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Abstract

Introduction: In biomedical systems repeated measurements are oftesctenl| thus
presenting a statistical challenge due to high temporatetairon. This research
investigates the potential utility of two distinct staiisi methodologies in their

application.

Application: Two clinically diverse biomedical systems, linked by thenwnon
methodological interest of assessing control and perfoo@aare considered. (i) An
application to renal anaemia aims to investigate the stytmf haemoglobin levels,
measured monthly for 13 months within 151 patients, withultienate goal of improving
patient control; (ii) the second an application concerrrelmel autoregulation (a stable
cerebral blood flow over a range of arterial blood pressucejnaintain patient safety
during a surgical procedure to prevent stroke. Repeatedunements of cerebral blood
flow and arterial blood pressure were collected on 36 paijgnelding a total of 4519
cerebral blood flow and 4574 arterial blood pressure measants (note that the number

of observations vary between patients).

Statistical methodology: Functional data analysis and multilevel modelling areised

in the investigation of these two biomedical systems. Honel data analysis considers
observations as a function rather than a highly correlaggplesnce of measurements.
Multilevel modelling assumes that measurements are ckoi@nd that within clusters,

measurements are scattered about a trend in an uncorralateter.

Results: Assessment of control within the renal anaemia system amavleclge of

the relationship within the cerebral autoregulation systbas been achieved through
the successful application of functional data analysis. edsocurves were used as
means of exploring the cerebral blood flow — arterial blooéspure relationship
in the cerebral autoregulation application. B-splines @hadse plots were used to

explore haemoglobin control in the renal anaemia systenth&uy multilevel modelling



incorporating autoregressive correlation structures@prately models the dependency
amongst model residuals due to temporal correlation. Batltfonal data analysis and
multilevel modelling have demonstrated their utility irethpplication to model control in

biomedical systems.

Conclusions: The novel application of these statistical methodolog&s $uccessfully
provided contemporary insight into these biomedical systand shows strong prospects

for further applications.



Acknowledgements

Foremost, | would like to thank my supervisors ProfessorbeRoWest and Mark S
Gilthorpe for their expert guidance, continued encourag@nand confidence building
throughout this PhD. Robert always had time and an open @ven when extremely
busy. His support has been considerable and for this | wilags be grateful. Mark for
his refreshing insight and critical questioning, a traiiethhe has assisted me to develop.

To both for their feedback throughout, especially duringfihal ‘writing up’ stage.

This work has been funded by The Emma and Leslie Reid Scihgpeasid the Yorkshire
Kidney Research Fund. The Emma and Leslie Reid Scholarsagpawarded by the
University of Leeds for research in the area brain disealse.Ybrkshire Kidney Research

Fund grant supported work in the field of renal anaemia.

Many thanks go to my clinical collaborators, Dr Eric J WilllaBr Simon Howell. Their

sharing of data and primarily clinical expertise, has bewaluable in my understanding
of the clinical applications. Their interest and questngnattitude towards the statistical
aspects being hugely influential in developing my abilityptesent a variety of ways in

which to explain somewhat complex statistical issues.

Undertaking this PhD brought many wonderful opportunitewisit different parts of
the UK, Europe and Canada. From attending and presentiragiahal and international

conferences and training courses.

| would like to thank my colleagues in the Division of Biosstics and fellow PhD
students past and present. | will particularly hold fond roaes of the numerous social

events we have shared over the last four years.

Last but not least | would like to thank my family and friends their support and
encouragement. Thank you for being interested in my work asking inquiring

questions. Special thanks go to my Grandparents Pat and dralyfor asking “when



are you going to be a Professor? ”. And to my Nan, who aftethaltime continues to

ask “remind me what it is that you are doing? .



Contents

Abstract . . . . . . L [
Acknowledgements . . . . . . . . e ii
Contents . . . . . . . %
Listoffigures . . . . . . . . . . e Xil
Listoftables. . . . . . . . . . . . . . XVi
Listof abbreviations . . . . .. .. .. ... .. ... .. ... ... VilK

1 Introduction 1
1.1 Background and motivation. . . . . . ... .. ... ... ... 1
1.2 AimsandObjectives . . ... ... .. .. .. ... .. 5
1.3 Outlineofthesis. . . . . . .. .. . . .. 6

2 Cerebral Autoregulation 9
2.1 Background . . . . . ... 9
2.2 Assessmentof Autoregulation . . . ... ... ... L 13

2.2.1 Assessment and measurement of static autoregulation. . . . 14

2.2.2 Assessment and measurement of dynamic autoregulatio. . . 18



CONTENTS

2.2.3 Generalvs Local anaesthesia . . . .. ... .........
2.3 Clinicalaimsand objectives . . . . .. .. ... . ... .. ... ...
24 Data . . . ...
2.5 Statisticalchallenges . . . . . .. . . .. ... .
2.5.1 Relationship between blood pressure and blood flow . . . .
2.5.2 Data quality/ limitations . . . . . .. ... .. ... ......
2.5.3 Autocorrelation . . . ... Lo o
254 Clustering. . . . . . . . . e
2.5.5 Spontaneous blood pressure measurements
2.5.6 Phases of Carotid endarterectomy . . . .. ... ... . ...
2.6 SumMmMary ... e

3 Renal Anaemia
3.1 Background . . . . . ...
3.1.1 Subcutaneousvs. Intravenous . . . . ... ... ... .. ..
3.1.2 Historyof EpoetinAgents . . . .. ... ... .........
3.1.3 Haemoglobin Guidelines . . . . . ... ... ..........
3.1.4 HaemoglobinCycling . ... ... ... ............
3.2 Data

3.3 Clinical Aims and Objectives

3.4 Statistical challenges

3.4.1 Autocorrelationandtimelag . . . ... .. ... ... .....

Vi



CONTENTS Vil

3.4.2 Haemoglobin —epoetinrelationship . . . .. ... ... ... . 43
3.4.3 Assessmentofcontrol . . ... .. .. .. ............ 44
3.4.4 Assessmentofindividuals . . ... ... ............. 44
4 Functional Data Analysis 46
4.1 Background . . . . ... 46
4.2 Generalexamples . . . . . . . .. 47
4.3 BasisSFunctions . . . . . . . .. ... 48
4.3.1 LOESS . . . . . 49
432 B-splines . . ... .. 51
4.3.3 Otherbasisfunctions . . . . .. .. .. ... .. ... ... ... 57
4.3.4 Summary of basis functions . . . . ... .. ... ... ... .. 61
44 Meanfunctions . . . . . . . . . ... 61
45 Phaseplots . . . . . . . 62
4.5.1 Application of phase plots for the renal anaemia syste . . . . 62
4.6 Implementation . . . . . .. ... 63
4.7 Aimsandobjectives. . . . . . ... 64
4.7.1 Cerebral Autoregulation . . . ... ... . ... ......... 65
4.7.2 RenalAnaemia . . . . . . . ... 65
4.7.3 Statisticallssues . . . . . . ... . Lo 67
4.8 SUMMAIY . . . . o e e e 67



CONTENTS viii

5 Multilevel Modelling 69
5.1 Statisticalaims and objectives . . . . .. ... ... ... .. ..... 69
5.2 Background . . . . . ... 69
53 Atwo-levelmodel . ... .. ... .. ... .. .. .. 72
5.4 Considerations and assumptions of multilevel modgllin. . . . . . .. 72
5.5 Autocorrelatedresiduals . . . .. ... L o 75

5.5.1 Diagnostics for autocorrelation. . . . . ... ... ... ... 76
5.6 Assessmentofmodelfit. . . ... ... ... ... .. ... ....... 78
5.6.1 Informationcriterion . . . . .. .. ... ... ... ... ... 79
5.6.2 Likelihoodratiotest . ... .. ... ... .. .......... 80
5.6.3 Graphicalsummaries . . . . . .. .. ... ... 0. 81
5.6.4 Interpretation and a priori knowledge of data gemamnat. . . . . 82
5.6.5 Summary . . . .. .. 83
5.7 Implementation . . . . . . ... 84
5.7.1 Presentationofmodels . . . ... ... ... ........... 84
5.8 Application to the data - Cerebral Autoregulation . . .. ....... 86
5.9 Application to the data - Renal Anaemia . . . ... ............ 88
5.10 Summary . . . ... e 89

6 Results - Cerebral Autoregulation 90

6.1 Exploratory Analysis . . . . . . . . . . .. e 09

6.2 Functional Data Analysis . . . . . . .. .. ... . ... .. ... ... a5



CONTENTS IX

6.3 Multilevelmodelling . . . . .. ... .. .. .. .. ... 03
6.3.1 Modelfittingprocedure. . . . . .. .. .. ... .. .. .. ... 103
6.3.2 Model with autoregressive correlation . . . .. ... ..... 109
6.3.3 Individualmodels. . . .. ... ... ... ... ... ...... 115
6.3.4 The effects of anaesthesia on cerebral autoregulatio. . . . . 119
7 Results - Renal Anaemia 125
7.1 Exploratory Analysis . . . . . . . ... 251
7.2 Functional Data Analysis . . . . . ... ... ... ... .. ... 129
7.2.1 FunctionalMeanCurves . . .. .. ... ... ... .. ..., 137
7.3 Multilevel Modelling . . . . . ... .. .. .. ... . 38
7.3.1 Relationship between Haemoglobin and Epoetin . . . . . . 138
7.3.2 Haemoglobinfvsdose{—1) . .. ... ... ... ....... 139
7.3.3 Haemoglobinjvs. dose{—~v) . . ... ... ... . ... ... 141
7.3.4 Haemoglobinfvsdose{— (2+7)) . . ... ... ... ..., 145
7.3.5 Haemoglobin} vs dose{— v) foreachagent . . . . . ... ... 156
7.4 Clinicalalgorithm . . . . . . . . . .. .. .. .. .. 64
7.4.1 Comparing predicted and truedose . . . . ... ... .. .. 67 1
8 Discussion 176
8.1 Owverviewofchapter. . . . .. ... .. .. .. ... 617

8.2 Aimofresearch . . . . . . . . . . . 176



CONTENTS X

8.3

8.4

8.5

8.6

8.7

8.8

Cerebral Autoregulation . . . ... .. ... ... ... ... ... 177
8.3.1 Application of functional data analysis. . . . .. .. ... .. 178
8.3.2 Application of multilevel modelling . . . . ... ... .. ... 181
8.3.3 Individualmodels. . . .. . ... ... .. ... ... ... ... 185
8.3.4 Effectofanaesthesia . ... ... ... ... ... ... .. 188
8.3.5 Summary - Cerebral Autoregulation . . . . .. ... ..... 190
Renalanaemia. . . . . . . .. ... ... ... 191
8.4.1 Application of functional data analysis. . . . .. .. ... .. 192
8.4.2 Application of multilevel modelling . . . . ... ... .. ... 196
8.4.3 Clinical algorithm . . . . . ... ... ... ... ........ 200
8.4.4 Summary-Renalanaemia . ... ... .. ... ... ...... 203
Methodological discussion . . . . . . .. ... .. ... ....... 203
8.5.1 Functional Data Analysis . . . . . . ... .. ... ... ... 420
8.5.2 MultilevelModelling . . . . . ... ... ... ... ...... 208
8.5.3 Software . . ... .. ... 213
Clinical Discussion . . . . . . . . . . . . . 152
8.6.1 Cerebral Autoregulation . . .. ... ... ... ......... 521
8.6.2 RenalAnaemia . . . ... ... .. ... ... 218
Comparisonofmethods . . . . . . .. .. .. ... .. ... ...... 022

General DISCUSSION . . . . . . . .. 222



CONTENTS

9 Conclusions and Future work

9.1 Conclusion . . ... .. .. ... ...

9.2 FutureWork . . . . . . . . ... .. ...

9.2.1 Cerebral Autoregulation

9.2.2 RenalAnaemia ... ... ... ......

Bibliography

Xi



Xil

List of figures

2.1 Diagram of the Carotid Artery . . . . . . . . . . . .. ... ... ... 10
2.2 Diagramofthe Circleof Willis . . . . ... ... ... ... ...... 12

2.3 The LasSen Curve . . . . . . . v v i i e e

2.4 Theoretical cerebral autoregulationcurve . . ... .. ....... ... 16
4.1 Examples of B-spline basisfunctions . . . . ... ... ... ....... b2
4.2 B-spline basis function order 2 fitted¢o (¢?) . . . . . ... ... ... 57
4.3 B-spline basis function order 3 fitted4o (1) . . . .. ... ... ... 58
4.4 B-spline basis function order 4 fitted¢o (¢) . . .. .. ... ... .. 59
5.1 Residuals vs. fitted values - Homoskedasticity . . . . . ...... . ... 74
5.2 Residuals vs. fitted values - Heteroskedasticity . . . ...... ... ... 75
5.3 Autocorrelation Function of Autoregressive processrder1 . . . . . . 78
6.1 Boxplot of cerebral blood flow ateachphase . . . . .. ... .. ..... 93
6.2 Boxplot of arterial blood pressure ateachphase . . . . . ... ... 93

6.3 The Loess representation of the ideal autoregulatiorecu. . . . . . . . 96



LIST OF FIGURES Xiii

6.4 LoesscurvepatientA . . . . . . ... 97
6.5 LoesscurvepatientB . .. .. ... ... ... ... 97
6.6 LoesscurvepatientC . . .. ... ... ... .. ... .. 98
6.7 LoesscurvepatientD . . . .. ... .. ... .. ... 98
6.8 LoesscurvepatientE . ... ... ... ... ... 99
6.9 LoesscurvepatientF . . ... ... ... ... .. .. ... 99
6.10 LoesscurvepatientG . . . . . . . . .. e 001
6.11 LoesscurvepatientH . . . . . ... ... .. ... .. .. ..., 001
6.12 Loesscurvepatient! . .. .. ... ... ... ... o 011
6.13 Standardised residuals vs fitted values for model 6.2 . . . . . . . .. 108
6.14 ACF of normalised residuals formodel 6.2 . . . . . .. .. ...... .. 108
6.15 Autocorrelation function of normalised residualsrfavdel 6.4 . . . . . . 112
6.16 Standardized residuals vs fitted values for model 6.4 . . . . . . . .. 113
6.17 Phaseresidualsformodel 6.4 . . . . . . . .. ... ... ... ... 113
6.18 Patientresidualsformodel6.4 . . . . ... ... .. ... .. ... 114
6.19 Random patient coefficients formodel 6.4 . . . . ... .. ...... .. 115
6.20 Dynamic vs static for equation6.5 . . . ... ... ... ... .... 117
6.21 Dynamic vs static for equation 6.5 (restricting negaslope to zero) . . 118
6.22 Dynamic vs static for equation6.6 . . ... ... ... ........ 119
6.23 Dynamic vs static for equations 6.7,6.8and6.9 . . . . ... . ... 120

6.24 Boxplots of static autoregulation from model 6.4 byesthesiatype . . 120



LIST OF FIGURES Xiv

6.25 Boxplots of static and dynamic autoregulation from sl06.5 by

anaesthesiatype . . . .. . . . . .. ... 121
6.26 Boxplot of arterial blood pressure by anaesthesiatype . . . . . . .. 122
6.27 Boxplot of arterial blood pressure by anaesthesiaitypach phase . . . 123
6.28 Boxplot of cerebral blood flow by anaesthesiatype . . ...... . ... 123
6.29 Boxplot of cerebral blood flow by anaesthesia typeirspha. . . . . . . 124
7.1 Kernel density plot of Haemoglobinand Dose . . . . ... . ...... . 128
7.2 Kernel density plot of Haemoglobin and Dose by agent . ...... . . . 128

7.3 Haemoglobin and dose curves, phase plot and velocifgctamy for

patient2 . . . . . . e 131

7.4 Haemoglobin and dose curves, phase plot and velocifgctomy for

patient4 . . . . . . 132

7.5 Haemoglobin and dose curves, phase plot and velocigyctomy for
patient7 . . . . . . e 133

7.6 Haemoglobin and dose curves, phase plot and velocigyctomy for
patient30 . . . . .. 134

7.7 Haemoglobin and dose curves, phase plot and velocifgctamy for

patient43 . . . .. L e 135
7.8 Mean Haemoglobin functions with confidence intervals..... . . . . . 137
7.9 Autocorrelation function of normalised residuals favdel 2 . . . . . . . 140
7.10 Scatter plot - dose(i-1) vs. dose(i-2) . . ... ... ... ......... 143

7.11 All patientcurves frommodel 7.3 . . . . . ... ... ... ... .. 147



LIST OF FIGURES XV

7.12 Mean curve frommodel 7.3 . . . . . . . . ... 481
7.13 Curves for random quadraticmodel . . . . . . ... ... ... ... 152
7.14 Autocorrelation function of normalised residuals -déb7.3 . . . . . . . 153

7.15 Autocorrelation function of normalised residuals - ddb 7.3 without

correlation structure . . . . . . .. 415
7.16 Standardised residuals vs fitted values for model 7.3 . . . . . . . .. 155
7.17 Histogram of random intercept and random slope forimo@e . . . . . 156
7.18 Profile log-likelihood - EpoetinBeta . . . . . ... ... .. ..... 158
7.19 Profile log-likelihood - Darbepoetin Alpha . . . . . . .. ... ... 161
7.20 Haemoglobinvs Dose frommodel 7.4 . . . .. .. ... ... .. .. 165
7.21 Predicted dose vs patient offsetatmonth4 . . . . . . .. ... ... 169
7.22 Predicted dose vs truedoseatmonth4 . . . . ... ... ... ... 170
7.23 Haemoglobin, true dose and predicted dose forpt30 .. ... ... 173
7.24 Haemoglobin, true dose and predicted dose forpt40 .. ... ... 174

7.25 Haemoglobin, true dose and predicted dose forpt34 ... .. ... 175



XVi

List of tables

3.1

3.2

4.1

4.2

4.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Haemoglobin thresholds foranaemia . . . . . ... ... ... ... 37
Haemoglobin targets in patients with chronic kidneydse . . . . . . . 38
Basis functionsofdegree O . . . . . . . . . ... ... .. L. 55
Basis functionsofdegree1 . . . . . .. ... ... ... ... .. ... 56
Basis functionsofdegree 2 . . . . . . .. ... . oL 56
Summary statistics of patients and observations . . . . ... .. .. 91
Summary statistics of arterial blood pressure . . . . . ........ ... 91
Summary statistics of cerebral bloodflow . ... ... ... ...... 92
Information criterion of modelsAtoE . . . . . ... ... ... ... 104
CoefficientsofmodelE . . . . . . ... ... ... .. ... .. 610
Coefficientsofmodel 6.2 . . . . . ... .. .. .. ... ........ 071
Diagnosticsof model 6.2 . . . . . . .. ... ... ... .. ... ... Q71
Diagnostics of models with autoregressive correlastonctures . . . . . 109

Likelihood ratio test of models with autoregressiveelation structures . 110



LIST OF TABLES

6.10

6.11

6.12

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

Coefficientsof model 6.4 . . . . . . . . . . . .. ... ... .....
Diagnosticsof model 6.4 . . . . . ... ... ... ...

95 % confidence intervals for all coefficients in modél 6. . . . . . . .

Summary statisticsof patients . . . . . . ... oL
Summary statistics for Haemoglobinand Dose . . . . . . . .. ..
Representation of renal anaemia patients . . . . . . . ... ... ..
Information criterion for models1to5 . . . . . .. .. ... ... ..
Coefficients of the collinearitymodel . . . . . .. ... ... .....
Information criterion for models ALto A7 . . . . . .. .. .. .. ..
Coefficientsof model A7 . . . . . . . .. ... .. ... ..
Akaike’s information criterion - Lagmodels . . . . . ... ... ...
Coefficientsofmodel 7.3 . . . . . . . . . ... . oL
95 % Confidence intervals for all coefficients inmodal 7. . . . . . ..
Akaike’s information criterion - Epoetin Betalagméde . . . . . . ..
EpoetinBetaModel . . . . . . .. . ... ... .. .. o
Akaike’s information criterion - Darbepoetin Alphglmodels . . . . . .
Darbepoetin AlphaModel . . .. ... .. ... ... ........
Model for clinical algorithm . . . . . . . . ... ... ... ......

Summary of predicted dosesatmonth4 . . . .. .. ... .....

XVil

110

110

111

126

. 126

136

139



Abbreviations XVili

Abbreviations

CA — Cerebral autoregulation

CBF — Cerebral blood flow

ABP — Arterial blood pressure

CAS — Carotid artery stenosis

CEA — Carotid endarterectomy

TCD — TransCranial Doppler ultrasound

TIA — Transient ischaemic attack

Hb — Haemoglobin

CDSS — Computerised Decision Support System
EB — Epoetin Beta

DA — Darbepoetin Alpha

FDA — Functional data analysis

MLM — Multilevel modelling / Multilevel model
ACF — Autocorrelation function

AR(p) — Autoregressive model of order

AIC — Akaike’s information criterion

BIC — Bayesian information criterion

LRT — Likelihood ratio test



Abbreviations

R — Statistical software package

MLwWIN — Statistical software package (specifically for MLM)
ML — Maximum likelihood

REML — Restricted maximum likelihood

SD — Standard deviation

SE — Standard error

DF — Degrees of freedom

loglik — log likelihood

Xix



Chapter 1

Introduction

A biomedical system shall be defined asa collection of interrelated
elements connected as a unified and dynamic whole, relatetiiotaining

health and its preservation in the treatment of disease.

1.1 Background and motivation

This research is motivated by the novel application of utwtgd statistical techniques,
which could provide more informative analyses to a wide eaafjbiomedical systems.
It is often the case in medical research that repeated neasuts are collected on
patients over a period of time; this might be over the coufsa toeatment or drug, or
during a surgical procedure. A difficulty posed by such dattass the high degree of
correlation that may occur amongst the repeated measunesimgans that the traditional
statistical assumption, that observations (or model usdg) are independent of each
other, is erroneous [1]. A solution would be to bypass thesés although any conclusions
drawn from the analysis could be largely incorrect and thasbnclusions are potentially

erroneous. A more appropriate approach would be to embnaa®tnplex and interesting
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features of the data and encompass these in the statistiabisas, and exploit these

additional modelling features.

Two clinically diverse biomedical systems have been ingastd, where repeated
measurements were taken. The choice of datasets was irdllibgdhe funding sources
of this PhD, these are; the Emma and Leslie Reid Scholarshiphwwas awarded by
the University of Leeds to study brain disease. A furthemgmas obtained from the
Yorkshire Kidney Research Fund by Katie Harris, Robert Veest Eric Will to carry out

research into renal disease [2]. In summary the systems were

1. Cerebral Autoregulation system —where measurements of arterial blood pressure
and cerebral blood flow were collected during a surgical @doce which is
undertaken to prevent stroke. The key issue was to monitbeagmenon known
as cerebral autoregulation in patients before and afteyesyir The aim was to
determine whether a change could be detected in cerebrategutation from
before to after surgery, i.e. whether there is an improveroemleterioration in

autoregulation due to the procedure.

2. Renal Anaemia system -where measurements on blood samples were collected

monthly for the monitoring of anaemia in patients with erabstrenal disease. The
aim was to determine whether a patient's haemoglobin canléguately managed
when administered with a synthetic, recombinant agentgi@poas the natural

hormone (erythropoietin) is no longer produced by the kydne

The two systems posed similarities and differences. In lstances the primary
interest was in assessing whether the biomedical systems adequately controlled.
An intriguing difference occurs in the mechanism by whicmtcol was implemented.
In the renal anaemia system the patients were externallageahby the clinician. This
system is driven by the administration of drugs to replagtéheopoietin whose production

declined due to failure of the kidneys. The cerebral autdedgpn application was a
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biomedical system that is self-regulatory, where therebaskgical mechanisms within
the human body. Within this system the ideal behaviour fdiepés is that a constant
blood flow to the brain is maintained over a range of arteriab8 pressure. The key
issue is to determine whether this ‘natural mechanism’ ecau patients throughout a
surgical procedure — a situation which could possibly dherintrinsic control of blood

flow and blood pressure.

In both systems multiple time series were collected, whensumber of repeated
measurements for each patient. In the renal anaemia systeagurements were taken
over the period of 12 months. During this period the patienitiergo a long-term course
of haemodialysis treatment, as immediate alleviation ofigpms due to renal anaemia
is not possible. In this situation each patient had the sanmeber of measurements
recorded. The cerebral autoregulation systems differeah measurements were taken
during surgery for each patient, which was a relatively shiore frame in comparison
to the annual course of treatment in the renal anaemia sysfEBmoughout surgery
measurements were collected from patients every 15 sedondke duration of the
procedure, yielding a large number of measurements. Thadiraf the surgical
procedure varied between patients, thus resulting inreéiffeamounts of data points per

patient.

It was not appropriate to analyse either dataset usingtimadi time series analysis as
there was the added dimension of multiple time series. It mwase apt to analyse all
series simultaneously to maximise the power of the stesisthnodel, rather than analyse
each time series individually. Furthermore, time seriesyais is often used for analysis
of data collected over a long period, e.g. to analyse wegthierns over many years in
order to identify seasonal variation or a long-term trendhi@ data [3]. This suggests
that for these biomedical systems, time series analysiddvoot have been entirely
appropriate, as identifying features such as trend, se@hsanation or cyclical behaviour

are not primarily relevant in the these data. Time serieshatlogy was not totally
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disregarded, however, as there were some aspects thatweeessfully exploited.

Analysing data from all patients collectively not only prd&d more powerful statistical
analysis but also yielded more robust findings about thepigroups, as opposed to the
individual. The statistical analysis in this thesis was ydapon focused and sought to
find statistical models which represented the patient gg@ga whole. It would have
been implausible to find a model that represented all pati@oturately due to random
error, possibly due to unknown features about the patidr@swere not incorporated
in the modelling. It was, however, clinically important tecognise the patients who
deviated from the norm, i.e. responded differently to sty @e treatment. The aim was

to determine whether these patients could be identified froalysis of the population
group.

This thesis aimed to demonstrate that statistical metlogiked, namely functional data
analysis and multilevel modelling, can be used to analysel#tta from both biomedical
systems, albeit with the variation in time-scales from a balanced measurements taken
over the long term to a large number of unbalanced measutenaken in the short
term. These statistical techniques are relatively unetqup thus development of the
methodologies was necessary to address fully and unddrstaiclinical questions which
were posed. Moreover, these methodologies were appliedavel way for the specific
biomedical area. The two biomedical systems may be divarsespect of their clinical
area, though it is the need to address control in both apijgit® which links the two.
In particular, the common research question was: can ‘obifte assessed in statistical
terms and if so, is this possible using functional data asislgnd multilevel modelling?
This will highlight the usefulness of the two methodologias they will be applied and

yield practical and meaningful clinical results.

Assessment of control is an important issue within the ciihdomain. For example, it is
of interest to identify how patient symptoms are manageHt aitertain drug. Initially, the

clinician may consult the medical field as a means of addrgdkeir research question. If
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this is not plausible, or the clinician prefers to take aaralative approach, assistance may
be sought from a biostatistician. The biostatistician Wélp to determine whether there
Is a ‘statistical answer’ to the clinical problem. Furthene, by involving a biostatistician

in the clinical research, additional findings may be gaireshtoriginally sought.

1.2 Aims and Objectives

The primary aim of this thesis was to develop unexploitetistteal techniques through
their novel application to diverse biomedical systems. &mtipular with interest in
assessing control within the systems and identifying hownémage patients, in order
for them to achieve and preserve a good quality of life. A nandj statistical challenges
that were posed by the two biomedical applications needdxst tovercome in order to
address successfully the specific clinical aims about thiegsys; these clinical aims have

been discussed in full in their respective chapters (Cha2tand 3).

In summary, the statistical issues to be considered were:

e Analysis of control - of patients either undertaking a scayjprocedure or course
of treatment. This is an aspect which is also of clinical imi@oce, but, as yet, is

no gold standard statistical technique to assess control.

e Clustering - of repeated measurements within patients. adsamption will be
made that measurements within an individual are not indégen Measurements
collected within an individual will be more alike than meesments from other
individuals, albeit the individuals share characterssthich make them more alike

than from the general population.

e Autocorrelation - due to measurements collected relatigklse together in time,
which violates the assumption that the error terms are welated. Adjacent and

nearby measurements will be more similar than measurertek@s far apart.
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e Varying lengths of time series - in particular in the cerélaoregulation system

due to differing durations of surgical procedure amongtepts.

1.3 Outline of thesis

This thesis comprises the following chapters:

1. Introduction — The aim of Chapter 1 was to ‘set the scene arplain the
motivation for this research. A challenge for a statistidiathe biomedical domain
is to consider the presentation of somewhat complex Staigi a non-specialist
audience. This thesis highlights how this can be achievedlbrstrates how the
methods are received by a clinical audience, whilst retgistatistical validity and

plausibility.

2. Cerebral Autoregulation — Chapter 2 introduces the a@inbackground of the

cerebral autoregulation application.

3. Renal Anaemia — Chapter 3 introduces the clinical backyi®f the renal anaemia
application.
In addition to introducing the clinical background of theimiedical applications
Chapters 2 and 3 give explanation of where the datasetsifothibsis arose. The
clinical motivation behind studying the particular systeis described. Following
introductions of the respective datasets, there is dismugsto the statistical issues
that arose within these systems, together with how they haea developed from
the clinical questions that were posed. These chaptersiocoatiterature review,
which comprise critiques of the relevant clinical issuegetber with discussion of

how the data in the relevant fields have been analysed pigyiou

4. Functional data analysis — See below
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5. Multilevel modelling — Chapters 4 and 5 consist of a gelndiscussion of the
statistical methods, with particular focus on the speciféaa that were considered
in this thesis. Following the general discussions, theeedmtails of the reasons
why these particular methods are relevant and useful fod#ta, together with
how and why these statistical methods are able to bring hotethe application

and statistical area.
6. Cerebral Autoregulation Results — See below

7. Renal Anaemia Results — Chapters 6 and 7 presents the esailtist The choice
has been made to present the results as separate chaptesshapplication area
rather than in terms of the statistical methods; this is aenasbronological approach

and will also show the development of the methods.

8. General Discussion

Particular features of interest for this chapter were:

e The first point to address was: has it been possible to suiatlgsmalyse the
two biomedical systems using the chosen statistical melbgg (functional

data analysis and multilevel modelling)?
Further discussion points:

e Has it been possible to assess and quantify control?

e How were the methods initially chosen for this thesis?

e How has the applicability of statistical methods been daved?
e Contrast and comparison of the two statistical methodekgi
e Contrast and comparison of the biomedical systems.

e What did the statistical results mean in clinical terms?

e How has this thesis contributed to knowledge and understgnish the

medical domain?
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e What were the statistical issues that have been raised (@wdnere they

overcome)?
e How might the work from this thesis be further developed?
9. Conclusions and Future Work — The conclusions of thisaresewill be presented

in this chapter. Ideas for future work arising from the asayundertaken and

knowledge gained from the research will also be suggested.



Chapter 2

Cerebral Autoregulation

2.1 Background

Every year in the UK it is estimated that 150,000 people hag&r@ake [4]. A stroke
occurs when the blood supply to the brain is interrupted 8jis may be due to either
a lack of blood supply, resulting in deprivation of oxygerthie brain (ischaemic stroke)
or accumulation of blood within the skull which occurs wherblaod vessel bursts
within the brain (haemorrhagic stroke). Ischaemic strat@ants for 80% of cases and
haemorrhagic stroke for up to 20% of cases. A stroke is defiiyethe World Health
Organization as a “neurological deficit of cerebrovascotarse that persists beyond 24
hours or is interrupted by death within 24 hours” [6]. Thidiaigon reflects that stroke
is the second most common cause of death [7] and the leadusg ad adult disability
worldwide [8]. It is therefore evident that preventing addnmtifying signs of stroke is of

great importance.

Carotid endarterectomy (CEA) is a well-established saigorocedure for preventing
stroke and is recognised as the gold standard for both syngtio and asymptomatic

patients with high-grade, extracranial carotid arteryngtgs (CAS) [9]. In CAS the
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carotid arteries (see figure 2.1) are narrowed due to atherarhuild up of fatty plaque
in the inner lining of the artery, which can cause completelzeal blood flow (CBF)

blockage or break off into small fragments (embolism). CEAperformed in order to
prevent stroke; potentially caused by the small fragmehpéamue blocking arteries and
arterioles in the brain. CEA is not performed to remove tluekdge or where complete
stenosis occurs. A transient ischaemic attack (TIA) isrofeferred to as a ‘mini stroke’
as the individual will experience stroke like symptoms bat axperience any lasting
damage. TIAs are often a warning that a stroke may happeungththe time in which

this occurs is uncertain. In approximately 50 % of caseskstoccurs within 24 hours
of the TIA [10]. There are over 25,000 TIAs in the UK annuadigd clinical guidelines

indicate that it is necessary for CEA to be undertaken withim weeks in patients who

have suffered TIA [11], especially if CAS is detected [12].

Figure 2.1: Diagram of the Carotid Artery [13].

Cerebral autoregulation (CA) is known to be disordered itiepés with CAS, which

is associated with an increased risk of cerebrovasculhaesuic events [14]. Cerebral
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autoregulation is an intrinsic mechanism of the body whgeloonstant cerebral blood
flow (CBF) is maintained to the brain over a specific range téral blood pressure
(ABP) [15]. A significant change in CBF, due to an increaseemrdase in ABP indicates
that CA is impaired. Conversely, if there is no significandiche in CBF with ABP then
CA is intact.

Carotid endarterectomy can be considered in three phasesopgrative (phase 1),
intraoperative (phase 2) and postoperative (phase 3). Téwperative phase refers to
the period where the neck is prepared for the procedure ania¢ision is made. During
the intraoperative phase a carotid shunt is inserted ireadtbeased artery, to re-route
blood flow to the brain. This is a difficult procedure as thegson will need to assure
that blood flow continues around the circle of Willis [L6)dkre 2.2). The circle of Willis
constitutes part of the cardiovascular system, which isréeciof several arteries (the
largest being internal carotid and vertebral, left andtrjghat supply the brain. If one of
the arteries becomes obstructed, or the circle is damagsanay be mediated since CBF
can be redirected [17]. Throughout phase 2, ABP is mainta&@ controlled high level
in order to keep perfusion around the circle of Willis. Thesjoperative phase is where
the carotid shunt is removed and the artery is stitched. C&A\deen shown to reduce
the risk of stroke, approximately 3-6 months following thegedure [18], however the

effect of CEA on CA in the immediate post-operative periothans unclear [19].

After removal of the atheroma, the brain can be exposed to $ygtolic blood pressure
and an increase in CBF, which is typical post-surgery behavand steps are taken to
manage this. Occasionally patients develop cerebral pgprision syndrome [20], with
very marked increases in flow that may be associated withotagical signs, fits and
cerebral oedema [21]. The opposite effect may also occungl@urgery (particularly
phase 2), where there is risk of hypoperfusion (decreassadiflow) [20], which can

lead to ischaemic stroke.
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2.2 Assessment of Autoregulation

There are two general approaches for the assessment of Qfgmily and static
autoregulation. Each considers the response of CBF inioeléd ABP, albeit with a
distinction made between the circumstances in which thesoreanents are taken. Static
autoregulation examines the relationship between CBF d@fé without reference to the
time course of changes in flow in response to changes in peesEoe stabilised response
of CBF is considered with a consistent change in ABP, in tittetion time is irrelevant
as stabilisation of both measures occurs before the subsequeasurement is taken.
The technique of static autoregulation has dominated esuidi past decades, however
with the advance in technology which allows for continuousasurement of CBF and
ABP, interest in the field of dynamic behaviour has becomeufasp Dynamic CA is
the immediate response of CBF to ABP where frequent or rapéhges of ABP have
occurred. Rapid in this context is not defined in the literatiReinhard [22] and Tiecks
[23] simply state the word without stating the time periodaeths defined as rapid.

Assessment of dynamic CA has become achievable with thelapewent of the
TransCranial Doppler ultrasound (TCD) and non-invasivatite-beat blood pressure
monitors (i.e. Finapres), which enable CBF and ABP measenesnto be taken every
5 to 10 seconds [24]. The TCD technique allows for continumessurement of CBF,
which consists of insonating (exposing to ultrasound wgtresbasel section of the major
cerebral arteries, around the circle of Willis, throughetiént "windows” found at various
locations in the skull. The windows commonly used for TCD itanng include areas of
the skull that are relatively thin . The transtemporal wiwdeused to insonate the vessels
of the circle of Willis, through the thinnest portion of trentporal bone. A probe is used
to detect the Doppler signal which is generated by blood flovthe middle cerebral
artery. Other windows include the transorbital and sulipsiad, which are used when

other areas of the brain are examined [25].
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There is uncertainty reflected in the literature as to whrethe response of CBF to
spontaneous changes in ABP may be considered static CA [2éyraamic CA [14].
Thus, it is not clear whether methods for static or dynamseasment should be adopted.
One approach has been to examine the circumstances unagr tveimeasurements are
taken and, for instance, ask whether repeated measuremaatsime have enjoyed a
sufficient time-interval to permit physiological stabjlitas in static CA, or might ABP

fluctuate, as with dynamic CA.

In the static regime it is assumed that there is no autoadioel between adjacent
measurements since there is a long time period between themhe dynamic regime
however, measurement of CBF might not have zero autoctioelaThis is due to the
transient behaviour being observed before CBF settlesam&quilibrium of a new ABF
environment. Given that the timescale of this transieneleur has not been defined,
it is not clear if autocorrelation in CBF should be modell&hould autocorrelation be
present, then this must be accounted for in the statisticalatfing, in order to estimate
the underlying relationship without bias. Moreover, CA haspreviously been explored
during CEA, which further demonstrates the ambiguity as betler static or dynamic
assessment should be preferred. There have been a numbediessexamining the
changes in cerebral autoregulation in the days, weeks amdhsafter CEA [27] [14]
[28], whenitis possible to collect data on patients afteythave recovered from surgery.

Collecting data for CA assessment during surgery is morbesitang.

2.2.1 Assessment and measurement of static autoregulation

The approach employed to assess CA is to investigate thigoredhip of CBF against
ABP. The ideal model for static cerebral autoregulatiorttistated to Lassen [29], who
initially described the concept as a piecewise linear capraprising two segments (see
figure 2.3). The model was subsequently revised to const$ireé linear segments (see

figure 2.4), where the plateau represents where CBF is qunstar the range of ABP,
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between the lower(L) and upper(U) limits of CA - this shall leferred to as the CA

curve. The plateau region with a zero slope representsqiedgoregulation [26].

50 4

CBF in ¢cc/I100 gm/ min

HYPOTENSION /// /) HYPERTENSION
) 50 100 150 mm Hg

MEAN ARTERIAL BLOOD PRESSURE

Fig. 1. Gerebral blood flow and blood pressure. Mean values of 11 groups of subjects re-
ported in 7 studies have been plotted. Various acute and chronic conditions have been selected,
characterized by a change in blood pressure. In all, this figure is based on 376 individual de-
terminations.

+ and 2, Drug-induced severe hypotension (81), g and ¢, Drug-induced moderate hy-
potension (206), 5 and 6, Normal pregnant women and normal young men (206, 193).
7, Drug-induced hypertension (230). 8, Hypertensive toxemic pregnancy (206). 9, 1o,
rr, Essential hypertension (229, 131, 228).

Figure 2.3: The original Lassen cerebral autoregulatiorveudisplaying idealised

piecewise linear behaviour [29].

Theoretically, it is anticipated that the CA curve is clgskllowed by most individuals
for arange L-U within a healthy population. The L-U plateagion contains ABP values
necessary for the brain tissue to be perfused with an adequpply of blood, though the
numerical values of L and U are subject to much debate [26]apgproximate range is
thought to be 50 - 150 mmHg [15]. Values of ABP below L, i.e.sléisan 50 mmHg,
are regarded as hypotensive and CBF is decreased due to |I®vvwAiereas values of
ABP above U, i.e. greater than 150 mmHg, are regarded as teyisére and CBF is
increased due to high ABP. If there is no significant chang€Bir with ABP then CA
is regarded as being intact. The range of ABP covered by the@xe is very large,
and yet spontaneous variation in ABP may be more restris@udg variation is expected

however, due to the stress induced by the surgical procedimes, patients are unlikely
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Cerebral blood flow

Arterial blood pressure

Figure 2.4: The theoretical CA curve of CBF plotted againBPA26]: lower (L) and
upper (U) limits of CA flank a plateau region where perfect G&wrs, adapted from the

curve proposed by Lassen [29].

to experience the whole range of measurements to fit the vduole, or even the range
of perfect autoregulation. If the idealised piecewisedineurve is a plausible model for
CA, then itis necessary to determine upon which segmene@mnsnts) of the curve each

patient lies.

The CA curve (figure 2.4) differs from the Lassen curve (figRr@) in that there is a
positive slope for which high ABP occurs. The reason for thight be that the data
used by Lassen to construct the curve did not extend beyenaigber limit U. The curve
attributed to Lassen (figure 2.3) is constructed from 11 medues, which raises doubt
over the robustness of the curve due to the small sample af @iae 11 mean values are
calculated from different patient groups with a variety aédictal conditions that affect
CBF and ABP. Thus, CA is calculated in groups of patientshéligh the CA curve has
been used to assess patients on an individual basis [30§ttelies have attempted to do
this [26].

It has been suggested that a slight slope exists betweemitell and U [31], as opposed
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to a plateau, though this has not been substantiated by dm@nipar population study.
Arguably, this observation might be true, and over simpfibas sought to hypothesise a
flat slope where a modest slope may exist. Modest deviatan & zero gradient in the
CBF-ABP relationship, which would normally suggest that SAot intact (and may be

impaired), may not be as problematic as considered preyious

The CA curve seems a rather simplistic view of such a comphityeas CA, which is

viewed as not being completely understood [32]. Studie® ltalculated the gradient
using standard linear regression [33] [34] and calculaestt$dn’s correlation coefficient
[35] [36] [37] for the response of CBF to changes in ABP. Pan@6] discusses the large
number of studies which have adopted these approachespéatpal to zero is taken to
represent the plateau region and hence perfect CA. A pesibpe is thought to represent

either of the linear sections of the CA curve and hence inegaBA.

In the clinical literature [23], Pearson’s correlation ffméent p is usually calculated in
addition to linear regression. Fpr> 0, this reflects impaired CA, and= 0 represents
the plateau region, hence perfect CA. It is noted that theutation of Pearson’s
correlation coefficient has the implied assumption of Iiitgand that to observe a value
close to zero within a individual with intact CA measurengemtust be confined to the
plateau region. It is also implied that the patients with &n@d CA will demonstrate a
linear relationship with a positive slope for the relatibipsbetween CBF and ABP. If
the autoregulating region is merely compressed with U belager to L and the range
of ABP extend beyond this interval, then a positive value @duBon’s coefficient will be
observed. A similar value might be seen for a patient withaimgd CA since the value
is strongly dependent upon the scatter about the trueaekdtip, which is influenced by

measurement accuracy. Hence, this approach has its lionisat
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2.2.2 Assessment and measurement of dynamic autoregulatio

Currently there is no consistent way to assess or model dign@d in the way that
the Lassen curve forms the basis for analysis of static CA [38ere are a number of
methods presented in the literature such as: autoreguliattiices [23], transfer function
analysis [39] and correlation coefficients [40], althougbge have yet to be accepted as

an established method to assess dynamic CA.

Experimentally, dynamic CA can be assessed by inducingsitah changes in ABP
in order to determine the response of CBF over a wide rangeB®. Ahe thigh cuff
method [41] and the lower body negative pressure [42] haegiqusly been used to
induce oscillations and rapid changes in ABP. These metamsot ideal as they have
been found to cause patients pain and discomfort, thushatiee methods are preferred.
Transfer function analysis is often used to analyse datdymed from the thigh cuff
method [41]. This methodology will not be discussed in dedai transfer function
analysis makes the assumption that CA is measured in thedneyy domain, where
oscillations of ABP and CBF are analysed, whereas suchla®ey behaviour in ABP

and CBF is not expected during CEA .

Tilt-tables in particular allow a wide range of ABP to be eripaced by the individual

[43], which permits the investigation of the CBF-ABP retettship over a wide range of
ABP values. The sit-to-stand procedure is another methed which induces oscillatory
and step ABP changes [38]. This technique might be pref@wvedthe tilt table approach

as it is easier to perform and tilt tables can provoke syn¢fapeting).

Inducing changes in ABP for patients undergoing carotidaeiedectomy would not
be possible since patients undergoing a surgical proceal@eequired to lie supine
throughout. Therefore, spontaneous fluctuations in ABRelred upon. Methods such
as the thigh cuff would clearly be inappropriate since it lddee unsafe to delay surgery,

particularly at the time of clamping the carotid artery.
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It is likely that throughout the procedure patients will exence ABP values mostly
within the L-U range, where intact CA should occur; as ABPIl@sely monitored and
to a certain extent controlled during CEA, it is unlikely tithe anaesthetists would
allow the patients to be subject to extreme ABP values. Tlag not be realistic in all
patients however, as the clinician may find themselves daugfiveen the head and the
heart [44]. Patients who become hypotensive during thegolare, and thus experience
abnormally low ABP, are a particular concern. Increasirglifood pressure to a safer
level in these patients, may lead to dramatic and possilhgel@us increases in CBF,
especially after the stenosis has been relieved. It istataibat a patient’s blood pressure
that is persistently lower than their mean ABP would be in a sorgical environment,
since this may compromise blood flow to the heart. There magramatic changes in
CA therefore, as a consequence of CEA, if the range of ABP moutside the range of

intact autoregulation.

Similar to static CA, dynamic CA is viewed as a linear relasibip between CBF and
ABP, thus subsequent statistical analyses have been baskis@assumption. Panerai
[26] justifies this, suggesting that the CBF-ABP relatiapsthoes not show significant
departure from the linear hypothesis. Transfer functioalysis [22] [39] and various
dynamic autoregulation indices [23] [45] assume linedrgyween CBF and ABP. There
are a small number of papers, however, that have appliedgneanimodelling techniques
[46] [47].

One measure occasionally encountered in CA studies is romadrular resistance
(CVR), which is defined asCVR = 22228, CVR is a mechanism that regulates
the constriction and dilation of the smaller vessels (ates) in the brain, such that
it quantifies the extent of which CBF is affected by change®ABP. This measure
is useful because one can then define the dynamic autoreguiadex (DARI) as:
DARi = (ATA)(CAi"jBP) [26], which is sometimes referred to as the rate of recova8y. [
The variation in the language and labels adopted for the spiaetities suggest that there
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may be confusion amongst authors in regards to analysis ofTGBA DARI essentially
grades CA between 0 and 9; with O indicating no autoreguiadiod 9 indicating very
fast autoregulation. This might be useful to summarise Céweéver point estimates
(mean values) only are used to define CA, which have limitéithutithout a confidence
interval. A more informative measure would incorporate \thdation in ABP and CBF

values.

2.2.3 General vs Local anaesthesia

Carotid endarterectomy may be performed under local an@érgemanaesthesia. The
anaesthetic technigue maybe an underlying explanatiothfse patients who become
hypotensive during CEA, as blood pressure generally fdtlsr anduction of general
anaesthesia [48]. However, patients receiving both londl general anaesthesia have
displayed clinically significant hypotension and hypesien in the post operative period
[49]. Therefore, since anaesthesic technique has beemstwoave an effect of ABP,
it is reasonable to suggest that the choice of anaesthetioitpe for CEA may have an

impact on perioperative CA.

McCleary and colleagues demonstrated a decrease in oxyg®iysto the brain in
patients receiving local and general anaesthesia for CEAQuegh recovery was more
likely in patients undergoing surgery under local anaesthb0]. This observation was
one of the justifications of the GALA trial [51]; an internaiial multicentre randomised
controlled trial to compare local and general anaesthesiaCEA. The GALA trial,
however, failed to demonstrate a clinically or statisticalgnificant difference between
local and general anaesthesia in terms of the risk of stnok@cardial infarction, and
death as a result of carotid endarterectomy. A suggestiothfe finding is that ABP
was manipulated (increased) by anesthesiologists in 43 §éméral anaesthesia patients
compared with only 17 % of local anaesthesia patients, wtochpensated the failure of

CA in the general anaesthesia group [52]. This result mayaw¢ occurred if ABP had
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not been manipulated.

There may be patient and surgeon preference for anaestipgsiaFor example, patients
can find CEA under local anaesthetic stressful and uncoatiftetsince they must lie still
with their heads turned to one side for ninety minutes or éorifgthe operation is difficult.
Further, the patient may feel claustrophobic due to thetjposng of the surgical drapes
and being surrounded by numerous people throughout surgeryigh dose of local
anaesthesia may be required for CEA due to the invasiveh#ss surgery. In large doses
local anaesthesia can have a toxic effect, leading to systemicity, whereby toxins are
absorbed into the body through the bloodstream. InfecBarelling and bruising may
also occur at the injection site. If a patient is particyladgitated under local anaesthesia
it is possible to convert from local anaesthesia to generadsthesia; which would mean
further complication for patient, anaesthetist and sungedich would have been avoided
if general anaesthesia had been administered in the fitstnices. Conversion may be
required if the patient experiences pain at the operatigle, sjeneral discomfort and
anxiety, physiological instability, or neurological deteation. It is suggested that the

preference of all parties is for CEA to be carried out underegal anaesthesia [9].

An alternative view is that performing CEA under local arthesia, rather than general
anaesthesia, may be safer [52]. A benefit of CEA under locsthesia is the increase
in ABP which occurs in phase 3 of surgery, which in turn betteintains CBF. This
natural phenomena that occurs with local anaesthesia ischkeohby the anaesthetist for
patients undergoing CEA with general anaesthesia, andhisetgeen as a benefit to occur
naturally rather than by manipulation. A second benefit & the medical team may
converse and interact with the patient, which would enabdgiiaker response if they

notice a change in patient behaviour.

In summary, there appears to be advantages and disadvarttagmth anaesthesia
methods. Upon reflection it seems that CEA should be madéabi@iunder local and

general anaesthetic, in order to cater for patient pretereor medical reasons why one
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may be preferred over the other. It is important, howevet, tine effect of anaesthesia on
CEA and CA is investigated further, so patients can be advw®eordingly and patient

safety is preserved.

2.3 Clinical aims and objectives

Assessment of CA is considered in several clinical cond#josuch as: head injury
[53], respiratory distress of newborn babies [33], and adrartery disease [54]. These
conditions are known to severely impair autoregulatiorielfgs in whom autoregulation
is impaired are at risk of brain tissue ischaemia; where ttanbdoes not receive an
adequate supply of blood and oxygen and hence suffers istbaéoke. It is extremely

important and of clinical interest that CA is assessed inynfalnical) settings.

CAS is a disease known to be associated with impaired CA [RBF accounts for 15-20
% of ischaemic strokes [55], although patients with CAS maglargo CEA to remove
the atheroma and thereby reduce the risk of detachment @ntifs®li and hence reduce
the risk of stroke. This suggests strong clinical interaddirectly assessing the patient

benefit of CEA.

Repeated measurements of patient ABP and CBF were colleatedgroup of patients,
with CAS, whilst undergoing CEA, with the aim of assessing @#oughout the
procedure. There is particular clinical interest in agsgsthe immediate impact on CA
of undergoing CEA, which might therefore directly demoastrbenefit to the patient of

the surgical procedure.

A number of techniques are available to examine CA, althopiggviously CA has
not been assessed during CEA. Methods will therefore nedx texplored to find an

appropriate way of modelling these data.

A further cause for concern in these patients is that CEA negdsociated with large
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changes in ABP, which in turn may cause changes in CBF. Theetlu anaesthetic
technique may also have an impact on CA following CEA, speddiff CA may be better

preserved with local anaesthesia than with general aresath

In summary there are two types of aims and objectives to denshamely the purely
clinical issues together with issues relating to measun¢iged assessment. The clinical
and measurement issues are also linked because of the ndedelop an approach to
model dynamic CA, since there is no clear way of assessisgetitity. In this research

dynamic CA will be explored as part of a complex modellinggess.

Clinical

¢ to determine whether CA can be assessed in an operatinggheat

to devise an approach for dynamic CA (under CEA), if appiatpri

to investigate whether there is any improvement in CA immatdy following CEA

to investigate whether CBF and ABP are affected by CEA

to determine whether the choice of anaesthesia has any iiop&2A

Measurement

e {0 use appropriate statistical methodology to model CA

e to distinguish between static and dynamic autoregulatia@ngu statistical

methodology (see next section), thereby addressing aalirequirement.
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2.4 Data

A prospective observational study was conducted in patiemtiergoing CEA at the Leeds
General Infirmary between February 2004 and May 2006. Theqgsal for this study was
to investigate immediate changes in CA in patients undagg@EA. Approval for the
study was granted by the Leeds West Research Ethics Cormaraittéinformed consent

obtained from all patients.

Sixty-two patients who presented for CEA, to be performedeuriocal and general
anaesthesia, were approached for participation. All pttibad experienced recent TIA
and evidence of CAS. Exclusion criteria included patiefiisal or withdrawal from the
study, absence of a temporal window for TCD monitoring arel phesence of atrial
fibrillation or other arrhythmias (where the heart beatsragular intervals), this yielded

26 patients who were not eligible for participation.

Data were collected in the immediate perioperative perfdCEA, starting after induction

of general anaesthesia or completion of local anaesthediaancluding with the end of
surgery. Repeated measurements of CBF and ABP were redord@gipatients, together
with the respective phase of surgery: preoperative (phasanttaoperative (phase 2)
and postoperative (phase 3) . Measurements were colleoteniaently at 15 second
intervals. It was not possible to control the number of measents within each phase,

as the timing of the whole procedure and each particulargWxased across patients.

Patients in the study were elderly with a median age of 73syéange 65 - 82), which

may have an impact on a number of factors considered in tlzecddiection and analysis
of CA. Measurements of CBF velocity were obtained using a Ti@iasound sensor

probe, fixed in place at the temple with a metal frame or pldstadband. CBF velocity
was used as an equivalent of CBF, since accurate measurefmeBF is difficult [45].

In children and young adults it is particularly easy to ob@od signals from the desired

vessels. However, these signals weaken as age increasdgdelly patients it is difficult



Chapter 2. Cerebral Autoregulation 25

to obtain an adequate signal, with no signal detected in 2G patients [9]. In those
patients where an adequate signal could not be obtainedsitnetipossible to record
CBF measurements (8 patients), this therefore reduceduttnder of patients who were
eligible to participate in the study (54 out of 62). A furthenitation to TCD monitoring

is that the probe is placed relatively near to the surgi¢alasad may impede the surgeon,
especially if constant adjustment is necessary. In somerjgaf CBF measurements were
collected from the left and right sides of the head, but tivesee not complete. There
were complete ipsilateral (same side) measurements foaBénps. ABP measurements
were obtained invasively using a radial arterial line fastine intraoperative monitoring.
Invasive methods are the most accurate way to measure A@R)lthis involves a higher
risk than non invasive methods, such as when using a sphygmmmeter (device to

measure blood pressure).

Data were also provided on anaesthetic technique. The ehafiggeneral or local
anaesthesia was made according to clinician and paticietrpnee. Twenty-three patients
received local anaesthesia and 13 patients received dgearaasthesia. Initially the
aim was to randomly assign all patients to anaesthesia tyipieh would have allowed
an unbiased assessment of how anaesthesia method affectk @As not possible
to implement this, however, as in certain cases there was obedical indication for
anaesthesia type, i.e. if a patient is considered unfit fomriqular method due to
certain medical conditions that increase the risk of cooapions from anaesthesia. Other
factors also need to be considered, such as age, weightatiedi, etc; as well as patient

preference.

Itis also thought that CA may be adversely affected by agg [88thors have presented
opposing views: Heckmann and colleagues [56] suggest tAas@elayed in elderly
individuals, although numerous authors have concludddtitaregulation is not affected
by age, and that older subjects autoregulated as good agegwosubjects [57] [58] [59].

Studies which demonstrated that CA is preserved in thelgldeamined healthy patients,
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thus not reflecting the particular scenario that occursisigtudy. It is possible, therefore,
that since these patients are elderly they may not exhibiprfect CA as displayed in
the CA curve; though this is unlikely to be due to age alone thedfactors of CAS,

undergoing CEA, and anaesthetic are all more influential.

2.5 Statistical challenges

The primary statistical challenge is to use appropriatissigal methodology to model
CA during CEA. This was motivated by the clinical aim: to detene whether there is an
improvement in CA immediately following CEA. Before thisrche addressed fully, it is
necessary to ascertain the most suitable model for CA, whidiself poses challenges.

These will be discussed in the following sections.

2.5.1 Relationship between blood pressure and blood flow

The exact relationship between ABP and CBF for the patientjgof interest is unknown,
which was revealed by the literature review. Patients affersng with CAS, which

means it is possible that typical autoregulatory behavisunot exhibited, together
with assessment being made in the conditions of an operétiegtre. Anaesthetic
technigue and age may also influence whether or not CA octuvgould therefore be
informative to investigate the relationship between ABB @BF without preconceptions
or assumptions of the underlying relationship. A betterarathnding of the CBF-ABP

relationship during CEA may inform patient care.

Investigating the ABP-CBF relationship is similar to pr@ws approaches, such as linear
regression or the CA curve. There is more statistical poivawever, in investigating
the ABP-CBF relationship without making assumptions aldbatdata or relationship.

By applying linear regression the assumption is made tleatribasurements of ABP and
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CBF are independent, although it is not possible to makeagssimption without further
investigation. Secondly the aim is not to replicate the wHoA curve, but to determine
where the patient measurements would lie on this curve. Wdvoot be possible to do
this for each patient as it is unlikely they will cover the idncange of ABP that would be
necessary. Similarly it would not be possible to do this ssml patients as it is unlikely
that the range of ABP across the whole group would be largaginto determine the L

and U limits of the curve.

2.5.2 Data quality/ limitations

Measurements of ABP and CBF are collected on patients daisgrgical procedure
which makes data collection relatively difficult. The CBF asarements may not be so
reliable, as the TCD probe would need to be in constant comtdah the temple and

remain fixed for accurate measurement to take place. Theepaals attached to the
patient by a headband; so it may have been difficult to enbatetie probe was correctly

in place throughout CEA, especially as it was situated ssecto the site of surgery.

A large number of measurements are collected on all thematiehich is different and
substantially better than past CA studies, where in somesdag regression line has been

calculated from only two measurements [26].

There is potential bias in the data since patients were ndomaly assigned to anaesthesia
technique; therefore any conclusion drawn from invesiigaanaesthesia needs to be

interpreted cautiously.

2.5.3 Autocorrelation

Measurements of ABP and CBF are recorded with a short time/dsst them; it

iIs possible that measurements closer together in time willnfore correlated than
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measurements farther apart. Due to the biological natu@Béf and ABP, it is likely that
they vary smoothly, opposed to erratically changing evérgdconds. Should correlation
between measurements be present, this must be accountethiermodelling in order to
estimate the underlying relationship without bias. Methtitht assume independence of
observations will be invalid if autocorrelation is presebDiynamic autoregulation would

need to assume autocorrelation between measurements.

2.5.4 Clustering

These data form a natural hierarchical structure, with atgae measurements clustered
within patients. A further level of the hierarchy may be pha$ CEA; such that repeated
measurements are clustered within phases which in turnlaséeced within patients.
A statistical technique is required that will exploit thdlfpower of the data, such that
all available data are used appropriately to fit the model, all patients, phases and
measurements. In particular, it is the multiple patiengd will give the most value to the
modelling. Measurements of ABP cannot be assumed to be emdiept in each of the

phases, and the phases cannot be assumed to be indepernbdenaarticular patient.

2.5.5 Spontaneous blood pressure measurements

It is unclear whether static or dynamic autoregulation &thdoe investigated, due to
spontaneous blood pressure readings. This means thattdeamhethods for assessing
CA cannot be used with confidence. It will therefore be morprapriate to use
statistical techniques which consider the particularesstaised with these data, rather
than incorrectly using existing methods. Where feasiblethods to assess dynamic CA

may need to be developed.

The range of ABP values within an individual will possibly beaited, which may be

problematic because the slope estimate (of a linear modilpevless accurate with a
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larger standard error than for ABP covering a larger randpgs dan be resolved, however,

by using all measurements from all patients.

2.5.6 Phases of Carotid endarterectomy

The phases of CEA must be acknowledged in the modelling, exe thill most likely
be a clear distinction in the behaviour of ABP and CBF betwpbhases. A better
understanding of the separate phases would certainly belagwo the clinician to

improve patient care and maintenance during surgery.

The statistical technique should also be able to handlelanbad data, due to the number
of measurements varying between patients and phases. dt igossible to assume a
continuous trajectory for CBF and ABP throughout CEA it isnalikely that there will

be step changes between the three phases.

Other, prior approaches to CA assessment, such as traosfgron analysis, would not
be applicable due to the distinct phases because the teehmgkes the assumption that
the underlying form of ABP and CBF (over time) is sinusoid®], suggesting that ABP
and CBF vary periodically over time. This assumption migatsoitable for CBF and
ABP measured on a day to day basis, though it is not plausibteake such assumptions
considering CBF and ABP during CEA. A sine decomposition Mawot sufficiently
represent the anticipated step changes in ABP and CBF bettheephases of CEA,
suggesting that transfer function analysis is an inappaiptechnique when assessing
CA during CEA.

2.6 Summary

This is a novel scenario and analysis for cerebral autoagigul. There are a number of

clinical, measurement, and statistical issues to consulien investigating CA, which
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contribute to the novelty of this work. For clarity, these aummarized below:

Clinical

¢ to determine CA for this setting
e to investigate whether there is any improvement in CA follgpnCEA
¢ to investigate whether CBF and ABP are affected by CEA

e to determine whether the choice of anaesthesia is assoevite CA

Measurement

To determine whether dynamic or static autoregulation isghassessed

Assessment in a non-laboratory environment

Frequent measurements collected repeatedly

To account for the three distinct phases of CEA

To account for the clustering of measurements within pé&ien

Statistical

e To determine whether CA can be assessed during a surgicaguce, and develop

methods appropriate to achieve this

e To determine whether CA can be assessed using spontanedusa@B ABP

measurement, thereby devising a method of dynamic CA

e To determine whether autocorrelation needs to be accodoited the modelling,

and if so make appropriate modelling changes
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e To find a suitable generic model for the CBF-ABP relationship

31
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Chapter 3

Renal Ahaemia

3.1 Background

End-stage renal disease is a severe illness where kidneyydnrmas completely failed,
which is associated with a high risk of morbidity and motta]60] [61]. It is classified
as the fifth (and final) stage of chronic kidney disease. Ad Htage, patients require
permanent renal replacement therapy, which usually imdueither: haemodialysis,
peritoneal dialysis, haemofiltration, or renal transplahlhe patients in this study have
end— stage renal disease and undergo haemodialysis tohfiterful wastes, salts and
fluid from the blood, since the kidneys are no longer able toyoaut this functionality.
As renal disease develops, an associated problem is resmatga Patients at any stage
of chronic kidney disease may have renal anaemia, with @ega increasing with the
severity of disease [62]. Almost all patients with end—stagnal disease experience
anaemia [63]. The significant feature of renal anaemia is¢dection in the oxygen
carrying capacity of blood, which means haemoglobin (Hbgle are reduced. Hb is
the iron—containing protein within an erythrocyte (reddaccell) that transports oxygen

around the body.
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Erythropoietin is the protein hormone from the kidneys tramotes the production of
red blood cells: erythroblasts (nucleated cells normailynd only in bone marrow that
develop into erythrocytes) evolve into reticuliocytes rfuature red blood cells), which
are then released into the bone marrow and develop into cedtlldells containing Hb.
A deficiency in Hb occurs when the kidneys do not produce sefftcerythropoietin,
resulting in renal anaemia[64]. Erythropoietin deficiersogonsidered the most important

cause of renal anaemia in patients with chronic kidney dis¢@b].

Low Hb can be detrimental to a patient’s health [66] paraclylthose with comorbidities,
since oxygen supply to the tissues is diminished. Insufitcexygen induces lethargy
which leads to: reduction of a persons general well beingained cognitive function;
and worsening of quality of life. Furthermore, renal anaemilso increases the risk of
cardiac failure and can cause hypertrophy (abnormal estiaegt of a body part or organ)

and tachycardia (rapid heartbeat).

Other contributors to renal anaemia are reduced red blolbdifespan and blood loss.
Blood loss contributes to renal anaemia as the uremic t@whgh are usually released
in the urine and are retained in the blood) mean that the btbaiting mechanism is
defective, since the platelets, which stimulate the pradocof a blood clot, do not
work correctly. This means that patients are more susdeptibbleeding. If a patient
suffers a fall for example, and experiences rapid or heaggdihg, this would result in
a rapid decrease in Hb. Further, the patient may suffer frertam medical conditions
which makes them susceptible to bleeding, such as haenmefreitluction in the blood’s
ability to clot) and thrombocytopenia (low platelet counit) addition to the increase in
a patient’s sensitivity to bleeding, a major cause of blamslis through haemodialysis
[64]; due to frequent blood sampling, gastrointestinaktd¢ bleeding from the dialysis

access site, and the haemodialysis procedure[67].

The average lifetime of a red blood cell is approximately-1Q20 days [68]; although this

is reduced by approximately one third in patients with rehséase [69], due to uremic
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toxin and decreased flexibility of the red blood cells. Retgss of the technological
advances within renal medicine, red blood cell loss remas& major contributor to

renal anaemia [70].

Although there are many complications associated with Irem@aemia, it can be
effectively treated with doses of recombinant erythropojevhich are more commonly
known as epoetin agents. The FDA (Food and Drug Agency, USA¢ shat epoetin is
one of the most important medical advances in treating pigtieith kidney disease [71].
Epoetin agents may also slow down the progression of reflatdg72]. A number of
epoetin agents are available to treat patients (types amtlby, which are manufactured
by various pharmaceutical companies. The choice of agdhtisually be made by the
hospital administering the dose, rather than the indiMigaéient. The patient—specific
dose of the agent is managed with the assistance of a congaatatecision support
system [73], which adjusts the dose each month by examinirrgat Hb concentration,

which is based upon the previous months epoetin dose.

A Computerised Decision Support System (CDSS) is a comuplication designed
to aid clinicians when making diagnostic or therapeuticiglens in patient care [74].
CDSS are particularly useful in diagnosing a patient withseease based on particular
symptoms, or in the case of this application, suggestingig dose to be prescribed for
the patient. A CDSS is not designed to remove the cliniciamfthe decision making
procedure but to provide a ‘recommendation’ for the cliamnci When an epoetin dose is
calculated by the CDSS, after Hb results have been entetethi& system, the clinician
will either accept or override the the suggested presondi3]. The final decision will
generally be made by the clinician. There has been somé¢amesesto the CDSS, however,
whereby the general belief by those opposing it is that &bd#cision would be made by
a human rather than a computer, and that patients shoul@dtedras individuals. This
CDSS opposition group also stipulates that the algorithoukhbe perfect. The opinion

on behalf of the clinicians is that the CDSS is a clinical afijch is required to manage
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the large number of patients receiving renal therapy antawit it they would not be

effectively managed.

Doses of the epoetin agents are available in pre-filled ggenwhich are available in
varying strengths; 25, 40, 60, 100, 150, 200, 300 IU/kg. Dasiés are measured in
IU/week/kg body weight. 1U is the abbreviation of intermetal units, which is a standard
measurement for a pharmaceutical drug [75]. A maximum o360 |U/kg per week. A
patient undergoing epoetin therapy will always be requicekceive some of the agent,
even if their Hb is on target, as complete cessation of thetagwy cause a sudden
breakdown of the new cells. The patient’s dose each monttijissieed using an epoetin
dose ladder, which increases or decreases the dose ifedduased on the predetermined

steps of the dose ladder.

3.1.1 Subcutaneous vs. Intravenous

A patient’s response to the epoetin agent depends on theeioloed cell lifespan and
production rate [76]. It is important to identify those patis whose Hb does not respond
to the epoetin, as death is more likely in these patients. tiMoemain methods are by
subcutaneous (just under the skin) and intravenous (wétkin) injection. A number of
studies have been undertaken to compare subcutaneoudravemous administration of

epoetin [77] [78] [79] [80].

The optimal route of administration remains undeterming8].[ In general, the
intravenous route is the fastest way to deliver fluids andicagidns throughout the body
as there is a direct route to the blood stream, compared metbubcutaneous route which
is usually used for medication that needs to work slowly. Ehbcutaneous route is
thought to be more prolonged than the intravenous metholl {7@ugh in the case of
the epoetin agent, where the maximum effect is seen in Hb m & weeks, this time

difference would have negligible consequences as the drag dot have an immediate
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effect.

It has been shown that administering epoetin using subeaten injection rather
than intravenous can allow the patient to receive lower sigstenderson, 1998 and
[77]. Further, subcutaneous and intravenous administrati epoetin was found to
be equivalent in terms of mean Hb [81] and with doses sigmfigalower in the
subcutaneous group together with a shorter time to stabdis, thus being advantageous
in clinical and cost terms. Aggarwal and colleagues foundeatgr increase in Hb in
the subcutaneous group than the intravenous group [78jallse state that subcutaneous

injection is more effective [78] and [80].

3.1.2 History of Epoetin Agents

Anaemia was discovered as a serious complication of reratdeby English physician
Dr. Richard Bright in 1836. He also first described the comnsymptoms of
kidney disease in 1836 [82]. The term erythropoietin waal@isthed in 1948 for the
erythropoiesis (the process in which red blood cells arelyred) stimulating hormone
[83]. In 1977, the human gene for erythropoietin was isadtg Miyake and colleagues
[84], which was later cloned in 1985 by Lin and colleagued.[8his meant recombinant
human erythropoietin (epoetin) could be manufactured featment of anaemia in
chronic renal failure. Eschbach and colleagues undertoeHKitst clinical trial in 1987
investigating the effect of epoetin on anaemia in patierntis @nd stage renal disease [69].
Subsequently, results were reported in a series of pulditgtindicating that epoetin was

successful in its aim of treating anaemia in end stage rasehde patients [86].

Prior to epoetin agents being available for treatment, @pprately 25% of patients with
chronic kidney disease required transfusion of red blotld oa a regular basis [69]. This
exposed the patient to unnecessary risk in terms of undeggbe transfusion and also the

possibility of experiencing severe bacterial infectionl aepsis. More common adverse
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Age / Sex group Haemoglobin threshold (g/dL)
Children (0.50 — 4.99 yrs) 11.0
Children (5.00 — 11.99 yrs) 11.5
Children (12.00 — 14.99 yrs) 12.0
Non-pregnant womenx( 15.00 yrs) 12.0
Pregnant women 11.0
Men (> 15.00 yrs) 13.0

Table 3.1: Haemoglobin thresholds used to define anaemja [88

reactions to blood transfusions include fever, pain, taahyia, and hypotension. Patients
suffering with renal anaemia and not receiving epoetin tgenperienced disabling

fatigue and greatly reduced quality of life.

3.1.3 Haemoglobin Guidelines

It is accepted that patients with renal anaemia will expeeea lower Hb concentration
than a ‘normal’ healthy population [87], where approxiniate12.0 g/dL is considered
anaemic, albeit with caveats dependent on sex, age andigesd (pregnancy status).

Table 3.1 shows the Hb thresholds for anaerfija [

Hb should be controlled within certain limits, as both highdaow levels increase
susceptibility to adverse health effects. There is coiflicguidance as to whether Hb
should be maintained at an optimum value, above or below eifgpealue, or within

a particular range [89] [90] [91] [92] [93]. The anticipatetkan Hb concentration for
patients with chronic kidney disease patients is 11.8 g@#],[though some authors
suggest a target range of 10.5 - 12.5 g/dL and others 11.@-gAd.. Previous European
best practice advice was that Hb should be maintained akibh@egldL. Table 3.2 shows

published guideline levels on Hb for patients with chronidney disease. However,
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Guideline Country Haemoglobin targ
British Renal Association UK > 10.0
National Kidney Foundation-Dialysis Outcome Quality iaiive USA 11.0-12.C
Canadian Society of Nephrology Canada 11.0-1
European Best Practice Guidelines Europe >11.0
Health Care and Financing Administration USA 10.3-1
Care for Australians with Renal Impairment Australia >12.0

Table 3.2: Published Guidelines on Haemoglobin targetatrepts with chronic kidney

disease

regardless of the various different guidelines, it is nasfble to specify an optimum

range of values [71].

It is highly desirable that a patient’s Hb does not fall tow,l@s this may lead to cardiac
failure, vascular complications and possible death [6@&eping Hb< 10.0 g/dL leads to

an increased risk of seizures compared with maintainih@.0 g/dL.

A generous Hb is also problematic in patients with end-stagal disease, since for
these patients Hb above 12.5 g/dL are considered unsafe aptbenassociated with an
increased risk of hypertension, cardiovascular eventslaath [71]. There are also major
cost implications in reaching and maintaining high Hb 18Jj80]. A suspected cause of

elevated Hb is that the patient has received too much of thetepagent [95].

An alternative view has been suggested that a target ramgaapropriate and providing
that patients are well and responding to treatment, then Hy Ipe maintained at any
‘reasonable’ level (Personal communication - Dr. E.J. WiFor instance the clinician
may attempt to raise a patients Hb from 8g/dL to 12g/dL, wimefact this patient could
attain a reasonable quality of life with a Hb of 8g/dL. It haeh shown that there are

adverse consequences of targeting high Hb levels [92] .eTWweuld be undue stress for
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the patient and unnecessary effort on behalf of the clinittaraise the patients Hb, in

addition to administering a higher dose than necessaryiticusring greater costs.

3.1.4 Haemoglobin Cycling

A related concern for patients, in addition to maintaininig \Wthin the specified limits,
is to sustain Hb stability. This is beneficial for two reasopstient health and cost
[96] [97]. A stable dose would be beneficial since this woduce the overall epoetin
dose administered, which would therefore reduce the costeaiment. A fluctuating
dose is more expensive than a stable one due to asymmetrg afode ladder. If in
addition, a patient’s Hb levels remain stable (and possilitlgin limits) then patient care

is improved.

Hb cycling is a frequent occurrence in patients who recepaeén as treatment for renal
anaemia, though this is considered dangerous for the p&i&h A number of reasons
are proposed as to why this phenomenon occurs, such as: aavrtarget range of Hb,
the patient’s iron status, and inflexible dose adjustméritsse of particular relevance to
this work are: incorrect dose adjustment and protocols cobanting for an individual

patient’s response.

A possible reason for Hb cycling is that the epoetin dose isdmsted immediately each
month; it could be between 5 to 12 days or at worst 6 weeks bdfw adjustment is
made. This means that the patient would receive the wrong aliospoetin until the dose
is changed. Guidelines state that from administration efapent the first evidence of a
response is in an increase in reticulocyte count within M dsubsequently an increase
in erythrocyte count, followed by an increase in Hb withirotweeks [86] [69]. This
response will vary due to patients experiencing intercurcomplications, which will
prolong the production of Hb [99]. If the dose is adjusted thtnand the effect of

epoetin is not seen in the Hb for 6 weeks, then it is possildedycling occurs since the
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drug has not been given sufficient time to take effect.

3.2 Data

The data used for this analysis were provided from a randsaint®ntrolled trial [99]

with the aim of comparing two different types of epoetin agdapoetin beta (EB) or
Darbepoetin alpha (DA). The trial initially ran for 9 monthhough data collection
was extended for a subsequent 3 months. Patients wereeskfeatn a haemodialysis
population with end—stage renal disease at St James Uityveisspital, Leeds. Patients
were randomly assigned to two groups; Epoetin beta or Dadtapalpha. In the original
9 month trial there were 217 patients across the two groupgbgeaend of this time 162
remained on protocol. There were 151 patients who proviadedptete data from the
extended trial: with 77 having received EB and 74 having ivete DA, both injected

subcutaneously on a weekly basis. The groups were balarceddang to age, sex and
time on dialysis. These data do not include those patientsdsbpped out, due to either

mortality or transplant.

Blood samples were collected monthly and the dose of thetepagent was adjusted
monthly with the standard dosage ladders using the competerdecision support
system. Including the 3 month extension this gave 13 datatpper patient, comprising

an initial baseline value and 12 more from the end of each mohireatment.

The usual approach of managing anaemia was to administerrE8 thrice weekly
basis. However, the interest of the weekly regime governethis trial was promoted
by the development of the new agent DA. A conversion from EBAowas in the ratio
200:1 [99]. This poses another clinical question of whethaients can be adequately
managed by a weekly regime. The converted values will be uséldis analysis to
allow direct comparison of the agents. The ratio of 200:1niaccordance with the

manufacturers recommendations within the European UBi®}) ince this is cost neutral
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under European licensing. The issue of the conversion rfagight be influential,

specifically if this conversion is not precise, as the pasiémthe DA group would not be
receiving the appropriate quantity of the agent, which rsehat patients would receive
too little or too much of the agent, resulting in the consempes discussed previously.
In fact, the first randomised trial which compared the DA agldgents based on the
200:1 conversion [99] suggested that there is a reductialoge for the DA group with

an increase in Hb. If this is correct, then this is benefiamathte patient as they reap
the benefits of receiving a lower dose together with their idimdp raised. Conversely,
these patients may simply have been under prescribed. Aecsion of 260:1 was also
recommended by the Centers for Medicare and Medicaid S\i00], which means
the patient would receive a higher dose based on this ratsoth@ conversion of 200:1
is not a universal gold standard, it may be an inappropriateersion, but that was the

conversion rate adopted within our data.

3.3 Clinical Aims and Obijectives

It is important to identify patients for whom Hb (Hb) is not lveontrolled, as they are
more likely to be at greater risk of suffering adverse heaftacts than those whose Hb
is stable and under control [98]. The nature of the Hb — epaetationship should also
be explored, since this will contribute to the understagaihHb control. For instance,
if the incorrect relationship is modelled, then one woulgest patients to exhibit poorly

controlled Hb.

The initial aim of the trial for which the data were collecteés to establish whether the
two agents offer comparable control of Hb. Poor control maydentified by Hb cycling;
a commonly occurring phenomenon in patients receiving @pdeerapy, which should
be avoided due to its association with adverse patient ougso If Hb cycling is shown

to occur, a strategy will be developed to improve Hb contn@atients.
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Summary of clinical aims:

e To identify if Hb cycling occurs in these patients.

To identify potential sources of Hb cycling.

To suggest corrections to the computerised decision stippstem to reduce Hb

cycling.

To compare the two epoetin agents with regard to control.

To suggest corrections/ updates for the CDSS to provide & tadored approach

for patient—specific control.

3.4 Statistical challenges

There are a number of statistical challenges which are pagédhis application. This
section highlights these issues and discusses why theyrabdematic and how these

issues may be resolved.

3.4.1 Autocorrelation and time lag

It is plausible that there is correlation between Hb measergs within the same
patient due to the longevity of red blood cells and otherdgalal mechanisms. In
statistical terms this is autocorrelation. The process lofchHntrol with epoetin agents
is dynamic and occurs over a time period which involves rmpldtdoses and multiple Hb
concentration assessments, highlighting that these arelai®d repeated measurements

of Hb and epoetin, over the 12 month time frame.

Due to the lifetime of the red blood cells being approximated0 to 120 days [68],

albeit reduced in patients with renal anaemia, it is pldeditat Hb produced at month
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(1) will still be present the following month (i+1) and pobst the next following month

(i+2). Similarly with dose; epoetin administered at monjhq likely to be present in the
patient’s blood at month (i+1) and also month (i+2). Epo&imjected subcutaneously
into the muscle and there is a time—lag before it reachesdhe marrow and red blood

cell production is stimulated.

3.4.2 Haemoglobin — epoetin relationship

The relationship between Hb and epoetin is complex; it iscgated that as dose
increases Hb will increase. This relationship may not bedm Although progression of
renal disease and intercurrent complications are higffliyential on the patients response
to the epoetin dose, so Hb will not respond in the ideal waynv@csely, it could be that

Hb influences the dose due to the process of the CDSS.

A standard linear regression would not be appropriate to ehdde Hb—epoetin
relationship, as it cannot be assumed that Hb will contiouadrease as epoetin dose is
increased. A dose greater than 300 IU/kg is rarely requiygzhlients, as stable Hb can be
maintained with this dose or less [101]. It is therefore pible that there is a plateauing
of Hb levels for larger doses. Additionally, a dose greatant300 IU/kg may elevate the
patients Hb too high which would lead to complications agged with a large Hb level.
The rate by which Hb responds to epoetin will vary from pdtterpatient: in particular
some patients may be more sensitive, where a small dosetraéjisachieves a large
increase in Hb; or, a patient may be unresponsive, so a large adjustment achieves
a small increase in Hb. The dose-response relationshipissekpected to be nonlinear,
since the dose ladder is asymmetric; as dose steps incedeesthe increment between
them. Itis not plausible to assume that Hb will continuatigrease as dose increases; itis
therefore unlikely that the relationship is of a linear oeeexponential nature. Cotter et
al. suggested that the Hb-epoetin relationship is S-shg@g]; this is also implausible

as Hb would not decrease when epoetin is administered.
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Since the CDSS bases current Hb on the dose administered ami& previously, this

will be the initial relationship which is investigated. Senclinical knowledge suggests
that the response in Hb may be seen any period between 2 andk8 vibese are other
relationships to investigate. The modelling structureusth@lso consider that multiple
measurements are collected for each patient. A modellragtsire that accounts for both

the variation between measurements and between patierégsassary.

3.4.3 Assessment of control

The aim is to model control using statistical methodologyl govide a way of

guantifying control, with a view to improving overall patiecontrol.

3.4.4 Assessment of individuals

A key consideration is that control should be assessed ondividual basis. It might
be possible to improve the CDSS by tailoring it to the indiall Statistical techniques
which permit assessment of individuals would provide awise$ight, although using the
full patient history of drug and blood measurements wouéddya more powerful model.
A number of authors [98] [71] suggest that it is necessaryttkatment is individualised,
as there is an increased risk of mortality and reduction iateept’s quality of life when

recommendations are based on population guidelines.

Summary of statistical challenges:

e Autocorrelation in successive and subsequent repeatesunmszaents.
e The correct / appropriate model form of the Hb — epoetin i@tship.

e Time-lag between administration of epoetin to mean responslb.
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e Evaluation of methods to provide suitable models for thessment control of Hb.

¢ Individual assessment of patients whilst simultaneoustgignining the behaviour

of the population.
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Chapter 4

Functional Data Analysis

4.1 Background

Functional data analysis (FDA) is a relatively new statetimethodology, which has
developed rapidly over the last 10 years. Limited matesavailable on this subject
(particularly at the start of my PhD), although existing lkiggiions such as those
presented by Ramsay and Silverman [103] emphasise its gogantial. It is the

exploitation of this potential within the biomedical sysie under consideration that is
the focus of this research. One of the few published appdieatof FDA in the medical

domain is by Shi and colleagues [104], where the centre osroaparaplegic patients

(as they stand) is modelled using FDA.

FDA is the analysis of functions or curves, opposed to a lawgaber of discrete data
points. Inferences can then be drawn from a dataset of cufVesoriginal format of the
data is not usually in the form of a curve, although intuitpbey may be represented as a
function. Methods are therefore required to express theeidat suitable functional form,

such as basis functions and smoothing techniques (theldeendiscussed in section 4.3).

Autocorrelation amongst repeated measures generatesalsgueblems for many
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statistical analyses [1]. As the frequency of measuremantgsases, such that adjacent
measurements become closer in time, their correlationiaiseases thereby exaggerating
subsequent collinearity problems. Statistical methagsh &is multiple regression, which
rely on the independence or near independence of obsersatice therefore not always
applicable. When observations are considered as functathsr than a collection of
correlated points, this issue is circumvented. Indeed,ntibee frequent the repeated
measurements, the more justified the approach. A usefulrteaff FDA is that it is
not necessary for the data points to be equally spaced. thiéaronstruction of the curve,
the original data points are essentially discarded and/aeslare carried out on the fitted

function; though equally spaced measurements makes ihg fittthe curves easier.

FDA will enable the analysis of each patient because indalid¢urves will be fitted for
and represent each patient. This still remains a large gyaftdata to analyse. It will
also be possible to analyse groups of patients as therec@dees available to combine

the functions.

4.2 General examples

A number of examples are available to facilitate the undeding of the concept of FDA.
One example is where the collection of curves can be averagestimate a mean curve.
If the aim of the analysis is to compare two groups then a maareanay be constructed
for each group (with confidence limits) to determine whethertwo group averages are
the same. Ramsay and Silverman use mean functions in an Examweather records
[105]. Temperatures are recorded over the period of onefyaar 35 weather stations
across the globe. Fourier series basis functions are usétddoarves to the raw data
as they exhibit sinusoidal properties (more details wilgiesn in section 4.3.3). Mean
functions are fitted essentially to summarise the curvesfiné regional groups, as well

as an overall mean function (more details will be given irtisect.4). Climatologists can
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then use these summaries to talk about typical weatherrpsattad about variability in

these patterns over time.

The derivatives of a function are useful in investigatingvgth data; e.g. when examining
height or weight of an individual in the lifecourse contead,one may be interested in the
rate of change of weight or height (first derivative) or theemsity of growth spurts and
their timing (second derivative). Data collection in thisldi is often complex and time
consuming as subjects need to be followed up for long penbtdweir lives, though these
tend to be good quality datasets and allow important questmbe addressed, such as; is
birth weight associated with whether or not a person degetippe 2 diabetes at age 307
More details will be given on these concepts in later sestintierms of greater statistical

theory and how ideas have been transferred to the biomexjisems.

4.3 Basis Functions

It is important that the functions are smooth for certainlgses. In order to estimate the
function, smoothing techniques are required. A wide raridggasis functions are available
to fit smooth functions: for example, polynomial bases, Bags, P-splines, Fourier
series or Wavelets. An informed choice should be made bas&davledge of the data.
Smooth functions are defined mathematically as being cootis and differentiable,
perhaps a number of times. Constraints can be imposed toectiwifitted functions

have continuous derivatives of a given order.

It is a key step to choose the most appropriate basis funtdioimne data. It is important
to represent the data so that key features are highlightéti@mce can be efficiently and
effectively analysed. For example, if the data are periaaid have sinusoidal features
then a Fourier series basis would be most suitable. A wawasis copes well with
discontinuous or rapid changes in behaviour. The data irbtbmedical systems of

interest do not exhibit such behaviour, therefore thesedae not applicable. The basis
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functions to be considered are B-splines and polynomiakssgon functions in the form

of loess curves; the reasoning behind these choices issgisdun the following sections.

4.3.1 Loess

Loess was introduced by Cleveland in 1979 [106] and lateeld@ed in 1988 [107]. It
Is an extension of an existing methodology where local paotyials have been used to
smooth time series plots, with equally spaced data poif@8][1Simple polynomials are
fitted to local subsets of data, and this process is then tegp@&ross the full range, to
construct a smooth function known as a loess curve. The tagss shows the dependent
variable as a smooth function of the independent variableatractive feature of loess
is its simplicity. Usually only lower-order local polynoais are fitted; the highest order
polynomial often fitted is degree two (local quadratic palymals). The theory of loess
is that a function can be approximated by low order polyndésraad that simple models
will be sufficient to fit the data, which make it ideal as an exatory technique. Further,

no specification of a global function is required. Hence $des flexible technique.

A smoothing parametend controls the flexibility of function. The larger the smowity
parameter, the smoother the function. Smaller values will fit close to the data. In
loess analysis, too small a value is not desirable as thiscefilture too much random
error in the data, though the aim of loess is to capture thenyidg smooth relationship.
The smoothing parameter is determined by the user and theeclsanade depending on
how smooth a function is desired. A choice of smoothing patamis usually between
% and 1, where\ is the degree of the local polynomial ands the sample size of the
data to which the function is being fit. Note that in R the d#fealue is 0.75.

In order to fit a loess curve, the subsets (known as the neighbod) for which
the local polynomials are fitted must be specified. They atergened by a nearest

neighbours algorithm [106]. Loess also incorporates ga@kautocorrelation amongst
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the explanatory variables, in terms of a weight functionisTib based upon the theory
that measurements close together are more related thamfdrtiser apart. Most weight
is given to the points closest to the point of estimationdsithese points are likely to be
most correlated), with less weight being given to those tsdarther away. This suggests
that loess would be a useful technique when data are unggated, such as growth

data.

An advantage of the loess methodology is that it provides x@ioeatory graphical
tool, which will give insight to the data, and hence enablardarmed decision to be
made about which other statistical methodologies may bé&esppFurthermore, as no
specification of the function is required prior to the aneys$ means that the true features
of the data will be revealed, as opposed to a method whereutiwidn is predefined
(such as a sine wave or a straight line relationship). Thianaehat a loess curve will
reveal a nonlinear and linear relationship between thertigre and explanatory variable.
The only features to consider prior to fitting the loess cusvlie degree and smoothing
parameter, this is an advantage as it requires the user eystadd their data rather than

fitting functions without prior knowledge of the data.

In terms of disadvantages of the methodology, loess is pimtiee effects of outliers in
the data, though this is the case with other least squardwn@bgy. Loess also requires
large densely sampled data to get the most of the methoddluegygfore loess should be
chosen as an analysis technique when this is a feature oatherdther than with small
samples of data where measurements are uncorrelated. @adeifiis not possible to
represent the loess curve as a mathematical formula, glthibloess is used simply to

display the data graphically, then this drawback is minor.
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4.3.2 B-splines

B-splines are commonly used in FDA due to their flexibilitpilay to capture long-
term trend, and ability to control the shape and smoothnet#sedunction [109]. Fast
computation of the basis function is an attractive feathet tan be achieved with B-
splines. B-splines can be implemented using the statistiware R, and these routines
have been validated by many users. Derivatives of the smiowittion can also be

calculated, which facilitates further analysis.

A B-spline curveC(t) is a linear combination of B-spline basis curv€s,(t). B-spline

basis functions are illustrated in figure 4.1 and defined as:
° Nz,O(t) = {1 if ti <t <t andti < it
e N, (t) = {0 Otherwise

o Nip(t) = ANy g (8) + ~E2 Ny 4 (2)

Liyp—ti Litpr1—tit1

Basis functions are calculated recursively and are of deg erder= p + 1). The B-

spline curveC'(t) is defined as:

which is formed piecewise, joining smoothly over a vectokobtsT = {to, ¢y, ..., t.: }-

The parameter$, ..., P, are known as the: + 1 control points. The degree is thus

p=m—n—1.

In general terms, for a B-spline of degrge

e it consists ofy + 1 (i.e m) polynomial segments

e each polynomial segment is of degrge
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Figure 4.1: Examples of B-spline basis functions. Top: omf B-spline of degree 1.

Bottom: Uniform B-spline of degree 2
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¢ the polynomial segments join atinner knots (discussed in the following section)

and

e the total number of knots ig+ 2.

Knots

The knots must be specified before the B-spline is calculdteth there calculation is
done recursively. The number and position of knots is onédnefilnportant features to
consider when fitting such curves. Note also that the funatibasis is truncated: for B-
splines this might be at order 4, for example, in order to gcpwise cubic polynomials.

The order of truncation is a further feature to be specifiddmctional fitting.

The spacing between the knots helps to define the shape oa#i fonction. Where
knots are equidistant the B-spline is uniform, otherwise-amiform. Equidistant knots,
however, only allow limited control over smoothness (desad in the following section)
and the fit of the curve. If the knots are positioned closettugre then the curve moves
close to the corresponding control points, and if the kneg$aather apart the curve moves
away from the control points. For example, when investigatong-term or seasonal
trend the placement of knots is important: when the knotskse together this allows
examination of seasonal trend and knots farther apart tma&t& long and medium term
trend. A further issue is the choice of the number of knots;few leads to underfitting
and too many leads to overfitting. In a life-course examptejdeal scenario for the
placement of knots would be at the ages where each measurerenorded, as it is
often the case that these data are unbalanced as more nmestgare taken in the early
stages of a persons life and less frequently in the lateestagth the first and last knots
placed at the first and last ages. This would capture the gpmth that occurs in this
early period and the steadying off of growth that occursrgdtderty. On the other hand,

this may lead to overfitting, if, for example, measuremengsracorded monthly for the
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first two years and yearly thereafter.

Kooperberg and Stone [110] and Friedman and Silverman [A4§ proposed schemes
for the optimum number and position of the knots. They sutggkthat the knots should
be placed either at or near selected data points, with theafid last knots at the first
and last data points. In addition, the middle knots shoulddpeally spaced. This seems
a reasonable proposal. However, if the knots are placedcht @data point then this is
likely to overfit the data, which would ignore the general andrall trend. It is important
that the knots are placed reasonably close to the data pasitgherwise features of the
individual curves would not be captured. Knots should besenand placed in context of
the data, which may not be achievable if relying solely on@mpoter algorithm to make

the decision.

Friedman and Silverman [111] use an algorithm which usedl#tia to automatically
select the number and position of the knots. Focus is placedtcurate estimation of the
curve and not its derivatives. The strategy for knot placarsestepwise. The first knot is
placed at the position which yields the best correspondiecgwise linear fit. Thereafter
each additional knot is placed at the location which giveslibst piecewise linear fit,
which includes the previously placed knots. Knots are addedis manner until some
maximum number is reached. At each eligible knot locatianesr least squares fit must

be performed to obtain the corresponding piecewise linaaosh curveC ().

Smoothness

Besides the order of the functional basis, smoothness iseth®y imposing a roughness
penalty on either the fitted function or a derivative of th&etitfunction. This is most
clearly expressed mathematically. Typically, the rougisnpenalty is defined with a

squared norm, so that least-squares fitting is augmentediawd:
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Tmax dk m

k m
min) {y; =Y PiNiy(0}* +a / {7 D PiNiy(t) Yt
j=1 i=1 * i=1

min

wherea > 0 is the roughness penalty parameteis the number of data points [112].

Numerical example

Suppose we have a knot vectbr= {0, 0.5, 1, 1.5, 2}, thusm = 4 andt, = 0, t; = 0.5,
ts = 1, t3 = 1.5 andt, = 2. The basis functions of degree 0, 1 and 2 referring to these

parameters have been calculated by hand to illustrate hevutittions are fitted.

The basis functions of degree; o(¢) are quite simple (see table 4.1); they only exist on

the range they are defined, and elsewhere they are equabto zer

Basis Functions Range Equation

Noo(t) [0, 0.5) 1
Nio(t) [0.5, 1) 1
Nao(t) [1, 1.5) 1
Nso(t) [1.5, 2) 1

Table 4.1: Basis functions of degree 0

Table 4.2 shows the basis functions of degree 1 and tablddv@ssthe basis functions of
degree 2. An illustration is given below of haw , (¢) is fitted (basis function of degree

1). First note that:

t—1 to — 1
%Aw:h_%%Mw+;_h

with Ny ,(t) defined over the range [0, 0.5) aid ,(¢)defined over the range [0.5,1).
Thus:

Nip(t)

t—0 1—-t
= 1
0.5—0( )+1—0.5

No,i (1) (1)
which yields:

Noa(t) =2t +2(1 — 1)
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Basis Functions Range Equation

Noa(t) [0,05) 2

Noa(t) [0.5,1) 2(1—1)
Nia(t) [05,1) 2t—1
Nia(t) [1,15) 3-2
Noa(t) [1,1.5) 2(t—1)
Noa(t) [1.5,2) 2(2—1)

Table 4.2: Basis functions of degree 1

Basis Functions Range Equation
Noo(t) [0, 0.5) 21>
Nt [0.5,1) —1.5+ 6t — 4t
Noo(t [1,1.5) 4.5 — 6t + 2t
Nyo(t

t [1,1.5) —5.5+ 10t — 4¢2

[1.5,2) 2(2 —t)?

[\

(4)
(t)
(t) [05,1) 0.5 2t+2f
(t)
(4)

)
)
)
)

= =

ot

Table 4.3: Basis functions of degree 2

The basis functions that have been calculated can be fittedftioction, for example
sin(t?). This is a non-periodic function so B-splines may be usedtzasis. Figure 4.2,
4.3 and 4.4 show the basis functions of degree 1, 2 and 3 (tmtlaged in the above
tables) fitted to thein(¢?) function. It was not possible to fit the basis of degree 0 as
this was unstable. Figure 4.2 is an impractical representaf sin(¢?) as the piecewise
curves fitted at the knots are linear, additionally the fiorcts not smooth and does not
pass through all the data points. Figure 4.3 is a better septation of the function

sin(t?) as it passes through all data points, except one where itshlpasses through.
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The basis function is smooth and captures the curvatureedfrtie function. Figure 4.4
shows the basis function of degree 3, which is very similah&basis function of degree
2 but now passes through all data points, which means it istarbbepresentation of the
true functionsin(¢?). Note that the B-spline basis function of degree 3 (ordeeédjss to
fit the functionsin(t*) almost perfectly, although this has been fitted to a smafjeanf

data and outside of the range the B-spline may be erratic ariit so well.

B-spline order 2

1.0

0.5

sin(t"2)

-1.0

Figure 4.2: B-spline basis function order 2 fittedsta (¢*)

4.3.3 Other basis functions

As mentioned previously, P-splines, Wavelets, and Fowseies are other frequent
choices of basis functions, though will not be used in thissit. Features of the B-

splines and loess curves make them the most suitable choicthé data from the
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B-spline order 3

1.0

0.5

sin(th2)
0.0
1

-1.0

Figure 4.3: B-spline basis function order 3 fittedsta (¢*)
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B-spline order 4

1.0

sin(t*2)
-0.5 0.0 0.5
1 1

-1.0

Figure 4.4: B-spline basis function order 4 fittedsta (¢*)

59



Chapter 4. Functional Data Analysis 60

biomedical systems; similarly features of Fourier seri&ayelets and P-splines make
them an inappropriate choice. Fourier series are an extaleoice if the data are
periodic and have sinusoidal features [113]. If it is no&clerior to the analysis whether
the data exhibit such features, it may be implied that thesidal nature of the data
occurs due to the inherent nature of the function. Fourieesare the traditional basis of
choice for long time series. Fourier series would be mosfulis®r example, to model
temperature over a period of years, as it is clear that weatheds tend to be cyclical
from year to year. Within the Fourier series basis functiois possible to specify the
length of the period, thus with weather data this would be.3&%lays. This type of
basis is most appropriately used with a stable function,revtigere are no strong local
features. In particular Fourier series are inappropriatéunctions that are discontinuous
(or discontinuity in lower order derivatives). A waveletsmis most suitable when the
data is discontinuous or exhibits rapid changes in behavibthe data are on a bounded
interval then wavelet bases deal well with this feature. dmputational terms, Fourier
series and wavelets are fast and efficient, though produoplesa harmonics. The use of

wavelet bases is relatively recent and experience of théimiied.

P-splines (polynomial splines) were developed from thebdsat did not accommodate
local features, hence P-splines have the capacity to @aphanging local behaviour. P-
splines are a combination of splines and penalties on thenastd spline coefficients
[112]. B-splines are better used in practice than P-splsdebe main difference between
the two is that B-splines are zero everywhere except oveita {(specified) interval [109].
Another difference is that the knots used with a P-splinepaeeletermined; some users
see this as advantage over B-splines where the choice df ksotore arbitrary. On the
other hand, some may see this as meaning that the B-splineagbpis more flexible

since unneeded knots may be freely eliminated, and vicgaver
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4.3.4 Summary of basis functions

The success of basis function is reliant on the appropreiication, congruent to the

application, of the following parameters:

the functional basis

the order of truncation of the basis

the number of knots

the placement of knots

the order of the roughness penalty

the size of the roughness penalty parameter

4.4 Mean functions

The mean function is a simple analogue of the classical maannivariate data. It can
be calculated by averaging the functions pointwise actossaplications. Similarly with

the variance, and hence confidence intervals.

In some examples, smoothing of the mean function will be irequ in addition to the
already smooth functions. Whether the mean requires additsmoothing will depend
on whether it is deemed that the function has high local fditg If it is necessary to
smooth the mean function further, then the roughness peapiiroach used to smooth
the original curve will be applied. The best choice of smaailparameter is often made

subjectively, as this ensures that the data being analysadhaerstood.
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4.5 Phase plots

Phase plots were discussed by Hirsch and Smale [114], whsideyed phase portraits
as modelling the dynamics of a system. The path of a ‘parisier time is mapped in a
2—dimensional plane. The particle then creates a trajgatdrich represents the dynamic

system. Dynamic systems may also be constructed from tfezatitial of the trajectory.

Phase plots have been adapted by Ramsay and Silverman \dlt&kby they assessed
the dynamics and energy in an econometrics system. Theydeved the control of
supply and demand cycles within key periods in modern hysteuch as The Great
Depression and different periods around World War |l. Ph#ets are defined as plots
of the second derivative (acceleration of the function}usrthe first derivative (velocity
of the function). This means that the function needs to berefaively high order as the
phase plots require the third derivative of the curve to beain to ensure the second
derivative is also smooth. Due to this complexity it will bevéstigated whether a plot
of the first derivative against the value of the observationld¢ be used to model the
dynamics within a system. If this were possible then the tionccould be of a lower

order.

Plotting pairs of derivatives is informative as the deii@s$ expose effects that are not
seen in the original functions. The first derivative représehe rate of change of the

process whilst the second derivative represents the itastaous curvature of the process.

4.5.1 Application of phase plots for the renal anaemia syste

Phase plots will be used within the renal anaemia system terrdane whether it is
possible to model control of Hb. The notion is that it will eal dynamics of control
of Hb in the patients. Phase plots will either be defined hem@eats of the first derivative

of the Hb function (units of g/dl/month) plotted against Hilues, or the second derivative
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of the Hb function vs. the first derivative of the Hb functidrhe first derivative is key in
assessing control, as this is the rate of change of trajeatat this considers the frequency

of changes in Hb along with the nature of the change.

It is helpful to consider phase plots with an analogy. A péaktuswings with greatest
velocity at the lowest point of its travel; when its kineticezgy is largest. At the point
the pendulum is at its lowest position, its potential enesggwest. Note that the position
of the pendulum is analogous to the level of Hb and the vejagitthe pendulum is
analogous to the rate of change of the Hb trajectory. At eidmal of its swing, the
pendulum velocity is instantaneously zero, and its kinetiergy therefore takes its lowest
value at zero. At these points, at the top of the arc, the piateanergy is highest since
the pendulum is at its highest elevation. Thus, during itcigwhe pendulum exchanges
energy from kinetic to potential, and back again. Where thedplum point velocity
and position are related graphically in a ‘phase plot; susbcuence of energy exchange
corresponds to something like a circle, with a centre of mum potential energy [114].
At the start, these circles are large. As friction acts, taedulum makes smaller swings
and the total energy declines; the circle becomes a spithpasgresses inwards to the
centre. A system displaying large circles in a phase plobeatonsidered to have a lot of
overall ‘energy’. In terms of the analogy of Hb trajectoryaege circle reflects little/ poor
control (wasted ‘energy’), while small phase circles cep@nd to less overall ‘energy’,
reflecting close/ good Hb control. Such circles and spirathé control of renal anaemia
are centred on the optimum Hb value. The initial point willraed from which patient

progress is followed over time.

4.6 Implementation

Functional data analysis is available in R, S-plus and Matlas R [115] is available

freely for download and usage, as are the FDA libraries wias motivation for using this
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software. A disadvantage of using the software R occurreemwthe FDA library was
updated in 2008, whereby the code to fit the basis functioasgéd. This subsequently
meant that the original code written for analysis of the dathis thesis required updating.
This is a common feature of R; that updates often cause mmatnigms with the code

already written.

Ramsay and Silverman wrote two books which are very usefuices for FDA. These
were a major factor in the learning and implementation of FB#they also wrote the
library for use in R. No training courses were able for FDAhaugh | attended a number
of presentations on FDA at the International Biometric @oafce in Montreal, 2006,
where | was able to discuss FDA with experts in the field. DerBd09] and Eilers [112]

also provide useful sources for B-splines.

4.7 Aims and objectives

The aim of this section of the thesis is to determine whethH@A FEan contribute
knowledge, insight and understanding to the chosen biarakdystems. FDA will be
used as an exploratory tool with the CA system; by fitting $oesrves to the data to
gain an understanding of the relationship between cerébyat flow and arterial blood
pressure. For the renal system, smooth functions will bedfitd the data. The fitting of
smooth functions will lead to derivatives of the curves lpeiaken and the construction
of phase plots. The results of this section will have a strgwragphical aspect, which is
advantageous as it provides insights into key aspects afdstbral autoregulation and
the control of renal anaemia. The more specific aims relatdioet systems are discussed

in the following sections.
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4.7.1 Cerebral Autoregulation

The aim within the CA system is to investigate if FDA, in therfoof loess curves, will
reveal the form of the relationship between blood flow an@@lpressure. Insight may be
gained about CA by considering CBF over a range of ABP, whsdhhé usual approach
for assessing CA. There is already a preconceived idea oétagonship, in the form of
the CA curve [29], although assessment of CA is being madeglarsurgical procedure,
for which the CBF—-ABP relationship is unknown. This highiig the advantage of few
assumptions being made about the underlying function ofi#ite, in the construction of
loess curves. The performance of loess will be tested bgditiiloess curve to a dataset
[116] for which the ideal autoregulation curve is known to tit determine whether the
ideal CA curve will be revealed if in fact present. Alternvaly, the dependent variable
(CBF) could be considered as a function over time, which @andlicate the behaviour

of CBF throughout the surgical procedure.

4.7.2 Renal Anaemia

It is noted that Hb levels for an individual may oscillate siimes over a long time
period. This at first might suggest the use of Fourier sesesfanctional basis. There is
the possibility, however, that oscillations lack periatyicMore importantly it is necessary
to demonstrate that the oscillatory behaviour arises filoenplatient response and is not

induced by the choice of functional basis.

The aim within the renal anaemia system is to investigatesifitting of smooth functions
to patient Hb trajectories provides an insightful summadrpatient response under the
protocol supported by the CDSS for administration of epoetFor these data it is
reasonable to assume that Hb varies smoothly over time. hystable patients, Hb has
been shown to follow a smooth periodicity in associatiorhvejpoetin dose changes [98].

Thus, fitting smooth B-spline curves to Hb measurementstawey, for each patient, will



Chapter 4. Functional Data Analysis 66

reveal how Hb varies throughout the course of treatment aodige understanding of
patient response. The curves may also be useful in idemgfiyia patient’s Hb is at the
optimum level (11.8 g/dL) or within the target range (10.8:5lg/dL). It seems that this
methodology will reveal many interesting features aboatdata, such as whether Hb is
stable around the target, or exhibits the other extremeevHéris oscillating off target.
The knots will be carefully chosen so the curves are suffiyidtexible and fit close
to the data points. The order and smoothing parameters Ml lze selected to ensure
derivatives of the curves are smooth. Each function willfspected to ensure they fit the

data well.

The fitting of phase plots will allow for further extensionarialysing control; something

that has not been previously exploited in the literature.

A mean function with a 68% confidence interval (Cl) will be @dhted for Hb over
time, for each of the two epoetin agents. This will enable jganson of the two agents
and hence allow the question to be answered of whether thadgents are statistically
significantly different in managing Hb. This is an extensarthe idea used by [99] ,
though instead of calculating a mean and ClI at the single niyptime points, the mean
function and its CI will be continuous across the 12 monthqagrallowing for a more
comprehensive comparison of the agents, as it will be seerHiovaries throughout the
year, as opposed to just at monthly intervals. The 68% camdeldéimits are the region
of the graph where the ClI trajectory is one standard errbeegide of the relevant mean
curve. Where the confidence bands do not overlap, the two meaaas will be separated
by ‘at least two standard errors’, which will indicate whehe mean trajectories are

significantly different from one another at the 5% — level.
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4.7.3 Statistical Issues

FDA has previously been used where many measurements hawvecodected; for

example, in the application by Shi [104] thousands of measents were collected. This
raises the question, therefore, as to whether 13 measutempenindividual (as in the
renal anaemia system) is enough to construct the functioustty and to apply the FDA
techniques. If the data are particularly noisy then a smdatictional representation
would be beneficial. If the function is correctly fitted, i.athvappropriately specified
knots and smoothing parameters, this would enable the Iyndgirelationship (clear

signal) to be revealed (from the noise). This would highligiether the patients are
reasonably similar across the patient group or whetherathexhibit different behaviours
(this will be useful in checking the assumption for multééwmodelling that individuals

share characteristics but are not the same or totally diftersee Chapter 5).

The statistical aims and objectives of this work are:

e To represent the data as smooth functions using approjaats functions.
e To organise the data so FDA techniques may be applied.
¢ To highlight important features of the data through graphicesentation.

e To investigate and model variability in the data.

4.8 Summary

The handling of functional data is similar to that of ‘usudhta, though each datum
is a continuous function. The aim of this work is to apply aietyr of functional data
techniques for analysis of the data from the two biomedigstiesns, to determine whether

the methodology can contribute knowledge and insight tontieglical domain. This
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will be achieved by firstly constructing curves from the anag repeated measurements
using the appropriate basis functions. The data will theartaysed using FDA, such as

constructing mean functions and taking derivatives of thees.

The fitting of smooth curves to somewhat noisy data will altbeszunderlying relationship
between two variables to be revealed. The expectation hleadata in these biomedical
systems are autocorrelated greatly justifies the FDA agprcas the smooth curve will

be a better representation of the raw data than the dath itsel
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Chapter 5

Multilevel Modelling

5.1 Statistical aims and objectives

Multilevel modelling (MLM) is used in this thesis to illustte that the statistical technique
can provide distinct information about the two biomedigatems. MLM will be used to

reveal different aspects about the applications compardtetFDA approach.

The applications require additional complexities othantHitting a simple multilevel
model in order to represent the data suitably. General &spédILM will be discussed
initially, with particular focus on the relevant aspectsttoe two applications. Discussion

will then follow into how and why MLM will be applied in this &sis.

5.2 Background

Multilevel modelling is a powerful statistical techniqwehich is essentially an extension
of ordinary linear regression modelling, though allowsrimore flexibility and complex
data structures to be modelled. Multilevel analysis is Usedata—sets with a clustered

(hierarchical) structure differentiating it from the matnaditional’ statistical techniques
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which make the assumption of independence. The hierataiatare of the data is often
viewed as a nuisance, however MLM embraces this complexitly alows additional

features of the data to be exploited.

The term ’hierarchical linear model’ was introduced by Uaydand Smith [117], a term
which is used interchangeably with MLM. Early uses of MLM doaind in the field

of education [118] [119], where it continues to be used feedly. The structure of the
education system lends itself to be analysed using MLM; fan&ple, pupils (observation
at lowest level) are clustered within classes (lev@] which in turn are clustered within
schools (levek), which in turn are clustered within local education auites (highest

levell). More recently, MLM has been used within medical [120] ardtdl applications
[121]. In dental research; sites around a tooth (Iéyehre clustered within teeth (level

7), which are clustered within patients (mouths) (lekgl

In medical research an obvious two level hierarchical stmgcarises, whereby patients
are nested within hospitals. More complex data structuresabso seen, as it is often
the case that repeated measurements are collected ortpaisno known as longitudinal

data. For instance, measurements may be collected repeatedt a relatively short

time period; such as throughout a surgical procedure. Gealye measurements may be
collected over a number of weeks or months whilst patierdara course of treatment
and undergoing regular monitoring. Repeated measuremesmgbe considered as the

lowest level of the hierarchy (levé), which are clustered within patients (lev@l

Within the MLM framework, individuals are viewed as beinghdar apart fromrandom
variation andfixed measurable differences; note that MLM is also known as fixedl a
random effects modelling. This is a reasonable assumpdionake, as it is likely that
patients / individuals are sampled from a population whaeslsamilar attributes, i.e.
patients undergoing a certain operation or patients withezific disease. Within these
groups it would not be plausible to assume that all patiemiglavrespond differently, or

exactly the same; hence the assumption that patients aréasiis a balance between the
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extreme views.

Random and fixed effects account for the differences whicliolbetween patients. The
fixed effects represent the average behaviour of the indalgdin the sample, which are
included in the model as mean value coefficients. The randfaate allow for variation

around the mean value to be modelled, and these are includdek imodel as either
variance (e.g. in MLwiN) or standard error terms (e.g. in R)e advantage of fixed and

random effects is that both population and individual cbemastics can be modelled.

Due to the clustered nature of the data there is complexitydrstructure of the variance.
MLM allows for the total variance to be partitioned into a aegde variance for each level.
Considering the education example, one may assume thatitheariation between the

pupils in the class (i.e. within-class variation) and alstween classes in the school
(within-school variation). Accounting for the variatioomangst individuals through

random intercepts in the MLM frame work is much more parsimaos than fitting, — 1

dummy variables in a standard regression model.

Within a generalised hierarchical linear model, the sirspdéructure for a MLM consists
of only random intercepts, i.e. the relationship betweendépendent and independent
variable and all covariates remain fixed but the model isjgi€ may vary for each
level in the model. For example, in the medical scenario Ity represent a different
intercept for each patient. Additional complexity is asieie to account for the covariate
relationships, i.e. the relationship between the depdratehindependent (or covariates)

variables may differ. Thus:

e The randomntercept accounts for the differences between baseline values.

e The randomslope accounts for differences in the relationship between the

dependent variables and covariates; and this may occuy &\l of the hierarchy.
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5.3 A two-level model

By means of understanding the concept, the methodologiradiple of MLM for a two-
level model is illustrated. Denote the dependent variableety and the covariate with

random slope;;, and all other covariates,, ...,z (m = 2...N)

N
Yij = Boij + Brjri; + Z BinTmi
m=2

where:fy;; = 5o + eoi; + wo; IS the intercept term3,; = 31 + u4; is the regression slope

for z;, andz,,;; are additional covariates with related parametgrs

The intercept term can be divided such thal: is the fixed (mean) intercepty,; is
the random intercept variation at levé)-whereey;; ~ N(0,02%)) ando?, is the levell
varianceuy; is the random intercept variation at leveJwhereuq; ~ N (0, o%;) ando?,

is the level2 variance.

Similarly the regression slope fay can be divided such thati; is the fixed slope, and
uy, is the random slope variation at levglwhereu;; ~ N(0,c2,) ando?, is the slope

» Yul

variance at leve?.

Note thatr,,; as the covariance between the random interagp) &nd the random slope

(Ulj)-

5.4 Considerations and assumptions of multilevel
modelling
As with all statistical models, there are a number of key agsions to consider with

MLM. Certain assumptions for MLM are the same as for ordinkamgar regression,

although MLM has more flexibility as it allows some of the asgtions to be relaxed
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and modelled explicitly. It is vital to check the assump#$pii they are not upheld there
is likely to be bias in the estimated coefficients. Moreoaay conclusions drawn from
the model will be erroneous. The assumptions and considesator MLM are stated

below:

e Hierarchy : By failing to recognize that there is a hierarchical stroetin the
data; i.e. assuming that the observations are indepentlentstandard errors
of regression coefficients will be underestimated, leadag@n overstatement of
statistical significance, in particular the coefficientthathighest level will be most

affected.

e The Structure of the model is of particular importance, as it is essenhat the
fixed and random parts of the model are correctly specifieds f@ature is not
easy to 'test’ as the model must make both clinical and sizdissense. The
model should be constructed using prior knowledge of tha datl specific clinical
domain. The specification of the model is of importance tottteapplications in

this thesis and will therefore be discussed in detail irrlagetions.

e Homoskedasticity is where residual variance is constant at each level of the
hierarchy, which is assumed. This assumption maybe relaredreplaced by
heteroskedasticity, where the variance will depend on glaeatory variable.

If homoskedasticity is assumed where the variance is rémtgroskedastic, the
coefficients for the variance (and hence standard errotEpg&underestimated. A
plot of residuals vs. fitted values is often used to determwinether there is constant
variance. Homoskedasticity and heteroskedasticity hrstihted in figures 5.1 and

5.2 respectively.

¢ Independenceof the residuals at each level of the hierarchy is assumeds Th
assumption will be considered further in section 5.5, irtipalar the implications

when this assumption cannot be upheld and the lowest |lesielrals are correlated.
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Solutions will be suggested as to how the issue may be sudubgsesolved.
Note that this assumption is different from assuming thahiwia MLM the

measurements within an individual are not independent.

e Normality of random parameters and residuals at each level. l.e. tidona
intercepts are assumed to be normally distributed, witlo reean, independent

and identically-distributed.

The assumption for independence of the lowest level reEdisaoften false when

modelling longitudinal data, due to the nature of the dat measurement collection.
Checking for correlated residuals is often overlooked aspitocedure is more complex
than producing simple graphical plots of the residuals,cwl@nables homoskedasticity

and normality to be assessed.

m'—‘mgg_""'mrnpj
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Figure 5.1: Figure showing plot of residuals vs. fitted valu® illustrate

homoskedasticity, where residual variation is constantife range of data.
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Figure showing plot of residuals vs fitted valuts illustrate

heteroskedasticity, where variation increases as thevdaiias increase.

5.5 Autocorrelated residuals

In ordinary least squares regression (a basic single levgély; = a+Fx;+¢;) the within

group residuals; are assumed to be independent. This assumption can bed ahetke

MLM framework by incorporating a correlation structure tbe residuals to account for

dependency amongst observations. In particular, seniegledion structures are available

to account for dependency in time series data, where databaerved sequentially over

time.

As the residuals are a linear combination of the predictbispossible that the residuals

will be serially correlated if one of the dependent or indegent variables is serially

correlated. Correlation in the error terms suggests thaetis additional explanatory

information in the data that has not been exploited, rati@n & model that is specified

incorrectly. When observations are collected on an indiaidlose together in time (or a
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natural sequential order), they will have similar depatintom the underlying regression
line which means that the residuals will be positively clated; this correlation is referred

to as autocorrelation.

Autoregressive models are particularly useful as the agsamcan be made that the
correlation between nearby measurements is stronger teasurements farther apart. In
Autoregressive models, the distance between the resigduat®wn as the lag, and there
will be stronger correlation between measurements at srahled lags compared with

those at larger lags. Autoregressive models for the emmoctsire express the current error
€, at current time, as a linear combination of previous residuals plus a hoeusstic

white noise term (defined here &, whereZ; is normally distributed with mean 0 ).

€t = (b1€t,1 + ...+ (bpﬂgfp + Zt (51)

Note thatp refers to the number of past residuals to be included in tha structure
model. The order of the autoregressive model is of ogdedenotedAR(p), which
includesp correlation parametersy = (¢, ...,¢,). Thus, a first order autoregressive
model (AR(1)) of the errors is denoted:= ¢1¢;, 1 + Z;, where—1 < ¢; < 1. AR(1)isa
simple and effective autoregressive model. The singlestation coefficient), represents

the correlation between observations one lag apart.

5.5.1 Diagnostics for autocorrelation

When assessing whether autocorrelation is present in tiielnesiduals, it is useful to
consider diagnostic plots of the normalised residualsamigular the plot of the empirical

autocorrelation function (ACF). Normalised residualsdeéned as:

ri = YA (i — i)

)
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Wheres?A; denotes the variance-covariance matrix for tlwéthin group errors. If the

within-group variance—covariance model is correct, themadised residuals should be
approximately distributed as independent random vectdhe Durbin-Watson statistic
[122] tests for serial correlation amongst residuals calgh from this test it is impossible
to determine the nature of the correlation, for instanceadfignarity or seasonality is

present.

The ACF at lag is defined as:

_ XL X i /N ()
Sl Yo 2 /N(0)

Wherer;; are the residuals from a fitted MLM, witly;, = Var(e;), andj = 1,..., M

()

(5.2)

observations at the uppermost level (i.e. patients)and, ..., n; repeated observations

(for patienty).

The ACF is essentially a plot of the vector of correlationgmaeters) = (1, ..., ¢,) , With

a vertical bar representing each coefficient [3]. Criticalibds for the autocorrelations are
usually plotted to denote correlations significantly diffiet from zero. Approximate 95%
bounds aretiN, where NV is the number of observations [123]. The autocorrelations
which extend beyond the limits are deemed statisticallyifigant and signify that
autocorrelation is present in the model at the time lag wlaesggnificant correlation
coefficient occurs. A feature to be aware of is a correlatioefftcient that is just
significant or significant autocorrelation occurs at ‘adny’ time lags then it may be
that the correlation parameters are actually independerttcorrelation at larger lags is

also less reliable as these are estimated with fewer rdgdus.

From the autocorrelation function itis possible to idgntife specific correlation structure
which is needed. For a first order process (AR(1)), the ACHeadsses exponentially
[123]. For higher order autoregressive processes the AGFhbma mixture of damped

exponential or sinusoidal functions [3]. Figure 5.3 is usedllustrate the ACF for a



Chapter 5. Multilevel Modelling 78

AR(1) process, i.e. when the residuals one lag apart arelated.

1.0

ACF
0.6 0.8
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0.2
|
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Figure 5.3: Autocorrelation function illustrating an AR{@rocess. The dotted blue lines

represent the 95 % confidence limits.

5.6 Assessment of model fit

Assessing the fitted model is important to ensure the coamtiappropriate relationship
between the outcome and explanatory variables is being lleddas well as determining
whether a correlation structure is needed for the resicuadsif it is correct. There are
many ways to do this, using numerous statistics construgyedumerous statisticians
over the years. The models in this thesis will be assesseddbas a number of

factors, including Akaike’s information criterion (AIChd likelihood ratio tests (LRT).

In addition to these numerical statistics, graphical sunesawill also be used as they
are a particularly effective way to assess model fit and shioellexamined routinely. The

interpretability of the model is also of paramount impod@anin particular prior clinical
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knowledge should be considered and whether the model ‘nssese’ for practical use.

Maximum likelihood estimation is a method for estimatingdabparameters satisfying
the criteria of ‘sufficiency’ and ‘efficiency’ [124], thougtestricted maximum likelihood
(REML) [125] is often preferred as maximum likelihood tenisunderestimate the
random parameters in a multilevel model [126] [127]. Funthere, it is considered that
REML is a more appropriate criteria for models with fixed aaddom effects [128],
since REML produces less biased / more conservative egtintdtthe coefficients in
the random part of the model [129]. Both maximum likelihoodl aestricted maximum
likelihood are important to consider in the model fitting @edure, and will be discussed

throughout this chapter.

5.6.1 Information criterion

Akaike’s information criterion (AIC) [130] [131] is stateds yielding more plausible
model solutions than solely relying on the likelihood va]lid2], because the likelihood
value alone does not account for model complexity or parsym@his makes the model
more plausible as it takes into account a balance of bias andnce in the model
construction, rather than a model based on a likelihoodawahich may include a number

of nuisance parameters.

The AIC statistic is defined as:

AIC =2p—2In(L)

wherep is the number of parameters ands the maximum likelihood for the estimated
model. When ‘REML’ is used as the estimation methbods replaced by the restricted

maximum likelihood.

AIC takes into account the complexity of the model by considgboth the statistical
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goodness of fit and the number of parameters to be estimatet athieve this particular
degree of fit, by imposing a penalty for increasing the nundigzarameters. Smaller
values of the index indicate the models which are a relatibetter fit, i.e. the one with
the fewest parameters that still provides an adequate fiteaalata. However, the AIC
value is relative to the size of the dataset, such that latgersets will yield larger AIC

values.

Bayesian information criterion (BIC) [133] is similar to &] such that smaller values of

this statistic indicates the ‘better’ model when compafimg) models.

The BIC statistic is defined as:
BIC = (p)log(N) — 2In(L)

wherep is the number of parameters, is the maximum likelihood for the estimated
model andN is the sample size. When REML is used as the estimation methaosl

replaced by the restricted maximum likelihood dngl( V) by log(N — p).

Within this thesis AIC will be used as the preferred critarlmetween AIC and BIC. It
is usually the case that the same inferences will be drawn both criterion [134] and
both are valid methods of model selection. Therefore AIQ gl used because it tends
to be a conservative criterion, whereas BIC more serioushafises the introduction of
additional parameters than AIC [135]. The models fitted is thesis do not include many

covariates, therefore strongly penalizing a model basets@arameters is not necessary.

5.6.2 Likelihood ratio test

Likelihood ratio tests (LRT’s) are used to compare nestedets) to determine whether
the inclusion of additional parameters improves model fRTls can be used to compare
model fit by REML (usually maximum likelihood) if all modelsate been fit using

REML and include the same fixed effects specification. TheaeaREML is used



Chapter 5. Multilevel Modelling 81

over maximum likelihood is discussed later. LRT are paftéidy useful when deciding
whether a correlation structure is required, as models aiitth without the correlation
structure are nested. In this instance, the ACF should @sxamined, to check whether

inclusion of the correlation structure yields a model wititarrelated residuals.

The likelihood test statistic is denoted :
LRT = 2log(L1/Ls) = 2[log(Ls) — log(Ly)]

WhereL; and L, are the likelihoods of model&/; andM;, whereM; hask, parameters

and is nested i/, which hask, parameters.

The null hypothesidd, is that M; is adequate, the alternative hypotheHisis that the
more complex model/,) is required. If thep-value is significant for the LRT compared
to thex?,_,, distribution then it can be concluded that the alternatieelet is preferred

as evidence to reject the null hypothesis.

It can be argued, however, that the p-value from )tfl,ie_kl distribution is too large or
inaccurate [136], if calculated from a small sample size.isTuggests that the LRT
should not be solely relied upon to decide whether one madatiter than another and

that a combination of criteria should be examined.

5.6.3 Graphical summaries

To check whether the within group errors are normally distted a QQ-plot of the
residuals should be used, or alternatively identifying thkethe residuals are scattered
randomly around zero by plotting the standardised residigaleach of the upper level

units (i.e. patients).

A plot of standardised residuals vs. fitted values is used aeans of checking for

homoskedasticity of the variance, as seen in figure 5.1 ancefig 2.
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Another assumption to check is whether the random effeeta@mally distributed with
mean zero and no substantial correlation amongst the rardf@tis. A plot of the
random effects values for each of the upper level units id @isiethis, and this plot will
also show if there is homogeneity in the variance structltrés possible to determine
whether random effects parameters are required by exagtiméir respective confidence
intervals. If the random effects standard deviations ageiscantly different from zero,
this indicates that they are required in the model, as thdydditional information to the
model by indicating there is some variation in the randoractfthat should be explicitly

modelled.

As discussed in the previous section, a plot of the ACF is tettfe way of identifying
correlation in the lowest level residuals and hence whetheprrelation structure is

required.

5.6.4 Interpretation and a priori knowledge of data generaton

In addition to the factors for assessing model fit, which waiseussed above, it is also
important to assess the models based on prior knowledge afithical scenario and also
knowledge of the data (such as; format and data collecti&istly, the interpretation
and specification of the model should make clinical senseis Tan be achieved by
understanding the clinical context of the data and alsaugjinacollaboration with clinical
colleagues. If a model has so many parameters, for exanmisewbuld be difficult to
interpret in the clinical domain (and also for the statisii. Therefore, parsimonious
models should be fit, whereby there is a balance between thplegity and the number

of parameters.

Having knowledge of the data is of paramount importance. $hoeild know where the
measurements are collected, for example in controlled&bry conditions or whilst the

patient is under stress. This would give an indication agtether a clear relationship will
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be seen, or if the patient is under stress then the undentglatjonship will be masked
by noise. Furthermore, knowledge of the time between measemts is a key factor
as a short time period, for example, may result in measurenteat are autocorrelated.
Using statistical methods which assume independence batmeasurements would then
be incorrect. One should be aware that if a complex coroelagiructure is incorporated
in the modelling, to account for the autocorrelated redeluhis correlation parameter

may also have clinical meaning and relevance.

Within the MLM framework it is possible to analyse both baled and unbalanced
data. Unbalanced data will occur where a different numbenedsurements is collected
for each individual. This may be due to missing values or whee time period of

measurement collection varies between each patient. $tas advantage of MLM, as

some statistical methods cannot be used with unbalancad dat

5.6.5 Summary

The criteria discussed here are the most effective way tesasthe fit of the model,
especially when fitting a large number of models and when imgri the clinical domain,

where ease of interpretation is necessary.

In summary, models will be assessed using the following:

e AIC
e LRT
o ACF

Residual plots: e.g. standardised residual vs. fitted galue

Clinical insight / interpretation and knowledge of data gextion
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It should be noted that no individual assessment criterfmulsl be solely relied upon;
a better fitting model results from using a combination oetaty selected criteria and
prior knowledge of the clinical context. It is often viewdtht the graphical summaries
are an 'easy’ avoidance of calculating complex statistcddtermine model fit. In fact
this is not the case, as graphical summaries highlight cexnghd complicated features
of the data, in addition to gaining understanding of the datach could not be achieved
purely from visually scrutinising numbers. The complexahould be in fitting the model

and not in assessing model fit.

5.7 Implementation

Modelling with autoregressive correlation structures waoduced in 1994 [137]. An
AR(1) correlation structure was then made available fol@mgntation in MLwiN [138],
though currently it is no longer possible to implement areeged correlation structure in
this package. It is, however, possible to fit a MLM with a veyief correlation structures
using the statistical software R [115]. A number of R libeagrare available (nlme, Ime4,

mlmRev), though nime was found to be the most effective.

A number of MLM text books usually mention that it is possitdemplement correlation
structures of the residuals, albeit briefly, suggesting tihia particular aspect of MLM
is seldom used. One exception is the text book by PinherioBates [139], which is a

useful guide to fitting MLM in R and includes a detailed sectim correlation structures.

5.7.1 Presentation of models

The fitted models will be presented in the respective reshiépters. The format of the

models will be presented in two ways. To display the large Ibemof models fitted, the
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software notation will be used. For the ‘final’ models the mtmaditional notation will

also be used, as described in section 5.3.

R notation

The R code below shows how a general MLM is specified in thenswé.

MODEL = Ime(response ~ primary covariate(+ additional cova riate),
random = primary covariate (+ additional covariates)

| grouping level upper (/ grouping level lower) ,

correlation=corARMA(p=a, g=b), method="ML" or "REML")

Wherelme refers to the function from thalme library in R used to fit the linear
mixed-effects model. Initially theesponse is specified. Thev is read as ‘to be
modelled as’. The command following specifies the covariates in the fixed part
of the model, there may be just tipgimary covariate or manyadditional
covariates. The random part of the model is then specifiesiytay include th@rimary
covariate  and the sameadditional covariates as in the fixed part of the
model, or different covariates may be included. The grog@tructure is included in
the random specification of the model, the upper most levagpégified first followed by
the lower levels, the lowest level does not need to be speadkeglicitly. If the model
includes just the upper grouping level, this is a 2-level MLAlternative arguments may
also be included: theorrelation=corARMA(p=a, q=b) command incorporates
a correlation structure for the residuals. This may be agi@ssive (where = 0 and

p > 0), a moving average (whefe= 0 andq > 0 ) and autoregressive moving—average
(wherep > 0 andgq > 0) . The choice of fitting algorithm may also be specified asegith
maximum likelihood (ML" ) or restricted maximum likelihoodREML"). The default
is"REML" and will always be used in this thesis. Posterior varianaédsw larger and

more realistic under REML than under ML. This will be espégitue when the number
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of upper level units is small [140]. It is also possible to usd’s with REML, when all
models are fitted with REML and the fixed specification of thelgidas the same between
the models being compared. The RIGLS (restricted iterajemeeralised least squares)
algorithm yields the REML estimates. In general the fixe@@f estimates using ML
and REML will be similar, though not identical. Inferencegarding the fixed effects in

both estimation methods will be the same [139].

Theintervals command provides approximate (95% ) confidence intervaddl tiie
model coefficients from the particular model specified. Titervals are calculated using
a normal approximation to the distribution of REML estintatowhere the estimators
are assumed to be normally distributed (centred at the tanenpeter values and with
covariance matrix equal to the negative inverse Hessiamixmat the restricted log-

likelihood evaluated at the estimated parameters) [139].

5.8 Application to the data - Cerebral Autoregulation

The data from the CA biomedical system forms an inherentahibical structure:
repeated measurements of CBF and ABP are clustered withitaS8es of CEA which
in turn are clustered within multiple patients. MLM shoulel lesed in order to exploit the
full power of the data, whereby all information is used taoitate the model. This would
enable us to determine whether CEA has an effect on CA for ti@engroup of patients.
By fitting this type of model, the assumption would be madé there is the same error
and variance structure for all patients. It will therefoeertecessary to determine if this is

a reasonable assumption to make.

An important feature to consider is how the 3 phases of CEAmaoelelled. The
possibilities are to include phase as its own level, as a feféect, or as a random
effect. Before fitting the model it is clear that includinggsie as a fixed effect would

yield too many parameters. This option would require anraget for each patient in
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each phase, hence 108 (3 x 36) parameters, and possiblyeard®® parameters for a
random slope. This would be an ineffective model and verificdit to interpret. A
more parsimonious model would include phase as a randorateffdereby phase is
represented as a standard deviation which would indicateghation between patients in
the intercept and slope. A total of 6 random parameters woellgquired: 3 representing
variation in the intercepts for each phase and 3 for vanatidhe slope. Models will be
investigated where phase is incorporated as the middlédeas a random effect, where

random intercepts and slopes are investigated for eaclephas

CA may be represented by the slope of the relationship betvw&® and CBF. It will be
possible to investigate whether a different slope is neédedpresent each of the three
phases. A significant slope in each phase would signify tihatkianges across phases.
Furthermore, it would be possible to determine whether Gicisally present (zero slope
indicating perfect CA) and whether CA improves following £Ehe difference between

slopes in phase 1 and phase 3).

It is highly likely that correlation will be present betweadjacent CBF and ABP, due to
the nature of CBF and ABP measurements and the time—frami@aimahey are collected,
resulting in correlated residuals in the model. It may besseary therefore to incorporate

this correlation into the model by means of an autoregressivrelation structure.

When applying a correlation structure in this frameworlks assumed that the correlation
structure and correlation coefficient is the same for allgpas. This will be validated by
fitting individual models (that allow for an additional celation structure) for all patients.
It will be possible to determine whether each patient rexgua different correlation
structure. If the same correlation structure is applicabkerange of values the coefficient
takes will be investigated and compared with the globalfeneht from the MLM. Whilst
fitting a MLM to all data for all patients is the most efficiemicheffective modelling

technique, there may be benefits from fitting individual mede
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5.9 Application to the data - Renal Anaemia

Multilevel modelling has previously been introduced to tiephrology field [141], where
the authors acknowledge the technique is a particularlfutiszol for longitudinal data.
Longitudinal data often arise in this area since it is nemgs® collect frequently repeated
measurements of haemoglobin, iron and ferritin concentraton patients undergoing
dialysis. However, long series of data would rarely occunces patients would not
undertake dialysis for a long enough period and the seriaddaoe terminated due to
transplant or death. Even though patients may undergo aeadidialysis for a number
of months or years, measurements will usually be taken omeerdh or less frequently,
since low Hb levels would mean that frequent blood sampbragtrimental to the patient.
Traditional methods of analysis for longitudinal data,lsas time series analysis, would

not be applicable, because this usually analyses one seileer than many.

Multilevel modelling would be applicable to these datacsithe data hierarchy would
then be exploited, where the data form a two level structthe:first level pertains to
the repeated haemoglobin and epoetin measurements arettireddevel pertains to the
patient. Similar to the CA system, autoregressive colimadtructures will be explored.
The biological nature of Hb measurements means that it ikelplthat measurements
will rapidly fluctuate in time. Furthermore, Hb is being cailed with the aim of
maintaining a stable dose, thus large variation is not exepdeetween Hb measurements
from month to month. It is also unlikely that a patient’s efpoelose will fluctuate, as
this incurs a larger cost than a stable dose, therefore @uedation would be expected

amongst the epoetin measurements.

As discussed in Chapter 3 the relationship between Hb andtieps complex. In
particular it will be necessary to investigate the time poetween 2 and 6 weeks where
the optimum response is seen in the patient’s Hb as a restifteoépoetin dose. The

initial relationship that will be investigated is Hb(i) addse(i-1). This will determine if
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the relationship, upon which the current algorithm is bagezlds plausible results. The
wrong relationship to model is Hb(i) and dose(i), as the dizses not have an immediate
effect on Hb, due to the erythropoiesis process. The mosbappte relationship will

indicate the optimum time lag from epoetin administratiofib response.

Further investigation will determine if it is necessaryituoit the investigation of the ideal
time lag to months or whether it is possible to deduce themopt to weeks or days. For
example, a linear combination of dose administered froners¢vmonths could narrow

the time—frame from months to weeks.

5.10 Summary

When the situation occurs where measurements are nesteit witlividuals (or some
other unit), this should be embraced in the statistical fiiodgthe standard errors of the
regression coefficients would otherwise be underestimétading to wrong inferences
being drawn). Furthermore, there is the flexibility with MLtbldeal with unbalanced data
structures. In particular, in the CA application, the ldngt the surgical procedure varies
between patients, and hence the number of repeated measusdor each patient varies.
Due to the nature of the repeated measurements, wherebyresests are collected
closely in time and the smooth variation of the biologicatiable, autocorrelation is
likely to be present amongst measurements. Autocorrelaieasurements may lead
to autocorrelated residuals, which can be accounted fonenMLM framework with
additional autoregressive correlation structures. Tlaee a number of features of
the MLM modelling and also of the data within the biomedicgstems, that justifies

application to these data.
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Chapter 6

Results - Cerebral Autoregulation

The results from the analysis of the data from the cerebradragulation biomedical
system will be presented in this chapter, covering exptoyatnalysis with loess
smoothing and detailed multilevel modelling incorporgtian autoregressive error

structure.

6.1 Exploratory Analysis

In this section, summary statistics for the data are presgemt the form of tables and
boxplots. These figures and tables are useful (and necgssayplore the data before
undertaking more sophisticated statistical analysesleT&h summarises the number of
patients and observations. Tables 6.2 and 6.3 present rmatr®rmmary statistics about

ABP and CBF, respectively, between phases and within eatttedghree phases.

Table 6.2 shows that the standard deviations within eaclhethree phases are very
similar, indicating that the variation of ABP values in thede phases is similar. The
mean and median of ABP are also relatively similar acroshife phases, albeit slightly

higher in phase 2 than phases 1 and 3, although the increaseaBnically significant.
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Total number
Patients 36
Observations 4541
Observations (Phase 1) 1764
Observations (Phase 2) 1879
Observations (Phase 3) 898
Summary
Age (median(range)) 73(65-82)
Gender Male 28 / Female 8
Anaethesia Local 22 / General 14

Table 6.1: Summary statistics of the patients and obsenafor this study.

Min Q1 Median Mean Q3 Max SD Missing
Overall| 38 88 103 103.9 119.0 188 23.02 2
Phasel 38 84 102 101.5 118.8 188 22.98 2
Phase2 48 92 105 106.6 125 183 22.60 0
Phase3 48 89 100 102.7 114 176 23.37 0

Table 6.2: Summary statistics of ABP. The first row shows thrersary statistics between

phases, rows 2, 3 and 4 show the summary statistics for easeph
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Min Q1 Median Mean Q3 Max SD  Missing
Overall| 9.84 38.01 4832 51.70 61.61 138.90 19.92 57
Phasel 17.83 39.41 50.82 51.26 60.53 99.02 14.49 23
Phase2 9.84 33.78 43.29 46.09 5440 134.20 19.31 28
Phase3 21.64 43.40 6250 64.18 81.60 138.90 24.29 6

Table 6.3: Summary statistics of CBF. The first row shows thgstics between phases,

rows 2, 3 and 4 show the statistics for each phase.

These features of the data suggest that CEA does not havestastNe impact on
changing ABP, perhaps this is a result of careful contrglimonitoring of ABP on behalf
of the clinician. It should be noted that these statistiescaiculated across all patients,
and by combining the values it is appears that there is tGttenge in the patients’ ABP in
the different phases of the operation. In further analybes patients should be inspected
individually to determine whether this result is consisten each patient or whether it is

an artefact of combining the data.

Table 6.3 shows that the mean (and median) CBF decreasease ghand increases in
phase 3 compared with CBF in phase 1. Further investigasisaquired to determine
whether these changes are clinically significant. The stahdeviations increase as the
phases progress, which suggests that patients begin g(pierse 1) behaving similarly
and this then diversifies in later phases. In phase 1 the atdrtteviation is relatively
small. There is more variation in the patients response &o #rtery being clamped
(phase 2) and much greater variation in CBF following swydehase 3). The SD in
phase 3 is 70% larger than in phase 1, which indicates thansit CBF varies much
more following surgery than before. This suggests that titkti@nal variation occurs as

surgery progresses and that this may be due to differingpressgs to surgery.

Boxplots are essentially a graphical presentation of thammation given in the tables.

The boxplot format may be favoured over the tables as it esatble reader to directly
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Figure 6.2: Boxplot of arterial blood pressure at each phase
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compare the variables across the phases. A further atiedetiture is that the differences
are seen in relative context, thus allowing the reader tmtifye whether they are
‘significant’. Figure 6.1 is particularly useful as it higgihts that the variation of CBF
increases throughout the phases, though unlike the tabledkplot demonstrates the
nature of the variation. In phase 1 CBF appears to be norrdeisibuted with small even
spread either side of the mean. The boxplot for phase 2 sthavgiere are many outlying
values at the upper end of the scale, though the majorityeadiita is normally distributed
with a median lower than the median in phase 1. This sugdestsite variation in CBF
between phase 1 and 2 does not really increase but appeaus to the outliers. The
outlying values in phase 2 suggest there are a number ohretavhere CBF exceeds
the range that is experienced by the majority of cases argliighlight that in phase 2
some patients may be complex and difficult to manage. Thelbbiqr phase 3 indicates
that the variation between patients in this phase is laggethe interquartile range and

whole range of data is larger. Additionally the median vatlargest in phase 3.

In regards to ABP, figure 6.2 shows that the central point gndagl of the data is very
similar at each phase of CEA. This information was gainedftable 6.2. In addition
to the information also given in the table, the boxplots shbat the range of ABP is
very large in each of the three phases, though further asalysieeded to determine
whether each patient experience a large range of valuesetheshthe range is large due
to the combining of measurements. The boxplot for phase@raleals that there are
quite a large number of upper end outlying ABP’s in this phaBhkis is important for
the clinician to know that in some instances the ABP for thieepés exceed the ‘normal’

range of values and hence require careful monitoring orrobat their ABP.

Kernel density plots were also fitted to the data as anothploetory technique, to
investigate the distribution of ABP and CBF. Inspection lo¢ density plots did not
provide further information or insight than that gainedhrthe tables and boxplots, hence

have not been presented.
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Whilst the exploratory analysis reveals useful informataiout the group of patients
as a whole, no insight is gained into the specific informatarout the individual.
It is important to know about the data before further analysan be implemented.
The exploratory tables and boxplots highlighted that thsra lot of variation in the
measurements, which may indicate that there is a lot of tvani®etween the individuals
or it could mean that there is a lot of variation amongst thtviduals themselves. As

this is unclear it is necessary to implement more complekaisto gain better insight.

6.2 Functional Data Analysis

The aim within the CA biomedical system was to assess CA, whjgpeared to be a
relatively ambiguous problem. It was not possible to appigteng methods that have
been used for the assessment of CA for a number of reasonst, ¢liner techniques
for assessing CA have not been considered in the surgicaksoeand thus were
inappropriate and impractical. Second, repeated measutsnare collected on these
patients and the techniques previously used have not amesidhis type of data. Other

methods of analysis were therefore sought.

Since the aim was to assess CA, the first avenue of exploratasto investigate
the ABP—-CBF relationship. The method of loess was deemedleal technique for
investigating this relationship, following verificatio’ loess curve was fitted to ‘ideal’
data [116] where intact autoregulation occurs, see figileThis experiment was used to
determine whether a loess curve would reveal intact CA ituagon where it is known to
occur. Further details of the advantages and disadvantdgeis curve will be discussed

in Chapter 8.

Loess curves were subsequently fitted to CBF against ABP ¢h ehase of carotid
endarterectomy for all patients in the study, as it was jgtedi from the exploratory

analysis that there would be variation between phases. eThkds are useful for
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Figure 6.3: The Loess representation of the ideal autoagigul curve

determining graphically whether cerebral autoregulattopresent in these patients in
each phase. The black curve represents phase 1, the rechbiasse2 and the green curve

phase 3.

Figure 6.4 to 6.12 show loess curves for a representativelsaaf patients. In the
majority of patients the ordering of the curves is the samoenftop to bottom the order is
phase 3 (green), phase 1 (black) and phase 2 (red) (an exceppatient A (Figure 6.4)).
This may be interpreted as cerebral blood flow being greatgdtase 3 and CBF lowest
in phase 2, compared with the initial phase 1. Each of thedgbave been plotted on the

same axes to allow direct comparison of the patients ABP—(@Efionships.

Figure 6.4 represents a patient who experiences a large @n@BF and ABP values;
which is consistent throughout the three phases. The ranQB© experienced in phase
2 is the largest. The range of ABP is wide in all of the threesglsa which spans 50
— 175 mmHg. This is a particularly large range for one pattenéxperience, which

is quite unexpected. If the theory of the CA curve is accepheth the data from this
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Figure 6.4: Loess curve fitted to CBF against ABP in each pHaseatient A. Black

curve - phase 1, red curve - phase 2 and green curve - phase 3.
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Figure 6.5: Loess curve fitted to CBF against ABP in each pHaseatient B.
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Figure 6.6: Loess curve fitted to CBF against ABP in each pHaseatient C.
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Figure 6.7: Loess curve fitted to CBF against ABP in each ptiaseatient D.
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Figure 6.8: Loess curve fitted to CBF against ABP in each pHaseatient E.
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Figure 6.9: Loess curve fitted to CBF against ABP in each pHaseatient F.
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Figure 6.10: Loess curve fitted to CBF against ABP in eachelfas patient G.
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Figure 6.11: Loess curve fitted to CBF against ABP in eachetfas patient H.
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Figure 6.12: Loess curve fitted to CBF against ABP in eachelfas patient I.

patient could reproduce the plateau region of the curveiasstbelieved to exist between
50 — 150 mmHg. In this patient the slope of the ABP-CBF refadtop is very steep,
which would suggest that CA is not intact. There is little da&p of the different phase

measurements, highlighting that the phases are distinct.

Figures 6.8 and 6.11 represent patients whose ABP and CBfelatevely similar. In
both instances their range of ABP is narrower than patiengalfh@ugh still wider than
clinically desirable) and whose CBF is lower. There is distseparation of phase 2 from
phases 1 and 3, which themselves are close but with littisabowverlap. Compared to

phases 1 and 3, ABP is increased while CBF is decreased ie @ghas

Figures 6.9 and 6.12 display the curves for patients whode &l ABP are very erratic
during CEA; all phases are distinct with no overlap. In bo#tignts the relationship
between CBF and ABP in phase 3 appears to have a negativegradiBF is greatly
reduced in phase 2, which is also the case with the patiemirshofigure 6.6. The ABP

ranges are very narrow (patients C, F and I) in comparisohaather patients shown,
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and Lassen [29].

Figure 6.5 and 6.10 show patients whose CBF changes vehtlgligetween the three
phases. The slopes of the CBF—ABP in each of the three phasksth patients, are
very shallow. The range of ABP differs with each phase, iripalar for patient B there

is very little overlap of ABP measurements for phases 1 andn2phase 1 the range
is approximately 120-190 mmHg and phase 2 70-130 mmHg, wdneHarge ranges
in themselves though even more worrying when consideriagttiroughout surgery the
patients ABP ranges from 70—190 mmHg. ABP does seem to thae cader control in

phase 3 as the range is reduced to 90-110 mmHg and withiresa@# limits. Patient G

(figure 6.10) also experiences a large range of ABP in phad@-4175 mmHg), though
this is reduced in phase 2 and 3. Figure 6.7 also shows a patiemse CBF changes
very little between the phases, there is much overlap in tBE @easurements in this
patient, albeit retaining the usual phase ordering (3,1I8)this instance the range of
ABP is relatively narrow (50-80 mmHg) in each of the threeg@sa The gradient of
the relationship between CBF and ABP in this patient appeamssimilar in each of the

three phases.

The important issue from fitting the loess curves was to datex whether (intact) CA

was evident in these patients, i.e. do we see anything rdsgnthe CA curve? The

simple conclusion is that it is difficult to judge. The loesswes do, however, highlight
that the majority of curves show a straight line relatiopdetween CBF and ABP. The
slope is relatively mild, though not a horizontal line reggrting intact CA. The range of
ABP values are within the alleged region for intact CA (508-b%mHg), thus suggesting
that the patients’ measurements lie within the middle saabf the data and no turning

point is expected.
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6.3 Multilevel modelling

Subsequent to the exploratory analysis and the fitting sdcerves, multilevel modelling

was applied. The reasons for using MLM are outlined below:

e Analysis of individual patients would be difficult due to sempatients experiencing
a limited range of ABP (for example). This will be overcomeNdyM which shares

information across patients.

e The important research question is to determine whethee tiseevidence, from
measurements, that CEA influences CA. Not only is it impdrtaraddress this
guestion on an individual basis, such as with the loess survet also for the
population. MLM provides a framework where the results frhra patients can

be combined.

e Measurements of ABP and CBF are equally spaced in time, whigbles an

autocorrelation structure to be incorporated.

6.3.1 Model fitting procedure

A number of models were fitted to investigate the relatiopsietween CBF and ABP
(see list below). For example model A may be described as: GBRodelled by a
fixed intercept (not specified explicitly), which represemtean CBF across all phases (as
phase has not been specified in this model), and a randonmipiatiercept (where the 1
in 1/Patient represents the intercept). The fixed slope®intbdel is specified by ABP
and represents the mean slope of the CBF—ABP relationship sibpe is not random in
this model (but is in models C, D and E) and so the same for &z, The syntax of

these models has been described in general in Chapter 5.

e Model A = Ime(Flow~ ABP, random = 1/Patient)
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Model B = Ime(Flow~ ABP+Phase, random = 1/Patient)

Model C = Ime(Flow~ ABP+Phase, random = ABP/Patient)

Model D = Ime(Flow~ ABP+Phase, random = ABP+Phase/Patient)

Model E = Ime(Flow~ ABP*Phase, random = ABP+Phase/Patient)

Model F = Ime(Flow~ ABP*Phase, random = ABP*Phase/Patient)

The information criterion of all models are presented iria&h4.

Table 6.4: Information criterion of models A to E
Model | df AIC BIC logLik
Model A | 4 36116.64 36142.27 -18054.32
ModelB | 6 35108.04 35146.48 -17548.02
ModelC | 8 3494295 34994.21 -17463.47
Model D | 15 30395.85 30491.95 -15182.92
Model E | 17 30409.37 30518.28 -15187.68

It is not possible to carry out likelihood ratio tests betwedl these models since the
specification of the fixed effects is not the same in all madélse LRT requires strict
nesting, which does not occur here. The complexity inciedlsugh models A to
E; as model complexity increases the loglikelihood of thedets should also increase.
When phase is included as a random effect this greatly redise, BIC and increases
the loglikelihood from the models without random effectbserved by the differences
between Models C and D. Including an interaction betweers@laad ABP as in Model
E (i.e. different slopes in each of the three phases) doesnmpwbve model fit, in terms
of reducing AIC or BIC any further than from model D. Additalty, the interaction
terms are not statistically significant. Model E is more ctarphan model D, where the

loglikelihood should increase, though it decreases. Medgmates are obtained using
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RIGLS, which is an iterative fitting procedure. This procexlaims to converge upon the
global maximum of the loglikelihood profile. Thus, the esiied coefficients obtained
in attempting to model the complexity of model E would sugdkat the loglikelihood

profile is not increasing strictly monotonically toward® thlobal maxima (from either
direction) and that the solution found is that of a local maxi The model could be
specified to find the global maxima, though this option wasmptemented as the results

of model E were not convincing.

Therefore the results for model E indicate that there mayurearical difficulties with
this model, such that the model does not converge to the apsiatution. The solution
obtained may be a solution of a local maximum rather than gitenal solution. The
expected increasing trend is observed from models A to Ds Téads us to question
whether model E is overly complex and perhaps unstable. ,Tthespreferred choice
of model is model D. From models C to D there is an improvemerilC, BIC and
loglikelihood, thus believing in the numerical solutionthss is the pattern that is expected
to be observed. . There are a number of clinical justification the choice of model D,
which will be discussed in Chapter 8. The full summary of Mdgles shown in table 6.5.
It was not possible to fit a model with a random interaction @éd-) as this was unstable

and did not converge.

Model D = Ime(Flow ~ ABP+Phase, random = ABP+Phase/Patient)

Model D was deemed to be the most appropriate model from theeladitted above.
The algebra for the general version Model D is presenteduaion 6.1 and the specific
model with coefficients is presented in equation 6.2. Theehookefficients are presented
in table 6.6 and further diagnostics in table 6.7. The statiged residuals vs. fitted
values for this model is presented in figure 6.13 and the auatelation function of the

normalised residuals is presented in figure 6.14.
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Table 6.5: Coefficients of model E. Note that the degreeseddom for this model is

4441].
Fixed effects: Value  Std.Error p-value
(Intercept) 35.86 3.76 < 0.0001
ABP 0.16 0.04 < 0.0001
Phase2 -10.01 3.56 0.0049
Phase3 7.58 3.70 0.0406

ABP:Phase?2 0.030 0.02 0.1551
ABP:Phase3 0.004 0.02 0.8616

Random effects:| Intercept ABP Phase 2 Phase3 Residual
StdDev 20.65 0.22 16.59 16.37 6.66

FlOUth = ﬁo + U()j + (ﬁl + Ulj)ABP + (ﬁg + Ugj)PQ + (ﬁg + U3j)P3 + etj (61)
FlOZUtj = 3481+UOJ+(017+U1J)ABP+(—683+U2])P2+(801+U3])P3+6t] (62)

Figure 6.13 shows that the range of standardised residsiadatively large (-9.59 to
7.93), in relation to the ideal range of -2 to +2. The residudbo seem to display
heteroskedasticity, whereby as the fitted values increlaserange of residuals also
increases (fans out). These features of this plot suggastibdel 6.2 may not be the

best fitting model.

Figure 6.14 highlights that the normalised residuals axngty correlated (for the first
five lags). This means that the assumption that the lowest tegiduals are independent
is not upheld. A solution for this would be to look at other dfieations for the
model and also incorporating an additional complexity fog tesiduals, to account for
the dependency amongst the observations (which has résnleorrelated normalised

residuals). After the issue of the correlated residuales®lved by incorporating an
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Table 6.6: Coefficients of model 6.2. Note that degrees afdoen for this model are

4443
Fixed effects: | Value Std.Error p-value
(Intercept) 34.81 3.62 <0.0001
ABP 0.17 0.04 < 0.0001
Phase2 -6.83 2.78 0.014
Phase3 8.01 2.78 0.004
Random effects| StdDev Corr
(Intercept) 20.46 (Intr) ABP P2
ABP 0.22 -0.761
Phase2 16.59 -0.154 -0.013
Phase3 16.35 -0.191 0.262 0.086
Residual 6.66

Information criterion:

Table 6.7: Diagnostics of model 6.2

AIC

Residuals:

Min

BIC logLik

30395.85 30491.95 -15182.92
Q1 Med Q3 Max
-0.36 0.01 0.42 7.93

-9.59
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autocorrelation structure, this may alleviate apparemérbekedasticity seen in figure
6.13.

6.3.2 Model with autoregressive correlation

In order to resolve the issue of the correlated residualsetsodere fitted with a
variety of correlation structures, including autoregressautoregressive moving average
and moving average. Table 6.8 shows an example of two moddisamtoregressive
correlation structures that were fitted. The additionalr&lation structures were
incorporated with the best fitting model from the previoustiesm (Model 6.2). An AR(2)
correlation structure was shown to improve model fit the rfidsidel 6.4). See table 6.10
for the coefficients of this model, table 6.11 for model diagfits and table 6.12 for 95%
confidence intervals of the model coefficients. Variousdesis plots are presented in
figures 6.16 to 6.19. The general algebra for this model isgmed in equation 6.3 and

the specific equation in equation 6.4.

Flowy; = Bo+ug;+(B1+u1;) ABP+(Ba4usgj) P24 (Bs+us; ) P3+prei—1 j+paei—2 i+ 2,

(6.3)
Flow;; = 38.88+10;4(0.14-+uy ;) ABP4(—14.97+ug;) P2+(11.14-+uz;) P34-0.65¢; 1 j4-0.31e; o
(6.4)
Table 6.8: Diagnostics of models with autoregressive tatioa structures
df AIC BIC logLik

Model 6.2 15 30395.85 30491.95 -15182.92

Model 6.2 + AR(1) 16 27913.12 28015.63 -13940.56

Model 6.2 + AR(2) (= Model 6.4)| 17 27509.62 27618.53 -13737.81
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Table 6.9: Likelihood ratio test of models with autoregressorrelation structures

Test L.Ratio p-value
Model 6.2 vs Model 6.2 + AR(1) 2484.73 < 0.0001
Model 6.2 + AR(1) vs Model 6.4 405.50 < 0.0001

Table 6.10: Coefficients of model 6.4. Note that the degréégedom in this model are
4443

Fixed effects: Value  Std.Error p-value
(Intercept) 38.88 2.70 <0.0001
ABP 0.14 0.03 <0.0001
Phase2 -14.97 3.12 <0.0001
Phase3 11.14 4.04 0.0058

Correlation Structure: | p; =0.65 p, =0.31

Random effects: StdDev Corr

(Intercept) 10.43 (Intr) ABP P2
ABP 0.14 -0.391
Phase2 18.13 -0.095 -0.427
Phase3 23.14 -0.832 0.548 -0.442
Residual 16.17

Table 6.11: Diagnostics of model 6.4
Information criterion: AIC BIC logLik

27509.62 27618.53 -13737.81

Residuals: Min Q1 Med Q3 Max
-3.89 -0.45 -0.02 0.46 4.45
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Table 6.12: 95 % confidence intervals for all coefficients wdal 6.4

Fixed effects: lower est  upper
Phasel intercept 33.59 38.88 44.18
ABP slope 0.09 0.14 0.19
Phase2 contrast -21.09 -14.97 -8.85
Phase3 contrast 3.23 11.14 19.06

Random Effects:

sd((P1 int)) 5.96 10.43 18.24
sd(ABP) 0.10 0.14 0.19
sd(P2 con) 1411 18.13 23.29
sd(P3 con) 17.75 23.14 30.15
cor((Int),ABP) -0.75 -0.39 0.16
cor((Int),P2) -0.70  -0.10 0.58
cor((Int),P3) -0.99 -0.83 0.38
cor(ABP,P2) -0.72 -0.43 -0.00
cor(ABP,P3) 021 055 0.77
cor(P2,P3) -0.71  -0.44 -0.05

Correlation structure:
p1 0.64 0.65 0.67
s 028 031 0.34
Within-group standard error: | 13.73 16.17 19.04
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Figure 6.15: Autocorrelation function of normalised resits for model 6.4

Figure 6.15 shows that the normalised residuals are no toogeelated with each
other, as the autocorrelation is not (strongly) significanthe lags. At some lags
the autocorrelation is significant, although this is veryanand occurs at arbitrary
and relatively large lags, hence is not considered importainproblematic. It is
therefore possible to conclude that the residuals are noglated and the assumption

of independence is upheld.

Figure 6.16 shows that the range of the standardised résibaa greatly reduced from
(-9.59 to 7.93) to (-3.89 to 4.45) due to the inclusion of tberelation structure. Even
though the range has reduced it still remains larger thaappeoximate range of -2 to 2.
The residuals appear to be randomly scattered about zexaghlperhaps for the largest
fitted values (greater than 100) there are more negativéualsi. When the residuals are
split due to phase (figure 6.17) and patients (figure 6.18&) jtossible to see where the
outlying values occur (i.e. why there are more larger nggatsiduals for larger fitted

values).
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Figure 6.17: Phase residuals for model 6.4
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Figure 6.17 shows graphically that as the surgical proeeduogresses then the variation
between patients also increase. This is evident from thgerafresiduals increasing as
the phases increase. The range of residuals in phase ltigalgl@arrow in comparison
to phases 2 and 3, where the range for phase 3 is only sligittjed than phase 2. The
phase 1 residuals are centered on zero with an equal baldmpmsitive and negative
values, whereas the residuals in phase 2 are more heavipdsal with more positive

residuals and in phase 3 more heavily balanced with moreinegasiduals.
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Figure 6.18: Patient residuals for model 6.4

Figure 6.18 shows the residuals for each patient, althoogbaking phase into account.
The range of residuals varies greatly between patientse thees not appear to be a
standard behaviour. This figure shows that some patientsriexige a huge range of
residuals, in two cases there are patients whose residugs r50 to 50. In these patients
the three phases are clearly evident from the pattern aduals. The other extreme is
that a patient experiences a range -5 to 0. The majority aémpigtseem to experience a

balance of positive and negative residuals, though theredew who experience only
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negative residuals. This is a particularly useful plot as possible to identify patients
with interesting features. If there were a larger numberatifgmts, however, it is likely

that this plot would not be so effective.
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Figure 6.19: Random patient coefficients for model 6.4. Ree tepresents the fixed

(mean) coefficient

A further assumption of MLM is that the random coefficients aormally distributed

around the mean (fixed) coefficient. It is evident from figurg96that this assumption
is upheld. The figure shows four plots (3 for the random irgpt@nd 1 for the random
slope). Each plot shows that the random patient effectscatéesed randomly and equally

balanced around the mean.

6.3.3 Individual models

The assumption of multilevel models with an additional etation structure is that the

correlation parameters are the same for each patient. Theofithis section is to
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determine whether this is a reasonable assumption to makwlelsl were fitted using
generalised least squares with tfle command in R, which permitted the modelling
of different correlation parameters due to patient (and dlse to phase within patient).
The fitting of these models will also allow different slopeshte fitted for each patient,
which is similar to the random slopes philosophy in the MLMrfrework. The random
patient element is incorporated by fitting single modelseach patient. Similar to the
previous section the model slope will represent staticragidation, and the correlation
parameters may represent dynamic autoregulation. Thengasbehind this theory will

be discussed in detail in Chapter 8.

All models were fitted (described below) incorporating an(&ARcorrelation structure
for the residuals, as the AR(2) was not suitable for everyepgtdue to models being
fitted with a reduced amount of data. The initial model to tediis shown in equation
6.5 shows the model fitted to each patient, where the stdopgl and dynamic )

autoregulation varies between patients, though remaimstaot across phases.

Flowtj - ﬁOtj + ﬁltjMBP + ﬁ2tjp2 + ﬁ3tjP3 + P1Et—1.5 + Zt (65)

Equation 6.6 shows where the static parameter varies betplegses and the dynamic

remains constant between phases, though both vary betwaéents.

FlOUth = ﬁOtj+ﬁ1tjMBP+ﬁ2tjP2+ﬁ3tjP3+ﬁ4tjMBP*P2+ﬁ5tjMBP*P3+p16t—1,j+Zt
(6.6)

Equations 6.7 6.8 and 6.9 show where both the static and dgnpanameters vary

between phases, and between patients.
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Flowy; = Boyj P1+ BiyyMBP + prey_1j + 2y (6.7)
FlOwgtj = ﬁgtjPQ + ﬁgtjMBP + P2Et—1.5 + th (68)
Flowsy; = Buj P2 + BsijMBP + pses_1; + Z3 (6.9)

The plots of the dynamic and static parameters from theseelm@ie shown in figures
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Figure 6.20: Dynamic vs static for equation 6.5

Figure 6.20 shows the dynamic parameter plotted againsstdte parameter for the
model where each of the parameters varies due to patientydiutaking phase into
account. There seems to be a slight increasing trend betiiedamwo parameters, such
that static increases as dynamic increases. This sughasthe patients who experience a
steeper slope (larger static parameter, which would inéicapaired autoregulation) will
also experience a stronger correlation between adjaceasurnements (larger dynamic

parameter).
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In this model there are a small number of patients whosegiatameters are negative. It
is not plausible that these values actually occur, as a ivegdbpe would mean that CBF
would decrease as ABP increases. The negative slopes, épwe¥ relatively small. In

figure 6.21 the negative static values have been constréonazto, which is plausible as
this phenomenon may occur if all the patients measuremeatslastered together and

thus the estimate of a negative slope is inaccurate.
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Figure 6.21: Dynamic vs static for equation 6.5 (restrgtnegative slope to zero)

Figures 6.22 and 6.23 show plots of dynamic vs static whenauahyc is fixed and static

varies between phase, and where dynamic and static varyebetphases, respectively.
These models seem a little impractical, however, as in fi§l22 there are many patients
who have one or more negative static parameters. In figuethete are many negative
static parameters again and also negative dynamic parenéterthermore, there does
not appear to be any significant relationship between thamynand static parameters
for either of these models. It therefore seems that modakGHe best representation of

the data, when the few negative static parameters areatesito zero. This finding also
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supports the result that each patient requires differamd@m) parameters, though it is

not necessary to vary these due to phase of CEA.
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Figure 6.22: Dynamic vs static for equation 6.6

6.3.4 The effects of anaesthesia on cerebral autoregulatio

A further aim of this work was to investigate whether CA wafeeted due to type
of anaesthesia. This aim was addressed by using boxplotsnipare the static and
dynamic parameters, calculated from previous modelspfmalland general anaesthesia.
Figure 6.24 shows the static parameter from the multilexad@hwith AR(2) correlation
structure (model 6.4) by anaesthesia type. Figure 6.25 shaxplots of the dynamic
and static parameters from the individual models with ARryelation structure (model

6.5) and the negative static parameters constrained tolzganaesthesia type.

Individual patient slopes were extracted from model 6.4 éarpt comparison of their

values between local and general anaesthesia. Figurel®@24 she gradient of the CBF-
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ABP relationship for patients undergoing surgery undeall@nd general anaesthesia.
The median (range) gradient for local anaesthesia was @@B(to 0.31) and for general
anaesthesia 0.17 (0.01 to 0.53). tAest showed that there is a statistically significant
difference in the means of static autoregulation in local general anaesthesia. Patients
undergoing general anaesthesia generally had greateegiadhat is to say less efficient

autoregulation.
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Figure 6.25: Boxplots showing static and dynamic paramsdit@m individual models

(equation 6.5) by anaesthesia type (0 = Local, 1 = General)

Figure 6.25 shows that the range and interquartile rangeyofrmic parameters is
particularly large for both types of anaesthesia. In additthere is no significant
difference in the dynamic parameters for the two types ofestieesia. Similar to
figure 6.24 the static parameters for patients undergoingrg¢anaesthesia are generally
greater than those undergoing CEA with local anaesthes$ia.nfedian (range) gradient
for local anaesthesia was 0.05 (0.00 to 0.34 — excludingmdrvalues) and for general

anaesthesia 0.22 (0.00 to 0.27 — excluding extreme valdes}test suggests that there
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is a statistically significant difference in the means of st&tic parameter, though not

between the means of the dynamic parameter.

CEA is often associated with marked changes in blood presgturther, it is generally
perceived that ABP generally falls after induction of geh@naesthesia, which is true of
these patients, as seen in figure 6.26. Figure 6.27 showthikdinding is consistent in
each of the three phases. In phase 2 of CEA patient ABP igram@apared with ABP in

phase 1. ABP then decreases in phase 3.
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Figure 6.26: Boxplot of arterial blood pressure by anaes#hé/pe (0 = Local, 1 =

General)

Figure 6.28 shows that across all phases CBF does not chaede type of anaesthesia,
in fact the box plots appear almost identical. When this akén down by phase (see
figure 6.29 there is again no difference in CBF due to anasistitygpe. Furthermore, this

figure again shows that the variability in CBF increases a& @ibgresses.
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Figure 6.27: Boxplot of arterial blood pressure by anaes#éhepe (0 = Local, 1 =

General) in each phase
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Figure 6.28: Boxplot of cerebral blood flow by anaesthesie@ 0 = Local, 1 = General)
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Chapter 7

Results - Renal Anhaemia

The results from the analysis of the data from the renal armbiomedical system will

be presented in this chapter. This includes exploratoriesabnd kernel density plots,
the application of FDA (including B-spline curves and phak®s) and the application
of MLM (which includes the fitting of complex models with avégressive correlation

structures and a more pragmatic clinical model).

7.1 Exploratory Analysis

In this section summary statistics for the data from thelranaemia biomedical system
are presented, in the form of tables and kernel density pldtese figures and tables are
useful to give an initial insight to the data. Table 7.1 presesummary statistics about
the patients in this study, for each agent. Table 7.2 presemherical summary statistics
about Hb and dose, for both agents combined and individu&lyws 2 and 5 of this
table show the summary statistics of Hb and dose acrossta&hps rows 3,4,6,7 show
the summary statistics of Hb and dose by epoetin agent. Kdemsity plots are used to

show the distribution of Hb and dose overall (figure 7.1) aisd ay agent (figure 7.2).
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Agent DA EB
Patients 74 77
Observations 962 1001

Age (median(range)) 64(51-73)| 63(46-72)
Gender(Male:Femalg) 37:37 50:27

Table 7.1: Summary statistics of the patients and obsenatfior this study by epoetin

agent .
No. patients Min. Q1 Median Mean Q3 Max. SD

Hb (all data) 151 720 11.00 1180 1184 1270 17.20 1.36

Hb DA 74 8.00 11.20 12.00 12.03 1280 17.20 1.32

Hb EB 77 720 1090 1160 1166 1250 16.20 1.39
Dose (all data 151 0.00 5150 91.24 114.70 155.80 493.80 86.06
Dose DA 74 0.00 4354 74.00 98.30 125.90 493.80 84.46
Dose EB 77 0.00 67.05 115.20 130.40 179.60 461.50 84.68

Table 7.2: Summary statistics for Hb (g/dL) and Dose (1U/kg)
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The summary statistics (in table 7.2) show that across a#pia the mean and median Hb
is 11.8 g/dL, which is the same as the ideal level for patieritis renal anaemia. When
these values are calculated for individual agents, the rmednmedian Hb for patients
receiving DA is 12.0 g/dL, which is slightly higher than treedet. In the EB group the
mean and median for Hb is 11.6 g/dL, which is slightly loweartitarget. The spread
of the data appears to be very similar overall and by agemdeat from the standard
deviations being approximately the same {.36) and also the lower (Q1) and upper

(Q3) quatrtiles of the data.

The mean and median values for the dose data are quite diffeven each other, whereby
the median is less than the mean. This indicates that dosesisvely skewed. In this
instance the median should be used as a central measunethatéhe mean, as the mean
is highly influenced by outliers. The median dose for the Ddugr (= 74 1U/kg) is much
lower than the median dose in the EB group (15 IU/kg), and the third quartile in the
DA is also smaller then the EB group. These features of the slaggest that patients

receive a higher dose in the EB than the DA group.

Figure 7.1 shows that Hb for both agents combined follows rtbemal distribution
very closely, this is also the case when the data are sefddmgitéhe agent (see figure
7.2). Figure 7.1 shows that overall dose is positively skkvgeiggesting that patients
tend to receive lower doses more than larger ones, and ordygétients on a few
occasions receive doses greater than 300 IU/kg. The disbibfor EB dose is much
wider than for DA dose, seen in figure 7.2. There are a few pigtien a few occasions
that receive DA dose greater than 200 1U/kg; however in thegE®ip the distribution
does not tail off until after 300 IU/kg. From these plots ieses that patients receiving
EB are administered larger doses than patients receivinghb#ever further and more

sophisticated analysis will highlight whether this is yrtihe case.
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Figure 7.1: Kernel density plot of Hb (left) and Dose (right)
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7.2 Functional Data Analysis

The results from the application of FDA to the data from theateanaemia biomedical
system are presented in this section. FDA was used as feaititke methodology and
the data inferred that it would be an appropriate methodotoganalyse the dynamics

and control of renal anaemia in the patients, which are lggtéd below.

e Hb (and dose) may be regarded as a smooth trajectory ovey wimeh can be

modelled using smoothed B-spline curves.

e It may be possible to model control of Hb using phase plotgdrticular the first

derivative of the Hb function would indicate the rate of charmf the trajectory.
e Fitting individual curves will permit analysis of each indiual patient.

e The mean functions may be a useful way to compare and copaishts response

to the two agents.

Four graphs are presented for a representative samplei@h{satepresenting a variety of
scenarios that may occur with regards to control of Hb andeDmn@r time (figures 7.3
- 7.7). The top two graphs show the fitting of B splines to the(lgkt) and dose (right)
data. The dotted pink line in the left plot indicates the wptm Hb of 11.8 g/dL. The
bottom left graph shows the phase plot for Hb; this is the fissivative plotted against
Hb measurement. A tight spiral in the center of the dotteediwould represent a patient
who has good control of Hb. The red dot indicates the stai@tiajectory in the phase
plane and hence indicates the direction of the spiral. Theiplthe bottom right is the

first derivative of the Hb curve, in other words modelling th&e of change of Hb.

Ramsay and Silverman considered phases plots of the seeondtive against the first
derivative, in their examples [105]. This approach was enmnted in this thesis with

the renal data, but plots of the first derivative against Hlasneement produce very
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similar results and identical conclusions are made. Thegefn the interest of simplicity
for the clinical domain, the original approach has not besedu This demonstrates a

development of the FDA methodology.

A pragmatic solution is required when determining the appate position and number
of knots for the B-splines, since the algorithmic rules tdat exist are not readily

implementable nor would they yield appropriate solutiomsdach curve. The aim was
to choose a number of knots that represented the whole gropptients, opposed to
having a different number of knots for each patient. Havirdifi@rent number of knots

for each individual would mean that the curves could not alirderpreted in the same
way. Furthermore, the algorithm for the fitting of the curvesuld be more complex and
the running time longer, if the knots varied between pasietinportantly, it was found

necessary to place knots at the first and last data pointsd(Q2months) as the routine
will not run unless the end points are knots. It was necedsaspecify the knots to be
evenly spaced, since these data are evenly spaced. In aplexahere the data are not
balanced, it may be necessary to place more knots wheredheraore data points and

fewer knots where there is less data.

This involved evaluating the relative merits of the perniotes of knot number and
position subject to the constraints outlined above. Ptpaiknot at each month was taken
as a sensible starting point, as this option positions a &hewery time point the data
were collected. This fully saturated possibility overfittine curve as it passed through
every measurement and the long term trend was not evidentheAB-splines needed
more flexibility, the number of knots was reduced. Maintagnithe equal balance in
the position of knots, knots were considered at two montarvats (0,2,4,6,8,10,12),
thus giving 7 knots points. While the B-splines became mepeasentative of the data,
further relaxation appeared possible, investigating 5t lpmints at months 0,3,6,9 and
12. These B-splines displayed a good fit to the data. Redubigwumber of knots
further, i.e. to 4 (0,4,8,12) yielded some B-splines thadsel further restriction (via



Chapter 7. Results - Renal Anaemia 131

additional knots). Fewer than 5 knots resulted in curvesditbnot pass through many of
the actual measurements. Therefore 5 knot points were dk#raenost appropriate as
statistically this produced flexible curves with enougreftem to represent the discrete

measurements, while placing equidistant knots at sentihé&positions.

Smoothness of the curves was ensured by fitting fifth degrepliBes polynomials and
penalizing the fourth derivative to be smooth. This was dmsg is reasonable to assume
that Hb varies smoothly with time, in response to epoetined®@8]. Furthermore, it
permits phase plots to be constructed from smooth dergstip to the third order,

allowing assessment of Hb control.
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Figure 7.3: Graphs showing the fitting of B-splines to the kit and dose (right) data.
The bottom graph shows the phase plot and velocity trajgctiothe Hb curve for patient
2.
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Figure 7.3 is used to show an example of a patient whose Hinbeffitarget then comes
under control, albeit slightly below the optimum value. 1§ shown in the phase plot as
the red dot indicates initially Hb is not under control or arget, the plot then spirals in to
a very tight circle indicting good control. The dose seem®toain constant until month
10 around 100 1U/kg, this is then increased at the last twothsowhen Hb is shown to

be decreasing.
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Figure 7.4: Graphs showing the fitting of B-splines to the kit and dose (right) data.
The bottom graph shows the phase plot and velocity trajgctiothe Hb curve for patient
4.

Figure 7.4 illustrates a patient whose Hb begins on targen goes slightly below target,
after month 5 Hb goes greatly above target but after monthi8asght back to target.
This is shown in the phase plot by an initial tight circle, alhithen spirals out to form

a large circle that returns to the centre of the plot indrgathe patient is coming back
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under control. The dose for this patient reflects their Hbgnghthe patient is below target
dose is increased in order to bring the patient to the optimalwe, then from month 5
onwards the dose is decreased every month due to the patibriieing out of control
and well off target. The velocity curve is quite stable irading that the change in dose
is steady and there is no large dose change between adjaoattiignalthough between

month 4 and 12 the difference in dose is approximately 25RgU/
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Figure 7.5: Graphs showing the fitting of B-splines to the kit and dose (right) data.
The bottom graph shows the phase plot and velocity trajgctiothe Hb curve for patient
7.

Figure 7.5 represents a patient whose Hb oscillates, adpeitnd the optimum value.
There is a periodicity of approximately 5 months, whereby platient's Hb will begin
on target and will then increase or decrease for 2 months,libeng brought back to the

target. The dose for this patient shows the similar osoidgpattern, which mirrors the
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respective patient’s Hb curve. For example, where Hb issan@ximum, the dose is at
its minimum. This is demonstrated by the phase plot by a laingée, representing poor

control, around the centre of the plot. Similarly the vetp@urve shows the oscillating

behaviour.
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Figure 7.6: Graphs showing the fitting of B-splines to the kit and dose (right) data.
The bottom graph shows the phase plot and velocity trajgctithe Hb curve for patient
30.

Figure 7.6 shows a patient whose Hb is extremely well coleriplsuch that it is almost
constant at 11.8 throughout the whole study period. The dosaintained at a low and
constant level (approximately 50 1U/kg) throughout. Thagd plot shows a small tight
circle in the centre of the plot and the velocity curve is abtre horizontal line. This is

highly likely to represent a patient who went on to receivedmg&y transplant.
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Figure 7.7: Graphs showing the fitting of B-splines to the kit and dose (right) data.
The bottom graph shows the phase plot and velocity trajgctiothe Hb curve for patient
43.
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Behaviour Number of patients Percentage
Spiral in 33 22%
Spiral out 37 24%
Oscillate 48 32%
Stable 24 16%
Curve does not fit 9 6%

Table 7.3: Numerical summary of behaviour exhibited by remaemia patients phase

plots

Figure 7.7 is used to represent an occasion where the Besplinve for the Hb data
does not pass through all of the individual data points;gadtthe curve passes through
the middle of the data. The curve models the underlying bebawf Hb rather than
the slightly oscillating behaviour. The phase plot and g#jocurve suggest that this
patient’s Hb is well controlled, although on this occasiesd smoothing would be more

appropriate.

Many patterns of Hb waveform variation were revealed byniitftihe B-spline functions,
some appeared to be sinusoidal and others irregular. Thétadgpof the waves also
varied widely. The decision was made not to categorise theeyatterns as the time
frame and number of data points were limited. Table 7.3 islusgresent the number
(and percentage) of the 151 patients displaying the betiaei® shown in figures 7.3 to
7.7.

A particularly interesting group of patients that were appawere those whose Hb wave
shows evidence of Hb cycling. These patients are not adigqraattrolled by the CDSS,
which may occur due to external problems (such as expengram adverse event) or
because they are receiving an inappropriate dose. Thisb@iihvestigated further in

section 7.3.
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7.2.1 Functional Mean Curves

Mean Hb functions

125
I

DA

Hb mean functions
120
|

115
I

EE

1.0
I

T T T T T T T
0 2 4 5 ] 10 12

Time on tnal {months)

Figure 7.8: The two group mean curves for the two agents, 8tko confidence limits.

Where the confidence limits do not overlap the mean curvesegarated by at least two
standard errors and thus indicate where there is a sigrifitti@arence between the two
agents. The red curve represents the DA (Darbepoetin) gaodfhe blue curve for the

EB (Epoetin beta) group.

In order to compare the two agents in the FDA framework, mearctions were

constructed from the Hb patient trajectories for the DA aBdgeoups, which are plotted
with 68 % confidence limits. Figure 7.8 shows that there isghstifference between the
mean curves initially, with Hb for DA being slightly highdrdan Hb for EB. The patients
were randomised at the beginning of the trial, thereforestigt difference in patients

initially should be due to random sampling variation. Aftlee first month the two mean
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curves diverge, to the extent that the confidence limits ngéo overlap, which indicates
a statistically significant difference between the grodgg®m month 9 onward the mean

functions converge until they reach similar levels at mdiith

7.3 Multilevel Modelling

The results from the application of multilevel modellingie data from the renal anaemia
biomedical system are presented in this section. The psookftting the models is
explained, together with the reasons behind the steps takiamd an appropriate model

for the data.

7.3.1 Relationship between Haemoglobin and Epoetin

As discussed previously, epoetin doses are managed wids#iitance of a computerised
decision support system; which adjusts a patient’s doske eenth by examining their
current Hb, which is believed to be the result of the previoosiths epoetin. Models were
subsequently fitted to model this relationship. A furthestpéation is that the relationship
between Hb and dose is nonlinear, since the dose laddermmasiyic. It is not plausible
to assume that Hb will increase linearly as dose increasebniaal maximum dose is
300 IU/kg since beyond this no significant effect is seen ind¥els. A quadratic effect
was tested, since this would reflect that Hb increases asidosases together with the

plateauing affect that dose has when a certain level of Heeishred.

The inclusion of random intercepts and slopes in the modslimaestigated. A random
intercept would mean that patients Hb levels would vary éaero dose), this would give
an assessment of renal health. A random slope would indreaition in the relationship
between Hb and dose for each patient. This has clinical mgani terms of patient

sensitivity. A steep slope would represent a patient whoossensitive, whereby a small
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Model DF AIC BIC loglik
1 4 5962.156 5984.160 -2977.078
2 6 5949.692 5982.699 -2968.846
3 5 5978.935 6006.438 -2984.468
4 7 5969.800 6008.304 -2977.900
5 10 5967.404 6022.410 -2973.702

139

Table 7.4: Information criterion for initial models invegiting relationship between
Hb(i) and dose(i-1)

dose adjustment achieves a large change in Hb. Converdesg aensitive patient maybe
less responsive and a large adjustment in dose achievesllarsrease in dose (i.e. a
shallow slope). As the model coefficients have great clinio@ortance and meaning,

this emphasises the practicality of these models in thécalidlomain.

7.3.2 Haemoglobin() vs dose{ — 1)

The initial set of models fitted was to investigate the relaghip between Hb(i) and
Dose(i-1), these are shown in the list below. Informatiatedon from the models are

presented in table 7.4

1. Ime(hb(i)~ dose(i-1), random = 1 patient)

2. Ime(hb(i)~ dose(i-1), random = dose(i-Lpatient)

w

. Ime(hb(i)~ dose(i-1)+ dos#i-1), random = 1 patient)

N

. Ime(hb(i)~ dose(i-1)+dos¥i-1), random = dose(i-1patient)

o1

. Ime(hb(i)~ dose(i-1)+dos¥i-1), random = dose(i-1)+dos@-1)\ patient)
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The best fitting model (according to AIC) between Hb(i) andalel), at this point,

includes a random intercept and slope for each patient (h)da quadratic term was
found not to improve the model fit. The residuals of this moaete investigated and
found to be autocorrelated (shown in figure 7.9), suggeshiaga correlation structure

for the residuals is required.
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Figure 7.9: ACF of normalised residuals from model Ime(hb(dose(i-1), random =

dose(i-1), patient)

When model 2 was fitted with AR(1) correlation structure tiniproved model fit and
yielded uncorrelated normalised residuals, however thislehyields a non positive
definite variance-covariance matrix. The models with AR{A) AR(3) also improved
model fit, although in these cases the fixed effects dose teas) mot statistically
significant, which further suggests that the models inclgdiose(i-1) are unstable and

do not represent the data.
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7.3.3 Haemoglobin{) vs. dose{ — )

Further investigation for a suitable model was requiredgeithe models between Hb(i)
and dose(i-1) yielded erroneous results. Moreover, Hamgtias been shown to occur in
some of these patients, through the fitting of the B-splimges It is possible to speculate
therefore that current Hb being based on dose(i-1) is stimap One suggestion is that
aresponse in Hb, from epoetin dose, is seen within 2 to 6 weedk$here are a number of
exogenous factors that may affect this and thus lengthetirtteelag. A longer time lag

than one month may occur from the administration of epoetiresponse in Hb, which

would mean that the 4 week lag currently implemented wouldut®eoptimal.

Models were fitted between Hb(i) and dose(i-2) and simil&thy(i) and dose(i-3). It
would not be plausible to include adjacent doses in the maslelovariates, as there is
very strong correlation (=0.95), hence collinearity, betw both dose(i-1) and dose(i-
2), which is clearly illustrated in figure 7.10. In generaicluding variables that are
correlated would introduce problems associated with segellinearity into the model,
i.e. biased estimates of the coefficients and inflated stdnel@ors. In this particular
model, which shall be referred to as the collinearity modeé(table 7.5), the fixed effect
coefficient for dose(i-1) is negative and the variance-oan&e matrix is non-positive
definite. It is not plausible for the slope to be negative as wWould suggest that Hb
decreases as dose increases, which is not biologicallyjbfeasA possible method of
removing collinearity would be to include the mean and dédfece of dose(i-2) and dose(i-
3), as both variables will not be included explicitly in th@del [142]. In this case there
would not be correlation between the variables and a cortibmaf the effect from both

doses can be modelled.

The difference and mean models are presented below, soiuelen8R(1) correlation

structures as thus far these have been necessary in yisldiagple models:

Al Ime(Hb(i)~ Mean+Diff, random= 1\ pt)
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Table 7.5: Coefficients of the collinearity model. This mbaoeludes dose(i-1) and
dose(i-2) as covariates, which introduces collinearity the model as the adjacent doses

are correlated. There are 1508 degrees of freedom in thigimod

Fixed effects | Coefficient SE p-value

Intercept 11.18 0.10 < 0.0001

Dose(i-1) -0.015 0.0013 < 0.0001

Dose(i-2) 0.023 0.0015 < 0.0001

Random effects SD Rand Corr Fix Corr

Intercept 0.96 Int Dose(i-1) Int Dose(i-1)
Dose(i-1) 0.01 -0.334 -0.304

Dose(i-2) 0.014 -0.025 -0.824 -0.141  -0.794
Residual 0.88

Diagnostics AIC BIC logLik

4910.184 4964.318 -2445.092
Residuals Min Q1 Med Q3 Max
-4.07 -0.53 0.05 0.57 2.82
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Figure 7.10: Scatter plot to show relationship between @d9end dose(i-2)
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Model df AIC BIC logLik Test L.Ratio p-value
Al 5 4769.775 4796.364 -2379.887
A2 7 4584.280 4621.506 -2285.140 Alvs A2 189.494380.0001
A3 10 4567.079 4620.258 -2273.540 A2vs A3 23.20128 0.0001
A5 7 4596.839 4634.064 -2291.420
A6 10 4532.341 4585.520 -2256.171 A5vsA6 70.498Z% 0.0001
A7 8 4191.565 4234.108 -2087.782
A8 11 4186.868 4245.365 -2082.434 A7vsA8 10.6966 0.0135

Table 7.6: Information criterion for initial models invegiting relationship between

Hb(i) and the mean and difference of dose(i-2) and dose(i-3)

A2 Ime(Hb(i)»Mean+Diff,random= Mean pt)

A3 Ime(Hb(iy»Mean+Diff,random= Mean+Diff, pt)

A4 Ime(Hb(i)~Mean+Diff,random= Mean+Diff, pt, corARMA(p=1))

A5 Ime(Hb(i)»Mean+Mea#, random= Mean pt)

A6 Ime(Hb(i)»Mean+Mea#, random= Mean+Mean\ pt)

A7 Ime(Hb(i)»Mean+Mea#, random= Mean pt, corARMA(p=1))

A8 Ime(Hb(i)»Mean+Mea#, random= Mean+Meah \pt, corARMA(p=1))

After fitting the model the difference is not statisticallgificant and does not improve

model fit, which suggests difference is not required in thedeho When the AR(1)

correlation is included with the difference models, thegkrbt converge, highlighting

further numerical problems within these models. The begnditmodel with Hb(i) as

the response an@"sei”;w as the covariate, includes a random intercept and slope

and fixed quadratic effect together with an AR(1) correlatstructure (Model A7), the
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full summary is shown in table 7.7. The loglikelihood ratst suggests that the random
quadratic termis required in the model, but this model hasgoositive definite variance-

covariance matrix, hence is unstable.

Table 7.7: Coefficients of model A7. Note that there are 13&gfees of freedom in this

model.
Fixed effects Coefficient SE p-value
Intercept 10.53 0.15 < 0.0001
Mean 0.017 0.00197 < 0.0001
Mear? -0.000026 0.00000604 < 0.0001
AR(1) coefficient p) 0.66
Fix Corr Int Mean
Mean -0.75
Mean2 0.53 -0.85
Random effects SD Rand Corr
Intercept 0.96 Int
Mean 0.01 -0.37
Residual 1.15
Diagnostics AIC BIC logLik
4191.57 4234.11 -2087.783
Residuals Min Q1 Med Q3 Max
-3.22 -0.48 0.04 0.52 341

7.3.4 Haemoglobin{) vs dose{ — (2 + 7))

The model shown in table 7.7 can be developed further; idstéasimply using an
arithmetic mean of dose(i-2) and dose(i-3), models will tiediwith a linear combination

of dose(i-2) and dose(i-3) as the covariate. This approasdnsthat it will be possible
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to identify where between dose(i-2) and dose(i-3) the gfeshrelationship occurs with
Hb(i). A model will be fitted with Hb(i) as the response and tlose covariate as equation
7.1, where) < v < 1. See equation 7.2 for the fitted model; this includes random
intercept and slope parameters and fixed quadratic terrathegwith AR(1) correlation
structure. Models will be fit withy values between 0 and 1, at intervals of 0.1, the
model which yields the lowest AIC will be concluded as beihg best fitting model

andi — (2 + ) will be concluded as being the optimum time lag.

dose;_(24~) = (1 — y)dose;_o + (7)dose;_3 (7.1)

Hbi]’ = (A + Ct) + (B + ﬁ)dOSGZ’,(zJﬂY) + (C)dOSG?_(Q_,'_W) + PEi—1,5 + Zij (72)

Table 7.8: AIC for lag models 7.2, whepe< v < 1

Lag (months)| AIC
2 4207.978
2.1 4200.183
2.2 4193.557
2.3 4189.261
2.4 4188.408
2.5 4191.565
2.6 4198.408
2.7 4207.834
2.8 4218.441
2.9 4229.02
3 4238.795

The lowest AIC occurs when the time lag is 2.4 monti#s(Q.4), this suggests that the
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optimum response in Hb is seen from the dose 2.4 months (1Rs\vpecviously. Note
that, minimizing the AIC here is identical to maximizing tloglikelihood as the number
of parameters is fixed. Figures 7.11 and 7.12 show the gralplepresentation of the

model 7.3 and tables 7.9 and 7.10 showing model coefficiert€anfidence intervals.

Hbij = (1052+C¥)+(0017+ﬁ)d0$€l_(24)—000002561086?7(24)4-066€Z,17J+ZU (73)
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Figure 7.11: All patient curves from model 7.3. The red hamtal lines representing Hb
control limits 10-12.5 g/dL

Figure 7.12 appears to be a reasonable representationpdtirat curves shown in figure
7.11, as many patients follow the same trajectory althougthfferent levels (due to the

random intercepts). These patients tend to be in the middikeoso called spectrum
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Figure 7.12: Mean curve from model 7.3, with 95 % confidenderial. The red

horizontal lines representing Hb control limits 10-12.8lg/
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of patients. However, the patients at the upper and lowerseman to have extreme
behaviour, whereby there are patients with high Hb who egpee a large slope. At
the lower end there is a patient whose Hb seems to decreasdanger doses. The
patients curves are summarised by a mean curve with 95% eokdimits, shown in
figure 7.12. The 95 % confidence limits are calculated fronsthadard deviation of the
random patient intercepts. Figure 7.12 shows that on aedffagm the mean curve) for
reasonably low doses, between 0 and 150 IU/kg, the patienikivattain a Hb within the
target range (10 - 12.5 g/dL). The patients towards the l@@afidence interval seem to
require a larger dose. Below 50 1U/kg in these patients woesdlt in Hb that is lower
than 10g/dL, hence being dangerously low. A dose of arousdWikg would put them
in the middle of the target range. At the other end of the spetivhere patients Hb is
relatively high, a dose of more than 50 IU/kg would result iHaexceeding the limits.
These patients require a low dose to maintain their Hb. Owttae, in terms of the mean
curve, it seems that a dose of around 100 IU/kg should maintaelp patients achieve
Hb around 12 g/dL.

The intercept of model 7.3 is 10.52 g/dL, this is the mean Hlafaero dose, across all
patients and both agents. This is less than the optimumthib&gh within the limits 10 to
12.5 g/dL. This suggests that patients do require some dosaintain their Hb at a more
acceptable level. The fixed slope is 0.017, meaning that foumit increase in dose then
Hb will increase by 0.017 units. In more clinically meaniagerms a 100 unit increase
in dose would achieve an increase of 1.7 units. The standanéttbn of the random
slope is 0.006, indicating that there is relatively smatiaion in the sensitivity between
patients. The quadratic term should also be taken into atoebhen considering this,
although the coefficient is particularly small (= -0.000D&56 will only have a substantial
effect for large doses. As the coefficient is negative it aote for the tailoring off of Hb
at large doses, however at very large doses it would sugigaisHb decreases. This is
implausible thus suggesting that the model is limited uprweaimum value which is too

small to be considered as a true maximum.
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Table 7.9: Coefficients of model 7.3. This model includgsse;_ 4 in the fixed and
random specification and AR(1) correlation structure. Nob this model has 1357

degrees of freedom

Fixed effects Coefficient SE p-value
(Intercept) 10.52 0.155 < 0.0001
Dose;_9.4 0.017 0.0019 < 0.0001
Dose?_,, -0.000025 0.00000603 < 0.0001
AR(1) coefficient p) 0.66
Fix Corr Int Dosej_s 4
Dose;_9 4 -0.75
Dose? , , 0.53 -0.85
Random effects SD Rand Corr
Intercept 0.97 Int
Dose;_s 4 0.006 -0.38
Residual 1.15
Diagnostics AIC BIC logLik
4188.408 4230.951 -2086.204
Residuals Min Q1 Med Q3 Max
-3.19 -0.47 0.03 0.52 341
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Table 7.10: 95 % Confidence intervals for all coefficients iodel 7.3

Fixed effects: lower est. upper
(Intercept) 10.21 10.52 10.82
Dose;_9.4 0.013 0.017 0.021
Dose?_, , -3.69e-05 -2.51e-05 -1.32e-05

AR(1) coefficient p) 0.60 0.66 0.72
Random effects:
sd(Intercept) 0.74 0.97 1.27
sd(Dose;_2.4 ) 0.004 0.006 0.010
cor(Intercepfose;_»4) | -0.695 -0.375 0.069
sd(Residual) 1.05 1.15 1.26

Table 7.10 shows that the standard deviation between paigeapproximately equal to
1 (sd(Intercept) = 0.97), and so is the standard deviatidhinvpatients (sd(Residual) =
1.15). This suggests that there is as much variability betwsatients as there is within

patients.

The model shown in figure 7.13, where the quadratic term sd@éween patients, is not
an accurate representation of the data. Since the quatkaticvaries between patients
some patients experience curves with turning points atsddosaround 100 IU/kg. In
these patients doses greater than 100 would result in Hig bvettuced, though from
clinical knowledge it is known that this behaviour would matcur. In theory as the Hb
increase so does the epoetin dose, up to a maximum whereféloeiafHb tails of and
a dose greater than this maximum is not influential. The marirdose is stated as 300
IU/kg, however for the model in figure 7.13 model the maximwunthe mean function
is 250 1U/kg, which is less than the clinical maximum and leenanrepresentative. The
maximum in model 7.3 is 328 1U/kg, which is a more realistipressentation of the data
albeit slightly higher than 300 IU/kg, yet still plausible some patients do receive doses
greater than 300 IU/kg when it is known that the effect maylb®oso influential.
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Figure 7.13: The figure on the left shows all patient curvesnfra model including
different quadratic terms for each patient. The figure on rilgat shows a mean
representation of the curves in the left figure. The greeeslion both plots represent
the mean curve with 95 % confidence intervals. Red horizdimes$ representing Hb

control limits 10-12.5 g/dL.
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It is no coincidence that that maximum dose for the model & ROkg, nor is it that
a dose of 100 IU/kg corresponds to a Hb response of 11.8 g&lthese are the values
that have been found by trial and error in clinical practi6@][[94]. This highlights a

successful outcome of the modelling, as clinically meafuhgsults have been yielded.
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Figure 7.14: ACF of normalised residuals from model 7.31&&h9)

Figure 7.14 shows that the normalised residuals from ma8edré (mostly) uncorrelated.
There is significant autocorrelation at lags 1 and 2, but ihisnly very small. The
same model was fitted with an AR(2) correlation structursigad of AR(1), though
did not improve the fit of the model significantly more than &f(1), in contrast to the
normalised residuals of the model without correlationctice (see figure 7.15), which

are highly autocorrelated. Model 7.3 is therefore a sultisidmprovement.

Figure 7.16 shows that there is no relationship betweentdredardised residuals and
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Figure 7.15: ACF of normalised residuals model 7.3 withbetd¢orrelation structure
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Figure 7.16: Standardised residuals vs fitted values foreino®
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fitted values from model 7.3, i.e. that they are randomlytecadl around zero, which is
expected from a model that is appropriately specified. Feantore, the majority of the
residuals are within the range -2 to +2, thus approximatetitizvthe 95% confidence
interval of the mean. Figure 7.17 shows that the randomadafg#rand random slope from
model 7.3 are normally distributed, with a mean zero. Froomedithe figures, the model
assumptions have been checked and suitably adhered terdfdhe seems that model 7.3

IS an appropriate representation of the data.
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Figure 7.17: Histogram of random intercept and random slopmodel 7.3

7.3.5 Haemoglobin() vs dose( — ) for each agent

Models were then fitted for each agent using the same appasdatthe previous section,

in order to determine whether there is a difference in thditag due to the agent. The
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time lag was investigated between 1 and 3 months at inteo¥8@l4, again the best fitting
model was decided by the one which yielded the lowest AIC. Bl@sed in favour of
BIC as it is usually the case that the same conclusions withade about the selection
of model. In this case, the model yielding the lowest AIC wikld the lowest BIC, as

constant adjustment for complexity is being made.

Epoetin Beta Model

Table 7.11 shows the EB dose lags between 1 and 3 monthsdetals of 0.1) together
with the AIC from the respective model. The lowest AIC occimrshis instance at 2.3

months. The coefficients from the fitted model are shown ifet@l 2.

Table 7.11: AIC for lag models for EB

Lag (months) AIC | Lag (months) AIC Loglik

1.0 2388.861

1.1 2384.438 2.1 2088.374 -1036.187
1.2 2378.267 2.2 2085.523 -1034.762
1.3 2370.091 2.3 2084.686 -1034.343
14 2360.144 2.4 2086.259 -1035.130
1.5 2349.086 2.5 2090.225 -1037.113
1.6 2337.923 2.6 2096.137 -1040.669
1.7 2327.645 2.7 2103.292 -1043.646
1.8 2318.903 2.8 2110.954 -1047.477
1.9 2311.923 2.9 2118.525 -1051.263
2.0 2306.609 3.0 2125.609 -1054.805
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Figure 7.18: Profile log-likelihood for the optimal time l&g Epoetin Beta
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Table 7.12: Model fitted to EB data, witliB;_, 3) as the covariate and AR(1) correlation

structure. Note that there are 691 degrees of freedom imtbdszl.

Fixed effects: Value Std.Error p-value
(Intercept) 9.77 0.26 < 0.0001
EBi 53 0.020 0.0028 < 0.0001
EB? ,, -0.000030 0.00000834  3e-04
AR(1) coefficient p) 0.70
Fix Corr Int EB;_53
EB;_ o3 -0.76
EB?_,, 0.56 -0.89
Random effects SD Rand Corr
Intercept 1.26 Int
EBi 53 0.005 -0.476
Residual 1.14
Diagnostics AIC BIC logLik
2084.686  2121.826 -1034.343
Residuals Min Q1 Med Q3 Max
-3.19 -0.48 -0.001 0.50 3.01




Chapter 7. Results - Renal Anaemia 160

Darbepoetin Alpha model

Table 7.13 shows the DA dose lags between 1 and 3 months éataig of 0.1) together
with the AIC from the respective model. The lowest AIC occimrshis instance at 2.4

months. The coefficients from the fitted model are shown ifet@i4.

Table 7.13: AIC for lag models for DA

Lag (months) AIC | Lag (months) AIC Loglik

1.0 2369.203

1.1 2367.329 2.1 2123.379 -1053.690
1.2 2364.638 2.2 2120.614 -1052.307
1.3 2360.144 2.3 2118.636 -1051.318
14 2356.319 2.4 2117.976 -1050.988
1.5 2350.686 2.5 2118.991 -1051.494
1.6 2344.380 2.6 2121.612 -1052.806
1.7 2337.784 2.7 2125.337 -1054.669
1.8 2331.769 2.8 2129.510 -1056.755
1.9 2326.766 2.9 2133.596 -1058.798
2.0 2322.9 3.0 2137.287 -1060.644

Comparison

There are slight differences between the EB (table 7.12)laa®A (table 7.14) models,
although in terms of the lag time from dose administrationrésponse in Hb the
conclusions are approximately the same; such that the aptag time is 2.3 months
for EB and 2.4 months for DA. It does not seem therefore thatethis a difference in
the response time due to the agent. The 95% confidence ihtertae EB optimal time

lag, derived from the profile log-likelihood is (2.09, 2.4®)is is shown in figure 7.18.
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Figure 7.19: Profile log-likelihood for the optimal time l&y Darbepoetin Alpha
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Table 7.14: Model fitted to DA data, withA;_, 4) as the covariate and AR(1) correlation

structure. Note that there are 664 degrees of freedom imtodel

Fixed effects: Value Std.Error p-value

(Intercept) 11.17 0.18 < 0.0001
DA; 94 0.014 0.0026 < 0.0001
DAZ -0.00002 0.00000873  0.02

AR(1) coefficient p) | 0.64193

Fix Corr Int DA; 54
DA; 54 -0.78
DA? ,, 0.50 -0.79

Random effects SD Rand Corr

Intercept 0.61 Int
DA; 94 0.01 -0.64
Residual 1.19

Diagnostics AIC BIC logLik

2117.976 2154.796 -1050.988
Residuals Min Q1 Med Q3 Max
3.11 -0.51 0.01 0.55 3.92
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Figure 7.19 shows the 95% confidence interval for DA is (22L60). It seems that the
point estimate and 95% confidence interval of the optimagtiags are relatively similar
for each agent. Additionally the confidence intervals argegoarrow in both cases,
and it would not be clinically important whether a patiente®wing EB, for example,
would have their dose adjusted at every 2.1 months or 2.5heortiote that, the 95%
confidence interval for the optimum lag time was calculatgdubtracting 1.92 from the

point estimate [143].

There are a few slight differences between the agents, sfiomrthe fitting of the models
to each agent. The first notable difference is the value dfixkd intercept, which is 9.77
g/dL for EB and 11.17 g/dL for DA. This suggests that on averfny the patients under
the DA regime, their Hb is within the target range even wheayttion't receive any of
the agent, but for the EB patients they do require some agdotdtheir Hb is within
the target range (as they experience 9.77 g/dL with a zero &®)d The difference
in the fixed effects intercepts may be as a result of the ceimeifactor from EB dose
to DA dose not being precise, thus resulting in patientsivetg too much of the DA
agent. It is evident that the DA conversion predicts a todlugse because for a zero
dose the baseline Hb is relatively high (11.17 g/dL). A fertpossibility is that the initial
randomisation process was not effective and patients withHb were selected for the
EB group and those with high Hb to the DA group. This featuréhefpatients was seen
from the functional mean curves, though with the MLM the tirmaot evident, and it
is not possible to determine if the overdosing occurs thinaiing whole 13 months or a
shorter time period. The patients receiving DA may be reangiglightly larger doses
than required, especially as it is predicted that they atbiwihe target range without
receiving any of the agent. The value of the fixed slope in tBBgiup (0.020) is slightly
larger than that of the DA group (0.014), which suggeststti@patients in the EB group

may be more responsive to the agent than those in the DA group.

In the EB model the between patient variation (1.26) is €imib the within patient
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variation (1.14), which is consistent with the overall mb¢reodel 7.3). This varies
from the DA model where the between patient variation (Oi§hjalf the within patient
variation (1.19). This suggests there is less variationatiepts Hb and dose in the DA
group than the EB group, which further emphasises that thasanitially a difference in

the baseline randomisation and in the conversion of EB to DA.

The model fitted to all the data (model 7.3) is essentially larzze of the features from
two agents, such that the coefficients from model 7.3 areceppately the mid values of

the coefficients from the separate agent models.

7.4 Clinical algorithm

Model 7.3 was found to be too complex to be applied in clinmactice, since it was
difficult to rearrange the model in terms of dose and hencdigrelose due to the
large number of complex parameters (such as the correlatianture) - further details
are given in Chapter 8. The model was made more pragmatic ¢tiniaal approach.
There were advantages of fitting the complex models, sinséhtis advised the clinical
approach. The clinical model has been fitted using the patigho received EB, since
this was the standard drug used before the introductioreafi¢fiver DA and patients were
already on the EB regime. Note that, in the previous sectiemtodels could have been
fitted with dose as a fixed effect, which would have been usefigscribing the statistical
difference between the two groups. The choice was made tdféteht models for the
two agents as this was used to develop the clinical algoritBrase administered two
months previously will be modelled as the covariate. The eh¢elquation 7.4) includes
a random patient intercept and fixed slope and quadraticsterancorrelation structure is

included.

Hby; = 9.74 + Patientoffsety; + 0.021EB;_s; — 0.000032EB;_, ; 4 ¢;; (7.4)
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The patient offset (PO) represents the random intercept wdrich varies between time
points and patients, the mean value across all patientsraggboints is -0.045 g/dL. This
was substituted in figure 7.20 which shows the mean behawibtlvre patients together
with 95 % confidence interval of the curve; the standard dendor the patient offset
was calculated as 1.28 g/dL. The blue curve shows that ‘orageéto reach the target
11.8 g/dL, a dose of 120 1U/kg is required. For a zero dosenrifimis 9.74 g/dL, which
is slightly less than the lower limit of the target range, @hsuggests that on average
most patients require ‘some’ dose of the agent. Patientedo the lower confidence
limit will not necessarily reach the 11.8 g/dL target, aligb a large dosex 250 1U/kg)
would ensure the patients Hb is within the target limits.ié?ds at the upper confidence
interval achieve greater than the target value withoutiveug any dose. A low dose
(< 40 1U/kg) would ensure they are within the target range. Taiameter estimates in

model 7.4 do not vary so much from those shown in the modeépied in table 7.12.
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Figure 7.20: Hb vs predicted EB dose (as in model 7.4), the bluve represents the

mean and the pink curves represents the 95 % confidenceahterv

In order to predict dose, the following two equations (msdéb and 7.6) are solved

simultaneously, and then rearranged for PO to yield model 7.
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Table 7.15: Model for algorithm. Note that this model has @é8rees of freedom.

Fixed effects: Value Std.Error p-value
(Intercept) 9.74 0.20  <0.0001
EB;_» 0.021 0.0018 < 0.0001
Eb? , -0.000032 0.00000522 < 0.0001
Fix Corr Int EB;_»
EB; - -0.597
EB?_, 0.435 -0.908
Random effects SD
Intercept 1.31
Residual 0.97
Diagnostics AIC BIC logLik
2623.821 2647.512 -1306.911
Residuals Min Q1 Med Q3 Max

-3.77 -0.52 0.02 0.59 3.07
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Hby; = 9.74 + PO;; 4+ 0.021EB; o — O.OOOOBQEB?_QJ + e (7.5)

Hbiy1j = 9.74 4+ POiy1j + 0.021EB;_1; — 0.000032EBY_, ; + ei11, (7.6)

PO;; = (Hbi,m—i—Hbi,gJ—19.48—0.021(EBi,g,j+EB1,4,J-)+O.OOOO32(EB?_3J+EB?_4J))/2
(7.7)

The equation for predicting dose is found by using the quadeguation to solve model

7.4 and substituting Hb as the target value (11.8 g/dL):

Predicteddose;; = —0.0021 + \/0.00017732 + 0.000128P0y;/ — 0.000064  (7.8)

Substituting equation 7.7 into 7.8 yields:

Predicteddoseij = —0.0021 + (000017732 + 0000]_28((1"Ib1_17J + Hbi—?,j — 1948

—0.021(EB;_3; + EB;_4;) + 0.000032(EB;_3; + EB?_, ;))/2))"/?/ — 0.000064(7.9)

7.4.1 Comparing predicted and true dose

The first predicted dose can be used from month 4 onwardshédiirst four months the

old algorithm should be used to calculate the dose. Thes¢hmohdata are required to
validate the new algorithm. Table 7.16 shows summary stisf the predicted doses at
month 4. The mean of predicted dose (= 96.59 IU/kg) is ledshieanean of the true dose
(124 1U/kg) at month 4, which could suggest that patientgikectoo great a dose than

is actually required. The NA's represent patients for whbm not possible to predict a
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Min Q1 Med Mean Q3 Max NAs
-73.42 28.92 92.64 96.59 173.30 274.20 13

Table 7.16: Summary of predicted doses at month 4

dose value, where the value under r\heis negative in equation 7.9 , this occurs when
the offset value is less than -1.38 g/dL. These patients&jlyihave low unstable Hb and
seemingly require a large dose. The maximum value the equptedicts is 328 1U/kg,
found by taking the derivative of equation 7.4 with respealdse and setting this to zero
to find the maximum (see equation 7.10). The maximum valu@ ([3&gQ) is just slightly
more than the suggested clinical maximum dose, althoug@msaido receive greater than
300 IU/kg, which suggested that the model is a good reprasentof the data. Figure
7.21 is used to show the relationship between predicted alu$@atient offset, at month

4. The rules are given below of how to interpret a patientadfiglue:

e If Patient offset< -1.385— give maximum dose = 328 IU/kg/week (or clinical

maximum)
¢ If Patient offset> 2.06 — give dose = 0 IU/kg/week (or clinical minimum)

¢ If Patient offset = else~ give dose according to figure 7.21

d
——(9.74 + Patientoffsety; + 0.021EB;_5; — 0.000032EB;_, ; + ;)

OEB
— 0 =10.021 — 0.000064EB
B — —0.021
—0.000064

—~EB=2328  (7.10)

Figure 7.22 is used to compare predicted and true dose athrdigrihe first possible

occasion to predict dose using the new algorithm. Thereww@tstances where predicted
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Predicted dose — Month 4

Figure 7.21: Predicted dose plotted against patient difssehonth 4
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Figure 7.22: Predicted dose plotted against true dose atmoit he red squares highlight
where Hb is below or equal to 11.8 g/dL, the black circles hgtt where Hb is greater
than 11.8 g/dL. The blue line indicates where predicted dosktrue dose are equal; the
black line is an arbitrary sectioning of the data where thgnts of points above the line

are red squares and black circles below.
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dose is equal to true dose, this is evident from the pointshvie on the blue line. The
black line is used to identify the separation between twaigswof patients; patients in the
upper sector (red squares) typically have lower than taigend their predicted dose is
higher than the true dose; the patients in the lower sectacKlxircles) Hb is typically

greater than the target value and their predicted dose erlthvan the true dose.

In summary:

e IfHb < 11.8 g/dL (Below target) - Predicted dose higher than trusedo

e IfHb > 11.8 g/dL (Above target) - Predicted dose lower than truedos

Figures 7.23, 7.24 and 7.25 are examples to show how prdditise and true dose

compare for all months, for selected patients; this is shimgether with Hb.

Figure 7.23 is used to illustrate a scenario whereby predidbse does not resemble true
dose. The true dose is relatively stable, with a slight ten about 50 1U/kg, which
is lower than the mean dose, thus suggesting that Hb is higktahble. In fact, Hb is
high (around 13 g/dL) for the first three months, it then drojgedl below target for the
next four months to around 9 g/dL, which is highlighted in tregients dose increasing
though only slightly in this period. Hb then increases dyeataround 13/14 g/dL, which
is reflected in the true dose slightly decreasing. The predidose is a more accentuated
response to the patients Hb than the true dose; it is suggestiery high dose when Hb is
lower than average and then large decreasing steps wheattaetp Hb increases greatly.
It would be of interest to know how the predicted dose reginoeild have affected the
patient. For example, would their Hb be better controllatdéf dose was more responsive
to their fluctuating Hb levels rather than maintaining atreddy stable dose? It might be
that the patient experienced an inter-current complicatamd hence their Hb does not

respond in the ideal way.

Figure 7.24 is another example where predicted dose doessernble true dose. It can

be seen from the plot of true dose over time that almost idehtioses are given to the
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patient each month, around 74 1U/kg. This would suggestdtstable Hb is maintained
throughout, though possibly a little higher than targete Pnedicted dose suggests that
the dose should be increased for the patient each monthhwbigld imply that Hb is
reducing, at a steady pace. In fact Hb begins quite low, teanhes target at month 3
where it remains for three months, it then oscillates arcugédL and 10 g/dL. It seems
that the predicted dose is trying to increase Hb to the 11B @rget value, but as Hb is

not responding to the dose given, then more and more dosgused.

Figure 7.25 shows an example where the true and predictex$ @os almost identical. In
both cases there is slight oscillation of dose around 12KglUihich was shown to be the
required dose to achieve Hb = 11.8 g/dL, in figure 7.20. Thisfiected in the Hb, which
is almost on target at all time points. It has been suggebk@ddr stable Hb patients a
relatively low dose of epoetin should be administered, woslld improve the efficiency

of the treatment

In summary, the clinical algorithm is different from thelfoiodel due to:

e no correlation structure of the residuals is incorporated
e only a random intercept is modelled (no random slope)
e based on EB data only

e based on dose, rather than dose, ; or dose , 4
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Figure 7.23: Plots of Hb, true dose and predicted dose for &Rt 30
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Figure 7.24: Plots of Hb, true dose and predicted dose for &Rt 40
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Figure 7.25: Plots of Hb, true dose and predicted dose for &Ript 34
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Chapter 8

Discussion

8.1 Overview of chapter

The first part of this chapter will consider the aims of thisdis. The findings about the
biomedical systems will then be discussed in detail; in teohthe important findings
from the applications of functional data analysis and rfeuél modelling. Following this
the methodologies will then be discussed, in particular wvmethods have developed
from being applied to the two biomedical systems and alsdithiétions which arose.
Discussion will then follow into the purely clinical aspedif the work. The chapter will
conclude with a comparison of the two statistical methogdige and general discussion

of the work.

8.2 Aim of research

The motivation for this research was to develop the unetgdostatistical techniques
of functional data analysis and multilevel modelling. Tdnevas particular interest in

their novel application to diverse biomedical systems whiepeated measurements were
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collected. A further aim was to assess ‘control’ within tigstems. Control was defined as
the process of managing the patients by a particular meaals,as surgery or course of
treatment, and determining how to adjust this process s@dktients achieve a ‘good’
quality of life. Examples of biomedical systems were frone fields of nephrology
(renal anaemia management) where there was opportungyine the system to improve
patient management, and stroke (cerebral autoregulationglcarotid endarterectomy)
where the aim was to find a superior method for assessingre¢@aiioregulation. Even
though there is the similarity of assessing control withia systems, the nature of the
assessment is very different. Within the renal anaemiaesyshe aim was to improve
patient control, whereas assessment of control was theapyi@im in the cerebral

autoregulation system with the aim of improving patienesaf

A number of statistical challenges were raised by appbcetd the biomedical systems,
which included the clustering of repeated measurementsirwgatients and the high
degree of autocorrelation amongst repeated measurese Bsegs required resolution to
enable the specific clinical questions posed about thersgdtebe answered successfully.
This research demonstrates that through development sfdtistical methodology it was
possible to answer clinical questions and in addition te gai improved understanding
of the biomedical systems. The analysis undertaken alsadao extra insight about
the biomedical systems which provoked further inquiry,ethcould be addressed by the

methods.

8.3 Cerebral Autoregulation

The biomedical system of cerebral autoregulation is sgjfstatory, whereby mechanisms
within the body ensure a constant blood flow to the brain isnta@&ed over a range
of arterial blood pressure. The aim of this work was to deteemvhether this natural

mechanism is exhibited in patients undergoing carotid #adectomy; surgery which
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could alter blood flow (increase or decrease within the chrattery) and so alter the
relationship between perfusion of arterial blood presstings situation could potentially
influence the entire biomedical system. In addition to dbtwetermining whether any
degree of CA is seen in these patients during surgery, it meaestigated whether carotid

endarterectomy directly influenced CA and hence caused/artp

The specific aim of the research within this system was toroete whether it was

possible to assess autoregulation in an operating theettiegs as this had not been
reported in the literature. CA had previously been assdassetious groups (of patients)
and scenarios. The techniques used, however, were deeapmatapriate for this patient
group and the repeated measures data-set they generatisticai methodologies were
sought to address this issue. It was necessary to determinegas actually possible to

assess and model CA; with particular interest in whether @sailted in an improvement
in CA. This would allow us to establish if there is any immeadipatient benefit from

CEA.

The initial multilevel modelling allowed us to model stasiagtoregulation. The modelling
framework was extended to permit varying autocorrelatemeen patients, which meant
that dynamic autoregulation could also be addressed. @ha&s and associated analyses
arose as a consequence of considering the assumptions ®filthe such that the
autocorrelation structure is the same for all patients iruitevel model. The assessment
of static and dynamic autoregulation was progressed evémefuto answer whether the

choice of anaesthesia had an impact on CA.

8.3.1 Application of functional data analysis

The fitting of loess curves WAS a useful exploratory tool toege data, as they allowed
features of the data to be extracted with only limited asgionp. This methodology

was ideal as the relationship between CBF and ABP in thesenpgtwas unknown.
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The relationship was also unpredictable, since the patieete undergoing a surgical
procedure and patients suffered with carotid artery sisnas condition which can

severely impair CA.

Prior to fitting loess curves to the individual patient dedaloess curve was fitted to
data where ideal CA had been shown to exist (see figure 6.8uré6.3 was shown to
approximate successfully the CA curve (figure 2.4). Thigests that if CA were present

in the individual patient data then a loess curve would retresideal relationship.

We anticipate that the majority of the patients ABP measer@swill be within the
range of the plateau region (50-150 mmHg), since the intatde range is 88 to 119
and the whole range is 38 to 188 (see summary statistics la &B). Before loess
curves were fitted to the data it was predicted that a singlesiply horizontal) slope
would be revealed, as the majority of patients measurensgtsvithin the theoretical
range of autoregulation. It was not thought that it would leeessary to estimate a
piecewise relationship or where the CA curve is estimatédeathange points, although
it would have been possible as demonstrated by figure 6.3 eS$ie patients are elderly
and possibly suffering with comorbidities, it is possibhat they are already receiving
medication for blood pressure control, hence the reasamémajority of measurements

being within the ideal range.

The features of the individual curves are discussed in tepe@ive results section
(Chapter 6). In general, the range of ABP and CBF of the phas#\& is often quite

different from the phase 1 and 3 curves. This is the clamped@bf the operation, so the
patient was likely to be under stress when ABP is usually éidkee figure 6.2). In the
majority of patients CBF is reduced during phase 2. This igrewy to the principle of

the circle of Willis, which states that CBF is not impairedldw down one artery ceases.
A possible explanation of this inconsistency is that CBF sneaments are taken in the
region where the artery has been clamped. There is a minbatyever, such as patient

A (figure 6.4), for which CBF increases. Another finding istt@dF is increased for
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some patients in phase 3 in comparison to phase 1. This is &ridgg; if it is truly
the general case it would indicate that CEA is a factor ing@asing CBF, hence being a

positive outcome of the operation.

Another key finding is that the loess curves fitted to the imligl patient data do not
exhibit evidence of fully intact CA, i.e. no evidence of aaeatope in any phase; not
even phase 1, which is prior to surgery commencing. Therehttbhg@ a number of
possible explanations for this. Firstly, the patients ddoerty, frail and undergoing a
major surgical procedure. The complex mechanism of CA maytherefore be fully
intact in these patients. Secondly, it is possible thereeasurement error in the CBF
and ABP measurements, since collection throughout suiigatifficult and may not be
accurate. Thus noise in the data obscures the true undgrgjetionship. In the operating
theatre CA is not assessed as it would be in a laboratoryxéonple using tilt tables. This
is a new scenario for the assessment of CA, hence it cannapieeted that CA would be
evident, such as in other situations. Thirdly, in the swabscenario it may not be possible
to experience the full range of ABP to model the whole CA cuiteiould not be ethical
to induce blood pressure changes to acquire a larger rasgleaawould not be safe for
the patients undergoing surgery. Thus fitting the loessesuover a small range of ABP,
may be the reason that ‘typical’ behaviour is not exhibitBérhaps not experiencing a
wide range of ABP means it is not possible to see CA. Conselyuéns possible that a
number of extraneous factors are masking the ‘ideal’ r@tehip between CBF and ABP.

In particular, the measurement setting makes the reldtipnsclear.

Another possibility that the typical intact autoregulgtdrehaviour is not seen is that
measurements are collected every 15 seconds. As discussadusly, it is not clear
if 15 seconds signifies static CA or dynamic CA. Dynamic CAeassent occurs when
there are rapid changes in CBF or ABP. Since there are no giledelines of the time
frame that amounts to ‘rapid’ then it may be that 15 secondsadong a time between

measurements, or alternatively it may be an appropriate torbe assessed under the
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dynamic framework. The assessment of static autoregul&iolearer, whereby ‘static’
amounts to a time period that allows for stabilisation bemvmeasurements, although it
is unlikely that 15 seconds would result in stabilised CB& ABP, as static CA is usually

assessed with 20 minutes between measurements [144].

A disadvantage of the loess methodology is that outlyingsotan have high leverage,
influencing the fit of the loess curve by drawing the curve tasdhat point; this is seen
in figure 6.5 in phases 1 and 2, and 6.9 in phase 3. There atatiioms also with figure
2.4, where the lower and upper limits;(andL,) are not well defined due to the curvature
around the change points. Furthermore, the plateau regifigure 6.3 is not perfectly
flat, which is in disagreement with the theory that perfect SAepresented by a zero
slope. Loess is still useful in exploring the ABP—-CBF ralaship, however, as it makes

no assumptions about the underlying function.

In summary, loess has shown:
e To be able to fit the ideal CA curve, albeit with some limitasbcaveats
e The relationship between CBF and ABP varies greatly betybases and patients
e The slope of the CBF — ABP relationship varies between pegien
e The slope of the CBF — ABP relationship appears to approxpéihear
¢ In many patients, there is an improvement in CBF in phase Jeoed to phase 1
e Fully intact CA is not detected amongst these patients

e Analysis is restricted as patients are explored indivigual

8.3.2 Application of multilevel modelling

Following the loess analysis, MLM was subsequently appliBdere were a number of

reasons why MLM was deemed an appropriate technique tosm#igse data:
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e More sophisticated analysis is required as loess only gesvan exploratory (albeit

useful) approach.

e The data comprises a hierarchical structure: multiple atggbmeasurements are
nested within patients. There will be greater power andyimtsrom the modelling

if all patients are considered concurrently, which will lmsgible using MLM.

e The relationship between CBF and ABP was approximatehalinath a positive
gradient. The assumption that the CBF—ABP relationshimesak originates from
previous analysis undertaken where a correlation coafticsecalculated between

the two variables.

e There were three distinct phases which may be modelled bsethandom

intercepts, and 3 random slopes.

e To address the main clinical aim of the analysis, since withe MLM framework
it is possible to test whether the slope differs between tiheet phases, providing
a formal statistical test of the hypothesis that CA has ckdr{gr not changed, for
the null hypothesis).

A particular challenge in the construction of these mutglemodels was in deciding
whether phase of CEA should be included as a random effed an additional level of
the model (between patient and repeated measurementsgropessibly both. It was not
appropriate to include phase as a fixed effect for each gasiethis would yield too many
parameters. Including phase as a random effect and adaliterel would also yield a
model with too many parameters, as the phase effect wouldaassarily be included
twice. The decision was made to incorporate phase into thidehas a random effect,
which would yield a more parsimonious model. The processwedstigating whether

random intercepts and slopes are actually required willieudsed later in this section.

The reason for choosing to include phase as a random effep@ssed to an another

level is that phase as a third level resulted in a model thatmare difficult to interpret.
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A three level model would have yielded a phase level vari@ooeponent. A statistically
significant positive, non-zero, phase variance would thelicate variation in slope and
formally test the main hypothesis: does CEA alter CA? Theperity of the third level,

however, is greater than the inclusion of a random slopeertlo level models. Hence
the principle of parsimony dictates the two level randonpslapproach. Within the three
level models there is a substantial variance — covariantex@adetermine. In particular,

there were difficulties in the implementation of the threeelanodels due to problems
of convergence in R. A reason for this may be that a level witly three groups is too

limited, as large samples are preferred to increase thespyeof the parameter estimates.

The preferred MLM required a second order autoregressiveeledion structure to
account for autocorrelation amongst the residuals. A taé autoregressive models
were tried, including AR(1) and also higher orders, as wsllARMA models. The
model with AR(2) yielded the best fit to the data. In this cantenodel fit was judged
in terms of reducing AIC and also greatly reducing the rarfgaeresiduals. The model
fitting procedure was repeated with the correlation stmestiand resulted in the same
model being preferred with the correlation structure ad a&without. The correlation
structure was necessary as there was more correlation imdioel than what could
be accounted for by a traditional MLM, due to the autocotrefawithin the CBF and
ABP measurements. MLM with autoregressive correlationcstires provides a novel
assessment of static cerebral autoregulation, and alsaé&yding the model this leads to

assessment of dynamic autoregulation (which will be disedsn the following section).

Not only did this modelling approach yield novel researchtha clinical domain, in

statistical terms it is important to note that the correlatstructure greatly improved
model fit. In the model with AR(2) correlation structure theefil effects coefficients
were larger than in the model without. This shows that theotfsize is decreased if
the correlated residuals are not accounted for approjyiafbe standard deviations for

the random effects are also different in the two models. érnttodel with correlation



Chapter 8. Discussion 184

structure the standard deviations for the phase interoeqtsase throughout the phases,
highlighting that variation is more homogeneous at baeedind as time develops the
extent of variation amongst the patients increases. Thegpected as at the beginning
of surgery patients are more similar and their CBF will bédkgaas surgery progresses
patients respond differently and hence the variation betwhe behaviour of their CBF
is larger. In particular at the end of surgery the standakdatien is largest; as some
patients may experience a dramatic increase in CBF afteod¢bkision in the carotid

artery is removed, whilst other patients may experience emmwdest increase in CBF.

It may be perceived as a problem that the variation/rangeesifiuals increase as the
phases increase, as itis assumed that the variances (iple@et) are homogeneous. This
was accounted for as much as possible, by including phadieilyms a random effect,
and only became apparent after including the AR(2) coimiatructure. In the model
where no correlation structure was included, the phasamwees were relatively similar
with no obvious pattern. Once the modelling became moreisbpdted, it was then
revealed that the variation increased throughout the ghddes proportional increase in
residual variance, although clear, is insufficient to caunsgor concern: that is less than
a two fold increase. Additional terms could have been inetlitbr heteroskedasticity,
though would have resulted in a model with more parametershdr complexity, and
which would have been more difficult to interpret. It seeneat tihhe more sophisticated
and complex the modelling procedure is, the more errorsinvitite model are revealed.
The preferred model may be presented with small caveatmyuajh a major issue with
the model was resolved by accounting for the dependency gshtme residuals with the

autoregressive correlation structure.

The differences across phases were not constant withientstiwhich was evident
from the loess curves, whereby the difference between phhsad 2 varies between
patients. This is also evident from the MLM framework by wling a random effect

for phase intercept. The inclusion of random effects in thedeh was justified by
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investigating a variety of models and showing model supiyidin terms of model fit)
using likelihood ratio tests and by inspection of modeldaais; the inclusion of random

effects consistently provided a substantially better ftheodata.

Furthermore, the relationship between CBF and ABP is nddiptable due to the large
variability in the slope, which translates as much variatioCA between patients. There
is also large variability in the range of ABP between pasemtd also between phases
within patients. There are some patients who experienceadl Emnge of ABP values; in
these cases the slope estimate will be less accurate thaBRrcovering a larger range.
The standard error of the slope will be much larger where dlsmrange of values occurs.
The gradient of the slope=(0.14 cs.s'' mmHg!) within patients was fixed across the
three phases. The slope is, however, allowed to vary acedssps. This was one of the
main findings of the MLM: a non-statistically significant tiom phase slope suggests
that there is no change in CA immediately following surgetyslope of 0.14 suggests
that, on the whole, CA is impaired in these patients, as itfferént from zero. The
value is statistically significantly different from zerdough it is unknown whether 0.14

is clinically significant. Views on this will be discusseddain this chapter.

8.3.3 Individual models

An assumption of the multilevel modelling is that the caatgn parameters are the
same for all patients. In the MLM framework it is not yet pdsito readily allow

this to vary between patients, i.e. by incorporating theredation structure into the
random specification of the model. Therefore in model 6.4 sgeime that the correlation

parameters 0.65 and 0.31 are a reasonable estimate fotiafifsa

Using thegls function in R, it is possible to fit individual patient modekghich
incorporates complex correlation structures. This alltvescorrelation parameter to vary

between patients. It is also not possible to fit individuaigra models usingme, as
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this requires a grouping structure to be specified. glse function is within thenlme

package, as is tHene command.

Models were initially fit withgls which included an AR(2) correlation structure. The
AR(2) correlation structure was used as this yielded thetrapgropriate model in the
MLM framework, so may have also been the ‘best fitting’ wifls . Not all models
could be fit with AR(2), however, as some were numericallytaiple. Models were
subsequently fit with AR(1) correlation structure, whictsticcessfully for all patients. It
seems that the AR(2) correlation structure was more apjategn the MLM framework
as those models were fit with a large amount of data, hence @ coonplex correlation
structure could be fit. In the individual models there is léat to fit the models, hence
a simpler structure was more appropriate and the AR(1) letiwa coefficient is simple
to interpret. This also suggests that an AR(1) correlattoucture is more robust and is

applicable in more circumstances than higher order autesstye models.

Within these models the slope will represent static autdegmn which is analogous
to the MLM. In thegls modelling scenario the AR(1) correlation parameter may be
used as a proxy, and/or quantification, for dynamic autdeggun as this will indicate
the strength of the relationship between measurements o sme period. This is
similar to dynamic autoregulation which incorporates aetielement into the ABP-CBF
relationship. Since measurements were collected at 1daotervals the correlation
parameter will reveal the strength of the relationship leetvadjacent measurements,
thus representing CA in a short time frame. This varies froendtatic parameter which
investigates the relationship between ABP and CBF acrassvtiole time frame. The
larger the dynamic parameter the stronger the relationsitigin the time frame. If
the time frame were different from 15 seconds, then it may d&sible to assume that
the parameter would increase if the time frame was shortanddiecreased if the time
frame was longer. In contrast, 15 seconds may be too longdegtivneasurements to

be considered dynamic CA and hence the correlation parameigd not provide an
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accurate representation of dynamic CA.

Models were fit representing three different scenarios.stlyjrwhere the static and
dynamic parameters varied between patients, but not batwbases. These models
included a random intercept for each phase. The primaryastehowever, was in the
slope and correlation structure, though the random inp¢scare required to reliably
estimate the slope and correlation coefficients. The seswedario allowed static

autoregulation to vary between phases (i.e. random phapes)| though the dynamic
parameter remained constant for all phases. Note that er@yhnwdel was required for
these estimated parameters, whereas the third situatioires three different models to
be fit for each patient. In this third instance the static aydagnic parameters varied
between phases. These models were assessed by examinjplgtthef dynamic vs.

static, as it would not be reliable to assess the models bais@dC as the sample size

varies between phases, hence the AIC’s are not directly acabje.

According to the plots of static CA against dynamic CA, itreeel that the first scenario
best represented the data, which ascertains that CEA doedteostatic autoregulation
during surgery. It also shows that static autoregulatiategan degree between patients.
This is consistent with the MLM analysis, such that the pdtiglope does not vary
between phases, again emphasizing there is not sufficigshtree to suggest there is
a difference in static autoregulation between phase 1 andep8 of CEA. The general
relationship between dynamic and static, evident from ttegter plot (figure 6.20), is
that the dynamic parameter increases as the static paramzeases. A static parameter
larger than zero indicates that CA is not intact. A largeraipic parameter indicates
that there is stronger correlation between adjacent measnts. This means that high
AR(1) correlation resulting in a large dynamic parametedidates less short timescale
regulation of CBF: that is poorer dynamic autoregulatiorhug there is evidence to

suggest that dynamic and static CA are impaired ‘together’.

A limitation of this model is that for a small number of patigtheir static parameters are
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estimated as negative. A negative slope for the ABP—CBHRoakship would suggest that
as ABP increases then CBF decreases, which seems clinicgilsiusible. A possibility
for this result is that the measurements are clustered ¢bagther and in fact there is
no obvious slope within the data. It may be the case that ativegslope exists as a
result of a patients CBF and ABP measurements being clastegether. This argument
is further strengthened by the fact that the negative slapeselatively small. Thus in
the cases where patient’'s experience a negative slope,lsnodee refitted, restricting
the value of the slope to zero. This model was chosen abowe¢hais because the static
parameter varying between phases is not consistent witfirtdengs from the MLM,
which takes into account information from all patients. dia the models where the
dynamic parameter varies between phases there does nar appe a clear relationship
between the static and dynamic parameters. This is indedtom the points being
randomly scattered and there being no association betweetwb parameters, unlike

the first scenario where there is a clearer increasing trend.

8.3.4 Effect of anaesthesia

Following the MLM andgls analysis and the subsequent investigation of the patients’
static and dynamic parameters, the question was asked evhéth static and dynamic
parameters vary between patients undergoing CEA undel ¢oageneral anaesthesia.
Even though some of the patient data were collected frometh®lved in the GALA
trial, it was not initially a primary goal of the analysis tovestigate this hypothesis.

A relatively simple approach was taken to investigate thpotlyesis. Boxplots were
constructed of the static parameter from the MLM (model &y anaesthesia type and
also of the static and dynamic parameters (from model 6 b napative static parameters
constrained to zero) by anaesthesia type. Formal t-testsalso carried out to investigate

if there was a difference in the mean values between locagjandral anaesthesia.

In general (from model 6.4) the slope was found to be highethose patients who
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were under general anaesthetic during CEA, suggestingtidat autoregulation is better
preserved under local anaesthesia. The same conclusiomecarade about the static
parameter from the individuglls models. There is no statistical significant difference
between local and general anaesthesia in the dynamic pemarni@is suggests that it is
not necessary to model different correlation structureg&eh patient and that the MLM

assumption that the correlation structure is the same ffpasients is reasonable.

It is a very important finding, in the clinical domain, thattt CA varies due to
anaesthesia type. Patients undergoing CEA under generastinesia were more likely to
experience impaired CA than those under local anaesthHsisis particularly important
in terms of patient care as it may be the case that LA is satanal not be accurate,
however, to infer this as the patients were not randomisezh&@sthesia type. It may
be more reasonable to suggest that patients undergoing @GBé&r general anaesthesia
are those whose CA is more impaired prior to the surgicalgmare. In order to draw
unbiased conclusions about this hypothesis, analysidéhewcarried out on data where

patients have truly been randomised to anaesthesia type.

In terms of ABP, this is higher in patients under local anaesia than general anaesthesia,
which is consistent across all three phases. This is cemsistith other research
which has highlighted that carotid endarterectomy may lsoa@asated with marked
changes in blood pressure in the perioperative period [Oood pressure generally
falls after induction of general anaesthesia. There is atsocrease in ABP in phase
2 (compared with phase 1). Some patients are also thoughote signs of hypotension
or hypertension in phase 3. In these patients, ABP appears ocomtrolled in those
undergoing general anaesthesia, particularly in phase & rdnge of ABP is much
greater in the local anaesthesia patients particularlyhasp 3, suggesting that ABP is
less controlled. In terms of CBF there is no difference duaraesthesia type, in any of

the three phases.
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8.3.5 Summary - Cerebral Autoregulation

The analysis of the data from the CA biomedical system hawislioat:

e CEA is successful in immediately increasing the patients @Bm the level prior

to the surgical procedure.

e CBF is reduced in phase 2, compared to phase 1. This emphdsesaeed to

monitor CBF during surgery.

e Variation in CBF increases throughout CEA, suggesting thatients may be

initially more homogeneous but tend to respond differetdlgurgery.

e There is no notable change in ABP due to CEA (albeit a slighteiase in phase
2). This may be due to careful monitoring on behalf of theiclan or alternatively
CEA does not affect ABP.

e A key finding of the MLM analysis is that there is no significacttange in
slope between phases of CEA, suggesting that CEA does notdmiely effect
(improve) CA.

e The slope does vary between patients, indicating thatmatexperience different

degrees of CA.

e MLM with an AR(2) correlation structure has provided a nowgly of assessing
static CA. The models fitted usingls also allowed the frequent recording of
measurement to be modelled explicitly for each patients @llowing modelling

of dynamic CA.

e Patients undergoing CEA under general anaesthesia werd foexperience larger
slopes than patients under local anaesthesia. This coudah it CA is better

preserved in local anaesthesia.
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¢ In terms of implementation for clinical practice (of the abgoint): LA may be

safer for patients undergoing CEA.

e MLM was well suited for the data and application in the inframative setting,

where other methods would be difficult to apply.

8.4 Renal anaemia

The renal anaemia system is driven by the administratiorpokn agents to replace
a naturally occurring hormone in the body (erythropoietimiich has declined due to
failure of the kidneys. This differs from the CA system sublttthe renal anaemia
patients are controlled externally and managed by thectdinj opposed to a natural
biological mechanism. This shows that control may be vieimetifferent contexts; i.e.

a patient may be controlled by external drugs and clinicatagament or alternatively a

natural intrinsic mechanism of the body.

The aim within this system is to determine whether Hb is adé&gly controlled in

patients with renal anaemia, who receive epoetin agentsenthe dose is determined
by a computerised decision support system. In order to densis aim it is necessary to
determine whether Hb cycling occurs in these patientseqiiacge amplitude) Hb cycling

indicates that a patients Hb is poorly controlled.

FDA revealed that Hb cycling did occur in some of the patieitse subsequent step was
to identify possible sources of cycling and suggest wayst fiar be reduced, which was
undertaken in the MLM framework. There was also clinicakmest in comparing the
two agents in regards to control. It was important to adapa@roach to this analysis
which considered patients as individuals, as the same merhdor control may not be

appropriate for all patients.
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8.4.1 Application of functional data analysis

There are a number of features (listed below) of the FDA natlagy which make it an

appropriate tool for analysing the data within the renaleama system, such as:

To visually represent the data.

To investigate the patients Hb and dose trajectory over.time

To assess patients on an individual level by fitting indialdB-spline curves and

phase plots.

Phase plots may be a useful mechanism for modelling control.

There were a number of factors to overcome before the fumeould be fitted to the
data. In particular it was vitally important to choose thestappropriate basis function.
Prior to the analysis it was unknown that some patients wentdbit evidence of Hb
cycling, hence a basis function that assumes the data acsljggisuch as Fourier series)
would have been inappropriate. Furthermore, it is moreibledhat the Hb cycling was
not imposed by the modelling, but rather arose from the dafaelets would not have
been suitable as the data are not discontinuous or rapidggshg. Polynomial bases
were not used either, as these are relatively simple and a ownplex function was
required. Furthermore, the derivatives (of the polynorfualkction) are not satisfactory
estimates of the true derivative, due to rapid localisatidich is typical of high order

polynomials.

Figures 7.3 to 7.7 show a representative sample of the pairethis study and highlight
examples of different characteristics exhibited by thegods. A patient whose Hb level is
oscillating is an indication that Hb is not under controlee\f the oscillations are around
the target value (i.e figure 7.3). The reason that a patiéfii’'somes under control after

a long time period might be due to an adjustment to the treatmegiime. Since the
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patients Hb becomes stable then the regime is successfthifopatient. The inward
spiral of the phase plot illustrates that the patients’ Hobaming under control. After
initially spiralling in, the phase circle is relatively g but centred around the target
value. This implies there is still scope for improvementdoefthe patient is considered
to be optimally under control. A patient who is under con{figure 7.6 ) will have a
Hb trajectory that shows small oscillations around thedakgp level. Their phase circle
will be relatively small and tight around the target valueneTdose for a stable patient
will also be usually stable, as in this example. This patreptesents someone who is
under control for the period of investigation. Figure 7.gresents a patient who begins
on target, and then their Hb is out of control, but is brougider control to the target
at the last month of the trial. This patients dose variestty,garesumably to bring Hb
back under control. The phase plot in this instance showghadpiral at first and then a
large spiral outwards, before coming back to target and ucaletrol. The B-spline fits
the Hb measurements very well, implying that the spiralbngof the phase plot is not an
artefact of a poor fitting curve. Hence, this is a real repregen that the patient is not
under control. This patient was then investigated furtimet @und to be suffering with
adverse health, consequently affecting Hb, which in tunndeeasing the risk of mortality
due to oscillating Hb. Figure 7.5 is used to represent apiatrbose Hb experiences large
cycles around the target value. This patient is at risk oftadity due to oscillating Hb

even though it is around the target.

Figure 7.7 is used as an example to show both a limitation dwdrdage of fitting B-
spline curves to data. The limitation is that the B-splineveudoes not pass through all
of the individual measurements, but passes through theleneddhe data. One possible
view for this is that the curve is actually modelling the urigi@g behaviour of Hb over
time and that it is this curve that is more reflective of thetrelationship rather than the
measurement itself. This is because the individual measemes are taken at ‘snap shots’

in time and these ‘snap shots’ may not be true due to biolbgrameasurement error.
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It is important to note that phase plots are not only usefuinethematical terms for
representing control but also in clinical terms as they mayded as a measure of patient
stability and control. They may also be a predictive tool ébedmine if the patient is at
either end of the spectrum; either at increased risk of deregtable and therefore suitable

for transplant.

Mean functions

The purpose of the original data collection [99] was to coregtients’ response to the
two epoetin agents (EB and DA). It was not an original aim & thesis to compare
the agents, however, but rather to demonstrate that the aameould be considered in
the FDA framework. This was achieved by comparing the meactions of the two
groups, by plotting them with their 68% confidence intenaisthe same axes. The 68
% confidence intervals indicate the region of the graph wttezdrajectory is within 1.0
standard error of the respective group mean trajectorys€mmently, where the limits fail
to overlap, the two mean trajectories are separated bysitdedandard errors, 1 standard
error from each group. Such a plot therefore indicates wierenean trajectories differed
significantly from one another at the 5% level from. This i$ adormal test to compare
the two mean functions, the 68 % confidence limits are merglgual guide. In general,

further theory needs to be developed for hypothesis testitigFDA.

Figure 7.8 shows that there is a slight difference betweerctives initially, with mean
Hb for the DA group being slightly higher than mean Hb in the Bup. Patients
were initially randomised to the agent, so the slight ddfere between the groups is due
to random measurement variation. The mean functions thesrg# to the extent that
the confidence intervals no longer overlap, indicating aissieally significant difference
between the two groups. From month nine onwards the meanidascconverge, until
they reach similar levels at month twelve. The mean Hb in tAegbup is higher than

the ideal target value of 11.8 g/dL, although remains withm optimum clinical limits
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of (10.0 - 12.5 g/dL), though consistently above 12 g/dL lumibnth 10. The mean in
the EB group starts approximately at the optimum targetyghas subsequently is below

11.8 g/dL, yet remains within the target range.

In terms of managing renal anaemia, the CDSS seems to pesiaghily better for the

EB group than the DA group. A possible explanation for thihet the conversion ratio
200:1 (EB:DA) used to convert the standard EB dose to DAggialtoo high dose for the
DA group. Similarly, shifting from thrice weekly to once wdg doses of epoetin, is not
sufficient or as simple as merely trebling the dose per iilgactAnother possibly is that
using the same algorithm for the DA agent as the EB agent mayrteg and slightly

different dosing strategies may be required for each agdpwte that there is no statistical
difference between the two groups initially, as the patiemere randomised to two
groups, or finally once the CDSS protocol had time to bringgpés under control. The
mean functions do not show that the agents are equivalénérnahere they are different.
The mean function was a useful comparative mechanism;iggelthe same conclusion
as the findings by Tolman et al [99]. In conclusion, EB and D&éheomparable control

of HB levels for patients with renal anaemia.

Functional principal components analysis was applied &sd¢hdata to determine the
sources of variation around the mean functions. The ide#hierapplication was that
it could have revealed similarities between patients (@irthlb trajectories) and identify
groups of patients. This analysis did not prove useful, vaneas it did not yield any

additional insight into the patients or epoetin managemagime.

Summary - FDA

In summary FDA has shown:

e B-splines were effective in fitting curves to Hb measurermenter time. This

allowed for Hb to be represented as the continuous traje¢hat it is, opposed
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to single monthly measurements.

e Phase plots were valuable in identifying the stability ofe tipatients Hb
measurements. They also provided insight of whether thergas under control or
not. This provides information on the success of the CDSSanaging Hb levels,

through the administration of epoetin on a weekly basis.

e The mean functions show that DA and EB are comparable in niagdgdb in

patients with renal anaemia.

e This is an effective and useful technique in modelling thda&g, which has
a temporal pattern. This suggests that FDA is a particulaffgctive tool in

modelling data which are autocorrelated.

e The graphical representations are clear and allow for awiesfti portrayal of

control.

8.4.2 Application of multilevel modelling

Functional data analysis revealed that Hb oscillationsiocca number of these patients.
The current algorithm considers that epoetin dose adrem@idtat month is predicted
from Hb at month, which is believed to be the result of epoetin at manthl. Since Hb
cycling occurs in some of these patients, this suggests$ithat monthi may be based on
the wrong past epoetin dose and in fact a longer time lag igned|to elapse for epoetin
to have its optimum effect on Hb. The FDA approach essewntiallestigated Hb and
dose as individual entities in time. It was possible to corahe Hb and dose functions
to determine how they were related. The MLM approach alldvescomplex relationship
between Hb and dose to be investigated by exploring theblagaogether rather than

how they vary in time.
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The initial approach investigated Hb(i) and dose(i-1),las is the relationship that the
CDSS is based on. If this was a well fitting model, then it wdwdste suggested that the
CDSS is using an appropriate algorithm. A possibility thesuld have been that the Hb

cycling is the result of other factors and not the wrong dgsitnategy.

An important feature of the epoetin dosing algorithm is thahould be tailored to the
individual, as each patient’s Hb (and their past Hb measants) will vary, and also in
their response to epoetin. This can be incorporated intthd with random effects. A
random intercept will reflect that each patient’s Hb varfes & zero dose) and a random
slope accounts for varying Hb-dose relationships betwedies. It was predicted that
a random slope and intercept would be required. Models weesl fivith this in mind
but also considering the approach of choosing the ‘best’elwtiich was outlined in the
MLM chapter.

Another possibility was that a nonlinear effect would beuieed: firstly, due to the
asymmetry of the dose ladder; secondly, we anticipatedahdbse increased Hb would
also increase, although it is unlikely that this is purehehr, as the increase would not
continue indefinitely. Using prior clinical knowledge itkeown that a dose higher than
300 IU/kg/week is the maximum, and above this would not havadditional significant
effect on Hb. It seems therefore that for larger doses thecefin Hb will level off,
though increase slightly. The initial approach though wasnbdel this effect with a
quadratic term. Furthermore, it was suspected that therddnwme correlation between
measurements within the same patient (resulting in caael@siduals within the model)
due to longevity of red blood cells and other biological metbms. To overcome this

autocorrelation, a correlation structure can be incorjearaspecifically autoregressive.

A selection of models were fitted, shown in table 7.4, whiatiuded a variety of random
effects, quadratic terms and correlation structures. Bsefitting model (decided by the
outlined scheme) with dose(i-1) as the covariate waee(hb(i) ~ dose(i-1),

random = dose(i-1) \ patient) . The model, however, did not include the
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expected quadratic term. The residuals of this model werefalind to be autocorrelated,
thus was extended to include a correlation structure. Tloidehalso had problems as it
yielded a non-positive-definite covariance matrix, whiokams that the model is unstable

and possibly incorrectly specified.

The combination of these features suggest that models wWi(f) Hegressed on dose(i-
1) are not an accurate representation of the data. Work takeer by Gupta and
Beserab [145] found that the most appropriate relationglaig between current Hb and
dose administered one month previously. This finding wagdas large intravenous
administered epoetin, with the one month being defined dségponse in Hb. The most
relevant lag should rather be between subcutaneous adratiue and peak Hb response
whilst under steady dosing, which may be different from adstering patients large
impulse doses. Other work [86] [69] suggests that the optimessponse time is 2 to 6
weeks. The reason the CDSS was based on 1 month is that thisikieway through
this time interval, though it could be anytime within thigarval (or longer). It has been
suggested that the CDSS is not updated immediately, in tefntise next dose to be
administered calculated from the blood sample. It may beou® weeks later before
the dose is adjusted (personal communication - Dr. E.J)Wihis further suggests the

reason the Hb(i) — dose(i-1) relationship is erroneous.

Two approaches were taken to investigate Hb(i) and itsiogighip to other dose lags. The
first approach was to include adjacent doses (i.e dosefird pase(i-2)). The reasoning
for this was that the effect on Hb may be from a combinationa¥eas$. This approach,
however, was deemed inappropriate due to the high cowalagtween adjacent doses.
If included together in the model this would introduce awdiarity, which is associated
with biased coefficients and inflated standard errors. Therskapproach was to include
a linear combination of adjacent doses. This would remolieearity as both variables
are not included individually but are replaced by a lateniade representing dose. Initial

models were fitted with the mean of dose(i-2) and dose(i-Bg decision was made not to
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include dose(i-1) as this resulted in unstable models. Ndodere also fitted that included
the mean and difference between dose(i-2) and dose(i-&) difference did not improve
model fit, nor were the coefficients statistically significaFhe best fitting model included
Hb(i) as the response and dose(i-2.4) as the covariate,gedi@n 7.3. This suggests
that the optimum response in current Hb is from dose adneirgdt10 weeks previously.
The model also required an additional correlation strecas the models without yielded
correlated normalised residuals. An autoregressive letioa structure of order 1 best

improved the model fit (see table 7.9).

Model 7.3 also includes a random intercept and slope, a rargleadratic term did not
improve model fit and the term was not statistically signiicd&igure 7.13 of the random
guadratic model shows this is implausible as a larger nurab#re patients maximum
values are for low doses (approximately 100 1U/kg), thusgesting after they receive
their maximum Hb will decrease. This is extremely unlikehdahence the model is not
an accurate representation of the data. In model 7.3 thdatdwleviation of the random
intercept is approximately 1 unit, thus we would expect 95f¢gatients’ Hb to be within
the range 8.6 to 12.4 g/dL for a zero dose. The random slopggestgthat the relationship
between Hb and the dose lag at 2.4 monthslQ weeks) varies significantly between
patients. This means that some patients will have a steégee and their Hb will be
more responsive to the dose, hence smaller doses may beeakqGnversely there are
those patients with a shallower slope, whereby these piatéea less responsive, so may
require a larger dose for a small change in Hb. It is of cousssible that the ‘best’
lag varies between patients, although within the MLM fraragait was not possible to
account for this. It is reasonable to use the same lag foraéibpts, as this appears to be
the best procedure at present. It would be difficult to immatclinically if each patient
required their dose adjusting at different time periodgarticular there would be large

possibility for error if the lag times became disorganised.

The correlation parameter is 0.66 suggesting that thereaisonably strong correlation
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between adjacent residuals. We also saw previously thag tlhas strong correlation
coefficient between adjacent doses (figure 7.10). Thersdssatfong correlation (= 0.71)
between Hb measurements. Due to the nature of the systengd4indt fluctuate greatly

and the clinician aims to maintain stable doses as a fluaydbse is more expensive.

8.4.3 Clinical algorithm

The aim of fitting the MLM was so that improvements to the CD$6ld be suggested to
reduce Hb cycling and hence improve patient care. The madeksulted in a different
lag time being found from that used currently, thus it wasesseary to find ways to present
the model to a clinical audience to highlight why the new tlageshould be implemented.
A more pragmatic approach was sought to express this commpbebel in an appropriate

way.

The first step was to rearrange the model to make dose themetcariable, however a
number of difficulties arose. First, as current Hb is basethendose administered 2.4
months previously, it would not make sense to predict thisedor the patient (as they
will have already received this). It was essential therefiar rearrange the formula so
current dose was made the outcome variable which is basedstirHp (and past doses
also). This process was made more difficult due to the inafusf the random effects and

also the AR(2) correlation structure.

The decision was then made to refit the model without the tadoa structure. Even
though the residuals of this model would be correlated thdehooefficients are very
similar in the model without the correlation structure carga with the model with
AR(1) correlation structure. The clinical model also ontgludes a random intercept
and not a random slope as this parameter was particularly anthmost of the variation
between patients can be explained by the random intercéggrrdnan in the relationship

between Hb and dose. Furthermore, the clinical model is baged on the EB data as
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this is the drug the patients were already being adminigterer to the RCT. The dose
lag in the clinical algorithm was 2 months (rather than 2.sthe). The reason for this is

that less data were required to formulate the simultaneguiatens.

The predicted dose is based on the patients’ Hb from thequewivo months and the EB
dose from the months 3 and 4 months previously. This algoritan only be used from
month 4 onwards, which is a limitation to this new algorithithis means that another
method for choosing the patient’s dose should be used indhens’ first 4 months of

treatment. This is a vital period for the patient as they aiadpintroduced to epoetin
therapy, and since they are not currently being adminidtepmetin it may be that their
Hb levels are relatively low. Therefore the algorithm cathg employed should be used
during this period as this will change the patients’ epoksuels monthly, which may be

necessary during the initial period to monitor the patientse regularly. This may be
seen, therefore, as a benefit to the new algorithm as afteclttse monitoring period the
patient will be accustomed to the epoetin therapy whichatenlble the longer time lag
to be more effective for the patient. The patient is likelysfeend longer than 4 months
receiving epoetin therapy, possibly a year or more, so themgawill experience the

benefit of a number of dose changes based on the new algorithm.

The algorithm only using 4 months of the patients data hystmuld be an advantage
or disadvantage. In terms of disadvantages, if a long sefidata is collected on each
patient it seems ineffective to use such a small selectiothisfdata and that a better
prediction could be based on more data. On the other handiitl d® seen as more
effective to base the prediction on less data, in particcdanputationally when fitting the

algorithm. Also if a patient was very unstable at the begigrof their treatment but then
came under control, then their past history may adversédgiatheir current prediction

rather than if it was based on just the past 4 months of data.

A positive feature of the algorithm is that there is a limitihe maximum dose predicted

(= 328 IU/kg/week). The patients where the maximum was ptediwere investigated
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and typically experienced low and unstable Hb. This valuenily slightly higher than
the stated clinical maximum, thus could be adjusted to 30@dweek. Even though
the maximum in the current algorithm is 300 IU/kg/week, @ats have been given doses
much larger than this. Therefore, with the new algorithne, taximum dose would be
constrained. In other instances, negative doses are pedditowever these are where
a patient’s Hb is too high and ideally need some epoetin rémgofrom their bodies.
As this is clearly not possible, patients should receivera dese, though as discussed
earlier, patients do not tend to receive a zero dose, but&ally accepted minimum
since a complete cessation of epoetin may cause a suddéwabweaof the new cells and

hence would be harmful for the patient.

The instances described above are when the patients edfeireg the minimum or
maximum dose, for all other patients a specific dose is predidn Chapter 7 examples
are shown which compare the true dose given to the patienth@noredicted dose from
the algorithm. These will not give a true reflection as thedmted value is based on
the values from the old algorithm and does not account fortwiwauld have happened
if the patients received the predicted dose from the newrighgo the month previously.
An example is shown, however, where the patients true dad@@@dicted dose are very
similar, though the reason for this is probably because #iieqts’ Hb is relatively stable
around the 11.8 g/dL target. The only way to determine howtwe algorithm performs
is to implement this in clinical practice, this will be disgsed further in Chapter 9 (Future

work).

Albeit with limitations, this model and the whole processvifM has demonstrated that
the methodology can be used in clinical practice, yieldsmmggdul results and contributes

knowledge to the medical domain.



Chapter 8. Discussion 203

8.4.4 Summary - Renal anaemia
The analysis of the data from the renal anaemia biomedisasyhas shown that:

e The B-spline curves indicated that Hb cycling occurs in s@atents, indicating

poorly controlled Hb.

e Phase plots were useful to identify the extent by which padievere controlled,

identifiable from the spiralling nature of the plots.

e The two agents EB and DA are comparable in managing renah@agevident

from the mean functions and their confidence limits.

e FDA is an effective technique, in particular its graphicature, though to an extent
the methodology is only exploratory. For example, it waspugsible to quantify

the phase plot in respect of assessing control.

e MLM revealed how dose administered 10 weeks previouslydgi¢he optimum

response in Hb (opposed to the 4 weeks previously antiajpate

e The complexity of the MLM advised a more pragmatic approadtich developed
an update to the current clinical algorithm. The clinicglalthm was gained from
a fuller model with the whole cohort of patients, in terms nblwledge of behaviour
(lag) and understanding. In practice simplicity was faealabove complexity (in

the model fit).

8.5 Methodological discussion

To be able to assess control within these systems, a numsiatistical challenges needed
to be addressed and overcome, before the analysis couldleetalken. There were some

similarities between the systems which meant that thereovadap in how the issues
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were tackled. This means that some aspects may be applisdd¢ssment of control in
general. Through using both FDA and MLM to analyse both bidiced systems this
meant that information learnt from the application to onstegn fed into the knowledge
and development for the second system. The systems alsd fiesse own challenges
which were addressed individually. In this instance theséures are only relevant to the

particular area.

In this section the methodological results will be discdsseln particular: how
the methodologies were developed through their applicat®m the two biomedical
systems; how well the methodologies performed, in term&e@if success and also their
limitations. It will be considered what the application®bght to the methodologies.
New approaches have been taken by using FDA and MLM to answestigns
from the respective biomedical systems since standard/técadltechniques were not
appropriate (such as; ordinary least squares modellingnar $eries analysis) and more
sophisticated methodology was required. The presentatiothe methods required
careful consideration for clinical implementation and genetation to non-specialist

audiences.

8.5.1 Functional Data Analysis

The data within the biomedical systems under consideratm not suitable to apply
traditional time—series analysis. Time—series analysigmlly consists of just one series,
where the aim is to investigate a variable over a long perindhe biomedical systems
of interest, multiple time series would need to be considlerairthermore, the length of
time considered within the systems is relatively short, parad with a period of years
where time series is more often used. Other methods werehsadgch would allow

investigation of repeated measurements over time.

A number of features of FDA made it suitable for analysingda&a from both systems.
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The question arose of whether 13 observations per indiVidiean the renal anaemia
system) would be valid for robust analysis; the answer t® gfuiestion was that 13 data
points per individual with 151 subjects were suitable tolggpnctional data analysis
technigues. Once the curve is fitted to the data, the indaligoints are essentially
discarded. As long as the curve is a reasonable representiftithe data, then it is

irrelevant whether the curve was fit from 13 data points oi0ld&ta points.

The fit of the curve was judged by screening the curves to ihéter whether they
accurately fitted the data. As there were only a small numbeaittents in the biomedical
systems this procedure was feasible, which may not havethe@ase with a larger group
of patients. With a larger number of patients a more realegproach would be to select

a sample of curves to determine the suitability of the fit.

The fitting of individual curves to the data raised a numbassiies, in particular the fit
of the curves at the extremes was difficult to implement. Pinedlem occurs with most
data—sets before the optimum parameters are found, alhbwgs intensified in the renal
anaemia application due to the short series. This issueegadved by placing knots at
the first and last data points and increasing the smoothireppeter. This highlights a
potential limitation of using FDA with relatively short ses, as the smoothing parameter

would be greater than hitherto considered.

These issues with the fitting of the curves were successfollgrcome, which
demonstrates development of the methodology. The apiolicaf FDA to the renal
anaemia data shows an illustration of the method that usesivety few values
compared with 100’s or even 1000’s of measurements. A pitisgifor the successful
implementation of the method to the data is that the data weneplete and did not
contain any missing values. Furthermore, the data were@badb(i.e. the same length for
each patient and with equally spaced time points) which niaglétting of the B-splines

more efficient.

The phase plots were a useful way of modelling control of Heimal anaemia patients,
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albeit with limitations. First, it was not clear how to quidythe phase plots, hence there
was no numerical summary of control. It was therefore nesgds examine each phase
plot individually to determine whether the patient’'s Hb wasll or poorly controlled,
with a large number of patients this is not so practical. iy not be as problematic as
first considered; as in reality patients would experiencatmione communication with a
clinician, for example, at the patients dialysis sessiarthis scenario the clinician would
be able to examine the patient’s individual phase plot andraene at that moment if
the patient Hb is well controlled. This suggests that thesph@ots may have a practical
use. A clinical trial could be implemented to investigateat¥ter using the phase plots, to
determine if the patients Hb is well or poorly controlled,walead to an improvement
in a patients condition by enabling the clinician to cleadigntify control and monitor the

patient more closely.

The FDA methodology has also been developed through itscapipin to the renal
anaemia system. The phase plots used by Ramsay and Silverenarof acceleration
against velocity (i.e. the second derivative of the curvairgf the first derivative).
The phase plots used to model control of Hb in the patientk vahal anaemia were
plots of velocity against Hb measurement (i.e. the firstv@ddinre of the curve against
displacement). The plots of acceleration against veloggye initially plotted for the
renal anaemia data which yielded identical conclusionsiath® patients as the velocity
vs. Hb plot. There are a number of benefits to using the vglast Hb plot, firstly
the added complexity of the accelerations vs. velocity wagumstified, particularly as
the phase plots were for use in the clinical domain. SecomiadyB-spline curves could
be of a lower order as one less derivative needed to be pedaliginally, the added
complexity of the smoothing parameter was essential, asytelded smooth functions
and derivatives were smooth. This gave clarity to the ph&sts pnd allowed control to

be clearly expressed.
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Limitations of Functional Data Analysis

Phase-plots were not applied to the data from the CA biomaédigstem (as they were
in the renal anaemia system), because the definition of C&rdigpon the relationship
between CBF and ABP, not CBF alone. The phase plots therefordd not have been a
useful mechanism for assessing and modelling CA. Priordatialysis the relationship
between CBF and ABP in the patients was unclear, thus exphyreDA techniques were
sought, which would permit the exploration of CBF againsttABhis was possible with
the loess curves. In the renal anaemia biomedical systenretationship between Hb
and epoetin dose was not clear (before the MLM analysis). pltese plots therefore,
were a more appropriate tool for this biomedical system as# necessary to determine
the control of Hb alone. The relationship between Hb and ek@seexplored using more

complex methodology in the MLM framework.

A further difficultly was encountered in the FDA analysis hretfitting of B-splines to
the CA data. The onerous difficultly arose due to the diffefengths of data for each
patient and phase, as B-splines require a full matrix of mnessents. Furthermore,
it was not possible to simply fit the B-splines to each patemtsingle entities. One
option to overcome this was to interpolate each patientssorements, which would
have resulted in each phase and patient having the samé leihgata. This option was
rejected, however, as this would have removed the impomémtmation that the length
of the whole procedure and the length of each phase varies fatient to patient. It
seems therefore that B-splines are better suited to balatheta sets where there are no
missing values. B-splines should be used where the prinmhgyest is in investigating
the trajectory of a variable over time, whereas loess cuavesan appropriate tool for
exploring (graphically) the relationship between a resgoand explanatory variable,
where the explanatory variable may be time or some othertfiuaRurthermore, loess

may be used for varying lengths of data.

Mean function were constructed by taking a smooth versiorthef smoothed (Hb)
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trajectories. This could be regarded as potentially an-ew@yothed function, if there is
a large amount of smoothing in the functions and then inolgidirther smoothing in the
mean curve. In the renal anaemia application a smoothirgpeter was chosen so that
the mean function was not over-smoothed and thus providextaumrate representation
of the data. The smoothed trajectory, however, can be redas a better representation
than the individual points. This is because measuremeptsafen at ‘snap-shots’ in
time, whereas in reality the entities (such as Hb, CBF and )ABE continuous. The
curves therefore represent the variable across the winoésftame, rather than individual
measurements. Hence, the FDA approach increases accurdcgoafidence in the

conclusions.

8.5.2 Multilevel Modelling

The important issues arising from the MLM analysis are dised under the respective

headings below.

Correlation Structures

Modelling with autoregressive correlation structures s existing technique in the
statistical domain, though remains relatively unexphbite the extent that it is currently
not possible to implement correlation structures for thedwals in a major multilevel
modelling statistical package. Thus the aim of this work waslemonstrate that the
techniqgue is essential and to advocate that it should be widety used, whilst indicating

the pitfalls that occur if it is not used in certain instances

Due to the nature of the measurements (that there is stramglaiton autocorrelation
present) the residuals of the MLM are highly correlated. sTddso applies in the renal
anaemia system where measurements are taken a month apadsifle reason for this

occurring is that the variation in dose and Hb from month taxthas not so high, which
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means that there is not frequent changes between measuseriée fitting of models
with autoregressive correlation structures is a major @spiethis work and where data

are potentially correlated this methodology should be ictamed.

Traditional MLM does account for the fact that measuremeitisin patients are more
similar than measurements between patients. The differen¢che measurements in
the two biomedical systems considered here is that measuatsmwithin individuals are
actually autocorrelated, where traditional MLM would as&uthey were just ‘similar’.
Checking for autocorrelation in the residuals is often maed in the model validation
procedure. It is usually the assumption of normality ofaaals and random effects that

are more often examined.

The autoregressive correlation structure greatly impitoneodel fit; in particular in
reducing the range of model residuals. Most importantlyydager, the autoregressive
correlation structure yields uncorrelated normalisediteds. This is assessed from the
autocorrelation functions of the normalised residualse Wajority of autocorrelations
are not significant at the 5% level. There are some, howehet, dre. Note that
multiple testing is undertaken here which increases theadsof a false positive. Simple
corrections such as Bonferroni are not appropriate sireaukocorrelation estimates have
a complex correlation structure themselves. This sitnaasually considered to be one
where judgment based on experience is the best guide. Giedliew significant values
scattered at different lags, and the relatively small esiour beyond the 5% limits, the

ACF is taken to be satisfactory: thus evidence of lack of eanti@lation.

Complexity of models

The models fitted are rather complex due to the inclusion efdbrrelation structure;
the question should be asked whether the use of complex sizdektified, particularly

when they are applied in the clinical domain. In the renaleama models, the models
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were too complex when rearranging the expressions so theeabadd be predicted. The
models were subsequently tailored (and simplified) so theyidcbe used to suggest
updates to the CDSS. Without the complex modelling, and ¢kalts gained from this
approach, it would not have been possible to formulate thplsir strategy. Therefore one
can conclude that the complexity of the models is justifiadugh perhaps less directly
applicable, rather it is useful to advise a more pragmatirsm and yield simpler, yet

more robust models.

In the CA system the complex models were necessary for impbdinical findings to
be revealed from the MLM models. The correlation structuas warticularly important,
such that it was deemed a proxy for dynamic autoregulatiam.this application in
particular, the modelling had complexity that would haveerbaiseful to investigate
further, though it was not possible to vary the correlatiotnure for each patient. It
was assumed therefore that the same correlation strucag@pplicable for all patients.
A different correlation structure for each patient can beestigated where individual
patient models were fitted (using tigéss command within thenlme library). In these
models, however, an AR(2) correlation structure was too pterfor many patients,
which resulted in a non-positive-definite variance-casace matrix, though AR(1) could
be fitted to all patients. This demonstrates that additioeakssary complexity provides
more knowledge about the patients that can be achievedwiteimodel when all patient
data is used. An advantage of the MLM is that the differengikesa of data in the CA
system did not result in problems when fitting the modelshsasthose encountered in

the FDA methodology which requires balanced data.

Another finding is that the sample size of the data seems &xta¥fhich correlation

structure is most appropriate. In the renal anaemia agglicavhere the series of data for
each patient is relatively short, an AR(1) correlation ctte yielded the best model. In
the CA application, where the series of data for each pasdahger, an AR(2) structure

yielded a better fit in the MLM setting. Although, when indiuial models were fitted to
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these data, and hence fitted to less data overall, the AR¢Y)dad a better fit.

In the renal anaemia application, the Hb—dose relationstas nonlinear, as was
suspected before the analysis was undertaken; hence veasita& consideration when
fitting the models. The best fitting model for these data idetla quadratic term and
this was incorporated into tHeme model by simply specifying that dose was linear and
guadratic. This could have been achieved in the nonlin@andwork within thenlme
library in R, though in the interest of interpreting the mbiskethe clinical domain this
approach was not developed. Furthermore, the quadraticviéhin the model yields a

suitable representation of the Hb — dose relationship.

Choosing the model

A number of factors were involved when choosing the mostabigt model, such that
there is no specific rule that can be used to judge the fit of tbdefs. First, clinical
knowledge was used to formulate the models. Without usingy jgfinical knowledge,
the conclusions drawn from the model may be inaccurate ongakyimplausible. It
may be the case, however, that the results of the modelliag dew findings about the
specific clinical area. If prior clinical knowledge is useddrmulate model development

there will generally be more confidence in the results.

In terms of judging the most appropriate model when detanyginvhich parameters
should be fixed, random or included at all, the model whickdgi¢he lowest AIC will be
investigated further. Initially the models were investeghto determine if the parameters
were statistically significant, and likelihood ratio testere carried out to determine

whether the additional parameters resulted in an impronémenodel fit.

The next step of the modelling was to investigate a varieplais of the model residuals;
in particular the autocorrelation function to check whetihe normalised residuals were

autocorrelated. The plot of standardised residuals vedfithlues was useful for checking
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a number of other assumptions. From this plot it was posstbtketermine whether the
residuals were homogeneous and normally distributed, i@ thinge of the residuals was

revealed.

Itis the combination of statistical and clinical viewpahat allows a medical statistician
to make reliable judgments about the models. It is impotttaaita balance is maintained

between the complexity of the model and ease of interpoetati

Limitations of Multilevel Modelling

The inclusion of the autoregressive correlation strustgreatly improved model fit,; e.g.
in reducing AIC and the range of the standardised residuaia {-10, 10) to (-4, 4).
The range of the standardised residuals in the preferreeghtat 4) is relatively large,
however, in comparison to the ideal range (-2, 2). There neag bhumber of reasons
for this. First, one may speculate that the model is indeedaa fit, although it should
be noted that this is ‘real’ (noisy) and thus one cannot exfFezmodel to fit perfectly
to every individual. Models were fitted using a limited numbé covariates, as other
covariates were not available, i.e. not collected. Theusion of other covariates (such
as: age of patient, additional comorbidities) may have oupd the model fit and hence
reduced the range of the residuals. It may be argued that tb&ing variable causes
bias in the model, however, the decision of which variabtesdllect was made by the
clinician. The variables collected therefore, would be ri@st important and clinically
relevant. A possibility for the large range of residualshiea CA model is that the model
fitted poorly at the extremes of the series in the three ph&¥es way to resolve this may
have been to truncate the data in the phases, however thid realuce the number of data
points in the model. This would have required discussioh #ie clinician to determine
appropriate truncation. Alternatively, observing thegscal procedure at first hand would
enable a more informed outlook on the analysis. For exantpl@uld be possible to see

how the patients react under different type of anaesthesiakso determine how distinct
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the three phases really are within CEA.

An alternative way of improving model fit may have been achteby accounting for
heteroskedasticity, such that we could have accountechéorandom variables having
different variances. Heteroskedasticity will result i tariance estimates of the model
being biased. To account for heteroskedasticity, varidaoetions are used to model
the variance structure of the within group errors using dat@s. The decision was
made not to account for heteroskedasticity in the modelsim thesis as this would
have yielded models with additional complex parametenss tmaking the model too
difficult for interpretation in the clinical domain. Therea no worrying pattern evident
when examining the residuals of the model. Furthermorepthm complexities of the
data were resolved through random and fixed effects modediid the addition of the

autoregressive correlation structure.

On numerous occasions, some models could not be fit sinceotlagi@nce matrix was
non-positive definite. When this issue occurred the commtuwas made that this model
was not suitable and alternatives were sought. The mod#ds fire not perfect. In
particular, the range of residuals is still larger than gbiand that the phase variation
increases throughout the phases for the CA models. The sadgE greatly improved
with the correlation structures, other adjustments aréeilyl to improve the model to

this extent.

8.5.3 Software

The statistical software package R was used for all anatysisented within this thesis.
The idea was that the statistical methods would be easienptement if they could be
applied using one software package. The methods would be geareralisable if they
could be implemented in more than one package, but there awenaer of advantages

however for using R as the chosen package, for practical @atidtgal reasons. First, it
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Is better to be more proficient with one package than morerSaoja¢ with a number of

packages.

Initially the MLM analysis was carried out in MLwiN, partitarly the CA analysis,
which is a specialist package for MLM. When it became appatieat a correlation
structure was needed for the autocorrelated residualsy sthftware was sought, as it
is not straightforward to implement correlation structun@ MLwiN. In the first edition
of MLwiN, macros were available for only an AR(1) correlatistructure. In the
recent versions of MLWIiN these macros are not yet availabléibed to work This
further highlights that MLM with correlation structuresas unexploited methodology.
Therefore thenlme library was used for all mim analysis, in particular thae

command.

It would be possible to undertake the analysis in other pgekathough a number of
packages would be required, whilst R is freely availablestmaking it more attractive

than using costly packages such as M-plus (for MLM) or Matfab FDA).

There were no particular problems with the implementatiche MLM within the nlme

library, other than when fitting a three level model. This \passible, though with a 3-
level model there is a substantial variance-covarianceixnat determine. Thus, the 3-
level model proved difficult to fit due to numerical fitting szans and also in the efficiency

of the program.

There were a number of issues with thBA library, which was used for the functional
data analysis. At the start of this PhD thBAlibrary was relatively new and contained
a small number of bugs; the library was updated at the endeofittst year of this PhD.
In the updated version of the library a number of commandagéad, which resulted in
the existing code no longer working. Consequently the coale mvised so the B-spline
curves and phase plots could be fitted to the renal anaenaarddie newFDAlibrary.
The loess curves were implemented usingltess function, for which there was no

problems.
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8.6 Clinical Discussion

In this section the clinical implications will be discussede. how the statistical
methodologies have yielded results that are meaningfulcéingtally interpretable. In
this section there will be discussion of the results of ajmgyrDA and MLM to each of
the clinical applications and what these methodologiesdina Subsequently, there will

be discussion of the more general clinical issues whichearos

8.6.1 Cerebral Autoregulation

The data collected for the CA biomedical system was for noomg of patients in an
intra operative setting. There were 62 patients undergGiBg who were approached
for participation in this study, however there were 26 pasevho were not eligible for
participation, resulting in measurements collected on&tepts. There is the possibility
of bias here due to the number of non-responders for the .sflitly exclusion criteria
included absence of a temporal window for TCD monitoring #rel presence of atrial
fibrillation and other arrhythmias. It may be the case thatdhta included in the study
are of relatively stable and routine patients, and thoske edtmplications are not included,

which means that the estimation of CA was conducted in thityegeligible) patients.

MLM was deemed an appropriate analysis technique as othénoohe of assessing
CA would not be suitable because of the difficultly to applyidg the intra operative
setting. Techniques used to examine CA such as the thigheletise test, the transient
hyperaemic response test, drugs to manipulate ABP, andférafunction analysis are
not ideal for use during carotid surgery. The transient hgpic response test requires
manual compression of the carotid artery. It would have tpé&dormed on the side
opposite to surgery and would not be safe in patients witktdyiél carotid artery disease,

as it could not be guaranteed that CBF would be maintainée ifiow down both carotid
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arteries is obstructed. Measuring static autoregulatpmibing drugs would require
the administration of an agent that causes a rise in bloogspre to many patients
who already had a markedly elevated blood pressure. Trafusfetion analysis makes
the assumption that the underlying form of mean arteriabguee and cerebral blood
flow (over time) is a sinusoidal wave, suggesting that ABP @Bdr vary periodically
over time. This assumption is suitable for CBF and ABP mesbat a steady state,
for example on an intensive care unit, but not for CBF and ABIRnd) CEA. These
techniques require data to be collected for a period of remuthilst the patient is
left undisturbed. This would cause significant delays dusargery which would not
be acceptable whist the carotid artery is cross clampedthé&umore, the sinusoidal
decomposition used in transfer function analysis wouldsufficiently represent the step
changes in ABP and CBF between the phases of CEA. In thisrdgd&2A is investigated
in a original way by applying multilevel modelling, with treelditional complexity of a
correlation structure, to cerebral blood flow and blood gues data recorded during and

after surgery.

CA was quantified as the gradient of the slope of the CBF—AB&iomship. In the

preferred MLM the mean (fixed) slope was estimated as 0.1thdary, a slope different
to zero would indicate impaired CA. If this is to be acceptibén the conclusion could
be made that on the whole this patient group does not exmitziti CA (and hence is
impaired). In the literature, there is no guidance whiclesta cut-off between intact and
impaired CA, it is therefore not possible to clarify for cart whether 0.14 is impaired
or intact. Furthermore, the ideal CA (zero slope) is based @aboratory setting, there
is again no guidance of ideal CA within the operative settifigis raises questions of
validity in this new setting. It therefore seems that the Mlalth correlation structure is

a useful tool for assessing CA in the operative setting.

One must recognise that 0.14 is a slight slope and in the apiof the collaborating

clinician this value would imply intact autoregulation. & wide variation in the slope
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was deemed clinically important as this would suggest thaheé patients where ABP
was manipulated through CEA their CBF would change. Hermraht most susceptible
patients this would result in a slope greater than 0.14,Idpugg into impaired CA. An

additional finding is that the slopes were higher in the pasieindergoing CEA under
general anaesthesia, suggesting that CA is better preser¥ecal anaesthesia. This is
informative for clinical practice. If patients initiallydve poor CA the more appropriate

choice of anaesthesia for surgery would be local anaesthesi

Furthermore, it was anticipated that CA would improve faling CEA. Previous research
has shown that CA improves in the weeks and months followingesy ??. It has

not been reported, however, if there is an immediate impnaré/change in CA. The
application of MLM on these data has revealed that there isignuificant evidence that
there is a difference in CA from the beginning of CEA to the eh@EA. A possibility for

this is that there has not been sufficient time of the compleghranism for CA to adjust,
especially as the patients have just undergone a surgime¢gure. Ideally, to investigate
this hypothesis further, follow—up data should have bediect®d on the patients in the

hours or days following CEA, which may have allowed CA to ratto the patients.

MLM has not previously been used within this field or to asseAas This finding is for
the group of patients as a whole, thus representing the bmiram the majority of cases.
This conclusion cannot be made for all patients, as it mayhbethere are a minority
who do experience a change in CA. Within clinical practicayéver, it is often the case
that treatments/operations are administered to benefinggerity of patients and that
there is often anomalous results which differ from the noifhe novel application of
this research is evident from the novelty of the statisticathodology used and also the

important clinical findings yielded from the analysis.

In the individual models, the correlation parameter waduse a proxy for dynamic
autoregulation. The question should be asked whether thdsdetween measurements

amounts to immediate changes in ABP and CBF required forsassnt of dynamic



Chapter 8. Discussion 218

CA. Again, there was no clarification in the literature of thgact time between
measurements suitable for dynamic CA. Since there was & leogelation between
adjacent measurements this suggests that 15 seconds isabfgpl Within 15 seconds
there is no evidence to suggest that measurements haverteanbtstabilize, which would
mean static autoregulation. It has been possible to ags#isI3A with these data, though
the measurements were taken every 15 seconds, since thengté between CBF and
ABP was explored, which does not account for the time whembéasurement was taken

(other than acknowledging phase of CEA).

8.6.2 Renal Anaemia

The data provided for analysis within this thesis were oadly collected as part of a
randomised controlled trial to compare the two epoetin tg&®B and DA. The data
were of excellent quality, such that for all 151 patientg¢heere complete Hb and dose
measurements for 12 months (plus an initial value). Thes$erda were specifically
chosen as they yielded complete data, though may introdiase Hhe data essentially
represent the patients in the middle of the spectrum, i.e.ddta will not contain those
who have died or those who have transplant (within the teailqal), it is the patients who
are regularly attending dialysis. Since there are so matignia who provide complete
measurements it is likely to be the case that these patiemt®epresentative of patients
with end stage renal disease. In fact the clinician was amtlgrésted in those patients

with complete data, as this was the focus of the CDSS.

Another factor to consider is whether the dose conversmm f£B to DA was accurate in
the ratio of 200:1. It was highlighted, in the mean curvesitbe FDA, that initially the
patients were similar but in the intermediate period of ti@ there was a statistically
significant difference in the mean Hb levels of the two agewiugs. Following the
intermediate separation, the patients mean Hb came tagsttiee last month of the trial.

The differences in Hb for the two agents were marginal for @ople albeit a detectable
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difference. It seems that the DA group were slightly ovextieel, the reason for which
being the wrong conversion from EB to DA. In contrast, the EBup were seemingly
undertreated, which may be a result of the conversion of evexkly EB from thrice

weekly EB. Consequently, the doses were corrected overliyrthe CDSS, seen from

the coalescing of the doses in the final month.

Even though there was a marginal difference in the two agenips (for a short period)
this is comparing the patient curves to the optimum Hb of HId&.. It should be noted
that the patients mean curves and confidence limits arelylegthin the range 11.0 -
12.5 g/dL, which is stated as an acceptable range of Hb f@l @raemia patients. This
therefore raises the question as to whether 11.8 g/dL idiatiegdarget value? This is the
subject of much debate and there is still no clear guidelimable 3.2 showed that there
are a number of different organizations that publish déiferoptimum Hb guidance. It
seems therefore that a target range (approximately 10 -g1@L5 is the most appropriate

means of attaining an appropriate Hb for the patients, rdki@a a specific value.

Following the FDA analysis, it became apparent that thel$ewkcontrol in the patient
group varied. There were the patients who were under cofarehe whole 12 months,
who are likely to be the patients that would be consideredifitmey transplant soon after
the end of the trial. The second group is the patients who ar@mtarget initially but
then come under control, which is a possibly a result of theepts adjusting to the new
dosing regimen before settling. Another group is those d@inatunder control but then
go out of control, which may be due to an adverse event. Theédnoap is those that
experience fluctuating (cycling) Hb throughout the whoial fperiod. It is these patients
who are of most concern, as there are a number of possibifareHb cycling; such as
the patient being administered an inappropriate epoese.ddubsequent to the discovery
that a number of patients experienced Hb cycling, analyasunder taken to investigate

how current Hb relates to different epoetin lags.

The CDSS used within this trial based current Hb on the ep@&tministered 4 weeks
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previously, which suggests that there is 4 week lag from adhtnation to response in
Hb. The 4 week suggestion is the midpoint of the 2 to 6 weekanad from Epogen.
Following MLM analysis, the relationship between currert &hd dose administered 1
month previously was found to be erroneous and a more apptepelationship was
deemed to be 10 weeks. This is much longer than the 4 week &methhough still
plausible. It has been suggested that even though the fsatese should be adjusted
monthly, it may actually take a further two weeks before iatdually updated, which
means that the wrong dose is being administered to the pdiefare it is changed.
Additionally a patient may require a longer period that 4 ket receive a stable dose,
which may allow the epoetin to work more efficiently and alkhe patients to see a better

response in Hb.

It would be necessary to implement a trial to investigate tbeveek lag vs. 4 week
lag, although another possibility would be to incorporateaalditional parameter into
the model which allows the time lag to vary between patiefte second option would
require complex programming to enable a model to be fittederMLM framework that
varies the lag. Hence, there are two suggestions for fustioek: first to maintain all
patients on the same regime though investigate the 10 wgelslal week lag; or second,

devise a scheme where patients dose adjustment is basedrativasual time lag.

8.7 Comparison of methods

FDA is a relatively new technique that is not yet fully estsied and has a more limited
network of users, whereas MLM is more established with a walege of users and
applications. In particular there are a number of softwaekpges that are primarily for
MLM, that have been developed over the years. Since FDA &ively new there is no

specialised software, though is implementable in a few pgek.

When fitting a MLM there are a number of ways to check the vilidf the model (i.e.
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AIC, LRT, plots of residuals), though with FDA there are nonfi@l checks to assess
model fit. This is because the choice is relatively arbitfarythe smoothing parameter,
order of function and choice and position of knots, howegeasrae becomes more familiar

with the method, it will aid in the decision making of the ‘@rary’ choices.

In regards to the formality of the methods, the fitting of MLNElIs an equation to
represent the relationship between the outcome and exptsnaariables. In the FDA

framework there is no equation to represent the function.

The functions fitted using FDA enable the (MLM) assumptiopatients being similar to
be checked. Simple examination of the curves can determive¢hr there is an overall
similarity or difference amongst the patients. FDA curvesild highlight whether there
is a linear relationship between the response and explgnedoiables. This would be

useful in graphically representing random intercepts amdes.

The similarities and differences between the two statiftmethods are summarised

below.

MLM

Models can be expressed by a formal equation

e Formal tests and checks available to test model validiy, residual plots, LRT’s
and ACF’s

e Autoregressive correlation functions to account for datesl residuals (due to

measurements being autocorrelated)
e Powerful technique which allows data from all individuadscontribute to model
fit

e Complex modelling technique (particularly with autoreggige correlation

structures)
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FDA

e Functions are not specified as formal equations

e No formal test of model validity, i.e. arbitrary choice of sathing parameters and

knots

e The smooth functional representation of the data benefus fthe temporally

correlated measurements
e Models are fit to individuals, with limited population ansily

e Mostly an exploratory data analysis tool

8.8 General Discussion

This thesis was driven by clinical application. In relatimnboth biomedical systems
the clinicians had a number of clinical questions that ndedewering, using statistical
methodology. In both situations the clinicians were awéia the methodology used
previously in the respective fields was not applicable fa bomedical system and
that consultation with a statistician would allow for neweaues of analysis to be
explored. Initial consultations indicated that there wateptial to advance the statistical
modelling employed and through better modelling be ablensaer fully and more
appropriately clinical questions. For example, in the lbeakapplication the clinician
believed that simply calculating a correlation coefficibetween ABP and CBF is too
naive to model such a complex entity as CA. Consultation &igtatistician would be
useful to suggest more sophisticated methodology to befosadalysis from a so—called
‘mathematical tool box’. This thesis is a novel applicatafrmultilevel modelling and

functional data analysis to the biomedical systems; it iag tuse in other application
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areas and particular features of the methodology, whicle skewn their potential and

appositeness.

New clinical questions arose from the analysis of the ihdizestions. In the cerebral
system the multilevel modelling revealed that it was pdssib model parameters that
represent static and dynamic autoregulation. In the rere@mia system, the initial aim of
the analysis was to find an appropriate methodology to gcafiftiexpress control. This
guestion was successfully addressed in the FDA domainghrphase plots being used to
model control. When the relationship between epoetin and/é$modelled using MLM
it was determined that the CDSS was basing current Hb on tbagvprevious dose.
The MLM methodology required further development to defesrthe time lag from
administration of epoetin to response in Hb. These additignestions were clinically

relevant and also allowed for further development of theéstteal methodology.

In the biostatistics field there is a delicate interface leetvthe medical domain and the
statistical domain. From a pure theoretical statisticahpof view, answering questions
such as those posed in this thesis would be difficult for a rermalveasons. First, the data
used in theoretical work is not as ‘real’ as the data from aigrof patients undergoing
an operation for example. This would mean, therefore, thamodels fitted to the data
would not be ‘perfect’. In the clinical domain, it is not pkible for one to expect a perfect

model and that a somewhat approximate solution is necsaadeptable.

A further task for the biostatistician is to express compdatistics to clinicians and

other non-statisticians. It is necessary for the biogsieias to learn about the context
of the data they are analysing; this may be from the cliniti@mselves or other more
traditional sources (books, Internet, etc). For someana the statistical domain learning
the technical medical details and understanding the @inics in itself challenging. It

is important therefore that both the statistician and cian adapt their language and
communication techniques to portray their work and ideasdadie-specialist audiences.

It was possible to use ‘pictures’ to present the two methagies used in this thesis,
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which was appreciated by clinical (and statistical) audésn It was possible to
educate the audience about the methodologies and the appiis through the graphical
representation of the statistics. There would be no purposesing and developing
complex statistical methods if they are not accessible. as@aable question that may
then be asked is: could we have managed with simpler metbggdlin short the answer
is no. The statistician should explore greater complekitythen be able to simplify and

make the methodology and results accessible to a varietydi¢aces.

In order to publish material in clinical journals, multidiplinary collaboration is required
between the clinician and statistician. Outputs that fooosclinical issues are best
received, though ideally this requires the statisticiagrasp the clinical details as well
as having statistical expertise. It is also important that¢linical domain is open and

accommodating to novel approaches.
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Chapter 9

Conclusions and Future work

9.1 Conclusion

The application of FDA and MLM were novel approaches for assg control within the
biomedical systems. The assessment of cerebral autotieguiia patients with carotid
artery stenosis and the management of renal anaemia wittie@gents are existing
issues that have been addressed previously, though witlgaid standard’ method of
assessment. It was necessary therefore to find a suitabl@dee that may become this
standard. Furthermore, there were a number of featureseaddta collection and data

itself, which made the previously used methods for the resmesystems unsuitable.

Within the CA system the aim was to assess CA during CEA, whathnot previously
been attempted. Assessment of CA was made under conditiahslitl not reflect a
controlled laboratory setting, nor was assessment beimgmwih fit healthy individuals.
In fact patients suffered with a condition (carotid artegr®sis), which adversely affects
CA, and patients were most likely ‘under stress’ due to tlvasive surgical procedure.
The result was that the ‘ideal’ autoregulatory behavious wat seen in these patients.

CA (static) was quantified as the slope of the relationshijween CBF and ABP.
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Furthermore, it was found that there was no change in CA inatelgt following CEA

(compared with CA before CEA). This is an additional noveifythe work, such that
assessment of CA is being made immediately following syrgenereas previously this
has only been done in the weeks and months after CEA. It wasalsaled that the CEA
was successful in increasing CBF immediately followinggguy, which in the longer

term (i.e. hours and days) may improve the patients’ CA.

The loess curves were an ideal exploratory tool for the CAa dat they revealed the
underlying relationship between CBF and ABP (since the datie relatively noisy due
to collection during surgery and patients not experiendtiggl CA). This exploratory
analysis revealed features of the data and CBF—ABP rekltipn which highlighted
that MLM (with an autoregressive correlation structuregswan appropriate analysis
technique for these data. The analysis of the data in the Mialhéwork highlighted that
there were advantages to analysing the group of patienth, that this yielded a more
powerful model and also the conclusions drawn could be ath@upatients in general.
Thus, clinical practice could be advised about how the safgirocedure affected (and
benefited) the majority of patients. MLM with autocorredatistructure directed further
analysis, which meant that dynamic CA could also be modgdieavell as static CA. This
analysis was used to determine whether there was a signifliterence in dynamic and
static CA due to anaesthesia type. It was found that statiev@#\better preserved under
local anaesthesia compared with general anaesthesiagghtiibare was no statistically
significant difference in dynamic CA for the anaesthesia&s$yprhis suggests that it may

be safer for patients to undergo CEA under local anaesthesia

In the renal anaemia biomedical system, the interest wassiasaing control of Hb with
epoetin agents, in patients with renal anaemia. Thesapatiere managed with a CDSS
which adjusted their epoetin dose each month, by basingdbegient Hb on the epoetin
administered one month previously. FDA of these data redetilat some patients were

adequately managed by this regime, although there were patients who experienced
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Hb cycling. In the patients where Hb cycling was shown to octhis was represented
in the phase—plots by large spirals. The patients who espegi Hb cycling may be
experiencing an adverse event or not receiving the corres¢ @f epoetin. In these
patients the CDSS may not have predicted the correct dos¢hehashould receive. A

reason for this may be that current Hb is being based on thegtimum past dose.

MLM was used to investigate this theory further. It was disged that the relationship
between Hb(i) and dose(i-1) yielded erroneous statistizadels, which highlighted that
this relationship was in fact not ideal. The MLM with autoregsive correlation structure
did in fact reveal that the most appropriate relationship @tween current Hb and dose
administered 10 weeks previously. This is a vital finding tfee nephrology field as it
means that the current CDSS may not be letting the epoetint dgwe enough time to
have its optimum effect on Hb and that the current CDSS mayireqpdating.

The statistical methodologies have also been developedidition to the novel findings
that were revealed about the biomedical systems. MLM withw#ocorrelation structure
was an existing, though unexploited and relatively unuselrique. The research in this
thesis has demonstrated that this is a particularly useéhrtique for repeated measures
data, where measurements are temporally correlated. @igedtr autocorrelated
residuals is an often overlooked assessment of model fiygtindgf autocorrelation is
present this could induce bias in the model (underestimsti@adard errors) and result
in incorrect inferences being drawn. The approach of MLMhwain autoregressive
correlation structure is a relatively complex modellingpgedure, though has been

successfully presented and accepted by clinical audiences

FDA is a relatively new statistical analysis technique,hwielatively few applications.
This thesis presents two additional successful applioatiof FDA. The FDA
methodology has also been developed, in particular thratsgpplication to the renal
anaemia biomedical system. This application has demdedtrithat FDA may be

successfully applied to relatively short time series (L& measurements per individual).
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It was key in this application that the measurements (withdgividuals) were temporally
correlated and that the data could be reasonably represégtes smooth trajectory
over time. The application of phase—plots have also beeeloje®d, such that the
construction of the phase plots has been simplified fromspdbtthe second derivative
against the first derivative, to plots of first derivative mgathe actual measurement. The
simplified approach resulted in identical conclusions geirade about the patients. This
is beneficial for interpretation in clinical practice andalhe initial function fitted has

less constraints (i.e. being able to penalize one lessatem.

The use of B-splines and loess curves within this thesis basdstrated that there is a
variety of ways to fit curves to data. Using both techniquestighlighted the advantages
and limitations of each method. The application of eachriggre revealed some of these
advantages and limitations, though other features werealest in the comparison of

techniques.

A key feature of the research in this thesis has being to camwate somewhat complex
statistics to clinical and other non—specialist audiendasrthermore, it was important
not to compromise the statistical integrity of the work inirdp so. This work has
demonstrated that it is possible to use and apply existitggensting statistical technique
to achieve novel findings in the clinical domain, and alsoellgy and validate the

methodology.

9.2 Future Work

There are a number of suggestions for future work that hasgerafrom this thesis,
which will be discussed in this section. In addition to f@applications within the same
biomedical areas, the methodologies may be used to assessléo other biomedical
areas; such as managing glucose level with insulin thenapaiients with diabetes. It

would be possible to collect repeated measures data inréasas patients with diabetes
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are required to measure their blood sugar daily (or moreuratiy), which would yield
a wealth of measurements. A device known as a GlucoWatchaitable, which does
not measure blood glucose directly, but measures sligmat reactions on the surface
of the skin. It potentially has the ability to help insulineus to fine tune their overnight
minimum insulin rates. The GlucoWatch gives readings e2@rgninutes, thus yielding a
wealth of measurements each day. It would be possible tegssatrol in these patients

to monitor how the administration of insulin manages thegoas’ glucose level.

In both applications, if further studies were to taken plaitewould be beneficial

for additional variables to be collected or provided to thegtistician, so confounding
factors could be accounted for. Explanatory variables sischge, sex, comorbidities,
deprivation, and risk factors for acquiring the disease meyshown to be important
factors. Specific important confounding factors for theateamaemia application may
be iron status, serum ferritin level and time on dialysisr the cerebral autoregulation
application confounding factors may include whether theepé&has bilateral or unilateral

stenosis, length of CEA and degree of atherosclerosis.

9.2.1 Cerebral Autoregulation

In order to determine appropriately whether anaesthegie tyas an effect on CA then
patients should be randomised to anaesthetic type to enabi@sed comparison of
general and local anaesthesia. It may not be the case thas thossible for all patients
as in certain situations the patient or clinician may favayarticular anaesthetic choice
on medical grounds. Although in the cases where it is passirandomise, the data
from these patients should be available for statisticalysisa This would be the ideal
scenario, however, it is unlikely that another RCT would tstified, particularly as the
GALA trial [51], which was carried out on such a large scalasvinconclusive. A more
reasonable possibility would be to analyse the data where ils no medical preference

for anaesthetic type, just simply the choice of the pati@iie patient could be matched
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and analysis undertaken with the reasonable assumptiochbae of anaesthesia was

made randomly.

The collection and recording of CBF and ABP measurementitiirout surgery was a
difficult task to undertake, thus further data collectionwdxrequire much effort on behalf
of the surgical team. Following the difficult data collectjot would be time consuming

to extract (and clean) the data from the surgical equipniéns suggests that there would

be a high cost in a future investigation of this kind.

Since there was doubt whether measurements collected &Besgconds amounted to
‘rapid’ changes in CBF and ABP, in any further investigatiomeasurements could be
collected at intervals shorter than every 15 seconds (wkigbssible with TCD and ABP

monitoring). This would further establish the method fosessing dynamic CA.

In this thesis CA was being assessed immediately followigg\Owvhich was a novel
setting for assessing CA. In the same patients, it would Hmaen useful to collect
longitudinal measurements on CBF and ABP, every 15 secads & minute period,
in a period following surgery. For example, after patierdsénleft recovery, or even 24
hours after. This would be a particularly interesting aréanweestigation, as it would

demonstrate whether there is a time lag in CA changing dudiy.C

There was difficultly when assessing CA in the MLM framewarkletermining whether
a slope not equal to zero meant that patients were not autatewy. This work has
revealed the need for guidance or a grading system of autiatezn, as it was established
that it is not as straightforward as declaring that a zerpesiodicates perfect CA and
a non-zero (positive) slope indicates impaired CA. This Mowequire collaboration

between the clinician and statistician.

Making the correlation structure a random parameter in thd/Mramework was not
implementable, therefore in regards to prospective futuoek it may be possible to

write the code for this to be possible in R. This would be pattrly relevant for the
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cerebral autoregulation application as it would make itsgadse to model dynamic and
static autoregulation in the MLM framework. This would algeld development for the

MLM methodology.

9.2.2 Renal Anaemia

As suggested previously, the CDSS may be basing current ltiee@uboptimal past dose.
In order to determine whether this is truly the case a RCT lshoeicarried out, whereby
one group is randomly allocated to having their epoetinstdpieach month based on the
previous months dose (i.e. the CDSS already in place). Témnskegroup’s epoetin dose
will be adjusted, basing current Hb on epoetin administéfedeeks previously, though
still updating the dose each month. An RCT is likely to beifiest in this area as patients
are already undertaking haemodialysis, thus it would gifggl a matter of enrolling
patients and randomising to the two groups. There are a laug®er of patients who

require haemodialysis, thus a large sample is likely.

The success of this trial could be judged using FDA, wherétgyHb trajectories and
phase plots could be used to determine whether there idisartly more Hb variability
in one group than the other. Furthermore, the R code to cthatphase—plots could be
made user friendly. This would enable clinicians to inputigre data, with the output
being the phase—plot for that patient. This would allowiclems (and patients) to see the

data in a way that ‘control’ is graphically represented ariningful to the patient.
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