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Nelson, C. J., Doyle, J. G., Erdélyi, R.: (submitted), On the Role
of Flux Cancellation in Ellerman Bomb Formation, Mon. Not.
Roy. Astron. Soc.

Nelson, C. J., Scullion, E. M., Doyle, J. G., Freij, N., Erdélyi,
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Ellerman bombs and surges are studied in this thesis in order that
inferences about the formation mechanism of these features can be
made. General introductions to the solar atmosphere and relevant
observational techniques will be presented in Chapters 1 and 2, re-
spectively.

Chapter 3 discusses the properties of small-scale brightenings in
the Hα line wings. An automated detection algorithm identifies
and tracks bright regions, before a null set of confidently identified
Ellerman bombs is isolated and compared to the results of previ-
ous researches and the smaller features identified by the algorithm.
Chapter 4 then compares numerical simulations of magnetic recon-
nection to the signatures of 7 Ellerman bombs. Each Ellerman bomb
occurs co-spatial to a magnetic bi-pole, six of which exhibit flux
cancellation or emergence offering potential evidence that magnetic
reconnection is the driver of these features.

The properties of 22 Ellerman bombs at the solar limb are inferred in
Chapter 5. Two in-depth case studies are presented which highlight
the dynamical nature of individual features, including their morpho-
logical properties and potential links to the magnetic field. Chapter
6 discusses the physical properties of Moving Magnetic Features,
the cancellation rates of which are measured, and how such proper-
ties fit into the hypothesised theory of magnetic reconnection as the
driver of Ellerman bombs. An algebraic model of magnetic recon-
nection is employed such that upflow velocities, extension lengths,
and local number densities can be derived. The outputs from this
model agree well with measurements of Ellerman bombs returned in
previous Chapters.

Finally, an isolated surge is studied in Chapter 7. The temporal
evolution of the line-of-sight magnetic field shows no evidence of
magnetic reconnection co-spatial to this surge; however, a blinker
forms co-spatially with this feature. This offers compelling evidence
that blinkers may be linked to photospheric mass supply.
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Chapter 1

Introduction

1.1 Introduction

The Sun is the main source of light and energy to the Earth. Situated at a

distance of 1.5× 108 km (or 1 Astronomical Unit) from the Earth, the Sun has

an approximate radius of 696 Mm which is around 109 times larger than the

radius of the Earth. Overall, it is estimated that the Sun has a composition

of around 90 per cent hydrogen and 10 per cent helium (with other elements

occurring in small quantities). The 1.5× 107 K temperature in the core of the

Sun facilitates fusion, which supplies energy, through a series of steps, into the

surrounding inter-planetary medium and eventually to the Earth. Without the

Sun, specifically without the exact positioning of the Earth to the Sun, uninhab-

itable conditions would have inhibited the development of life on this planet, life

which could easily be extinguished any second by a devastatingly large eruption

of super-heated plasma from the Sun. It is not only the terrestrial significance

of the Sun which interests scientists. The wider ranging processes which occur

throughout its structure on both large and small-scales can shed light on the

overall make-up of the Sun and a plethora of other stars. Understanding such

processes can lead to a more comprehensive knowledge of the local surroundings

in the solar system and the Universe.
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1.2 The Solar Interior

1.2.1 The Core

The inner-most part of the Sun is the core, where temperatures of 15 MK

facilitate thermonuclear fusion. With a radius of around 150 Mm (corresponding

to one-fiftieth of the total volume of the Sun) and a density of 1.6× 105 kg m−3

(see Fig. 1.1 which is made using values from Christensen-Dalsgaard et al. 1996),

the core of the Sun fuses hydrogen to form helium and energy. The dominant

mechanism by which helium is formed is known as the proton-proton cycle. A

brief overview of this process will be presented here, however, the reader can see

BOREXINO Collaboration (2014) (and references within) for a more in-depth

discussion of these processes. The first step of the proton-proton cycle can be

written as:

H1 + H1 → 2D
3 + ν + e+ + 1.44 MeV , (1.1)

where 1 eV /kB=11604 K. In this reaction, inverse-β decay leads to the forma-

tion of a positron and a neutron from the nucleus of one of the approaching

H atoms. The unchanged H1 atom then interacts with the neutron to form a

deutron and a neutrino, releasing energy. The second step in the chain sees the

newly formed deutron interact with another H1 atom to form a helium isotope

(missing one of the neutrons required to form a normal nucleus) and to release

a high energy gamma ray. This step can be written as:

2D
3 + H1 → 2He

3 + γ + 5.49 MeV . (1.2)

Finally, two helium isotypes interact, forming a stable helium atom, as well as

two hydrogen atoms in the following reaction:

2He
3 + 2He

3 → 2He
4 + H1 + H1 + 12.85 MeV . (1.3)

2



The overall energy release from the process totals approximately 26.73 MeV

(BOREXINO Collaboration 2014). Although photons would escape the Sun

within seconds at the speed of light, the short mean free path (the average

distance a photon travels unimpeded) slows, and increases the wavelength of,

photons such that visible light emission at the solar surface occurs hundreds of

thousands of years after the initial fusion (see, for example, Mitalas and Sills

1992).

As tiny particles which do not interact easily with matter, neutrinos es-

cape through the Sun at almost the speed of light, out into the solar sys-

tem (BOREXINO Collaboration 2014). Due to the temperature dependence of

photon-photon neutrino production, the development of equipment which could

measure the density of solar neutrino emission in the 1960s was hailed as a major

step in confirming the correctness of solar models. Unfortunately, such corrob-

oration did not occur. Multiple experiments recorded short-falls in the number

of neutrino detections to those expected for a solar core of 15 MK and the ‘solar

neutrino problem’ was formed. One popular solution to this problem which has

gained weight in recent years is the Mikheyev-Smirnov-Wolfenstein (MSW; see

Wolfenstein 1978, Mikheyev and Smirnov 1985 for more information) theory,

whereby neutrinos are able to change type from the initial electron neutrinos

to muon or tau neutrinos. The short-fall in electron neutrino measurements

could, therefore, be explained by the conversion of many of these particles into

different types. Modern experiments have begun to measure multiple types of

neutrinos, adding weight to the theory.

1.2.2 The Radiative Zone

The radiative zone is found outside the core of the Sun at around 0.25 R� and

reaches out to approximately 0.713 R�. Solar models suggest that this region

of the Sun rotates as a solid-body (as discussed by Thompson et al. 1996, Char-

bonneau 2010). Within this region, as the name suggests, radiative equilibrium

is conserved and energy is transported by photons through absorption and re-
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Figure 1.1: The temperature (top) and density (bottom) profiles of the inte-
rior of the Sun (where height is give as a function of solar radius, R�). Each
profile comes from the Dalsgaard Model S for the solar interior (see Christensen-
Dalsgaard et al. (1996) for more details). Vertical lines indicate the suggested
heights of each region of the solar interior.
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emission. Such interactions occur at a high frequency and scatter the photons,

at a higher wavelength, along an arbitrary path. If one were to plot a map which

detailed the chain of absorptions and subsequent emissions occurring through

time, one would observe a traditional random walk (as was discussed by Mitalas

and Sills 1992). According to the Dalsgaard Model S (Christensen-Dalsgaard

et al. 1996), both the temperature and density decrease exponentially with ra-

dius in the radiative zone (as can be seen in Fig. 1.1). The density falls around

two orders of magitude from approximate values of 20 g cm−3 to 0.2 g cm−3

or, in a more accessible form, from the density of gold to cork; the temperature

drops from 10 MK to around 2 MK. Mathematically, the radial temperature

gradient in the radiative zone can be written as:

dT

dr
= − 3κ(r)ρ(r)L

64σSBT (r)3πr2
, (1.4)

where T , κ, ρ, L, and σSB are the temperature, Rosseland mean opacity, density,

luminosity, and Stefan-Boltzmann constant, respectively.

1.2.3 The Convective Zone

In the convective zone, the solid-body rotation exhibited within the radiative

zone is replaced by differential rotation (where angular velocity can be writ-

ten as a function of latitude). At the equator, the rotational period is around

25 days, however, this increases to approximately 35 days at the poles (see

Thompson et al. 1996 for more information). On top of this, the lower tem-

peratures in the convective zone facilitate the reduction in the percentage of

fully-ionised elements. Heavier elements are able to retain their inner electrons,

thereby, increasing the opacity of the plasma such that convective heating re-

places radiative transfer as the dominant energy supply method to outer regions

of the Sun. The on-set of convective motions are governed by the Schwarzschild
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criteria (see Schwarzschild 1906) which can be written as:

∣∣∣∣∣dTdr
∣∣∣∣∣ > γ − 1

γ

gm

kB
, (1.5)

where g, m, and kB are the gravitational acceleration, mean particle mass, and

Boltzmann constant, respectively. In a fully ionised monatomic gas, γ = 5/3.

Should a plasma region satisfy the required conditions, the Schwartzschild

criterion leads to vertical motions which supplement the differential flows. If the

temperature gradient is sufficient, a ‘blob’ of plasma which is displaced vertically

can expand sufficiently to reduce the density and induce bouyancy. Once the

plasma reaches the surface of the Sun, radiation is able to escape into the solar

system, hence reducing the opacity and returning the plasma to convective

stability. The plasma then cools and falls, being replaced by hotter convectively

unstable plasma from below. Essentially, this mechanism is comparable to the

process of boiling water, where the bottom of a pan heats the liquid until it

rises and loses energy at the surface before falling. The physical parameters in

the convective zone (plotted in Fig. 1.1 from Christensen-Dalsgaard et al. 1996)

change rapidly with height. The temperature falls two orders of magnitude to

around 6000 K and the density drops to approximately 10−7 g cm−3 (which is

an order of magnitude lower than the air density at sea level).

Solar dynamo models (reviewed in Charbonneau 2010) often cite a fourth

interior region between the radiative zone and the convective zone called the

tachocline. Believed to be almost negligible in width, the tachocline is a region

of high shear induced by the interaction of the solid-body radiative zone rotation

and the differential rotation of the convective zone. Despite the relative nar-

rowness of the tachocline, it is thought to play a vital role in the generation of

strong magnetic fields which emerge as active regions (ARs) in the photosphere

(for more information, see Charbonneau 2010).

6



1.3 The Solar Atmosphere

1.3.1 The Photosphere

The photosphere is the lowest of the four regions which are commonly cited

to comprise the solar atmosphere (along with the chromosphere, the transition

region, and the corona). A plot similar to Fig. 1.1 is included for reference for

the solar atmosphere (outlining the standard temperature and density profiles)

in Fig. 1.2. With a name derived from the Greek word for light, the photosphere

emits the dominant visible light from the Sun and, hence, forms the solar disk

as observed from the Earth. In the photosphere, small-scale convective motions,

generated in the solar interior, can be easily observed in high-resolution data

as granules within, for example, the G-band continuum (as plotted in Fig. 1.3).

Each individual granular cell has a diametre on the order of 1-2 Mm and a

typical characteristic lifetime of 10 minutes. These cells are formed by hot,

rising plasma which reaches the top of the convective ‘bubble’, before cooling

and concurrently getting pushed aside by the continued rise of warmer plasma

and then sinking down at the edge of the granule in the inter-granular lanes

(similar to the process of boiling water).

In Fig. 1.3, a 30′′×30′′ field-of-view (FOV) sampled by the Rapid Oscillations

of the Solar Atmosphere (ROSA) instrument at the Dunn Solar Telescope (DST)

in Sunspot, New Mexico is plotted to depict such granulation. The top right

portion of the image depicts a sunspot umbra and penumbra to compare to the

small-scale structuring in the remainder of the image. A white box outlines the

FOV considered in Fig. 1.4 where a co-spatial FOV, temporally separated by

10 minutes is portrayed. The white contours overlaid on both frames outline

the dark inter-granular lanes from the initial (left hand) frame which, it is easy

to see, do not correspond to the frame 10 minutes later (right frame). Such

dynamics are typical of the evolution of the lower regions of the photosphere.

The high plasma-β (the ratio of magnetic pressure to gas pressure) in the

photosphere indicates the dominance of convective forces over magnetic forces.

7



Figure 1.2: Temperature (top) and density (bottom) values for heights in the
solar atmosphere according to the VAL-C quiet Sun solar model. The approx-
imate boundaries between each region of the solar atmosphere are indicated
by vertical lines on both plots (the reader should note the use of the word
‘approximate’).
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Figure 1.3: A 30′′×30′′ FOV close to a sunspot (the large, dark fragmented patch
evident at xc = 20′′, yc = 25′′) in AR 11126 sampled in the G-band continuum
by the DST/ROSA instrument. These data were observed by Professor J. G.
Doyle and collaborators on 18th November 2010. The white box outlines the
region plotted in Fig. 1.4.
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As such, small-scale magnetic fields, which emerge into the photosphere with

granular up-flows, are swept into the inter-granular lanes, allowing the build-up

of flux densities of 103 Mx cm−2 (as simulated by, for example, Shelyag et al.

2007). Evidence of this flux build-up is observed within the inter-granular lanes

as phenomena known as magnetic bright points (or MBPs). These events are

believed to form as a result of the reduced pressure and increased temperature

in the plasma occupied by the magnetic field, hence reducing the opacity and

allowing the observer to sample deeper into the Sun (recent analysis of these

features can be found in, e.g., Utz et al. 2010, Keys et al. 2011). Observations of

the G-band continuum (presented in Fig. 1.3) are excellent for observing MBPs.

The lifetimes and spatial scales of these events are both close to the limits of

current observational instrumentation (with lifetimes on the order of minutes

and diametres of around 400 km estimated by Crockett et al. 2010); however,

their links to the small-scale magnetic fields present in the photosphere provide

an excellent diagnostic tool for solar observers (Shelyag et al. 2007).

Not all phenomena observed within the photosphere evolve on such short

timescales. ARs, where strong magnetic fields penetrate through the solar sur-

face to extend away into the outer atmosphere and inter-planetary medium,

often contain sunspots and pores which can remain for days or even weeks.

These events, which are characterised by dark ‘blobs’ on the solar surface in

white-light or continuum images, have radii ranging between 2 Mm and 200 Mm

and magnetic field strengths of thousands of Gauss. The lower intensity and

size of sunspots has allowed them to be observed from the Earth for centuries

(famously, for example, Galileo traced the outlines of sunspots as they crossed

the solar disk) and, as such, they make up one of the oldest topics of study in

solar physics. The strong magnetic fields which exist within the sunspot are

believed to act as a waveguide from the lower solar atmosphere, into the outer

layers, potentially allowing the upward propagation of waves (see, for example,

Freij et al. 2014).

The physical properties of the photosphere are summarised within the ‘Pho-
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Figure 1.4: Two 10′′×10′′ FOV highlighting the dynamic evolution of the G-
band continuum on temporal scales of around 10 minutes. These data were
observed by the Professor J. G. Doyle and collaborators on 18th November
2010.

tosphere’ segments of Fig. 1.2 (which is plotted given values from the VAL-C

model suggested by Vernazza et al. 1981). It can be inferred that the temper-

ature decreases with height from around 6000 K at the τ5000 = 1 continuum to

4500 K at the temperature minimum region (which is situated around 500 km

in height) before slowly increasing up to approximately 7000 K at the base of

the chromosphere. A sharp, exponential drop-off in density is also observed,

falling two orders of magnitude in only 600 km to approximately 10−9 g cm−3.

1.3.2 The Chromosphere

The chromosphere is the layer which forms above the photosphere. This region

of the solar atmosphere is traditionally classified as forming between 800 km and

2000 km in height. More modern researches, however, have begun questioning

this traditional view (see, for example, Rutten 2012), inspired by the continu-

ing complexities which have been observed as better observational equipment
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Figure 1.5: A 60′′ by 60′′ field-of-view (FOV) sampled in the Hα line wing (left
frame) and the Hα line core (right frame) portraying the upper photosphere
and chromosphere around a sunspot in AR 11579, respectively. These data
were collected by the author and collaborators on 30th September 2012 using
the DST/IBIS instrument. The white box outlines the FOV analysed in Fig. 1.6.

has been developed. It is now generally accepted that the chromosphere is not

a fixed layer around the Sun. Instead, it is thought to be compressed or ex-

panded in specific regions, or to form higher or lower due to the relationships

of the chromosphere with the under-lying photosphere or the over-lying tran-

sition region. In Fig. 1.5, a FOV containing a large sunspot is plotted for the

blue wing (left frame) and line core (right frame) of the Hα line profile. The

overlying chromosphere (line core) is easily observed to obscure the photosphere

(line wings). The white box outlines the FOV analysed in Fig. 1.6. A general

overview of the current understanding of the Hα line profile will be presented

in Chapter 2.

Recent high-resolution observations have highlighted the ubiquitous nature

of waves within the chromosphere. Here, a brief excerpt of research is introduced

to give the reader a sense of the magnitude of analyses into chromospheric os-
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cillations. Spicules, for example, are commonly observed as vertical extensions

away from the disk at solar limb (which can be considered as being similar to

blades of grass) and have been put forward as an excellent candidate for guiding

waves into the outer solar atmosphere (see, for example, De Pontieu et al. 2007);

however, their abilities to heat the outer layers of the Sun, such as the corona,

are still debated (e.g., Vanninathan et al. 2012). More horizontal structures,

such as mottles, have also been analysed using chromospheric time-lapses, with

evidence of energetic, standing sausage waves being found (see Morton et al.

2012). On a larger scale, upwardly propagating waves (UPWs) around sunspots

and pores have been shown to propagate into the lower transition region, poten-

tially depositing significant amounts of energy (as discussed by Freij et al. 2014).

Overall, it can be summarised that the chromosphere is an incredibly dynamic

layer of the solar atmosphere which somehow couples with the photosphere to

provide energy into the outer layers of the solar atmosphere. Energy estimates

for waves which have been observed to date over-subscribe the amount of en-

ergy required to heat the corona (by several orders of magnitude), suggesting

that the question to answer is no longer about whether the required energy

exists, but more about how such energy is transported to, and dissipated in,

the corona.

Once again, this subsection ends with a short discussion of the physical

properties of this region for the quiet Sun as shown in Fig. 1.2 (suggested by

Vernazza et al. 1981). The section of interest here is within the portion of the

plots labelled ‘Chromosphere’. The temperature within this region of the solar

atmosphere is relatively constant for much of its height (with temperatures

around 8000 K), however, towards the top of the chromosphere, sharp increases

in temperature are found up to around 20000 K. The density continues to drop

off exponentially to values close to 10−12 g cm−3.
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1.3.3 The Transition Region

The transition region is the thin layer in the solar atmosphere between the

chromosphere and corona where temperature and density gradients are large.

Numerous instruments have been launched on space-borne satellites with the

specific aim of furthering understanding of this complex region. Indeed, the

Transition Region And Coronal Explorer (TRACE; Handy et al. 1999), the

SOlar and Heliospheric Observatory (SOHO; Domingo et al. 1995), and the

Solar Dynamics Observatory (SDO; Pesnell et al. 2012) all carry instruments

specifically designed to probe the physics of this system. Two main theories

have been presented to account for the rapid temperature increases which occur

within this layer of the Sun (see, for example, Zirker 1993). These are magneto-

hydrodynamic (MHD) waves which transfer energy from other regions of the

Sun and magnetic reconnection occurring within the transition region itself (see

Anderson-Huang 1998). To date, no consensus exists from the community as to

which of these processes is the most likely candidate for supplying the required

energy.

The recent Hi-C sounding-rocket mission (Kobayashi et al. 2014), which was

launched from White Sands missile base, New Mexico, did observe small-scale

‘sparkles’ (see Régnier et al. 2014) in the transition region. The sparkles were hy-

pothesised to be the observational signature of small-scale reconnection events,

known as nano-flares, occurring in the transition region which could be supply-

ing the required energy to heat the local plasma to temperatures of millions

of degrees Kelvin. Another larger-scale event observed around the transition

region are blinkers (first presented by Harrison 1997 and recently by Roussev

et al. 2001, Marik and Erdélyi 2002, Madjarska et al. 2006, Subramanian et al.

2012), which form with diametres of the order of several Mm. These events

have also been hypothesised to be caused by reconnection within the upper at-

mosphere. Data collected by the Interface Region Imaging Spectrograph (IRIS;

De Pontieu et al. 2014) has recently begun to shed light on this complex region

of the solar atmosphere (see, for example, Testa et al. 2014, Hansteen et al.
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2014, Huang et al. 2014) and should offer further clues about the make-up of

this layer in the future.

The physical properties of the quiet Sun transition region are plotted in the

section of Fig. 1.2 (again, taken from the model presented by Vernazza et al.

1981) labelled ‘TR’. As with the upper section of the chromosphere, sharp

increases in temperature occur in the transition region according to this model

with temperatures reaching up to hundreds of thousands of Kelvin. The density

continues to drop a further two orders of magnitude. It is interesting to note

how the temperature and density profiles are no longer smooth curves as in the

photosphere and chromosphere, with plateaus in both profiles indicative of the

complex physics which undermines the huge temperature increases.

1.3.4 The Corona

After our long journey from the core of the Sun, this Section finally discusses

the solar corona. This region of the solar atmosphere is widely identified as

the faint halo which visually surrounds the Moon during a total solar eclipse.

Despite being almost unobservable from the Earth (∼ 106 times fainter than

the photosphere), the corona is an extremely interesting region of the solar

atmosphere. By using a variety of space-borne satellites, the temperature of the

corona has been estimated to reach over 1 MK (well over the 4500 K temperature

of the photosphere). Energy supply into the corona is one of the main questions

which requires answering in modern solar physics. As any budding physicist will

tell you, as you move away from a heat source (in this case, the core of the Sun),

you expect the temperature to drop, yet this does not occur for the corona.

Many theories have been put forward to explain the extreme temperatures of

the corona. Each of these theories falls into one of two categories which can be

concisely listed as magnetic reconnection and MHD waves. Magnetic reconnec-

tion, the mechanism by which complex magnetic fields are relaxed and energy

released into the solar atmosphere, is the driver of large scale solar flares and

coronal mass ejections (CMEs) which launch plasma into the inter-planetary
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medium at speeds of up to 3000 km s−1. Such plasma ejections can interact

with both satellites around the Earth and the magnetic field on the Earth, lead-

ing to electrical black-outs as well as spectacular aurora, known as the Northern

and Southern lights in the Arctic and Antarctic, respectively. During the peri-

ods of solar minimum, large X-Class flares (the most energetic known flares) can

be absent from the solar atmosphere for periods of months to years, however,

the temperature of the quiet Sun corona does not drop below the average of

∼ 1.5 MK. This means that the ability of the magnetic reconnection hypothesis

to heat the corona relies more on ubiquitous small-scale reconnection events

known as nano-flares which occur below the spatial-resolution of current instru-

mentation (suggested by, for example, Doyle and Butler 1985, Parker 1988).

To complicate this issue further, there is a lack of coronal magnetogram data

(quantitative measurements of the coronal magnetic field components) meaning

any small-scale events observed in the corona can not be tied conclusively to

the magnetic field.

MHD wave-based heating theories are focused around the concept that en-

ergy in the photosphere and chromosphere propagates along magnetic wave-

guides in the form of oscillations which dump this energy in the upper atmo-

sphere. The existence of magnetic field in the solar atmosphere modifies hydro-

dynamical wave theory from simple acoustic waves, to both magneto-acoustic

waves and purely magnetic waves (a good introduction to such waves can be

found in Roberts 1981a, Roberts 1981b, Edwin and Roberts 1983; Goedbloed

and Poedts 2004 presented an excellent overview). These waves can take many

forms (meaning it would be futile to attempt to fully describe them in this brief

introduction) and have been observed both locally, guided by structures such as

coronal loops and filaments, and globally, as Moreton waves (large-scale solar

tsunamis which sweep across the surface of the Sun). Although energy estimates

for wave energy transport into the corona have over-subscribed the 200-400 W

m−2 required to heat the quiet Sun corona, no universal wave heating theory

has been accepted by the solar physics community.
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As in previous subsections, this brief introduction is concluded by outlining

the physical properties of the corona. The temperatures in the corona are of

the order of 106 K. The high temperatures in the corona were inferred thanks

to the discovery of highly ionised heavy elements, such as iron, strongly emitted

in the coronal EUV spectrum. Due to the protective nature of the terrestrial

atmosphere which blocks coronal EUV light, most observations of the corona

are taken by space-borne instruments. The density in the corona is lower than

any vacuum which can currently be created on Earth, and continues to drop as

the corona stretches out, past the Earth and into the far reaches of the solar

system.

1.4 Analysed Features

1.4.1 Ellerman Bombs

Basic Information

On the 21st September 1915, a curious phenomenon was recorded to occur

in a sunspot group by Ferdinand Ellerman. Observing the Hα line (6562.8

Å) at the Mount Wilson Solar Observatory, Ellerman (1917) noted a “very

brilliant and very narrow band extending four or five angstroms on either side

of the line, but not crossing it” which lasted a couple of minutes and then

“faded away and was not seen again”. This was the first recorded observation

of an Ellerman bomb (although the event was originally called a ‘hydrogen

bomb’). Over the following years, further observations were completed and

spectrograms recorded of these features to estimate initial measurements of

their statistical properties. With lifetimes of between 3-10 minutes, Ellerman

concluded that these events occurred exclusively in ARs, “especially groups

which are developing and composed of many members”. It should be noted

that Ellerman suggested that such phenomena could be similar to an event

reported by Mitchell (1909) using the Haverford College Observatory. It was
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concluded that this Ellerman bomb “must have been an unusually large one to

have been seen by the instrument used by Dr Mitchell”.

Following on from their discovery, these ‘hydrogen bombs’ have been ex-

tensively researched by the community. These events were reported under a

variety of names, such as ‘petit points’ (Lyot 1944) and ‘moustaches’ (Severny

1956), before they were linked together under the umbrella term of ‘Ellerman

bombs’ by McMath et al. (1960). Due to the occurrence of Ellerman bombs

in emerging ARs, McMath et al. analysed the statistical correlation between

the formation of these events and the release of solar flares, large-scale explosive

phenomena which were easily observable using the available instrumentation. It

was found that Ellerman bombs were not pre-cursors for flares, either in tempo-

ral or spatial terms. In a further review, Severny (1964) discussed the similarity

of Ellerman bomb spectra with larger-scale flares. It was also suggested that

Ellerman bombs formed in the photosphere and could, occasionally, be linked

to “the appearance of dark material or filaments emerging from the point-like

region that generates moustaches”.

The potential link between Ellerman bombs and the ejection of filamentary

material suggested by Severny (1964) formed the basis of the following decades

research. Rust (1968, 1972) noted the co-spatial occurrence of surges (discussed

in the following Section) and Ellerman bombs around satellite sunspots which

were undergoing drastic evolution, however, no large-scale study was attempted.

It was not until Roy (1973) that a number of surges (30 in total) were analysed,

finding each formed co-spatial to an Ellerman bomb structure. Indeed, it was

observed that “the surge follows the bomb evolution in a way suggesting that

its material is squeezed out from the bomb”. The results of Bruzek (1972),

however, disagreed and implied that neither event was necessary for the other

to form. Despite more recent analysis (for example, Madjarska et al. 2009), the

relationship between surges and Ellerman bombs is still unclear.

As magnetogram measurements became more common, researchers began

focusing on the relationship between Ellerman bombs and regions of vertical
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magnetic field. Indeed, Howard and Harvey (1964) concluded their study by

suggesting that “the magnetic field plays an important role in the occurrence

of Ellerman bombs”. It would not be until the work of Georgoulis et al. (2002),

however, that adequate magnetic field measurements would be collected such

that a statistical study of Ellerman bomb formation could be attempted. It was

found that Ellerman bombs often formed over regions of strong magnetic field,

mainly over bi-polar regions. Therefore, the hypothesis that Ellerman bombs

formed at sites of magnetic reconnection (a hypothesis which had initially been

proposed by Pikel’Ner 1974) began to become more plausible.

Ever since their discovery, Ellerman bombs have been estimated to have

lifetimes on the order minutes. Through a detailed analysis of one hundred

and seventy eight Ellerman bombs, Roy and Leparskas (1973) found an average

lifetime of between 10-20 minutes for these phenomena depending upon where

in the Hα line profile the event was observed. Lifetimes of these orders have

also been returned by more recent studies (for example: Zachariadis et al. 1987;

Georgoulis et al. 2002; Watanabe et al. 2011). Shorter “bursts” of higher-

intensity within the Ellerman bomb structure were also observed by Roy and

Leparskas (1973) to occur on scales as low as tens of seconds. These changes

in brightness have also been attributed to Ellerman bombs by, for example,

Kurokawa et al. (1982), Zachariadis et al. (1987), Qiu et al. (2000), indicating

potentially interesting physics. It is, however, difficult to assign a cause to these

pulsations due to observational limitations. For example, as Ellerman bombs

are small-scale events, often defined by intensity thresholding, both physical

traits (such as oscillations or repetitive drivers) and changes in “seeing” (the

refraction introduced by the Earth’s atmosphere) could induce rapid changes in

intensity.

The area of Ellerman bombs has been widely cited to be around 1′′ in diam-

eter (which is around the size of Great Britain). These measurements have been

almost constant since the original photographic observations and can be found in

articles such as Vorpahl and Pope (1972) Zachariadis et al. (1987), Georgoulis
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Figure 1.6: A zoomed FOV indicated by the white box in Fig. 1.5 (observed
by the author and collaborators) with an Ellerman bomb highlighted. The
approximate width of the Ellerman bomb is indicated by the black line. The
two black stars indicate the pixels plotted in Fig. 1.7.

et al. (2002). However, recent work by both Matsumoto et al. (2008b) and

Hashimoto et al. (2010) suggested that Ellerman bombs are, in fact, composed

of a number of smaller sub-structures (which are indicative of a repetitive driver

and could explain the fluctuations in intensity observed by Qiu et al. 2000) as

well as a less intense ‘halo’. In Fig. 1.6, the zoomed FOV indicated by the white

box in Fig. 1.5 is plotted to depict a typical Ellerman bomb observed in the

wings of the Hα line profile (left frame). The Hα line core (right frame) appears

to be unaffected by the presence of this feature. The heights of Ellerman bombs

were estimated by analysing data collected at the solar limb. Studies such as

those of Bruzek (1972), Roy and Leparskas (1973), and Kurokawa et al. (1982)

presented such observations concluding that Ellerman bombs had lengths, on

average, of around 1.1′′. Further work with more modern observations is re-

quired to fully understand the vertical evolution of Ellerman bombs at the solar

limb.
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Figure 1.7: The intensity profile of the Hα line scan plotted for the two black
crosses indicated in Fig. 1.6. The solid line corresponds to the Ellerman bomb
region and the dashed line corresponds to the background profile. The arrows
highlight the changes in intensity between the two regions in the line wings.

As modern spectrometers are able to quickly scan through a number of wave-

lengths with high spectral accuracy, it is also possible to analyse the spectral

properties of each individual pixel in an image. In Fig. 1.7, the Hα line profile

for the cross situated on the Ellerman bomb depicted in Fig. 1.6 is plotted and

compared to a quiet Sun profile. It is immediately apparent that the Ellerman

bomb has a higher intensity in the line wings, but there is no change in intensity

between the event and the Hα background in the line core. This is indicative of

the observational traits described by Ellerman (1917). This high wing intensity

has lead to the popular use of thresholding in identifying Ellerman bombs in

imaging data. Due to large disparities in the sensitivity of different instrumen-

tation, the conditions of seeing from one observation to the next, and image

restoration techniques, it is not a trivial task to assign the correct threshold

to a set of observations. This can be summarised by the varying thresholds

suggested by Georgoulis et al. (2002) (105-130% of the background intensity)
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and Rutten et al. (2013) (150% of the background intensity). It is important,

therefore, to assess each dataset individually.

The analysis of scans through the Hα line can also give information about

line-of-sight velocity profiles. By completing studies of both photospheric and

chromospheric dopplergrams, a number of authors (for example: Kitai 1983;

Georgoulis et al. 2002; Matsumoto et al. 2008a) have discovered bi-directional

flows within Ellerman bomb structures. The upflow velocities have been re-

ported to be around 4-8 km s−1, similar to vertical velocities measured in Eller-

man bombs at the limb by Kurokawa et al. (1982), whereas the down-flow

velocities are much smaller, often below 1 km s−1. These flows were attributed

to the evacuation of plasma from a reconnection site in the upper-photosphere.

However, Watanabe et al. (2008) observed Ellerman bombs occurring over the

inversion lines between larger-scale up- and down-flows in the lower atmosphere,

and suggested that such flows were caused by emerging flux tubes which facili-

tated the formation of magnetic reconnection.

To further supplement the vertical flows, strong horizontal motions in ARs

lead to drifts in the spatial positioning of Ellerman bombs. Measurements of

speeds for these proper motions have lead to values of between 0.6 km s−1 and 2

km s−1 (see, for example: Zachariadis et al. 1987; Denker et al. 1995; Nindos and

Zirin 1998), which is close to the flow speed in the photosphere. Indeed, Denker

et al. noted that the paths of these motions followed the inter-granular lanes

and are buffeted by evolving granules. In an effort to explain Ellerman bomb

formation, Diver et al. (1996) suggested that these horizontal flows could lead

to the formation of a Kelvin-Helmholtz instability which could be compressed

until the tearing mode instability facilitated magnetic reconnection. Both the

spatial positioning within inter-granular lanes and the horizontal velocities are

similar to those reported within G-band MBPs by both Utz et al. (2010) and

Keys et al. (2011). Further to this, Jess et al. (2010a) observed merging MBPs

which appeared to drive micro-flare activity within the Hα line profile (which

was interpreted as an Ellerman bomb).
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It is widely known that the Hα line profile can be used to identify Ellerman

bombs, however, it has been replaced or supplemented by other lines in specific

studies. For example, Severny (1956) stated that Ellerman bombs were observed

“at the sides of undisturbed Fraunhofer lines”. As well as this, Qiu et al. (2000)

found that approximately 50% of Ellerman bombs occurred co-spatially with

UV bright points observed in the 1600 Å continuum. This correlation was also

observed by Georgoulis et al. (2002). Studies of Ellerman bombs have also

been carried out using the Ca II line (see, for example: Socas-Navarro et al.

2006; Pariat et al. 2007; Matsumoto et al. 2008b). The line wings of the Ca II

line profile also indicated the on-set of an Ellerman bomb through increases

in intensity. By semi-empirically computing atmospheric models which agreed

with observed Hα and Ca II profiles, both Kitai (1983) and Fang et al. (2006)

were able to suggest that the excess emission in the line wings was caused by

localised temperature and density increases in the photosphere co-spatial to an

Ellerman bomb event (these results have been recently corroborated by Berlicki

and Heinzel 2014, Hong et al. 2014).

Numerical Modelling

Although the majority of Ellerman bomb studies have been carried out using

observational data, numerical modelling has been attempted by a number of

authors. Stellmacher and Wiehr (1991), for example, compared observations

of Ellerman bombs in the Mgb1 5183 Å, Fe I 5434.5 Å, and Fe I 6302.5 Å

lines with an empirically calculated model atmosphere. Although the numerical

model did not match observations well when a background magnetic field was

assumed, these authors were able to accurately reproduce the observational

profiles (including the ‘gap’ in the Fe I 6302.5 Å line core) of Ellerman bombs

based on temperature enhancements in the lower solar atmosphere. Further

to this, both Hu et al. (1995) and Chen et al. (2001) conducted numerical

simulations, finding that magnetic reconnection, potentially driven by emerging

flux from the solar interior, could occur in the photosphere. The simulations
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presented by Chen et al. also accounted for a number of the observational traits

of Ellerman bombs (such as lifetime and up-flow velocity). It was suggested that

strong increases in temperature in the chromosphere would be caused by such

reconnection.

More recently, using the Coordinate Astronomical Numerical Softwares (CANS)

code, Isobe et al. (2007) studied a two-dimensional model (where one co-ordinate

was height) stretching from the upper convection layer into the corona. A cur-

rent sheet was observed to develop at the inversion line between two opposite

polarity fields which began to reconnect. Through the reconnection phase, up-

flows of plasma were observed to occur, as well as temperature enhancements in

the photosphere. It was theorised that these increases in density and tempera-

ture would lead to the observational signatures associated with Ellerman bombs

although, unfortunately, no line synthesis was completed. These results were

further supported by those of Archontis and Hood (2009), who modelled flux

emergence into the solar atmosphere in three-dimensions using the CANS code.

The formation of temperature and density increases, as well as up-flows, were

driven by magnetic reconnection in the lower solar atmosphere. Comparisons

between the physical properties of observed Ellerman bombs and the reconnec-

tion sites gave a good comparison (including lifetime and up-flow velocity).

Analytical Modelling

A number of studies have attempted to analytically represent the Ellerman

bomb phenomena. A two-fluid approach, modified by a ponderomotive force,

was applied by Hu et al. (1995) for an incompressible plasma in order to model

observed parameters of Ellerman bombs. It was found that, given standard

observational estimates of length and magnetic field strength, the lifetime of

Ellerman bombs was accurately returned. As these results were supported by

numerical simulations, it was speculated that this flux emergence model could

explain Ellerman bomb formation. Diver et al. (1996), on the other hand, mod-

elled Ellerman bombs as a Kelvin-Helmholtz instability where, once again, given
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standard values, the lifetime of Ellerman bombs was well-captured. A similar

model was depicted in a cartoon in Georgoulis et al. (2002) showing potential

magnetic field topologies which could lead to Ellerman bomb formation.

Although it has not yet been applied to Ellerman bombs, one interesting

analytical model of photospheric magnetic was proposed by Litvinenko (1999).

In this order-of-magnitude model, two opposite polarity magnetic field regions

are allowed to approach one another before a Sweet-Parker current sheet is

formed with width proportional to the density scale height. The input required

for the model consists of observational properties (such as in-flow speeds and

the flux-cancellation rate). This model was deemed accurate for low magnetic

field strengths (|B| < 100 G) similar to those observed in cancelling features

in the quiet Sun. This research was quickly followed up by Litvinenko and

Martin (1999), who tested the model against observations of a large cancelling

region in the photosphere. Again, the model appeared to accurately predict

the flux-cancellation rate as well as predicting the up-flow speed of a jet which

was observed at the site. Interestingly (given the potential relationship between

Ellerman bombs and surges), the model allowed estimates of the out-flow mass

to be calculated. This mass was sufficient for the filling of a Hα filament.

Despite the initial success of the model, several down-falls of this method

were presented by Chae et al. (2002) and Chae et al. (2003). In their obser-

vations, it was apparent that the flux in-flow speed was insufficient to faciliate

fast enough reconnection in the photosphere. In order to rectify this issue, both

articles stated that higher magnetic diffusivity would increase the in-flow speeds

adequately, however, measurement of this quantity in the solar atmosphere is

currently not feasible. More recently, Litvinenko et al. (2007) have suggested

that the addition of magnetic flux pile-up to the model could speed up the re-

connection process to observed values. As Ellerman bombs are believed to be

magnetic reconnection events that are linked to small-scale bi-polar (and often

cancelling) regions, it would be of specific interest to test whether this model

describes the properties of these events accurately.
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Alternatives to Reconnection

It should certainly be noted, however, that magnetic reconnection in the lower

solar atmosphere is not the only hypothesis which has been suggested to ex-

plain the formation of Ellerman bombs. Indeed, Dara et al. (1997) analysed co-

spatial Hα data and magnetograms finding no co-spatial relationship between

Ellerman bomb formation and small-scale magnetic features. One competing

theory which has received significant interest is the modification of the Hα line

profile due to the injection of a high-energy proton beam into the photosphere

from the corona. By analysing the linear polarisation of the Hα and Hβ spec-

tral lines, Firstova (1986) was able to suggest that a flux of energetic particles

exciting the local hydrogen population could cause the polarisation of Ellerman

bomb signatures in the Hα line profile.

This work was continued by Ding et al. (1998), who conducted non-LTE

calculations of particle injection into the lower atmosphere. It was found that

two seperate cases could occur which were consistent with the Hα observational

properties of Ellerman bombs, namely, the injection of high-energy (60 KeV)

particles from the corona or lower-energy particles from the chromosphere. The

Hα profiles modelled by this study did not, however, capture the level of in-

tensity increases in the line wings (except near the solar limb). Henoux et al.

(1998) followed up on this article, finding that the heightened line wing in-

tensities of the Hα line profile could be explained by proton-hydrogen charge

exchange. This would involve an energetic interaction between the background

atmosphere and a proton beam excited in the chromosphere travelling horizon-

tally along a magnetic field (perpendicular to the line of sight).

1.4.2 Moving Magnetic Features

Basic Information

Moving Magnetic Features (MMFs) were originally observed by Sheeley (1969)

during an analysis of a time-series sampling the photospheric network. An
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apparent horizontal out-flow of small bright features from a sunspot in spec-

troscopic data was identified (with speeds of approximately 1 km s−1) and at-

tributed to flows in the photosphere. Although magnetograms with sufficient

resolution were unavailable for analysis in the study, Sheeley (1969) did infer

the magnetic nature of the observed bright points, stating ‘...several closely-

spaced bright features may come into contact and disappear together as if a

‘cancelling’ of opposite magnetic polarity were taking place.’ In subsequent

years, further observations of these events were presented as minor points dur-

ing research of other phenomena (by authors including Vrabec 1971), before a

concerted effort to understand these moving features was undertaken by Har-

vey and Harvey (1973), using co-temporal spectral and magnetic data. These

authors found a strong link between the horizontally propagating phenomena

observed by Sheeley (1969) and regions of high vertical flux, therefore, nam-

ing these events MMFs. In recent years, the correlations between these events

and vertical magnetic fields has been confirmed (see Li and Zhang 2013 for a

comprehensive review of the literature).

The movement of MMFs through the region surrounding sunspots is in-

triguing. Vrabec (1974) noted the existence of two different traits exhibited

by MMFs, namely that they either flowed outwards from the sunspot before

merging with a region of stable, existing flux or that they displayed significant

cancellation and became unobservable (also see, e.g., Harvey and Harvey 1973,

Brooks et al. 2007). These separate traits have lead to the definition of three

individual types of MMF within the literature (as discussed by Zuccarello et al.

2009). However, how these sub-sets (consisting of bi-poles, uni-polar fields with

the same polarity field as the local sunspot, and uni-polar fields with opposite

polarity flux to the sunspot) differ is still unknown. The research of Lin et al.

(2006), though, suggested one possible avenue for future study, finding that sev-

eral uni-polar MMFs with opposite polarity flux to the local sunspot resulted

in transition region counterparts.

The majority of MMFs appear to have lifetimes of around one hour and
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magnetic fluxes around 1018 Mx (as was shown convincingly by Li and Zhang

2013). It is interesting that magnetic fluxes of one order of magnitude higher

have been hypothesised as drivers of filament formation (by, for example, Litvi-

nenko and Martin 1999, Litvinenko et al. 2007). The research of Brooks et al.

(2007), who suggested that the cancellation of MMFs with standing flux could

lead to the formation of surges, could imply that these features are important

with respect to the driving of jets from the photosphere into the outer layers of

the solar atmosphere. However, other supporting evidence of co-spatial MMF-

surge formation is conspicuous by its absence, perhaps indicating that specific,

rare conditions are required for ejections of mass to occur.

In a detailed analysis of these features, Vrabec (1974) inferred that most

MMFs appeared to form on spatial scales smaller than 2′′, well below the spatial

resolution of the data analysed in that study. It was noted that only through

time-series analysis could these features confidently be extracted from noise due

to their ‘persistence’. Indeed, recent work using higher resolution data (see, for

example, Lim et al. 2012, Criscuoli et al. 2012, Li and Zhang 2013) confirmed

this area estimate. It is possible, however, that significantly larger MMFs can

occur, having been observed by a number of authors (including Criscuoli et al.

2012). A recent statistical analysis, conducted by Li and Zhang (2013), inferred

that the average diameter of these features was around 1.5′′.

Finally, numerous explosive events observed within the solar atmosphere

have been observed to form co-spatially with MMFs. Ellerman bombs, for ex-

ample, were analysed with respect to MMFs by authors such as Nindos and

Zirin (1998) and Socas-Navarro et al. (2006), who both found spatial correla-

tions between these two phenomena. Interestingly, both Ellerman bombs and

MMFs have been linked to ‘sea-serpent’ like magnetic field structures (by Pariat

et al. 2004 and Harvey and Harvey 1973, respectively) indicating that further

research, using modern instrumentation, into the link between these features

should be undertaken. Such research shall be conducted in Chapter 6 of this

thesis.
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1.4.3 Surges

Basic Information

The surge phenomena have been observed within the solar atmosphere for

decades (see, for example, Newton 1942, Ellison 1949). These features form

as long, dark, sometimes curved ejections away from the solar disc often ob-

served in the Hα line core. Even early researches (with limited magnetic field

measurement capabilities) hypothesised that surges were intrinsically linked to

strong magnetic fields in the solar photosphere. To further test this assertion,

Rust (1968) considered a statistical sample of surges situated in a FOV con-

taining a large sunspot and a trailing satellite spot of opposite polarity. This

analysis suggested that every observed surge formed close to magnetic neutral

lines where, it was considered, a process such as magnetic reconnection could

occur. As has previously been mentioned, a number of authors (including Rust

1968, Rust 1972, Roy 1973) presented some evidence of a link between these

phenomena and Ellerman bombs, however, this shall not be further discussed

in this Section to avoid repetition.

In general, surges have lengths of approximately 10-100 Mm and widths

around 1-10 Mm (see, e.g., Roy 1973, Kurokawa and Kawai 1993, Guglielmino

et al. 2010). Lifetimes of these features are widely reported as being between

10-40 minutes (as was discussed by, for example, Roy 1973, Kayshap et al. 2013,

Bong et al. 2014). This lifetime is comparable to longer-lived Ellerman bombs as

well as Explosive Events (EEs; which were suggested to be the coronal response

to surges by authors such as Madjarska et al. 2009). Surges are observed to

form co-spatial to bi-polar regions within ARs. It is possible that MMFs (as

discussed in the previous Section) could play a role in surge formation (suggested

by Brooks et al. 2007). It is, therefore, also plausible that MMFs in the solar

atmosphere could drive both Ellerman bombs and surges if the cancellation rate

is sufficient.

In order to calculate the cancellation rate, both Rust (1968) and Roy (1973)
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estimated the magnetic energy within bi-poles co-spatial to surges to be around

1018-1019 Mx (similar to those measured for MMFs). Indeed, for one region in

their study, Roy (1973) derived a cancellation rate of 3×1015 Mx s−1 co-spatial

to surge formation; however, such flux reduction was not deemed necessary

as several events were observed in flux emergence regions. As well as this,

Guglielmino et al. (2010) discussed the formation of surges co-spatial to flux

emergence, further implying that rapid dynamics in the photospheric magnetic

field could drive mass into the upper layers of the solar atmosphere. In Chapter

6, a study of co-spatial MMFs and Ellerman bomb will be undertaken in order

to quantify any cancellation, which can then be compared to the values of Roy

(1973).

1.4.4 Blinkers

Basic Information

Blinkers are small-scale bright features with diameters between around 3-10

Mm and lifetimes of the order of 20 minutes. Extensive research has been

conducted on these phenomena which were initially observed by Harrison (1997)

using the Coronal Diagnostic Spectrometer (CDS; Harrison et al. 1995) onboard

SOHO. These transient events, often observed within EUV filters were also

discussed by Harrison et al. (1999), who suggested that the observed increase in

emission could be a signature of increases in density or filling factor caused by

the injection of plasma from the photosphere (also see, e.g., Teriaca et al. 2001,

Marik and Erdélyi 2002, Bewsher et al. 2003, Madjarska and Doyle 2003).

A number of authors have researched the spatial positioning of blinkers

compared to the magnetic field (discussed by Bewsher et al. 2002, Parnell et al.

2002) within both the quiet Sun and ARs. The majority (up to around 75 %) of

blinkers appeared to occur co-spatially with regions of strong uni-polar field, for

example plage regions. It was, therefore, inferred that magnetic reconnection

within the upper atmosphere was unlikely to be the driver of these events. To
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account for this, Priest et al. (2002) suggested mass supply from the lower solar

atmosphere into the transition region and corona could produce the observa-

tional signatures of blinkers. In the quiet Sun, blinkers are often absent from

coronal filters (see, e.g., Harrison 1997, Bewsher et al. 2002, Madjarska and

Doyle 2003). Within ARs, however, blinkers are observed in coronal lines (see

Parnell et al. 2002). Links between blinkers and Explosive Events (EEs) have

also been presented in the literature (for example, Marik and Erdélyi 2002).

1.5 Overview of this Thesis

The general aim of this thesis is to analyse the lower solar atmosphere using a

variety of techniques in order to infer further details about the physical processes

occurring in this complicated system. Specifically, the research discussed here

shall focus on the Ellerman bomb phenomena and solar surges. This work

shall be formatted as follows: In Chapter 2, the observational techniques and

equipment exploited to collect the data analysed in this thesis are presented.

Chapter 3 comprises a statistical study of a large number of potential Ellerman

bomb events in the wings of the Hα line profile with specific interest paid to

their statistical properties. A comparison of numerical simulations of Ellerman

bomb events to their observational signatures in the Hα and Fe I line profiles

is conducted in Chapter 4. The properties of Ellerman bombs at the solar

limb are analysed in Chapter 5 before the potential ability of MMFs to drive

these features is discussed in Chapter 6 by testing a basic analytical model

of photospheric magnetic reconnection (initially suggested by Litvinenko 1999)

with the aim of validating outputs with observations. An isolated surge event

is analysed in Chapter 7 in order to assess the relationship of this event with

a blinker which is observable in EUV wavelengths. Finally, conclusions are

presented in Chapter 8.
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Chapter 2

Observing the Sun

2.1 Introduction to Solar Observations

2.1.1 General Overview

Observations of the Sun produce a wonderful array of data, from which anal-

ysis into a plethora of solar processes and features (such as those discussed in

the previous Chapter) can be conducted. The development of telescopes and

instruments which are capable of collecting high-resolution, high-cadence data,

however, is an artform and requires complex and novel engineering. The time

and resources invested in developing such tools has so far proved worthwhile

with a variety of specialised instruments and individual set-ups being available.

For example, high-cadence time sequences sampled at an individual wavelength

can showcase area oscillations of waveguides or bulk motions of mass in an

isolated region of the solar atmosphere; whereas, the co-temporal collection of

data at multiple positions within a line scan or at a number of wavelengths can

depict line-of-sight motions and coupling between events at different heights in

the solar atmosphere.

There are, in essence, two types of solar telescopes: ground-based and space-

borne. Both have strengths and weaknesses. By way of illustration, ground-
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based telescopes and instruments are relatively cheap to upgrade and are not

limited by weight or size (within reason) meaning optimally engineered con-

ditions for high-resolution, high-cadence data can be achieved; however, data

collected by these instruments are limited by, e.g., ‘seeing’ and wavelength fil-

tering introduced in the Earth’s atmosphere. On the other hand, space-borne

instruments must fit within the spatial confines of the spacecraft, cannot be

easily upgraded, and are limited in the amount of data they can transmit by

the download speed available. These data can, though, provide near constant

seeing-free observations of the Sun and are capable of observing coronal wave-

lengths which do not pass through the Earth’s atmosphere. Therefore, it is

desirable that a wide range of instruments be analysed by an observer in order

to build up a complete and accurate picture of the solar atmosphere. In this

Chapter, descriptions of the four telescopes which provided data for analysis in

this thesis are presented.

2.1.2 Observational Wavelengths

The collection of solar data by modern telescopes can be conducted using a

variety of methods. In this Chapter, we only discuss a limited number of these

techniques including high-resolution narrow-band spectroscopic imaging, wide-

band spectroscopic imaging, and spectropolarimetry. Each of these methods

relies on the formation of spectral lines, which are unique finger prints of spe-

cific ions or molecules that exist in a target object and detail the interactions

between the material and photons. This useful property of spectral lines allows

them to act as a diagnostic tool to measure physical properties, such as the

chemical composition of extra-terrestrial objects or the structuring of any exis-

tent magnetic fields. The development of the field of spectroscopy has allowed

researchers to further understand the solar atmosphere, as well as improving

our knowledge of the Universe in general. Indeed, it is through analysis of the

solar spectra that some basic elements, such as helium, have been discovered.

Spectral lines can manifest as both absorption and emission from a back-
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ground profile, dependent on the physical properties of the observed target.

Absorption occurs when light is passed through a cooler plasma source. Pho-

tons at specific wavelengths are absorbed by atoms, exciting the transition of

electrons from one state to a higher-energy state. As the electrons transition

back to their relaxed states, a new photon is released; however, this photon can

propagate in any direction, scattering the original beam of light and causing a

reduction in the measurement of photons reaching the observer. Emission pro-

files, on the other hand, occur from a hot source, where thermal energy leads

to increased transitions of electrons between states, increasing the total number

of photons directed towards the observer.

Each element and molecule can be identified by its individual fingerprint

(or set of wavelengths). One can then target observations such that particular

transitions in the solar atmosphere are measured. This allows for inferences

about the energy levels of the sampled plasma to be made. Therefore, a number

of stand-alone filters and prisms can be employed by an observer to isolate

specific wavelengths before this light is passed into cameras to be read out.

Dependent on the size of the filter, or ‘bandpass’, the recorded observations can

be classed as either narrow-band or wide-band. In addition to this, traits of the

observed light (such as Zeeman splitting, where the spectral line separates into

two individual lines) and additional tools in the path of the incident light (such

as a Wollaston prism) allow for inferences about the target objects magnetic

field to be made.

Hα

The main observational wavelength analysed in this thesis is Hα, which has

been considered an excellent tool for chromospheric research for nearly 150

years (see, for example, Lockyer 1868). Indeed, Rutten (2008) stated that

‘Hα remains the principle diagnostic of this regime’. Forming with a central

wavelength of 6562.8 Å, the Hα profile manifests as an absorption line with

wings sampling the photosphere and a core observing the chromosphere (see,
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for example, Leenaarts et al. 2007, Rutten 2010, Rutten 2012). This line exists

due to the transition of electrons between the second and third rings of Hydrogen

atoms (as discussed by, e.g., Rutten 2008). In Fig. 2.1, a FOV at the solar limb

is plotted for both the far blue wing (left panel) and the core (right panel) of the

Hα line profile to highlight the apparent build-up of material evident in the line

core. These ‘fibrils’ (see, e.g., Rutten 2012 for a discussion of these features)

comprise the chromospheric canopy which appears to obscure the photosphere

at this wavelength.

Despite the plethora of researches which have analysed this wavelength,

understanding of the physical mechanisms which sustain the absorption in the

Hα line core ubiquitously around the Sun is still lacking. Therefore, a brief

overview of the extensive literature dedicated to the formation of the Hα line

core will be presented in this Section. Because Ellerman bombs form in the

wings of the line profile and not in the line core this brevity can be justified in

this thesis; however, readers should be directed to Rutten (2012) and Leenaarts

et al. (2012) (and references within both articles) for detailed descriptions of

Hα. Overall, the Hα line core forms in the chromosphere, the layer of the solar

atmosphere at which the strong kiloGauss magnetic fields previously confined

to photospheric intergranular lanes (see Stenflo 1973) expand to cover the whole

solar surface (due to a reduction in the gas pressure with respect to the magnetic

pressure as was discussed by, for example, Gabriel 1976, Solanki and Steiner

1990, Judge and Peter 1998).

A recent review by Rutten (2008) detailed the problems posed by analysing

purely imaging observations of the Hα line core. Changes in a number of prop-

erties within the local plasma (including opacity, Doppler shifts, Doppler broad-

ening) can modify the observed intensity within a pixel meaning finely sampled

line profiles must be collected to attempt to understand the physical processes

manifesting in collected data. As well as this, due to the small-scale nature of

fibrilar structures in the Hα line core, high-resolution observations are required

(such as those analysed by Morton et al. 2012). It is, therefore, possible that
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Figure 2.1: The far blue wing (left frame) and core (right frame) of the Hα
line profile at the solar limb. These data were collected by R. Erdélyi and
collaborators on the 21st June 2012. The apparent build-up of material over
the photospheric line wing is immediately evident in the line core.

future developments in observational capabilities (either ground-based or space-

borne) could dramatically improve the knowledge of the community about the

Hα line profile.

In order to further understand this line profile, efforts have also been directed

to developing realistic numerical simulations which return the properties of Hα;

however, due to the complexity of the physics in the chromosphere and the

limitations in computing power, advances with this aim have been slow. A

series of articles (namely, Carlsson and Stein 1992, 1995, 2002) discussed the

influence of non-equibrium ionisation on one-dimensional simulations. It was

found that the ionisation rate of Hydrogen in the solar atmosphere remained

fairly constant due to ionisation by shocks from the photosphere occurring on

similar timescales to the relaxation of electrons from the third to the second

ring of Hydrogen atoms. More recently, Leenaarts et al. (2007) and Leenaarts

et al. (2012) have implemented non-equilibrium ionisation in two-dimensional

and three-dimensional simulations, respectively. These studies suggest that the
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non-equilibrium ionisation of Hydrogen in the solar atmosphere is the reason

why the Hα line profile is so ubiquitous.

2.2 Observing Tools

2.2.1 Adaptive Optics

Most modern ground-based observatories operate with the help of Adaptive

Optics (A.O.) systems, which attempt to measure the influence of atmospheric

perturbations on the incoming wavefront. Such perturbations are introduced

by the inhomogeneity of the air between the telescope and the Sun and can lead

to significant ‘stretching’ of features within an image. Many systems employ

a loop where an image is read by a wavefront sensor, which then calculates

the distortion from a reference image before passing this information as an

array to a deformable mirror which is manipulated to invert the atmospheric

perturbations. This process can occur hundreds of times each second and has

the potential to stabilise the ‘seeing’ conditions and create smooth datasets.

Unfortunately, these A.O. systems are by no means perfect, meaning post-

collection data processing techniques must be applied to make science-ready

data. These techniques will be further discussed later in this Chapter.

Given ideal conditions, a telescope with circular aperture could achieve

diffraction-limited observations, governed by the following relationship:

α = 1.22
λ

D
(2.1)

where α is the limiting diffraction angle (radians), λ is the wavelength of the

observed light (cm), and D is the diameter of the aperture (cm). As the di-

ameter of the telescope is unchanging, the only variable in Equation 2.1 is the

wavelength of the observed light meaning shorter wavelengths are capable of

achieving higher-resolution observations. For example, if the wavelength of the

incoming light is 4000 Å (4 × 10−5 cm), the diffraction limits of observations
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from a 76 cm aperture telescope and a 98 cm aperture telescope would be 96

km and 74 km, respectively.

2.2.2 Fabry-Pérot Interferometers

One widely used piece of equipment to collect solar data are Fabry-Pérot in-

terferometers. Fabry-Pérot interferometers are often exploited by observers as

they allow accurate and rapid scanning of specific spectral lines. Filtering is ac-

curately induced within a Fabry-Pérot interferometer by two parallel, narrowly

separated, highly reflective ‘etalons’ (perpendicular to the optical path) which,

through the process of interference, produce a family of reflected and trans-

mitted beams of light. The quality of the recorded image depends largely on

the phase difference between the transmitted beams of light. If the beams are

in phase, then constructive interference will lead to a large transmission peak

meaning high-quality images can be obtained. Out of phase beams of light

will, however, cause destructive interference, lowering the transmission peak

and blurring the image. The use of multiple interferometers in sequence allows

for the reduction of unwanted modes in a system and has been well known for

nearly a century (see, for example, Houston 1927).

It is important, therefore, to understand the relationship between the phase

difference of transmitted light and the physical set-up of an instrument (i.e.,

with respect to the refractive index of the etalons, the separation of the etalons,

and the angle between the incident light and the etalons). Mathematically, one

can write the phase difference of a system of transmitted beams as:

δ =
(

2π

λ

)
2nl cos θ (2.2)

where δ is the phase difference, λ is the wavelength of the incident light, n is the

refractive index, l is the etalon separation, and θ is the incident angle between

the beam and the etalon. It is simple to see from Equation 2.2, that constructive

interference occurs when 2nl cos θ is equal to an integer. If incidental light is
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Figure 2.2: An example of dark (left frame) and flat-fielding (right frame) images
collected for Hα observations collected by the author and collaborators on the
30th September 2012. Note the increased noise generated at the lower edge of
the dark image and the sweeping patterns evident on the flat-fielded image.

limited to propagation perpendicular to the etalons, Equation 2.2 simplifies to:

δ =
(

2π

λ

)
2nl. (2.3)

With a fixed refractive index, this means that the intereference phase difference

is only dependent on the width of etalon separation.

2.2.3 Dark and Flat-Fields

Charge Coupled Devices (CCDs) are widely used in solar physics. Originally

discussed by Boyle and Smith (1970), these revolutionary pieces of equipment

earned their inventors a Nobel prize in Physics in 2009 and have proved essential

in the development of astronomical instrumentation. In essence, CCD cameras

measure the intensity of an incident light beam by expoiting the photoelectric

effect, whereby photons cause electrons to be released by a semiconducting sur-
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face (usually silicon based in astronomical CCDs) with the number of released

electrons proportional to the intensity of the light. Electrons are then stored in

wells within each pixel before migrating in sequence to a port to be read-out

and saved digitally. By incorporating millions of pixels in a two-dimensional

array and using a number of read out ports, it is possible to generate a two-

dimensional image of a target with high-spatial accuracy and a high-cadence.

As the accurate collection data for scientific analysis is reliant upon the

number of electrons generated within each pixel of a camera, it is important

to understand the quantity of electrons which should be classified as noise. In

CCDs, a small electric current is present even when no photons are entering

the equipment leading to counts being measured by the CCD. This process is

known as the ‘dark current’. As solar observations benefit from high photon

counts in general, the impact of this dark current on observations is usually

minimal (i.e., there is a high signal-to-noise ratio), however, it is possible to

measure any systematic errors generated this way by collecting dark-field data

(i.e., blocking light from entering the CCD and measuring the output) before

removing this from raw images. A single dark frame is plotted in the left frame

of Fig. 2.2.

As well as dark-fields, flat-field corrections are also required to produce

science-ready data from raw images. Flat-fielding involves collecting multiple

images of the Sun with the specific scientific set-up used to collect the raw sci-

ence data whilst the FOV of the telescope moves rapidly across the quiet-Sun.

This blurs any small-scale structuring in the recorded images and allows, hypo-

thetically, for the measurement of a perfectly even image when multiple frames

are averaged. In practice, however, pixel-to-pixel sensitivity changes and two-

dimensional patterns introduced by non-homogeneities on the observing table

form structuring which must be removed from the science data. In the right

frame of Fig. 2.2, an example of a flat-field image collected in the blue wing of

the Hα line is plotted, highlighting several sweeping structures.
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2.3 Solar Observatories

2.3.1 Richard B. Dunn Solar Telescope

General Overview

The Richard B. Dunn Solar Telescope (DST) is a large ground-based facility at

the National Solar Observatory (NSO) site in Sunspot, New Mexico. Situated

in the Lincoln National Forest at an altitude of 2800 m in the Sacramento Peak

mountains, the DST is one of the predominant solar telescopes in the world.

As a ground-based site, the DST has managed to stay at the fore-front of high-

resolution solar observations (despite first-light being achieved in 1969) through

the incorporatation of new and improved instrumentation, such as an A.O. sys-

tem. In this Section, the physical properties of the DST will be discussed, as

well as the properties of the two instruments from this telescope which have pro-

vided data for analysis in this thesis, namely the Interferometric BIdimensional

Spectrometer (IBIS; Cavallini and IBIS Team 2004) and the Rapid Oscillations

of the Solar Atmosphere (ROSA; Jess et al. 2010b) apparatus.

In order to minimalise the influence of the local environment on observations

collected by the incorporated instruments, several novel engineering techniques

have been employed at the DST. For example, light enters the telescope through

a 0.76 m aperture window at the top of a 41.5 m tall tower, which is coated in a

white titanium dioxide solution to reduce localised turbulence. An image of this

tower is shown in Fig. 2.3. Once the sunlight enters the building, two 1.1 m di-

ameter mirrors (which accurately track the elevation and azimuthal components

of the Sun throughout the day) direct the light along a 1.2 m diameter vacuum

tube which runs down the telescope to a depth of 67 m below ground level.

After travelling along the length of the tube, the light is reflected off a 1.6 m

diameter spherical main mirror before being extracted onto a rotating observing

table (where the instruments are positioned) at ground-level through a 0.6 m

aperture window. Interestingly, facilitating the rotation of the entire structure

(including the observation table) requires that the whole system (which weighs
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Figure 2.3: The tower section of the DST. The telescope also consists of an
underground section, which goes deeper than the height of the tower.
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approximately 226796 kg) is hung from a mercury float bearing, held in place

by three 7.6 cm diameter steel pins at the top of the tower. This allows the

DST to provide data over long time periods with a constant FOV and stable

observing orientation which is extremely useful when observing the temporal

evolution of small-scale events.

Interferometric BIdimensional Spectrometer

The DST/IBIS instrument was developed by the Italian National Institute for

Astrophysics (INAF) and has been in operational at the DST facility since 2003.

Light is directed into the DST/IBIS instrument on the observing table before

two tunable Fabry-Pérot interferometers with independent etalon separations,

placed perpendicular to the optical path, allow quick scans of a number of user

defined wavelengths between the range of 5400 Å to 8600 Å (listed in Table 2.1).

The use of two Fabry-Pérot inteferometers with different etalon separations

increases the spectral resolution of the instrument by removing unwanted modes

of the transmitted light, as was discussed by Houston (1927).

The DST/IBIS instrument is highly flexible, allowing a plethora of individual

set-ups to be selected by the user. Observing sequences (and the subsequent

read out sequence) of the DST/IBIS instrument must be chosen by the user and

programmed into the control computer before data are collected. Once this is

completed, the incident light beam is split early on in the DST/IBIS setup, with

one beam entering a CCD camera collecting wide-band observations ideal for

data post-processing, and one beam entering the dual Fabry-Pérot system and

the into a second CCD camera. Both cameras collect a 1000×1000 pixel image,

which samples an 80′′ diameter FOV with pixel sizes of around 0.097′′, and are

controlled by the same electronic shutter allowing for the simultaneous capture

of images. Data are read-out into flexible image transport system (FITS) format

from both cameras, with each repetition of the user-defined sequence getting its

own file. These data can then be read into a variety of computational languages,

such as Python and IDL, with ease for reduction and scientific analysis.
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Pre-filter Wavelength (Å) FWHM (Å)
Fe I 5434 3

He I D3 5876 3
Na I D2 5890 3
Na I D1 5896 3

Fe I 6173 3
Fe I 6301/6302 3
H I 6563 3
Ni I 6768 3
Fe II 7090 3
Fe II 7224 3
K I 7699 3

Ca II 8542 5

Table 2.1: Summary of the wavelength filters available for selection on the
DST/IBIS instrument.

With respect to the observing sequence, a number of the wavelengths listed

in Table 2.1 can be selected by the observer for data collection. Narrow-band

images collected using these filters can have high-spectral resolutions between

20-40 mÅ (see, Asensio Ramos et al. 2006). In order to increase the cadence

of the sequence such that small-scale analysis as presented in this thesis can be

conducted, it is prudent to limit the number of wavelengths selected to two or

three. Each wavelength can then be sampled at a number of positions, from the

far wings to the line core, returning a line profile such as the example plotted

in Fig. 2.4. Depending on the goal of the sequence, a number of images can be

rapidly collected at each line position in order that post-processing techniques

can be applied (which shall be discussed further later in this Chapter). By finely

sampling a specific wavelength, the DST/IBIS instrument allows the user to

make line profiles with high spectral accuracy and, therefore, collect important

information such as line-of-sight velocities. Due to the plethora of potential

sequences which are available with the DST/IBIS instrument, each individual

observation analysed within this thesis will be described in more detail within
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Figure 2.4: Two example Hα line profiles collected using the DST/IBIS instru-
ment. The solid line plots a normalised average profile for a quiet Sun region.
The dotted line is similar except for being centred on a sunspot.

each of the relevant Chapters.

Rapid Oscillations of the Solar Atmosphere

The DST/ROSA system is the second instrument at the DST which provided

data for analysis in this thesis. DST/ROSA was originally commissioned in

2008 and is a common-user instrument consisting of six CCD cameras, each

comprising 1004× 1002 pixels. Every pixel samples with a pixel scale of 0.069′′

giving an overall FOV of approximately 69′′×69′′, that is positioned entirely

within the DST/IBIS FOV. The CCDs are capable of capturing 30 frames per

second, with a precision control unit (or “sync” box) providing a trigger to each

camera such that co-temporal image acquisition can be achieved. However, as

the photon counts at different wavelengths are not homogeneous, a variety of

exposure times are required in practice in order to avoid any saturation of the

CCDs. It is also, therefore, possible for the sync box to control each of the

cameras individually.
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With a frame rate of 30 frames s−1, the DST/ROSA instrument can collect

around 1.3 TB of data every hour. It is, therefore, required that each camera is

connected to an individual server to avoid data saturation. Data is then written

onto these servers in FITS format, with each file containing 256 images, collected

at a single wavelength, which can then be combined in any ratio of input-

to-output images using post-processing techniques. As users must physically

transfer data from the DST to their host institution using portable hard-drives

(which are large and heavy), it is often desirable that data is only collected

using the DST/ROSA instrument during periods of excellent seeing or that only

a selection of the CCD cameras are employed for data collection. In this thesis,

the DST/ROSA instrument only contributes data sampled with the G-band

continuum filter. These data are perfect for observing photospheric granulation

structures.

The DST/ROSA instrument is set-up as follows. The incident beam of light

which exits the vacuum tower onto the observing table is split and focused

such that each camera can observe an individual wavelength. Typically, the

DST/ROSA instrument is used to produce several high-cadence time-series of

the lower solar atmosphere, using filters sampling, for example, the G-band

continuum or the Hα line core. However, using the Universal Birefringent Filter

(UBF) and a Wollaston prism in sequence, it is possible to split an incident beam

with a relevant pre-filter (such as the Fe I 6302.5 Å line) into its left and right

circularly polarised states. These data can be combined to estimate the line-

of-sight magnetic field configuration of the photosphere with high-spatial and

temporal resolutions.

2.3.2 Swedish 1-m Solar Telescope

General Overview

The Swedish 1-m Solar Telescope (SST; Scharmer et al. 2003) is situated at

the Roque de los Muchachos site on the Spanish island of La Palma, at an
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Figure 2.5: The tower section of the SST.

altitude of approximately 2360 m. The telescope is the successor to the Swedish

Vacuum Solar Telescope (SVST; which was removed from the Roque de los

Muchachos site on the 28th August 2000). The telescope is much newer than

the DST, being built in 2001 and achieving first light with a limited set-up

on 2nd March 2002. Having been constructed in the 21st Century, the SST

benefits from being designed with A.O. systems in mind. The telescope has

an aperture of 98 cm and a wealth of modern equipment which facilitate the

collection of theoretically improved observations, in comparison to the DST.

This system often produces diffraction limited datasets. In this thesis, only one

instrument from the SST provides data for analysis, namely the CRisp Imaging

SpectroPolarimeter (CRISP; see Scharmer 2006, Scharmer et al. 2008).

The SST is a refractor telescope, employing a vacuum tower design. Light

enters the structure at the top of a white tower (shown in Fig. 2.5), before being
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directed down into the heart of the building by two 1.4 m mirrors which track the

Sun through the day. Incoming light is passed through a Schupmann corrector,

which focuses all observable wavelengths onto a single focus such that a variety

of solar observations can be collected, and then onto an observing table. Once

on the table, the light is passed through beam splitters and pre-filters to isolate

the required wavelengths. A portion of this light is then passed into the A.O.

system to correct for variable seeing throughout the period of data collection.

The rest of the light is passed into instruments. In contrast to the DST, the

observing table at the SST does not rotate through the day meaning that the

orientation of collected images changes through time.

CRisp Imaging SpectroPolarimeter

The SST/CRISP instrument was installed at the SST in March 2008. In many

ways, the SST/CRISP is similar to the DST/IBIS instrument, in that it employs

a dual Fabry-Pérot interferometer system in order that high-spatial and spectral

resolution images can be obtained. The SST/CRISP was designed to operate

between 5100-8600 Å (see Table 2.2), with spectral resolutions of around 60 mÅ

(as discussed by Scharmer and Henriques 2012), which is perfect for analysis of

the lower solar atmosphere (including the Fe I 6302.5 Å magnetically sensitive

line and the Hα line core). Three 1024×1024 pixel CCD cameras are employed

by the SST/CRISP instrument for data collection, consisting of one wide-band

camera before the Fabry-Pérot system and two cameras after. The wide-band

image recorded by the first CCD camera can be used for image reconstruction

following the collection of data by the other cameras. Each of these cameras

has a pixel scale of around 0.07′′ which is comparable to both the DST/ROSA

and DST/IBIS instruments.

When light enters the observing table at the SST, a beam splitter directs

the red portion of the visible light towards the SST/CRISP instrument. A syn-

chronisation unit, known as the ‘chopper’, external to all of the cameras then

ensures accurate co-temporal collection of images. The transmitted light then
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Pre-filter Wavelength (Å) FWHM (Å)
Mg b 5173.3 3
Fe I 5250.5 3.3
C I 5382.7 3.3
Fe I 5578 3

NaD 5897 3.8
Fe I 6174.4 4.3
Fe I 6302.6 4.4
H I 6563.8 4.9
O I 7772.8 6.6

Ca II 8541.6 9.3

Table 2.2: Summary of the wavelengths observable with SST/CRISP.

passes through a filterwheel, that permits a small-section of the incident beam

to continue through to a beam-splitter, where some of the light is directed to

a wide-band camera for immediate collection. The other portion of the light

is passed into the parallel dual Fabry-Pérot system, where rapid line scanning

can be achieved by the horizontal movement of etalons. Finally, the light passes

through a polarisation beam splitter and into the two final SST/CRISP cam-

eras, allowing the co-temporal collection of left and right circularly polarisation

light. Therefore, an approximate maps of the photospheric and chromospheric

magnetic field topologies can be obtained.

2.3.3 Hinode

Overview

The Hinode (Kosugi et al. 2007) satellite, which was known as Solar-B before

launch, is a Japan Aerospace Exploration Agency (JAXA) mission, developed

in collaboration with the USA and the UK’s Science and Technology Facilities

Council (STFC). Lauched on the 22 September 2006, Hinode was the successor

of the highly successful Yohkoh (or Solar-A) satellite and had the aim of inves-
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tigating the role of magnetic fields in solar processes. Situated in a 98 minute

Sun-synchronous orbit, data from Hinode are downloaded to the Svalsat sta-

tion on Svalbard, Norway before being transferred along fibre-optic cables to

the European mainland. The satellite was originally designed to operate for

three years but has, to date, been operational for over eight years, providing a

wealth of data that have given insights into a plethora of solar processes, from

the granulated photosphere to the multi-million degree flaring corona (see, for

example, Katsukawa et al. 2007, De Pontieu et al. 2011, Berger et al. 2011).

The 900 kg Hinode satellite hosts three scientific instruments: the Solar

Optical Telescope (SOT; Tsuneta et al. 2008); the X-ray Telescope (XRT; Golub

et al. 2007); and the Extreme-Ultraviolet Imaging Spectrometer (EIS; Culhane

et al. 2007). Around 20 GB of data are collected by the satellite every day,

stored at a ratio of 70:15:15 between the instruments in the order listed above.

Each of these instruments is supplemented by a library of computer routines

that facilitate the reduction and analysis of these data. These routines can

easily be downloaded with the open-source SolarSoft IDL library. In this thesis,

only data collected by the Hinode/SOT are researched and, as such, only this

instrument is discussed below.

Solar Optical Telescope

The Hinode/SOT consists of two separate components, namely the Optical Tele-

scope Assembly (OTA; Suematsu et al. 2008) and the Focal Plane Package (FPP;

Tarbell et al. 2007), and is one of the largest and most complex space-borne

instruments currently available (see Tsuneta et al. 2008 for details). The OTA

acts as the initial point of contact for light entering the telescope and consists

of a 50 cm aperture Gregorian reflecting telescope, diffraction limited within

the range of 3880-6700 Å giving spatial resolutions of around 0.2′′-0.3′′. Two

field-stops situated at the primary and Gregorian focus’ restrict the maximum

observable FOV of the Hinode/SOT instrument to 361′′×197′′, before the inci-

dent light is passed through a collimating lens unit, a polarisation modulator,
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Filter (Å) Observable Filter width (Å) Purpose
3883.5 CN I 7 Magnetic network
3968.5 Ca II H 3 Chromosphere
4305.0 CH I 8 MBPs
4504.5 Blue Continuum 4 Temperature
5550.5 Green Continuum 4 Temperature
6684.0 Red Continuum 4 Temperature

Table 2.3: A general overview of the Hinode/SOT/BFI.

and on to a tip-tilt mirror. Using these tools, the OTA then passes a parallel

beam of pointing-stabilised light to the FPP for read-out.

Upon initial contact with the FPP, the light is passed through a beam-

splitter which segments the beam into four optical paths. Each beam is passed

into one of four sub-instruments: the narrow-band filter instrument (NFI); the

broad-band filter instrument (BFI); the spectro-polarimeter (SP); and the cor-

relation tracker (CT). The CT is an important piece of equipment, observing

granulation patterns in the solar photosphere using a 50× 50 pixel CCD. Real-

time comparisons between a live feed (passed through the OTA) to a system-

atically updated (approximately every 40 seconds) reference frame are made,

before corrections for jitter and group motions are sent to the tip-tilt mirror

in the OTA. This system acts as the A.O. for the Hinode/SOT and facilitates

the high levels of spatial stability required for polarimetric observations to be

achieved continuously. The SP exploits this spectral accuracy to scan a given

FOV using a 0.16′′ wide slit to yield Stokes I, Q, U, and V profiles from the

magnetically sensitive Fe I 6301.5 Å and 6302.5 Å profiles, which can be used

to infer the photospheric vector magnetic field structure.

These corrections are also made to benefit the collection of imaging data

from the further two Hinode/SOT instruments. Two-dimensional images of the

lower solar atmosphere are obtained by both the BFI and NFI in a variety of

user-defined wavelengths. Light is split into both of these instruments at the
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Spectral line (Å) Purpose
Mg I b 5172.7 Chromospheric Doppler and magnetograms

Fe 5247.1 Photospheric magnetograms
Fe I 5250.2 Photospheric magnetograms
Fe I 5250.6 Photospheric magnetograms
Fe I 5576.1 Photospheric dopplergrams

Na I D 5896.0 Chromospheric magnetograms
Fe I 6301.5 Photospheric magnetograms
Fe I 6302.5 Photospheric magnetograms
Ti I 6303.8 Umbral magnetograms
H I 6562.8 Chromospheric structuring

Table 2.4: A general overview of the Hinode/SOT/NFI.

beam-splitter situated at the entrance to the FPP. These beams pass through

separate filters before both beams are directed to a shared 4K×2K CCD camera

for data collection. As the name suggests, the BFI samples the solar plasma

over a wide spectral range with short exposure times (typically less than one

second) and a high spatial sampling (around 0.054′′ pixel−1). The six available

wavelengths which can be observed by the BFI instrument, and their proper-

ties, are included in Table 2.3. Overall, the BFI samples a maximum FOV of

218′′×109′′ and can achieve a cadence of under 10 s. The NFI, on the other

hand, samples with narrow spectral resolutions of around 0.09 Å, returning

two-dimensional imaging, Doppler, and magnetic field maps of the photosphere

and chromosphere. These data have pixel scales of approximately 0.08′′ giving

an overall unvignetted FOV of approximately 264′′×164′′. Due to the quantity

of data collected using this instrument, the summing of pixels can be conducted

to lower the required storage space. The ten available NFI spectral lines are

summarised in Table 2.4.
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2.3.4 Solar Dynamics Observatory

Overview

The Solar Dynamics Observatory (SDO; Pesnell et al. 2012) is a NASA ‘Living

with a Star’ satellite mission that was originally launched in 2010 and exists in

a geosynchronous orbit, with a period of 1436 minutes. The scientific goal of

this satellite is to understand the generation of ‘space weather’ (the out-flow of

material from the Sun which interacts with the Earth’s atmosphere) through the

analysis of ubiquitous small-scale dynamics as well as the photospheric line-of-

sight components of the Sun’s magnetic field vector. The high-resolution, high-

cadence data collected by the instruments on this satellite allow unprecedented

inferences of the full-Sun evolution at scales relevant to flare formation. To

attain this detail, ∼ 1.5 TB of data are collected by the satellite every day and

are constantly transmitted to a dedicated ground-station in White Sands (New

Mexico, USA) at a transfer rate of around 150 MB s−1. Following this, data

are made publicly available for download and reduction, using specific SDO

routines included in the SolarSoft IDL library.

The SDO satellite hosts three instrument suites, namely, the Atmospheric

Imaging Assembly (AIA; Lemen et al. 2012), the Extreme Ultraviolet Variability

Experiment (EVE; Woods et al. 2012), and the Helioseismic Magnetic Imager

(HMI; Scherrer et al. 2012). Each instrument was designed in order to fulfil the

specific scientific goals outlined for the mission. Combined, these instruments

weigh around 300 kg and were scheduled for five years of initial service, with the

potential for five more years if sufficient fuel is available for continued operations.

In this thesis, data from both the SDO/AIA and the SDO/HMI are used to

supplement data collected by ground-based instruments. These instruments

shall, therefore, be discussed in detail here.
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Figure 2.6: The response functions of six of the SDO/AIA EUV filters computed
using the SolarSoft aia get response.pro function. Clockwise from top left, the
94 Å, 131 Å, 171 Å, 193 Å, 211 Å, and 304 Å filters are plotted.
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Figure 2.7: Same as for Fig. 2.6 but for the estimated temperature responses of
each filter. The multiple peaks in several of these plots indicates that no one-
to-one relationship between emission and temperature of the sampled plasma
exists. However, see O’Dwyer et al. (2010) for a discussion on which spectral
lines may dominate at particular temperatures.
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Filter (Å) Primary Ions Cadence (s) Layers Log. Temp. (K)
4500 Cont. 3600 PH 3.7
1700 Cont. 24 PH 3.7
304 He II 12 CH + TR 4.7
1600 Cont. + C IV 24 PH + TR 5.0
171 Fe IX 12 TR + C 5.8
211 FeXIV 12 C 6.3
335 FeXVI 12 C 6.4
94 FeXVIII 12 C 6.8
131 FeVIII, FeXXI 12 TR + C 5.6, 7.0
193 FeXII, FeXXIV 12 C 6.2, 7.3

Table 2.5: A general overview of the SDO/AIA instrument. Estimated heights
(PH = photosphere, CH = chromosphere, TR = transition region, and C =
corona) of the plasma sampled by each filter and their approximate temperature
logarithms are included as a guide. All filters (except for the 4500 Å and 1600
Å filters) are plotted in Fig. 2.8.

Atmospheric Imaging Assembly

The SDO/AIA instrument images the entire solar disk in order that global

dynamical processes on the Sun can be analysed. Four 4096 × 4096 cameras

are employed, which sample a total of 10 filters with an approximate pixel size

of 0.6′′, observing from the photospheric continuum to the super-heated active

region (AR) corona. This instrument collects eight high-resolution images every

12 seconds, including seven EUV images and one continuum image. Overall,

SDO/AIA is capable of transferring an impressive 2 TB of data every day in

FITs format to the ground at a rate of 67 MB s−1. In Table 2.5, information

about the set-up of this instrument is included, highlighting the wavelengths,

primary ions, cadences, approximate layer of the atmosphere observed, as well

as the estimated temperatures of each filter.

By combining data from multiple SDO/AIA filters, it is possible to gather

information about the temperature evolution of events in the solar atmosphere,

specifically with regards to coronal heating. It should be noted that the loga-
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rithmic temperatures included within Table 2.5 are estimates of the tempera-

tures expected when the primary ions are the dominant emission within a filter.

Unfortunately, but necessarily, these data are collected using filters which en-

compass a number of spectral lines, each of which can significantly increase

localised emission but form at different temperatures (as is plotted in Fig. 2.6

and Fig. 2.7). Therefore, care must be taken with interpretation of these data

(see O’Dwyer et al. 2010). A number of techniques have been developed over the

past decades including Differential Emission Measures (DEMs) and the CHI-

ANTI (Dere et al. 1997, Landi et al. 2013) tool in order to estimate coronal

properties; however, the correctness of these methods is currently unknown.

As the pointing of each of the CCDs incorporated into the SDO/AIA in-

strument are consistent, co-alignment between different filters is not a required

step in the data preparation. Continuum images collected by the SDO/AIA

instrument can, therefore, be aligned to ground-based photospheric data easily

allowing for research into the response of coronal filters to features observed in

the lower solar atmosphere. A dedicated software library exists for analysis of

data collected by the SDO/AIA instrument within the open-source SolarSoft

IDL library. These codes can be used to return science ready images from down-

loaded data, as well as facilitating further reduction (such as region tracking

through time). A sample FOV of these data is plotted in Fig. 2.8 including a

whole disk image sampled with the 1700 Å filter and smaller regions outlined by

the white box for seven EUV filters and the SDO/HMI line-of-sight magnetic

field.

Helioseismic and Magnetic Imager

The SDO/HMI instrument was specifically designed to infer the line-of-sight

magnetic and Doppler components of the solar photosphere. This instrument

is the successor of the Solar and Heliospheric Observatory’s Michelson Doppler

Imager (SOHO/MDI; Scherrer et al. 1995), however, it does mark a significant

improvement in the available diagnostic capabilities. Light enters the SDO/HMI
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Property Value

Spectral Line Fe I 6173 Å
FWHM ±0.1 Å

Pixel Size 0.505′′

CCD Size 4096× 4096
FOV > 2000′′

Cadence 45 seconds
Aperture 14 cm

Data Transfer Rate 55 MB s−1

Table 2.6: A general overview of the SDO/HMI instrument.

through a 14 cm aperture window before passing through a 50 Å bandpass filter

which rejects 99 % of the heat from the Sun. The focused incident light then

passes through the optics system, including a Lyot filter and two Michelson

interferometers, and is read in to two 4096 × 4096 pixel CCD cameras. One

camera is dedicated to the collection of photospheric Doppler and line-of-sight

magnetic field data, both of which are calculated on the ground with a total

of 12 images of the Sun. These 12 images are collected at different wavelength

tunings or polarisation states with a total cadence of 45 s and pixel size of

0.5′′. The second camera computes photospheric vector magnetic fields with a

cadence of 90 s. The basic physical properties of the SDO/HMI instrument, as

well as the line-of-sight magnetic field data used in this thesis, are outlined in

Table 2.6.

The spatial resolution of data collected by the SDO/HMI instrument is ideal

for analysing small-scale changes in the magnetic field in the solar photosphere

and can be used to highlight the dynamics of flaring regions. Full-disk images

of the Sun collected by the SDO/HMI instrument have delivered a plethora

of data which have been used to study AR formation, the magnetic evolution

of flaring regions, and the dynamics of MMFs amongst many other interesting

topics. Numerous techniques have been developed in recent decades with the

aim of conducting extrapolations of magnetic field lines into the upper layers
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Figure 2.8: The Sun observed by the SDO satellite on the 9th December 2014.
The central subplot depicts plasma sampled by the 1700 Å SDO/AIA filter. The
surrounding subplots show a zoomed in FOV (co-spatial to the white box) col-
lected by a range of SDO/AIA and SDO/HMI filters. The respective SDO/AIA
wavelengths or SDO/HMI observable are included in each individual subplot.
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of the solar atmosphere from these photospheric magnetograms (such as the

MPOLE package; see, for example, Longcope and Magara 2004). These tech-

niques allow for insights to be gathered about the three-dimensional topology

of the solar magnetic field and possible linkages between photospheric magnetic

field configurations and coronal responses inferred by the SDO/AIA instrument.

2.4 Data Reduction Techniques

Although the A.O. systems at modern ground-based telescopes are specifically

designed to account for the effects of atmospheric seeing, they are rarely 100% ef-

fective. Small density and temperature perturbations in the Earth’s atmosphere

cause the incident wavefront to become non-homogeneous on scales which can-

not be corrected, reducing the quality of the collected data. These perturba-

tions cause ‘blurring’ to occur in images, significantly lowering the observed

spatial resolution and limiting the usefulness of data for scientific analysis.

It is, therefore, required that further processing of the data is conducted by

the observer prior to any research. In general, data reduction techniques ex-

ploit short-exposure images and assume that the influence of the atmosphere is

‘frozen’ during the sampling. Then, multiple images (collected over a time-scale

which is almost negligible on the Sun) can be combined to return a single higher

resolution image. Two such techniques have been applied to data analysed in

this thesis, namely the speckle code (see von der Luehe 1993) and multi-frame

blind deconvolution (MFBD; described by Schulz 1993).

The speckle code used in this thesis is the Kiepenheuer-Institute Speckle

Interferometry Package (KISIP) translated into the C language by Wöger et al.

(2008). This technique has been widely tested and used in solar physics in

recent years (see, for example, Wöger et al. 2009, Morton et al. 2012, Jess

et al. 2014). Speckle interferometry requires a large number (usually 30 or

more) of individual frames to be acquired quickly (in order that the seeing

conditions and the solar atmosphere do not evolve markedly) such that a ‘real’
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image can be returned. As well as this, high signal-to-noise ratios are required,

making this technique ideal for solar observations. To construct a single high-

resolution image, the Fourier transform of each frame is calculated and the

Speckle Transfer Function (STF) is estimated from given models (depending of

Freid’s parameter, r0). By averaging these quantities through time, it is possible

to obtain a more accurate representation of the sampled FOV. In Fig. 2.9, the

left-hand side of the image plots half of the unreduced data whereas the right-

hand side plots speckle processed data depicting the change in quality after the

implementation of this technique.

In this thesis, the multi-object multi-frame blind deconvolution (MOMFBD;

developed by van Noort et al. 2005) variety of MFBD is also used. As with the

speckle procedure, the MOMFBD process requires the collection of a number of

images within a short time frame (such that the target object does not evolve

significantly during observations) as was discussed by, for example, van Noort

et al. 2005. The benefit of the MOMFBD process over speckle interferometry

is the reduced number of images required for an accurate calculation of the

atmospheric turbulence which, in turn, improving the required cadence of an

observational sequence. Indeed, van Noort et al. (2006) suggest that less than

10 frames would be required.
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Figure 2.9: A single image plotting half of one input frame (left) and half of
the corresponding speckle output frame (right). Dark and flat fields corrections
have been applied to the input image.
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Chapter 3

Statistical Properties of

Ellerman Bombs

3.1 Overview

Ellerman bombs have been of interest to the solar physics community ever since

their discovery by Ellerman (1917). However, a clear understanding of these

events has not been achieved to date, largely due to the sizes (around 1′′; see, for

example Zachariadis et al. 1987; Georgoulis et al. 2002) and lifetimes (approx-

imately 10 minutes as found by, e.g., Watanabe et al. 2011) of these features.

These are close to the spatial and temporal resolutions of even the best modern

ground-based telescopes. Small-scale Ellerman bombs are intriguing, though,

manifesting as brightenings in the wings of the Hα line profile, which exhibit

apparently energetic ‘flaring’ (rapid increases in intensity and area discussed

by, for example, Watanabe et al. 2011) characteristics. These dynamical flaring

signatures have been widely hypothesised to be a result of an energetic driver

in the photosphere, such as magnetic reconnection (see, e.g., Georgoulis et al.

2002). Unfortunately, analysis of these features is somewhat complicated as

not all brightenings in the wings of the Hα line profile are Ellerman bombs

(discussed by Rutten et al. 2013).
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In this Chapter, an automated detection algorithm will be applied to identify

bright features in the wings of Hα line profiles. Automated detection algorithms

have been used by a variety of authors for a number of studies including those

of MBPs (see, for example, Utz et al. 2010, Keys et al. 2011, Bodnárová et al.

2014) and Ellerman bombs (e.g., Watanabe et al. 2011). Therefore, such codes

provide a viable route for analysis. High-resolution, high-cadence data collected

by the DST/IBIS instrument will be used as an input to the algorithm before

a range of properties from the output are returned, including lifetimes, areas,

and energies (using the method employed by Georgoulis et al. 2002). Finally,

co-spatial SDO/HMI magnetograms and DST/ROSA G-band images are then

considered, providing information about the photospheric line-of-sight magnetic

field and the granulated photosphere, respectively, co-spatial to the DST/IBIS

FOV.

The research conducted in this Chapter is set out as follows. In Section 2,

the observational data are discussed. Section 3 details the data analysis, while

Section 4 discusses the relevance of the obtained results. This Chapter consists

of results published in: C. J. Nelson, J. G. Doyle, R. Erdélyi, Z. Huang, M. S.

Madjarska, M. Mathioudakis, S. J. Mumford, K. Reardon, ‘Statistical Analysis

of Small Ellerman Bomb Events’, Solar Phyics, Volume 283 (2013), Page 307.

3.2 Observations

In this Chapter, ground-based data from the DST/IBIS and DST/ROSA instru-

ments and space-borne data sampled by the SDO/HMI instrument are analysed.

These data were centred on a sunspot in NOAA AR 11126 (situated at approx-

imately xc=60′′, yc=−540′′ from the centre of the disc), which was selected for

observation between 15:02 UT and 17:04 UT on the 18th November 2010. The

observing sequence conducted by the DST/IBIS instrument to collect these data

consisted of a 15-point Hα line scan which sampled unevenly between −1.4 Å

to +1.4 Å (with respect to the line core at 6562.8 Å). For reference, all further
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Figure 3.1: The FOV within NOAA AR 11126 analysed in this Chapter sampled
at approximately 15:03 UT on the 18th November 2010. The three Hα images
(with wavelengths of −0.7 Å, 0.0 Å, and 0.7 Å from the line core clockwise from
the top left, respectively) in the blue wing (top left), line core (top right), and
red wing (bottom left) are speckle processed. The SDO/HMI image (bottom
right) was cropped and aligned to the DST/IBIS FOV before being plotted with
minima and maxima of ±100 G.
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measurements of wavelength in this Chapter will be given with respect to the

Hα line core. Each line scan was followed by 50 repetitions at three wavelengths

within the Hα line profile (situated at approximately −0.7 Å, 0 Å, and +0.7 Å).

Each of the sets of 50 images was then reduced using the speckle method (see

Wöger et al. 2008 for more information). Overall, 275 iterations of this sequence

were collected with a cadence of 26.9 seconds and a pixel size of around 0.097′′.

It should be noted that due to deteriorations in the seeing quality after 16:30

UT, only the first 90 minutes of observations are considered in this research

(leaving around 200 frames). Finally, a destretching algorithm was applied to

consecutive frames of the speckled images to reduce jitter.

To supplement the spectroscopic measurements obtained by DST/IBIS, the

DST/ROSA instrument was also used to collect observations of the lower solar

atmosphere. Four of the available CCD cameras collected data using a variety

of filters, however, only G-band images are analysed in this Chapter due to the

nature of this work. As with DST/IBIS data, each science-ready G-band image

was reconstructed using the speckle process, with 32 short exposure images

being combined. These data had a cadence of 0.64 seconds and a pixel size

of approximately 0.069′′ (equivalent to approximately 50 km on a transverse

scale). Finally, photospheric line-of-sight magnetograms were inferred by the

SDO/HMI instrument (with a spatial resolution of 1′′ and a cadence of 45

seconds). These data were reduced using standard SolarSoft routines before

being cropped, aligned, and de-rotated to follow the FOV of these ground-based

data.

In Fig. 3.1, the FOV of these data is plotted, with images from each of

the speckled Hα wavelength positions and a SDO/HMI magnetogram being in-

cluded. Within the Hα line wing images (top and bottom left), the sunspot

umbra and penumbra are immediately conspicuous, as well as a plethora of

small-scale structures in the surrounding plasma. Over the course of these ob-

servations, the large-scale structuring of the FOV remains relatively constant

with no major morphological changes to the sunspot and no large-scale flares
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occuring. On small spatial scales, however, the surrounding plasma changes

on the time-scale of minutes with bright network bright points (NBPs) and

Ellerman bombs, as well as the dark dynamic fibrils, rapidly appearing, disap-

pearing, and evolving in the time-series. Overall, this FOV offers an interesting

test-bed for the implementation of an automated tracking algorithm to track

bright features within the Hα line wings.

3.3 Data Analysis

3.3.1 Feature Identification

In this Chapter, an automated tracking algorithm is exploited in order to define

regions of increased intensity in the line wings of the Hα line profile. This

research aims to address whether Ellerman bombs have a lower limit of size and

area which are measureable with available data. In essence, both NBPs and

Ellerman bombs are brightenings in the wings of the Hα line profile, that are

often also visible in the wings of other chromospheric lines (for example, Ca II)

and photospheric continua (e.g., G-band, 1600 Å). The majority of researches

focusing on these features have found no evidence of a response from either

phenomena in the upper layers of the solar atmosphere, including the Hα line

core and SDO/AIA EUV filters (a recent exception to this is the work by Bello

González et al. 2013, who discussed one Ellerman bomb with a signal in the Hα

line core), agreeing with the original work on the topic, where Ellerman (1917)

identified these solar Hydrogen bombs as “a very brilliant and very narrow band

extending four or five Å either side of the line, but not crossing it”. Example

line profiles for phenomena visible in this FOV can be found in Fig. 3.2.

As can be seen in Fig. 3.2, both NBPs and Ellerman bombs are visible as

increases in intensity in the wings of the Hα line profile. Large Ellerman bombs

also have a tendency to ‘flare’ (as discussed by, for example, Watanabe et al.

2011), rapidly increasing in intensity and area such that these events are con-

spicuous in imaging data. The initial aim of this Chapter is to discuss whether
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Figure 3.2: Blue wing image (−0.7 Å) from a Hα line scan collected at approx-
imately 15:03:15 UT (top) and four representative line profiles of identifiable
features. Clockwise from the top left, these features are: the sunspot; a pixel in
the quiet Sun; a NBP; and an Ellerman bomb. The overlaid dotted lines plot
the quiet Sun profile for easy comparison.
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a coherent relationship can be found between small-scale brightenings (where

flaring could occur below the spatial resolution of these data) and the larger-

scale obvious Ellerman bomb events. To research small-scale brightenings, the

following properties are incorporated into the automated detection algorithm

for the selection of events:

• A region has an intensity higher than a user-defined level in both of the

Hα line wings.

• A bright feature has an initial spatial overlap in the line wings and an

area of greater than two pixels.

• Features ‘continue’ between frames if a sufficient intensity increase exists

in consecutive frames with a spatial overlap (for both wings).

• If multiple events with spatial overlaps exist between frames, the one

with the largest spatial correlation is assumed as the continuation of the

feature; the others are neglected.

• Any features that occur in the first or last frame are removed from the

sample so that only events with a complete lifetime are returned.

Although numerous limitations are immediately evident with respect to this

algorithm (for example, changes in seeing could artifically alter the output), the

aims of this study can still be fulfilled to a self-consistent level for further anal-

ysis. In Fig. 3.3, the output from the automated detection algorithm is plotted

for three different threshold levels. Initially, a threshold value of 120 % of the

average intensity is considered in the top left panel, where the black contours

outline the detected features. It is immediately obvious that significant noise

exists within this output, specifically relating to extremely small-scale events

at the periphery of the FOV, potentially diluting further analysis. A thresh-

old value selecting features with intensities in excess of 130 % of the average

FOV intensity identifies fewer events (contoured in blue in the top right panel of

Fig. 3.3), including all obvious Ellerman bombs evident through a visual inspec-

tion of time-lapse movies of the Hα line wings. Most features appear to occur
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Figure 3.3: DST/IBIS red wing images with contours of several brightness
threshold values overplotted with: 120 % (top left), 130 % (top right), and 140
% (bottom left), respectively. A temporally aligned HMI image (±400 G) is
also plotted (bottom right) with 130 % and 140 % contours overlaid.
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in a ring around the sunspot, often co-spatially with regions of strong, vertical

magnetic flux. Increasing the threshold value to 140 %, focuses the returned

events to a smaller ring around the sunspot (features are highlighted with the

green contours), however, several events which can potentially be classed as

Ellerman bombs (through a visual inspection) are not selected by the algo-

rithm. Most likely, changes in seeing and the requirement that brightenings

over this threshold must be achieved in both wings for an event to be registered

will cause the algorithm to drop relevant features from frame-to-frame with a

threshold this high. Therefore, an intensity threshold value of 130 % of the

background intensity (as chosen by Georgoulis et al. 2002) is deemed suitable

to research the aims of this Chapter using these data.

Fig. 3.3(d) plots the vertical magnetic field within this FOV sampled by the

SDO/HMI instrument and overlays the spatial positioning of features detected

with a threshold of 130 % with blue contours. Assuming the co-spatial relation-

ship between brightenings in the Hα line wings and strong vertical magnetic

fields, it is obvious that a good co-alignment is achieved. For example, at ap-

proximately xc = 55′′, yc = −543′′ a short line of negative polarity magnetic

flux that is mirrored exactly by detected features. Another example (corre-

sponding to a region of positive polarity flux) can be observed at xc = 80′′,

yc = −519′′. As both NBPs (Berger and Title 2001, Rutten et al. 2013) and

Ellerman bombs (Georgoulis et al. 2002, Pariat et al. 2004, Pariat et al. 2007)

are highly cited as forming co-spatially with strong vertical magnetic fields, this

algorithm is, therefore, assumed to return features relevant to the research aims

of this Chapter.

After deciding on an intensity threshold value, one final condition must be

considered to create two individual sub-sets from the returned data. Specifi-

cally, an area threshold must be selected such that events which fit both the

intensity and area estimates of Ellerman bombs found in previous researches

can be isolated as a subset and compared to the overall output from the algo-

rithm. In this Chapter, the approximate spatial resolution of the Flare Genesis
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Experiment is used as this area threshold as this provides a method to contrast

results with the literature. Therefore, a subset of 42 events with peak areas over

0.64′′2 are considered to be the null data set of features against which the output

from the algorithm can be tested. In the following sections, these events shall

be called Ellerman bombs. As well as this, 3528 further features are registered

over the course of the 90 minute duration of these data.

3.3.2 Lifetime of Detected Features

Fig. 3.4 plots the lifetimes of Ellerman bombs and other features analysed in

this Chapter. Ellerman bombs are included in blue and have an approximate

lifetime average of 7.2 minutes (with a relatively large standard deviation of 6

minutes), comparable to previous researches (such as Zachariadis et al. 1987,

Georgoulis et al. 2002, Watanabe et al. 2011). The similarity between the areas,

intensity increases, and lifetimes of these Ellerman bombs and respective prop-

erties in previous articles is taken as a confirmation that the selection criteria

included in this Chapter are sufficient. Considering the remainder of features

(plotted in red of Fig. 3.4), the function y ∝ exp(−x/C) (where y and x are

the total number and lifetime of Ellerman bombs respectively and C is a con-

stant) accurately fits the trend plotted in the histogram for lifetimes less than

20 minutes. Interestingly, this function was also found to fit the distribution of

bright points in the research presented in Watanabe et al. 2011.

The short-lived nature (less than 5 minutes) of some Ellerman bombs is in-

triguing and agrees with the recent suggestion by De Wijn et al. (2009) that

magnetic restructuring can occur on scales below the current spatial and tem-

poral resolutions of modern ground-based instruments. As the thresholding

technique applied to discern these events from other brightenings in the wings

of the Hα line profile is taken as the significantly worse spatial resolution of the

Flare Genesis Experiment, it is possible that smaller Ellerman bombs existing

within these data are not included in the sample plotted in blue in Fig. 3.4.

Therefore, the average lifetime of all features identified by the algorithm was
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Figure 3.4: An Ellerman bomb-lifetime frequency plot. Ellerman bombs with a
maximum area larger than 0.64′′2 (circular diameter of approximately 0.45′′) are
included with blue bars such that a comparison to estimates made in previous
researches can be completed. All other features are plotted in red. The vertical
white lines depict the average lifetimes of the two samples.
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calculated and found to be around 2.6 minutes (with a large standard deviation

of 2.6 minutes). Unfortunately, as the cadence of these data is 26.9 seconds, and

a large number of features occur with lifetimes below one minute, it is difficult

to assert with any confidence that a lower limit on lifetimes has been found.

In future Chapters, research will be conducted to further understand whether

short-lived events (such as those returned by this algorithm) could potentially

be Ellerman bombs or whether a lower limit on their lifetime is evident.

3.3.3 Area of Detected Features

In the literature, Ellerman bombs have often been described as elliptical bright-

enings with lengths on the order of 1′′ (as was discussed by, for example, Zachari-

adis et al. 1987, Georgoulis et al. 2002, Pariat et al. 2004). Obviously, the

parameters used for feature identification in this Chapter return a large num-

ber of extremely small, less bright phenomena (which can be easily observed

in Fig. 3.3) which are of interest in this Section. If one considers that the

spatial and temporal resolutions of the data analysed in this Chapter are one-

fifth and one-seventh of the Flare Genesis Experiment resolutions, respectively,

the identification of more small-scale events with the same intensity threshold

(as used by Georgoulis et al. 2002) is unsurprising. Overall, the majority of

features identified in this Chapter have diameters much smaller than the esti-

mates of Ellerman bomb lengths in previous researches. Indeed, only 42 events

have maximum areas through their lifetime of over 0.64′′2. The average area

properties of all features are plotted in Fig. 3.5.

During their evolution, Ellerman bombs often exhibit rapid changes in area

and intensity over the course of seconds to minutes (see, for example, Qiu et al.

2000, Watanabe et al. 2011). These dynamical processes are often referred to as

‘flaring’. This flaring can consist of the rapid extension of thin ‘arms’ away from

the main structure or of a more general area expansion and shall be discussed

in more detail in the following Chapters of this thesis during detailed analyis

of confidently analysed Ellerman bomb events. Through a visual inspection
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Figure 3.5: The average area of each feature analysed in this Chapter through
time. Again, the blue features reach an area over 0.64′′2 during the course of
their lifetime and the red columns indicate all other events.
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of large-scale features, such dynamical evolution was evident, giving further

confirmation at the accuracy of this algorithm. The sub-structuring (such as

the extension of the narrow arms) found within Ellerman bombs in these data

occurs on scales well below the size of the overall structure. Therefore, small-

scale features with average areas close to the spatial resolutions of these data

could flare but on scales smaller than currently observable. As the average

area of all smaller features returned by this algorithm is 0.11′′2, much higher

resolution observations that those analysed here would be required to decipher

such flaring.

3.3.4 Energetics of Detected Features

In the previous sections of this Chapter, numerous Ellerman bombs and other

bright features in the wings of the Hα line profile have been identified around

a sunspot in NOAA AR 11126. Analysing data from the Flare Genesis Experi-

ment, Georgoulis et al. (2002) estimated the energies of each Ellerman bomb in

each individual frame (Prad) and over the course of their entire lifetime (Erad).

In this Section, the model used in that article is applied to all of the events iden-

tified in these data regardless of size. In Georgoulis et al. (2002), the maximum

and total energy release for Ellerman bombs was calculated as follows:

Prad ≈ εradfVEB;max and Erad ≈
PradD

2
(3.1)

where εrad is the net radiative loss rate initially discussed by Nagai (1980) and

estimated as:

εrad ≈ a(T )n2χg(T ), (3.2)

f is the radiative filling factor (assumed as being unity), VEB;max is the maximum

volume of the Ellerman bomb and D is the lifetime of each feature. Defining

a(T ) as the radiative reduction coefficient, n as the total numerical density of

electrons and neutral hydrogen, χ as the ionization degree and g(T ) as a semi-

empirical function of the temperature from Nagai (1980). Assuming T ≈ 104
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K and n ≈ 1012 cm−3, Georgoulis et al. (2002) found εrad ≈ 0.89 erg cm−3

s−1. Letting the height of an average Ellerman bomb be 100 kilometres, it is

possible to produce estimates for the maximum and total energies of each of our

Ellerman bombs (as plotted in Fig. 3.6). Fitting power laws to these data at

different spacings gives indexes of between -0.18 and -2.09, the latter of which

is the same as the index found by Georgoulis et al. (2002).

It is found that the energetics of the features studied in this Chapter are

around three to four orders of magnitude smaller than those stated in Georgoulis

et al. (2002). Simply, this discrepancy can be explained by the short lifetimes

(often a factor of six less than those discussed by Georgoulis et al. 2002) and

small areas (around 2-3 orders of magnitude smaller) of many of the events

analysed in this Chapter. The difference is unsurprising as many of these events

may not fit into the category of Ellerman bombs. A log-log plot of the number

of features with respect to energy is plotted in Fig. 3.6 and appears to show a

power-law function, dN(x)/dx ∝ x−α. Interestingly, this total energy release

histogram shows energies in the region 2 × 1022- 4 × 1025 ergs. The energies

returned in this study have been suggested as the possible energies of ‘nano-

flares’ by, for example, Parnell and Jupp (2000). However, as Ellerman bombs

occur in the photosphere, and only in certain conditions, and do not routinely

have a coronal component (see, for example, Schmieder et al. 2004), the role of

these events in heating the corona is likely minimal.

It should be firmly noted that these values are based on a large number of,

possibly erroneous, assumptions such as the height over which Ellerman bombs

form, the temperature and total numerical densities assumed here. For example,

the temperature of T ≈ 104 K assumed in this Section is, perhaps, a factor of

two larger than average photospheric temperatures (as discussed by Vernazza

et al. 1981) and the modelled temperature of Ellerman bombs (see, for example,

Fang et al. 2006). The individual brightness of each event is also not included in

this method, therefore not differentiating between extremely bright (potentially

high-energy) events and less bright (potentially low-energy) features. Overall,
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Figure 3.6: The total energy release for each feature, taking into account the
measured lifetime of each event returned from the algorithm. Once again, large
features are plotted in blue. The black lines overlaid on the plot indicate three
power laws calculated for the data with indexes of (from left to right) -0.18,
-1.13, -2.09.
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it is suggested that the estimates of Ellerman bomb energies presented in this

Chapter should be further considered and either corroborated or dismissed by

future studies.

3.3.5 Evolution and Motion of Features

Recent analyses of Ellerman bombs have detected horizontal motions exhibited

by these features (see, for example, Georgoulis et al. 2002, Watanabe et al.

2011). Specifically, these motions are of interest due to the assertions of previ-

ous researches (see , for example, Denker et al. (1995), Nindos and Zirin (1998),

Watanabe et al. 2011) who suggested that Ellerman bombs could migrate with

moat flows around sunspots. As well as this, numerous authors have discussed

the recurrence of Ellerman bombs (see, e.g, Dara et al. 1997, Qiu et al. 2000,

Georgoulis et al. 2002) from specific spatial positions. It is, therefore, meaning-

ful to analyse the motions of the features selected by the algorithm used in this

Chapter. The top frame of Fig. 3.7 plots the whole FOV of these data sam-

pled in the Hα red wing. Numerous bright features are immediately evident,

many of which appear to move along flows in a similar manner to discussions

in previous researches. With respect to recurrence, all recurring bright features

(potentially Ellerman bombs) within these data displayed one of two distinct

traits. The black lines overlaid on the top frame of Fig. 3.7 outline the slits

used to calculate time-distance diagrams to display each type of recurrence in

the two distance-time plots.

The middle panel of Fig. 3.7 plots a time-distance diagram averaged across

the width of slit ‘(b)’ overlaid on the top frame. This averaged slit technique

was exploited due to the motions of these features, and their small-scale nature,

meaning it proved difficult to isolate a single line of pixels which accurately por-

trayed the observed motions through time. In this frame, two temporally sep-

arated bright features (labelled with arrows numbered ‘1’ and ‘2’, respectively)

are observed to form at the same spatial position. Both of these brightenings

flow away from the sunspot at speeds comparable to moat flows (such as the
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Figure 3.7: The initial frame of these DST/IBIS red wing data (top frame).
Two distance-time diagrams plotting regions (b) and (c), respectively. Arrows
1 and 2 (middle frame) highlight the recurring bright features formed at the
same spatial position. Arrows 3 and 4 indicate the recurrence of an apparently
linked event. 80



values of 1 km s−1 found by Sheeley 1969) before fading from view. These prop-

erties are comparable to the traits attributed to Ellerman bombs by Nindos and

Zirin (1998). It is easily inferred that the temporal separation of the formation

of these events is around 40 minutes, however, much shorter separations were

also observed within these data.

The lower panel of Fig. 3.7 depicts the second definition of recurrence that is

prevalent in these observations. Many examples of extreme brightenings in the

wings are observed which then fade before becoming brighter again, often after

migrating away from the sunspot. Bars are situated around the bright features

(indicated by arrows ‘3’ and ‘4’) to show the extent of the lifetime of each

event. One should note, however, that this is an averaged distance-time plot

and, therefore, does not accurately convey relative brightness (e.g. if 20 pixels

are around 110 % of the background brightness, this may appear similar to a ten

pixel 130 % brightness). A visual inspection of the feature plotted in the lower

panel in imaging data indicated that the two bright features (highlighted by the

vertical bars) had the following morphological properties: 1) A bright feature

appeared in the Hα line wings; 2) This feature then reduced in intensity before

propagating with the moat flow away from the sunspot; 3) The intensity of this

event increased again in a different spatial position. Many Ellerman bombs tend

to follow such a pattern of fading before regaining brightness at a later time,

perhaps due to a recurrence of a triggering event such as magnetic reconnection.

In the following Chapters, such apparent motions shall be analysed in further

detail in order to understand the occuring processes more clearly.

3.3.6 Correlation Between G-band MBPs and Detected

Features

After coalignment of the Hα line-wing and G-band datasets, a thorough visual

inspection indicated that a co-spatial relationship between many of the features

studied in this Chapter and MBPs situated within inter-granular lanes was

common. However, other features, including larger events appeared to have no
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links to MBPs. A representative zoomed FOV from a representative frame is

plotted in Fig. 3.8 in order to display this relationship. Feature A in Fig. 3.8,

for example, is a relatively large event situated over an intergranular lane, co-

spatial to a group of MBPs in the G-band image. As has been shown by e.g.

Jess et al. (2010a), it is possible that explosive phenomena similar to Ellerman

bombs can be driven by interactions between two photospheric MBPs within

inter-granular lanes.

As well as relatively large brightenings, smaller events (such as those in-

dicated by arrows B and C in Fig. 3.8) can also occur co-spatial to MBPs.

Indeed, feature C does not increase in size compared to its form in this image

throughout its short lifetime. These two typical examples show a similar spatial

relationship between MBPs within intergranular lanes and the small features

selected by this algorithm as that possessed by larger Ellerman bomb events. It

has been reported that two MBPs interacting can create Ellerman bomb bright-

enings in the Hα line wings (Jess et al. 2010a); however, for events B and C,

no evidence of fragmented MBPs is evident (i.e. only a single MBP is observ-

able). Whether fragmenting occurs on scales smaller than the spatial-resolution

presented here must be answered using higher-resolution data.

It is possible that the potential link between small bright regions in the

wings of the Hα line profile and MBPs supports the assertion that a sub-set of

the smaller events, which have been neglected in other studies, could perhaps

be Ellerman bombs. De Wijn et al. (2009) proposed that magnetic structur-

ing within the photosphere should happen on a spatial scale well below the

diffraction limit of current telescopes; this has been supported by numerical

simulations run by Crockett et al. (2010) who found the mode MBP size to be

around 45000 km2 (or a circular diameter of approximately 0.32′′) and an equal

number of events with sizes 10000 km2 and 100000 km2 (circular diameters

of 0.16′′ and 0.49′′, respectively). Therefore, if there is a connection between

magnetic structuring and Ellerman bombs as widely anticipated (Georgoulis

et al. 2002; Pariat et al. 2004; Jess et al. 2010a; Watanabe et al. 2011), then
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Figure 3.8: A G-band image with basic intensity contours from a single Hα
line wing image overlaid in black (left frame). Three characteristic examples of
brightenings co-spatial with MBPs are shown with arrows. A temporally aligned
Hα blue wing image with the arrows pointing to the characteristic features is
also plotted (right frame).
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high-resolution data, collected during periods of excellent atmospheric seeing, as

presented here, could find Ellerman bombs to be, on average, extremely small.

It is then possible that many of the small-scale features plotted in Fig. 3.4 could

be Ellerman bombs.

3.4 Discussions

In this Chapter, a statistical analysis has been undertaken which has focused

on small-scale brightening events in the wings of the Hα line profile, specifically

with respect to potential lower limits of the properties of Ellerman bombs.

These events have been widely linked to the photospheric line-of-sight magnetic

field, as well as to magnetic reconnection (see, for example, Zachariadis et al.

1987, Georgoulis et al. 2002, Watanabe et al. 2011). The initial statistical results

presented in this Chapter were derived from the use of an automated detection

algorithm which selected brightenings in speckled images sampled within the

Hα line wings (at approximately ±0.7 Å) by the DST/IBIS instrument. Each

detected brightening was tracked through time before being read-out such that

its properties (for example, lifetime, area, and energy) could be analysed during

this research.

Overall, the automated detection algorithm identified 3570 potential Eller-

man bomb events for analysis within 90 minutes of data. To test the algorithm,

events over the spatial resolution of previous researches were included as a null

dataset. These features (which had maximum areas over 0.64′′2) had a lifetime

of approximately 7.2 minutes (with a standard deviation of 6 minutes) which

is comparable to previous researches, hinting that these features form a sub-set

of traditional examples of Ellerman bombs. The average lifetime of all other

detected features was 2.6 minutes (with a standard deviation of 2.6 minutes),

which is less than previous estimates of Ellerman bomb lifetimes (which range

between 5 − 15 minutes as presented by Georgoulis et al. 2002; Pariat et al.

2004; Watanabe et al. 2011). The average area of the smaller features found in
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this research was 0.41 ′′2 which, again, is much smaller than previous estimates

of Ellerman bombs.

Using the method suggested by Georgoulis et al. (2002), the energy of each

of the small-scale events was estimated. These features had diminished values

from previous studies with these data yielding estimated energies for the features

returned by the algorithm of between 2×1022 and 4×1025 ergs. Fitting a num-

ber of power laws to the small-scale events analysed in this Chapter returned

indexes between -0.18 and -2.09. However, due to the occurrence of many of the

identified features with resolutions close to the limitations of the instruments

used to collect these data, it is possible that these power laws do not accurately

capture the background physics and, therefore, should be studied further in

future research. These energy estimates (combined with the decreased lifetimes

and areas of many of the smaller scale features) imply that Ellerman bombs,

if they make up a subsection of the events plotted in red in Figs. (3.4)-(3.6),

may form on smaller-scales than has previously been observed. This possibil-

ity agrees well with the arguments of De Wijn et al. (2009), who suggested

that magnetic reconnection and structuring could occur on spatial scales well

below current observational resolutions. The continued advancement of obser-

vational instruments should lead to more detailed studies of small-scale events

as analysed here to discuss their morphology in comparison to larger events.

The motions of the selected features were also analysed through time. Of

specific interest was the concept of recurrence which has been discussed by a

number of authors including Dara et al. (1997), Qiu et al. (2000), Georgoulis

et al. (2002). A thorough visual inspection of these data indicated that two

distinct recurrence types for identified features occurred. The first involved

multiple features forming in the same spatial position at different times, before

exhibiting horizontal motions consistent with flows around a sunspot (see, for

example, Sheeley 1969). The second mechanism involved a bright region, again

displaying horizontal motions, which diminished in intensity and area before

appearing to flare again in a different spatial location later. In the later Chapters
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of this thesis, these recurrence methods shall be discussed in further detail.

Finally, links to the photospheric magnetic field were inferred through SDO/HMI

magnetograms and DST/ROSA G-band images. These instruments showed a

strong correlation between detected features and line-of-sight magnetic field

measurements and MBPs, respectively. However, this correlation was not one-

to-one and a number of detected bright features did not display any co-spatial

relationship with inferred magnetic fields. It is possible that such features be-

long to the sub-set of emission events in the wings of the Hα line wings, described

as pseudo-Ellerman bombs by Rutten et al. (2013). In the coming Chapters of

this thesis, the small-scale dynamics exhibited by Ellerman bombs and their

links to the photospheric magnetic field will be examined in more detail.
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Chapter 4

Comparison of Numerical

Magnetic Reconnection to

Observational Signatures of

Ellerman Bombs

4.1 Overview

In order to advance the research presented in the previous Chapter, it is im-

portant to understand the feasibility of photospheric magnetic reconnection as

a potential driver of the Ellerman bomb phenomena. Within ARs, examples

of cancellation can often be observed through a visual inspection of magne-

togram data (such as MMFs as discussed by: Sheeley 1969; Harvey and Harvey

1973). This observed cancellation is an indication of the rapid evolution of

the magnetic configuration within the photosphere, and could be a signature

of a number of processes including magnetic reconnection or the submergence

of magnetic fields. With respect to Ellerman bombs, however, these observed

cancellation features are interesting due to their compatibility with the car-

toon reconnection models suggested by Georgoulis et al. (2002). In this Chap-
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ter, therefore, high-resolution, high-cadence observations from the DST/IBIS

and DST/ROSA instruments are considered in order that small-scale Ellerman

bomb events situated within NOAA AR 11579 can be studied. These data are

combined with SDO/AIA and Hinode/SOT images which provide information

about the co-aligned upper solar atmosphere and the photospheric line-of-sight

magnetic field, respectively. To progress this work on from a mere co-spatial

relationship between Ellerman bombs and magnetic features, magnetic recon-

nection events within state-of-the-art numerical simulations made using the

MPS/University of Chicago Radiative MHD (MURaM) code by Dr. Sergiy

Shelyag are compared to these observations.

Modern magnetic field data collected by instruments (including SDO/HMI)

are a wonderful tool for analysing large-scale structures in the solar atmosphere.

At the spatial and temporal scales of photospheric features such as Ellerman

bombs, however, these data are, unfortunately, less useful. For example, the

pixel sizes of data collected by the SDO/HMI instrument are larger than the

average size of the features detected by the algorithm in the previous Chapter,

meaning subtle reconfiguration of the magnetic field on scales of hundreds of

kilometers could go unnoticed. Due to this, it has proved difficult to identify

whether certain topologies are required for the formation of Ellerman bombs

(e.g., whether bi-poles are required or if uni-polar fields can also drive these

features). Strong observational evidence supporting photospheric magnetic re-

connection as the driver for Ellerman bombs hypotheses has, therefore, been

difficult to establish.

In response to this, several authors have conducted numerical simulations of

the lower solar atmosphere to investigate the link between magnetic fields and

brightening events in the photosphere. Using a two-dimensional implementation

of the Coordinate Astronomical Numerical Softwares (CANS) code, Isobe et al.

(2007) suggested that an emerging flux loop could incite reconnection events

throughout the solar atmosphere by propagating upwards from the photosphere.

It was suggested that Ellerman bombs could be formed in the photosphere before
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the flux loop rose further, into the corona, to form features such as X-ray jets.

Following on from this, simulations using the three-dimensional CANs code

were conducted by Archontis and Hood (2009). These authors found U - and V -

shaped magnetic topologies (similar to those suggested as topologies likely to be

conducive to magnetic reconnection by, e.g., Georgoulis et al. 2002, Pariat et al.

2004, Pariat et al. 2007) co-spatial with increases in temperature in the lower

solar atmosphere which were hypothesised to be comparable to Ellerman bomb

events in the Hα line wings. These researches, however, did not attempt any

reconstruction of line profiles which could be directly compared to observations.

The lack of simulated line profiles for Ellerman bombs can be attributed to

the difficulty of simulating the Hα line profile (see, for example, Leenaarts et al.

2012, Rutten 2012) as has been previously discussed. In this Chapter, therefore,

Ellerman bombs are identified in the Hα line wings before the response of the

Fe I 6302.5 Å profile to the driving mechanism is recorded. The Fe I 6302.5 Å

wavelength has been extensively studied using the MURaM code, specifically

with respect to magnetic cancellation. Indeed, Danilovic̀ (2009) presented an

extensive study of simulated magnetic flux cancellation in the solar photosphere

using the low-photospheric absorption lines: Fe I 6302.5 Å, Fe II 5197.58 Å, and

Fe II 4923.92 Å. One magnetic reconnection event within MURaM simulations

was studied, showing increases in temperature at the inversion line between

two opposite polarity regions. In addition to this, Shelyag et al. (2007) found

intensity enhancements and splitting of the Fe I line core co-spatial with bi-polar

magnetic field concentrations in the photosphere, suggesting that signatures of

reconnection could be observed in the 6302.5 Å line profile.

In this Chapter, observations and simulations are combined to investigate

the Ellerman bomb phenomena with specific respect paid to the signatures of

these events in Fe I 6302.5 Å line profiles and the relationship between these

events and the line-of-sight photospheric magnetic field. The output from the

MURaM code simulations are then compared with observational signatures.

This Chapter is structured as follows: In Section 2, a brief overview of the
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Figure 4.1: A snapshot of the simulations analysed in this Chapter. The top
row depicts the vertical component of the magnetic field (left) and temperature
(right) both measured at 500 km height above the continuum formation level.
The bottom row plots the normalized G-band intensity (left) and Fe I 6302.5 Å
line strength, S, multiplied by the line Doppler-shift, ∆λ (right). The cancella-
tion feature discussed in this Chapter is marked by a short, white vertical line
in the top left panel (xc=4.5 Mm, yc=1.5 Mm).

simulations conducted by Dr. Sergiy Shelyag is given. Section 3 then introduces

the observations analysed in this Chapter, while Section 4 contains the data

analysis. Finally, a discussion of the relevance of these results is made in Section

5. The research presented in this Chapter is published in: C. J. Nelson, S.

Shelyag, M. Mathioudakis, J. G. Doyle, M. S. Madjarska, H. Uitenbroek, R.

Erdélyi, ‘Ellerman Bombs - Evidence for Magnetic Reconnection in the Lower

Solar Atmosphere’, The Astrophysical Journal, Volume 779 (2013), Page 125,

c© AAS.
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4.2 Simulated Domain and Analysis

The MURaM radiative MHD code (Vögler et al. 2005) was used to construct the

simulated data analysed in this Chapter. A numerical box was formed with a

horizontal extent of 12×12×1.4 Mm3, which was sampled by 480×480×100 grid

cells returning pixel sizes of 25 km and 14 km, respectively. These simulations

began from a well-developed snapshot of non-magnetic photospheric convection

before a bi-polar, checkerboard magnetic field structure with unsigned magnetic

field strength of 200 G was introduced into the domain. The length of the

individual squares of constant magnetic field was chosen to be 2 Mm. After

the magnetic field was introduced, the simulated photosphere was allowed to

evolve for approximately 1.5 solar hours. During the first few minutes of the

simulation, large parts of the magnetic field were advected into the intergranular

lanes and some magnetic flux was cancelled due to the opposite-polarity initial

configuration (as was discussed by, e.g., Cameron et al. 2011). Magnetic field

concentrations of opposite polarity with unsigned strength of up to 1.6 kG at the

continuum formation level were subsequently formed, which often moved due to

the turbulent nature of the convection, came closer together, reconnected and

cancelled out. In order to further understand these data, a radiative diagnostics

code RH (see Uitenbroek 2001) was then used to calculate the Fe I 6302.5 Å

and Hα line profiles.

In Fig. 4.1, a snapshot of these simulations is plotted approximately 1.5

hours after the beginning of these simulations. This allowed convection to

become established and the magnetic field to be advected into intergranular

lanes. The cancellation region selected for analysis in this Chapter is marked

by a short vertical, white line in the top left panel at approximately xc=4.5

Mm, yc=1.5 Mm. The vertical component of magnetic field (top left panel)

and temperature (top right panel) measured in the photosphere 500 km above

the 5000 Å continuum formation level are plotted. Structures reminiscent of

inter-granular lanes are immediately evident as well as localised temperature

increases co-spatial to small, magnetic bi-poles. The G-band image (lower left
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frame) depicts optimally these inter-granular lane structures and is comparable

to actual observations at this wavelength. Finally, the Fe I 6302.5 Å intensity

is plotted (bottom right panel). Data similar to these have been extensively

tested and implemented in researches such as Shelyag et al. (2007), Shelyag

et al. (2011), Cegla et al. (2013).

In Fig. 4.2, the slice of the simulated domain indicated by the slit overlaid

on Fig. 4.1 is plotted for a number of parameters. The top two rows depict

the magnetic field strength and the temperature of the slit with height. It

is immediately obvious that a temperature enhancement exists at a spatial

position of around x=0.6 Mm. This corresponds to the region of U -shaped

magnetic fields (highlighted by the black and white lines which indicate negative

and positive polarity fields, respectively). This opposite polarity flux region is

observed to come together through time within these data before it restructures,

or reconnects, as can be seen in this frame. This temperature enhancement

corresponds well with the research of Fang et al. (2006) who attributed the

increased in intensity in the Hα line wings within Ellerman bombs to localised

density and temperature enhancements in the photosphere.

The bottom two frames of Fig. 4.2 plot profiles for the synthesised Fe I

6302.5 Å and Hα absorption lines for each column in the above slits. At the

reconnection site, it is possible to identify the heightened line wing intensity

within the Hα line profile similar to those observed for Ellerman bombs (at

approximately x=0.6 Mm). The Fe I 6302.5 Å line profile, however, displays

an increase in intensity in the line core, visible co-spatial to the temperature

increase and cancellation. In Fig. 4.3, line profiles calculated from a single

column within the reconnection site are plotted through time. Once again

the increased emission in the Fe I 6302.5 Å line core and the Hα wings are

visible. Finally, the physical properties of these brightenings can be crudely

estimated from these plots. Overall, the length of the brightening in the Hα

line wings and its lifetime can be estimated at approximately 100 km and 1

minute. These properties are smaller than for an average Ellerman bomb yet
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Figure 4.2: A reconnection event in the simulated photosphere. The frames
correspond to the vertical magnetic field with white and black lines overlaid for
positive and negative polarity (top row), the simulated temperature with the
field lines overplotted (second row), the Fe I 6302.5 Å line profile for each pixel
in the x-direction (third row) with a ‘gap’ in the reconnection region (x ∼ 0.6
Mm), and the Hα line profile. Note the brightenings in the wings of the Hα
line profile comparable to an Ellerman bomb (bottom row).93



Figure 4.3: Line profile-time plots from a slit at approximately x=0.6 Mm in
Fig. 4.2 including the Fe I 6302.5 Å (top row) and Hα line profiles (bottom
row). Between 2.5 and 4.5 minutes, the Fe I 6302.5 Å profile includes a ‘gap’
corresponding to the reconnection event and Hα shows line wing increases.
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they are not unreasonably different. In the following sections, observational

signatures of Ellerman bombs will be presented such that these simulated data

can be tested.

4.3 Observations

The ground-based data analysed in this Chapter were obtained with the DST/IBIS

and the DST/ROSA instruments during a period of good seeing. The DST/IBIS

instrument conducted a 26 frame sequence, repeated at a cadence of 5.5 seconds

during the time series, sampling a sunspot within AR 11579. These data were

collected between 14:50:59 UT and 15:05:34 UT on the 30th September 2012.

The observational sequence included 17 Hα wavelength points, taken with un-

equal step sizes ranging between ± 1.0 Å from the line core, and 9 Fe I 6302.5

Å positions finely sampled between 6302.4 Å and 6302.75 Å. The pixel size of

these data was approximately 0.097′′. Two DST/ROSA CCDs were also em-

ployed during this time frame, sampling the granulated photosphere with the

G-band filter and the chromosphere using the Ca II K 3933.7 Å wavelength.

The reconstructed, science-ready cadence of data from these wavelengths was

2.112 seconds and 8.448 seconds, respectively. Both wavelengths were observed

with approximate pixel sizes of 0.069′′.

Space-borne SDO/AIA and Hinode/SOT data were used to supplement the

ground-based data analysed in this Chapter. Data from the SDO/AIA instru-

ment have pixel sizes of 0.6′′ and a cadence of either 24 seconds (for the 1600

Å and 1700 Å filters) or 12 seconds (for all other filters used in this Chapter).

Further to this, photospheric line-of-sight magnetic fields were inferred using

Stokes V/I data collected by the Hinode/SOT instrument. These data have a

pixel size of 0.155′′ and a cadence of around one minute. Although the cadence

of these data is slightly longer than SDO/HMI data, the increase in spatial

resolution (by a factor of three) is essential when analysing small-scale events

such as Ellerman bombs. Conversions between the Stokes V/I parameter and
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Figure 4.4: The FOV from the Hinode/SOT Stokes V/I (top left), DST/IBIS
Hα blue wing (top right), Fe I 6302.5 Å line core (middle left), and Hα line
core (middle right). An extended FOV from the SDO/AIA 1700 Å filter is
plotted in the bottom frame. The black box indicates the FOV plotted in the
above frames and the contours depict the NBPs sampled by the Hα blue wing,
confirming the alignment. These data were collected at 14:51 UT.
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true magnetic-field intensity (Gauss) have been achieved with Hinode/SOT data

(see, for example, Lites and Ichimoto 2013) in the past, however, in this Chapter

no such conversion is attempted. This can be justified by the fact that a linear

factor can be applied to Stokes V/I data in the non-umbral and non-penumbral

pixels to return magnetic field strength. As these data are considered only for

their spatial positions and proportional cancellation rates, a possibly erroneous

conversion to magnetic-field intensity would provide no benefit here.

In Fig. 4.4, the FOV analysed in this Chapter is presented for five wave-

lengths. In a similar manner to Chapter 3, this FOV contains a sunspot which

is surrounded by a number of smaller-scale magnetic elements indicative of line-

of-sight magnetic fields. In the top row of Fig. 4.4, Hinode/SOT Stokes V/I

data (left frame) and the Hα blue wing (right frame) are plotted. The middle

row plots both the Fe I 6302.5 Å line core (left frame) and the Hα line core

(right frame). It is clear that neither the sunspot nor the small-scale magnetic

elements are observable in the Hα line wing. The bottom frame of Fig. 4.4 de-

picts a larger FOV sampled by the SDO/AIA 1700 Å filter, outlining the wider

structure surrounding this sunspot. A black box and black contours outline

the network elements visible in the Hα blue wing and confirm the alignment of

these instruments.

4.4 Data Analysis

4.4.1 Ellerman Bomb Identification

Within these data, a number of Ellerman bombs are immediately obvious even

through a brief visual inspection of the Hα line profiles. These features exhibit

intensity enhancements and show evidence of ‘flaring’ (as discussed by Watan-

abe et al. 2011), or an explosive nature, during their lifetimes. In Fig. 4.5, a

zoomed region of the FOV analysed in this Chapter is plotted for a number

of wavelengths, highlighting a typical Ellerman bomb event (during its forma-

tion period) identified by an increase in brightness in the Hα line wings. The
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Figure 4.5: In the top row, (left to right) coaligned Hinode/SOT Stokes V/I,
SDO/AIA 1700 Å, DST/ROSA G-band, and DST/IBIS Fe I 6302.5 Å line core
images are plotted. The bottom row (left to right) depicts the same FOV
sampled at the DST/IBIS Hα blue and red wings (approximately ±0.75 Å),
DST/IBIS Hα line core, and SDO/AIA 304 Å. The black box highlights an
example Ellerman bomb event. This FOV is plotted at the temporally closest
image for each wavelength to 15:02:30 UT.

Figure 4.6: (a) Hα line profile for two spatial positions within the box in Fig. 4.5.
The bold and dashed lines correspond to the Ellerman bomb event and quiet
Sun, respectively. (b) Co-spatial Fe I line profiles.
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lower photosphere shows evidence of a brightening co-spatial to the Ellerman

bomb, with intensity increases being observed in the SDO/AIA 1700 Å and

DST/ROSA G-band images (as has been discussed by, e.g.: Qiu et al. 2000,

Jess et al. 2010a, Nelson et al. 2013a). In the Fe I 6302.5 Å line core, a co-spatial

brightening event is also observable; however, no signal of this event is observed

in the SDO/AIA 304 Å images. These observations are typical of Ellerman

bombs and support the hypotheses of a number of authors such as Matsumoto

et al. (2008b), who found evidence that these events were excited in the upper-

photosphere. The top row of Fig. 4.5 plots (from left to right) the Hinode/SOT

Stokes V/I, SDO/AIA 1700 Å, DST/ROSA G-band, and DST/IBIS Fe I 6302.5

Å line core images. The bottom row (from left to right) depicts the DST/IBIS

Hα blue wing, red wing, and line core images as well as the SDO/AIA 304 Å

filter.

In Fig. 4.6, the Hα and Fe I 6302.5 Å line profiles for the Ellerman bomb

depicted in Fig. 4.5 are plotted such that the simulations defined in Section 4.2

can be compared. It should be noted that no events have sustained intensities

brighter than 150 % of the background intensity during the course of these data

(possibly due to effects of seeing and the lack of data reduction techniques)

and, hence, 140 % of the background emission is used as a rough guide for

identification of these features. Due to this, the current analysis is limited

to large Ellerman bomb events, which show sustained brightening and flaring.

The line profiles observed in Fig. 4.6 agree with both the definition of Ellerman

bombs within the literature (originally put forward by Ellerman 1917 and later

confirmed by, for example, Georgoulis et al. 2002, Matsumoto et al. 2008b,

Watanabe et al. 2011) and, interestingly, the MURaM simulations considered

in this Chapter. Due to the co-spatial formation of these features with bi-poles

identified in Stokes V/I data, it is compelling to suggest that the observed and

simulated features are comparable and should be analysed further in detail.

Overall, seven potential features were identified for further analysis, each of

which was co-spatial to a bi-pole as inferred by the Hinode/SOT Stokes V/I

99



data. Four of these events were comparable in size and lifetime to typical

Ellerman bombs within the literature, however, three of these features were

much smaller (less than 0.5′′ in diameter).

4.4.2 Temporal Evolution of Ellerman Bombs

As has been previously discussed in the earlier Chapters of this thesis, data

collected through fast line scans often exhibit significant stretching and jitter

which are difficult to remove from science images. These motions (introduced

by the Earth’s atmosphere) add complexities to the interpretation of signals

such as oscillations in area or short-lived intensity enhancements which are evi-

dent in time series. The influence of such stretching is particularly telling when

analysing small-scale features like Ellerman bombs, with circular diameters less

than 0.5′′ and lifetimes of the order minutes. The longer time-scale evolutions

of Ellerman bombs in these observations were, however, studied. Results were

achieved by producing a sequence of images for each Ellerman bomb for inves-

tigation. In Fig. 4.7 a sample of these images are plotted through time for the

event depicted in Fig. 4.5. It is of interest to note the Hα line wing (blue and red

wings are plotted in the top and second rows, respectively) and the Fe I 6302.5

Å line core (third row) display brightenings which are co-spatial to a bi-polar

region (inferred from the Hinode/SOT Stokes V/I image in the bottom row).

Through time, this Ellerman bomb clearly evolves in both area and intensity

similar to traditional Ellerman ombs (as discussed by, for example, Georgoulis

et al. 2002, Watanabe et al. 2011, Rutten et al. 2013).

All of the seven features identified in this Chapter displayed co-temporal

brightness and area enhancements in both the Hα line wings and the Fe I 6302.5

Å line core (as represented by the feature plotted in Fig. 4.7). As the predicted

formation heights of the Hα line wings and Fe I 6302.5 Å line core are similar,

this co-temporal behaviour is unsurprising. Interestingly, each of the smaller

features discussed here exhibited similar flaring behaviour to the larger events

(except on a smaller scale), allowing for the possibility that these features are
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Figure 4.7: A zoomed FOV of a representative bi-polar region and a corre-
sponding Ellerman bomb event in the Hα blue wing (top row), Hα red wing
(second row), Fe I line core (third row), and Hinode/SOT Stokes V/I (bottom
row) over time. Each column is the temporally closest frame for each wave-
length to 14:52:36 UT, 14:55:38 UT, 14:58:39 UT, 15:01:39 UT, and 15:04:45
UT, respectively. Lightcurves for the full observational period are plotted in
Fig. 4.8.
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Event Bi-pole Cancellation Emergence Size
1 Yes Yes No Typical
2 Yes No No Typical
3 Yes Yes No Typical
4 Yes No Yes Typical
5 Yes Yes No Small
6 Yes Yes No Small
7 Yes Yes No Small

Table 4.1: Properties of the seven events analysed in this Chapter, including
the links to the photospheric magnetic field and its evolution.

driven by the same mechanism. When the co-temporal evolutions of these

events are used as a base such that the simulated profiles presented in Fig. 4.3

can be compared, analogous evolutions are found at these line positions. How-

ever, at the simulated reconnection sites, a propagation of a reconnection is

observed down through the solar atmosphere. This is hypothesised to occur

due to expansion of the magnetic field concentrations towards the upper layers

of the numerical box. The decreasing gas pressure allows reconnection to occur

earlier in the upper-simulated photosphere than in the lower regions. It could

be expected, therefore, that the thermal effect of reconnection would first be

seen in the parts of the Hα line profile sensitive to the higher solar atmosphere,

followed by intensity increases in the Hα wings and reduced opacity in the Fe I

6302.5 Å line core. As has been widely discussed, this is not the case, with no

signal being observed in the Hα line core (see Chapter 3). Future analysis of

simulations with a larger height would be required to understand whether this

simulated reconnection is also limited to the lower solar atmosphere and, if so,

why.
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4.4.3 Links to the Photospheric Magnetic Field

The flaring properties of Ellerman bombs has previously been attributed to the

impulsive nature of the hypothesised driver of these features, namely magnetic

reconnection. In a similar manner to the analysis presented in the previous

Section, it was possible to analyse the photospheric line-of-sight magnetic field

component through time to detect evolutions in the localised structuring. In

Table 4.1, the properties of each of the Ellerman bombs discussed in this Chapter

are presented. Notice that all of these events form co-spatially with a magnetic

bi-pole. Further to this, six of these bi-poles evolve visibly through time with

five appearing to cancel and one appearing to be a site of flux emergence. This

supports the validity of the aim of this Chapter which is to compare the output

from realistic solar simultations to observational data. A brief discussion of the

event which does not form co-spatially with cancellation or emergence should be

included here. It is possible that magnetic field dynamics are occurring on sub-

resolution levels (for example a cancellation rate comparable with the emergence

of new flux in the region) or that this event is a pseudo-Ellerman bomb, i.e.,

it is a region of raised intensity due to strong magnetic concentrations. With

these current data is would be difficult to conclude firmly either way, however,

due to the spectral properties of this event being comparable to the other six

features observed in these data, this event will be considered as an Ellerman

bomb for the remainder of this Chapter.

Lightcurves for the event depicted in Fig. 4.7 are plotted in Fig. 4.8. These

lightcurves were made by focusing the image used in Fig. 4.7 onto the opposite

polarity region such that no new, strong flux appears within the FOV in the

lifetime of these observations. The total positive flux was then calculated by

summing all positive values within the box (vice versa for the negative polarity)

for each frame before plotting the normalised total flux over time. In Fig. 4.8(a),

the smoothed Hα line wing (black and maroon for ± 0.75 Å, respectively) and

the Fe I 6302.5 Å line core (orange) intensities are plotted through time for the

same box. In Fig. 4.8(b) the negative polarity (black), positive polarity (orange)
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and total flux (maroon) are also plotted. Over the period of these observations,

there is a significant decrease in the flux of this small bi-polar region, dropping

to around 68 % of the original flux, and only 30 % of the negative polarity

flux. This decrease in flux is easily observed through the sequence of images

presented in Fig. 4.7. Within a 15 minute period, a decrease of this order

due to magnetic reconnection would suggest that any corresponding energy

release must be strong, and could produce large temperature increases in the

surrounding atmosphere.

The IBIS data (in Fig. 4.8 [top]) reaches a maximum intensity for each of

these lines at approximately 15:02 UT, maintaining a peak for around two to

four minutes. This peak is identified as ‘flaring’ within this Ellerman bomb,

associated with both increased intensity and area. The short-lived peak is more

evident within the Fe I 6302.5 Å line core, where an eight percent increase in

intensity is observed within around one minute. Co-temporally, a rapid decrease

in negative (and total) polarity flux in Fig. 4.8 (bottom), which continues until

the end of these data, is observed. A second, smaller peak is observable at ap-

proximately 14:54 UT and corresponds to a large drop in both negative polarity

and total flux within this FOV. Although this co-temporal brightening and flux

cancellation occurs for several examples within this dataset, the cadence and

spatial resolution of the Hinode/SOT data analysed in this Chapter are insuffi-

cient to accurately isolate and measure the magnetic evolution of these bi-poles,

or MMFs. In Chapter 6, a larger dataset of magnetograms will be analysed in

conjunction with high-resolution spectral data to further this research.

Hα wing brightening events co-spatial to uni-polar regions, such as the

strong field at (33, -302) in Fig. 4.5, were also studied within these data. The

average area of brightenings over uni-polar fields appeared to be larger than bi-

polar Ellerman bombs. Smaller, shorter-lived intensity variations (comparable

to changes in seeing level) were also common implying that rapid, high-energy

releases may not be leading to these brightenings and, hence, that the increase

in intensity in the Hα line wings and Fe I 6302.5 Å line core may be due to
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Figure 4.8: The intensity evolution of the DST/IBIS data over time (top row)
plotting the Hα blue wing (black), the Hα red wing (orange), and the Fe I
6302.5 Å line core (maroon). Each line represents the average intensity within
a small box, focused on the potential Ellerman bomb which contains no other
localised intensity increases above the background level. The bottom frame plots
the evolution of the estimated magnetic field (using Hinode/SOT Stokes V/I
data) over time. The negative-polarity flux (black line), the positive-polarity
flux (orange line), and total unsigned flux (maroon line) are plotted. As flux
strengths are not considered here, each individual line is normalised to itself in
order to highlight the general property of flux cancellation. A decrease of flux
to around 68 % of the original strength is measured. Such cancellation will be
discussed further in Chapter 6.
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the strength of the magnetic field (analogous to the pseudo-Ellerman bombs

discussed by Rutten et al. 2013 and the reduced opacity simulated by Shelyag

et al. 2007, respectively). Within such events, the shape of the intensity en-

hancement is often different between the imaged Hα wings (which is not true

of the bi-polar Ellerman bombs, such as the event presented in Fig. 4.7). It is

found that brightenings occurring over uni-polar regions still show significant

intensity increases (often above thresholds currently applied within automated

Ellerman bomb tracking, such as 130 % or 150 % of the background inten-

sity) within the Hα line wings, however, the line profiles frequently show excess

intensity in one wing over the other.

The event at (35, -298) in Fig. 4.5, for example, displays co-spatial intensity

increases for short periods during these observations and would, using thresh-

olds alone, be classified as an Ellerman bomb for these times; however, for the

majority of these observations, the line wings do not evolve asymmetrically (as

can be seen in Fig. 4.5). It can be suggested that comparable temporal and

morphological evolutions between the Hα line wings are an important factor in

Ellerman bomb identification (similar to that shown in Fig. 4.7) and that any

events which show non-comparable spatial evolutions (e.g., one large lobe with

moderately increased intensity and an area of around 1′′2 in the red wing and a

small, extremely intense 0.3′′2 brightening in the blue wing) between the wings

are, in fact, pseudo-Ellerman bombs.

4.5 Discussion

In this Chapter, analysis of multi-instrument, multi-wavelength observations

and numerical simulations has been conducted to investigate the formation

mechanism of Ellerman bombs as small-scale brightening events in the Hα line

wings, commonly found to occur in emerging ARs. Numerous possible Eller-

man bomb events were found within these data through a rigorous inspection of

the 162 DST/IBIS Hα line profiles. The evolution of seven events which were
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deemed as candidate Ellerman bombs was then studied in order to identify

whether these features showed instances of flaring (rapid changes in morphol-

ogy attributed to an energetic driver by Watanabe et al. 2011). In order to

investigate the link between Ellerman bombs and magnetic fields, co-spatial

Stokes V/I data collected by the Hinode/SOT instrument were also analysed.

Any small opposite polarity flux regions observed to be co-spatial with Eller-

man bombs and isolated from other strong fields were recorded. Morpholog-

ically, these small-scale flux regions were observed to change on the order of

minutes, with six of the seven bi-poles showing some evidence of cancellation or

emergence. The evolution of a large, flaring Ellerman bomb event and the cor-

responding flux region is shown over the 15 minute observational period studied

in this Chapter in Fig. 4.7.

This research has also focused on the signatures of Ellerman bombs ob-

servable in the Fe I 6302.5 Å line profile. It was found that each Ellerman

bomb within these data corresponded to a brightening in the line core of the

Fe I 6302.5 Å absorption line. A representative example of the co-spatial, co-

temporal profiles is plotted in Fig. 4.6, with an imaging representation of this

relationship being depicted in Fig. 4.7 through time. The bright features within

the Fe I 6302.5 Å line core were observed to exhibit rapid morphological changes

reminiscent of the flaring properties identified within the Hα line wings. Over-

all, four of the Ellerman bombs and the brightenings in the line core of the

Fe I 6302.5 Å line profile have lifetimes of the order minutes and diameters of

around 1′′, close to values found in previous researches (see, for example, Geor-

goulis et al. 2002, Watanabe et al. 2011). Three other features exhibit similar

morphological traits but with smaller diameters of around 0.5′′.

In Fig. 4.8, the evolution of one example Ellerman bomb co-spatial to a

bi-pole identified in Hinode/SOT data is considered. Unfortunately during this

time interval, only this single event was suitably isolated such that accurate

estimation of its magnetic flux through time could be considered. Considering

a zoomed region in which no other magnetic field elements were evident during
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these observations, the magnetic flux of both polarities of this bi-pole through

time were measured, as well as the average intensity of the Ellerman bomb in

the spectral observations (calculated using a similar box). When plotted, this

Stokes V/I signal through time exhibits a decrease in total flux by approximately

32 %. The co-temporal and co-spatial link between this rapid cancellation of

flux and the bright regions in the photospheric wavelengths potentially implies

that a release of magnetic energy into the surrounding plasma by a small-scale

magnetic reconnection event is the driver of this feature. However, it should

be firmly noted that other explanations (such as flux submergence) could also

explain the observed cancellation. Unfortunately, even relatively high-cadence,

high-resolution magnetograms, such as those studied here, are unable to detect

the difference between these two scenarios.

The influence of the magnetic field on the Fe I 6302.5 Å line has been dis-

cussed in previous researches (see, e.g., Shelyag et al. 2007, Danilovic̀ 2009).

Shelyag et al. (2007) suggested that regions of strong flux, especially close to

magnetic inversion lines, where opposite polarites converge, could lead to a re-

duction in absorption in the line core, as well as splitting (where two intensity

minima are observed within the line profile). Danilovic̀ (2009) found that abnor-

mal (non-rotationally symmetric) Fe I 6302.5 Å Stokes V profiles were co-spatial

with both strong magnetic fields and magnetic reconnection in the photosphere.

It has, therefore, been suggested that the formation of the Fe I 6302.5 Å line

profile is intrinsically influenced by the magnetic field. A combination of these

results could be used to intuitively expect coaligned Ellerman bomb and Fe I

6302.5 Å brightenings as were found here; however, as the ground-based obser-

vations used in this research could not be used to measure the Stokes V profile

and, due to both the spatial and spectral resolutions, did not exhibit evidence of

splitting within the Fe I 6302.5 Å line core, it is suggested that further research

be carried out when sufficiently high-resolution data are available.

In order to further understand these observations, a model box was con-

structed to simulate the solar photosphere using the MURaM code of radiative
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magnetoconvection by Dr. Sergiy Shelyag. Within the model box, the line pro-

files from small bi-polar regions, similar to the representative example presented

within this Chapter were inferred. Interestingly, these simulated cancellation

features exhibited similar traits to Ellerman bombs forming over bi-polar re-

gions. Further study of the evolution of these small-scale events over time

in the simulations was undertaken, showing temperature increases co-spatially

with magnetic inversion lines at bi-polar regions. Interestingly, the relationship

noted in the observations between the Hα and Fe I 6302.5 Å line profiles also

appeared in the simulations, which showed increased intensity in the line wings

and line core, respectively. The reconnection events analysed in this article

appear to be of Sweet-Parker type, however, a more in-depth study of the MU-

RaM code itself and the physics which is occurring at the potential reconnection

site is required to fully understand the mechanism which is occuring within the

simulations.

Overall, the observed and simulated photospheres analysed in this article,

exhibit analogous line profiles co-spatial to bi-polar regions, namely brighten-

ings within the Hα line wings and an increase in intensity in the Fe I 6302.5

Å line core. It can be suggested that this analysis has presented the clearest

evidence to date, that the sub-class of brightening events known as Ellerman

bombs in the Hα line wings are formed by magnetic reconnection in the solar

photosphere. However, it should be noted, that improved temporal, spatial and

spectral resolution when inferring both photospheric imaging lines and mag-

netic field is required before observations are capable of definitively supporting

magnetic reconnection.
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Chapter 5

Morphological Traits of

Ellerman Bombs at the Limb

5.1 Overview

The physical properties of Ellerman bombs and their relationship to the photo-

spheric line-of-sight magnetic field have been extensively discussed in the previ-

ous Chapters of this thesis (as well as in this comprehensive literature written

about these phenomena since their discovery by Ellerman 1917). It has recently

become popular to research the formation and morphology of these small-scale

phenomena at the solar limb, where any vertical motions are be immediately ev-

ident without the ambiguity associated with Doppler measurements. Through

an analysis of two ARs observed at different viewing angles (one near the disc

centre and one at the limb), Roy (1973) were the first to attempt to quantify the

vertical properties of these features, inferring that Ellerman bombs exhibited

extensions away from the surface of the Sun. These results were later corrobo-

rated by Kurokawa et al. (1982), who provided the first measurements of lengths

and widths of Ellerman bombs at the limb, finding values of approximately 800

km and 450 km, respectively. More recently, Watanabe et al. (2011) presented

further research on these features at a viewing angle of µ=0.67 (close to the
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solar limb), returning similar size estimates as Kurokawa et al. (1982) but also

measuring upward flows with speeds which averaged at approximately 8 km s−1.

In order to further the understanding of the community about the Eller-

man bomb phenomena, specifically with respect to their manifestation at the

solar limb, this Chapter has two separate aims. Initially, the evolution and

morphology of Ellerman bombs observed at the solar limb in a high-resolution,

high-cadence, Hα line profile dataset (collected using the CRISP instrument

at the SST in La Palma and supplemented by images sampled by SDO/AIA)

will be analysed. By providing estimates of the widths, vertical extensions,

and speeds of any Ellerman bombs observed in this dataset, this study cements

the results of previous researches that these phenomena are small-scale appar-

ent explosive events in the Hα line wings that appear to have no influence on

the upper solar atmosphere. Secondly, this Chapter presents two case studies

which demonstrate the complex nature of Ellerman bomb events (again, ob-

served at the solar limb). Both analysed features display distinct, previously

unseen characteristics which offer further in-sight into the formation mechan-

sism and physical properties of Ellerman bombs.

Overall, this Chapter is structured as follows: In Section 2, the observations

analysed in this Chapter are described. Section 3 outlines the data analysis

which forms the core of this research. A discussion about the relevance of these

results with regards to the current understanding of the community is then

included in Section 4. The results obtained through conducting this research

are published in: C. J. Nelson, E. M. Scullion, N. Freij, J. G. Doyle, &

R. Erdélyi, ‘Small-Scale Structuring of Ellerman Bombs at Solar Limb’, The

Astrophysical Journal, Volume 798 (2015), Page 19, c© AAS.

5.2 Observations

The ground-based data analysed in this Chapter were collected using the SST/CRISP

instrument during a period of good seeing on the 21st June 2012. Data appro-
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Figure 5.1: The FOV of AR 11506 analysed within this Chapter, sampled at
four positions within the Hα line scan: The far blue wing (approximately −1.8
Å; top left); the near blue wing (−0.95 Å; top right); the Hα line core (0 Å;
bottom left); and the red wing (+0.95 Å; bottom right). The black boxes in each
image indicate three regions of interest analysed in detail later in this Chapter.
A known fringing artifact of the image reconstruction process is visible in the
black circle in the far blue wing image at approximately (883, −260).
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Figure 5.2: The FOV analysed in this Chapter in the far blue wing (left hand
frame). The diagonal line highlights the pixels used to make the intensity by
distance plot (right hand frame). A small white line in the left hand image
indicates the approximate position of the solar limb in the image corresponding
to the dashed, vertical line in the right hand frame.

priate for this study were collected by sampling a large FOV at the solar limb,

centred at xc=893′′, yc=-250′′ (with respect to the disc centre) between 7:15:09

UT and 7:48:25 UT. This FOV contained three sunspots from AR 11506. Hα

line scans, sampling 35 evenly spaced spectral positions (each sampled eight

times per sequence) between −2 Å and +1.2 Å from the line core (situated at

6562.8 Å) were obtained, and processed using the MOMFBD (see van Noort

et al. 2005 for details) image restoration method. This followed the standard

procedures in the reduction pipeline for CRISP data (de la Cruz Rodŕıguez et al.

2015) and preceeded the post-MOMFBD correction for differential stretching

suggested by Henriques (2012) (also see Sekse et al. 2012 for more details).

Overall, the pixel size of these data are 0.059′′ (which corresponds to approxi-

mately 43 km in a transverse scale) and the temporal cadence is approximately

7.7 seconds. In the following sections of this Chapter, all measurements will be

given in terms of the transverse scale and not with respect to the pixel size. Co-

temporal and co-spatial data sampled by the SDO/AIA (see Lemen et al. 2012)
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instrument are included in this analysis in order to assess whether the vertical

components of Ellerman bombs can influence the upper solar atmosphere.

In Fig. 5.1, an overview of the FOV analysed within this Chapter is plotted

for four separate positions within the Hα line wings. Clockwise from the top

left image, data sampled by narrow-band filters at −1.8 Å, −0.95 Å, +0.95 Å,

and 0 Å are represented. These data were collected at approximately 7:36:20

UT during a single sequence conducted by the SST/CRISP instrument. Within

this FOV, portions of three sunspots (two in the southern part of the FOV and

one in the northern section) are observable, as well as a large plage region in

the centre of the line wing images. All Ellerman bombs suitable for analysis

in this Chapter occur close to these sunspots. The absorption which occurs in

the Hα line core is immediately obvious when comparing the line wing images

to the line core. The underlying photosphere is obscured by the chromospheric

material in the Hα line core (in the bottom left image), including the apparently

horizontal fibril structures which form an apparent canopy. It is possible that

these features could act as a barrier to limit mass flow from the lower atmosphere

into the upper atmosphere, hence, acting as an upper limit for Ellerman bomb

lengths. Three boxes with labels ‘A’, ‘CS1’, and ‘CS2’ are overlaid on each of

the images, highlighting the three Ellerman bombs discussed in later sections

of this Chapter (represented in Fig. 5.6, Fig. 5.7, and Fig. 5.8, respectively).

5.3 Data Analysis

5.3.1 Ellerman Bomb Statistics

Within the Hα line profile data analysed here, Ellerman bombs were easily

identified as significant increases in intensity, apparent from around 0.5 Å ei-

ther side of the line core. As was stated in Chapter 3, the appropriate threshold

for identifying Ellerman bombs must be considered for each individual dataset.

As these data sample a FOV at the solar limb, the background intensity across

an representative image was not constant (as can be seen in Fig. 5.2) meaning a

114



Figure 5.3: Normalised line profiles of two representative Ellerman bombs com-
pared to the background intensity of the nearby quiet Sun. The Ellerman bomb
line profiles (solid lines) for box ‘A’ (left) and box ‘CS1’ (right) in Fig. 5.1 com-
pared to the local quiet Sun (dotted line in both frames). The dashed lines
shows the inverted (for clarity) difference in intensity (normalised against the
peak Ellerman bomb intensity) between the quiet Sun and Ellerman bomb line
profiles.

more pragmatic Ellerman bomb identification technique than a general thresh-

old was required. In this Chapter, therefore, Ellerman bombs are defined as

events which have intensity increases of greater than 1.5 times the background

intensity from the nearby quiet Sun in the wings of the Hα line profile and also a

dynamic, explosive nature through time (evidenced by visually inspecting imag-

ing data). As well as this, fragmenting Ellerman bombs observed within these

data were classified as being a single event, with all fragments being tracked

and contributing to the total lifetime. If an event became completely unobserv-

able and did not recur for five frames, any new co-spatial brightening was then

classified as a new Ellerman bomb event. By employing these guidelines, any

potential influence of NBPs (such as those situated in the centre of the far blue

wing FOV in Fig. 5.1 at xc=893′′, yc=-250′′), that have a smaller increase in line

wing intensity within these observations when compared to the Ellerman bomb

excess emissions, on this analysis was removed. Overall, 22 Ellerman bomb

events were confidently identified within these observations for further analysis.
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Three regions in which Ellerman bombs occur during these observations are

highlighted for reference in Fig. 5.1 by black boxes. Each of these events is

analysed in detail in the following Sections.

In Fig. 5.3, normalised line profiles for two of the representative Ellerman

bomb events highlighted in Fig. 5.1 (solid lines; scaled to the maximum intensity

of the Ellerman bomb profile) are plotted. The significant intensity increases of

these events are immediately evident when compared to the local quiet Sun (the

dotted lines which are also scaled to the maximum intensity of the Ellerman

bomb profile). To highlight the percentage increase in intensity, the inverted

(for visual ease) difference between the quiet Sun and the Ellerman bomb events

(dashed lines) is also plotted. The difference between the line-wing intensities

of the Ellerman bombs and the quiet Sun peaks at over −0.5 indicating a

doubling of the intensity within the explosive Ellerman bomb structure. Such

high gradients between Ellerman bombs and the background atmosphere are

not observed in every frame through the lifetime of an event as the intensity

of individual features appears to vary on timescales of seconds (similar to the

behaviour discussed by Qiu et al. 2000). Whether this is an artifact of changes

in seeing conditions over short time-scales or a physical property of the observed

Ellerman bombs remains to be seen and should be analysed in future research.

It should again be stressed, therefore, that an acceptable thresholding value to

be used by an automated tracking algorithm (as used in earlier Chapters of this

thesis) or in Ellerman bomb identification (such as in this Chapter) is highly

dependent on a number of factors such as the instrumentation, data processing

techniques, and the seeing at the time of the observations.

After the identification of all observed Ellerman bombs in these data, each

event was carefully analysed to determine its lifetime and area. As the defi-

nitions between Ellerman bombs and the background are strong in these data

(as is shown in Fig. 5.3), the estimation of the lifetime was easily completed

by creating a movie of the evolution of each event through time. The start

and end frames of each feature were identified as the initial and final frames
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Figure 5.4: Basic statistical properties of the Ellerman bombs observed in these
data. (Top) Scatter plot of peak Ellerman bomb length vs lifetime. (Middle)
Scatter plot of Ellerman bomb width against lifetime. (Bottom) Lifetime dis-
tribution of the 22 identified Ellerman bombs, with all but three events existing
for less than 10 minutes. The red circles indicate the mean of both variables
for each of the scatter plots. 117



in which a structure (systematically identified through visual inspection) with

intensity over the threshold value of 1.5 times the local background intensity

(corroborated in each frame using the CRISPEX tool; see Vissers and Rouppe

van der Voort 2012) was observable. Overall, the average lifetime of Eller-

man bombs in these data can be estimated as approximately 7 minutes (with

a standard deviation of around 4 minutes), comparable to previous researches

by, e.g., Roy (1973), Watanabe et al. (2011), and in Chapter 3. The shortest

and longest-lived events observed in this dataset had lifetimes of 3 and 20 min-

utes, respectively; however, it should be noted that a number of shorter-lived

brightenings which exhibited similar traits to the identified Ellerman bombs

but did not quite achieve the required intensity threshold, did exist meaning

it is not possible to suggest that these data reveal a lower limit for Ellerman

bomb lifetimes. The distribution of lifetimes within these data is plotted as a

histogram in Fig. 5.4c. In their research on Ellerman bombs at the solar limb,

Roy (1973) inferred that limb events had a shorter lifetime than those observed

on the solar disc. Our results do not support this assertion, however, a larger

statistical sample of Ellerman bombs would be required to actively negate this

hypothesis.

The relationship between the peak lengths and lifetime and the peak widths

and lifetime of the Ellerman bombs observed in this dataset are plotted in

Fig. 5.4a and Fig. 5.4b, respectively. A general trend appears to exist within

these data that longer lived Ellerman bombs have larger lengths and widths (as

previously discussed by Roy 1973), however, the small sample size considered in

this Chapter is insufficient to understand whether this apparent relationship is

statistically significant. It is of more interest in this Chapter to understand the

profile of the evolution of the vertical motions of these events through time. In

Fig. 5.5, three Ellerman bombs are presented in the top row (including event ‘A’

in the far column and two further representative events) before a time-distance

diagram of each feature is plotted below, including the on-set and fading of

each event. Each of the distance-time plots appear to depict a parabolic tra-
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Figure 5.5: Three representative Ellerman bomb (top row) with Ellerman bomb
‘A’ (highlighted in Fig. 5.1) plotted in the right hand column. Black contours
outline the regions with intensity over 1.5 times the average background inten-
sity and the black lines indicated the pixels selected to produce the distance-
time diagrams (bottom row). These distance-time diagrams depict the rise and
fall phases of these Ellerman bombs. The horizontal dashed lines indicate the
frames plotted in the top row for each Ellerman bomb, respectively.
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jectory (whereby the tip of the Ellerman bomb appears to extend away from

the footpoint before slowing and then falling back down) for the intensity in-

creases through time with these Ellerman bombs exhibiting obvious rise and fall

phases. Although the morphological traits of these features are nicely portrayed

in Fig. 5.5, it is important to note that the calculation of upward flow speeds

was conducted using measurements of the peak height of the event from frame-

to-frame and not using distance-time diagrams. This was due to the horizontal

motions of Ellerman bombs through time, which meant that no slit accurately

tracked the tip of the feature through time.

In Fig. 5.6, Ellerman bomb event ‘A’ is plotted through time to highlight

the parabolic trajectory using imaging observations. The two left hand columns

plot the Hα line wings (at approximately ±1 Å), the right central column plots

the Hα line core, and the far right column plots the co-spatial plasma inferred

by the SDO/AIA 304 Å filter. The Ellerman bomb appears simultaneously and

co-spatially in both wings before extending away along a constant trajectory

(indicated by the black lines in the Hα line wings). Overall, 20 of the 22

Ellerman bombs analysed in this Chapter appear to have tips which extend and

contract with similar parabolic trajectories to the event plotted in Fig. 5.6. For

the 20 Ellerman bombs which evolved with a parabolic trajectory, an average

vertical speed of around 8.9 km s−1 was measured (from onset to peak extension)

with a standard deviation of approximately 3.2 km s−1. Most events attain even

higher velocities during their most explosive periods. It was also found that 12

of the Ellerman bomb events analysed here also displayed obvious transverse

motions, averaging at 1.7 km s−1 (and a standard deviation of 1.4 km s−1).

The average horizontal speed measured for these events is slightly higher than

previous estimates (by, e.g, Georgoulis et al. 2002, Watanabe et al. 2011, Nelson

et al. 2013a). This can be accounted for due to the influence of several extremely

dynamic Ellerman bombs which had apparent motions over 3 km s−1. Two of

these events will be examined in case studies later in this Chapter.

Co-spatial EUV data inferred by the SDO/AIA instrument were also ex-
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Figure 5.6: The evolution of Ellerman bomb event ‘A’ (from Fig. 5.1) in the blue
(left) and red (middle left) wings of the Hα line profile (with wavelengths at
approximately ±1 Å), the co-spatial Hα line core (middle right), and SDO/AIA
304 Å filter (right). The black line of length 1200 km in the Hα line wings shows
the approximate path of the Ellerman bomb for reference. The images in the
top row were taken at 17:32:30 UT.

121



amined for each Ellerman bomb. As Ellerman bombs consist of a vertical ex-

tension, it is important to assert whether a signature is observed in the upper

atmosphere. The majority of previous studies have found no signal even within

the Hα line core (see, for example, Zachariadis et al. 1987, Watanabe et al.

2011, Vissers et al. 2013), despite recent work by Bello González et al. (2013)

suggesting that some Ellerman bombs may penetrate into the chromosphere.

The Ellerman bombs analysed in this Chapter show no influence in the upper

atmosphere, sampled by both the Hα line core (plotted in the third column

of Fig. 5.6) and the EUV SDO/AIA filters (plotted in the fourth column of

Fig. 5.6). As these data were collected at the solar limb and the majority of

previous researches of the Ellerman bomb phenomenon have revealed no coronal

response (see, for example, Schmieder et al. 2004), this is unsurprising as the

large optical depth (the amount of plasma through which the light must travel)

would cause any localised intensity changes which might occur to be obscured.

The recent launch of the Interface Region Imaging Spectrograph (IRIS; De

Pontieu et al. 2014) satellite has provided high-resolution co-spatial observations

of the Transition Region for research, and has, to date, driven interesting re-

sults with regards to Ellerman bombs. Initial analysis of IRIS data around ARs

by Peter et al. (2014) indicated the existence of small-scale transient explosive

features co-spatial to bi-polar structures observed in photospheric line-of-sight

magnetograms. These authors hypothesised that such brightening features, ob-

served in plasmas with temperatures up to 105 K could be the response of the

upper-atmosphere to Ellerman bombs, however, no Hα or other lower atmo-

spheric diagnostic was available for their study. Vissers et al. (2015) continued

research into the link between Ellerman bombs and such IRIS ‘bombs’ find-

ing that a subset of the IRIS transients did appear co-spatially with Ellerman

bombs. These authors did suggest, though, that smaller temperature enhance-

ments of around 2× 104 K (still much higher than the 1.5× 103 K predicted by

semi-empirical modelling) could be the reason for the observed signal.

One of the most interesting questions which is now open with regards the
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links between Ellerman bombs and these IRIS ‘bombs’ is the lack of response

from the Hα line core to the supposedly high-temperature plasma. Potentially,

material within the Ellerman bombs themselves is being heated to Transition

Region temperatures but is still not reaching the heights of the chromosphere

meaning increased emission from Ellerman bomb at wavelengths corresponding

to the Hα line core is scattered by the chromospheric canopy, leading to no

signature being observed. It will be interesting to further study this relationship

in future work, particularly with the upcoming Daniel K. Inouye Solar Telescope

(DKIST) which should provide incredible spatial resolutions and, hence, allow

detailed comparison of Hα line profiles to semi-empirical models of the solar

atmosphere to understand whether the potential temperature increases within

Ellerman bombs are formed in only some small region of the overall structure

or only occur in a small number of events.

As the intensity enhancements indicative of Ellerman bombs occur in both

wings of the Hα line profile simultaneously and exhibit parabolic trajectories

(as found in this Chapter), it is possible that these observables are a result of

increased temperature and density in localised regions. Simulations of Ellerman

bombs within the lower solar atmosphere (by, e.g., Archontis and Hood 2009;

Nelson et al. 2013b) have associated these traits with the process of magnetic

reconnection in the photosphere. The observations presented within this Chap-

ter corroborate the hypothesis that magnetic reconnection in the photosphere

could lead to the flow of plasma within the lower solar atmosphere, hence cre-

ating density increases in the local atmosphere similar to those observed here;

however, it should be noted that no magnetic field data of sufficient resolution

comparable to Ellerman bomb cross-sections are available for comparison to the

SST/CRISP data analysed in this Chapter.

5.3.2 Case Study: I

As has been previously discussed in this Chapter, it is common that large,

apparent horizontal motions are observed within Ellerman bombs during their
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Figure 5.7: An illustration of the propagation of the Ellerman bomb analysed
in Case Study I for both the blue (−1 Å; top) and red (+1 Å; middle) wings
of the Hα line profile, as well as the SDO/AIA 304 Å filter (bottom). The
almost northward propagation of this event appears to be parallel to the near-
by penumbra and follows the bright track evident in the third frame. In the
second frame for each wavelength, three small sub-structures are highlighted
with arrows. The line wings are originally sampled at 7:29:54 UT and each
subsequent image is separated by 146.3 seconds.
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lifetimes within these data. How these horizontal motions lead to interactions

with plasma in the wider atmosphere is of specific interest and could prove key

in assessing the potential influence of Ellerman bombs within the solar photo-

sphere. In previous studies, it has proved difficult to accurately link Ellerman

bomb events with any other solar phenomena and, hence, they have been anal-

ysed as localised events. Here, one specific example of a region which appears to

be susceptible to the formation of a number of Ellerman bombs in a structured

manner is presented. Ellerman bomb events within this region display strong

horizontal motions and appear to trigger other, similar events in different spatial

locations as if through a ‘train’ of energy release.

In Fig. 5.7, the evolution of the northern event emphasised in Fig 5.1 with

the label ‘CS1’ is plotted, with respect to time for both −1.1 Å (top row), +1.03

Å (middle row), and the SDO/AIA 304 Å filter. The first column depicts the

original Ellerman bomb early in its lifetime, before the fracturing of this event

into three separate sub-features is evident in the second column (with each sub-

structure indicated by arrows). Each independent fracture appears to slowly

propagate away from the original footpoint along the bright trail evident in the

Hα wing images in the third column. After the original Ellerman bomb fades

for long enough such that it is deemed to have ended, a second large Ellerman

bomb event occurs, as evidenced in the final column. This rapid morphology is

reminiscent of the evolution of the magnetic field simulated by Archontis and

Hood (2009) where an emerging flux rope formed in a ‘sea-serpent’-like manner,

reconnecting at a number of individual ∪s to form a larger over-lying loop. It

would be of interest, in future studies, to continue the work of Pariat et al.

(2004) (who analysed Flare Genesis Experiment magnetic field measurements)

to understand whether evidence of such small-scale flux emergence (on scales

of a few arcseconds) is apparent co-spatially with events within high-spatial

and temporal resolution magnetic field data collected by the SST/CRISP in-

strument. Unfortunately, due to the nature of the observing sequence analysed

here, no such magnetic field measurements are available for analysis in this
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Chapter.

In previous researches, Ellerman bombs have been shown to occur co-spatially

with inter-granular lanes (see, for example, Denker et al. 1995, Nelson et al.

2013a). It is possible that the bright trail which appears to guide the Ellerman

bombs is evidence of a localised network structure, or an inter-granular lane.

On-disc observations of the Hα line wings often include weak intensity increases,

reminiscent of this trail, co-spatial to strong magnetic fields inferred using mag-

netograms or G-band data. It is, therefore, possible that these Ellerman bombs

are propagating along a defined structure and, hence, that further information

could be derived by analysing on-disc examples of such events. High-resolution,

multi-wavelength observations close to the disc centre should be further inves-

tigated in future work to infer whether these events are indeed guided by the

magnetic field and, specifically, whether this splitting and small-scale explosive

nature is evidence of the sustained cancellation of magnetic fields (which would

further support the magnetic reconnection hypothesis).

It has been widely reported that Ellerman bombs both migrate (for example,

Denker et al. 1995, Nindos and Zirin 1998) and appear to recur, but what has not

been presented yet in the detail included in this Chapter, is a direct link between

two apparently separate, and highly structured, events. This does pose several

important questions which can be discussed here. For example, what process is

leading to the creation of multiple ejections (which all follow similar parabolic

trajectories) within this individual Ellerman bomb? If magnetic reconnection

is indeed the driver of Ellerman bombs, then, are we observing a ‘train’ of

reconnection through a ‘sea-serpentine’ morphology as simulated by Archontis

and Hood (2009)? Thus, are sequential and apparently connected Ellerman

bombs a signature of multiple stages of small-scale flux emergence leading to

the emergence of a larger flux rope, which could potentially extend into the

outer layers of the atmosphere? The spatial separation between the initial and

final Ellerman bomb event is around 2200 km, hence, this would suggest that a

single reconnection event in a unstable region could lead to a sustained energy
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Figure 5.8: The evolution of the Ellerman bomb analysed in Case Study II
at +1 Å. In the top row, four frames are plotted starting at 7:40:49 UT and
separated by 146.3 seconds. The initial Ellerman bomb event is easily observed
in the left-hand frame. The most ‘explosive’ period of this event is shown in the
second frame, before the generation of the apparent loop is depicted in the third
and fourth frames. The bottom row plots a time-distance diagram calculated
using the black slit overlaid on the top row (with intensity normalised at each
time-step to remove the influence of changes in seeing). The black line indicates
the apparent speed of the event through time. The apparent speeds of the event
at the times marked by 1 and 2 are 6.2 km s−1 and 0.6 km s−1, respectively.
White vertical lines depict the temporal position of each of the four top row
plots.
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release within the local plasma (of course, this statement also applies if another

driver is the cause of these events). For a full analysis of events such as this to

be completed, high-resolution magnetic field data would be required, collected

by, for example, the SST/CRISP instrument. It is imperative that further

research be carried out using both imaging observations and state-of-the-art

computational modelling to understand this process in more detail.

The second important result which can be drawn from this event is that

small-scale Ellerman bomb dynamics, as discussed by Nelson et al. (2013a),

are conspicuous within these data. It is inherently clear that higher-resolution

data may allow further insight into the dependence, or indeed independence, of

these small-scale events to close-by larger Ellerman bomb events. The individual

parabolic trajectories evident in each of the smaller-scale structures (highlighted

in Fig. 5.7) analysed in this Section adds weight to the argument that each

fragment may be formed by a separate (or a single repetitive migrating) driver.

Overall, future analysis of Ellerman bombs in a wide range of datasets should

be conducted to assess whether a minimum Ellerman bomb size is determinable

using modern instrumentation.

5.3.3 Case Study: II

The final case study included within this Chapter focuses on the event high-

lighted in Fig. 5.1 by the box labeled ‘CS2’. A number of interesting morpho-

logical features are observed during the evolution of this event which further

evidence the dynamical nature of Ellerman bombs. This Ellerman bomb ex-

hibits the most rapid apparent horizontal motions observed in this dataset with

speeds reaching around 6 km s−1. These high speeds occur during the splitting

of the event into two distinct parts, one of which remains in an almost constant

spatial position and the other appears to separate to a distance of around 2 Mm.

Such dynamics have yet to be studied in the literature and provide a potentially

excellent diagnostic tool for future analysis of the driver of Ellerman bombs.

The evolution of the event is depicted by the top row of Fig. 5.8 which plots
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information sampled at +1 Å. The original Ellerman bomb, initial splitting,

fading, and then loop formation are visualised in the first, second, third, and

fourth frames, respectively. The bottom row of Fig. 5.8 depicts a time-distance

diagram for the spatial positioning indicated by the black line in each of frames

in the top row. The initial off-shoot appears to be as bright as the original

Ellerman bomb event and propagates away from the initial Ellerman bomb

formation site at a speed of 6.2 km s−1. This is over four times the average

apparent horizontal motion speed of Ellerman bombs within these data. The

off-shoot continues to move away from the large Ellerman bomb and decelerates

until it reaches a speed of around 0.6 km s−1. A thick black line is overlaid on

the time-distance plot to emphasise the path of the off-shoot through time.

Of particular interest in this Chapter is the similarity of this evolution to

magnetic flux emergence events. Comparable morphological traits to these were

reported by both Otsuji et al. (2007) and Ortiz et al. (2014). These researches

analysed events which had initial separation, or splitting, speeds of around 5

km s−1 which dropped through time to around 1 km s−1. The final footpoint

separation was reported to be on the order of 2200 km - 3000 km, comparable to

the separation observed here. Flux emergence models also commonly discuss the

occurrence of bright regions at the footpoints of formed loops (see, for example,

such authors as Guglielmino et al. 2008), as observed here in the form of an

Ellerman bomb. These brightenings have been linked to reconnection between

the emerging and existing fields and could facilitate the transport of energy

from the lower solar atmosphere into the corona (as found to be, for example,

by Isobe et al. 2008). Unfortunately, as this event occurs during the final

sequences of the collection of this dataset, we are unable to establish whether

this brightening and loop structure displays the complete set of traits linked to

flux emergence models in previous studies; however, the hints discussed in this

Section are compelling. Interestingly, Zachariadis et al. (1987) observed that

Ellerman bombs often formed as pairs, seperated by around 3′′. It is plausible

that such pairs were formed in a comparable method to that described in this
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Section.

In terms of Ellerman bombs, this apparent link to a spectral signature of

small-scale flux emergence (with properties similar to those discussed by, e.g.,

Otsuji et al. 2007) could prove exciting and could drive future studies using

high-spatial and temporal resolution observations. Magnetic flux emergence

has long been discussed as a potential driver of magnetic reconnection (see, for

example, Heyvaerts et al. 1977, Shibata et al. 1992, Guglielmino et al. 2008)

and, in particular, as a driver for Ellerman bombs (suggested by, e.g., Geor-

goulis et al. 2002, Pariat et al. 2004, Archontis and Hood 2009). Therefore, fu-

ture studies utilising high-resolution SST/CRISP magnetograms could attempt

to quantify key dynamical properties of flux emergence required for Ellerman

bomb formation (for example, the quantity of flux which must emerge or the

rate of emergence). It must be acknowledged that no co-spatial magnetic field

data is available for this study and, as such, we are unable to conclusively link

this event with flux emergence, however, the similarities presented here are in-

truiging. It should be noted by the reader that other alternatives exist to the

flux emergence scenario, such as mass loading of an already existing loop. A

larger-scale study of such events would be required to definitely solve this issue.

It is also unfortunate that these observations end co-temporally with the fourth

frame of Fig. 5.8, meaning that a complete analysis of this event is impossible.

A variety of datasets should be analysed in the near future to further test these

findings, specifically in terms of how many Ellerman bombs are actually linked

to examples of flux emergence.

5.4 Discussion

The results presented in this Chapter support the conclusions of earlier in-

vestigations, where it has been suggested that Ellerman bombs are energetic

explosive events emanating from the lower solar atmosphere (see, for example,

Georgoulis et al. 2002, Watanabe et al. 2011, Nelson et al. 2013b). The average
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lifetime and spatial properties of brightenings analysed in this article (7±4 min-

utes and widths around 0.65′′) are comparable to values reported by a number

of authors as properties of Ellerman bombs, therefore, allowing us to confidently

link these near-limb events to on-disc Ellerman bombs. However, we present

the first limb measurements of Ellerman bomb lengths using state-of-the-art

ground based instrumentation, finding the average height of these events to be

600 km (which is well below the believed height of formation for the Hα line

core of 2000 km). This is slightly shorter than previous estimates by Kurokawa

et al. (1982). It should be noted that a plethora of highly dynamic events within

our data were observed which did not eventually reach the required intensity

threshold for identification as an Ellerman bomb, possibly due to a mixing of

events within the line-of-sight resulting in a single less intense line profile.

Strong evidence of flows associated with Ellerman bombs are also found,

agreeing with previous observations by, for example, Roy (1973) at the limb

and Matsumoto et al. (2008b) on the disc. The tips of 20 out of 22 events ap-

peared to follow a parabolic trajectory through time suggesting the occurrence

of a displacement of plasma, increasing the density and temperature within a

localised region, hence, leading to the enhancement of the intensity in the wings

of the Hα line profile (similar to the semi-empirical models of, for example, Fang

et al. 2006). Potentially, this propagation of plasma could be considered analo-

gous to the flows observed by Nelson et al. (2013b) at a simulated reconnection

site where rapid cancellation of opposite polarity field occured. Unfortunately,

no co-spatial magnetic field data were available for analysis in this Chapter. It

should be noted, however, that no evidence of Ellerman bombs within the Hα

line core or the SDO/AIA EUV filters was found during this research, agreeing

with previous studies (e.g., Schmieder et al. 2004) which have concluded that

the vertical extensions of these events may not be sufficient to penetrate into

the chromosphere and lower corona.

As has been discussed previously in this Chapter, the recent work of Pe-

ter et al. (2014) and Vissers et al. (2015) presents an interesting conundrum.
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Both of these researches found high-temperature signals (∼ 105 K) co-spatial to

inferred and observed Ellerman bombs, respectively, disagreeing with previous

work which found temperature enhancements of 1.5× 103 K could account for

the spectral signatures of these features (see, for example, Fang et al. 2006).

Initial work (continuing that of Vissers et al. 2015) should aim to understand

whether the co-spatial relationship between Ellerman bombs and transition

region signals is more than just coincidence, before attempts to model how

such high-temperature plasma can be formed within Ellerman bomb structures

(e.g., through reconnection processes or through micro-turbulence developing

between the moving Ellerman bomb plasma and the approximately stationary

background atmosphere) should be attempted. It will be of interest to discover

how the spectral signatures in the Hα line wings and Transition Region filters

can be reconciled with the lack of signal in the Hα line core and SDO/AIA 304

Å filter.

The two individual case studies included in this Chapter highlight the small-

scale dynamics associated with Ellerman bombs which had not previously been

observed. Within the first case study, the influence of an Ellerman bomb on

the surrounding atmosphere was analysed. A large Ellerman bomb event ap-

peared (by visual inspection) to fragment, with the small-scale pieces propagat-

ing north, away from the formation site. Each of the small-scale fragments were

only around 230 km in diameter, similar in size to the events analysed by Nelson

et al. (2013a). The northern-most fragment drifted to around 1500 km from

the initial position before reducing dramatically in size and fading below the

threshold of 1.5 times the local background intensity. A second large Ellerman

bomb event was then observed to occur at the same spatial position.

The second case study discussed a rapid splitting of a large Ellerman bomb

event close to a large sunspot. The main body of the ejection appeared to

propagate south, away from the initial event, and continued until the end of

these observations, decelerating from around 6.2 km s−1 to approximately 0.6

km s−1. Possibly, the most interesting aspect of this example is the apparent
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loop formation between the two main bodies in the Hα line wings, potentially

indicating a flux emergence region (see, for example, Otsuji et al. 2007, Ortiz

et al. 2014). Despite a significant apparent vertical extension of this loop, no

evidence of any such structure within the Hα line core was found (possibly due

to the dense foreground structures in the Hα line core obscuring any signal)

suggesting that even a dynamic event, such as this example, has no initial

influence on the upper chromosphere. Unfortunately, these observations ended

before the loop faded and, as such, it is impossible to discuss the full evolution of

this event. It is strongly encouraged that further work be carried out continuing

the analysis presented by Pariat et al. (2004), to fully understand and quantify

the role of small-scale (spatial scales of the order a few arcseconds) in driving

Ellerman bombs. Modern data available with the SST/CRISP instrument and

soon to be available from the DKIST’s Visual Tunable Filter (VTF) instrument

would be excellent for conducting such a study.

Overall, this analysis highlights both the small-scale structuring and dy-

namic nature of Ellerman bombs when observed at the solar limb. An investi-

gation of a wide variety of these events at a range of spatial positions over the

Sun would be required to fully understand how many Ellerman bombs display

morphologies similar to those discussed within the presented case studies; how-

ever, the importance of investigating the sub-structures of small-scale, explosive

phenomena in the lower solar atmosphere which can act as important agents

in triggering local instabilities in the magnetic environment of the solar surface

has been highlighted by this study.
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Chapter 6

On The Ability Of MMFs To

Drive Ellerman Bombs

6.1 Overview

So far in this thesis, the Ellerman bomb (see, for example, Ellerman 1917,

Severny 1956, Georgoulis et al. 2002) phenomenon has been introduced and

analysed in a number of datasets. In general, this work has aimed to test the hy-

pothesis that Ellerman bombs are formed by magnetic reconnection close to the

photosphere. Specifically, in Chapter 4, a cancellation event in the moat region

surrounding a sunspot was presented; however, the measurement of magnetic

field strengths was not possible as no inversions from Stokes profiles were at-

tempted. Following on from this, Case Study 1 in Chapter 5 detailed the devel-

opment of multiple small-scale dynamic events within a larger Ellerman bomb,

potentially indicating a repetitive impulsive driver was responsible for their for-

mation. In this Chapter, a selection of high-resolution ground-based datasets,

collected by the IBIS instrument over a period of two hours, are combined with

measurements of the vertical magnetic field inferred by the SDO/HMI instru-

ment in order to identify potential Ellerman bombs with clear links to cancelling

regions (for example, MMFs as discussed by Sheeley 1969, Vrabec 1971, Harvey
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and Harvey 1973).

A potential link between a sub-section of Ellerman bombs and MMFs was

originally presented by Nindos and Zirin (1998); however, these authors were

only able to infer that a spatial correlation between portions of both features ex-

isted. With respect to opposite polarity MMFs, Nindos and Zirin (1998) noted

that the Ellerman bombs in their study ’...were not associated with approaching

opposite polarity features nor did they occur above magnetic field reconnection

neutral points.’ In more recent studies, though, specific links between Eller-

man bombs and bi-poles have been presented (see, for example, Georgoulis

et al. 2002, Watanabe et al. 2011, Nelson et al. 2013b) meaning further research

is essential to fully understand any potential link between Ellerman bombs

and MMFs. By implementing the Yet Another Feature Tracking Algorithm

(YAFTA; Welsch and Longcope 2003) in this Chapter, isolated MMFs can be

studied in detail, allowing measurements of parameters such as cancellation

rates to be made. Unfortunately, in an AR, where strong magnetic fields are

common, it is difficult to easily isolate specific bi-polar interactions within the

YAFTA output from which accurate magnetic field strength measurements can

be obtained through time. Therefore, this research is focused on thoroughly

analysing a small-number of relevant events.

After a comprehensive inspection of these data, two isolated MMFs (both

spatially correlated to Hα line wing brightenings which can potentially be in-

terpreted as Ellerman bombs) were found for analysis. Accurate measurements

of the magnetic field strengths of these MMFs were made from the YAFTA

output (with an input from SDO/HMI data) through time meaning any cancel-

lation, or reduction in flux through time, within these events could be inferred.

These cancellation rates were then applied to the basic algebraic model of pho-

tospheric magnetic reconnection initially discussed by Litvinenko (1999) (and

further implemented by, for example, Litvinenko and Martin 1999, Chae et al.

2003, Litvinenko et al. 2007) which gave outputs which could be compared to

observable parameters such as the upward flow velocity (comparable to the re-
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sults given in Chapter 5) and the upward mass flux (which could be compared

to the estimated properties of surges which have been potentially linked to

Ellerman bombs by, for example, Rust 1968, Roy 1973, Madjarska et al. 2009).

Recent work by Filippov et al. (2007) has suggested a link between rapid flux

emergence (increases by a factor of 25 within 5 minutes) and surge formation,

potentially defining physical conditions in the solar atmosphere which would

be conducive to both surges and Ellerman bombs. Although no bi-polar re-

gions which exhibit such behaviour existed in this study, the implementation

of techniques to understand whether cancellation rates observed within MMFs

co-spatial to Ellerman bombs are sufficient to drive enough mass to fill surges

could provide a basis from which a larger sample of such events can be analysed

in detail in the future.

The uniqueness and importance of this study lie in the combined use of a

variety of techniques to comprehensively analyse a small-number of confidently

identified bi-polar MMFs linked to Hα brightenings with properties similar to

Ellerman bombs. Specifically, it is of interest to understand whether the can-

cellation rates observed within bi-polar MMFs, when used as an input for the

model of Litvinenko (1999), are sufficient to explain the morphological evolu-

tion of Ellerman bombs and to supply the required mass for solar surges. This

research could potentially provide a basis from which a larger statistical sam-

ple of Ellerman bombs, surges, and MMFs can be conducted. This Chapter is

structured as follows: In Section 2, the observations analysed in this Chapter

are presented. Section 3 details the in-depth data analysis of the two potential

Ellerman bomb-MMF pairs (including the estimation of the reconnection rates)

before the model presented in Litvinenko (1999) and Litvinenko et al. (2007)

is briefly introduced in Section 4. Finally, output from this model is analysed

in Section 5 before a discussion about the relevance of this study is included in

Section 6. The research presented in this Chapter makes up part of the project

submitted for publication in the Monthly Notices of the Royal Astronomical

Society.
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6.2 Observations

The ground-based data analysed in this Chapter were collected using the IBIS

instrument at the NSO/DST. Three distinct observational routines (which shall

be denoted as ‘A’, ‘B’, and ‘C’ for ease) were employed over a two hour period

on the 30th September 2012 between 14:34:19 UT and 16:32:50 UT. The seeing

conditions were variable through time, however, the quality was generally high

between 15:00 UT and 16:15 UT. Routine ‘A’ comprised a 17-point Hα line

scan and a 9-point Fe I 6302.5 Å line scan, neither of which sampled with even

spacing through the profiles. The minimum and maximum wavelengths of the

observed Hα line profile were −0.99 Å and +1.01 Å from 6562.8 Å, respectively.

As in other Chapters, all Hα wavelength measurements from this point will be

given relative to the line core wavelength of 6562.8 Å. The Fe I 6302.5 Å data

are not analysed in this Chapter and so will not be discussed further. In total,

26 images were taken per sequence repetition with a cadence of approximately

5.4 seconds. Routine ‘B’ imaged the wings of the Hα line profile at only −0.74 Å

and +0.76 Å, acquiring 30 frames at each line position, totalling 60 frames per

repetition. Each set of 30 frames was then reduced using the speckle method

(see, for example, Wöger et al. 2008) returning data with a total cadence of

around 6.8 seconds. Finally, routine ‘C’ was similar to routine ‘B’ except that

each line position was only sampled 10 times, giving a total of 20 frames per

repetition at a cadence of 2.4 seconds. Once again, these data were reduced

using the speckle method. Each of these datasets has a pixel size of around

0.097′′ and samples a circular FOV with a diameter of approximately 80′′. These

data are, therefore, perfect for analysing the small-scale phenomena in the lower

solar atmosphere of interest in this study. A summary of the two hour period

of observations can be found in Table 6.1.

The FOV of the IBIS observations discussed here was centred on the lead-

ing sunspot of NOAA AR 11579. This sunspot was situated at approximate

co-ordinates of xc=50′′ and yc=−275′′ (with respect to the disc centre), meaning

it is an excellent candidate for observing the vertical magnetic field in the pho-
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Figure 6.1: The FOV analysed in this Chapter at approximately 15:41 UT on
30th September 2012 showing: (a) the vertical magnetic field measured in the
photosphere by the SDO/HMI instrument (to emphasise the opposite polarity
nature of the region, the minimum and maximum thresholds of the plot have
been set to −100 G and 100 G, respectively); and (b)-(d) the IBIS FOV for
three wavelengths (indicated in each individual sub-plot) in the Hα line scan.
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Figure 6.2: A region from the FOV plotted in Fig. 6.1. The left panel depicts
the Hα blue wing and the right panel shows the co-spatial vertical magnetic
field as inferred by the SDO/HMI instrument. The red contours overlaid on the
photospheric magnetic field image outline the obvious network features from
the Hα image and confirm the accuracy of the alignment.

tosphere. In this study, vertical magnetic fields are inferred through analysis of

data collected by the SDO/HMI instrument, which were downloaded, reduced,

and cropped to the IBIS FOV using standard SolarSoft routines. Co-alignment

was achieved by matching bright regions in the Hα line wing (hypothesised to

be a good proxy of the vertical magnetic field by Rutten et al. 2013) at +0.76 Å

with small-scale magnetic field structures in the SDO/HMI images. In Fig. 6.1,

the co-aligned vertical magnetic field data (scaled with minima and maxima of

−100 G and 100 G, respectively) are plotted along with three wavelengths from

the Hα scan sequence (specifically −0.95 Å, 0.0 Å, and +0.8 Å). The central

sunspot, as well as more small-scale network structures, is easily observed in the

two Hα line wing images, however, it is masked somewhat in the complex Hα

core by overlying fibril structures. The co-alignment between the instruments is

plotted in Fig. 6.2, where the left hand frame depicts the Hα blue wing intensity

and the right frame maps the co-spatial vertical magnetic field structuring with
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Start time (UT) End time (UT) Routine Frames Cadence
14:34:19 14:49:20 B 133 6.8 seconds
14:51:04 15:05:55 A 162 5.4 seconds
15:07:35 15:22:32 C 377 2.4 seconds
15:24:12 15:39:13 B 133 6.8 seconds
15:41:00 15:59:59 A 207 5.4 seconds
16:01:53 16:15:17 C 338 2.4 seconds
16:17:49 16:32:50 B 133 6.8 seconds

Table 6.1: Summary of the observations analysed in this Chapter with routines
‘A’, ‘B’, and ‘C’ defined as the Hα line scan, 30-frame speckle, and 10-frame
speckle sequences, respectively. Each of these sequences returned data with
high-spatial (∼ 0.2′′) and temporal (> 10 seconds) resolution data of the Hα
line. These routines are described in detail in the first paragraph of the Obser-
vations Section of this Chapter.

contours of Hα bright points overlaid.

6.3 Data Analysis

Through a brief analysis of Fig. 6.1, it is obvious that there is a sizeable positive

polarity sunspot in the centre of the FOV, surrounded almost ubiquitously by

magnetic elements, with sizes encompassing varying scales, of both positive and

negative polarity. The sunspot, as well as a large proportion of the plage region

situated in the top left of the image, remain relatively unchanged throughout

the course of these observations both morphologically and with regard to the

magnetic field strength. However, numerous smaller-scale flux regions, identified

as MMFs (see, for example, Sheeley 1969, Harvey and Harvey 1973), are evident

in this FOV. These small-scale bi-polar flux regions appear to flow away from

the sunspot, approaching each other before cancelling away. This behaviour

within MMFs was first noted in spectroscopic data by Sheeley (1969) and within

magnetic field data by Harvey and Harvey (1973). In this Chapter, it is these

small-scale flux elements, and their potential ability to drive the Ellerman bomb
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phenomena, that shall be analysed.

In order to successfully analyse these small-scale, magnetic events, it was

first necessary to visually identify small-scale, bi-polar MMFs which did not

interact with any large-scale flux throughout their lifetime. Within these data,

two suitable MMFs were found. As has been previously mentioned, tracking

of magnetic features within these data was conducted using the YAFTA code,

which requires minimum thresholding of both magnetic field strength and area

to track features through frames. In this study, these thresholds are set at

40 G and 2 pixels, respectively. Other thresholds were tested but either over-

estimated the area of the magnetic features (through a visual inspection) or

were unable to track the feature consistently through time. The total magnetic

field strength and area of each of the individual polarities through time were

included in the YAFTA output for easy extraction and study. Following this,

the co-spatial Hα data available at the time of the cancellation was checked in

order to identify if any Hα line wing intensity enhancement, with comparable

properties to Ellerman bombs, was present.

It is important to note that further cancelling bi-poles were evident in these

data, however, often these consisted of one small-scale single polarity flux region

‘disappearing’, whilst approaching a large-scale opposite polarity ‘standing’ re-

gion of flux which did not evolve over the course of these observations. By

testing the YAFTA algorithm on such regions it was found that no cancellation

or emergence signal could be detected, most likely due to the links to the larger-

scale flux concentrations. It appeared that the YAFTA algorithm sporadically

detected larger and smaller regions of field, due to changes in the observed mag-

netic structure, therefore, adding and removing flux from the output as noise

which reduced the effectiveness of this study. Additionally, it proved difficult to

identify where the observed cancellation occurs and, hence, accurately estimate

the cancellation rate and length of the current sheet (both of which are required

as inputs for the model presented by Litvinenko 1999).
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6.3.1 Cancelling Event ‘1’

The first bi-polar MMF event analysed in this Chapter was observed to prop-

agate away from the penumbra of the sunspot between 14:45 UT and 16:00

UT. The evolution of this event is plotted within the 4′′ diameter black circle

in the left hand column of Fig. 6.3. Prior to the measured cancellation, a large

region of positive polarity flux appeared to fragment, before one of the frag-

ments interacted with a region of emerging negative polarity flux. Both of the

bi-poles cancelled sufficiently through this period of time such that they were

no longer observable in magnetogram data. Through inspection of Hα line wing

images co-spatial and co-temporal to the cancellation, it was possible to estab-

lish that a brightening, potentially comparable to an Ellerman bomb, occurred

at this position during this time (depicted in the second row of the right hand

column of Fig. 6.3), possibly linked to the evolving magnetic field topologies.

The YAFTA output for this MMF was then visually inspected and the event

numbers corresponding to the opposite polarity regions were noted. The mag-

netic field strength and area were then calculated for each frame allowing for

the accurate computation of R, the cancellation rate, and an estimation of l,

the length of the reconnecting current sheet.

This MMF exhibits significant horizontal motions through its observable life-

time, similar to those noted in previous research (see, e.g., Harvey and Harvey

1973, Lim et al. 2012), which can easily be inferred from Fig. 6.3. In Fig. 6.4,

representative frames of the MMF and potential Ellerman bomb analysed in

this Section are plotted (top row). The estimate of the length of the current

sheet is indicated with a white line and an arrow in the left hand image and

the Hα intensity enhancement is highlighted by the arrow in the right hand

frame. In the left hand frame on the bottom row, the total positive flux of the

MMF is plotted through time between approximately 14:50 UT and 16:00 UT.

An obvious decrease in flux of this MMF through time is immediately evident

with a linear fit of this gradient overlaid with the dashed line. Overall, the

cancellation rate and the current sheet length of this MMF can be estimated to
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Figure 6.3: The evolution of Cancelling Event ‘1’ through time for both
SDO/HMI photospheric line-of-sight magnetograms (left column) and the Hα
blue wing (right column). Despite the relatively long life of the MMF, it is sim-
ple to see that the Hα brightening, possibly interpreted as an Ellerman bomb,
is only observable in one frame (due to the lifetime of this event being around
10 minutes).
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Figure 6.4: The FOV surrounding Cancelling Event “1” at 15:15:33 UT. The
vertical magnetic field topology (top left) is plotted with minima and maxima
of −100 G and 100 G, respectively. The length of the current sheet is indicated
by the white line and black arrow and is estimated to be approximately 3.1 Mm.
Co-temporal Hα blue wing image (−0.74 Å) depicting the potential Ellerman
bomb (top right). The positive magnetic flux through time (bottom left) shows
a steady decrease over the course of one hour at a rate of approximately 4.1×1014

Mx s−1. The mean area of the Hα brightening (bottom right) shows a peak at
approximately 15:15 UT associated with ‘flaring’. Noise in the measurements
of the area is evident at both edges of the time interval.
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be 4.1× 1014 Mx s−1 and 3.1 Mm, respectively.

The Hα line wing intensity enhancement co-spatial to this cancellation could

be considered, in many ways, a standard example of an Ellerman bomb. With

a width and length of around 1′′ and a lifetime of approximately 10 minutes,

this potential Ellerman bomb formed with properties typical of those analysed

in previous Chapters. The event formed in the final frames of the first imple-

mentation of routine ‘A’, before evolving through the following routine. The

morphology of this event began as a relatively small brightening in the Hα line

wings, before behaviour indicative of flaring (as discussed in previous Chapters

and by, for example, Watanabe et al. 2011) was evident (shown in the bot-

tom right panel of Fig. 6.4). After this flaring, the brightening decreased in

size before fading from view entirely (as can be seen in the final two rows of

Fig. 6.3). The area and intensity of the event peaked at around 15:15 UT (close

to the frame plotted in Fig. 6.4) which was after significant cancellation had

already occurred. Why this delay between the initial cancellation measured

within the MMF and the occurrence of the brightening is a question which

cannot be answered within this study. Future research combining the methods

presented here with state-of-the-art simulations could potentially offer in-sight

into whether a process such as flux-pile up is required to reach a threshold value

before any potential reconnection can occur.

6.3.2 Cancelling Event ‘2’

The morphological properties of the second bi-polar event (identifiable between

15:50 UT and 16:40 UT) analysed in this Chapter were similar to the first.

Initially, a region of positive polarity flux was observed to fragment from a

larger body close to the sunspot, before interacting with an emerging negative

polarity flux segment (as plotted in the left hand column of Fig. 6.5). The

response of the Hα line wings to this MMF is plotted in the right column of

Fig. 6.5. In a similar way to Cancellation Event ‘1’, the photospheric line-of-

sight magnetic field and Hα blue wing spectroscopic image are plotted in the
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Figure 6.5: The same as Fig. 6.3 but for Cancelling Event ‘2’. Again, note the
relatively short lifetime of the potential Ellerman bomb compared to the MMF.
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Figure 6.6: The same as Fig. 6.4 but for Cancelling Event ‘2’. This FOV is ob-
served at 16:10:18 UT. The positive magnetic flux decreases with a cancellation
rate of approximately 6.4× 1014 Mx s−1 over a length of 2.1 Mm.
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top row of Fig. 6.6 (left and right frames, respectively), before the cancellation

rate (with linear fit) and the area of this event through time are depicted in

the bottom row. For this event, a cancellation rate of 6.4 × 1014 Mx s−1, and

a current sheet length of 2.1 Mm are found, comparable to Cancellation Event

‘1’.

The potential Ellerman bomb at this spatial position displayed similar prop-

erties to that studied in Cancelling Event ‘1’ with a diameter close to 1′′ and

a lifetime on the order minutes. Again, this event began as a relatively small

brightening in the Hα line wings before it rapidly expanded in area and inten-

sity until around 16:10 UT. From there, it began to recede from view (depicted

in the right hand frame on the bottom row of Fig. 6.6). Again, cancellation

occurred before the occurrence of the brightening potentially hinting that some

form of sub-process (such as flux build-up) is required for the formation of these

phenomena. Interestingly, the rise to the peak area and intensity of this event

corresponded to the period of greatest cancellation. It would be of interest to

analyse high-resolution, co-temporal photospheric magnetic field measurements

and Hα line profile spectroscopic observations collected by the SST/CRISP

instrument in future research.

6.4 Litvinenko (1999) Model

6.4.1 Isothermal Model

This Chapter discusses the analytical model of photospheric magnetic reconnec-

tion originally proposed by Litvinenko (1999), with specific attention paid to

whether the cancellation co-spatial to MMFs is sufficient to drive the Ellerman

bomb phenomena. This model has been used in a number of past researches (in-

cluding, for example, Litvinenko and Martin 1999, Chae et al. 2003, Litvinenko

et al. 2007) and appears to account for a number of observed properties of flux

cancellation, such as upward propagation of material from the reconnection site

and potential mass supply to filaments. As Ellerman bombs have been linked
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to the formation of surges in previous work (see, for example, Rust 1968, Roy

1973, Madjarska et al. 2009), it is of interest to analyse whether including the

observed properties of cancellation regions, some of which are associated with

regions of increased intensity in the Hα line wings, into this model returns real-

istic comparisons with Ellerman bomb characteristics (for example, the upward

flow velocity of 9 km s−1 found in the previous Chapter and in Nelson et al.

2015).

The overall model initially presented by Litvinenko 1999 is relatively simple

yet it will be included here for completeness. Consider a vertical current sheet

which has formed between two opposite polarity regions in the photosphere.

The physical parameters are written as follows: the length (x co-ordinate),

thickness (y co-ordinate), and height (z co-ordinate) of the current sheet are

defined as l, 2a, and 2b; the plasma densities at the entrance to the current sheet

and within the current sheet are nc and n; the corresponding temperatures are

Tc and T ; Bc and vc are the magnetic field and in-flow speed at the entrance

to the current sheet; v is the out-flow speed; and finally c, kB, σ, and mp are

the speed of light, Boltzmann constant, electrical conductivity, and the proton

mass, respectively. The influence of magnetic flux pile-up (see Litvinenko et al.

2007) adds two further parameters, namely the external in-flow speed, vi, and

the external magnetic field strength Bi.

The Sweet-Parker reconnection model (Parker 1957; Sweet 1958), modi-

fied into a set of order-of-magnitude equations for the compressible case by

Syrovatskii (1976), is used to formulate the equations of this system. As in

Litvinenko (1999), the mass balance equation at the sheet can be written as:

ncvcb = nva, (6.1)

and the in-flow speed can be described by:

vc =
c2

4πσa
. (6.2)
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The sub-Alfvénic in-flow speeds mean that the momentum equation across the

sheet can be written as:

nckTc +
1

8π
B2

c = nkT (6.3)

and the momentum equation along the sheet is:

1

2
mpnv

2 + nckTc = nkT. (6.4)

Finally, Litvinenko et al. (2007) argued that the balance equation for magnetic

flux outside the sheet can be written as:

r = vcBc = viBi, (6.5)

where r = R/l, and R is the observed flux cancellation rate for either magnetic

polarity (as measured for the MMFs analysed in this Chapter in the previous

Section). Litvinenko (1999) also assumed that b = Λ(z) (the atmospheric scale

height) and T = Tc (i.e., that the reconnection is iso-thermal).

The atmospheric scale height (Λ), temperature (Tc), electrical conductivity

(σ), and density (nc) can be estimated for various heights from atmospheric

models. In this Chapter, the VAL-C model is used (Vernazza et al. 1981).

Further parameters (vi and r) can be inferred from magnetic field data, however,

in this study, the average in-flow speed of 300 m −1 measured by Litvinenko

et al. (2007) is used. This value must be assumed in this research due to the

relatively low-resolution nature of SDO/HMI magnetograms. Approximately

27 frames would be required for a convergence of one pixel to occur between

the opposite polarity regions at 300 m s−1 making this value impossible to

accurately measure within one hour (or 80 SDO/HMI frames). Future research,

potentially exploiting high-resolution ground-based magnetograms (potentially

from the SST/CRISP instrument) should be conducted to better quantify these

velocities within MMFs.

This leaves six variables (n, vc, Bi, Bc, a, and v) to be calculated from
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Equations (6.1)-(6.5). Simple algebraic manipulation, however, allows Equa-

tions (6.1)-(6.5) to be combined to give:

v3c =
c2r

4πΛσ (4πmpnc)
1
2

(
1 +

r2

8πkncTcv2c

) 1
2

, (6.6)

leaving only five variables from five equations. The remaining parameters can

finally be written as:

Bi =
r

vi
, (6.7)

Bc =
r

vc
, (6.8)

a =
c2

4πσvc
, (6.9)

n = nc +
B2

c

8πkTc
, (6.10)

and

v =
Bc

(4πmpn)
1
2

. (6.11)

Finally, it was also noted by Litvinenko and Martin (1999) and Litvinenko et al.

(2007) that the upward mass flux, F , associated with the reconnection region

could be written as:

F = 2mpanlv. (6.12)

In addition to the system of equations presented by Litvinenko (1999), two

further equations can be studied in order to compare the outputs from the

model to previous results assertained with respect to the Ellerman bomb phe-

nomena. Firstly, Takasao et al. (2013) suggested that the maximum height of a

jet which could be ejected from the photosphere could be estimated using the

basic formula:

Hjet =
Λ

β
(6.13)
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where β is the plasma beta, calculated at the current sheet as:

β =
nkT

B2
c/(2µ)

, (6.14)

where µ is the magnetic permeability. Secondly, it is possible to calculate the

total magnetic energy within the current sheet which could be converted into

both radiation (to compare to the estimates put forward in Chapter 3 and

Georgoulis et al. 2002, Nelson et al. 2013a) and kinetic energy (driving the

mass motion). Here, the magnetic energy is calculated as:

Emag =
B2

c

2µ
× V (6.15)

where V is the volume of the current sheet.

In order to begin this study, let us present specific values that will be used

in this Chapter. Three required values are well defined in physics, namely the

speed of light (c = 299792458 m/s), the proton mass (mp = 1.67262178× 10−24

g), and Boltzmann’s constant (k = 1.3806488 × 1016 g cm2 s−2 K−1). Three

further values are taken from the VAL-C model (see Vernazza et al. 1981)

at the temperature minimum region (around a height of 500 km). These are

the electrical conductivity which is assumed to be 9.9 × 1010 s−1, the number

density at 2.1×1015 cm−3, and the background temperature of 4200 K. Finally,

the height of the current sheet is assumed to be the scale height in the solar

photosphere, which is estimated here as 100 km.

6.4.2 Non-isothermal model

Numerous observations and theoretical predictions of Ellerman bombs have sug-

gested that a temperature enhancement occurs at the potential reconnection site

(see, for example, Kitai 1983, Fang et al. 2006, Nelson et al. 2013b). In this

Chapter, therefore, a basic modification to the model presented by Litvinenko

(1999) is considered. This modification is based around the assumption that
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T 6= Tc (i.e., that the reconnection site is not isothermal). This means Eq. (6.6)

must be rewritten as:

v3c =
c2r

4πΛσ (4πmpnc)
1
2

(
Tc
T

+
r2

8πkBncTv2c

) 1
2

(6.16)

Further to this, Equation (6.10) must now be modified to:

n =
ncTc
T

+
B2

c

8πkT
. (6.17)

It is important to note that six variables must now be solved by five equations

and that a relationship between T and Tc must be included to counter this

problem. It is, therefore, assumed that:

T = Tc + Γ, (6.18)

where Γ is a non-zero, positive constant which can be iterated through to com-

pare a range of values.

6.5 Results

6.5.1 Cancelling Event ‘1’

At this point in the Chapter, it is possible to include the input values estimated

for each of the MMF-Hα brightening pairs into the Litvinenko (1999) model.

For Cancelling Event ‘1’, the measured parameters are R = 4.1 × 1014 Mx s−1

and l = 3.1 × 108 cm which, when included in the isothermal (T = 4200 K)

Equations (6.7)-(6.12), output values of vc ≈ 0.085 km s−1, Bi ≈ 44 G, Bc ≈ 156

G, nc ≈ 3.8 × 1015 cm−3, v ≈ 5.6 km s−1, a ≈ 0.852 km, and F ≈ 6.6 × 1014

g hr−1. A partial summary of this event is included in the appropriate row of

Table 6.2. Each of the output values estimated for this event are comparable to

the values calculated by Litvinenko et al. (2007), therefore, implying that the
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Measured Variables Calculated Variables
Event R (Mx s−1) l (cm) Bc (G) v (km s−1) F (g hr−1)

1 4.1× 1014 3.1× 108 156 5.6 6.6× 1014

2 6.4× 1014 2.1× 108 249 6.8 6.5× 1014

Table 6.2: The measured input values and selected computed output values for
each of the cancellation events analysed in this Chapter for the isothermal (4200
K) model.

application of this model may be relevant here. The initial check of this model to

observables can be conducted using the estimated up-flow velocity of 5.6 km s−1,

which is around one standard deviation lower than the mean velocity measured

at the limb in the previous Chapter (and by Nelson et al. 2015). In addition to

this, the predicted magnetic field strengths are comparable to those measured

by the SDO/HMI instrument for this MMF, suggesting that the output from

this model is, indeed, reasonable when compared to observations.

By applying the outputs from the model to Equations (6.13)-(6.15), esti-

mates of the maximum jet extension from the reconnection site and the upper-

limit of magnetic energy conversion can be inferred. The local plasma-β can be

calculated within the current sheet and the atmospheric scale height, Λ, is kept

as 100 km. From these values, the maximum jet extension is found to be 443

km. This value is slightly shorter than the majority of Ellerman bombs observed

at the limb (see, for example, Watanabe et al. 2011, Nelson et al. 2015, Chapter

5) but it is still within a reasonable range for comparison. It could, therefore, be

suggested that if the co-spatial Hα brightening event were an Ellerman bomb,

it would be a weak example of such an feature. Finally, the total magnetic

field energy within the current sheet (using the output magnetic field strength

and the estimated current sheet volume) can be estimated at 1.02× 1026 ergs,

which if converted at a steady rate over the course of the hour during which

this MMF was observable would give an energy release rate of 2.84× 1022 ergs

s−1. Assuming a lifetime of 10 minutes for an Ellerman bomb, this would allow
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1.7× 1025 ergs of magnetic energy to be converted to either radiative or kinetic

energy. This value is comparable to radiative energy estimates presented by

Nelson et al. (2013a) and in Chapter 3 but two orders of magnitude lower than

those discussed by Georgoulis et al. (2002). A larger range of cancellation rates

will be studied in future work (and included in the article on which this Chapter

is based) in order to test whether this value is typical of such MMFs.

In Fig. 6.7, a number of parameters are plotted with respect to temperature

at the current sheet. It is immediately apparent that both the in-flow velocity

and mass flux rate decrease with increased temperature at the current sheet,

whereas the ratio of the current sheet magnetic field to the incoming magnetic

field and the out-flow velocity both increase at higher temperatures. Interest-

ingly, even if a large increase in temperature at the site of the current sheet

is considered, the out-flow velocity for this cancellation feature does not reach

the average vertical propagation speed of Ellerman bombs observed at the limb

in the previous Chapter (or in Nelson et al. 2015). The upward mass flux pre-

dicted for this event is an order of magnitude smaller than that predicted by

both Litvinenko and Martin (1999) and Litvinenko et al. (2007) and the time

required to fill a filament with typical mass around 5 × 1016 g (suggested by,

for example, Litvinenko et al. 2007) is on the order of 100 hours (around two

orders of magnitude longer than the cancellation observed in this event). Of

course, small-scale cancellation features with lifetimes of less than one hour are

unlikely to prove essential for the formation of filaments, however, smaller-scale

events such as surges are of more interest in this Chapter, due to the potential

links between these phenomena and Ellerman bombs. The feasibility of this

model to describe this relation shall be discussed further in the Discussion of

this Chapter.

6.5.2 Cancelling Event ‘2’

Finally, the input values of R = 6.4 × 1014 Mx s−1 and l = 2.1 × 108 cm

calculated for Cancelling Event ‘2’ will be considered. Including these values in
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Figure 6.7: The dependence of the in-flow velocity, ratio of current sheet mag-
netic field to external magnetic field, out-flow velocity and mass flux rate with
current sheet temperature for Cancelling Event ‘1’. The background tempera-
ture of 4200 K is depicted by the vertical line.
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Figure 6.8: Same as Fig. 6.7 for Cancelling Event ‘2’.
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the isothermal model (again with T = 4200 K), values of vc ≈ 122 m s−1, Bi ≈
101 G, Bc ≈ 249 G, nc ≈ 6.4× 1015 cm−3, v ≈ 6.8 km s−1, and F ≈ 6.5× 1014

g hr−1 are obtained. These values, as expected, are comparable to those of

Cancelling Event ‘1’ and those estimated by Litvinenko et al. (2007). Several

parameters are included for easy reference and comparison in the appropriate

row of Table 6.2. Interestingly, the up-flow velocity predicted for this event is

higher and closer to the mean upward velocity found in the previous Chapter

(and by Nelson et al. 2015), however, the mass flux is almost exactly the same

between the two features. It is possible that the Hα brightening co-spatial to

this event is more likely to be a traditional Ellerman bomb with more typical

properties when compared to the literature.

In order to further test the potential capabilities of this MMF to drive Eller-

man bombs, it is also of interest to calculated the upward extension and total

energy within the current sheet available for conversion to radiative and kinetic

processes. It is immediately obvious that the estimated magnetic field strength

within the current sheet is higher for this event leading to an increased exten-

sion length (when compared to Cancellation Event ‘1’) of 670 km. This value

is extremely reasonable when compared to statistical properties of Ellerman

bombs (Watanabe et al. 2011, Nelson et al. 2015). In addition to this, the total

magnetic energy within the current sheet initially is slightly higher at 1.22×1026

ergs, which if steadily released into radiative and kinetic energy over the course

of one hour would give a conversion rate of 3.41×1022 ergs s−1. Again, assuming

a lifetime of 10 minutes for a typical Ellerman bomb allows us to calculate the

total energy available as 2.05 × 1025 ergs, which once again, lies between the

values estimated by Nelson et al. (2013a) and Georgoulis et al. (2002).

In Fig. 6.8, the output plotted and described in Fig. 6.7 are depicted for

this event. Again, the in-flow velocity and upward mass flux both decrease

with temperature at the current sheet. For this feature, only a relatively small

temperature enhancement (of around 2000-3000 K) is required for the upward

flow speed to match the average velocity at the limb presented in the previous
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Chapter. The upward mass flux for this event is, once again, relatively small

when compared to results obtained with respect to larger cancelling features as

presented by, for example, Litvinenko et al. (2007). It should be noted that the

in-flow speeds estimated by this method (which, for Cancelling Event ‘2’ are

around 120 m s−1) can not be measured for such short lived events using the

SDO/HMI instrument. The pixel size of data collected by this instrument is

approximately 362500 m, meaning displacements of 5400 m (the in-flow speed

multiplied by the cadence) are negligible from frame-to-frame.

6.6 Discussion

In this Chapter, the relationship between two MMFs and Hα brightening pairs

in the moat region surrounding a sunspot have been analysed. This research

aimed to further analyse the potential relationship between Ellerman bombs

and MMFs (originally discussed by Nindos and Zirin 1998) with specific interest

paid to the potential role of cancellation in Ellerman bomb formation. Initially,

magnetic flux elements, within a FOV co-spatial to high-resolution spectral

observations collected by the IBIS instrument, were tracked within SDO/HMI

data before two isolated, bi-polar MMFs were identified for further analysis. The

co-aligned regions sampled in the Hα line wings were then visually inspected to

confirm or deny the formation of any Hα brightening (comparable to Ellerman

bombs). The evolution of both the SDO/HMI magnetograms and the co-spatial

Hα blue wing are plotted in Fig. 6.3 and Fig. 6.5. The total magnetic flux

strength of each of the opposite polarity regions were read-out from the YAFTA

output and plotted through time (see the bottom left frames of Fig. 6.4 and

Fig. 6.6) in order to interpret whether any cancellation was apparent. Both of

the events analysed in this Chapter exhibited significant cancellation through

their lifetimes, with each bi-pole being observable for little over one hour.

The Hα brightenings co-spatial to the MMFs had typical properties associ-

ated with Ellerman bombs, including excess emissions in the wings of the Hα
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Event Density (g km−3) Height (km) Radius (km) Time (s)
Spicule 3× 102 10000 250 3.3
Surge 5 39000 4000 54.4

Table 6.3: The estimated physical parameters of spicules (taken from Sterling
2000) and surges (estimates reported by, e.g., Bong et al. 2014). The time
required to provide the estimated mass to a cylindrical feature with the noted
height and radius, given a flux of 6.5× 1014 g hr−1, is also included.

line profile, areas close to 1′′×1′′, and lifetimes on the order of minutes (see, for

example, Georgoulis et al. 2002, Watanabe et al. 2011, Chapter 3). Both po-

tential Ellerman bomb features exhibited obvious rise and fade phases (in terms

of intensity and area), potentially corresponding to the upward propagation of

material as presented in Chapter 5, with peaks of both quantities occurring

after significant cancellation had already been measured (see the bottom right

frames of Fig. 6.4 and Fig. 6.6). Interestingly, the peaks of both of these pa-

rameters for Cancelling Event ‘2’ were co-temporal to the greatest measured

cancellation (as plotted in Fig. 6.6). Determining whether the increased cancel-

lation rate at that time contributed to the formation of the potential Ellerman

bomb or not is beyond the capabilities of this dataset (due to the potential

noise in the measurements) and would require a larger statistical sample from a

higher-resolution instrument such as the SST/CRISP. Future work should aim

to complete such a study.

The measured properties of each of the MMFs were then used as inputs in

the magnetic reconnection model of Litvinenko (1999) in order that outputs

testable against observations of Ellerman bombs could be found. Specifically of

interest in this Thesis is the upward flow velocity at the site of the hypothesised

reconnection which can be directly compared to the measurements obtained

at the solar limb in the previous Chapter and in Nelson et al. (2015). The

two features analysed here (Cancellation Events ‘1’ and ‘2’) resulted in upflow

velocities of 5.6 km s−1 and 6.8 km s−1, respectively, both of which are within one
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Figure 6.9: The upward velocity (top frame) and upward extension (bottom
frame) as a function of r. It should be noted that even with extremely large
values of r, the maximum upward extension does not exceed 1 Mm, unlike some
Ellerman bombs. An r value of 106 Mx cm−1 s−1 is overlaid for reference.161



standard deviation of the mean estimated in Nelson et al. (2015). The maximum

upward extensions, estimated using the technique discussed by Takasao et al.

(2013), were also calculated and gave values of 443 km and 670 km for the

MMFs, respectively. The upward extension length predicted for Cancellation

Event ‘2’ is comparable to the mean value calculated in Chapter 5 (and by

Watanabe et al. 2011, Nelson et al. 2015), however, the value estimated for

Cancellation Event ‘1’ is towards the lower limit of heights previously found for

Ellerman bombs. A larger statistical sample of such features will be analysed

in future work and included in the article based on this Chapter.

As well as the measured cancellation rates discussed here, it is also possible

to analyse the influence of a range of r values on quantities of interest. In

Fig. 6.9, the upward velocity (top frame) and the maximum extension (bottom

frame) are plotted for r values ranging from zero to 107 Mx cm−1 s−1. It is

immediately evident that both quantities increase smoothly throughout this

range, with a decreasing gradient at higher r values. Values of r exceeding 106

Mx cm−1 s−1 appear to return comparable lengths and velocities to the majority

of Ellerman bomb events. However, it can be observed that the maximum

upward velocity and maximum extension length do not exceed 10 km s−1 and

1000 km, respectively, within a realistic range of r values (as quoted in the

literature and previously in this Chapter). As neither of these predictions are

greater than the largest observed upward velocities and extension lengths (by,

for example, Watanabe et al. 2011, Nelson et al. 2015), it would be of interest

in future work to understand the role of the initial VAL-C model in limiting

these quantities. It is possible that a background model taken from a plage

region would increase these outputs and exceed Ellerman bomb measurements

allowing a maximum r value to be suggested.

In addition to the upward extensions and velocities, the estimated magnetic

field strengths from this model are comparable to the strengths of the MMFs as

measured by the SDO/HMI magnetograms (of the order 102 G). Calculating the

magnetic energy within the current sheet at the start of the cancellation period
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also allowed a potential energy release rate to be estimated. The properties of

both MMFs returned values of the order 1026 ergs, giving cancellation rates of

around 3×1022 ergs s−1. By assuming a lifetime of 10 minutes for the potential

Ellerman bombs co-spatial to these MMFs would allow around 2 × 1025 ergs

to be released during their existance. This value is on the upper limit of those

presented in Chapter 3 and on the lower limit of those discussed by Georgoulis

et al. (2002) and in the wider literature. It would be interesting to assess

how this energy release rate changes with larger cancellation rates. Overall,

this model appears to accurately return the properties of Ellerman bombs as

detailed by the literature, providing further evidence that the hypothesis of

photospheric magnetic reconnection as a driver for these events could hold.

It is important, however, to acknowledge two of the issues which constrict

this analysis. Firstly, the observed cancellation could, instead of the hypoth-

esised magnetic reconnection, be formed by another process, such as flux sub-

mergence, potentially limiting the usefulness of this research. Secondly, the

basic nature of the analytical model applied here certainly over-simplifies any

reconnection which might exist. However, a number of other researches have

exploited this model, returning reasonable upward mass fluxes and filling times

for phenomena such as filaments (Litvinenko and Martin 1999, Litvinenko et al.

2007), implying that there could be some usefulness to analysis as presented in

this Chapter. It is important to further this research in the future, potentially

by combining the methods presented here with realistic numerical simulations

(similar to the method applied in Chapter 4).

With the limitations of this model considered, it is now of interest to put

into context the estimates of the mass flux given by this model. In Table 6.3,

the densities and physical basic parameters of both spicules (see, Sterling 2000)

and surges (from Bong et al. 2014) are included. Using these parameters, and

assuming a cylindrical feature with volume equal to πr2h (where r and h are

the radius and height of the event, respectively), it is possible to calculate the

time (right hand column) which would be required to provide enough mass
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given an upward mass flux of 6.5 × 1014 g hr−1. The times of 3.3 seconds and

54.4 seconds for spicules and surges, respectively, are relatively small compared

to the observed formation times of these events. Indeed, if the kinetic energy

is taken as Ekin = 1
2
mv2 and the mass moved every second is constant (at

1.81 × 1011 g s−1) with a velocity of 5600 m s−1 (the same as predicted for

Cancellation Event ‘1’), a required kinetic energy of 2.83× 1022 ergs s−1 would

be required. This value is only 0.01 ergs s−1 lower than the estimated energy

release rate for this MMF. It is interesting, however, that this model does not

exclude the possibility that cancellation co-spatial to Ellerman bombs could

also drive surges.

It is important to note, though, that the underlying processes which lead

to surge formation are currently unknown and, hence, cancellation in the pho-

tosphere may not be of direct (but may be of indirect) importance for driving

these events. Some authors have suggested that photospheric reconnection, for

example, at the sites of Ellerman bombs in ARs could lead to the propagation

of a shock wave upwards towards the chromosphere, raising the chromospheric

canopy to heights comparable to surges (see, for example, Suematsu et al. 1982,

Shibata et al. 1982, Takasao et al. 2013). In this scenario, it is not mass ejec-

tion from the reconnection site as encompassed by the model analysed in this

Chapter which leads to the outflow. Therefore, due to the limitations of this

model, we do not firmly rely on the mass out-flows calculated here, nor the

estimated energies required to drive these surges. It is important that future

high-resolution observations be compared to numerical simulations which in-

clude accurate diagnostics of both the photosphere and the chromosphere in

order to fully understand the physics associated with the potential link between

these events.

The apparently sporadic relationship between Ellerman bombs, surges, and

MMFs is both confusing and intriguing. Within the literature, numerous au-

thors have discussed the potential relationship between Ellerman bombs and

surges (see, for example, Rust 1968, Roy 1973, Madjarska et al. 2009), how-
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ever, numerous datasets have also been analysed showing no link between these

features (such as all data analysed in this thesis). Whether specific conditions

must be achieved within a multi-stage process for an Ellerman bomb to drive

a surge or whether these events are unrelated other than by an occasional co-

spatial occurrence is still to be understood. In a recent article, Filippov et al.

(2007) suggested that a rapid increase in the strength of a bi-polar region (up to

a factor of 25) would be required within 5 minutes in order for a surge to form.

The two MMF events analysed in this Chapter neither show such rapid increase

in flux quantity over a short amount of time, nor a link to a surge. Combining

the techniques employed to conduct this research with a larger sample size of

Ellerman bomb-MMF pairs to fully understand whether some correlation be-

tween rapid growth of bi-poles and the co-spatial formation of Ellerman bombs

and surges exists would be of great interest to the community.
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Chapter 7

Relationship between an Hα

Surge and an EUV Brightening

7.1 Overview

In the previous Chapters of this thesis, high-resolution ground- (e.g., from the

DST) and space-based (for example, from the SDO satellite) data have been

analysed with the specific aim of furthering the knowledge of the community

about the Ellerman bomb phenomena. In this Chapter, however, the focus

of study is shifted. During observations of a plage region (collected by the

DST/IBIS instrument) trailing a sunspot in AR 11579, a small-scale surge (dis-

cussed by, e.g., Roy 1973, Roy and Leparskas 1973) was apparent within the

Hα line wings. This feature first evolved in the blue wing before fading and

appearing in the red wing, potentially indicating, if the decreased emission at

these wavelengths is a result of motions or Doppler shifts, the tip of the feature

followed a parabolic evolution profile (similar to the path of a ball during flight

after being thrown). In order to analyse this feature, the DST/IBIS observa-

tions were combined with data sampled by both the SDO/HMI and SDO/AIA

instruments in order to infer information about the photospheric line-of-sight

magnetic field and the coronal response to the surge. This research is of inter-
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est due to the potential link between the blinker phenomena (see, for example,

Harrison 1997) and surges as discussed by Subramanian et al. (2012). This hy-

pothesis was considered to be one of the two most likely formation mechanisms

of blinkers (with the other comprising transition region dynamical motions).

This Chapter will be structured as follows: In Section 2, the observations

analysed will be set out. Section 3 will detail the data analysis conducted on the

isolated surge event, including analysing small-scale structuring and influence

on the upper solar atmosphere, before a discussion of this research is presented

in Section 4. Credit: C. J. Nelson & J. G. Doyle, ‘Excitation of an outflow

from the lower solar atmopshere and a co-temporal EUV transient brightening’,

Astronomy & Astrophysics, Volume 560 (2013), Page A31, reproduced with

permission, c© ESO.

7.2 Observations

The data analysed in this Chapter include ground-based observations collected

using the DST/IBIS instrument during a period of good seeing on the 30th

September 2012 between 17:22 UT and 17:37 UT. A total of 377 images in both

the blue and red wings of the Hα line profile (each comprising of the speckle,

see Wöger et al. 2008, output from 10 input frames) with spectral positions

at approximately ±0.8 Å from the line core were sampled. The FOV of these

data was centred on a large plage region trailing AR 11579, with co-ordinates

of xc=10′′, yc=−225′′, with respect to the disc centre. After reduction of these

data, each science-ready image had a cadence of 2.4 seconds with pixel sizes of

around 0.097′′. This FOV was selected for observations as it contained a small,

dynamic pore (as well as obvious network structuring that was later found to be

co-spatial with a uni-polar region of magnetic flux). The large-scale structuring

of this plage region remained relatively stable throughout these observations.

Space-borne data from both the SDO/AIA and SDO/HMI instruments are

also analysed in this Chapter. As was discussed in Chapter 2, the 1700 Å
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Figure 7.1: Snapshot of data analysed within this Chapter sampled at the
closest frame to 17:24 UT for each instrument. Data from the SDO/AIA 1700
Å filter (bottom left frame) depict the entire FOV of these observations. The
black box outlines the zoomed FOV considered in this Chapter and plotted in
the remaining frames. Clockwise from the top left frame, these images consist
of: An SDO/HMI magnetogram; a DST/IBIS Hα blue wing image; a DST/IBIS
Hα red wing image; the SDO/AIA 304 Å filter; and the SDO/AIA 171 Å filter.
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Figure 7.2: The zoomed FOV indicated in Fig. 7.1 for both the 1700 Å
SDO/AIA filter (left hand frame) and a DST/IBIS blue wing image (right hand
frame). The contours overlaid on the left hand frame outline the bright NBPs
visible in the Hα blue wing, accurately mapping SDO/AIA 1700 Å bright points.
This technique is used to confirm the co-alignment between these instruments,
as well as the SDO/HMI data.
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SDO/AIA wavelength has a cadence of 24 seconds, whereas all other SDO/AIA

filters have a cadence of 12 seconds. The pixel size of data collected by the

SDO/AIA instrument is 0.6′′. The use of the SDO/HMI instrument also allows

for line-of-sight photospheric magnetic-field inferences. These data have a pixel

size of 0.5′′ and a cadence of 45 seconds. Finally, each SDO/AIA and SDO/HMI

was cropped, aligned, and de-rotated to follow the DST/IBIS FOV through

time. In Fig. 7.1, the bottom left panel plots the total FOV of these data as

observed by the SDO/AIA 1700 Å filter. A black box in this frame depicts the

FOV of the other panels in Fig. 7.1 which, clockwise from top left, plot: The

photospheric line-of-sight magnetic field inferred by SDO/HMI; the Hα blue

wing; the Hα red wing; the SDO/AIA 304 Å filter; and the SDO/AIA 171 Å

filter. Each image was sampled at approximately 15:24 UT.

To facilitate the research presented in this Chapter, bright points observed

in the 1700 Å photospheric continuum are used to align the instruments, before

the co-spatial nature of all SDO/AIA wavelengths is exploited to align the

transition region and coronal filters. In Fig. 7.2, the zoomed FOV outlined by

the black box in Fig. 7.1 is plotted for both the SDO/AIA 1700 Å filter (left

hand frame) and the Hα blue wing (right hand frame). Black contours in the

left hand frame outline the NBPs evident in the right hand frame confirming

the accuracy of the co-alignment of these data. As the aim of this Chapter is

to consider the influence of the surge event from the lower atmosphere on the

SDO/AIA coronal filters, such an accurate co-alignment is important to negate

the return of spurious results.

7.3 Data Analysis

7.3.1 Evolution within the Hα Wings

The event studied in this Chapter was first observed in the Hα blue wing as

a medium-sized ejection emanating from the edge of a large region of network

(indicated by the white arrow in Fig. 7.3). In Fig. 7.4, the evolution of this event

170



Figure 7.3: Data sampled at the closest frame to 17:30:01 UT for each in-
strument highlighting the surge-bright point pair analysed in this Chapter.
Clockwise from the top left image, the vertical magnetic field inferred by the
SDO/HMI instrument, a DST/IBIS Hα blue wing image, the SDO/AIA 171 Å
filter, and the SDO/AIA 304 Å filter. The arrow plotted in all but the top left
panel indicates the event discussed in this Chapter.

171



Figure 7.4: The temporal evolution of this feature in the blue wing (left column),
red wing (middle column), and SDO/AIA 1700 Å (right column). The top row
was sampled at 17:29:42 UT and each subsequent row was separated by 70
seconds. The alignment of these data is confirmed with the contours on the
initial SDO/AIA image. The black lines in the Hα images plot the slits used to
produce Fig. 7.5 and Fig. 7.6 (with the horizontal line corresponding to Fig. 7.6).

172



through time for the blue (left hand column) and the red (middle column) wings

of the Hα line are plotted where each column is separated by approximately 70

seconds. The right hand column plots co-spatial, co-temporal SDO/AIA 1700

Å data. If one were to consider the observed absorption in the Hα line wings in

terms of motions, an apparent parabolic shape of the event would be evident.

Strong absorption firstly occurs in the blue wing, indicating an upward motion

of the plasma, before this fades and reappears in the red wing, hinting at a

downflow. Although these data only cover a period of 15 minutes, the full

evolution of the event in the blue wing is observable; however, absorption in

red wing data still covers a significant area in the final frame. Estimating the

lifetime in the red wing to be comparable to the lifetime in the blue wing, it is

possible to infer a total lifetime of around 10 minutes. In order to assert whether

the continued absorption past the final frame of these data could influence the

results discussed in this Chapter, emissions in the SDO/AIA lines were visually

inspected. It was found that the signatures of this event in SDO/AIA data

had diminished well before the end of these DST/IBIS data and, therefore,

assumed that the lack of photospheric sampling of the end of this event would

not interfere with any conclusions regarding the coupling of this feature to the

upper-atmosphere.

The apparent morphology of this event, in the Hα blue wing, shows rapid

changes in both length and width over time. The event begins as a small

number of fine threads, analogous to the near ubiquitous fibrils observed at the

right of the FOV in Fig. 7.2, being emitted from co-spatial footpoints before a

small ‘blob’ is formed (around 1′′ by 1′′ in area) as seen in the initial frame of

Fig. 7.4. This ‘blob’ then expands in width and length to nearly 4′′ by 4′′ at

its peak, before the absorption reduces. Interestingly, once the event reaches a

peak length, it appears to propagate away from its footpoint, as can be observed

in the third Hα blue wing frame in Fig. 7.4, suggesting an ejection of a finite

amount of mass away from a potential source over time. The black lines over-

plotted on the IBIS line wing images in Fig. 7.4 indicate the axis parallel to the
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Figure 7.5: Two distance-time diagrams depicting the morphology of the event
analysed in this Chapter along a slit parallel to the apparent propagation of
material for the Hα blue wing (left frame) and red wing (right frame). The
overlaid black lines indicate the gradient of the motion and, hence, the apparent
speed within the Hα line wings. The slit position is shown in Fig. 7.4 (as the
near vertical black line).
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direction of propagation of this surge and a representative cross-cut analysed in

the following sections of this Chapter.

In Fig. 7.5, two time-distance diagrams for the slit taken parallel to the axis

of propagation in Fig. 7.4 are plotted for both wings of the Hα line. Over time,

absorption in the blue wing (left hand panel) is observed to propagate outwards

from a footpoint at a steady speed (indicated by the lower black line), estimated

to be around 14 km s−1, which is slightly higher than the sound speed in the

photosphere and lower chromosphere (estimated by Judge and Peter 1998). It is

interesting to note that as the absorption feature fades away from the footpoint,

approximately the same speed can be measured (indicated by the upper black

line). Following the end of the absorption in the Hα blue wing, the intensity

lowers in the red wing. Interestingly, this absorption appears to fill with a

similar speed to the blue wing. The vertical component of any motion would

be required to calculate an accurate total velocity for this event. Using basic

trigonometry, however, it is possible to calculate estimates of the total velocity.

For example, a 30◦ angle of propagation would be required for an increase to

a total velocity of 16 km s−1. Larger angles such as 60◦ or 85◦ would lead to

velocities of 28 km s−1 and 163 km s−1, respectively (which is within the range

measured by Roy and Leparskas 1973).

7.3.2 Small-Scale Structuring

Throughout the lifetime of this event, as depicted in Fig. 7.4, small thread-

like structures can be observed within the larger ‘blob’. These threads are

reminiscent of the common fibrils which are easily seen in Fig. 7.2, however,

their apparent length is shorter. Unfortunately, it is impossible to infer whether

the difference in length is a morphological trait or a line-of-sight issue and,

therefore, it is not discussed further. In Fig. 7.6, a time-distance plot taken for

a co-spatial slit in the blue (left) and red (right) wings of the Hα line is presented

to highlight the existence of small-scale structures across the event. Each time-

distance diagram is calculated for the slit perpendicular to the propagation of
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Figure 7.6: Two time-distance diagrams sampled using the slit perpendicular to
the surge event in Fig. 7.4 for the Hα blue wing (left hand panel) and red wing
(right hand panel). The white contours in both panels outline the small-scale
structuring apparent within this event. For example, three individual ‘fingers’
of this surge are highlighted using white arrows.
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Figure 7.7: Evolution of the event analysed in this Chapter through time high-
lighting the fine structured nature of this event. (Left frame) Hα blue wing
emission at 17:32:25 UT ; the white line indicates the slit selected for analysis
in Fig. 7.6. (Centre frame) The Hα blue wing emission at 17:32:27 UT (i.e.,
the consecutive frame). (Right frame) Difference image between the frames
depicting the multiple fine structures within this event.

the ‘blob’ in Fig. 7.4 through time.

The white contours in Fig. 7.6 outline several small-scale structures within

the larger-scale surge. To further highlight these smaller structures, difference

images were analysed frame-by-frame. A running difference technique, whereby

Diff [x, y, t + 1] = Frame[x, y, t + 1] − Frame[x, y, t], was implemented to

identify changes in intensity between consecutive frames. In Fig. 7.7, a rep-

resentative example of the output of such an analysis is plotted. Within the

imaging data, it is difficult to see the rapid changes in intensity between the in-

dividual fibril events through time, however, the difference image clearly shows

the existence of the small-scale structures within the larger-scale ‘blob’. The

lifetimes and evolutions of these structures are similar to those observed for

Type I spicules, however, these properties do not discount either p-mode buffet-

ing (De Pontieu et al. 2004) or magnetic reconnection (Yokoyama and Shibata

1996) as the driver of this surge.
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7.3.3 Links to the Photospheric Magnetic Field

The relationship between surges and strong, vertical photospheric magnetic

fields has been well documented in recent years (see, for example, Roy and

Leparskas 1973, Madjarska et al. 2009, Kayshap et al. 2013). As has been

discussed in previous Chapters of this thesis, Ellerman bombs are sometimes

observed at the footpoints of surges and have been interpreted as potential

evidence of magnetic reconnection co-spatial to the apparent footpoint of these

events (for example, Roy 1973). More recently, links between surges and flux

cancellation within an AR have been presented (by, for example Chae et al.

1999, Brooks et al. 2007, Chen et al. 2009) who suggested that the observed

reduction in magnetic field was evidence supporting reconnection as a driver for

the ejection of plasma from the lower chromosphere.

The surge identified in this Chapter, however, forms co-spatially with a large

uni-polar plage region (as is easily seen in the top left frame of Fig. 7.1 and

Fig. 7.3). The large-scale magnetic field within this FOV appears to be stable

throughout the course of these data, providing no evidence of flux emergence

or cancellation co-spatial to the surge. Indeed, these data depict a constant

magnetic field structure through time. Despite small-scale restructuring of the

magnetic field within the plage region that is co-temporal to the beginning of

the absorption feature, it is difficult to quantify how much influence, if any, this

has on the ejection.

Therefore, the magnetic evolution of this FOV over the course of a two-

hour period surrounding the data was analysed to infer whether large-scale

morphological changes occurred before the surge. These data confirmed that

no observed bi-polar fields interact to form this event and that only small-scale

restructuring occurs within the large uni-polar plage region. No evidence of

magnetic cancellation, or reconnection, leading to the formation of this event

is found. It should be noted that although there are few dynamic changes

within this FOV, complexity of the magnetic field can be inferred through the

number and frequency of network bright points, which are often used as a proxy
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Figure 7.8: Lightcurves showing the evolution of the intensity recorded by a
sample of SDO/AIA filters (sampling the upper-atmosphere) during the course
of this event. From the bottom to the top on the left hand side of the image,
the SDO/AIA 304 Å (solid line), 131 Å (long-dashed), 211 Å (dot-dashed), 171
Å (short-dashed), and 193 Å (dot-dot-dot-dashed) filters are plotted.

for the vertical magnetic field (see, e.g., Leenaarts et al. 2006, Rutten et al.

2013). It is, therefore, possible that magnetic structuring on scales smaller than

those currently resolvable using the SDO/HMI instrument is occuring during

this period, leading to reconnection of complex topologies. However, no such

evidence is apparent in the data analysed here.

7.3.4 Signatures in the Transition Region and Corona

The final Section within this Chapter assesses the apparent influence this event

has on the upper atmosphere through an analysis of the SDO/AIA EUV filters.
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It can be easily inferred from Fig. 7.3, that a co-spatial brightening event exists

within the AIA 304 Å and 171 Å filters during a period of strong absorption

within the Hα blue wing. Within the 304 Å filter, the peak area of this bright-

ening is approximately 4′′ by 4′′, consistent with the area of a small blinker

event (as discussed by, e.g., Chae et al. 2000, Parnell et al. 2002, Madjarska

and Doyle 2003) and the area of the event in the IBIS data. It is, therefore,

considered that this event is a blinker in the upper-atmosphere.

The evolution of the area of this brightening within the 304 Å filter is roughly

parabolic, showing a steady rise to the peak area, before dropping off once

again to the background intensity. This parabolic evolution is also apparent

within all other SDO/AIA upper atmospheric filters co-temporally, implying

that this brightening is formed as a result of increased density or filling factor

in the transition region and corona (as has been suggested in previous researches

by, e.g., Priest et al. 2002, Subramanian et al. 2012). Therefore, the research

presented in the previous sections of this Chapter could relate to the supply

of mass from the lower atmosphere into the upper atmosphere. Due to the

small-scale structuring observed within this event, an open question which is not

answered by this Chapter is posed (in addition to the question of what causes the

surge initially): Do smaller fibril structures which are observed within the line

wings have a similar, albeit smaller, influence on the upper atmosphere? This

question could potentially be solved in the future through analysis of co-spatial

ground-based data and the higher resolution (with respect to the SDO/AIA

instrument) data available from the IRIS satellite.

The temporal evolution of the intensity of this event is plotted in Fig. 7.8

for a number of SDO/AIA filters. A 7′′ by 6′′ box was selected around this

small-scale blinker such that no other localized brightening events occurred

within the FOV during this period. The average intensity of this box was

then calculated for each frame during these observations and plotted for each

of five EUV SDO/AIA filters (from bottom to top in the original frame: 304

Å; 131 Å; 211 Å; 171 Å; and 193 Å). The localized brightening event occurs
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for approximately four minutes. It is interesting, and worthy of future study,

to understand whether the lifetime and area of this event (which are both on

the lower limit of statistics of blinkers as discussed in the literature by, for

example, Madjarska and Doyle 2003) are related to the size of the original

ejection observed within the Hα line wings.

It is worthy to note, that the original brightening in the SDO/AIA filters

occurs co-temporally with the initial stages of the formation of the Hα event

(similar to the numerical results of Yokoyama and Shibata 1996), before fading

entirely whilst there is still strong absorption in the blue wing. In Fig. 7.9, a

visualization of this process is depicted. The second frame of Fig. 7.9 highlights

the delay of absorption in the Hα blue wing. Only the initial stages of develop-

ment within the Hα blue wing are observed in this column compared to the near

peak emission in the SDO/AIA 304 Å data. One possible reason for the time lag

within these data could be that only one specific spectral position in each wing

within the Hα line is observed and that, therefore, only a snapshot of the whole

physical process which is occurring is sampled. If full Hα line scan data were

available to analyse during this event, a better picture of the observed coupling

may have been inferred. The evidence that this strong absorption feature in

the Hα line wings is intrinsically linked to the possible blinker event observed

within the SDO/AIA images is intriguing and will be discussed further in the

final Discussion section of this Chapter.

7.4 Discussion

In a recent article, Subramanian et al. (2012) suggested two possible formation

mechanisms for blinkers, namely the injection of plasma from the chromosphere

or transition region dynamics (such as flows in existing loop structures). The

research presented in this Chapter offers the first evidence that at least a sub-set

of the transition region brightenings known as blinkers are formed due to an

in-flux of mass from the lower solar atmosphere. It remains to be seen, however,

181



Figure 7.9: The evolution of the event analysed in this Chapter in the Hα blue
wing (left hand column) and the SDO/AIA 304 Å (middle column) and 171 Å
(right hand column) filters. The difference between each frame is approximately
48 seconds (starting at 17:28:26 UT and ending at 17:31:37 UT). The temporal
difference between each wavelength in an individual row is below 10 seconds.182



what quantity of blinkers are formed in this way. Doyle et al. (2004) discussed

blinker phenomena being associated with brightenings in pre-existing coronal

loops. The observed features appeared to occur during the emergence of mag-

netic flux into the photosphere which, it was hypothesised, caused interchange

reconnection in the loops. The temperature interfaces (created by the reconnec-

tion process) between the cool plasma of the newly emerging loop and the hot

plasma of the existing loop was believed to cause the observed activity. Doyle

et al. (2004) suggested that the temperature interfaces propagated with the

characteristic speed of a conduction front, heating up the cool chromospheric

plasma to coronal temperatures and increasing the volume and brightening to

transition region temperatures.

In a more recent study, Subramanian et al. (2012) classified blinkers into

two categories, one associated with coronal counterparts and the other with no

coronal counterparts. Around two-thirds of the blinkers showed coronal coun-

terparts and corresponded to various events like EUV/X-ray jets, brightenings

in coronal bright points, or foot-point brightenings of larger loops. The present

event fits into those showing a coronal component and matches the slow-shock

model presented by Yokoyama and Shibata (1996) suggesting that magnetic

reconnection in the photosphere may be the driver of this event. However,

it should be noted that no evidence of magnetic reconnection was evident in

SDO/HMI data and this blinker did not occur co-spatially with any apparent

loop structures in SDO/AIA data. These results are, therefore, inconclusive

(which is unsurprising given the analysis of a single event) with respect to dis-

covering a general formation mechanism of all blinkers.

Overall, it can be suggested that the brightening observed within these

SDO/AIA data is analogous to a blinker. Although the spatial and tempo-

ral scales of this event are on the lower limit of previously observed blinkers

(such as those observed by, for example, Harrison 1997, Harrison et al. 1999,

Bewsher et al. 2002), either the improved spatial and temporal resolutions of

the data used within this Chapter or the fact that this is potentially a single,
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relatively weak event may account for this. Combining this result with the large

absorption feature within the Hα line wings, interpreted as an on-disc surge,

presents additional evidence that at least a sub-set of transient brightening fea-

tures within the transition region and corona are linked to mass supply from

the lower atmosphere (as was suggested by Priest et al. 2002). Due to the co-

temporal reaction of the Hα line wings and the EUV filters, it is possible that

the increased filling factor in the upper atmosphere is caused by a slow shock,

propagating away from a reconnection site in the lower atmosphere, analogous

to the process described by Yokoyama and Shibata (1996). However, the fi-

nal picture is inconclusive and, therefore, no strong assertions should be made

about the formation mechanism of the surge itself.
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Chapter 8

Conclusions and Future Work

8.1 Overview of this Thesis

This thesis contains research into small-scale dynamics in the lower solar at-

mosphere, specifically with respect to the Ellerman bomb phenomenon. High-

resolution, high-cadence ground-based Hα data have been studied in each Chap-

ter, often supplemented by measurements of the photospheric line-of-sight mag-

netic field and upper atmospheric intensity. The majority of the work conducted

here, has focused on understanding the formation mechanism responsible for

Ellerman bombs (hypothesised to be magnetic reconnection by authors such as

Georgoulis et al. 2002, Pariat et al. 2004, Watanabe et al. 2011). Largely, the

aims of this thesis have been achieved through observational data analysis; how-

ever, comparisons with state-of-the-art simulations and novel analytical models

have also been conducted.
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8.2 Summary of Results

8.2.1 Statistical Analysis of Ellerman Bombs

In Chapter 3, the possibility that small-scale brightenings close to the spatial

resolution of the DST/IBIS instrument are related to the Ellerman bomb phe-

nomena was explored. An automated detection algorithm was applied to 90

minutes of Hα line profile and speckle data collected on the 18th November

2010, selecting regions with brightness over 130 % of the average background

intensity (the same threshold value applied by Georgoulis et al. 2002). This

algorithm was tested by isolating features with spatial scales over 0.64′′2 (which

is close to the capabilities of the Flare Genesis Experiment) and then compar-

ing basic statistics of these events to Ellerman bombs within the literature. An

average lifetime of this null set of events was found to be 7.2 minutes. Due to

the proximity of this value to other estimates of Ellerman bomb lifetimes (in-

cluding Kurokawa et al. 1982, Zachariadis et al. 1987, Watanabe et al. 2011),

it was concluded that the selection criteria of the algorithm were suitable.

Overall, 3570 features were selected by the algorithm within these data.

Many of these events were short-lived, with the average lifetime being close to

2.6 minutes, with many of these brightening events having lifetimes below 2

minutes. It is interesting to note, that many of these features appeared and

disappeared within 3.5 minutes, which was the cadence of the Flare Genesis

Experiment (discussed by Georgoulis et al. 2002, Pariat et al. 2004). In addition

to these short lifetimes, the average area of these features was measured to be

0.11′′2 (comparable to a 240 km to 240 km box) indicating that small-scale

structuring can occur on scales close to the spatial resolution of the DST/IBIS

instrument. It remains to be seen how many of these small features are Ellerman

bombs, however, it can not be discounted that structuring is occurring below

the spatial resolution of these data (similar to the discussions of De Wijn et al.

2009). The behaviour of such small-scale features could provide further exciting

opportunities for research in the coming years.
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The energetics of the selected features was also discussed. A technique

described by Georgoulis et al. (2002) (who used methods introduced by Nagai

1980) was applied to these data to estimate the total energy release of all events

returned by the algorithm assuming only radiative losses. The values found

by this analysis were around two to three orders of magnitude smaller than

those presented by both Bruzek (1972) and Georgoulis et al. (2002), however,

this discrepancy can be explained by the small-scale (one order of magnitude

smaller on average) and short-lived (one order of magnitude shorter-lived on

average) features discussed in this Chapter. Power laws calculated for these

data gave low indexes (from -0.18 to -2.09) for the occurrence of these events,

potentially due to their formation close to the limitations of these data. It

would be interesting to revisit such an analysis when data from the Daniel K.

Inouye Solar Telescope (DKIST; formerly known as the Advanced Technology

Solar Telescope) is available.

Finally, the temporal evolution and spatial positioning of selected features

was discussed. A thorough inspection of these data highlighted three distinct

traits which were exhibited by brightenings selected by the algorithm. The first

case involved completely isolated brightenings which appeared to have no links

to other events in time or space. The second class of features involved multiple

events occurring from the same spatial position, either after the initial bright-

ening had faded or had propagated away from its source in the moat flows (see

Sheeley 1969). The final class can be descibed in three stages: 1) An event was

detected by the algorithm which then; 2) decreases in intensity and is dropped

by the algorithm before propagating away from its initial position before; 3)

increasing in intensity once again and being re-selected by the algorithm. Many

of the selected features occurred co-spatially with G-band MBPs (as has been

previously discussed by Jess et al. 2010a to a limit extent); however, some bright

potential Ellerman bomb features were observed to form apparently away from

any MBPs. This relationship should be explored in more detail in future work.
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8.2.2 Comparison of Numerical Signatures to

Observational Evidence of Ellerman Bombs

In Chapter 4, comparisons of numerical simulations of magnetic reconnection

to observations of Ellerman bombs were made. Observational data of the Hα

and Fe I 6302.5 Å line profiles were collected by the DST/IBIS system on the

30th September 2012 whilst co-temporal sampling of the G-band continuum was

conducted by the DST/ROSA instrument. These data were supplemented by

Stokes V/I measurements collected by the Hinode/SOT and images of the upper

atmosphere sampled by the SDO/AIA. Data from both of these instruments

were reduced using standard SolarSoft routines before being co-aligned and

de-rotated through time. In total 15 minutes of data were collected by the

ground-based instruments with a cadence of around 5.6 seconds.

Potential Ellerman bombs were identified within DST/IBIS Hα line wing

images as regions of brightness which induced no discernible signal in the line

core. Within these data, seven such features were confidently selected. Follow-

ing this, profiles of the Hα and Fe I 6302.5 Å lines were plotted for each event

highlighting the common trait of reduced absorption in the Fe I 6302.5 Å line

core co-spatial with the Ellerman bomb. These results were then compared

to the numerical simulations in an attempt to further understand the physical

processes which were being observed. It was found that the identified behaviour

of Ellerman bombs in these two line profiles was comparable to the simulated

line profiles at sites of magnetic reconnection within the numerical solar photo-

sphere. This result agreed well with previous researches of Ellerman bombs (for

example, Georgoulis et al. 2002, Isobe et al. 2007, Archontis and Hood 2009)

indicating that a more thorough analysis should be conducted.

Next, the temporal evolution of these features was discussed. Specific atten-

tion was paid to the evolution in the Hα line wings in comparison to the Fe I

6302.5 Å line core. A similar evolution in both intensity and area was found

for both wavelengths. As the estimated formation heights of the Hα line wings

and the Fe I 6302.5 Å line core are similar, this result is unsurprising. This
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co-temporal evolution agrees well with the simulated profiles at the numerical

magnetic reconnection site. Interestingly, the simulated profiles do depict some

form of narrowing of the Hα line profile at the reconnection site; however, as the

simulation box does not reach high enough into the atmosphere to accurately

model the Hα line core, this is most likely a numerical error. It would be of

great interest to understand the signals of such reconnection sites in numerical

boxes with larger vertical domains.

Overall, the seven Ellerman bombs analysed in this Chapter could be split

into two distinct groups, namely typical Ellerman Bombs and small Ellerman

hombs. Each of these features exhibited some form of ‘flaring’ through time,

with increases in intensity and area evident. In order to further understand

the role of the magnetic field with respect to the Ellerman bomb phenomena,

co-spatial Stokes V/I data (sampled by the Hinode/SOT instrument) were ob-

served through time. In total, five of the seven features occurred co-spatially

with regions of flux cancellation and a single further event occurred co-spatially

with apparent flux emergence. These complicated and evolving regions are

indicative of typical magnetic field structuring (such as that suggested by Geor-

goulis et al. 2002) expected to lead to the formation of Ellerman bombs and

agree well with the simulated bi-pole. In order to attempt to quantify any

cancellation, a single isolated feature was analysed by placing a box around

the bi-pole such that no other flux was apparent and then measuring the field

strength through time. In only 15 minutes, a decline in total flux in the region

to 68 % of the original value was observed. Further attempts to understand

such cancellation were attempted in Chapter 6.

8.2.3 Ellerman Bombs at the Solar Limb

The properties of Ellerman bombs at the solar limb were discussed in Chapter

5. Line profiles sampling the Hα wavelength were collected by the SST/CRISP

instrument on the 21st June 2012 with a FOV containing three sunspots within

AR 11506. Ellerman bombs were then identified within these data by using a
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threshold value of 150 % of the local background intensity before each feature

was visually inspected through time returning basic properties such as lifetimes,

widths, and lengths. These values (at 7 minutes, 500 km, and 600 km, respec-

tively) are comparable to Ellerman bombs within the literature, especially in

studies at the solar limb (see, for example, Kurokawa et al. 1982, Watanabe

et al. 2011) confirming the accuracy of the selection criteria.

Further to the basic physical properties, the evolution of the Ellerman bombs

through time was also of interest in this Chapter. Each selected feature was

tracked through time and the peak height measured for each frame. In this

way, it was possible to identify that all but two Ellerman bombs in these data

appeared to follow a parabolic path through time with an average up-ward

velocity of approximately 8.9 km s−1. This value is close to those measured

by Watanabe et al. (2011) and is also close to the sound speed estimated for

the photosphere and chromosphere by Judge and Peter (1998). These profiles

suggest that Ellerman bombs could be the signature of temperature and density

enhancements in a localised region (as has been discussed by Fang et al. 2006).

Two case studies were then presented which detailed the small-scale dynamical

nature of Ellerman bombs.

The first case study discussed the morphology of a large Ellerman bomb close

to a sunspot, which split into three extremely small-scale segments that propa-

gated away from the initial feature. Each segment appeared to follow a bright

‘trail’ in a manner similar to that recently discussed by Reid et al. (2015), before

another large Ellerman bomb was formed at the furthest distance reached by

the segments (around 2200 km from the initial feature). The apparent connec-

tion between these two features offers evidence (agreeing with the time-distance

analysis conducted in Chapter 3 and since corroborated by Reid et al. 2015) that

photospheric motions (such as moat flows or convective motions) could cause

consecutive reconnection events in different spatial positions. Interestingly, each

of the segments of the original Ellerman bomb exhibited similar intensity en-

hancements and evolution profiles to the initial event potentially supporting the

190



assertions of Chapter 3 that Ellerman bombs can form on spatial scales close

to the spatial resolution of ground-based instruments.

The second case study presented in this Chapter analysed an Ellerman bomb

which was observed to split, seemingly violently. One segment propagated away

from the initial spatial position of the Ellerman bomb at a speed of around 6.2

km s−1, with the speed then decreasing to around 0.6 km s−1. The other

segment remained stationary through these observations. Once an approximate

separation distance of 2 Mm was reached, a loop could be observed to connect

the two segments. Interestingly, the morphology of this feature was comparable

to the evolution of flux emergence events in observations (see, e.g., Otsuji et al.

2007, Ortiz et al. 2014). This research offers an excellent channel for future

study with regards to flux emergence, potentially using high-resolution magnetic

field measurements collected by the SST/CRISP instrument.

8.2.4 On The Ability Of MMFs To Drive Ellerman Bombs

Chapter 6 detailed further research into the potential relationship between Eller-

man bombs and MMFs (as has been previously been discussed by authors such

as Nindos and Zirin 1998). Two hours of Hα line wing observations collected

by the DST/IBIS instrument on the 30th September 2012 were reduced and

destretched through time before line-of-sight photospheric magnetic field mea-

surements sampled by the SDO/HMI were aligned and de-rotated to track the

same FOV. Within these Hα data, numerous wing intensity enhancements (with

morphological properties comparable to Ellerman bombs) were evident, often

forming co-spatially with magnetic bi-poles (where reconnection is hypothesised

to occur). In order to complete a thorough measurement of the role of any po-

tential flux cancellation (or emergence) exhibited by the MMFs, however, it was

neccesary to identify isolated events using YAFTA. Two such isolated MMFs

suitable for analysis were evident during these observations.

Initially, magnetic field measurements of both the positive and negative

sections of the bi-poles were computed through time using the YAFTA output.
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An inspection was then conducted to identify the initial frames at which the two

magnetic field elements began to interact and the final frame in which the bi-

pole was evident. A linear fit was applied between these frames to the magnetic

field strength through time allowing for the estimation of a cancellation rate

for both bi-poles. This cancellation rate was calculated to be around 1014 Mx

s−1 for both features. Interestingly, both MMFs appeared to have initial total

fluxes on the order of 1018 Mx, diameters of around 1500 km and lifetimes on

the order of one hour which is typical for these features (see, for example, Li and

Zhang 2013). Calculating the initial magnetic energy, and assuming this energy

was converted to radiative or kinetic energy during the cancellation, allowed an

estimate of the energy available during the lifetime of the Hα brightening. The

returned value was between the maximum energy returned in Chapter 3 and

those estimated by Georgoulis et al. (2002). It is, therefore, possible that an

Ellerman bomb did occur at this location.

Finally, these observed properties of these MMFs were used as an input into

the basic analytical model of Sweet-Parker magnetic reconnection developed by

Litvinenko (1999) and Litvinenko et al. (2007). This model was able to estimate

upward flow velocities at reconnection sites using the measured cancellation

rates. The obtained upward flow velocities were 5.6 km s−1 and 6.8 km s−1

which are both within one standard deviation of the mean vertical propagation

rate measured in Chapter 5. As well as this, an increase in number density at the

reconnection site is predicted agreeing with the results presented in Chapter 4

and within the literature (see, for example, Fang et al. 2006). Upward extension

lengths of 443 km and 670 km were also derived, which are not dissimilar to

measurements obtained in Chapter 5. Finally, up-ward mass fluxes (which

could potentially supply the required density to surges or filaments) were also

estimated by this model. According to this model, both events were capable of

displacing 6.5 g hr−1 into the upper atmosphere, or enough mass to supply a

solar surge (mass estimated by Bong et al. 2014) within one minute. However,

no evidence of spicule, surge, or filament structures is observed co-spatial to
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these MMFs.

One of the most interesting (in this author’s opinion) open questions with

regards to Ellerman bombs is their apparently sporadic relationship with solar

surges (see, for example, Roy 1973, Madjarska et al. 2009, Reid et al. 2015).

Roy (1973) derived a flux cancellation rate (at the site of a bi-pole co-spatial

to a surge) of around 3 × 1015 Mx s−1, which is one order of magnitude larger

than the cancellation displayed within the MMFs discussed in this Chapter. It

is, however, conceivable that higher cancellation rates could be observed at the

sites of other Ellerman bombs which are neglected in this study. The research

presented within this Chapter could, therefore, lead towards the first insights

into the reason for the occasional co-spatial formation of Ellerman bombs and

surges. An excellent avenue for future study could focus on the cancellation

rates of bi-poles co-spatial to a more statistically relevant sample of confidently

identified Ellerman bombs in order to understand whether larger observed can-

cellation rates are pre-cursors for surge formation.

8.2.5 Co-Spatial Relationship Between a Surge and a

Blinker

Finally, an isolated surge event is analysed in Chapter 7. Observations of the

Hα line wings, collected using the DST/IBIS instrument on the 30th September

2012, were analysed with a FOV sampling a uni-polar plage region. Approxi-

mately 15 minutes of data were available for analysis. Photospheric line-of-sight

magnetograms and coronal EUV emissions were also considered using data from

the SDO/HMI and SDO/AIA instruments, respectively. Data from both of

these instruments was cropped, aligned, and de-rotated through time to track

the FOV of these DST/IBIS data. Overall, the large-scale structuring within

this FOV remained constant during the course of these observations with no

evidence of flux emergence or cancellation evident.

The initial stages of the observed surge were evident in the blue wing of the

Hα line profile as fine threads all extending from the same footpoint. Within
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a few minutes, these fine threads had evolved to form a ‘blob’ with an area of

approximately 4′′×4′′ before the absorption faded along the structure starting

from the footpoint. After around one minute, this feature then appeared and

developed in the red wing of the Hα line profile with a similar area. If one were

to consider the wings of the line profile as indicative of motions in the line-of-

sight, a parabolic evolution profile can be inferred. Interestingly, even after the

development of the blob, fine-scale spicule like events were evident within the

larger structure. Due to the small-scale structuring within these features and

their parabolic evolution, it was deemed possible that a process similar to that

hypothesised to drive spicules (as discussed by De Pontieu et al. 2004) could be

the driver of this surge. Briefly, this process outlines that p-mode wave leakage

from the photosphere could lead to spicule formation.

The co-spatial EUV transition region and coronal response to this surge

manifests as a 4′′×4′′ brightening event with a lifetime on the order of minutes.

This feature is interpreted as a blinker (see, for example, Harrison 1997). These

features have been hypothesised to form either due to compression in the upper

atmosphere induced by mass supply from the photosphere (as was discussed by,

e.g., Priest et al. 2002, Subramanian et al. 2012) or through magnetic reconnec-

tion in the transition region (Doyle et al. 2004). It is interesting to note that

the blinker forms co-temporally with the initial phases of the evolution of the

surge potentially agreeing with the simulations presented by Yokoyama and Shi-

bata (1996). These authors suggested that photospheric magnetic reconnection

could lead to the formation of a shock which compresses the transition region.

Overall, the evidence found in this Chapter suggests that this blinker forms as

a response to compression in the upper atmosphere caused by a process in the

photosphere.

It still remains to be found, however, whether this event is typical of the over-

all driving mechanism of blinkers. Indeed, Subramanian et al. (2012) concluded

that two types of blinkers existed which could indicate that more than one for-

mation process is possible. The potential links between mass supply from the
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photosphere to small-scale blinker events in the upper solar atmosphere are also

intruiging. Future research, potentially making use of the IRIS satellite, should

be conducted to test whether smaller ejections (such as spicules) have a similar

influence on the transition region and corona. This work could link well with

the recent results from the Hi-C mission which observed small-scale ‘sparkles’

(Régnier et al. 2014) but would require extremely accurate co-alignment be-

tween instruments.

8.3 Concluding Remarks

The brief foray into the small-scale dynamical processes in the solar atmosphere

which has been presented in this thesis has outlined the complex nature of the

Sun in general. The Ellerman bomb phenomenon, in particular, has proved

difficult to conclusively understand to date; however, I hope that the research

presented here at least offers some clues and insight that could instigate future

studies of increased sophistication.
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M. G., Kiselman, D., Sütterlin, P., van Noort, M., and Lagg, A. (2008).

CRISP Spectropolarimetric Imaging of Penumbral Fine Structure. Astro-

phys. J. Lett., 689:L69–L72.

Scherrer, P. H., Bogart, R. S., Bush, R. I., Hoeksema, J. T., Kosovichev, A. G.,

Schou, J., Rosenberg, W., Springer, L., Tarbell, T. D., Title, A., Wolfson,

C. J., Zayer, I., and MDI Engineering Team (1995). The Solar Oscillations

Investigation - Michelson Doppler Imager. Solar Phys., 162:129–188.

Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G., Bogart, R. S., Hoek-

sema, J. T., Liu, Y., Duvall, T. L., Zhao, J., Title, A. M., Schrijver, C. J.,

Tarbell, T. D., and Tomczyk, S. (2012). The Helioseismic and Magnetic Im-

ager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar

Phys., 275:207–227.

Schmieder, B., Rust, D. M., Georgoulis, M. K., Démoulin, P., and Bernasconi,

P. N. (2004). Emerging Flux and the Heating of Coronal Loops. Astrophys.

J., 601:530–545.

Schulz, T. J. (1993). Multiframe blind deconvolution of astronomical images.

Journal of the Optical Society of America A, 10:1064–1073.

Schwarzschild, K. (1906). On the equilibrium of the Sun’s atmosphere.

Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu

Göttingen. Math.-phys. Klasse, 195, p. 41-53, 195:41–53.

Sekse, D. H., Rouppe van der Voort, L., and De Pontieu, B. (2012). Statistical

Properties of the Disk Counterparts of Type II Spicules from Simultaneous

Observations of Rapid Blueshifted Excursions in Ca II 8542 and Hα. Astro-

phys. J., 752:108.

214



Severny, A. B. (1956). Fine structure in solar spectra. The Observatory, 76:241–

242.

Severny, A. B. (1964). Solar Flares. Ann. Rev. of Astron. Astrophys., 2:363.

Sheeley, Jr., N. R. (1969). The Evolution of the Photospheric Network. Solar

Phys., 9:347–357.

Shelyag, S., Keys, P., Mathioudakis, M., and Keenan, F. P. (2011). Vorticity

in the solar photosphere. Astron. Astrophys., 526:A5.

Shelyag, S., Schüssler, M., Solanki, S. K., and Vögler, A. (2007). Stokes diagnos-
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