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Abstract  

In this thesis the research concentrates on NMR and MRI applications of the recently 

established hyperpolarisation technique, SABRE. Hyperpolarisation is a technique for 

generating enhanced magnetic resonance signals to improve resolution, contrast and signal 

to noise within NMR and MRI. One of the aims of this work was to develop the SABRE 

technique for applications in biomedical systems.   

The thesis focusses on optimising the SABRE technique by catalyst modification. The 

connection between signal enhancement and a range of dependencies such as 

temperature, field and substrate are investigated. Results demonstrate that the rates of 

hydride and substrate ligand exchange were significant when optimising conditions. A 

range of biological substrate molecules were studied.  

Work has also been completed on the development of SABRE techniques for use in 

biologically compatible solvent systems, focusing on using water soluble SABRE pre-

catalysts. Other work performed, focused on optimising the SABRE technique to 

characterise small organic molecules. Pyridine was involved as a model substrate, studies 

on a range of molecules were examined these including substituted pyridines, pyrimidines, 

heteroatom - containing molecules.  

The results shown in Chapter 4 demonstrate the potential of SABRE for the detection of 5-

methylpyrimidine as a contrast agent for in-vivo study.  They also discuss the 

hydrogenation of quinazoline, a novel and unexpected reaction. Work in Chapter 5 

highlights the efforts made towards biocompatibility. This will include an approach for the 

removal of catalyst, which will focus on heterogeneous catalysis. Secondly, an approach to 

obtaining a catalyst that works sufficiently well in a biocompatible medium such as ethanol 

and water solution is detailed.  

 



3 
 

Contents 

Abstract .................................................................................................................................... 2 

Contents ................................................................................................................................... 3 

List of Figures ......................................................................................................................... 12 

List of Tables .......................................................................................................................... 26 

List of Schemes....................................................................................................................... 29 

List of Equations ..................................................................................................................... 31 

Acknowledgments .................................................................................................................. 32 

Declaration ............................................................................................................................. 33 

1. Chapter 1  Introduction .............................................................................................. 34 

1.1. Nuclear Magnetic Resonance (NMR) ................................................................. 34 

1.1.1. History of NMR ........................................................................................... 34 

1.1.2. Uses of NMR ............................................................................................... 34 

1.1.3. Developments in NMR ............................................................................... 35 

1.1.3.1. Fourier Transform Spectroscopy ........................................................... 36 

1.1.3.2. Two dimensional (2D) and Three Dimensional (3D) NMR ..................... 36 

1.1.4. How NMR works ........................................................................................ 37 

1.2. Magnetic Resonance Imaging (MRI) .................................................................. 41 

1.2.1. History of MRI ............................................................................................ 41 

1.2.2. How MRI works .......................................................................................... 42 

1.3. Magnetic Resonance (MR) sensitivity ................................................................ 45 

1.4. Current Enhancement methods......................................................................... 46 

1.4.1. Non-Boltzmann distribution ...................................................................... 46 

1.4.2. Brute Force ................................................................................................. 47 

1.4.3. Optical Pumping (Hyperpolarised Noble Gases) ........................................ 47 

1.4.4. Dynamic Nuclear Polarisation (DNP).......................................................... 49 

1.4.4.1. History of Dynamic Nuclear Polarisation (DNP) ..................................... 49 



4 
 

1.4.4.2. How DNP works ..................................................................................... 49 

1.4.5. Parahydrogen Induced Polarisation (PHIP) ................................................ 50 

1.4.5.1. Research of ParaHydrogen Induced Polarisation (PHIP) and its uses .... 53 

1.4.5.2. Parahydrogen And Synthesis Allow Dramatically Enhanced Nuclear 

Alignment (PASADENA) and Adiabatic Longitudinal Transport After Dissociation 

Engenders Net Alignment (ALTADENA) ................................................................. 53 

1.4.5.3. Summary of PHIP type techniques ........................................................ 55 

1.5. Signal Amplification By Reversible Exchange (SABRE) ....................................... 56 

1.6. Project aims ........................................................................................................ 58 

2. Chapter 2  SABRE Catalyst Design .............................................................................. 59 

2.1. Introduction ....................................................................................................... 59 

2.1.1. History of N-Heterocyclic Carbenes ........................................................... 60 

2.1.2. Preparation of NHCs .................................................................................. 62 

2.1.3. Silver NHC Complexes ................................................................................ 64 

2.1.4. Transition metal complexation of NHCs .................................................... 65 

2.2. Catalyst Design for SABRE .................................................................................. 67 

2.2.1. Synthesis of carbene ImMe2NPri
2 (1-a) ...................................................... 67 

2.2.2. Synthesis of carbene BzIMes (1-b) ............................................................. 68 

2.2.3. Synthesis of metal complexes: [Ir(NHC)(COD)Cl] (2-a, 2-b and 2-c) .......... 70 

2.2.4. Activation of Complexes with Carbon Monoxide ...................................... 73 

2.2.5. Electronic and Steric Effects ....................................................................... 75 

2.2.6. Reactions of 2-a with pyridine and hydrogen ............................................ 78 

2.2.7. Exchange Rate and Activation Parameters ................................................ 84 

2.2.8. Ligand Loss ................................................................................................. 85 

2.2.9. Hydride Loss ............................................................................................... 86 

2.3. Summary ............................................................................................................ 87 

3. Chapter 3 Exemplifying the SABRE method with pyridine ........................................ 88 

3.1. Introduction ....................................................................................................... 88 



5 
 

3.2. Enhancement of 1H NMR signals of pyridine by 2-a, 2-b and 2-c under SABRE 88 

3.3. Polarisation field plot ......................................................................................... 90 

3.3.1. Magnetisation type .................................................................................... 94 

3.4. Only Parahydrogen Spectroscopy (OPSY) .......................................................... 95 

3.5. Effect of temperature to the SABRE catalyst ..................................................... 98 

3.6. Probing  13C NMR experiments ......................................................................... 101 

3.7. Comparison of SABRE Catalysts Performance with Pyridine ........................... 108 

3.8. Enhancements of pyridine derivatives ............................................................. 109 

3.8.1. 2-methylpyridine ...................................................................................... 110 

3.8.2. 3-methylpyridine ...................................................................................... 112 

3.8.2.1. Method 1 applied to 1H NMR............................................................... 112 

3.8.2.2. Effect of changing magnetic field of polarisation ................................ 113 

3.8.2.3. Effect of changing temperature ........................................................... 114 

3.8.2.4. Effect of magnetic field applied to 13C nuclei. ..................................... 115 

3.8.3. 4-methylpyridine ...................................................................................... 118 

3.8.3.1. Effect of polarisation to 13C nuclei ....................................................... 121 

3.8.4. Nicotinamide ............................................................................................ 122 

3.8.4.1. Observable 1H NMR spectra using method 1 ...................................... 122 

3.8.4.2. Effect of changing magnetic field of polarisation ................................ 124 

3.8.4.3. Effect of changing temperature ........................................................... 125 

3.9. Summary .......................................................................................................... 127 

4. Chapter 4 Optimisation of the SABRE Effect for 5-methyl pyrimidine and 

quinazoline. ...................................................................................................................... 130 

4.1. Introduction ..................................................................................................... 130 

4.1.1. Screening a large range of substrates to be used with SABRE. ............... 131 

4.2. SABRE with 5-methylpyrimidine ...................................................................... 132 

4.2.1. Initial polarisation studies of 5-methylpyrimidine ................................... 132 

4.2.2. Optimising 5-methylpyrimidine for SABRE with catalyst 2-c ................... 135 



6 
 

4.2.2.1. Polarisation Transfer Field Plot ............................................................ 135 

4.2.2.2. Temperature ........................................................................................ 139 

4.2.3. Concentration .......................................................................................... 139 

4.2.3.1. The effect of concentration during polarisation when the ratio of 5-

methylpyrimidine to catalyst stays the same ...................................................... 141 

4.2.3.2. The effect of concentration on polarisation transfer when the ratio of 5-

methyl pyrimidine to catalyst changes. ............................................................... 145 

4.3. Imaging ............................................................................................................. 148 

4.3.1. Imaging Results ........................................................................................ 150 

4.4. Effect of deuterium labelling. .......................................................................... 157 

4.4.1. Synthesis of deuterated 5-methylpyrimidine isotopers .......................... 158 

4.4.1.1. 4,6-d2-5-methylpyrimidine ................................................................... 159 

4.4.1.2. 2-d-5-methylpyrimidine ....................................................................... 160 

4.4.1.3. 2,4-d2-5-methylpyrimidine ................................................................... 161 

4.4.2. Testing chlorinated and deuterated 5-methylpyrimidine analogues with 

SABRE 162 

4.5. Conversion of Quinazoline to 3,4-dihydroquinazoline followed by SABRE ..... 165 

4.6. Summary .......................................................................................................... 169 

5. Chapter 5 Heterogeneous and Water Soluble NHC Catalysts used for SABRE ........ 171 

5.1. Introduction ..................................................................................................... 171 

5.2. Heterogeneous Catalysis .................................................................................. 172 

5.2.1. Introduction ............................................................................................. 172 

5.2.2. Immobilization on Polymer Supports ...................................................... 174 

5.2.2.1. Synthesis of an Iridium Supported Polymer ........................................ 175 

5.2.2.2. Exemplifying the SABRE Method with an Iridium Supported Polymer P4

 177 

5.2.3. Encapsulation of a SABRE catalyst. .......................................................... 178 

5.2.3.1. Exemplifying the SABRE method with an Encapsulated 2-c Catalyst .. 180 

5.2.4. Immobilization of NHC complexes on silica supports. ............................. 183 



7 
 

5.2.4.1. Introduction ......................................................................................... 183 

5.2.4.2. Synthesis of Iridium-NHC complexes supported to mesostructured silica 

material. 188 

5.2.4.3. Exemplifying the SABRE method with an iridium complex supported on 

mesoporous silica................................................................................................. 191 

5.2.4.4. Exemplifying PHIP heterogeneous hydrogenations reactions with an 

iridium supported mesoporous silica. ................................................................. 194 

5.3. Iridium NHC catalyst used for SABRE in a biocompatible solvent. .................. 201 

5.3.1. Exploring SABRE efficiency with catalyst 2-e, 2-f and 2-g. ....................... 205 

5.4. Summary .......................................................................................................... 210 

6. Chapter 6  Conclusions and Future Work ................................................................ 212 

6.1. Conclusion ........................................................................................................ 212 

6.2. Future Work ..................................................................................................... 215 

7. Chapter 7  Experimental .......................................................................................... 217 

7.1. Instrumentation ............................................................................................... 217 

7.2. Standard Methods ........................................................................................... 217 

7.2.1. Preparation of parahydrogen .................................................................. 217 

7.2.2. Shake Method (method 1) ....................................................................... 217 

7.2.3. Flow Method (method 2) ......................................................................... 218 

7.2.3.1. Reproducibility of method 2 ................................................................ 219 

7.2.4. Calculation of 1H NMR enhancement factors .......................................... 220 

7.2.5. Total Enhancement .................................................................................. 221 

7.2.6. Calculation of 1H MRI enhancement factors ............................................ 221 

7.2.7. Chemicals and Solvents ............................................................................ 222 

7.3. Reactions .......................................................................................................... 222 

7.3.1. Synthesis of ImMe2NPri
2 (1-a) .................................................................. 222 

7.3.2. Synthesis of BzIMes  (1-b) ........................................................................ 223 

7.3.3. Synthesis of [Ir(COD)Cl]2 .......................................................................... 225 



8 
 

7.3.4. Synthesis of [Ir(μ -OMe)(COD)]2. .............................................................. 225 

7.3.5. Synthesis of [(NHC)AgCl] .......................................................................... 226 

7.3.6. Synthesis of [Ir(NHC)(COD)Cl] (2-a, 2-b) .................................................. 227 

7.3.7. Synthesis of [Ir(1-a)(CO)2Cl] (3-a) ............................................................. 228 

7.3.8. Synthesis of [Ir(1-b)(CO)2Cl] (3-b) ............................................................ 229 

7.3.9. Synthesis of LiOC(CF3)3 ............................................................................. 230 

7.3.10. Synthesis of AgOC(CF3)3. .......................................................................... 231 

7.3.11. Synthesis of 3-acetoxymethylpyridine ..................................................... 231 

7.3.12. Synthesis of [Ir(SIMesCh)(COD)Cl] 2-f ...................................................... 232 

7.3.13. Synthesis of [Ir(SIMesTrimet)(COD)Cl] (2-g) ............................................ 233 

7.3.14. Synthesis of [Ir(IMesOH)(COD)Cl] (2-e) .................................................... 234 

7.3.15. Synthesis of 2-d-5-methylpyrimidine.HCl ................................................ 235 

7.3.16. Synthesis of 2,4-d-5-methylpyrimidine .................................................... 235 

7.3.17. Synthesis of 4,6-d-5-methylpyrimidine .................................................... 236 

7.3.18. Synthesis of silica material M-Bz-Im ........................................................ 237 

7.3.19. Synthesis of silica material M-Bz-Im-Ir(1) .................................................. 238 

7.3.20. Synthesis of silica material M-Pr-Im-Ir(2) .................................................. 239 

7.3.21. Synthesis of 3,4-dihydroquinazoline ........................................................ 240 

7.4. Characterisation of Catalyst Precursors and Their Active Analogues .............. 241 

7.4.1. [Ir(IMes)(COD)Cl] (2-c) ............................................................................. 241 

7.4.2. [Ir(IMes)(pyridine)3(H)2]Cl (5-c) ................................................................ 241 

7.4.3. [Ir(IMes)(Benzimidazole)3(H)2]Cl (5-c) ...................................................... 241 

7.4.4. [Ir(IMes)(Quinazoline)3(H)2]Cl (5-c) .......................................................... 242 

7.4.5. [Ir(IMes)(Quinazoline)2(DCM)(H)2]Cl (5-c) ............................................... 242 

7.4.6. [Ir(IMes)(3,4-dihydroquinazoline)3(H)2]Cl (5-c) ........................................ 243 

7.4.7. [Ir(IMes)(oxazole)3(H)2]Cl (5-c) ................................................................. 243 

7.4.8. [Ir(IMes)(isoxazole)3(H)2]Cl (5-c) .............................................................. 244 

7.4.9. [Ir(ImMe2NPri
2)(COD)Cl] (2-a) .................................................................. 244 



9 
 

7.4.10. [Ir(ImMe2NPri
2)(pyridine)(COD)]Cl (4-a) ................................................... 244 

7.4.11. [Ir(ImMe2NPri
2)(pyridine)3(H)2]Cl (5-a) ..................................................... 245 

7.4.12. [Ir(ImMe2NPri
2)(pyridine)2(MeOH)(H)2]Cl ................................................ 245 

7.4.13. [Ir(BzIMes)(COD)Cl] (2-b) ......................................................................... 246 

7.4.14. [Ir(BzIMes)(pyridine)3(H)2]Cl (5-b) ............................................................ 246 

7.4.15. [Ir(SIMesCh)(COD)Cl] (2-f) ........................................................................ 246 

7.4.16. [Ir(SIMesCh)(pyridine)3(H)2]Cl (5-f) .......................................................... 247 

7.4.17. [Ir(SIMesTrimet)(COD)Cl] (2-g) ................................................................. 247 

7.4.18. [Ir(SIMesTrimet)(pyridine)3(H)2]Cl (5-g) ................................................... 247 

7.5. Characterisation of Substrates and Associated Data ....................................... 248 

7.5.1. Pyridine .................................................................................................... 248 

7.5.1.1. Hyperpolarised spectra ........................................................................ 248 

7.5.2. 3-methylpyridine ...................................................................................... 249 

7.5.2.1. Hyperpolarised spectra ........................................................................ 249 

7.5.3. 4-methylpyridine ...................................................................................... 250 

7.5.3.1. Hyperpolarised spectra ........................................................................ 250 

7.5.4. Nicotinamide ............................................................................................ 251 

7.5.4.1. Hyperpolarised spectra ........................................................................ 251 

7.5.5. 3-acetoxymethylpyridine ......................................................................... 252 

7.5.5.1. Hyperpolarised spectra ........................................................................ 252 

7.5.6. 5-methypyrimidine .................................................................................. 253 

7.5.6.1. Hyperpolarised spectra ........................................................................ 253 

7.5.7. Benzimidazole .......................................................................................... 254 

7.5.7.1. Hyperpolarised spectra ........................................................................ 254 

7.5.8. Imidazole .................................................................................................. 255 

7.5.8.1. Hyperpolarised spectra ........................................................................ 255 

7.5.9. Oxazole ..................................................................................................... 255 

7.5.9.1. Hyperpolarised spectra ........................................................................ 256 



10 
 

7.5.10. Isoxazole ................................................................................................... 256 

7.5.10.1. Hyperpolarised spectra ...................................................................... 257 

7.5.11. Pyrazole .................................................................................................... 257 

7.5.11.1. Hyperpolarised spectra ...................................................................... 258 

7.5.12. Thiazole .................................................................................................... 258 

7.5.13. 1,2,4-Triazole............................................................................................ 258 

7.5.13.1. Hyperpolarised spectrum .................................................................. 259 

7.5.14. Benzoxazole ............................................................................................. 259 

7.5.14.1. Hyperpolarised spectra ...................................................................... 260 

7.5.15. 2,1-Benzisoxazole ..................................................................................... 260 

7.5.15.1. Hyperpolarised spectra ...................................................................... 260 

7.5.16. 1,2-Benzisoxazole ..................................................................................... 261 

7.5.16.1. Hyperpolarised spectra ...................................................................... 261 

7.5.17. Quinazoline .............................................................................................. 262 

7.5.17.1. Hyperpolarised spectra ...................................................................... 262 

7.5.18. Pyrimidine ................................................................................................ 263 

7.5.18.1. Hyperpolarised spectra ...................................................................... 263 

8. Appendices ............................................................................................................... 264 

8.1. Collection of NMR data for the calculation of exchange rates. ....................... 264 

8.1.1. Collection of NMR data for the calculation of exchange rates ................ 264 

8.1.2. Calculation of thermodynamic activation parameters ............................ 264 

8.1.3. Collected rate constant and thermodynamic activation parameters of 2-a 

and with pyridine. .................................................................................................... 265 

8.1.4. Collected rate constant and thermodynamic activation parameters of 2-b 

and with pyridine. .................................................................................................... 266 

8.1.5. Collected rate constant and thermodynamic activation parameters of 2-c 

and with 5-methylpyrimidine. ................................................................................. 267 

8.1.6. Collected rate constant and thermodynamic activation parameters of 2-c 

and with quinazoline in methanol-d4. ...................................................................... 269 



11 
 

8.1.7. Collected rate constant and thermodynamic activation parameters of 2-c 

and with quinazoline in dichloromethane-d2. ......................................................... 270 

8.2. Calibration graphs for concentration studies. ................................................. 272 

8.3. Adapted pulse sequences used within this thesis ........................................... 274 

8.3.1. Standard 90° pulse acquire sequence ...................................................... 274 

8.3.2. 1H OPSYdq NMR pulse sequence – ph_OPSYdq ........................................... 275 

8.3.3. 1D refocused 13C{1H} NMR pulse sequence (13C{1H}_JR) – ph_zg_refocus .. 277 

8.3.4. 1D 13C{1H} NMR pulse sequence refocused for both J coupling and chemical 

shift evolution (13C{1H}_JCSR) – ph_zg_refocused_J+CS .............................................. 278 

8.3.5. 1D 13C INEPT NMR pulse sequence – ph_ineptnd ....................................... 279 

8.3.6. 1D 13C{1H} INEPT NMR pulse sequence – ph_ineptrd .................................. 281 

8.3.7. 2D 1H-1H OPSYdq-COSY NMR pulse sequence – ph_OPSYdq_2D ............ 283 

9. Abbreviations ........................................................................................................... 285 

10. References ........................................................................................................... 289 

 

  



12 
 

List of Figures 

Figure 1.1 Schematic of a multiple pulse experiment of Ernst23 ........................................... 36 

Figure 1.2 Chemical shifts in a rotating frame for spins A and X11 ........................................ 38 

Figure 1.3 J-coupling in a rotating frame, where the vectors have an antiphase disposition 

after an evolution period of ½ J and ¼ J s for doublets and triplets respectively11 ............... 39 

Figure 1.4 1H NMR spectrum showing the 3 distinct chemical environments of protons 

observed in ethanol. NMR spectrum recorded in CDCl3........................................................ 40 

Figure 1.5  1H NMR Zeugmatography of thoracic cavity of a mouse26 .................................. 41 

Figure 1.6 Graph showing longitudinal relaxation (Mz/M0) over time. T1 is when 63 % of 

magnetisation has relaxed to equilibrium. 95 % is represented by 3 x T1
34 .......................... 43 

Figure 1.7 Diagram showing T1 relaxation returning to thermal equilibrium in the xy-plane, 

following at 90° r.f. pulse. ...................................................................................................... 44 

Figure 1.8 Schematic diagram showing Boltzmann and non-Boltzmann distribution. ......... 45 

Figure 1.9 Schematic representation of distribution of spins in a magnetic field. A normal 

distribution shown on the left and a non-Boltzmann distribution shown on the right. ....... 46 

Figure 1.10 MRI images of excised lungs and heart of a mouse as hyperpolarised 129Xe 

enters the lungs51 ................................................................................................................... 48 

Figure 1.11 Schematic showing the four spin combinations of dihydrogen both 

orthohydrogen and parahydrogen ........................................................................................ 51 

Figure 1.12 Schematic of parahydrogen generator used at York .......................................... 52 

Figure 1.13 Schematic of Boltzmann distribution orthohydrogen and non-Boltzmann 

distribution parahydrogen under PASADENA and ALTADENA conditions ............................ 54 

Figure 1.14 Hydrogenation reaction of 13C labelled compound acetylenedicarboxylic acid 

dimethyl ester for the detection of maleic acid dimethyl ester, in the presence of a rhodium 

as reported by Golman et al.87 ............................................................................................... 55 

Figure 1.15 Schematic of SABRE92 .......................................................................................... 56 

Figure 2.1 Representation of singlet and triplet forms of a carbene .................................... 59 

Figure 2.2 Representation of Fischer and Schrock type carbene bonding ............................ 60 

Figure 2.3 Five membered NHC and its precursor; where the base could be KOtBu or NaOEt

 ............................................................................................................................................... 60 

Figure 2.4 Structures of the free carbene ligands 1-a (ImMe2NPri
2), 1-b (BzIMes) and 1-c 

(IMes) prior to complexion .................................................................................................... 67 

Figure 2.5 Carbene complexes 2-a, 2-b and 2-c to be synthesised for use with SABRE ........ 70 

Figure 2.6 IR spectrum corresponding to the addition of CO to complex 3-a ....................... 74 



13 
 

Figure 2.7 cis and trans CO isomers of 3-a ............................................................................. 75 

Figure 2.8 Diagrams representation of the electronic effect (left) and the steric effect (right)

 ............................................................................................................................................... 76 

Figure 2.9 Schematic for the representation of a cone angle for a metal-phosphine, taken 

from a publication by Clavier and Nolan et al. in 2010142 ...................................................... 76 

Figure 2.10 Estimation of the steric bulk of NHCs using a length parameter AL and height 

parameter AH, as proposed by Huang et al. in 1999143 .......................................................... 77 

Figure 2.11 Schematic representing per cent buried volume taken from publication by 

Hillier et al. 2003144 ................................................................................................................ 77 

Figure 2.12 Graph showing the correlation between TEP and νCO for a series of phosphine 

and carbene ligands in [Ir(L)(CO)2Cl] as reported by R Kelly et al,  2007, with the measured 

νCO data obtained for 3-a ( ImMe2NPri
2) and 3-b (BzIMes) from this study140 ....................... 78 

Figure 2.13 1H NMR spectrum of the aromatic region of a solution containing 4-a and 

pyridine showing both the bound and the free resonances of pyridine ............................... 80 

Figure 2.14 1H NMR spectrum of complexes 4-a and 5-a showing the aromatic region only; 

bound and free pyridine resonances are attributed ............................................................. 80 

Figure 2.15 1H COSY NMR spectrum showing selected coupled resonances attributed to 

bound pyridine protons in complexes 4-a (blue) and 5-a (red, trans ligand orientation and 

green cis ligand orientation) .................................................................................................. 81 

Figure 2.16 1H NOESY NMR spectrum of complexes 4-a and 5-a, with the exchange peaks 

between free pyridine and the trans pyridine ligand of 5-a circled in red ............................ 82 

Figure 2.17 1H-13C HSQC NMR spectrum of complexes 4-a and 5-a, identifying the 13C 

resonances in the associated complexes ............................................................................... 82 

Figure 2.18 The reaction co-ordinate for the dissociative reaction for the loss of ligand ..... 84 

Figure 3.1 Observed 1H NMR spectra for pyridine resonances 2, 3 and 4. The thermal is 

represented on top and polarised on the bottom, shaken at approximately 65 G ............... 89 

Figure 3.2 Observed 1H NMR signal intensity changes for pyridine resonances 2, 3 and 4 as a 

function of the PTF using catalyst 2-a and method 2 ............................................................ 91 

Figure 3.3 Graphical representation of the observed 1H NMR signal enhancement profile 

using the activated catalyst 2-a and pyridine as a function of PTF over the range of 0 – 150 

G ............................................................................................................................................. 91 

Figure 3.4 Graphical representation of the observed 1H NMR signal enhancement profile as 

a function of PTF over the range of 0 – 150 G, produced for pyridine using catalyst a) 2-b b) 

2-c........................................................................................................................................... 93 



14 
 

Figure 3.5 Observed 1H signal enhancement field profile for position 3 of pyridine using the 

activated catalyst 2-b ............................................................................................................. 94 

Figure 3.6 Pulse sequence for a double quantum selected OPSY NMR experiment ............. 95 

Figure 3.7 A series of 1H OPSYdq NMR signal intensity profiles for the pyridine resonances 2, 

4 and 3 as a function of PTF (-140 G to 0.5 ) using a) 2-a b) 2-b and c) 2-c. Spectra for 2-c 

was taken from literature149 .................................................................................................. 96 

Figure 3.8 A series of 1H OPSYsq NMR signal intensity profiles for the meta pyridine 

resonance as a function of PTF (0.5 to 140 G) resulting after SABRE using 2-c ..................... 97 

Figure 3.9 Graphical representation of the 1H NMR signal enhancements seen for pyridine 

using catalyst 2-a as a function of temperature at a PTF of a) 0.5 G and b) 65 G ................. 98 

Figure 3.10 Graphical representation of the 1H NMR signal enhancements seen for pyridine 

using catalyst 2-b as a function of temperature at a PTF of a) 0.5 G and b) 65 G ................. 99 

Figure 3.11 Graphical representation of the 1H NMR signal enhancements seen for pyridine 

using catalyst 2-c as a function of temperature at a PTF of a) 0.5 G and b) 65 G ................. 99 

Figure 3.12 13C{1H} and 13C NMR spectra of pyridine, using 2-a in a single scan. The thermal 

trace is presented on the top. The polarised traces are presented in the middle and on the 

bottom, which were obtained using method one at approximately 65 G with a signal-to-

noise ratio for 13C{1H} of 47, 201 and 89 for position 2 to 4 respectively and for 13C of 14, 61 

and 39 for position 2 to 4 respectively ................................................................................ 101 

Figure 3.13 Observable states of Ix type that could be seen under SABRE ......................... 102 

Figure 3.14 The effect of selected combinations of multiple quantum states which affect 

the peak shape in a SABRE experiment ............................................................................... 103 

Figure 3.15 Expansion of the selected resonances of Figure 3.12, for pyridine resonances 2, 

3 and 4. The top spectra represents a 13C experiment and the bottom traces a 13C{1H} 

experiment ........................................................................................................................... 103 

Figure 3.16 Illustration of the resulting spectra which are obtained for 13C{1H} NMR 

experiment pair of perfect antiphase 13C signals ................................................................. 104 

Figure 3.17 Observed 13C{1H} NMR signal intensity profile for pyridine resonances 2, 3 and 4  

as a function of PTF changes using 2-a and method 2 ......................................................... 104 

Figure 3.18 Pyridine 13C{1H} NMR signal-to-noise ratios, obtained on the flow system using 

2-a and standard conditions ................................................................................................ 105 

Figure 3.19 Observed 13C NMR signal intensity for pyridine resonances 2, 3 and 4  as an 

effect of changing polarisation transfer field using 2-a and method 2 ............................... 106 



15 
 

Figure 3.20 Pyridine 13C NMR signal-to-noise ratios, obtained on the flow system using 2-a 

and standard conditions ...................................................................................................... 106 

Figure 3.21 13C NMR spectra of pyridine, using catalyst 2-b and obtained in a single scan. 

The thermal trace is presented on the top and the polarised trace is presented on the 

bottom. Expansion of the polarised trace is presented below to see resonances 1H-13C 

coupling ................................................................................................................................ 107 

Figure 3.22 Pyridine 13C NMR signal-to-noise ratios, obtained on the flow system using 2-b 

and standard conditions ...................................................................................................... 107 

Figure 3.23 Structures of pyridine derivatives which have been investigated using catalysts 

2-a and 2-b a) 2-methylpyridine b) 3-methylpyridine c) 4-methylpyridine d) nicotinamide

 ............................................................................................................................................. 109 

Figure 3.24 Observed 1H NMR spectra for 2-methylpyridine, with the thermal trace 

represented on top and the polarised trace on the bottom; PTF of 65 G with a) catalyst 2-a 

and b) catalyst 2-b ................................................................................................................ 110 

Figure 3.25 Observed 1H NMR hydride region of 2-methylpyridine which is only visible after 

512 scans .............................................................................................................................. 111 

Figure 3.26 Observed 1H NMR spectra of 3-methylpyridine, thermal trace is represented on 

top, and the polarised trace on the bottom; PTF undertaken at 65 G with a) catalyst 2-a and 

b) catalyst 2-b ....................................................................................................................... 112 

Figure 3.27 Observed 1H NMR signal intensity profiles for 3-methylpyridine resonances as 

an effect of changing PTF using 2-a and method 2 .............................................................. 113 

Figure 3.28 Graphical representation of the observed 1H NMR signal enhancement for 3-

methylpyridine as a function of PTF with catalysts a) 2-a and b) 2-b, over the range 0 to -

140 G .................................................................................................................................... 114 

Figure 3.29 Graphical representation of the 1H NMR signal enhancements seen for 3-

methylpyridine using catalyst 2-a as a function of temperature at a PTF of a) 0.5 G and b) 65 

G ........................................................................................................................................... 114 

Figure 3.30 Graphical representation of the 1H NMR signal enhancements seen for 3-

methylpyridine using catalyst 2-b as a function of temperature at a PTF of a) 0.5 G and b) 65 

G ........................................................................................................................................... 115 

Figure 3.31 13C{1H} NMR spectra of 3-methylpyridine obtained as a function PTF with 

catalyst 2-a and method 2 (result of a single scan).  Circled in red are the strongest signals, 

followed by weak signals in blue and green ........................................................................ 115 



16 
 

Figure 3.32 3-methylpyridine 13C{1H} NMR signal-to-noise ratios, obtained on the flow 

system using 2-a and standard conditions .......................................................................... 116 

Figure 3.33 13C NMR spectra of 3-methylpyridine obtained as function of PTF with catalyst 

2-a and method 2 (result of a single scan).  Coloured circles used to highlight the 13C 

resonances ........................................................................................................................... 116 

Figure 3.34 3-methylpyridine 13C NMR signal-to-noise ratios, obtained on the flow system 

using 2-a and standard conditions ....................................................................................... 117 

Figure 3.35 Observed 1H NMR spectra of 3-methylpyridine, thermal trace is represented on 

top, and the polarised trace on the bottom; PTF undertaken at 65 G with a) catalyst 2-a and 

b) catalyst 2-b ....................................................................................................................... 118 

Figure 3.36 Observed 1H NMR signal intensity for 4-methylpyridine resonances as an effect 

of changing polarisation transfer field using 2-a and method 2 .......................................... 119 

Figure 3.37 Graphical representation of the observed 4-methylpyridine 1H NMR signal 

enhancement field profile using the activated catalyst a) 2-a and b) 2-b at 293 K ............. 119 

Figure 3.38 Graphical representation of 1H NMR signal enhancements to 4-methylpyridine 

resonances obtained using activated catalyst 2-a as a function of temperature measured at 

a) 0.5 G and b) 65 G ............................................................................................................. 120 

Figure 3.39 Graphical representation of 1H NMR signal enhancements to 4-methylpyridine 

resonances obtained using activated catalyst 2-b as a function of temperature measured at 

a) 0.5 G and b) 65 G ............................................................................................................. 120 

Figure 3.40 Observed 13C{1H} NMR signal intensity for 4-methylpyridine using catalyst 2-a 

and method 1 at a field of a) 0.5 G b) 65 G .......................................................................... 121 

Figure 3.41 Observed 1H NMR spectra of 3-methylpyridine, thermal trace is represented on 

top, and the polarised trace on the bottom; PT undertaken at 65 G with a) catalyst 2-a and 

b) catalyst 2-b ....................................................................................................................... 122 

Figure 3.42 Observed 1H NMR signal intensity changes for nicotinamide resonances, as a 

function of the PTF using catalyst 2-c and method 2 .......................................................... 124 

Figure 3.43 Graphical representation of the observed nicotinamide 1H NMR signal 

enhancement field profile using the activated catalyst a) 2-a and b) 2-b ........................... 124 

Figure 3.44 Plots of polarisation transfer field for hyperpolarised 1H NMR signal for 

nicotinamide reported by Mewis et al. 2014156 ................................................................... 125 

Figure 3.45 Graphical representation of the 1H NMR signal enhancements seen for 

nicotinamide using catalyst 2-a as a function of temperature at a PTF of a) 0.5 G and b) 65 G

 ............................................................................................................................................. 126 



17 
 

Figure 3.46 Graphical representation of the 1H NMR signal enhancements seen for 

nicotinamide using catalyst 2-b as a function of temperature at a PTF of a) 0.5 G and b) 65 G

 ............................................................................................................................................. 126 

Figure 4.1 Range of substrates screen using catalyst 2-c to test the activity in a SABRE 

measurement ....................................................................................................................... 131 

Figure 4.2 Observed 1H NMR spectra of 5-methylpyrimidine after SABRE, detailing positions 

2, 4 and 7, in conjunction with catalyst 2-c. The corresponding thermal NMR spectra are 

presented on top and polarised NMR spectra on the bottom; a) at a PTF of 0.5 G and b) at a 

PTF of 65 G ........................................................................................................................... 132 

Figure 4.3 Observed 1H NMR signal intensity field profiles for 5-methylpyrimidine 

resonances as an function of changing PTF, over the range 0 to -140 G, using 2-c ............ 135 

Figure 4.4 a) Graphical representation of the observed 1H NMR signal enhancement of 5-

methylpyrimidine using catalyst 2-c as a function of PTF over the range of 0 – 140 G b) total 

1H NMR signal enhancement ............................................................................................... 135 

Figure 4.5 1H OPSYdq NMR signal intensity profiles for the 5-methylpyrimidine resonances 

as a function of PTF .............................................................................................................. 136 

Figure 4.6 Schematic of equilibrium of complex 5-d, with addition of pyridine and H2 to 

form the more efficient complex 6-d, reported by Fekete et al. 2014161 ............................ 137 

Figure 4.7 Observed 1H NMR spectra for 5-methylpyrimidine resonances. The thermal is 

represented on top, polarised sample 2 containing acetonitrile in the middle and polarised 

sample 1 on the bottom shaken at approximately 50 G ..................................................... 138 

Figure 4.8 1H NMR spectra of the hydride region for sample 2 containing 5-

methylpyrimidne and acetonitrile ....................................................................................... 138 

Figure 4.9 Graphical representation of the 1H NMR signal enhancements seen for 5-

methylpyrimidine using catalyst 2-c as a function of temperature at a PTF of a) 0.5 G and b) 

65 G ...................................................................................................................................... 139 

Figure 4.10 1H NMR enhancements obtained for catalyst loading of 2-c as reported by 

Cowley et al 201193 .............................................................................................................. 140 

Figure 4.11 Corresponding 13C NMR INEPTrd spectrum for a quinoline sample at a 

concentration of 0.6 mM163 ................................................................................................. 140 

Figure 4.12 Thermal 1H NMR spectrum of 5-methylpyrimidine (top) and a hyperpolarised 

spectrum of sample 8 (bottom) polarised with 2-c using shake and drop method (method 1) 

at 65G ................................................................................................................................... 142 



18 
 

Figure 4.13  Two single scan spectra of hyperpolarised 5-methylpyrimidine with 2-c using 

13C (top) and 13C INEPTrd NMR pulse sequence .................................................................. 143 

Figure 4.14 Signal-to-noise ratio graphs for sample 1-7 of Table 4.5 for the NMR 

measurement a) 13C  and b) INEPTrd when the effect of concentration is studied and 

substrate to catalyst, 2-c, ratio remain constant at 20 : 1 ................................................... 144 

Figure 4.15 Observed 1H NMR spectrum of 5-methylpyrimidine with thermal trace (top) and 

a hyperpolarised spectrum of sample 7 (bottom) with catalyst 2-c obtained at a PTF of 65G, 

with signal enhancements of -450, -582 and -149 respectively .......................................... 145 

Figure 4.16 Effect of substrate to 2-c excess on the level of polarisation transfer for a metal 

concentration of 5 mM ........................................................................................................ 146 

Figure 4.17 signal-to-noise ratio graphs for sample 1-7 of Table 4.5 for the NMR 

measurement a) 13C  and b) INEPTrd when the effect of concentration is studied, when 

catalyst 2-c concentration remains constant at 5 mM ........................................................ 147 

Figure 4.18 1H RARE MRI images for an NMR tube containing 5-methylpyrimidine and 2-c, 

with the corresponding thermal images represented on the left and hyperpolarised images 

on the right at a PTF of 50 – 60 G with substrate ratio 20:1; the concentration of 2-c is: a)  

15 mM, b) 10 mM and c) 5 mM ........................................................................................... 150 

Figure 4.19 Influence of the amount of catalyst on the signal-to-noise ratio of 5-

methylpyrimidine hyperpolarised/thermal images. In order to observe just the effect of 2-c, 

each Signal-to-noise ratio has been normalized to the concentration of substrate used .. 151 

Figure 4.20 1H RARE MRI images for an NMR tube containing 5-methylpyrimidine and 2-c, 

thermal images shown on the left and hyperpolarised images on the right (collected for a 

PTF of 50 – 60 G, with substrate: catalyst ratio; a) 60:1 b) 40:1 and c) 20:1) ...................... 152 

Figure 4.21 Influence of the substrate: catalyst ratio on the signal-to-noise ratio of 5-

methylpyrimidine hyperpolarised/thermal images. ............................................................ 152 

Figure 4.22 Arrangement of the phantoms and substrate (sub) in the bore of the magnet

 ............................................................................................................................................. 153 

Figure 4.23 1H MRI images of three samples, where the MRI pulse sequences are: a) RARE, 

b) FLASH and c) FISP. The left images reflect the thermal traces whilst the right images 

reflect the hyperpolarised traces. The signal-to-noise ratio of the hyperpolarised 5-

methylpyrimdine signal versus that of water and oil is shown in graphs (d) and (e) 

respectively. Substrate = S, water = W and oil = O. Catalyst loading 1:20 .......................... 154 

Figure 4.24 1H MRI images of three samples, where the MRI pulse sequences are: a) RARE, 

b) FLASH and c) FISP. The left images reflect the thermal traces whilst the right images 



19 
 

reflect the hyperpolarised traces. The signal-to-noise ratio of the hyperpolarised 5-

methylpyrimdine signal versus that of water and oil is shown in graphs (d) and (e) 

respectively. Substrate = S, water = W and oil = O. Catalyst loading 1:60 .......................... 155 

Figure 4.25 1H MRI images obtained for hyperpolarised 5-methylpyrimidine using FISP 

sequence in succession for a total acquisition of 9 s ........................................................... 156 

Figure 4.26 Hyperpolarised 1H NMR for a) 2,6-d2-pyridine and b) 3,4,5-d3-pyridine with 

catalyst 2-a at a PTF of 65 G ................................................................................................. 157 

Figure 4.27 1H NMR spectrum of 4,6-d2-5-methylpyrimidine in methanol-d4 .................... 160 

Figure 4.28 1H NMR spectrum of 2-d-5-methylpyrimidine in methanol-d4 ......................... 161 

Figure 4.29 1H NMR spectrum for 2,4-d2-5-methylpyrimidine in methanol-d4 ................... 162 

Figure 4.30 Observed 1H NMR spectra for SABRE experiments with catalyst 2-c for a) 2,4-d2-

5-methylpyrimidine, b) 2-d-5-methylpyrimidine and c) 4,6-d2-5-methylpyrimidine. The 

vetical expansion of b (x16) and c (x2) is based on spectra obtained for a. ........................ 163 

Figure 4.31 1H NMR spectra showing the inequivalent hydride as a pair of doublets for [Ir(2-

c)(H)2(Quin)2Cl] in dichloromethane-d2 at 226 K ................................................................. 166 

Figure 4.32 Series of 1H NMR spectra following the conversion of quinazoline into 3,4-

dihydroquinazoline by the addition of methanol-d4 to the sample [Ir(2-c)(H)2(Quin)2Cl] in 

dichloromethane-d2 ............................................................................................................. 167 

Figure 4.33 Observed 1H NMR spectra of a) quinazoline when [Ir(2-c)(H)2(Quin)2Cl] in 

dichloromethane-d2    b) the product 3,4-dihydroquinazoline [Ir(2-c)(H)2(Quin)3]Cl after the 

addition of methanol to the dichloromethane-d2 in the presence of H2. The thermal trace is 

represented on top, and the polarised trace on the bottom, under transfer a PTF of 65 G

 ............................................................................................................................................. 168 

Figure 4.34 Proposed stepwise outer-sphere mechanism for the hydrogenation of 

quinolines as reported by by Dobereiner et al 2011148 ....................................................... 169 

Figure 5.1 Immobilisation of lipase on to glutaraldehyde-modified silica surface by the 

adsorption method188 .......................................................................................................... 173 

Figure 5.2 Structure of vanadium complex encapsulated by zeolite frame work191 ........... 173 

Figure 5.3 Formation of palladium carbene complex tethered to a silica support192 ......... 174 

Figure 5.4 1H NMR spectra of a) P1 b) P2 c) P3, as using in the synthesis of P4 .................. 176 

Figure 5.5 Observed 1H NMR spectra for pyridine resonances, a) the thermal is represented 

on top and polarised on the bottom shaken in PTF of 65 G, b) corresponding hydride region 

i) thermal ii) one minute after activating iii) 5 minutes after activating ............................. 177 



20 
 

Figure 5.6 Chemical structure of the transition metal catalyst a) iPr-Au-OTf, and the 

polymer matrices b) resoricin-4-arene, which in wet organic solvent self-assembles to form 

the encapsulated NHC catalyst, c) a hexameric host. Image taken from literature206 ........ 178 

Figure 5.7 Observed NMR signals a) 1H signals b) OPSYdq (including expansion) for the 

pyridine resonances under a PTF of 0.5 G ........................................................................... 180 

Figure 5.8 Observed 1H NMR signals observed for pyridine as a function of time a) aromatic 

region b) hydride region ...................................................................................................... 181 

Figure 5.9 Observed NMR signals of  sample 1 a) 1H signals b) OPSYdq (including expansion) 

for the pyridine resonances under PTF of 0.5 G, using Sample 1 ........................................ 182 

Figure 5.10 Silica-supported S1) second generation Grubbs-Hoveyda, developed by 

KIngsbury et al., 2001215 S2) Ruthenium complex, by Cetinkaya et al., 2002216, S3-S4) second 

generation Grubbs, by Mayr et al., 2002 and Krause et al., 2003220, S5) second generation 

Grubbs-Hoveyda by Fischer et al., 2005218 and S6) second generation Grubbs-Hoveyda by Li 

and Shi 2005219 ..................................................................................................................... 184 

Figure 5.11 A simplified view of grafted oxide material after the grafting reaction (top), and 

a view of the inner surface of the channel pores of the mesostructured organic-inorganic 

material (bottom)225 ............................................................................................................. 185 

Figure 5.12 PASADENA 1H NMR spectrum acquired for hydrogenation of propyne by a) 

homogeneous Wilkinson’s catalyst in benzene-d6 solution at T = 50°C b) immobilized 

Wilkinson’s catalyst (1/PPh2-SiO2) in benzene-d6 solution at T = 70°C. Taken from literature 

reported by Skovpin et al.226. ............................................................................................... 187 

Figure 5.13 Heterogeneous mesoporous silica-supported iridium-NHC catalyst with 

different linker groups a) propyl: M-Pr-Im-Ir b) benzyl: M-Bz-Im-Ir .................................... 188 

Figure 5.14 Observed 13C CP-MAS NMR data for a) material M-Bz-Im b) M-Bz-Im-Ir and c) 

M-Bz-Im-IrCp, the final product from Scheme 5.4 which has been taken from literature 

reported by Maishal et al., 2008225, for comparison. .......................................................... 190 

Figure 5.15 Structure of silica material, showing interaction with surface of siloxane 

bridges228 .............................................................................................................................. 191 

Figure 5.16 Observed 1H NMR spectrum for pyridine using catalyst M-Bz-Im-Ir(1), at PTF of 

0.5 G. Spectrum shows the antiphase hydrogen signal at δ 4.57 ppm ............................... 192 

Figure 5.17 Observed 1H NMR Spectra of nicotinamide using catalyst M-Bz-Im-Ir(2), PTF 

undertaken at 65 G .............................................................................................................. 193 

Figure 5.18 Observed 1H NMR spectra for pyridine resonances when a control sample 

containing both catalyst 2-b and M-Bz-Im-Ir(2) were shaken in a PTF of 65 G ..................... 193 



21 
 

Figure 5.19 Observed 1H NMR spectra for the hydrogenation of phenylacetylene using 

catalyst 2-b in methanol-d4 .................................................................................................. 195 

Figure 5.20 Observed 1H NMR spectra for the hydrogenation of phenylacetylene using 

catalyst 2-b in dichloromethane-d2 ..................................................................................... 196 

Figure 5.21 1H NMR polarisation spectrum of hydrogenation of styrene by a rhodium 

complex [Rh(COD)(dppb)]BF4. Spectrum taken from literature reported by Harthun et al. 

1996232 ................................................................................................................................. 197 

Figure 5.22 1H NMR polarisation spectrum of hydrogenation of phenylacetylene by a 

palladium complex a) experimental spectrum, b) simulation spectrum considering cis and 

geminal-hydrogenation in 3:1 ratio, c) simulation of spectrum of geminal parahydrogen 

into positions H1
 and H3, d) simulation spectrum of a cis parahydrogen transfer into 

positions H1 and H2. Spectra taken from literature repoted by Harthun et al.232 1996 ...... 198 

Figure 5.23 Observed 1H NMR spectra for the hydrogenation of phenylacetylene using 

material catalyst M-Bz-Im-Ir(1) in methanol solution ........................................................... 199 

Figure 5.24 Observed 1H NMR spectra for the hydrogenation of phenylacetylene using 

material catalyst M-Bz-Im-Ir(2) in dichloromethane-d2 solution .......................................... 200 

Figure 5.25 Examples catalyst designed to increase solubility by changing the of 

functionalised NHC substituent group to: - a) carboxylate, b) sulfonate, c) ammonium, d) 

carbohydrate and e) polymer .............................................................................................. 201 

Figure 5.26 PHIP reaction for hydrogenation of (TFPA) in a 30 % ethanol solution, a) scheme 

of the cis addition of parahydrogen, b) 13C NMR enhanced spectra with 17 % polarisation 

level  obtained on a 4.7 T scanner, including a reference sample of natural abundance 13C 

ethanol, c) in-vivo PHIP enhanced 13C NMR image using rapid acquisition with relaxation 

enhancement (RARE) sequence. Images taken from literature reported by , Bhattacharya et 

al. 2011157 ............................................................................................................................. 202 

Figure 5.27 1H NMR enhancement of ATZ in 90 % water, 10 % methanol at 54.4°C (top), 

compared to thermal polarisation (middle). The bottom spectrum is of the substrate 

without catalyst (16 scans). Image taken from literature reported by Zeng et al. 2014240 . 203 

Figure 5.28 Water soluble iridium NHC complexes 2-e, 2-f and 2-g to be tested for SABRE 

activity in a biocompatible medium .................................................................................... 205 

Figure 5.29 Graphical representation of the observed 1H NMR signal enhancement profile 

of pyridine (left) and total 1H NMR signal enhancement (right) obtained in methanol 

solution using  catalyst as a function of PTF using catalyst 2-e, 2-f and 2-g ........................ 206 



22 
 

Figure 5.30 Observed 1H NMR signal intensity changes for pyridine resonances 2, 3 and 4  as 

a function of the PTF using catalyst 2-f and method 2 in a 67 % D2O, 3 % DMSO and 30 % 

ethanol solution ................................................................................................................... 207 

Figure 5.31 a) Graphical representation of the observed 1H NMR signal enhancement of 

pyridine using catalyst 2-f as a function of PTF over the range of 0 – 140 G b) total 1H NMR 

signal enhancement,  in a 67 % D2O, 3 % DMSO and 30 % ethanol solution ...................... 207 

Figure 5.32 a) Graphical representation of the observed 1H NMR signal enhancement of 

pyridine using catalyst 2-e as a function of PTF over the range of 0 – 140 G b) total 1H NMR 

signal enhancement,  in a 67 % D2O, 3 % DMSO and 30 % ethanol solution ...................... 208 

Figure 5.33 SABRE with Oxazole, catalyst 2-f in a 30 % ethanol solution a) Observed 1H NMR 

spectra obtained at the maximum PTF of 80 G, b) graphical representation of the observed 

1H NMR signal enhancement of oxazole as a function of PTF over the range of 0 – 140 G 209 

Figure 5.34 SABRE with 3-hydroxpyridine, catalyst 2-f in a 30 % ethanol solution a) 

Observed 1H NMR spectra obtained at the maximum PTF of 80 G, b) graphical 

representation of the observed 1H NMR signal enhancement of oxazole as a function of PTF 

over the range of 0 – 140 G ................................................................................................. 209 

Figure 5.35 Graphical representation of the enhancement levels achieved for oxazole, 3-

hydroxpyridine and pyridine for SABRE with catalyst 2-f as a function of PTF over a range 0 

– 140 G ................................................................................................................................. 210 

Figure 7.1 Schematic representation of polariser and flow system .................................... 218 

Figure 7.2 Comparing 6 1H NMR spectra measured consecutively using the polariser ...... 220 

Figure 7.3 when E = enhancement, Spol = signal of polarised sample measured by integral, 

and Sunpol = signal of thermally polarised (reference) sample measured by integral........... 220 

Figure 7.4 Labelled structure of pyridine with proton resonances labelled as ortho (σ), para 

(p) and meta (m) .................................................................................................................. 221 

Figure 7.5 Structure of  1-a (ImMe2NPri
2) ............................................................................ 222 

Figure 7.6 Structure of 1-b (BzIMes) .................................................................................... 223 

Figure 7.7 Structure of [Ir(COD)Cl]2. .................................................................................... 225 

Figure 7.8 Structure of [Ir(μ -OMe)(COD)]2. ......................................................................... 225 

Figure 7.9 Structure of NHC.AgCl ......................................................................................... 226 

Figure 7.10 Structure of [Ir(NHC)(COD)Cl] (2-a, 2-b) ........................................................... 227 

Figure 7.11 Structure of [Ir(1-a)(CO)2Cl] (3-a) ...................................................................... 228 

Figure 7.12 IR spectrum corresponding to the addition of CO to complex 3-a ................... 229 

Figure 7.13 IR spectrum corresponding to the addition of CO to complex 3-b ................... 230 



23 
 

Figure 7.14 Structure of LiOC(CF3)3 ...................................................................................... 230 

Figure 7.15 Structure of AgOC(CF3)3. ................................................................................... 231 

Figure 7.16 Structure of 3-acetoxymethylpyridine .............................................................. 231 

Figure 7.17 Structure of [Ir(SIMesCh)(COD)Cl] 2-f ............................................................... 232 

Figure 7.18 Structure of [Ir(SIMesTrimet)(COD)Cl] (2-g) ..................................................... 233 

Figure 7.19 Structure of [Ir(SIMesTrimet)(COD)Cl] (2-e) ..................................................... 234 

Figure 7.20 Structure of 2-d-5-methylpyrimidine ................................................................ 235 

Figure 7.21 Structure of 2,4-d-5-methylpyrimidine. ............................................................ 235 

Figure 7.22 Structure of 4,6-d-5-methylpyrimidine ............................................................. 236 

Figure 7.23 Structure of M-Bz-Im ........................................................................................ 237 

Figure 7.24 Structure of M-Bz-Im-Ir ..................................................................................... 238 

Figure 7.25 Structure of M-Bz-Im-Ir ..................................................................................... 239 

Figure 7.26 Structure of 3,4-dihydroquinazoline ................................................................. 240 

Figure 7.27 Labelled structure of pyridine. .......................................................................... 248 

Figure 7.28 1H NMR field dependence spectra for hyperpolarised pyridine sample. ......... 248 

Figure 7.29 Labelled structure of 3-methylpyridine ............................................................ 249 

Figure 7.30 1H NMR field dependence spectra for hyperpolarised 3-methylpyridine sample.

 ............................................................................................................................................. 249 

Figure 7.31 Labelled structure of 4-methylpyridine ............................................................ 250 

Figure 7.32 1H NMR field dependence spectra for hyperpolarised 4-methylpyridine sample.

 ............................................................................................................................................. 250 

Figure 7.33 Labelled structure of nicotinamide. .................................................................. 251 

Figure 7.34 1H NMR field dependence spectra for hyperpolarised nicotinamide sample. . 251 

Figure 7.35 Labelled structure of 3-acetoxymethylpyridine ................................................ 252 

Figure 7.36 1H NMR field dependence spectra for hyperpolarised 3-acetoxymethylpyridine 

sample. ................................................................................................................................. 252 

Figure 7.37 Labelled structure of 5-methylpyrimidine. ....................................................... 253 

Figure 7.38 1H NMR field dependence spectra for hyperpolarised 5-methylpyrimidine 

sample. ................................................................................................................................. 253 

Figure 7.39 Labelled structure of benzimidazole. ................................................................ 254 

Figure 7.40 1H NMR field dependence spectra for hyperpolarised benzimidazole. ............ 254 

Figure 7.41 Labelled structure of imidazole. ....................................................................... 255 

Figure 7.42 Hyperpolarised spectrum of imidazole. ............................................................ 255 

Figure 7.43 Labelled structure of Oxazole. .......................................................................... 255 



24 
 

Figure 7.44 1H NMR field dependence spectra for hyperpolarised oxazole sample. .......... 256 

Figure 7.45 Labelled structure of isoxazole. ........................................................................ 256 

Figure 7.46 1H NMR field dependence spectra for hyperpolarised isoxazole sample. ........ 257 

Figure 7.47 Labelled structure of pyrazole .......................................................................... 257 

Figure 7.48 Hyperpolarised spectrum of pyrazole ............................................................... 258 

Figure 7.49 Labelled structure of Thiazole ........................................................................... 258 

Figure 7.50 Labelled structure of 1,2,4-triazole ................................................................... 258 

Figure 7.51 Hyperpolarised spectrum of 1,2,4-triazole. ...................................................... 259 

Figure 7.52 Labelled structure of benzoxazole. ................................................................... 259 

Figure 7.53 1H NMR field dependence spectra for hyperpolarised benzoxazole sample. .. 260 

Figure 7.54 Labelled structure of 2,1-benzisoxazole ........................................................... 260 

Figure 7.55 Labelled structure of 1,2-benzisoxazole. .......................................................... 261 

Figure 7.56 Hyperpolarised spectra of 1,2-benzisoxazole. .................................................. 261 

Figure 7.57 Labelled structure of quinazoline. .................................................................... 262 

Figure 7.58 Hyperpolarised spectra of quinazoline ............................................................. 262 

Figure 7.59 Labelled structure of pyrimidine. ...................................................................... 263 

Figure 7.60 1H NMR field dependence spectra for hyperpolarised pyrimidine sample. ..... 263 

Figure 8.1 A plot of the percentage of bound hydride and free hydrogen derived from 1H 

NOESY NMR spectra against the mixing time implemented. This data was collected at 300 K 

and monitored the loss of hydride ligands from 2-b to free hydrogen, when 5-

methylpyrimidine is studied. ............................................................................................... 264 

Figure 8.2 The Eyring plots for hydride ligands and pyridine ligands loss from 2-a in the 

presence of pyridine with associated equations, produced from the data presented in Table 

8.1. ....................................................................................................................................... 265 

Figure 8.3 The Eyring plots for hydride ligands and pyridine ligands loss from 2-b in the 

presence of pyridine with associated equations, produced from the data presented in Table 

8.3. ....................................................................................................................................... 267 

Figure 8.4 The Eyring plots for hydride ligands and pyridine ligands loss from 2-c in the 

presence of 5-methylpyrimidine with associated equations, produced from the data 

presented in Table 8.5. ........................................................................................................ 268 

Figure 8.5 Eyring plots for hydride ligands and quinazoline ligands loss from 2-c in the 

presence of quinazoline with associated equations, produced from the data presented in 

Table 8.7. .............................................................................................................................. 269 



25 
 

Figure 8.6 Eyring plots for hydride ligands and quinazoline ligands loss from 2-c in the 

presence of quinazoline with associated equations, produced from the data presented in 

Table 8.9. .............................................................................................................................. 271 

Figure 8.7 Graphical representation of the absolute integrals of the 5-methyl pyrimidine H 

A, H B and H C, obtained in a single scan 1H NMR spectrum when 2-c catalyst concentration 

and substrate retain constant (mM), ................................................................................... 272 

Figure 8.8 Graphical representation of the absolute integrals of the 5-methyl pyrimidine H 

A, H B and H C, obtained in a single scan 1H NMR spectrum when IMes catalyst 

concentration and substrate (mM) contained different ratio amounts. ............................. 273 

 



26 
 

List of Tables 

Table 1.1 Adapted table of temp versus Orthohydrogen / Parahydrogen population39 ....... 52 

Table 2.2 Characteristic 1H NMR signals for the active complexes 5-a, 5-b and 5-c. ............ 83 

Table 2.3 Relevant thermodynamic and kinetic data relating to the loss of pyridine from 5-

a, 5-b and 5-c*. The data for 5-c* taken from literature93. Errors represented as 95% 

confidence limit, for the rate data, n = 7, for the Eyring data n = 5. ..................................... 85 

Table 2.4 Relevant thermodynamic and kinetic data relating to the loss of hydride ligands 

from 5-a, 5-b and 5-c. The data for 5-c*, taken from literature93 ......................................... 86 

Table 3.1 Comparison of 1H NMR signal enhancement levels (fold) observed for pyridine 

using catalyst 2-a, 2-b and 2-c, shaken at 65G and 0.5G ....................................................... 90 

Table 3.2 1H NMR signal enhancements determined for the indicated pyridine resonances 

by catalyst 2-a under SABRE as a function of temperature ................................................... 98 

Table 3.3 1H NMR signal enhancements of pyridine observed for a range of NHC catalyst, 

which were collected using the flow method, where results are given for highest level of 

polarisation at a specific field. * denotes values taken from literature presented by Lloyd et 

al, 2014152 which were measured at room temperature. # Lifetime not known ................. 108 

Table 3.4 A comparison of the 1H NMR polarisation enhancement for 2-methylpyridine 

using complex 2-a and 2-b ................................................................................................... 110 

Table 3.5 Comparison of the 1H NMR polarisation enhancement data for 3-methylpyridine 

using catalysts 2-a and 2-b ................................................................................................... 112 

Table 3.6 Comparison of the 1H NMR polarisation enhancement data for 4-methylpyridine 

using catalysts 2-a and 2-b ................................................................................................... 118 

Table 3.7 A comparison of the 1H NMR polarisation enhancement for nicotinamide using 

catalysts 2-a and 2-b ............................................................................................................ 123 

Table 3.8 Total enhancements for pyridine, 3-methylpyridine, 4-methylpyridine and 

nicotinamide obtained at room temperature and at a PTF of 65 G. ................................... 127 

Table 3.9 Total enhancements for pyridine, 3-methylpyridine, 4-methylpyridine and 

nicotinamide obtained at the optimal temperature and at a PTF of 65 G. ......................... 128 

Table 4.1 Enhancement levels of substrates investigated with catalyst 2-c for SABRE, 

quoted as measured at the optimum PTF ........................................................................... 131 

Table 4.2 Comparison of the levels of 1H NMR signal enhancement observed for 5-

methylpyrimidine using catalysts 2-a, 2-b and 2-c according to the shake method ........... 133 

Table 4.3 Activation parameters for the loss of 5-mthylpyrimidine ligand and loss of hydride 

ligand when catalyst 2-c precursors are used ...................................................................... 133 



27 
 

Table 4.4 T1 values for 5-methylpyrimidine resonances obtained experimentally at 298 K134 

Table 4.5 The amounts of 2-c and substrate used in the corresponding concentration 

experiments with each made up with 0.6ml methanol-d4 .................................................. 141 

Table 4.6 1H NMR signal enhancement levels of free 5-methylpyrimidine proton resonances 

that were obtained using concentrations listed in Table 4.5. ............................................. 142 

Table 4.7 Summary of signal-to-noise observed in the stated NMR experiment for sample 4 

for the spectra represented in Figure 4.13 .......................................................................... 143 

Table 4.8 The amounts of 2-c and substrate used in the corresponding concentration 

experiments with each made up with 0.6ml methanol- d4 ................................................. 145 

Table 4.9 1H NMR signal enhancement levels for 5-methylpyrimidine ............................... 146 

Table 4.10 Summary of maximum signal-to-noise ratio observed the resulting NMR 

experiment were 13C was from sample 4 and 13C INEPTrd *sample 2 and # sample 5 taken 

from Figure 4.17 ................................................................................................................... 147 

Table 4.11 Comparison of 1H NMR signal enhancement levels (fold) observed for pyridine 

using catalyst 2-c .................................................................................................................. 157 

Table 4.12 Corresponding experimental conditions for the proposed Scheme 4.1 and 

conversion rates (*Isolation as the HCl salt) ........................................................................ 158 

Table 4.13 2H labelling of 4,6-d2-5-methylpyrimidine, and percentage label incorporation

 ............................................................................................................................................. 160 

Table 4.14 2H labelling of 2-d-5-methylpyrimidine, and percentage incorporation ............ 161 

Table 4.15 2H labelling of 2,4-d2-5-methylpyrimidine, and percentage incorporation ....... 162 

Table 4.16 Summarised 1H NMR enhancements levels observed for the 2H labelling of 5-

methylpyrimidine, and percentage incorporation .............................................................. 164 

Table 5.1 Comparison of 1H NMR signal enhancement levels (fold) observed for pyridine 

using IrEnCat as a function of time ...................................................................................... 181 

Table 6.1 Recommended optimal conditions for the desired NMR or MRI measurement, 

including catalyst and substrate concentration and PTF. Listed in the table is the absolute 

signal-to-noise values achieved at these optimum conditions. ^absolute signal 

enhancement, signal-to-noise ratio of the hyperpolarised 5-methylpyrimdine signal versus 

that of  #water and *oil ........................................................................................................ 213 

Table 7.1 Detailing the statistics estimating the reproducibility of method 2 .................... 219 

Table 8.1 Rate constants for the loss of pyridine and hydride ligands from 2-a in the 

presence of pyridine at the indicated temperatures. .......................................................... 265 



28 
 

Table 8.2 Thermodynamic parameters of activation for the loss of hydride and pyridine 

ligands with catalyst 2-a, errors are quoted as 95% confidence limit. ................................ 266 

Table 8.3 Rate constants for the loss of pyridine and hydride ligands from 2-b in the 

presence of pyridine at the indicated temperatures. .......................................................... 266 

Table 8.4 Thermodynamic parameters of activation for the loss of hydride and pyridine 

ligands with catalyst 2-b, errors are quoted as 95% confidence limit. ................................ 267 

Table 8.5 Rate constants for the loss of pyridine and hydride ligands from 2-c in the 

presence of 5-methylpyrimidine at the indicated temperatures. ....................................... 267 

Table 8.6 Thermodynamic parameters of activation for the loss of hydride and 5-

methylpyrimidine ligands with catalyst 2-c, errors are quoted as 95% confidence limit. ... 268 

Table 8.7 Rate constants for the loss of pyridine and hydride ligands from 2-c in the 

presence of quinazoline at the indicated temperatures in methanol-d4. ........................... 269 

Table 8.8 Thermodynamic parameters of activation for the loss of hydride and quinazoline 

ligands with catalyst 2-c in methanol-d4, errors are quoted as 95% confidence limit. ....... 270 

Table 8.9 Rate constants for the loss of pyridine and hydride ligands from 2-c in the 

presence of quinazoline at the indicated temperatures in dichloromethane-d2 ................ 270 

Table 8.10 Thermodynamic parameters of activation for the loss of hydride and quinazoline 

ligands with catalyst 2-c in dichloromethane-d2, errors are quoted as 95% confidence limit. 

*calculated value. ................................................................................................................ 271 

Table 8.11 The amounts of 2-c and substrate used in the corresponding concentration 

experiments with each made up with 0.6ml d4-methanol ................................................. 272 

Table 8.12 The amounts of 2-c and substrate used in the corresponding concentration 

experiments with each made up with 0.6ml d4-methanol. ................................................. 273 

 



29 
 

List of Schemes 

Scheme 2.1 Dimerisation of 1,3-diphenylimidazolidin-2-ylindene (3) .................................. 61 

Scheme 2.2  Synthesis of NHC complex (6) by deprotonation of 1,3-diphenylimidazolium 

perchlorate, and its subsequent reaction with mercury(II) chloride ..................................... 61 

Scheme 2.3 Schematic showing the steps involved in the isolation of the first reported free 

stable carbene, 1,3-di-1-adamantylimidazol-2-ylidene ......................................................... 62 

Scheme 2.4 Synthetic routes to imidazolium salts; a) symmetrical one-pot synthesis from 

glyoxal; b) unsymmetrical two-step synthesis from glyoxal; c) aryl substitution from 1,2 

diamines ................................................................................................................................. 63 

Scheme 2.5 Synthesis of carbenes from a substituted imidazol-2-(3H)-thione, via a sulphur 

reduction ................................................................................................................................ 63 

Scheme 2.6 Reduction of imidazol-2-(3H)-thione to imidazolium-2-ylidene and dimerized 

alkene ..................................................................................................................................... 64 

Scheme 2.7 Synthesis of 1,2,4-triazol-5-ylidene via vacuum thermolysis ............................. 64 

Scheme 2.8  Synthesis of a silver NHC complex, via the deprotonation of the imidazolium 

salt, followed by the addition of silver triflate ....................................................................... 65 

Scheme 2.9  Synthesis of NHC transition metal complex reported by Wanzlick et al.130 ...... 66 

Scheme 2.10  Synthesis of NHC transition metal complex reported by Öfele et al.131 ......... 66 

Scheme 2.11  Synthesis and reduction of imidazol-2-(3H)-thione to produce the carbene 

ImMe2NPri
2 (1-a)..................................................................................................................... 68 

Scheme 2.12 Synthesis of 1-mesitylimidazole from glyoxal and the drop-wise addition of 

2,4,6-trimethylphenylamine .................................................................................................. 69 

Scheme 2.13 Synthesis of BzIMes (1-b) via the reaction of benzylchloride and 1-

mesitylimidazole .................................................................................................................... 69 

Scheme 2.14 Synthesis of [Ir(COD)Cl]2 from iridium trichloride trihydrate ........................... 70 

Scheme 2.15 Synthesis of of [Ir(NHC)(COD)Cl] (2). [2-b when R = BzIMes, 2-a when R = 

ImMe2NPri
2 and 2-c when R = IMes] via [Ir(μ-OMe)(COD)]2 and [Ir(μ-Cl)(COD)]2 ................. 71 

Scheme 2.16 Synthesis of a mono-NHC silver complex, followed by transmetalation, allows 

the formation of [Ir(NHC)(COD)Cl] (2) via [Ir(COD)Cl]2.  [2-b when R = BzIMes, 2-a when R = 

ImMe2NPri
2 and 2-c when R = IMes] ...................................................................................... 72 

Scheme 2.17 Synthesis of [Ir(NHC)(COD)Cl] via the deprotonation of the parent imidazolium 

salt using either KHMDS (1) or KOtBu (2). [2-b when R = BzIMes, 2-a when R = ImMe2NPri
2 

and 2-c when R = IMes] .......................................................................................................... 73 



30 
 

Scheme 2.18 Expected [Ir(NHC)(CO)2Cl] complex formed after the addition CO. [3-b when R 

= BzIMes, 3-a when R = ImMe2NPri
2 and 3-c when R = IMes] ............................................... 74 

Scheme 2.19 Route to 5-a via the initial formation of 4-a upon the addition of pyridine and 

H2 to 2-a ................................................................................................................................. 79 

Scheme 4.1 Chlorinated precursors used in the synthesis of deuterium labelled 5-

methylpyrimidine substrates. These were carried out as individual reactions to obtain the 

corresponding final product ................................................................................................ 158 

Scheme 4.2 Proposed side reaction with protic solvent leads to ethers 2, 3 of Table 4.12 159 

Scheme 4.3 Reaction leading to the formation of [Ir(2-c)(H)2(Quin)2Cl] in dichloromethane-

d2 solution ............................................................................................................................ 165 

Scheme 5.1 Polymerisation reaction to form an organometallic polymer, which can contain 

various transition metals within the backbone196 ............................................................... 175 

Scheme 5.2 Synthetic approach for the preparation of imidazolium salts containing a brush 

polymer and an NHC-based organometallic polymer195 ...................................................... 175 

Scheme 5.3 Sonograshira coupling reaction between iodobenzene and phenylacetylene in 

the presence of PdEnCat™30185 ........................................................................................... 179 

Scheme 5.4 Preparation of silica-supported material M-Bz-Im-IrCp, a) TEOS, HCl, pluronic 

P123, room temperature; b) 2 M HCl/H2O, 45°C; c) mesitylimidazole, toluene, reflux, 2 days, 

then TMSBr, Et3N, toluene, room temperature, 48 hour; d) AgOC(CF3)3, CH3CN, 14 h, room 

temperature; e) [{Cp*IrCl2}2], 24 h, 60°C225 ......................................................................... 186 

Scheme 5.5 Synthesis of materials M-Bz-Cl and M-Bz-Im ................................................... 189 

Scheme 5.6 Synthetic approach for the preparation of imidazolium salts containing 

mesoporous silica and the NHC-based organometallic material M-Bz-Im-Ir(1) via a) 

AgOC(CF3)3 and M-Bz-Im-Ir(2) b) KHMDS .............................................................................. 189 

Scheme 5.7 Mechanism for the hydrogenation of phenylacetylene ................................... 194 

Scheme 5.8 Synthesis of azolium salts a) IMesOH – (1-e) and b) where R = -

N+(CH3)2(CH2CH2OH)Cl- = SIMesCh –  (1-f) and  R = -N+(CH3)3Cl- = SIMesTrimet (1-g).......... 204 



31 
 

List of Equations 

Equation 1.1 Normal Boltzmann distribution equation ......................................................... 45 

Equation 1.2 The overall wavefunction consists of five components, the translational, 

electronic, nuclear, rotational and vibrational terms. ........................................................... 51 

Equation 8.1 Eyring equation ............................................................................................... 265 

 



32 
 

Acknowledgments  

I would like to take this opportunity to thank my supervisors, Professor Simon Duckett and 

Professor Gary Green for their support and guidance throughout my research. 

Secondly I would like to thank GlaxoSmithKline (GSK) for their financial support; in 

particular Andy Roberts who has been very supportive of my research, and has shown me 

great hospitality for which I am very grateful.  

I would like to give a big high five to Ryan Mewis, for all his hard work and patience, 

especially when I had broken something and asking if it is fixable, in 10 minutes! I would 

also like to give a big thank you to fellow students Louise Highton, Lyrelle Lloyd and Jon 

Holmes who have been there since the start and most importantly formed good friendship. 

I would like to thank the entire Duckett research group, in particular, Marianna Fekete for 

guidance with synthesis, Alexandra Olaru for help with MRI, the organic boys Mike Burns 

and Pete Rayner for labelling and Vicky Annis for endless supply of methanol. I would like 

to thank the following students and staff; Iman Khazal, Ralph Adams, David Williamson, 

Beatriz Eguillor, Fran Suarez, Chris Armstrong, Kevin Atkinson, Guan Dexin, Richard Green, 

Sarah-Louise Henshaw, Richard John, Amy Ruddlesden, Kate Appleby, Chris Lancaster, 

Barbara Procacci, Meghan Halse and Hayley Fenton. Thanks needs to also go to project 

student Josh Richards.   

I would also like to thank staff at Lyon France especially Chloe Thieuleux and Reine Sayah 

for their collaborative work, and showing me the sights of the city.  

I would like to thank all the technical and academic staff within the department for 

maintaining both equipment and the three buildings which have claimed residence of the 

Duckett research group since I started in York.  

Finally I would like to thank my mum Kath and Gary and most importantly my partner 

Hannah for believing in me and their continuous support throughout my work.  



33 
 

Declaration 

 

I can confirm, to the best of my knowledge that this work presented in this thesis is original 

and that if any diagrams, tables and text are used that are not original they have been 

identified throughout this thesis and referenced appropriately. This work has not previously 

been presented for an award at this, or any other, University. 

 

 



34 
 

1. Chapter 1  Introduction 

  

1.1. Nuclear Magnetic Resonance (NMR) 

Within the pharmaceutical industry, the ability to analyse samples of new drugs, to 

characterise them and any impurities that are present, is highly desirable1. Furthermore, 

monitoring metabolites2-4 as their travel around the body, and additionally obtaining 

medically instructive images of soft tissue are also very important goals. Using Nuclear 

Magnetic Resonance (NMR) to understand the connectivity of atoms within a drug 

molecule for characterisation, and the drugs relationship with a target protein, or Magnetic 

Resonance Imaging (MRI), to gain images from inside the human body reflect further 

examples3, 5, 6. One method that has the potential to achieve this is magnetic resonance 

(MR), a method whose basic physical principles can be readily understood. This is a truly 

diverse field which is currently limited by sensitivity6, and the work within this thesis aims 

to address this issue. 

1.1.1. History of NMR  

NMR is a useful quantitative technique for the analysis of complex mixtures as it has the 

ability to distinguish between nuclei in different chemical environments. The first concepts 

of NMR were established in 1930’s by Rabi and his team at Columbia University in New 

York7. NMR was then developed by two independent groups of physicists in the United 

States of America in the 1940’s. In late 1945, Purcell, Torrey and Pound discovered it was 

possible to observe signals from the protons of paraffin and  therefore discovered solid 

state NMR8.  In 1946, Bloch, Hansen and Packard detected signals from the protons of 

water and discovered liquid state NMR9. Both physicists, Purcell and Bloch, were awarded a 

Nobel Prize for their contributions to NMR. NMR has since grown and developed into an 

extremely useful technique that can be applied to many different research applications.  

1.1.2. Uses of NMR 

Within the pharmaceutical industry, NMR is widely used in both the liquid and the solid 

state3, 5, 6, 10. Solid state NMR is used in formulation chemistry, investigating drugs and their 

interactions within a complex where identifying potential impurities and degradation 

products is very important2-4. However, it will be liquid state NMR which will be discussed 

throughout this thesis. Liquid state NMR is used widely in the identification of 
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metabolites10 and the characterisation of substrates and impurities during the 

development of new drugs1. However, even with all the developments and improvements 

that have taken place within NMR over the last thirty years, the fundamental method of 

NMR remains broadly the same11, 12.  

1.1.3. Developments in NMR 

The development of NMR stems from the discovery of chemical shift13 which is now used 

to provide diagnostic information in species as diverse as proteins and amino acids. 

Increases in magnetic field strength14, 15 and more sensitive probes, such as cryoprobes16 or 

cold probes now mean that multi-dimensional NMR is used widely for studying small 

molecules and the interrogation of other less sensitive nuclei such as 13C. The invention of 

the cryoprobes increased the sensitivity by at least 3-fold6. The invention of high resolution 

capillary tubes has also aided in the routine collection of NMR spectra. Although these 

probes do not increase sensitivity, they require smaller volumes of sample, which can be an 

advantage as they effectively allow increased concentrations to be used when only small 

amounts of sample are available17. The probe filling factor (ratio of sample volume to probe 

volume, that will affect acquisition time), is optimised, high signal-to-noise then results. 

The most significant improvements in NMR detection methods were made by Richard R 

Ernst and he was awarded a Nobel  prize for his contributions to NMR18 in 1992. The work 

he performed over 20 years transformed NMR into one of the most important instrumental 

measuring techniques in chemistry. Ernst’s developments included dramatically increasing 

both sensitivity and resolution of the instrument, improved multi-dimensional NMR 

experiments and harnessing computing power which helped larger more complicated 

molecules to be studied18.  

Sensitivity is the main disadvantage within NMR and much work has been performed to try 

and increase this. The minimum sample amounts for an analysis in NMR, the limit of 

detection is in the range of 10-9 – 10-11 mol of sample but more sensitive techniques have 

been invented which enable greater sensitivity to be reached, such as Fourier Transform 

methods which take the sensitivity level down to less than 10-12 – 10-15 mol6.  

NMR is widely used in many different areas of science such as protein structure 

determination19, 20, sample characterisation and studying cell metabolism21. It has also been 

useful for analysis of other biological macromolecules22.  
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1.1.3.1. Fourier Transform Spectroscopy 

In 196623, Ernst developed the use of Fourier Transform spectroscopy in NMR from pulse 

excitation experiments that he performed, and this reflects one of the major improvements 

in NMR (Figure 1.1). The continuous wave (CW), technique usually involved the sample 

being interrogated with one fixed frequency source at one time and varying the magnetic 

field to observe all the resonances.  NMR usually gives weak signals using CW, which means 

that the observed signal will be poor, which in turn gives poor signal-to-noise ratio. Ernst 

developments allowed significant changes from CW to Fourier analysis, such that the whole 

spectrum could be collected in seconds rather than minutes giving an increase in 

sensitivity23, which was augmented by signal averaging. 

In 1966, Ernst stated that Fourier analysis gave an increase in sensitivity by 100 fold in a 

given period of time23. This increase in sensitivity enabled chemists to use NMR for the 

analysis of small amounts of material and isotopes with low abundances i.e. 13C.  

 

 

Figure 1.1 Schematic of a multiple pulse experiment of Ernst
23

 

 

1.1.3.2. Two dimensional (2D) and Three Dimensional (3D) NMR 

In the 1970’s, Ernst and Co. also made improvements to two dimensional (2D) NMR 

spectroscopy24 which enabled the observation of the connectivity of nuclei according to 

chemical shift, which is useful for studying very large molecules. This connectivity can be 

used to determine covalently bound nuclei, or nuclei which are close in space, but are not 

covalently bound. In 1987 they also improved three dimensional (3D) NMR techniques22, 
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which is most commonly used for the characterisation of large complexes such as in protein 

structure determination and in complex mixtures of substrates.  

There are a couple of tricks that can be used to increase the sensitivity of NMR which 

correspond to increasing the energy difference between magnetic states of interest. This 

can be done by increasing the magnetic field strength of measurement and/or to 

decreasing the temperature of measurement.  

1.1.4. How NMR works 

NMR works by placing magnetic nuclei into a magnetic field. The interaction with the field 

causes the nuclei to align in the same direction with the field (low energy state) or opposite 

to the field (high energy state). The nuclei are then subjected to radio waves and they 

absorb different energies and can switch between these different energy states.  One view 

is then to suggest that this energy is released as the nuclei return to equilibrium when the 

radio wave is switched off. This released energy is then detected and a spectrum is 

generated. The measure of the position of the signal in the spectrum is called the chemical 

shift and multiplicity, or splitting, of the signal is indicated by the number and type of 

adjacent nuclei where I ≠ 0.  

Chemical shift of a proton in a NMR spectrum is dependent on the electron cloud density of 

its bonds. The greater the density of the electronic cloud, the greater the electronic 

shielding that lowers the B0 magnetic field which the nucleus would normal reside. This 

would move the chemical shift up-field in a 1H NMR measurement.  This can be further 

explained using a vector model with a sample containing two groups of chemically distinct 

but uncoupled spins A and X, following a 90°X pulse. Both vectors start in the x-y plane 

along the y axis of the rotating frame. If the X spin has a greater electronic density, then the 

X vector will be moving faster than the rotating frame by a difference of ν Hz, as seen in 

Figure 1.2. This will mean that X will move ahead of A, and so the difference in chemical 

shift between the spins is simply represented here by vectors processing at different 

rates11. 
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Figure 1.2 Chemical shifts in a rotating frame for spins A and X
11

 

Three pieces of valuable information are obtained from a 1H NMR spectrum. These are; 

chemical shift, which helps determine the chemical environment, signal intensity which is 

proportional to the number of protons present in that environment and splitting of the 

signal into components which indicates the number of nearby protons (n + 1 rule)25.  

J-coupling is a result of through bond interactions, based on the s-orbital overlap coupling, 

in which the spin of one nucleus perturbs the spin of the opposite nucleus. The J coupling is 

field dependent and as the effect is transmitted through the bonding electrons, the J-

coupling increases with increasing s-character of the chemical bond.  This can be described 

using a rotating frame model as shown in Figure 1.3. The doublet, the two lines are 

represented by two vectors processing at +J/2 and –J/2 Hz, and the triplet, the central line 

remains static and the outer two move at +J and –J Hz. The ability to control the orientation 

of the multiple vectors is desirable. This can be achieved simply by choosing an appropriate 

delay period ½ J or ¼ J for the vector evolve to obtain a doublet or triplet respectively11. 
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Figure 1.3 J-coupling in a rotating frame, where the vectors have an antiphase disposition after an evolution 
period of ½ J and ¼ J s for doublets and triplets respectively

11
 

This information can be used to analyse and characterise molecules (Figure 1.4). However 

under FT conditions it would be more accurate to view the signal as the result of an 

induced voltage that is associated with a magnetic state alignment that is created by radio 

frequency excitation. The result is however the same, an NMR spectrum.  
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Figure 1.4 
1
H NMR spectrum showing the 3 distinct chemical environments of protons observed in ethanol. 

NMR spectrum recorded in CDCl3 

The nuclei of atoms are characterised by a nuclear spin quantum number, I, which does not 

always equal 0 and can be a multiple of a ½. Nuclei’s which process no spin quantum 

number, i.e. I = 0 will not exhibit nuclear magnetic resonance and so these nuclei can be 

referred to as “NMR Silent”11. The most common nuclei used in NMR have a nuclear spin 

quantum number of ½, important examples include 13C, 1H and 15N as these are the main 

atoms of interest in drug molecules and metabolites. 1H is the most common isotope and 

has a natural abundance of 99.98% and as a consequence are easily detected using NMR 

and can be referred to as protons. Other common nuclei of interest are 13C and 15N, but 

both of these nuclei have much lower abundances (1.108% and 0.37% respectively) and 

different gyromagnetic ratios, which therefore require longer NMR experiment times. The 

nuclei studied in this thesis will all have I = ½. 
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1.2. Magnetic Resonance Imaging (MRI) 

This technique uses the same principles as NMR, however, the information is collected and 

interpreted in a different manner, which makes it possible to produce images which are 

able to distinguish different types of soft tissue within animals or humans.  

 

1.2.1. History of MRI 

In the 1970’s, the groups of Lauterbur and Mansfield whilst working independently showed 

that spatially resolved NMR signals could be recorded which were later called MRI26-28. They 

shared a Nobel Prize for their work on MRI in 2003.  

In 1973, Lauterbur performed experiments which showed the thoracic cavity of a mouse by 

using magnetic field gradients to produce a spatially resolved 3D map, a technique he 

called NMR Zeugmatography, which means imaging from joining together the main and 

gradient magnetic fields (Figure 1.5)26. Mansfield also produced spatial information in NMR 

by using magnetic field gradients29. Further research performed in 1975 by Ernst, used 

Fourier analysis and is the basis of modern MRI. Research performed in the late 1970’s 

showed how MRI was used for both scientific and biological work such as non-invasive in-

vivo imaging.  A series of both animal and human images were then reported throughout 

the 1970’s exemplifying this technique28, 30.   

 

Figure 1.5  
1
H NMR Zeugmatography of thoracic cavity of a mouse

26
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Lauterbur concluded from his research in the 1970’s that different relaxation rates would 

be observed for different biological tissues and suggested a possibility to use this quality to 

study tumours. Further work was performed in 1971 and 1972 by Damadian and Weisam 

who used measurements of T1 and T2 relaxation times with the aim to distinguish between 

healthy tissues and tumours28, 30. Damadian discovered that the hydrogen signal observed 

from cancerous cells is different to the hydrogen signals observed from healthy cells; 

cancerous cells contain more water and hence more hydrogen atoms28.  

 

1.2.2. How MRI works   

MRI works by measuring the way hydrogen atoms absorb energy and then relax, re-

emitting that energy. The body contains about 60% of hydrogen nuclei also referred to as 

protons, and protons are very sensitive to magnetic fields. Water is of high abundance in 

the body and so MRI is a successful technique to produce images of the body. MRI uses 

magnetic field gradients applied in 3D to encode the MR signal spatially and therefore 

produce a map or image. MRI suffers the same weaknesses as NMR with weak signal 

intensity due to the same physical basis of the method. 1H MRI imaging is further limited by 

the presence of water in the body. MRI does, however, have an advantage over x-ray 

techniques as it able to study soft tissues, ligaments and cartilage without the need for 

surgery.   

Further research in 198631, in MRI has meant that Blood Oxygen Level Differences (BOLD) 

can be examined in the brain, known as functional MRI (fMRI) which has provided very 

good information on the brain function. Also in the 1990’s, MRI has been used to product 

neuro-imaging and musculoskeletal-imaging. This is a very useful imaging technique and 

allows internal organs such as the brain, heart and eyes to be studied, and also allows for 

observation of blood movements through vessels and organs32.  

The MRI instrument consists of a large magnet which generates the magnetic field, shim 

coils, radiofrequency (RF) coils, receiver coil, gradient coil and a computer to produce the 

final image. The signal intensity of MR images are determined by proton density, T1 and T2 

relaxation times and flow of protons.  

This follows from the fact that when a sample is placed in an applied magnetic field, Bo, a 

net magnetisation is created in the direction of the field (the z-axis). When an NMR pulse is 

applied, this alignment is perturbed away from the equilibrium state. T1 is defined as the 
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time required for the net magnetisation to relax back to equilibrium magnetisation. For the 

relaxation process to occur, energy is lost from the spins as heat to the surrounding nuclei, 

through collisions, rotations and electromagnetic interactions. This was described as 

‘nuclear induction’ which can be described mathematically by the Bloch model, whereby T1 

is defined as the time required to change the z-component of the magnetisation by a factor 

of e33.    

𝑀𝑧 =  𝑀0(1 − 𝑒
−𝑡
𝑇1 ) 

T1 is therefore the time required for the z-component to reach 63 % (1-1/e) of the original 

level. After three T1 periods, the bulk magnetisation is therefore 95 % of the original level 

and the measurement can be repeated. This situation is represented graphically in Figure 

1.6 

 

 

Figure 1.6 Graph showing longitudinal relaxation (Mz/M0) over time. T1 is when 63 % of magnetisation has 
relaxed to equilibrium. 95 % is represented by 3 x T1

34
 

 

The T1 relaxation process is shown diagrammatically in Figure 1.7. 
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Figure 1.7 Diagram showing T1 relaxation returning to thermal equilibrium in the xy-plane, following at 90° 
r.f. pulse 

In MRI, the detected signal is generated by the whole of the sample that is placed in a 

homogenous field and no chemical shift information is routinely obtained. The route to 

turn this response into information retrieved from individual part of the sample requires 

the use of gradients. These gradients are applied across the sample, to create areas of 

different magnetic strength field and therefore different processional frequencies. The 

gradients can be applied in three directions, x, y, z axis and are used for slice selection (z 

axis), phase coding (x axis) and frequency encoding (y axis) to produce a 3D image. The 

information is collected in what is known as K-Space, can then be transformed via fourier 

transformation to generate an image35.  
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1.3. Magnetic Resonance (MR) sensitivity  

NMR and MRI are techniques which are very important in both analytical chemistry and 

non-invasive medical imaging. But they both have the one disadvantage of having low 

intrinsic sensitivity when compared to other techniques. The lack of sensitivity within NMR 

was also acknowledged by Ernst in 1992 during his Noble prize lecture18 and can be 

quantified as in Equation 1.1. 

𝑁−

𝑁+
=  𝑒−∆E/kT 

k = Boltzmann constant, N+ and N- = Number of spins in each energy levels 

Equation 1.1 Normal Boltzmann distribution equation  

The low sensitivity is a result of the fact that the NMR response is directly proportional to 

the difference between the number of spins in these two energy levels. Due to the low 

sensitivity, it would be an advantageous to enhance NMR and MRI signals. One method to 

achieve this is by improving hardware i.e. increasing the sensitivity by using a larger 

magnet. The larger magnet size creates a larger energy gap between lower and upper 

energy levels (see Figure 1.8), greater population difference and so therefore a greater 

number of transitions are observed leading to increased signal intensity36. Additional 

equipment can also be used to improve sensitivity such as cryoprobes which work by 

reducing the background noise in the detector circuit16.  

 

Figure 1.8 Schematic diagram showing Boltzmann and non-Boltzmann distribution. 

The most powerful NMR spectrometer can be found in Lyon, France and its magnet can 

generate a magnetic field of 23.5 T (giving a resonance frequency of 1 GHz), this instrument 
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is used in molecules of interest in medicines, and biological and material science. The most 

powerful MRI uses a magnetic field of 9.4 T which can be found in Julich, Germany. 

Researchers are hoping that this powerful MRI will be able to see metabolic processes 

within the brain, giving images of great detail which have never been seen before. But even 

though these hardware advantages are available and have transformed experiments and 

improved sensitivity, they have proven very costly and taxing on resources. There is also a 

limit to the extent of further improvements via these methods. 

1.4. Current Enhancement methods 

With the extent of technological advancements reaching a plateau, new methods of signal 

enhancement must be developed. Without changing the external environment 

(magnets/cryoprobes) as discussed before, a change must be made to the sample. This can 

be achieved by producing a non-Boltzmann distribution which will increase signal intensity. 

Methods which achieve this include Dynamic Nuclear Polarisation (DNP)37, Optical Pumping 

(OP) applicable for hyperpolarised noble gases38 and parahydrogen based methods39. 

Parahydrogen is the method which will be developed in this thesis.  

1.4.1. Non-Boltzmann distribution 

Signal enhancement can be achieved by producing a non-Boltzmann distribution of spins 

rather than Boltzmann distribution. A non-Boltzmann distribution creates an un-even 

distribution of spin states and therefore more transitions and hence greater signal intensity 

can be observed. 

 

Figure 1.9 Schematic representation of distribution of spins in a magnetic field. A normal distribution shown 
on the left and a non-Boltzmann distribution shown on the right. 

The various methods developed to achieve this non-Boltzmann distribution are discussed 

below. 
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1.4.2. Brute Force 

Brute Force is a method of producing a hyperpolarised state that was first used between 

1958 and 1961 by Abragam and Proctor40. In brute force NMR, hyperpolarisation is 

produced by exposing the sample to a high magnetic field and a temperature close to zero 

Kelvin for a time long enough for the new Boltzmann equilibrium to be established. Upon 

thawing, to room temperature, a hyperpolarised state is created38, 41, 42.  

There are two disadvantages with working under these conditions. The time it takes to 

reach polarisation at very low temperature and maintaining the level of polarisation after 

returning to room temperature. Both of these link to the longitudinal relaxation time T1.  

Current areas of research are trying to reduce the T1 at very low temperatures, as 

equilibration can take a long time43. This can be achieved by adding nano-particles44, but 

even with this development, brute force is rarely used due to its extreme experimental 

conditions. 

 

1.4.3. Optical Pumping (Hyperpolarised Noble Gases) 

Optical Pumping is a hyperpolarisation technique by which a non-Boltzmann distribution of 

spins is created. Typical noble gases used in this technique are 3He and 129Xe. Of the two, 

129Xe takes a longer time to hyperpolarise and produces a lower signal-to-noise ratio but is 

much more soluble in blood and so 129Xe is better for studying blood and tissues45-48. 3He is 

quicker to hyperpolarise than 129Xe and, due to a higher gyromagnetic ratio, would yield 

greater signal-to-noise ratios, therefore 3He is better to be used for the study of void space 

imaging of lungs49. Both these noble gases have been successfully used in research, but it is 

129Xe that has been most successful as it is more lipophilic and will dissolve in blood and 

other lipid rich tissues, therefore this is the chosen gas to carry out further research50.  

The lungs are an area of great interest for medical imagers as it is possible to understand a 

large number of conditions; however lungs are a water free gas space which makes it 

difficult to produce an image using normal proton MRI. Hyperpolarised noble gases such as 

129Xe, and 3He, are being used to overcome this as the gas can be inhaled to reveal an 

image of the inside of the lungs.  

In 1994, Albert et al. used this hyperpolarised noble gas technique in biomedical imaging to 

study the lungs of a mouse. The images showed that this was a good hyperpolarised 
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technique and an image was produced of the lungs, but these images were quite poor and 

were not able to provide any structural information (Figure 1.10)51.     

 

Figure 1.10 MRI images of excised lungs and heart of a mouse as hyperpolarised 
129

Xe enters the lungs
51

    

Significant improvements have been made to this technique, and it can now be used to 

distinguish between healthy and diseases lungs52. 

Other research was also performed in 1996, which used hyperpolarised xenon to study 

blood. The research showed an increase in sensitivity when using hyperpolarised xenon 

and comparing the results to thermally polarised spectra46. 

Further research is on-going for the use of hyperpolarised noble gases to investigate airway 

geometry and volumes53. Research is also being performed to produce other uses for 

hyperpolarised noble gases, such as tracking changes in perfusion or up-take of gas into 

tissue54, 55. 129Xe is a good gas to use for this task due to the large sensitivity of the chemical 

shift to molecular environment and good solubility into blood and tissues. This has meant 

that encapsulated Xeon biosensors have been developed and these are particularly good at 

targeting specific analytes56, 57. Laser-polarized xenon NMR benefits from good signal-to-

noise and spectral simplicity with the added advantage of substantial chemical-shift 

sensitivity. The biosensor is designed to bind both xenon and protein, in doing so it is 

expected that the binding of a ligand to the target protein, will reflect in a change of the 

xenon NMR spectrum60. These have the advantage over proton MR as perfusion studies 

there is no 129Xe present in the tissue, and therefore there is no background signal. Such 

methods could also be used to study brain function by perfusion tracking50.  
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1.4.4. Dynamic Nuclear Polarisation (DNP) 

This is a technique which primarily hyperpolarises 13C and 15N nuclei which exhibit 

significantly lower sensitivity compared to proton. DNP consists of polarisation transfer of 

electrons in nuclei in solids by irradiation with a radiofrequency near to the electron 

resonance frequency38.   

 

1.4.4.1. History of Dynamic Nuclear Polarisation (DNP) 

The first DNP experiments were performed in the 1950’s by Albert Overhauser at low 

magnetic field and until recently this technique was limited due to lack of availability of 

high frequency microwave sources. The first applications of DNP were performed in 1960’s, 

to generate polarised targets for solid state physics experiments. In the 1970’s extensive 

work was performed in solution state NMR experiments to study interactions in solutions 

and molecular motion. The limited resources meant that DNP could not develop that fast, 

but in the 1980’s and 1990’s the interest in solid state DNP grew to enhance the sensitivity 

of solid state NMR. The availability of the gyrotron, as a high frequency source in 1993, 

resulted in this approach being used in structural biology. For example, the groups of 

Griffin and Herzfield used the DNP technique to study bacteriorhodopsin58, 59, but since this 

point, its use has expanded to include investigations into self-assembled peptides60, 

ribosome structural biology61 and bacterial cell interactions62. In the 2000’s, further 

research was performed in material science63. The method has also been modified to 

become dissolved-phase or dissolution DNP64. Performed in this way, DNP can be used to 

detect and investigate tumours (2010 – 2012)65.  

1.4.4.2. How DNP works  

DNP generates a non-Boltzmann distribution by transferring polarisation from unpaired 

electrons to nuclei in solids38. This process occurs at very low temperature in a high 

magnetic field which requires high frequency microwave irradiation. DNP exploits the much 

larger polarisation of the electron spin reservoir rather than relying on the nuclear spin 

reservoir, which arises due to differences in their gyromagnetic ratios. The transfer of 

polarisation from the electrons to the nuclei is achieved by the irradiation step. 
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For liquid state NMR, the only DNP mechanism used is the Overhauser Effect (OE). For solid 

state NMR, the DNP mechanisms use the Solid Effect (SE), the Cross Effect (CE) and Thermal 

Mixing (TM)66. 

Dissolution DNP is widely used in research and two significant advances are the ability to 

hyperpolarise pyruvate and water. Hyperpolarisation of pyruvate is widely used but the 

hyperpolarisation of water is still in its early stages67-69.  

Hyperpolarised water has been created using dissolution DNP and OE, but it is dissolution 

DNP which has given larger enhancements and longer T1 values which allow in-vivo 

measurement64, 70. There are still some disadvantages with this technique, most 

significantly the long polarisation time, of an hour.  The T1 relaxation time of water is short 

but can be lengthened by adding D2O. A second disadvantage is the signal enhancement is 

relatively weak so post-processing is required to help enhance image quality71. 

Hyperpolarised pyruvate is also of interest and has been used because of the following 

advantages: ease of availability, high solubility in water, relatively long relaxation time (T1), 

rapid biological transport and metabolism, and a different metabolic profile between 

healthy cells and tumour cells72. Pyruvate undergoes metabolism in the body to form 

lactate, alanine and bicarbonate, and these have specific and distinct 13C chemical shifts. 

The formation of lactate decreases after successful chemotherapy treatments and 

therefore this can be monitored as a measure of the efficacy of a treatment course. This 

hyperpolarised pyruvate reflects a non-invasive imaging technique, of utility in cancer 

diagnosis. The imaging method used to achieve this is called Chemical Shift Imaging (CSI)73 .  

DNP and CSI imaging with pyruvate were originally used in studies of a range of organs in a 

range of species. Based on these results, hyperpolarised pyruvate is going through phase 1 

clinical trials65, 69, 72, 74, 75.  

1.4.5. Parahydrogen Induced Polarisation (PHIP) 

Parahydrogen Induced Polarisation (PHIP) is a method which creates a non-Boltzmann 

distribution through the addition of parahydrogen and most commonly occurs 

hydrogenatively76.  

A dihydrogen molecule (H2) consists of two hydrogen atoms which are covalently bonded77. 

Each of these nuclei has a spin angular quantum number of ½ and these can be + ½ or – ½ 

when placed into a magnetic field. These states can also be referred to as α or β, with α 

being parallel and β being anti-parallel to the external magnetic field. Consequently, a 
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dihydrogen molecule might be thought of having four possible spin configurations, αα, ββ, 

αβ or βα, with αβ and βα. However as the latter two are not distinguishable, they are really 

described by the linear combination76, αβ + βα, and αβ – βα. Three of these spin 

configurations are symmetric (αα, ββ and αβ + βα) to particle interchange and called 

orthohydrogen. They reflect the triplet spin isomer. The other spin configuration (αβ – βα) 

is anti-symmetric; this is called parahydrogen and is a singlet. At room temperature, normal 

hydrogen contains essentially 75% orthohydrogen and 25% parahydrogen (Figure 1.11)76.  

 

Figure 1.11 Schematic showing the four spin combinations of dihydrogen both orthohydrogen and 
parahydrogen 

As the wavefunction (Ψ overall) of H2 must be anti-symmetric and is a combination of 

translational, electronic, nuclear, rotational and vibrational terms (Equation 1.2)78, the 

nuclear spin is linked to the rotational state.  

Ψ overall = Ψ (translational) Ψ (electron) Ψ (nuclear) Ψ (rotational) Ψ (vibration)
78 

Equation 1.2 The overall wavefunction consists of five components, the translational, electronic, nuclear, 
rotational and vibrational terms. 

This is because the translational, electronic, vibrational wavefunctions are always 

symmetric, and so to produce an anti-symmetric wave function, the nuclear and rotational 

wavefunctions must differ in symmetry78. Orthohydrogen, with its symmetric nuclear spin 

configuration (αα, ββ, αβ + βα) must be rotationally anti-symmetric (J= 1, 3, 5...). 

Parahydrogen with an anti-symmetric nuclear spin configuration (αβ – βα) must be 

rotationally symmetric (J= 0, 2, 4....). As J = 0 is the lowest rotational state, the most stable 

isomer is the para isomer and it exists preferentially at low temperature. At room 

temperature all four spin configurations are approximately equally populated resulting in 

75% orthohydrogen and 25% parahydrogen39.  
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Temperature (K) % Parahydrogen % Orthohydrogen  

0 100.00 0.00 

20 99.82 0.18 

75 51.86 48.18 

150 28.54 71.76 

273 25.13 74.87 

> 273 25.00 75.00 

 

Table 1.1 Adapted table of temp versus Orthohydrogen / Parahydrogen population
39

 

As the temperature decreases, the amount of parahydrogen increases, until at 20 K 

hydrogen exists as 99.8% parahydrogen. (Table 1.1)  

The inter-conversion between parahydrogen and orthohydrogen is normally prohibited due 

to the need to change both spin and rotational states79. If a specific isomer is formed it is 

therefore stable for a period of time. In fact, a change from orthohydrogen to 

parahydrogen requires a catalyst. The process of parahydrogen formation occurs by 

cooling ultra-pure hydrogen over a suitable catalyst, such as charcoal or iron dioxide, used 

because they are paramagnetic.  

At the University of York there are two parahydrogen generators, one which cools to 30K, 

producing parahydrogen close to 99%, and the second, now commercially available which 

cools to 38K and produces 90% parahydrogen (Figure 1.12). 

 

Figure 1.12 Schematic of parahydrogen generator used at York 

  

Parahydrogen has no net spin angular momentum and so is NMR silent.  However, reaction 

products derived from parahydrogen are often produced with non-Boltzmann nuclear spin 
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state populations and exhibit greatly enhanced NMR signals. The observation of 

parahydrogen enhanced signals occurs commonly in hydrogenation reactions. When a 

hydrogenation product is derived from natural abundant dihydrogen molecules, all four 

hydrogenation product spin states are equally populated, and so this results in low 

sensitivity in NMR. But if the hydrogenation product is derived from parahydrogen only the 

αβ or βα states are populated. The fact that these states are populated, and the αα and ββ 

states are not results in the large NMR signals.  

1.4.5.1. Research of ParaHydrogen Induced Polarisation (PHIP) and its uses  

The first research which was recorded on parahydrogen was in the 1980’s by Bowers and 

Weitekamp. The experiments performed in 1986 and 1987 considered the hydrogenation 

of acrylonitrile to form propionitrile and were catalysed by Wilkinson’s catalyst, tris-

(triphenyl-phosphine) rhodium (I) chloride. The resulting NMR spectra showed enhanced 

signals in both the propionitrile transitions and in hydride region of the catalyst. This was 

the first publication of ParaHydrogen Induced Polarisation (PHIP)80, 81.  

Since then, there have been numerous papers which have showed the uses and 

effectiveness of PHIP under various conditions and in a variety of compounds. NMR and 

MRI have both been used as a technique to view enhanced signals in this way, and will be 

discussed in more detail later on.  There are two areas in which PHIP has been used with 

magnetic resonance and these are mechanistic organometallic chemistry and 

hydrogenation reactions (used in NMR and MRI).  

1.4.5.2. Parahydrogen And Synthesis Allow Dramatically Enhanced Nuclear 

Alignment (PASADENA) and Adiabatic Longitudinal Transport After 

Dissociation Engenders Net Alignment (ALTADENA)  

The experiments performed by Bowers and Weitekamp in 1986 - 1987, showed the results 

of the incorporation of parahydrogen whilst the sample was in an NMR magnet of 200 

MHz. This result was called Parahydrogen And Synthesis Allow Dramatically Enhanced 

Nuclear Alignment (PASADENA). In a typical PASADENA NMR experiment, two pairs of 

signals are observed of equal intensity, with each pair consisting of one component in 

absorption (pointing upwards) and one component in emission (pointing downwards). 

Signals of this type can also be called anti-phase doublets. In a typical ALTADENA NMR 

experiment, a total of two components are observed, one for each signal but they have 

different phases (Figure 1.13)80, 81.   
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A year later, in 1988 Pravica and Weitekamp performed experiments showing what occurs 

when parahydrogen is added to the solution outside the NMR spectrometer and therefore 

the magnetic states are produced in low field. This is called Adiabatic Longitudinal 

Transport After Dissolution Engenders Net Alignment (ALTADENA). The key difference 

between the two methods stems from where the symmetry of the parahydrogen is broken. 

When the reaction happens in low field the parahydrogen remains in a singlet state, even 

though the symmetry of the molecule has been broken. This nuclear spin symmetry is then 

broken by transfer into high field. This results in a higher population of the βα spin state 

which then affects the signals observed in NMR as detailed in Figure 1.1382.  

 

Figure 1.13 Schematic of Boltzmann distribution orthohydrogen and non-Boltzmann distribution 
parahydrogen under PASADENA and ALTADENA conditions  

An important area of PHIP-enhanced spectra is the ability to detect reaction 

intermediates83 with metal hydride complexes of particular interest. These are often found 

in low concentration and/or can be short lived due to continued reactions occurring84 85.  

PHIP is also a powerful tool which can be used to expand the understanding of reactivity 

and characterisation of complexes or unusual systems. An example was recorded in 2004 

by Anwar et al. where addition of parahydrogen to a metal complex resulted in the 

observation of previously unobserved hydride signals as a result of hyperpolarisation86.  

Research into PHIP also extends into the observation of enhanced signals in MRI, which can 

be observed in-vivo. In this case, polarisation on 13C was measured, due to its longer 

lifetime, typically in tens of seconds, compared to the very short lifetime of 1H. Golman et 

al. followed the hydrogenation of a 13C labelled compound acetylenedicarboxylic acid 

dimethyl ester for the detection of maleic acid dimethyl ester, in the presence of a rhodium 
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catalyst (Figure 1.14)87. The longer lifetime of 13C allows a longer period of time for the 

polarised substrate to move within the body to the area of interest, which is an advantage. 

Another advantage is that 13C gives a very low background signal.  

pH2

 

Figure 1.14 Hydrogenation reaction of 
13

C labelled compound acetylenedicarboxylic acid dimethyl ester for 
the detection of maleic acid dimethyl ester, in the presence of a rhodium as reported by Golman et al.

87
 

This technique was used on rats and showed that it can be used to provide structural blood 

vessel information. Due to the 13C giving very little background signals it means that the 

enhancement doesn’t have to be that high. Two further research studies for PHIP in in-vivo 

studies were performed in 2005 and 2006 by Goldman et al., using species like guinea pigs 

and rats. Both of these species showed greater detail than observed in the research 

performed on rats. This is because guinea pigs have larger blood vessels but also greater 

polarisation was achieved by the parahydrogenation reaction. Within a few years, these 

examples have shown that the polarisation achievable has increased by 10 fold and that 

improvements are likely to continue88, 89.  

A recent research study in 2012 by Zacharias et al., has shown that a significant advantage 

has been achieved by using hyperpolarised diethyl succinate–1-13C,2,3–d2 in aqueous 

solution. This molecule undergoes metabolism to form four products; succinate, aspartate, 

malate and fumarate, which these were observed in the MRI scan, therefore this system 

was able to track the molecule and its metabolism. This advantage of PHIP means that it 

can used to study biological applications and also only takes minutes to produce the 

hyperpolarised state90.  

1.4.5.3. Summary of PHIP type techniques 

To summarise, 13C hyperpolarised molecules generated by PHIP can be used in various 

areas of MRI these are diffusion imaging, perfusion and high resolution angiography. A 

significant advantage of using 13C over 1H is the little background signal observed. 13C also 

has a longer lifetime which is an advantage and allows the acquisition of hyperpolarised 

metabolites. The only potential disadvantage with 13C imaging is that standard clinical MRI 

scanners are equipped for 1H imaging only. One issue with the standard PHIP technique is 

the requirement that a hydrogenable precursor must be available. Another technique, 
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known as Signal Amplification By Reversible Exchange (SABRE), has been developed to 

overcome this limitation.   

1.5. Signal Amplification By Reversible Exchange (SABRE) 

SABRE is a technique which was first reported in 2009. SABRE uses parahydrogen as the 

source of hyperpolarisation, and is a non-hydrogenative process79, 91, 92. This is an 

advantage over PHIP as no chemical change occurs to the compound of interest. The first 

research reported using SABRE in 2009, examined polarisation transfer to pyridine, 

nicotinamide, nicotine, pyrazine, quinolone and quinazoline92. These substrates where 

studied at a concentration of 100mM (0.062 mm) in 0.6 ml of methanol-d4.  

SABRE consists of three components, parahydrogen (polarised H2 gas), a catalyst (a metal 

based agent) and the substrate of interest (Figure 1.15).   

 

 

Figure 1.15 Schematic of SABRE
92

 

The catalyst allows polarisation to flow from parahydrogen into the substrate when both 

are bound to the metal complex. The bound ligands must form a spin coupled system for 

this to happen93. This has been rationalised theoretically on the basis of a density 

functional theoretical study for a defined spin system94. 

Within the SABRE process two significant terms are created. These are longitudinal 

magnetisation Iz and longitudinal two spin order magnetisation IzSz.  The size of the flip 

angle will therefore control the appearance of any NMR spectra. I.e. if a 90O angle is used, 

then only the Iz magnetisation signals will be seen. But if a smaller flip angle is used, then 

the detection of the IzSz term is possible. Research performed by 2011 by Cowley  et al. 

proved that the population of the Iz and IzSz states varied with the magnetic field 

experienced by the sample at the point of polarisation transfer93. Control of this parameter 

therefore reflects a novel way to select a magnetic state. These two types of magnetisation 

can also be differentiated by the application of Only Parahydrogen SpectroscopY (OPSY) 

protocol95. 
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Other research performed in 2010 by Gong et al. tested the sensitivity of the SABRE 

technique and showed that 4.9 µl of pyridine could be detected. The signals observed were 

recorded on a low field NMR spectrometer at 250 kHz. This result illustrates that SABRE can 

be used to detect trace amounts of substrate96 using an inductive coil like that used at high 

field. 

SABRE has now been exemplified in literature for a number of applications which include 

the detection of trace amounts of substrate92, 96, to make invisible NMR signals visible96 and 

to increase the scope of potential substrates that can be examined. Research performed in 

2011 by Gloggler et al. looked into different types of substrates, successfully polarising 

amino acids at low field97. Further research was also performed in 2012 by Dücker et al. 

which further increased the scope of substrates that can be hyperpolarised using SABRE, in 

this case they investigated eight substrates, that all contained 5-membered nitrogen 

containing aromatic rings98.  

There have been two types of polarisation-transfer catalyst (PTC) used in SABRE, both of 

them are of the form [Ir(L)(COD)Cl], where L can be either a phosphine ligand, or more 

commonly a carbene ligand. Initial research was performed using Crabtree’s catalyst, which 

contained tricyclohexylphosphine (PCy3)
99. Analogues were then investigated where the 

phosphine was replaced with other phosphine ligands (PPh3 for example), but in doing this, 

the levels of polarisation measured for pyridine changed and the observed trends 

suggested a more electron rich metal centre was needed. This can be achieved by replacing 

the phosphine ligands with carbenes99. Further research was performed in 2011 and 2012 

which used a range of carbene ligands and N-heterocyclic carbene ligand which resulted in 

increased levels of signal ligand enhancement100.  

It is therefore possible to conclude that SABRE reflects an exciting opportunity to create 

hyperpolarised molecules. These molecules might be expected to contribute to clinical 

diagnosis in due course. Prior to this point a number of developments are needed which 

are set out in my thesis aims. 
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1.6. Project aims 

The aims of this project are to conduct research to further improve the levels of signal 

enhancement that it is possible to create via the application of SABRE. I set out a route to 

explore this optimisation through a range of homogeneous catalysts. These involve a 

synthetic strategy that is based on modifying the steric effects of a carbene ligand. I then 

develop methods to produce a heterogeneous catalyst. This work reflects the need to 

remove the catalyst from the substrate. These systems are examined initially for SABRE 

using the probe pyridine.  

I then expand on these studies by moving to a range of methylpyridines and nicotinamide 

to test catalyst tolerance to the substrate. Studies on temperature, concentration and the 

magnetic field experienced by the sample the point of SABRE are used to inform future 

experiments. As part of this programme 5-methylpyrimidine was discovered to reflect a 

good target because of its long T1. A novel hydrogenation reaction involving quinazoline 

was also observed which led to an unexpected reaction mechanism. The results of my 

thesis will therefore illustrate progress towards the goal of in-vivo MRI use with SABRE 

whilst demonstrating that it can be used as a mechanistic probe of catalysis.  
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2. Chapter 2  SABRE Catalyst Design 

 

2.1. Introduction 

A free carbene, CR2, can exist in three distinct forms which reflect singlet and triplet spin 

isomers. In one of the singlets, the electrons are paired together in the sp2 lone pair, in the 

other singlet, one electron is located in each of the sp2 and p orbitals with opposite spin, 

but in the triplet the spin states are the same (Figure 2.1). 

 

Figure 2.1 Representation of singlet and triplet forms of a carbene 

In 1964, Fischer101 introduced the concept of a double bond between a transition metal and 

carbon through the synthesis of (CO)5W=C(Ph)(OMe) which reflects the successful binding 

of a carbene to the metal centre. Such complexes contain electrophilic heteroatoms and 

are stabilized by metals in a low oxidation state. Their chemical bonding is based on a sigma 

type electron donation of the lone pair of the carbon sp2 orbital into an empty metal d-

orbital and π-type back bonding of another d-orbital into the empty p-orbital of the 

carbene carbon; the heteroatom can also donate into this orbital to increase stability.  

Schrock, in 1975102, prepared a number of tantalum complexes which included 

(Np)3Ta=CH(CMe3) and (5-Cp)2MeTa=CH2 that also featured a metal carbon double bond. 

These types of complex were subsequently referred to as nucleophilic alkylidene 

complexes and are commonly formed when the metal centre also coordinates strong donor 

ligands that have no π acceptor capability to the metal, which is in a high oxidation state. 

The bonding between Fisher and Schrock carbene complexes therefore differs dramatically 

because in the former the carbene carbon is electron poor while in the latter it is electron 

rich.  
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Figure 2.2 Representation of Fischer and Schrock type carbene bonding  

One more recent example is reflected in the class of ligands provided by N-heterocyclic 

carbenes (NHCs). These are neutral compounds, which possess a divalent carbon atom with 

six valence electrons that can be stable in their own right. There are many examples of 

NHCs that have been reported which contain four103, five, six104-106 and even seven107, 108 

membered heterocycles, but most NHCs are based on five membered rings. An example of 

a generic NHC and its precursor can be seen in Figure 2.3. The behaviour of this type of 

NHC will be discussed further in the following section. 

 

Figure 2.3 Five membered NHC and its precursor; where the base could be KO
t
Bu or NaOEt 

2.1.1. History of N-Heterocyclic Carbenes 

The first attempt to isolate a free NHC was reported in 1960 by Wanzlick via the synthesis 

of 1,3-diphenylimidazolidin-2-ylidene (3) by the thermal elimination of chloroform from 

compound 1, as shown in Scheme 2.1. However, this resulted in the formation of the 

electron rich olefin, 2, not the proposed free carbene. Wanzlick assumed that there was an 

equilibrium between the free carbene and the isolated dimer109, but initial reports by other 

groups studying related cross coupling reactions between olefins did not support this idea. 

For example, Lemal et al. carried out experiments with various dimers using conditions 

more extreme than those used by Wanzlick, and in these experiments the dimers showed 

no dissociation110, 111. However, this worked was revisited in the 1990s by Denk et al. who 

reported on a series of related crossover reactions employing a wide range of dimers under 
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similar  - or milder - conditions to those used by Lemal, and now their results supported 

Wanzlick’s original equilibrium idea112-114. 

 

        1       2             3  

Scheme 2.1 Dimerisation of 1,3-diphenylimidazolidin-2-ylindene (3) 

In 1970, Wanzlick and Schönherr, carried out further work in this area and showed that it 

was actually possible to deprotonate the imidazolium salt, 1,3-diphenlimidazolium 

perchlorate (4), using potassium tert-butoxide. While the free carbene (5) was not isolated, 

it could be trapped by reaction with mercury(II) chloride as its mercury adduct (6). This 

reaction is shown in Scheme 2.2115. 

 

 4          5        6    

Scheme 2.2  Synthesis of NHC complex (6) by deprotonation of 1,3-diphenylimidazolium perchlorate, and its 
subsequent reaction with mercury(II) chloride 

Thirty years after Wanzlick’s original work, Arduengo et al. reported the isolation of the 

first stable crystalline NHC. This was achieved by deprotonation of 1,3-

adamatylimidazolium chloride (7) with sodium hydride, in the presence of catalytic 

amounts of either potassium tert-butoxide or dimethylsulfoxide, to give the free carbene 

(8) as shown in  Scheme 2.3. This discovery resulted in a new found interest in NHCs, their 

chemistry and their applications116. 
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 7      8  

Scheme 2.3 Schematic showing the steps involved in the isolation of the first reported free stable carbene, 
1,3-di-1-adamantylimidazol-2-ylidene 

2.1.2. Preparation of NHCs 

Since the isolation of 1,3-di-1-adamantylimidazol-2-ylidene by Arduengo, the first free 

stable NHC, many possible ways to synthesise imidazolium and imidazolinium salts have 

been found. These salts act as precursors to NHCs which have now been isolated through a 

variety of methods. In fact, there are many synthetic routes to producing symmetrical, 

unsymmetrical and aryl substituted imidazolium and imidazolinium salts, some of which are 

illustrated in Scheme 2.4117-119.   

Symmetrical N-substitution strategies for the synthesis of imidazolium salts were first 

reported by Wallach et al.120 in 1925 (Scheme 2.4 (a)) based on a one-pot synthesis starting 

from glyoxal, primary amine and formaldehyde. A variation of this synthesis (Scheme 2.4 

(b)) has been reported by Gridnev et al.121; it is a two-step synthesis that is suitable for 

symmetrical N-substitution. Scheme 2.4 (c) shows the one-step synthesis of an aryl 

substituted imidazolium salt that can be produced by reaction with a 1,2 diamine 

(produced from a Pd-catalysed Buchwald Coupling). 
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Scheme 2.4 Synthetic routes to imidazolium salts; a) symmetrical one-pot synthesis from glyoxal; b) 
unsymmetrical two-step synthesis from glyoxal; c) aryl substitution from 1,2 diamines 

Kuhn et al. reported a two-step method for the production of a thermally stable, alkyl-

substituted NHC. This was achieved by the reduction of imidazol-2-(3H)-thione with 

potassium in refluxing THF122. However, this route was dependent on the R substituent 

attached to the nitrogen which could not be labile. A similar challenge was faced by 

Arduengo during their related attempts to isolate free carbenes123.   

 

   9          10            11  

Scheme 2.5 Synthesis of carbenes from a substituted imidazol-2-(3H)-thione, via a sulphur reduction 

A similar synthetic method has been described by Denk et al. for the synthesis of 

imidazolidin-2-ylidenes (13) and their corresponding electron-rich alkene dimers (14) that 

was based on thione precursors112 (12). 
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          12        13             14   

Scheme 2.6 Reduction of imidazol-2-(3H)-thione to imidazolium-2-ylidene and dimerized alkene 

The first crystalline triazole-derived carbene, 1,2,4-triazol-5-ylidene, was reported by 

Enders et al. in 1995 (Scheme 2.7).  They produced a methoxy-derivative by reacting 1,3,4-

triphenyl-1,2,4-triazolipume perchlorate (15) with sodium methoxide (NaOMe). The 

endothermic elimination of methanol, under vacuum thermolysis, led to the first 

commercially available NHC carbene (17)124. 

 

          15             16           17  

Scheme 2.7 Synthesis of 1,2,4-triazol-5-ylidene via vacuum thermolysis 

2.1.3. Silver NHC Complexes 

The first silver NHC complex (20), shown in Scheme 2.8, was reported by Arduengo in 

1993125, Scheme 2.8. It was synthesised through the deprotonation of imidazolium salt (18) 

to make the free carbene and then reacting the resultant product with silver triflate 

(AgO3SCF3). Whilst this method has been widely used, the harsh conditions used to 

generate the free carbene (19) which employ strong bases such as KOtBu or KH that can 

deprotonate other sites and lead to decomposition. This decomposition pathway is 

especially relevant when a methylene group is adjacent to the nitrogen centre of an 

imidazolium ring. 
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   18    19    20 

Scheme 2.8  Synthesis of a silver NHC complex, via the deprotonation of the imidazolium salt, followed by the 
addition of silver triflate 

The use of silver oxide (Ag2O) in such a carbene preparation was first reported by Wang and 

Lin in 1998126. Since this point, other silver base have been used with Guerret et al. creating 

a silver NHC polymer by using silver acetate (AgOAc)127. Furthermore, Tulloch et al.128 used 

Ag2CO3 as the metalation agent, but found that the reaction times exceeded those for 

Ag2O. Despite these alternatives, Ag2O still remains the most widely used reagent as the 

ensuing reaction can be easily monitored through the uptake of the insoluble silver salt, 

and the reaction can be carried out in an array of solvents which include DCM, DMSO, 

acetone, acetonitrile, methanol, DMF and water, without the need for heating. 

Work conducted by Garrison et al.129 showed that NHC reactions could be carried out in 

water, which suggests that the deprotonation and subsequent metalation is a concerted 

reaction. Tulloch et al.128 also showed how the NHC’s steric bulk affects the uptake of silver 

oxide, with the result that NHCs with larger side chains often required refluxing. 

2.1.4. Transition metal complexation of NHCs 

The first transition metal NHC complexes were reported by Wanzlick et al.130 and Öfele et 

al.131 in 1968. Although Wanzlick was unable to isolate the free carbene, he was able to 

prepare mercury NHC (22) by reaction of an imidazolium salt ((21) of Scheme 2.9) with 

mercury acetate, which is basic enough to deprotonate the imidazolium salt. This resulted 

in the formation of a bi-cationic mercury complex. Shortly afterwards, Öfele reported the 

synthesis of the chromium NHC (24) from a [HCr(CO)5]
- imidazolium salt (23) through the 

thermally driven loss of H2 according to Scheme 2.10131. 
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 21       22   

Scheme 2.9  Synthesis of NHC transition metal complex reported by Wanzlick et al.
130

  

 

 23          24 

Scheme 2.10  Synthesis of NHC transition metal complex reported by Öfele et al.
131
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2.2. Catalyst Design for SABRE 

As noted in Chapter 1, SABRE employs a carbene ligand because it conveys the necessary 

electron donating character required for optimal reactivity and, therefore, SABRE 

efficiency. Based on the methods of Kuhn and Arduengo, it is possible to conceive that 

different carbene based catalysts could be used in the SABRE process. Figure 2.4 

exemplifies three such NHC options, that could subsequently be used to form three 

derivatives of [Ir(NHC)(COD)Cl] which might be expected to be air stable. The three 

different carbenes used in this part of the thesis are therefore ImMe2NPri
2 (1-a), BzIMes (1-

b) and IMes (1-c). The free carbenes, 1-a and 1-b are not commercially available and were 

therefore prepared as part of this work. Carbene 1-c has been used extensively in the 

research group and was sourced internally.  

 

 

1-a          1-b      1-c 

Figure 2.4 Structures of the free carbene ligands 1-a (ImMe2NPr
i
2), 1-b (BzIMes) and 1-c (IMes) prior to 

complexion  

2.2.1. Synthesis of carbene ImMe2NPri2 (1-a) 

The synthesis of 1-a followed the two-step process reported by Kuhn et al. 1993123. The 

first step is cyclisation of the NHC ring, and the second is reduction of the corresponding 

imidazol-2-(3H)-thione (Scheme 2.11). This NHC proved difficult to synthesise according to 

this literature approach because of the Na/K amalgam employed. The first step makes use 

of a Dean-Stark condenser to collect the by-product water from the reaction. This reaction 

was monitored over a period of 48 hours, which was the point at which no more water was 

formed, and is indicative of the reaction reaching completion. The second step in the 

literature uses a potassium and sodium amalgam as a reducing agent. It was decided to try 

this final step using only potassium to reduce the sulphur group to form the free NHC. The 

final product, the free carbene, is air sensitive, producing a yellow oil from a yellow solid 

when left standing. This final product was therefore stored in a glove box under a nitrogen 
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atmosphere. Typically yields of between 80% and 90% were achieved. The product was 

characterised by NMR and MS, these data are presented in Experimental Section 7.3.1. 

 

Scheme 2.11  Synthesis and reduction of imidazol-2-(3H)-thione to produce the carbene ImMe2NPr
i
2 (1-a) 

2.2.2. Synthesis of carbene BzIMes (1-b) 

The synthesis of 1-(2,4,6-trimethylphenyl)-1H-imidazole (1-mesitylimidazole, 1-b) was  

reported by Arduengo and co-workers132, but a slight modification of the method has 

subsequently been developed by Occhipinti et al.133 (Scheme 2.12). Occhipinti’s method 

uses glacial acetic acid, aqueous formaldehyde and glyoxal, which were mixed at 70˚C.  An 

aqueous solution of 2,4,6-trimethylphenylamine, glacial acetic acid and ammonium acetate 

was then added in a drop-wise manner over a period of 18 hours at 70˚C to the glyoxal 

acetone mixture. After recrystallization in ethyl acetate, 1-mesitylimidazole was obtained 

as a beige crystalline solid in a yield of 65%. Characterisation data for 2,4,6-

trimethylphenylamine are presented in the Experimental Section 7.3.2. 
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Scheme 2.12 Synthesis of 1-mesitylimidazole from glyoxal and the drop-wise addition of 2,4,6-

trimethylphenylamine 

The second step is straight forward. It involves taking 1-mesitylimidazole, dissolving it in dry 

degassed toluene and adding benzylchloride dropwise over 30 minutes, followed by 

heating at reflux for 12 hours (Scheme 2.13). The final product of this reaction, 1-b, was 

washed with hot pentane to obtain a colourless powder in good yield (97%). 

Characterisation data for 1-b are presented in the Experimental Section 7.3.2. 

 

           1-b 

Scheme 2.13 Synthesis of BzIMes (1-b) via the reaction of benzylchloride and 1-mesitylimidazole 
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2.2.3. Synthesis of metal complexes: [Ir(NHC)(COD)Cl] (2-a, 2-b and 2-c) 

This section will discuss the routes through which carbenes 1-a, 1-b and 1-c can be 

complexed to a metal centre to give complexes 2-a, 2-b and 2-c (Figure 2.5). These studies 

were completed in order to determine the best synthetic route  to an immobilised NHC 

(Chapter 5). 

   

               2-a         2-b                2-c 

Figure 2.5 Carbene complexes 2-a, 2-b and 2-c to be synthesised for use with SABRE 

The first stage of this synthesis was the preparation of bis(1,5-

cyclooctadiene)diiridium(I)dichloride ([Ir(COD)Cl]2) (Scheme 2.14), which is used in all of 

these reactions. This material was synthesised from iridium trichloride trihydrate which 

was suspended in a 1:2 deoxygenated mixture of water and isopropyl alcohol. 1,5-

cycloctadiene (COD) was added to this mixture and the resulting solution heated to 98°C 

for between 24 and 48 hours. After cooling, a red precipitate formed, which was collected 

by filtration and dried; a typical yield was 55 %, and the corresponding characterisation 

data, can be found in Experimental Section 7.3.3. 

 

 

Scheme 2.14 Synthesis of [Ir(COD)Cl]2 from iridium trichloride trihydrate 

Using the [Ir(COD)Cl]2, it is possible to  prepare bis(1,5-cyclooctadiene)di-μ-

methoxydiiridium ([Ir(μ-OMe)(COD)]2). This complex was synthesised by dissolving 
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[Ir(COD)Cl]2 in methanol in the presence of KOH. After 1 hour, a yellow solution formed. 

Water was then added with the result that yellow solid precipitated. It was  important to 

remove the supernatant liquor relatively quickly after the water was  added, as the solid 

can degrade in solution. The [Ir(μ -OMe)(COD)]2  formed in this way was then taken up into 

acetone and the NHC added to form the corresponding NHC complex. The yields for this 

final step were typically between 70% and 80%. More details on these synthetic 

procedures, and the corresponding characterisation data, can be found in Experimental 

Section 7.3.4. 

 

          2 

Scheme 2.15 Synthesis of of [Ir(NHC)(COD)Cl] (2). [2-b when R = BzIMes, 2-a when R = ImMe2NPr
i
2 and 2-c 

when R = IMes] via [Ir(μ-OMe)(COD)]2 and [Ir(μ-Cl)(COD)]2 

Another route to 2 involved making the corresponding mono-NHC silver based 

intermediate (Scheme 2.16), and then undertaking a transmetalation reaction to form the 

final product. The process was achieved by reaction of the NHC with silver oxide, which acts 

to deprotonate the NHC to form a neutral silver complex. The silver product was isolated as 

white solid in good yield (92%). Although this is a light sensitive reaction, the positive 

aspects of the reaction are; air did not have to be excluded and neither solvent pre-

treatments nor strong bases were required.  

The next step was to coordinate a transition metal centre to the carbene via a 

transmetalation reaction. The most widely used metal used in such reaction is palladium, 

but this process has been adapted for a variety of transition metals including iridium. This 

aspect of the synthesis was carried out as per the literature134, by adding the [Ir(COD)Cl]2 

into a solution of the NHC-silver intermediate. The resulting solution was stirred for 5 hours 

at room temperature. This procedure readily gave a yellow solid after purification. 
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          2 

Scheme 2.16 Synthesis of a mono-NHC silver complex, followed by transmetalation, allows the formation of 
[Ir(NHC)(COD)Cl] (2) via [Ir(COD)Cl]2.  [2-b when R = BzIMes, 2-a when R = ImMe2NPr

i
2 and 2-c when R = IMes] 

Another method to synthesise the imidazolium complex which has been explored is to use  

the silver alkoxide, AgOC(CF3)3, in place of Ag2O. This route was examined because Ag2O is a 

relatively poor silver source for heterogeneous catalysis, as it has been found not to be 

compatible with silica or BuLi, KOtBu, NaH, K2CO3 and Cs2CO3
135. It was therefore important 

to optimise the conditions for synthesis under homogeneous conditions. Although there 

are many examples of copper alkoxides, it was Reisinger et al.136 who initially reported the 

novel synthesis of the first donor-free silver alkoxide. Maishal et al.137 used the silver 

alkoxide route for both homogeneous and heterogeneous catalysis with iridium, gold 

palladium and ruthenium in the transmetalation step. Full details for the synthesis of 

AgOC(CF3)3 can be found in Experimental Section 7.3.9. 

The final method  to be discussed is the use of a base in the form of an in situ reaction. 

These reactions require a free stable NHC, and can become challenging if other acidic 

protons are present in the ligand precursor. They involve the conversion of an NHC halide 

precursor into the corresponding alkoxide, which must be sufficiently basic to deprotonate 

the NHC; this is then complexed to iridium.  

This reaction was carried out in two different ways using two different alkoxides (Scheme 

2.17). Reaction 1 uses potassium bis(trimethylsilyl)amide (KHMDS) while reaction 2 uses 

potassium tert-butoxide (KOtBu). The base was added with the NHC at the start of the 

reaction, and the resulting solution stirred for 30-40 minutes before [Ir(COD)Cl]2 was 

added. After stirring for another 4-5 hours at room temperature, a yellow solid resulted in 

yields of 78% and 85% respectively. 
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       2 

Scheme 2.17 Synthesis of [Ir(NHC)(COD)Cl] via the deprotonation of the parent imidazolium salt using either 
KHMDS (1) or KO

t
Bu (2). [2-b when R = BzIMes, 2-a when R = ImMe2NPr

i
2 and 2-c when R = IMes]  

Based on these results, if the aim is to synthesise a homogeneous catalyst for SABRE 

(Chapter 2), the synthetic route to be chosen would involve deprotonation via KOtBu, 

because it requires fewer steps and produces product in good yield. If a heterogeneous 

catalyst was being prepared, I would select a KHMDS or AgOC(CF3)3 route; the latter 

reagent has been shown to facilitate higher iridium loadings on a supported material138. 

2.2.4. Activation of Complexes with Carbon Monoxide 

To date, there is no literature available that details the steric and electronic parameters of 

2-a and 2-b. Following the work carried out by Chianese et al.139, it should be possible to 

convert [Ir(NHC)(COD)Cl] into [Ir(NHC)(CO)2Cl] (3-a and 3-b) by reaction with CO. Upon the 

addition of CO, to 2, the COD group is readily displaced and a noticeable colour change 

from bright yellow to pale yellow can be  observed as 3-a and 3-b form. The cis isomer of 

these complexes (Scheme 2.18) is expected to give rise to just two CO bands in the IR 

spectrum. However, R. Kelly et al. observed three bands for the IAd derivative which 

suggests that a trans isomer can be present in solution140. The trans IAd form was 

suggested to yield a single IR stretch at 2063 cm-1 while the cis form yields two stretches at 

1979 and 1965 cm-1. 
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      2                              3 

Scheme 2.18 Expected [Ir(NHC)(CO)2Cl] complex formed after the addition CO. [3-b when R = BzIMes, 3-a 
when R = ImMe2NPr

i
2 and 3-c when R = IMes] 

The IR spectrum for the reaction yielding 3-a produces three IR stretches at 2054, 1982 and 

1965 cm-1 for carbonyl ligands in the product as shown in Figure 2.6. This matches with the 

suggestion that both cis and trans isomers are present (Figure 2.7).   

 

Figure 2.6 IR spectrum corresponding to the addition of CO to complex 3-a 
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Figure 2.7 cis and trans CO isomers of 3-a 

We can therefore be confident that 3-a was prepared by this route because of the MS and 

NMR data. The MS analysis was carried out in negative ion mode, which gave a molecular 

ion at 464 m/z with two consecutive losses of 28 m/z, indicating the loss of two CO 

molecules. Furthermore, the NMR data was conclusive with both 1H and 13C spectra 

showing no signs of COD and the two CO resonances appearing at 181.74 and 168.32 ppm.  

In contrast, complex 2-b, forms a single isomer of 3-b upon reaction with CO. This isomer 

yields two IR CO stretches at 2057 and 1978 cm-1 which indicates that the cis geometry is 

more stable. 

2.2.5. Electronic and Steric Effects 

Electronic and steric ligand effects have been used to explain the resulting catalytic 

efficiency of metal complexes using NHCs and phosphine ligands. The electronic effect is 

due to changes in the NHC ligand which can give rise to different electron distributions 

within the molecule. Steric effects normally occur when the bulk around the metal centre 

changes. Because these properties are linked, changing the steric effects can influence the 

electronic parameter and vice versa. For example, a greater ligand angle, due to increased 

bulk, would influence the amount of s-character retained by the NHC or phosphine lone 

pair,  thus  altering the electronic parameter. Changing the atom bonding to the metal can 

also alter the electronic properties because of the resulting bond distance or bond angle 

changes.  
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Figure 2.8 Diagrams representation of the electronic effect (left) and the steric effect (right) 

Tolman in 1977141 experimentally estimated the electronic effect by measuring the CO 

stretching frequency (νCO) of [Ni(CO)3(L)] in an IR spectrum; this has become commonly 

known as Tolman’s Electronic Parameter (TEP). This type of experiment was used to look at 

a range of different ligands. It was discovered that by increasing the electron density of the 

ligand, the CO bond length increased, resulting in greater π-back bonding between the 

metal and carbonyl groups and thus a smaller wave number was determined for the νCO 

stretch, which is indicative of a longer M-CO bond length. 

A different parameter to estimate the steric effect was also proposed by Tolman; that of 

measuring the cone angle θ, for a static phosphine-metal bond141 (Figure 2.9). The apex 

angle of the cone was defined as being centred 2.28 Å from the centre of the phosphorus 

atom to the outmost substituents of the phosphine. This method could, in theory, be 

applied to an array of ligands, but is commonly used for tertiary phosphine ligands. The 

recent developments of biarylphosphines, bidentate ligands and NHCs, have required a 

new method to estimate steric effects, as it has proven difficult using Tolman’s model to 

come up with a reliable indicator.  

 

Figure 2.9 Schematic for the representation of a cone angle for a metal-phosphine, taken from a publication 
by Clavier and Nolan et al. in 2010

142
 

In 1999, Huang et al.143 proposed that a measure of the steric bulk of NHCs could be 

achieved through the analysis of crystallographic data. In this published work, the metal-

carbene bond length was measured to be 2.105 Å, but he decided that 2.00 Å could be 

considered as the average NHC to metal bond length. Huang and colleagues then 

presented two views, shown in Figure 2.10, which depict a length parameter AL and a 
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height parameter AH. Their method therefore utilised some of the properties of Tolman’s 

approach and proved to work well as a simple model for symmetrical NHCs, but an 

improved method of calculation for steric bulk was still needed for more complex systems.  

 

Figure 2.10 Estimation of the steric bulk of NHCs using a length parameter AL and height parameter AH, as 
proposed by Huang et al. in 1999

143
 

In 2003, Hillier et al.144 published a new concept of “percent buried volume” (%Vbur), which 

is defined as the percentage of the total volume of the sphere occupied by a ligand. The 

sphere is defined as a radius, with a metal centre at the core, which is calculated using 

crystallographic data. The larger the steric bulk of a ligand that occupies the space around 

the metal centre, the larger the %Vbur. This model allows for the comparison of other types 

of NHCs (symmetrical and unsymmetrical) and the results can be compared with those 

provided by analogous data for tertiary phosphine containing systems.  

 

Figure 2.11 Schematic representing per cent buried volume taken from publication by Hillier et al. 2003
144

 

Gusev et al, 2009145 originally noted that by correlating the average CO IR stretching 

frequency of the [Ir(L)(CO)2(Cl)] and the A1 stretch from [Ni(L)(CO)3], that a linear 

correlation was observed for both NHC and phosphines. Others, such as  Droge and Glorius 

et al. 2010 , and Jokic et al. 2010, reported the donating ability of a bisoxazoline derived 

NHC used in the Suzuki-Miyaura reaction and the isolation of two [Ir(NHC)(CO)2Cl] 

complexes respectively146, 147.  

The work by R. Kelly et al.140, investigated the correlation between TEP and the CO 

frequency of [Ir(NHC)(CO)2Cl], complexes such that the data collected in section 2.2.4 for 3-

a, can be compared to their results. It can be seen that 3-a follows the general trend for 

TEP vs VCO. Complex 3-b could not be added to this graph as there are currently no TEP 
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values for this NHC complex. The VCO for complex 3-b is 2017 cm-1 and therefore lies in 

between that of 3-a and 3-c, which is represented in Figure 2.12 by a red circle.  

Given the close fit to the trend line for all those systems that do not possess a stable 

iridium trans dicarbonyl derivative it might seem sensible to suggest that 3-b will also lie 

close to this line. However, the systems that lie close to that line are also all aromatic and 

given that 3-a is aliphatic in nature, while 3-b a mixture of the two, no firm conclusions can 

be drawn.  

 

Figure 2.12 Graph showing the correlation between TEP and νCO for a series of phosphine and carbene ligands 
in [Ir(L)(CO)2Cl] as reported by R Kelly et al,  2007, with the measured νCO data obtained for 3-a ( ImMe2NPr

i
2) 

and 3-b (BzIMes) from this study
140

  

2.2.6. Reactions of 2-a with pyridine and hydrogen 

The formation of the active SABRE catalyst requires H2 and a substrate, in this case 

pyridine, to simultaneously bind to the metal centre as shown in Scheme 2.19. In order for 

this to happen, complex 2 must first undergo ligand substitution where pyridine displaces 

the chloride to form [Ir(NHC)(COD)(py)]Cl 4-a. This reaction has been followed by MS for 2-

a. Secondly, the addition of hydrogen to 4 then allows for the hydrogenation of COD and 

the formation of the desired product [Ir(H)2(NHC)(py)3]Cl 5-a.  
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 2-a      4-a         5-a 

Scheme 2.19 Route to 5-a via the initial formation of 4-a upon the addition of pyridine and H2 to 2-a 

The displacement of the chloride ion by pyridine using 2-a can be followed NMR 

spectroscopy, as shown in Figure 2.13; the bound pyridine ligand signals are clearly visible. 

This intermediate can also be detected by MS, where the molecular ion 

[Ir(ImMe2NPri
2)(COD)(py)Cl]+ for 3-a results at 560.7 m/z. A further peak at 481.5 m/z 

corresponding to loss of 79.2 mass units (pyridine) is also observed. Similar observations 

were made for [Ir(BzIMes)(COD)(py)Cl] with the new molecular ion being seen at 685.3 m/z 

and its 79.1 loss fragment providing a signal at 606.2 m/z. Furthermore, the characteristic 

isotope pattern for 35Cl:37Cl is no longer present in these ions.  

The reaction with 2-a does not reach completion, with 70% of the product forming with a 

5-fold pyridine excess. The displaced chloride therefore competes for pyridine in this 

reaction. However, we note that H2 does not add to 2-a at a significant rate, it is only when 

4-a is formed that 5-a results.  
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Figure 2.13 
1
H NMR spectrum of the aromatic region of a solution containing 4-a and pyridine showing both 

the bound and the free resonances of pyridine 

The time taken to form 5 in these reactions is highly dependent on the NHC. For 2-c, the 

reaction takes in the region of 3 minutes, whereas for 2-a and 2-b it can take anywhere 

between 24 and 120 hours. This is due to the slow displacement of chloride and the slow 

addition of H2 to 4-a and 4-b. The 1H NMR spectrum shown in Figure 2.14 demonstrates 

that both 4-a and 5-a can be seen at the same time in these solutions. The remaining 

proton resonances are masked by those of free pyridine which is present in excess. 

 

Figure 2.14 
1
H NMR spectrum of complexes 4-a and 5-a showing the aromatic region only; bound and free 

pyridine resonances are attributed  

In order to locate the masked signals, a series of additional 1D and 2D NMR measurements 

were needed. The first of these experiments corresponded to a 2D COSY spectrum and is 
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shown in Figure 2.15. The blue lines connect the bound resonances for the 

[Ir(ImMe2NPri
2)(COD)(py)Cl] complex, while the red lines indicate the trans pyridine ligands 

and the green lines show the cis pyridine ligand of [Ir(H2)(ImMe2NPri
2)(py)3Cl]. Full 

characterisation data is presented in the Experimental Section 7.4.11, whilst key data is  

shown in Table 2.2. 

 

Figure 2.15 
1
H COSY NMR spectrum showing selected coupled resonances attributed to bound pyridine 

protons in complexes 4-a (blue) and 5-a (red, trans ligand orientation and green cis ligand orientation)  

It has been reported by Cowley et al. 2011, that complexes of the same nature as 5-a 

undergo loss of both hydrogen and pyridine on the NMR timescale93. This process can be 

monitored by using either a selective NOE or 2D NOESY NMR experiment; these would for 

example show that the trans pyridine ligand signals of 5-a exchange with those of free 

pyridine. This effect is illustrated in Figure 2.16 with the two signals circled in red denoting 

signals which exchange with free pyridine; the corresponding meta protons are hidden by 

the free pyridine signal at 7.50 ppm. Upon characterising this complex by HMQC methods 

the missing signals are readily located in Figure 2.17 . 
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Figure 2.16 
1
H NOESY NMR spectrum of complexes 4-a and 5-a, with the exchange peaks between free 

pyridine and the trans pyridine ligand of 5-a circled in red  

 

Figure 2.17 
1
H-

13
C HSQC NMR spectrum of complexes 4-a and 5-a, identifying the 

13
C resonances in the 

associated complexes 

Table 2.2 details the specific 1H NMR signals of 5-a, 5-b and 5-c. It can be seen that the 

chemical shifts of the hydride ligand resonances are different for each of the complexes. 

This difference will arise due to the difference in carbene electron donating ability.  
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Catalyst 
                          Bound Pyridine (ppm) 

Hydride 

(ppm) 

Resonance ortho para meta   

ImMe2NPri
2 (5-a) 

Trans 8.78 8.01 7.50 
-22.77 

Cis 8.26 7.93 7.25 

BzIMes (5-b) 
Trans 8.36 7.80 7.24 

-22.21 
Cis 8.22 7.76 7.11 

IMes (5-c) 
Trans 8.93 7.99 7.49 

-23.52 
Cis 8.61 7.89 7.28 

 

Table 2.2 Characteristic 
1
H NMR signals for the active complexes 5-a, 5-b and 5-c.  
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2.2.7. Exchange Rate and Activation Parameters 

Dissociative ligand exchange is possible in coordinatively saturated 18e- species such as 

[Ir(H2)(ImMe2NPri
2)(py)3]Cl (5-a), which is octahedral in shape. This mechanism relies on the 

iridium bond, to either pyridine or hydrogen, being fully broken before the new bond 

forms; this avoids an unfavourable 20e- intermediate species. The initial experiments 

reported by Cowley et al.93 show that temperature altered the level of polarisation  

observed for the free pyridine sample under SABRE. This suggested that there was an 

optimal ligand exchange rate for the polarisation step. In this case, the complex underwent 

pyridine ligand dissociation, followed by hydrogen dissociation.  

The observation process used a 1H EXSY NMR measurement. It was found that when 

selectively exciting the bound ortho pyridine (8.77 ppm) or the hydride resonance (-22.70 

ppm), exchange into free ortho pyridine (8.57 ppm) or hydrogen (4.57 ppm) was observed 

respectively. These experiments were carried out at a range of temperatures and, by 

altering the mixing time in the 1H EXSY NMR, measurement data was collected from which 

a rate could be calculated using a kinetic model and the solver analysis package in Excel. A 

scheme for dissociative ligand or hydride loss is illustrated in Figure 2.18, which highlights 

the role of the transition state. Upon reaching this state, it is possible to fully dissociate into 

the product or re-associated back to reactants. From the rate measurements of ligand and 

hydride loss, the thermodynamic rate constants ΔH‡, ΔS‡ and ΔG‡ can determined from an 

Eyring plot of ln(2kobs/T) vs 1/T. 

 

Figure 2.18 The reaction co-ordinate for the dissociative reaction for the loss of ligand 
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2.2.8. Ligand Loss 

The rate constant for pyridine ligand loss reported by Cowley et al. (2011)93 for 5-c has 

been doubled, as the rate constant is quoted per mole of pyridine, and the data here are 

quoted as per mole of catalyst. The rate constant for 5-b is the slowest, with the catalyst 

only starting to exchange in the 1D EXSY data at 290 K, in comparison to 5-a and 5-c which 

exchange at temperatures as low as 273 K. The errors associated with the values are upper 

and lower limits at 95% confidence, which were determined using jack-knife and 

bootstrapping methods (fully described in appendix). The observed values for ΔH‡ and ΔS‡ 

in 5-b are larger in magnitude than those of the other two catalysts. The result of this is a 

slightly higher Gibbs free energy change and smaller rate constant.   

 ImMe2NPri
2 (5-a) BzIMes (5-b) IMes* (5-c) 

Rate Constant / s-1 (300 K) 14.4 ± 0.1 7.3 ± 0.1 23.4 ± 0.1 

ΔH‡ / kJ mol-1 89.9 ± 3.6 130.5 ± 2.3 93.4 ± 3.1 

ΔS‡ / JK-1 mol-1 82.6 ± 12.9 213.2 ± 7.9 97.0 ± 13.0 

ΔG300
‡ / kJ mol-1 65.2 ± 0.03 66.5 ± 0.05 64.0 ± 2.2 

 

Table 2.3 Relevant thermodynamic and kinetic data relating to the loss of pyridine from 5-a, 5-b and 5-c*. The 
data for 5-c* taken from literature

93
. Errors represented as 95% confidence limit, for the rate data, n = 7, for 

the Eyring data n = 5.   

The loss of pyridine 5-b has a higher enthalpic barrier (ΔH‡) than that of the identical 

process in the other two complexes. This suggests that the associated Ir-N bond is 

significantly stronger. The significantly larger ΔS‡ value for ligand loss agrees with this 

hypothesis as the system becomes significantly more disordered upon loss of pyridine.  

One possible explanation for this effect is that CH2 linker and phenyl group allow the 

pyridine ligands of 5-b to approach closers to the metal centre thereby producing a more 

stronger Ir-N bond and more ordered ground state. The loss pyridine via a dissociative 

route requires the breaking of this bond with little solvent stabilisation of the transition 

state. This substituent change also seems to increase the release in entropy of the system 

due to greater freer movement of the CH2-Ph arm.   

While 5-a is predicated to involve binding of the more electron releasing carbene, which 

should again increase ΔH‡, this is not observed in practice. This suggests that steric 

interactions act to push off the pyridine in the ground state with the result that more facile 
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ligand loss takes place.   The smaller gain in ΔS‡
 for 5-a is therefore likely to reflect the 

simpler ligand structure.  

2.2.9. Hydride Loss 

The methods used to calculate the activation parameters for pyridine loss were also 

employed to probe those for H2 formation.  

 ImMe2NPri
2 (5-a) BzIMes (5-b) IMes (5-c) 

Rate Constant / s-1 (300 K) 5.0 0.56 9.0 

ΔH‡/ kJ mol-1 79.4 ± 3.2 96.4 ± 1.01 79.2 ± 0.2 

ΔS‡ / JK-1 mol-1 34.0 ± 10.9 77.5 ± 3.40 41.0 ± 3.0 

ΔG300
‡ / kJ mol-1 69.2 ± 0.003 73.1 ± 0.01 66.4 ± 0.3 

 

Table 2.4 Relevant thermodynamic and kinetic data relating to the loss of hydride ligands from 5-a, 5-b and 5-
c. The data for 5-c*, taken from literature
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H2 loss from 5 has been proposed previously to proceed via the formation of a dihydrogen-

dihydride intermediate148. The Gibbs free energy change exhibited for this common process 

reflects all the changes that are required to reach the transition state for the slow step, 

which in this case includes pyridine loss. The barrier to hydride loss in 5 therefore reflects 

the underlying changes required for loss of pyridine in addition to those for H2. It can be 

seen as a consequence of this complex reaction pathway that the rates of H2 loss are lower 

than those of pyridine loss; furthermore as might be expected, the process is inhibited by 

added pyridine. The H2 loss rate data for these NHC complexes; is presented in section 8.1.  

One consequence of the H2 loss process occurring after pyridine loss is that the observed 

rates are always slower than those of pyridine loss. Loss from 5-b is, however, again slower 

than that from the other two complexes. While the resulting ΔH‡
 and ΔS‡ changes are all 

positive, those for 5-a and 5-c and in fact quite similar despite their dramatic steric and 

electronic differences. ΔG‡ which shows a trend that suggests a fine balance must exist 

between steric and electron effects.     

 

  



87 
 

2.3. Summary 

In this chapter two new complexes have been prepared, for testing as SABRE catalysts. 

Their ligand exchange processes have been monitored by NMR methods. The underlying 

activation parameters have been shown to include key electronic and steric effects which 

act together in promoting ligand exchange. It has been established that the rates of 

pyridine and H2 loss are quicker than those commonly associated with NMR relaxation (5 – 

30 seconds). SABRE requires the build-up of a pool of material that has been in contact 

with what were two protons in parahydrogen molecule on a timescale that is faster than 

relaxation. I therefore predict that 5-a and 5-b will be SABRE active but perform less well 

than 5-c. This hypothesis is tested in Chapter 3.  
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3. Chapter 3 Exemplifying the SABRE method with 

pyridine 

3.1. Introduction 

This chapter will investigate the use of the complexes 2-a, 2-b and 2-c as catalysts for the 

SABRE polarisation of pyridine and pyridine type substrates. SABRE can be achieved in two 

ways, either by the shake method (method 1) or by using a flow polariser designed by 

Bruker (method 2) as described in the Experimental Section 7.2. Using these methods, the 

plan is to look at how the magnetic field and temperature affects the polarisation process. 

This section will also investigate how SABRE can be used to enable the recording of 1H 

OPSYdq, 13C and 13C{1H) NMR spectra in addition to simple 1H NMR spectra. This is achieved 

by using a flow system which is automated, thereby giving greater reproducibility in the 

resulting spectra. 

3.2. Enhancement of 1H NMR signals of pyridine by 2-a, 2-b and 2-c 

under SABRE 

As described in the experimental, samples containing the substrate pyridine can be 

prepared in an NMR tube and used for shake and drop studies. This method is used 

extensively to investigate new substrates, as it is quick and easy to prepare the sample and 

doesn’t consume large amounts of catalyst, substrate or expensive deuterated solvent. 

Pyridine was the first substrate to be chosen to compare the catalytic activity of 2-a and 2-b 

with that previously reported for 2-c149.  

A typical 1H NMR spectrum obtained for a hyperpolarised pyridine sample shaken at 65 

Gauss (G) can be seen in Figure 3.1, with the observed resonances labelled as shown. The 

corresponding thermal trace is shown along the top. The polarized peaks of free pyridine 

appear in the emission (or negative amplitude) with the resulting signal enhancements 

measured as -113.7, -63.2 and -99.6 respectively. This process can be repeated under 

transfer in the Earth’s magnetic field (0.5 G) and the new enhancement’s values are -30.36, 

-20.14 and 31.23-fold respectively.  
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Figure 3.1 Observed 
1
H NMR spectra for pyridine resonances 2, 3 and 4. The thermal is represented on top 

and polarised on the bottom, shaken at approximately 65 G 

The polarized state is consumed during this measurement as a 90° observation pulse is 

applied. By shaking the sample in these two different fields, the level of enhancement is 

greatly affected; this will be discussed later in section 3.3. It is also evident on close 

examination of the NMR spectra in Figure 3.1 that weaker signals for the bound pyridine 

ligands (b-py) within the host complex [Ir(H)2(ImMe2
iPr)(Py)3]Cl (5-a), are also visible and 

they too show emission character. This indicates that spontaneous polarization transfer 

occurs between parahydrogen and pyridine when both are in temporary contact with the 

metal complex.  

When comparing the results obtained using active catalyst 2-a, 2-b and 2-c it can be seen 

that: 

 The same type of magnetisation is created for each of the 1H pyridine proton 

signals. 

  Positions 2 and 4 of pyridine always exhibit emission signals regardless of the 

magnetic field experience by the sample during SABRE. 

 Position 3 of pyridine produces an absorption signal under polarisation transfer at 

0.5 G but is emissive at 65 G. 

 

The enhancement levels are summarised in Table 3.1.a  
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Catalyst  

Position 

1H Signal Enhancements 0.5 G 1H Signal Enhancements 65 G 

2 (ortho) 4 (para) 3 (meta) 2 (ortho) 4 (para) 3 (meta) 

ImMe2NPri2 (2-a) -30.36 -20.14 31.23 -113.7 -63.2 -99.6 

BzIMes (2-b) -44.7 -50.67 28.48 -56.8 -113.6 -59.7 

IMes (2-c) -71.2 -61.7 40.3 -160.3 -123.4 -119.2 

 

Table 3.1 Comparison of 
1
H NMR signal enhancement levels (fold) observed for pyridine using catalyst 2-a, 2-

b and 2-c, shaken at 65G and 0.5G 

Catalysts; 2-a, 2-b, and 2-c were present at a concentration of 5 mM (0.031 mm) and a 20-
fold pyridine ligand excess was employed (100 mM, 0.062 mm) in 0.6 ml of methanol-d4. 

 

3.3. Polarisation field plot 

As mentioned in the previous section, shaking the sample at 65 G or 0.5 G dramatically 

changes the level of signal gain. The use of the flow method allows us to observe the effect 

of the PTF with greater accuracy and in greater detail. A more detailed description of the 

flow method is presented in the Experimental Section.  

In order to complete the study of complexes 2-a and 2-b they need to be activated in an 

ampoule under an atmosphere of H2 for 48 hours prior to starting the measurements. This 

ensures that it is possible to compare the results of different catalysts with the active 

species being present at the same concentration in every sample. The samples were 

prepared according to standard conditions and a selection of the resulting spectra can be 

seen in Figure 3.2 and a graphical representation is shown in Figure 3.3. It is evident that 

the maximum enhancement occurs when the PTF lies between 60 and 80 G for all three 

pyridine resonances. There is a phase change for position 3, as between -150 to -40 G its 1H 

NMR signal show emission type character, before producing an antiphase signal at -30 G, 

and absorption type magnetisation between -20 and 10. If the fields were inverted, 

identical behaviour would be seen (0 – 150 G). 
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Figure 3.2 Observed 
1
H NMR signal intensity changes for pyridine resonances 2, 3 and 4 as a function of the 

PTF using catalyst 2-a and method 2 

  

 

Figure 3.3 Graphical representation of the observed 
1
H NMR signal enhancement profile using the activated 

catalyst 2-a and pyridine as a function of PTF over the range of 0 – 150 G 

The proton signal enhancement values of Figure 3.3 are presented as a raw enhancement 

value.  
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Figure 3.2 reports on the appearance of the individual proton signals of pyridine as a 

function of SABRE after transfer in the specified field. It can be seen from the plot that each 

peak still contains the expected multiplicity and the signals for protons 2 and 4 track each 

other in intensity, appearing with a maximum intensity at 60 G. These measurements were 

made after the application of a 90 degree pulse and therefore contain normal Zeeman 

magnetisation of enhanced amplitude which can be on negative (emission) or positive 

(absorption) type.  

For the meta proton (3) this situation is more complex. It starts out in emission but at 30 G 

changes to absorption. The underlying transfer into position 3 is, however, inefficient by 

comparison to that into the other two sites.  

The reproducibility of the flow system is demonstrated in the Experimental Section, but for 

transfer at 60 G, the 95 % confidence limits are -110.63 ± 1.36, -92.16 ± 0.70 and -55.33 ± 

0.66 for positions 2, 4 and 3 respectively. Hence the errors in these data are  1 %.  

Similar data was collected using catalysts 2-b and 2-c. The corresponding graphical 

representations can be seen in Figure 3.4. The field profile for activated catalyst 2-c has 

previously been reported by Cowley et al. 2011149, but no enhancement values were 

presented.  
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Figure 3.4 Graphical representation of the observed 
1
H NMR signal enhancement profile as a function of PTF 

over the range of 0 – 150 G, produced for pyridine using catalyst a) 2-b b) 2-c 

These data revealed: 

 Both catalysts 2-a and 2-b deliver optimal SABRE at a PTF of 60 G. 

 For 2-c, a PTF of 70 G is required for optimum transfer. 

 The order of SABRE efficiency for the investigated catalysts is 2-c > 2-a > 2-b. 

 Position 3 (meta) proton changes from emission to absorption at -30 G, or -50 G 

depending on the catalyst. 

 The behaviour of the position 3 (meta) proton resonance is complex for all catalysts 

and better examined with either 2-c or 2-a. 
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3.3.1. Magnetisation type 

It has been demonstrated that SABRE generates both single spin longitudinal (Iz) order and 

multiple spin longitudinal order (IzSz)
76, 150-152. It is assumed a pure 90° pulse is applied to the 

sample to simplify the magnetisation that is detected. Under these conditions Iz leads to Ix 

or Iy magnetisation depending upon the pulse phase. However, if the pulse angle was set 

incorrectly, IzSz can lead to observable states; these are now antiphase such as IzSx. Given 

that the amplitude of these states is not equal, the detected signals can therefore be 

complex. This situation is revealed in Figure 3.5.  

Care therefore needs to be taken when examining position 3 (meta) proton signals which 

clearly share higher spin order terms. These can, however, be robustly differentiated 

through the OPSYdq NMR experiment of section 3.4. 

 

Figure 3.5 Observed 
1
H signal enhancement field profile for position 3 of pyridine using the activated catalyst 

2-b 
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3.4. Only Parahydrogen Spectroscopy (OPSY) 

The spin states produced from parahydrogen in a SABRE experiment can be either 

longitudinal (Iz) or longitudinal to spin order (IzSz) in type. The first 90° pulse of this method 

affects both of these types of magnetisation; the resulting IxSx term is a mixture of zero and 

double quantum coherence. Both of the resulting in-plane magnetisation terms are then 

dephased by a gradient pulse. A second 90° pulse is then applied to the sample which 

further encodes the magnetisation. If this pulse is followed by a gradient of twice the 

original amplitude it will act to refocus the effects of the first gradient provided we are 

dealing with a two-spin order term. Hence this process will suppress any single spin order 

(thermal) signals whilst retaining signals relayed through a double quantum coherence 

associated with initial IsSz magnetisation (Figure 3.6). 

  

Figure 3.6 Pulse sequence for a double quantum selected OPSY NMR experiment 

 

The resulting NMR spectra that are obtained using the 1H OPSYdq NMR sequence and 

catalysts 2-a, 2-b and 2-c149 are presented in Figure 3.7. Maximum IzSz magnetisation is 

observed experimentally at a PTF close to zero in accordance with the theoretical 

predication of Adams153 and Green150; this would be maximised for a true zero value. 
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Figure 3.7 A series of 
1
H OPSYdq NMR signal intensity profiles for the pyridine resonances 2, 4 and 3 as a 

function of PTF (-140 G to 0.5 ) using a) 2-a b) 2-b and c) 2-c. Spectra for 2-c was taken from literature
149

 

The OPSY measurements revealed: 

 Maximum IzSz character is created at low PTF value. 

 The points of the phase change indicated in Figure 3.2 do not correspond to an IzSz 

maximum and therefore must correspond to an Iz minimum. 

The hypothesis that an Iz minimum exists was tested by deploying an OPSYsq (single 

quantum) measurement. This method selectively detects the Iz term rather than the IzSz 
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term. The series of NMR spectra shown in Figure 3.8 confirm that the point where the 

antiphase character is maximised corresponds to the point where the Iz level is a minimum. 

 

Figure 3.8 A series of 
1
H OPSYsq NMR signal intensity profiles for the meta pyridine resonance as a function 

of PTF (0.5 to 140 G) resulting after SABRE using 2-c  

 

In Summary: 

 The order of activity in SABRE is 2-c > 2-a > 2-b. 

 PTF effects are exemplified. 

 If a screening process looking for magnetisation transfer into an array of substrates 

were to be undertaken, a PTF value of 65 G would be suggested. 

 SABRE is an exchange process phenomenon and should therefore depend upon 

temperature. 
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3.5. Effect of temperature to the SABRE catalyst 

The effect of temperature can be most readily investigated through the shake method. 

Samples were activated and refreshed with parahydrogen without agitation. The NMR tube 

was then submerged in a water bath at the desired temperature for three minutes, quickly 

wiped dry, shaken for 10 seconds in a vertical motion and interrogated by NMR. These data 

are represented numerically in Table 3.2 and graphically in Figure 3.9. 

Temperature 

(K) 

1H Signal Enhancements 0.5 G 1H Signal Enhancements 65 G 

2 4 3 2 4 3 

333 -32.1 22.6 -29.8 -35.5 -35.4 -21.0 

323 -33.4 21.2 -28.2 -56.3 -49.2 -32.4 

313 -35.9 16.0 -34.0 -79.9 -74.4 -45.7 

303 -22.6 10.2 -30.4 -78.2 -79.3 -48.3 

294 -20.3 9.1 -16.8 -83.0 -82.9 -52.7 

273 -13.6 5.7 -12.6 -64.1 -57.5 -23.9 

 

Table 3.2 
1
H NMR signal enhancements determined for the indicated pyridine resonances by catalyst 2-a 

under SABRE as a function of temperature 

 

 

Figure 3.9 Graphical representation of the 
1
H NMR signal enhancements seen for pyridine using catalyst 2-a 

as a function of temperature at a PTF of a) 0.5 G and b) 65 G 
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Figure 3.10 Graphical representation of the 
1
H NMR signal enhancements seen for pyridine using catalyst 2-b 

as a function of temperature at a PTF of a) 0.5 G and b) 65 G 

 

 

Figure 3.11 Graphical representation of the 
1
H NMR signal enhancements seen for pyridine using catalyst 2-c 

as a function of temperature at a PTF of a) 0.5 G and b) 65 G 

Figure 3.9 shows: 

 Proton signals of free pyridine for position 2 (ortho) and 4 (para) increase in size 

between 273 K and 313 K, before falling slightly as the temperature increases to 

333 K when PT takes place at a field of 0.5 G. 

 Position 3 (meta) proton constantly increases in amplitude with temperature. 

 Under a PTF of 65 G, resonances intensities for positions 2 (ortho), 3 (meta) and 4 

(para) all show similar behaviour. They increase up to 294 K before plateauing and 

until 313 K and then falling at higher temperatures. 

Upon comparing the values in Figure 3.9 with those in Figure 3.10 and Figure 3.11, it can be 

seen that all of the traces portray unique behaviour. Furthermore, the activity of catalyst 2-

b surpasses that of 2-c at higher temperatures. This means that choosing an optimal 

catalyst is impossible.  
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Based on the lower temperature values, catalyst 2-b would be discounted and yet, at high 

temperatures, it portrays the best performance. The problem therefore needs to be 

carefully defined before setting out to investigate and optimise such SABRE systems. For 

work to be completed at room temperature, catalyst 2-b is unsuitable and hence 2-c should 

be chosen as it provides for better enhancement. 

The change in temperature reflected in these studies speeds up ligand exchange in all 

systems. This, in turn, acts to reduce the contact time of the hydrides and substrates on the 

metal centre of the PTC. It is therefore clear that: 

 There is an optimal contact time for ligand and parahydrogen for PTC.  

 The optimum lifetime is affected by the PTF. 

Due to the fact that each pyridine resonance exhibits different behaviour, different 

optimum temperatures are required depending on which resonance we wish to enhance.  

If we consider position 3, the meta proton, at a PTF of 65 G, it is possible to calculate the 

lifetimes at the optimum temperatures as follows: 

 2-a at 294.0 K has a rate of 3.9 s-1 and hence lifetime of 0.256 s. 

 2-b at 332.5 K has a rate of 986.1 s-1 and hence lifetime of 0.001 s. 

 2-c at 313.0 K has a rate of 105.4 s-1 and hence lifetime of 0.009 s. 

 

These data indicate that the optimum lifetimes are very different. We can therefore 

deduce that the hydride-hydride and hydride pyridine couplings must also differ 

dramatically in these catalysts. The classical route to polarisation transfer in an INEPT 

experiment requires the setting of a variable to 1/4J(HX), the spin-spin coupling between the 

proton magnetisation donor and the x-nucleus receptor. It is not therefore surprising that 

such behaviour has been found, although the scale of difference is surprising.  
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3.6. Probing  13C NMR experiments 

It is also possible to investigate the effects of SABRE on 13C nuclei, which include 1H-coupled 

and 1H-decoupled NMR experiments. Figure 3.12 shows the polarisation of the carbon 

resonances for the pyridine substrate in a 13C NMR experiment using standard conditions 

and method 2. All of the pyridine carbon resonances can be clearly established in the 

13C{1H} measurement with a signal-to-noise ratio for positions 2, 3  and 4 of 47, 201 and 89 

respectively compared to the solvent signal of 13. The same method can be applied to the 

13C spectrum with positions 2, 3 and 4 now delivering signal-to-noise values of 14, 61 and 

39 respectively with a solvent signal of 12.  

In the normal carbon NMR experiment you would expect the signal-to-noise ratio of the 

13C{1H} signals to be greater than those of a 13C measurement because of each of the 

resonances are now split by the 1H-13C coupling; these peaks collapse in the decoupled 

measurement, thus maximising the signal-to-noise ratio. This behaviour was also reflected 

in the corresponding 13C SABRE experiments. 

 

Figure 3.12 
13

C{
1
H} and 

13
C NMR spectra of pyridine, using 2-a in a single scan. The thermal trace is presented 

on the top. The polarised traces are presented in the middle and on the bottom, which were obtained using 
method one at approximately 65 G with a signal-to-noise ratio for 

13
C{

1
H} of 47, 201 and 89 for position 2 to 4 

respectively and for 
13

C of 14, 61 and 39 for position 2 to 4 respectively 
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Figure 3.13 shows the predicted observable states which are derived from parahydrogen in 

a SABRE experiment. The diagrams deal with nucleus I, which is split by two other nuclei, S 

and T by large and small coupling respectively. When 13C is considered in Figure 3.12, I is 

represented as the 13C centre, while S represents a 1H nucleus one bond away with large 

coupling and T represents a 1H two bond separated nucleus with a small coupling. 

 

 

Figure 3.13 Observable states of Ix type that could be seen under SABRE 

The magnetic state Ix results in in-phase magnetisation, with the signal split with respect to 

both S and T. As defined, the magnetic state IxSz produces an antiphase signal with respect 

to the large coupling of S after excitation, whilst the magnetic state IxTz, produces an 

antiphase signal with respect to the small coupling of T. The state IxSzTz reflects a doubly 

antiphase signal, with respect to both large and small couplings of S and T respectively, 

after excitation. 

The shape of the resonances in the 13C spectra observed at positions 2, 3 and 4 in Figure 

3.12 can be explained by combining different amplitudes of these states (Figure 3.14); 

Figure 3.15 shows three expanded features of Figure 3.11 for reference.  
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Figure 3.14 The effect of selected combinations of multiple quantum states which affect the peak shape in a 
SABRE experiment 

 

Figure 3.15 Expansion of the selected resonances of Figure 3.12, for pyridine resonances 2, 3 and 4. The top 
spectra represents a 

13
C experiment and the bottom traces a 

13
C{

1
H} experiment 
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As shown previously in Figure 3.12, it is possible to obtain a 13C{1H} NMR spectrum for a 

pyridine sample. Based on a 13C experiment which gives rise to antiphase signals, upon 

decoupling the expectation would be that no signal would be observed as the signal would 

cancel out (Figure 3.16). This is clearly not always the case and the single spin order 

magnetisation that is created can be readily probed as a function of PTF under decoupling  

 

Figure 3.16 Illustration of the resulting spectra which are obtained for 
13

C{
1
H} NMR experiment pair of perfect 

antiphase 
13

C signals 

The corresponding spectral information is illustrated in Figure 3.17 and Figure 3.18. The 

maximum signal-to-noise, observed for all three 13C resonances, was observed at 80 G. It is 

interesting to note that there is still high sensitivity to transfer fields and, that at 70 G, 

there is a minimum. This matches the 1H optimum for catalyst 2-a. It is therefore clear that 

decoupled spectra can be collected under SABRE. 

 

Figure 3.17 Observed 
13

C{
1
H} NMR signal intensity profile for pyridine resonances 2, 3 and 4  as a function of 

PTF changes using 2-a and method 2 
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Figure 3.18 Pyridine 
13

C{
1
H} NMR signal-to-noise ratios, obtained on the flow system using 2-a and standard 

conditions 

The corresponding 13C NMR spectra are shown in Figure 3.19 which illustrates how for a 

PTF value of 60 G, the sum of 90 % -IzSz and 10 % Iz and result in a close match with 

experiment; similar analysis confirms the following deductions.  

These reveal: 

 There is a complex variation in 13C magnetic state population with PTF. 

 Position 2 (ortho) – at PTFs between -150 to -60 G exhibits primarily IzSz type 

magnetisation. 

At PTF < -60 G - IzTz terms including the small coupling are obtained. 

 Position 3 (meta) – the same magnetic state -IzSz is created at all fields, with 

optimum amplitude being found when the PTF is -40 G. 

 Position 4 (para) – there are two evident, from -50 to 0 G both IzSz + Iz are 

formed but between -60 to -140 both Iz and -IzSz are seen. 
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Figure 3.19 Observed 
13

C NMR signal intensity for pyridine resonances 2, 3 and 4  as an effect of changing 
polarisation transfer field using 2-a and method 2 

 

 

Figure 3.20 Pyridine 
13

C NMR signal-to-noise ratios, obtained on the flow system using 2-a and standard 
conditions 

0

20

40

60

80

100

120

140

160

-140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

Si
gn

al
-t

o
-n

o
is

e 
R

at
io

 f
o

r 
 1

3 C
 

Polarisation transfer field 

C2

C3

C4



107 
 

When an analogous series of measurements were completed for catalyst 2-b, no 13C{1H} 

signals were detected using the flow method or shake method. Given the poor 

performance of 2-b at 294 K, 13C{1H} NMR measurements using this catalyst were not taken 

any further. Weak signals could be obtained in a 13C NMR measurement. These are shown 

in Figure 3.21 and were obtained using method 1.  

 

Figure 3.21 
13

C NMR spectra of pyridine, using catalyst 2-b and obtained in a single scan. The thermal trace is 
presented on the top and the polarised trace is presented on the bottom. Expansion of the polarised trace is 
presented below to see resonances 

1
H-

13
C coupling 

Figure 3.22 shows the resulting signal-to-noise ratios for the indicated pyridine resonances 

with catalyst 2-b using the flow method. It is clear that a 13C spectrum should employ a PTF 

of -40 G when using catalyst 2-b.   

 

Figure 3.22 Pyridine 
13

C NMR signal-to-noise ratios, obtained on the flow system using 2-b and standard 
conditions 
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3.7. Comparison of SABRE Catalysts Performance with Pyridine 

There has been extensive work carried out on optimising SABRE, and some of this was 

reported by Lloyd et al, 2014152. A summary of the reported polarisation enhancement data 

can be seen in Table 3.3.   

 

Catalyst in the 

form: 

[Ir(NHC)(COD)Cl] 

Rate 

(s-1) 

NHC 

Buried 

Volume 

 

Maximum 

for PTF 

Observed 1H NMR signals 

enhancement 

Ortho    

(2) 

Meta    

(4) 

Para     

(3) 

Total 

IMe* 0.6 26.3 -60 -1.7 -2.0 4.1 4.1 

ImMe2N
iPr2 (2-a) 14 38.4 -60 -113.6 -104.8 -64.0 500.6 

ICy* 1.1 27.4 -60 -8.4 -9.2 -4.8 40.1 

SIMes* 45 36.9 -90 -82.7 -102.7 -63.3 434.2 

SiPr* 261 47.0 -150 -15.4 -11.9 -16 70.6 

IPr* 78 44.5 -60 -17.1 -12.7 -19.6 79.2 

IMes (2-c) 23 36.5 -60 -165.4 51 70.2 503.0 

BzIMes# (2-b) 7 n/a -60 -67.5 -61.2 -11.9 -134.5 

 

Table 3.3 
1
H NMR signal enhancements of pyridine observed for a range of NHC catalyst, which were 

collected using the flow method, where results are given for highest level of polarisation at a specific field. * 
denotes values taken from literature presented by Lloyd et al, 2014

152
 which were measured at room 

temperature. 
#
 Lifetime not known  

All of the above NHC catalysts undergo ligand exchange on an NMR time scale. Their rates 

of ligand loss follow the order of SiPr > IPr > SIMes > IMes (2-c) > ImMe2N
iPr2 (2-a) > BzIMes 

(2-b) > ICy > IMe. The larger the NHC buried volume, the faster the pyridine loss rate. 

Catalyst 2-a (ImMe2N
iPr2) does not fit the steric trend and is sufficiently electron rich as to 

promote ligand exchange. 
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The results of changing the PTF confirm that, in the majority of cases, 60 G is the optimum 

field for transfer. It can be concluded from the results that 2-a is a good catalyst and 

worthy of extended study. Catalyst 2-b showed good performance at higher temperatures 

and was therefore studied further. 

3.8. Enhancements of pyridine derivatives  

It is also possible to polarise substrates that contain a pyridine-type moiety more generally 

using SABRE. Catalysts 2-a and 2-b were employed in association with the materials of 

Figure 3.23 to do this. These materials were selected in order to provide an indication of 

how polarisation transfers around the pyridine ring and to investigate the levels of 

polarisation in their methyl groups.  This work will therefore widen the range of polarised 

materials and help optimise sensitivity. It follows a similar approach to that used for 

pyridine with both the shake method and the flow method being used.  

 

Figure 3.23 Structures of pyridine derivatives which have been investigated using catalysts 2-a and 2-b a) 2-
methylpyridine b) 3-methylpyridine c) 4-methylpyridine d) nicotinamide  
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3.8.1. 2-methylpyridine 

The first substrate to be examined was 2-methylpyridine. A typical 1H NMR spectrum 

obtained using method 1 can be seen in Figure 3.24, and the signal enhancement levels are 

listed in Table 3.4 . The level of polarisation passed into the substrate is very poor with both 

catalysts 2-a and 2-b. It can be said that there is little to no signal enhancement for 2-

methylpyridine as the actual integral is smaller than that of the corresponding thermal 

trace.   

 

 

Figure 3.24 Observed 
1
H NMR spectra for 2-methylpyridine, with the thermal trace represented on top and 

the polarised trace on the bottom; PTF of 65 G with a) catalyst 2-a and b) catalyst 2-b 

 

Substrate Catalyst Field 

1
H NMR enhancements for substrate positions: 

2 3 4 5 6 7 

2-methylpyridine 

2-a 

0.5 G - 0.01 0.02 0.04 0.05 0.07 

65 G - 0.07 0.09 0.11 0.15 0.26 

2-b 

0.5 G - 0.00 0.01 0.02 0.01 0.02 

65 G - 0.01 0.02 0.05 0.02 0.01 

 

Table 3.4 A comparison of the 
1
H NMR polarisation enhancement for 2-methylpyridine using complex 2-a and 

2-b 

The reason why 2-methylpyridine is thought to give low levels of polarisation is that it is 

unable to bind to the catalyst. The NMR tube containing 2-methylpyridine and 2-a was left 

for a further 24 hours under an atmosphere of hydrogen to see if the issue was due to 

incomplete activation of the catalyst. The results obtained from the addition of fresh 
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parahydrogen to the sample after this period gave a similar result to the one obtained 

initially, which was seen in Figure 3.24. Upon carrying out a longer 1H NMR experiment 

(512 scans) it was possible to see a weak hydride present at -24.92 ppm, which can be seen 

in Figure 3.25. The presence of this hydride indicates that if the sample was given a longer 

time period to activate, it might be possible to see proton enhancement into substrate. 

This was left under hydrogen for a period of a week checking at regular intervals by 

carrying out method 1 but no enhancement was observed and the hydride no longer 

appears in the spectra. Over the period of seven days, the sample solution turns from a 

bright yellow to a yellow/brown in colour and small traces of coloured precipitate start to 

appear, indicating that the iridium is precipitating into solution. Catalyst 2-b was left for the 

same amount of time but no hydride signal was observable after the same amount of scans 

and the sample began to precipitate after 48 hours. 

 

Figure 3.25 Observed 
1
H NMR hydride region of 2-methylpyridine which is only visible after 512 scans 

Further 1H and 13C NMR experiments were examined using the flow method and 

temperature using catalyst 2-a, 2-b and 2-c, but no observable polarisation transfer was 

noted for 2-methylpyridine.  
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3.8.2. 3-methylpyridine 

3.8.2.1. Method 1 applied to 1H NMR 

3-methylpyridine is one of many precursors to niacin, which is part of the vitamin B group. 

Niacin is also known as nicotinic acid, and another member of these precursors is 

nicotinamide.  

Firstly the shake method was investigated for 3-methylpyridine with 2-a and a 1H NMR 

spectrum recorded after transfer at 65 G. Proton resonances 2, 4, 5, 6 and 7 all have 

emission type characters when shaken at 65 G, with enhancement levels of -46.5, -44.50, -

40.09, -16.86 and -8.9-fold respectively. Exceptions to this emission behaviour were found 

in the 1H NMR signals for position 5 and 7 with 2-a after PTF at 0.5 G and position 4 with 2-

b after PTF at 0.5 G.  2-b performs better than 2-a in these studies. 

 

Figure 3.26 Observed 
1
H NMR spectra of 3-methylpyridine, thermal trace is represented on top, and the 

polarised trace on the bottom; PTF undertaken at 65 G with a) catalyst 2-a and b) catalyst 2-b 

Table 3.5 presents a series of results at 0.5 and 65 G for both catalysts 2-a and 2-b.  

Substrate Catalyst Field 

1
H NMR enhancements for substrate positions: 

2 3 4 5 6 7 

3-methylpyridine 

2-a 

0.5 G -22.6 - -15.4 14.3 -27.5 2.03 

65 G -46.5 - -40.1 -16.9 -44.5 -8.86 

2-b 

0.5 G -71.3 - -26.9 -30.7 -75.3 -2.5 

65 G -120.4 - -40.3 -111.3 -113.5 -23.2 

 

Table 3.5 Comparison of the 
1
H NMR polarisation enhancement data for 3-methylpyridine using catalysts 2-a 

and 2-b 
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3.8.2.2. Effect of changing magnetic field of polarisation 

3-methylpryidine was also examined using method 2. The resulting NMR spectra obtained 

using 2-a can be seen in Figure 3.27 and a graphical representation of the 1H NMR signal 

enhancement for both catalysts can be seen in Figure 3.28.  

 

Figure 3.27 Observed 
1
H NMR signal intensity profiles for 3-methylpyridine resonances as an effect of 

changing PTF using 2-a and method 2 

The maximum level of polarisation transfer to 3-methylpyridine using 2-a is observed at a 

PTF of 60 G for resonances 2, 5 and 6 and at 70 G for resonances 4 and 7. For catalyst 2-b, 

the maximum is observed at 60 G for resonances 2, 5, 6 and 7 and 10 G for position 4. 

The two catalysts behave in a similar manner, with positions 2, 5 and 6 all presenting 

negative amplitude magnetisation across the field profile. The behaviour of 2-b is again 

complex. For the first time, two maxima are clearly evident and both systems provide 

similar activity. Despite this behaviour, 60 G is still optimum for the detection of aromatic 

resonances. If the para proton is to be viewed, 0 G is optimal. For the methyl group, 65 G is 

a good compromise. 
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Figure 3.28 Graphical representation of the observed 
1
H NMR signal enhancement for 3-methylpyridine as a 

function of PTF with catalysts a) 2-a and b) 2-b, over the range 0 to -140 G 

 

3.8.2.3. Effect of changing temperature 

When the effect of temperature was investigated with 3-methylpyridine with catalysts 2-a 

and 2-b, different behaviour was seen. These data are presented in Figure 3.29 and Figure 

3.30:  

 The activity of 2-a at a PTF of 0.5 G falls with increase in temperature. 

 The activity of 2-a at a PTF of 65 G reaches a maximum at 296 K. 

 The activity of 2-b increases with increase in temperature at 0.5 G. 

 The activity of 2-b at 65 G is complex but generally optimised at 303 K. 

 

Figure 3.29 Graphical representation of the 
1
H NMR signal enhancements seen for 3-methylpyridine using 

catalyst 2-a as a function of temperature at a PTF of a) 0.5 G and b) 65 G 
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Figure 3.30 Graphical representation of the 
1
H NMR signal enhancements seen for 3-methylpyridine using 

catalyst 2-b as a function of temperature at a PTF of a) 0.5 G and b) 65 G 

 
3.8.2.4. Effect of magnetic field applied to 13C nuclei. 

Figure 3.31 - Figure 3.34 illustrate the corresponding 13C and 13C{1H} NMR results that were 

obtained for 2-a and 2-b using method 2. The overall levels of signal enhancement were 

poor, but proved optimal with a PTF value of ≈ 50-60 G for both types of measurement. The 

quality of these data is however much worse than that achieved for pyridine which 

suggests that the methyl group acts to prevent good SABRE.  

Figure 3.31 shows three most prominent 13C{1H} NMR signals; positions 5, 4 and 3 which 

are circled in red at 60 G which have a signal-noise-ratio of 16.3, 5.4 and 8.7 respectively. 

The remaining signals were difficult to observe above the signal-to-noise of the NMR 

experiment. Position 6 can be seen circled in blue which is represented with an antiphase 

signal at 80 G. The methyl signal (position 7) can be seen very faintly at a field of 110 G 

which is circled in green with a poor signal-noise-ratio of 1.10. Although resonances 6 and 7 

are observable, they cannot be described as being resolved from the baseline.   

 

Figure 3.31 
13

C{
1
H} NMR spectra of 3-methylpyridine obtained as a function PTF with catalyst 2-a and method 

2 (result of a single scan).  Circled in red are the strongest signals, followed by weak signals in blue and green 
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Figure 3.32 3-methylpyridine 
13

C{
1
H} NMR signal-to-noise ratios, obtained on the flow system using 2-a and 

standard conditions 

These 13C data reveal (Figure 3.33) that the quaternary carbon, 3 position (circled red), 

gives the largest enhancement with a signal-to-noise ratio of 11.2 at a PTF of 50 G. Position 

5 and 4 maximum signal-to-noise ratio of 6.7 and 4.68 was achieved at a PTF of 60 G and 80 

G respectfully. The remaining signals prove had to resolve from the base line although it is 

possible to identify two pairs of antiphase signals (circled blue) which are generated from 

positions 2 and 6. Position 3 and 4 appear either antiphase or a single peak (red and yellow 

circle) which is dependent on the PTF. As these are single antiphase signals it can be 

concluded that these arise a combination of IzTz and IzSzTs which has been previously 

described in Figure 3.14. Due to the fact that a poor signal to noise is observed for the pairs 

of antiphase signals, it is very difficult to determine magnetisation that is contributed the 

combinations of quantum states Iz, Sz and Tz. 

 

Figure 3.33 
13

C NMR spectra of 3-methylpyridine obtained as function of PTF with catalyst 2-a and method 2 
(result of a single scan).  Coloured circles used to highlight the 

13
C resonances 
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Figure 3.34 3-methylpyridine 
13

C NMR signal-to-noise ratios, obtained on the flow system using 2-a and 
standard conditions 
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3.8.3. 4-methylpyridine 

4-methylpyridine was also studied. This substrate is symmetrical and should yield just three 

enhanced signals.  It is also a precursor to synthesising 4-cyanopyridine, which in turn is a 

precursor to a variety of antituberculosis drug compounds such as isoniazid. 

Figure 3.35 shows corresponding 1H NMR data, whilst Figure 3.36 and Figure 3.37 illustrate 

the PTF effect, and Figure 3.38 and Figure 3.39 explore temperature. 

 

Figure 3.35 Observed 
1
H NMR spectra of 3-methylpyridine, thermal trace is represented on top, and the 

polarised trace on the bottom; PTF undertaken at 65 G with a) catalyst 2-a and b) catalyst 2-b 

The enhancement levels are summarised in Table 3.6. Under a PTF of 65 G each catalyst 

produces emission type magnetisation for all resonances, and produces the greatest 

enhancement level, although the position 3 (meta) proton, when used with catalyst 2-a, 

produces a greater level of enhancement at a PTF of 0.5 G than that produced at 65 G. 

Substrate Catalyst Field 

1
H NMR enhancements for substrate positions: 

2 3 4 5 6 7 

4-methylpyridine 

2-a 

0.5 G -47.1 4.83 - - - 5.35 

65 G -42.8 -26.2 - - - -4.69 

2-b 

0.5 G -40.3 -1.79 - - - 2.83 

65 G -192.3 -98.2 - - - -30.9 

 

Table 3.6 Comparison of the 
1
H NMR polarisation enhancement data for 4-methylpyridine using catalysts 2-a 

and 2-b 
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Figure 3.36 Observed 
1
H NMR signal intensity for 4-methylpyridine resonances as an effect of changing 

polarisation transfer field using 2-a and method 2 

 

Figure 3.37 Graphical representation of the observed 4-methylpyridine 
1
H NMR signal enhancement field 

profile using the activated catalyst a) 2-a and b) 2-b at 293 K 
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Figure 3.38 Graphical representation of 
1
H NMR signal enhancements to 4-methylpyridine resonances 

obtained using activated catalyst 2-a as a function of temperature measured at a) 0.5 G and b) 65 G 

 

Figure 3.39 Graphical representation of 
1
H NMR signal enhancements to 4-methylpyridine resonances 

obtained using activated catalyst 2-b as a function of temperature measured at a) 0.5 G and b) 65 G 

Comparison with 3-methylpyridine reveals: 

 PTF variation is much reduced with good polarisation between -140 to -30 G. 

 Complex antiphase character seen between 0.5 to -20 G. 

 PTF of 0.5 G optimal at 303 K with catalyst 2-a or 2-b. 

 PTF of 65 G optimal at 296 K with catalyst 2-a and 332 K for 2-b. 

 Catalyst 2-b at a PTF of 65 G and at a temperature of 332 K produced the optimal 

methyl enhancement level of -167-fold. 

Interestingly, the total enhancement level for 3-methylpyridine was -738-fold, while for 4-

methylpyridine it is -1643. These were both achieved using catalyst 2-b when studying the 

temperature as a function of polarisation transfer and at room temperatures of 303 K and 

332 K respectively. The total enhancement (absolute) for each substrate can be calculated 

by simply adding the enhancement level for each proton resonance (4-methylpyridine = (2 

x 591) + (2 x 147) + (167) = 1643.   
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When operating at room temperature for the polarisation of 3-methylpyridine and 4-

methylpyridine, 2-b produces total enhancement levels of -385-fold and -613-fold 

respectively. 

 

3.8.3.1. Effect of polarisation to 13C nuclei 

For 4-methylpyridine, it proved difficult to obtain any 13C NMR spectra using the flow 

system and was only achievable for catalyst 2-a via method 1, these data can be seen in 

Figure 3.40 

 

 

Figure 3.40 Observed 
13

C{
1
H} NMR signal intensity for 4-methylpyridine using catalyst 2-a and method 1 at a 

field of a) 0.5 G b) 65 G 

Analysis of these data shown in these NMR spectra revealed there to be very similar levels 

of polarisation transfer to the carbon positions of 3-methylpyridine. Position 2 achieved a 

slightly better signal-to-noise ratio of 7.81 after transfer at a field of 65 G when compared 

to 7.79 at 0.5 G. The same situation also held true for position 3 with the corresponding 

signal-to-noise ratios being 9.40 and 5.76 respectively. However, position 4 performed 

more efficiently at a field of 0.5 G with a signal-to-noise ratio of 5.12 rather than 3.02. 
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3.8.4. Nicotinamide 

Nicotinamide has been used regularly within the Duckett group as it is a biologically 

relevant substrate, with importance in a clinical setting as it is used as chemo-and-radio 

sensitizer for cancer therapy154, and there is evidence of it restoring cognitive deficits in 

Alzheimer’s patients155. It was first reported by Adams et al. 200992 for its use in a SABRE 

experiment. In this paper, the catalyst used was [Ir(COD)(PCy3)BF4] (where PCy3 = 

tricyclohexylphosphine), more recently Mewis et al. 2014156 has exemplified nicotinamide 

using catalyst 2-c, optimising conditions for use with the flow system (method 2). This 

section will determine whether catalysts 2-a and 2-b are more efficient at transferring 

polarisation to this substrate.  

3.8.4.1. Observable 1H NMR spectra using method 1 

Typical 1H NMR spectra for hyperpolarised nicotinamide samples produced by 2-a and 2-b 

can be seen Figure 3.41. A summary of the resulting polarisation enhancement results are 

presented in  

Table 3.7. 

 

 

Figure 3.41 Observed 
1
H NMR spectra of 3-methylpyridine, thermal trace is represented on top, and the 

polarised trace on the bottom; PT undertaken at 65 G with a) catalyst 2-a and b) catalyst 2-b 

When comparing the results obtained using active catalyst 2-a, 2-b and 2-c it can be seen: 

 The same type of magnetisation is created for each of the 1H proton signals. 

  Positions 2 and 4 produce emission signals but position 5 produces an absorption 

signal under PTF at 0.5 G. 

  Under a PTF of 65 G, each catalyst produces emission type magnetisation for all 

three resonances.   
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The results presented here show that catalyst 2-b, at a transfer field of 65 G, is more 

efficient at polarisation transfer into the 1H NMR resonances of nicotinamide when 

compared to 2-a. The maximum polarisation transfer level was achieved for position 2 at -

139.6-fold, which is better than that of any other position studied to date. Adams et al.92 

quoted a total enhancement level of -345 which, if done in the same way for 2-b, would 

reflect a -352-fold 1H signal enhancement.  

 

Substrate Catalyst Field 

1
H NMR enhancements for substrate positions: 

2 3 4 5 6 Total 

Nicotinamide 

2-a 

0.5 G -3.01 - -1.01 3.10 -1.41 8.53 

65 G -8.29 - -4.12 -0.15 -6.12 18.58 

2-b 

0.5 G -48.4 - -25.5 -16.8 -28.4 119.1 

65 G -139.6 - -82.4 -29.9 -100.5 352.4 

2-c 

0.5 G -44.1 - -20.1 -16.1 -26.1 106.4 

65 G -150.1 - -107.1 -19.1 -110.3 386.6 

 

Table 3.7 A comparison of the 
1
H NMR polarisation enhancement for nicotinamide using catalysts 2-a and 2-b 

Mewis et al.156 did not present any results using method 1, so a series of appropriate 

experiments were completed and these data added to Table 3.7. It can be seen that 

catalyst 2-b performs better at a polarisation field of 0.5 G, but 2-c performs better at 65 G. 

Catalyst 2-c gives a total 1H NMR enhancement of 386, which is better than that of any 

other catalyst previously studied. The catalyst activity order is therefore: 2-c > 2-b > PCy3 > 

2-a; the total enhancements are 386, 352, 345 and 18.58 respectively. 
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3.8.4.2. Effect of changing magnetic field of polarisation 

The polarisation field plot obtained for the nicotinamide sample using catalyst 2-a can be 

seen in Figure 3.42, and a graphical representation can be seen in Figure 3.43. The 

experiment revealed the maximum polarisation transfer field to be 60 G for positions 2, 6 

and 4 with enhancement factor of 8.2, 6.1 and 4.7 respectively. The maximum for position 

5 was found to be at a field of 0.5 G (Earth’s field) with enhancement factor of 3.1. The 

same finding was found for catalyst 2-b and this is also consistent with the work carried out 

by Mewis et al.156 with 2-c. The order of catalyst activity based on method 2 would 

therefore be 2-c > 2-b > 2-a, the same order as observed when using method 1. 

 

Figure 3.42 Observed 
1
H NMR signal intensity changes for nicotinamide resonances, as a function of the PTF 

using catalyst 2-c and method 2 

 

Figure 3.43 Graphical representation of the observed nicotinamide 
1
H NMR signal enhancement field profile 

using the activated catalyst a) 2-a and b) 2-b 
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In comparison to the work presented for 2-c in the literature156 (Figure 3.44), the 

polarisation field profile for positions 2, 6 and 4 (Figure 3.44 A, B and C) are very similar. 

They all start in negative amplitude and gradually reach maximum polarisation transfer at 

60 G before slowly declining at higher field. Position 5 exhibits the same type of behaviour 

for all three catalysts, yielding a positive signal amplitude at 0 G. It was noticeable when 

undertaking the present work for 2-c that an antiphase signal is seen at 50 G. When 2-c is 

compared to 2-a and 2-b, the antiphase signal remains for the next 5 and 4 gauss 

increments respectively before a perfect in-phase negative amplitude signal is again seen. 

All three catalysts then return back to positive amplitude at a field of 130 G. 

 

Figure 3.44 Plots of polarisation transfer field for hyperpolarised 
1
H NMR signal for nicotinamide reported by 

Mewis et al. 2014
156

 

3.8.4.3. Effect of changing temperature 

The effect of changing the temperature on nicotinamide SABRE is illustrated in Figure 3.45 

and Figure 3.46. The activity of 2-a at PTF of 0.5 G and 65 G, reaches a maximum for all 

resonances at 296 K. Also for 2-a, the observed resonances intensities for each position 

show similar behaviour as temperature changes. For example at PTF of 0.5 G, they all 

increase up to 296 k, they all fall at 303 K before plateauing at 316 K, and then declining at 

higher temperatures. I similar behaviour is noted at a PTF of 65 G.  
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At a PTF of 0.5 G, the activity of 2-b for nicotinamide resonances 2, 4 and 6, increases with 

increase in temperature up to 316 K, where it reaches it maximum, before declining at 

higher temperatures. The 5 position reaches a maximum signal enhancement at 333 k. At a 

PTF of 65 G, the activity 2-b increases with increase in temperature reaching a maximum 

absolute level of 985-fold at 333 k.  Furthermore, the activity of catalyst 2-b surpasses that 

of 2-a and 2-c at higher temperatures. 

 

 

Figure 3.45 Graphical representation of the 
1
H NMR signal enhancements seen for nicotinamide using catalyst 

2-a as a function of temperature at a PTF of a) 0.5 G and b) 65 G 

 

Figure 3.46 Graphical representation of the 
1
H NMR signal enhancements seen for nicotinamide using catalyst 

2-b as a function of temperature at a PTF of a) 0.5 G and b) 65 G 
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3.9. Summary  

The aim of this chapter was to use NMR as a tool, to identify and characterise a range of 

substrates using SABRE. The key points within this research was to be able to demonstrate 

that it was possible to see all of the substrates 1H, 13C NMR resonances, with a resolution 

that enables peak multiplicity to be attributed. The corresponding 1H measurements 

showed very good levels of SABRE, while 13C measurements have revealed that both Iz and 

higher order terms were created. Given that in normal practice such spectra are decoupled, 

it is desirable that the Iz character yielded by SABRE is maximised. This proved to be 

achieved using a PTF of ≈ 80 G in these materials. Catalyst 2-a, has also proven to show 

good activity and might therefore reflect a sensible alternative to 2-c. 

This chapter reports an investigation into the effect of temperature and PTF on the level of 

SABRE delivered through catalysts 2-a and 2-b with a range of substrates. It has been 

shown that 2-a and 2-b react with parahydrogen in the presence of an array of pyridine 

type ligands to produce a series of SABRE-active catalysts. The performance of both 

complexes was affected by the PTF and the reactions temperature. The five ligands 

employed here were all optimally examined in the 1H domain after polarisation transfer at 

between 60 and 70 G with 2-a, 2-b and 2-c.  The total signal enhancements produced in the 

detailed experiments are summarised in Table 3.8. It is clear from this information that of 

pyridine were to be examined, 2-c should be chosen as the catalyst. However, upon 

extending the range of substrates, 2-b proved to exhibit better performance, especially for 

the listed the methyl derivatives.  Care must therefore be taken if only small amounts of 

material are available for examination since under these conditions an optimised catalyst 

should be employed.  

Substrate 
Total Enhancement / Catalyst 

2-a 2-b 2-c 

Pyridine 459 401 480 

3-methylpyridine 156 409 102 

(methyl group) -9 -23 -7 

4-methylpyridine 142 612 185 

(methyl group) -5 -31 -9 

nicotinamide 19 352 387 

Table 3.8 Total enhancements for pyridine, 3-methylpyridine, 4-methylpyridine and nicotinamide obtained at 
room temperature and at a PTF of 65 G. 
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For 2-a, the ligand exchange dynamics for pyridine, 3-methylpyridine, 4-methylpyridine and 

nicotinamide are commensurate with good activity at room temperature. For 2-b, warming 

is required to achieve most effective results. The enhancement levels are summarised in 

Table 3.9 with 2-b surpassing the other two catalyst, with the optimum conditions being 

performed at higher temperature. Catalyst, 2-b should be used at 332 K in any screen if 

good signal to noise is required. However, as the catalyst activation timescale is now 24-48 

hours a more robust activation protocol needs to be developed.  

Substrate 
Total Enhancement / Catalyst / Temperature 

2-a / Temp (K) 2-b / Temp (K) 2-c / Temp (K) 

Pyridine 459 @ 294 780 @ 332 504 @ 296 

3-methylpyridine 269 @ 269 739 @ 303 110* @ 300 

(methyl group) -13 -47 -13 

4-methylpyridine 295 @ 296 1643 @ 332 190* @ 300 

(methyl group) -52 -167 -16 

nicotinamide 59 @296 985 @ 332 390* @ 300 

 

Table 3.9 Total enhancements for pyridine, 3-methylpyridine, 4-methylpyridine and nicotinamide obtained at 
the optimal temperature and at a PTF of 65 G. 

The change in temperature reflected in these studies speeds up ligand exchange in all 

systems, so acting to reduce the contact time of the hydrides and substrate on the metal 

centre of the PTC. It is clear that all of these complexes are too stable from optimal activity 

at room temperature. 

If we consider the effect of the methyl group, the substrate 4-methylpyridine provides the 

greatest level of signal enhancement was achieved by all three catalysts. The optimum was 

achieved using 2-b giving a 167-fold signal enhancement obtained at a PTF 65 G and at 332 

K. The order of catalyst activity for investigating the methyl group is 2-b > 2-a > 2-c. This is 

surprising given the fact that the complex should be more stable and hence undergo slower 

ligand exchange. It has recently been reported that the T1 of the bound substrate may 

reflect another critical factor in controlling the efficiency of SABRE. I would suggest that a 

further study using 4-methylpyridine might be undertaken to probe this effect in the 

future.  

While the temperature can improve the enhancement factor to 1643-fold for 4-

methylpyridine it is easier to undertaken investigations at room temperature. The 
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significance of just a 100-fold enhancement, with the signal-to-noise being proportional to 

the square root of number of scans, under standard conditions is high. It would now 

require 10,000 scans to obtain a similar spectrum to this 1 second acquisition. If the sample 

has to fully relax for a period of 5 x T1 (12 seconds) then each scan would take 60 s. This 

means a comparable acquisition would be 60 X 10,000 = 600,000 seconds, which is 7 days. 

SABRE has therefore proven to be an excellent tool, yielding obtaining good quality data 

which in essence would take weeks to normally achieve. 
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4. Chapter 4 Optimisation of the SABRE Effect for 5-methyl 

pyrimidine and quinazoline. 

 

4.1. Introduction 

In the future, one of the potential applications of the SABRE technique lies in the field of 

MRI, where it should aid in the detection of biological substrates that play a clinical role. 

However, there are some major obstacles that remain before this can be achieved. These 

will require the development of methods to produce signal contrast, high resolution and 

readout with good signal-to-noise45. For in-vivo measurement, a further challenge is 

associated with the lifetime of the 1H hyperpolarised signal that is to be detected. This is 

affected by the relaxation of the proton spin states, referred to as T1 relaxation. It is also 

important to consider the other possible factors as outlined in Chapter 3, such as catalyst, 

field, temperature and more recently, concentration. There have been many reports in the 

literature which detect 13C and 15N nuclei in a hyperpolarised image as the T1 relaxation of 

these nuclei is much less efficient, but their natural abundance is much less than that of 

1H92, 157, 158.  

The previous chapters of this thesis have described studies on a series of mono-substituted 

pyridine probes. In this chapter, the molecule 5-methylpyrimidine which contains two 

nitrogen atoms within the aromatic ring is examined, amongst 13 other substrates. One 

chemical change that will be considered alongside these SABRE studies is that of 

deuteration. Literature reports have described how pyridine can become deuterated with 

these types of catalyst. If this process is rapid, it will affect the polarisation enhancement 

levels than can be produced159.  

This chapter will aim to optimise SABRE for 5-methylpyrimidine by examining the influence 

of catalyst, PTF, temperature and concentration, and will be investigated in high field NMR 

and by low field MRI. Table 4.1 and Figure 4.1 detail the structures and polarisation levels 

achieved across the range of materials that were examined. 
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4.1.1. Screening a large range of substrates to be used with SABRE.  

Before deciding to optimise 5-methylpyrimidine, a range of substrates were screened with 

catalyst 2-c for SABRE activity, the results of these studies can be seen in Figure 4.1 and the 

corresponding enhancement levels at the optimum PTF summarised in Table 4.1. The 

corresponding 1H NMR spectra for these substrates can be found in the Experimental  

Section. Even though the substrates imidazole and pyrazole show good levels of 

polarisation they were not chosen for further optimisation as their proton relaxation times 

are shorter than that of 5-methylpyrimidine. 

 

Figure 4.1 Range of substrates screen using catalyst 2-c to test the activity in a SABRE measurement 

Substrate Field 
/ G 

Proton Position / Enhancement 

2 3 4 5 6 7 8 9 
Imidazole 65 -198 -124 - - - - - - 

Thiazole 60 -100 -67 -56 - - - - - 

Oxazole 65 -150 -149 -120 - - - - - 

Isoxazole 60 -67 -53 -64 - - - - - 

Pyrazole 50 -137 -200 - - - - -  

1,2,4-triazole 60 -2.9 - - - - - - - 

1,2-benzisoxazole 0 0 - 0 0 0 0 - - 

Benzimidazole 60 -48 - -90 30 - - - - 

2,1-benzisoxazole 0 0 - 0 0 0 0 -  

Benzoxazole  -58 - -130 -57 -57 -89 - - 

3-acetoxymethylpyridine 60 -47 - -46 -73 -77 3 - -2 

Pyrimidine 60 -58 -115 -49 - - - - - 

Quinazoline 65 -61 - -74 - -110 -97 -86 -94 

5-methylpyrimidine 50 -200 - -200 - - -55 - - 

 

Table 4.1 Enhancement levels of substrates investigated with catalyst 2-c for SABRE, quoted as measured at 
the optimum PTF 
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The studies on quinazoline and 5-methylpyrimidine revealed some interesting behaviour 

which is discussed in more detail. 

4.2. SABRE with 5-methylpyrimidine  

4.2.1. Initial polarisation studies of 5-methylpyrimidine 

To determine the most efficient SABRE catalyst for use with 5-methylpyrimidine, catalysts 

2-a, 2-b and 2-c were studied using method 1. Typical 1H NMR spectra can be seen in Figure 

4.2 and the associated signal enhancement levels are summarised in  

Table 4.2. While all  three catalysts polarise 5-methylpyrimidine, their catalytic activity 

follows the order 2-c > 2-b > 2-a. They all produce emission type spectra at fields of 0.5 G 

and 65 G. The thermal 1H NMR spectra recorded after activation produce only a single 

hydride resonance, which in the case of x appears -22.67 ppm. This indicates that the active 

complex [Ir(H2)(NHC)(substrate)3]Cl (5-c) is formed in each case. Characterisation data for 

5-c are presented in the experimental section 7.4. 

 

Figure 4.2 Observed 
1
H NMR spectra of 5-methylpyrimidine after SABRE, detailing positions 2, 4 and 7, in 

conjunction with catalyst 2-c. The corresponding thermal NMR spectra are presented on top and polarised 
NMR spectra on the bottom; a) at a PTF of 0.5 G and b) at a PTF of 65 G 
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Catalyst 1H Signal Enhancements 0.5 G 1H Signal Enhancements 65 G 

2 4/6 7 2 4/6 7 

ImMe2NPri2 (2-a) -10.5 -8.7 -2.8 -50.8 -60.4 -15.8 

BzIMes (2-b) -14.7 -21.5 -5.4 -60.8 -61.5 -25.1 

IMes (2-c) -40.67 -41.8 -7.2 -200.6 -198.5 -60.5 

 

Table 4.2 Comparison of the levels of 
1
H NMR signal enhancement observed for 5-methylpyrimidine using 

catalysts 2-a, 2-b and 2-c according to the shake method 

Considering the long activation periods of greater than 48 hours needed for catalysts 2-a 

and 2-b for 5-methylpyrimidine, and the relative poor performance for SABRE at room 

temperature, the optimisation of 5-methylpyrimidine was completed with catalyst 2-c.  

Using catalyst 2-c, the rate constant and thermodynamic parameters for ligand exchange, 

can be determined using a 1D NOESY method, as shown in Table 4.3. The raw data can be 

found in section 7.1.5. 

Hydride Exchange 

Rate Constant / s-1 (300 K) ΔH‡ / kJ mol-1 ΔS‡ / JK-1 mol-1 ΔG300
‡ / kJ mol-1 

5.4 ± 0.2 86.2 ± 2.3 62.4 ± 8.1 67.5 ± 0.09 

5-methylpyrimidine Exchange 

Rate Constant / s-1 (300 K) ΔH‡ / kJ mol-1 ΔS‡ / JK-1 mol-1 ΔG300
‡ / kJ mol-1 

1.85 ± 0.1 60.3 ± 0.9 33.2 ± 3.1 70.2 ± 0.05 

 

Table 4.3 Activation parameters for the loss of 5-mthylpyrimidine ligand and loss of hydride ligand when 
catalyst 2-c precursors are used 

The rate of 5-methylpyrimidine ligand loss is 1.85 s-1 at 300 K and lower that that reported 

for 2-c with pyridine. This slow exchange accounts for the weak SABRE effect. Given the pKa 

of 5-methylpyrimidine (9.45) and that of pyridine (5.25), a stronger iridium-nitrogen bond is 

expected for 2-c and 5-methylpyrimidine. These data support this deduction. 

When 2-c is acting as a polarisation transfer catalyst, it does so by redistributing 

magnetisation at a molecular level. As mentioned previously, this is an equilibrium process, 

and hence might also be expected to be visible as an enhanced rate of signal relaxation. It is 

therefore necessary to quantify the T1 relaxation for the proton spins of 5-
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methylpyrimidine. Four experiments were carried out with catalyst 2-c and 5-

methylpyrimidine present at standard concentration and the results are outlined in Table 

4.4.  

 

 5-methylpyrimidine / Site H 

T1 Relaxation (s) 

H (2) H (4/6) H (7) 

Substrate/methanol/ air 7.30 7.05 4.24 

Substrate/methanol/degassed 76.92 38.71 8.11 

2-c/Substrate/methanol/degassed 50.46 31.30 7.59 

2-c/Substrate/methanol/H2 22.52 20.92 6.02 

 

Table 4.4 T1 values for 5-methylpyrimidine resonances obtained experimentally at 298 K  

It is evident from these data that the T1’s times are affected by the presence of catalyst, air 

and H2. If we consider the T1 for H (2) , it starts out at ~ 77 seconds which would be long 

relative to any injection time of 6-20 s160 (dependent on injection site and tissue). The time 

taken for a signal to fall by 3 half-lives would be 163 s. This means that after injection, it 

could realistically be possible to measure a signal after 163 s. Hence, 5-methylpyrimidine is 

a potential molecular contrast agent. When 2-c is added, there is evidence of an interaction 

with the catalyst because of the reduction of T1, 2-c is 16e- and weak binding of 5-

methylpyrimidine would therefore result in an 18e- complex. When activated by H2, the 

drop in T1 is increased, giving a measured value of approximately 23 s. This is consistent 

with 5-c acting as a SABRE catalyst. This means that 10 s bubbling in method 2 could be 

extended to ca. 3T1 with the expectation that the signal strength might increase by ~12-

fold, if first order behaviour is assumed.  Similar results were observed for positions 2 

(ortho), 3 (meta) and 4 (para) of pyridine152, here the corresponding T1 values are 19.6, 14.6 

and 12.6 respectively. The implication is that pyridine polarises more rapidly and that 

regardless of toxicity, its T1 means it is a less suitable imaging probe than 5-

methylpyrimidine.   
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4.2.2.  Optimising 5-methylpyrimidine for SABRE with catalyst 2-c 

4.2.2.1. Polarisation Transfer Field Plot 

5-methylpyrimidine was then examined using method 2 in order to seek an optimum PTF 

value. The resulting 1H NMR spectra are shown in Figure 4.3 and maxima are observed 

when a PTF value of 50 G is used. It is less sensitive to this change than pyridine in Chapter 

3. 

 

Figure 4.3 Observed 
1
H NMR signal intensity field profiles for 5-methylpyrimidine resonances as an function 

of changing PTF, over the range 0 to -140 G, using 2-c 

 

 

Figure 4.4 a) Graphical representation of the observed 
1
H NMR signal enhancement of 5-methylpyrimidine 

using catalyst 2-c as a function of PTF over the range of 0 – 140 G b) total 
1
H NMR signal enhancement 

 



136 
 

At this maximum, an absolute enhancement level of 892-fold is recorded (Figure 4.4).  It 

can be seen that the 1H NMR signals all contain emission type character under PTF values of 

between 0 and 140 G. Consequently, they do not contain any complicated antiphase signals 

as demonstrated previously in Chapter 3. This benefit is important if the technique is to be 

used for imaging, due to the fact that magnetisation will be cancelled due to signals 

containing both absorption and emission type character. 

Polarisation of aliphatic groups by SABRE has received less attention than aromatic 

protons. It can be seen that whilst the enhancement levels are low, significant time savings 

are available compared to obtaining a thermal spectrum. The reason for the fall in the 

observed hyperpolarisation is due to the small coupling that connects the group into the 

aromatic spin system with JHH = 1.1 Hz150. A polarisation enhancement of -68-fold is 

observed for the methyl group. When this is compared to 3-methylpyridine and 4-

methylpyridine studied previously, under standard conditions and at room temperature, it 

is the most efficient seen for SABRE.  

The effect of changing the PTF on the signal intensity of the resulting 1H OPSYdq spectra 

was investigated and results are shown in Figure 4.5.  It is revealed that the maximum IzSz 

magnetisation used for SABRE is found at a PTF of 70 G for the aromatic protons and at a 

PTF of 90 G for the methyl signal.  

 

Figure 4.5 
1
H OPSYdq NMR signal intensity profiles for the 5-methylpyrimidine resonances as a function of 

PTF 
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In 2014, Fekete et al. reported a catalyst system which contained both NHC and phosphine 

ligands which acted to reduce the number of bound substrate molecules during SABRE161. 

The addition of acetonitrile-d3 leads to the formation of  [Ir(IMes)(MeCN)2(PCy3)]BF4 (7-d) 

(Figure 4.16), but the more dominant product is [Ir(H)2(IMes)(MeCN)(Py)(PCy3)]BF4 (6-d). 

This is reported as a good complex for polarisation transfer to pyridine. 

 

   5-d        6-d     7-d   

Figure 4.6 Schematic of equilibrium of complex 5-d, with addition of pyridine and H2 to form the more 
efficient complex 6-d, reported by Fekete et al. 2014

161
 

The effect of acetonitrile on this sample was therefore studied. A stock solution containing 

catalyst 2-c (5 mM, 0.031 mmol) and 5-methylpyrimidine (100 mM, 0.062 mmol) in 

methanol-d4 was made. Two aliquots of 0.6 ml were taken, with the first transferred to a J-

Young’s tap NMR tube (sample 1). To the second, a stoichiometric amount of acetonitrile-

d3 (1.2 µl) was added prior transfer to a similar NMR tube (sample 2). The samples were 

then examined using the standard procedure for method 1, out-lined in the Experimental 

Section 7.2. 

The 1H NMR spectra that were obtained for a hyperpolarised 5-methylpyrimidine sample, 

shaken at 50 G, can be seen in Figure 4.7. It has been shown that acetonitrile polarises 

under the same conditions 162, therefore acetonitrile-d3 is used to maximise SABRE transfer 

into 5-methylpyrimidine. 
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Figure 4.7 Observed 
1
H NMR spectra for 5-methylpyrimidine resonances. The thermal is represented on top, 

polarised sample 2 containing acetonitrile in the middle and polarised sample 1 on the bottom shaken at 
approximately 50 G 

The absolute enhancements observed for sample 1 and sample 2 are 897 and 799-fold 

respectively. Although there is no PPh3 in this system, Figure 4.8 shows the 1H NMR spectra 

for the hydride region of sample 2 confirms that the dominant species in this SABRE 

measurement is complex 6-d with 5-methylpyrimidine and acetonitrile trans to the hydride, 

which resonate at -20.9 ppm and -22.2 ppm respectively. In this study, the addition of 

acetonitrile to the sample mixture does not improve the polarisation level achieved by 

SABRE, but more importantly it does not diminish the polarisation level. This will become 

important when considering catalyst loading.  

 

Figure 4.8 
1
H NMR spectra of the hydride region for sample 2 containing 5-methylpyrimidne and acetonitrile 
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4.2.2.2. Temperature 

When the effect of temperature was investigated with 5-methylpyrimidine and catalyst 2-c, 

the information presented in Figure 4.9 was obtained. It can be seen that optimum SABRE 

efficiency is observed at temperatures of 303 K and 293 K when PTFs of 0.5 G and 65 G are 

used respectively. The results at a PTF of 65 G are comparable to those presented earlier 

for the pyridine type substrates using 2-a described in section 3.5. 

 

 

Figure 4.9 Graphical representation of the 
1
H NMR signal enhancements seen for 5-methylpyrimidine using 

catalyst 2-c as a function of temperature at a PTF of a) 0.5 G and b) 65 G 

It can be concluded that the ligand exchange rates of Table 4.3 are optimal for 5-

methylpyrimidine. This means that catalyst design cannot be under taken without 

considering the impact of the substrate. 

 

4.2.3. Concentration  

In 2009, Atkinson et al.79 reported on the effect of catalyst loading, where the amount of 

catalyst [Ir(COD)(PCy3)(py)]BF4 was varied to saturation point, with 20 mol % achieving the 

greatest observable polarisation79. The effect of catalyst loading with 2-c and pyridine has 

also been reported in a publication by Cowley et al 149. For this system, the catalyst loading 

was varied from 0.1 mol % to 10 mol % and found, like the previous literature, that the 

higher the catalyst loading was, the higher the observed enhancement. This is represented 

graphically in Figure 4.10. 
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Figure 4.10 
1
H NMR enhancements obtained for catalyst loading of 2-c as reported by Cowley et al 2011

93
 

Recent publications by Mewis et al. 2014156 and Lloyd et al. 2012163, have described the 

concentration dependence of SABRE of 2-c with nicotinamide and quinoline respectively. 

The first study uses various different catalyst loadings of 2-c and probes different spin 

states of nicotinamide using the OPSY pulse sequence.  The second describes the detection 

of quinoline at 0.6 mM concentration level in both 1D and 2D NMR measurements, which 

equates to detecting 0.052 mg of substrate in a 600 µl sample.  

Both publications mention using SABRE to observe hyperpolarisation signals in 13C NMR 

spectroscopy. Lloyd et al. reports a newly developed decoupled 13C INEPT pulse sequence, 

which was adapted for SABRE by the addition of a refocusing step. The resulting spectra for 

the quinoline sample can be seen in Figure 4.11 at the concentration of 0.6 mM.  

 

Figure 4.11 Corresponding 
13

C NMR INEPTrd spectrum for a quinoline sample at a concentration of 0.6 mM
163
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4.2.3.1. The effect of concentration during polarisation when the ratio of 5-

methylpyrimidine to catalyst stays the same 

This study was initially carried by making stock solution at concentration of; 300 mM 5-

methylpyrimidine (0.186 mmol, 17.48mg) with 15 mM 2-c (0.0093 mmol, 6 mg), where the 

substrate to catalyst ratio remains at the defined standard at 20:1. The samples were made 

by series dilution and are outlined in Table 4.5.   

 

 

Table 4.5 The amounts of 2-c and substrate used in the corresponding concentration experiments with each 
made up with 0.6ml methanol-d4 

These data show that hyperpolarised signals can be obtained at very low concentration, 

represented in sample 8, where proton 2 produces a maximum enhancement of -134-fold. 

This corresponds to detecting 0.058 mg of 5-methylpyrimidine in a single scan (Figure 4.12). 

Sample 7 gives the best overall absolute enhancement of -1357-fold. One observation is 

that proton 4, generally gives the highest level of enhancement, followed by proton 2 and 

7. This could start to explain the importance of proton 4 for the transfer of polarisation 

within the 5-methylpyrimidine molecule.  

If the equipment were able to sustain 3 bars of parahydrogen, as indicated earlier by 

bubbling for longer, we might expect this to further increase the level of hyperpolarisation. 

This approach could be used to drop the concentration still further and increase the quality 

of the spectra. 

 Substrate to 

Catalyst 

Ratio 

2-c 5-Methylpyrimidine 

 

[2-c] 

(mM) 

Mass 

(mg) 

[5-Methyl 

pyrimidine] (mM) 

Mass 

(mg) 

Sample 1 20:1 15 6 300 17.5 

Sample 2 20:1 12.5 5 250 14.6 

Sample 3 20:1 10 4 200 11.6 

Sample 4 20:1 7.5 3 150 8.75 

Sample 5 20:1 5 2 100 5.83 

Sample 6 20:1 2.5 1 50 2.92 

Sample 7 20:1 0.5 0.2 10 0.58 

Sample 8 20:1 0.05 0.02 1 0.058 
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Proton Resonance / Enhancement 

 
2 4 7 

Total 
Enhancement 

Sample 1 -157.4 -207.5 -54.6 736.6 

Sample 2 -15.6 -97.4 -7.3 232.5 

Sample 3 -123.0 -189.4 -43.5 632.5 

Sample 4 -62.8 -164.2 -25.3 476.7 

Sample 5 -47.1 -179.2 -31.7 500.8 

Sample 6 -322.8 -36.2 -102.5 702.3 

Sample 7 -297.3 -420.0 -73.1 1357 

Sample 8 -134.7 -127.5 -36.3 498.9 

 

Table 4.6 
1
H NMR signal enhancement levels of free 5-methylpyrimidine proton resonances that were 

obtained using concentrations listed in Table 4.5.  

 

Figure 4.12 Thermal 
1
H NMR spectrum of 5-methylpyrimidine (top) and a hyperpolarised spectrum of sample 

8 (bottom) polarised with 2-c using shake and drop method (method 1) at 65G 

It is much harder to record 13C NMR spectra as the natural abundance of 13C isotope is just 

1.1 % of natural carbon. Figure 4.13 shows the resulting 13C and 13C INEPTrd spectra 

obtained at 0 G and 65 G respectively. These were collected in a single scan and sample 4 

gave the maximum signal-to-noise ratio for each of the two spectra. These data are 

summarised in Table 4.7 and graphically in Figure 4.14.  
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Figure 4.13  Two single scan spectra of hyperpolarised 5-methylpyrimidine with 2-c using 
13

C (top) and 
13

C 
INEPTrd NMR pulse sequence 

 

NMR 
Experiment 

Carbon position (signal-to-noise) 

2 4 5 7 

13C 54.7 61.9 133.5 41.9 

13C INEPTrd 18.3 57.4 40.5 29.0 

 

Table 4.7 Summary of signal-to-noise observed in the stated NMR experiment for sample 4 for the spectra 
represented in Figure 4.13  

Figure 4.14 shows the graphs associated with the signal-to-noise ratio for 5-

methylpyrimidine of samples 1-7 in Table 4.6. The 13C measurement for sample 7 is able to 

detect positions 2, 4 and 5 with a signal-to-noise ratio of 2.87, 2.78 and 8.97 respectively. 

For the same measurement, sample 6 is the lowest concentration detectable for all four 5-

methylpyrimidine carbon resonances 2, 4, 5 and 7 with good signal-to-noise ratio  of 16.5, 

15.7, 46.10 and 12.76. For 13C INEPTrd pulse sequence the carbon resonances 2 and 4 are 

detectable in sample 7 with a signal-to-noise ratio of 9.94 and 19.0 respectively, but this 

time it is sample 5 to that is lowest concentration to be able to detect all four resonances, 

2, 4, 5 and 7 with a good signal-to-noise ratio of 17.6, 9.25, 25.7 and 10.7 respectively. 
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Figure 4.14 Signal-to-noise ratio graphs for sample 1-7 of Table 4.5 for the NMR measurement a) 
13

C  and b) 
INEPTrd when the effect of concentration is studied and substrate to catalyst, 2-c, ratio remain constant at 20 
: 1 

 To conclude that 13C detection is possible down to 0.5 mM concentrations in a single scan. 

Signal averaging would drop this value even further. Interestingly, in this case, the detected 

resonances allow for characterisation. 
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4.2.3.2. The effect of concentration on polarisation transfer when the ratio of 5-

methyl pyrimidine to catalyst changes. 

For this concentration study, the addition of a stoichiometric amount of acetonitrile to 

catalyst is added to all the samples. This addition of acetonitrile becomes important when 

the substrate to catalyst ratio becomes less than a 3:1, as the catalyst would become 

unstable, degrade and therefore no longer transfer polarisation. Catalyst 2-c (5 mM) 

remained constant, while varying the 5-methylpyrimidine concentration across a range of 

samples as outlined in Figure 4.6. These data maps onto those obtained with sample 5 in 

Section 4.3.3.1.  

 Substrate to 

Catalyst 

Ratio 

2-c 5-Methyl pyrimidine 

 

[2-c] 

(mM) 

Mass 

(mg) 

[5-Methyl 

pyrimidine] (mM) 

Mass 

(mg) 

Sample 1 60:1 5 2 300 17.5 

Sample 2 50:1 5 2 250 14.6 

Sample 3 40:1 5 2 200 11.6 

Sample 4 30:1 5 2 150 8.75 

Sample 5 20:1 5 2 100 5.83 

Sample 6 10:1 5 2 50 2.92 

Sample 7 2:1 5 2 10 0.58 

 

Table 4.8 The amounts of 2-c and substrate used in the corresponding concentration experiments with each 
made up with 0.6ml methanol- d4 

The maximum level of enhancement was achieved using a substrate to catalyst ratio of 2:1 

(sample 7) which can be seen in Figure 4.15. 

 

Figure 4.15 Observed 
1
H NMR spectrum of 5-methylpyrimidine with thermal trace (top) and a hyperpolarised 

spectrum of sample 7 (bottom) with catalyst 2-c obtained at a PTF of 65G, with signal enhancements of -450, 
-582 and -149 respectively 



146 
 

 

 
Substrate 
to Catalyst 
Ratio 

Proton Resonance 

 2 4 7 
Total 
Enhancement 

Sample 1 60:1 -29.9 -36.7 -13.5 143.8 

Sample 2 50:1 -81.1 -16.5 -24.7 188.2 

Sample 3 40:1 -75.9 -35.64 -19.9 206.8 

Sample 4 30:1 -34.0 -78.0 -0.19 190.6 

Sample 5 20:1 -95.2 -254.8 -49.3 752.7 

Sample 6 10:1 -893.9 -135.7 -107.4 1487 

Sample 7 2:1 -450.8 -582.5 -149.2 2063 

 

Table 4.9 
1
H NMR signal enhancement levels for 5-methylpyrimidine 

These data follow the trend that has now been reported in the literature; that polarisation 

enhancement level increases as the catalyst loading increases92, 93, 152. This is shown in 

graphically in Figure 4.16.  

 

Figure 4.16 Effect of substrate to 2-c excess on the level of polarisation transfer for a metal concentration of 
5 mM 
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A series of 13C and 13C INEPTrd signal-to-noise ratio spectra were then recorded. The results 

of this process can be viewed graphically in Figure 4.17. For the 13C NMR measurement, the 

optimum catalyst loading ratio is 30:1. For the 13C INEPTrd sequence, the signal is 

resonance dependent. For carbon 2 and 5, the maximum is observed with a ratio 30:1, 

while for carbon 4 and 7, it is at 20:1. Based on the smaller fluctuation of resonances 2 and 

5, sample 2 would be chosen to run a 13C INEPTrd measurement. The optimum signal-to-

noise ratio for both NMR measurements are summarised in Table 4.10. 

 

 

Figure 4.17 signal-to-noise ratio graphs for sample 1-7 of Table 4.5 for the NMR measurement a) 
13

C  and b) 
INEPTrd when the effect of concentration is studied, when catalyst 2-c concentration remains constant at 5 
mM 

 

NMR 

Experiment 

Carbon position ( SIGNAL-TO-NOISE) 

2 4 5 7 

13C 45.2 63.57 125.4 39.89 

13C INEPTrd 69.80* 31.4# 107.0* 18.59# 

 

Table 4.10 Summary of maximum signal-to-noise ratio observed the resulting NMR experiment were 
13

C was 
from sample 4 and 

13
C INEPTrd *sample 2 and 

#
 sample 5 taken from Figure 4.17 
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4.3. Imaging 

There are many MRI experiments that could be used to acquire an image. High resolution 

images can take in the region of several hours to record, but this is not acceptable for 

medical applications. Instead, for contrast and angiography experiments, they consist of 

single shot and Echo Planar Imaging (EPI) experiments. For a SABRE experiment, time is an 

issue as the hyperpolarised signals decay rapidly. This makes 5-methylpyrimidine a good 

substrate to consider due to long relaxation of the proton signals in a 1H NMR experiment. 

In this section, MRI sequences that have been employed to collect hyperpolarised images 

include: 

 Fast Spin Echo /  Rapid Acquisition with Refocused Echoes (FSE/RARE) 

This consists of a spin echo being generated from a 90° r.f. pulse, followed by 

multiple 180° refocussing pulses, which are referred to as the echo train. 

 Fast Low Angle Shot (FLASH) 

This combines low flip angles (10 - 80°) and echo gradients to produce a rapid 

image sequence. The higher the flip angle the greater T1 weighting, the lower the 

angle the greater the T2 weighting. This technique makes use of spoiler gradients 

to remove any transverse magnetisation at the end of an experiment. This type of 

experiment can be carried out in 20 to 30 ms, but as a result, poorer resolution can 

be observed. 

 Fast Imaging with Steady State Precession (FISP) 

This technique is used in cardiac images and angiography and is based on FLASH 

but uses a spoiler gradient at the end of the experiment. This sequence uses a 

repeat of small flip angles, which results in formation of magnetisation in the 

steady state.  

The first published method for collecting a hyperpolarised MRI experiment was with 

hyperpolarised gases. The hyperpolarised states of these gases have a very short T1, which 

in turn requires a fast imaging technique. This must be ideally shorter than the T1 so the 

maximum signal enhancement is observable before it decays. There have been many ways 

that MRI has been improved including stronger spoiler gradients, larger receiver band 

widths and fast imaging techniques, such as EPI, RARE, FSE or GRASE. Even still, the use of 

FLASH with a low flip angle is the most widely used, as this allows for many images in quick 

succession thus shows real-time tracking of physiological processes 51.  
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This work was completed with help from a postdoctoral research colleague when collecting 

the MRI images and processing the information. This study uses the same samples which 

were presented for the concentration results to acquire hyperpolarised images. Prior to 

imaging, the samples were refreshed with three bar of parahydrogen, shaken at a PTF of 

50-60 G and introduced into the magnet. The sample introduction differs from a 

conventional NMR experiment due to set up which can take considerably longer before 

acquisition.  

Data collected in this way was processed as outlined in the Experimental. In order to 

estimate the signal enhancement for each solution, the average of the signal-to-noise ratio 

values obtained from the 5 shake-and-drop experiments was divided by the signal-to-noise 

ratio value extracted from the corresponding thermal images of the sample. 
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4.3.1. Imaging Results 

A series of images have been acquired of SABRE polarised 5-methylpyrimidine. The ratio of 

2-c substrate was 20:1 and they mimic the NMR measurements in Table 4.5 of section 

4.3.3.1. These MRI experiments used a RARE sequence. The resulting images are shown in 

Figure 4.18 of an NMR tube containing 2-c, 5-methylpyrimdine and methanol- d4. A 5 mm 

slice was examined where the field of view (FOV) was 30 x 30 mm, and the matrix size 64 x 

64. The echo time was 4 ms (TE/TR) and the total acquisition time 600 ms. A 90° pulse is 

employed in these measurements. A control thermal image was acquired using an 8 scan 

average with a long recycle time to account for the T1 values described earlier. The results 

of this was that the control measurements take 7 minutes to perform whilst the 

hyperpolarised scan takes just 260 ms acquired using one scan. 

 

 

Figure 4.18 
1
H RARE MRI images for an NMR tube containing 5-methylpyrimidine and 2-c, with the 

corresponding thermal images represented on the left and hyperpolarised images on the right at a PTF of 50 
– 60 G with substrate ratio 20:1; the concentration of 2-c is: a)  15 mM, b) 10 mM and c) 5 mM 
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The observed 1H RARE MRI images reveal good polarisation of 5-methylpyrimidine and the 

signal is an order of magnitude greater when compared to the thermal image data. It is also 

observable that the signal-to-noise ratio has significantly increased in the hyperpolarised 

samples, with the images looking clearer and sharper than those of the thermal 

measurements. The images can be quantitatively examined for signal-to-noise ratio, as 

presented graphically in Figure 4.19. This shows that the best signal-to-noise ratio  is 

observed when the concentration of 2-c is 0.5 mM and 5-methylpyrimidine is 1 mM.  

 

 

Figure 4.19 Influence of the amount of catalyst on the signal-to-noise ratio of 5-methylpyrimidine 
hyperpolarised/thermal images. In order to observe just the effect of 2-c, each Signal-to-noise ratio has been 
normalized to the concentration of substrate used 

These results demonstrate that the use of SABRE can not only reduce the experimental 

time, but also show a remarkable improvement in signal intensity. If this sample was to be 

considered as a contrast agent for in-vivo studies, it is important to determine an optimum 

concentration. This will involve a trade-off between high signal-to-noise values and the 

maximum amount of complex that can be administered under safe conditions. As the 

substrate is biocompatible, the concern remains with the catalyst. 

The same 1H RARE MRI measurements can be carried out to determine the optimum 

catalyst loading when the quantity of 5-methylpyrimidine is varied. This will determine the 

optimum quantity of substrate in terms of image quality and signal-to-noise.  The results 

can be seen in Figure 4.20. 
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Figure 4.20 
1
H RARE MRI images for an NMR tube containing 5-methylpyrimidine and 2-c, thermal images 

shown on the left and hyperpolarised images on the right (collected for a PTF of 50 – 60 G, with substrate: 
catalyst ratio; a) 60:1 b) 40:1 and c) 20:1) 

The analysis of the thermal results show a linear relationship between intensity and proton 

density, so increasing the amount of substrate leads to an increase in signal-to-noise ratio. 

However the hyperpolarised spectra do not seem to follow this trend, with the optimum 

signal intensity being observed when substrate to catalyst loading ratio is 40:1.  

 

Figure 4.21 Influence of the substrate: catalyst ratio on the signal-to-noise ratio of 5-methylpyrimidine 
hyperpolarised/thermal images. 
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Figure 4.21 shows the graph of signal-to-noise ratio against catalyst loading and confirms 

that the optimum is at a ratio of 40:1. This is important from a clinical perspective as it 

proves that the best quality image and signal-to-noise was obtained when not using large 

amounts of substrate, and as a contrast agent a relatively low dosage could be 

administered. 

Both sets of samples can now be compared to two standard phantom samples of water and 

oil. Water and oil are used to mimic the water and fat in the body, but their T1 relaxation 

times are considerably quicker than that of human tissue55. The arrangement of these 

samples for a MRI measurement is as shown in Figure 4.22. 

 

 

Figure 4.22 Arrangement of the phantoms and substrate (sub) in the bore of the magnet 

These data have be acquired using MRI pulse sequences RARE, FLASH and FISP, which are 

three of the most common image acquisition strategies currently employed in preclinical 

and clinical imaging164, 165. The purpose of these experiments was to assess the behaviour of 

the hyperpolarised complex when not only intensity, but also contrast is considered. All of 

the parameters were kept consistent throughout, with RARE parameters being: 5 mm slice, 

FOV 30 x 30 mm, matrix 64 x 64, TE/TR 4 ms/600 ms/ 90°. The FLASH parameters are: 5 mm 

slice, FOV 30 x 30 mm, matrix 64 x 64, TE/TR 4 ms/600 ms/ 5°. The FISP parameters are: 5 

mm slice, FOV 30 x 30 mm, matrix 128 x 128, TE/TR 4 ms/600 ms/ 5°.   

The resulting images can be seen in Figure 4.23 and Figure 4.27 with samples containing a 

20:1 and 60:1 ratio of substrate to catalyst respectively. In the same way previously shown 

a graph of signal-to-noise ratio can be plotted, but instead of setting these against the 

thermal 5-methylpyrimidne signal, the hyperpolarised image can be set against the two 

phantom samples which are represented in d (water) and e (oil) of these figures.  
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Figure 4.23 
1
H MRI images of three samples, where the MRI pulse sequences are: a) RARE, b) FLASH and c) 

FISP. The left images reflect the thermal traces whilst the right images reflect the hyperpolarised traces. The 
signal-to-noise ratio of the hyperpolarised 5-methylpyrimdine signal versus that of water and oil is shown in 
graphs (d) and (e) respectively. Substrate = S, water = W and oil = O. Catalyst loading 1:20  
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Figure 4.24 
1
H MRI images of three samples, where the MRI pulse sequences are: a) RARE, b) FLASH and c) 

FISP. The left images reflect the thermal traces whilst the right images reflect the hyperpolarised traces. The 
signal-to-noise ratio of the hyperpolarised 5-methylpyrimdine signal versus that of water and oil is shown in 
graphs (d) and (e) respectively. Substrate = S, water = W and oil = O. Catalyst loading 1:60  

 

It can be seen from these data that the hyperpolarised image of 5-methylpyrimidine shows 

good signal intensity for all of the MRI pulse sequences. Figure 4.23 reveals the signal-to-

noise ratio values of the hyperpolarised sample are comparable to those of pure water 

when using the FISP pulse sequence, when 2-c (7.5 mM) and 5-methylpyrimidine (150 mM) 

is employed. When an FSE pulse sequence is used, the signal-to-noise ratio values of the 
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hyperpolarised samples can be up to one order of magnitude higher than those of oil. The 

spin echo refocuses the hyperpolarised magnetisation and prevents it from decaying due to 

phenomena such as magnetic susceptibility of field in-homogeneities. Figure 4.24 reveals 

signal-to-noise ratio values that are about half when compared to the water and 10 times 

higher to that observed against the oil sample. The orientation of the sample images differ 

slightly, due to replacing the probe in a different alignment when carrying a SABRE 

experiment. 

For high resolution MRI, longer acquisition times and multiple scans are required to achieve 

the desired image quality. Although this is still in the early stages of testing, due to the long 

T1 relaxation time of 5-methylpyrimidine, it is possible to implement the FISP sequence 

with a total acquisition time of 9 seconds. The parameters for the experiment are as 

follows; 5 mm slice, FOV 30 x 30 mm, matrix 128 x 128, TE/TR1/TR2 2 ms/ 4 ms / 600 ms/ 5°. 

This allowed the consecutive collection of eight images as shown in Figure 4.25 from a 

single polarisation step. A similar study with pyridine has been examined in the past166. 

Initially, the corresponding data yielded similar signal-to-noise ratios to those obtained for 

5-methylpyrimidine but it only proved possible to collect 2 - 3 images from one 

hyperpolarised sample due to the T1 relaxation of pyridine being more facile.   

 

Figure 4.25 
1
H MRI images obtained for hyperpolarised 5-methylpyrimidine using FISP sequence in succession 

for a total acquisition of 9 s 

This shows that the long T1 relaxation time of 5-methylpyrimidine makes it a potentially 

suitable candidate to pursue MRI with in-vivo imaging. In conclusion, 5-methylpyrimidine is 

a good test compound for further in-vivo studies. This study has shown that it can be 

polarised, it has a long T1, and good phantom images can be obtained. If future work was to 
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be carried out, FISP or FLASH protocol should employed in these studies, but FLASH may 

give fewer artefacts as it is less sensitive and works well with molecules with long T1. A 60 

second parahydrogen SABRE transfer time was used to improve on the signal-to-noise ratio 

values. 

4.4. Effect of deuterium labelling. 

The effect of 2H labelling has also been studied. It is known that incorporating 2H into the 

substrate can lengthen T1 and reduce the number of protons SABRE polarisation is 

distributed between. This means that larger hyperpolarisation levels might be achieved. A 

study of 2,6-d2-pyridine and 3,4,5-d3-pyridine was conducted with catalyst 2-a. Typical 1H 

NMR spectra are shown in Figure 4.26. The enhancement levels are summarised in Table 

4.11. 

 

Figure 4.26 Hyperpolarised 
1
H NMR for a) 2,6-d2-pyridine and b) 3,4,5-d3-pyridine with catalyst 2-a at a PTF of 

65 G 

 

Substrate Resonance Enhancement level 

2,6-d2-pyridine para (4) -141.59 

meta (3/5) -104.96 

3,4,5-d3-pyridine ortho (2/6) -403.36 

 

Pyridine 

ortho (2/6) -113.56 

para (4) -63.23 

meta (3/5) -99.57 

 

Table 4.11 Comparison of 
1
H NMR signal enhancement levels (fold) observed for pyridine using catalyst 2-c 

The results show that 3,4,5-d3-pyridine has the greatest build-up of polarisation in the 

ortho position, nearly quadrupling the values seen in fully protonated pyridine. The 3,4,5-
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d3-pyridine is also advantageous for MRI as the single resonance will prevent ghosting of 

the image 167. Based on these results for deuterated pyridine, it is a sensible idea to explore 

the effect of deuterating 5-methylpyrimidine.  

4.4.1. Synthesis of deuterated 5-methylpyrimidine isotopers 

In order to do this, the synthesis of the deuterated 5-methylpyrimidine isotopers shown in 

Scheme 4.1. was undertaken. Table 4.12 reveals the corresponding conversion data. The 

starting materials are readily available in the form of chlorinated precursors. 

Catalyst
Additive
Solvent
Time

 

Scheme 4.1 Chlorinated precursors used in the synthesis of deuterium labelled 5-methylpyrimidine 
substrates. These were carried out as individual reactions to obtain the corresponding final product 

   

Entry Catalyst Additive Solvent Time Conversion  Isolated Yield 

1 Zn AcOD THF/D2O 12 0 % 0 % 

2 Pd/C (10%) Et3N MeOD 12 0 % 0 % 

3 Pd/C (10%) Et3N EtOD 12 2% 2 % 

4 Pd/C (10%) Et3N Et2O 12 100 %                      <10 % 

5 Pd/C (10%) Et3N THF/D2O 12 4 % 2 % 

6 Pd/C (10%) Et3N THF 12 100 %             <15 % 

7 Pd/C (10%) K2CO3 Et2O 72 h 76 %  <50 % 

8 Pd/C (10%) K2CO3 THF 72 h 95 %  < 30 % 

9 Pd(OH)2/C K2CO3 THF 72 h 85 %  < 50 % 

10 Pd/C (5%) K2CO3 THF 72 h 100 %  98 % * 

 

Table 4.12 Corresponding experimental conditions for the proposed Scheme 4.1 and conversion rates 
(

*
Isolation as the HCl salt) 

Initial attempts to introduce deuterium into 2,4-chloro-5-methylpyrimidine focused on the 

use of transfer hydrogenative conditions with Zn (entry 1, Table 4.12). The reaction profile 

unfortunately showed no conversion to the desired product. Instead, deuterium was 

incorporated into all sites. Subsequent studies focused on the heterogeneous reductive 
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dechlorination utilising palladium on carbon in the presence of D2(g). When the reaction was 

attempted in the presence of protic solvents (entries 2, 3, and 5, Table 4.12) poor 

conversion was observed, with a major side reaction involving SNAr addition of the protic 

solvent into the aryl halide bond (Scheme 4.2). 

 

Scheme 4.2 Proposed side reaction with protic solvent leads to ethers 2, 3 of Table 4.12 

Upon moving to the ethereal aprotic solvents (entries 4 and 6, Table 4.12), excellent 

conversion was observed. However, isolation of the desired product proved difficult due to 

the presence of the Et3N which co-eluted under flash chromatography and formed an 

azeotrope with the product, resulting in the significant loss of yield upon isolation. Upon 

transferring to an inorganic base, the reaction times increased dramatically, with THF found 

to be a better solvent choice than Et2O, most likely due to the increased solubility of both 

the base and D2. Upon changing the palladium catalyst, small improvements were found by 

changing to Pd/C with 5% loading. Subsequent purification relied on the formation of a salt 

of HCl in order to avoid similar azeotrope effects when removing the reaction solvent. 

These conditions were applied to the remaining chlorinated starting materials to allow 

access to the full range of isotopomers (Scheme 4.1). These reactions were followed by LC-

MS. 

4.4.1.1. 4,6-d2-5-methylpyrimidine 

The resulting 
1
H NMR spectra associated with the formation of 4,6-d2-5-methylpyrimidine can be seen Figure 

4.27 and deuterium incorporation is confirmed according to  

Table 4.13. The deuterium exchange into the 4 / 6 positions has not been fully 

accomplished, giving 13 % hydrogen incorporation at these sites. It is also evident that 

deuterium exchange has taken place at the 2 position with 55 % incorporation. The methyl 

groups remain unchanged. The 1H NMR of the starting material showed 4 % hydrogen 

incorporation. This can arise from loss of enrichment of the D2(g) or from H2 exchange from 

palladium on carbon, as this is a surface mediated reaction and the palladium on carbon 

catalytic surface can contain up to 50 % water. Attempts were made to minimise this effect 

by washing the catalyst in D2O prior to starting the reaction.  

 D2(g)

1) MeOD, 
2) EtOD, 
3) THF / D2O

Room Temp 12 hr

10% Pd / C



160 
 

 

Figure 4.27 
1
H NMR spectrum of 4,6-d2-5-methylpyrimidine in methanol-d4 

 

Substrate Resonance Deuterium incorporation (%) 

4,6-d2-5-methylpyrimidine 

 

H2 55 % 

H4/6 87 % 

H7 0 % 

H2 55 % 

 

Table 4.13 
2
H labelling of 4,6-d2-5-methylpyrimidine, and percentage label incorporation 

 

4.4.1.2. 2-d-5-methylpyrimidine 

The 1H NMR spectrum of 2-d-5-methylpyrimidine can be seen in Figure 4.28 and deuterium 

incorporation is detailed in Table 4.14. Again it is evident that there is 15 % hydrogen 

incorporation in the 2 position. The 1H NMR spectrum of the staring material revealed 2 % 

hydrogen in the same position. Unfortunately, the reaction has proceeded to incorporate 

32 % deuterium into the hydrogen 4 / 6 of the final product as well as the desired 

deuteration site. 
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Figure 4.28 
1
H NMR spectrum of 2-d-5-methylpyrimidine in methanol-d4 

 

Substrate Resonance Deuterium incorporation (%) 

2-d-5-methylpyrimidine 

 

H2 85 % 

H4/6 42 % 

H7 0 % 

H2 85 % 

 

Table 4.14 
2
H labelling of 2-d-5-methylpyrimidine, and percentage incorporation 

 

4.4.1.3. 2,4-d2-5-methylpyrimidine 

The 1H NMR of 2,4-d2-5-methylpyrimidine can be seen in be seen in Figure 4.29 and 

deuterium incorporation in Table 4.15. Again, it is evident there is a 4 % hydrogen 

incorporation in the 2 position. The NMR spectra of the staring material revealed 1.5 % 

hydrogen in the same position. Unfortunately, the reaction has proceeded to incorporate 

an extra 34% deuterium at hydrogen 4 of the final product.  
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Figure 4.29 
1
H NMR spectrum for 2,4-d2-5-methylpyrimidine in methanol-d4 

 

Substrate Resonance Deuterium incorporation (%) 

2,4-d2-5-methylpyrimidine 

 

H2 96 % 

H4 100 % 

H6 34 % 

H7 0 % 

 

Table 4.15 
2
H labelling of 2,4-d2-5-methylpyrimidine, and percentage incorporation 

The deuterium labelled substrates and their precursors were then tested for SABRE activity. 

4.4.2. Testing chlorinated and deuterated 5-methylpyrimidine analogues 

with SABRE 

SABRE was investigated firstly with the chlorinated precursors and catalyst 2-c. These 

exhibit poor polarisation transfer with resonances 4 and 6 of 2-chloro-5-methylpyrimidine 

giving the greatest enhancement level of -1.1-fold. The poor activity is possibly due to steric 

hindrance of the precursor (chlorine vs. proton), and consequently not being able to freely 

exchange with the catalyst. The study continued on to investigate the deuterium labelled 

substrates synthesised in the previous section. The hyperpolarised 1H NMR spectra for each 

of these substrates can be seen in Figure 4.30. 
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Figure 4.30 Observed 
1
H NMR spectra for SABRE experiments with catalyst 2-c for a) 2,4-d2-5-

methylpyrimidine, b) 2-d-5-methylpyrimidine and c) 4,6-d2-5-methylpyrimidine. The vetical expansion of b 
(x16) and c (x2) is based on spectra obtained for a.  

The results for the SABRE revealed that 2,4-d2-5-methylpyrimidine was the most efficient 

for polarisation transfer with  resonances 6 and 7 yielding a 354 and 55-fold enhancement 

levels obtained at a PTF of 65 G. There is a large amount of polarisation observed for the 

deuterium labelled position 2, with 315-fold enhancement based on the thermal integral 

for 4 % hydrogen incorporation. All of the deuterium labelled substrates are summarised in 

Table 4.16.  
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Substrate Resonance Deuterium 

incorporation (%) 

Enhancement level 

2,4-d2-5-methylpyrimidine 

 

H2 96 % -316 

H4 100 % 0 

H6 34 % -354 

H7 0 % -55.0 

4,6-d2-5-methylpyrimidine 

 

H2 55 % -50.1 

H4/6 87 % -73.0 

H7 0 % -7.12 

2-d-5-methylpyrimidine 

 

H2 85 % -49.9 

H4/6 42 % -72.2 

H7 0 % -7.1 

 

Table 4.16 Summarised 
1
H NMR enhancements levels observed for the 

2
H labelling of 5-methylpyrimidine, 

and percentage incorporation   

These data reveal that a large percentage of the polarisation could possibly be due to the 

small percentage of hydrogen incorporation at the specific sites for deuterium labelling. 

Therefore, it is difficult to determine the transfer process employed in SABRE for 5-

methylpyrimidine. Protio 5-methylpyrimidne originally gave enhancement values of 200, 

198 and 60-fold for H2, H4/6 and H7 respectively. We can see here that the levels observed 

for 2,4-d2-5-methylpyrimidine significantly greater for H2 and H6 resonances. This could be 

linked to similar effects to those observed with concentration as the H concentration at H2 

site is relatively low compared to catalyst loading. Therefore, it seems wise to conduct a 

concentration study of 2,4-d2-5-methylpyrimidine. The H7 resonance remains unchanged, 

but does decrease when investigating the two other 2H labelled substrates. It cannot be 

clearly established, but a larger incorporation of 2H at the H4/6 position seems to present 

poor enhancement values, thus this site could be important in the transfer of polarisation 

of 5-methylpyrimidine. Until a more rigorous synthetic approach to labelling these 

substrates is found, no further work was continued for SABRE or MRI studies.  
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4.5. Conversion of Quinazoline to 3,4-dihydroquinazoline followed by 

SABRE 

One further molecule that has been investigated was quinazoline. During this study the 

unexpected conversion of quinazoline to 3,4-dihydroquinazoline was observed in the 

presence of catalyst 2-c in methanol-d4 solution. This first was observed when testing 

quinazoline under standard conditions for a SABRE experiment. Both the product and 

reactant are SABRE active and consequently the metal catalyst not only mediates 

polarisation transfer but facilitates hydrogenation thereby enabling the examination of this 

transformation through hyperpolarised NMR. 

In order to probe this reaction further a sample containing 2-c, quinazoline (quin) in a 

dichloromethane-d2 was prepared and this sample was then placed under H2. The product 

of this reaction was expected to form [Ir(2-c)(H)2(Quin)3]Cl, for which analogous complexes 

have been demonstrated in section 2.2.6. Instead this reaction (Scheme 4.3) proceeded to 

form a product which yields two inequivalent hydride ligands signals at δ -22.77 ppm and δ 

-23.78 ppm at 298 K, and corresponds to [Ir(2-c)(H)2(Quin)2Cl].  

 

Scheme 4.3 Reaction leading to the formation of [Ir(2-c)(H)2(Quin)2Cl] in dichloromethane-d2 solution 

The hydrides are relatively broad and have slightly different line widths, where δν is 16.7 

and 16.3 Hz respectively. Consequently upon cooling these two hydrides resonances 

sharpen, and resolve into two pairs of doublets that share a splitting of -7.9 Hz at 226 K 

(Figure 4.31). 
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Figure 4.31 
1
H NMR spectra showing the inequivalent hydride as a pair of doublets for [Ir(2-c)(H)2(Quin)2Cl] in 

dichloromethane-d2 at 226 K 

The detailed NMR characterisation of [Ir(2-c)(H)2(Quin)2Cl] was undertaken using a series of 

1D nOe measurements to locate the 6 distinct 1H signals of the quinazoline ligand. Further 

15N NMR measurements provided 5 chemical shifts of δ 192.9, 226.2, 246.5 282.9 and 

283.3.  The site at δ 192.9 proved to correspond to N5 site of catalyst 2-c, which is 

connected to the 1H singlet at δ 6.83 of the imidazole backbone. The δ 246.5 signal N2 

displays a strong coupling of 14 Hz to the Ha proton, thus indicating trans orientation. The 

N1 signal appears at δ 283.6 which proved to connect to the aromatic resonance at δ 9.40. 

The 15N chemical shifts of the free quinazoline appear at δ -291.8, therefore on binding to 

the iridium centre the 15N shifts moves to lower field by approximately 45 ppm. This is 

similar to what is observed when catalyst 2-c  is examined when pyridine bound trans to 

hydride 168. The iridium N3 and N4 resonances for the axial quinazoline ligand appear at δ 

226.2 and 282.9 respectively. Full characterisation of the [Ir(2-c)(H)2(Quin)2Cl] can be found 

in the experimental. Confirmation of the presence of the directly bound, but NMR silent, 

chloride ligand was obtained by the addition of AgBF4 which resulted in the formation of 

the initially predicted  tris-substituted cation [Ir(H)2(IMes)(Qu)3]BF4. 

The quinazoline ligand and hydride loss rate constants were determined for 2-c in 

dichloromethane-d2 solution at 300 K as 10 s-1 and 41 s-1 respectively. The associated rate 

data extracted from a series of variable temperature studies, led to H‡ and S‡ values of 

87.8 ± 1 kJ mol-1 and 75 ± 3 J K-1 mol-1 for quinazoline loss. H‡ and S‡ values of 80 ± 2 kJ 

mol-1 and 50 ± 7 J K-1 mol-1 were determined for the H2 loss process. These processes have 

G‡
(300) values of 65.4 ± 0.5 kJ mol-1 and 61.2 ± 0.2 kJ mol-1 respectively. There is therefore 

little difference between these values and those reported for [Ir(2-c)(Py)3(H)2]Cl93. Where 

H‡, S‡  and G‡
(300 for ligand loss are 93.4 ± 3.1 kJ mol-1, 97 ± 13 J K-1 mol-1 and 64.4 ± 2.2 

kJ mol-1 respectively and H‡, S‡  and G‡
(300 for hydride loss being 79.2 ± 0.2 kJ mol-1, 41.0 

± 3.0 J K-1 mol-1 and 66.4 ± 0.3 kJ mol-1 respectively. 
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Upon the addition of methanol-d4 to the [Ir(2-c)(H)2(Quin)2Cl] solution further reactivity 

was evident as over a period of 24 hour the signals for quinazoline were replaced by those 

of a new material. This change is shown clearly in Figure 4.32 which presents an expansion 

of the aromatic region of the resulting 1H NMR spectra. The material produced in this 

reaction is 3,4-dihydroquinazoline, as confirmed by 1H and 13C NMR data169-171. This is the 

sole product of the reaction and no evidence for 1,2-dihydroquinazoline172 is seen.  

 

Figure 4.32 Series of 
1
H NMR spectra following the conversion of quinazoline into 3,4-dihydroquinazoline by 

the addition of methanol-d4 to the sample [Ir(2-c)(H)2(Quin)2Cl] in dichloromethane-d2 

Remarkably both quinazoline, and the product 3,4-dihydroquinazoline, exhibit SABRE and 

this reaction can be followed by tracking  the change in the corresponding enhanced 

signals. The SABRE enhanced resonances of 3,4-dihydroquinazoline correspond to all seven 

ring protons  with  no visible enhancement seen for the exchangeable NH proton. The 

signal gains for the H2 and H4/5 that are located next to the binding site are around 5 times 

larger than those of the remaining sites. The 1H NMR spectra observed for both 

hyperpolarised reactant and product can be seen in Figure 4.33. 
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Figure 4.33 Observed 
1
H NMR spectra of a) quinazoline when [Ir(2-c)(H)2(Quin)2Cl] in dichloromethane-d2    b) 

the product 3,4-dihydroquinazoline [Ir(2-c)(H)2(Quin)3]Cl after the addition of methanol to the 
dichloromethane-d2 in the presence of H2. The thermal trace is represented on top, and the polarised trace 
on the bottom, under transfer a PTF of 65 G 

The hydrogenation reaction observed here seems specific to quinazoline as pyrimidine, 5-

methylpyrimidine, isoquinoline and quinoxaline have been investigated using SABRE and no  

side reactions were noted. In order to probe whether direct hydrogenation or transfer 

hydrogenation operates here, a methanolic sample containing quinazoline and 2-c was 

prepared and activated by hydrogen. Upon starting to observe the conversion of 

quinazoline to 3,4-dihydroquinazoline, the hydrogen-rich atmosphere was changed to 

nitrogen. The sample was then monitored for 24 hour. No further hydrogenation of the 

starting material occurred. The addition of ammonium formate, a known proton source for 

transfer hydrogenation173-175, in conjunction with heating the sample to 323 K also failed to 

promote further hydrogenation, thus conclude that dihydrogen is necessary for this 

transformation. 

Examination of the literature reveals an outsphere hydrogenation mechanism of 

methylquinoline by Dobereiner et al 2011148. This mechanism is shown in Figure 4.34.  
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- Quinazoline

+ Quinazoline

+ H 2

-

 

Figure 4.34 Proposed stepwise outer-sphere mechanism for the hydrogenation of quinolines as reported by 
by Dobereiner et al 2011

148
 

 

4.6. Summary 

In this chapter catalyst 2-c has been employed to prove and extend the array of materials 

than can be examined by SABRE at room temperature. It showed good polarisation into the 

substrates; imidazole, pyrazole and oxazole, with total 1H signal enhancements of 322, 337 

and 419-fold respectively. The substrate 5-methylpyridimine has been shown to exhibit 

good polarisation and the long T1, needed for an in-vivo probe, which the other substrates 

failed to display.  

The optimisation of 5-methylpyrimidine revealed that for a 1H NMR measurement a PTF of 

50 G should be employed. At this maximum, an absolute enhancement level of 892-fold is 

recorded under standard conditions (2-c (5 mM), 5-methylpyrimidine (100 mM) and 0.6 ml 

methanol-d4).  The effect of catalyst loading and concentration was studied. This revealed 

when optimum conditions (2-c (0.5 mM), 5-methylpyrimidine (1 mM), 0.6 ml of methanol-
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d4) are applied, an absolute enhancement level of 2063-fold is observed.  At this maximum 

the substrate to catalyst ratio is 2:1, and the addition of acetonitrile-d3, is needed.  This 

leads to the formation of [Ir(2-c)(H)2(5-methylpyrimidine)2(MeCN)]+, as the active species.  

By working at the optimal concentrations, 13C data can be recorded that is necessary for 

substrate characterisation. These data exhibit a strong field dependence which suggests 

that detailed investigations will always be necessary. If a substrate is to be screened, it is 

clear that catalyst optimisation must play a role in this process. 

The initial 1H RARE MRI images, reveal good polarisation of 5-methylpyrimidine with an 

order of magnitude greater signal intensity when compared the thermal trace. The optimal 

signal-to-noise ratio was observed when the concentration of 2-c is 0.5 mM and 5-

methpryrimidine is 1 mM in 0.6 ml of methanol-d4, and when catalyst loading ratio 40:1. 

These conditions would be recommended for obtaining a 1H RARE NMR image. On 

comparison with the other pulse sequences used, FISP and FLASH generate an order of 

magnitude greater signal intensity than that produced in the corresponding RARE MRI 

image.  The FLASH sequence should be considered for further studies, as it works 

particularly well with molecules with long T1, with a 60 second parahydrogen SABRE 

transfer time to improve signal-to-noise values. 

The synthesis of labelled 5-methylpyrimidine isotopomers, to lengthen the T1 value and to 

reduce the number of protons, to increase larger hyperpolarisation levels was in theory a 

good idea. The synthesis proved difficult due to a high percentage of deuterium 

incorporation into the other sites of the molecule. Of the three molecules examined, it was 

2,4-d2-5-methylpyrimidine which showed the greatest levels of polarisation, with an 

absolute total signal enhancement of 835-fold, which is comparable to a standard sample 

of 5-methylpyrimidine. The results with quinazoline reveal that even when the system is 

thought to be well understood unexpected observations can be made in this case for the 

conversion to 3,4-dihydroquinaloline. Both the product and reactant are SABRE active and 

consequently the metal catalyst not only mediates polarization transfer but also facilitates 

substrate hydrogenation. It has been shown that NMR and SABRE can be used to follow 

this reaction, with theoretical calculations being used to confirm that hydrogenation of the 

substrate proceeds through a rare outer-sphere pathway.  
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5. Chapter 5 Heterogeneous and Water Soluble NHC 

Catalysts used for SABRE 

 

5.1. Introduction 

The use of hyperpolarised methods in conjunction with MRI imaging techniques is receiving 

significant attention because of the possibility to collect in-vivo images that may prove 

diagnostic of health176. The successful collection of in-vivo data has already been 

demonstrated for a variety of hyperpolarisation routes, which include PHIP but not yet 

SABRE71, 157, 177. The final goal of the research group that I worked in is to use SABRE to 

collect a human in-vivo image. To achieve this, two problems present themselves as 

illustrated by the work carried out in Chapter 2152. Firstly the catalyst must be removed 

before injection and secondly a biocompatible medium is required. The reason for 

removing the catalyst reflects the very expensive assessment that would be needed prior 

to human use. SABRE is currently routinely carried out in methanol, which also cannot be 

injected. The enzyme, alcohol dehydrogenase (ADH) within the liver metabolises methanol 

into toxic compounds via the oxidization of formaldehyde178. This process can result in the 

destruction of the optic nerve, leading to blindness and hypoxia within cells179. A better 

solvent would be ethanol, which cannot be injected as a neat solvent, but if the ethanol is 

diluted to a level below 30 %, the solution can be injected180. 

 

This chapter aims to address these two main problems and will be further split as follows. 

 Heterogeneous Catalysis 

Studies to immobilise an NHC catalyst on a variety of supported materials are 

described. The reasons for this stem from the resulting ability to remove the 

catalyst from the solution before injection and additionally, the ease of recycling. 

Two potential problems exist with such studies. The relative catalytic activity of 

heterogeneous vs homogeneous systems for SABRE is unknown, and the potential 

for, and extent of, catalyst leaching may be important.  A paper on an immobilised 

catalyst with SABRE has appeared whilst this study was in progress181. This took 

advantage of a different approach to form a polymer bound derivative of 

[Ir(IMes)(COD)(py-polymer)]PF6.   
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 Water Soluble SABRE Catalyst 

Studies to progress to a more biocompatible solution such as water are important. 

Water as a solvent is safer to use with regards to injecting solutions and from a 

green chemistry prospective, is cheaper and cleaner182. However, the solubility of 

H2, and therefore parahydrogen, in water is reported to be 14 – 15 times lower 

than in methanol183, which suggests that H2 may become the limiting reagent. The 

extent of solubilisation of a precursor and active NHC complex in a medium such as 

water needs to be ensured. Furthermore, water is better able to solubilise charged 

species through solvent dipole orientation. This process can stabilise the precursor 

thereby reducing the ligand exchange rates that are necessary for SABRE to 

operate. 

 

5.2. Heterogeneous Catalysis  

5.2.1. Introduction 

There are currently four major methodologies which feature in the generation of 

heterogeneous catalysts. These are adsorption184, encapsulation185, covalent tethering186 

and electrostatic interaction187.  

Catalysts which are immobilized by adsorption rely only on van der Waals interactions 

between the catalyst and the support. This is a weak interaction but the stability of the 

support can be improved by modifying both the catalyst and support to allow hydrogen 

bonding to occur. In 2014, Jesionowski et al.188 described the immobilisation of lipase on to 

a glutaraldehyde-modified silica surface. This catalyst was then used in the esterification of 

ethanol and ferulic acid. It was noted that by supporting these lipases, increased catalytic 

activity could be achieved and it was possible to obtain 5 reaction cycles before 

deactivation.  
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Figure 5.1 Immobilisation of lipase on to glutaraldehyde-modified silica surface by the adsorption method
188

 

Encapsulation reflects a different process that does not require any interaction between 

the catalyst and the support, and thus this method most closely mimics homogeneously 

catalysed reactions. To satisfy the method of encapsulation, the catalyst must be larger 

than the pores of the support material in order to prevent the loss of catalyst into solution 

during the course of the reaction or the recovery process. As the catalyst complex is 

necessarily larger than the pores of the support, techniques such as impregnation cannot 

be used to synthesise these catalysts189. In 2003, Seelan et al.190 reported the encapsulation 

of a vanadium phthalocyanine complex within a zeolite framework (Figure 5.2). They report 

difficulty in homogeneously distributing the catalyst under encapsulation, leading to a 

reduction in the size of the pores.   

 

Figure 5.2 Structure of vanadium complex encapsulated by zeolite frame work
191

  

Covalent tethering implies a modification of the ligand, which when applied to SABRE, may 

influence its electronic character and/or its conformation. Physisorption and ion-exchange 

methods result in the catalyst being in close proximity to the support which may also affect 

the electronic properties and ligand conformation. A supported catalyst can be prepared by 
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either assembling the catalyst within the pores of the support or assembling the support 

around the catalyst191. In 2011, Tyrrell et al. reported the successful tethering of a 

palladium carbene complex via an organic linker to a silica surface (Figure 5.3) and then 

used it for Suzuki coupling reactions192.   

 

Figure 5.3 Formation of palladium carbene complex tethered to a silica support
192

 

 

 

5.2.2. Immobilization on Polymer Supports 

There have been various examples of immobilization of vanadium, palladium and 

ruthenium complexes reported in the literature191, 193, 194. Many of these complexes are 

supported on cross linked polymers, which are non-reactive, but can be made reactive by 

adding functionality. These functionalized polymers have been used extensively to support 

homogenous catalysis through covalent bonding195. Since the discovery of stable carbenes 

by the groups of Bertrand and Arduengo, NHCs have attracted considerable interest in both 

coordination chemistry and catalysis, with NHCs having components that readily allow the 

construction of organometallic polymeric materials. Bielawski’s group has carried out work 

using NHCs as key components in the synthesis of novel organometallic macromolecules, 

which enabled the incorporation of transition metals into the main chain, and subsequently 

they were located in the backbone of the polymer (Scheme 5.1)196. 
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"M2", NaOAc
DMSO, 80oC

 

Scheme 5.1 Polymerisation reaction to form an organometallic polymer, which can contain various transition 
metals within the backbone

196
 

The use of Ag(I)-NHC complexes in the construction of tailored organometallic hybrid 

mesostructured materials has been reported by Zeng et al.195. The Ag(I)-NHC is readily 

produced by treatment of the imidazolium salt with silver oxide under mild conditions, and 

can be complexed with metals such as palladium(II), rhodium, iridium, copper, ruthenium, 

nickel and platinum139, 197-199. Using this synthetic approach (Scheme 5.2) they describe a 

method for achieving the post polymerisation modification of a brush polymer (P2) and an 

Ag-NHC based side chain polymer (P3) and finally they produce a functional palladium-NHC 

containing polymer (P4), which they use for the catalysis of a Suzuki reaction195. 

 

 

            P1            P2        P3    P4 

Scheme 5.2 Synthetic approach for the preparation of imidazolium salts containing a brush polymer and an 
NHC-based organometallic polymer

195
 

 

5.2.2.1. Synthesis of an Iridium Supported Polymer 

Described here is how to prepare iridium supported polymer. This synthesis follows the 

steps illustrated in Scheme 5.2  

The preparation of P2 starts by grafting 1-mesitylimidazole onto polychloromethylstyrene 

which is stirred in chloroform at 60°C for 4 days. The solution was cooled, the volume 

reduced by half and excess ether added to yield the white precipitate, P2, in a good yield. A 
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signal at 10.57 ppm in the corresponding 1H NMR spectrum corresponds to the 2H-

imidazolium proton of the NHC.  

A mixture of P2 and silver oxide, in chloroform, was then stirred at room temperature for 4 

days. The solution was again reduced by half, and excess ether added to yield a white 

precipitate of P3. The 1H NMR data for the polymeric silver salt P3 shows the absence of 

any 2H-imidazolium proton signal.  

The synthesis of P3 follows the transmetalation procedure of Section 2.2.2. [Ir(COD)Cl]2 was 

added into a solution containing the polymeric silver salt and stirred for 5 days at room 

temperature until a yellow precipitate formed, (P4, 5 %). This step deviated from the 

literature method, as the precipitate should have formed immediately. Currently, no 

optimised method has been found for a higher yielding synthesis of P4. 

 

Figure 5.4 
1
H NMR spectra of a) P1 b) P2 c) P3, as using in the synthesis of P4  
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5.2.2.2. Exemplifying the SABRE Method with an Iridium Supported Polymer 

P4 

 

A sample containing 5 mg of P4, 5 µl of pyridine and 0.6 ml of methanol-d4 was prepared. 

The solution was degassed and activated with H2. A typical 1H NMR spectrum obtained 

from the resulting SABRE hyperpolarised pyridine sample can be seen in Figure 5.5. The 

observed resonances are labelled as shown. The sample was shaken at 65 G to achieve 

SABRE.   

 

 

Figure 5.5 Observed 
1
H NMR spectra for pyridine resonances, a) the thermal is represented on top and 

polarised on the bottom shaken in PTF of 65 G, b) corresponding hydride region i) thermal ii) one minute 
after activating iii) 5 minutes after activating 

 

The thermal trace and hyperpolarised trace show small signals for the meta and para 

bound resonances of pyridine in activated P4. The corresponding hydride region shows 

evidence for the activation of the catalyst as a weak set of hydride signals in Figure 5.5 (ii) 

and (iii). The hydride signal at -22.25 ppm suggests that a symmetric product of the type 

[Ir(H2)(NHC)(py)3]Cl is formed. The levels of signal gain are weak and no further 

measurements were made with this material. 
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5.2.3. Encapsulation of a SABRE catalyst. 

 

Encapsulated catalysts can also be classed as single-site heterogeneous catalysts, where 

catalytic activity is well defined and evenly distributed, within the chemical environment 

one would expect for a homogeneous catalyst. Recent studies have shown that transition 

metal complexes trapped in macromolecules may be useful as catalysts, sensors, optical 

devices and liquid crystals195. These can be made up of inorganic, organic or composite 

matrices200-204. In the case of inorganic systems, we deal with typically oxidic solids such as 

silicates, aluminosilicates and aluminophoshates, with a generally high porosity and a large 

surface area. Examples of this are found in cyrstallographically ordered microporous 

molecular sieves (zeolites) or non-ordered mesoporous materials200. When organic, we see 

a carbon backbone, based on a polymeric material with side functionalities205. Composites 

are combinations of inorganic and organic matrices in variable proportions. 

In this study, it is the incorporation of a transition metal catalyst within an organic polymer 

bead that has been explored. There have been recent reports by Cavarzan et al. 2013206, on 

the encapsulation of an NHC-Au catalyst within a self-assembled host (Figure 5.6). 

 

Figure 5.6 Chemical structure of the transition metal catalyst a) iPr-Au-OTf, and the polymer matrices b) 
resoricin-4-arene, which in wet organic solvent self-assembles to form the encapsulated NHC catalyst, c) a 
hexameric host. Image taken from literature

206
 

Furthermore Reaxa® has developed a range of EnCat™ catalysts, which can contain a 

variety of transition metals such a Pd, Pt, Ni and Os. These can be tailored to meet the 

individual needs of the consumer by altering ligand types, porosity, crosslink density and 
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metal and ligand loading. Their use has been reported in literature, for a range of reactions 

including in cross coupling and hydrogenation reactions207-214. In 2011, Barros et al., used 

the PdEnCat™ 30 for Sonogashira coupling between haloarenes and acetylenes (Scheme 

5.3). It was found that a 0.4 mmol % loading of palladium was optimal and a conversion 

level of   99 % achieved. Upon recycling of the catalyst, 90 % conversion levels were still 

achieved for three runs. It has been shown possible to lower levels of leaching by replacing 

the solvents DMF and toluene with either ethanol or isopropanol185.  

 

PdEnCatTM
 30

 

Scheme 5.3 Sonograshira coupling reaction between iodobenzene and phenylacetylene in the presence of 
PdEnCat™30

185
 

In collaboration with Reaxa®, catalyst 2-c has been prepared and homogeneously 

distributed within a polyurea matrice, named IrEnCat. These matrices are made by the high 

shear mixing of a polyisocyanate monomer and the NHC catalyst (2-c), in an organic phase 

with stabilisers and surfactants in an aqueous phase. The result of this is a fine yellow 

powder which contains encapsulated 2-c.  
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5.2.3.1. Exemplifying the SABRE method with an Encapsulated 2-c Catalyst  

The IrEnCat produced in this way was washed with 1 ml of methanol-d4 to remove any non-

encapsulated material present on the solid. A sample containing 10 mg IrEnCat, 5 µl 

pyridine (0.062 mM) and 0.6 ml of methanol-d4 was then used to study SABRE. No 

hyperpolarisation was observed in the corresponding 1H or OPSYdq NMR measurements 

for the first 24 hours but after this time, signals are observed. A typical 1H NMR and 

OPSYdq spectrum obtained for a hyperpolarised pyridine sample under these conditions 

can be seen in Figure 5.7.  

 

 

Figure 5.7 Observed NMR signals a) 
1
H signals b) OPSYdq (including expansion) for the pyridine resonances 

under a PTF of 0.5 G 

 These spectra now show: 

 Signal enhancements for resonances 2, 4 and 3 of pyridine as -0.59, -0.62 and 0.53 

fold respectively when a PTF of 0.5 G is used. 

 No bound pyridine signals or hydride signals are observed for the sample 

 The absence of these signals indicates that the catalyst is still encapsulated and has 

not leached into solution. It was observed in Chapter 2 that activated 2-c would 

give rise to hydride signals at -22 ppm in a 1H NMR measurement. 

 

Since the polarisation enhancement is low in comparison to that achieved with a 

homogeneous catalyst 2-c, further SABRE 1H NMR measurements were made at regular 

intervals other a further 60 hour period (Figure 5.8). The polarisation enhancements that 

resulted are summarised in Table 5.1. 
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Figure 5.8 Observed 
1
H NMR signals observed for pyridine as a function of time a) aromatic region b) hydride 

region  

 

Catalyst 

(10 mg) 

Time 

(hours) 

1H Signal Enhancements 0.5 G  

(position) 

1H Signal Enhancements 65 G 

(position) 

 

 

IrEnCat 

2 4 3 2 4 3 

24 -0.59 -0.62 0.53 -4.65 -4.50 -3.01 

36 -2.58 -2.56 1.47 -4.01 -3.58 -4.94 

48 -3.58 -3.47 2.08 -13.37 -12.70 -7.77 

60 -2.47 -2.33 1.75 -9.23 -8.96 -5.43 

 

Table 5.1 Comparison of 
1
H NMR signal enhancement levels (fold) observed for pyridine using IrEnCat as a 

function of time 

The 24 hour data confirms that very limited activation has taken place. After 36 hours the 

formation of both [Ir(H2)(COD)(IMes)]Cl (2-c) and [Ir(H)2(IMes)(py)3]Cl (5-c) is indicated in 

the hydride region. Over time it can be seen 2-c converts to 5-c and hence activation is very 

slow. The IrEnCat catalyst is not stable as evidenced by the signal for 5-c also falling with 

time. The maximum enhancement matches the position where 5-c is dominant. Based on 
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previous studies in Section 2.2.7, H2 can get into the catalyst readily, but when 2-c is free in 

solution, it does not add H2 readily, activating rapidly only in the presence of a suitable 

substrate such as pyridine and H2 in under 2 minutes.  It can therefore be concluded that 

pyridine does not enter the polymer bead efficiently. 

After 60 hours, the sample was split into two portions, separating the solution and solid of 

the first cycle for a second cycle. To achieve this, the catalyst was recovered by filtration, 

used for sample 2 (see later) and the methanol solution retained and placed into a clean 

Young’s Tap capped NMR tube and degassed (sample 1). For Sample 2, the IrEnCat beads 

were washed 4 times with methanol and then dried in a low temperature oven for 5 hours. 

A new sample at standard concentrations was then made up containing the dried IrEnCat 

beads, pyridine and methanol. Both samples were studied using the SABRE method. The 

corresponding 1H and OPSYdq NMR spectra for sample 1 can be seen in Figure 5.9. 

 

 

Figure 5.9 Observed NMR signals of  sample 1 a) 
1
H signals b) OPSYdq (including expansion) for the pyridine 

resonances under PTF of 0.5 G, using Sample 1 

 

Sample 1, which contains only the solution from the previous IrEnCat study, should give an 

idea to the level of leached material. If polarisation of pyridine is observed, then an amount 

of catalyst has come out of the encapsulation. 1H NMR signal enhancements are seen for 

pyridine resonances 2, 4 and 3 of -0.45, -0.51 and 0.59 at a PTF of 0.5 G, and -2.80, -2.64 

and -1.51 at a PTF of 65 G respectively. This OPSYdq measurement confirms that IzSz 

magnetisation is observed experimentally at a PTF of 0.5 G. These enhancement levels 

suggest that a small amount catalyst 2-c has leached out from the polyurea matrix.  



183 
 

SABRE was then applied to sample 2. No 1H or OPSYdq NMR signals were observed for the 

pyridine resonances over a time period of 60 hours. This suggests that the pore size of the 

IrEnCat system is too small for the substrate to move freely and that the observable 

polarisation comes from loosely encapsulated 2-c, near to the surface of the polyurea bead 

or the catalyst has all leached out.  

A sample containing the IrEnCat, pyridine and deuterium oxide was made to standard 

concentrations and investigated for SABRE. This test was to see if the encapsulated catalyst 

was able to work in a biologically compatible solvent. This produced no observable 

polarisation to the pyridine resonances over a period of 60 hours.  

The concept for encapsulation works, but the pore size is too small to allow one of the 

smallest substrates, pyridine, to pass through to interact with the catalyst. Future work to 

solve this solution maybe to increase the pore size of the polymer bead and in turn would 

increase the catalyst size so it can be retained within the pores. 

 

5.2.4. Immobilization of NHC complexes on silica supports. 

5.2.4.1. Introduction 

Figure 5.10 shows some of the earlier developed silica-supported complexes containing the 

transition metal ruthenium. In 2001, Kingsbury et al. introduced the first silica-supported 

NHC complex (S1)215. They used a porous sol – gel material that allowed removal of their 

catalyst after the reaction yielding a pure product. They studied ring closing metathesis of 

over 15 diene reagent reactions with high yields of 98 %. However, some loss of ruthenium 

was detected after each cycle. In 2002, Centinkaya et al.216, synthesised a different 

ruthenium silica-supported NHC (S2). This was used for furan formation and showed similar 

activity as the homogeneous catalyst. It could be used for up to five cycles which gave 

greater than 90 % conversation. In 2002, Mayr et al.217, reported anchoring a catalyst 

through the NHC carbene ligand (S3 and S4). An activity of  90 %  for these catalysts was 

reported for ring closing metathesis, but the immobilisation of the second Grubbs catalyst 

in exchange for a chloride prove to give better stability resulting in lower ruthenium 

leaching. Fischer et al.218 reported the anchoring of the catalyst through a phenyl – ether, 

meta to the Schrock carbene. This gave high activity, but recycling of the catalyst showed 

slow leaching of the ruthenium into the reaction solution. In 2005, Li and Shi.219 reported 

anchoring of the catalyst through one of the side arms of the NHC. This was found to stop 
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decomposition under reaction conditions. They tested over fifteen ring closing metathesis 

reactions with five recycles of the catalyst giving greater than 95 % conversation. These 

catalysts show good development for supporting NHC ligands, and good catalytic activity. 

 

Figure 5.10 Silica-supported S1) second generation Grubbs-Hoveyda, developed by KIngsbury et al., 2001
215

 
S2) Ruthenium complex, by Cetinkaya et al., 2002

216
, S3-S4) second generation Grubbs, by Mayr et al., 2002 

and Krause et al., 2003
220

, S5) second generation Grubbs-Hoveyda by Fischer et al., 2005
218

 and S6) second 
generation Grubbs-Hoveyda by Li and Shi 2005

219
 

More recent developments have considered mesoporous silica, with the most common 

methodology for the preparation of functionalised materials consists of grafting 

organosilane precursors onto oxide surfaces221-224. This method provides a suitable way of 

introducing various organic moieties into the solids, but does not control their distribution 

in the final material or the nature of the surface species, by formation of mono-, di-, and 

tripodal species (Figure 5.11 a)225. This uneven distribution of the final product can explain 

poor activity compared to the homogeneous catalysis. In contrast to these, recent 

advances by Maishal et al., 2008225 have reported the generation of highly mesostructured 

functionalised materials containing regularly distributed organic moieties along their 

channel pores (Figure 5.11 b). This method was obtained by condensation of 

tetraethylorthosilicate (TEOS) and an organotriethoxysilane in a hydrolytic sol-gel process 

with a surfactant present for obtaining regular distribution of ordered organic structure.  
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Figure 5.11 A simplified view of grafted oxide material after the grafting reaction (top), and a view of the 
inner surface of the channel pores of the mesostructured organic-inorganic material (bottom)

225
 

The grafting of immobilized catalyst on to mesoporous silica’s has advantages over the 

encapsulation of such materials. The disadvantage due to this size restriction, is that it is 

difficult to encapsulate larger complexes, and in fact it is difficult for substrates to freely 

move and exchange with the catalyst centre191.  

Here a well-defined single-site Ir-based heterogeneous catalyst has been developed from a 

tailored hybrid organic-inorganic material, which has been characterised at the molecular 

level. The preparation of these materials can be seen in Scheme 5.4. They start with a 

material containing benzyl chloride, which is used to prevent the active site from 

interacting with the silica surface. The material is then treated with the mesitylimidazole 

which is grafted to the silica surface through covalent bonds. In most cases, it is necessary 

to protect the free silanol groups on the surface of the silica, by reacting it with 

trimethylsilylbromide, thus giving the organic linker sufficient conformational rotation to 

act as a homogenous catalyst even when it is still anchored to the solid surface.   
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Z=Et or H Z =HX = Cl

Z= SiMe3

a b

d e

c

Z= SiMe3 Z= SiMe3  

 M-Bz-Im   M-Bz-Im-Ag           M-Bz-Im-IrCp 

Scheme 5.4 Preparation of silica-supported material M-Bz-Im-IrCp, a) TEOS, HCl, pluronic P123, room 
temperature; b) 2 M HCl/H2O, 45°C; c) mesitylimidazole, toluene, reflux, 2 days, then TMSBr, Et3N, toluene, 
room temperature, 48 hour; d) AgOC(CF3)3, CH3CN, 14 h, room temperature; e) [{Cp*IrCl2}2], 24 h, 60°C

225
 

The catalyst activity was measured for H/D exchange reactions between methanol-d4 and 

acetophenone, and proved to display similar activity to the homogenous homologues. It 

was shown that the deuteration occurred selectively at the methyl substituent of 

acetophenone to yield PhCOCD3. It was also shown that the solid supported iridium-based 

material could be reused three times without significant loss of activity and conversation 

level of 95 % was achieved.  

It has been reported by Skovpin et al.226, that silica-immobilized rhodium complexes, have 

been used in PHIP heterogeneous hydrogenation reactions. They report the observation of 

PHIP in the gas-phase and liquid-phase for hydrogenation reactions of propyne and 

propylene, catalysed by silica-immobilized rhodium complexes which were synthesised by 

anchoring Wilkinson’s complex, RhCl(PPh3)3, to a phosphine-modified silica gel.  

A 1H NMR spectrum obtained during the hyperpolarised hydrogenation of propyne is 

shown in Figure 5.12. The Wilkinson’s immobilized catalyst produced stereo-selective cis 

addition of the two hydrogen atoms to the substrate, which is characteristic of the 

homogeneous form. The NMR results that correspond to the vinyl fragment of the reaction 

product propylene show antiphase PASADENA NMR signals at 4.74 ppm (Hc) and 5.54 ppm 

(Hb). The NMR signal at 4.87 ppm (Hd) shows no polarization which would have been 

indicative of trans addition of the dihydrogen, thus the reaction proceeds stereo-selectively 

through cis formation.  
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Figure 5.12 PASADENA 
1
H NMR spectrum acquired for hydrogenation of propyne by a) homogeneous 

Wilkinson’s catalyst in benzene-d6 solution at T = 50°C b) immobilized Wilkinson’s catalyst (1/PPh2-SiO2) in 
benzene-d6 solution at T = 70°C. Taken from literature reported by Skovpin et al.

226
. 

It is also noted that the homogenous catalyst was more active in comparison to 

heterogeneous catalyst as the NMR signal for the methyl group of the propylene (Ha) can 

be seen. The activity was achieved at 50°C for homogenous catalyst but the temperature 

had to be raised to 70°C for the heterogeneous catalyst to achieve comparable activity. The 

method for the construction of the heterogeneous material was followed as described in 

the procedure by Shyu et al.227. It was here, by using this method of anchoring, that the 

leaching of the rhodium complex from the solid support was minimal, so that all the 

catalysis proceeds on the immobilized complex. 
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5.2.4.2. Synthesis of Iridium-NHC complexes supported to mesostructured 

silica material. 

It was therefore decided to investigate synthetic routes to obtaining the two 

mesostructured silica-based heterogeneous catalysts M-Pr-Im-Ir and M-Bz-Im-Ir (where 

M=silica support, Bz or Pr = linker group, Im=mesitylimidazole and Ir=[Ir(COD)Cl]), which 

differ according to the organic linker (Figure 5.13). This work was completed in 

collaboration with the Thieuleux group, CPE Lyon, where time was spent learning to 

synthesise these materials before testing them using SABRE. 

 

 

  M-Pr-Im-Ir       M-Bz-Im-Ir 

Figure 5.13 Heterogeneous mesoporous silica-supported iridium-NHC catalyst with different linker groups a) 
propyl: M-Pr-Im-Ir b) benzyl: M-Bz-Im-Ir 

The synthetic method follows that reported by Maishal et al., 2008225 which can be seen in 

Scheme 5.5. To an acidic solution containing chlorobenzyltriethoxysilane, pluronic P123 and 

tetraethyl orthosilicate (TEOS) were added. The reaction mixture was then stirred for 90 

minutes until it became transparent. The reaction mixture is heated to 45°C and a small 

amount of sodium fluoride added whilst stirring for a period of 76 hours. The solid was 

filtered and washed three times with acetone. The solid was placed in a soxhlet extractor 

and ethanol used to remove the surfactant over a period of 24 hours. The white solid (M-

Bz-Cl) was dried at 140°C and under vacuum (10-5 mm Hg) and obtained in a yield of 80 %.  
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Scheme 5.5 Synthesis of materials M-Bz-Cl and M-Bz-Im  

The synthesis of material M-Bz-Im involves two steps, 1) addition of NHC, and 2) protecting 

the unreacted silanol groups. A toluene solution containing M-Bz-Cl and mesitylimidazole 

was refluxed for a period of 52 hours. The solid was filtered and washed three times 

successively with toluene, methanol and diethyl ether, and then dried under vacuum for 24 

hours (140°C, 10-5 mm Hg). This produced a white solid which was suspended in a toluene 

solution with trimethylsilylbromide (TMSBr) and stirred at room temperature for a period 

of 24 hours. The solid was filtered and washed three times successively with toluene, 

methanol and diethyl ether, then dried under vacuum for 24 hours (140°C, 10-5 mm Hg).  

The synthesis of material M-Bz-Im-Ir (Scheme 5.6) follows the methods discussed in section 

2.23. It can be achieved by method 1 using silver alkoxide (AgOC(CF3)3) to form a supported 

mono-NHC silver intermediate. This step was followed by transmetalation with [Ir(COD)Cl]2 

to form a grey solid, M-Bz-Im-Ir in a good yield . Alternatively, method 2 can be followed 

were KHMDS is used to deprotonate the carbene, followed by the addition of [Ir(COD)Cl]2 

to form a yellow solid, M-Bz-Im-Ir, again a good yield was achieved.  

  

Scheme 5.6 Synthetic approach for the preparation of imidazolium salts containing mesoporous silica and the 
NHC-based organometallic material M-Bz-Im-Ir(1) via a) AgOC(CF3)3 and M-Bz-Im-Ir(2) b) KHMDS 
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The mesoporous silicas were analysed (at CPE Lyon) by recording nitrogen adsorption-

desorption isotherms to estimate the pore size of the silica and 13C CP-MAS NMR data. 

Figure 5.14 shows the corresponding 13C CP-MAS NMR data for a) material M-Bz-Im, b) M-

Bz-Im-Ir and c) M-Bz-Im-IrCp, the final products of Scheme 5.4 (spectrum taken form 

literature reported by Maishal et al. 2008225). The broad peak at 140 ppm for the material 

M-Bz-Im corresponds to the imidazolium carbon (NCN), which is absent in the final 

product. The NMR data are comparable to the data obtained for the homogenous catalyst 

and that mentioned in literature225. Further characterisation data can be found in the 

Experimental Section 7.3.17. 

 

 

Figure 5.14 Observed 
13

C CP-MAS NMR data for a) material M-Bz-Im b) M-Bz-Im-Ir and c) M-Bz-Im-IrCp, the 
final product from Scheme 5.4 which has been taken from literature reported by Maishal et al., 2008

225
, for 

comparison. 
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5.2.4.3. Exemplifying the SABRE method with an iridium complex supported on 

mesoporous silica. 

This section will investigate three iridium supported mesoporous silica catalysts: 

1. M-Bz-Im-Ir(1) made via AgOC(CF3)3 

2. M-Bz-Im-Ir(2) made via KHMDS 

3. M-Pr-Im-Ir made via KHMDS  

 

Catalyst M-Pr-Im-Ir, produced no observable 1H NMR polarisation throughout this study. It 

has been reported Thomas et al., 2014228 that the propyl chains fold the imidazolium onto 

the silica and that it promotes interactions between the transition metal and the surface of 

the siloxane as shown in Figure 5.15, thus catalyst activity is decreased significantly.  

 

Surface Interaction 

 

Figure 5.15 Structure of silica material, showing interaction with surface of siloxane bridges
228

 

A typical 1H NMR spectrum obtained for a SABRE experiment was obtained using pyridine 

and catalyst M-Bz-Im-Ir(1), can be seen in Figure 5.16. The spectrum shows no polarisation 

in the pyridine resonances, but the presence of the antiphase hydrogen signal indicates the 

parahydrogen must undergo reversible interactions with the catalyst, but no polarisation 

transfer is achieved through the J-coupling into the pyridine protons.  Similar activity is 

observed for M-Bz-Im-Ir(2) catalyst. No hydride resonances are observed for either catalyst.  
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Figure 5.16 Observed 
1
H NMR spectrum for pyridine using catalyst M-Bz-Im-Ir(1), at PTF of 0.5 G. Spectrum 

shows the antiphase hydrogen signal at δ 4.57 ppm 

Further to the initial result, temperature and concentration studies of both catalyst and 

pyridine were investigated, but no positive results for the polarisation of pyridine 

resonances were observed. It was noted that after a period of 4 hours, the methanol 

solution turned from clear and colourless to a cloudy brown/orange colour with further 1H 

NMR experiments yielding no antiphase hydrogen signals, thus concluding that the catalyst 

had destabilised. 

A range of substrates were screened (Chapter 4, Table 4.1) using both M-Bz-Im-Ir catalysts. 

Only nicotinamide produced a positive result for SABRE, indicated by emission-type signals. 

Figure 5.17 shows observable 1H NMR signals obtained for nicotinamide using catalyst M-

Bz-Im-Ir(2)  at PTF of 65 G. This was obtained by heating the sample to 314 K for a period of 

25 minutes prior to the NMR measurement. The enhancement levels for the nicotinamide 

resonances 2, 6, 4 and 5 are -0.69, -0.13, 0.072 and 0.23 respectively.  
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Figure 5.17 Observed 
1
H NMR Spectra of nicotinamide using catalyst M-Bz-Im-Ir(2), PTF undertaken at 65 G 

The results observed for SABRE activity using mesoporous silica has been minimal. As a 

control, a sample containing both 2-b and M-Bz-Im-Ir(2) were examined and the resulting 1H 

NMR spectra can be seen in Figure 5.18.  

 

Figure 5.18 Observed 
1
H NMR spectra for pyridine resonances when a control sample containing both catalyst 

2-b and M-Bz-Im-Ir(2) were shaken in a PTF of 65 G  

The 1H NMR measurements now showed pyridine resonances 2, 4 and 3 that were -32.2, -

28.7 and -26.1 fold enhanced respectively. This is result is lower to that observed in chapter 

3 for catalyst 2-c alone under identical conditions. Speculatively, 2-c could be interacting 

with the surface thereby deactivating the homogenous catalyst.  
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5.2.4.4.  Exemplifying PHIP heterogeneous hydrogenations reactions with an 

iridium supported mesoporous silica. 

Catalyst M-Bz-Im-Ir(2) has proven not very active for SABRE, but could be active towards 

PHIP229, 230. Within this section, and the wider context of producing hyperpolarised 

compounds, the hydrogenation of the triple carbon – carbon bonds of phenylacetylene 

(Scheme 5.7) using a catalysts 2-b (control) and M-Bz-Im-Ir(2) would reflect a sensible test. 

PHIP 1H NMR experiments are investigated for the catalysts in methanol-d4 and 

dichloromethane-d2 solution. 

 

 

Scheme 5.7 Mechanism for the hydrogenation of phenylacetylene 

Figure 5.19 shows the controlled PHIP 1H NMR experiment for the hydrogenation of 

phenylacetylene with catalyst 2-b in methanol and dichloromethane, which are 

represented on the same vertical scale. These spectra were obtained by shaking each 

sample in the stray field of the magnet and interrogating it by 1H NMR using a 45° r.f. pulse. 

For the methanol sample, in-phase magnetisation is observed as in Figure 5.19, indicative 

of ALTADENA. This implies the observed signals were derived from parahydrogen 

predominantly added outside the magnet. In the DCM sample, a different profile is 

observed, with antiphase magnetisation as shown in Figure 5.20, indicative of PASADENA. 

This implies the observed signals were derived from parahydrogen predominantly added 

inside the magnet. These data imply that methanol promotes hydrogenation as the 

reaction begins before the sample is placed into the magnet. As a consequence, in 

methanol-d4, it is also possible to observe SABRE-derived signals on the phenyl 1H NMR 

resonances of the substrate, where the polarisation is transferred from the parahydrogen-

derived protons that are now incorporated into the substrate. 
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Figure 5.19 Observed 
1
H NMR spectra for the hydrogenation of phenylacetylene using catalyst 2-b in 

methanol-d4 

Polarisation of the olefinic resonances in methanol-d4 is observable at δ 6.74 (Ha) and 5.21 

ppm (Hb), and the H-H coupling constant is 10.92 Hz, which is comparable to the value 

obtained in dichloromethane solution. The resonance at δ 6.74 ppm shows absorption type 

character, and the δ 5.21 ppm contains emission type character, which can be seen in 

Figure 5.19.  The resonance at δ 5.78 ppm shows antiphase character and an H-H coupling 

of 17.78 Hz. The ethylbenzene product is also observable at resonances δ 2.64 (Hd) and 

1.23 ppm (He).  
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Figure 5.20 Observed 
1
H NMR spectra for the hydrogenation of phenylacetylene using catalyst 2-b in 

dichloromethane-d2 

The sample in dichloromethane-d2, also produces polarised olefinic resonances at δ 6.71 

(Ha) and 5.24 ppm (Hb)  and agrees with what has been reported previously231 indicating 

that PHIP arises from cis-addition of parahydrogen to the phenylacetylene triple bond. The 

δ 6.71 ppm resonances is an antiphase doublet of doublets, and the δ 5.24 ppm antiphase 

doublet with a have H-H coupling of 10.93 Hz, this is characteristic of cis olefinic protons 

splitting.  

The proton at δ 5.78 due to Hc shows a coupling of 17.46 Hz to the proton trans to it which 

resonates at δ 6.71 ppm.  This proton comes from the original phenylacetylene substrate 

and is therefore not strongly enhanced. The hydrogenation of the styrene product to 

ethylbenzene is evident through the appearance of the resonances at δ 2.67 (Hd) and 1.26 

ppm (He). Although their signal intensity is weaker than those of the olefinic resonances 

they are clearly visible. 

The comparison of the results obtained in Figure 5.19 and Figure 5.20 reveals: 

 ALTADENA and PASADENA type signals are observable for the double 

hydrogenation product ethylbenzene. 

 Greater polarisation is transferred to the aromatic protons in methanol. 

 A combination of magnetic states are observable, Iz (Ha, Hb, Hd and He) and IzSz (Hc) 

in methanol. 

 The dominant magnetic state, IzSz, is converted to observable antiphase states 

under a 45° pulse in dichloromethane. 
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A publication by Harthun et al. in 1996, describes the pairwise proton exchange mechanism 

in styrene during homogeneous hydrogenation with a rhodium and palladium catalyst232. 

The spectrum shown in Figure 5.21 are the results of PHIP enhanced proton signals, which 

exchange through the germinal positions of the terminal alkenes using the rhodium 

catalyst.  

 

 

Figure 5.21 
1
H NMR polarisation spectrum of hydrogenation of styrene by a rhodium complex 

[Rh(COD)(dppb)]BF4. Spectrum taken from literature reported by Harthun et al. 1996
232

 

The resulting NMR spectrum that they obtained for the hydrogenation of phenylacetylene 

with parahydrogen can been seen in Figure 5.22 (a). The remaining NMR spectra are from a 

computer simulation programme, PHIP, which reveals both a pairwise cis and geminal 

hydrogenation occurs. 
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Figure 5.22 
1
H NMR polarisation spectrum of hydrogenation of phenylacetylene by a palladium complex a) 

experimental spectrum, b) simulation spectrum considering cis and geminal-hydrogenation in 3:1 ratio, c) 
simulation of spectrum of geminal parahydrogen into positions H

1
 and H

3
, d) simulation spectrum of a cis 

parahydrogen transfer into positions H1 and H2. Spectra taken from literature repoted by Harthun et al.
232

 
1996 

The PHIP results obtained using catalyst 2-b (Figure 5.20) are comparable to the results 

obtained via cis and geminal hydrogenation of phenylacetylene reported by Harthun et al. 

232.  

The heterogeneous catalyst M-Bz-Im-Ir(1) has been examined for the same hydrogenation 

reaction of phenylacetylene under the same conditions in both methanol and 

dichloromethane. The results that were obtained in a methanol solution, shown in Figure 

5.23, showed signs of some catalytic activity, but it is very limited when compared to the 

homogeneous catalyst 2-b. Only resonances at δ 6.74 and 5.21 ppm, corresponding to Ha 

and Hb respectively, are visible. They appear as antiphase singlets, which is very different to 

that seen for the homogeneous route. The Hc resonance that was observed at δ 5.78 ppm 

is not observable. The reaction is therefore much slower and much more selective. 
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Figure 5.23 Observed 
1
H NMR spectra for the hydrogenation of phenylacetylene using material catalyst M-Bz-

Im-Ir(1) in methanol solution 

The M-Bz-Im-Ir(2) catalyst was also examined in dichloromethane-d2 and the resulting 

spectra can be seen in Figure 5.24. It produced similar results to those observed when 

using the homogeneous catalyst 2-b. The polarised olefinic resonances at δ 6.71 (Ha) and 

5.24 ppm (Hb) have visible H-H couplings of 10.98 Hz and are antiphase doublet of doublets 

and antiphase doublets respectively, which is characteristic of cis olefinic protons splitting. 

The Hc resonance at δ 5.78 ppm is an antiphase doublet, which show H-H coupling of 17.76 

Hz with the proton trans to it at δ 6.71 ppm and agrees with what has been reported 

previously231, 233. Signals for the ethylbenzene are observable and much weaker than those 

previously observed for 2-b. The noticeable difference between the heterogeneous and 

homogeneous catalyst is that the homogeneous system produces hydride signals at δ -

13.60 and -17.93, which are characteristic of a reaction intermediate originating from the 

activation of the catalyst, which is seen when using 2-b catalyst when applying SABRE 

measurement. The lack of hydride signals in the heterogeneous measurements is a good 

indication that the catalyst is supported on the silica and not leaching off the support.  
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Figure 5.24 Observed 
1
H NMR spectra for the hydrogenation of phenylacetylene using material catalyst M-Bz-

Im-Ir(2) in dichloromethane-d2 solution 
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5.3. Iridium NHC catalyst used for SABRE in a biocompatible solvent. 

The aim of this study was to produce an iridium NHC catalyst to be used for SABRE in a 

more biocompatible medium. In 2004, Tyagi et al.180 used a 30 % ethanol solution in saline 

to administer drugs intravenously. A good starting point would be a sample containing 30 % 

ethanol and 70 % water solution. The studies of the iridium-bound NHC catalyst in this 

thesis contain either aliphatic or aromatic substituents which increase the hydrophobic 

properties rather than increase hydrophilic properties thereby increasing water solubility. 

These catalysts have been tested and found to produce poor solubility in the desired 

ethanol / water solution234. 

In 2013, Schaper et al. published a review containing many synthetic routes to obtaining 

water soluble carbenes235. It has been described that by changing the functionality of these 

NHC substituents, by adding ionic or strongly polar groups, the solubility of these catalysts 

in water can be increased. The most common ionic groups are sulfonate, carboxylate, 

phosphonate and ammonium236, 237. Alternative non-ionic methods which can be used 

include adding hydrophilic ligands or using carbohydrates and polymers238, 239. Examples of 

these can be seen in Figure 5.25. 

 

Figure 5.25 Examples catalyst designed to increase solubility by changing the of functionalised NHC 
substituent group to: - a) carboxylate, b) sulfonate, c) ammonium, d) carbohydrate and e) polymer 
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In 2011, Bhattacharya et al. reported using a 30 % ethanol solution in a PHIP experiment for 

the hydrogenation of a 2,2,3,3-tetrafluoropropyl 1-13C-acrylate-d2,3,3 (TFPA). This was used 

for collecting a hyperpolarised in-vivo MR receptor image of the atheroma of a mouse 

(Figure 5.26)157. 

 

 

Figure 5.26 PHIP reaction for hydrogenation of (TFPA) in a 30 % ethanol solution, a) scheme of the cis 
addition of parahydrogen, b) 

13
C NMR enhanced spectra with 17 % polarisation level  obtained on a 4.7 T 

scanner, including a reference sample of natural abundance 
13

C ethanol, c) in-vivo PHIP enhanced 
13

C NMR 
image using rapid acquisition with relaxation enhancement (RARE) sequence. Images taken from literature 
reported by , Bhattacharya et al. 2011

157
 

Since research for this thesis began, two publications by Hövener and Zeng have reported 

low field 1H NMR and high field 1H NMR hyperpolarisation of substrates using SABRE in a 

water solution respectively. In 2014, Hövener et al.176 reported the detection of a pyridine 

sample in a 90 % water, 10 % ethanol solution for an in situ low field 1H NMR 

measurement. They quote a 0.02 % polarisation level for the pyridine substrate which was 

measured on a 7 Telsa spectrometer; this would represent approximately 8 fold absolute 

signal enhancement level.  

Also in 2014, Zeng et al. reported 1% polarisation of 3-amino-1,2,4-triazine (ATZ) in a 90 % 

water, 10 % methanol solution on a 17.6 Telsa spectrometer. This equates to 1H NMR signal 

enhancement of 170 fold. This was achieved by activating the sample by bubbling H2 

through the methanol solution for 2 hours. Water was then added and the methanol is 

removed in vacuo. This is then added to the polariser which contained 10 % methanol, 

bubbled with parahydrogen under a PTF of 65 G and a 1H NMR spectrum recorded (Figure 

5.27). They also reported trying to polarise pyridine, isoniazid and pyrazinamide with SABRE 

under the same conditions, but no enhancements were observed240. 
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Figure 5.27 
1
H NMR enhancement of ATZ in 90 % water, 10 % methanol at 54.4°C (top), compared to thermal 

polarisation (middle). The bottom spectrum is of the substrate without catalyst (16 scans). Image taken from 
literature reported by Zeng et al. 2014

240
 

In 2012, Gaulier et al. describes a synthetic route to a series of water soluble azolium salts 

that act as NHC ligand precursors, wherein the common NHC motif is functionalised at the 

periphery by a triazole ring carrying a protic or a charged group (Scheme 5.8)241. The 

functionalization step involves a copper-catalysed azide alkyne cycloaddition (CuAAC) 

reaction. This reaction was performed efficiently under Click conditions via a stable and 

active copper(I)-NHC complex242, 243 on synthetically accessible diamine244 or diimine 

precursors.  

After introduction of the hydrophilic moieties, cyclisation was performed by reaction with 

pivaloyloxymethyl chloride (POMCl, IMes-like backbone) as in our previous reports and for 

other hydrophilic compounds classically117 with triethyl orthoformate (SIMes-like 

backbone; SIMes). Preliminary experiments showed that CuAAC could also be performed 

on the diimine precursor with alkynes bearing ammonium salts. However, no efficient 

cyclisation conditions could be found in that case (attempted cyclisation’s with POMCl 

resulted in decomposition of the diimine group). In any case, changing from unsaturated 

IMes to saturated SIMes backbone is well-known to have a limited effect on the behaviour 

of the NHC ligand245. 

Here, the SIMes form bears a cationic quaternary ammonium groups that is derived from 

choline (SIMesCh2+) or trimethylammonium (SIMesTrimet2+)244. 
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Scheme 5.8 Synthesis of azolium salts a) IMesOH – (1-e) and b) where R = -N
+
(CH3)2(CH2CH2OH)Cl

-
 = SIMesCh –  

(1-f) and  R = -N
+
(CH3)3Cl

-
 = SIMesTrimet (1-g) 

Starting from these hydrophilic NHC salts, 1-e, 1-f and 1-g, the necessary [Ir(NHC)(COD)Cl] 

complexes could be synthesised under basic condition. The NHC salt and sodium 

methoxide were dissolved in a DMSO / ethanol solution and stirred for 18 hours at room 

temperature. The solvent was removed in vacuo to obtain a yellow brown solid at a 60-65 

% yield. Full reaction details can be found in the Experimental Section. Figure 5.28 show 

catalysts 2-e, 2-f and 2-g that will be explored using SABRE in a biocompatible solution. 
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Figure 5.28 Water soluble iridium NHC complexes 2-e, 2-f and 2-g to be tested for SABRE activity in a 
biocompatible medium 

 

5.3.1. Exploring SABRE efficiency with catalyst 2-e, 2-f and 2-g. 

Control measurements for catalysts 2-e, 2-f and 2-g have been employed in a series of 

SABRE reactions with pyridine and parahydrogen in methanol, using method 2. Figure 5.29 

shows the 1H NMR enhancement levels for the three resonances of pyridine (left) and the 

absolute enhancement level (right) at selected concentration studies of catalyst : pyridine 

ratio, as a function of PTF.  

Catalysts 2-e, 2-f and 2-g produce a hydride resonance in the corresponding 1H NMR 

spectra at δ –22.66, δ –22.54 and δ –22.72 respectively for these species. The pyridine 

ligand loss rate constant was determined for 2-g in methanol-d4 solution at 300 K as 1.2 s-1, 

whilst that for 2-f proved to be 0.043 s-1. These two ligand loss rate constants are therefore 

smaller than that of 2-c ([Ir(IMes)(py)3(H)2]Cl) but comparable to those of 2-b 

([Ir(BzIMes)(py)3(H)2]Cl). Catalyst 2-e proved difficult to obtain rate data, due from the 

exchange process being too slow.  

Under standard conditions (19 fold pyridine excess), the most efficient magnetisation 

transfer for the catalysts is achieved under a PTF of 70 G for catalyst 2-f and 2-g and a PTF 

of 130 G for 2-e. When comparing the absolute pyridine 1H NMR signal enhancement, 

catalyst 2-f proved to have an enhancement of 791 fold. This is not greatly affected upon 

changing from 2-fold to 34-fold pyridine ligand excess. Under the same conditions catalyst 

2-f exceeds that of 2-c which produced the highest absolute signal enhancement of 555-
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fold in Section 3.3. It can be seen that 2-g and 2-e are relatively poor in comparison only 

producing a total 1H NMR signal enhancement of 27 and 10 fold respectively.  

In all cases, the meta position still remains complex when compared to the results in 

Chapter 3, although for catalyst 2-f, presents more 1H NMR signals in the same phase than 

the others. 

 

 

 

Figure 5.29 Graphical representation of the observed 
1
H NMR signal enhancement profile of pyridine (left) 

and total 
1
H NMR signal enhancement (right) obtained in methanol solution using 

 
catalyst as a function of 

PTF using catalyst 2-e, 2-f and 2-g 
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These complexes were then examined in a 67 % D2O, 3 % DMSO and 30 % ethanol solution 

mixture. The resulting 1H NMR spectra for catalyst 2-f (Figure 5.30) and graphical 

representations for catalyst 2-f and 2-g can been seen in Figure 5.31 and Figure 5.32 

respectively. No SABRE activity was observed for catalyst 2-e.  

 

Figure 5.30 Observed 
1
H NMR signal intensity changes for pyridine resonances 2, 3 and 4  as a function of the 

PTF using catalyst 2-f and method 2 in a 67 % D2O, 3 % DMSO and 30 % ethanol solution 

 

 

Figure 5.31 a) Graphical representation of the observed 
1
H NMR signal enhancement of pyridine using 

catalyst 2-f as a function of PTF over the range of 0 – 140 G b) total 
1
H NMR signal enhancement,  in a 67 % 

D2O, 3 % DMSO and 30 % ethanol solution 

These data of Figure 5.31 for catalyst 2-f, show that the meta proton delivers optimal 

SABRE enhancement at PTF of 0.5 G with 2.58-fold, followed by ortho under PTF of 70 G 

with 1.63-fold and para under PTF of 10 G with 1.51-fold. The absolute 1H NMR signal level 

was achieved at a PTF of 0.5 G with 9.4-fold enhancement. It is also noted that there is little 

variance in polarisation between the ortho and para resonances, but as seen previously the 

meta position remains complex, changing phase at a PTF of 60 G from absorption to 

emission.  
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Figure 5.32 a) Graphical representation of the observed 
1
H NMR signal enhancement of pyridine using 

catalyst 2-e as a function of PTF over the range of 0 – 140 G b) total 
1
H NMR signal enhancement,  in a 67 % 

D2O, 3 % DMSO and 30 % ethanol solution 

Figure 5.32, for catalyst 2-g, reveals that the ortho position presents the most efficient 

SABRE activity at a PTF of 20 G with 1.62-fold enhancement level. This is followed by meta 

and para positions at PTF of 0.5 G and 30 G with enhancement levels of 1.2 and 0.7-fold 

respectively. The maximum absolute enhancement level is again achieved at PTF of 0.5 G 

with 6.2 fold. It is noticeable that the absolute values for both catalysts in the 67 % D2O, 3 

% DMSO and 30 % ethanol solution mixture follow a similar trend, with the polarisation 

level decreasing as field is increased.   

The observed levels of polarisation for pyridine in this biocompatible solution exhibit poor 

solvent tolerance for SABRE. Even still, these results obtained for water soluble NHC with 

pyridine are comparable to the results obtained by Hövener who obtained a 8 fold absolute 

signal enhancement level176, and better than that reported by Zeng as no SABRE activity 

was achieved. Fekete et al.161 has explored iridium phosphine complexes in the formation 

of [Ir(H)2(NCMe)(py)(IMes)(L)]BF4, were L can be either triphenylphosphine (PPh3), 3,3′,3″-

phosphinetriylbenzenesulfonate (mtppts) or 3-diphenylphosphinobenzenesulfonate 

mtppms. Pyridine samples measured under the same experimental conditions in a water / 

ethanol solution, failed to produce any SABRE activity. The study concluded that catalyst 

containing ligand mtppms showed good polarisation into 3-hydroxypyridine producing a 62 

fold enhancement under PTF of 140 G.  

Pyridine has a relatively poor polar surface area in comparison to the ATZ substrate studied 

by Zeng240, therefore it is a sensible idea to screen a larger range of more hydrophilic 

substrates using catalyst 2-e, 2-f and 2-g in the same solvent ratio mixture.  
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Two substrates oxazole and 3-hydroxpyridine showed activity for SABRE but were only 

observed when using catalyst 2-f. The resulting 1H NMR spectra at the optimum for oxazole 

can be seen in and graphically in Figure 5.33 and 3-hydroxypyridine in Figure 5.34. 

 

Figure 5.33 SABRE with Oxazole, catalyst 2-f in a 30 % ethanol solution a) Observed 
1
H NMR spectra obtained 

at the maximum PTF of 80 G, b) graphical representation of the observed 
1
H NMR signal enhancement of 

oxazole as a function of PTF over the range of 0 – 140 G 

 

 

Figure 5.34 SABRE with 3-hydroxpyridine, catalyst 2-f in a 30 % ethanol solution a) Observed 
1
H NMR spectra 

obtained at the maximum PTF of 80 G, b) graphical representation of the observed 
1
H NMR signal 

enhancement of oxazole as a function of PTF over the range of 0 – 140 G 

 

It can be observed that the signal intensity of the oxazole sample shows limited SABRE 

activity producing approximately 1 fold for each of the corresponding proton resonances. 

This has been tested by the same catalyst in methanol-d4 producing 8 fold enhancements 

for each proton resonance. The 3-hydroxpyridine sample has achieved greater polarisation 

is this medium producing a maximum absolute enhancement level at a PTF of 80 G of 22 

fold. The results obtained in the methanol-d4 solution gave absolute enhancement level of 

50 fold. With the addition of the hydroxyl group it has only decreased by half compared to 

the control hyperpolarised sample, but the hydroxyl group fails to polarise. A comparison 
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of the absolute signal enhancement for the samples investigated in the 30 % ethanol and 

70 % water can be seen in Figure 5.35. 

  

 

Figure 5.35 Graphical representation of the enhancement levels achieved for oxazole, 3-hydroxpyridine and 
pyridine for SABRE with catalyst 2-f as a function of PTF over a range 0 – 140 G 

 

5.4. Summary 

In conclusion, significant effort has been made to produce a hyperpolarisable mixture that 

is biocompatible. This was attempted in two ways, firstly to produce a solid-supported 

catalyst that could be removed from the solution prior to injection. This removes the need 

to test the toxicity of the catalyst. Secondly, a water soluble catalyst preparation was 

attempted, as a biocompatible solvent is required for injection, and methanol is not 

suitable. In an ideal world, these two concepts would be combined to produce a solid-

supported catalyst that is effective in either water or ethanol.  

With respect to the solid supported catalysts, many different approaches were 

investigated, including encapsulation, polymer support and mesoporous scaffold. In most 

cases, significant leaching and poor recycling was observed.  

The encapsulation of 2-c within a polyurea matrice showed promising signs of good 

polarisation to pyridine, however over a 60 hour period, it was the homogeneous species; 

[Ir(H)2(IMes)(py)3]Cl (5-c), which had leached that proved SABRE active. It is thought that 

loosely encapsulated 2-c near the surface was the component that had leached and the 

remaining material was still encapsulated, but the pore size of the polyurea matrice was 
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too small as to allow one of the smallest substrates pyridine to pass through and interact 

with the catalyst. Polymer P4, also showed signs of leaching. 

The results obtained using the silica supported material; M-Bz-Im-Ir(2) confirmed weak 

SABRE activity.  However the same catalyst displayed PHIP activity for the hydrogenation of 

phenylacetylene in dichloromethane-d2, which was comparable to that of 2-b. M-Bz-Im-Ir(2) 

therefore reflects a suitable catalyst for further study, possibly with a 13C labelled material, 

which could also be used as a substrate for MRI purposes, as it is now ease to remove the 

catalyst by filtration. 

Catalyst 2-e, 2-f and 2-g functioned well in methanol and ethanol solution, but 2-f 

performed most efficiently for SABRE, producing an absolute enhancement level of 791-

fold. This surpasses that achieved for early work obtained for 2-a, 2-b, and 2-c at room 

temperature and should be considered for future work. However, upon changing to a 

biocompatible solvent mixture of 67 % D2O, 3 % DMSO and 30 % ethanol, the catalytic 

activity significantly reduced. This can be explained by the low solubility of H2 in water. This 

reduction in SABRE activity was also noted for more polar substrates of oxazole and 3-

hydroxypyridine, with the latter achieving a maximum absolute enhancement level at a PTF 

of 80 G of 22-fold with 2-f. It is worth considering the possibility of widening the substrate 

tested to include a more polar molecular, ATZ, which was recently reported in literature by 

Zeng et al240. Polarisation in ethanol where H2 solubility is high followed by dilution with 

water is the most likely route to establish a viable SABRE process to deliver 

biocompatibility. 
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6. Chapter 6  Conclusions and Future Work 

 

6.1. Conclusion 

This thesis has demonstrated and expands on pervious work for the application of SABRE 

within high resolution NMR and MRI spectroscopy.  The study started by investigating two 

new catalytic systems, 2-a and 2-b, and further expansion of 2-c, of that has previously 

reported149, 156, 163. The synthetic approaches have been established for homogeneous and 

heterogeneous catalysis. Analysis of the activation parameters reveal, that the key factors 

that affect the SABRE process are the electronic and steric effects of the NHC, which has an 

influence in the promotion of ligand exchange. The efficiency of polarisation transfer is 

dependent on the catalyst contact time with the substrate, with an optimum contact time 

for each catalyst, but no direct correlation can be made versus the TEP or buried volume 

values for these catalysts.  

This work demonstrates that optimisation of key components, catalyst, PTF, temperature 

and concentration, should be studied when endeavouring to polarise a new substrate. 2-a, 

2-b and 2-c have demonstrated their ability to polarise a good selection of biological 

relevant compounds which have been studied in Chapters 2 and 3 for 1H and 13C NMR 

measurements. For a 13C measurement of any potential new or existing substrate, catalyst 

2-c would be the preferable choice, as the SABRE activity of 2-a and 2-b, becomes very 

poor when moving away from just testing a pyridine sample.  For a 1H NMR measurement 

of a pyridine, at room temperature, the catalyst order catalyst order for enhancement 

would be 2-c > 2-a > 2-b, but if temperature could be control more accurately using the 

mixing chamber, then at higher temperature catalyst 2-b would be the catalyst choice. 2-b 

performs at its optimum at approximately 330 K which can produce an absolute 

enhancement level in excess of 800-fold enhancement, under standard concentrations. 

When this is extended to pyridine type ligands such as 3-methylpyridine, 4-methylpyridine 

and nicotinamide a similar trend is noted, producing absolute total enhancements of 739, 

1643 and 985-fold respectively, which greatly surpasses the SABRE activity of the two other 

catalysts. Initially these results for 2-b were surprising given the fact that the complex 

should be more stable and hence undergo slower ligand exchange, but mentioned 

previously optimum contact time is dependent on the catalyst chosen. If the temperature 

of a sample containing 2-b could be raised further beyond the limitations of the methanol 

solvent, then the possibility of increasing polarisation to the substrate could be achieved.  
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The effect of PTF plays significant role in achieving the optimum enhancement levels when 

studying these pyridine type substrates, especially the meta position, as this was found to 

be quite complex. A SABRE experiment generates both single spin longitudinal (Iz) order 

and multiple spin longitudinal order (IzSz) terms and later which has now become 

observable due to the possible fact that a slight imperfect 90° pulse has been applied. 

Given that the amplitude of these states is not equal, the detected signals can therefore be 

complex. Care therefore needs to be taken when examining meta proton signals, and a PTF 

of 80 G would be a good choice to study these substrates. This may not be at the maximum 

enhancement level but it would produce a good overall representation and moves away 

from any complicated antiphase signals at arise between field of 0.5 and 50 G. The 

relevance of these enhancement levels that SABRE generates, can save time and money, 

when trying to generate a similar measurement under thermal conditions. A signal 

enhancement of 10-fold obtained for pyridine would take 14 hours to record a similar 

spectrum under thermal conditions (when T1 = 10 seconds, and to fully relax 5 x T1).  

A future application for the SABRE technique is to be able to make an in-vivo MRI 

measurement. The challenge with making a MRI measurement is lifetime of the 1H 

hyperpolarised signal that is to be detected. 5-methylpyrimidine is a good candidate for 

such measurement, as it possesses a long T1 value, and time required for the polarised 

state to return to thermal equilibrium is in the order of 150 seconds. The optimum 

conditions which would be recommended for 1H, 13C, 13C INEPTrd NMR measurement and 

for RARE, FLASH and FISP MRI measurements are summarised in the table below. 

Measurement 2-c [mM] 
5-methylpyridine 
[mM] 

PTF (G) 
Absolute  
Signal-to-noise 

1H 0.5 1 70 2063^ 

13C 7.5 150 65 294 

13C INEPTrd 7.5 150 0 145 

RARE 5 200 65 105 

RARE vs Phantoms 10 200 65 0.6# , 10.0* 

FLASH vs Phantoms 7.5 150 65 0.6#,  1.2* 

FISP vs Phantoms 15 300 65 0.5#,  0.9* 

 

Table 6.1 Recommended optimal conditions for the desired NMR or MRI measurement, including catalyst and 
substrate concentration and PTF. Listed in the table is the absolute signal-to-noise values achieved at these 
optimum conditions. ^absolute signal enhancement, signal-to-noise ratio of the hyperpolarised 5-
methylpyrimdine signal versus that of  

#
water and *oil 
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For high resolution MRI, longer acquisition times and multiple scans are required to achieve 

the desired image quality. Preliminary results used the FISP sequence with a total 9 second 

acquisition, which allowed the consecutive collection of eight images from a single 

polarisation step. FLASH protocol would also be recommended for these studies as it may 

give fewer artefacts as it is less sensitive and works well with molecules with a long T1. 

The results from quinazoline revealed that it is possible to use SABRE and NMR to follow 

the unexpected hydrogenation reaction of quinazoline to form 3,4-dihydroquinaloline. 

Both the product and reactant proved to be SABRE active and consequently the metal 

catalyst not only mediates polarization transfer but also facilitates substrate 

hydrogenation. Combined with DFT calculations, it was able to confirm the proposed 

substrate hydrogenation reaction occurred through a rare outer-sphere pathway. 

Whilst the thesis has shown good progress for the application of SABRE, the biggest 

challenge in progression to obtaining an in-vivo MRI image, which would include the 

removal of the catalyst and secondly a more biocompatible medium is required. This thesis 

as shown some possible routes to anchoring NHCs to a variety of supported material. The 

results here are not fully conclusive as they all exhibit poor activity for SABRE, and high 

leaching of catalyst, with the exception to the latter for that of the mesoporous silica 

material. However these mesoporous material M-Bz-Im-Ir, proved to be active for PHIP 

hydrogenation of phenylacetylene and showed good activity compared to the homogenous 

catalyst 2-b.  

As SABRE is routinely carried out in methanol, the work in this thesis attempts to move 

from this solvent to a more biocompatible solution of 70 % water and 30 % ethanol. This 

included the design of water soluble NHCs, which was achieved by changing the 

functionality of these NHC substituents, by adding ionic or strongly polar groups. It was 

found that catalyst 2-f surpasses the SABRE activity found when 2-a, 2-b, or 2-c for a 

pyridine and in methanol, under standard conditions. Upon moving to a 70 % water and 30 

% ethanol solution, the enhancement levels fall, which can be explained due to the lower 

H2 solubility in water. The observed levels of polarisation for pyridine in this biocompatible 

solution exhibit poor solvent tolerance for SABRE. Even still, these results obtained for 

water soluble NHC with pyridine are comparable to the results obtained by Hövener who 

obtained a 8 fold absolute signal enhancement level176, and better than that reported by 

Zeng240 as no SABRE activity was achieved. It is worth considering the possibility of 
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widening the substrates tested to include a more polar molecular as 2-f, showed an 

increase in polarisation when 3-hydroxypyridine was tested.  

 

6.2. Future Work 

Since completing this thesis, a new technical piece of equipment has been purchased, 

which is a temperature control unit for the mixing chamber. This will enable to investigate 

the array of catalyst which has been developed to study the temperature and magnetic 

field dependence values with greater accuracy. This would conclude the good SABRE 

activity exhibited by catalyst 2-b at higher temperatures, which could be further tested 

with an array of other substrates, including 5-methylpyrimidine with greater ease. Another 

advantage of this temperature unit is that if being used for in-vivo studies then optimum 

working temperature for the catalyst would have to be approximately 35°C, which is close 

to internal body temperature. Catalyst 2-b would be a good candidate as it achieved 

greater SABRE activity when compared to catalyst previously examined. 

The key areas which have already continued work, is with the development of 5-

methylpyrimidine. To date this has presented itself as a suitable substrate for in-vivo 

imaging. If the synthesis of the deuterating these substrates could be improve, then it 

would increase the T1 of these molecules, maximising time given to achieving an in-vivo 

image following injection.  

If the heterogeneous route was to be continued, then the challenge to overcome the 

relaxation and the bulkiness of these catalyst would have to be addressed, which lead to 

the poor SABRE activity. This could be achieved by trying new catalysts, and other possible 

routes to anchoring through the iridium. 

An area of interested is the development to remove the catalyst from the solution. It is 

understood that a bi-pyridine disulfonic acid molecule will deactivate the catalyst complex 

by binding tightly. If the pH is increase then the catalyst would precipitate, and be able 

filtered out of solution. The challenges here would be able to achieve this in a time scale 

before an in-vivo measurement and secondly the biocompatibility process, with another 

suggested route to polarise in 100 % ethanol then dilute the sample with D2O. These 

reasons add to why 5-methylpyrimidine with a long T1 is crucial to this operation.  
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Moving to more of pharmaceutical application, it would be advantageous to be able to 

probe a mixture of substrates in a sample.  The work here has concentrated on obtaining 

maximum enhancements which has been desired for certain applications and is only good 

if the substrate is known. If a much more active catalyst was studied, this would lead to a 

weaker Ir-substrate bond. This is turn would lower the polarisation levels, but early 

indications in testing a mixture of substrates, it doesn’t bind the substrate tightly to all the 

substrates, but it will polarise everything with a similar level of enhancement. 
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7. Chapter 7  Experimental 

 

7.1. Instrumentation 

NMR measurements of substrates and characterisation of active complexes have been 

carried out on various Bruker spectrometers. These instruments included an Avance III 400 

(400.13 MHz), Avance III 500 (500.13 MHz), Avance III 600 (600.13 MHz), Avance II 700 

(700.13 MHz). 13C frequency measured at 100 MHz, 125 MHz, 150 MHz and 175 MHz 

respectively. 15N frequency measured at 40 MHz, 50 MHz, 60 MHz and 70 MHz 

respectively. NMR software which has been used to acquire and process data are Topspin 

version 2.0+ and Topspin version 3.2+. 

7.2. Standard Methods 

7.2.1. Preparation of parahydrogen 

Parahydrogen was produced by cooling hydrogen down to 25 K over Fe2O3 were it was 

possible to obtain 99% parahydrogen conversion. Parahydrogen has been used from two 

different sources throughout this PhD thesis. The first coming from generator designed at 

the University of York which used a source of hydrogen from a cylinder. This was used for 

all shake method experiments and for early work for the flow method. The second was a 

parahydrogen generator that was provided by Bruker, which used an H-cube for the 

production of hydrogen.  

7.2.2. Shake Method (method 1) 

This method makes use of a 5mm J Young’s Tap NMR tube (which was reported as Young’s 

Tap NMR tube) with its contents made to standard concentrations as reported for the 

whole range of substrates tested in this thesis, so that a direct comparison can be made. An 

example of a standard sample would comprise of 2mg IMes (0.0031 mmol, 5 mM), 5µl 

pyridine (0.062 mmol, 100 mM) and 0.6 ml of deuterated solvent, unless otherwise stated. 

The samples were degassed using a high vacuum line, by freeze thaw method, until there 

was no pressure drop. The headspace was then filled with 3 bar of hydrogen or 

parahydrogen and the sample left to allow the catalyst to activate. The sample was then 

introduced into the NMR spectrometer where general procedures were followed, and a 

thermal 1H NMR spectrum was recorded. This was used to calculate the levels of 

polarisation transferred to the substrate. To the Young’s Tap NMR tube, 3 bar of 
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parahydrogen was added and shaken vigorously, in an up-down motion for 10 seconds at 

either 0.5 G or 65 G, placed back into the NMR spectrometer and interrogated by a range 

of 1D and 2D NMR methods. Before each reading, the headspace of the NMR tube was 

evacuated and, 3 bar of parahydrogen replenished. 

7.2.3. Flow Method (method 2) 

This method used a sample prepared by dissolving catalyst (0.015 mmol, 5 mM), substrate 

(0.31 mmol, 100 mM) in deuterated solvent (3 mL), unless otherwise stated. The sample 

was then injected into the mixing chamber where it was shuttled into a Bruker Avance III 

series 400 MHz spectrometer equipped with a flow probe head for a thermal 1H NMR. The 

solution was returned, and can then be activated in the mixing chamber by bubbling 

parahydrogen through the solution via a series of valves. Parahydrogen was then regulated 

to deliver 3 Bar for 6 seconds before being shuttled back to the probe head for NMR 

interrogation of the hyperpolarised sample. The carrier gas used to shuttle the sample was 

either helium or nitrogen. For samples that take longer to activate, for example 2-a 

(ImMe2NPri
2) and 2-c (BzIMes), the complexes must be pre-activated. An ampoule was 

charged with the sample solution and degassed as per protocol for the solvent and 3 bar 

parahydrogen was introduced into the ampoule and shaken for a period of 5 minutes and 

stored at room temperature until the catalyst was activated and ready to be injected into 

the mixing chamber. 

 

Figure 7.1 Schematic representation of polariser and flow system 
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Two polarisers were used in measurements by method 2, the MKII and MKIII. The field 

ranges of the automated equipment MKII and MKIII are -150 to 150 G and -140 to 140 G 

respectively.  This was achieved as the mixing chamber was surrounded by a B0 coil, 

through which a current was passed and therefore control of the magnetic field in the z 

direction can be achieved. The MKII polariser was used with a TXO probe and MKIII was 

used with either a TXO or TXI probe. 

7.2.3.1. Reproducibility of method 2 

A series of 1H NMR spectra were collected for a sample of 2-c with pyridine at standard 

concentrations, collected at 65G to avoid complications arising from the antiphase nature 

of the meta position. The results of these experiments were presented in Table 7.1 and 

Figure 7.2 below.  

 Position 2 Position 4 Position 3 

Integral Enhancement Integral Enhancement Integral Enhancement 

Run 1 -22183191 -112.98 -9515740 -92.34 -11140641 -54.92 

Run 2 -21608165 -110.06 -9563696 -92.80 -11082411 -54.63 

Run 3 -21219980 -108.08 -9548655 -92.66 -11281286 -55.61 

Run 4 -22139379 -112.76 -9564910 -92.81 -10992202 -54.19 

Run 5 -21674794 -110.40 -9492575 -92.11 -10863504 -53.55 

Run 6 -21510220 -109.56 -9300026 -90.24 -10767635 -53.08 

Mean -21722622 -110.63 -9497600 -92.15 -11021280 -54.33 

S.E 141316 0.777 38133 0.399 70844 0.377 

S.D 373888 1.904 100891 0.979 187436 0.923 

Confidence 

Limit 95% 

 

267794 1.36 72262 0.701 134249 0.672 

 

Table 7.1 Detailing the statistics estimating the reproducibility of method 2 
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Figure 7.2 Comparing 6 
1
H NMR spectra measured consecutively using the polariser 

 

This data showed a very high level of reproducibility and was observed for the polariser, 

with results reproducible to within 2 %. 

 

7.2.4. Calculation of 1H NMR enhancement factors 

 

For calculation of the 1H NMR signal enhancement, the following formula was used: 

𝐸 =
𝑆𝑝𝑜𝑙

𝑆𝑢𝑛𝑝𝑜𝑙
 

Figure 7.3 when E = enhancement, Spol = signal of polarised sample measured by integral, and Sunpol = signal of 
thermally polarised (reference) sample measured by integral 

Experimentally, reference spectra were acquired with the same sample that was used for 

the hyperpolarised measurement after it had fully relaxed in the magnet (typically 5-10 

minutes at high magnetic field). Reference and polarised spectra were collected using 

identical acquisition parameters, in particular the receiver gain. The raw integrals of the 

relevant resonances in the polarized and thermal spectra were then used to determine the 

enhancement level using equation in Figure 7.3. 
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7.2.5. Total Enhancement 

 

For comparison of overall SABRE activity of a catalyst system, it was advantageous to 

calculate the total enhancement, which was the sum enhancement calculated for each 

proton. 

 

Figure 7.4 Labelled structure of pyridine with proton resonances labelled as ortho (σ), para (p) and meta (m) 

Figure 7.4 showed the labelled structure of pyridine, when calculating the total 

enhancement, the number of proton environments must be considered, and the sign of the 

enhancement value (negative of positive). The total enhancement for pyridine resonances 

was calculated: 

Total Enhancement (E) = | σ x 2 | + |p| + |m x 2| 

7.2.6. Calculation of 1H MRI enhancement factors 

All raw data were Fourier transformed and zero-filled once, using a routine included in the 

NMRI package of Prospa (Magritek LTD.). For calculating the signal-to-noise ratios of every 

image, an algorithm has been designed that selects circular regions of interest (ROIs) 

containing signal and noise, and calculates the signal-to-noise ratio values using the 

mathematical description of Rice white noise. With the exception of the high-resolution 

images presented at the end of this chapter 4 (on which a sinebell squared noise filter was 

applied to the k-space data prior to the FT), no noise filtering was performed as part of the 

data processing. In order to estimate the signal enhancement for each solution, the 

average of the signal-to-noise ratio values obtained from the 5 shake-and-drop 

experiments was divided by the SNR value extracted from the corresponding thermal 

images of the samples. Contrast enhancement was evaluated using the ratio of the signal-

to-noise ratio of the hyperpolarised images and the signal-to-noise ratio of the images 

recorded on the water and oil phantoms respectively. 
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7.2.7. Chemicals and Solvents 

All materials for synthetic procedures were purchased from Aldrich, Alfa Aesar and 

fluorochem. All materials were used as received unless otherwise stated. The solvents used 

were of general purpose or HPLC grade and were purchased from Fisher Scientific. TLC 

analysis was performed using aluminium-backed silica gel 60 F254, 0.2 (Merck plates) or 

aluminium-backed aluminium oxide 60 F254, (Merck plates). Silica gel chromatography was 

performed with silica gel 60 (Davisil). When required, diethyl ether, dichloromethane, 

acetonitrile and acetic acid were dried as follows; diethyl ether was dried over sodium 

metal and benzophenone followed by distillation; dichloromethane and acetonitrile were 

dried over calcium hydride for 24 h followed by distillation; acetic acid was dried by adding 

acetic anhydride (3% w/v) and distilling (b.p. 118°C). All other solvents required were dried 

using an Innovative Technology anhydrous solvent engineering system. High purity gases 

were obtained from BOC. 

 

7.3. Reactions 

7.3.1. Synthesis of ImMe2NPri2 (1-a) 

 

 

  1-a 

Figure 7.5 Structure of  1-a (ImMe2NPr
i
2) 

Step 1 

Diisopropylthiourea (16.03 g, 100 mmol), 3-hydroxybutanone (9.69 g, 110 mmol) and 

pentan-1-ol (65 ml) were added to a round bottom flask equipped with a magnetic stirrer, 

dean stark trap and reflux condenser. The solution was heated in an oil bath for 48 hours at 

142 °C, at which point no more water was produced indicating complete conversion. The 

mixture was allowed to cool overnight. The solution was then filtered under vacuum and 
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washed several times with cold methanol (-20 °C). The product was further dried in a 

Schlenk tube tube for 48 hours. Yield =13.0 g (61 %). Only mass spectrometry recorded (ESI 

m/z= 213.1) 

Step 2 

To the product obtained in step 1 (1.06 g, 5 mmol), dimethoxyethane (DME) (30 ml) was 

added under a nitrogen atmosphere. The reaction vessel was bathed in dry ice prior to the 

addition of potassium (0.5 g, 12.79 mmol) in small quantities. Once potassium addition was 

complete, the mixture was heated at reflux for 4 hours at 88 °C and allowed to cool 

overnight. The mixture was then filtered through a cannula to a clean Schlenk tube tube 

and evaporated to dryness to afford an orange/brown powder. Dry hexane (45 ml) was 

added to the powder and stirred for 1.5 hours. The solution was then removed by pipette 

and evaporated to dryness. This process afforded yellow crystals of 1-a (ImMe2iPr2), which 

was immediately transferred to a glove box for storage. Yield = 0.81 g (90 %).  

1H NMR (400 MHz, DMSO-d6,  298 K): 4.95 (sept, 2H, N(1,3)-CH(CH3)2, 
3J= 6.74 Hz), 2.40 (s, 

6H, C(4,5)-CH3), 1.61 (d, 12H, N(1,3)-CH(CH3)2). 
13C{1H} NMR (CDCl3, 101 MHz, 298 K):  

δ=209.27 (C(2)), 126.6 (C(4,5)), 50.40 (N(1,3)-CH(CH3))2), 22.03 (N(1,3)-CH(CH3)2), 7.72 

[C(4,5) – CH3]. MS (ESI+): m/z 181.2 (M+-Cl) 

 

7.3.2. Synthesis of BzIMes  (1-b) 

 

 

   1-b 

Figure 7.6 Structure of 1-b (BzIMes) 
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Aqueous formaldehyde (3 mL), aqueous glyoxal (4.7 mL) and glacial acetic acid (10 mL) 

were added to a 75 mL round bottom flask and heated up to 70°C. A solution made up of 

glacial acetic acid (10 mL), ammonium acetate (3.00 g in 2.1 mL) and mesitylamine (5.6 mL) 

was added dropwise over a period of 30-40 minutes. The solution was stirred continually at 

70°C throughout the addition followed by a further 18 hours. The solution was then cooled 

to room temperature and then added dropwise to a solution of NaHCO3 (29.4 g) in water 

(300 mL). Upon the addition, a precipitate formed, which was filtered to obtain a beige 

solid product. This was purified by recrystallization in ethyl acetate to obtain beige shard 

crystals of 1-mesitylimidazole. (4.99 g, 67%) 

1H NMR (CDCl3, 400 MHz, 297 K): δ 7.40 (m, 1H), 7.20 (m, 1H), 6.95 (m, 2H), 6.82 (m, 1H), 

2.33 (s, 3H), 1.96 (s, 6H).  

 
1-mesitylimidazole (1.0g, 0.0053 mol, 1.0 e.q) and toluene (25 mL) were added to a Schlenk 

tube and stirred for 30 min. Benzylchloride (3.5 ml, 0.026 mol, 6.0 e.q) was added dropwise 

to the mixture over a 20 minute period and heated at reflux (135°C) for a further 12 hours 

after the addition was complete. Hot pentane was added to the solution and a white 

precipitate formed. The solution was cannula filtered, the precipitate washed 3 times with 

hot pentane, and dried in vacuo to produce a white powder (1.68 g, 97%). 

1H NMR (400 MHz, CD3OD, 298 K): δ 11.12 (t, 1H, NCHN), 7.93 (t, 1H, NCHCHN), 7.65-7.35 

(m, 5H, Ph-CH), 7.23(t, 1H, NCHCHN), 6.99 (s, 2H, CHmes), 5.86 (s, 2H, Ph-CH2-N), 2.32 (s, 3H, 

pCHmes), 2.03 (s, 6H, oCHmes). 13C{1H} NMR (101 MHz, CD2Cl2, 298 K): δ 141.1 (NCHN), 138.9 

(Q pCmes), 134.4 (Q oCmes), 134.3-129 (ArCH), 123.3 (NCHCHN),122.8 (NCHCHN), 52.8 (Ph-

CH2-N), 20.8 (p-CH3
mes), 17.4 (o-CH3

mes). MS (ESI+): m/z 277.2 (M+-Cl) 
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7.3.3. Synthesis of [Ir(COD)Cl]2 

 

Figure 7.7 Structure of [Ir(COD)Cl]2. 

Iridium (III) chloride (2.00 g, 6.69 mmol) was dissolved in a mixture of isopropanol (40 mL) 

and H2O (20 mL). The mixture was degassed with N2 for 30 minutes. 1,5-cylcooctadiene (6.5 

mL) was added and was heated at reflux under N2 for 48 hours. The reaction mixture was 

reduced by half volume which resulted in an intense red precipitate forming. The mixture 

was allowed to cool, and the red precipitate product was collected by vacuum filtration and 

washed with ice cold methanol to remove unreacted starting materials. Yield 55%. 

 

1H NMR (400 MHz, DMSO-d6, 298 K): δ 4.10 (br, s, 4H, CH), 3.96 (br, s, 4H, CH), 2.16-2.35 

(m, 8H, CH2), 1.65-1.78 (m, 8H, CH2). 
13C{1H} NMR (101 MHz, DMSO-d6, 298 K) δ 73.8 (CH), 

30.7 (CH2). MS (ESI+): m/z 672.4 

 

7.3.4. Synthesis of [Ir(μ -OMe)(COD)]2. 

 

 

Figure 7.8 Structure of [Ir(μ -OMe)(COD)]2. 

[Ir(COD)Cl]2 (1.01 g, 1.50 mmol) and KOH ( 0.17 g, 3 mmol) were placed in a separate 

Schlenk tube tubes under N2, then dry and degassed methanol (70 and 35 mL) was added 

to each Schlenk tube tube respectively. Once the solids had been dissolved, the KOH 
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solution was cannula transferred to [Ir(COD)Cl]2 solution, and stirred at room temperature 

for 30-60 minutes until the solution turned a golden yellow. Degassed H2O was added to 

form a yellow precipitate product which was collected by vacuum filtration. (0.763 g, 1.16 

mmol, 76%).   

1H NMR (400 MHz, DMSO-d6, 298 K): δ 4.10 (br, s, 4H, CH), 3.96 (br, s, 4H, CH), 3.8 (s, 6H, 

CH3),  2.16-2.35 (m, 8H, CH2), 1.65-1.78 (m, 8H, CH2). 
13C{1H} NMR (101 MHz, DMSO-d6, 298 

K) δ 73.8 (CH),65.1(CH3), 30.7 (CH2). MS (ESI+): m/z 662.3 

7.3.5. Synthesis of [(NHC)AgCl] 

 

 

Figure 7.9 Structure of NHC.AgCl 

1-(benzyl)-3-(mesityl)imidazol-2-ylidene.HCl (1 eq.), and dry, degassed DCM were added to 

a Schlenk tube tube and stirred for 20 minutes under N2. To a second Schlenk tube tube, 

Ag2O (1.2 eq.) and DCM were added and stirred for 20 minutes. The Ag2O solution was 

cannula transferred to the 1-(benzyl)-3-(mesityl)imidazol-2-ylidene solution and stirred for 

18 hours in the absence of light. The solution was filtered through celite, washed with 3 

portions of DCM and solvent removed in vacuo to produce an off white solid. 

Characterisation data for catalyst 2 (silver(1-(benzyl)-3-(mesityl)imidazol-2-ylidene) 

chloride) 

1H NMR (400 MHz, CD2Cl2, 298 K): δ 7.41-7.0 (m, 9H, Ar-CH), 5.39 (s, 2H, Ph-CH2-N), 2.35 (s, 

3H, pCHmes), 1.99 (s, 6H, oCHmes).  13C{1H} NMR (101 MHz, CD2Cl2, 298 K): δ 141 (NCN), 139.6 

(Q pCmes), 136.0 (Q oCmes), 135-127.5 (ArCH), 123.3 (NCHCHN),121.3 (NCHCHN), 55.5 (Ph-

CH2-N), 20.8 (p-CH3
mes), 17.4 (o-CH3

mes). MS (ESI+): m/z 421 
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7.3.6. Synthesis of [Ir(NHC)(COD)Cl] (2-a, 2-b) 

 

Figure 7.10 Structure of [Ir(NHC)(COD)Cl] (2-a, 2-b) 

Method 1: 

[(NHC)AgCl] (1 eq.) and [Ir(COD)Cl]2 (0.5 eq.) and DCM were added to a Schlenk tube tube 

and degassed for 30 min with N2. The solution was stirred for 5 hours at room temperature 

and the resulting solution was filtered through celite. The crude product was reduced in 

vacuo and purified by column chromatography with an eluent of DCM : Acetone (19:1) 

resulting in a yellow powder. 

Method 2: 

NHC.HCl (2.2 eq.) and potassium tert-butoxide (2.2 eq.) were added to a Schlenk tube tube. 

Dry degassed THF was added to the flask and the mixture was stirred for 45 min at room 

temperature. [Ir(COD)Cl]2 (1 eq.) was dissolved in a minimum volume of dry THF, the 

resulting solution then added to the first Schlenk tube by cannula transfer and stirred for 2 

hours at room temperature. The solvent was then removed under vacuum and the 

resulting solid was purified by column chromatography with an eluent of DCM : Acetone 

(19:1) resulting in a yellow/orange powder.  

Characterisation data for 2-a: 

1H NMR (700 MHz, CD3OD, 278 K): δ  6.05 (sept, J=7.2 Hz, 2H, CH(CH3)2), 4.48 (b,2H, CH-

COD), 2.99 (b, 2H, CH-COD), 2.19 (b, 8H, CH2-COD), 2.15 (s, 6H, NC(CH3)C(CH3)N), 1.61 (d, 

J=6.92 Hz, 6H, CH(CH3)2), 1.47 (d, J=6.92 Hz, 6H, CH(CH3)2). 
13C{1H} NMR (175 MHz, CD3OD, 

278 K): δ 177.39 (NCN), 124.63 (NCCN), 82.70 (CH-COD), 53.33 ((CH3)2CH-N), 51.00 (CH-

COD), 33.70 (CH2-COD), 29.40 (CH2-COD) 22.77 ((CH3-C-CH3), 21.77 (CH3-C-CH3), 10.30 (C-
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CH3). 
15N{1H}  NMR (70 MHz, CD3OD, 278 K): δ 197.8 (Carbene N). MS (ESI+): m/z 522 (M+ -

Cl +acetonitrile), 481 (M+ -Cl) 

Characterisation data for 2-b: 

1H NMR (400 MHz, CD3OD, 298 K): δ 7.45-7.35 (m, 5H, Ph-CH), 7.29 (CH-COD), 7.07 (s, 1H, 

mCHmes), 6.96 (d, J=1.97 Hz, 1H, NCHCHN), 6.95 (s, 1H, mCHmes), 6.78 (d, J=1.97 Hz, 1H, 

NCHCHN), 6.25 (d, J=15.12 Hz, 1H, Ph-CH2-N), 5.51 (d J=15.16 Hz, 1H Ph-CH2-N), 4.48 (b, 2H, 

CH-COD), 3.01 (m, 1H, CH-COD), 2.75 (m, H, CH-COD) 2.4 (s, 6H, oCHmes), 1.96 (s, 3H, 

pCHmes), 2.03-1.2 (m, 8H, CH2-COD) 

13C{1H} NMR (100 MHz, CD3OD, 298 K): δ 180.49 (NCN), 138.64 (Q N-Cmes) 137.4 (Q Ph-C-

CH2-N), 136.83 (Q oCmes), 135.50 (Q pCmes) 129.42 (m-ArCH), 128.58 (ArCH-Ph), 128.03 (m-

ArCH), 123.04 (NCHCHN), 120.73 (NCHCHN), 84.10 (CH-COD), 55.00 (Ph-CH2-N), 52.20 (CH-

COD), 51.03 (CH-COD), 34.12 (CH2-COD), 32.59 (CH2-COD), 29.30 (CH2-COD), 28.71 (CH2-

COD),  21.13 (o-CH3
mes), 19.62 (o-CH3

mes), 17.91 (p-CH3
mes). MS (ESI+): m/z 577.21 (M+ -Cl) 

7.3.7. Synthesis of [Ir(1-a)(CO)2Cl] (3-a) 

 

 

Figure 7.11 Structure of [Ir(1-a)(CO)2Cl] (3-a) 

[Ir(COD)(1-a)Cl] was added to DCM in round bottom flask under N2 atmosphere. The 

headspace was purged with CO gas and the reaction stirred for 30 minutes until a pale 

yellow precipitate was formed. The solution was removed and the product dried in vacuo 

and immediately transferred to a glove box for storage. Yield = 0.81 g (90 %).  
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Characterisation data for 3-a: 

1H NMR (400 MHz, CD3OD, 298 K):  6.05 (sept, 2H, N(1,3)-CH(CH3)2), 2.40 (s, 6H, C(4,5)-CH3), 

1.65 (d, 12H, N(1,3)-CH(CH3)2). 
13C{1H} NMR (100 MHz, CD3OD, 278 K): δ 181.74 (IrCO), 

169.01 (NCN), 168.32 (IrCO),  126.2 (NCCN), 54.05 ((CH3)2CH-N), 20.70 ((CH3-C-CH3), 14.1 (C-

CH3). MS (ESI+): m/z 470.2. FTIR: cm-1 2054, 1982, 1965 

 

Figure 7.12 IR spectrum corresponding to the addition of CO to complex 3-a 

7.3.8. Synthesis of [Ir(1-b)(CO)2Cl] (3-b) 

 

[Ir(COD)(1-b)Cl] was added to DCM in round bottom flask under N2 atmosphere. The 

headspace was purged with CO gas and the reaction stirred for 30 minutes until a pale 

yellow precipitate was formed. The solution was removed and the product dried in vacuo 

and immediately transferred to a glove box for storage. Yield = 0.75 g (87 %).  

1H NMR (400 MHz, CD3OD, 298 K): δ 11.12 (t, 1H, NCHN), 7.93 (t, 1H, NCHCHN), 7.65-7.35 

(m, 5H, Ph-CH), 7.23(t, 1H, NCHCHN), 6.99 (s, 2H, CHmes), 5.86 (s, 2H, Ph-CH2-N), 2.32 (s, 3H, 

pCHmes), 2.03 (s, 6H, oCHmes). 13C{1H} NMR (100 MHz, CD2Cl2, 298 K): δ 180.21 (IrCO), 149.15 
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(IrCO) 141.1 (NCHN), 138.9 (Q pCmes), 134.4 (Q oCmes), 134.3-129 (ArCH), 123.3 

(NCHCHN),122.8 (NCHCHN), 52.8 (Ph-CH2-N), 20.8 (p-CH3
mes), 17.4 (o-CH3

mes). MS (ESI+): 

m/z 497 (M+-Cl) FTIR: cm-1 2057, 1978 

 

Figure 7.13 IR spectrum corresponding to the addition of CO to complex 3-b 

 

 
7.3.9. Synthesis of LiOC(CF3)3 

 

 

Figure 7.14 Structure of LiOC(CF3)3 

Lithium hydride (0.167 g, 20.9 mmol) and Et2O (50 mL) was added to a Schlenk tube tube 

and stirred for 10 minutes. To the white suspension, nonafluoro-tert-butanol (2.9 mL, 20.9 

mmol) was added dropwise over a 20 minute period. After H2 formation was complete, the 

reaction mixture was stirred for 1 hour at room temperature, then heated at reflux for a 

further 2 hours. The solvent was removed to produce a white solid which was dried in 

vacuo. (4.50 g, 89 %) 
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7.3.10. Synthesis of AgOC(CF3)3. 

 

 

Figure 7.15 Structure of AgOC(CF3)3. 

In a double Schlenk tube, LiOC(CF3)3 (1.10 g, 4.13 mmol) and AgBF4 (0.801 g, 4.13 mmol) 

were mixed in a glovebox. Dry degassed DCM was added to this mixture and stirred for 18 

hour in the absence of light. The solution was filtered through a glass frit into the second 

half of the Schlenk tube and all the solvent removed and quickly dried in vacuo, as 

prolonged drying resulted in decomposition of the white product. (0.9 g, 63%). 

7.3.11. Synthesis of 3-acetoxymethylpyridine 

 

Figure 7.16 Structure of 3-acetoxymethylpyridine 

3-hydroxypyridine (1.00 g, 10.51 mmol) and triethylamine (2.13 g, 21 mmol) were added to 

a Schlenk tube tube and dissolved in degassed DCM (15 mL). Under N2 conditions at room 

temperature acetyl chloride (0.91 g, 11.23 mmol) was added and stirred for 3 hours. The 

solvent was removed in vacuo and purified by column chromatography with an eluent of 

DCM : methanol (97:3) to produce a pale yellow / brown oil. 

1H NMR (400 MHz, CD3OD, 298K): δ 8.62 (s, 1H, H2), 8.55 (br, 1H, H6), 7.71-7.67 (m, 1H, 

H4), 7.30 (dd, J=7.8 Hz, 4.8 Hz, 1H, H5). 5.11 (d, J=1 Hz, 2H, H7), 2.10 (s, 3H, H9).  MS (ESI+): 

m/z 151 
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7.3.12. Synthesis of [Ir(SIMesCh)(COD)Cl] 2-f 

 

            2-f 

Figure 7.17 Structure of [Ir(SIMesCh)(COD)Cl] 2-f 

SIMeCh.HCl (1-f) (0.22 g, 0.337 mmol), sodium-methoxide (0.03g, 0.555 mmol) and 

[IrCl(COD)]2 (0.1 g, 0.149 mmol) were added to a Schlenk tube and dissolved in a mixture of 

10 mL DMSO and 10 mL ethanol. The solution was stirred 16.5 hours at room temperature 

and solvent removed in vacuo to produce a pale yellow solid product (0.185 g, 65 %). 

1H NMR (400 MHz, CD3OD, 298 K): δ -22.54 (2H, hydrides), 2.57-2.53 (br, 24H, CH(CH3)2), 

2.70 (m, 4H, CH(CH3)2), 4.89 (d, JHH = 5.95 Hz), 5.29 (br, 2H, OH), 7.14 (t, 1H, para proton of 

pyridine in axial position), 7.65 (t, 2H, meta proton of pyridine in axial position), 7.74 (t, 1H, 

para proton of pyridine molecules in equatorial position) 7.77 (s, 2H, HAr), 7.83 (s, 2H, HAr), 

7.95 (s, 2H, NCH-CHN), 8.17 (t, 1H, para proton of pyridine in axial position), 8.40 (d, 2H, 

ortho proton of pyridine molecules in equatorial position), 8.70 (d, 2H, ortho proton of 

pyridine in axial position), 8.98 (s, 1H, Htriazole), 9.03 (s, 1H, Htriazole). 
13C{1H} NMR (125 MHz, 

d6-DMSO, 298 K): δ 163.41 (Ir-Ctmx), δ 138.90 (-C=,tmx), δ 136.98 (-C=, tmxtriazle),  131.50 (-

C=, tmx), 131.10 (2 –C(CH3)-, tmx), 128.60 (-CH=, triazol),  120.00 (-CH=, aril), 62.70 

(NCH2CH2N), 59.48 (-CH2-N), 52.5 (N(CH3)3), 62.5 (-CH=, COD), 49.38 (-CH=, COD),  46.4 (-

CH=, COD), 31.40 (-CH2-, COD), 17.8 (CH3-C=).MS (ESI): m/z 1022 
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7.3.13. Synthesis of [Ir(SIMesTrimet)(COD)Cl] (2-g) 

 

 

              2-g 

Figure 7.18 Structure of [Ir(SIMesTrimet)(COD)Cl] (2-g) 

SIMesTrimet.HCl (1-g) (0.50 g, 0.755 mmol), sodium-methoxide (4.2 mg, 0.755 mmol) and 

[IrCl(COD)]2 (0.25 g, 0.378 mmol) were added to a Schlenk tube and dissolved in the 

mixture of 15 mL DMSO and 15 mL ethanol. The solution was stirred 18 hours at room 

temperature and solvent removed in vacuo to yield a yellow brown solid (0.234 g, 62 %). 

1H NMR (400 MHz, DMSO-d6, 298 K): δ 9.20 (br, 0.33H, Htriazole), δ 9.16(br, 0.66H, Htriazole), 

8.97 (s, 1H, Htriazole), 8.43(s, 2H, -CH=, COD), 8.18(s, 2H, -CH=, COD), 7.87(s, 1H, HAr), 7.77(s, 

1H, HAr), 7.50(s, 2H, HAr), 4.81(s, 2H, CH3N-CH2-Ctriazole), 4.77(s, 2H, CH3N-CH2-Ctriazole), 4.62 

(br, 4H, NCH2-CH2N), 3.72 – 3.97 (m,-CH2-, COD), 3.15(s, 12H, N-CH3), 3.13(s, 12H, N-CH3), 

2.21 – 2.34(m, 12H, Ar-CH3) 

13C{1H} NMR (125 MHz, DMSO-d6, 298 K): δ 162.17 (Ir-Ctmx), δ 138.90 (-C=,tmx), δ 136.98 (-

C=, tmxtriazle),  133.50 (-C=, tmx), 133.10 (2 –C(CH3)-, tmx), 127.60 (-CH=, triazol),  120.61 (-

CH=, aril), 62.70 (NCH2CH2N), 59.48 (-CH2-N), 52.5 (N(CH3)3), 62.5 (-CH=, COD), 49.38 (-CH=, 

COD),  46.4 (-CH=, COD), 31.40 (-CH2-, COD), 17.8 (CH3-C=). MS (ESI): m/z 962 

 

 

 

 



234 
 

 

7.3.14. Synthesis of [Ir(IMesOH)(COD)Cl] (2-e) 

 

2-e 

Figure 7.19 Structure of [Ir(SIMesTrimet)(COD)Cl] (2-e)             

[Ir(IMesOH)(COD)Cl] 0.144 g (0.215 mmol) of [Ir(COD)Cl]2 was dissolved in 10 mL 

acetonitrile. 0.230 g (0.43 mmol) of IMesOH·HCl and 0.049 g (0.44 mmol) of KOtBu were 

dissolved in a mixture of 5 mL degassed H2O and 10 mL NCMe under N2. The aqueous 

solution was added into the NCMe solution of the iridium dimer, and stirred at room 

temperature for 4 hours. The solvent was removed by vacuum and a beige brown powder 

remained as the product. Yield was: 0.277 g (85%).  

1H NMR (500 MHz, D2O, 298 K): δ 1.78-2.25 (m, -CH2-,COD), 2.84 (4H, -CH2-imid), 2.31 (s, 

12H, CH(CH3)2), 4.49 (s,4H, -CHv, COD), 4.85 (s, 4H, -CH2-triazole), 7.80 (s, 2H,-CHv, HAr), 8.04 

(s, 2H, –CHv, Htriazole), 8.49 (s, 2H,–CHv, Himid). 13C{1H} NMR (125 MHz, D2O, 298 K): δ 16.9 

(CH3, ), 24.9 (-CH2-, COD), 50.9 (-CH2-imid), 57.0 (–CH2–Ctriazole), 79.7 (–CHv, COD), 121.1 (–

CHv, Ar), 122.4 (–CHv, imid), 124.9 (–CHv, triazole), 133.4, 137.5, 138.3 (–Cv, Ar), 147.5 (–Cv, imid) 

173.6 (Ir–C). MS (ESI+): Data didn’t match expected value. 
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7.3.15. Synthesis of 2-d-5-methylpyrimidine.HCl 

 

Figure 7.20 Structure of 2-d-5-methylpyrimidine 

2-Chloro-5-methylpyrimidine (0.90 g, 0.70 mmol), 5 % palladium carbon (0.10 g), 

triethylamine (2.07 g, 2 mmol) and THF (100 mL) were added to a 150 mL round bottom 

flask and stirred for 10 minutes under N2. The N2 atmosphere was removed and then 

replaced by a deuterium gas atmosphere and the mixture was stirred for 18 hours. The 

solution was passed through celite to remove the palladium on carbon. 4 M HCl in dioxane 

(1 mL) was added dropwise over a 5 minute period to produce a white precipitate and the 

solvent was removed in vacuo (0.60g, 65%).  

1H NMR (400 MHz, CD3OD, 298K): δ 8.97 (s, 0.15 H, NDN), 8.68 (s, 1.34 H, NCHC), 2.39 (s, 

3H, CH3). 
13C{1H} NMR (100 MHz, CD3OD, 298K): δ 157.60 (NDN), 155.60 (QC), 131.70 

(NCHC), 14.00 (CH3). MS (ESI+): 95.13 

7.3.16. Synthesis of 2,4-d-5-methylpyrimidine 

 

Figure 7.21 Structure of 2,4-d-5-methylpyrimidine. 

2,4-Chloro-5-methylpyrimidine (0.90 g, 0.54 mmol), 5 % palladium carbon (0.15 g), 

triethylamine (2.07 g, 2 mmol) and THF (100 mL) were added to a 150 mL round bottom 
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flask and stirred for 10 minutes under N2. The N2 atmosphere was removed and then 

replaced by a deuterium gas atmosphere and the mixture was stirred for 48 hours. The 

solution was passed through celite to remove the palladium on carbon. 4 M HCl in dioxane 

(1 mL) was added dropwise over a 5 minute period to produce a white precipitate and the 

solvent was removed in vacuo (0.70g, 75%).  

1H NMR (400 MHz, CD3OD, 298K): δ 8.97 (s, 0.04 H, NDN), 8.68 (s, 0.66 H, NCHC + NCDC), 

2.39 (s, 3H, CH3). 
13C{1H} NMR (100 MHz, CD3OD, 298K): δ 157.60 (NDN), 155.60 (QC), 

131.70 (NCHC), 14.00 (CH3). MS (ESI+): 96.08 

7.3.17. Synthesis of 4,6-d-5-methylpyrimidine 

 

Figure 7.22 Structure of 4,6-d-5-methylpyrimidine 

4,6-Chloro-5-methylpyrimidine (2.01 g, 1.2 mmol), 5 % palladium carbon (0.3 g), 

triethylamine (4.07 g, 4 mmol) and THF (150 mL) were added to a 50 mL round bottom 

flask and stirred for 10 minutes under N2. The N2 atmosphere was removed and then 

replaced by a deuterium gas atmosphere and the mixture was stirred for 48 hours. The 

solution was passed through celite to remove the palladium on carbon. 4 M HCl in dioxane 

(2.5 mL) was added dropwise over a 10 minute period to produce a white precipitate and 

the solvent was removed in vacuo (95%).  

1H NMR (400 MHz, CD3OD, 298K): δ 8.97 (s, 0.45 H, NHN), 8.68 (s, 0.13 H, NCDC), 2.39 (s, 

3H, CH3). 
13C{1H} NMR (100 MHz, CD3OD, 298K): δ 157.60 (NHN), 155.60 (QC), 131.70 

(NCDC), 14.00 (CH3). MS (ESI+): 96.21 
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7.3.18. Synthesis of silica material M-Bz-Im 

 

Figure 7.23 Structure of M-Bz-Im 

M-Bz-Cl (1.5g) was suspended in 300 ml of 2M aqueous HCl and heated at 50°C for 3 hours. 

The solid was filtered and washed several times with water and acetone, and material dried 

under vacuum for 18 hours. A solution mesitylimidazole (2.45g, 0.014 mmol) in toluene (30 

ml) was heated at reflux for 52 hours. The solid was filtered and washed three times 

successively with toluene, methanol and diethyl ether, dried under vacuum for 24 hours 

(140°C, 10-5 mm Hg). This produced a white solid (1.6 g) which was suspended in a toluene 

solution (140 ml) containing trimethylamine (22 ml) and trimethylsilylbromide (TMSBr, 10 

ml), which was stirred at room temperature for 24 hours. The solid was filtered and washed 

three times successively with toluene, methanol and diethyl ether, then was dried under 

vacuum for 24 hours (140°C, 10-5 mm Hg). This was isolated as a white solid (1.4 g) M-Bz-

Im. 

1H Solid State NMR (500 MHz) δ 7.6-7.0 (ArH), 3.3 (Si-OMe), 0.0 (Si-OTMS) 

13C Solid State NMR (125 MHz) δ 141 (NCN), 140-127 (ArC), 49 (Si-OMe), 0 (Si-OTMS). 
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7.3.19. Synthesis of silica material M-Bz-Im-Ir(1) 

 

Figure 7.24 Structure of M-Bz-Im-Ir 

Protected benzylimidazolium silica (M-Bz-Im) (500 mg, 0.023 mmol) was added to a schlenk 

tube tube and heated at 60°C under vacuum for a period of 2 hours. Under inert conditions 

AgOC(CF3)3 (134 mg, 0.37 mmol) and acetonitrile (8 ml) was added and stirred for 12 hours 

in the absence of light at room temperature. The solid was filtered and washed several 

times with acetonitrile and DCM and the material dried under vacuum for 5 hours. To this 

material a solution of acetonitrile (7ml) containing [IrCODCl]2 (75mg, 0.112 mmol)  was 

added and stirred at room temperature for 18 hours. The reaction mixture was cannula 

filtered and the solid washed several times with acetonitrile, DCM and methanol, until the 

filtrate was colour less and finally dried under vacuum for 8 hours, to produce a beige solid  

(M-Pr-Im-Ir(1), 490 mg). 

1H Solid State NMR (500 MHz) δ 7.3-6.7 (ArH), 3.3 (Si-OMe), 0.3 (Si-OTMS). 

13C Solid State NMR (125 MHz) δ 140* (NCN), 134- 127 (ArC), 60 (Si-OMe), 5 (Si-OTMS). 

*This region is considerably less compared to the starting material M-Bz-Im. 
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7.3.20.  Synthesis of silica material M-Pr-Im-Ir(2) 

 

Figure 7.25 Structure of M-Bz-Im-Ir 

Protected benzylimidazolium silica (M-Bz-Im) (500 mg, 0.023 mmol) was added to a schlenk 

tube tube and heated at 60°C under vacuum for 8 hours. The schlenk tube was removed 

from the heat and cooled. To the schlenk tube tube toluene (4 ml) was added and stirred 

for 10-15 minutes. A solution of Potassium bis(trimethylsilyl)amide (KHMDS, 0.5ml, 0.027 

mmol) in toluene (1.5 ml) was added dropwise to the M-Bz-Im suspension, under argon 

and stirred for 1 hour. The reaction mixture was cannula filtered and the solid washed 

several times with toluene, to remove excess KHMDS. [Ir(COD)Cl]2 (0.0906 g, 0.135 mmol) 

was dissolved in 5 ml toluene was added to the solid and stirred for 18 hours under argon 

and at room temperature. The reaction mixture was cannula filtered and the solid washed 

several times with toluene and DCM, until the filtrate was colour less and finally dried 

under vacuum for 8 hours, to produce a pale yellow solid  (M-Pr-Im-Ir(2), 480 mg).  

1H Solid State NMR (500 MHz) δ 7.4-6.4 (ArH), 3.3 (Si-OMe), 0.3 (Si-OTMS). 13C Solid State 

NMR (125 MHz) δ 140* (NCN), 137- 120 (ArC), 60 (Si-OMe), 5 (Si-OTMS). *This region is 

considerably less compared to the starting material M-Bz-Im. 
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7.3.21. Synthesis of 3,4-dihydroquinazoline 

 

Figure 7.26 Structure of 3,4-dihydroquinazoline 

o-Aminobenzylamine (4.0 g, 33 mmol) was dissolved in anhydrous triethylorthoformate (20 

ml, 120 mmol). The reaction was heated at reflux, 120°C for 14 hours and then allowed to 

cool to room temperature. The reaction mixture was concentrated under reduced pressure 

to give a beige solid. The crude product was obtained and recrystallized from toluene to 

give 2.8 g (21 mmol, 64.7 %) cream coloured product and stored under inert conditions. 

1H NMR (400 MHz, CD2Cl2, 243K): δ 10.54 (vb, 1H, NH), 7.16 (s, 1H, H2), 7.13 (m, J=5.7 Hz, 

1H, H7) 7.01 (m, J=2.3 Hz, 1H, H8), 6.9 (m, J=5.7 Hz, 1H, H6), 6.86 (dt, J=8.1 Hz, 1.1 Hz, 1H, 

H9), 4.63 (s, 2H, H4). 13C{1H} NMR (100 MHz, CD2Cl2, 243K): δ 147.11 (C2), 139.05 (C5), 

127.82 (C7), 126.02 (C6), 124.21  (C8), 120.6 (C10), 119.93 (C9), 43.9 (C4). MS (ESI+): m/z 

132 

  



241 
 

7.4. Characterisation of Catalyst Precursors and Their Active 

Analogues 

7.4.1. [Ir(IMes)(COD)Cl] (2-c) 

Collected characterisation data agreed with that in literature 93 

7.4.2. [Ir(IMes)(pyridine)3(H)2]Cl (5-c) 

 

1H NMR (CD3OD, 500 MHz, 243 K): 8.34 (d, J = 4.98 Hz, 4H, orthoH, py trans to hydride), 

8.09 (d, J= 5.43 Hz, 2H, orthoH, py cis to hydride), 7.79 (tt, J = 7.53 Hz, 1.46 Hz, 2H, paraH, 

py trans to hydride), 7.69 (t, J = 7.67 Hz, 1H, paraH, py cis to hydride), 7.18 (s, 2H, N-CH-CH-

N), 7.14 (m, 4H, metaH, py trans to hydride), 6.99 (m, 2H, metaH, py cis to hydride), 6.67 (s, 

4H, CHmes), 2.20 (s, 6H, pCH3
mes), 2.06 (s, 12 H, oCH3

mes), −22.52 (s, 2H, hydrides). 

13C{1H} NMR (CD3OD, 151 MHz, 243 K): 194.0 (NCN), 167.5 (N-Cmes), 155.3 (orthoC, py cis to 

hydride), 154.3 (orthoC, py trans to hydride), 138.2 (Car), 136.3 (paraC, py cis to hydride), 

135.8 (paraC, py trans to hydride), 135.1 (Car), 128.4 (CHar), 125.3 (metaC, py cis to 

hydride), 125.2 (metaC, py trans to hydride), 122.4 (NCHCHN), 19.7 (paraCH3
mes), 17.7 

(orthoCH3
mes).  

15N{1H}  NMR (CD3OD, 50.6 MHz, 253 K): 194.5 (Carbene N), 255.6 (py trans to Hydride), 

239.1 (py cis to hydride). 

7.4.3. [Ir(IMes)(Benzimidazole)3(H)2]Cl (5-c) 

1H NMR (400 MHz, CD3OD, 298 K): δ -21.22 (2H, hydride), 8.78 (s, 2H, NCHN trans benz), 

7.54 (s, 1H, NCHN cis benz), 7.48 (d, Aryl CH trans benz), 7.42 (t, Aryl CH trans benz), 7.37 (t, 

Aryl CH cis), 7.30 (Aryl CH trans benz), 7.21 (d, Aryl CH cis benz), 7.08 (s, Aryl CHmes),  6.99 (t, 

Aryl CH trans benz), 6.92 (s, Aryl CHmes), 6.53 (t, Aryl CH cis benz), 6.26 (s, NCHCHN), 2.12 

(CH3
mes), 1.80 (CH3

mes), 1.73 (CH3
mes). 

13C{1H} NMR (100 MHz,CD3OD, 298 K): δ 155.9 (Ir-NCN), 146.33 (NCHN cis benz), 143.51 

(NCHN trans benz), 143.20 (Q C trans benz), 142.10 (Q C cis benz), 137.6 (Q Cmes), 134.6 (Q 

Cmes), 132.48 (Q C cis benz), 131.46 (Q C trans benz), 128.99 (Q Cmes), 128.82 (Q Cmes), 128.8 

(Aryl C cis benz), 127.53 (NCHCHN), 124.0 (Aryl C cis benz), 123.7 (Aryl C cis benz), 122.7 

(Aryl C trans benz), 122.10 (Aryl C trans benz), 121.61 (Aryl C trans benz), 120.3 (Aryl C 

trans benz), 19.8 (CH3
mes), 17.8 (CH3

mes), 16.6 (CH3
mes). 
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15N{1H}  NMR (50.6 MHz, CD3OD, 253 K): 196.5 (Carbene N), 186.7 (benz trans to Hydride), 

153.7 (benz cis to hydride), 147.8 (benz trans to Hydride), 147.5 (benz cis to Hydride) 

7.4.4. [Ir(IMes)(Quinazoline)3(H)2]Cl (5-c) 

1H NMR (400 MHz, CD3OD, 243 K): δ -21.87 (2H, hydride), 9.59 (s, 1H, trans NCH4’ quin), 

9.30 (s, 1H, cis NCH4’ quin), 9.18 (s, 1H, cis NCHN quin), 9.16 (s, 1H, trans NCHN quin), 8.15 

(t, 1H, trans Aryl H quin), 8.12 (d, 1H, trans Aryl H quin), 8.07 (d, 1H, trans Aryl H quin), 7.97 

(t, 1H, cis Aryl H quin), 7.89 (d, 1H, cis Aryl H quin), 7.84 (t, 1H, trans Aryl H quin), 7.60 (d, 

1H, cis Aryl H quin), 7.54 (t, 1H, cis Aryl H quin), 7.25 (s, 2H, NCHCHN), 6.33 (s, 2H, Aryl 

Hmes), 6.27 (s, 2H, Aryl Hmes), 2.21-1.83 (m, 18H, mes-CH3).  

13C{1H} NMR (100 MHz, CD3OD, 243 K): δ 179.59 (Ir-NCN), 164.69 (trans NCN quin, JCH 

186.32Hz), 164.4 (cis NCN quin, JCH 186.32Hz), 160.74 (cis NCH4’ quin, JCH 208.68Hz), 158.05 

(trans NCN quin, JCH 207.63Hz), 158.01 (Q C trans quin), 149.30 (Q C cis quin), 147.44 (Q C 

cis quin), 147.40 (Q  C trans quin), 138.65 (Q C-mes), 136.76 (Q C-mes), 136.20 (Q C-mes), 

135.90 (cis Aryl C quin), 134.76 (Q C-mes), 129.09 (trans Aryl C quin), 129.05 (cis Aryl C 

quin), 128.06 (trans Aryl C quin), 127.51 (trans Aryl C quin), 127.37 (cis Aryl C quin), 127.3 

(trans Aryl C quin), 126.99 (trans Aryl C quin), 128.3 (2xmes Aryl C), 122.86 (NCHCHN), 

19.89 (mes-CH3), 19.58 (mes-CH3), 17.78 (mes-CH3). 

15N{1H}  NMR (50.6 MHz, CD3OD, 243 K): 194.87 (Carbene N), 225.30 (cis quin N), 237.81 

(trans quin N, 9 Hz), 282.5 (trans quin N), 285.1 (cis quin N,)  

7.4.5. [Ir(IMes)(Quinazoline)2(DCM)(H)2]Cl (5-c) 

1H NMR (400 MHz, CD2Cl2, 273 K): δ -23.78 (1H, hydride), -22.78 (1H, hydride), 10.08 (s, 1H, 

trans NCH4’ quin), 9.76 (s, 1H, cis NCH4’ quin), 9.40 (s, 1H, cis NCHN quin), 9.20 (s, 1H, trans 

NCHN quin), 8.05 (d, 1H, trans Aryl H quin), 7.97 (d, 1H, cis Aryl H quin), 7.94 (d, 1H, trans 

Aryl H quin), 7.79 (t, 1H, trans Aryl H quin), 7.74 (d, 1H, cis Aryl H quin), 7.70 (t, 1H, trans 

Aryl H quin), 7.66 (d, 1H, cis Aryl H quin), 7.44 (t, 1H, trans Aryl H quin), 6.83 (s, 2H, 

NCHCHN), 6.64 (s, 2H, Aryl Hmes), 6.64 (s, 2H, Aryl Hmes), 2.28-1.79 (m, 18H, mes-CH3).  

13C{1H} NMR (100 MHz, CD2Cl2, 273 K): δ 182.86 (Ir-NCN), 160.8 (cis NCN quin), 160.4 (trans 

NCN quin), 159.1 (trans NCH4’ quin), 134.6 (cis Aryl C quin), 134.5 (trans Aryl C quin), 128.3 

(cis Aryl C quin), 128.3 (trans Aryl C quin), 128.3 (2xmes Aryl C), 128.2 (cis Aryl C quin), 

128.2 (trans Aryl C quin), 127.6 (trans Aryl C quin), 127.4 (trans Aryl C quin), 121.6 

(NCHCHN), 20.5 (mes-CH3), 18.1 (mes-CH3), 18.0 (mes-CH3). 
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15N{1H} NMR (50.6 MHz, CD2Cl2, 273 K): 198.8 (Carbene N), 226 (cis quin N), 246.5 (trans 

quin N, 14Hz), 282.9 (cis quin N), 283.6 (trans quin N, 16Hz) 

7.4.6. [Ir(IMes)(3,4-dihydroquinazoline)3(H)2]Cl (5-c) 

1H NMR (400 MHz, CD3OD, 243 K): δ -23.50 (2H, hydride), 7.12 (s, 1H, cis NCHN 3,4-

dihydroquin), 7.06 (d, 1H, cis Aryl H 3,4-dihydroquin), 7.02 (t, 1H, trans Aryl H 3,4-

dihydroquin), 6.99 (t, 1H, cis Aryl H 3,4-dihydroquin), 6.98 (s, 1H, trans NCHN 3,4-

dihydroquin), 6.89 (d, 1H, trans Aryl H 3,4-dihydroquin), 6.83 (t, 1H, cis Aryl H 3,4-

dihydroquin), 6.80 (t, 1H, trans Aryl H 3,4-dihydroquin), 6.79 (s, 2H, NCHCHN), 6.78 (s, 4H, 

Aryl Hmes),  6.64 (d, 1H, trans Aryl H 3,4-dihydroquin), 6.47 (d, 1H, cis Aryl H 3,4-

dihydroquin), 4.57 (s, 2H, trans NCH2
 3,4-dihydroquin), 4.42 (s, 2H, cis NCH2

 3,4-

dihydroquin), 2.19-2.02 (m, 18H, mes-CH3).  

13C{1H} NMR (100 MHz, CD3OD, 243 K): δ 160.2 (Ir-NCN), 155.53 (NCHCHN), 154.3 (trans 

NCN 3,4-dihydroquin), 144.2 (cis NCN 3,4-dihydroquin), 143.10 (Q C cis 3,4-dihydroquin), 

143.0 (Q C cis 3,4-dihydroquin),  139.00 (Q C trans 3,4-dihydroquin),  138.40 (Q Cmes), 

138.20 (Q C trans 3,4-dihydroquin), 137.10 (Q Cmes), 128.70 (Q Cmes), 125.8 (trans Aryl C 3,4-

dihydroquin), 124.10 (cis Aryl C 3,4-dihydroquin), 124.00 (trans Aryl C 3,4-dihydroquin), 

122.10 (Q C-mes), 120.80 (cis Aryl C 3,4-dihydroquin), 120.70 (trans Aryl C 3,4-

dihydroquin), 120.5 (2*mes Aryl C), 120.10 (cis Aryl C 3,4-dihydroquin), 119.9 (trans Aryl C 

3,4-dihydroquin), 117.5 (cis Aryl C 3,4-dihydroquin), 57.40 (trans NCH2 3,4-dihydroquin), 

45.40 (cis NCH2 3,4-dihydroquin), 20.40 (2*mes-CH3), 18.80 (mes-CH3). 

15N{1H} NMR (50.6 MHz, CD3OD, 243 K): δ 193.1 (Carbene N), 157.3 (trans 3,4-dihydroquin 

N), 141.1 (cis N 3,4-dihydroquin), (trans 3,4-dihydroquin N), (cis 3,4-dihydroquin N,). 

7.4.7. [Ir(IMes)(oxazole)3(H)2]Cl (5-c) 

1H NMR (400 MHz, CD3OD, 243 K): δ -22.71 (2H, hydride), 8.18 (d, J=0.68 Hz, 1H, NCHO cis 

oxazole), 7.98 (d, J=0.68 Hz, 2H, NCHO trans oxazole), 7.91 (t, J=1 Hz, 2H, OCHCHN trans 

oxazole), 7.76 (t, J=1 Hz, 1H, OCHCHN cis oxazole), 7.11 (s, 2H, NCHCHN), 7.05 (d, J=0.68 Hz, 

2H, OCHCHN trans oxazole), 6.81 (s, 4H, Aryl Hmes), 6.58 (d, J=0.68 Hz, 1H, OCHCHN cis 

oxazole), 2.30-2.02 (m, 18H, mes-CH3). 

13C{1H} NMR (100 MHz, CD3OD, 243 K): δ 156.99 (NCHO JCH=238 Hz, cis oxazole), 156.83 

(NCHO JCH=236.5 Hz, trans oxazole), 150.67 (Ir-NCN), 140.72 (OCHCHN, JCH=214 Hz cis 

oxazole), 140.13 (OCHCHN, JCH=214 Hz trans oxazole), 138.58 (Q Cmes), 137.5 (Q Cmes), 135.4 
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(Q Cmes), 129.80 (OCHCHN, JCH=200 Hz trans oxazole), 129.46 (OCHCHN, JCH=200 Hz cis 

oxazole), 128.6 (Aryl CHmes), 122.25 (NCHCHN), 19.79 (mes-CH3), 17.53 (mes-CH3). 

15N{1H} NMR (50.6 MHz, CD3OD, 243 K): δ 202.90 (N trans oxazole), 193.58 (Carbene N), 

189.40 (N cis oxazole). 

7.4.8. [Ir(IMes)(isoxazole)3(H)2]Cl (5-c) 

1H NMR (400 MHz, CD3OD, 243 K): δ -21.71 (2H, hydride), 8.75 (d, J=1.95 Hz, 2H, NCH trans 

isoxazole), 8.47 (d, J=1.95 Hz, 1H, NCH cis isoxazole), 8.19 (t, J=2.07 Hz, 1H, OCH cis 

isoxazole), 7.95 (d, J=1.95 Hz, 2H, OCH trans isoxazole), 7.11 (s, 2H, NCHCHN), 6.88 (s, 4H, 

Aryl Hmes), 6.47 (t, J=1.95 Hz, 2H, OCHCHCHN trans isoxazole), 6.38 (t, J=2.07 Hz, 1H, 

OCHCHCHN cis isoxazole), 2.0-1.58 (m, 18H, mes-CH3). 

13C{1H} NMR (100 MHz, CD3OD, 243 K): δ 159.30 (NCH, cis isoxazole), 159.28 (NCH, trans 

isoxazole), 154.05 (OCH, trans isoxazole), 153.95 (OCH, cis isoxazole), 148.30 (Ir-NCN), 

138.28 (Q Cmes), 137.22 (Q Cmes), 135.25 (Q Cmes), 128.4 (Aryl CHmes), 122.38 (NCHCHN), 

106.24 (OCHCHCHN, cis isoxazole), 106.12 (OCHCHCHN, trans isoxazole), 26.27 (mes-CH3), 

19.78 (mes-CH3), 16.9 (mes-CH3). 

 

7.4.9. [Ir(ImMe2NPri2)(COD)Cl] (2-a) 

1H NMR (700 MHz, CD3OD, 278 K): δ  6.05 (sept, J=7.2 Hz, 2H, CH(CH3)2), 4.48 (b,2H, CH-

COD), 2.99 (b, 2H, CH-COD), 2.19 (b, 8H, CH2-COD), 2.15 (s, 6H, NC(CH3)C(CH3)N), 1.61 (d, 

J=6.92 Hz, 6H, CH(CH3)2), 1.47 (d, J=6.92 Hz, 6H, CH(CH3)2). 
13C{1H} NMR (150 MHz, CD3OD, 

278 K): δ 177.39 (NCN), 124.63 (NCCN), 82.70 (CH-COD), 53.33 ((CH3)2CH-N), 51.00 (CH-

COD), 33.70 (CH2-COD), 29.40 (CH2-COD) 22.77 ((CH3-C-CH3), 21.77 (CH3-C-CH3), 10.30 (C-

CH3). 
15N{1H}  NMR (70 MHz, CD3OD, 278 K): δ 197.8 (Carbene N). 

MS (ESI+): m/z 522 (M+ -Cl +acetonitrile), 481 (M+ -Cl) 

 

7.4.10. [Ir(ImMe2NPri2)(pyridine)(COD)]Cl (4-a) 

1H NMR (700 MHz, CD3OD, 278 K): δ 8.89 (d, J=5.38 Hz, 2H, o-pyridine), 7.92 (b, 1H p-

pyridine), 7.61 (d, J=6.78 Hz, 2H, m-pyridine), 6.05 (sept, J=7.21 Hz, 2H, CH(CH3)2), 3.95 

(b,2H, CH-COD), 3.76 (b, 2H, CH-COD), 2.40 (b, 4H, CH2-COD), 1.94 (b, 4H, CH2-COD),  2.22 
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(s, 6H, NC(CH3)C(CH3)N), 1.72 (d, J=6.92 Hz, 6H, CH(CH3)2), 1.45 (d, J=6.92 Hz, 6H, CH(CH3)2). 

13C{1H} NMR (150 MHz, CD3OD, 278 K): δ 177.39 (NCN), 150.52 (C-o-pyridine), 137.2 (C- p-

pyridine), 126.40 (C-m-pyridine), 124.63 (NCCN), 81.60 (CH-COD), 54.32 ((CH3)2CH-N), 53.51 

(CH-COD), 32.08 (CH2-COD), 29.40 (CH2-COD) 21.23 ((CH3-C-CH3), 20.60 (CH3-C-CH3), 8.88 

(C-CH3). 

15N{1H}  NMR (70 MHz, CD3OD, 278 K): δ 198.8 (Carbene N) 240.30 (bound pyridine). 

MS (ESI+): m/z 560.7 (M+), 481.5 (M+-C5H5N)  

7.4.11. [Ir(ImMe2NPri2)(pyridine)3(H)2]Cl (5-a) 

1H NMR (500 MHz, CD3OD, 298 K): δ 8.78 (d, J=4.26 Hz, 2H, orthoH, axial pyridine), 8.27 (d, 

J=4.26 Hz, 2H, orthoH, pyridine trans to H), 8.01 (m, 1H, paraH, axial pyridine), 7.92 (m, 1H, 

paraH, pyridine trans to H), 7.50 (m, 2H, metaH, axial pyridine), 7.25 (m, 2H, metaH, 

pyridine trans to H), 6.05 (sept, J=7.2 Hz, 2H, CH(CH3)2), 2.22 (s, 6H, NC(CH3)C(CH3)N), 1.72 

(d, J=6.93 Hz, 6H, CH(CH3)2), 1.44 (d, J=6.93 Hz, 6H, CH(CH3)2), −22.77 (s, 2H, Hydrides) 

13C{1H} NMR (151 MHz, CD3OD, 298 K): δ 176.3 (NCN), 155.93 (Ar-CH), 155.1 (Ar-CH), 138.2 

(Ar-CH), 137.3 (Ar-CH), 126.3 (Ar-CH), 125.8 (Ar-CH), 125.7 (NCCN), 54. (CH), 20.1 (CH3), 

19.5 (CH3), 9.68 (CH3) 

15N{1H}  NMR (50.6 MHz, CD3OD, 253 K): δ 198.8 (Carbene N), 242.67 (axial pyridine N), 

253.75 (equatorial pyridine N) 

7.4.12. [Ir(ImMe2NPri2)(pyridine)2(MeOH)(H)2]Cl 

1H NMR (500 MHz, CD3OD, 298 K): δ 8.78 (d, J=4.26 Hz, 2H, orthoH, axial pyridine), 8.27 (d, 

J=4.26 Hz, 2H, orthoH, pyridine trans to H), 8.01 (m, 1H, paraH, axial pyridine), 7.92 (m, 1H, 

paraH, pyridine trans to H), 7.50 (m, 2H, metaH, axial pyridine), 7.25 (m, 2H, metaH, 

pyridine trans to H), 6.05 (sept, J=7.2 Hz, 2H, CH(CH3)2), 2.22 (s, 6H, NC(CH3)C(CH3)N), 1.72 

(d, J=6.93 Hz, 6H, CH(CH3)2), 1.44 (d, J=6.93 Hz, 6H, CH(CH3)2), – 22.56 (hydride), -26.51 

(MeOH, Hydride). 

13C{1H} NMR (151 MHz, CD3OD, 298 K): δ 176.3 (NCN), 155.93 (Ar-CH), 155.1 (Ar-CH), 138.2 

(Ar-CH), 137.3 (Ar-CH), 126.3 (Ar-CH), 125.8 (Ar-CH), 125.7 (NCCN), 54. (CH), 20.1 (CH3), 

19.5 (CH3), 9.68 (CH3) 

15N{1H}  NMR (50.6 MHz, CD3OD, 253 K): δ 198.8 (Carbene N), 242.67 (axial pyridine N), 

253.75 (equatorial pyridine N) 
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7.4.13.  [Ir(BzIMes)(COD)Cl] (2-b) 

1H NMR (400 MHz, CD3OD, 298 K): δ 7.45-7.35 (m, 5H, Ph-CH), 7.29 (CH-COD), 7.07 (s, 1H, 

mCHmes), 6.96 (d, J=1.97 Hz, 1H, NCHCHN), 6.95 (s, 1H, mCHmes), 6.78 (d, J=1.97 Hz, 1H, 

NCHCHN), 6.25 (d, J=15.12 Hz, 1H, Ph-CH2-N), 5.51 (d J=15.16 Hz, 1H Ph-CH2-N), 4.48 (b, 2H, 

CH-COD), 3.01 (m, 1H, CH-COD), 2.75 (m, H, CH-COD) 2.4 (s, 6H, oCHmes), 1.96 (s, 3H, 

pCHmes), 2.03-1.2 (m, 8H, CH2-COD) 

13C{1H} NMR (400 MHz, CD3OD, 298 K): δ 180.49 (NCN), 138.64 (Q N-Cmes) 137.4 (Q Ph-C-

CH2-N), 136.83 (Q oCmes), 135.50 (Q pCmes) 129.42 (m-ArCH), 128.58 (ArCH-Ph), 128.03 (m-

ArCH), 123.04 (NCHCHN), 120.73 (NCHCHN), 84.10 (CH-COD), 55.00 (Ph-CH2-N), 52.20 (CH-

COD), 51.03 (CH-COD), 34.12 (CH2-COD), 32.59 (CH2-COD), 29.30 (CH2-COD), 28.71 (CH2-

COD),  21.13 (o-CH3
mes), 19.62 (o-CH3

mes), 17.91 (p-CH3
mes). 

MS (ESI+): m/z 577.21 (M+ -Cl) 

7.4.14. [Ir(BzIMes)(pyridine)3(H)2]Cl (5-b) 

1H NMR (400 MHz, CD3OD, 298 K): δ 7.45-7.35 (m, 5H, Ph-CH), 7.07 (s, 1H, mCHmes), 6.96 (d, 

J=1.97 Hz, 1H, NCHCHN), 6.95 (s, 1H, mCHmes), 6.78 (d, J=1.97 Hz, 1H, NCHCHN), 6.25 (d, 

J=15.12 Hz, 1H, Ph-CH2-N), 5.51 (d J=15.16 Hz, 1H Ph-CH2-N),  3.01 2.4 (s, 6H, oCHmes), 1.96 

(s, 3H, pCHmes),  

8.36 (4H, trans ortho pyridine), 8.22 (2H, cis ortho pyridine), 7.80 (2H, trans para pyridine), 

7.76 (4H, trans meta pyridine), 7.11 (4H, cis meta pyridine). 

7.4.15. [Ir(SIMesCh)(COD)Cl] (2-f) 

1H NMR (400 MHz, DMSO-d6, 298 K): δ 9.19 (s, 1H, Htriazole), 9.13 (s, 1H, Htriazole), 7.95 (s, 2H, 

NCH-CHN), 7.83 (s, 2H, HAr), 7.77 (s, 2H, HAr), 5.49 (br, 2H, OH), 4.87(d, JHH = 5.95 Hz), 4.62 

(s, 4H, -CH=, COD), 2.70 (m, 4H, CH(CH3)2), 2.57-2.53 (br, 24H, CH(CH3)2), 1.60 – 1.97 (m,-

CH2-, COD). 

13C{1H} NMR (101 MHz, d6-DMSO, 298 K): δ 161.17 (Ir-Ctmx), 140.64 (-C=, tmx), 139.65 

(NCHN), 139.69 (2 –C(CH3)-, tmx), 138.57, 137.32, 137.01, 136.84, 135.79, 133.91 (-C=, 

tmx), 127.32 (NCHCHN), 127.02 (NCHCHN), 120.95 (-CH=, triazol), 120.51, 119.67 (-CH=, 

aril), 83.55 (-CH=, COD), 55.61 (CH2OH), 51.01(-CH=, COD), 50.93 (N(CH3)2) 33.51 (-CH2-, 

COD), 30.13(CH(CH3)2) 28.57 (-CH2-, COD), 22.79, 20.09 (CH(CH3)2). 
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7.4.16. [Ir(SIMesCh)(pyridine)3(H)2]Cl (5-f) 

1H NMR (400 MHz, CD3OD, 298 K): δ -22.54 (2H, hydrides), 2.57-2.53 (br, 24H, CH(CH3)2), 

2.70 (m, 4H, CH(CH3)2), 4.89 (d, JHH = 5.95 Hz), 5.29 (br, 2H, OH), 7.14 (t, 1H, para proton of 

pyridine in axial position), 7.65 (t, 2H, meta proton of pyridine in axial position), 7.74 (t, 1H, 

para proton of pyridine molecules in equatorial position) 7.77 (s, 2H, HAr), 7.83 (s, 2H, HAr), 

7.95 (s, 2H, NCH-CHN), 8.17 (t, 1H, para proton of pyridine in axial position), 8.40 (d, 2H, 

ortho proton of pyridine molecules in equatorial position), 8.70 (d, 2H, ortho proton of 

pyridine in axial position), 8.98 (s, 1H, Htriazole), 9.03 (s, 1H, Htriazole). 

7.4.17. [Ir(SIMesTrimet)(COD)Cl] (2-g) 

1H NMR (400 MHz, DMSO-d6, 298 K): δ 9.20 (br, 0.33H, Htriazole), δ 9.16(br, 0.66H, Htriazole), 

8.97 (s, 1H, Htriazole), 8.43(s, 2H, -CH=, COD), 8.18(s, 2H, -CH=, COD), 7.87(s, 1H, HAr), 7.77(s, 

1H, HAr), 7.50(s, 2H, HAr), 4.81(s, 2H, CH3N-CH2-Ctriazole), 4.77(s, 2H, CH3N-CH2-Ctriazole), 4.62 

(br, 4H, NCH2-CH2N), 3.72 – 3.97 (m,-CH2-, COD), 3.15(s, 12H, N-CH3), 3.13(s, 12H, N-CH3), 

2.21 – 2.34(m, 12H, Ar-CH3) 

13C{1H} NMR (101 MHz, DMSO-d6, 298 K): δ 162.17 (Ir-Ctmx), δ 138.90 (-C=,tmx), δ 136.98 (-

C=, tmxtriazle),  133.50 (-C=, tmx), 133.10 (2 –C(CH3)-, tmx), 127.60 (-CH=, triazol),  120.61 (-

CH=, aril), 62.70 (NCH2CH2N), 59.48 (-CH2-N), 52.5 (N(CH3)3), 62.5 (-CH=, COD), 49.38 (-CH=, 

COD),  46.4 (-CH=, COD), 31.40 (-CH2-, COD), 17.8 (CH3-C=). 

7.4.18. [Ir(SIMesTrimet)(pyridine)3(H)2]Cl (5-g) 

1H NMR (400 MHz, CD3OD, 253 K): δ -22.55 (2H, hydrides), 2.48-2.32 (m, 12H, Ar-CH3), 3.24 

(d, 18H, N-CH3), 3.39 (br, 4H, NCH2-CH2N), 4.82 (d, 4H, CH3N-CH2-Ctriazole), 7.84(s, 4H, HAr), 

9.07 (d, 2H, Htriazole), 9.22 (trans ortho Py), 8.12 (trans meta Py), 7.69 (trans para Py), 8.81 

(cis ortho Py), 8.18 (cis meta Py), 7.70 (cis para Py) 

13C{1H} NMR (101 MHz, CD3OD, 253 K): δ 170.2 (Ir-Ctmx), δ 138.40 (-C=,tmx), δ 137.2 (-C=, 

tmxtriazle), 130.8 (2 –C(CH3)-, tmx), 126.9 (-C=, tmx), 126.70 (-CH=, triazol),  121.00 (-CH=, 

aril), 59.7 (-CH2-N), 47.20 (NCH2CH2N), 52.0 (N(CH3)3), 153.2 (trans ortho Py), 137.9 (trans 

meta Py), 126.2 (trans para Py), 152.4 (cis ortho Py), 137.7 (cis meta Py), 125.7 (cis para Py). 

15N{1H} NMR (50.6 MHz, CD3OD, 253 K): δ 358.22 (N, Mes-Ntriazol), 357.58 (N, Ntriazol), 257.3 

(N, Ntraizol), 252.2 (N, pyridine trans to hydride), 249 (N, pyridine cis to hydride), 130.7 (N, Ir-

C-(NR)2), 50.1 (N, N-(CH3)3).  
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7.5. Characterisation of Substrates and Associated Data 

7.5.1. Pyridine 

 

Figure 7.27 Labelled structure of pyridine. 

1H NMR (400 MHz, CD3OD, 283K): δ 8.56 (dt, J=4.35 Hz, 1.63 Hz, 2H, H2), 7.89 (tt, J=7.63 Hz, 

1.81 Hz, 1H, H4), 7.46 (m, J=5.89 Hz, 1.42 Hz, 2H, H3). 13C{1H} NMR (100 MHz, CD3OD, 

283K): δ 148.58 (C2), 137.12 (C4), 124.33 (C3). 

7.5.1.1. Hyperpolarised spectra  

 

Figure 7.28 
1
H NMR field dependence spectra for hyperpolarised pyridine sample. 
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7.5.2. 3-methylpyridine  

 

Figure 7.29 Labelled structure of 3-methylpyridine 

1H NMR (400 MHz, CD3OD, 298K): δ 8.37 (s, 1H, H2), 8.31 (d, J=4.5 Hz, 1H, H6), 7.67 (d, 

J=7.89 Hz, 1H, H4), 7.32 (dd, J=8.06 Hz, 5.08 Hz, 1H, H5), 2.37 (s, 3H, H7). 13C{1H} NMR (100 

MHz, CD3OD, 298K): δ 148.87 (C2), 145.60 (C6), 137.36 (C4), 134.06 (C3), 123.33 (C5), 16.77 

(C7). 

7.5.2.1. Hyperpolarised spectra  

 

Figure 7.30 
1
H NMR field dependence spectra for hyperpolarised 3-methylpyridine sample. 
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7.5.3. 4-methylpyridine 

 

Figure 7.31 Labelled structure of 4-methylpyridine 

1H NMR (400 MHz, CD3OD, 298K): δ 8.36 (dd, J=4.72 Hz, 1.51 Hz, 2H, H2&6), 7.27 (d, J=5.57 

Hz, 2H, H3&5), 2.39 (s, 3H, H7). 13C{1H} NMR (100 MHz, CD3OD, 298K): δ 148.87 (C2), 

147.40 (C4), 124.95 (C3), 20.89 (C7). 

7.5.3.1. Hyperpolarised spectra  

 

Figure 7.32 
1
H NMR field dependence spectra for hyperpolarised 4-methylpyridine sample. 
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7.5.4. Nicotinamide 

 

Figure 7.33 Labelled structure of nicotinamide. 

1H NMR (400 MHz, CD3OD, 298K): δ 9.08 (d, J=1.68 Hz, 1H, H2), 8.71 (dd, J=4.86 Hz, 1.67 Hz, 

1H, H6), 8.31 (dt, J=8.12 Hz, 1.67 Hz, 1H, H4), 7.57 (dd, J=7.64 Hz, 4.98 Hz, 1H, H5). 13C{1H} 

NMR (100 MHz, CD3OD, 298K): δ 167.49 (C7), 151.47 (C2), 148.08 (C6), 136.01 (C3), 123.77 

(C5). 

 

7.5.4.1. Hyperpolarised spectra  

 

Figure 7.34 
1
H NMR field dependence spectra for hyperpolarised nicotinamide sample. 
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7.5.5. 3-acetoxymethylpyridine 

 

Figure 7.35 Labelled structure of 3-acetoxymethylpyridine 

1H NMR (400 MHz, CD3OD, 298K): δ 8.62 (s, 1H, H2), 8.55 (br, 1H, H6), 7.71-7.67 (m, 1H, 

H4), 7.30 (dd, J=7.8 Hz, 4.8 Hz, 1H, H5). 5.11 (d, J=1 Hz, 2H, H7), 2.10 (s, 3H, H9). 

7.5.5.1. Hyperpolarised spectra  

 

Figure 7.36 
1
H NMR field dependence spectra for hyperpolarised 3-acetoxymethylpyridine sample. 
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7.5.6. 5-methypyrimidine 

 

 

Figure 7.37 Labelled structure of 5-methylpyrimidine. 

1H NMR (400 MHz, CD3OD, 298K): δ 8.97 (s, 1H, H2), 8.68 (s, 2H, H4&6), 2.39 (s, 3H, H7). 

13C{1H} NMR (100 MHz, CD3OD, 298K): δ 157.60 (C3), 155.60 (C5), 131.70 (C4), 14.00 (C7). 

7.5.6.1. Hyperpolarised spectra  

 

Figure 7.38 
1
H NMR field dependence spectra for hyperpolarised 5-methylpyrimidine sample. 
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7.5.7. Benzimidazole 

 

 

Figure 7.39 Labelled structure of benzimidazole. 

1H NMR (400 MHz, CD3OD, 298K): δ 8.16 (s, 1H, H2), 7.62 (m, J=3.17 Hz, 1.03 Hz, 2H, H4), 

7.28 (m, J=3.17 Hz, 1.36 Hz, 2H, H5). 13C{1H} NMR (100 MHz, CD3OD, 298K): δ 141.90 (C2), 

138.09 (C3), 121.78 (C5, C6), 115.31 (C4). 

7.5.7.1. Hyperpolarised spectra  

 

Figure 7.40 
1
H NMR field dependence spectra for hyperpolarised benzimidazole. 
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7.5.8. Imidazole 

 

Figure 7.41 Labelled structure of imidazole. 

1H NMR (400 MHz, CD3OD, 298K): δ 7.68 (s, 1H, H2), 7.05 (s, 2H, H3). 13C{1H} NMR (100 

MHz, CD3OD, 298K): δ 136.4 (C2), 122.9 (C3). 

7.5.8.1. Hyperpolarised spectra  

 

 

Figure 7.42 Hyperpolarised spectrum of imidazole. 

 

7.5.9. Oxazole 

 

Figure 7.43 Labelled structure of Oxazole. 

1H NMR (400 MHz, CD3OD, 253K): δ 8.37 (s, 1H, H2), 8.06 (t, J=0.95 Hz, 1H, H4), 7.29 (s, 1H, 

H3). 13C{1H} NMR (100 MHz, CD3OD, 253K): δ 152.00 (C2), 139.86 (C4), 125.71 (C3). 
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7.5.9.1. Hyperpolarised spectra  

 

Figure 7.44 
1
H NMR field dependence spectra for hyperpolarised oxazole sample. 

 

7.5.10. Isoxazole 

 

Figure 7.45 Labelled structure of isoxazole. 

1H NMR (400 MHz, CD3OD, 263K): δ 8.78 (d, J=1.77 Hz, 1H, H2), 8.49 (d, J=1.77 Hz, 1H, H4), 

6.55 (t, J=1.77 Hz, 1H, H3). 13C{1H} NMR (100 MHz, CD3OD, 263K): δ 158.2 (C2), 148.9 (C4), 

103.2 (C3). 
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7.5.10.1. Hyperpolarised spectra  

 

Figure 7.46 
1
H NMR field dependence spectra for hyperpolarised isoxazole sample. 

 

7.5.11. Pyrazole 

 

Figure 7.47 Labelled structure of pyrazole 

1H NMR (400 MHz, CD3OD, 298K): δ 7.60 (s, 2H, H2), 6.33 (t, J=2.4 Hz, 1H, H3). 13C{1H} NMR 

(100 MHz, CD3OD, 298K): δ 135.21 (C2), 105.20 (C3). 
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7.5.11.1. Hyperpolarised spectra  

 

Figure 7.48 Hyperpolarised spectrum of pyrazole 

 

7.5.12. Thiazole 

 

Figure 7.49 Labelled structure of Thiazole 

1H NMR (400 MHz, CD3OD, 298K): δ 9.05 (d, J=1.73 Hz, 1H, H2), 7.95 (d, J=3.24 Hz, 1H, H5), 

7.68 (dd, J=3.24 Hz, 1.96, 1H, H4). 13C{1H} NMR (100 MHz, CD3OD, 298K): δ 153.96 (C2), 

142.57 (C5), 119.38 (C4) 

 

 

7.5.13. 1,2,4-Triazole 

 

Figure 7.50 Labelled structure of 1,2,4-triazole 

1H NMR (400 MHz, CD3OD, 298K): δ 8.32 (s, 2H, H1). 13C{1H} NMR (100 MHz, CD3OD, 298K): 

δ 147.30 (C1). 
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7.5.13.1. Hyperpolarised spectrum  

 

Figure 7.51 Hyperpolarised spectrum of 1,2,4-triazole. 

 

7.5.14. Benzoxazole 

 

Figure 7.52 Labelled structure of benzoxazole. 

1H NMR (400 MHz, CD3OD, 298K): δ 8.10 (s, 1H, H2), 7.79 (1H, H7), 7.58 (dd, J=7.12 Hz, 1.75 

Hz, 1H, H4), 7.41 (dd, J=7.41 Hz, 1.50 Hz, 1H, H5), 7.34 (dd, J=7.41 Hz, 1.50 Hz, 1H, H6). 

13C{1H} NMR (100 MHz, CD3OD, 298K): δ 152.80 (C2), 150.10 (C3), 139.87 (C8), 125.60 (C6), 

124.60 (C5), 120.49 (C7), 111.01 (C4).  
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7.5.14.1. Hyperpolarised spectra  

 

Figure 7.53 
1
H NMR field dependence spectra for hyperpolarised benzoxazole sample. 

 

7.5.15. 2,1-Benzisoxazole 

 

Figure 7.54 Labelled structure of 2,1-benzisoxazole 

1H NMR (400 MHz, CD3OD, 298K): δ 9.46 (s, 1H, H2), 7.68 (d, J=8.74, 1H, H6), 7.57 (d, J=9.16 

Hz, 1H, H4), 7.38 (dd, J= 9.0 Hz, 6.6 Hz, 1H, H5), 7.06 (dd, J =8.6 Hz, 6.6 Hz, 1H, H6). 

7.5.15.1. Hyperpolarised spectra  

Did not show any of polarisation to the substrate. 
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7.5.16. 1,2-Benzisoxazole 

 

Figure 7.55 Labelled structure of 1,2-benzisoxazole. 

1H NMR (400 MHz, CD3OD, 298K): δ 7.50 (dd, J=7.3 Hz, 1H, H2), 7.45 (t, J=7.3 Hz, 1H, H4), 

6.92 (dd, J=8.1 Hz, 5.9 Hz, 1H, H7), 4.95 (br, 2H, H5&6). 

7.5.16.1. Hyperpolarised spectra  

Did not show any enhancement to the substrate but it does show signals in the hydride 

region, which indicates the complex activates. 

 

Figure 7.56 Hyperpolarised spectra of 1,2-benzisoxazole. 
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7.5.17. Quinazoline 

 

Figure 7.57 Labelled structure of quinazoline. 

1H NMR (400 MHz, CD2Cl2, 243K): δ 9.54 (s, 1H, H4), 9.24 (s, 1H, H2), 8.03 (dt, J=8.5 Hz, 1.0 

Hz, 1H, H9), 8.01 (m, J=6.0 Hz, 1H, H6), 7.97 (m, J=6 Hz, 1H, H7), 7.79 (m, J=2.2 Hz, 1H, H8). 

13C{1H} NMR (100 MHz, CD2Cl2, 243K): δ 160.64 (C4), 155.34 (C2), 155.00 (C10), 150.10 (C5), 

134.50 (C7), 128.40 (C9 & C8), 127.6 (C6). 

7.5.17.1. Hyperpolarised spectra  

 

 

Figure 7.58 Hyperpolarised spectra of quinazoline 
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7.5.18. Pyrimidine 

 

Figure 7.59 Labelled structure of pyrimidine. 

1H NMR (400 MHz, CD3OD, 298K): δ 8.89 (s, 1H, H2), 8.52 (d, J=5.32 Hz, 2H, H3&5), 7.25 (td, 

J=4.94 Hz, 1.50 Hz, 1H, H4). 13C{1H} NMR (100 MHz, CD3OD, 298K): δ 158.53 (C2), 156.59 

(C3), 122.08 (C4). 

7.5.18.1. Hyperpolarised spectra  

 

Figure 7.60 
1
H NMR field dependence spectra for hyperpolarised pyrimidine sample. 
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8. Appendices 

 

8.1. Collection of NMR data for the calculation of exchange rates. 

This section contains the entire rate data collected for the calculation of thermodynamic 

parameters.  

8.1.1. Collection of NMR data for the calculation of exchange rates 

A series of 1H NOESY NMR spectra were collected, the hydride ligand is selectively excited 

after a short mixing time, a NMR spectrum recorded. The integral is taken, and the process 

is repeated for a different mixing time. The absolute integral is change into an a percentage 

of each other and then plotted as a function of mixing time as shown in  

 

Figure 8.1 A plot of the percentage of bound hydride and free hydrogen derived from 
1
H NOESY NMR spectra 

against the mixing time implemented. This data was collected at 300 K and monitored the loss of hydride 
ligands from 2-b to free hydrogen, when 5-methylpyrimidine is studied.  

 

8.1.2. Calculation of thermodynamic activation parameters  

The thermodynamic parameters of activation for each catalytic system were calculated 

through using the Eyring method. This involves plotting a graph of (1/T) vs ln(2k/T) where T 

is temperature in Kelvin and k is the experimentally measured rate constants in s-1. This 
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produces a straight line, the gradient and intercept of which can be used to derive the ΔHǂ 

and ΔSǂ according to Equation 8.1. 

y=           mx               +c 

ln(k/T)=(-ΔHǂ/RT)+ln(kb/h)+(ΔSǂ/R) 
Equation 8.1 Eyring equation 

 

8.1.3. Collected rate constant and thermodynamic activation parameters of 

2-a and with pyridine. 

T / K 

Observed rate constant / s-1 

Loss of hydride Loss of pyridine 

267 - 0.153 

271 - 0.271 

276 0.181 0.590 

280 0.264 0.590 

285 0.505 1.88 

290 0.91 0.153 

295 1.49 3.90 

300 2.87 8.11 

305 5.00 14.14 

 

Table 8.1 Rate constants for the loss of pyridine and hydride ligands from 2-a in the presence of pyridine at 
the indicated temperatures.  

The data in Table 8.1 was used to produce the Eyring plots shown in Figure 8.2 

 

Figure 8.2 The Eyring plots for hydride ligands and pyridine ligands loss from 2-a in the presence of pyridine 
with associated equations, produced from the data presented in Table 8.1. 

Figure 8.2 displays the equations which can then be used to calculate the thermodynamic 

parameters presented in Table 8.2 
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 Ligand Loss 

 Hydride Pyridine 

Rate Constant / s-1 (300 K) 5.0 14.4 

ΔH҂ / kJ mol-1 79.4 ± 3.2 89.9 ± 3.60 

ΔS҂ / JK-1 mol-1 34.0 ± 10.9 82.6 ± 12.9 

ΔG300
҂ / kJ mol-1 69.2 ± 0.003 65.2 ± 0.03 

 

Table 8.2 Thermodynamic parameters of activation for the loss of hydride and pyridine ligands with catalyst 
2-a, errors are quoted as 95% confidence limit. 

A statistical approach of jack-knife was employed to determine average values and errors 

by resampling the data after removing one of the rate data points. For this data set the rate 

for a given temperature was removed then the values of ΔH҂
, ΔS҂ and ΔG300

҂ recalculated. 

This was then repeated for each individual temperature and each sample. Errors are then 

given as 95 % confidence limit.  

8.1.4. Collected rate constant and thermodynamic activation parameters of 

2-b and with pyridine. 

 

T / K 

Observed rate constant / s-1 

Loss of hydride Loss of pyridine 

290 0.15 1.37 

295 0.3 3.15 

298 0.41 5.69 

300 0.56 7.29 

305 1.09 23.6 

310 2.13 42.0 

332 - 987 
 

Table 8.3 Rate constants for the loss of pyridine and hydride ligands from 2-b in the presence of pyridine at 
the indicated temperatures. 
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Figure 8.3 The Eyring plots for hydride ligands and pyridine ligands loss from 2-b in the presence of pyridine 
with associated equations, produced from the data presented in Table 8.3. 

Figure 8.3 displays the equations which can then be used to calculate the thermodynamic 

parameters presented in Table 8.4 

 Ligand Loss 

 Hydride Pyridine 

Rate Constant / s-1 (300 K) 0.56 7.29 

ΔH҂ / kJ mol-1 96.4 ± 1.01 130.5 ± 2.34 

ΔS҂ / JK-1 mol-1 77.5 ± 3.40 213.2 ± 7.9 

ΔG300
҂ / kJ mol-1 73.1 ± 0.01 66.5 ± 0.05 

 

Table 8.4 Thermodynamic parameters of activation for the loss of hydride and pyridine ligands with catalyst 
2-b, errors are quoted as 95% confidence limit. 

 

8.1.5. Collected rate constant and thermodynamic activation parameters of 

2-c and with 5-methylpyrimidine. 

 

T / K 

Observed rate constant / s-1 

Loss of hydride Loss of 5-methylpyridine 

278 0.299 0.261 

283 0.663 0.390 

288 1.38 0.641 

290 1.65 0.841 

293 2.30 0.900 

298 3.99 1.61 

300 5.46 2.10 
 

Table 8.5 Rate constants for the loss of pyridine and hydride ligands from 2-c in the presence of 5-
methylpyrimidine at the indicated temperatures. 
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Figure 8.4 The Eyring plots for hydride ligands and pyridine ligands loss from 2-c in the presence of 5-
methylpyrimidine with associated equations, produced from the data presented in Table 8.5. 

Figure 8.4 displays the equations which can then be used to calculate the thermodynamic 

parameters presented in Table 8.6 

 Ligand Loss 

 Hydride 5-methylpyrimidine 

Rate Constant / s-1 (300 K) 0.56 7.29 

ΔH҂ / kJ mol-1 96.4 ± 1.01 130.5 ± 2.34 

ΔS҂ / JK-1 mol-1 77.5 ± 3.40 213.2 ± 7.9 

ΔG300
҂ / kJ mol-1 73.1 ± 0.01 66.5 ± 0.05 

 

Table 8.6 Thermodynamic parameters of activation for the loss of hydride and 5-methylpyrimidine ligands 
with catalyst 2-c, errors are quoted as 95% confidence limit. 
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8.1.6. Collected rate constant and thermodynamic activation parameters of 

2-c and with quinazoline in methanol-d4. 

 

T / K 

Observed rate constant /  

Loss of hydride Loss of quinazoline 

248 - 0.0805 

253 - 0.1075 

258 - 0.1329 

263 - 0.1973 

265 - 0.1946 

268 - 0.2253 

270 - 0.2528 

273 - 0.2771 

278 - 0.3525 

276.5 0.18 - 

280 - 0.3847 

283 - 0.4296 

280 0.264 - 

285 0.505 - 

290 0.91 - 

295 1.49 - 

300 2.87 - 

305 5 - 
 

Table 8.7 Rate constants for the loss of pyridine and hydride ligands from 2-c in the presence of quinazoline 
at the indicated temperatures in methanol-d4. 

 

 

Figure 8.5 Eyring plots for hydride ligands and quinazoline ligands loss from 2-c in the presence of quinazoline 
with associated equations, produced from the data presented in Table 8.7. 

Figure 8.5 displays the equations which can then be used to calculate the thermodynamic 

parameters presented in Table 8.8 
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 Ligand Loss / s-1 

 Hydride Quinazoline 

Rate Constant / s-1 (300 K) 2.87 0.32 

ΔH҂ / kJ mol-1 79.3 ± 1.04 27.8 ± 2.05 

ΔS҂ / JK-1 mol-1 34.2 ± 2.80 101 ± 4.02 

ΔG300
҂ / kJ mol-1 69.1 ± 0.5 59 ± 0.1 

 

Table 8.8 Thermodynamic parameters of activation for the loss of hydride and quinazoline ligands with 
catalyst 2-c in methanol-d4, errors are quoted as 95% confidence limit. 

 

8.1.7. Collected rate constant and thermodynamic activation parameters of 

2-c and with quinazoline in dichloromethane-d2. 

 

T / K 

Observed rate constant /  

Loss of hydride Loss of 5-methylpyridine 

263 0.708 - 

267 - 0.153 

268 1.28 - 

271 - 0.271 

273 2.48 - 

278 5.35 - 

276.5 - 0.59 

280 - 0.973 

283 7.96 - 

285 - 1.88 

290 - 3.9 

295 - 8.11 

300 - 10 
 

Table 8.9 Rate constants for the loss of pyridine and hydride ligands from 2-c in the presence of quinazoline 
at the indicated temperatures in dichloromethane-d2 
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Figure 8.6 Eyring plots for hydride ligands and quinazoline ligands loss from 2-c in the presence of quinazoline 
with associated equations, produced from the data presented in Table 8.9. 

Figure 8.6 displays the equations which can then be used to calculate the thermodynamic 

parameters presented in Table 8.10 

 

 Ligand Loss / s-1 

 Hydride Quinazoline 

Rate Constant / s-1 (300 K) 49.5* 10.0 

ΔH҂ / kJ mol-1 80.0 ± 2 87.8 ± 1 

ΔS҂ / JK-1 mol-1 50.1 ± 7 75.3 ± 3 

ΔG300
҂ / kJ mol-1 61.2 ± 0.2 65.4 ± 0.5 

 

Table 8.10 Thermodynamic parameters of activation for the loss of hydride and quinazoline ligands with 
catalyst 2-c in dichloromethane-d2, errors are quoted as 95% confidence limit. *calculated value.  
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8.2. Calibration graphs for concentration studies. 

To determine if the series dilution was accurate the thermal 1H signal is proportional to the 

concentration of 5-methyl pyrimidine so a graph could be plotted of 1H integral vs 5-methyl 

pyrimidine concentration and shown in Figure 8.7. These are for experiments when 

substrate : catalyst ratio remain 20 : 1 as indicated in Table 4.5  

 

Table 8.11 The amounts of 2-c and substrate used in the corresponding concentration experiments with each 
made up with 0.6ml d4-methanol 

 

 

Figure 8.7 Graphical representation of the absolute integrals of the 5-methyl pyrimidine H A, H B and H C, 
obtained in a single scan 

1
H NMR spectrum when 2-c catalyst concentration and substrate retain constant 

(mM),  

y = 106935x 
R² = 0.9981 
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Substrate to 

Catalyst 

Ratio 

2-c 5-Methyl pyrimidine 

 

[2-c] 

(mM) 

Mass 

(mg) 

[5-Methyl 

pyrimidine] (mM) 

Mass 

(mg) 

Sample 1 20:1 15 6 300 17.5 

Sample 2 20:1 12.5 5 250 14.6 

Sample 3 20:1 10 4 200 11.6 

Sample 4 20:1 7.5 3 150 8.75 

Sample 5 20:1 5 2 100 5.83 

Sample 6 20:1 2.5 1 50 2.92 

Sample 7 20:1 0.5 0.2 10 0.58 

Sample 8 20:1 0.05 0.02 1 0.058 
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To determine if the series dilution was accurate the thermal 1H signal is proportional to the 

concentration of 5-methyl pyrimidine so a graph could be plotted of 1H integral vs 5-methyl 

pyrimidine concentration and shown in Figure 8.7. These are for experiments when 

substrate : catalyst ratio remain change as indicated in Table 4.8. 

 

 

Substrate to 

Catalyst 

Ratio 

IMes 5-Methyl pyrimidine 

 

[IMes] 

(mM) 

Mass 

(mg) 

[5-Methyl 

pyrimidine] (mM) 

Mass 

(mg) 

Sample 1 60:1 5 2 300 17.5 

Sample 2 50:1 5 2 250 14.6 

Sample 3 40:1 5 2 200 11.6 

Sample 4 30:1 5 2 150 8.75 

Sample 5 20:1 5 2 100 5.83 

Sample 6 10:1 5 2 50 2.92 

Sample 7 2:1 5 2 10 0.58 

 

Table 8.12 The amounts of 2-c and substrate used in the corresponding concentration experiments with each 
made up with 0.6ml d4-methanol. 

 

Figure 8.8 Graphical representation of the absolute integrals of the 5-methyl pyrimidine H A, H B and H C, 
obtained in a single scan 

1
H NMR spectrum when IMes catalyst concentration and substrate (mM) contained 

different ratio amounts. 
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8.3. Adapted pulse sequences used within this thesis 

During the development of SABRE for use of method 2, a series of new pulse sequences 

have been written to incorporate the commands and employed in NMR measurement. 

These are prefixed with ‘ph_’. 

8.3.1. Standard 90° pulse acquire sequence 

This sequence completes a single 90º pulse followed by acquisition. It has been used for 

both 1H and 13C acqusitions. 

;ph_zg 
;zg for use with parahydrogen polariser 
 
#include <Avance.incl> 
#include <Polariser.incl> 
 
1 ze 
2 1u 
  subr POLARISE( d20, d21, d24 ) ;wait for sample and polarise; transfer when done 
3 d1 
  p0 ph1 
  go=3 ph31 
  30m wr #0 
  TOPOL             ;transfer sample to polariser 
  lo to 2 times l0 
  POLPOS            ;wait for sample in polariser 
exit 
 
ph1=0 2 2 0 1 3 3 1 
ph31=0 2 2 0 1 3 3 1 
  
 
;d1 : relaxation delay; set to very short for hyperpolarisation experiments  
;ns : number of scans: set to = 1 for hyperpolarisation experiments 
;d20: bubble time for polarisation 
;d21: stop bubbling, wait before transfering the sample 
;d24: settling after transfer 
;l0 : accumulate L0 scans; re-polarising between scans 
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8.3.2. 1H OPSYdq NMR pulse sequence – ph_OPSYdq 

This sequence filters the double quantum magnetic states using gradients and transforms 

them into observable magnetisation. It can be altered to achieve zero quantum or single 

quantum filtration by changing the proportions of the gradients used.  

;;start 
 
;ph_OPSYdq 
;OPSY with double quantum filter modified for use with the parahydrogen polariser 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Polariser.incl> 
 
1 ze 
2 d1 
 subr POLARISE( d20, d21, d24 ) 
3 30m 
  d1 
  p1 ph1             ; pH MODIFIED 
  50u UNBLKGRAD 
  p16:gp1*-1 
  d16 
  20u BLKGRAD 
  p1 ph2             ; pH MODIFIED 
  50u UNBLKGRAD 
  p16:gp1 
  d16 
  p16:gp1 
  d16 
  20u BLKGRAD 
  go=3 ph31 
  30m wr #0 
  TOPOL ;transfer sample to polariser 
  20u ze 
  lo to 2 times l0 
  ;POLPOS ;wait for sample in poariser 
exit 
 
ph1=1 1 1 1 0 0 0 0 
ph2=0 0 0 0 1 1 1 1 
ph31=0 0 0 0 1 1 1 1 
 
 
;d1 : relaxation delay; set to very short for hyperpolarisation experiments  
;d20: bubble time for polarisation 
;d21: stop bubbling, wait before transfering the sample 
;d24: settling after transfer 
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;l0 : accumulate L0 scans 
;pl1 : f1 channel - power level for pulse (default) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p16: homospoil/gradient pulse 
;d16: delay for homospoil/gradient recovery 
;NS: 1 * n, total number of scans: NS * TD0 
;use gradient ratio:     gpz1= from 80 to 100 % 
;p16= 1-3 ms 
; increase gpz1 and/or p16 to improve the signal suppression. 
;use gradient files: 
;gpnam1: SINE.100 
 
;Ralph Adams 12MAY2009 
 
;;stop 
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8.3.3. 1D refocused 13C{1H} NMR pulse sequence (13C{1H}_JR) – ph_zg_refocus 

This is the standard 1D 13C NMR pulse sequence from Bruker adapted to include a delay 

between the pulse and acquisition, and for use with the polarisor. 

;ph_zg_refocus 
;zg for use with parahydrogen polariser 
 
#include <Avance.incl> 
#include <Polariser.incl> 
 
"d3=1/(2*cnst2)" 
 
1 ze 
2 1u 
  subr POLARISE( d20, d21, d24 ) ;wait for sample and polarise; transfer when done 
3 d1 pl12:f2 
  p0 ph1 
  d3 do:f2 
  go=3 ph31 cpd2:f2 
  30m wr #0 do:f2 
  TOPOL             ;transfer sample to polariser 
  lo to 2 times l0  
  POLPOS            ;wait for sample in polariser 
exit 
 
ph1=0 2 2 0 1 3 3 1 
ph31=0 2 2 0 1 3 3 1 
  
 
;d1 : relaxation delay; set to very short for hyperpolarisation experiments  
;ns : number of scans: set to = 1 for hyperpolarisation experiments 
;d20: bubble time for polarisation 
;d21: stop bubbling, wait before transfering the sample 
;d24: settling after transfer 
;l0 : accumulate L0 scans; re-polarising between scans 
;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 
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8.3.4. 1D 13C{1H} NMR pulse sequence refocused for both J coupling and chemical 

shift evolution (13C{1H}_JCSR) – ph_zg_refocused_J+CS 

This is the standard 1D 13C{1H} NMR pulse sequence from Bruker adapted to include a 

refocusing section allowing both J coupling and chemical shift evolution, and for use with 

the polarisor. 

;ph_zg_refocus 
;zg for use with parahydrogen polariser 
 
#include <Avance.incl> 
#include <Polariser3.incl> 
 
"d3=1/(2*cnst2)" 
 
1 ze 
2 1u 
  subr POLARISE( d20, d21, d24 ) ;wait for sample and polarise; transfer when done 
3 d1 pl12:f2 
  p0 ph1 
  d3 do:f2 
  (center (p4 ph2):f2 (p2 ph3) ) 
  d3 
  go=3 ph31 cpd2:f2 
  30m wr #0 do:f2 
  TOPOL             ;transfer sample to polariser 
  lo to 2 times l0  
  POLPOS            ;wait for sample in polariser 
exit 
 
ph1=0 2 2 0 1 3 3 1 
ph2=0 2  
ph3=0 2 
ph31=0 2 2 0 1 3 3 1 
  
 
;pl12 : f2 channel - power level for pulse (default) 
;p0 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  180 degree high power pulse 
;d1 : relaxation delay; set to very short for hyperpolarisation experiments  
;ns : number of scans: set to = 1 for hyperpolarisation experiments 
;d20: bubble time for polarisation 
;d21: stop bubbling, wait before transfering the sample 
;d24: settling after transfer 
;l0 : accumulate L0 scans; re-polarising between scans 
;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 
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8.3.5. 1D 13C INEPT NMR pulse sequence – ph_ineptnd 

This is the standard 1D 13C INEPTnd NMR pulse sequence from Bruker adapted for use with 

the polarisor. 

;ph_ineptnd_mkIII 
;avance-version (02/05/31) 
;INEPT for non-selective polarization transfer 
;no decoupling during acquisition 
;modified for use with the polariser mkII by REM and LSL 
;$CLASS=HighRes 
;$DIM=1D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
 
#include <Avance.incl> 
#include <Polariser3.incl> 
 
 
"p2=p1*2" 
"p4=p3*2" 
"d4=1s/(cnst2*4)" 
 
 
1 ze  
2 30m 
  subr POLARISE( d20, d21, d24 ) ;wait for sample and polarise; transfer when done 
3 d1  
  (p5 ph1):f2  
  d4 
  (center (p4 ph2):f2 (p2 ph4) ) 
  d4 
  (p3 ph3):f2 (p1 ph5)  
  go=3 ph31 
  30m mc #0 to 2 F0(zd) 
  TOPOL             ;transfer sample to polariser 
  lo to 2 times l0 
  POLPOS            ;wait for sample in polariser and set to manuel mode 
exit 
 
ph1=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 
ph2=0 2  
ph3=1 1 3 3 
ph4=0 2  
ph5=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 
ph31=0 0 2 2 1 1 3 3 
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;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p4 : f2 channel - 180 degree high power pulse 
;p5 : f2 channel - 90 or 45 degree pulse as desired 
;d1 : relaxation delay; 1-5 * T1 
;d4 : 1/(4J(XH)) 
;d20: bubble time for polarisation 
;d21: stop bubbling, wait before transfering the sample 
;d24: settling after transfer 
;l0 : accumulate L0 scans; re-polarising between scans 
;cnst2: = J(XH) 
;NS: 4 * n, total number of scans: NS * TD0 
;DS: 16 
 
 
 
;$Id: ineptnd,v 1.9 2005/11/10 12:17:00 ber Exp $ 
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8.3.6. 1D 13C{1H} INEPT NMR pulse sequence – ph_ineptrd 

This is the standard 1D 13C{1H} INEPTrd NMR pulse sequence from Bruker adapted for use 

with the polarisor. 

;ph_ineptrd_mkIII 
;avance-version (02/05/31) 
;INEPT for non-selective polarization transfer 
;with decoupling during acquisition 
;Modified for use with the polariser mkII 
;$CLASS=HighRes 
;$DIM=1D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
 
 
#include <Avance.incl> 
#include <Polariser3.incl> 
 
 
"p2=p1*2" 
"p4=p3*2" 
"d3=1s/(cnst2*cnst11)" 
"d4=1s/(cnst2*4)" 
"d12=20u" 
 
 
1 ze  
2 30m 
  subr POLARISE( d20, d21, d24 ) ;wait for sample and polarise; transfer when done 
3 30m do:f2  
  d1 
  d12 pl2:f2  
  (p5 ph1):f2  
  d4 
  (center (p4 ph2):f2 (p2 ph4) ) 
  d4 
  (p3 ph3):f2 (p1 ph5)  
  d3 
  (center (p4 ph2):f2 (p2 ph6) ) 
  d3 pl12:f2 
  go=3 ph31 cpd2:f2 
  30m do:f2 mc #0 to 2 F0(zd) 
  TOPOL             ;transfer sample to polariser 
  lo to 2 times l0 
  POLPOS            ;wait for sample in polariser and set to manuel mode 
exit 
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ph1=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 
ph2=0 2  
ph3=1 1 3 3 
ph4=0 2  
ph5=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 
ph6=0 2 0 2 1 3 1 3 
ph31=0 0 2 2 1 1 3 3 
 
 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default) 
;pl12: f2 channel - power level for CPD/BB decoupling 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p4 : f2 channel - 180 degree high power pulse 
;p5 : f2 channel - 90 or 45 degree high power pulse 
;d1 : relaxation delay; 1-5 * T1 
;d3 : 1/(6J(XH))  XH, XH2, XH3 positive 
;     1/(4J(XH))  XH only 
;     1/(3J(XH))  XH, XH3 positive, XH2 negative 
;d4 : 1/(4J(XH)) 
;d12: delay for power switching                      [20 usec] 
;d20: bubble time for polarisation 
;d21: stop bubbling, wait before transfering the sample 
;d24: settling after transfer 
;l0 : accumulate L0 scans; re-polarising between scans 
;cnst2: = J(XH) 
;cnst11: 6  XH, XH2, XH3 positive 
;        4  XH only 
;        3  XH, XH3 positive, XH2 negative 
;NS: 4 * n, total number of scans: NS * TD0 
;DS: 16 
;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 
 
 
 
;$Id: ineptrd,v 1.9 2005/11/10 12:17:00 ber Exp $  
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8.3.7. 2D 1H-1H OPSYdq-COSY NMR pulse sequence – ph_OPSYdq_2D 

In this sequence, the first 90º pulse of the COSY sequence is replaced by an OPSYdq 

sequence such that only double quantum states are filtered for use in the COSY section of 

the sequence.  

;;start 
 
;ph_OPSYdq_2D 
;OPSY with double quantum filter modified for use with the parahydrogen polariser 
;Modified to work like a COSYgpqf but by selecting only two spin order terms 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Polariser.incl> 
 
"d0=3u" 
 
"d13=4u" 
"in0=inf1" 
 
1 ze 
2 d1 
 subr POLARISE( d20, d21, d24 ) 
3 30m 
  d1 
  p1 ph1             ; pH MODIFIED 
  50u UNBLKGRAD 
  p16:gp1*-1 
  d16 
  20u BLKGRAD 
  p1 ph2             ; pH MODIFIED 
  50u UNBLKGRAD 
  p16:gp1 
  d16 
  p16:gp1 
  d16 
  20u BLKGRAD 
  d0 
  50u UNBLKGRAD 
  p19:gp2 
  d16 
  p0 ph2 
  d13 
  p19:gp2 
  d16 
  4u BLKGRAD 
  go=3 ph31 
  TOPOL ;transfer sample to polariser   
  d1 mc #0 to 2 F1QF(id0) 
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  POLPOS ;wait for sample in poariser 
exit 
 
ph1=0 2 
ph2=0 0 2 2 
ph3=0 2 
ph31=0 2 
 
 
;d1 : relaxation delay; set to very short for hyperpolarisation experiments  
;d13: short delay [4 usec] 
;d20: bubble time for polarisation 
;d21: stop bubbling, wait before transfering the sample 
;d24: settling after transfer 
;l0 : accumulate L0 scans 
;pl1 : f1 channel - power level for pulse (default) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p16: homospoil/gradient pulse 
;p19: gradient pulse for single quantum filter 
;d16: delay for homospoil/gradient recovery 
;NS: 1 * n, total number of scans: NS * TD0 
;in0: 1/(1 * SW) = 2 * DW 
;use gradient ratio:     gpz1= 70%   gpz2=10% 
;p16= 1-3 ms 
;p19= 600 us 
; increase gpz1 and/or p16 to improve the signal suppression. 
;use gradient files: 
;gpnam1: SINE.100 
;gpz1 70% refers to the gradient filter used to select double quantum coherences 
;gpz2 10% refers to the single quantum filter (used in the last 90) 
 
;Ralph Adams 12MAY2009 
 
;;stop 
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9. Abbreviations 

 

%Vbur  : per cent buried volume 

Å  : angstrom 

ALTADENA : Adiabatic Longitudinal Transport After Dissociation Engenders Nuclear 

Alignment 

av.  : average 

BBI  : Broadband inverse probe 

cat   : catalyst 

CDCl3  : deuterated chloroform 

CIDNP  : Chemically Induced Dynamic Nuclear Polarisation 

COD  : 1,5-cyclooctadiene 

COE  : cyclooctene 

conc.  : concentration 

COSY  : Correlation Spectroscopy 

Cy  : cyclohexyl 

D  : deuterium 

DCM  : Dichloromethane 

DFT  : Density Functional Theory 

DMSO  : Dimethylsulphoxide 

DNP  : Dynamic Nuclear Polarisation 

dq  : double quantum 
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E  : enhancement 

eq.  : equivalent(s) 

ESI  : electrospray ionisation 

Et  : ethyl 

EXSY  : Exchange spectroscopy 

FID  : Free Induction Decay 

G  : Gauss 

GI50 : A quantitative measure of how much of a compound is required to cause 

a 50 % reduction in proliferation of cancer cells 

H  : Proton (and Henry’s Law constant in Experimental) 

HMBC  : Heteronuclear multiple-bond correlation spectroscopy 

HMQC  : Heteronuclear multiple-quantum correlation spectroscopy 

HSQC  : Heteronuclear single-quantum correlation spectroscopy 

IC50 : A quantitative measure of how much of a compound is required to             

inhibit a given biological process by half 

ICy  : Bis-1,3-cyclohexyl imidazole hydrochloride 

IMe  : Bis-1,3-methyl imidazole hydrochloride 

IMes  : Bis-1,3-(2,4,6-trimethylphenyl) imidazole hydrochloride 

INEPT  : Insensitive Nuclei Enhanced by Polarisation Transfer 

iPr  : isopropyl 

IR  : infrared 

K  : Kelvin 

L  : ligand 

M  : metal 
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Me  : methyl 

MeO  : methoxy ligand 

MeOD  : deuterated methanol 

MIC  : minimum inhibitory concentration 

MKI/II/III : referring to the first (Mark1), second (Mark 2) and third (mark 3) 

generation mixing chamber 

MRI  : Magnetic Resonance Imaging 

MS  : Mass spectroscopy 

NCMe  : Acetonitrile 

nd  : Not decoupled, in reference to the INEPT pulse sequence 

NH-PHIP : Non-hydrogenative parahydrogen induced polarisation 

NHC  : N-heterocyclic carbene 

NMR  : Nuclear Magnetic Resonance 

NOESY  : nuclear Overhauser effect spectroscopy 

obs.  : observed 

OPSY  : Only parahydrogen spectroscopy 

OPSYdq  : Only parahydrogen spectroscopy optimised for double quantum states 

ORTEP  : Oak Ridge Thermal Ellipsoid Plot 

PASADENA : Parahydrogen And Synthesis Allow Dramatically Enhanced Nuclear 

Alignment 

PCy3  : tricyclohexyl phosphine 

Ph  : Phenyl 

pH2  : parahydrogen 

PHIP  : Parahydrogen induced polarisation 
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PPh3  : triphenyl phosphine 

ppm  : parts per million 

PTF  : polarisation transfer field 

py  : pyridine 

q  : quinoline 

r  : repulsivity factor 

R  : any group 

rd   : refocused and decoupled, in reference to the INEPT pulse sequence 

rel.  : relative 

RF  : radio frequency  

S/N  : signal to noise ratio 

SABRE  : Signal Amplification By Reversible Exchange 

SIMes  : bis-1,3-(2,4,6-trimethylphenyl) imidazoline hydrochloride 

Sub  : substrate 

T  : tesla 

tBu  : tert-butyl 

TEP  : Tolman’s Electronic Parameter 

THF  : tetrahydrofuran 

TOCSY  : Total correlation spectroscopy 

TXI  : Triple Resonance Inverse Probe 

TXO  : Triple Resonances Obverse Probe 

ufCOSY  : ultrafast COSY 

UV  : ultraviolet 
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