curbing urban transit bus emissions in the US (Cohen et al., 2003) and so

forth.

Unlike retrospective accountability studies, which focus on estimating the

actual levels of reduction in pollutant air concentrations and associated health

effects, ex-ante accountability studies of proposed interventions commonly in-

clude an economic evaluation as they aim to spur or justify regulatory action

(Hunt, 2011).

Ex-ante accountability studies of proposed national environmental regula-

tions are referred to as regulatory impact assessments. The latter are required

in most OECD countries for major regulatory initiatives and typically con-
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sist of a CBA (Scapecchi, 2008). As a result, the literature on economic

evaluations of air pollution control essentially consists of CBAs of proposed

air-quality targets and sector-specific emission control measures at national or

inter-governmental level. In Europe, a CBA was conducted to analyse pollu-

tion control scenarios as part of the Clean Air for Europe (CAFE) programme

(Holland et al., 2005b) and the European Environment Agency assessed the

impact on Europe’s air quality of a selection of measures targeting the trans-

port and energy sectors (Kuenen et al., 2010). In the US, the Environmental

Protection Agency has performed CBAs of environmental policies since Pres-

ident Reagan’s 1981 order. In particular, it conducted CBAs for planned

amendments to the 1990 Clean Air Act (US EPA, 1999, 2011) and for pro-

posed revisions to the National Ambient Air Quality Standards for Particulate

Matter (US EPA, 2006, 2012).

Although, in a CBA framework, the health benefits of air pollution control

are expected to be considered alongside wider economic impacts including on

ecosystems health and associated benefits (e.g. crop yields), most of these

impacts are commonly too difficult to monetize, and are instead considered

qualitatively in a separate analysis. Consequently, similarly to evaluations of

public health interventions, ex-ante studies of air pollution control are pri-

marily centred on health benefits. Productivity gains associated with health

benefits are, however, also considered in some regulatory impact assessments

in terms of reduced loss of working days and/or restricted activity days.
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2.3.2 Method to quantify health impacts

Key principles

Ex-ante accountability studies of proposed interventions of air pollution

control follow the health impact assessment (HIA) approach to perform pro-

jections of expected health benefits. HIA is defined as “a combination of

procedures, methods and tools used to evaluate the potential health effects of

a policy, programme or project.” (WHO, 1999). Since HIA may also rely on

qualitative evidence, quantitative evaluation of impacts is also referred to as

quantitative risk assessment (QRA) in the HIA literature.

Projections of health effects in HIA are based on a set of health impact

functions, which are parameterised with results from epidemiological studies.

The health impact function combines separately for each health endpoint of

interest: (i) the size of the potentially affected population; (ii) the baseline

endpoint incidence rate; (iii) the change in the concentration of outdoor air

pollutant and (iv) the change in incidence of health endpoint per unit change

in ambient concentration of outdoor air pollutant, also known as the coefficient

of the concentration-response function.

Health effects in HIA are commonly expressed in attributable cases of se-

lected morbidity or mortality endpoints, e.g. premature death, hospitalisation

etc, without any aggregation of impacts in a summary metric (Briggs, 2008).

Impact computation

The functional form of a health impact function will depend on the statisti-

cal model used to analyse epidemiological data. For air pollution, a log-linear

relationship is typically used to model the incidence rate of health endpoint y,

for air pollution concentration x:

log(y) = βx+ log(α)
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where β is the slope coefficient of the concentration-response function and α

is the background incidence rate of endpoint y under no pollution.

The change in y, 4y = y − y0 associated with a change in pollution 4x =

x− x0, can be therefore obtained as follows:

log(y)− log(y0) = log(α)− log(α) + β(x− x0)

y

y0

= exp(β(x− x0))

y

y0

− 1 = exp(β(x− x0))− 1

4y = y0(exp(β4x)− 1) (2.1)

Whilst epidemiological studies estimate β, i.e. the slope coefficient of the

concentration-response function, as mentioned in section 2.1.3, they typically

report risk estimates (RE). The latter are ratios of risks (RR) of rates (HR)

or of odds (OR) of experiencing an adverse health effect, for a given change

in pollutant concentration levels x. For PM concentrations, typically RE are

computed for 4x = 10µg/m3.

It is straightforward to show that under a log-linear functional form, RE4x =

exp(β4x). For instance, if we use the specification of the Cox proportional

hazard which is used to analyse time to event data in cohort studies (see section

2.1.2), we can model the hazard function of individual i over time as:

hi(t) = h0(t) exp

(
βxi +

∑
i,j

γjzi,j

)

with h0(t) representing the baseline hazard function which is left unspecified,

x representing the average cumulative level of exposure to pollution, β the

dose-response coefficient, zj representing confounding variables and γj their

related regression coefficients.

Now, if we consider two individuals i and i′ who are similar in all respect

excepted in their level of cumulative level of exposure to pollution xi and x′i,
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the ratio of their hazards can be expressed as:

RE4x =
hi(t)

h′i(t)

RE4x =
h0(t) exp(βxi + c)

h0(t) exp(βx′i + c)
with c =

∑
i,j

γjzi,j =
∑
i′,j

γjzi′,j

Simplifying for h0(t), we obtain:

RE4x = exp(β(xi − x′i))

RE4x = exp(β4x)

Equation 2.1 can therefore be rewritten as:

4y = y0(RE4x − 1) (2.2)

Where (RE4x − 1) is also referred to as the % change in incidence of health

endpoint y0 for a 4x increment/decrement in air pollution.

It should be underlined that linearity in health effects in response to a

change in air pollution exposure, as indicated by equations 2.1 and 2.2 has

been repeatedly found solely in studies conducted in developed countries, i.e.

with PM concentrations ranging between 5 to 35 µg/m3 (see section 2.1.3).

Attempts to extrapolate the shape of concentrations-response functions for

concentrations far beyond those observed in North America and Western Eu-

rope were performed by Pope III et al. (2011) and Burnett et al. (2014), based

on studies of health effects from active and passive smoking and household use

of solid cooking fuel. Pope III et al. (2011)’ results, which suggest a steeper

increase in risk at low exposure levels than at higher concentrations (supra-

linear function), were used in the 2010 Global Burden of Disease study (Lim

et al., 2012).
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2.3.3 Economic evaluations in practice

A 3-step process

Economic evaluations of ex-ante accountability studies of proposed inter-

ventions of air pollution control consist of three core steps. The latter have

been systematised by some softwares, such as Benefits Mapping and Analysis

Program (BenMAP) from Abt Associates, which is used by the US EPA for

the assessment of air pollution control policies (US EPA, 2006, 2011, 2012). In

the UK, the Department for Environment Food and Rural Affairs (DEFRA)

refers to this 3-step approach as the “full-impact pathway” (DEFRA, 2013).

Step 1:

The first step involves the modelling of the change in air pollution con-

centrations to which the target population is exposed, based on the expected

change in emissions associated with policy scenarios. This typically requires

sophisticated GIS-based dispersion modelling tools, e.g. CMAQ, RAINS etc.

An extensive description of such tools and of the algorithms underpinning them

may be found in Yerramilli et al. (2011).

Step 2:

The second step consists of a quantitative health impact assessment, us-

ing the method to impact computation described above. Typically effects

are computed per year, by applying epidemiological risk estimates to annual

background rates of endpoint incidence. The most comprehensive regulatory

impact assessments of proposed interventions of particulate air pollution con-

trol consider the following health endpoints: (1) premature deaths (or life ex-

pectancy impacts see section 2.3.4), (2) chronic bronchitis, (3) hospital admis-

sions for cardio-pulmonary causes, (4) upper and lower respiratory symptoms,

(5) asthma exacerbations and (6) restricted activity days. For Europe, the
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World Health Organisation (WHO) has recently compiled a report of recom-

mended coefficients of concentration-response function for each of these health

endpoints, as part of the HRAPIE 2 project (WHO, 2013).

Most regulatory analyses place particular emphasis on mortality effects, as

recommended by WHO (2013). The latter are estimated based on risk esti-

mates from cohort studies of long-term exposure, which capture the effects

from both short-term peaks and long-term background exposure to pollution

(Künzli et al., 2001). As mentioned in section 2.1.3, cohort studies of air pollu-

tion have investigated the mortality effects of long-term air pollution exposure

on both all natural causes of death and specific causes of death. However, in

order to avoid under-estimating the overall mortality burden (see Chapter 3

for further details), WHO recommends to use all-causes of death risk estimates

in evaluations of air pollution control interventions (WHO, 2013).

In contrast to mortality impacts, with the exception of chronic bronchitis,

morbid endpoints are typically considered only for acute exposure, i.e short-

term peak in pollution above daily recommendation measures. It follows that,

although the reduction in life expectancy associated with the development

of chronic conditions associated with long-term exposure is expected to be

captured in overall the mortality effect (Künzli et al., 2001), long-term quality

of life impacts are completely ignored.

Step 3:

In a third step, in accordance with welfare theory roots of CBA which is the

preferred decision tool of regulatory impact assessments (see section 2.3.1), the

attributable change in each health endpoint is monetized using WTP (VSL)

values for relevant health risk reduction. When WTP values do not exist, for

instance for hospital admissions, cost of illness estimates are used. However

as mentioned in section 2.2.4, since cost of illness estimates do not account for

quality of life impacts from restricted lifestyle, pain and psychological suffering,

their use is equivalent to setting quality of life impacts to zero.

It is worth highlighting that in most studies, mortality benefits drive the

overall benefits (WHO, 2013). This is not surprising given that: (i) mortality

2Health Risks of Air Pollution In Europe.

52



impacts are the primary focus of such analyses; (ii) morbidity effects are com-

monly monetized using cost of illness estimates which as mentioned in section

2.2.4, do not account for quality of life impacts from restricted lifestyle, pain

and psychological suffering.

As mentioned in section 2.2.4, WTP values for health risk reduction, be it

revealed or stated, vary greatly. This results in substantial differences in gov-

ernments’ recommended values for monetizing health impacts. For instance,

Scapecchi (2008)’s comparison of recommended values (mean estimates, ex-

pressed in 2006 $) for monetizing mortality impacts from PM exposure showed

that the VSL estimates for the US and Canada were much higher (respectively

$ 7,4 and 6 million) than those recommended at EU level ($ 1,8 million). In

the UK, the DEFRA-commissioned study of Chilton et al. (2004) suggested a

VSL of about $ 6 million.

Example: DEFRA’s damage costs

Based on this 3-step impact pathway approach, in the UK, DEFRA pro-

duced standardised damage costs estimates per tonne of pollutant emitted

(DEFRA, 2011, 2015), in order to support the evaluation of small-scale pro-

posals (below £50 million).

The health endpoints and the magnitude of effects considered in damage

costs computations are in line with recommendations from the UK Commit-

tee on the Medical Effects of Air Pollutants (COMEAP), which independently

advises the government on matters concerning the health effects of air pollu-

tants. For particulate matter, the health endpoints included are: (i) mortality

effects associated with chronic exposure and (ii) hospital admissions for cardio-

respiratory causes following acute exposure, i.e. following a short-term peak

in pollutants concentrations over a few days (DEFRA, 2013).

Health impacts were computed for different densities of population e.g.

“Central London”, “Urban medium” or “Rural” and monetized based on WTP

values or cost of illness estimates. For instance, according to DEFRA’s damage

costs calculator, an annual reduction of one tonne of PM emission in central
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London is expected to yield an annual gain of £2.4 million (in 2015 prices).

By contrast, the same reduction in a small rural area would be expected to

provide an annual monetized benefit of £375,000 (in 2015 prices).

Dealing with uncertainty

In addition to considering uncertainties inherent to the modelling of air pol-

lution concentrations, many large scale ex-ante studies consider uncertainty in

key parameters, typically concentration-response coefficients and VSL/WTP

values, via probabilistic sensitivity analysis (PSA). This consists in fitting a

probability distribution to each uncertain input parameter, where uncertainty

is indicated by the 95% confidence interval, and to propagate joint parameter

uncertainty in total aggregated benefits via Monte Carlo simulations. The lat-

ter are readily integrated in software packages such as previously mentioned

BenMAP or @RISK (Palissade Corporation).

If one takes into account the nature of the data used for estimating param-

eters as well as parameters’ logical bounds, only a few distributions remain

that are appropriate candidates for a given type of parameter (Briggs et al.,

2006). Typically, the beta and Dirichlet distributions will be appropriate to

model transition probabilities derived from respectively binomial and multi-

nomial data, whereas the gamma distribution will be appropriate for costs

and dis-utilities and the log-normal distribution will be adequate for relative

risks (Briggs et al., 2006). By contrast the use of the triangular distribution,

which simply requires a maximum, a minimum and a mode, has been largely

discouraged since it is not statistically related to the estimation process of the

data and thus, very difficult to parametrize correctly (Briggs et al., 2006).

Interestingly, probabilistic sensitivity analyses in past evaluations of air

pollution control have departed from the above recommendations, which may

bring their quality into question. For instance, the US EPA fitted triangular

distributions to model utility parameters and WTP values in past regulatory

analyses of air pollution control policies (US EPA, 2006, 2012). For the CBAs
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of Clean Air for Europe (Holland et al., 2005b) and Revisions of the E.U.

Gothenburg Protocol (Holland et al., 2011), triangular distributions were fitted

to baseline incidence rates of health endpoints.

It should be underlined that recently published European guidelines for

uncertainty analysis in health impact assessment and cost benefit analysis of

air pollution control policies (Holland, 2014) do not suggest to rule out the

triangular distribution. On the contrary, they recommend to use the latter for

background mortality and morbid endpoint incidence rates as well as for risk

estimates when “there is great confidence in central estimates but adoption of

a normal distribution would imply that ranges were based on more data than is

the case” (pp 41). Alternatively, guidelines suggest to chose among two other

distributions for risk estimates. The normal distribution is recommended in

the case of a higher probability of values towards the range midpoint than

towards its extremes, whereas the uniform distribution is recommended when

all values in the range are thought to be of equal probability. Uncertainty

pertaining to WTP values for mortality risk reduction are recommended to be

dealt with in univariate sensitivity analysis.

2.3.4 Controversies in impact quantification

Years of life lost (YLL) vs. counts of premature deaths

A major controversy in impact quantification pertained to whether prema-

ture deaths should be differentiated based on the amount of remaining life

expectancy. This question is of particular relevance for interventions of air

pollution control since their benefits are not expected to fall equally between

age-groups. Indeed, although Krewski et al. (2000) and Pope III et al. (2002)

found that the excess risk of mortality associated with air pollution exposure

is almost uniform with age, as baseline mortality rates strongly increase with
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age, the absolute number of air pollution-related premature deaths is expected

to fall disproportionally among the elderly population.

A common argument against measuring benefits in counts of avoided pre-

mature deaths is that such approach would wrongly make air pollution control

compare on a equal footing with, for instance, improvements in traffic safety,

although the two are expected to vary an order of magnitude in terms of

amount of life gained per person (McMichael et al., 1998; Rabl, 2003). The

importance to consider the loss of life expectancy instead of the number of

premature deaths to measure air pollution health impact is summarised in

Bellander (2001)’s remark that “excess deaths are deaths that occur earlier

than expected. The important question is how much earlier?” (pp 69).

Nowadays, while the number of avoided premature deaths remains in use

to measure mortality impacts, it is now commonly considered alongside life

expectancy effects, i.e. years of life gained (Hunt, 2011; WHO, 2013). However,

the debate as to how to value reductions in mortality risk either as statistical

lives (VSL) or alternatively, as statistical life years (VOLY) remains open,

mainly because of the absence of consensus on the age-dependency of VSL

(Hubbell, 2006; Chestnut & de Civita, 2009). During some time, the US EPA

applied a 37% discount to the value of statistical live of individuals above 70.

However, after public outcry at this “senior discount”, the US EPA dropped

age difference in VSL in 2003.

Quality-adjustment to life year gains

Another important controversy pertains to whether a quality adjustment

should be applied to gains in life expectancy (Hubbell, 2006). One obvious

rationale for the application of HRQoL weight to life year gains is measure-

ment accuracy. Indeed, as previously mentioned, it is now largely agreed that

potential health gains should reflect that death can only be postponed but not

avoided, i.e. that what matters is life expectancy effects. In the same line of

thought, it can be argued that when evaluating the extra years of life to be

gained from air pollution reduction, one should take into account that individ-
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uals benefiting from air pollution reduction may not be in perfect health.

The discussion about the use of quality-adjusted life years (QALY) to assess

air pollution control started about a decade ago. It stemmed from the US Office

of Management and Budget’s decision that both a CBA and CEA should be

undertaken for policies expected to greatly impact public health and safety

(US OMB, 2003) and from the US Institute of Medicine’s recommendation

that “Regulatory CEAs that integrate morbidity and mortality impacts should

use the QALY to represent net health effects” (US Institute of Medicine, 2006)

(pp 161).

The controversy about the use of QALY to assess air pollution control

was greatly fuelled by Harris (1987)’s double jeopardy argument, which states

that allocating a restricted budget based on a QALY-maximizing approach

would systematically discriminate against those who have a low quality of

life and small life expectancy due to preexisting health conditions. Whilst

the double-jeopardy argument does not apply for interventions that improve

quality of life, provided recipients have the same life expectancy, it is true that

life-lengthening interventions will maximise QALY gains if they are targeted

to individuals with the highest quality of life and/or life expectancy (Singer,

1995). In other words, the return on investment in postponing the deaths

of ill or disabled people is lower than the return on investment in extending

the lives of healthy people. However, it has been forcefully argued that this

finding is not unfair or unjust, but merely results from the application of the

most rational approach to maximize population health from available scarce

resources (Singer, 1995; Claxton & Culyer, 2006).

Interestingly, although the QALY has been widely used in economic evalu-

ations of public health interventions and health care technologies (Drummond

et al., 2005), the issue of double-jeopardy appears to have represented a hur-

dle to the political acceptance of QALY in the evaluation of environmental

policies, especially in the US. As remarked by Singer (1995), what seemed to

stir controversy is not so much to discriminate recipients of a potential in-

tervention based on their remaining life-expectancy, and thus their age, but

based on differences in their baseline quality of life, as reflected by their health

condition.
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This led the US EPA to propose an innovative approach to measuring the

impacts of air pollution reduction on quality and length of life. The agency

decided to use a double-baseline of quality adjustment scores to compute sep-

arately the gain in quality of life from reduction in morbidity and the gain

in non-quality adjusted life years. For instance, in its analysis of revisions of

PM National Ambient Air Quality Standards, the agency used a HRQoL score

of 0.95 as baseline for the general population when computing quality of life

decrements associated with the incidence of chronic bronchitis and myocardial

infarction due to PM exposure but in parallel, it used a HRQoL score of 1 as

baseline when computing life expectancy effects (US EPA, 2006).

This double baseline of HRQoL weights however, no longer satisfies the

linear substitution between quality and length of life that characterises the

QALY. The resulting health measure is therefore no longer a QALY but a

Morbidity Inclusive Life Year (MILY). The main issue with the MILY is that

it cannot support the comparison of air quality policies with other public health

interventions. In addition, to date, there has not been any attempt at valuing

a MILY or to provide a cut-off value for MILY-based cost-effectiveness assess-

ment. This is problematic since, as mentioned earlier, to support decision-

making about resource allocation, consequences need to be monetized in one

way or another in order to be compared with costs (Drummond et al., 2005).

Finally, the construction of the MILY somehow presents a lack of consistency.

Indeed while life year gains are adjusted with a HRQoL of 1, which implies

perfect health, they are computed based on the life expectancy for the general

population, which itself reflects the population prevalence of chronic condi-

tions. Based on these considerations, the MILY does not appear adequate to

support the evaluation of air pollution control interventions.
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2.4 Conclusions

2.4.1 Context: decision frameworks

By pertaining to both the fields of public health and environmental eco-

nomics, the economic evaluation of air pollution control interventions lies at

the intersection of two disciplines which, due to the specificity of their deci-

sion contexts, are rooted on different theoretical frameworks and use different

decision tools. The evaluation of environmental policies traditionally relies on

CBA, which is grounded in welfare economics and seeks economic efficiency.

By contrast, the evaluation of public health interventions has typically followed

the health care evaluation paradigm rooted in decision science, where CEA is

used to allocate constrained resources with view to satisfy most efficiently an

explicit societal objective.

Whilst the two intellectual traditions are different, their decision tools do

share a common ground in practice. Firstly, although economic evaluations of

air pollution control traditionally rely on WTP-based CBA, similarly to public

health evaluations, they are primarily centred on health benefits. Secondly,

both CBA and CEA involve monetization of health output, either in terms of

collective WTP or at the shadow price of the budget constraint imposed on

the health care system, and either approach to valuation inevitably relies on

social value judgments.

2.4.2 Research gaps

This review contributed to identify several limitations associated with the

current approach to quantifying the health benefits of air pollution control and

the uncertainty surrounding the cost-effectiveness of such interventions.

First economic evaluations of air pollution control rely on the HIA method

to health impact quantification where the change in each health endpoint at-
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tributable to the intervention under assessment is computed separately and the

total aggregated effect is obtained via monetization. Such an approach ignores

any interactional effects between morbidity and mortality impacts. This is

expected to be a source of inaccuracy in impact estimates since morbidity and

mortality do interact in a number of ways. In particular, morbidity may affect

baseline life expectancy but also susceptibility, i.e. physiological reaction, to

air pollution exposure.

Second, the morbidity effects considered are primarily associated with acute

exposure and are commonly monetized using cost-of illness estimates which,

given that they do not encompass any disutility effects, are equivalent to at-

tributing a zero value to quality of life impacts. It follows that the long-

term quality of life impacts associated with the development of chronic cardio-

respiratory conditions have been largely ignored so far.

Third, in a context where the application of a quality-adjustment to life year

gains from environmental policies has long been controversial, the most elabo-

rated approach to encompassing quality of life effects alongside life expectancy

impacts from air pollution reduction (US EPA’s MILY) is inappropriate to

support resource allocation.

Fourth, whilst economic evaluations of air pollution control interventions

have placed substantial emphasis on dealing with parameter uncertainty, its

impact on decision uncertainty, i.e. whether an intervention is cost-effective

or not, and the value of reducing parameter uncertainty have not been evalu-

ated yet. In addition, current European guidelines to probabilistic sensitivity

analysis may need to be challenged.

2.4.3 Role of decision analytical modelling

The four limitations previously identified suggest that there is potentially

substantial value in rethinking the current method to evaluating air pollu-

tion control interventions, by drawing on health modelling techniques and

frameworks for characterising decision uncertainty currently used in health
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care decision-making.

To construct a decision model that accurately reflects all the relevant costs

and outcomes associated with competing interventions, it can be useful to

consider a conceptual model before implementing the chosen modelling ap-

proach. Conceptual modelling can be broken down in two sequential steps:

problem-oriented modelling and design-oriented modelling (Tappenden, 2012)

Problem-oriented modelling aims to embrace the complexity of the decision-

problem and of the overall system in which it exists (Tappenden, 2012). For

example, in order to assess interventions aimed at tackling obesity in the UK,

the Foresight Project developed a series of causal loop models that mapped

the interplay of a large numbers of causal factors (e.g. physical activity, diet,

genetic make-up) within the wider cultural, environmental and social contexts

(Vandenbroeck et al., 2007). In the case of air pollution, such analysis would

for instance, underline the productivity effects related to work absences associ-

ated with exacerbations during acute exposure. In addition, potential linkages

with physical activity may need to be considered, whereby air pollution may

reduce individuals’ willingness to undertake outdoor exercise, depending on

their perception of air pollution as a health risk and their level of discomfort

associated with exposure.

Design-oriented modelling subsequently sets boundaries to the depth of the

analysis and considers alternative credible model structures based on consid-

erations of feasibility, that are themselves based on evidence requirements and

resources available in terms of person-time, expertise and so forth (Tappenden,

2012). The main benefit of undertaking this two-stage conceptual modelling

is to provide a benchmark against which the appropriateness of the simplified

structure of the final model may be evaluated in a transparent and accountable

manner.
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2.4.4 Reflecting uncertainty in decisions

Finally, it should be underlined that at the core of model development lies

the intertwined concepts of choice as well as uncertainty. Indeed, in imple-

menting a chosen model structure, assumptions are taken which require value

judgements. In addition the evidence base may be uncertain. It is important

to reflect any uncertainty in the evidence - referred to as parameter uncer-

tainty - and assumptions - referred to as structural uncertainty - and explore

how these may impact the decision.

Structural uncertainty steams from the fact that it is not possible to know

for sure ex-ante whether the choices underpinning the structure of the hard

implemented model (e.g. selection of relevant impacts, of appropriate simpli-

fications) are right or wrong, i.e. whether they will substantially affect the

model’s capacity to usefully inform the decision problem (Tappenden, 2012).

Parameter uncertainty, which was discussed in section 2.3.3, also depends

on a string of modelling choices, including but not restricting to deciding which

parameters are relevant and which source of evidence should characterise them

(Tappenden, 2012). Such choices will be a particular focus on this thesis

which, following an assessment of currently available evidence, will undertake

the estimation of a subset of parameters required to parameterise the model

of the health effects from air pollution exposure.

Importantly, the consequences of parameter and structural uncertainty are

intrinsically linked since the structure of the model will determine the relation-

ship of parameters between one another and their relative influence on final

outcomes.
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Chapter 3

Quantitative impact assessment:

why morbidity and mortality

impacts need to be

simultaneously considered

3.1 Introduction

This chapter challenges the current approach to quantification in health

impact assessment of environmental health interventions, such as air pollution

control.

Health impact assessments aim to predict the effects of projects, programmes

or policies - hereafter also referred to as interventions - on population health

and health inequalities. They are widely used to inform environmental policy

and other public policies outside the health care sector and are championed by

the World Health Organisation under the rubric of “Healthy Public Policy”,

which calls for explicit consideration of health and equity matters in all policy

areas (WHO, 1986; Kemm, 2001).

To achieve this objective, health impact assessments are expected to provide
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predictions that are valid (Veerman et al., 2007; Bathia & Seto, 2011) and

that add value to the decision-making process pertaining to the design and/or

implementation of interventions (Davenport et al., 2006; Kemm, 2001). This

is often best done through quantitative risk assessment (QRA), which provides

a more precise description of impacts and their magnitude and also supports

economic evaluation, which is a key input to decision-making (Veerman et al.,

2005; Fehr et al., 2012).

QRA has often been carried out to evaluate interventions that affect health

by modifying exposure to environmental risk factors, air pollution in particular

(Medina et al., 2013). As mentioned in Chapter 2, the quantification method

consists in applying, for each health endpoint, a health impact function that

links together: (i) the relevant epidemiological risk estimate, (ii) incidence data

and (iii) the change in risk factor exposure and its distribution within the target

population (O’Connell & Hurley, 2009; Bathia & Seto, 2011; Medina et al.,

2013). This provides the change in number of cases of a selection of morbidity

and mortality endpoints, attributable to the intervention under evaluation.

For instance, in the assessments of large-scale programmes of air pollution

control, such as Clear Air for Europe (Holland et al., 2005a), Revisions of

the E.U. Gothenburg Protocol (Holland et al., 2011) and Revisions to the

US National Ambient Air Quality Standards for particulate matter (USEPA

2006; USEPA 2009), commonly reported health impacts included numbers of

premature deaths and/or of life years lost, counts of cardio-respiratory hospital

admissions, numbers of cases of chronic bronchitis and so forth.

Morbidity and mortality are, however, known to interact in a number of

ways. In particular, a chronically sick person is expected to have a shorter

life expectancy than a healthy person. Additionally, morbidity can influence

individuals’ susceptibility to the harmful effects of environmental hazards.

The objective of this chapter is twofold: it aims (i) to demonstrate the im-

portance of encompassing interactions between morbidity and mortality im-

pacts in QRA of environmental health interventions; and (ii) to show how

to handle these interactions via simultaneous quantification of effects using

Markov modelling, which is used extensively to support decision-making in

the health care sector. This work is based on the example of outdoor air pol-
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lution that is one of the environmental risk factors for which health effects

have been most intensively quantified over the recent years (Medina et al.,

2013). Study findings, however, are expected to apply to any environmental

risk factor associated with both morbidity and mortality effects.

The work consists of four main components. First, I briefly recall the cur-

rent approach to QRA, which has been described in greater detail in Chapter 2

and is hereafter referred to as the “separate” approach. Second, I identify lim-

itations associated with the latter and advocate simultaneous quantification of

morbidity and mortality impacts. Third, I outline two approaches to applying

the Markov modelling technique to QRA. Fourth, I illustrate the advantages

of the simultaneous approach to quantification, based on an illustrative inter-

vention of air pollution reduction in London.

3.2 Traditional approach to QRA: the separate approach

The change in annual number of cases of health endpoint y that is at-

tributable to an intervention that modifies the exposure of a target population

of size N to environmental hazard h is obtained by the following health impact

function, assuming a log-linear concentration-response function:

4y = y0(RE4h − 1)N (3.1)

where:

4h represents the change in exposure to hazard h;

4y represents the change in annual incidence of endpoint y;

y0 is the annual incidence rate of endpoint y at hazard levels h0;

RE4h is the ratio of risk of experiencing endpoint y in the group exposed to

4h compared to the unexposed group.
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The application of static health impact functions to quantify health impacts

over a given period of time is however especially problematic when applied to

quantify a change in mortality risk since death can be postponed but not per-

manently avoided. It has indeed been forcefully argued that what matters is

not the number of attributable premature deaths, but time to death advance-

ment (McMichael et al., 1998; Künzli et al., 2001; Brunekreef et al., 2007).

As a result, life expectancy impacts have been increasingly considered along-

side premature deaths in QRA (O’Connell & Hurley, 2009). They are com-

puted using the life-table method, which consists of comparing survival curves

calculated from annual probabilities of death accumulated over time. The

modification of age and gender-specific probabilities of death by the relevant

mortality risk estimates allows one to derive a modified survival curve that can

be compared against the baseline survival curve (Miller & Hurley, 2003). The

weighted area between the two curves, with weights representing the age and

sex distribution of the target population, is the average life expectancy impact

associated with the change in risk factor exposure (Rabl, 2003).

Whilst the life-table method greatly improves upon health impact functions

with regards to the quantification of life expectancy impacts, there remains a

second and different set of issues that arise when morbidity and mortality

impacts are quantified separately, which is the focus of this chapter.

3.3 Two key limitations of the separate approach

3.3.1 Overestimation of the change in morbidity cases

There is a straightforward interaction between morbidity and mortality ef-

fects: the longer people live, the more likely they are to experience additional

morbidity events, and conversely if their life expectancy is shortened.
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Understandably it is not common practice to exhaustively account for the

potential morbidity impacts associated with a change in mortality risk in a

given target population. However, if a risk factor is associated with adverse

impacts on both mortality and a selection of morbid conditions, the described

interactional effect implies that the true change in number of cases of morbid

endpoints of interest, net of the mortality impact, will always be lower than

the “crude” change computed separately from the mortality effect.

We shall examine this relationship using the example of outdoor air pol-

lution that is positively associated with a greater risk of dying prematurely

from all-causes and of developing chronic conditions such as chronic bronchi-

tis (Anderson et al., 2012; US EPA, 2009). Under a decrement in exposure

to air pollution, the crude decrease in number of cases of chronic bronchitis,

resulting from a reduced risk to develop this disease, is expected to be partly

compensated by additional cases of chronic bronchitis taking place during the

extended length of life enjoyed by individuals of the target population. Con-

versely, under an increment in air pollution exposure, the crude increase in

cases of chronic bronchitis is expected to be partly compensated by the short-

ening of an individual’s average lifespan, during which they can develop this

disease.

The magnitude of the overestimation bias in the change in cases of morbid

endpoint y under the separate approach will be determined by the interaction

between three main factors: (i) the target population’s baseline probability of

developing condition y, i.e. disease incidence; (ii) the relative magnitude of the

risk factor’s impact on the risk of death and on the risk of developing condition

y; (iii) the analysis time-horizon. Indeed the longer the time-horizon, the more

mortality impacts will matter when assessing the morbidity effects associated

with a given intervention. The overestimation bias is therefore difficult to

estimate a priori. However, modelling results based on a case study of air

pollution reduction in London over a time horizon of 60 years, presented in

section 3.5, shows that it can be substantial.
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3.3.2 Limited ability to characterise the distribution of life ex-

pectancy impacts

By causal pathways

The computation of an intervention’s impact on life expectancy separately

from morbidity effects has two main limitations. The first pertains to the

limited ability to identify the contribution of each morbid endpoints, i.e. each

causal pathway, to the overall life expectancy impact.

Whilst cause-specific mortality risk estimates can help address this problem,

their use is typically not recommended for health economic evaluation as it

may lead to an under-estimation of the total mortality burden (WHO, 2013).

Indeed, the effect of a severe disease on lifespan usually goes beyond death

from this particular disease and includes an overall weakening of the general

health condition, e.g. co-morbidities, that may lead to premature death from

other causes. These premature deaths may not be captured by the narrower

focus of cause-specific risk estimates. Second, the validity of cause-specific

mortality risk estimates may be adversely affected by misclassification of causes

of death in mortality registration. Background national statistics on all-cause

mortality are therefore expected to be of greater precision than cause-specific

death rates (Mathers et al., 2005). Finally, at least in the case of air pollution,

cause-specific risk estimates are deemed more appropriate for meta-analysis,

which is key to incorporate all relevant evidence and to decrease parameter

uncertainty (WHO, 2013).

Between health-stratified population subgroups

Second, the life expectancy impact attributable to interactions between the

presence of pre-existing morbid conditions, i.e. health status, and hazard ex-

posure cannot be identified. Morbidity indeed typically affects mortality in
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two main ways. Firstly, it can increase the individual’s baseline probability

of death. For instance, subjects with chronic obstructive respiratory disease,

especially in the severe or very severe stages of the disease, have a higher prob-

ability of death (Mannino et al., 2006). Secondly, it can enhance individuals’

predisposition to experience adverse effects associated with hazard exposure,

hereafter referred to as greater susceptibility to exposure. For instance, sur-

vivors of a myocardial infarction were found to have a higher excess risk of

death associated with air pollution exposure than individuals of the general

population (Zanobetti & Schwartz, 2007).

A potential approach to encompassing interactions between health status

and mortality may be to: (i) split the target population into subgroups whose

health state has a known influence on baseline mortality risk and/or suscep-

tibility to risk factor’s adverse effects and (ii) apply the life-table method

to each subgroup. However, in addition to being cumbersome, when assess-

ing air pollution control interventions, such an approach would be incomplete

and underestimate health benefits. Indeed, air pollution not only affects peo-

ple differently according to their health status but, as it increases the risk

of developing chronic conditions, also impacts upon the risk on entering each

susceptibility-stratified subgroup. Consequently, simply applying the life-table

method to each subgroup would fail to capture air pollution’s influence on in-

dividuals’ health distribution over time, and its interaction with health-related

differential susceptibility. As a result, such an approach would underestimate

total health benefits.

Reasons why the distribution of impacts matters

The ability to characterise the distribution of life expectancy impacts is

extremely pertinent to implementing the concept of Healthy Public Policy.

The latter indeed embraces concerns for both health and equity and places a

particular emphasis on distributional analysis (WHO, 1999, 2005, 2008).

Firstly, combining knowledge of the distribution of life expectancy impacts

by causal pathway and between population subgroups stratified by health sta-
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tus, with evidence on social gradients in health outcomes (O’Neill et al., 2003)

is key to finely characterise the distribution of health effects across socio-

economic subgroups. It is therefore a crucial component of health inequality

analysis.

Secondly, knowledge of impact distribution is paramount to the construction

of summary measures of population health (SMPH), which require to adjust life

expectancy estimates with health- or disability-related quality of life weights

(Gold et al., 2002). Although SMPH are not used widely in health impact

assessments (Briggs, 2008), they were suggested as a complementary metric to

support resource prioritisation (Veerman et al., 2005).

Thirdly, instead of simply adding numbers of cases of morbid events, un-

derstanding the impact of morbid events on individuals’ baseline probability

of death as well as on their susceptibility to suffer from further adverse effects,

helps provide an much more accurate picture of the morbidity health burden

attributable to a given environmental health hazard.

Finally, distributional information is also pertinent to economic analyses,

which are often performed for regulatory assessments. For instance, extending

the life of a person with a medical condition or extending the time period

during which a person remains healthy is expected to have opposite impacts

on health care budgets.

3.4 Simultaneous quantification of health impacts using

Markov modelling

3.4.1 Markov modelling: Description

The argumentation developed in section 3.3 makes a case for accounting

for morbidity and mortality interactions, via simultaneous quantification of

70



these impacts. This can be performed using Markov models, which have a

long history of use in medical decision-making and health care technology

assessment (Sonnerberg & Beck, 1993; Briggs et al., 2006).

Markov models simulate the incidence of health events over the individual’s

lifetime via pathways to and from a set of mutually exclusive and exhaustive

health states, such as “healthy”, “diseased”, “dead”. The use of an absorbing

state, i.e. a state that cannot be left once entered such as “ dead”, makes the

Markov process finite (Sonnerberg & Beck, 1993).

The main strength of Markov models is to consider all relevant health effects

simultaneously and thus to capture interactions between impacts. In addition,

Markov models are especially suitable to QRA as they are dynamic projec-

tions tools. As such, unlike static health impact functions, they can allow for

dynamics in population demographics as well as in the pattern of change in

health risk, where the latter may vary by age and/or calendar time after inter-

vention implementation. Whilst life-tables also allow for such dynamics, they

can only evaluate life expectancy impacts. Furthermore, Markov models are

particularly suited to model health effects that can repeat over time for a same

individual as is often the case for morbidity effects, such as hospitalisations

(Sonnerberg & Beck, 1993).

In a Markov model, pathways between health states are parameterised by

probabilities of transiting between states, called transition probabilities (TP).

Whilst Markov processes are continuous, they are typically evaluated using

a discrete time approximation by expressing TP for a discrete time period

know as a cycle, where the sum of cycles represents the time horizon for effect

quantification.

Each TP represents the probability of transiting to a particular state of

the model during a cycle, conditional on being in a given health state at the

beginning of the cycle. This allows to differentiate an individual’s probability

of experiencing future health events according his/her current health status.

TP are also typically stratified by age and gender and expressed as a function

of numbers of cycles elapsed to reflect the time-dependency of health events

(Briggs & Sculpher, 1998).

To estimate the total change in population health associated with an in-
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tervention that increases or reduces population exposure to an environmental

hazard such as air pollution, the Markov model structure should be composed

of two arms: a “Baseline” arm, populated with baseline TP and (ii) an “Inter-

vention” arm for which, similarly to a health impact function, baseline TP are

multiplied with relevant epidemiological risk estimates, scaled to the expected

change in hazard. For a decrement in hazard exposure, scaled risk estimates

are hereafter referred to as risk reduction estimates (RRE) throughout the

thesis.

Each arm of the model should then be evaluated across all cycles, either via

first order Monte Carlo simulation which follows the unique pathways taken

by a large number of individuals, or via cohort simulation where a cohort of

individuals are followed altogether throughout the model (Briggs & Sculpher,

1998). At the end of all cycles, one can obtain the total life years spent by each

individual, or by the overall cohort, in each health state of the model, along

with the total count of health events experienced. Comparison of results for

each arm provides the intervention’s attributable change in counts of health

events and in total life years spent in each health state.

3.4.2 Applying Markov modelling to QRA

Modelling approach

Two main approaches to applying Markov modelling in QRA are presented

below. They essentially differ in the scope of morbidity-mortality interac-

tions encompassed and thus, in the way life expectancy impacts are modelled.

The choice between the two approaches should be driven by the nature and

availability of epidemiological data, as well as by the potential presence of

policy-focus on some disease or susceptible populations subgroups.
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- Full modelling of morbidity-mortality interactions:

A first approach consists in modelling the full range of diseases that are as-

sociated with hazard exposure and/or that enhance individuals’ susceptibility

to adverse health events. In this case, the life expectancy impact of a change in

hazard exposure is fully mediated via the change in the risks of entering health

states that represent life-shortening diseases and/or susceptibility-enhancing

conditions. The mortality risk of individuals who do not enter those health

states is therefore unchanged under an increment or decrement in hazard ex-

posure.

Although this “full modelling” approach best characterises the distribution

of life expectancy impacts by morbidity pathways and between population sub-

groups, it requires a good knowledge of the range of morbid impacts associated

with the risk factor of interest. It is therefore quite resource intensive and may

not be adequate if gaps in epidemiological evidence are known to be large.

- Focused modelling of morbidity-mortality interactions:

The second approach, hereafter referred to as “focused modelling”, consists

in focusing on a restricted set of life-shortening and/or susceptibility-enhancing

morbid condition(s) that are most strongly supported by epidemiological evi-

dence, or that are of particular policy interest.

Importantly, in this case, the mortality effect of hazard exposure - if the

latter is associated with all-cause mortality - will typically need to be mod-

elled via all the model pathways, such that both the individuals who enter

the disease state(s) and those who do not, face a change in death risk (with

potentially differing magnitude) under exposure change.

Whilst the modelling of health impacts is easier to implement under the

“focused modelling” approach, for model parameterisation to be accurate, the

risk estimate of mortality associated with hazard exposure may need to be

adjusted. Indeed, the Markov model structure implies that individuals who

do not enter the disease state X, cannot die from cause x. Therefore, to

be coherent and to avoid potential double-counting of life expectancy effects,

the risk estimate of mortality that applies to the probability of death of those

individuals who are not in state “X” should pertain to all other causes of death
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than cause x. Whilst the required information may not be available from the

epidemiological literature, a mean estimate of excess risk can be derived using

the risk estimate of all-cause mortality and the risk estimate of mortality from

cause x. A method to do so is presented in Appendix A.

Model structure

To assess the overall life expectancy impact of an intervention that modifies

population exposure to a risk factor, only one “Intervention” arm, fitted with

all relevant and appropriately scaled risk estimates is required (i.e. arm I4 of

Figure 3.1 in section 3.5.1).

However, disentangling health effects by morbidity pathways and across

population subgroups requires additional “Intervention” arms, where risk es-

timates apply only on selected transition paths (e.g. arms I1, I2, I3 of Figure

3.1 in section 3.5.1). To identify the health effect attributable to the change

in the risk of a particular health event, inter-arms comparisons should involve

two arms that solely differ on the basis of that particular risk being modified.

3.5 Illustration

3.5.1 Description and method

This section illustrates how Markov modelling-based simultaneous quantifi-

cation of morbidity and mortality impacts can address the previously outlined

limitations of the traditional “separate” approach to QRA. It is based on an

illustrative intervention that is expected to decrease immediately and perma-

nently concentrations of fine particulate air pollution (PM2.5) by 1µg/m3 in

London.
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For illustrative purposes, quantification of the whole range of health effects

associated with PM2.5 exposure (Anderson et al., 2012; Brook et al., 2010; US

EPA, 2009) was out of scope. Consequently, the “focused modelling” approach

described in section 3.4.2, focusing on coronary heart disease (CHD) - ICD I20-

25 - as a chronic morbid endpoint alongside all-cause mortality impacts, was

followed to model the health benefits of air pollution reduction.

The model, which is illustrated in Figure 3.1, uses a simple 3-state structure:

“Without CHD”, “With CHD”, “Dead”. This implies that, for a given age

and gender, health status is defined as having CHD or not. This structure was

duplicated four times such that the “Baseline” arm could be compared against

four “Intervention” arms I1 to I4, which differ according to the transition paths

to which risk reduction estimates apply.

- Arm I1 only accounts for the reduced risk of developing CHD;

- Arm I2 only accounts for the reduced risk of premature mortality among

individuals without CHD;

- Arm I3 encompasses simultaneously the reduced risk of developing CHD

and the reduced risk of premature mortality among individuals without CHD;

- Arm I4 accounts simultaneously for the reduction in all risks of health

events affected by the intervention: (i) the risk of developing CHD, (ii) the

risk of death among individuals without CHD and (iii) the risk of death among

individuals with CHD.
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Figure 3.1: Diagram of 5-arm Markov model developed for evaluating the illustrative inter-

vention.

Abreviations: AOC = all other causes; AC = all causes; CHD = coronary heart disease, CHD = without

CHD, Dev. = developing. Each oval represents a Markov state and full arrows indicate allowed transitions

between them.

Risk reduction estimates RREa, RREb, RREc are epidemiological risk estimates scaled to a 1µg/m3

decrement in PM2.5 concentrations and are defined in Table 3.2. RREa applies to P (Dev.CHD), RREb to

P (DeathAOC|CHD) and RREc to P (DeathAC|CHD).
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Table 3.1 describes the various inter-arms comparisons that were performed

to disentangle life expectancy impacts attributable to the reduction in each

risk. It underlines how modelling results address the two limitations of the

“separate” approach outlined in section 3.3.

Arms Inter-arms comparisons’ output
compared

Correct estimation of the change in morbidity cases (section 3.1.)

(B − I3) Avoided CHD cases under the simultaneous approach to quantification (1)

(B − I1) Avoided CHD cases under the separate approach to quantification
(I1 − I3) Overvaluation bias associated with the separate approach

Distributional analysis of life expectancy impacts (section 3.2.)

(I3 − I2) Life year (LY) gain due to reduced risk of developing CHD
(I2 −B) LY gain due to reduced mortality risk in individuals “Without CHD”
(I4 − I3) LY gain due to reduced mortality risk in individuals “With CHD”

Intervention’s total life expectancy impact in the target population
(I3 − I2) + (I2 −B) + (I4 − I3) = (I4 −B)

Table 3.1: Inter-arms comparisons: limitations addressed and modelling output.

(1) In the present case, since CHD is chronic, comparing the baseline arm (B) against arm I4 or arm I3

provides exactly the same number of avoided CHD cases.

The target population was defined as the currently alive population of Lon-

don aged 40 to 90 years (2011 census) followed until they reached 100 years

or died. As a result, the analysis time horizon is 60 years. The modelling

parameters, which consist of risk reduction estimates, death probabilities and

CHD incidence and prevalence are detailed in Table 3.2. Since: (i) the present

study focuses on the expected morbidity and mortality impacts and (ii) the

structure of each arm of the model is linear, a deterministic analysis relying on

the mean values of each parameter was performed. The model was evaluated

in Matlab.
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Mean values (2)

Name Definition (1) Source 4PM2.5
= −1µg/m3

cycle 0 CHD Prevalence
P (Dev.CHD)

cycle 1-60 CHD Incidence UK GPRD (3)

N.A.

P (DeathAOC|CHD) Probability of death Own computations
from all other based on death rates
causes than CHD, in England (ONS, 20131)
if without CHD and hazard ratios of

P (DeathAC|CHD) Probability of death excess death from N.A.

from all causes, CHD provided by

if with CHD (Whiteley et al., 2005)

RREa RRDev.CHD Gan et al. (2011) 0.988

RREb HRDeathAOC|CHD Own computations 0.995

(see Appendix A)

RREc
(4) age ≤ 64 HRDeathAC Pope III et al. (2002) 0.994

age ≥ 65 HRDeathAC|CHD Zanobetti and 0.971

Schwartz 2007

Table 3.2: Modelling parameters for parameterisation of the 5-arm model.

Abreviations: AOC = all other causes; AC = all causes; CHD = coronary heart disease, CHD = without
CHD, Dev. = developing.
(1) All probabilities are expressed for a one-year period. They are stratified by one-year age group and
gender. To be combined with risk reduction estimates (RRE), transition probabilities were converted into
rates and the resulting product was converted back to probabilities to parametrize intervention arms. RRE
values unconditional on health status hold for the general population.
(2) Mean risk estimates rescaled to a 1µg/m3 decrement in PM2.5 concentration. Rescaling method and
original values provided in the epidemiological literature are presented in Appendix B.
(3) Obtained from open-access model DYNAMO-HIA.
(4) HRDeathAC|CHD, which captures CHD-subgroup’s specific susceptibility to PM2.5 mortality effect,
only applies to individuals with CHD aged 65 and above in order to be in line with Zanobetti & Schwartz
(2007)’s study population.

3.5.2 Results

The results are presented for each gender and 1-year age group of the cur-

rently alive London adult population, over the 60 years modelling period. Per-

centage values given are population-weighted.
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Overestimation bias in quantification of avoided CHD cases

Figure 3.2 contrasts the numbers of avoided cases of CHD under pollution

decrement obtained by the separate approach (results represented by the full-

line curve) as opposed to the simultaneous approach (results represented by the

dotted curve). The comparison of those results - which is equivalent to directly

comparing arm I1 against arm I3 - shows the impact of extending individuals’

life expectancy, simultaneously to reducing their risk of developing CHD, on

the total number of CHD cases expected to be avoided in the target population.

The interactional effect between the morbidity and mortality impacts of

air pollution reduction is the strongest for younger age-groups, who are those

who enjoy the reduction in mortality risk for the longest period, i.e. who have

the largest life expectancy gain. As a result, the size of the bias in counts of

CHD cases associated with the separate approach is the largest among younger

age-groups and slowly decreases as a function of age. An implication of this

finding is that the longer the time horizon of analysis, the greater the bias

in quantification of morbid cases will be, as differences accumulate over time.

Across all age-groups and a time horizon of 60 years, the bias is not negligible:

under the separate approach, counts of avoided CHD cases is overestimated

by about one fifth for each gender.
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Figure 3.2: Number of avoided CHD cases in current London population under the separate

and the simultaneous approaches to quantification.

Abreviations: B, I1 and I3 stand for “Baseline” and “Intervention” arms I1 and I3, as represented in

Figure 3.1.
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Distributional analysis of life expectancy impacts by causal pathways and be-

tween health-stratified population subgroups

Figure 3.3 illustrates how simultaneous quantification of morbidity and mor-

tality impacts can characterise the distribution of life expectancy impacts by

causal pathways and between population subgroups stratified by demograph-

ics and health status, presently defined by the presence of the CHD condition

or not. In line with the fact that life expectancy gains are cumulative over

a lifetime, the younger age groups gain the most from the intervention. The

small irregularities in the pyramidal distribution of life year (LY) gains solely

mirror the peculiarities of London’s population distribution (see Appendix C).

Figure 3.3 was obtained by performing three inter-arms comparisons defined

in the lower-section of Table 1. It provides three main modelling insights.

Firstly, individuals “With CHD”, i.e. those who had CHD at baseline or who

developed it in their remaining lifetime, are expected to reap about a quarter

of the intervention’s total LY gain (respectively 25% and 23% of total LY

gain accruing to males and females populations across all ages). It should be

underlined that this finding reflects epidemiological evidence that individuals

with CHD aged above 65 years old are more susceptible to air pollution adverse

effects than the rest of the general population (see section 3.5.1).

Secondly, about a fifth of the intervention’s total LY gain steams from

reducing the risk of CHD incidence (respectively 22% and 16% of total LY

gain accruing to males and females populations across all ages). A corollary of

these two findings is that the CHD pathway is expected to be a major driver of

the intervention’s overall life expectancy impact. Indeed, respectively 47% and

39% of the intervention’s total LY gain accruing to male and female populations

is generated by preventing or decelerating the development of CHD and/or by

staying alive longer once suffering from it.

Thirdly, the relative contribution of each risk reduction to total LY gain

strongly depends on age and gender. For instance, the LY gain associated

with a reduced risk of CHD incidence accounts for 26% of the total LY gain

accruing to individuals aged 40 as opposed to 10% of the total LY gain accruing
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to individuals aged 75. Indeed, as individuals get older, their probability of

already having developed CHD before intervention implementation becomes

greater and moreover, their risk of developing other life-shortening diseases

than CHD becomes more prevalent. Finally, gender differences pertaining to

the share of LY gain attributable to the CHD pathway corroborate results

of Figure 3.2, where the absolute numbers of avoided CHD cases is lower for

females than males. It is explained by the lower baseline incidence of CHD in

females before menopause.

Figure 3.3: Distribution of the intervention’s life year (LY) gain by causal pathway and
between age- gender- and health status-stratified subgroups.
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3.6 Discussion

The present work challenges the traditionally used approach to quantifi-

cation in health impact assessments of environmental interventions such as

air pollution control regulations, where morbidity and mortality impacts are

quantified separately. It demonstrated that, by ignoring interactions between

morbidity and mortality impacts, this “separate” approach undermines the

validity of health predictions and cannot provide policy-relevant information

pertaining to the distribution of life expectancy impacts.

As illustrated with a case study of air pollution reduction in London, the

simultaneous quantification approach has two major benefits. First, it pro-

vides a correct estimate of the intervention-related change in cases of morbid

endpoints in the target population, rather than systematically overestimating

this impact. The size of the overestimation bias associated with the “separate”

approach will depend on several factors, in particular the relative magnitude

of the risk factor’s impact on mortality and morbidity risks. Over long time

horizons, as typically used in HIA of air pollution control interventions, the

bias may be substantial. Over a 60-year time horizon for instance, the “sep-

arate” approach was found to lead to an overestimation by one fifth of the

number of CHD cases expected to be avoided following pollution abatement

in London.

Secondly, by encompassing interactions between health effects, including

health-related differential susceptibility to hazard exposure, the simultaneous

quantification approach can characterise the distribution of life expectancy

effects by causal pathways and across population subgroups stratified with

different levels of health. This more refined understanding of the distribution

of health effects is expected to have a least three main applications. First, in

a context where the reduction of health inequalities is viewed as an essential

component of the implementation of Healthy Public Policy (WHO, 1999, 2005,

2008), such distributional information, when combined with evidence of social

gradients on health, can support health inequality analysis. Second, it is crucial

to the computation of summary measures of population health, which require
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to adjust life expectancy estimates by health (or disability)-related quality of

life weights. Whilst not widely used in HIA , these measures allow to compare

the performance of diverse interventions and provide an accurate picture of

morbidity on length and quality of life, thus going beyond simple adding up

of numbers of cases. Finally, encompassing interactions between health effects

as also particularly relevant for budget impact analysis especially with regards

to health care resource use.

Markov models were suggested as a quantification tool to perform simulta-

neous quantification of morbidity and mortality impacts in quantitative health

impact assessments. In addition to capturing interactions between health ef-

fects, which was the focus of this chapter, it is worth underlining that Markov

modelling also allows for dynamics in population demographics and health

risks over time. Consequently it addresses the static feature of health impact

functions, which are currently used to quantify morbidity impacts.

Markov models are also particularly suited to model repeating health effects

as well as to attach costs and utilities to health states in order to compute

summary measures of population health, such as QALYs and DALYs. As

a result, they have been used extensively for decision-making in the health

care sector. By contrast, to the exception of recently developed Markov-based

generic software DYNAMO HIA (Lhachimi et al., 2012), Markov models have

very little history of use in health impact assessments of environmental health

interventions. A potential reason for the limited application of Markov models

in quantitative health impact assessment may be their greater complexity than

the current tools of the separate approach i.e. health impacts functions and

life-tables. In this respect, the “focused modelling” approach illustrated in this

chapter appears particularly attractive.

Notwithstanding the level of refinement in the quantification of predicted

health impacts, it is worth stressing that quantitative risk assessment, be it

performed under the “separate” or the presently advocated simultaneous ap-

proach, is underpinned by a set of assumptions which impact on predictive

validity should always be considered. In particular it is assumed that epidemi-

ological results from various studies are applicable to the target population of

the intervention under assessment (Bathia & Seto, 2011). It should however
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be noted that, by taking into account individuals’ heterogeneity in suscep-

tibility to health effects as a result of their health status, the simultaneous

approach may help reduce extrapolation of epidemiological findings. Finally,

whilst input parameters to quantification (e.g. mortality and disease incidence

statistics) are typically assumed to be stable over time, secular trends, be

it purely contextual or induced by the interventions themselves, may further

widen the gap between predictions and reality (Bathia & Seto, 2011).

3.7 Conclusion

In a context where health impact assessment has become a major compo-

nent of the implementation of Healthy Public Policy, the present work chal-

lenges the current approach to impact quantification, which assesses morbidity

and mortality impacts separately. Two main limitations pertaining to predic-

tions’ validity and informational content were identified. To address these

limitations, a simultaneous approach to quantification that captures interac-

tions between impacts was advocated. Markov modelling was selected to im-

plement the simultaneous approach and to illustrate its superiority, a simple

3-state Markov Model was constructed to evaluate an illustrative intervention

of air pollution reduction in London. By improving predictions’ validity and

policy-relevant informational content, the simultaneous modelling approach to

quantitative risk assessment in HIA is expected to help contribute to public

health protection more effectively.
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Chapter 4

A Markov modelling approach

to the estimation of QALY gain

and health care costs impacts of

air pollution control

4.1 Introduction

Chapter 3 demonstrated that the current approach to quantitative health

impact assessment of environmental health interventions such as air pollu-

tion reduction presents two important limitations: by quantifying morbidity

and mortality impacts separately, it undermines predictive validity and cannot

charaterise the distribution of life expectancy impacts by causal pathways and

among population subgroups with different levels of health. A simultaneous

approach to quantification, that captures interactions between morbidity and

mortality health effects, was therefore advocated.

Markov models were selected to apply this approach to quantitative health

impact assessment, owing to their numerous attractive features. More specifi-

cally, since they were developed to represent stochastic processes, Markov mod-
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els are particularly suited to modelling the dynamic progression of diseases and

their interactions with health events, such as death, in a given target popula-

tion. Additionally, they also allow for dynamics in population demographics

and in the pattern of change in health risk associated with a intervention, thus

addressing the static feature of commonly used health impacts functions.

As mentioned in Chapter 2, the morbidity effects considered in evalua-

tions of air pollution control interventions are primarily associated with acute

pollution exposure. Consequently, the long-term quality of life impacts associ-

ated with a reduction in chronic morbidity, following a sustained decrement in

background air pollution, are typically ignored. However, in light of increasing

political attention to strategies to improve air quality (Medina et al., 2013),

it is of particular interest to refine the understanding of the long-term health

benefits of such interventions, by evaluating quality of life gains alongside life

expectancy effects.

The health metric designed to encompass impacts on both quality and

length of life dimensions is the quality-adjusted life years (QALY). Although

the QALY has been rarely used in HIA (Briggs, 2008), its use has been advo-

cated for assessments of environmental health interventions in order to support

resource prioritisation (Ponce et al., 2001; US Institute of Medicine, 2006). In

particular, as the QALY routinely supports health care resources allocation

(Drummond et al., 2005), its use in the assessment of air pollution control in-

terventions would allow policy-makers to compare the latter with health care

interventions, for which cost-effectiveness decision rules are in place.

Constructing a QALY requires the application of a quality-adjustment to

life year gains using health-related quality of life (HRQoL) weights. However,

as mentioned in Chapter 2, adjusting life years gains for quality of life has been

controversial and past attempts at doing it have been simplistic. In this con-

text, this piece of work aims to demonstrate that the Markov-modelling based

simultaneous approach to quantification presented in Chapter 3 represents a

step forward for QALY-based cost-effectiveness assessments of air pollution

control.

The aims of this chapter are threefold: (i) to review existing attempts at

estimating the QALY gain of air pollution control and to outline the advan-
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tages of the Markov-modelling based simultaneous approach to perform such

analysis (ii) to analyse and translate the rich body of epidemiological evidence

on the adverse health effects of long-term exposure to fine particulate air pol-

lution (PM2.5) into chronic conditions associated with known effects on life

expectancy and quality of life; (iii) to construct a Markov model that captures

the main characteristics of the chronic conditions identified and that relies on

the latest most relevant epidemiological evidence, as was feasible at the time of

project realisation. This implies that the risk estimates that will parameterise

the model will be more up to date than the estimates used in Chapter 3.

The underpinning objective is to apply the developed model to quantify

the QALY gain and health care cost impact of reducing PM2.5 concentrations

in England and Wales and London, in order to support the UK air quality

strategy. The present chapter however, solely focuses on the construction

and parameterisation of the model. Estimation of a subset of key parameters

required to parameterise the model will be dealt with separately in Chapters

5 and 6. Modelling findings will be presented and discussed in Chapter 7.

4.2 Benefits of the simultaneous approach to quantifi-

cation in QALY analysis

4.2.1 Limitations of past QALY analyses

The QALY is obtained by multiplying the period of time spent in a given

health state by health-related quality of life (HRQoL) weights associated with

that state (Gold et al., 2002). There are two related elements to take into

account when assessing the QALY gain of air pollution reduction. First, the

lower the baseline quality of life and/or remaining lifespan of targeted indi-

viduals are, the smaller the QALY gain from postponing their deaths will be.

88



Second, epidemiological evidence suggests that air pollution is associated with

both premature mortality and the development of chronic cardio-respiratory

conditions (Anderson et al., 2012). A subset of population individuals affected

by a poor health condition and thus, a low quality of life and a short life

expectancy, is therefore attributable to cumulative exposure to air pollution.

Ignoring air pollution’s influence on individuals’ quality of life and life ex-

pectancies at baseline, i.e. under current pollution levels, will consequently

greatly underestimate the QALY gain of air pollution control. Although this

issue has been acknowledged (Hubbell, 2006), it has not been adequately ad-

dressed. Using the life-table method, Coyle et al. (2003) simply applied HRQoL

weights for the general population to life year gains from a lower risk of pre-

mature mortality and completely ignored quality of life gains associated with

reduced morbidity. Cohen et al. (2003) used a similar method but assumed

that all the individuals who would die prematurely from air pollution suf-

fered from a preexisting coronary or respiratory condition without however,

accounting for air pollution’s role in driving a subset of them to such health

state. Such an approach further contributed to underestimating the QALY

gain of air pollution control.

Whilst Hubbell (2006) partly accounted for air pollution’s impact on quality

of life via the development of chronic bronchitis, he did not use the resulting

level of quality of life as a baseline to adjust life years gains from decreased

mortality risk. This use of a double baseline of HRQoL weights to assess

respectively morbidity and mortality effects, as was done by the US EPA to

create the MILY (see Chapter 2), no longer allows a linear substitution between

quality and quantity of life and thus, clearly departs from the QALY.

A second major limitation shared by all the above-mentioned studies - and

by all past HIAs of air pollution control interventions in general - is that no

study has accounted for the fact that individuals suffering from a compromised

health condition have been found to be more susceptible to air pollution expo-

sure than the general population (Zanobetti et al., 2008; Zanobetti & Schwartz,

2007; Tonne & Wilkinson, 2013). As argued and illustrated in Chapter 3,

health-related differing susceptibility to air pollution drives the distribution

of adverse impacts among population subgroups stratified by health status.
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Such a knowledge is crucial to accurately adjust life expectancy estimates

with HRQoL weights and ignoring it, as was done by past QALY analyses of

air pollution control interventions, is expected to lead to inaccuracy in impact

estimates.

4.2.2 Advantages of the simultaneous approach

The two major limitations of past QALY analyses stem from the fact that

they relied on the traditional “separate” approach to impact quantification in

HIA that was criticised in Chapter 3. These limitations can be addressed by

encompassing interactions between morbidity and mortality impacts via the

simultaneous approach to impact quantification, using Markov modelling as a

quantification tool.

Markov modelling consists in following individuals’ health condition over

time by simulating their trajectories to and from a set of mutually exclusive and

exhaustive health states. It provides two core advantages to QALY analysis.

First, individuals’ quality of life and life expectancies are no longer treated

as exogenous parameters. Instead, they are endogenously determined as a

function of individuals’ current health states, where air pollution influence in

driving them to their respective states of health is fully accounted for. Second,

individuals’ change in susceptibility to air pollution exposure over time, as a

consequence of a degraded health condition that may, or may not, be associated

with air pollution exposure is encompassed. Thanks to these two features, the

lifetime impact of air pollution exposure on individuals’ quality and length of

life is fully captured.

In addition, from an economic perspective, the proposed approach can quan-

tify both the health care savings from a reduced occurrence of morbidity events,

as well as the health care costs from extending the lives of individuals with

chronic medical conditions. As a consequence, the total health care budget

impact of reducing air pollution can be evaluated.
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4.3 Modelling the QALY and health care costs impacts

of air pollution exposure

4.3.1 Preliminaries

Chapter 2 discussed the importance of undertaking conceptual modelling

(problem-oriented and design-oriented), in order to produce a benchmark against

which to assess the credibility of the final model to be implemented. In this

analysis a conceptual model has not been formally implemented, however ele-

ments that are relevant to the construction of a conceptual model are consid-

ered in sections 4.3.2 to 4.3.4 and section 4.4.2.

4.3.2 System boundaries: scope of analysis

As mentioned in Chapter 2, the impacts associated with air pollution expo-

sure go beyond the increase in morbidity and mortality cases directly related

to exposure but include productivity effects due to work absences following

acute effects and potentially, wider effects on physical activity outdoors for

those living in urban areas.

Nevertheless, the core objective of the present work is to apply for the first

time, the Markov modelling technique to quantify the quality of life effects

associated with the development of adverse health conditions under air pollu-

tion exposure. Consequently, the scope of impacts considered as relevant for

the present analysis was restricted to direct effects on morbidity and mortality

and associated health care costs.
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4.3.3 Relevant health effects

Chapter 2 underlined two main categories of health effects which are related

to the timing of exposure: acute effects associated with short-term peaks in

pollution exposure versus chronic conditions developed as a result of sustained

exposure.

The present analysis aims to quantify the impact on life expectancy, quality

of life and health care resources of sustainably reducing PM2.5 concentrations

over the individual’ remaining lifetime. Given such timescale, only chronic

health effects were considered relevant. Whilst the life expectancy impacts

associated with acute exposure are encompassed in risk estimates of excess

mortality from cumulative exposure (Künzli et al., 2001), this choice implies

that quality of life effects from morbid events triggered by acute exposure, such

as respiratory exacerbations, are therefore not presently taken into account.

Short-term quality of life effects from excacerbations are however, not expected

to drive quality of life impacts over a lifetime.

4.3.4 Target population for the intervention

Air pollution has been found to affect individuals in every stage of life: (i) in

utero, whereby maternal exposure to air pollution exposure has been associated

with an excess risk of low birth weight in babies (Dadvand et al., 2013) and

most recently, with a greater odds of developing autism (Raz et al., 2014); (ii)

during childhood in particular by affecting children’ lungs development (Eisner

et al., 2010; Shannon et al., 2004) and (iii) in adulthood, whereby the sick and

elderly have been identified as susceptible subgroups (Peled, 2011; US EPA,

2009).

The latest findings with regards to impacts in utero are however, extremely

recent and may need further validation. Children are expected to be particu-

larly susceptible to air pollution impacts due to more time spent outdoors, a

higher air intake per body weight and bodies in developmental phase (Shannon
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et al., 2004; US EPA, 2009; Peled, 2011). However, evidence of effects in chil-

dren primarily pertains to respiratory exacerbations following acute exposure,

which are outside the present scope of analysis, or to subclinical respiratory

conditions (such as reduced lung growth), which are not well characterised

with incidence and prevalence statistics.

On these grounds, the present analysis focuses on chronic health impacts

experienced in adulthood. Importantly, since chronic respiratory impacts in

adults partly derive from the worsening over time of subclinical conditions

developed since childhood (Eisner et al., 2010; Peled, 2011), the long-term

damaging impact of PM exposure on children’s lung development should to

some extent, be encompassed in the analysis.

4.3.5 Inclusion/exclusion of relevant chronic health impacts in adults

As mentioned in Chapter 2, evidence requirements represent a key compo-

nent of the feasibility assessment when considering alternative credible model

structures. In the present case, the documented morbidity effects of partic-

ulate matter (PM) exposure had to be translated into well-defined chronic

conditions for which population prevalence, incidence and survival statistics,

as well as HRQoL scores and health care cost data, were available.

Epidemiological studies suggest a positive association between long-term

exposure to fine particulate air pollution and incidence of myocardial infarc-

tion (Lipsett et al., 2011; Puett et al., 2009), coronary revascularization (Miller

et al., 2007) and acute and sub-acute forms of coronary heart disease (Cesaroni

et al., 2014), in individuals of the general population without heart disease at

enrolment. In addition, further evidence suggests exposure to PM is also re-

lated to early stages of heart diseases by increasing coronary atherosclerosis

(Adar et al., 2013; Künzli et al., 2010; Allen et al., 2009). Whilst long-term

exposure to PM exposure has also been associated with stroke (Miller et al.,

2007), to date the epidemiological evidence supporting such an association

remains weak (Brook et al., 2010). Based on this body of evidence and con-
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straints in terms of required data, the cardiovascular impacts of air pollution

exposure were modelled using coronary heart disease (CHD) - ICD-10 I20-I25

- as health endpoint.

A number of studies have also shown positive associations between PM ex-

posure and respiratory symptoms (Schindler et al., 2009; Zemp et al., 1999),

including those of chronic bronchitis (Abbey et al., 1995) or lung function

decrements (Downs et al., 2007), all of which are associated with chronic ob-

structive pulmonary disease (COPD). Although the body of evidence linking

PM exposure and COPD development remains incomplete (Schikowski et al.,

2013), such association is likely as reduced pulmonary growth in childhood

and adolescence - for which the link with PM exposure is now established -

increases the incidence of COPD later in life (Eisner et al., 2010). The COPD

disease pathway (ICD-10 J40-J44) was therefore chosen to model the chronic

respiratory impacts of PM exposure.

Lung cancer (ICD-C33-34), which has repeatedly been found to be associ-

ated with chronic PM exposure (Hamra et al., 2014), was considered as a third

morbidity endpoint.

The life shortening impact of particulate air pollution exposure was mod-

elled using mortality risk estimates for all causes of death, as recommended

by WHO (2013) for health impact assessments (HIA) of air pollution control

interventions. However, unlike past HIAs and QALY analyses of air pollution

control, the mortality risk estimates used in the present analysis are stratified

by health status. Indeed, although epidemiological research on health-related

susceptibility to air pollution remains limited, it is generally recognised that

individuals who are already in a compromised health condition are expected to

suffer a disproportionate share of air pollution mortality burden than healthier

individuals (Peled, 2011; US EPA, 2009). More especially, a few studies found

that individuals with a chronic respiratory or cardiac condition are at a greater

risk of a pollution-related death (from all causes) than the general population

(Zanobetti & Schwartz, 2007; Zanobetti et al., 2008; Tonne & Wilkinson, 2013).

To conclude, the health impacts of a sustained decrement in exposure to

particulate air pollution were modelled by assessing the reduction in the risks

of developing COPD, CHD and lung cancer and in the risk of death from all
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causes, while allowing for greater susceptibility to premature death in individ-

uals suffering from COPD and CHD.

4.4 Model structure

4.4.1 Markov models: key features

Markov models were previously described in Chapter 3. They have two key

structural components: (i) mutually exclusive and exhaustive health states

and (ii) transition probabilities (TP) which, in discrete time approximation,

are expressed for a cycle. TP represent the probability of transiting to a

particular state of the model during a cycle, conditional on being in a given

health state at end of the previous cycle. They are typically stratified by age

and gender and expressed as a function of the number of cycles elapsed, to

reflect the time-dependency of health events.

Additionally, Markov models are based on the Markovian assumption that

knowledge of the past development of the Markov process is redundant for

predicting its future development as only the present matters (Kulkarni, 2011).

In other words, only the knowledge of the state in which the individual is at

the end of cycle “c-1” is necessary to predict his/her probability to transit to

other states during cycle “c”. When this assumption appears unrealistic, for

instance when survival is a function of the time spent with a condition, tunnel

states, which are health states in which individuals can only spend one cycle,

can be introduced into the model to allow TP to depend on previous health

history.
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4.4.2 Disease pathways

The model was built around three disease pathways - one for each chronic

morbid condition defined in section 4.3.5 - alongside the states “dead” and

“healthy”, where the latter represents a health state exempt of any of the

three conditions. As the analysis timeframe is the individual’s lifetime, the

cycle period was set to one year. Due to data gaps pertaining to co-morbidity

risks, the model assumed competitive risk between the three diseases pathways.

In other words, an individual cannot suffer from two conditions at the same

time. By ignoring co-morbidity effects, the estimates of health benefits from

air pollution reduction are therefore expected to be slightly conservative. This

will be further discussed in Chapter 8. In addition, each disease pathway was

underpinned by the following structural assumptions:

COPD

As health care cost, quality of life decrements and survival probabilities greatly

depend on the level of airflow obstruction, the COPD pathway was structured

around the four severity stages: GOLD 1 to GOLD 4, defined by the Global ini-

tiative for chronic Obstructive Lung Disease (GOLD, 2014). Although COPD

is treatable, it is not reversible and slowly worsens over time. Moreover, the

disease is often diagnosed in late stages (GOLD, 2014). To reflect these char-

acteristics, the COPD pathway was designed as unidirectional - i.e. without

allowed transitions back to “healthy” or to a less severe state - and upon entry

into the disease pathway, no jump of severity stage was allowed. By contrast,

to reflect the reality of late diagnosis, transitions from the state “healthy”

to the first three severity levels of the disease were allowed (see Figure 4.1).

Further justifications of the structure of the COPD pathway is provided in

Chapter 5.

Unlike the majority of existing population models of COPD (Najafzadeh

et al., 2012; Hoogendoorn et al., 2011, 2005) that are centred around smoking

as disease risk factor, the present model does not account for exacerbations of

the disease, i.e. a worsening of symptoms for a few days. The reason is that
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the impact of air pollution on COPD exacerbations is expected to be solely

related to acute exposure, whereas the present model focuses on the chronic

health effects associated with long-term exposure.

CHD

Although CHD also has different levels of severity that will influence quality

of life and life expectancy, in the absence of a widely accepted classification

by severity stages, the CHD disease pathway was composed of only one state.

The CHD pathway was also designed as unidirectional, since CHD is a chronic

condition that requires long-lasting disease management.

Lung cancer

Lung cancer is one of the deadliest cancers, from which most individuals die

in the first years of the disease (ONS, 2011). Whilst 5-year lung cancer sur-

vivors remain at risk of cancer recurrence, most recurrences (about 80%) occur

about two years after surgical resection (Maeda et al., 2010). Consequently,

it was assumed that after five years spent alive with the condition, individ-

uals would transit back to the state “healthy”, from where they would face

the same risks of adverse health events and enjoy the same quality of life as

individuals of the general population of same age and gender. To capture the

time dependence of survival probabilities in lung cancer patients, the disease

pathway was structured around five tunnel states. Each five state enables to

differentiate lung cancer patients whether they have been suffering from the

disease for respectively one, two, three, four and five years.

Figure 4.1 represents the Markov model structure, built around the three

disease pathways, as a state transition diagram. Ovals represent health states

and arrows represent the allowed transitions between them.
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Figure 4.1: Model’s structure around the three disease pathways.

Abbreviations: COPD = chronic obstructive pulmonary disease; CHD = coronary heart disease; lung
cancer = lung cancer. Ovals represent health states and arrows, allowed transition between them.
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4.4.3 Intervention arm and risk reduction estimates

Building from Chapter 3

As explained in Chapter 3, to evaluate an intervention such as air pollu-

tion reduction, the model requires: a “baseline” arm populated with baseline

TP to be compared against (ii) an “intervention” arm for which, similarly

to a health impact function, baseline TP are combined with risk reduction

estimates (RRE). The latter are epidemiological risk estimates scaled to the

intervention-related exposure decrement. Since TP are non-linear function of

time, the multiplication of TP with RRE is carried out on the transition rate

scale. Adjusted transition rates are then converted back to probabilities to

parameterise the intervention arm.

Chapter 3 presented two approaches to the application of Markov modelling

methodology to quantitative risk assessment, which differ in the scope of the

morbidity-mortality interactions encompassed and in the way life expectancy

impacts are modelled. Like the “full-modelling approach”, the present model

aims at encompassing thoroughly the chronic morbidity effects associated with

long-term PM exposure and their impacts on life-expectancy, including their

influence on individuals’ susceptibility to dying prematurely due to PM expo-

sure. However, since air pollution has been associated with a positive excess

risk of all-cause mortality, a lower risk of death under pollution decrement was

also applied to those “healthy” individuals who did not enter any disease path-

way. Importantly, as advocated in Chapter 3 when describing the “focused”

modelling approach, to avoid double-counting of life expectancy effects, the

change in mortality risk for those “healthy” individuals exclusively pertains to

all the other causes of death than the ones modelled (see parameter RREg in

Table 4.1).

Finally, as the present objective is to assess the total QALY and health care

resource impacts of reducing particulate air pollution, as opposed to disentan-

gling impacts by causal pathways and population subgroups as was done in
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Chapter 3, only one intervention arm fitted with all relevant and appropriately

scaled risk estimates was built.

Risk estimates: sources and application

Although the model is to be applied to evaluate an intervention of air pol-

lution control in the UK, risk estimates were taken from studies performed

in various developed countries, mainly in North America and Europe, with

only one risk estimate derived from a UK study (Tonne & Wilkinson, 2013).

However, this is unlikely to be a major limitation since developed countries

are characterised with a similar range of PM2.5 concentrations - ranging from

about 5 to 35 µg/m3 - across which linearity in health impacts and absence

of threshold to effects has repeatedly been found (Lepeule et al., 2012; Crouse

et al., 2012; Krewski et al., 2009). These characteristics of the dose-response

function have two implications. Within the above concentrations range: (i)

estimates of health effects for a different level of pollution reduction may be

obtained by simple proportional scaling of results obtained per one unit decre-

ment in ambient PM2.5 concentrations; (ii) RRE can be derived from risk

estimates, that are typically expressed for 4PM2.5 = +10µg/m3, using simple

logarithmic multiplicative scaling (see Appendix C of Chapter 3).

In an effort to encompass all existing relevant evidence and to decrease pa-

rameter uncertainty, risk estimates were preferably sourced from meta-analyses.

In light of the number of studies pertaining to all-cause mortality and lung

cancer development or mortality published in recent years, it was decided to

carry out a systematic review of such studies and two meta-analyses. This was

performed separately in Chapter 6.

To limit extrapolation of epidemiological findings, application of risk esti-

mates in the model sought, to the extent that it was feasible, to be in line with

study subjects’ main characteristics in terms of age and/or health condition.

For instance, the only available piece of evidence on the excess risk of death

associated with PM exposure in COPD patients is based on individuals aged

above 65 years old, identified using hospital discharge data (Zanobetti et al.,
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2008). As the risk of hospital admission for COPD greatly increases with dis-

ease severity, the study’s risk estimate was applied only to those individuals

aged 65 and above if they were in GOLD 3 or 4 states. In other words, it

was conservatively assumed that individuals with COPD in stages 1 and 2 or

in stages 3 and 4 but aged below 65 faced the same PM-related excess risk

of mortality as the general population. Similarly, the PM-related excess risk

of mortality in individuals with CHD was informed by a study from Tonne &

Wilkinson (2013), based on patients above 25 years of age admitted to hospital

following acute coronary syndrome (ACS). ACS reflects a more severe health

condition than CHD as a whole. Since the risk of ACS linearly increases with

age (Simms et al., 2012), Tonne & Wilkinson (2013)’s risk estimate was only

applied to individuals suffering from CHD if they were aged 75 or above. In-

dividuals with CHD aged below 75 were therefore conservatively assumed to

face the same PM-related excess risk of mortality as the general population.

Table 4.1 links baseline transition probabilities with relevant risk reduction

estimates expressed for a 1 µg/m3 decrement in PM2.5 concentrations. As

lung cancer is very deadly, the impact of PM2.5 exposure on the lung cancer

pathway was restricted to disease development, i.e. no further PM-related

excess risk of death applied to individuals suffering from lung cancer.

Figure 4.2 represents the model’s intervention arm, with RRE associated

with various transition paths. Dotted arrows represent RRE-adjusted transi-

tions, i.e. transitions for which the underlying risk of event is reduced under

pollution reduction, whereas full arrows represent transitions for which the

underlying risk of event is assumed to be unchanged under the intervention.
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Parameter Transition Pop. Risk Reduction Estimates (RRE)

Name Probability age Risk Estimates Mean (95%CI)

PX,Y Definition Source 4PM2.5 = −1µg/m3

RREa PH,COPDi All ORDev.COPD(a) Schikowski et al. (2014) 0.988 (0.918-1.065)

i=GOLD1,..., 3

RREb PH,CHD All HRDev.CHD Cesaroni et al. (2014) 0.976 (0.949-1.004)

RREc PH,LC All HRDev.LC see Chapter 6(b) 0.985 (0.980-0.991)

RREd PCOPDi,D All HRDeathAC see Chapter 6 0.993 (0.991-0.995)

i=GOLD1,...,2

RREe PCOPDi,D < 65 HRDeathAC see Chapter 6 0.993 (0.991-0.995)

i=GOLD3,...,4 ≥ 65 HRDeathAC|COPD Zanobetti et al. (2008)(c) 0.980 (0.976-0.984)

RREf PCHD,D < 75 HRDeathAC see Chapter 6 0.993 (0.991-0.995)

≥ 75 HRDeathAC|CHD Tonne & Wilkinson (2013) 0.982 (0.968-0.996)

RREg PH,D All HRDeathAOC|H Pope III et al. (2002) 0.999 (0.994-1.005)

Table 4.1: Risk reduction estimates for intervention arm.

Abbreviations: PX,Y : age and gender-specific annual probability of developing disease/ experiencing event
“Y”, conditional on being in health state “X”; Dev. = developing; COPD = chronic obstructive
pulmonary disease; CHD = coronary heart disease; LC = lung cancer; H=healthy; D= dead; HR=hazard
ratio; HRY |X : hazard ratio of event “Y” in population with health condition “X”; OR= odd ratio; AC=
all causes; AOC = all other causes.

(a) When events are rare, i.e. with a probability of event occurrence in the unexposed group less than 10%,
which is the case of COPD, OR can be considered equivalent to RR (Sistrom & Garvan, 2004).

(b) In order to be in line with the most recent published work of Hamra et al. (2014), the pooled estimate
of the excess risk of lung cancer associated with PM2.5 exposure used to parameterise the present model
was taken from sensitivity analysis run 3 in Chapter 6, as presented in Figure 6.7.

(c) Results based on PM10 data.
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Figure 4.2: Diagram of the model’s intervention arm.

Abbreviations: COPD = chronic obstructive pulmonary disease; CHD = coronary heart disease; LC =
lung cancer: Yr = year. Risk reduction estimates RREa, ...g are defined in Table 1 and apply to
transitions represented by dotted arrows. Full arrows represent transitions unchanged by the intervention.
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4.5 Parameterising the model for UK case study

4.5.1 Case study definition

The model was developed in order to evaluate an intervention that would

lead to a sustained 1µg/m3 reduction in mean annual population-weighted

concentrations of PM2.5 in England and Wales and in London. This would

represent a 9% and 7% reduction in the annual average concentrations in

respectively England and Wales (11 µg/m3 as at 2008, COMEAP 2010) and

London (14.3 µg/m3 as at 2008, COMEAP 2010).

This amount of pollution reduction was chosen for two reasons. First, it is in

line with the UK Air Quality Strategy’s target to reduce PM2.5 concentrations

at all locations and more especially, to achieve a 15% reduction in PM2.5 levels

at all urban locations by 2020 (DEFRA, 2012). Second, as mentioned in section

4.4.3, estimates of health effects for other reduction levels may be obtained to

a very good approximation by proportional scaling of the estimates obtained

for a 1 µg/m3 reduction.

The lag between exposure decrement and health risk reduction, known as

cessation lag, was assumed to follow the 20-year distributed lag developed

and currently used by the US EPA for its assessment of air pollution control

strategies. The latter assumes that 30% of the risk reduction takes place in

year 1, an additional 12.5% every year between year 2 to year 5 and the final

20% reduction is phased in gradually over year 6 to year 20 (US EPA, 2010).

This assumption was followed in past HIAs of air pollution reduction in the

UK (Miller, 2010; COMEAP, 2010). Whilst the US EPA’s distributed lag was

carefully reviewed by the agency’s science advisory board, it remains never-

theless highly hypothetical due to the large uncertainty surrounding dynamics

in risk reduction following exposure change (Walton, 2010). The sensitivity

of results to the structure of the cessation lag will be assessed in sensitivity

analyses.

Pollution decrement under the intervention was assumed to be immediate.
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While this is unlikely to be realistic, this choice was underpinned by the fact

that the structure of the cessation lag is already largely uncertain.

The target populations of England and Wales and London were defined

as the current adult population aged 40 to 90. Whilst WHO (2013) recently

recommended to apply mortality risk estimates to adults aged 30 and over, the

restriction to individuals aged 40 and above was driven by the availability of

routine disease incidence and prevalence statistics (COPD in particular). Since

the risk of mortality below 40 remains low, this restriction is not expected to

led to a substantial underestimation of the health benefits of air pollution

control.

Individuals were followed until death with a cut-off at 100 years old, as

disease and mortality statistics are typically no longer available beyond this

age. This implies that subjects entering the model at age 40 were followed for

a maximum of 60 years, whereas subjects entering the model at age 90 were

followed for a maximum of 10 years. The two target populations were not

augmented by future generations as doing so would have required additional

assumptions pertaining to future births and would not provide an obvious cut-

off point for ending the follow-up. Instead, results can be scaled, if necessary,

to different population numbers. The analysis time horizon is therefore of 60

years.

For comparability with health care interventions, a discount rate of 3.5%

was applied to health care costs and QALY gains, in line with guidelines for

England and Wales expressed by the National Institute for health and Care

Excellence (NICE, 2013). The sensitivity of results to alternative discounting

structures will however, be assessed.

The model was structured around a yearly cycle length (see section 4.4.2)

and individuals were assumed to move between health states at mid-cycle.

It should nevertheless be underlined that for incremental analyses, as is the

present case, the use of half cycle corrections should have only a small effect

on results (Briggs & Sculpher, 1998).

All the assumptions defining the case study are summarised in Table 4.2.
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Intervention

PM2.5 reduction −1µg/m3 of mean ambient concentrations

Location (i) England and Wales (ii) London only

Timing Immediate and sustained reduction

Lag to health effect US EPA’s 20-year distributed lag

Population
Scope All currently alive adults aged 40 to 90

Follow-up Until death or 100 years old

Analysis

Time horizon 60 years

Discount rate 3.5%

Cycle length One-year with half-cycle correction

Table 4.2: Assumptions underpinning the case study.

4.5.2 Population modelling

Modelling of currently alive adults aged 40 to 90 years old, was based on

a total of 102 age and gender-specific cohorts of 1,000 individuals each (51

one-year age groups for each gender). Results for each age and gender-specific

cohort were then scaled to the numbers of individuals of same age and gender

living in respectively England and Wales and London, as informed by the 2011

census. The model was built and evaluated using the software MATLAB.

4.5.3 Transition Probabilities (TP)

Data were sourced for England and Wales or alternatively the UK (i.e. no

London-specific data were used). Disease prevalence statistics, which represent

the proportion of the population with a disease at a given point in time, were

used to distribute each of the 102 cohorts into the model’s health states at cycle

0, in order to reflect the target populations’ level of health. Annual disease
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incidence statistics, which represent the 1-year probability of developing a

disease, informed cohorts’ transitions from the state “healthy” to each disease

state during each yearly cycle.

For CHD and lung cancer, incidence and prevalence data provided by the

UK Clinical Practice Research Datalink were obtained from the open-access

model DYNAMO-HIA. 1 Disease progression parameters for the COPD path-

way were obtained by combining annual progression probabilities stratified by

smoking status provided by Atsou et al. (2011) with data on the distribution

of COPD patients in England by smoking status from Shahab et al. (2006).

This approach was justified by the lack of strong evidence to date suggesting

that smoking may impact upon individuals’ biological response to air pollu-

tion exposure (Laurent et al., 2007). COPD prevalence statistics by GOLD

stages and 10 year age-group were provided by the UK Department of Health

(2010). However, due to data gaps, the incidence of COPD, or more precisely

the probability of being diagnosed at the different stages of the disease, had to

be estimated. Estimation of diagnosis probabilities was performed separately

in Chapter 5.

Mortality TP were computed using mortality rate data from the UK Office

for National Statistics (ONS, 2011) and reflect the assumption of competitive

risk. The probability of death associated with the CHD pathway - i.e. the

probability of dying from all other causes than COPD or lung cancer condi-

tional on having CHD - was computed by applying hazard ratios of excess

death associated with CHD provided by Whiteley et al. (2005) to the base-

line mortality rates of individuals of the general population who do not suffer

from CHD nor COPD nor lung cancer. The latter were obtained from life-

table computation using ONS data on mortality rates and causes of death.

Similarly, the probabilities of death associated with the COPD pathway were

computed using GOLD-stratified hazard ratios of excess mortality in COPD

patients estimated by Mannino et al. (2006) .

The probabilities of death in lung cancer patients were derived based on age

and gender-specific ratios of relative survival at 1 and 5 years since diagnosis

1DYNAMO-HIA is a European Union-funded generic open-access interface, developed to facilitate health
impact assessments in Europe (Lhachimi et al., 2012). It contains country-level incidence and prevalence
data for a number of common diseases such as CHD and lung cancer.
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(ONS, 2011). The latter are ratios of: (i) the observed survival from all causes

of death among subjects with lung cancer and (ii) the expected survival in

a comparator group of subjects without lung cancer, matched on relevant

covariates (Nelson et al., 2008). Estimation of relative survival ratios at the

other time points (i.e. at 2, 3 and 4 years) was carried out by fitting a Weibull

function to the survival data. Mean results are presented for each gender in

Figure 4.3. Annual probabilities of survival in lung cancer patients after one to

five years since diagnosis were then obtained by multiplying relative survival

ratios by the expected probability of survival in subjects without lung cancer

(nor COPD or CHD due to the competitive risk assumption).
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(a) Females.

(b) Males.

Figure 4.3: Estimated relative survival ratios from lung cancer at 2, 3 and 4 years, by gender
and age-group, using survival data at 1 and 5 years from ONS and LSTM.

4.5.4 HRQoL weights

The EuroQol five dimensional instrument (EQ-5D), which is the most com-

monly used HRQoL metric for cost-effectiveness analysis (De Smedt et al.,

2014) and the preferred measure of the National Institute for health and Care

Excellence (NICE, 2013), was chosen to express the quality of life associated

to each health state.

Age and gender-specific HRQoL scores experienced by “healthy” individu-

als, i.e. individuals without COPD, CHD or lung cancer, were obtained from
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Kind et al. (1999). These values were elicited from a representative sample of

the English population who considered themselves to be generally healthy.

HRQoL scores associated with each condition are presented in Table 4.3

(left-hand side). To reduce parameter uncertainty, scores for COPD and lung

cancer were sourced from meta-analyses (Pickard et al., 2008; Sturza, 2010)

while CHD scores were based on a large patient population (n=7,242) as part

of the EUROASPIRE III study (De Smedt et al., 2014). For lung cancer, the

HRQoL score was based on results for non-small cell cancer, which accounts

for about 90% of all cases of cancer in England (Riaz et al., 2012). The final

HRQoL score for lung cancer was obtained by weighting HRQoL results for

metastatic and non-metastatic non-small cell cancer by respectively 75% and

25%, based on the fact that in England, 75% of non-small cell cancers are

detected at an advanced stage (NHSC, 2010).

Incorporation of HRQoL weights into the model combined two approaches.

As HRQoL values associated with the CHD condition provided by De Smedt

et al. (2014) were stratified by age-groups, a HRQoL decrement was applied

to individuals in the CHD pathway, as a proportion of the HRQoL experi-

enced by the general population, for a given age range and gender. This

approach however, was not deemed suitable for the lung cancer and COPD

pathways due to absence of information on the average age of patients from

which HRQoL scores were obtained for these two conditions. Instead, HRQoL

scores reported for patient populations were directly applied to subjects in the

COPD and lung cancer pathways, while ensuring they were upper-bounded

by the HRQoL scores of the general population for the same age and gender.

The impact of age on HRQoL associated with COPD was however, indirectly

encompassed via the use of HRQoL scores stratified by disease severity (4

GOLD stages), since the distribution of disease prevalence by severity stages

is strongly determined by age (UK Department of Health, 2010). It is worth

reminding that, given the model structure, after a period of five years, HRQoL

scores of lung cancer survivors returned to the age and gender-matched scores

of the general population.
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4.5.5 Health care costs

“Healthy” individuals were assumed not to generate any health care cost,

the implications of which will be discussed in Chapter 8. The average annual

health care cost per patient in each condition is provided in Table 4.3 (right-

hand side). Costs were inflated to 2013 prices, based on the hospital and

community services’ inflation index for the UK NHS (PSSRU, 2013). In the

absence of UK specific data, COPD costs stratified by GOLD stage were based

on a Swedish study (Jansson et al., 2013).

Like for COPD, the costs of CHD also depend on disease severity as the

latter drives the choice of appropriate medical treatment and treatment du-

ration. However, for the reasons exposed in section 4.4.2, the condition was

not modelled by severity levels. Consequently, the average annual cost of a

CHD patient was obtained by scaling the total annual cost of CHD in the UK

(£1.8 billion as of 2009, Nichols et al., 2012), to the number of CHD patients

registered in the UK the same year (n= 2,330,277, British Heart Foundation,

2010). Whilst the obtained annual cost per patient is low (£836), it was

applied from condition onset until death. The annual cost of a lung cancer

patient was provided by the National Cancer Research Institute (NCRI, 2012),

based on patients who have been diagnosed with cancer and are still alive (this

includes newly diagnosed individuals and individuals with stable disease being

followed-up).
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HRQoL scores (EQ-5D) Mean annual cost

Age Severity Value (SE) / patient (2013 prices)

COPD All GOLD 1 0.74 (0.064) £249

GOLD 2 0.74 (0.043) £951

GOLD 3 0.69 (0.046) £2,033

GOLD 4 0.61 (0.084) £4,943

source: Pickard et al. (2008) source: Jansson et al. (2013)(a)

CHD ≤ 40

All

0.85 (0.069)

£83650-69 0.80 (0.079)

≥ 70 0.73 (0.059)

source: De Smedt et al. (2014) source: Nichols et al. (2012) and

British Heart Foundation (2010)

Lung All Non-metastatic 0.85 (0.074)
£9,283

cancer Metastatic 0.57 (0.067)

source: Sturza (2010) source: NCRI (2012)

Table 4.3: Condition-specific HRQOL and health care costs.

(a) Converted in GBP using the average EUR/ GBP exchange rate for 2013.

4.6 Sensitivity analyses

4.6.1 Propagating parameter uncertainty

Joint-uncertainty in parameters can be handled probabilistically by assign-

ing distributions to all parameters, based on their characteristics (Briggs et al.,

2006) and performing Monte Carlo simulations (10,000 draws).

A log-normal distribution was fitted to each of the epidemiological risk

estimate constituting the intervention-effect (see Figure 4.2) as well as to the

excess risk of death associated with each condition.

As no information was available on the variance around disease incidence,

112



an interval of +/-25% around mean estimates was used as an estimate of

variation around the incidence of COPD (for each severity stage) and CHD.

Such an approach is in line with current recommendations for uncertainty

analysis in health impact assessment and cost benefit analysis of air pollution

control interventions in Europe (Holland, 2014). For lung cancer, however,

as under-diagnosis or mis-diagnosis of the disease is much more unlikely than

for COPD or CHD, a estimated variation of +/-5% around the mean was

used. Instead of fitting a triangular distribution to incidence data (which

inform the transitions from the state “Healthy to each disease state), the Pert

distribution, which is a special case of the beta distribution, was used. Like the

triangular distribution, the Pert distribution is parameterised with a mode and

a minimum and maximum value but it produces a smooth distribution that

progressively puts greater weight on the most likely value and can provide a

close fit to the normal distribution.

Beta and gamma distributions were fitted to respectively HRQoL weights

and HRQoL decrements and a gamma distribution was fitted to health care

costs. In the absence of information on the variance around health care costs

associated with CHD and lung cancer, it was assumed that the standard error

equaled to half of the mean, as has been done in past economic evaluations

(Briggs et al., 2002).

4.6.2 Sensitivity scenarios

Sensitivity of results pertaining to: (i) dynamics in health risk reduction

following pollution reduction and (ii) the discount rate will be analysed.

Walton (2010)’s thorough review of empirical evidence from cohort, inter-

vention and smoking cessation studies stressed on the level of uncertainty about

patterns of health risk reduction following exposure decrement. The US EPA

considered Röösli et al. (2005)’s exponential decay model as an alternative to

the 20-year distributed lag described in section 4.5.1. However, results were

found to be very sensitive to the choice of time constant for the model and it
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is not clear which source of evidence should inform this parameter (U.S. EPA

- Science Advisory Board and Health Effects Subcommittee, 2009). Exponen-

tial decay will therefore not be considered in the present sensitivity analysis of

time lag. Instead, the two following scenarios, summarised in Table 4.4, will be

evaluated. Scenario “No CL” assumes the absence of a cessation lag, and thus

represents an upper bound to the possible health benefits associated with the

intervention. (ii) As the smoking cessation literature suggests that lung cancer

risk may decrease more slowly than cardiovascular death risk (Walton, 2010;

Rabl, 2003), scenario “Mixed CL” assumes that the decrease in lung cancer

risk is progressive over 40 years, while the change in risks of other health effects

is assumed to follow the US EPA’s 20 year distributed time lag.

For analysis of investments with pay-offs accruing over time-horizons above

50 years, the UK treasury suggests to used staged discount rates (Lowe, 2008).

The two staged discounting structures proposed by the UK treasury, which are

described in Table 4.4, will be used in sensitivity analysis.

114



Scenario Cessation lag (CL) Discounting

Base case 20-year distributed lag (a)
3.5% p.a.

Mixed CL

Lung cancer: progressive reduc-

tion over 40 years (b) 3.5% p.a.

Other health impacts: 20-year

distributed lag (a)

No CL Immediate effect 3.5% p.a.

Staged discounting 1 20-year distributed lag (a) Year 1 to 30: 3.5% p.a.

Year 31 to 60: 3% p.a.

Staged discounting 2 (c) 20-year distributed lag (a) Year 1 to 30: 3% p.a.

Year 31 to 60: 2.57% p.a.

Table 4.4: Scenarios of sensitivity analysis against base case.

(a) 30% of risk reduction in year 1, an additional 12.5% every year between year 2 to year 5 and the final

20% being phased in gradually over year 6 to year 20.

(b) i.e. a cumulative decrease in risk at a rate of 2.5% every year.

(c) Excludes the element of pure social time preference.

4.7 Conclusion

Whilst the understanding of air pollution impacts on length and quality of

life is expected to be of particular interest to policy-makers, so far all past

attempts at measuring the QALY gain from air pollution reduction have been

simplistic and inaccurate. In this chapter, it was argued that the Markov-

based simultaneous approach presented in Chapter 3 would enable, for the first

time, to fully capture air pollution’s joint impact on quality and length of life

by encompassing air pollution’s influence on population individuals’ baseline
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quality of life, life expectancy and level of susceptibility to adverse effects. A

Markov model structured around three disease pathways, for which there is

robust epidemiological evidence of association with long-term exposure to fine

particulate pollution, namely chronic obstructive pulmonary disease, coronary

heart disease and lung cancer, was therefore developed.

This chapter focused on the core steps to model construction and param-

eterisation and underlined two distinct data gaps for parameterisation, which

will be addressed in the following two chapters. Chapter 5 develops a frame-

work to estimate the annual probability of being diagnosed at a given stage

of COPD and applies it to the general population of England. Chapter 6 per-

forms a systematic review and two meta-analyses of the association between

long-term exposure to particulate air pollution and respectively all-cause mor-

tality and lung cancer. Modelling results will be presented in Chapter 7. The

limitations of the presently developed model will be discussed in Chapter 8.
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Chapter 5

Estimation of COPD incidence

in England by severity stages

5.1 Introduction

In order to estimate the QALY gain and health care resource impact of air

pollution control in the UK, Chapter 4 developed a Markov model structured

around three disease pathways: CHD, lung cancer and COPD. The latter is a

slowly progressive disease of airflow obstruction.

The transition probabilities that parameterise the model are informed by

mortality and disease incidence (i.e. diagnostic) statistics for England and

Wales. In the case of COPD however, available incidence data suffers from

bias as the disease is largely underdiagnosed, especially in its milder stages. In

England, up to 80% of adults above 30 affected by spirometry-defined COPD

were found to report no respiratory diagnosis (Shahab et al., 2006). Con-

sequently, using primary care data on COPD incidence to parameterise the

model developed in Chapter 4, would seriously underestimate the total pool

of individuals who would benefit from a reduction in the risk of developing

COPD following air quality improvement.

An estimation of the underlying, i.e. “true”, prevalence of COPD by sever-

ity stage in England was, however, carried out by the UK Department of Health
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(2010). The present objective is therefore to develop a coherent probabilistic

framework to estimate the probability of COPD diagnosis in the English popu-

lation at different severity stages of the disease, by exploiting existing estimates

of underlying prevalence and linkages between disease prevalence, incidence,

survival and progression.

The chapter is structured alongside the following sections. In section 2, I

expand upon the key characteristics of COPD and its implications for cost-

effectiveness analysis of preventive interventions such as air pollution control.

In section 3, I outline the linkages between prevalence and incidence, I describe

the approach used by the UK Department of Health to estimate the underlying

prevalence of COPD in England and I further justify the structure of the COPD

disease pathway of the model built in Chapter 4. In section 4, I first describe

an incidence estimation model proposed by Podgor & Leske (1986) for a single-

stage chronic disease and, in a second step, I extend this model to a multi-stage

setting by allowing for disease severity progression and survival stratified by

severity level. In section 6, I apply the developed framework to estimate the

probabilities of COPD diagnosis in England by severity stage. In sections 6

and 7, I present and discuss the results.

5.2 COPD: Key characteristics and implications for cost-

effectiveness analysis of preventive interventions

5.2.1 Key characteristics
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Disease description and classification

COPD is a lung disease of progressive airflow obstruction or limitation,

which is not fully reversible and typically worsen slowly over time (GOLD,

2014). There is clear evidence that health care cost (Jansson et al., 2013),

quality of life decrements (Pickard et al., 2008) and mortality risk (Mannino

et al., 2006) in COPD patients greatly depend on their levels of airflow ob-

struction.

Since anatomical and clinical symptoms may vary between patients, diag-

nosis of COPD is internationally defined by airflow obstruction. The latter is

measured by a set of spirometric criteria, namely forced expiratory flow in 1

second (FEV1) and forced vital capacity (FV C), i.e forced emptying capac-

ity of the lungs. The American Thoracic Society, the European Respiratory

Society, the National Institute for health and Care Excellence in England and

the Global Initiative for Obstructive Lung Disease (GOLD) define COPD as

a reduced FEV1/FV C ratio strictly lower than 70% (Celli et al., 2004; NICE,

2010; GOLD, 2014).

Sub-classification of the disease is based on a third measure known as

FEV1%, which is the ratio of measured FEV1 against predicted FEV1, based

on age, height and gender. In conjunction to a FEV1/FV C ratio lower than

70%, a FEV1% greater than 80% defines “mild” COPD1, a FEV1% between

50% and 79% defines “moderate” COPD, a FEV1% between 30% and 49%

defines “severe” COPD and a FEV1% lower than 30% defines “very severe”

COPD. “Mild”, “moderate”, “severe” and “very severe” stages are also re-

ferred to as GOLD1, GOLD2, GOLD3 and GOLD4.

Finally, in order to solely account for persistent airflow limitation, there is

global agreement that all spirometric measures should always be taken post

administration of a bronchodilator, i.e. a drug that help alleviate symptoms

of airflow limitation (Celli et al., 2004; NICE, 2010; GOLD, 2014).

1In contrast to the American Thoracic Society, the European Respiratory Society and GOLD, NICE
recommends that symptoms should also be present to confirm diagnosis of the mild stage of the disease
(NICE, 2010).
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Substantial underdiagnosis

In England, based on cross-sectional data on population respiratory health

obtained from the Health Survey for England (HSE) in 2001, Shahab et al.

(2006) found that 80% of individuals aged 30 and over affected by spirometry-

defined COPD reported no respiratory diagnosis.

As the analysis of HSE respiratory data collected in 2010 used a differ-

ent methodology to compute COPD prevalence statistics than in 2001, it is

not possible to evaluate with precision whether COPD underdiagnosis has

decreased over time in England. Indeed, instead of using the fixed ratio of

FEV1/FV C < 70%, in HSE 2010, COPD was defined based on the lower

limit of normal (LLN) values of the FEV1/FV C ratio, with the bottom 5%

classified as abnormal. Whilst each criteria has its pro and cons, LLN values

are highly dependant on reference equations to compare the distribution of

FEV1/FV C values and no scientific evidence to date supports LLN over the

fixed ratio of FEV1/FV C < 70% as best criteria to define COPD (GOLD,

2014).

Nevertheless, analysis of HSE results for the year 2010 greatly confirmed the

magnitude of disease underdiagnosis, whereby less than a third (28% of males

and 27% of females) of individuals with probable airflow limitation reported a

doctor-diagnosis of COPD (Aresu et al., 2011).

Late diagnosis

While COPD is underdiagnosed as a whole, underdiagnosis is less pro-

nounced for individuals in the severe and very severe stages of the disease

(GOLD, 2014). In England, Shahab et al. (2006) reported that 50% of indi-

viduals found to be in the severe and very severe stages of the disease2 were

not diagnosed, whereas across all severity stages underdiagnosis reached 80%.

Indeed, as symptoms worsen alongside disease progression, the disease is more

2as indicated by their spirometric results collected as part of HSE 2001.
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likely to be detected at an advanced stage. Based on HSE (2001) data, the

UK Department of Health (2010) estimated that in England, 95% of the to-

tal underlying (i.e. “true”) cases of GOLD stage 1 were underdiagnosed, as

opposed to 79% for stage 2, 60% for stage 3 and only 7% for stage 4.

5.2.2 Implications for cost-effectiveness analysis

The key characteristics of the COPD disease have three major implications

for the cost-effectiveness analysis of preventive interventions such as air pollu-

tion control.

First, as health care cost, quality of life decrements and mortality risk

greatly depend on the level of airflow obstruction, in order to evaluate most

accurately the impact of an intervention that contribute to alleviate the health

burden of COPD, one should account for the various levels of disease severity

and the speed of disease progression.

Second, since the probabilities to transition between health states are typi-

cally informed by diagnostic statistics (also referred to as incidence) underdiag-

nosis will threaten the accuracy of modelling results. More precisely, disease

underdiagnosis will underestimate the population’s baseline risk of developing

COPD, and thus the total population health gain associated with an interven-

tion that reduces the risk of developing COPD or mitigates its consequences.

Total population health gain is typically irrelevant when assessing whether a

health care technology is cost-effective or not, since the focus of interest is on

the ratio of the incremental cost and health benefit per patient. By contrast,

it is of particular importance when evaluating the cost-effectiveness of an in-

tervention characterised by a large fixed investment cost, as is typically the

case of interventions of air pollution reduction. For these interventions, disease

underdiagnosis will underestimate total population health gain and thus, the

probability of the intervention to be cost-effective.

Third, if the underlying risk of developing the first stage of COPD is un-
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known, despite COPD being a progressive disease, one should account for late

diagnosis in order to avoid underestimating the total population of subjects

with COPD. Late diagnosis is accounted for by allowing for transitions from

the “healthy” state to any stages of the disease. Such an approach was fol-

lowed by Hoogendoorn et al. (2005, 2011) when constructing a Markov model

of COPD applied to the Dutch population, although the rationale for doing so

was not stated.

5.3 Addressing challenges associated with the modelling

of COPD

5.3.1 Linking incidence with prevalence

Relationship between incidence, prevalence and survival

Disease prevalence represents the proportion of the population with a dis-

ease at a given point in time, whereas incidence represents the risk of develop-

ing the disease during a given time period. In a group of individuals in steady

state, prevalence and incidence are linked insofar as prevalence is the product

of incidence and disease duration (Gordis, 2004).

In the case where a disease is treatable but not fully curable, as is the case of

COPD, the only parameter that influences disease duration is disease survival,

i.e. the probability of death conditional on having the disease. It follows that,

under appropriate assumptions, prevalence statistics can be used in combina-

tion with survival data to estimate disease incidence, i.e. the probability of

being diagnosed with the disease.
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Estimates of underlying COPD prevalence in England

The UK Department of Health (2010) computed estimates of the underlying

(i.e. true) numbers of COPD cases in the population, by GOLD severity stage

and 10-year age-groups, for the year 2009 using population projections for year

2009. Estimates were based on lung function measurements gathered from HSE

(2001), which at the time3, provided the most up-to date spirometry results

on the respiratory health of the English population.

HSE (2001) methodology was described in Prior et al. (2003). Briefly, in

2001, 74% (n = 9,373) of households identified via multi-stage probability

sampling agreed to take part to the health survey. From these cooperating

households, 15,647 adults (89% of total adults) were interviewed and 12,404

adults (71% of total adults) saw a nurse who took lung function measures from

11,611 participants, where the most technically satisfactory blow out of five

attempts was selected

As spirometry measurements from HSE (2001) were performed before bron-

chodilator use, in line with current guidelines for COPD diagnosis (see section

5.2.1) the UK Department of Health (2010) adjusted the data so that only the

prevalence of persistent airflow limitation would be captured. This adjustment

for bronchodilator use, known as “post-bronchodilator adjustment”, was per-

formed using data provided by Perez-Padilla et al. (2007). Based on a cluster

sampling of adults representative of five Latin American cities, the authors re-

ported that using spirometric measurements after bronchodilator use, reduced

the overall prevalence of airflow obstruction by 35%. Post-bronchodilator ad-

justment of raw prevalence estimates for England was based on the assumption

that the bronchodilator effect was independent of age and impacted only the

raw prevalence of mild and moderate stages of the disease.

3Whilst HSE cross-sectional studies are carried out on annual basis, survey focus on specific health issues
such as lack of physical activity, cardiovascular disease or respiratory conditions varies from year to year.
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5.3.2 Encompassing COPD characteristics into a Markov model

structure

COPD characteristics were captured in the structure of the COPD disease

pathway of the model developed in Chapter 4 in the following fashion:

(1) COPD was modelled via the GOLD states - numbered 1 to 4 - of disease

severity, which are equivalently referred to as mild, moderate, severe and very

severe states.

(2) Individuals were allowed to enter the COPD disease pathway at several

stages of disease severity in order to allow for “late diagnosis”, as recommended

in sections 5.2.2 and 5.3.1.

(3) Since COPD is a chronic and irreversible disease, the probability to fully

recover from it, or to move to a less severe state, was considered to be null.

Additionally since COPD is a slowly progressing disease it was assumed that,

once individuals entered the COPD disease pathway, they could not jump a

severity stage of the disease, e.g. move directly from stage 1 to stage 3. These

two assumptions are in line with existing Markov models of natural history of

COPD (Hoogendoorn et al., 2005, 2011; Menn et al., 2012; Najafzadeh et al.,

2012).

The resulting structure of the COPD disease pathway of the model devel-

oped in Chapter 4 is represented in Figure 5.1. Its parameterisation requires

three sets of probabilities, pertaining to respectively:

(1) Mortality conditional on health status, i.e. transitions from each four

GOLD states to the “dead” state noted P1,D, P2,D, P3,D, P4,D and from the“healthy”

state to the “dead” state noted PH,D;

(2) Disease progression, i.e. transitions between severity states noted P1,2, P2,3, P3,4;

(3) Disease diagnosis/incidence, i.e. transition from the “healthy” state to each

GOLD state of severity noted PH,1, PH,2, PH,3, PH,4.

The probabilities of disease diagnosis: PH,i, i = 1, ...4 are the focus of the

present study and are underlined in light grey in Figure 5.1.
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Figure 5.1: Markov model structure of COPD pathway and required parameters.

5.4 Incidence estimation in multi-stage chronic diseases

5.4.1 Podgor and Leske (1986)’s framework for a single-stage chronic

disease

As mentioned in section 5.3.1, in a population in steady state, there is an in-

tuitive relationship between incidence and prevalence. Additionally, assuming

the disease is stable over time, one can treat the age-dimension of prevalence

as a time dimension, whereby static age-specific prevalence represents the in-

dividual’s probability of having the disease once reaching a certain age.

Relying on the two assumptions of: (1) stable population, i.e. popula-

tion with stable age composition and (2) stable epidemic, Podgor & Leske

(1986) outlined the relationship between incidence, prevalence and mortal-

ity for an irreversible one-stage chronic disease characterised by differential

mortality. This relationship was modelled via a 3-state closed unidirectional

system, whereby individuals of a population of size N were either healthy (H),
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infected by the irreversible disease (I) or dead (D).

The authors defined the number of “infected” people of age a + t in the

population as the sum of: (i) the number of individuals who were healthy at

age a times the joint-probability PHI that they became infected during the t-

year period and survived and (ii) the number of individuals who were already

infected at age a times the probability PII that they survived during the t-

year period, given that they were infected. Similarly, the number of “healthy”

people of age a + t in the population was defined as the number of people

who were healthy at age a times the joint probability PHH that they did not

become infected nor died during the t-year period. These two relationships are

expressed by equations 5.1 and 5.2:

Na+tΠa+t = Na(1− Πa)PHI +NaΠaPII (5.1)

Na+t(1− Πa+t) = Na(1− Πa)PHH (5.2)

Where Na+t and Na represent the total number of alive individuals of age

a+ t and a at any point in time in the system and Πa+t and Πa represent the

static prevalence of the disease among population individuals of age a+t and a.

Combining equations 5.1 and 5.2 eliminates the population parameters and

provides a single equation with one unknown PHI (5.3).

(1− Πa)Πa+t
PHH

(1− Πa+t)
= ΠaPII + (1− Πa)PHI (5.3)

PHI represents the joint probability of developing the disease and surviving

during the t-year period given that one is infected, whereas the parameter

of interest is the probability of becoming infected among the total at-risk

population. To derive this parameter, Podgor & Leske (1986) expressed the

joint-probabilities PHH , PHI and the conditional probability PII as a function

of the rates of mortality among respectively those infected and those healthy

and of the rate of disease incidence, assuming that rates followed indepen-

dent exponential distributions. Solving for the rate of disease incidence how-

ever, required a rather sophisticated and computationally-intensive method

(Newton-Raphson method).
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5.4.2 Extension of Podgor and Leske (1986)’s framework to a k-

stage chronic disease

For COPD, the modelling of the relationship between prevalence, incidence

and mortality also need to account for disease progression and the impact of

disease severity on survival. Podgor & Leske (1986)’s model was therefore

extended to a k-stage chronic disease.

To reduce the computational burden associated with probabilities estima-

tion, the extension of Podgor & Leske (1986)’s model was carried out in a

discrete time setting. Importantly the extension of the model is also under-

pinned by the two assumptions of stable population and stable epidemic.

The modelling of the relationship between incidence, prevalence, survival

and disease progression was based on the structural assumptions described in

section 5.3.2. In particular, whilst individuals were allowed to enter the disease

pathway in any state to reflect late diagnosis, once diagnosed with the disease

it was assumed that, during each t-year period they could either: (i) stay in

the disease state they were in or (ii) progress to the next severe state or (iii)

die. The t-year probabilities to transit between severity states i are therefore

of the form Pi,i+1.

To extend the model in a discrete-time setting, PHI , PHH and PII were

expressed in terms of t-year transition probabilities, where PX,Y denotes the

probability of transiting to state Y during a t-year period conditional on being

in state X at age a. It follows that for i = 1, ..., k representing disease stages:

PHH = (1− PH,i)(1− PH,D)

PHI = PH,i(1− Pi,D)

PII = (1− Pi,D)

In a stable population with stable disease, the total number of people aged

a + t who are in stage i of the disease at any point in time is the sum of: (i)

individuals who were healthy at age a and got diagnosed with COPD in stage

i during the t-year period and survived, (ii) individuals who were in stage i

at age a and did not move to the next severe stage nor died during the t-year
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period and (iii) individuals who were in stage i − 1 at age a and moved to

stage i and survived during the t-year period. This relationship is expressed

in equation 5.4, using notations for population size and disease prevalence

introduced in section 5.4.1.

Na+tΠi,a+t = Na(1−
k∑
i=1

Πi,a)PH,i(1− Pi,D)

+NaΠi,a(1− Pi,i+1)(1− Pi,D)

+NaΠi−1,aPi−1,i(1− Pi,D)

(5.4)

For i=1, equation 5.4 simplifies to:

Na+tΠi,a+t = Na(1−
k∑
i=1

Πi,a)PH,i(1− Pi,D) +NaΠi,a(1− Pi,i+1)(1− Pi,D)

For i=k, equation 5.4 equals to:

Na+tΠi,a+t = Na(1−
k∑
i=1

Πi,a)PH,i(1−Pi,D)+NaΠi,a(1−Pi,D)+NaΠi−1,aPi−1,i(1−Pi,D)

Similarly, the number of people aged a + t who are healthy at any point in

time is simply the sum of individuals who were healthy at age a and did not

develop the disease nor died during the t-year period.

Na+t(1− Πi,a+t) = Na(1−
k∑
i=1

Πi,a)(1−
k∑
i=1

PH,i)(1− PH,D) (5.5)

Combining equations 5.4 and 5.5 to eliminate the population size param-

eters Na+t and Na would however, generate an equation with two unknowns:

PH,i and
∑k

i=1 PH,i. To address this issue, the total size of the population of

age a+ t was expressed as a function of: (i) the total size of the population of

age a and (ii) the probabilities of survival for individuals of age a conditional
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on their health status :

Na+t = Na(1−
k∑
i=1

Πi,a)(1− PH,D) +Na

k∑
i=1

Πi,a(1− Pi,D) (5.6)

Substituting the expression for Na+t into equation 5.5 enabled to express

the t-year probabilities for individuals of age a to transit within the closed-

system from the state “healthy” to the each i disease state (i.e. PH,i, i=1,...,k)

as a function of:

(i) t-year death probabilities conditional on health status: Pi,D, i=1,...,k, PH,D

(ii) t-year probabilities of transiting to the next more severe state: Pi,i+1, i=1,...,k−1

(iii) disease prevalence by severity stage for t-year age-groups: Πi,a, Πi,a+t

For i=2,...,k-1:

PH,i =
Πi,a+t[(1−

∑k
i=1 Πi,a)(1− PH,D) +

∑k
i=1 Πi,a(1− Pi,D)]− Πi,a(1− Pi,D)(1− Pi,i+1)

(1−
∑k

i=1 Πi,a)(1− Pi,D)]

− Πi−1,a(1− Pi,D)(1− Pi−1,i)

(1−
∑k

i=1 Πi,a)(1− Pi,D)]

(5.7)

For i=1:

PH,i =
Πi,a+t[(1−

∑k
i=1 Πi,a)(1− PH,D) +

∑k
i=1 Πi,a(1− Pi,D)]− Πi,a(1− Pi,D)(1− Pi,i+1)

(1−
∑k

i=1 Πi,a)(1− Pi,D)]
(5.8)

For i=k:

PH,i =
Πi,a+t[(1−

∑k
i=1 Πi,a)(1− PH,D) +

∑k
i=1 Πi,a(1− Pi,D)]− Πi,a(1− Pi,D)

(1−
∑k

i=1 Πi,a)(1− Pi,D)]

− Πi−1,a(1− Pi,D)(1− Pi−1,i)

(1−
∑k

i=1 Πi,a)(1− Pi,D)]

(5.9)
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5.5 Estimating COPD diagnosis probabilities by sever-

ity stage in England

5.5.1 General approach

The framework was applied to the case of COPD in England, in order to

estimate the age-specific t-year probabilities of being diagnosed at each stage

i of the disease, where i = GOLD 1, ..., GOLD 4.

In line with the cycle length chosen for the model developed in Chapter 4,

the t-year period was set to a year. Since the framework considers age as a time

dimension (see section 5.4.2), the period for which diagnostic probabilities were

computed needed to match with the size of the age-groups for which prevalence

data was expressed. Implementation of the framework therefore required three

input parameters:

(i) Annual probabilities of death conditional on health status;

(ii) Annual probabilities to progress to the next more severe disease stage;

(iii) COPD prevalence by severity stage stratified by one-year age-groups.

5.5.2 Input parameter 1: mortality data

The probability of dying if “healthy”, i.e. if without COPD, (PH,D) was

computed using life table analysis.

Information on the excess mortality risk in COPD patients was provided

by Mannino et al. (2006) based on a cohort study of 15,440 American subjects

followed up for 11 years. Hazard ratios, adjusted for age, sex, smoking status,

body mass index, pack-years of smoking, race and educational level, were

stratified by GOLD severity stage but also, by the presence of respiratory

symptoms. Mortality hazard ratios, stratified by GOLD severity stage only,
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were derived by combining Mannino et al. (2006)’s ratios with the proportions

of COPD patients experiencing symptoms in each severity stage, as reported

in the study. The obtained hazard ratios were then applied to age and gender-

specific annual death rates in the general population of England (ONS, 2011)

and resulting mortality rates stratified by GOLD severity stage were converted

into 1-year transition probabilities using equation 5.10:

P = 1− exp−rt , where r is the annual event rate and t is a one-year period

(5.10)

Since hazard ratios of mortality provided by Mannino et al. (2006) were

computed for stages 3 and 4 altogether, age and gender-specific probabilities

of death conditional on being in GOLD 3 or in GOLD 4 were assumed to be

similar.

Figure 5.2 depicts age and gender-specific probabilities of death conditional

on health status. It underlines how the risk of death changes as one moves to

a more severe disease stage.
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(a) Males death probabilities.

(b) Females death probabilities.

Figure 5.2: Input parameter 1: Annual probabilities of death conditional on health status.

Abbreviations: H= healthy; D= dead. Numbers 1 to 4 stand for each GOLD severity stages of COPD.

5.5.3 Input parameter 2: data on severity progression

The annual probabilities to gradually transit from a severity stage to the

next were computed by Atsou et al. (2011) for individuals aged 40 and above,

as a function of age and smoking status. To compute these transition proba-

bilities, the authors combined two data sources. The first consisted of rates of
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progression from the mild to moderate and moderate to severe stages of COPD

by age and smoking status, provided by the analysis of the Framingham Heart

Study cohort from Massachusetts, US. In brief, study participants who had

spirometry data available (n= 583 at baseline) were categorized according to

GOLD stages at the beginning and at the end of 12 years of follow-up, in

order to estimate progression rates between severity stages (Lee et al., 2006).

The second data source was transition probabilities from moderate to severe

and severe to very severe stages by smoking status, but not age nor gender,

reported by Hoogendoorn et al. (2005) for the Dutch population.

As there is currently little evidence supporting a difference in biological

response to air pollution exposure based on smoking habits, disease progres-

sion probabilities were computed for the overall COPD patient population in

England. To do so, Atsou et al. (2011)’s age-specific annual transition prob-

abilities stratified by smoking status were combined with the distribution of

COPD patients in England by smoking status provided by Shahab et al. (2006).

Unlike death probabilities, disease progression probabilities were not stratified

by gender.

Figure 5.3 represents the annual probabilities of progressing to a more severe

stage. It is worth noting that the speed of transition from stage 1 to 2 is slower

than the speed of transition from stage 2 to 3 or from stage 3 to 4 and that

all progression probabilities are a positive function of age.
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Figure 5.3: Input parameter 2: Annual probabilities to progress to the next severe stage of
COPD.
Abbreviations: Numbers 1 to 4 stand for GOLD severity stages.

5.5.4 Input parameter 3: Prevalence data

The UK Department of Health (2010) provided estimates of numbers of

underlying cases of COPD by GOLD stage for 10 year age-bands: 35-44; 45-

54; 55-64; 65-74 and 75+ for the year 2009. The following three manipulations

were performed to the data, so that it could be used as input parameter to the

probabilistic framework developed.

First, the estimated numbers of underlying COPD cases by GOLD severity

stages were compared with population data (2011 census) for England. This

enabled us to compute the distribution of the underlying COPD prevalence in

England by disease severity for 10 year age-bands. Whilst the UK Department

of Health (2010)’s estimates were based on population projections for the year

2009, the use of population census numbers as of year 2011 is not expected to

have any major impact on obtained prevalence results.

Second, as the assumption that the prevalence was uniform across each 10
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year age-groups seemed unrealistic, the estimated prevalence was assumed to

represent the point prevalence at age-group mid-point. For example, preva-

lence for the age-group 35-44 was assumed to represent prevalence at age 40

and so forth. Additionally, in the absence of further information, the last age-

group “75+” was defined as age group 75-94 with mid-point 85 years old. The

resulting estimates of underlying COPD prevalence by severity stage, at each

age-band mid-point, is represented in Figure 5.4a.

Third, disease prevalence was estimated for one-year age-groups by per-

forming a linear extrapolation between each age-band mid-point. Linear ex-

trapolation results are presented in Figure 5.4b.
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(a) COPD underlying prevalence by GOLD severity stage at each age group
mid-point.

(b) COPD underlying prevalence by one-year age-groups obtained via lin-
ear extrapolation.

Figure 5.4: Input parameter 3: underlying prevalence of COPD in the general population
in England, by age and GOLD severity stages, computed using numbers of COPD cases
estimated by the UK Department of Health (2010).

Figure 5.4a shows that the underlying prevalence of COPD in the popula-

tion, across all severity stages, is an increasing function of age. About 4% of

individuals of the general population aged 40 are expected to be with COPD,

as opposed to 11% of those aged 60, 16% of those aged 70 and 25% of those

aged 85. The distribution of prevalence by severity stages is also strongly de-

termined by age, reflecting the fact that COPD is a non-reversible progressive
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disease. Indeed, up to age 50, individuals with COPD are typically expected

to be in stages 1 or 2 whereas, in older individuals, stage 3 becomes increasing

prevalent and represents most of COPD cases in individuals aged 85.

Whilst there are clear age-trends in the estimated underlying prevalence of

COPD, its distribution by severity stages and age nevertheless exhibits some

variations. This resulted in kinked prevalence curves by one-year age-groups, as

shown in Figure 5.4b. Indeed whilst the prevalence of stage 2 increases steadily

as a function of age, the prevalence of stage 3 mostly increases between ages 50

and 60 and, to an even greater extent, between ages 70 and 85. Additionally,

in contrast to the prevalence of stage 2 and 3, the prevalence of stage 1 is

expected to be relatively stable over age-groups, varying from a minimum

of 2% of the general population at age 40 to a maximum of 5% at age 70.

The decrease in prevalence of stage 1 between the ages of 70 and 85 suggests

that: (i) most individuals aged above 70 are expected to have progressed to

more severe stages or to have died (ii) those who get diagnosed at that age

are expected to be diagnosed in more advanced stages. Finally it is worth

underlining that even at a very old age, stage 4 represents only a very small

proportion of the total numbers of COPD cases.

5.6 Results

5.6.1 Results interpretation

PH,i, i=1,...,4, represent the annual probabilities for the general population of

England of being diagnosed with a given stage of COPD, as implied by the

underlying prevalence of COPD and the relationship between disease incidence,

prevalence, progression and survival.

Diagnostic probabilities are also referred to as the annual incidence of

COPD. They are expressed in numbers of annual cases of the disease, by
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severity stage, per 1,000 individuals of the general population without prior

COPD diagnosis. As only the conditional probabilities of death were strati-

fied by gender, results were very similar across gender and the simple average

across both genders is presented.

5.6.2 Diagnosis/incidence probabilities by severity stage

GOLD stages 1 and 2 incidence

Figure 5.5 shows the expected annual numbers of cases of GOLD 1 and 2

per one-year age-group. In line with the previously described curves of age-

specific prevalence by severity stage (see Figure 5.4b), the annual number of

cases of GOLD 2 increases rather steadily among older age-groups whilst the

number of cases of GOLD 1 remains within a small range of 1 to 4 cases per

1,000 persons per year. There appears to be a small substitution effect between

the incidence of stage 1 and stage 2 around the ages of 50 and 60, which may

reflect estimation error induced by the combination of diverse data sources.
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Figure 5.5: Estimated annual cases of COPD GOLD 1 and GOLD 2 per 1,000 individuals
of the general population, by 1-year age groups.

GOLD 3 incidence

The 1-year probabilities of being diagnosed in stage 3 without previous

diagnostic of the disease were slightly negative (in the order of - 1 case per

10,000 individuals) for individuals aged 40 to 50 and 60 to 70. This is expected

to be the result of the combined effect of a small rate of prevalence increase

between this age points (see Figure 5.4b) and a relatively fast rate of transition

between stages 2 to 3 (see Figure 5.3).

In an attempt to provide stable estimates of age-specific probabilities of

being diagnosed in GOLD stage 3, the analysis was re-conducted for 5-year

time-intervals, based on estimates of underlying prevalence at age 40, 45, 55,

65, 70, 75, 80, 85. Survival and disease progression probabilities were expressed

for a 5-year period by taking the average of 1-year probabilities constituting

each 5-year age-intervals (e.g. 40-44; 45-50 and so forth) and transforming

the obtained results to 5-year probabilities based on equation 5.11, assuming
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a constant rate of incidence over each 5-year intervals.

Pt = 1− (1− P1)t (5.11)

5-year PH,3, for each age-group, were then transformed back to 1-year proba-

bilities using equation 5.12.

P1 = 1− (1− Pt)1/t (5.12)

In order to assess whether performing the analysis using 5-year intervals would

introduce an important loss of accuracy in the estimation of PH,3, a similar

approach was applied to compute cumulative 5-year PH,1 and PH,2 and trans-

form them back to 1-year PH,1 and PH,2 assuming a constant rate of incidence

within 5-year age-groups. 1-year PH,1 and PH,2 estimated using 5-year inter-

vals were of relatively similar magnitude than 1-year PH,1 and PH,2 estimated

using 1-year intervals, which suggests that the loss of accuracy was limited.

Figure 5.6 represents the estimated annual incidence of GOLD 3 cases for

each 5-year age-groups, expressed in annual numbers of GOLD 3 cases per

1,000 individuals. For comparison purposes, Figure 5.6 also shows the annual

numbers of GOLD 1 and 2 cases per 1,000 individuals for the same 5-year

age-groups. Results could not calculated for the last age group (80-85) due to

the lack of information on the prevalence for the next age group (85-90), which

is required for the estimation process (see equation 5.7).

Figure 5.6 shows that the expected annual number of cases of GOLD 3 in the

general population shots up from age 65 onwards. This finding is in accordance

with prevalence trends, where between ages 70 and 85, stage 3 replaces stage

2 as the most likely disease stage of individuals with COPD, and with the

fact that diagnosis of COPD in old age groups tend to be in more advanced

stages of the disease (UK Department of Health, 2010). It is nevertheless worth

underlying that, even in the oldest age groups, the estimated incidence of new

cases of GOLD 3 in the general population is lower than 2% per year.

140



Figure 5.6: Estimated annual cases of GOLD 1, GOLD 2 and GOLD 3 COPD per 1,000
individuals of the general population, by 5-year age groups.

GOLD 4 incidence

1-year PH,4 based on 1-year intervals were quasi all negatives while 1-year

PH,4 computed using 5-year intervals were very small (in the order of 1 to 7 out

of 10,000 individuals) with some age-intervals taking negative values. These

results are not surprising given the very low prevalence of GOLD 4 (see Figure

5.4) and the possibility for individuals to progress from previous stages to stage

4 (see Figure 5.3). They support the assumption that the worst severity stage

at which an individual of the general population of England can be diagnosed

with the disease for the first time is stage 3. Consequently, it is hereafter

assumed that in England PH,4 = 0.
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5.6.3 Distribution of annual incidence by severity stage

Figure 5.7 compares: (A) the presently estimated distribution of COPD

incidence by severity stage, expressed in annual cases per 1,000 individuals

of the general population with (B) the distribution by severity stage of the

underlying prevalence of COPD estimated by the UK Department of Health

(2010), which was used as input parameter to the present framework.

Figure 5.7 provides two main insights. First, like prevalence, the estimated

incidence of COPD is expected to be a positive function of age. Indeed, the

total annual number of COPD cases across all stages, per 1,000 individuals of

the general population in age-group 75-79, is about 10 times as much as the

number of cases in age-group 40-44.

Second, the age-specific distribution of incidence by severity stage is in ac-

cordance with the age-trends that characterise underlying prevalence estimates

outlined in section 5.5.4. For instance, until the age of 49, individuals diag-

nosed with COPD are most likely to be diagnosed in stage 1. This is line with

the fact that up to age 50, most individuals with COPD are in stage 1. Sim-

ilarly, from age 50 up to age 64, individuals diagnosed with COPD are most

likely to be diagnosed in stage 2, while after the age of 70, most new diagnoses

are expected to pertain to stage 3. This is in accordance with the fact that

up to the age of 70, most individuals with COPD are in stage 2, whereas as

from the age of 80, most individuals with COPD are in stage 3. These findings

suggest that the estimation method was sound.
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(a) Distribution of presently estimated age-specific annual COPD incidence by
GOLD severity stage.

(b) Distribution of COPD underlying prevalence by GOLD severity stage at
age-group mid-point Source: UK Department of Health (2010).

Figure 5.7: Distribution of estimated incidence and underlying prevalence of COPD by
GOLD severity stage and age.
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5.6.4 Estimated incidence versus GP registrations-based incidence

Figure 5.6.4 compares the presently estimated “true” annual incidence of

COPD across all stages, against registered incidence data from the UK British

General Practice Research Database (GPRD)4. Comparison is performed across

all four disease stages since GPRD data is not provided by severity stage.

Figure 5.6.4 shows that the difference in incidence results is very high among

young age-groups, with the ratio “estimated incidence” over “GPRD data”

being equal to 7 in age group 40-44. This ratio then decreases with age such

that, for individuals aged 65 and over, presently estimated incidence is about

3 times greater than recorded incidence in general practices.

Whilst these results appear credible given the extent to which COPD is

currently underdiagnosed (see section 5.2.1), their validity is difficult to assess

due to the lack of information on the magnitude of disease underdiagnosis by

age. Nevertheless, in line with the fact that stages 1 and 2 are the most un-

derdiagnosed stages of the disease and that these stages are mostly prevalent

among young individuals (UK Department of Health, 2010), it appears coher-

ent that the discrepancy between the presently estimated incidence and GP

registrations is the greatest for the youngest age-groups.

4UK GPRD data (2007) available from EU-funded open-access model DYNAMO HIA
(http://www.dynamo-hia.eu/)
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Figure 5.8: Estimated annual cases of COPD across all severity stages versus primary care
records (1).

(1) GPRD data for year 2007, obtained from EU-funded open-access model DYNAMO HIA.

5.7 Conclusions

5.7.1 Limitations

Model validation

Whilst diagnostic/incidence estimates are in line with expectations, ideally

the developed framework should be validated, for instance by estimating the

incidence implied by GP-recorded prevalence data and comparing the obtained

result with GP recorded- incidence. Unfortunately this was not feasible since

available primary care data on COPD registrations is not provided by severity

stages.
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The obtained distribution of age-specific annual incidence of COPD by

severity stages could not be compared with estimated incidence data for other

countries. Indeed, although Hoogendoorn et al. (2005, 2011) allowed popu-

lation individuals to transit from the state “healthy” to each severity stages

(as opposed to a single allowed transition from the state “healthy” to stage

1, as commonly assumed in other models of natural history of COPD), they

assumed that the severity distributions of prevalence and incidence were the

same across all age-groups. As both underlying prevalence estimates from

the UK Department of Health (2010) and the presently estimated incidence

are strongly determined by age, a comparison with Hoogendoorn et al. (2005,

2011) data hardly appears appropriate.

Model inputs and assumptions

Firstly, the reliability of the results crucially depends on the validity of in-

put data and in particular, on the estimates of underlying prevalence of COPD

in England provided by the UK Department of Health (2010). Additionally,

parameters of disease progression and survival were obtained by combining dif-

ferent data sources and in particular results from studies performed on COPD

patients in the US. Differences in health care management between the US and

UK may however, influence survival and disease progression outcomes. More

generally, the use of input parameters derived from various data sources is ex-

pected to have introduced some estimation error in output results. Moreover,

as both prevalence data and disease transition parameters were not provided

with confidence intervals, uncertainty around incidence estimates could not be

estimated.

Secondly, the framework is underpinned by the assumption that both the

population and the disease epidemic are stable. While the assumption of sta-

ble population could be relaxed, but at the expense of greatly complicating

the framework, the assumption of a stable epidemic was required in order to

estimate incidence based on results from a single cross-sectional survey.

Finally, in order to substantially reduce the computational burden, the
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framework was developed and solved in a discrete time setting, although dis-

ease development, worsening and death are continuous processes. In order to

reduce the approximation error, the length of intervals for which probabilities

were estimated was set to a year, which appears a reasonable approximation

given that COPD is a slowly progressive disease. However, as explained in sec-

tion 5.6.2, in order to obtain stable estimates of stage 3 incidence, the latter

were computed using a 5-year period. Whilst the annual incidence of GOLD

stages 1 and 2 obtained by using respectively 1-year and 5-year time intervals

was found to be of similar magnitude, inevitably the greater the time-period,

the larger the approximation.

5.7.2 Implication for cost-effectiveness analysis

This chapter provided a coherent framework to estimate the age-specific

annual probability of being diagnosed at a given stage of COPD, implied by

the underlying population prevalence of COPD estimated at a single point in

time and its relationship with disease incidence, progression and survival.

By addressing the issue of underdiagnosis reflected in primary care data

(i.e GP-recorded incidence of the disease), the present estimates of COPD

incidence will enable to model more accurately the total population health

benefits of preventive interventions such as air pollution control that reduce

the risk of developing COPD and COPD patients’ risk of suffering from further

adverse effects.

The framework was applied to the case of England, in order to parame-

terise the model of air pollution impacts developed in Chapter 4. However,

since COPD under-diagnosis is a global issue (GOLD, 2014), the framework

could be applied to estimate COPD incidence by severity stages in other coun-

tries, provided data on the underlying population prevalence of the disease are

available.

It may be argued that only diagnosed cases should be taken into account

147



when assessing the intervention’s impact on health care budget. However, the

stages that are the most underdiagnosed, i.e. for which the difference between

recorded and presently estimated “underlying” incidence is the greatest, are

GOLD stages 1 and 2, which are the least expensive stages of the disease

(Jansson et al., 2013). Secondly, estimates of underlying prevalence provided

by the UK Department of Health (2010) aimed to capture the prevalence of

persistent airflow limitation only, thanks to post-bronchodilator adjustment

(see section 5.3.1). It is therefore likely that those undiagnosed individuals may

nevertheless seek health care to treat their symptoms. Obviously as the health

care cost associated with these undiagnosed individuals cannot be related to

the COPD burden, it is not possible to verify this assumption (Hoogendoorn

et al., 2005).
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Chapter 6

Systematic review and

meta-analysis of studies of the

association between long-term

exposure to PM2.5 and all-cause

mortality and lung cancer

incidence or mortality

6.1 Introduction

Mortality in adults of the general population has been one of the health

outcomes most intensively investigated in epidemiological studies of air pollu-

tion. A systematic review and meta-analysis of epidemiological studies of the

association between long term exposure to particulate air pollution (PM) and

mortality, published between 1950 and 2007, was performed by Chen et al.

(2008). However, since publication of this piece of work, additional relevant

epidemiological studies have been released, including results from the extended
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follow-up of two main cohorts in the US: Harvard Six Cities and the American

Cancer Study (see Chapter 2).

The objective of this chapter is therefore to help characterise uncertainty in

the evidence base used to populate the model developed in Chapter 4, by sys-

tematically searching for and synthesising the evidence relevant to the excess

risk of mortality associated with chronic air pollution exposure. More sepcifi-

cally, Chen et al. (2008)’s systematic review and meta-analysis will be extended

for the period 2008-2014, focusing on studies of the association between long

term exposure to particulate air pollution and: (i) all-cause mortality and (ii)

lung cancer incidence or mortality, in adults of the general population.

Pooled risk estimates will be used to parameterise several distinct paths of

the Markov model of the health impacts of air pollution exposure developed

in Chapter 4. First, as mentioned in Chapter 4, individuals with COPD or

CHD, who did not meet specific severity and age conditions, were assumed to

have the same pre-disposition to dying prematurely due to PM exposure as

individuals of the general population. As a result, the pooled risk estimate of

all-cause mortality will be used to model the excess risk of mortality in: (i)

COPD patients of all ages in GOLD stages 1 and 2 (i.e. RREd in Table 4.1 of

Chapter 4); (ii) COPD patients in GOLD stages 3 and 4 aged below 65 years

old (i.e. RREe for age < 65 in Table 4.1); (iii) CHD patients aged below 75

years old (i.e. RREf for age < 75 in Table 4.1). It should be underlined that

the pooled risk estimate of all-cause mortality will not be applied to “healthy”

individuals as the latter are assumed to die from all other causes of death than

CHD, COPD or lung cancer.

Second, the pooled risk estimate of the association between PM exposure

and lung cancer incidence or mortality will be used to model the excess risk

of developing lung cancer in the general population (i.e. RREc in Table 1

and Figure 1 of chapter 4). Indeed, owing to the very high case-fatality rate

for lung cancer, where the net survival rate at 5-year for adults in England is

9.5% (ONS, 2011), mortality and incidence are comparable indicators of the

association between lung cancer and PM exposure and studies informing either

incidence or mortality can be considered altogether.

The chapter is structured alongside three sections. Section 2 focuses on the
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systematic search. It details the search strategy, the screening results and the

key characteristics of the studies identified as relevant. Section 3 consists of the

meta-analysis work. It also provides an assessment of potential sources of bias

and describes the choice of statistical approaches to pooling effect estimates.

Section 4 discusses and concludes.

6.2 Systematic review

6.2.1 Search protocol and strategy

Since Chen et al. (2008)’s search spanned between 1950 and December 2007,

the present systematic search was run from January 2008 to present (April

2014). It was performed using PubMed and Embase databases, which were

the same databases used by Chen et al. (2008).

The search was framed around four main inclusion criteria, described in

Table 6.1.

No particular age restrictions were imposed on the studies subjects, to the

exception of the exclusion of studies based on elderly populations, presently

defined as studies based on adults aged above 65. Additionally, in the absence

of conclusive evidence to date pertaining to gender-related differential suscep-

tibility to air pollution exposure, both gender-specific and all-genders studies

were included.

While the model developed in Chapter 4 focused on the health effects of

fine particulate pollution, i.e. PM2.5, to avoid being over-restrictive, the search

initially considered studies pertaining to both fine and coarse particulate pol-

lution. For the same reason, the search protocol did not include any restriction

on studies’ geographical location. However, since linearity in health impacts
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Population

Adults of the general population

- no focus on elderly subjects

- no occupational studies

Intervention

Change in long-term exposure to particulate air pollution (PM)

- Both PM2.5 and PM10 were initially considered

- Measure of change in PM concentrations: µg/m3 or quantile (a)

Outcomes

- All-cause mortality

- Lung cancer mortality

- Lung cancer incidence

Study design Cohort studies

Search period Jan. 2008 to April 2014

Table 6.1: Inclusion criteria for search protocol.

(a) For statistical analysis, all study estimates will be converted to represent the change in health risk per
10µg/m3 increment in PM exposure, which is the unit of measure commonly used in epidemiological
studies of air pollution.

in response to a change in PM exposure has been validated only in studies

conducted in developed countries (Krewski et al., 2009; Cesaroni et al., 2013;

Lepeule et al., 2012), study location will be later considered in the analysis of

the pool of studies identified as relevant.

The selection of health outcomes was based on the parameterisation needs

of the model developed in Chapter 4 and the choice of study design was de-

termined by the nature of the intervention and the type of health outcomes.

Cohort studies, which link mortality data with long-term cumulative exposure

variables and subject-specific covariates, were selected as the best suited study

design.

Finally, in order to minimise the risk of missing relevant studies, the search

strategy was broadened in the following fashion. First, even though stud-

ies of traffic pollution typically focus on NO2, search terms included “Vehi-

cle emissions” or “Traffic” in case such studies would also consider the ef-

fect of particulate matter alongside NO2. Second, medical subject headings

(MeSH) terms “Cardiovascular Disease/mortality” and “Respiration Disorders

Disease/mortality” were added into the Pubmed query, as some studies some-

times also include all-cause mortality as secondary outcome.

The detailed search queries performed for each database are provided in

Appendix D. Repeated assessment of the validity of the devised queries was
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performed by checking whether they successfully captured publications that

were known to be relevant.
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6.2.2 Systematic search results

Queries in Embase and PubMed, run for the period January 2008 to April

2014, led to the identification of 275 publications in total (including dupli-

cates): 139 articles in PubMed and 136 articles in Embase.

The study selection process is summarised in Figure 6.1. A first screen-

ing based on title and abstract excluded 231 studies which did not meet the

inclusion criteria or were duplicates, thus leaving 44 distinct publications for

full-review. Among these remaining 44 publications, two were based on the

same cohort (the California Teachers study). In such case, in line with Chen

et al. (2008), only the paper associated with the longest follow-up and/or the

largest population study size was selected. In addition, 8 publications were

reviews of literature that did not provide original results. Finally, another 15

publications were excluded based on inclusion criteria. Results were either:

(i) not based on PM as air pollutant, (ii) based on occupational exposure or

on specific populations subgroups, (iii) not derived from a cohort study (1

case-control study).

Out of the pool of 20 remaining publications identified as relevant follow-

ing full-review, one (Beelen et al., 2008) was already included in Chen et al.

(2008)’s review. As the majority of publications pertained to the health effects

of PM2.5 exposure, which tend to be associated with greater adverse health

effects than PM10, it was decided to focus solely on studies of the impact of

PM2.5 exposure, in order to ensure a greater homogeneity in effect estimates.

This led to the exclusion of five studies on PM10. Ultimately, the search

therefore led to the identification of 14 publications.

For the period 1950-2007, Chen et al. (2008) had identified 8 publications

on the association between long-term exposure to PM2.5 and all-cause or lung-

cancer mortality. Three of these studies had been “updated” by studies based

on the same cohort but with longer follow-up and/or population size; two did

not apply to the general adult population; and one (Naess et al., 2007) provided

estimates which could not be reliably converted per 10 µg/m3 increment of

PM2.5. The two remaining relevant publications identified by the authors (for
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the period 1950 - Dec. 2007) were combined with the 14 ones identified by the

present search for the period 2008-2014, providing a final pool of 16 relevant

publications.

Figure 6.1: Flow diagram of search strategy and selection process.

155



6.2.3 Identification of the set of relevant risk estimates

One publication (Krewski et al., 2009) provided results for three cohorts:

the American Cancer Study (ACS) national (full cohort) and two derived sub-

cohorts in Los Angeles and New York, for which air pollution assessment and

attribution were different from the national study. Therefore, the 16 publica-

tions identified through the search provided results from 18 distinct studies.

Many of these studies investigated both all-cause and lung cancer mortality as

health endpoints, which gave a total of 15 risk estimates for all-cause mortality

and 13 estimates for lung-cancer mortality or incidence.

The ACS national (full cohort) provided results for two time periods of expo-

sure, respectively 1979-1983 and 1999-2000 (same follow-up length). Since the

risk estimates computed using the most recent exposure period were based on

the largest population size (488,370 study participants, as opposed to 342,521

participants for the older period of exposure), they were selected to represent

ACS national study results. However, since results pertaining to lung cancer

mortality significantly varied between the two time periods of exposure (see

Table 6.2), it was decided to use the risk estimate based on the 1979-1983

exposure period in sensitivity analysis.

6.2.4 Key characteristics of relevant studies

Preliminaries

Table 6.2 provides a summary of the key characteristics of the 18 distinct

studies, which results were provided by the 16 publications identified as rele-

vant to the present research question. In this section, studies are referred to

by their cohort name, with corresponding author information being provided

in Table 6.2.
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All studies measured the strength of the pollution-mortality association

using hazard ratios, to the exception of Beelen et al. (2014) and Jerrett et al.

(2013) which used relative risks. However, since for rare events such as death,

rates and probabilities are very similar, combining these two measures of effect

in a meta-analysis was considered acceptable. Such an approach was also

followed by Chen et al. (2008).

Methodological differences between studies essentially pertained to: study

follow-up, spatial and temporal assignment of long-term cumulative exposure

to study subjects and adjustment for confounding.

Study follow-up

Whilst most studies were based on population follow-up greater than 10

years, follow-up nevertheless varied greatly between studies. For instance, the

latest analyses of the Harvard Six Cities and American Cancer Society cohorts

relied on a population follow-up of respectively 36 and 18 years, as opposed to

5 years for the English cohort for instance.

Temporal assignment of cumulative exposure

In most studies, exposure was assessed and assigned to subjects solely for

a period of the follow-up, with three studies using 1 to 3-year moving average

of exposure prior to event. In two studies (ASHMOG and Japanese cohorts)

the exposure period was respectively 5 and 10 years before enrolment. The

difference in the temporal resolution of PM2.5 exposure between studies reflects

limited systematic monitoring of fine particulate concentrations until the late

90’s in many countries, as well as the lack of evidence on critical time-windows

of exposure. Whilst some studies suggest that the last few years of exposure

prior to event are the ones most strongly associated with mortality (Lepeule

et al., 2012; Puett et al., 2009; Schwartz et al., 2008), the identification of the
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most influential time windows of exposure has typically proven to be difficult,

due to too small spatio-temporal variations in concentrations.

Spatial assessment and assignment of cumulative exposure

Precision in effects estimation requires sufficient spatial variation in sub-

jects’ cumulative exposure over time. This is harder to obtain when exposure

is assigned to individuals at a coarse scale (Dominici et al., 2003). Conse-

quently, whilst a few studies used the mean of concentrations in the city of

residence at enrolment (e.g. ACS full cohort; Harvard Six Cities) or at the

nearest monitor (e.g. Japanese and US truckers cohorts), most studies used

geographic information systems (GIS)-based statistical methods to account

for small-scale spatial variations in pollution concentrations and obtain finer

spatial contrasts in exposure.

These methods, which can be classified as interpolation methods, land use

regression models or dispersion modelling are described in Jerrett et al. (2005).

Briefly, statistical interpolation produces estimates of pollution concentrations

at un-sampled sites by exploiting spatial dependence in the data (krieging

method) or by relying on deterministic or geometric algorithms such as inverse

distance weighting. By contrast, land use regression models regress pollution

monitoring data obtained from a small number of sampling locations on an

exogenous set of variables (e.g. traffic, land use, altitude), in order to predict

pollution concentrations at other sites. Finally, dispersion models differ from

the first two methods as they rely on monitoring measurements only for model

calibration and validation, i.e. not as input data. Dispersion models generate

estimates of pollutant concentrations based on data on pollutants emissions,

meteorological conditions and topography, assuming these parameters are gov-

erned by deterministic processes.

Although each method has its pros and cons, land use regression models

(used in 8 of the selected studies) have been found to outperform interpolation

methods (used in 3 of the selected studies) (Hoek et al., 2008). The main

drawbacks of interpolation methods is that they are mechanistic, they require
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a relatively dense sampling network to avoid large estimation errors and they

assume that variation is spatially homogenous (Jerrett et al., 2005). The few

studies that have compared land use regression models with dispersion mod-

elling do not suggest that one technique is dominated by the other, rather that

the main strength of dispersion modelling is to assess source-specific concen-

trations of pollutants (Hoek et al., 2008).

Nevertheless, notwithstanding the complexity and refinement of these mod-

elling approaches to exposure assessment, outdoor concentrations are solely a

proxy for individual-level exposure, which is the underlying variable of interest.

Exposure misclassification using outdoor concentrations is therefore inevitable

due to individual-level differences in time-activity patterns, air exchange rate

of outdoor pollutants at home, accommodation type, i.e. high-rise or low-floor

buildings, and so forth (Briggs, 2005; Hoek et al., 2008). Whilst exposure

misclassification is generally expected to be non-differential (i.e. study partic-

ipants have an equal likelihood to be assigned an inaccurate estimate), which

limits the risk of spurious associations, it adversely affects precision in effect

estimation (Raaschou-Nielsen et al., 2013).

Adjustment for confounding

Given the nature of the data, i.e. time to event, all studies used the Cox

proportional hazard model, which links the log of the relative risk to pollution

concentrations. A few studies, namely ACS national, city-scale and regional

sub-cohorts and the Canadian cohort included a random-effect component into

the Cox proportional hazard model, in order to account for spatial clustering of

data at neighbourhood level, i.e. confounding by spatially-varying contextual

factors that are correlated with air pollution.

Studies differed in their adjustment for confounding by lifestyle factors,

smoking in particular. The large majority of studies (15 out of the 18 included

studies) used a set of individual-level covariates to adjust risk estimates for

many risk factors such as diet, body mass index (BMI), active and passive

smoking, alcohol consumption, along with socio-economic status. Neverthe-
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less, three studies, namely the Rome, Canada and US truckers cohorts, solely

relied on socio-economic status to adjust for lifestyle.

Although there is accumulated evidence on social patterns in smoking and

diet, socio-economic status is only an imperfect measure for lifestyle risk factors

and residual confounding may be an issue if these risk factors are correlated

with air pollution concentrations. All four studies assessed potential corre-

lation between PM2.5 concentration estimates and smoking prevalence, using

health survey samples or cohort subsets for which information on smoking was

available. In the Rome, Olso and US truckers cohorts, no such association

was found, which suggests that smoking was an unlikely residual confounder

in these studies. In the Rome cohort, adjustment for smoking and diet-related

co-morbidities (chronic obstructive pulmonary disease and hypertensive heart

disease) that were recorded on hospital discharges yielded similar or stronger

associations between air pollution exposure and mortality and the inclusion of

smoking habits for a subset of participants (n = 7,845) did not modify the size

of associations.

For the Canadian cohort, analysis by Villeneuve et al. (2011) using estimates

of Crouse et al. (2012) found an inverse association between PM2.5 estimates

and the prevalence of smokers and certain categories of BMI. This is consistent

with the fact that in Canada, individuals with higher socio-economic status

tend to live in more polluted areas. Effect estimates of the association between

PM2.5 and mortality in this cohort increased in magnitude after adjustment

for individual-level socio-economic variables, which suggests that residual con-

founding by lifestyle factors may have led to an underestimation of the air

pollution-mortality effect (Crouse et al., 2012).

Study population

Whilst studies were conducted in geographically-diverse populations, they

were all based in developed countries (12 in North America, 5 in Europe and

1 in Japan).

Study populations had different age and gender composition, with five stud-
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ies being gender-specific. Participants also had different socio-economic status,

with some studies being based on selected population subgroups such as male

truckers as opposed to female teachers or health professionals.

Finally, studies greatly differed in sample size. Of the 18 included studies,

two had above 1 million participants, six had between 1 million and 100,000

participants; five had between 100,000 and 50,000 participants and five had

below 50,000 participants.

Intervention

Although the levels of PM2.5 concentrations to which study participants

were exposed differed, they are within a rather narrow range (between 5 to

40 µg/m3). This range is in line with concentration levels at which linearity

in impacts and the absence of threshold to effects have repeatedly been found

(Krewski et al., 2009; Crouse et al., 2012; Lepeule et al., 2012; Cesaroni et al.,

2013). The small difference in concentration between studies is therefore not

expected to be problematic with regards to the pooling of risk estimates.

Particulate pollution, however, is a mixture of liquid and solid compounds

emitted by varying sources such as fossil-fuel combustion, industrial processes,

road dust, biomass burning. It is therefore likely that cohort participants have

been exposed to a different mixture of particulates associated with different

levels of toxicity. Nevertheless due to: (i) the lack of evidence on the relative

toxicity of particulate components and (ii) ignorance of the particulate mix of

concentrations in each study, this issue could not be addressed.
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Table 6.2: Summary of relevant studies identified.
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TABLE 6.2. Summary of relevant studies identified (continued)

(a) All HR are expressed for 4PM2.5 = +10µg/m3.
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6.3 Meta-analysis

6.3.1 Statistical framework

Two conceptual approaches

Meta-analysis consists in pooling risk estimates from individual studies by

computing a weighted average of effect estimates, using the inverse of esti-

mates’ variance as weights. This allows to give more weight to the more pre-

cise studies, with view to maximise the precision of the pooled effect estimate.

Mathematically,

θ̄ =

∑k
i=1wiθi∑k
i=1wi

with wi =
1

vi
(6.1)

with θ̄ being the pooled estimate and θi and vi representing study-specific

mean effect and variance.

The variance of the pooled estimate is the reciprocal of the sum of study-

specific weights wi, i.e.

V ar(θ) =
1∑k
i=1wi

(6.2)

There are two conceptually different approaches to performing a meta-

analysis known as the fixed-effect model (FE) or the random-effect model

(RE). The FE model assumes that each study generates an estimate of a com-

mon true treatment / intervention effect, subject to sampling error known as

within-study variation. By contrast, the RE model recognises that studies are

heterogeneous in some respect (e.g. they were drawn from populations that

differed from each other), with such differences having an impact on their es-

timated treatment effect (Borenstein et al., 2009). As a result, each study is

assumed to provide a study-specific treatment effect. This introduces another

source of sampling error in the pooled risk estimate known as between-studies
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variance (τ 2). Whilst study-specific effect estimates are not identical, they are

assumed to come from a common distribution - typically taken as the normal

distribution - that is centred at the pooled estimate.

The choice of conceptual approach to pooling each risk estimate has strong

implications on the computation of the pooled estimate. Under the FE model,

the pooled estimate is assumed to provide information about the best estimate

of effect. Consequently, studies with the greatest precision, i.e. with the lowest

within-study variance, will be attributed a much higher weight than the least

accurate studies and will therefore strongly influence the value of the pooled

estimate. By contrast, under the RE approach, the pooled estimate represents

the average intervention effect across different study populations (Borenstein

et al., 2009). This shifts the focus of interest from the estimation of a common

effect to the characterisation of the distribution of effects across studies.

Computation-wise, although effect estimates are weighted by the inverse

of their variance in both models, under the RE-model the variance includes

within-studies and between-studies variance (Sutton et al., 2000). Denoting σi

within-study variance, we obtain the following expressions for study-specific

variance:

vi = σi under the FE model and vi = σi + τ 2 under the RE model (6.3)

Replacing for vi, we obtain the following expressions for study-specific weights:

wi =
1

σi
under the FE model and wi =

1

(σi + τ 2)
under the RE model

(6.4)

The inclusion of between-study variance in the RE model has three con-

sequences. First, the weights assigned to each study will tend to be more

balanced under the RE model than the FE model. Second, since the variance

of the pooled estimate is the reciprocate of the sum of study weights (see equa-

tion (2)), in the presence of between-studies variation, the confidence interval

of the RE-pooled estimate will be larger than the confidence interval around
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the FE-pooled estimate. Third, in line with equations 6.1 to 6.4, if τ 2 equals

to zero, FE and RE models will yield identical results.

Choice of random effect as conceptual model

The studies identified by the present systematic review and those selected

from Chen et al. (2008)’s review were chosen for their similarities in terms of

study population, intervention, health outcomes and study design. Neverthe-

less, as described in section 2.3., studies exhibit some level of heterogeneity

especially with regards their methodology. Therefore, whilst studies are con-

sidered similar enough for the pooling of their effect estimates to be pertinent,

their heterogeneity should be taken into account to avoid pooled estimates

and their confidence intervals to be misleading. The RE model was therefore

preferred.

Interpretation of random effect estimation results in decision modelling

Whilst the random effect model is advocated to incorporate heterogeneity

between studies, the use of random effect meta-analysis results to populate

cost-effectiveness decision models, is open to a number of possible interpreta-

tions about the source of heterogeneity between studies and how the target

setting of the intervention under assessment may potentially differ from the

ones in the studies included in the meta-analysis. (Welton et al., 2015). The

expression of “target setting” presently refers to population characteristics,

intervention definition etc.

Typically, the mean of the random effect distribution is interpreted as the

true effect to be observed in the future. This assumes that the decision target

setting is equal to the average setting of the included studies and that the

pooled estimate is an estimate of the true underlying intervention effect (D)

that has been observed under noisy conditions resulting from random measure-

ment errors (with the bias across studies being centred on zero) (Ades et al.,

167



2005; Welton et al., 2015).

Although this common approach was followed when parameterising the

model developed in Chapter 4, it is worth noting that alternative methods

have been suggested to characterise decision uncertainty stemming from vari-

ation in intervention effect. Importantly, this source of decision uncertainty

should be distinguished from parameter uncertainty as it cannot be reduced

by further information.

In the case where the target setting for the decision is assumed to be similar

to the ones in the studies included in the meta-analysis. Ades et al. (2005),

suggested to rely on the predictive distribution of the intervention effect in a

new study. Whilst the predictive distribution will be centred on the mean of

the random effect distribution (i.e. RE pooled estimate), its variance will be

larger as it accounts for uncertainty in parameters (D and τ 2), as well as in

study setting (Welton et al., 2015), namely:

dpredicted ∼ N(D, τ 2) (6.5)

with D being the true underlying effect and τ 2 the between-study variance in

treatment effect.

Alternatively, if the decision target setting is expected to be made up of all

the various target settings of the different studies included in the meta-analysis,

it may be argued that there is not a single effect size but a distribution of

effect sizes. In this case, quantification of the net benefit of intervention would

ideally require to take the expectation of net benefit over the entire random

effect distribution of intervention effect (Ades et al., 2005; Welton et al., 2015).

6.3.2 Checking for potential sources of bias

Publication bias

Before embarking on the meta-analysis, the potential existence of a publi-
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cation bias, which arises when studies reporting non-significant results are less

likely to be published, was assessed. The main consequence of publication bias

in meta-analysis is to produce an over-estimate of the pooled estimate and/or

a too-narrowed confidence interval (Sterne et al., 2008).

The presence of a publication bias seems a-priori unlikely for epidemiolog-

ical studies of air pollution, as both the absence or presence of health effects

from exposure to fine particulate is policy-relevant. Nevertheless, a quick vi-

sual check for bias was performed by creating funnel plots. The latter are

scatter plots of studies’ effect estimates against their precision (i.e. standard

error) on a reversed scale, such that the most accurate estimates are located

at the top of the graph whereas the least accurate ones spread more widely at

the bottom of the graph.

Funnel plots were created for the studies pertaining to respectively all-cause

mortality and lung-cancer incidence or mortality, using the freely available

software Revman 5.2 from the Cochrane Collaboration1. Output results are

provided in Figure 6.2. Since the outcome measure was a hazard ratio, the fun-

nel plots were computed on the log scale, so that effects of the same magnitude

but on different directions are equidistant from unity (Deeks et al., 2008).

In the absence of publication bias, the plots are expected to look like a

symmetrical inverted funnel, with the dotted line at its centre representing

the mean effect estimate. This appears to be the case for studies of all-cause

mortality and lung-cancer incidence or mortality. It should nevertheless be

underlined that the funnel plot is only an informal visual test for publication

bias that may need to be completed by formal statistical tests such as the

Rank correlation test (Sutton et al., 2000). In the present case, this does not

appear necessary, as the symmetry in the funnel plots supports the a-priori

expectation that there is no particular bias affecting the publication of studies

on the association between chronic fine particulate pollution exposure and

mortality.

1http://tech.cochrane.org/revman.
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(a) All-cause mortality.

(b) Lung cancer incidence or mortality.

Figure 6.2: Funnel plots of studies of the association between long-term exposure to PM2.5

and (A) all-cause mortality and (B) lung-cancer incidence or mortality.
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Small-study bias

The presence of small-study bias, which arises when effect size estimates

from small studies are systematically different from the ones of larger studies

(Deeks et al., 2008), was also investigated. Small-study bias is especially prob-

lematic when using the RE model, which puts more weight on small studies

than the FE model in order to characterise the distribution of effects. Ta-

ble 6.2, however, indicates that findings based on small or medium-size study

populations are clearly not systematically different than results from larger

cohorts and small-study bias can therefore be ruled out.

6.3.3 All-cause mortality: results

Main results

Results were obtained using the software Revman 5.2. from the Cochrane

Collaboration. A forest plot in Figure 6.3 summarises meta-analysis results

from the pooling of effect estimates provided by the 15 studies identified as

relevant (see Table 6.2 for further description). In a forest plot, each study

point estimate is marked by a square that is proportional in size to the weight

given to the study, whereas confidence intervals are represented by horizontal

lines. The pooled result is represented by a diamond shape that is centred on

the value of the pooled estimate with the width of the diamond depicting the

95% confidence interval.
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Figure 6.3: Meta-analysis of the association between long-term exposure to PM2.5 and all-
cause mortality
(Random effect model - hazard ratio per 10 µg/m3).

The random-effect pooled estimate is 1.07 with a 95% confidence interval:

1.05 - 1.10. The latter appears uncentered solely due to figures rounding

(figures with more decimals are 1.0713 (1.0473 - 1.0958)). As indicated by its

95% confidence interval, the pooled estimate is statistical significant. This is

corroborated by the very small p-value associated to the Z-test for the presence

of an overall effect, where the Z-statistic is defined as:

Z =
θ̄

SE(θ̄)
and follows a normal distribution under the null hypothesis.

A visual inspection of the forest plot shows the absence of confidence interval

overlap between the Health Professional and Nurses’ Health studies. This

suggests the presence of between study heterogeneity and is confirmed by the

value of the chi-square (χ2) statistic. The χ2 statistic represents the total

variance: it is the weighted sum of the square deviations of each study’s effect

estimates from the pooled estimate, weighted by the inverse of each study

variance. Using similar notations to section 6.3.1, the expression for the χ2
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statistic is:

χ2 =
k∑
i=1

wi(θi − θ̄)2

Under the null hypothesis of no study heterogeneity, which is equivalent to

assuming that each k study estimated the same underlying effect, the statistic

should follow the χ2 distribution with (k-1) degree of freedom. As indicated

by the very small p-value in Figure 6.3, the null hypothesis of no study het-

erogeneity is rejected. This test is however, known to have too much power in

the presence of many studies and alternatively, too little power when only a

few studies are pooled.

A simpler way to assess the presence of heterogeneity is to compare the

value of the χ2 statistic with its degrees of freedom, which represent the ex-

pected value of the χ2 statistic if the only source of variance were within-study

variation (Borenstein et al., 2009). In the present case, the χ2-statistic equals

33, which is clearly much higher than its degrees of freedom (df) equal to

14. This “excess variance” (χ2 − df) is due to between-study variation, i.e.

heterogeneity.

Even with strict inclusion criteria, some level of study heterogeneity appears

inevitable. As a result, it has often been argued that the focus of interest should

not be on the presence of heterogeneity or not but on how much heterogeneity

there is (Higgins et al., 2003). This can be assessed by scaling the “excess

variance” by the total variance, which is referred to as the I2 statistic:

I2 = max[(
χ2 − df
χ2

)100%, 0]

In the present case, I2 equals 58%. This means that heterogeneity between-

studies explains about 58% of the variability in individual effect estimates,

where the rest is the result of sampling error. Whilst there are no clear-cut

guideline on how to interpret the value of the I2-statistic, a 58% value may

be interpreted as moderate heterogeneity between studies (Higgins & Green,

2011).

Finally, it is worth noting that the computation of τ 2, i.e. the between-

studies variance, and the I2-statistic are related. However, while τ 2 is also
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based on the “excess variance” (χ2 − df), it not scaled by the total variance

but by a factor that is a function of within-studies variance. In the present

case, despite positive excess variance, the value of τ 2 appears very small. The

reason is that given the level of inaccuracy in a number of studies i.e. sampling

error, one would anyway expect the effect size to vary across studies. In other

words the variance between studies appears to be essentially explained by the

variance within studies (Borenstein et al., 2009).

Sub-group analysis

As there were too few gender-specific results (5 in total) to perform a sub-

group analysis stratified by gender, alternatively effect estimates of studies

based on respectively: (i) both genders or males only and (ii) both genders or

females only were pooled separately. Results are presented in Appendix E. The

three males studies (ASHMOG, Health Professional and US truckers cohorts,

see Table 6.2 ) only account for a combined 12% of the total weight assigned to

studies pertaining to both genders or males. Similarly, the two females studies

(California teachers and Nurses’ Health cohorts, see Table 6.2 ) only account

for a combined 9% of the total weight assigned to studies pertaining to both

genders or females. As a consequence, the pooled estimate obtained for each

subgroup is equal to the one computed by pooling all 15 available estimates.

Sensitivity analysis

Whilst the presence of moderate study heterogeneity as indicated by the

test statistics supports the choice of the random effect model, analysis under

a fixed-effect model was run, in order to assess the impact of a change of

statistical modelling assumption on the pooled estimate. Results are presented

in Figure 6.4a. The weight assigned to the Rome cohort increased from 18.5%

under the RE model to about 70% under the FE model. As a result, the FE-

pooled risk estimate is extensively drawn towards the effect size estimated in
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the Rome study and equal 1.05 with 95% CI: 1.04 - 1.06. Ignoring between-

studies heterogeneity would therefore misleadingly suggests a much greater

confidence in the precision of the mean of the distribution of effects.

Secondly, although positive residual confounding by smoking in the studies

which did not directly control for this risk factor at individual-level seems

unlikely (see section 2.3.1.), a sensitivity analysis was run (RE model) by

excluding the studies which adjusted for lifestyle solely via socio-economic

status. This led to the exclusion of results from three studies: Rome, Canada

and US Truckers cohorts (see Table 6.2 ). Results are shown in Figure 6.4b.

Whilst the pooled estimate remains the same, its confidence interval is wider

since the Rome and Canada cohorts, excluded in this sensitivity run, provide

rather precise estimates of effect.
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(a) Results under fixed-effect model.

(b) Excluding studies with no direct adjustment for smoking (RE model).

Figure 6.4: Sensitivity-analysis for meta-analysis results for all-cause-mortality (hazard ratio
per 10 µg/m3).
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6.3.4 Lung-cancer incidence or mortality: results

Main results

Although most of the effect size estimates for lung cancer mortality were

drawn from the same cohorts that provided estimates for all-cause mortality,

they have much wider confidence intervals than estimates for all-cause mortal-

ity. This stems from the fact that statistical power is not solely determined by

sample size but also by the number of participants experiencing the event of

interest (Higgins & Green, 2011). In each cohort, counts of lung cancer deaths

were obviously smaller than counts of total deaths, hence the lower precision

in effect estimation. Similarly, although the only risk estimate for lung cancer

incidence was based on a meta-analysis of results from 14 cohorts in Europe

(ESCAPE study), its standard error is nevertheless very large (95% CI: 0.92 -

2.13).

Meta-analysis results are presented in Figure 6.5. Pooling of estimates from

the 13 studies identified as relevant yielded a RE-pooled estimate of 1.13 with

95% CI: 1.07 - 1.20, which is statistically significant. It is worth noting that

this estimate is of greater magnitude than the pooled estimate for all-cause

mortality (1.07, 95%CI: 1.05 - 1.10), though the incertitude about the centre

of the distribution of effects is much greater. Between-studies heterogeneity is

smaller than for studies of all-cause mortality (I2 equal to 34%) but remain

moderate, thus confirming the adequacy of the random effect model.
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Figure 6.5: Meta-analysis of the association between long-term exposure to PM2.5 and lung-
cancer incidence or mortality.
(Random effect model - hazard ratio per 10 µg/m3).

Sensitivity analysis

Two sensitivity analyses were performed. The first sensitivity run consisted

in excluding studies without direct adjustment for smoking, as was previously

done for all-cause mortality. This resulted in the exclusion of two studies:

Rome and US truckers cohorts, which led to an increase in the pooled estimate

to 1.17 with 95% CI: 1.11-1.23 (see Figure 6.6a).

The second sensitivity run consisted in using the risk estimate from the

ACS national study (full cohort) that was estimated based on PM exposure

for the period 1979-1983, as opposed to the period 1999-2000. This sensitivity

run was justified by the fact that the weight assigned to this study in main

analysis is large (21%, see Figure 6.5). Since the excess risk of lung cancer

mortality estimated based on the oldest period of PM exposure is lower than

the one estimated based on the most recent exposure data, its use would yield

a slightly lower pooled estimate: 1.11 with 95% CI: 1.06-1.17 (see Figure 6.6b).
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(a) Excluding studies with no direct adjustment for smoking.

(b) Using ACS national (full cohort) risk estimate based on 1979-1983 years of PM2.5 exposure.

Figure 6.6: Sensitivity-analysis for meta-analysis results for lung-cancer (Random effect
model - Pooled hazard ratio per 10 µg/m3).
* Years of PM2.5 exposure: 1979-1983.
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6.4 Discusssion

6.4.1 Main findings

A total of 18 studies, published from 1950 until April 2014, have been

identified as relevant for informing the association between chronic exposure

to PM2.5 and respectively all-cause mortality and lung cancer incidence or

mortality. Mean effect estimates and 95% confidence intervals obtained by

pooling study-specific results using the random-effect model are respectively:

1.07 (1.05 - 1.10) for all-cause mortality and 1.13 (1.07 -1.20) for lung cancer

incidence or mortality.

Moderate heterogeneity was found between studies, which justifies the use of

the random effect model. Several sources of between-studies heterogeneity were

identified including: (i) varying approaches to spatio-temporal assessment and

assignment of exposure ; (ii) differences in study-population age, gender and

socio-economic status mix and (ii) expected differences in particulates’ chemi-

cal composition and toxicity. A meta-regression of the pooled estimate against

study characteristics was however, not performed for the following two reasons.

First, performing these analyses requires a sufficient number of studies, with

a suggested minimum of ten estimates per characteristic modelled (Higgins &

Green, 2011), which were not available from the present pool of studies. Sec-

ond, since studies are not randomised across potential effect-modifiers, their

findings are problematic to interpret (Deeks et al., 2008).

6.4.2 Comparison with work published most recently

The present results, which take into account the most recent evidence pub-

lished until end of April 2014 are consistent with those previously obtained

by Chen et al. (2008) for the period 1950-2007. The authors reported random
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effect-pooled estimates of respectively 1.06 (1.03 - 1.10) for all-cause mortality

and 1.15 (1.06 - 1.24) for lung cancer incidence or mortality.

Since the start and completion of this piece of work, two meta-analyses on

the association between PM2.5 exposure and respectively all-cause mortality

(Hoek et al., 2013) and lung cancer incidence or mortality (Hamra et al., 2014)

were published (in May 2013 and September 2014 respectively).

Hoek et al. (2013) reported a random effect-pooled estimate of 1.06 (1.04 -

1.08) for all cause mortality, which is very similar to the present findings. The

authors however, only included studies published until January 2013 and as a

consequence, did not encompass results from three cohort studies: ESCAPE,

English cohort and ACS California sub-cohort (see Table 6.2 ). In addition, the

authors encompassed in their scope studies based on elderly populations (Zeger

et al., 2008; Enstrom, 2005), which may further explain the slight difference

with the present result.

Hamra et al. (2014) reported a random effect-pooled estimate of 1.09 (1.04

- 1.14) for lung cancer incidence or mortality, which is smaller than the present

pooled estimate. After careful analysis, it appeared the difference in estimates

was driven by two factors. First, Hamra et al. (2014) used the risk estimate

from the American Cancer Society (ACS) national full cohort based on PM

exposure for the years 1979-1982. By contrast, the present analysis relied on

results based on the 1999-2000 exposure period, which included 42% more

study participants (see section 6.2.3). Unfortunately, Hamra et al. (2014) did

not justify their choice of exposure period. Sensitivity analysis using the risk

estimate based on the 1979-1982 period of PM exposure yielded a slightly lower

pooled estimate (1.11 - 95% CI: 1.06 - 1.17, see section 6.3.4), which is more

in line with Hamra et al. (2014)’s findings.

Second, Hamra et al. (2014) included a result from a cohort study in China

(Cao et al., 2011). This study was excluded from the pool of relevant studies

in the present analysis as it did not provide a risk estimate for particulate air

pollution exposure but only for total suspended particle (TSP). While Hamra

et al. (2014) had similar inclusion criteria and clearly stated that they excluded

studies which did not provide quantitative estimates for particulate matter,

they apparently made an exception for this study - without justification - and
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converted the risk estimate for TSP to a risk estimate of PM2.5 applying a 3:1

ratio. This led to an estimate of 1.07 (95% CI: 1.0 - 1.07). Due to a relatively

small standard error, the weight attributed to the Chinese study in Hamra

et al. (2014)’s meta-analysis was high (21%).

In order to assess the impact of these two factors on the pooled risk estimate

for lung cancer mortality or incidence, a third sensitivity scenario was run

by (i) using the risk estimate from the ACS national full cohort based on

PM exposure for the years 1979-1982 and (ii) adding results from Cao et al.

(2011)’s study. Results are presented in Figure 6.7. In this scenario, the pooled

estimate and its 95% CI exactly match with Hamra et al. (2014)’s findings.

Figure 6.7: Sensitivity-analysis for meta-analysis results for lung-cancer using Hamra et al.
(2014)’s study scope.
(Random effect model - hazard ratio per 10 µg/m3).
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6.5 Conclusion

A systematic review and two meta-analyses of the association between long-

term exposure to fine particulate matter (PM2.5) and respectively all-cause

mortality and lung cancer incidence or mortality were performed. These quan-

titative analyses update past work done by Chen et al. (2008), by including

all the relevant evidence published over the last seven years. These results

are important for public health practitioners and policy-makers who need to

assess air pollution control interventions based on all existing evidence.

Present results are consistent with two meta-analyses published after com-

pletion of this work: Hoek et al. (2013) and Hamra et al. (2014). For lung

cancer incidence or mortality, the difference between the presently obtained

pooled estimate and Hamra et al. (2014)’s results appears to be driven by two

unjustified choices made by the authors and does not put into question the

quality of the present work. Nevertheless, since Hamra et al. (2014) results

were published, they will be used to parameterise the model built in Chapter

4. By contrast, the presently obtained pooled estimate for all-cause mortality,

which closely matches with Hoek et al. (2013)’ estimate, but includes most

up to date evidence and excludes studies on elderly subjects, will be used to

parameterise the model of the health effects of pollution exposure.
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Chapter 7

QALY gain, health care

resources impact and

cost-effectiveness of air pollution

control in England and London

7.1 Introduction

Chapter 4 developed a Markov model of the health effects of air pollution

exposure, in order to fully capture air pollution’s joint effect on quality and

length of life as well as to assess the total health care budget impact of a

reduction in air pollution. The model required a number of parameters, a

subset of which were estimated in Chapters 5 and 6.

This chapter presents the results from the application of the developed

model to the UK case study detailed in Chapter 4. The intervention under-

pinning the case study, hereafter referred to as “the intervention”, consists of

an immediate and sustained 1µg/m3 decrease in population-weighted mean

PM2.5 concentrations in England and Wales and London. This is expected

to represent a decrease by respectively 9% and 7% in current average concen-
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trations. Section 2 provides the total expected health gain and health care

cost impact associated with the intervention, as well as the distribution of

outcomes by age and gender. Section 3 focuses on uncertainty surrounding

outcomes and also evaluates results’ sensitivity to the choice of discount rate

and to dynamics in risk reduction. Section 4 compares the developed Markov

model with the simple life-table approach currently used in health impact as-

sessment (HIA) and contrasts estimates of un-discounted life expectancy gain

with results from past HIAs. Based on case study results, section 5 evaluates

the cost-effectiveness of reducing air pollution in London, whether such an

intervention would be funded by the NHS or through general taxation.

7.2 Total mean health gain, health care cost impact and

associated monetary benefit

7.2.1 Mean outcomes across each target population

Reducing mean PM2.5 concentrations by 1µg/m3 is expected to generate

more than 60,000 QALYs in London and 540,000 QALYs in England and

Wales, among adult individuals currently aged 40 and above over their re-

maining lifetime, discounting at 3.5% p.a.

The total (i.e. net) health care resource impact of the intervention, which

corresponds to the health care costs from extending the lives of individuals

with a chronic cardio-respiratory condition, net of the health care savings

from a reduction in cases of CHD, COPD and lung cancer, is slightly cost

increasing. It accounts for respectively £24 million in London and £263 million

in England and Wales. It should be reminded that extending the lives of

“healthy” individuals (i.e. individuals without COPD, CHD or lung cancer)

is assumed not to generate any health care cost and that the intervention
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is not expected to impact upon the life expectancy of individuals with lung

cancer (see sections 4.4.3 and 4.5.5 of Chapter 4). Total QALY gain and health

care cost impact under deterministic analysis were slightly lower than under

probabilistic analysis by respectively 1.2% and 2.3%.

7.2.2 Total expected monetary benefit

Valuing QALY gain

As discussed in Chapter 2, the approach to monetizing health gain should

be determined by who will bear the cost of the intervention. If the inter-

vention of air pollution control is funded by the NHS, which has a fixed and

fully allocated budget, the money value of a QALY should represent the cost-

effectiveness of the services to be displaced by the investment (Claxton et al.,

2007). Whilst NICE officially uses a value of £20,000 to £30,000 to assess the

cost-effectiveness of health care technologies (NICE, 2013), recent efforts to

empirically estimate the shadow price of the NHS budget constraint suggest

£13,000 as best estimate (Claxton et al., 2013).

However, if air pollution control is expected to be funded by raising new tax

revenue, it will displace private consumption, as opposed to health care services

from the NHS. In this context, health gain should be monetized based on the

consumption value of a QALY (Ryen & Svensson, 2014). The Department of

Health in the UK recommends to use a willingness to pay (WTP) value of a

QALY of £60,000 in 2009 prices (Glover & Henderson, 2010). Additionally,

Ryen & Svensson (2014)’s recent global review of WTP values for a QALY

found a trimmed mean estimate of e 74,159 (2010 prices), with most estimates

coming from European and US studies. The authors, however, underlined

that estimates vary widely due to differences in methodology (i.e. revealed

vs. elicited method) and perspectives (societal vs. individual) but also, due

to non-proportionality in WTP with regards to the change in QALYs and non
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equivalent valuation of quality and length of life in practice.

Whilst the sensitivity of cost-effectiveness results to the money value of

health will be evaluated in section 7.5, the following values will be used to

monetize QALY impacts:

(i) From the “NHS perspective”, i.e. if the NHS were paying for the interven-

tion, the empirically-based value of £13,000 (Claxton et al., 2013) will be used

to monetize a QALY.

(ii) From the “private consumption perspective”, i.e. if the intervention were

funded by raising taxes, the value of £65,000/QALY will be used. This

value approximately corresponds to the two above cited values of £60,000

and e 74,159 (converted to GBP at the average exchange rate for 2010), when

inflated to 2013 prices.

Valuing health care resource impacts

Health care costs (savings) to the NHS can be expressed as QALY losses

(gains) using the estimate of the shadow price of the NHS budget constraint,

presently assumed to equal £13,000/QALY. From the private consumption

perspective, these “QALY equivalent” will be monetized using the consump-

tion value of a QALY (i.e. £65,000/QALY). This implies that NHS resources

are presently assumed to be worth five times (65/13) their amount of taxes.

The sum of QALY gain and QALY loss (gain) equivalent from health care

resource impacts will hereafter be referred to as net QALY gain. Net QALY

gain results will only be presented for the total target population, as allocating

the consequences of the intervention’s health care cost impact between age-

and gender-stratified population subgroups is outside the scope of the present

work.
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Expected monetary benefit

Table 7.1 provides outcomes summary results, for each target population

and from both payers’ perspectives. Based on an estimate of £13,00/QALY

as the shadow price of the NHS budget constraint, the QALY loss equiva-

lent resulting from net health care costs accounts for solely 2.8% and 3.7%

of the health benefits in respectively London and England and Wales. As

the consumption value of health is five times higher than the estimated NHS

expenditure required to deliver one QALY, and the net health care resource

impact is small, the total monetary benefit of the intervention to private pay-

ers is about five times higher than to the NHS. For London for instance, total

benefits are valued £4 billion from the private consumption perspective, as

opposed to £800 million from the NHS perspective.

Total gain (a)

London England & Wales

Target population size (b) 3,215,975 27,273,400

QALY gain 63,293 541,217

Net health care costs (c) £24 million £263 million

QALY loss equivalent (d) 1,825 20,219

Net QALY gain 61,467 520,998

Total monetary benefit
NHS perspective (d)

£799 million £6,773 million

Total monetary benefit
Private consumption perspective (e)

£3,995 million £33,865 million

Table 7.1: Total net QALY gain and associated monetary benefit of reducing ambient PM2.5

concentrations by 1µg/m3.

(a) 60-year time horizon, applying a discount rate of 3.5 % p.a.
(b) Currently alive adults aged 40 to 90 years old.
(c) Health care costs associated with extending the lives of individuals with a chronic cardio-respiratory
condition net of savings from reduced cases of CHD, COPD and lung cancer.
(d) Using a value of £13,000/QALY as shadow price of the NHS’ budget constraint.
(e) Using a value of £65,000/QALY as consumption value of a QALY.
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7.2.3 Impact distribution by age and gender

At individual level

Figure 7.1a depicts the expected quality-adjusted life day (QALD) gain

associated with the intervention, for each age and gender-stratified individual

of the target population over his/her remaining lifetime. Whilst health gain is

cumulative over a lifetime, the main beneficiaries of the intervention are not

the youngest individuals but those aged around 65 years old. This result is

mainly a consequence of discounting since, as the risk of experiencing adverse

health events increases with age, young individuals are expected to benefit

from the intervention much later in the future than older individuals. The

sensitivity of the age-distribution of health gain to the choice of discounting

rate will be investigated in section 7.3.2.

Figure 7.1a also shows the presence of a substantial gender-gap in health

gain, in particular among young age groups, with the average QALD gain

enjoyed by 40-year old men being nearly a third (28%) higher than the gain

accruing to their female counterparts. This gap reflects gender-differences in

baseline risks of adverse health events, whereby men aged between 40 to 70

in the UK are on average twice more likely to develop CHD and 60% more

likely to die from all causes than women. By having a greater baseline risk of

adverse health events than their female counterparts, young men are expected

to benefit more - in absolute terms - than young women from a given decrease in

risk. Whilst gender-differences in health risks do persist at older ages, there are

smaller. Additionally, gender-differences in baseline health risks have another

smaller opposite effect: by enjoying a greater life expectancy than men, women

are expected to enjoy the intervention’s benefit for a slightly longer time period

than men. Consequently, in old age-groups, the gender-gap in health gain

becomes relatively small.

Figure 7.1b represents the expected health care cost impact per individual

(gender average) from a reduction in both morbidity and premature mortality
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associated with the intervention. It shows that for individuals aged 53 and

above, on average, the health care savings from reducing their lifetime risk of

developing COPD, CHD and lung cancer are more than compensated by the

health care costs associated with extending the lives of those with a chronic

cardiac or respiratory condition.

As will be discussed in section 7.4.2, this finding reflects the expectation,

based on current evidence (see section 4.4.3 of Chapter 4), that individuals with

COPD or CHD - once they reach a given age and/or disease severity level -

are more susceptible to air pollution exposure (i.e. suffer disproportionately)

than individuals of the general population. Consequently, under pollution

decrement, these individuals who are costly to the health care system, are

expected to enjoy a greater lifespan extension (as a proportion of their baseline

life expectancy) than “healthy” individuals.

At population level

Figure 7.2 and Figure 7.3 represent the age- and gender-specific distribu-

tions of respectively the expected QALY gain and the total net health care

cost impact of the intervention for each target population.
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Figure 7.1: Intervention’s average quality-adjusted life day gain (A) and health care cost
impact (B) per person, stratified by age and gender.
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(a) London

(b) England and Wales

Figure 7.2: Distribution of QALY gain by age and gender.
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(a) London

(b) England and Wales

Figure 7.3: Distribution of total net health care cost impact by age and gender.
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7.3 Uncertainty analysis

7.3.1 Outcomes distributions

Handling uncertainty in non statistically significant risk estimates

As was indicated in Table 4.1 in Chapter 4, out of the seven risk estimates

used to parameterise the “intervention-effect”, three are not statistically signif-

icant at 5% significance level since they include the value of 1, i.e. “no effect”,

in their 95% confidence interval. These three risk estimates are : ORDev.COPD;

HRDev.CHD and HRDeathOAC|H , which were used to derive respectively RREa,

RREb and RREg.

When carrying out Monte Carlo simulations, a random draw of a risk es-

timate value below 1, implies that air pollution reduction will increase the

risk of adverse event. There is, however, general consensus that air pollution

has deleterious effects on health and that reducing it cannot harm population

health (Holland, 2014). On these grounds, recently released European guide-

lines for uncertainty analysis in HIA of interventions of air pollution reduction

(HRAPIE group) recommend to adopt: “a range of +/-100% with a uniform

distribution” for non statistically significant risk estimates (Holland, 2014) (pp

42).

The guidelines have the advantage of getting rid of the improbable possibil-

ity that reducing air pollution may damage public health. However, they are

underpinned by the assumption that the mean effect size is true and that the

variance was wrongly estimated, whilst no evidence supports this. Therefore,

as will be further discussed in section 7.5, they potentially misleadingly re-

duce decision uncertainty. An alternative approach was therefore considered.

It consists in truncating only the left-tail of the original distributions of non

statistically significant risk estimates by assigning a value of 1 to randomly

drawn values below 1. Truncating only the left-tail of risk estimates’ distribu-
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tions, as opposed to truncating both tails as recommended by the guidelines,

will to some extent shift risk estimates mean values and the mean of outcome

measures to the right. On the other hand, this approach has the advantage of

capturing all the information concerning the possible non implausible values

that risk estimates can take.

Another alternative may be to simply get rid of all three non statistically

significant risk estimates. However, the lack of statistical significance does not

necessarily equate with true absence of effects and solely means that we failed

to demonstrate effect for a given - arbitrary - significance level. In light of

the overall body of evidence of positive association between air pollution and

adverse effects on the cardio-respiratory system described in Chapters 2 and

4, ignoring existing evidence based on arbitrary rules of inference (Claxton,

1999) does not appear appropriate.

Table 7.2 summarises the three modelling approaches used to handle uncer-

tainty in the three non statistically significant risk estimates. It should be un-

derlined that A1 (no truncation) is the base case approach to computing mean

estimates. Figure 7.4 compares the distributions of the three risk estimates

obtained under each approach. As the magnitude of risk estimates is relatively

small, for ease of comparison, results are provided for 4PM2.5 = +10µg/m3,

i.e. before rescaling as RRE for 4PM2.5 = −1µg/m3.

Since A2 (guidelines) consists in truncating both tails of the original distri-

butions of non statistically significant risk estimates, the distributions obtained

under A2 remain centred around original mean values, but have a much smaller

standard deviation. Under A3, truncating the left-tail of the original distribu-

tions of HRDev.CHD and HRDeathOAC|H only slightly shifted their mean value.

By contrast, as the left-tail of the original distribution of ORDev.COPD reached

quite below 1, the mean of the obtained distribution for this risk estimate

noticeably shifted from 1.12 to 1.24.

Figure 7.4 clearly shows that by assigning a value of 1 to any draws of values

below 1, as opposed to imposing 1 and “mean effect + 100%” as respectively

the minimum and maximum values that risk estimates can take, A3 allows

for a much larger possibility of no intervention effect than A2 with regards to
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health events “Dev. COPD”, “Dev. CHD” and “Death from AOC”1.

1AOC stands for All Other Causes than COPD, CHD and lung cancer.
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Modelling
approach

Description

A1 (a) Fit a log-normal distribution around original mean and standard error.

Also referred to as: “No truncation”. It is the base case approach used for
computing mean results.

A2 Fit a uniform distribution to a range of values bounded by mean +/-100%.

Also referred to as: “Guidelines”.

A3
Fit a log-normal distribution around original mean and standard error but
assign the value of 1 to random draws of values below 1.

Also referred to as: “Left-tail truncation”.

Table 7.2: Modelling approaches used to assess uncertainty in non statistically significant
risk estimates.
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Obtained distributions of outcomes

Figure 7.5 represents for each target population the distribution of net

QALY gain obtained from Monte Carlo simulations, under each approach to

handling uncertainty in non statistically significant risk estimates as defined

in Table 7.2. As expected, the distribution of net QALY gain is the widest

under A1 and the narrowest under A2.

Under A1, since the original distributions of non statistically significant risk

estimates were left unmodified, the distribution of net QALY gain has a tail

of negative values, which suggests that there is a non-negligible probability

(about 10%) that reducing particulate air pollution could harm health.

As expected, mean outcomes under A2 and A1 are equal. By contrast, mean

net QALY gain under A3 is about 25% greater (27.2% for London; 26.5% for

England and Wales) than under A1 or A2. It is worth noting that about a

quarter of the difference in net QALY gain between A3 and A1 or A2 is due

to health care cost impacts. Indeed, under A3, on average the intervention

is associated with net health care savings (£33 million for London and £195

million for England and Wales), as opposed to net health care costs under A1

or A2 (£24 million for London and £263 million for England and Wales). This

reflects the fact that under A3, the intervention’s capacity to reduce COPD

incidence and thus, to reduce the health care cost burden of the disease, is

expected to be stronger than under A1 or A2 (see Figure 7.4).
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Figure 7.5: Distribution of net QALY gain by modelling approach.

A1: No truncation; A2: Guidelines; A3: Left-tail truncation.
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7.3.2 Sensitivity analyses - cessation lag and discount rate

Table 7.3 and Table 7.4 report results of the analysis of the sensitivity

of mean outcomes to dynamics in risk reduction, known as cessation lag, and

discounting. Sensitivity scenarios were described in Table 4.4. of Chapter 4 and

are briefly restated below. Mean estimates were obtained based on approach

A1 (no truncation). Results are expressed in percentage change against base

case results using net QALY gain as summary metric. The small difference in

results between the two target populations essentially reflects their different

age and gender structures, as previously underlined by Figures 7.2 and 7.3.

Cessation lag

The two scenarios pertaining to the dynamics of risk reduction assessed the

effect of respectively:

(i) no cessation lag (No CL), where the decrease in risk of all adverse health

events under intervention applies fully from time 0;

(ii) a mixed lag (Mixed CL), resulting from a mixture of the US EPA’s 20-year

distributed cessation lag with a lag specific to lung cancer, for which in light

of evidence on smoking cessation, the decrease in risk is expected to be take

place gradually over 40 years;

These two scenarios were assessed against the base case scenario which applies

the US EPA’s 20-year distributed lag to the reduction in all risks of adverse

health events.

In order to assess the influence of the cessation lag independently from

the discounting effect, differences in un-discounted life years gains were also

reported in Table 7.3. Net QALY gain in the “No CL” scenario is 16% larger

than in the base case scenario. By contrast, the difference in outcome between

the base case and the “Mixed CL” scenario is small (3% difference), owing to

the low baseline risk of developing lung cancer, relative to developing COPD

or CHD. As expected, discounting amplifies results’ sensitivity to the structure
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of the cessation lag, whereby for each scenario comparison, the difference in

net QALY gain is greater than the difference in un-discounted life year gain.

Figure 7.6 shows the impact of the cessation lag structure on the average

QALD gain per person (gender-average) for each age group. The shorter the

remaining life expectancy of individuals, the more their health gain is impacted

by the cessation lag structure. Indeed, in the absence of a cessation lag, the

average QALD gain of a 40-year old person would be 10% greater than in the

base case scenario, whereas the average QALD gain of a 70- and a 80-year old

person would be respectively 30% and 50% higher.

The comparison of QALD gain between the base case and “Mixed CL”

scenarios provides a more subtle picture. Whilst the difference in health gain

between the two scenarios initially grows with age, it slowly decreases as from

age 70 since after this age, the risks of other adverse events are increasingly

more prominent than the risk of lung cancer incidence. In other words, dy-

namics in lung cancer risk reduction have progressively less influence on the

overall health gain among older age groups.

Scenarios

No cessation lag
“Mixed”
cessation lag

London

Net QALY gain + 15.9 % - 3.1%

LY gain + 9.0% - 2.3%

England Net QALY gain + 17.3 % - 3.2%

and Wales LY gain + 10.2% - 2.3%

Table 7.3: Sensitivity of results to cessation lag
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Figure 7.6: Impact of cessation lag structure on QALD gain per person

Discount rate

Two alternative scenarios of discounting based on recommendations from

the UK treasury (Lowe, 2008) were used as an alternative to the base scenario,

which applies a 3.5% discount rate p.a. In the “Staged discounting 1” scenario,

a discount rate of 3.5% p.a. was applied in the first 30 years and a lower rate

of 3% p.a. was applied from year 31 to 60. In the “Staged discounting 2”

scenario, which excludes the element of pure social time preference, a discount

rate of 3 % p.a. was applied in the first 30 years and a rate of 2.57% p.a. was

applied from year 31 to 60.

Decreasing the discount rate to 3% p.a. after the first 30 years would lead

to an increase in total net QALY gain by about 7%, whereas decreasing the

discount rate as from year 1 in “Staged discounting 2” would boost net QALY

gain by about 20%. Results for London are slightly more sensitive to the choice

of discount rate than results for England and Wales as the London population

is slightly younger.

Figure 7.7 shows the impact of the choice of discounting structure on the
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average QALD gain per person for each age group. The younger individuals

are clearly the greatest beneficiaries of a lower rate of discounting. In the

“Staged discounting 2” scenario for instance, individuals aged 40 would gain

35% more QALD than in the base case scenario, whereas individuals aged 60

would only benefit from 15% more health gain. Since the “Staged discounting

1” scenario consists in decreasing the discount rate after 30 years only, it would

impact solely upon the health gain accruing to adults currently aged below 65.

Scenarios

Staged discount-
ing 1

Staged discount-
ing 2

London Net QALY gain + 6.9 % + 19.8%

England and
Wales

Net QALY gain + 6.1% + 18.3%

Table 7.4: Sensitivity of results to the choice of discount rate.
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Figure 7.7: Impact of discounting structure on QALD gain per person
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7.4 Comparative analysis

7.4.1 Comparison of methods: life-table vs. Markov modelling

As mentioned in Chapter 4 section 4.1, an alternative methodology used in

past QALY analyses of air pollution control interventions consists in applying

quality of life adjustments to life years gains computed using life-tables. In

addition to the issue pertaining to the correct choice of HRQoL weights, it

was argued that this approach would underestimate interventions’ total QALY

gain by failing to capture the quality of life gain associated with a reduction

in chronic morbidity.

It was also argued that, by ignoring health-related differential susceptibility

to air pollution exposure which drives the distribution of impacts among pop-

ulation subgroups stratified by health status, such a simplistic approach would

not support an accurate estimation of QALY gains. On these grounds, it is of

particular interest to compare the present QALY results, with estimates that

would be obtained using the life-table approach.

The life-table method was described in Chapter 3. It consists in comparing

survival curves, calculated from annual probabilities of death cumulated over

time, under a pollution change as opposed to “business as usual”. The area

between the two curves represents the average life expectancy impact associ-

ated with air pollution decrement (increment). Since it focuses only on life

expectancy effects, the life-table can be represented as a Markov model with

two health states: “Healthy” and “Dead”.

In order to compare the Markov model developed in Chapter 4 and the life-

table approach, a 2-state model was constructed and parameterised with: (i)

the age and gender-specific probabilities of death from all causes in the general

population of England and Wales (ONS, 2011) and (ii) the risk estimates from

all cause mortality estimated in Chapter 6 (i.e. RREd of Table 4.1). Life-table

analysis based on this 2-state model was applied to the exact same case study

presented in Chapter 4 (i.e. 1µg/m3 decrement in PM2.5 concentrations; US
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EPA cessation lag, 3.5% discount rate), using London as a target population.

Life years gain were then multiplied with age and gender-specific HRQoL

weights for England provided by Kind et al. (1999). It should be underlined

that these weights were elicited from a representative sample who considered

themselves to be healthy. Applying those weights to life years gains computed

from life-table analysis will therefore lead to a greater gain than would be

obtained by using weights for the general population of England, in line with

the underlying prevalence of chronic illnesses.

Since the life-table approach does not take into account health-related dif-

ferential susceptibility, the comparison of QALY estimates generated by this

method against the presently developed Markov model was based on two sce-

narios: (i) base case and (ii) a scenario that ignores health-related differential

susceptibility, hereafter referred to as “No Diff. Susc.” scenario. In addition,

as the life-table method cannot link costs to health outcomes except death,

health care cost impacts were not considered in the present comparison.

The difference in mean QALY estimates for London (modelling approach

A1) between the two methods is presented in Table 7.5 for each scenario.

Markov modelling (MM)
Life-table

Difference

Base case
No Diff.
Susc.

(LT)
LT vs. MM
(Base case)

LT vs. MM
(No Diff.
Susc.)

QALY gain
(London)

63,293 41,457 38,463 -39% -6 %

Table 7.5: Markov modelling vs. life-table approach.

Under the scenario of no differential susceptibility, the two methods pro-

vide relatively similar results. Nevertheless, in line with expectations, even

by applying HRQoL weights that overestimate the true level of quality of life

of the general population (since based on healthy subjects), the QALY gain

estimated by the life-table approach is 6% lower than the one estimated by

the present Markov model. This stems from the fact that, as argued in Chap-

ter 4, the life-table approach does not encompass the quality of life gain from
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reduced morbidity.

The principal finding however, is that health-related differential susceptibil-

ity to air pollution drives the difference in outcomes between the two methods.

When encompassing health-related differential susceptibility (i.e. base case

scenario), the total QALY for London obtained from the presently developed

Markov model is 39% higher than the QALY obtained from life-table analysis.

It may be argued that the present model overestimates effects accruing to

those who do not belong to susceptible population subgroups. This, however,

appears to be unlikely. Indeed, the model is structured such that alive indi-

viduals may have either of the following four health status: (i) with CHD; (ii)

with COPD; (iii) with lung cancer; (iv) healthy, i.e. without any of the three

diseases. In light of the age and disease severity conditions that characterised

the subjects in epidemiological studies informing differential susceptibility, the

only population subgroups expected to suffer disproportionally from particu-

late air pollution (PM) exposure are: (i) individuals with CHD above 75 years

old and (ii) individuals with COPD in stages 3 or 4 aged above 65 years old

(see Chapter 4). This leaves: (i) individuals with CHD aged below 75; (ii)

individuals with COPD in stage 1 or 2 (all ages) or in stages 3 and 4 aged

below 65; (iii) individuals with lung cancer and (iv) “healthy” individuals, as

remaining population subgroups. The first two of these subgroups are conser-

vatively assumed to have the same susceptibility to air pollution as the general

population. For the reasons explained in Chapter 4, no PM-related excess risk

of death was applied to individuals with lung cancer.

Finally, the PM-related excess risk of mortality that was applied to “healthy”

individuals pertains only to causes of death excluding cardio-respiratory and

lung cancer causes. To check for the possibility of effects over-estimation in

individuals of the general population, a sensitivity scenario where “healthy”

individuals were assumed not to suffer from any excess mortality risk due to

PM exposure (i.e. HRDeathAOC|H = 1) was evaluated. This scenario was found

to be associated with a small 4% decrease in net QALY gain, which confirms

that the excess risk of mortality in “healthy” individuals does not drive the

health gains associated with the intervention. It can therefore be concluded

that it is unlikely that the present model overestimates effects.
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Comparative analysis therefore shows that, ignoring the current body of

epidemiological evidence on health-related differential susceptibility to air pol-

lution (Zanobetti et al., 2008; Zanobetti & Schwartz, 2007; Tonne & Wilkin-

son, 2013), as is currently done when using the life-table approach, is expected

to substantially underestimate the total health gain of air pollution control.

Importantly, as will be further discussed in section 7.4.3, this finding is not

relevant only for QALY analysis but also for life expectancy impact analysis

as is traditionally performed in HIA.

Since air pollution not only affects people differently according to their

health status, but also impacts upon the risk on entering health-related sus-

ceptible subgroups, the only possible approach to fully handling health-related

differential susceptibility is via “simultaneous modelling” of impacts as advo-

cated in Chapter 3. This finding therefore further demonstrates the inadequacy

of the “separate” approach to quantification currently used in HIA.

7.4.2 Impact of CHD vs. COPD-related differential susceptibility

In order to identify which of CHD or COPD-related greatly susceptibility to

air pollution exposure drives the QALY gain and health care cost impacts of air

pollution reduction, the scenarios of no CHD-related greater susceptibility and

no COPD-related greater susceptibility were evaluated for London. Results are

presented in Table 7.6, alongside results for the base case and the “No Diff.

Susc.” scenarios.

Table 7.6 shows that CHD- and COPD-related greater pre-disposition to

die prematurely due to PM exposure account for respectively 16% and 19% of

the total QALY gain associated with the intervention in the base case scenario.

It is worth noting that, by driving the distribution of life expectancy gain by

population subgroups stratified by health status and thus, by level of cost to the

health care system, health-related differential susceptibility also substantially

influences the total health care cost impact of the intervention. In particular,
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ignoring COPD-related differential susceptibility would lead to a net health

care saving of £44 million, as opposed to a net health care cost of £24 million

in the base case scenario. If both CHD and COPD-related susceptibility were

ignored, the intervention would be expected to yield a net saving to the NHS

of £55 million.

Therefore, the reduction in QALY gain in the “No Diff. Susc.” scenario (-

34%) is partly compensated by health care resource savings. Overall, health-

related differential susceptibility contributes to a quarter (26%) of the net

QALY gain associated with the intervention in the base case scenario.

Base
case

No
CHD-
related
Susc.

% diff.

No
COPD
related
Susc.

% diff.
No Diff.
Susc

% diff.
(a)

QALY gain 63,293 53,180 -16% 50,856 -19% 41,457 -34%

Total HC cost
impact (in £m)

24 11 -53% -44 - 284% -55 -329%

Net QALY gain 61,467 52,326 -15% 54,211 -12% 45,637 -26%

(a) Percentages do not exactly sum up do your rounding.

Table 7.6: Results’ sensitivity to CHD- and COPD-related differential susceptibility.

7.4.3 Comparison with empirical estimates from past HIAs

Since this work represents the first attempt to measure the QALY impact of

air pollution reduction in a UK setting, there are no relevant comparator from

the empirical literature. By contrast, estimates of un-discounted life year (LY)

gain are amenable to comparison with results from past HIAs of interventions

of air pollution control. This metric as the advantage of being independent

of any assumptions regarding the application of HRQoL weights and of the

choice of discount rate.

The un-discounted life expectancy impact of reducing PM2.5 concentrations

in London was investigated as part of the European-funded Aphekom Project
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(Pascal et al., 2013), as well as in a study commissioned by the Greater Lon-

don Authority and carried out by Miller (2010). Evaluation of the effects of

particulate air pollution on mortality in England and Wales was performed

by the Health Protection Agency and communicated under the Committee

on the Medical Effects of Air Pollutants report (COMEAP, 2010). All three

studies relied on the life-table methodology and used the same risk estimate of

all-cause mortality (HRAC = 1.06 for 4PM2.5 = 10µg/m3 estimated by Pope

III et al. (2002)).

As exemplified by the above cited-studies, there are at least three main ways

of expressing life expectancy impacts in a given target population. “Total LY

gain” depends on the size of the target population and the duration of its

follow-up and therefore, is not adequate for comparing results between studies

based on different target populations or follow-up duration, as is presently the

case. The “average life expectancy gain per person of a target population” has

the main advantage of being independent of the target population size and is

typically computed over a person’s a lifetime. This metric will however, be

influenced by the age structure of the target population whereby the younger

the target population is, the greater the average LY gain per person will be.

Finally, “life expectancy at birth or at a given age” has the advantage of

being independent from both the size and the age-distribution of the target

population.

Table 7.7 compares the mean estimates of life expectancy impacts provided

by the presently developed Markov model (modelling approach A1) with re-

sults from past HIAs using: (i) average life expectancy gain per person of the

target population and (ii) life expectancy at 30 or 40 as metrics. Since all three

HIAs relied on the life-table method, they all ignored health-related differential

susceptibility. Consequently, similarly to section 7.4.1, comparison was based

on the base case and the “No Diff. Susc.” scenarios. When necessary, results

were converted to a 1µg/m3 decrement in PM2.5 concentrations and results’

sensitivity to the use of a cessation lag was taken into account.

This comparative analysis is mainly illustrative since the scope of target

population between the HIAs and the present study is not exactly similar.
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For instance Miller (2010) applied PM-related excess risk of mortality to all

currently alive individuals, i.e. aged 1 to 100 years old, whereas as justified

in Chapter 4, the present analysis focused on adults aged 40 to 90. The

primary objective of this comparative analysis is therefore essentially to assess

whether the direction and magnitude of the difference in results are in line

with expectations. For instance, in light of the above discussion on the impact

of the target population age structure on average gain estimates, the present

results are expected to be lower than the ones from Miller (2010). Similarly,

in the absence of discounting, present estimates of life expectancy gain at age

40 are expected to be slightly lower than estimates of life expectancy gain at

age 30 provided by COMEAP (2010) and Pascal et al. (2013).

Un-discounted life day gain/person for 4PM2.5 = −1µg/m3

Lag
(a)

Past HIA results
Present results
(Base case)

Diff.
Present results
(“No Diff Susc”)

Diff.

Yes
20 (age 30) 32.2 (age 40) 61% 22 (age 40) 10%

Young COMEAP (2010)
(b)

Adults
No

24.2 (age 30) 33.1 (age 40) 37% 22.8 (age 40) -6%

Pascal et al.
(2013) (c)

Average
Yes

19.3 (age 1-100) 25.8 (age 40-90) 33% 16.2 (age 40-90) -16%
London
popula-
tion

Miller (2010) (d)

Table 7.7: Comparison of un-discounted life year gain estimates with results from past HIA
studies.

(a) US EPA 20-year distributed cessation lag (US EPA, 2010).
(b) Whilst results were reported as life expectancy at birth for the 2008 birth cohort, risk estimates of
mortality were only applied as from age 30.
(c) Reported results were 2.5 months gain /person aged 30 for 4PM2.5 = −3.1µg/m3.
(d) Reported results were 405,659 life years gain for a target population composed of all currently alive
individuals in London in 2008 (7,673,217 persons).

Table 7.7 provides two main findings. First, under the “No Diff. Susc.” sce-

nario, the difference between present estimates and results from Miller (2010)

and Pascal et al. (2013) is in line with expectations, when one takes into ac-

count age differences in target population (present estimates are respectively

210



16% and 6% lower). Against expectations, presents results are higher than

those provided by COMEAP (2010). The latter are, however, substantially

lower (by 17%) than results from Pascal et al. (2013). Whilst these two stud-

ies differ in their application of a cessation lag, sensitivity analysis results

reported in section 7.3.2 showed that the cessation lag has a relatively small

impact on the health gain accruing to young individuals.

Second, base case results, which encompass health-related differential sus-

ceptibility are well above estimates from past HIAs. The difference between

base case results and results from Pascal et al. (2013) and Miller (2010) is of

similar magnitude than the difference found by comparing the life-table method

and Markov modelling when using the QALY as health metric (see section

7.4.1). This finding further underlines that, even for life expectancy analy-

sis, ignoring health-related differential susceptibility by reling on the “sepa-

rate” approach to quantification, is expected to substantially underestimate

the health gain from air pollution control.

7.5 Cost-effectiveness analysis of air pollution abate-

ment in London

7.5.1 Preliminaries

Based on the modelled estimates of net QALY gain associated with a 1

µg decrement in PM2.5 concentrations, this section aims to assess the cost-

effectiveness of investments aimed at curbing fine particulate air pollution in

London.

Section 7.3 underlined a number of sources of uncertainty surrounding the

expected benefits of reducing air pollution. A major source of uncertainty
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is uncertainty around parameter point estimates. Since it is highly improba-

ble that air pollution reduction would harm health, cost-effectiveness analysis

will be performed using the three different approaches to handling parame-

ter uncertainty in the three non statistically significant risk estimates used in

the model (ORDev.COPD, HRDev.CHD and HRDeathOAC|H), described in Table

7.2 of section 7.3.1. Briefly, A1= no truncation of original distributions of risk

estimates; A2= guidelines (both tails truncation) and A3= left-tail truncation.

Secondly, the various possible views of the speed at which the risks of ad-

verse events may decrease following pollution decrement, i.e. shape of cessation

lag, represents a source of structural uncertainty. If the range and likelihood

of possible scenarios of the cessation lag were known, cost-effectiveness eval-

uation could be performed by taking the expectations of net benefit across

the joint-distribution of uncertain parameters and the likelihood of all possible

scenarios of cessation lag (Claxton et al., 2012). However, the scenarios of

cessation lag evaluated in section 7.3.2 were mainly illustrative, as the range

and likelihood of possible lag scenarios remain largely uncertain. As a result,

the present cost-effectiveness analysis will rely on the 20-year distributed lag

(US EPA 2010) that was used in the base case scenario.

Whilst results are also sensitive to the choice of discount rate, this parameter

does not qualify as a source of uncertainty but instead, as a choice that needs

to be made by the decision-maker. The present cost-effectiveness analysis will

rely on a 3.5% discount rate as used in the base case scenario.

In addition, results were found to be strongly influenced by health-related

differential susceptibility to air pollution, whereby ignoring it would lead to

a reduction in net QALY gain by one fourth (see section 7.4.2). Since the

ability to capture health-related differential susceptibility is a key difference

between the Markov-modelling based simultaneous approach to quantification

advocated throughout this thesis and the “separate” approach currently used

in HIA, cost-effective analysis will be evaluated for both the base case and the

“No Diff. Susc.” scenarios. The objective is to assess whether consideration

of health-related differential susceptibility may impact investment decisions in

air pollution control.
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Cost-effectiveness evaluation will be carried out from the two payers per-

spectives set out in section 7.2.2: (i) the NHS perspective, where the invest-

ment is assumed to fall on the NHS budget constraint and (ii) the private

consumption (PC) perspective, where the investment is assumed to be funded

by general taxation.

From the PC perspective, health care cost impacts are converted into QALY

gain (loss) equivalent based on a fixed value of £13,00/QALY that is estimated

to represent the NHS expenditure required to deliver one QALY (see section

7.2.2). By contrast, from the NHS perspective, health care costs impacts are

converted to QALY equivalent based on the same rate at which QALY gains

are monetized. The difference in the computation of the net monetary benefit

(NMB) of intervention between the two perspectives is shown by equations 7.1

and 7.2 .

NMBNHS = (QALY gain ∗ k −HCcosts)− I (7.1)

NMBPC = (QALY gain− HCcosts

13, 000
) ∗ v − I (7.2)

where I stands for investment cost, k represents the value of health to the

NHS and v represents the consumption value of health. When v = k = 13, 000

both approaches are identical.

In line with the case study, cost-effectiveness will be evaluated for an in-

tervention associated with an immediate and sustained 1µg/m3 decrement in

population-weighted mean ambient PM2.5 concentrations in London, which

would represent a 7% decrease in current concentrations.

In order to assess the sensitivity of the cost-effectiveness performance of

such an intervention to the size of investment required, three investment costs

will be assessed: £100 million, £500 million and £1 billion. Investments are

expected to be financed today as a lump-sum payment. Whilst these costs are

hypothetical, they seem plausible when compared to government estimates for

interventions aiming at reducing air pollution, though £1 billion is expected to

be an upper estimate. For example, the UK Department of Transport recently
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pledged to commit a minimum of £200 million to support the early market

for ultra low emission vehicles, in order to help achieve London’s ultra low

emission zone (Department for Transport, 2014).

It should be underlined that, as mentioned in Chapter 4, benefits are ex-

pected to scale linearly to further reduction in concentrations. Therefore,

assuming an absence of economy or diseconomy of scale associated with a de-

crease in emissions, if the intervention costing £1 billion were to reduce PM2.5

concentrations twofold with respect to the intervention costing £500 million,

it would have the same probability of being cost-effective.

For each investment size, cost-effectiveness evaluation will be structured

around the following questions:

(i) “Is the intervention likely to be cost-effective?”;

(ii) “When is the investment expected to break-even?”;

(iii) “Is it recommended to wait for more information before going ahead?”.

7.5.2 Is the intervention likely to be cost-effective?

Cost-effectiveness probabilities and CEAC

For each each random draw from the set of distributions fitted to uncertain

parameters, hereafter denoted by the letter θ, the probability that each invest-

ment is cost-effective (i.e. NMB ≥ 0) can be computed for a specific money

value of a QALY. Expected cost-effectiveness probabilities for a given value of

v or k are then found by averaging probabilities across the joint distribution

of uncertain parameters (θ) and can be represented via a cost-effectiveness

acceptability curve (CEAC) (Barton et al., 2008).

Although the values of k = £13, 000/QALY and v = £65, 000/QALY

underpin the present cost-effectiveness analysis, it is of interest to assess the
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sensitivity of cost-effectiveness results to the money value of health. Indeed, the

WTP values for a QALY were found to vary greatly (Ryen & Svensson, 2014).

In addition, whilst the shadow price of the NHS budget constraint has been

estimated at £13,000/QALY (Claxton et al., 2013), NICE suggests a threshold

value comprised between £20,000 and £30,000/QALY for cost-effectiveness

assessment of health care technologies (NICE, 2013) and was found empirically,

to use a threshold value around £40,000/QALY (Dakin et al., 2013).

Figures 7.8 and 7.9 depict CEACs according to each approach to handling

parameter uncertainty in non statistically-significant risk estimates (A1 to A3)

from respectively the NHS and the PC perspective. CEACs pertaining to

the “No Diff. Susc.” scenario are presented in Figures 7.10 and 7.11. In

addition, Table 7.8 and Table 7.9 provide: (i) the expected NMB of investment

and (ii) the probability that the investment is cost-effective PINV (CE) for

k = £13, 000/QALY and v = £65, 000/QALY for respectively the base case

and the “No Diff. Susc.” scenario.
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(a) A1 “No truncation”
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(c) A3 “Left-tail truncation”

Figure 7.8: Probabilities that the intervention is cost-effective - Base case scenario - NHS
perspective.
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(c) A3 “Left-tail truncation”

Figure 7.9: Probabilities that the intervention is cost-effective - Base case scenario - PC
perspective.
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k = £13, 000/QALY v = £65, 000/QALY

£100 m £500 m £1 bn £100 m £500 m £1 bn

A1
Eθ(NMB) (in £m) 699 299 -201 3,895 3,495 2,995

PINV (CE) 0.81 0.64 0.37 0.84 0.81 0.77

A2
Eθ(NMB) (in £m) 696 296 -204 3,881 3,481 2,981

PINV (CE) 1 0.94 0.05 1 1 1

A3
Eθ(NMB) (in £m) 916 516 16 4,981 4,581 4,081

PINV (CE) 1 0.87 0.38 1 1 1

Table 7.8: Cost-effectiveness probabilities and expected net monetary benefit - Base case
scenario.

A1= No truncation; A2= Guidelines; A3= Left-tail truncation.

k = £13, 000/QALY v = £65, 000/QALY

£100 m £500 m £1 bn £100 m £500 m £1 bn

A1
Eθ(NMB) (in £m) 493 93 -407 2,866 2,466 1,966

PINV (CE) 0.73 0.52 0.23 0.76 0.73 0.68

A2
Eθ(NMB) (in £m) 485 85 -414 2,827 2,427 1,927

PINV (CE) 1 0.60 0 1 1 1

A3
Eθ(NMB) (in £m) 697 297 -203 3,886 3,486 2,986

PINV (CE) 1 0.56 0.27 1 1 0.98

Table 7.9: Cost-effectiveness probabilities and expected net monetary benefit - No Diff.
Susc. scenario.

A1= No truncation; A2= Guidelines; A3= Left-tail truncation.
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Figure 7.10: Probabilities that the intervention is cost-effective - No Diff. Susc. scenario -
NHS perspective.
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Figure 7.11: Probabilities that the intervention is cost-effective - No Diff. Susc. scenario -
PC perspective.
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Comparison of CEACs depicted in Figures 7.9 to 7.11 and of cost-effectiveness

probabilities presented in Tables 7.8 and 7.9 provides three main insights.

Impact of modelling approach to parameter uncertainty (A1 to A3) on cost-

effectiveness probabilities

Since under A1, the first decile of the distribution of net QALY gain is

composed of negative values (see Figure 7.5), even when the value of health

becomes very large, cost-effectiveness probabilities never reach the value of 1

and instead, have an asymptote around the value of 0.9. By contrast, since

A2 and A3 reject the possibility that air pollution reduction may harm health,

under both these approaches, the intervention only yields a positive net QALY

gain and CEACs have an asymptote to 1.

By truncating both tails of the original distributions of non statistically

significant risk estimates, approach A2 strongly reduces decision uncertainty,

which translates in very steep CEACs. Indeed, for values of health below

the value λ at which the investment (I) is expected to break-even (see equa-

tion 7.3), cost-effectiveness probabilities are near zero, thus implying that the

probability of error associated with rejecting the investment is negligible. By

contrast, as the value of health becomes greater than λ, cost-effectiveness prob-

abilities quickly reach 1 (i.e. null probability of decision error).

λ =
I

Eθ(MB)
where MB stands for monetary benefit. (7.3)

As was shown in Figure 7.4, A3 allows for a greater probability of no

intervention-effect than A2, with regards to the health events “Dev. COPD”,

“Dev. CHD” and “Death from AOC”. As a result, cost-effectiveness prob-

abilities increase more progressively under A3 than under A2. This explains

why, from the NHS perspective with k = 13, 000/QALY , the guidelines (A2)

suggest a lower probability of error if approving the £500 million investment

(6%), than if one were solely to ignore non plausible risk estimate values (13%,

see Table 7.8). Similarly, guidelines suggest a substantially lower probability of
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error associated with the decision of rejecting the £1 billion investment than

do approaches A1 or A3. Indeed, in this case, decision error equals to 5%

under A2, as opposed to 37% under A1 and 38% under A3 (see Table 7.8). In

conclusion, guidelines appear to systematically underestimate the probability

of error associated with each decision option (namely invest or reject the in-

vestment). This limitation is less visible from the PC perspective, since even

under A3 at v = 65, 000/QALY , the probability of decision error is null.

Cost-effectiveness probabilities from the NHS vs. PC perspectives

From the PC perspective, as v increases above the value of 13,000, the

conversion factor (v/13, 000) at which health care costs (savings) are converted

to QALY loss (gain) equivalent increases and as a result, more weight is put on

health care resource impacts. However since the latter are small in comparison

to health gain, the difference in cost-effectiveness probabilities between the two

perspectives, when using the same value of health, is negligible.

Therefore, what drives the difference in cost-effectiveness performance be-

tween the two perspectives is essentially the choice of money value of health.

Under A3, which unlike A1 rejects the possibility that air pollution reduction

may cause harm but allows for greater uncertainty in outcomes than A2, cost-

effectiveness probabilities for the £100 million, £500 million and £1 billion

investments reach 1 for money values of a QALY equal to respectively £9,000,

£23,000 and £40,000.

It follows that from the PC perspective assuming v = 65, 000/QALY , the

probability of investment decision error is null even for I = £1 billion. By

contrast, from the NHS perspective with k = £13, 000, cost-effectiveness prob-

abilities under A3 equal to respectively 1 if I = £100 million; 0.87 if I = £500

million and 0.38 if I = £1 billion. In other words, whilst an intervention costing

up to £500 million is highly likely to be cost-effective from both perspectives,

the £1 billion would be expected to be cost-effective with high probability,

only from the PC perspective.

The source of funding is therefore expected to have strong implications on
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the optimal level of pollution reduction. Indeed, if the true cost of reducing

ambient PM2.5 concentrations by 1µg/m3 and 2µg/m3 were respectively £500

million and £1 billion (i.e. assuming no economy of scale), the optional level

of pollution reduction from the NHS perspective would be below 2 µg/m3

whereas from the PC perspective, it would be above 2 µg/m3.

Impact of ignoring health-related differential susceptibility on cost-effectiveness

probabilities

First, under A1, CEACs have an asymptote to 0.8, as opposed to 0.9 for the

base case. In other words, under current evidence, the minimum probability

of error associated with each investment is 20%, as opposed to 10% under the

base case.

Second, for investments above £100 million, cost-effectiveness probabilities

increase much more progressively than in the base case scenario. Under A3,

cost-effectiveness probabilities for the £500 million and £1 billion investments

reach 1 for money values of a QALY equal to respectively £45,000 and £74,000,

as opposed to respectively £23,000 and £40,000 in the base case scenario.

As a result, whilst ignoring evidence of health-related differential suscep-

tibility to air pollution does not affect cost-effectiveness results from the PC

perspective if v = £65, 000/QALY (assuming air pollution reduction cannot

harm health), it strongly impacts upon the probability of decision error from

the NHS perspective. As shown in Table 7.9, under A3 if k = £13, 000/QALY ,

the probability of decision error associated with the £500 million investment

equals to 44%, as opposed to 13% if health-related differential susceptibil-

ity were accounted for. From the NHS perspective, ignoring health-related

differential susceptibility is therefore expected to lead to less ambitious and

potentially sub-optimal strategies for improving air quality.
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7.5.3 When is the investment expected to break-even?

The expected time to break-even is of particular interest when supporting

decision-making with regards to investments characterised with a high up-

front cost, such as air pollution control. First, it helps characterise the level

of investment risk, whereby the sooner the expected time to break-even is,

the lower the investment risk. Second, it helps identify the investments for

which cost-effectiveness performance is expected to be sensitive to the size of

the target population and the analysis time horizon. It indicates whether in-

cluding benefits to future generations, and thus increasing the analysis time

horizon, may substantially affect cost-effectiveness results up to a point where

discounting would make future benefits negligible. A similar reasoning may

be applied to assess cost-effectiveness results’ sensitivity to discount rate. The

shorter the time to break-even, the least cost-effectiveness results will be im-

pacted by the discounting factor, and conversely for investments with a long

time to break-even.

The expected time to break-even t∗ is obtained by cumulating the dis-

counted annual incremental net benefit from investment. It satisfies equation

7.4:

I0 −
t∗∑
t=1

Eθ(MBt)

(1 + r)t
= 0 , where I0 stands for investment cost paid upfront

(7.4)

Figures 7.12 and 7.13 show, from each perspective, interventions’ expected

time to break-even (t∗) under A1 and A3. It should be reminded that: (i)

A1 was the base case approach used to compute mean outcomes estimates and

that mean results under A1 and A2 are equal and (ii) total expected net QALY

gain over the 60-year time horizon is 26% higher under A3 than under A1 (see

section 7.3.1).
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Figure 7.12: Investments’ expected time to break-even - NHS perspective - Base case sce-
nario.
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Figure 7.13: Investments’ expected time to break-even - PC perspective - Base case scenario.
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From the NHS perspective with k = 13, 000/QALY , under A1, investments

of £100 million and £500 million are expected to break-even after respectively

10 and 27 years whereas the £1 billion investment is expected to yield a net

loss. Whilst the choice of modelling approach to parameter uncertainty does

impact upon the total expected net QALY gain, it appears to have a relatively

small impact on the expected time to break-even for investments up to £500

million. For instance, time to break-even for the £500 million investment is

brought forward of only 3 years under A3. By contrast, the choice of modelling

approach does make a substantial difference for the £1 billion investment since

under A3, the latter breaks-even. Break-even however, is expected to happen

only after 50 years. This suggests that for such a large investment, including

benefits to future generations and/or reducing the discount rate is likely to

substantially improve cost-effectiveness performance.

From the PC perspective with v = 65, 000/QALY , under A1, an investment

as large a £1 billion would break-even after solely 16 years (5 and 11 years

for the £100 million and £500 million investments respectively) and time to

break-even is only brought forward of a few years under A3. For each invest-

ment strategy, including benefits to future generations is therefore unlikely to

significantly bring forward the expected time to break-even.

Figure 7.14 shows the impact of ignoring health-related differential sus-

ceptibility on the expected time to break-even from both perspectives, using

approach A1 as a reference for comparative analysis with the base case sce-

nario. The higher the investment cost, the greater the difference in time to

break-even against the base case scenario. From the PC perspective, however,

expected time to break-even would only be postponed for a few years.
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Figure 7.14: Investments’ expected time to break-even - A1 “No truncation” - Both payers’
perspectives - “No Diff. Susc.” scenario.
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7.5.4 Is more information required?

Necessary versus sufficient conditions for investment

The decision to invest should be made simultaneously to the decision of

whether further research should be carried out (Claxton, 1999). Indeed, whilst

a necessary condition for investment is that the expected NMB is greater than

zero, a sufficient condition for investment typically cannot be solely based

on cost-effectiveness rules. For instance, if adopting reduces the prospect of

further research being conducted, a sufficient condition for investing needs to

take into account the value of information that will be foregone (Griffin et al.,

2011). In addition, if the investment is associated with irreversible costs, the

loss to be incurred if the decision were to be reversed ought to be taken into

account (Eckermann & Willan, 2008; Palmer & Smith, 2000).

Investments in air pollution control strategies are unlikely to affect further

research, rather they could contribute to the body of epidemiological evidence

as was done by past natural experiment studies. Air pollution control invest-

ments are however, expected to be largely irreversible.

If an investment is irreversible, further information only has value if one

can delay the commitment (Eckermann & Willan, 2008). Consequently, in the

present case, the two possible courses of action are:

(i) Invest now (INV) or

(ii) Delay commitment, i.e. Do Nothing (DN) and reassess the option to invest

when research reports.

Deciding between these two options requires trading off the opportunity cost of

delay, i.e NMB to be foregone by not investing now, with the expected benefit

from waiting for more evidence to decrease decision uncertainty (Eckermann

& Willan, 2008).
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Expected value of perfect information

A starting point to evaluate the value of getting more evidence is to compute

the expected maximum NMB, if all parameter uncertainty could be resolved,

i.e. under perfect information. It is computed by identifying the option that

yields the maximum net benefit, for each possible realisation of uncertainty and

taking the average across all realisations (Griffin et al., 2011). Mathematically,

the expected maximum NMB under perfect information can be expressed as:

EθmaxjNMB(j, θ) (7.5)

where θ represents the set of all uncertain parameters and j denote decision

options: delay i.e. do nothing (DN) or invest now (INV).

By subtracting to this maximum, the NMB associated with the option that

generates, based on current evidence, the highest expected net benefit among

all other possible options, one obtains the expected value of perfect information

(EVPI) (Griffin et al., 2011). Mathematically, EVPI can be expressed as:

EV PI = EθmaxjNMB(j, θ)−maxjEθNMB(j, θ) with j=DN, INV (7.6)

Since some uncertainty is irreducible and further information will not be

available immediately, the EVPI provides an upper bound to the social value of

undertaking further research. Consequently, the comparison of the maximum

pay-off from further research with the expected cost of research provide a

necessary condition for further research, i.e. the latter is potentially worthwhile

only if EVPI exceeds the cost of research (Claxton, 1999).

The EVPI depends upon the combination of two factors: (i) the prob-

ability of decision error, as previously depicted by the CEACs and (ii) the

consequences of that wrong decision (Barton et al., 2008). The magnitude of

the consequences of making an incorrect decision is clearly a positive function

of the value of health. The probability that a wrong decision is being made

will be the largest at the value of health λ at which the intervention is ex-
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pected to break-even (see equation 7.3). Indeed for values of health below λ,

one can be confident that the intervention will not be cost-effective and thus,

the probability of error associated with “Do Nothing” will be low. Similarly,

for values of health above λ, one can be confident that the intervention will be

cost-effective and thus, the probability of error associated with “Invest now”

will be low.

Figures 7.15 and 7.16 represent the curves of EVPI from both the NHS

and the PC perspectives, according to each approach to handling uncertainty

in non statistically significant risk estimates. It should be underlined that

the present EVPI computations are based on the population and time-horizon

that underpinned the previous benefit computations, i.e. all currently alive

population aged 40 to 90 years followed until death.
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Figure 7.15: Expected Value of Perfect Information - Base case - NHS perspective.
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Figure 7.16: Expected Value of Perfect Information - Base case - PC perspective.
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Comparison of EVPI results further underlines the impact of each modelling

approach on decision uncertainty, as previously discussed in section 7.5.2. All

EVPI curves exhibit a maxima at k or v = λ, where the probability of error

is the largest. Under A1, however, as the value of health keeps on increasing,

EVPI starts increasing again. The reason is that, based on current evidence,

under A1, cost-effectiveness probabilities have an asymptote to 0.9 which re-

flects the view that air pollution reduction may harm health. Consequently, as

the value of health increases, the combination of a non-null error probability

with growing consequences of error leads to an increasing EVPI. By truncat-

ing both tails of the original distributions of non statistically significant risk

estimates, A2 substantially reduces decision uncertainty and thus, the EVPI.

Since decision uncertainty is greater under A3 than under A2 (due to a greater

possibility of no intervention effect with regards to endpoints “Dev. COPD”,

“Dev. CHD” and “Death from AOC”), the EVPI is larger under A3 than

under A2. For instance, from the NHS perspective for I= £500 million, max

EVPI equals to £42 million under A2, as opposed to £115 million under A3.

It can also be noted that since Eθ(NMB) under A3 is greater than under A1

or A2, the value at which EVPI reaches a maximum is slightly lower under A3

than under A1 or A2.

CEACs previously showed that, assuming air pollution reduction cannot

harm public health, the decision error attached to each three investment is

null for values of health above £40,000/QALY. Consequently, under A2 and

A3, from the PC perspective, the EVPI associated with each investment equals

to zero. By contrast, from the NHS perspective with k = £13, 000/QALY , un-

der A3, EVPI equals to respectively £0 for I= £100 million (cost-effectiveness

probability = 1), £9.2 million for I= £500 million (cost-effectiveness prob-

ability = 0.87) and £192 for I= £1 billion (cost-effectiveness probability =

0.38).

Finally, whilst the difference in cost-effectiveness results between the PC

and the NHS perspectives, for a same money value of health, is relatively

small, EVPI curves from each perspective are slightly different under A1. The

fall after the local maxima is smaller from the PC perspective than from the

NHS perspective since, for values of v >> 13, 000, a substantial weight is put
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on health care cost impacts, which pushes up the consequences of error. This

feature can barely be seen under A2 or A3 as the probability of error under

these approaches quickly falls to zero, though not to the same speed.

Figures 7.17 and 7.18 show the EVPI curves associated with the “No Diff

Susc” scenario. Both the value of health at which the EVPI reaches a maxi-

mum, and the magnitude of this maximum, are higher than in the base case

scenario. In addition, since cost-effectiveness probabilities increase much more

progressively than in the base case scenario, the EVPI decreases more slowly

than in the base case scenario (under A2 and A3). This is especially flagrant

for the £1 billion investment for which under A3, EVPI falls below £100,000

at a value of £72,000/QALY, as opposed to £39,000/QALY in the base case

scenario.

As mentioned in section 7.5.2, from the NHS perspective, ignoring evidence

of health-related differential susceptibility strongly impacts upon the proba-

bility of error associated with the £500 million investment. As a result, the

EVPI for this investment at k = £13, 000/QALY jumps to £60 million, as

opposed to £4.7 million in the base case scenario. By contrast, since the prob-

ability of decision error from the PC perspective is unchanged in the “no Diff.

Susc” scenario, the EVPI associated with each three investment strategies at

v = £65, 000/QALY remains low (near zero for the £100 million and £500

million investments).
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(c) A3 “Left-tail truncation”

Figure 7.17: Expected Value of Perfect Information - “No Diff. Susc.” scenario - NHS
perspective.
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(c) A3 “Left-tail truncation”

Figure 7.18: Expected Value of Perfect Information - “No Diff. Susc.” scenario - PC per-
spective.
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Sufficient conditions for approval and maximum investment delay

To decide which decision option is optimal, the pay-off associated with re-

spectively “Invest now” or “Delay” (i.e. do nothing until further research

reports) should be compared. The evaluation of the pay-off associated with

delay requires an assessment of: (i) the likelihood that research will be per-

formed (α) and (ii) the timing of when the research will report (τ) (Griffin

et al., 2011).

If the decision maker had the remit and budget to commission research, α

would be equal to one, τ would be known and the pay-off from delay should

account for the cost of research (Griffin et al., 2011). In the present case,

however, it is assumed that the decision maker does not have the remit to

commission research and therefore, the expected pay-off requires an assessment

of both α and τ .

The pay-off from delay can be calculated as the sum of NMB during time

periods 0 to τ and τ to T , with T denoting the investment time horizon.

Before time τ , the pay-off from delay corresponds to the expected NMB of

doing nothing, which equals to zero. After time τ , the pay-off from delay is

the sum of (i) the expected NMB of doing nothing weighted by the probability

(1−α) that research was not conducted and (ii) the expected maximum NMB

under perfect information weighted by the probability α that research was

conducted, assuming the latter resolved all uncertainty.

Mathematically, the pay-off from delay can be expressed as:

πDELAY = Eθ

τ∑
t=1

NMBt(DN, θ)

(1 + r)t
+ · · ·

+ (1 + α)Eθ

T∑
t=τ

NMBt(DN, θ)

(1 + r)t
+ · · ·

+ αEθmaxj

T∑
t=τ

NMBt(j, θ)

(1 + r)t
with j=DN (do nothing), INV(invest now)
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Since Eθ
∑T

t=1
NMBt(DN,θ)

(1+r)t
= 0

πDELAY = αEθmaxj

T∑
t=τ

NMBt(j, θ)

(1 + r)t
with j=DN, INV (7.7)

The pay-off from investing now is simply the expected NMB of the intervention:

πINV = Eθ

T∑
t=1

NMBt(INV, θ)

(1 + r)t
(7.8)

The value of the option to delay can be calculated as the difference between

the pay-offs to delay and to invest now:

Optiondelay = πDELAY (α, τ)− πINV (7.9)

It is worth underlining that, if the intervention is expected to be cost-effective,

when α = 1 and τ = 0, Optiondelay = EV PI.

The pay-off from delay is computed by assuming that all uncertainty will be

resolved at time τ , which is unrealistic. As a result, Optiondelay = 0 provides

a sufficient condition for investing now. Combinations of values of α and τ

can be found for which Optiondelay = 0 for each investment strategy. When

represented in a graph, these combinations represent a boundary line, whereby

any point to the North-East of this line represents a sufficient condition for

approval (Griffin et al., 2011). Alternatively, since Optiondelay > 0 provides a

necessary condition for further research, for a given value of α, one can compute

τ∗, the maximum time to delay the investment while waiting for research to

report that satisfies Optiondelay > 0.

τ∗ values for all three investment costs under each modelling approach (A1

to A3) using k = 13, 000/QALY and v = 65, 000/QALY are reported in

Table 7.10. When Optiondelay was strictly positive for several values of α,

approval boundaries as a function of α and τ values were drawn. Figure 7.19

represents the approval boundaries from the NHS perspective, for investments

of respectively £500 million and £1 billion.
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NHS ( k=13,000) PC (v=65,000)

INV A1 A2 A3 A1 A2 A3

£100 m
2 yrs if α = 0.9
8 yrs if α = 1

0 0 8 yrs if α = 1 0 0

£500 m see Figure 7.19a
2 yrs if α = 0.9
8 yrs if α = 1

0 0

£1 bn Eθ(NMB) < 0
see
Figure
7.19b

6 yrs if α = 0.9;
10 yrs if α = 1

0 0

Table 7.10: Maximum time to delay investment (τ∗) - Base case scenario.

A1= No truncation; A2= Guidelines; A3= Left-tail truncation.
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Investment = £1 billion

(b) I = £1 billion

Figure 7.19: Approval boundaries - NHS perspective - Base case scenario.

A1= No truncation; A2= Guidelines; A3= Left-tail truncation. Any point to the North-East of the line
represents a sufficient condition for approval.

241



As shown in the left-hand side of Table 7.10, from the PC perspective

under approaches A2 and A3, τ∗=0. In other words, the option to delay

investments as large as £1 billion has no value. This is not surprising since,

under A2 and A3, EVPI for each three investments at v = £65, 000/QALY

equals to zero (see Figure 7.16). Even under A1 which, if one rules out that air

pollution reduction could cause any harm, overestimates decision uncertainty

delay would have value only if one were highly confident that research would

be carried out (α ≥ 0.9) and report within a relatively short period.

From the NHS perspective (right-hand side of Table 7.10), under the as-

sumption that air pollution reduction cannot harm health (A2 and A3), de-

laying to gather further evidence has little value for investments costing up

to £500 million. By contrast, for the £1 billion investment, delay appears

to be valuable under A3, even given a low probability that research will be

conducted. Indeed, under A3, if research were to be performed with a 50%

probability and could resolve all uncertainty, it would be worth delaying the

£1 billion investment up to 20 years.

Results for the “No Diff. Susc.” scenario are reported in Table 7.11. In line

with EVPI results, ignoring health-related differential susceptibility has little

impact on the option to delay from the PC perspective. By contrast, from

the NHS perspective, ignoring health-related differential susceptibility would

bestow more value to delay to collect further information, in particular for the

£500 million investment. This is illustrated by Figure 7.20, which contrasts

the sufficient conditions for approval of this investment under the “No Diff.

Susc.” and the base case scenario.

From the NHS perspective, under A3, ignoring health-related differential

susceptibility would provide support for delaying the £500 million investment

from 8 to 10 years if research were to be performed with a high probability

(α ≥ 0.8), as opposed to maximum two year delay in the base case scenario.

This suggests that if the NHS were paying for air pollution abatement, ignoring

health-related differential susceptibility could lead to population health loss

due to longer investment delay than optimal.
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NHS ( k=13,000) PC (v=65,000)

INV A1 A2 A3 A1 A2 A3

£100 m
4 yrs if α = 0.8;
10 yrs if α = 0.9;
13 yrs if α = 1

0 0
8 yrs if α = 0.9;
12 yrs if α = 1

0 0

£500 m see Figure 7.20b
4 yrs if α = 0.8;
10 yrs if α = 0.9;
13 yrs if α = 1

0 0

£1 bn Eθ(NMB) < 0

4 yrs if α = 0.7;
10 yrs if α = 0.8;
13 yrs if α = 0.9;
15 yrs if α = 1

0 0

Table 7.11: Maximum time to delay investment (τ∗) - “No Diff. Susc.” scenario.
A1= No truncation; A2= Guidelines; A3= Left-tail truncation.
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Figure 7.20: Approval boundaries for I = £500 million - “No Diff. Susc.” vs. base case
scenarios - NHS perspective.
A1= No truncation; A2= Guidelines; A3= Left-tail truncation.
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Prioritizing research and informing future study design

In addition to providing an upper bound to the overall gain from delaying

investment in order to collect further information, the value of information

framework can also be used to prioritise further research. The first step to

prioritisation is to identify the model parameters for which a reduction in

uncertainty would have a substantial impact on decision uncertainty. This is

performed by computing the expected value of perfect information associated

to each uncertain parameter (or each subset of uncertain parameters): EVPPI.

Similarly to EVPI, the EVPPI is simply the difference in net benefit with

perfect information versus current information about the set of uncertain pa-

rameter of interest (θI), which is a subset of all uncertain parameters θ. Com-

putation of the expected net benefit with perfect information about θI requires

two loops of probabilistic simulations. Indeed, one first needs to obtain the

expectations of net benefit across the possible values that the remaining un-

certain parameters (θR) can take conditional on knowing the value of (θI), in

order to then take the expectation of these expected maximum net benefit over

the distribution of θI (Ades et al., 2004). Mathematically:

EV PPIθI = EθImaxjEθR|θINMB(j, θI , θR)−maxjEθNMB(j, θ) (7.10)

With j=DN, INV; θI = set of uncertain parameter of interest and θR is the

complement set of remaining uncertain parameters such that θ = θI + θR .

Like the EVPI, the EVPPI provides an upper-bound to the value of obtain-

ing more information on θI and represents a necessary condition for further

research, i.e. EVPPI needs to be greater than the cost of research. The latter

will however, depend on the type and design of the study required to ob-

tain additional information, e.g. cohort versus case-control study; sample size,

follow-up duration and so forth. In this context, the expected value of sample

information (EVSI) can be used to maximise the efficiency of study design.
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The EVSI is the difference in expected net benefit after sample data D has

been collected versus under current information (Ades et al., 2004). Similarly

to EVPPI calculations, computations of the expected net benefit with sample

data D contains a inner loop within the maximisation process. The first step

consists in averaging over the posterior distribution of the net benefit of each

intervention j, given the sample result D that informs the subset of uncertain

parameters θI . The second step consists in taking the expectation of these

expected maximum net benefit over the distribution of D. Mathematically,

assuming that θI and θR are independent;

EV SID = EDmaxjE(θI |D),θRNMB(j, θI , θR)−maxjEθNMB(j, θ) (7.11)

For a given study design, sample results D will depend on sample size

n. Based on this framework, one could therefore compute EVSI for various

sample sizes n, in order to identify the optimal study size n∗ (e.g. in the case

of air pollution, the number of participants to enrol in a cohort study) that

maximises the difference between EV SIn∗ and the cost of research Cn∗. The

difference between the EVSI and the cost of acquiring sample information is

known as the expected net benefit of sample information (ENBS).
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7.6 Results summary

The methodological contribution of the present study as well as its limita-

tions will be discussed in Chapter 8, which provides an overall conclusion to

the thesis. This section aims at outlining the key findings from the application

of the model developed in Chapter 4 and its implications for the UK air quality

strategy.

7.6.1 Main findings

Expected outcomes and their distributions

Reducing mean population-weighted PM2.5 concentrations by about 7% in

London and 9% in England and Wales (1µg/m3 decrement) is expected to

yield respectively 63,293 and 541,217 QALYs to adults aged 40 and above

over their remaining lifetime, when discounting at 3.5% p.a. By reducing

morbidity but also extending the lives of individuals with a chronic cardio-

respiratory condition, the intervention is expected to increase health care costs

(£24 million in London and £263 million in England and Wales). However,

when converted to QALY loss equivalent at a value of £13,000/QALY, health

care costs only account for 3% of total health benefits.

As a result, the intervention is expected to generate to the NHS a total of

61,467 net QALYs in London and 520,998 net QALYs in England and Wales.

Based on a WTP value of a QALY of £65,000, which is in line with recommen-

dations from the UK Department of Health (Glover & Henderson, 2010) and a

recent review of WTP estimates (Ryen & Svensson, 2014), the intervention’s

total monetary benefit from the private consumption perspective amounts to

£4 billion in London and £34 billion in England and Wales.

The distribution of outcomes obtained from Monte Carlo simulations de-

pends on the approach chosen to handle uncertainty in three non statistically
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significant risk estimates used to parameterise the “intervention-effect” (out

of a total of 7 risk estimates). Three approaches were assessed: (A1) where

parameters’ original distributions were left unchanged, which was the base

case approach used to compute mean estimates; (A2) which follows European

guidelines for uncertainty analysis in HIA of air pollution control and consisted

in attributing a range of +/- 100% of mean effect and assuming equal likeli-

hood within the assigned value range (Holland, 2014); (A3) where a value of 1

was assigned to any random draw value below 1 from risk estimates’ original

distributions. By leaving unchanged the original distributions of non statisti-

cally significant risk estimates, A1 allows for the highly improbable possibility

that air pollution could harm health. Consequently, under A1, the distribution

of net QALY gain has a left-tail of negative values, whereas under A2 and A3

QALY gains are always positive. Whilst mean outcome results are equal under

A1 and A2, they have a much smaller standard deviation under A2. Under

A3, the mean of non statistically significant risk estimates is shifted to the

right (ORDev.COPD in particular), which pushes the expected net QALY gain

by a quarter.

Cost-effectiveness analysis

Cost-effectiveness analysis was based on an intervention that reduces PM2.5

concentrations in London by 1µg/m3 and which cost equals to respectively

£100 million, £500 million or £1 billion, to be fully paid upfront. Cost-

effectiveness was evaluated from two perspectives, whereby the investment

cost would either (i) fall on the NHS budget constraint (NHS perspective) or

(ii) be funded by general taxation (private consumption “PC” perspective).

The analysis was underpinned by three questions.

(i) “Is the intervention likely to be cost-effective?”

Analysis showed that current European guidelines to uncertainty analysis

in HIA of air pollution control interventions, that were followed in approach

A2, systematically underestimate the probability of decision error. In contrast,
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approach A3 offers the advantage of rejecting the highly improbable possibil-

ity that air pollution reduction may harm health while allowing for greater

uncertainty in outcomes than A2.

The difference in investments’ cost-effectiveness performances between the

NHS and PC perspectives is essentially driven by the choice of the value of

health. From both the PC and the NHS perspectives, an intervention costing

up to £500 million is highly likely to be cost-effective (max probability of

decision error equal to 13% under A3). By contrast the £1 billion investment

is expected to be cost-effective with high probability from the PC perspective

only. This shows that the source of funding is likely to influence the optimal

level of air pollution reduction.

(ii) “When will the investment break-even?”

From the NHS perspective with k = 13, 000/QALY , investments of £100

million and £500 million are expected to break-even after respectively 10 and

27 years under A1. For these investments, although the choice of modelling

approach to parameter uncertainty (A1 to A3) impacts upon the total expected

net QALY gain over the 60-year analysis time horizon, it has a relatively small

impact on the expected time to break-even. By contrast, whilst the £1 billion

investment is expected to yield a net loss under A1, it slightly breaks-even

after 50 years under A3. For such a large investment, including benefits to

future generations and/or reducing the discount rate is likely to substantially

improve cost-effectiveness performance.

From the PC perspective with v = 65, 000/QALY , an investment as large

a £1 billion would break-even after solely 16 years under A1. Under A3, time

to break-even is brought forward of a few years only.

(iii) “Is it recommended to wait for more information before going ahead?”

The comparison of EVPI results corroborates the finding that European

guidelines underestimate decision uncertainty, whereby the EVPI for each three

investment is much lower much under A2 than under A3. For instance, for

I= £500 million and k = 13, 000/QALY , max EVPI equals £42 million under

A2, as opposed to £115 million under A3.
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Assuming that air pollution reduction cannot harm public health (A2 or

A3), from the PC perspective with v = 65, 000/QALY , the probability of

decision error attached to each investment is null, and so is the EVPI. As a

result, there is no value in delaying investments costing up to £1 billion. From

the NHS perspective, whilst delaying to gather further evidence has little value

for investments costing up to £500 million, under A3 delay appears valuable

for the £1 billion investment, even given a low probability that research will

be conducted. For instance, if research were to be performed with a 50%

probability and could resolve all uncertainty, it would be worth delaying the

£1 billion investment for up to 20 years to wait for research findings.

7.6.2 Sensitivity analyses

Discount rate and cessation lag

If the intervention’s effect on the risk of adverse health effects would be

immediate, i.e. no cessation lag, the intervention’s total net QALY gain would

increase by 16%. Applying a staged discount rate that excludes the element

of pure time preference (“Staged discounting 2” scenario using 3 % p.a. in the

first 30 years and 2.57% p.a. afterwards), would boost total net QALY gain by

20%. Cessation lag and discounting have opposite effects on the distribution

of health gain across age -groups. Young individuals are clearly the greatest

beneficiaries of a lower rate of discounting, whereas older individuals would

benefit the most from an immediate reduction in the risks of adverse health

events. In the “Staged discounting 2” scenario, individuals aged 40 would

gain 35% more QALD than in the base case scenario, as opposed to only 15%

additional gain for individuals aged 60. By contrast, an immediate reduction

in health risks would increase the average QALD gain of an 80-year old person

by 50%, as opposed to an increase by 30% for a 70-year old person and by 10%

for a 40-year old person.
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Health-related differential susceptibility

The present Markov-modelling based QALY estimates are 39% higher than

estimates that would be obtained using the life-table method. The difference

in results stems from Markov modelling’s capacity to capture health-related

differential susceptibility to air pollution exposure and to a much lesser extent,

quality of life gains from reduced morbidity. In the case of London, accounting

for evidence of CHD and COPD-related greater pre-disposition to die prema-

turely due to PM exposure (Zanobetti et al., 2008; Zanobetti & Schwartz, 2007;

Tonne & Wilkinson, 2013) represents a 34% difference in the expected QALY

gain of air pollution control and a 26% difference in QALY gain net of health

care cost impacts. Similarly, health-related differential susceptibility was found

to explain most of the difference between present estimates of un-discounted

life expectancy gain and results from past HIAs in a similar setting. It follows

that, by ignoring interactions between morbidity and mortality mediated via

health-related differential susceptibility to air pollution, the life-table method

which underpins the “separate” approach to impact quantification currently

used in HIA, substantially underestimates the total health gain of air pollution

reduction.

From the PC perspective if v = 65, 000/QALY , ignoring evidence of health-

related differential susceptibility does not affect the probability of decision error

nor the EVPI or the delay option value associated with each three investment

strategies. By contrast, from the NHS perspective if k = 13, 000/QALY ,

ignoring health-related differential susceptibility has a non negligible impact

on cost-effectiveness probabilities for investments above £100 million. Under

A3, the probability of error if the NHS makes the £500 million investment

equals to 44% (as opposed to 13% in the base case scenario) and the EVPI

jumps to £69 million (as opposed to £9.2 million in the base case scenario).

In this context, if research were to be performed with a high probability, it

may be optimal to delay the £500 million investment 8 to 10 years, as opposed

to a maximum two-year delay in the base case scenario. Therefore, from the

NHS perspective, ignoring health-related differential susceptibility may lead to

population health loss by supporting a sub-optimal reduction in air pollution

and/or extending the delay period of cost-effective investments.
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Chapter 8

Conclusion

The present chapter concludes the thesis. Its aims are fourfold: (i) to

restate the overall structure of the thesis; (ii) to underline the contributions of

the work undertaken; (iii) to highlight its limitations and (iv) to outline some

avenues for further research.

8.1 Thesis overview

Chapter 2 was a review that presented the body of epidemiological evi-

dence on the health effects of air pollution exposure and highlighted several

research opportunities in the economic evaluation of interventions of air pollu-

tion control, in particular with regards to the approach to quantifying health

benefits.

Chapter 3 demonstrated that the current quantification approach tradition-

ally used in health impact assessments (HIA) of environmental policies, where

each health effect is computed separately, has major limitations. It advocated

encompassing interactions between mortality and morbidity impacts, by quan-

tifying effects simultaneously using Markov modelling as a quantification tool.

Chapter 4 described the construction and parameterisation of a Markov

model of the health impacts associated with chronic exposure to particulate

air pollution. The objective of this model was twofold: (i) to refine the un-
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derstanding of air pollution adverse health effects by evaluating quality of life

impacts alongside life expectancy effects using the QALY as health metric

and (ii) to assess the total health care budget impact of air pollution control

that would capture the joint impact of a reduction in chronic morbidity and

premature death.

Chapters 5 and 6 consisted in estimating a subset of parameters required to

parameterise the model developed in Chapter 4. Chapter 5 developed a prob-

abilistic framework to estimate the age-specific probability of being diagnosed

with COPD at different stages of the disease. In a context where COPD is

severely underdiagnosed, the rationale for developing this framework was to

estimate the true size of the population subgroup expected to benefit from a

reduced risk of developing COPD following improvement in air quality.

Chapter 6 performed a systematic review and two meta-analyses of the

risk estimates quantifying the association between long term exposure to fine

particulate pollution and respectively all-cause mortality and lung cancer inci-

dence or mortality. It aimed to encompass all relevant epidemiological evidence

to date and to decrease parameter uncertainty.

Chapter 7 presented and analysed the QALY gain and health care resource

impact associated with a sustained 1µg/m3 decrement in population-weighted

mean PM2.5 concentrations in respectively England and Wales and London.

Based on these results, the cost-effectiveness of reducing particulate air pollu-

tion in London, whether such an intervention would be paid by the NHS or

funded through general taxation, was evaluated for a range of three hypothet-

ical investment costs.

8.2 Contributions

This thesis provides a number of methodological and empirical contributions

to the economic evaluation of air pollution control.
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8.2.1 Methodological contributions

Demonstration that the current approach to quantifying health benefits from

air pollution reduction leads to substantially biased estimates.

The present work demonstrated that the approach to quantification cur-

rently used in HIA of environmental policies, where morbidity and mortality

impacts are evaluated separately using static health impacts functions and

the life-table method, seriously threatens the internal validity of estimates of

health gain associated with air pollution control.

By ignoring interactions between morbidity and mortality effects, this “sep-

arate” approach was found to be associated with two major limitations. First,

it systematically overestimates the change in number of morbidity cases asso-

ciated with pollution increment or decrement. The size of the overestimation

bias is not negligible, especially over long time-horizons as typically used in

assessments of air pollution control interventions. Over a 60-year time horizon

for instance, the “separate” approach was found to lead to an overestimation

by one fifth of the number of CHD cases expected to be avoided following

pollution abatement in London.

Second, the “separate” approach cannot characterise the distribution of

impacts by causal pathways and between population subgroups stratified by

their level of health. It is therefore inappropriate to support health care budget

impact assessments and distributional analysis and also, to quantify health

effects using summary measures of population health. This explains why the

few past attempts at measuring the QALY gain from air pollution control either

failed to encompass the quality of life gain from reduced chronic morbidity, or

departed from the QALY by no longer allowing a linear substitution between

quality and quantity of life.

More importantly, this second limitation was found to lead to a substantial

underestimation of the life expectancy gain, be it quality-adjusted or not, from

air pollution reduction. Indeed since the “separate” approach cannot charac-
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terise the distribution of impacts by health-stratified population subgroups, it

fails to encompass existing evidence that individuals with CHD and COPD,

once they reach a certain age and/or severity level, are expected to face a

greater excess risk of death under pollution exposure than individuals of the

general population. This is problematic since the present analysis found that

accounting for the current evidence of health-related differential susceptibility

has a large impact on the expected health gain and health care cost impact of

air pollution abatement. In the case of London, it represents a 34% difference

in expected QALY gain and a 26% difference in expected QALY gain net of

health care resource impacts.

Development of a Markov model that addresses all the limitations of the “sep-

arate approach” and represents a step forward to the cost-effectiveness analysis

of air pollution control interventions

The thesis developed the first Markov model of health impacts from long-

term exposure to air pollution that addresses all the limitations of the “separate

approach”, by capturing interactional effects between morbidity and mortality

impacts. The model indeed makes it possible to encompass for the first time:

(i) air pollution’s influence on individuals’ quality of life and life expectan-

cies at baseline and (ii) dynamics in individuals’ susceptibility to air pollution

exposure as a consequence of a degraded health condition, be it related to

cumulative air pollution exposure or not. Thanks to these two features, the

model fully captures the lifetime impact of air pollution exposure on individ-

uals’ quality and length of life. The model is also of particular relevance for

health care budget impact analysis as it captures the joint budget impact of

a reduction in both chronic morbidity and premature death. Consequently,

the methodology proposed and the model developed are expected to repre-

sent a step forward to the cost-effectiveness analysis of air pollution control

interventions.

The model follows adult individuals’ health trajectories over time from the

states “healthy” to “dead” across three diseases that aim to represent the
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overall body of epidemiological evidence on the cardio-respiratory effects of

long-term exposure to particulate air pollution: chronic obstructive respira-

tory disease, coronary heart disease and lung cancer. Whilst the model was

applied to a UK case study its structure, which accounts for COPD and lung

cancer characteristics in terms of severity and survival pattern over time, as

well as its thorough use of available epidemiological evidence could be easily

replicated to quantify the health benefits of air pollution control elsewhere. In

a context of increasing interest for the chronic morbidity impacts of long-term

air pollution exposure, as exemplified by large-scale epidemiological projects

such as ESCAPE1 in Europe and MESA Air2 in the US, the model developed

in this thesis is expected to be of particular interest to HIA practitioners. It

should nevertheless be reminded that the model is parameterised using risk es-

timates from epidemiological studies performed in developed countries, where

linearity in health effects in response to a change in air pollution concentra-

tions has been found. Application of the model to assess air pollution control

interventions in developing countries should therefore take into account poten-

tial non linearity in effects, as suggested by existing attempts at extrapolating

concentration-response functions at high concentration levels (Pope III et al.,

2011; Burnett et al., 2014).

Demonstration that the current European guidelines for uncertainty analysis in

HIA of air pollution control underestimate decision uncertainty

Notwithstanding the recommended use of a triangular distribution for a

number of parameter (Holland, 2014), which in reality is difficult to parametrize

correctly since it is not linked to the data estimation process (Briggs et al.,

2006), current European guidelines3 to handling uncertainty in non statisti-

cally significant risk estimates of health effect were found to underestimate

decision uncertainty.

Since it seems indeed implausible that curbing air pollution could harm

1European Study of Cohorts for Air Pollution Effects.
2Multi-Ethnic Study of Atherosclerosis and Air Pollution.
3from the HRAPIE (Health Risks of Air Pollution In Europe) group.
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health, in the case where the risk estimates used to compute the expected

health benefits of air pollution reduction are non statistically significant, guide-

lines recommend to attribute a range of +/- 100% of mean effect and assuming

equal likelihood within the assigned value range. In others words, they suggest

to truncate both tails of the original distributions of parameters, thus assuming

that their mean value was correctly estimated but not their variance.

In this thesis, these guidelines were contrasted with an alternative approach

which truncated only the left-tail of original distributions, by assigning a value

of 1 to any value below 1 randomly drawn from risk estimates’ original distri-

butions. Comparative analysis showed that the probability of decision error

and thus, the EVPI and the option value to delay associated with investments

in air pollution reduction, were systematically significantly lower when follow-

ing the guidelines than under the alternative approach which solely ignored

non-plausible risk estimate values. It follows that, by suggesting greater cer-

tainty in outcomes than is the case, current European guidelines for uncertainty

analysis may misguide decision-making for air quality improvement.

Development of a framework to estimate COPD incidence by severity stages

The thesis developed a framework to estimate the age-specific annual prob-

ability of being diagnosed with COPD at a given severity stage, implied by the

underlying population prevalence of the disease estimated at a single point in

time and its relationship with disease incidence, progression and survival. By

addressing the issue of underdiagnosis embedded in primary care data, this

framework helps support the estimation of the total population health gain

associated with a primary prevention intervention that would reduce the risk

of developing COPD, or COPD patients’ risk of suffering from further adverse

effects. The framework was applied to the case of England in order to parame-

terise the model of air pollution impacts and to support cost-effectiveness eval-

uation of air pollution control in England and Wales and London. However,

since COPD underdiagnosis is a global issue (GOLD, 2014), the framework

could be applied to estimate COPD incidence by severity stages in other coun-
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tries, provided data on the underlying prevalence of the disease is available.

8.2.2 Empirical contributions

Supporting the UK air quality strategy

In addition to showing that existing estimates of life expectancy gain from

air quality improvement are likely to be seriously underestimated, and thus

to lead to suboptimal levels of air pollution reduction, this thesis provides the

first estimates of QALY gain and health care budget impact associated with

particulate air pollution control in England and Wales and London. Estimates

were computed for a unit decrement in PM2.5 and can be linearly rescaled to

a decrement of a different magnitude. These estimates which are summarised

in section 6 of Chapter 7, alongside with the analysis of levels of uncertainty

surrounding them, provide a concrete basis to support the UK air quality

strategy.

More specifically, modelling results underline the strong public health im-

plications of air pollution reduction. In London, reducing air concentrations

of fine particulates by 1µg/m3 (i.e. by 7%) is expected to generate to the cur-

rent population of adults aged above 40 more than 60,000 QALYs over their

lifetime. As a result, investing up to £500 million to achieve this level of pol-

lution reduction is highly likely to be cost-effective (less than 10% probability

of decision error), whether the investment is funded by the NHS or through

general taxation.

For larger investments, however, the source of money value of health em-

bedded in the funding mechanism, namely NHS resources or general taxation,

strongly influences cost-effectiveness results as consumer willingness to pay

for a QALY is much higher than the estimated NHS expenditure required to

deliver one QALY. It follows that the identification of the optimal level of
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pollution reduction, as well as the decision about whether and for how long

to delay investments to gather further evidence, is expected to depend on the

choice of funding mechanism.

Evidence synthesis

At the time when the model was being developed, there was a gap in ev-

idence synthesis pertaining to the association between long term exposure to

fine particulate pollution and respectively all-cause mortality and lung cancer

development. This gap was filled by the work of Chapter 6, which results were

found to be consistent - or if a difference were found it could be fully explicated

- with meta-analyses published after completion of the present work.

First estimates of underlying incidence of COPD by severity stage in England

Application of the framework developed in Chapter 5 to the case of England,

provides the first estimates of the underlying incidence of COPD by GOLD

severity stages in England. These estimates could be used to support economic

evaluations of preventive interventions targeted at reducing the incidence of

COPD in this country, or to support analyses of budget impact and population

EVPI associated with health care technologies aimed at treating this disease.

8.3 Limitations

The Markov model of the health impacts of long-term exposure to par-

ticulate air pollution and its application to a UK case study, which are core

components of this thesis, present a number of limitations.
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First the model only builds on the linkages between concentration reduction

and health impacts, whilst the chain of impacts from intervention to health

effects is more complex. Indeed, reducing concentrations of air pollutants will

typically require a portfolio of sector-specific interventions targeting various

sources of emissions, e.g. transportation, industrial facilities, housing, which

impact on concentrations over time will be uncertain. As a result, the total

level of uncertainty surrounding the health and health care cost impacts of

particulate air pollution abatement is presently underestimated.

Second, Chapter 7 placed particular emphasis on uncertainty analysis and

in particular, on the value of reducing parameter uncertainty. However, as

underlined in Chapter 2, the impact of parameter uncertainty on decision un-

certainty is mediated by structural uncertainty, i.e. is conditional on the chosen

structure of the model. Scenarios analysis was performed for three different

approaches to handling risk estimates that were non statistically significant at

the conventional 5% level and according to two approaches to encompassing

health-related heterogeneity in susceptibility (namely by excluding or includ-

ing existing evidence related to heterogeneity). Whilst scenarios analysis shows

how cost-effectiveness results would change under different assumptions, it is

important to underline that not all sources of structural uncertainty are rep-

resented in these scenarios. In particular, whilst it was argued that excluding

evidence solely based on the conventional - but arbitrary - rules of statistical

inference would lead to bias, as mentioned in Chapter 4, the body of epidemio-

logical evidence on the association between air pollution exposure and COPD

is currently incomplete (Schikowski et al., 2013). Therefore, ideally, the un-

certainty as to whether to include or not COPD as relevant health endpoint

should also be investigated. An approach to addressing this specific issue and

more generally, to appropriately characterising structural uncertainty, will be

discussed in section 8.4.

Third, the model applies to adult individuals and thus, ignores effects in

children. It should, however, be underlined that documented adverse impacts

in children tend to be subclinical (Shannon et al., 2004; US EPA, 2009; Peled,

2011). These impacts are therefore expected, to some extent, to be captured

into a greater risk of developing chronic morbid conditions later in life. In-
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deed, it is generally accepted for instance, that chronic respiratory impacts

in adults partly derive from the worsening over time of subclinical conditions

developed since childhood (Eisner et al., 2010). It follows that the excess risk

of developing chronic morbid conditions at adult age may, at least in part,

be a consequence of subclinical symptoms associated with exposure during

childhood and/or adverse birth outcomes associated with exposure in utero.

On these grounds, whilst focusing on chronic clinical conditions developed at

adult age may not capture all potential benefits from air pollution reduction,

it has the advantage of avoiding potential double counting of effects. It should

also be noted that translating into QALY loss the adverse birth outcomes as-

sociated with air pollution exposure in utero, such as low birth weight and

pre-term birth, would require a certain number of assumptions that would

further contribute to uncertainty around outcomes.

Fourth, a source of uncertainty when assessing the impacts from pollution

abatement pertains to the time profile of the reduction in risks of experiencing

adverse effects following exposure decrement, which is known as the cessation

lag. This model uses the 20-year distributed cessation lag developed by the US

EPA, which assumes 30% of the risk reduction in year 1, an additional 12.5%

every year between year 2 to year 5 and the final 20% of risk reduction being

phased in gradually over year 6 to year 20 (US EPA, 2010). Although this lag

was carefully elaborated in light of empirical evidence from cohort, natural ex-

periments and smoking cessation studies, it remains largely uncertain (Walton,

2010). In addition, this lag was developed only to characterise dynamics in

mortality risk reduction. Indeed so far morbidity impacts (to the exception of

chronic bronchitis) have only been quantified with regards to acute exposure,

for which the change in risk may be assumed to be immediate. Nevertheless,

repeated cross-sectional analyses suggest that PM-related excess risks of mor-

bid events are also expected to be reversible in a short to middle time-horizon

following improvements in air quality (Downs et al., 2007; Schindler et al.,

2009; Schikowski et al., 2010).

Fifth, whilst the model accounts for COPD and lung cancer characteristics

in terms of severity levels and survival pattern over time, the CHD condition is

modelled via a single state. As a result, the modelling of CHD-related greater
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susceptibility to air pollution involved some level of extrapolation. Indeed,

the study informing differential susceptibility associated with CHD (Tonne &

Wilkinson, 2013) was based on patients aged 25 and above, who had an acute

coronary event. This endpoint represents a more severe health condition than

CHD as a whole. However, in light of evidence that the risk of acute coronary

event is a positive function of age (Simms et al., 2012), the risk estimate

estimated by Tonne & Wilkinson (2013) was only applied to individuals with

CHD aged 75 or above, which considerably restricted the subset of susceptible

individuals. The risk of potential overestimation of health benefits accruing to

individuals with CHD is therefore expected to be limited.

Sixth, the model does not consider effects from acute exposure. Whilst the

latter are irrelevant when considering life expectancy impacts (which are fully

captured in the risk estimates of excess mortality from chronic exposure), acute

effects are relevant for the quality of life dimension but also when assessing

health care cost impacts. It follows that the incorporation of acute effects, such

as asthma or COPD exacerbations for instance, would contribute to further

improve the model.

Seventh, the model does not assign any health care costs to “healthy” indi-

viduals - i.e. those without CHD, COPD or lung cancer - although the latter

will also cost to the health care system. Consequently, the health care costs

associated with air pollution reduction are presently underestimated. Never-

theless it should be underlined that the health benefits of air pollution control

are an order of magnitude higher than the QALY loss from health care cost

impacts. Indeed, based on an estimate of £13,000 as the NHS expenditure re-

quired to deliver one QALY, the QALY loss resulting from net health care costs

accounts for solely 2.8% and 3.7% of the health benefits in respectively London

and England and Wales. As a result, the underestimation of health care cost

impacts is unlikely to substantially affect the cost-effectiveness performance of

interventions that improve air quality.

Eighth, the model is built on the assumption of competitive risk between

disease pathways, which is partly challenged by the fact that COPD is a multi-

component systemic disease that is associated with a greater risk of cardio-

vascular events and lung cancer (GOLD, 2014). However, since the model’s
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estimates of un-discounted life years gain per person are in line with results

from past HIAs (when ignoring health-related differential susceptibility), the

assumption of competitive risk is not expected to have led to a substantial

underestimation of the total life expectancy impact.

Ninth, this thesis and the model developed focus on particulate air pollu-

tion. Particulate matter results from the release of a number of pollutants and

is therefore considered to be a good proxy for air quality (US EPA, 2012). In

addition, it is estimated to adversely affect population health more than any

other air pollutant (WHO, 2014). Nevertheless, effects from other air pollu-

tants such as nitrogen dioxide, may also need to be considered when considering

the benefits of improving air quality.

8.4 Further research

There are a number of avenues to extend the present work. First, it would

be of particular interest to combine the presently developed model of the health

impacts from air pollution exposure with dispersion modelling of air pollutants

emissions. This would enable the overall uncertainty associated with each link

of the chain of effects starting from the implementation of a specific interven-

tion (e.g. low emissions zone, bus retrofitting) to final health impacts to be

captured, as opposed to solely focusing on the uncertainty in health outcomes

following a reduction in concentrations.

A second extension of the present work would be to apply a more structured

approach to characterising structural uncertainty. Jackson et al. (2011) rec-

ommend to encompass all plausible structures of the model in a global model

and to express them via additional model parameters. To inform these pa-

rameters, the authors suggest two alternatives. The first consists in relying on

conventional methods used for choosing between statistical models, in order

to derive weights to apply to the expected costs and benefits associated with

each plausible model structure (for EVPI weights would have to be applied

to each simulated value as opposed to the model-specific expected cost and
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benefits across simulations). Akaike’s Information Criterion (AIC) was sug-

gested as a mean to derive those weights and is straightforward to apply if

structural uncertainty pertains to the inclusion/exclusion of a parameter for

which a p-value is available. The second alternative draws on expert elicita-

tion, whereby experts’ beliefs are translated into probability distributions for

uncertain parameters.

In the presently developed model, a combination of both approaches may be

applied with regards to the inclusion of: (i) COPD as relevant health endpoint

and (ii) health-related heterogeneity in susceptibility to air pollution expo-

sure. Indeed, both sources of uncertainty are informed by epidemiological risk

estimates, based on which one can easily derive differences in AIC between

a model structure that includes the effect of interest and one that excludes

it. Deriving model weights based on a single study may, however, not always

be the most appropriate, especially in the case of COPD where the overall

body of evidence include a number of studies pertaining to related respiratory

symptoms and subclinical conditions. In this case, AIC-based weights may be

combined with prior expert opinion in a Bayesian framework.

Third, the present finding that the identification of the optimal level of

pollution reduction and the decision to delay investments are expected to be

driven by the source of financing could be further explored. In particular, in

the present context of budget devolution whereby some NHS funds are to be

transferred to local authorities (as is to be the case of Greater Manchester

in April 2016), it would be of interest to investigate the impact on local air

quality strategies associated with the use of local governments’ budgets to fund

investments in emission reduction. Alternatively, if the intervention were to be

funded through taxation, cost-effectiveness analysis may be further refined by

accounting for the deadweight loss of taxation, i.e. the economic loss resulting

from inefficient activities undertaken as a result of tax introduction (Kay,

1980). A typical example of allocative inefficiency is the inefficient substitution

of taxed paid work for untaxed leisure.

Fourth, a topic of particular relevance to “Healthy Public policy”, which

was only touched upon in Chapter 3, pertains to the distributional analysis of

benefits of air pollution control among subgroups stratified by socio-economic
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status and the associated impacts on socio-economic related health inequal-

ity. Three main factors are expected to drive the socio-economic distribution

of impacts: (i) differential exposure, which is also linked to the issue of en-

vironmental justice when concentration levels are positively associated with

levels of deprivation; (ii) the existence of a socio-economic gradient in health

outcomes that impacts on individuals’ baseline risks of experiencing adverse

health events and (iii) differential susceptibility, i.e. systematic differences in

relative risks between socio-economic subgroups for which however, existing

epidemiological evidence to date remains inconclusive (Laurent et al., 2007).

It should be underlined that accounting for differential exposure to air pollu-

tion by socio-economic status would require to link the presently developed

model of health effects with dispersion modelling, as previously suggested.

Finally, an additional promising extension of the present work would consist

in considering health effects in children (without double-counting), as well as

wider societal effects than health care costs such as impacts on productivity,

school absenteeism and pension costs. Air pollution is expected to impact

productivity via two mechanisms: (i) premature exit of the job market due to

the development of chronic illnesses and (ii) work loss days due to exacerbations

of chronic morbid conditions following acute exposure. School absenteeism is

expected to be essentially linked to acute exposure, e.g. asthma exacerbations.

Consequently, in order to thoroughly encompass wider societal effects, health

effects from acute exposure in both children and adults would need to be

encompassed alongside effects from chronic exposure.
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Appendix A

Adjustment of mortality risk

estimates

General method

The following method is proposed to estimate the excess risk of mortality

from all other causes of death than cause x. The method is outlined for hazard

ratios which are rate ratios.

The hazard ratio of all cause mortality, HR4h,DeathAC , is defined such that:

HR4h,DeathAC =
h(t)e(DeathAC)

h(t)ne(DeathAC)
(A.1)

where h(t)e(DeathAC) and h(t)ne(DeathAC) denote the instantaneous mortal-

ity rate from all causes (AC) per period t in respectively the exposed and

non-exposed groups and 4h is the difference in hazard exposure between the

two groups.

Assuming death from cause x (denoted Deathx) and death from all other

causes than x (denoted DeathAOC) are mutually exclusive events, we obtain:

HR4h,DeathAC =
h(t)e(DeathAOC) + h(t)e(Deathx)

h(t)ne(DeathAC)
(A.2)
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This implies that:

h(t)e(DeathAOC) = HR4h,DeathACh(t)ne(DeathAC)− h(t)e(Deathx) (A.3)

where:

h(t)e(Deathx) = HR4h,Deathxh(t)ne(Deathx) (A.4)

Dividing expression A.3 by h(t)ne(DeathAOC) yields:

HR4h,DeathAOC
= HR4h,DeathAC

h(t)ne(DeathAC)

h(t)ne(DeathAOC)
−HR4h,Deathx

h(t)ne(Deathx)

h(t)ne(DeathAOC)
(A.5)

Therefore, the hazard ratio of mortality from all other causes than x, can

be expressed as a function of:

(i) the hazard ratio of mortality from all causes;

(ii) the hazard ratio of mortality from cause x;

(iii) death rates (death from x, death from AOC, death from AC) in the

non-exposed group, which may be proxied by baseline mortality rates in the

target population of the intervention under assessment.

Adjustment for evaluating the case study

One parameter required for the modelling was the hazard ratio (HR) of

mortality from all causes of death than CHD. The adjustment was performed

using:

1- The central value of hazard ratios of: (i) mortality from all-cause and (ii)

mortality from CHD from Pope III et al. (2002).

2- Population-weighted average annual rates of death in the population of

England aged 40 and above, provided by the UK Office for National Statistics.
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Plugging-in the corresponding values into equation A.5, we obtain:

HR4h,DeathAOC|CHD = 1.07
0.000330

0.000278
+ 1.11

0.000052

0.000278
= 1.05 (A.6)

where 4h represents an increment in PM2.5 concentrations by 10µg/m3 and

AOC stands for all other causes of death than CHD.

(For 4h = −1µg/m3, HR4h,DeathAOC|CHD = 0.995 - see section C)
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Appendix B

Risk estimates: original values

and rescaling

Rescaling of risk estimates (RE) to a decrement in PM2.5 concentration of

1µg/m3 was performed using logarithmic multiplicative scaling, based on the

fact that risk estimates were obtained using log-linear statistical models. As

shown in Chapter 2, this implies that :

RE4PM2.5 = exp(β ×4PM2.5)

⇒ RE4PM2.5=−1µg/m3 = (RE4PM2.5=xµg/m3)
−1
x

The original values of risk estimates taken from the epidemiological litera-

ture are provided in Table B.1.

Parameter Source Values (95% CI) 4PM2.5

RRDev.CHD Gan et al. (2011) 1.02(1.0− 1.05) +1.38µg/m3

HRDeathAC Pope III et al. (2002) 1.06(1.02− 1.11) +10µg/m3

HRDeathAC|CHD Zanobetti and Schwartz (2007) (a) 1.34(1.27− 1.52) +10µg/m3

Table B.1: Risk estimates original values.

(a) Study population was individuals aged 65 years old and above.
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Appendix C

Distribution of London adult

population (40+) by age groups

and gender

Distribution of London adult population (40+) by age groups and gender, based on 2011

census.
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Appendix D

Systematic search: database

queries
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Figure D.1: Pubmed search query. Data 26/04/2014.
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Figure D.2: Embase search query. Data 26/04/2014.
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(a) Studies focusing on females or both gender

(b) Studies focusing on males or both gender

Figure D.3: Sub-group analysis by gender for the association between long-term exposure to
PM2.5 and all-cause mortality (Random effect model - Pooled hazard ratio per 10 µg/m3).
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Appendix E

Meta-analysis: sub-group

analysis by gender
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(a) Studies focusing on females or both gender

(b) Studies focusing on males or both gender

Figure E.1: Sub-group analysis by gender for the association between long-term exposure to
PM2.5 and all-cause mortality (Random effect model - Pooled hazard ratio per 10 µg/m3).
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