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Abstract
Introduction: In biomedical systems repeated measurements are often collected, thus

presenting a statistical challenge due to high temporal correlation. This research

investigates the potential utility of two distinct statistical methodologies in their

application.

Application: Two clinically diverse biomedical systems, linked by the common

methodological interest of assessing control and performance, are considered. (i) An

application to renal anaemia aims to investigate the stability of haemoglobin levels,

measured monthly for 13 months within 151 patients, with theultimate goal of improving

patient control; (ii) the second an application concerns cerebral autoregulation (a stable

cerebral blood flow over a range of arterial blood pressure),to maintain patient safety

during a surgical procedure to prevent stroke. Repeated measurements of cerebral blood

flow and arterial blood pressure were collected on 36 patients, yielding a total of 4519

cerebral blood flow and 4574 arterial blood pressure measurements (note that the number

of observations vary between patients).

Statistical methodology: Functional data analysis and multilevel modelling are utilised

in the investigation of these two biomedical systems. Functional data analysis considers

observations as a function rather than a highly correlated sequence of measurements.

Multilevel modelling assumes that measurements are clustered and that within clusters,

measurements are scattered about a trend in an uncorrelatedmanner.

Results: Assessment of control within the renal anaemia system and knowledge of

the relationship within the cerebral autoregulation system, has been achieved through

the successful application of functional data analysis. Loess curves were used as

means of exploring the cerebral blood flow – arterial blood pressure relationship

in the cerebral autoregulation application. B-splines andphase plots were used to

explore haemoglobin control in the renal anaemia system. Further, multilevel modelling
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incorporating autoregressive correlation structures appropriately models the dependency

amongst model residuals due to temporal correlation. Both functional data analysis and

multilevel modelling have demonstrated their utility in the application to model control in

biomedical systems.

Conclusions: The novel application of these statistical methodologies has successfully

provided contemporary insight into these biomedical systems and shows strong prospects

for further applications.
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Chapter 1

Introduction

A biomedical system shall be defined as:a collection of interrelated

elements connected as a unified and dynamic whole, related tomaintaining

health and its preservation in the treatment of disease.

1.1 Background and motivation

This research is motivated by the novel application of unexploited statistical techniques,

which could provide more informative analyses to a wide range of biomedical systems.

It is often the case in medical research that repeated measurements are collected on

patients over a period of time; this might be over the course of a treatment or drug, or

during a surgical procedure. A difficulty posed by such datasets is the high degree of

correlation that may occur amongst the repeated measures. This means that the traditional

statistical assumption, that observations (or model residuals) are independent of each

other, is erroneous [1]. A solution would be to bypass this issue, although any conclusions

drawn from the analysis could be largely incorrect and thus the conclusions are potentially

erroneous. A more appropriate approach would be to embrace the complex and interesting
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features of the data and encompass these in the statistical analysis, and exploit these

additional modelling features.

Two clinically diverse biomedical systems have been investigated, where repeated

measurements were taken. The choice of datasets was influenced by the funding sources

of this PhD, these are; the Emma and Leslie Reid Scholarship which was awarded by

the University of Leeds to study brain disease. A further grant was obtained from the

Yorkshire Kidney Research Fund by Katie Harris, Robert Westand Eric Will to carry out

research into renal disease [2]. In summary the systems were:

1. Cerebral Autoregulation system –where measurements of arterial blood pressure

and cerebral blood flow were collected during a surgical procedure which is

undertaken to prevent stroke. The key issue was to monitor a phenomenon known

as cerebral autoregulation in patients before and after surgery. The aim was to

determine whether a change could be detected in cerebral autoregulation from

before to after surgery, i.e. whether there is an improvement or deterioration in

autoregulation due to the procedure.

2. Renal Anaemia system –where measurements on blood samples were collected

monthly for the monitoring of anaemia in patients with end stage renal disease. The

aim was to determine whether a patient’s haemoglobin can be adequately managed

when administered with a synthetic, recombinant agent (epoetin) as the natural

hormone (erythropoietin) is no longer produced by the kidneys.

The two systems posed similarities and differences. In bothinstances the primary

interest was in assessing whether the biomedical systems were adequately controlled.

An intriguing difference occurs in the mechanism by which control was implemented.

In the renal anaemia system the patients were externally managed by the clinician. This

system is driven by the administration of drugs to replace erythropoietin whose production

declined due to failure of the kidneys. The cerebral autoregulation application was a
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biomedical system that is self-regulatory, where there arebiological mechanisms within

the human body. Within this system the ideal behaviour for patients is that a constant

blood flow to the brain is maintained over a range of arterial blood pressure. The key

issue is to determine whether this ‘natural mechanism’ occurs in patients throughout a

surgical procedure – a situation which could possibly alterthe intrinsic control of blood

flow and blood pressure.

In both systems multiple time series were collected, where anumber of repeated

measurements for each patient. In the renal anaemia system,measurements were taken

over the period of 12 months. During this period the patientsundergo a long-term course

of haemodialysis treatment, as immediate alleviation of symptoms due to renal anaemia

is not possible. In this situation each patient had the same number of measurements

recorded. The cerebral autoregulation systems differs in that measurements were taken

during surgery for each patient, which was a relatively short time frame in comparison

to the annual course of treatment in the renal anaemia system. Throughout surgery

measurements were collected from patients every 15 secondsfor the duration of the

procedure, yielding a large number of measurements. The timing of the surgical

procedure varied between patients, thus resulting in different amounts of data points per

patient.

It was not appropriate to analyse either dataset using traditional time series analysis as

there was the added dimension of multiple time series. It wasmore apt to analyse all

series simultaneously to maximise the power of the statistical model, rather than analyse

each time series individually. Furthermore, time series analysis is often used for analysis

of data collected over a long period, e.g. to analyse weatherpatterns over many years in

order to identify seasonal variation or a long-term trend inthe data [3]. This suggests

that for these biomedical systems, time series analysis would not have been entirely

appropriate, as identifying features such as trend, seasonal variation or cyclical behaviour

are not primarily relevant in the these data. Time series methodology was not totally
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disregarded, however, as there were some aspects that were successfully exploited.

Analysing data from all patients collectively not only provided more powerful statistical

analysis but also yielded more robust findings about the patient groups, as opposed to the

individual. The statistical analysis in this thesis was population focused and sought to

find statistical models which represented the patient groups as a whole. It would have

been implausible to find a model that represented all patients accurately due to random

error, possibly due to unknown features about the patients that were not incorporated

in the modelling. It was, however, clinically important to recognise the patients who

deviated from the norm, i.e. responded differently to surgery or treatment. The aim was

to determine whether these patients could be identified fromanalysis of the population

group.

This thesis aimed to demonstrate that statistical methodologies, namely functional data

analysis and multilevel modelling, can be used to analyse the data from both biomedical

systems, albeit with the variation in time-scales from a fewbalanced measurements taken

over the long term to a large number of unbalanced measurements taken in the short

term. These statistical techniques are relatively unexploited, thus development of the

methodologies was necessary to address fully and understand the clinical questions which

were posed. Moreover, these methodologies were applied in anovel way for the specific

biomedical area. The two biomedical systems may be diverse in respect of their clinical

area, though it is the need to address control in both applications, which links the two.

In particular, the common research question was: can ‘control’ be assessed in statistical

terms and if so, is this possible using functional data analysis and multilevel modelling?

This will highlight the usefulness of the two methodologies, as they will be applied and

yield practical and meaningful clinical results.

Assessment of control is an important issue within the clinical domain. For example, it is

of interest to identify how patient symptoms are managed with a certain drug. Initially, the

clinician may consult the medical field as a means of addressing their research question. If
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this is not plausible, or the clinician prefers to take an alternative approach, assistance may

be sought from a biostatistician. The biostatistician willhelp to determine whether there

is a ‘statistical answer’ to the clinical problem. Furthermore, by involving a biostatistician

in the clinical research, additional findings may be gained than originally sought.

1.2 Aims and Objectives

The primary aim of this thesis was to develop unexploited statistical techniques through

their novel application to diverse biomedical systems. In particular with interest in

assessing control within the systems and identifying how tomanage patients, in order

for them to achieve and preserve a good quality of life. A number of statistical challenges

that were posed by the two biomedical applications needed tobe overcome in order to

address successfully the specific clinical aims about the systems; these clinical aims have

been discussed in full in their respective chapters (Chapters 2 and 3).

In summary, the statistical issues to be considered were:

• Analysis of control - of patients either undertaking a surgical procedure or course

of treatment. This is an aspect which is also of clinical importance, but, as yet, is

no gold standard statistical technique to assess control.

• Clustering - of repeated measurements within patients. Theassumption will be

made that measurements within an individual are not independent. Measurements

collected within an individual will be more alike than measurements from other

individuals, albeit the individuals share characteristics which make them more alike

than from the general population.

• Autocorrelation - due to measurements collected relatively close together in time,

which violates the assumption that the error terms are uncorrelated. Adjacent and

nearby measurements will be more similar than measurementstaken far apart.
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• Varying lengths of time series - in particular in the cerebral autoregulation system

due to differing durations of surgical procedure amongst patients.

1.3 Outline of thesis

This thesis comprises the following chapters:

1. Introduction – The aim of Chapter 1 was to ‘set the scene’ and explain the

motivation for this research. A challenge for a statistician in the biomedical domain

is to consider the presentation of somewhat complex statistics to a non-specialist

audience. This thesis highlights how this can be achieved and illustrates how the

methods are received by a clinical audience, whilst retaining statistical validity and

plausibility.

2. Cerebral Autoregulation – Chapter 2 introduces the clinical background of the

cerebral autoregulation application.

3. Renal Anaemia – Chapter 3 introduces the clinical background of the renal anaemia

application.

In addition to introducing the clinical background of the biomedical applications

Chapters 2 and 3 give explanation of where the datasets for this thesis arose. The

clinical motivation behind studying the particular systems is described. Following

introductions of the respective datasets, there is discussion into the statistical issues

that arose within these systems, together with how they havebeen developed from

the clinical questions that were posed. These chapters contain a literature review,

which comprise critiques of the relevant clinical issues together with discussion of

how the data in the relevant fields have been analysed previously.

4. Functional data analysis – See below
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5. Multilevel modelling – Chapters 4 and 5 consist of a general discussion of the

statistical methods, with particular focus on the specific areas that were considered

in this thesis. Following the general discussions, there are details of the reasons

why these particular methods are relevant and useful for thedata, together with

how and why these statistical methods are able to bring novelty to the application

and statistical area.

6. Cerebral Autoregulation Results – See below

7. Renal Anaemia Results – Chapters 6 and 7 presents the main results. The choice

has been made to present the results as separate chapters foreach application area

rather than in terms of the statistical methods; this is a more chronological approach

and will also show the development of the methods.

8. General Discussion

Particular features of interest for this chapter were:

• The first point to address was: has it been possible to successfully analyse the

two biomedical systems using the chosen statistical methodology (functional

data analysis and multilevel modelling)?

Further discussion points:

• Has it been possible to assess and quantify control?

• How were the methods initially chosen for this thesis?

• How has the applicability of statistical methods been developed?

• Contrast and comparison of the two statistical methodologies.

• Contrast and comparison of the biomedical systems.

• What did the statistical results mean in clinical terms?

• How has this thesis contributed to knowledge and understanding in the

medical domain?
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• What were the statistical issues that have been raised (and how were they

overcome)?

• How might the work from this thesis be further developed?

9. Conclusions and Future Work – The conclusions of this research will be presented

in this chapter. Ideas for future work arising from the analysis undertaken and

knowledge gained from the research will also be suggested.



9

Chapter 2

Cerebral Autoregulation

2.1 Background

Every year in the UK it is estimated that 150,000 people have astroke [4]. A stroke

occurs when the blood supply to the brain is interrupted [5].This may be due to either

a lack of blood supply, resulting in deprivation of oxygen tothe brain (ischaemic stroke)

or accumulation of blood within the skull which occurs when ablood vessel bursts

within the brain (haemorrhagic stroke). Ischaemic stroke accounts for 80% of cases and

haemorrhagic stroke for up to 20% of cases. A stroke is definedby the World Health

Organization as a “neurological deficit of cerebrovascularcause that persists beyond 24

hours or is interrupted by death within 24 hours” [6]. This definition reflects that stroke

is the second most common cause of death [7] and the leading cause of adult disability

worldwide [8]. It is therefore evident that preventing and identifying signs of stroke is of

great importance.

Carotid endarterectomy (CEA) is a well-established surgical procedure for preventing

stroke and is recognised as the gold standard for both symptomatic and asymptomatic

patients with high-grade, extracranial carotid artery stenosis (CAS) [9]. In CAS the
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carotid arteries (see figure 2.1) are narrowed due to atheroma; a build up of fatty plaque

in the inner lining of the artery, which can cause complete cerebral blood flow (CBF)

blockage or break off into small fragments (embolism). CEA is performed in order to

prevent stroke; potentially caused by the small fragments of plaque blocking arteries and

arterioles in the brain. CEA is not performed to remove the blockage or where complete

stenosis occurs. A transient ischaemic attack (TIA) is often referred to as a ‘mini stroke’

as the individual will experience stroke like symptoms but not experience any lasting

damage. TIA’s are often a warning that a stroke may happen, though the time in which

this occurs is uncertain. In approximately 50 % of cases, stroke occurs within 24 hours

of the TIA [10]. There are over 25,000 TIA’s in the UK annuallyand clinical guidelines

indicate that it is necessary for CEA to be undertaken withintwo weeks in patients who

have suffered TIA [11], especially if CAS is detected [12].

Figure 2.1: Diagram of the Carotid Artery [13].

Cerebral autoregulation (CA) is known to be disordered in patients with CAS, which

is associated with an increased risk of cerebrovascular ischaemic events [14]. Cerebral
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autoregulation is an intrinsic mechanism of the body whereby a constant cerebral blood

flow (CBF) is maintained to the brain over a specific range of arterial blood pressure

(ABP) [15]. A significant change in CBF, due to an increase or decrease in ABP indicates

that CA is impaired. Conversely, if there is no significant change in CBF with ABP then

CA is intact.

Carotid endarterectomy can be considered in three phases: preoperative (phase 1),

intraoperative (phase 2) and postoperative (phase 3). The preoperative phase refers to

the period where the neck is prepared for the procedure and the incision is made. During

the intraoperative phase a carotid shunt is inserted into the diseased artery, to re-route

blood flow to the brain. This is a difficult procedure as the surgeon will need to assure

that blood flow continues around the circle of Willis [16](Figure 2.2). The circle of Willis

constitutes part of the cardiovascular system, which is a circle of several arteries (the

largest being internal carotid and vertebral, left and right ) that supply the brain. If one of

the arteries becomes obstructed, or the circle is damaged, this may be mediated since CBF

can be redirected [17]. Throughout phase 2, ABP is maintained at a controlled high level

in order to keep perfusion around the circle of Willis. The postoperative phase is where

the carotid shunt is removed and the artery is stitched. CEA has been shown to reduce

the risk of stroke, approximately 3-6 months following the procedure [18], however the

effect of CEA on CA in the immediate post-operative period remains unclear [19].

After removal of the atheroma, the brain can be exposed to high systolic blood pressure

and an increase in CBF, which is typical post-surgery behaviour and steps are taken to

manage this. Occasionally patients develop cerebral hyperperfusion syndrome [20], with

very marked increases in flow that may be associated with neurological signs, fits and

cerebral oedema [21]. The opposite effect may also occur during surgery (particularly

phase 2), where there is risk of hypoperfusion (decreased blood flow) [20], which can

lead to ischaemic stroke.
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Figure 2.2: Circle of Willis [13].
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2.2 Assessment of Autoregulation

There are two general approaches for the assessment of CA; dynamic and static

autoregulation. Each considers the response of CBF in relation to ABP, albeit with a

distinction made between the circumstances in which the measurements are taken. Static

autoregulation examines the relationship between CBF and ABP without reference to the

time course of changes in flow in response to changes in pressure. The stabilised response

of CBF is considered with a consistent change in ABP, in this situation time is irrelevant

as stabilisation of both measures occurs before the subsequent measurement is taken.

The technique of static autoregulation has dominated studies in past decades, however

with the advance in technology which allows for continuous measurement of CBF and

ABP, interest in the field of dynamic behaviour has become popular. Dynamic CA is

the immediate response of CBF to ABP where frequent or rapid changes of ABP have

occurred. Rapid in this context is not defined in the literature; Reinhard [22] and Tiecks

[23] simply state the word without stating the time period which is defined as rapid.

Assessment of dynamic CA has become achievable with the development of the

TransCranial Doppler ultrasound (TCD) and non-invasive beat-to-beat blood pressure

monitors (i.e. Finapres), which enable CBF and ABP measurements to be taken every

5 to 10 seconds [24]. The TCD technique allows for continuousmeasurement of CBF,

which consists of insonating (exposing to ultrasound waves) the basel section of the major

cerebral arteries, around the circle of Willis, through different ”windows” found at various

locations in the skull. The windows commonly used for TCD monitoring include areas of

the skull that are relatively thin . The transtemporal window is used to insonate the vessels

of the circle of Willis, through the thinnest portion of the temporal bone. A probe is used

to detect the Doppler signal which is generated by blood flow in the middle cerebral

artery. Other windows include the transorbital and sub-occipital, which are used when

other areas of the brain are examined [25].
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There is uncertainty reflected in the literature as to whether the response of CBF to

spontaneous changes in ABP may be considered static CA [26] or dynamic CA [14].

Thus, it is not clear whether methods for static or dynamic assessment should be adopted.

One approach has been to examine the circumstances under which the measurements are

taken and, for instance, ask whether repeated measurementsover time have enjoyed a

sufficient time-interval to permit physiological stability, as in static CA, or might ABP

fluctuate, as with dynamic CA.

In the static regime it is assumed that there is no autocorrelation between adjacent

measurements since there is a long time period between them.In the dynamic regime

however, measurement of CBF might not have zero autocorrelation. This is due to the

transient behaviour being observed before CBF settles intoan equilibrium of a new ABF

environment. Given that the timescale of this transient behaviour has not been defined,

it is not clear if autocorrelation in CBF should be modelled.Should autocorrelation be

present, then this must be accounted for in the statistical modelling, in order to estimate

the underlying relationship without bias. Moreover, CA hasnot previously been explored

during CEA, which further demonstrates the ambiguity as to whether static or dynamic

assessment should be preferred. There have been a number of studies examining the

changes in cerebral autoregulation in the days, weeks and months after CEA [27] [14]

[28] , when it is possible to collect data on patients after they have recovered from surgery.

Collecting data for CA assessment during surgery is more challenging.

2.2.1 Assessment and measurement of static autoregulation

The approach employed to assess CA is to investigate the relationship of CBF against

ABP. The ideal model for static cerebral autoregulation is attributed to Lassen [29], who

initially described the concept as a piecewise linear curvecomprising two segments (see

figure 2.3). The model was subsequently revised to consist ofthree linear segments (see

figure 2.4), where the plateau represents where CBF is constant over the range of ABP,
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between the lower(L) and upper(U) limits of CA - this shall bereferred to as the CA

curve. The plateau region with a zero slope represents perfect autoregulation [26].

Figure 2.3: The original Lassen cerebral autoregulation curve displaying idealised

piecewise linear behaviour [29].

Theoretically, it is anticipated that the CA curve is closely followed by most individuals

for a range L-U within a healthy population. The L-U plateau region contains ABP values

necessary for the brain tissue to be perfused with an adequate supply of blood, though the

numerical values of L and U are subject to much debate [26]. Anapproximate range is

thought to be 50 - 150 mmHg [15]. Values of ABP below L, i.e. less than 50 mmHg,

are regarded as hypotensive and CBF is decreased due to low ABP, whereas values of

ABP above U, i.e. greater than 150 mmHg, are regarded as hypertensive and CBF is

increased due to high ABP. If there is no significant change inCBF with ABP then CA

is regarded as being intact. The range of ABP covered by the CAcurve is very large,

and yet spontaneous variation in ABP may be more restricted;some variation is expected

however, due to the stress induced by the surgical procedure. Thus, patients are unlikely
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Figure 2.4: The theoretical CA curve of CBF plotted against ABP [26]: lower (L) and

upper (U) limits of CA flank a plateau region where perfect CA occurs, adapted from the

curve proposed by Lassen [29].

to experience the whole range of measurements to fit the wholecurve, or even the range

of perfect autoregulation. If the idealised piecewise linear curve is a plausible model for

CA, then it is necessary to determine upon which segment (or segments) of the curve each

patient lies.

The CA curve (figure 2.4) differs from the Lassen curve (figure2.3) in that there is a

positive slope for which high ABP occurs. The reason for thismight be that the data

used by Lassen to construct the curve did not extend beyond the upper limit U. The curve

attributed to Lassen (figure 2.3) is constructed from 11 meanvalues, which raises doubt

over the robustness of the curve due to the small sample of data. The 11 mean values are

calculated from different patient groups with a variety of medical conditions that affect

CBF and ABP. Thus, CA is calculated in groups of patients. Although the CA curve has

been used to assess patients on an individual basis [30], fewstudies have attempted to do

this [26].

It has been suggested that a slight slope exists between the limits L and U [31], as opposed



Chapter 2. Cerebral Autoregulation 17

to a plateau, though this has not been substantiated by any patient or population study.

Arguably, this observation might be true, and over simplicity has sought to hypothesise a

flat slope where a modest slope may exist. Modest deviation from a zero gradient in the

CBF-ABP relationship, which would normally suggest that CAis not intact (and may be

impaired), may not be as problematic as considered previously.

The CA curve seems a rather simplistic view of such a complex entity as CA, which is

viewed as not being completely understood [32]. Studies have calculated the gradient

using standard linear regression [33] [34] and calculated Pearson’s correlation coefficient

[35] [36] [37] for the response of CBF to changes in ABP. Panerai [26] discusses the large

number of studies which have adopted these approaches. A slope equal to zero is taken to

represent the plateau region and hence perfect CA. A positive slope is thought to represent

either of the linear sections of the CA curve and hence impaired CA.

In the clinical literature [23], Pearson’s correlation coefficient ρ is usually calculated in

addition to linear regression. Forρ > 0, this reflects impaired CA, andρ = 0 represents

the plateau region, hence perfect CA. It is noted that the calculation of Pearson’s

correlation coefficient has the implied assumption of linearity and that to observe a value

close to zero within a individual with intact CA measurements must be confined to the

plateau region. It is also implied that the patients with impaired CA will demonstrate a

linear relationship with a positive slope for the relationship between CBF and ABP. If

the autoregulating region is merely compressed with U beingcloser to L and the range

of ABP extend beyond this interval, then a positive value of Pearson’s coefficient will be

observed. A similar value might be seen for a patient with impaired CA since the value

is strongly dependent upon the scatter about the true relationship, which is influenced by

measurement accuracy. Hence, this approach has its limitations
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2.2.2 Assessment and measurement of dynamic autoregulation

Currently there is no consistent way to assess or model dynamic CA in the way that

the Lassen curve forms the basis for analysis of static CA [38]. There are a number of

methods presented in the literature such as: autoregulation indices [23], transfer function

analysis [39] and correlation coefficients [40], although these have yet to be accepted as

an established method to assess dynamic CA.

Experimentally, dynamic CA can be assessed by inducing transient changes in ABP

in order to determine the response of CBF over a wide range of ABP. The thigh cuff

method [41] and the lower body negative pressure [42] have previously been used to

induce oscillations and rapid changes in ABP. These methodsare not ideal as they have

been found to cause patients pain and discomfort, thus alternative methods are preferred.

Transfer function analysis is often used to analyse data produced from the thigh cuff

method [41]. This methodology will not be discussed in detail as transfer function

analysis makes the assumption that CA is measured in the frequency domain, where

oscillations of ABP and CBF are analysed, whereas such oscillatory behaviour in ABP

and CBF is not expected during CEA .

Tilt-tables in particular allow a wide range of ABP to be experienced by the individual

[43], which permits the investigation of the CBF-ABP relationship over a wide range of

ABP values. The sit-to-stand procedure is another method used which induces oscillatory

and step ABP changes [38]. This technique might be preferredover the tilt table approach

as it is easier to perform and tilt tables can provoke syncope(fainting).

Inducing changes in ABP for patients undergoing carotid endarterectomy would not

be possible since patients undergoing a surgical procedureare required to lie supine

throughout. Therefore, spontaneous fluctuations in ABP arerelied upon. Methods such

as the thigh cuff would clearly be inappropriate since it would be unsafe to delay surgery,

particularly at the time of clamping the carotid artery.
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It is likely that throughout the procedure patients will experience ABP values mostly

within the L-U range, where intact CA should occur; as ABP is closely monitored and

to a certain extent controlled during CEA, it is unlikely that the anaesthetists would

allow the patients to be subject to extreme ABP values. This may not be realistic in all

patients however, as the clinician may find themselves caught between the head and the

heart [44]. Patients who become hypotensive during the procedure, and thus experience

abnormally low ABP, are a particular concern. Increasing the blood pressure to a safer

level in these patients, may lead to dramatic and possibly dangerous increases in CBF,

especially after the stenosis has been relieved. It is vitalto treat a patient’s blood pressure

that is persistently lower than their mean ABP would be in a non surgical environment,

since this may compromise blood flow to the heart. There may bedramatic changes in

CA therefore, as a consequence of CEA, if the range of ABP moves outside the range of

intact autoregulation.

Similar to static CA, dynamic CA is viewed as a linear relationship between CBF and

ABP, thus subsequent statistical analyses have been based on this assumption. Panerai

[26] justifies this, suggesting that the CBF-ABP relationship does not show significant

departure from the linear hypothesis. Transfer function analysis [22] [39] and various

dynamic autoregulation indices [23] [45] assume linearitybetween CBF and ABP. There

are a small number of papers, however, that have applied nonlinear modelling techniques

[46] [47].

One measure occasionally encountered in CA studies is cerebrovascular resistance

(CVR), which is defined as:CVR = Mean(ABP)
Mean(CBF)

. CVR is a mechanism that regulates

the constriction and dilation of the smaller vessels (arterioles) in the brain, such that

it quantifies the extent of which CBF is affected by changes inABP. This measure

is useful because one can then define the dynamic autoregulation index (DARi) as:

DARi = ∆CV R
(∆T )(∆ABP )

[26], which is sometimes referred to as the rate of recovery [38].

The variation in the language and labels adopted for the samequantities suggest that there
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may be confusion amongst authors in regards to analysis of CA. The DARi essentially

grades CA between 0 and 9; with 0 indicating no autoregulation and 9 indicating very

fast autoregulation. This might be useful to summarise CA, however point estimates

(mean values) only are used to define CA, which have limited utility without a confidence

interval. A more informative measure would incorporate thevariation in ABP and CBF

values.

2.2.3 General vs Local anaesthesia

Carotid endarterectomy may be performed under local and general anaesthesia. The

anaesthetic technique maybe an underlying explanation forthose patients who become

hypotensive during CEA, as blood pressure generally falls after induction of general

anaesthesia [48]. However, patients receiving both local and general anaesthesia have

displayed clinically significant hypotension and hypertension in the post operative period

[49]. Therefore, since anaesthesic technique has been shown to have an effect of ABP,

it is reasonable to suggest that the choice of anaesthetic technique for CEA may have an

impact on perioperative CA.

McCleary and colleagues demonstrated a decrease in oxygen supply to the brain in

patients receiving local and general anaesthesia for CEA, although recovery was more

likely in patients undergoing surgery under local anaesthesia [50]. This observation was

one of the justifications of the GALA trial [51]; an international multicentre randomised

controlled trial to compare local and general anaesthesia for CEA. The GALA trial,

however, failed to demonstrate a clinically or statistically significant difference between

local and general anaesthesia in terms of the risk of stroke,myocardial infarction, and

death as a result of carotid endarterectomy. A suggestion for this finding is that ABP

was manipulated (increased) by anesthesiologists in 43 % ofgeneral anaesthesia patients

compared with only 17 % of local anaesthesia patients, whichcompensated the failure of

CA in the general anaesthesia group [52]. This result may nothave occurred if ABP had
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not been manipulated.

There may be patient and surgeon preference for anaesthesiatype. For example, patients

can find CEA under local anaesthetic stressful and uncomfortable, since they must lie still

with their heads turned to one side for ninety minutes or longer if the operation is difficult.

Further, the patient may feel claustrophobic due to the positioning of the surgical drapes

and being surrounded by numerous people throughout surgery. A high dose of local

anaesthesia may be required for CEA due to the invasiveness of the surgery. In large doses

local anaesthesia can have a toxic effect, leading to systemic toxicity, whereby toxins are

absorbed into the body through the bloodstream. Infection,swelling and bruising may

also occur at the injection site. If a patient is particularly agitated under local anaesthesia

it is possible to convert from local anaesthesia to general anaesthesia; which would mean

further complication for patient, anaesthetist and surgeon, which would have been avoided

if general anaesthesia had been administered in the first instance. Conversion may be

required if the patient experiences pain at the operative side, general discomfort and

anxiety, physiological instability, or neurological deterioration. It is suggested that the

preference of all parties is for CEA to be carried out under general anaesthesia [9].

An alternative view is that performing CEA under local anaesthesia, rather than general

anaesthesia, may be safer [52]. A benefit of CEA under local anaesthesia is the increase

in ABP which occurs in phase 3 of surgery, which in turn bettermaintains CBF. This

natural phenomena that occurs with local anaesthesia is mimicked by the anaesthetist for

patients undergoing CEA with general anaesthesia, and is hence seen as a benefit to occur

naturally rather than by manipulation. A second benefit is that the medical team may

converse and interact with the patient, which would enable aquicker response if they

notice a change in patient behaviour.

In summary, there appears to be advantages and disadvantages to both anaesthesia

methods. Upon reflection it seems that CEA should be made available under local and

general anaesthetic, in order to cater for patient preference, or medical reasons why one
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may be preferred over the other. It is important, however, that the effect of anaesthesia on

CEA and CA is investigated further, so patients can be advised accordingly and patient

safety is preserved.

2.3 Clinical aims and objectives

Assessment of CA is considered in several clinical conditions, such as: head injury

[53], respiratory distress of newborn babies [33], and carotid artery disease [54]. These

conditions are known to severely impair autoregulation. Patients in whom autoregulation

is impaired are at risk of brain tissue ischaemia; where the brain does not receive an

adequate supply of blood and oxygen and hence suffers ischaemic stroke. It is extremely

important and of clinical interest that CA is assessed in many (clinical) settings.

CAS is a disease known to be associated with impaired CA [28].CAS accounts for 15-20

% of ischaemic strokes [55], although patients with CAS may undergo CEA to remove

the atheroma and thereby reduce the risk of detachment of theemboli and hence reduce

the risk of stroke. This suggests strong clinical interest in directly assessing the patient

benefit of CEA.

Repeated measurements of patient ABP and CBF were collectedfor a group of patients,

with CAS, whilst undergoing CEA, with the aim of assessing CAthroughout the

procedure. There is particular clinical interest in assessing the immediate impact on CA

of undergoing CEA, which might therefore directly demonstrate benefit to the patient of

the surgical procedure.

A number of techniques are available to examine CA, althoughpreviously CA has

not been assessed during CEA. Methods will therefore need tobe explored to find an

appropriate way of modelling these data.

A further cause for concern in these patients is that CEA may be associated with large



Chapter 2. Cerebral Autoregulation 23

changes in ABP, which in turn may cause changes in CBF. The choice of anaesthetic

technique may also have an impact on CA following CEA, specifically CA may be better

preserved with local anaesthesia than with general anaesthesia.

In summary there are two types of aims and objectives to consider, namely the purely

clinical issues together with issues relating to measurement and assessment. The clinical

and measurement issues are also linked because of the need todevelop an approach to

model dynamic CA, since there is no clear way of assessing this entity. In this research

dynamic CA will be explored as part of a complex modelling process.

Clinical

• to determine whether CA can be assessed in an operating theatre

• to devise an approach for dynamic CA (under CEA), if appropriate

• to investigate whether there is any improvement in CA immediately following CEA

• to investigate whether CBF and ABP are affected by CEA

• to determine whether the choice of anaesthesia has any impact on CA

Measurement

• to use appropriate statistical methodology to model CA

• to distinguish between static and dynamic autoregulation using statistical

methodology (see next section), thereby addressing a clinical requirement.



Chapter 2. Cerebral Autoregulation 24

2.4 Data

A prospective observational study was conducted in patients undergoing CEA at the Leeds

General Infirmary between February 2004 and May 2006. The proposal for this study was

to investigate immediate changes in CA in patients undergoing CEA. Approval for the

study was granted by the Leeds West Research Ethics Committee and informed consent

obtained from all patients.

Sixty-two patients who presented for CEA, to be performed under local and general

anaesthesia, were approached for participation. All patients had experienced recent TIA

and evidence of CAS. Exclusion criteria included patient refusal or withdrawal from the

study, absence of a temporal window for TCD monitoring and the presence of atrial

fibrillation or other arrhythmias (where the heart beats at irregular intervals), this yielded

26 patients who were not eligible for participation.

Data were collected in the immediate perioperative period of CEA, starting after induction

of general anaesthesia or completion of local anaesthesia and concluding with the end of

surgery. Repeated measurements of CBF and ABP were recordedfor 36 patients, together

with the respective phase of surgery: preoperative (phase 1), intraoperative (phase 2)

and postoperative (phase 3) . Measurements were collected concurrently at 15 second

intervals. It was not possible to control the number of measurements within each phase,

as the timing of the whole procedure and each particular phase varied across patients.

Patients in the study were elderly with a median age of 73 years (range 65 - 82), which

may have an impact on a number of factors considered in the data collection and analysis

of CA. Measurements of CBF velocity were obtained using a TCDultrasound sensor

probe, fixed in place at the temple with a metal frame or plastic headband. CBF velocity

was used as an equivalent of CBF, since accurate measurementof CBF is difficult [45].

In children and young adults it is particularly easy to obtain good signals from the desired

vessels. However, these signals weaken as age increases. Inelderly patients it is difficult
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to obtain an adequate signal, with no signal detected in 20 % of patients [9]. In those

patients where an adequate signal could not be obtained it was not possible to record

CBF measurements (8 patients), this therefore reduced the number of patients who were

eligible to participate in the study (54 out of 62). A furtherlimitation to TCD monitoring

is that the probe is placed relatively near to the surgical site and may impede the surgeon,

especially if constant adjustment is necessary. In some patients, CBF measurements were

collected from the left and right sides of the head, but thesewere not complete. There

were complete ipsilateral (same side) measurements for 36 patients. ABP measurements

were obtained invasively using a radial arterial line for routine intraoperative monitoring.

Invasive methods are the most accurate way to measure ABP, though this involves a higher

risk than non invasive methods, such as when using a sphygmomanometer (device to

measure blood pressure).

Data were also provided on anaesthetic technique. The choice of general or local

anaesthesia was made according to clinician and patient preference. Twenty-three patients

received local anaesthesia and 13 patients received general anaesthesia. Initially the

aim was to randomly assign all patients to anaesthesia type,which would have allowed

an unbiased assessment of how anaesthesia method affects CA. It was not possible

to implement this, however, as in certain cases there was clear medical indication for

anaesthesia type, i.e. if a patient is considered unfit for a particular method due to

certain medical conditions that increase the risk of complications from anaesthesia. Other

factors also need to be considered, such as age, weight, medication, etc; as well as patient

preference.

It is also thought that CA may be adversely affected by age [38]. Authors have presented

opposing views: Heckmann and colleagues [56] suggest that CA is delayed in elderly

individuals, although numerous authors have concluded that autoregulation is not affected

by age, and that older subjects autoregulated as good as younger subjects [57] [58] [59].

Studies which demonstrated that CA is preserved in the elderly examined healthy patients,
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thus not reflecting the particular scenario that occurs in this study. It is possible, therefore,

that since these patients are elderly they may not exhibit the perfect CA as displayed in

the CA curve; though this is unlikely to be due to age alone andthe factors of CAS,

undergoing CEA, and anaesthetic are all more influential.

2.5 Statistical challenges

The primary statistical challenge is to use appropriate statistical methodology to model

CA during CEA. This was motivated by the clinical aim: to determine whether there is an

improvement in CA immediately following CEA. Before this can be addressed fully, it is

necessary to ascertain the most suitable model for CA, whichin itself poses challenges.

These will be discussed in the following sections.

2.5.1 Relationship between blood pressure and blood flow

The exact relationship between ABP and CBF for the patient group of interest is unknown,

which was revealed by the literature review. Patients are suffering with CAS, which

means it is possible that typical autoregulatory behaviouris not exhibited, together

with assessment being made in the conditions of an operatingtheatre. Anaesthetic

technique and age may also influence whether or not CA occurs.It would therefore be

informative to investigate the relationship between ABP and CBF without preconceptions

or assumptions of the underlying relationship. A better understanding of the CBF-ABP

relationship during CEA may inform patient care.

Investigating the ABP-CBF relationship is similar to previous approaches, such as linear

regression or the CA curve. There is more statistical power,however, in investigating

the ABP-CBF relationship without making assumptions aboutthe data or relationship.

By applying linear regression the assumption is made that the measurements of ABP and



Chapter 2. Cerebral Autoregulation 27

CBF are independent, although it is not possible to make thisassumption without further

investigation. Secondly the aim is not to replicate the whole CA curve, but to determine

where the patient measurements would lie on this curve. It would not be possible to do

this for each patient as it is unlikely they will cover the whole range of ABP that would be

necessary. Similarly it would not be possible to do this across all patients as it is unlikely

that the range of ABP across the whole group would be large enough to determine the L

and U limits of the curve.

2.5.2 Data quality/ limitations

Measurements of ABP and CBF are collected on patients duringa surgical procedure

which makes data collection relatively difficult. The CBF measurements may not be so

reliable, as the TCD probe would need to be in constant contact with the temple and

remain fixed for accurate measurement to take place. The probe was attached to the

patient by a headband; so it may have been difficult to ensure that the probe was correctly

in place throughout CEA, especially as it was situated so close to the site of surgery.

A large number of measurements are collected on all the patients, which is different and

substantially better than past CA studies, where in some cases the regression line has been

calculated from only two measurements [26].

There is potential bias in the data since patients were not randomly assigned to anaesthesia

technique; therefore any conclusion drawn from investigating anaesthesia needs to be

interpreted cautiously.

2.5.3 Autocorrelation

Measurements of ABP and CBF are recorded with a short time between them; it

is possible that measurements closer together in time will be more correlated than
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measurements farther apart. Due to the biological nature ofCBF and ABP, it is likely that

they vary smoothly, opposed to erratically changing every 15 seconds. Should correlation

between measurements be present, this must be accounted forin the modelling in order to

estimate the underlying relationship without bias. Methods that assume independence of

observations will be invalid if autocorrelation is present. Dynamic autoregulation would

need to assume autocorrelation between measurements.

2.5.4 Clustering

These data form a natural hierarchical structure, with repeated measurements clustered

within patients. A further level of the hierarchy may be phase of CEA; such that repeated

measurements are clustered within phases which in turn are clustered within patients.

A statistical technique is required that will exploit the full power of the data, such that

all available data are used appropriately to fit the model, i.e. all patients, phases and

measurements. In particular, it is the multiple patients that will give the most value to the

modelling. Measurements of ABP cannot be assumed to be independent in each of the

phases, and the phases cannot be assumed to be independent within a particular patient.

2.5.5 Spontaneous blood pressure measurements

It is unclear whether static or dynamic autoregulation should be investigated, due to

spontaneous blood pressure readings. This means that available methods for assessing

CA cannot be used with confidence. It will therefore be more appropriate to use

statistical techniques which consider the particular issues raised with these data, rather

than incorrectly using existing methods. Where feasible, methods to assess dynamic CA

may need to be developed.

The range of ABP values within an individual will possibly belimited, which may be

problematic because the slope estimate (of a linear model) will be less accurate with a
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larger standard error than for ABP covering a larger range. This can be resolved, however,

by using all measurements from all patients.

2.5.6 Phases of Carotid endarterectomy

The phases of CEA must be acknowledged in the modelling, as there will most likely

be a clear distinction in the behaviour of ABP and CBF betweenphases. A better

understanding of the separate phases would certainly be of value to the clinician to

improve patient care and maintenance during surgery.

The statistical technique should also be able to handle unbalanced data, due to the number

of measurements varying between patients and phases. It is not possible to assume a

continuous trajectory for CBF and ABP throughout CEA; it is more likely that there will

be step changes between the three phases.

Other, prior approaches to CA assessment, such as transfer function analysis, would not

be applicable due to the distinct phases because the technique makes the assumption that

the underlying form of ABP and CBF (over time) is sinusoidal [22], suggesting that ABP

and CBF vary periodically over time. This assumption might be suitable for CBF and

ABP measured on a day to day basis, though it is not plausible to make such assumptions

considering CBF and ABP during CEA. A sine decomposition would not sufficiently

represent the anticipated step changes in ABP and CBF between the phases of CEA,

suggesting that transfer function analysis is an inappropriate technique when assessing

CA during CEA.

2.6 Summary

This is a novel scenario and analysis for cerebral autoregulation. There are a number of

clinical, measurement, and statistical issues to considerwhen investigating CA, which
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contribute to the novelty of this work. For clarity, these are summarized below:

Clinical

• to determine CA for this setting

• to investigate whether there is any improvement in CA following CEA

• to investigate whether CBF and ABP are affected by CEA

• to determine whether the choice of anaesthesia is associated with CA

Measurement

• To determine whether dynamic or static autoregulation is being assessed

• Assessment in a non-laboratory environment

• Frequent measurements collected repeatedly

• To account for the three distinct phases of CEA

• To account for the clustering of measurements within patients

Statistical

• To determine whether CA can be assessed during a surgical procedure, and develop

methods appropriate to achieve this

• To determine whether CA can be assessed using spontaneous CBF and ABP

measurement, thereby devising a method of dynamic CA

• To determine whether autocorrelation needs to be accountedfor in the modelling,

and if so make appropriate modelling changes
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• To find a suitable generic model for the CBF-ABP relationship



32

Chapter 3

Renal Anaemia

3.1 Background

End–stage renal disease is a severe illness where kidney function has completely failed,

which is associated with a high risk of morbidity and mortality [60] [61]. It is classified

as the fifth (and final) stage of chronic kidney disease. At this stage, patients require

permanent renal replacement therapy, which usually includes either: haemodialysis,

peritoneal dialysis, haemofiltration, or renal transplant. The patients in this study have

end– stage renal disease and undergo haemodialysis to filterharmful wastes, salts and

fluid from the blood, since the kidneys are no longer able to carry out this functionality.

As renal disease develops, an associated problem is renal anaemia. Patients at any stage

of chronic kidney disease may have renal anaemia, with prevalence increasing with the

severity of disease [62]. Almost all patients with end–stage renal disease experience

anaemia [63]. The significant feature of renal anaemia is thereduction in the oxygen

carrying capacity of blood, which means haemoglobin (Hb) levels are reduced. Hb is

the iron–containing protein within an erythrocyte (red blood cell) that transports oxygen

around the body.
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Erythropoietin is the protein hormone from the kidneys thatpromotes the production of

red blood cells: erythroblasts (nucleated cells normally found only in bone marrow that

develop into erythrocytes) evolve into reticuliocytes (immature red blood cells), which

are then released into the bone marrow and develop into red blood cells containing Hb.

A deficiency in Hb occurs when the kidneys do not produce sufficient erythropoietin,

resulting in renal anaemia[64]. Erythropoietin deficiencyis considered the most important

cause of renal anaemia in patients with chronic kidney disease [65].

Low Hb can be detrimental to a patient’s health [66] particularly those with comorbidities,

since oxygen supply to the tissues is diminished. Insufficient oxygen induces lethargy

which leads to: reduction of a persons general well being; impaired cognitive function;

and worsening of quality of life. Furthermore, renal anaemia also increases the risk of

cardiac failure and can cause hypertrophy (abnormal enlargement of a body part or organ)

and tachycardia (rapid heartbeat).

Other contributors to renal anaemia are reduced red blood cell lifespan and blood loss.

Blood loss contributes to renal anaemia as the uremic toxins(which are usually released

in the urine and are retained in the blood) mean that the bloodclotting mechanism is

defective, since the platelets, which stimulate the production of a blood clot, do not

work correctly. This means that patients are more susceptible to bleeding. If a patient

suffers a fall for example, and experiences rapid or heavy bleeding, this would result in

a rapid decrease in Hb. Further, the patient may suffer from certain medical conditions

which makes them susceptible to bleeding, such as haemophilia (reduction in the blood’s

ability to clot) and thrombocytopenia (low platelet count). In addition to the increase in

a patient’s sensitivity to bleeding, a major cause of blood loss is through haemodialysis

[64]; due to frequent blood sampling, gastrointestinal ulcers, bleeding from the dialysis

access site, and the haemodialysis procedure[67].

The average lifetime of a red blood cell is approximately 100-120 days [68]; although this

is reduced by approximately one third in patients with renaldisease [69], due to uremic
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toxin and decreased flexibility of the red blood cells. Regardless of the technological

advances within renal medicine, red blood cell loss remainsas a major contributor to

renal anaemia [70].

Although there are many complications associated with renal anaemia, it can be

effectively treated with doses of recombinant erythropoietin, which are more commonly

known as epoetin agents. The FDA (Food and Drug Agency, USA) state that epoetin is

one of the most important medical advances in treating patients with kidney disease [71].

Epoetin agents may also slow down the progression of renal failure [72]. A number of

epoetin agents are available to treat patients (types and brands), which are manufactured

by various pharmaceutical companies. The choice of agent will usually be made by the

hospital administering the dose, rather than the individual patient. The patient–specific

dose of the agent is managed with the assistance of a computerised decision support

system [73], which adjusts the dose each month by examining current Hb concentration,

which is based upon the previous months epoetin dose.

A Computerised Decision Support System (CDSS) is a computerapplication designed

to aid clinicians when making diagnostic or therapeutic decisions in patient care [74].

CDSS are particularly useful in diagnosing a patient with a disease based on particular

symptoms, or in the case of this application, suggesting a drug dose to be prescribed for

the patient. A CDSS is not designed to remove the clinician from the decision making

procedure but to provide a ‘recommendation’ for the clinician. When an epoetin dose is

calculated by the CDSS, after Hb results have been entered into the system, the clinician

will either accept or override the the suggested prescription [73]. The final decision will

generally be made by the clinician. There has been some resistance to the CDSS, however,

whereby the general belief by those opposing it is that a better decision would be made by

a human rather than a computer, and that patients should be treated as individuals. This

CDSS opposition group also stipulates that the algorithm should be perfect. The opinion

on behalf of the clinicians is that the CDSS is a clinical aid,which is required to manage
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the large number of patients receiving renal therapy and without it they would not be

effectively managed.

Doses of the epoetin agents are available in pre-filled syringes which are available in

varying strengths; 25, 40, 60, 100, 150, 200, 300 IU/kg. Doseunits are measured in

IU/week/kg body weight. IU is the abbreviation of international units, which is a standard

measurement for a pharmaceutical drug [75]. A maximum dose is 300 IU/kg per week. A

patient undergoing epoetin therapy will always be requiredto receive some of the agent,

even if their Hb is on target, as complete cessation of the agent may cause a sudden

breakdown of the new cells. The patient’s dose each month is adjusted using an epoetin

dose ladder, which increases or decreases the dose if required based on the predetermined

steps of the dose ladder.

3.1.1 Subcutaneous vs. Intravenous

A patient’s response to the epoetin agent depends on their red blood cell lifespan and

production rate [76]. It is important to identify those patients whose Hb does not respond

to the epoetin, as death is more likely in these patients. Thetwo main methods are by

subcutaneous (just under the skin) and intravenous (withina vein) injection. A number of

studies have been undertaken to compare subcutaneous and intravenous administration of

epoetin [77] [78] [79] [80].

The optimal route of administration remains undetermined [78]. In general, the

intravenous route is the fastest way to deliver fluids and medications throughout the body

as there is a direct route to the blood stream, compared with the subcutaneous route which

is usually used for medication that needs to work slowly. Thesubcutaneous route is

thought to be more prolonged than the intravenous method [79], though in the case of

the epoetin agent, where the maximum effect is seen in Hb in 2 to 6 weeks, this time

difference would have negligible consequences as the drug does not have an immediate
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effect.

It has been shown that administering epoetin using subcutaneous injection rather

than intravenous can allow the patient to receive lower doses (Henderson, 1998 and

[77]. Further, subcutaneous and intravenous administration of epoetin was found to

be equivalent in terms of mean Hb [81] and with doses significantly lower in the

subcutaneous group together with a shorter time to stabilisation, thus being advantageous

in clinical and cost terms. Aggarwal and colleagues found a greater increase in Hb in

the subcutaneous group than the intravenous group [78]; they also state that subcutaneous

injection is more effective [78] and [80].

3.1.2 History of Epoetin Agents

Anaemia was discovered as a serious complication of renal failure by English physician

Dr. Richard Bright in 1836. He also first described the commonsymptoms of

kidney disease in 1836 [82]. The term erythropoietin was established in 1948 for the

erythropoiesis (the process in which red blood cells are produced) stimulating hormone

[83]. In 1977, the human gene for erythropoietin was isolated by Miyake and colleagues

[84], which was later cloned in 1985 by Lin and colleagues [85]. This meant recombinant

human erythropoietin (epoetin) could be manufactured for treatment of anaemia in

chronic renal failure. Eschbach and colleagues undertook the first clinical trial in 1987

investigating the effect of epoetin on anaemia in patients with end stage renal disease [69].

Subsequently, results were reported in a series of publications, indicating that epoetin was

successful in its aim of treating anaemia in end stage renal disease patients [86].

Prior to epoetin agents being available for treatment, approximately 25% of patients with

chronic kidney disease required transfusion of red blood cells on a regular basis [69]. This

exposed the patient to unnecessary risk in terms of undergoing the transfusion and also the

possibility of experiencing severe bacterial infection and sepsis. More common adverse
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Age / Sex group Haemoglobin threshold (g/dL)

Children (0.50 – 4.99 yrs) 11.0

Children (5.00 – 11.99 yrs) 11.5

Children (12.00 – 14.99 yrs) 12.0

Non-pregnant women (> 15.00 yrs) 12.0

Pregnant women 11.0

Men (> 15.00 yrs) 13.0

Table 3.1: Haemoglobin thresholds used to define anaemia [88]

reactions to blood transfusions include fever, pain, tachycardia, and hypotension. Patients

suffering with renal anaemia and not receiving epoetin agents experienced disabling

fatigue and greatly reduced quality of life.

3.1.3 Haemoglobin Guidelines

It is accepted that patients with renal anaemia will experience a lower Hb concentration

than a ‘normal’ healthy population [87], where approximately <12.0 g/dL is considered

anaemic, albeit with caveats dependent on sex, age and gravidness (pregnancy status).

Table 3.1 shows the Hb thresholds for anaemia [?].

Hb should be controlled within certain limits, as both high and low levels increase

susceptibility to adverse health effects. There is conflicting guidance as to whether Hb

should be maintained at an optimum value, above or below a specific value, or within

a particular range [89] [90] [91] [92] [93]. The anticipatedmean Hb concentration for

patients with chronic kidney disease patients is 11.8 g/dL [94], though some authors

suggest a target range of 10.5 – 12.5 g/dL and others 11.0 – 12.0 g/dL. Previous European

best practice advice was that Hb should be maintained above 11.0 g/dL. Table 3.2 shows

published guideline levels on Hb for patients with chronic kidney disease. However,
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Guideline Country Haemoglobin target (g/dL)

British Renal Association UK > 10.0

National Kidney Foundation-Dialysis Outcome Quality Initiative USA 11.0 – 12.0

Canadian Society of Nephrology Canada 11.0 – 12.0

European Best Practice Guidelines Europe > 11.0

Health Care and Financing Administration USA 10.3 – 12.0

Care for Australians with Renal Impairment Australia > 12.0

Table 3.2: Published Guidelines on Haemoglobin targets in patients with chronic kidney

disease

regardless of the various different guidelines, it is not feasible to specify an optimum

range of values [71].

It is highly desirable that a patient’s Hb does not fall too low, as this may lead to cardiac

failure, vascular complications and possible death [66]. Keeping Hb≤ 10.0 g/dL leads to

an increased risk of seizures compared with maintaining>10.0 g/dL.

A generous Hb is also problematic in patients with end-stagerenal disease, since for

these patients Hb above 12.5 g/dL are considered unsafe and may be associated with an

increased risk of hypertension, cardiovascular events anddeath [71]. There are also major

cost implications in reaching and maintaining high Hb levels [90]. A suspected cause of

elevated Hb is that the patient has received too much of the epoetin agent [95].

An alternative view has been suggested that a target range isinappropriate and providing

that patients are well and responding to treatment, then Hb may be maintained at any

‘reasonable’ level (Personal communication - Dr. E.J. Will). For instance the clinician

may attempt to raise a patients Hb from 8g/dL to 12g/dL, when in fact this patient could

attain a reasonable quality of life with a Hb of 8g/dL. It has been shown that there are

adverse consequences of targeting high Hb levels [92] . There would be undue stress for



Chapter 3. Renal Anaemia 39

the patient and unnecessary effort on behalf of the clinician to raise the patients Hb, in

addition to administering a higher dose than necessary thusincurring greater costs.

3.1.4 Haemoglobin Cycling

A related concern for patients, in addition to maintaining Hb within the specified limits,

is to sustain Hb stability. This is beneficial for two reasons: patient health and cost

[96] [97]. A stable dose would be beneficial since this would reduce the overall epoetin

dose administered, which would therefore reduce the cost oftreatment. A fluctuating

dose is more expensive than a stable one due to asymmetry of the dose ladder. If in

addition, a patient’s Hb levels remain stable (and possiblywithin limits) then patient care

is improved.

Hb cycling is a frequent occurrence in patients who receive epoetin as treatment for renal

anaemia, though this is considered dangerous for the patient [98]. A number of reasons

are proposed as to why this phenomenon occurs, such as: a narrow target range of Hb,

the patient’s iron status, and inflexible dose adjustments.Those of particular relevance to

this work are: incorrect dose adjustment and protocols not accounting for an individual

patient’s response.

A possible reason for Hb cycling is that the epoetin dose is not adjusted immediately each

month; it could be between 5 to 12 days or at worst 6 weeks before the adjustment is

made. This means that the patient would receive the wrong dose of epoetin until the dose

is changed. Guidelines state that from administration of the agent the first evidence of a

response is in an increase in reticulocyte count within 10 days, subsequently an increase

in erythrocyte count, followed by an increase in Hb within 2 to 6 weeks [86] [69]. This

response will vary due to patients experiencing intercurrent complications, which will

prolong the production of Hb [99]. If the dose is adjusted monthly and the effect of

epoetin is not seen in the Hb for 6 weeks, then it is possible that cycling occurs since the
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drug has not been given sufficient time to take effect.

3.2 Data

The data used for this analysis were provided from a randomised controlled trial [99]

with the aim of comparing two different types of epoetin agent: Epoetin beta (EB) or

Darbepoetin alpha (DA). The trial initially ran for 9 months, though data collection

was extended for a subsequent 3 months. Patients were selected from a haemodialysis

population with end–stage renal disease at St James University Hospital, Leeds. Patients

were randomly assigned to two groups; Epoetin beta or Darbepoetin alpha. In the original

9 month trial there were 217 patients across the two groups, at the end of this time 162

remained on protocol. There were 151 patients who provided complete data from the

extended trial: with 77 having received EB and 74 having received DA, both injected

subcutaneously on a weekly basis. The groups were balanced according to age, sex and

time on dialysis. These data do not include those patients who dropped out, due to either

mortality or transplant.

Blood samples were collected monthly and the dose of the epoetin agent was adjusted

monthly with the standard dosage ladders using the computerised decision support

system. Including the 3 month extension this gave 13 data points per patient, comprising

an initial baseline value and 12 more from the end of each month of treatment.

The usual approach of managing anaemia was to administer EB on a thrice weekly

basis. However, the interest of the weekly regime governed by this trial was promoted

by the development of the new agent DA. A conversion from EB toDA was in the ratio

200:1 [99]. This poses another clinical question of whetherpatients can be adequately

managed by a weekly regime. The converted values will be usedin this analysis to

allow direct comparison of the agents. The ratio of 200:1 is in accordance with the

manufacturers recommendations within the European Union [99], since this is cost neutral
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under European licensing. The issue of the conversion factor might be influential,

specifically if this conversion is not precise, as the patients in the DA group would not be

receiving the appropriate quantity of the agent, which means that patients would receive

too little or too much of the agent, resulting in the consequences discussed previously.

In fact, the first randomised trial which compared the DA and EB agents based on the

200:1 conversion [99] suggested that there is a reduction indose for the DA group with

an increase in Hb. If this is correct, then this is beneficial to the patient as they reap

the benefits of receiving a lower dose together with their Hb being raised. Conversely,

these patients may simply have been under prescribed. A conversion of 260:1 was also

recommended by the Centers for Medicare and Medicaid Services [100], which means

the patient would receive a higher dose based on this ratio. As the conversion of 200:1

is not a universal gold standard, it may be an inappropriate conversion, but that was the

conversion rate adopted within our data.

3.3 Clinical Aims and Objectives

It is important to identify patients for whom Hb (Hb) is not well controlled, as they are

more likely to be at greater risk of suffering adverse healtheffects than those whose Hb

is stable and under control [98]. The nature of the Hb – epoetin relationship should also

be explored, since this will contribute to the understanding of Hb control. For instance,

if the incorrect relationship is modelled, then one would expect patients to exhibit poorly

controlled Hb.

The initial aim of the trial for which the data were collectedwas to establish whether the

two agents offer comparable control of Hb. Poor control may be identified by Hb cycling;

a commonly occurring phenomenon in patients receiving epoetin therapy, which should

be avoided due to its association with adverse patient outcomes. If Hb cycling is shown

to occur, a strategy will be developed to improve Hb control in patients.
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Summary of clinical aims:

• To identify if Hb cycling occurs in these patients.

• To identify potential sources of Hb cycling.

• To suggest corrections to the computerised decision support system to reduce Hb

cycling.

• To compare the two epoetin agents with regard to control.

• To suggest corrections/ updates for the CDSS to provide a more tailored approach

for patient–specific control.

3.4 Statistical challenges

There are a number of statistical challenges which are posedwith this application. This

section highlights these issues and discusses why they are problematic and how these

issues may be resolved.

3.4.1 Autocorrelation and time lag

It is plausible that there is correlation between Hb measurements within the same

patient due to the longevity of red blood cells and other biological mechanisms. In

statistical terms this is autocorrelation. The process of Hb control with epoetin agents

is dynamic and occurs over a time period which involves multiple doses and multiple Hb

concentration assessments, highlighting that these are correlated repeated measurements

of Hb and epoetin, over the 12 month time frame.

Due to the lifetime of the red blood cells being approximately 100 to 120 days [68],

albeit reduced in patients with renal anaemia, it is plausible that Hb produced at month
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(i) will still be present the following month (i+1) and possibly the next following month

(i+2). Similarly with dose; epoetin administered at month (i) is likely to be present in the

patient’s blood at month (i+1) and also month (i+2). Epoetinis injected subcutaneously

into the muscle and there is a time–lag before it reaches the bone marrow and red blood

cell production is stimulated.

3.4.2 Haemoglobin – epoetin relationship

The relationship between Hb and epoetin is complex; it is anticipated that as dose

increases Hb will increase. This relationship may not be linear. Although progression of

renal disease and intercurrent complications are highly influential on the patients response

to the epoetin dose, so Hb will not respond in the ideal way. Conversely, it could be that

Hb influences the dose due to the process of the CDSS.

A standard linear regression would not be appropriate to model the Hb–epoetin

relationship, as it cannot be assumed that Hb will continue to increase as epoetin dose is

increased. A dose greater than 300 IU/kg is rarely required by patients, as stable Hb can be

maintained with this dose or less [101]. It is therefore plausible that there is a plateauing

of Hb levels for larger doses. Additionally, a dose greater than 300 IU/kg may elevate the

patients Hb too high which would lead to complications associated with a large Hb level.

The rate by which Hb responds to epoetin will vary from patient to patient: in particular

some patients may be more sensitive, where a small dose adjustment achieves a large

increase in Hb; or, a patient may be unresponsive, so a large dose adjustment achieves

a small increase in Hb. The dose–response relationship is thus expected to be nonlinear,

since the dose ladder is asymmetric; as dose steps increase so does the increment between

them. It is not plausible to assume that Hb will continually increase as dose increases; it is

therefore unlikely that the relationship is of a linear or even exponential nature. Cotter et

al. suggested that the Hb-epoetin relationship is S-shaped[102]; this is also implausible

as Hb would not decrease when epoetin is administered.
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Since the CDSS bases current Hb on the dose administered one month previously, this

will be the initial relationship which is investigated. Since clinical knowledge suggests

that the response in Hb may be seen any period between 2 and 6 weeks, these are other

relationships to investigate. The modelling structure should also consider that multiple

measurements are collected for each patient. A modelling structure that accounts for both

the variation between measurements and between patients isnecessary.

3.4.3 Assessment of control

The aim is to model control using statistical methodology and provide a way of

quantifying control, with a view to improving overall patient control.

3.4.4 Assessment of individuals

A key consideration is that control should be assessed on an individual basis. It might

be possible to improve the CDSS by tailoring it to the individual. Statistical techniques

which permit assessment of individuals would provide a useful insight, although using the

full patient history of drug and blood measurements would yield a more powerful model.

A number of authors [98] [71] suggest that it is necessary that treatment is individualised,

as there is an increased risk of mortality and reduction in a patient’s quality of life when

recommendations are based on population guidelines.

Summary of statistical challenges:

• Autocorrelation in successive and subsequent repeated measurements.

• The correct / appropriate model form of the Hb – epoetin relationship.

• Time–lag between administration of epoetin to mean response in Hb.
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• Evaluation of methods to provide suitable models for the assessment control of Hb.

• Individual assessment of patients whilst simultaneously determining the behaviour

of the population.
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Chapter 4

Functional Data Analysis

4.1 Background

Functional data analysis (FDA) is a relatively new statistical methodology, which has

developed rapidly over the last 10 years. Limited material is available on this subject

(particularly at the start of my PhD), although existing applications such as those

presented by Ramsay and Silverman [103] emphasise its greatpotential. It is the

exploitation of this potential within the biomedical systems under consideration that is

the focus of this research. One of the few published applications of FDA in the medical

domain is by Shi and colleagues [104], where the centre of mass of paraplegic patients

(as they stand) is modelled using FDA.

FDA is the analysis of functions or curves, opposed to a largenumber of discrete data

points. Inferences can then be drawn from a dataset of curves. The original format of the

data is not usually in the form of a curve, although intuitively they may be represented as a

function. Methods are therefore required to express the data in a suitable functional form,

such as basis functions and smoothing techniques (these will be discussed in section 4.3).

Autocorrelation amongst repeated measures generates several problems for many
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statistical analyses [1]. As the frequency of measurementsincreases, such that adjacent

measurements become closer in time, their correlation alsoincreases thereby exaggerating

subsequent collinearity problems. Statistical methods, such as multiple regression, which

rely on the independence or near independence of observations, are therefore not always

applicable. When observations are considered as functionsrather than a collection of

correlated points, this issue is circumvented. Indeed, themore frequent the repeated

measurements, the more justified the approach. A useful feature of FDA is that it is

not necessary for the data points to be equally spaced. Afterthe construction of the curve,

the original data points are essentially discarded and analyses are carried out on the fitted

function; though equally spaced measurements makes the fitting of the curves easier.

FDA will enable the analysis of each patient because individual curves will be fitted for

and represent each patient. This still remains a large quantity of data to analyse. It will

also be possible to analyse groups of patients as there are techniques available to combine

the functions.

4.2 General examples

A number of examples are available to facilitate the understanding of the concept of FDA.

One example is where the collection of curves can be averagedto estimate a mean curve.

If the aim of the analysis is to compare two groups then a mean curve may be constructed

for each group (with confidence limits) to determine whetherthe two group averages are

the same. Ramsay and Silverman use mean functions in an example on weather records

[105]. Temperatures are recorded over the period of one yearfrom 35 weather stations

across the globe. Fourier series basis functions are used tofit curves to the raw data

as they exhibit sinusoidal properties (more details will begiven in section 4.3.3). Mean

functions are fitted essentially to summarise the curves into five regional groups, as well

as an overall mean function (more details will be given in section 4.4). Climatologists can
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then use these summaries to talk about typical weather patterns and about variability in

these patterns over time.

The derivatives of a function are useful in investigating growth data; e.g. when examining

height or weight of an individual in the lifecourse context,as one may be interested in the

rate of change of weight or height (first derivative) or the intensity of growth spurts and

their timing (second derivative). Data collection in this field is often complex and time

consuming as subjects need to be followed up for long periodsof their lives, though these

tend to be good quality datasets and allow important questions to be addressed, such as; is

birth weight associated with whether or not a person develops type 2 diabetes at age 30?

More details will be given on these concepts in later sections in terms of greater statistical

theory and how ideas have been transferred to the biomedicalsystems.

4.3 Basis Functions

It is important that the functions are smooth for certain analyses. In order to estimate the

function, smoothing techniques are required. A wide range of basis functions are available

to fit smooth functions: for example, polynomial bases, B-splines, P-splines, Fourier

series or Wavelets. An informed choice should be made based on knowledge of the data.

Smooth functions are defined mathematically as being continuous and differentiable,

perhaps a number of times. Constraints can be imposed to ensure the fitted functions

have continuous derivatives of a given order.

It is a key step to choose the most appropriate basis functionfor the data. It is important

to represent the data so that key features are highlighted and hence can be efficiently and

effectively analysed. For example, if the data are periodicand have sinusoidal features

then a Fourier series basis would be most suitable. A waveletbasis copes well with

discontinuous or rapid changes in behaviour. The data in thebiomedical systems of

interest do not exhibit such behaviour, therefore these bases are not applicable. The basis



Chapter 4. Functional Data Analysis 49

functions to be considered are B-splines and polynomial regression functions in the form

of loess curves; the reasoning behind these choices is discussed in the following sections.

4.3.1 Loess

Loess was introduced by Cleveland in 1979 [106] and later developed in 1988 [107]. It

is an extension of an existing methodology where local polynomials have been used to

smooth time series plots, with equally spaced data points [108]. Simple polynomials are

fitted to local subsets of data, and this process is then repeated across the full range, to

construct a smooth function known as a loess curve. The loesscurve shows the dependent

variable as a smooth function of the independent variable. An attractive feature of loess

is its simplicity. Usually only lower-order local polynomials are fitted; the highest order

polynomial often fitted is degree two (local quadratic polynomials). The theory of loess

is that a function can be approximated by low order polynomials and that simple models

will be sufficient to fit the data, which make it ideal as an exploratory technique. Further,

no specification of a global function is required. Hence loess is a flexible technique.

A smoothing parameter (α) controls the flexibility of function. The larger the smoothing

parameter, the smoother the function. Smaller values ofα will fit close to the data. In

loess analysis, too small a value is not desirable as this will capture too much random

error in the data, though the aim of loess is to capture the underlying smooth relationship.

The smoothing parameter is determined by the user and the choice is made depending on

how smooth a function is desired. A choice of smoothing parameter is usually between

λ+1
n

and 1, whereλ is the degree of the local polynomial andn is the sample size of the

data to which the function is being fit. Note that in R the default value is 0.75.

In order to fit a loess curve, the subsets (known as the neighbourhood) for which

the local polynomials are fitted must be specified. They are determined by a nearest

neighbours algorithm [106]. Loess also incorporates potential autocorrelation amongst
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the explanatory variables, in terms of a weight function. This is based upon the theory

that measurements close together are more related than those farther apart. Most weight

is given to the points closest to the point of estimation (since these points are likely to be

most correlated), with less weight being given to those points farther away. This suggests

that loess would be a useful technique when data are unequally spaced, such as growth

data.

An advantage of the loess methodology is that it provides an exploratory graphical

tool, which will give insight to the data, and hence enable aninformed decision to be

made about which other statistical methodologies may be applied. Furthermore, as no

specification of the function is required prior to the analysis, it means that the true features

of the data will be revealed, as opposed to a method where the function is predefined

(such as a sine wave or a straight line relationship). This means that a loess curve will

reveal a nonlinear and linear relationship between the dependent and explanatory variable.

The only features to consider prior to fitting the loess curveis the degree and smoothing

parameter, this is an advantage as it requires the user to understand their data rather than

fitting functions without prior knowledge of the data.

In terms of disadvantages of the methodology, loess is proneto the effects of outliers in

the data, though this is the case with other least squares methodology. Loess also requires

large densely sampled data to get the most of the methodology, therefore loess should be

chosen as an analysis technique when this is a feature of the data, rather than with small

samples of data where measurements are uncorrelated. Once fitted, it is not possible to

represent the loess curve as a mathematical formula, although if loess is used simply to

display the data graphically, then this drawback is minor.
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4.3.2 B-splines

B-splines are commonly used in FDA due to their flexibility, ability to capture long-

term trend, and ability to control the shape and smoothness of the function [109]. Fast

computation of the basis function is an attractive feature that can be achieved with B-

splines. B-splines can be implemented using the statistical software R, and these routines

have been validated by many users. Derivatives of the smoothfunction can also be

calculated, which facilitates further analysis.

A B-spline curveC(t) is a linear combination of B-spline basis curvesNi,p(t). B-spline

basis functions are illustrated in figure 4.1 and defined as:

• Ni,0(t) = {1 if ti ≤ t < ti+1 andti < ti+1

• Ni,0(t) = {0 Otherwise

• Ni,p(t) = t−ti
ti+p−ti

Ni,p−1(t) +
ti+p+1−t

ti+p+1−ti+1
Ni+1,p−1(t)

Basis functions are calculated recursively and are of degree p (order= p + 1). The B-

spline curveC(t) is defined as:

C(t) =

n
∑

i=0

PiNi,p(t)

which is formed piecewise, joining smoothly over a vector ofknotsT = {t0, t1, ..., tm}.

The parametersP0, ..., Pn are known as then + 1 control points. The degree is thus

p = m − n − 1.

In general terms, for a B-spline of degreeq:

• it consists ofq + 1 (i.e m) polynomial segments

• each polynomial segment is of degreeq
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Figure 4.1: Examples of B-spline basis functions. Top: Uniform B-spline of degree 1.

Bottom: Uniform B-spline of degree 2
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• the polynomial segments join atq inner knots (discussed in the following section)

and

• the total number of knots isq + 2.

Knots

The knots must be specified before the B-spline is calculated; from there calculation is

done recursively. The number and position of knots is one of the important features to

consider when fitting such curves. Note also that the functional basis is truncated: for B-

splines this might be at order 4, for example, in order to fit piecewise cubic polynomials.

The order of truncation is a further feature to be specified infunctional fitting.

The spacing between the knots helps to define the shape of the basis function. Where

knots are equidistant the B-spline is uniform, otherwise non–uniform. Equidistant knots,

however, only allow limited control over smoothness (discussed in the following section)

and the fit of the curve. If the knots are positioned close together, then the curve moves

close to the corresponding control points, and if the knots are farther apart the curve moves

away from the control points. For example, when investigating long-term or seasonal

trend the placement of knots is important: when the knots areclose together this allows

examination of seasonal trend and knots farther apart to estimate long and medium term

trend. A further issue is the choice of the number of knots; too few leads to underfitting

and too many leads to overfitting. In a life-course example, an ideal scenario for the

placement of knots would be at the ages where each measurement is recorded, as it is

often the case that these data are unbalanced as more measurements are taken in the early

stages of a persons life and less frequently in the later stages, with the first and last knots

placed at the first and last ages. This would capture the rapidgrowth that occurs in this

early period and the steadying off of growth that occurs after puberty. On the other hand,

this may lead to overfitting, if, for example, measurements are recorded monthly for the
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first two years and yearly thereafter.

Kooperberg and Stone [110] and Friedman and Silverman [111]have proposed schemes

for the optimum number and position of the knots. They suggested that the knots should

be placed either at or near selected data points, with the first and last knots at the first

and last data points. In addition, the middle knots should beequally spaced. This seems

a reasonable proposal. However, if the knots are placed at each data point then this is

likely to overfit the data, which would ignore the general andoverall trend. It is important

that the knots are placed reasonably close to the data points, as otherwise features of the

individual curves would not be captured. Knots should be chosen and placed in context of

the data, which may not be achievable if relying solely on a computer algorithm to make

the decision.

Friedman and Silverman [111] use an algorithm which uses thedata to automatically

select the number and position of the knots. Focus is placed on accurate estimation of the

curve and not its derivatives. The strategy for knot placement is stepwise. The first knot is

placed at the position which yields the best corresponding piecewise linear fit. Thereafter

each additional knot is placed at the location which gives the best piecewise linear fit,

which includes the previously placed knots. Knots are addedin this manner until some

maximum number is reached. At each eligible knot location a linear least squares fit must

be performed to obtain the corresponding piecewise linear smooth curveC(t).

Smoothness

Besides the order of the functional basis, smoothness is ensured by imposing a roughness

penalty on either the fitted function or a derivative of the fitted function. This is most

clearly expressed mathematically. Typically, the roughness penalty is defined with a

squared norm, so that least-squares fitting is augmented as follows:



Chapter 4. Functional Data Analysis 55

min
k

∑

j=1

{yj −
m

∑

i=1

PiNi,p(t)}2 + α

∫ xmax

xmin

{dk

dt

m
∑

i=1

PiNi,p(t)}2dt

whereα ≥ 0 is the roughness penalty parameter,k is the number of data points [112].

Numerical example

Suppose we have a knot vectorT = {0, 0.5, 1, 1.5, 2}, thusm = 4 andt0 = 0, t1 = 0.5,

t2 = 1, t3 = 1.5 andt4 = 2. The basis functions of degree 0, 1 and 2 referring to these

parameters have been calculated by hand to illustrate how the functions are fitted.

The basis functions of degree 0,Ni,0(t) are quite simple (see table 4.1); they only exist on

the range they are defined, and elsewhere they are equal to zero.

Basis Functions Range Equation

N0,0(t) [0, 0.5) 1

N1,0(t) [0.5, 1) 1

N2,0(t) [1, 1.5) 1

N3,0(t) [1.5, 2) 1

Table 4.1: Basis functions of degree 0

Table 4.2 shows the basis functions of degree 1 and table 4.3 shows the basis functions of

degree 2. An illustration is given below of howN0,1(t) is fitted (basis function of degree

1). First note that:

N0,1(t) =
t − t0
t1 − t0

N0,0(t) +
t2 − t

t2 − t1
N1,0(t)

with N0,0(t) defined over the range [0, 0.5) andN0,1(t)defined over the range [0.5,1).

Thus:

N0,1(t) =
t − 0

0.5 − 0
(1) +

1 − t

1 − 0.5
(1)

which yields:

N0,1(t) = 2t + 2(1 − t)
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Basis Functions Range Equation

N0,1(t) [0, 0.5) 2t

N0,1(t) [0.5, 1) 2(1 − t)

N1,1(t) [0.5, 1) 2t − 1

N1,1(t) [1, 1.5) 3 − 2t

N2,1(t) [1, 1.5) 2(t − 1)

N2,1(t) [1.5, 2) 2(2 − t)

Table 4.2: Basis functions of degree 1

.

Basis Functions Range Equation

N0,2(t) [0, 0.5) 2t2

N0,2(t) [0.5, 1) −1.5 + 6t − 4t2

N0,2(t) [1, 1.5) 4.5 − 6t + 2t2

N1,2(t) [0.5, 1) 0.5 − 2t + 2t2

N1,2(t) [1, 1.5) −5.5 + 10t − 4t2

N1,2(t) [1.5, 2) 2(2 − t)2

Table 4.3: Basis functions of degree 2

The basis functions that have been calculated can be fitted toa function, for example

sin(t2). This is a non-periodic function so B-splines may be used as abasis. Figure 4.2,

4.3 and 4.4 show the basis functions of degree 1, 2 and 3 (not calculated in the above

tables) fitted to thesin(t2) function. It was not possible to fit the basis of degree 0 as

this was unstable. Figure 4.2 is an impractical representation of sin(t2) as the piecewise

curves fitted at the knots are linear, additionally the function is not smooth and does not

pass through all the data points. Figure 4.3 is a better representation of the function

sin(t2) as it passes through all data points, except one where it almost passes through.
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The basis function is smooth and captures the curvature of the true function. Figure 4.4

shows the basis function of degree 3, which is very similar tothe basis function of degree

2 but now passes through all data points, which means it is a better representation of the

true functionsin(t2). Note that the B-spline basis function of degree 3 (order 4) seems to

fit the functionsin(t2) almost perfectly, although this has been fitted to a small range of

data and outside of the range the B-spline may be erratic and not fit so well.

Figure 4.2: B-spline basis function order 2 fitted tosin(t2)

4.3.3 Other basis functions

As mentioned previously, P-splines, Wavelets, and Fourierseries are other frequent

choices of basis functions, though will not be used in this thesis. Features of the B-

splines and loess curves make them the most suitable choice for the data from the
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Figure 4.3: B-spline basis function order 3 fitted tosin(t2)
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Figure 4.4: B-spline basis function order 4 fitted tosin(t2)
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biomedical systems; similarly features of Fourier series,Wavelets and P-splines make

them an inappropriate choice. Fourier series are an excellent choice if the data are

periodic and have sinusoidal features [113]. If it is not clear prior to the analysis whether

the data exhibit such features, it may be implied that the sinusoidal nature of the data

occurs due to the inherent nature of the function. Fourier series are the traditional basis of

choice for long time series. Fourier series would be most useful, for example, to model

temperature over a period of years, as it is clear that weather trends tend to be cyclical

from year to year. Within the Fourier series basis function it is possible to specify the

length of the period, thus with weather data this would be 365.25 days. This type of

basis is most appropriately used with a stable function, where there are no strong local

features. In particular Fourier series are inappropriate for functions that are discontinuous

(or discontinuity in lower order derivatives). A wavelet basis is most suitable when the

data is discontinuous or exhibits rapid changes in behaviour. If the data are on a bounded

interval then wavelet bases deal well with this feature. In computational terms, Fourier

series and wavelets are fast and efficient, though produce complex harmonics. The use of

wavelet bases is relatively recent and experience of them islimited.

P-splines (polynomial splines) were developed from the bases that did not accommodate

local features, hence P-splines have the capacity to capture changing local behaviour. P-

splines are a combination of splines and penalties on the estimated spline coefficients

[112]. B-splines are better used in practice than P-splinesas the main difference between

the two is that B-splines are zero everywhere except over a finite (specified) interval [109].

Another difference is that the knots used with a P-spline arepredetermined; some users

see this as advantage over B-splines where the choice of knots is more arbitrary. On the

other hand, some may see this as meaning that the B-spline approach is more flexible

since unneeded knots may be freely eliminated, and vice-versa.
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4.3.4 Summary of basis functions

The success of basis function is reliant on the appropriate specification, congruent to the

application, of the following parameters:

• the functional basis

• the order of truncation of the basis

• the number of knots

• the placement of knots

• the order of the roughness penalty

• the size of the roughness penalty parameterα.

4.4 Mean functions

The mean function is a simple analogue of the classical mean for univariate data. It can

be calculated by averaging the functions pointwise across the replications. Similarly with

the variance, and hence confidence intervals.

In some examples, smoothing of the mean function will be required, in addition to the

already smooth functions. Whether the mean requires additional smoothing will depend

on whether it is deemed that the function has high local variability. If it is necessary to

smooth the mean function further, then the roughness penalty approach used to smooth

the original curve will be applied. The best choice of smoothing parameter is often made

subjectively, as this ensures that the data being analysed are understood.
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4.5 Phase plots

Phase plots were discussed by Hirsch and Smale [114], who considered phase portraits

as modelling the dynamics of a system. The path of a ‘particle’ over time is mapped in a

2–dimensional plane. The particle then creates a trajectory, which represents the dynamic

system. Dynamic systems may also be constructed from the differential of the trajectory.

Phase plots have been adapted by Ramsay and Silverman [103],whereby they assessed

the dynamics and energy in an econometrics system. They considered the control of

supply and demand cycles within key periods in modern history, such as The Great

Depression and different periods around World War II. Phaseplots are defined as plots

of the second derivative (acceleration of the function) versus the first derivative (velocity

of the function). This means that the function needs to be of arelatively high order as the

phase plots require the third derivative of the curve to be smooth, to ensure the second

derivative is also smooth. Due to this complexity it will be investigated whether a plot

of the first derivative against the value of the observation could be used to model the

dynamics within a system. If this were possible then the function could be of a lower

order.

Plotting pairs of derivatives is informative as the derivatives expose effects that are not

seen in the original functions. The first derivative represents the rate of change of the

process whilst the second derivative represents the instantaneous curvature of the process.

4.5.1 Application of phase plots for the renal anaemia system

Phase plots will be used within the renal anaemia system to determine whether it is

possible to model control of Hb. The notion is that it will reveal dynamics of control

of Hb in the patients. Phase plots will either be defined here as plots of the first derivative

of the Hb function (units of g/dl/month) plotted against Hb values, or the second derivative
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of the Hb function vs. the first derivative of the Hb function.The first derivative is key in

assessing control, as this is the rate of change of trajectory and this considers the frequency

of changes in Hb along with the nature of the change.

It is helpful to consider phase plots with an analogy. A pendulum swings with greatest

velocity at the lowest point of its travel; when its kinetic energy is largest. At the point

the pendulum is at its lowest position, its potential energyis lowest. Note that the position

of the pendulum is analogous to the level of Hb and the velocity of the pendulum is

analogous to the rate of change of the Hb trajectory. At either end of its swing, the

pendulum velocity is instantaneously zero, and its kineticenergy therefore takes its lowest

value at zero. At these points, at the top of the arc, the potential energy is highest since

the pendulum is at its highest elevation. Thus, during its swing the pendulum exchanges

energy from kinetic to potential, and back again. Where the pendulum point velocity

and position are related graphically in a ‘phase plot; such asequence of energy exchange

corresponds to something like a circle, with a centre of minimum potential energy [114].

At the start, these circles are large. As friction acts, the pendulum makes smaller swings

and the total energy declines; the circle becomes a spiral and progresses inwards to the

centre. A system displaying large circles in a phase plot canbe considered to have a lot of

overall ‘energy’. In terms of the analogy of Hb trajectory, alarge circle reflects little/ poor

control (wasted ‘energy’), while small phase circles correspond to less overall ‘energy’,

reflecting close/ good Hb control. Such circles and spirals in the control of renal anaemia

are centred on the optimum Hb value. The initial point will benoted from which patient

progress is followed over time.

4.6 Implementation

Functional data analysis is available in R, S-plus and Matlab. As R [115] is available

freely for download and usage, as are the FDA libraries, thiswas motivation for using this
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software. A disadvantage of using the software R occurred when the FDA library was

updated in 2008, whereby the code to fit the basis functions changed. This subsequently

meant that the original code written for analysis of the datain this thesis required updating.

This is a common feature of R; that updates often cause minor problems with the code

already written.

Ramsay and Silverman wrote two books which are very useful sources for FDA. These

were a major factor in the learning and implementation of FDA, as they also wrote the

library for use in R. No training courses were able for FDA, although I attended a number

of presentations on FDA at the International Biometric Conference in Montreal, 2006,

where I was able to discuss FDA with experts in the field. De Boor [109] and Eilers [112]

also provide useful sources for B-splines.

4.7 Aims and objectives

The aim of this section of the thesis is to determine whether FDA can contribute

knowledge, insight and understanding to the chosen biomedical systems. FDA will be

used as an exploratory tool with the CA system; by fitting loess curves to the data to

gain an understanding of the relationship between cerebralblood flow and arterial blood

pressure. For the renal system, smooth functions will be fitted to the data. The fitting of

smooth functions will lead to derivatives of the curves being taken and the construction

of phase plots. The results of this section will have a stronggraphical aspect, which is

advantageous as it provides insights into key aspects of both cerebral autoregulation and

the control of renal anaemia. The more specific aims related to the systems are discussed

in the following sections.
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4.7.1 Cerebral Autoregulation

The aim within the CA system is to investigate if FDA, in the form of loess curves, will

reveal the form of the relationship between blood flow and blood pressure. Insight may be

gained about CA by considering CBF over a range of ABP, which is the usual approach

for assessing CA. There is already a preconceived idea of therelationship, in the form of

the CA curve [29], although assessment of CA is being made during a surgical procedure,

for which the CBF–ABP relationship is unknown. This highlights the advantage of few

assumptions being made about the underlying function of thedata, in the construction of

loess curves. The performance of loess will be tested by fitting a loess curve to a dataset

[116] for which the ideal autoregulation curve is known to fit, to determine whether the

ideal CA curve will be revealed if in fact present. Alternatively, the dependent variable

(CBF) could be considered as a function over time, which would indicate the behaviour

of CBF throughout the surgical procedure.

4.7.2 Renal Anaemia

It is noted that Hb levels for an individual may oscillate sometimes over a long time

period. This at first might suggest the use of Fourier series as a functional basis. There is

the possibility, however, that oscillations lack periodicity. More importantly it is necessary

to demonstrate that the oscillatory behaviour arises from the patient response and is not

induced by the choice of functional basis.

The aim within the renal anaemia system is to investigate if the fitting of smooth functions

to patient Hb trajectories provides an insightful summary of patient response under the

protocol supported by the CDSS for administration of epoetin. For these data it is

reasonable to assume that Hb varies smoothly over time. In many stable patients, Hb has

been shown to follow a smooth periodicity in association with epoetin dose changes [98].

Thus, fitting smooth B-spline curves to Hb measurements overtime, for each patient, will
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reveal how Hb varies throughout the course of treatment and provide understanding of

patient response. The curves may also be useful in identifying if a patient’s Hb is at the

optimum level (11.8 g/dL) or within the target range (10.5–12.5 g/dL). It seems that this

methodology will reveal many interesting features about the data, such as whether Hb is

stable around the target, or exhibits the other extreme where Hb is oscillating off target.

The knots will be carefully chosen so the curves are sufficiently flexible and fit close

to the data points. The order and smoothing parameters will also be selected to ensure

derivatives of the curves are smooth. Each function will be inspected to ensure they fit the

data well.

The fitting of phase plots will allow for further extension ofanalysing control; something

that has not been previously exploited in the literature.

A mean function with a 68% confidence interval (CI) will be calculated for Hb over

time, for each of the two epoetin agents. This will enable comparison of the two agents

and hence allow the question to be answered of whether the twoagents are statistically

significantly different in managing Hb. This is an extensionof the idea used by [99] ,

though instead of calculating a mean and CI at the single monthly time points, the mean

function and its CI will be continuous across the 12 month period, allowing for a more

comprehensive comparison of the agents, as it will be seen how Hb varies throughout the

year, as opposed to just at monthly intervals. The 68% confidence limits are the region

of the graph where the CI trajectory is one standard error either side of the relevant mean

curve. Where the confidence bands do not overlap, the two meancurves will be separated

by ‘at least two standard errors’, which will indicate wherethe mean trajectories are

significantly different from one another at the 5% – level.
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4.7.3 Statistical Issues

FDA has previously been used where many measurements have been collected; for

example, in the application by Shi [104] thousands of measurements were collected. This

raises the question, therefore, as to whether 13 measurements per individual (as in the

renal anaemia system) is enough to construct the function robustly and to apply the FDA

techniques. If the data are particularly noisy then a smoothfunctional representation

would be beneficial. If the function is correctly fitted, i.e with appropriately specified

knots and smoothing parameters, this would enable the underlying relationship (clear

signal) to be revealed (from the noise). This would highlight whether the patients are

reasonably similar across the patient group or whether theyall exhibit different behaviours

(this will be useful in checking the assumption for multilevel modelling that individuals

share characteristics but are not the same or totally different - see Chapter 5).

The statistical aims and objectives of this work are:

• To represent the data as smooth functions using appropriatebasis functions.

• To organise the data so FDA techniques may be applied.

• To highlight important features of the data through graphical presentation.

• To investigate and model variability in the data.

4.8 Summary

The handling of functional data is similar to that of ‘usual’data, though each datum

is a continuous function. The aim of this work is to apply a variety of functional data

techniques for analysis of the data from the two biomedical systems, to determine whether

the methodology can contribute knowledge and insight to themedical domain. This
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will be achieved by firstly constructing curves from the original repeated measurements

using the appropriate basis functions. The data will then beanalysed using FDA, such as

constructing mean functions and taking derivatives of the curves.

The fitting of smooth curves to somewhat noisy data will allowthe underlying relationship

between two variables to be revealed. The expectation that the data in these biomedical

systems are autocorrelated greatly justifies the FDA approach, as the smooth curve will

be a better representation of the raw data than the data itself.
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Chapter 5

Multilevel Modelling

5.1 Statistical aims and objectives

Multilevel modelling (MLM) is used in this thesis to illustrate that the statistical technique

can provide distinct information about the two biomedical systems. MLM will be used to

reveal different aspects about the applications compared to the FDA approach.

The applications require additional complexities other than fitting a simple multilevel

model in order to represent the data suitably. General aspects of MLM will be discussed

initially, with particular focus on the relevant aspects for the two applications. Discussion

will then follow into how and why MLM will be applied in this thesis.

5.2 Background

Multilevel modelling is a powerful statistical technique,which is essentially an extension

of ordinary linear regression modelling, though allows formore flexibility and complex

data structures to be modelled. Multilevel analysis is usedfor data–sets with a clustered

(hierarchical) structure differentiating it from the many’traditional’ statistical techniques
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which make the assumption of independence. The hierarchical nature of the data is often

viewed as a nuisance, however MLM embraces this complexity and allows additional

features of the data to be exploited.

The term ’hierarchical linear model’ was introduced by Lindley and Smith [117], a term

which is used interchangeably with MLM. Early uses of MLM arefound in the field

of education [118] [119], where it continues to be used frequently. The structure of the

education system lends itself to be analysed using MLM; for example, pupils (observation

at lowest leveli) are clustered within classes (levelj), which in turn are clustered within

schools (levelk), which in turn are clustered within local education authorities (highest

level l). More recently, MLM has been used within medical [120] and dental applications

[121]. In dental research; sites around a tooth (leveli), are clustered within teeth (level

j), which are clustered within patients (mouths) (levelk).

In medical research an obvious two level hierarchical structure arises, whereby patients

are nested within hospitals. More complex data structures are also seen, as it is often

the case that repeated measurements are collected on patients, also known as longitudinal

data. For instance, measurements may be collected repeatedly over a relatively short

time period; such as throughout a surgical procedure. Conversely, measurements may be

collected over a number of weeks or months whilst patients are on a course of treatment

and undergoing regular monitoring. Repeated measurementsmaybe considered as the

lowest level of the hierarchy (leveli), which are clustered within patients (levelj).

Within the MLM framework, individuals are viewed as being similar apart fromrandom

variation andfixed measurable differences; note that MLM is also known as fixed and

random effects modelling. This is a reasonable assumption to make, as it is likely that

patients / individuals are sampled from a population who share similar attributes, i.e.

patients undergoing a certain operation or patients with a specific disease. Within these

groups it would not be plausible to assume that all patients would respond differently, or

exactly the same; hence the assumption that patients are ’similar’ is a balance between the
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extreme views.

Random and fixed effects account for the differences which occur between patients. The

fixed effects represent the average behaviour of the individuals in the sample, which are

included in the model as mean value coefficients. The random effects allow for variation

around the mean value to be modelled, and these are included in the model as either

variance (e.g. in MLwiN) or standard error terms (e.g. in R).The advantage of fixed and

random effects is that both population and individual characteristics can be modelled.

Due to the clustered nature of the data there is complexity inthe structure of the variance.

MLM allows for the total variance to be partitioned into a separate variance for each level.

Considering the education example, one may assume that there is variation between the

pupils in the class (i.e. within-class variation) and also between classes in the school

(within-school variation). Accounting for the variation amongst individuals through

random intercepts in the MLM frame work is much more parsimonious than fittingn− 1

dummy variables in a standard regression model.

Within a generalised hierarchical linear model, the simplest structure for a MLM consists

of only random intercepts, i.e. the relationship between the dependent and independent

variable and all covariates remain fixed but the model intercepts may vary for each

level in the model. For example, in the medical scenario thismay represent a different

intercept for each patient. Additional complexity is achieved to account for the covariate

relationships, i.e. the relationship between the dependent and independent (or covariates)

variables may differ. Thus:

• The randomintercept accounts for the differences between baseline values.

• The randomslope accounts for differences in the relationship between the

dependent variables and covariates; and this may occur at any level of the hierarchy.
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5.3 A two-level model

By means of understanding the concept, the methodological principle of MLM for a two-

level model is illustrated. Denote the dependent variable to bey and the covariate with

random slopex1, and all other covariatesx2, ..., xN (m = 2...N)

yij = β0ij + β1jxij +
N

∑

m=2

βmxmij

where:β0ij = β0 + e0ij + u0j is the intercept term,β1j = β1 + u1j is the regression slope

for x1, andxmij are additional covariates with related parametersβm.

The intercept term can be divided such that:β0 is the fixed (mean) intercept;e0ij is

the random intercept variation at level–1, wheree0ij ∼ N(0, σ2
e0) andσ2

e0 is the level1

variance;u0j is the random intercept variation at level–2, whereu0j ∼ N(0, σ2
u0) andσ2

u0

is the level2 variance.

Similarly the regression slope forx1 can be divided such that:β1 is the fixed slope, and

u1j is the random slope variation at level2, whereu1j ∼ N(0, σ2
u1) andσ2

u1 is the slope

variance at level2.

Note thatσuo1 as the covariance between the random intercept (u0j) and the random slope

(u1j).

5.4 Considerations and assumptions of multilevel

modelling

As with all statistical models, there are a number of key assumptions to consider with

MLM. Certain assumptions for MLM are the same as for ordinarylinear regression,

although MLM has more flexibility as it allows some of the assumptions to be relaxed



Chapter 5. Multilevel Modelling 73

and modelled explicitly. It is vital to check the assumptions: if they are not upheld there

is likely to be bias in the estimated coefficients. Moreover,any conclusions drawn from

the model will be erroneous. The assumptions and considerations for MLM are stated

below:

• Hierarchy : By failing to recognize that there is a hierarchical structure in the

data; i.e. assuming that the observations are independent,the standard errors

of regression coefficients will be underestimated, leadingto an overstatement of

statistical significance, in particular the coefficients atthe highest level will be most

affected.

• The Structure of the model is of particular importance, as it is essential that the

fixed and random parts of the model are correctly specified. This feature is not

easy to ’test’ as the model must make both clinical and statistical sense. The

model should be constructed using prior knowledge of the data and specific clinical

domain. The specification of the model is of importance to thetwo applications in

this thesis and will therefore be discussed in detail in later sections.

• Homoskedasticity is where residual variance is constant at each level of the

hierarchy, which is assumed. This assumption maybe relaxedand replaced by

heteroskedasticity, where the variance will depend on an explanatory variable.

If homoskedasticity is assumed where the variance is reallyheteroskedastic, the

coefficients for the variance (and hence standard errors) will be underestimated. A

plot of residuals vs. fitted values is often used to determinewhether there is constant

variance. Homoskedasticity and heteroskedasticity are illustrated in figures 5.1 and

5.2 respectively.

• Independenceof the residuals at each level of the hierarchy is assumed. This

assumption will be considered further in section 5.5, in particular the implications

when this assumption cannot be upheld and the lowest level residuals are correlated.
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Solutions will be suggested as to how the issue may be successfully resolved.

Note that this assumption is different from assuming that within a MLM the

measurements within an individual are not independent.

• Normality of random parameters and residuals at each level. I.e. the random

intercepts are assumed to be normally distributed, with zero mean, independent

and identically-distributed.

The assumption for independence of the lowest level residuals is often false when

modelling longitudinal data, due to the nature of the data and measurement collection.

Checking for correlated residuals is often overlooked as the procedure is more complex

than producing simple graphical plots of the residuals, which enables homoskedasticity

and normality to be assessed.

Figure 5.1: Figure showing plot of residuals vs. fitted values to illustrate

homoskedasticity, where residual variation is constant for the range of data.
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Figure 5.2: Figure showing plot of residuals vs fitted valuesto illustrate

heteroskedasticity, where variation increases as the datavalues increase.

5.5 Autocorrelated residuals

In ordinary least squares regression (a basic single level modelyt = α+βxt+ǫt) the within

group residualsǫt are assumed to be independent. This assumption can be relaxed in the

MLM framework by incorporating a correlation structure forthe residuals to account for

dependency amongst observations. In particular, serial correlation structures are available

to account for dependency in time series data, where data areobserved sequentially over

time.

As the residuals are a linear combination of the predictors,it is possible that the residuals

will be serially correlated if one of the dependent or independent variables is serially

correlated. Correlation in the error terms suggests that there is additional explanatory

information in the data that has not been exploited, rather than a model that is specified

incorrectly. When observations are collected on an individual close together in time (or a



Chapter 5. Multilevel Modelling 76

natural sequential order), they will have similar departure from the underlying regression

line which means that the residuals will be positively correlated; this correlation is referred

to as autocorrelation.

Autoregressive models are particularly useful as the assumption can be made that the

correlation between nearby measurements is stronger than measurements farther apart. In

Autoregressive models, the distance between the residualsis known as the lag, and there

will be stronger correlation between measurements at smallvalued lags compared with

those at larger lags. Autoregressive models for the error structure express the current error

ǫt, at current timet, as a linear combination of previous residuals plus a homoskedastic

white noise term (defined here as:Zt, whereZt is normally distributed with mean 0 ).

ǫt = φ1ǫt−1 + ... + φpǫt−p + Zt (5.1)

Note thatp refers to the number of past residuals to be included in the error structure

model. The order of the autoregressive model is of orderp, denotedAR(p), which

includesp correlation parameters:φ = (φ1, ..., φp). Thus, a first order autoregressive

model (AR(1)) of the errors is denoted:ǫt = φ1ǫt−1 +Zt, where−1 ≤ φ1 ≤ 1. AR(1) is a

simple and effective autoregressive model. The single correlation coefficientφ1 represents

the correlation between observations one lag apart.

5.5.1 Diagnostics for autocorrelation

When assessing whether autocorrelation is present in the model residuals, it is useful to

consider diagnostic plots of the normalised residuals; in particular the plot of the empirical

autocorrelation function (ACF). Normalised residuals aredefined as:

ri = σ̂−1(Λ̂
−1/2
i )T (yi − ŷi).
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Whereσ̂2Λi denotes the variance-covariance matrix for thei within group errors. If the

within-group variance–covariance model is correct, the normalised residuals should be

approximately distributed as independent random vectors.The Durbin-Watson statistic

[122] tests for serial correlation amongst residuals, although from this test it is impossible

to determine the nature of the correlation, for instance if stationarity or seasonality is

present.

The ACF at lagl is defined as:

p̂(l) =

∑M
j=1

∑nj−l

i=1 rijri(j+l)/N(l)
∑M

j=1

∑nj−l

i=1 r2
ij/N(0)

(5.2)

Whererij are the residuals from a fitted MLM, withσ2
ij = V ar(ǫij), andj = 1, . . . , M

observations at the uppermost level (i.e. patients) andi = 1, . . . , nj repeated observations

(for patientj).

The ACF is essentially a plot of the vector of correlation parametersφ = (φ1, ..., φp) , with

a vertical bar representing each coefficient [3]. Critical bounds for the autocorrelations are

usually plotted to denote correlations significantly different from zero. Approximate 95%

bounds are± 2
√

N
, whereN is the number of observations [123]. The autocorrelations

which extend beyond the limits are deemed statistically significant and signify that

autocorrelation is present in the model at the time lag wherea significant correlation

coefficient occurs. A feature to be aware of is a correlation coefficient that is just

significant or significant autocorrelation occurs at ‘arbitrary’ time lags then it may be

that the correlation parameters are actually independent.Autocorrelation at larger lags is

also less reliable as these are estimated with fewer residual pairs.

From the autocorrelation function it is possible to identify the specific correlation structure

which is needed. For a first order process (AR(1)), the ACF decreases exponentially

[123]. For higher order autoregressive processes the ACF may be a mixture of damped

exponential or sinusoidal functions [3]. Figure 5.3 is usedto illustrate the ACF for a
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AR(1) process, i.e. when the residuals one lag apart are correlated.
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Figure 5.3: Autocorrelation function illustrating an AR(1) process. The dotted blue lines

represent the 95 % confidence limits.

5.6 Assessment of model fit

Assessing the fitted model is important to ensure the correctand appropriate relationship

between the outcome and explanatory variables is being modelled, as well as determining

whether a correlation structure is needed for the residualsand if it is correct. There are

many ways to do this, using numerous statistics constructedby numerous statisticians

over the years. The models in this thesis will be assessed based on a number of

factors, including Akaike’s information criterion (AIC) and likelihood ratio tests (LRT).

In addition to these numerical statistics, graphical summaries will also be used as they

are a particularly effective way to assess model fit and should be examined routinely. The

interpretability of the model is also of paramount importance, in particular prior clinical
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knowledge should be considered and whether the model ‘makessense’ for practical use.

Maximum likelihood estimation is a method for estimating model parameters satisfying

the criteria of ‘sufficiency’ and ‘efficiency’ [124], thoughrestricted maximum likelihood

(REML) [125] is often preferred as maximum likelihood tendsto underestimate the

random parameters in a multilevel model [126] [127]. Furthermore, it is considered that

REML is a more appropriate criteria for models with fixed and random effects [128],

since REML produces less biased / more conservative estimates of the coefficients in

the random part of the model [129]. Both maximum likelihood and restricted maximum

likelihood are important to consider in the model fitting procedure, and will be discussed

throughout this chapter.

5.6.1 Information criterion

Akaike’s information criterion (AIC) [130] [131] is statedas yielding more plausible

model solutions than solely relying on the likelihood value[132], because the likelihood

value alone does not account for model complexity or parsimony. This makes the model

more plausible as it takes into account a balance of bias and variance in the model

construction, rather than a model based on a likelihood value which may include a number

of nuisance parameters.

The AIC statistic is defined as:

AIC = 2p − 2ln(L)

wherep is the number of parameters andL is the maximum likelihood for the estimated

model. When ‘REML’ is used as the estimation method,L is replaced by the restricted

maximum likelihood.

AIC takes into account the complexity of the model by considering both the statistical
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goodness of fit and the number of parameters to be estimated which achieve this particular

degree of fit, by imposing a penalty for increasing the numberof parameters. Smaller

values of the index indicate the models which are a relatively better fit, i.e. the one with

the fewest parameters that still provides an adequate fit to the data. However, the AIC

value is relative to the size of the dataset, such that largerdatasets will yield larger AIC

values.

Bayesian information criterion (BIC) [133] is similar to AIC, such that smaller values of

this statistic indicates the ‘better’ model when comparing(two) models.

The BIC statistic is defined as:

BIC = (p)log(N) − 2ln(L)

wherep is the number of parameters,L is the maximum likelihood for the estimated

model andN is the sample size. When REML is used as the estimation method, L is

replaced by the restricted maximum likelihood andlog(N) by log(N − p).

Within this thesis AIC will be used as the preferred criterion between AIC and BIC. It

is usually the case that the same inferences will be drawn from both criterion [134] and

both are valid methods of model selection. Therefore AIC will be used because it tends

to be a conservative criterion, whereas BIC more seriously penalises the introduction of

additional parameters than AIC [135]. The models fitted in this thesis do not include many

covariates, therefore strongly penalizing a model based onits parameters is not necessary.

5.6.2 Likelihood ratio test

Likelihood ratio tests (LRT’s) are used to compare nested models, to determine whether

the inclusion of additional parameters improves model fit. LRT’s can be used to compare

model fit by REML (usually maximum likelihood) if all models have been fit using

REML and include the same fixed effects specification. The reason REML is used
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over maximum likelihood is discussed later. LRT are particularly useful when deciding

whether a correlation structure is required, as models withand without the correlation

structure are nested. In this instance, the ACF should also be examined, to check whether

inclusion of the correlation structure yields a model with uncorrelated residuals.

The likelihood test statistic is denoted :

LRT = 2log(L1/L2) = 2[log(L2) − log(L1)]

WhereL1 andL2 are the likelihoods of modelsM1 andM2, whereM1 hask1 parameters

and is nested inM2 which hask2 parameters.

The null hypothesisH0 is thatM1 is adequate, the alternative hypothesisH1 is that the

more complex model (M2) is required. If thep-value is significant for the LRT compared

to theχ2
k2−k1

distribution then it can be concluded that the alternative model is preferred

as evidence to reject the null hypothesis.

It can be argued, however, that the p-value from theχ2
k2−k1

distribution is too large or

inaccurate [136], if calculated from a small sample size. This suggests that the LRT

should not be solely relied upon to decide whether one model is better than another and

that a combination of criteria should be examined.

5.6.3 Graphical summaries

To check whether the within group errors are normally distributed a QQ-plot of the

residuals should be used, or alternatively identifying whether the residuals are scattered

randomly around zero by plotting the standardised residuals for each of the upper level

units (i.e. patients).

A plot of standardised residuals vs. fitted values is used as ameans of checking for

homoskedasticity of the variance, as seen in figure 5.1 and figure 5.2.
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Another assumption to check is whether the random effects are normally distributed with

mean zero and no substantial correlation amongst the randomeffects. A plot of the

random effects values for each of the upper level units is used for this, and this plot will

also show if there is homogeneity in the variance structure.It is possible to determine

whether random effects parameters are required by examining their respective confidence

intervals. If the random effects standard deviations are significantly different from zero,

this indicates that they are required in the model, as they add additional information to the

model by indicating there is some variation in the random effect that should be explicitly

modelled.

As discussed in the previous section, a plot of the ACF is an effective way of identifying

correlation in the lowest level residuals and hence whethera correlation structure is

required.

5.6.4 Interpretation and a priori knowledge of data generation

In addition to the factors for assessing model fit, which werediscussed above, it is also

important to assess the models based on prior knowledge of the clinical scenario and also

knowledge of the data (such as; format and data collection).Firstly, the interpretation

and specification of the model should make clinical sense. This can be achieved by

understanding the clinical context of the data and also through collaboration with clinical

colleagues. If a model has so many parameters, for example, this would be difficult to

interpret in the clinical domain (and also for the statistician). Therefore, parsimonious

models should be fit, whereby there is a balance between the complexity and the number

of parameters.

Having knowledge of the data is of paramount importance. Oneshould know where the

measurements are collected, for example in controlled laboratory conditions or whilst the

patient is under stress. This would give an indication as to whether a clear relationship will
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be seen, or if the patient is under stress then the underlyingrelationship will be masked

by noise. Furthermore, knowledge of the time between measurements is a key factor

as a short time period, for example, may result in measurements that are autocorrelated.

Using statistical methods which assume independence between measurements would then

be incorrect. One should be aware that if a complex correlation structure is incorporated

in the modelling, to account for the autocorrelated residuals, this correlation parameter

may also have clinical meaning and relevance.

Within the MLM framework it is possible to analyse both balanced and unbalanced

data. Unbalanced data will occur where a different number ofmeasurements is collected

for each individual. This may be due to missing values or where the time period of

measurement collection varies between each patient. This is an advantage of MLM, as

some statistical methods cannot be used with unbalanced data.

5.6.5 Summary

The criteria discussed here are the most effective way to assess the fit of the model,

especially when fitting a large number of models and when working in the clinical domain,

where ease of interpretation is necessary.

In summary, models will be assessed using the following:

• AIC

• LRT

• ACF

• Residual plots: e.g. standardised residual vs. fitted values

• Clinical insight / interpretation and knowledge of data generation
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It should be noted that no individual assessment criterion should be solely relied upon;

a better fitting model results from using a combination of carefully selected criteria and

prior knowledge of the clinical context. It is often viewed that the graphical summaries

are an ’easy’ avoidance of calculating complex statistics to determine model fit. In fact

this is not the case, as graphical summaries highlight complex and complicated features

of the data, in addition to gaining understanding of the data, which could not be achieved

purely from visually scrutinising numbers. The complexityshould be in fitting the model

and not in assessing model fit.

5.7 Implementation

Modelling with autoregressive correlation structures wasintroduced in 1994 [137]. An

AR(1) correlation structure was then made available for implementation in MLwiN [138],

though currently it is no longer possible to implement an extended correlation structure in

this package. It is, however, possible to fit a MLM with a variety of correlation structures

using the statistical software R [115]. A number of R libraries are available (nlme, lme4,

mlmRev), though nlme was found to be the most effective.

A number of MLM text books usually mention that it is possibleto implement correlation

structures of the residuals, albeit briefly, suggesting that this particular aspect of MLM

is seldom used. One exception is the text book by Pinherio andBates [139], which is a

useful guide to fitting MLM in R and includes a detailed section on correlation structures.

5.7.1 Presentation of models

The fitted models will be presented in the respective resultschapters. The format of the

models will be presented in two ways. To display the large number of models fitted, the
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software notation will be used. For the ‘final’ models the more traditional notation will

also be used, as described in section 5.3.

R notation

The R code below shows how a general MLM is specified in the software.

MODEL = lme(response ˜ primary covariate(+ additional cova riate),

random = primary covariate (+ additional covariates)

| grouping level upper (/ grouping level lower) ,

correlation=corARMA(p=a, q=b), method="ML" or "REML")

Where lme refers to the function from thenlme library in R used to fit the linear

mixed-effects model. Initially theresponse is specified. The∼ is read as ‘to be

modelled as’. The command following∼ specifies the covariates in the fixed part

of the model, there may be just theprimary covariate or manyadditional

covariates. The random part of the model is then specified, this may include theprimary

covariate and the sameadditional covariates as in the fixed part of the

model, or different covariates may be included. The grouping structure is included in

the random specification of the model, the upper most level isspecified first followed by

the lower levels, the lowest level does not need to be specified explicitly. If the model

includes just the upper grouping level, this is a 2-level MLM. Alternative arguments may

also be included: thecorrelation=corARMA(p=a, q=b) command incorporates

a correlation structure for the residuals. This may be autoregressive (whereq = 0 and

p > 0 ), a moving average (wherep = 0 andq > 0 ) and autoregressive moving–average

(wherep > 0 andq > 0) . The choice of fitting algorithm may also be specified as either

maximum likelihood ("ML" ) or restricted maximum likelihood ("REML" ). The default

is "REML" and will always be used in this thesis. Posterior variances will be larger and

more realistic under REML than under ML. This will be especially true when the number
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of upper level units is small [140]. It is also possible to useLRT’s with REML, when all

models are fitted with REML and the fixed specification of the model is the same between

the models being compared. The RIGLS (restricted iterativegeneralised least squares)

algorithm yields the REML estimates. In general the fixed effects estimates using ML

and REML will be similar, though not identical. Inferences regarding the fixed effects in

both estimation methods will be the same [139].

The intervals command provides approximate (95% ) confidence intervals ofall the

model coefficients from the particular model specified. The intervals are calculated using

a normal approximation to the distribution of REML estimators, where the estimators

are assumed to be normally distributed (centred at the true parameter values and with

covariance matrix equal to the negative inverse Hessian matrix of the restricted log-

likelihood evaluated at the estimated parameters) [139].

5.8 Application to the data - Cerebral Autoregulation

The data from the CA biomedical system forms an inherent hierarchical structure:

repeated measurements of CBF and ABP are clustered within 3 phases of CEA which

in turn are clustered within multiple patients. MLM should be used in order to exploit the

full power of the data, whereby all information is used to formulate the model. This would

enable us to determine whether CEA has an effect on CA for the whole group of patients.

By fitting this type of model, the assumption would be made that there is the same error

and variance structure for all patients. It will therefore be necessary to determine if this is

a reasonable assumption to make.

An important feature to consider is how the 3 phases of CEA aremodelled. The

possibilities are to include phase as its own level, as a fixedeffect, or as a random

effect. Before fitting the model it is clear that including phase as a fixed effect would

yield too many parameters. This option would require an intercept for each patient in
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each phase, hence 108 (3 x 36) parameters, and possibly another 108 parameters for a

random slope. This would be an ineffective model and very difficult to interpret. A

more parsimonious model would include phase as a random effect, whereby phase is

represented as a standard deviation which would indicate the variation between patients in

the intercept and slope. A total of 6 random parameters wouldbe required: 3 representing

variation in the intercepts for each phase and 3 for variation in the slope. Models will be

investigated where phase is incorporated as the middle level or as a random effect, where

random intercepts and slopes are investigated for each phase.

CA may be represented by the slope of the relationship between ABP and CBF. It will be

possible to investigate whether a different slope is neededto represent each of the three

phases. A significant slope in each phase would signify that CA changes across phases.

Furthermore, it would be possible to determine whether CA isactually present (zero slope

indicating perfect CA) and whether CA improves following CEA (the difference between

slopes in phase 1 and phase 3).

It is highly likely that correlation will be present betweenadjacent CBF and ABP, due to

the nature of CBF and ABP measurements and the time–frame in which they are collected,

resulting in correlated residuals in the model. It may be necessary therefore to incorporate

this correlation into the model by means of an autoregressive correlation structure.

When applying a correlation structure in this framework, itis assumed that the correlation

structure and correlation coefficient is the same for all patients. This will be validated by

fitting individual models (that allow for an additional correlation structure) for all patients.

It will be possible to determine whether each patient requires a different correlation

structure. If the same correlation structure is applicable, the range of values the coefficient

takes will be investigated and compared with the global coefficient from the MLM. Whilst

fitting a MLM to all data for all patients is the most efficient and effective modelling

technique, there may be benefits from fitting individual models.
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5.9 Application to the data - Renal Anaemia

Multilevel modelling has previously been introduced to thenephrology field [141], where

the authors acknowledge the technique is a particularly useful tool for longitudinal data.

Longitudinal data often arise in this area since it is necessary to collect frequently repeated

measurements of haemoglobin, iron and ferritin concentrations on patients undergoing

dialysis. However, long series of data would rarely occur, since patients would not

undertake dialysis for a long enough period and the series would be terminated due to

transplant or death. Even though patients may undergo a course of dialysis for a number

of months or years, measurements will usually be taken once amonth or less frequently,

since low Hb levels would mean that frequent blood sampling is detrimental to the patient.

Traditional methods of analysis for longitudinal data, such as time series analysis, would

not be applicable, because this usually analyses one series, rather than many.

Multilevel modelling would be applicable to these data, since the data hierarchy would

then be exploited, where the data form a two level structure:the first level pertains to

the repeated haemoglobin and epoetin measurements and the second level pertains to the

patient. Similar to the CA system, autoregressive correlation structures will be explored.

The biological nature of Hb measurements means that it is unlikely that measurements

will rapidly fluctuate in time. Furthermore, Hb is being controlled with the aim of

maintaining a stable dose, thus large variation is not expected between Hb measurements

from month to month. It is also unlikely that a patient’s epoetin dose will fluctuate, as

this incurs a larger cost than a stable dose, therefore autocorrelation would be expected

amongst the epoetin measurements.

As discussed in Chapter 3 the relationship between Hb and epoetin is complex. In

particular it will be necessary to investigate the time point between 2 and 6 weeks where

the optimum response is seen in the patient’s Hb as a result ofthe epoetin dose. The

initial relationship that will be investigated is Hb(i) anddose(i-1). This will determine if
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the relationship, upon which the current algorithm is based, yields plausible results. The

wrong relationship to model is Hb(i) and dose(i), as the dosedoes not have an immediate

effect on Hb, due to the erythropoiesis process. The most appropriate relationship will

indicate the optimum time lag from epoetin administration to Hb response.

Further investigation will determine if it is necessary to limit the investigation of the ideal

time lag to months or whether it is possible to deduce the optimum to weeks or days. For

example, a linear combination of dose administered from several months could narrow

the time–frame from months to weeks.

5.10 Summary

When the situation occurs where measurements are nested within individuals (or some

other unit), this should be embraced in the statistical modelling (the standard errors of the

regression coefficients would otherwise be underestimated, leading to wrong inferences

being drawn). Furthermore, there is the flexibility with MLMto deal with unbalanced data

structures. In particular, in the CA application, the length of the surgical procedure varies

between patients, and hence the number of repeated measurements for each patient varies.

Due to the nature of the repeated measurements, whereby measurements are collected

closely in time and the smooth variation of the biological variable, autocorrelation is

likely to be present amongst measurements. Autocorrelatedmeasurements may lead

to autocorrelated residuals, which can be accounted for in the MLM framework with

additional autoregressive correlation structures. Thereare a number of features of

the MLM modelling and also of the data within the biomedical systems, that justifies

application to these data.
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Chapter 6

Results - Cerebral Autoregulation

The results from the analysis of the data from the cerebral autoregulation biomedical

system will be presented in this chapter, covering exploratory analysis with loess

smoothing and detailed multilevel modelling incorporating an autoregressive error

structure.

6.1 Exploratory Analysis

In this section, summary statistics for the data are presented, in the form of tables and

boxplots. These figures and tables are useful (and necessary) to explore the data before

undertaking more sophisticated statistical analyses. Table 6.1 summarises the number of

patients and observations. Tables 6.2 and 6.3 present numerical summary statistics about

ABP and CBF, respectively, between phases and within each ofthe three phases.

Table 6.2 shows that the standard deviations within each of the three phases are very

similar, indicating that the variation of ABP values in the three phases is similar. The

mean and median of ABP are also relatively similar across thethree phases, albeit slightly

higher in phase 2 than phases 1 and 3, although the increase isnot clinically significant.
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Total number

Patients 36

Observations 4541

Observations (Phase 1) 1764

Observations (Phase 2) 1879

Observations (Phase 3) 898

Summary

Age (median(range)) 73(65-82)

Gender Male 28 / Female 8

Anaethesia Local 22 / General 14

Table 6.1: Summary statistics of the patients and observations for this study.

Min Q1 Median Mean Q3 Max SD Missing

Overall 38 88 103 103.9 119.0 188 23.02 2

Phase1 38 84 102 101.5 118.8 188 22.98 2

Phase2 48 92 105 106.6 125 183 22.60 0

Phase3 48 89 100 102.7 114 176 23.37 0

Table 6.2: Summary statistics of ABP. The first row shows the summary statistics between

phases, rows 2, 3 and 4 show the summary statistics for each phase.
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Min Q1 Median Mean Q3 Max SD Missing

Overall 9.84 38.01 48.32 51.70 61.61 138.90 19.92 57

Phase1 17.83 39.41 50.82 51.26 60.53 99.02 14.49 23

Phase2 9.84 33.78 43.29 46.09 54.40 134.20 19.31 28

Phase3 21.64 43.40 62.50 64.18 81.60 138.90 24.29 6

Table 6.3: Summary statistics of CBF. The first row shows the statistics between phases,

rows 2, 3 and 4 show the statistics for each phase.

These features of the data suggest that CEA does not have a substantive impact on

changing ABP, perhaps this is a result of careful controlling/ monitoring of ABP on behalf

of the clinician. It should be noted that these statistics are calculated across all patients,

and by combining the values it is appears that there is littlechange in the patients’ ABP in

the different phases of the operation. In further analysis,the patients should be inspected

individually to determine whether this result is consistent for each patient or whether it is

an artefact of combining the data.

Table 6.3 shows that the mean (and median) CBF decreases in phase 2 and increases in

phase 3 compared with CBF in phase 1. Further investigation is required to determine

whether these changes are clinically significant. The standard deviations increase as the

phases progress, which suggests that patients begin surgery (phase 1) behaving similarly

and this then diversifies in later phases. In phase 1 the standard deviation is relatively

small. There is more variation in the patients response to their artery being clamped

(phase 2) and much greater variation in CBF following surgery (phase 3). The SD in

phase 3 is 70% larger than in phase 1, which indicates that patients’ CBF varies much

more following surgery than before. This suggests that the additional variation occurs as

surgery progresses and that this may be due to differing responses to surgery.

Boxplots are essentially a graphical presentation of the information given in the tables.

The boxplot format may be favoured over the tables as it enables the reader to directly
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Figure 6.1: Boxplot of cerebral blood flow at each phase
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Figure 6.2: Boxplot of arterial blood pressure at each phase
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compare the variables across the phases. A further attractive feature is that the differences

are seen in relative context, thus allowing the reader to identify whether they are

‘significant’. Figure 6.1 is particularly useful as it highlights that the variation of CBF

increases throughout the phases, though unlike the table the boxplot demonstrates the

nature of the variation. In phase 1 CBF appears to be normallydistributed with small even

spread either side of the mean. The boxplot for phase 2 shows that there are many outlying

values at the upper end of the scale, though the majority of the data is normally distributed

with a median lower than the median in phase 1. This suggests that the variation in CBF

between phase 1 and 2 does not really increase but appears to due to the outliers. The

outlying values in phase 2 suggest there are a number of instances where CBF exceeds

the range that is experienced by the majority of cases and thus highlight that in phase 2

some patients may be complex and difficult to manage. The boxplot for phase 3 indicates

that the variation between patients in this phase is larger,as the interquartile range and

whole range of data is larger. Additionally the median valueis largest in phase 3.

In regards to ABP, figure 6.2 shows that the central point and spread of the data is very

similar at each phase of CEA. This information was gained from table 6.2. In addition

to the information also given in the table, the boxplots showthat the range of ABP is

very large in each of the three phases, though further analysis is needed to determine

whether each patient experience a large range of values or whether the range is large due

to the combining of measurements. The boxplot for phase 3 also reveals that there are

quite a large number of upper end outlying ABP’s in this phase. This is important for

the clinician to know that in some instances the ABP for the patients exceed the ‘normal’

range of values and hence require careful monitoring or control of their ABP.

Kernel density plots were also fitted to the data as another exploratory technique, to

investigate the distribution of ABP and CBF. Inspection of the density plots did not

provide further information or insight than that gained from the tables and boxplots, hence

have not been presented.
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Whilst the exploratory analysis reveals useful information about the group of patients

as a whole, no insight is gained into the specific informationabout the individual.

It is important to know about the data before further analysis can be implemented.

The exploratory tables and boxplots highlighted that thereis a lot of variation in the

measurements, which may indicate that there is a lot of variation between the individuals

or it could mean that there is a lot of variation amongst the individuals themselves. As

this is unclear it is necessary to implement more complex analysis to gain better insight.

6.2 Functional Data Analysis

The aim within the CA biomedical system was to assess CA, which appeared to be a

relatively ambiguous problem. It was not possible to apply existing methods that have

been used for the assessment of CA for a number of reasons. First, other techniques

for assessing CA have not been considered in the surgical scenario and thus were

inappropriate and impractical. Second, repeated measurements are collected on these

patients and the techniques previously used have not considered this type of data. Other

methods of analysis were therefore sought.

Since the aim was to assess CA, the first avenue of explorationwas to investigate

the ABP–CBF relationship. The method of loess was deemed an ideal technique for

investigating this relationship, following verification.A loess curve was fitted to ‘ideal’

data [116] where intact autoregulation occurs, see figure 6.3. This experiment was used to

determine whether a loess curve would reveal intact CA in a situation where it is known to

occur. Further details of the advantages and disadvantagesof this curve will be discussed

in Chapter 8.

Loess curves were subsequently fitted to CBF against ABP in each phase of carotid

endarterectomy for all patients in the study, as it was predicted from the exploratory

analysis that there would be variation between phases. These plots are useful for
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Figure 6.3: The Loess representation of the ideal autoregulation curve

determining graphically whether cerebral autoregulationis present in these patients in

each phase. The black curve represents phase 1, the red curvephase 2 and the green curve

phase 3.

Figure 6.4 to 6.12 show loess curves for a representative sample of patients. In the

majority of patients the ordering of the curves is the same; from top to bottom the order is

phase 3 (green), phase 1 (black) and phase 2 (red) (an exception is patient A (Figure 6.4)).

This may be interpreted as cerebral blood flow being greatestin phase 3 and CBF lowest

in phase 2, compared with the initial phase 1. Each of the figures have been plotted on the

same axes to allow direct comparison of the patients ABP–CBFrelationships.

Figure 6.4 represents a patient who experiences a large range of CBF and ABP values;

which is consistent throughout the three phases. The range of CBF experienced in phase

2 is the largest. The range of ABP is wide in all of the three phases, which spans 50

– 175 mmHg. This is a particularly large range for one patientto experience, which

is quite unexpected. If the theory of the CA curve is acceptedthen the data from this
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Figure 6.4: Loess curve fitted to CBF against ABP in each phase, for patient A. Black

curve - phase 1, red curve - phase 2 and green curve - phase 3.
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Figure 6.5: Loess curve fitted to CBF against ABP in each phase, for patient B.
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Figure 6.6: Loess curve fitted to CBF against ABP in each phase, for patient C.
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Figure 6.7: Loess curve fitted to CBF against ABP in each phase, for patient D.
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Figure 6.8: Loess curve fitted to CBF against ABP in each phase, for patient E.
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Figure 6.9: Loess curve fitted to CBF against ABP in each phase, for patient F.
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Figure 6.10: Loess curve fitted to CBF against ABP in each phase, for patient G.
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Figure 6.11: Loess curve fitted to CBF against ABP in each phase, for patient H.
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Figure 6.12: Loess curve fitted to CBF against ABP in each phase, for patient I.

patient could reproduce the plateau region of the curve as this is believed to exist between

50 – 150 mmHg. In this patient the slope of the ABP-CBF relationship is very steep,

which would suggest that CA is not intact. There is little overlap of the different phase

measurements, highlighting that the phases are distinct.

Figures 6.8 and 6.11 represent patients whose ABP and CBF arerelatively similar. In

both instances their range of ABP is narrower than patient A (although still wider than

clinically desirable) and whose CBF is lower. There is distinct separation of phase 2 from

phases 1 and 3, which themselves are close but with little actual overlap. Compared to

phases 1 and 3, ABP is increased while CBF is decreased in phase 2.

Figures 6.9 and 6.12 display the curves for patients whose CBF and ABP are very erratic

during CEA; all phases are distinct with no overlap. In both patients the relationship

between CBF and ABP in phase 3 appears to have a negative gradient. CBF is greatly

reduced in phase 2, which is also the case with the patient shown in figure 6.6. The ABP

ranges are very narrow (patients C, F and I) in comparison to the other patients shown,
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and Lassen [29].

Figure 6.5 and 6.10 show patients whose CBF changes very slightly between the three

phases. The slopes of the CBF–ABP in each of the three phases,in both patients, are

very shallow. The range of ABP differs with each phase, in particular for patient B there

is very little overlap of ABP measurements for phases 1 and 2.In phase 1 the range

is approximately 120–190 mmHg and phase 2 70–130 mmHg, whichare large ranges

in themselves though even more worrying when considering that throughout surgery the

patients ABP ranges from 70–190 mmHg. ABP does seem to then come under control in

phase 3 as the range is reduced to 90-110 mmHg and within stable ABP limits. Patient G

(figure 6.10) also experiences a large range of ABP in phase 1 (40–175 mmHg), though

this is reduced in phase 2 and 3. Figure 6.7 also shows a patient whose CBF changes

very little between the phases, there is much overlap in the CBF measurements in this

patient, albeit retaining the usual phase ordering (3,1,2). In this instance the range of

ABP is relatively narrow (50–80 mmHg) in each of the three phases. The gradient of

the relationship between CBF and ABP in this patient appearsvery similar in each of the

three phases.

The important issue from fitting the loess curves was to determine whether (intact) CA

was evident in these patients, i.e. do we see anything resembling the CA curve? The

simple conclusion is that it is difficult to judge. The loess curves do, however, highlight

that the majority of curves show a straight line relationship between CBF and ABP. The

slope is relatively mild, though not a horizontal line representing intact CA. The range of

ABP values are within the alleged region for intact CA (50–150 mmHg), thus suggesting

that the patients’ measurements lie within the middle section of the data and no turning

point is expected.
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6.3 Multilevel modelling

Subsequent to the exploratory analysis and the fitting of loess curves, multilevel modelling

was applied. The reasons for using MLM are outlined below:

• Analysis of individual patients would be difficult due to some patients experiencing

a limited range of ABP (for example). This will be overcome byMLM which shares

information across patients.

• The important research question is to determine whether there is evidence, from

measurements, that CEA influences CA. Not only is it important to address this

question on an individual basis, such as with the loess curves, but also for the

population. MLM provides a framework where the results fromthe patients can

be combined.

• Measurements of ABP and CBF are equally spaced in time, whichenables an

autocorrelation structure to be incorporated.

6.3.1 Model fitting procedure

A number of models were fitted to investigate the relationship between CBF and ABP

(see list below). For example model A may be described as: CBFis modelled by a

fixed intercept (not specified explicitly), which represents mean CBF across all phases (as

phase has not been specified in this model), and a random patient intercept (where the 1

in 1/Patient represents the intercept). The fixed slope of the model is specified by ABP

and represents the mean slope of the CBF–ABP relationship. The slope is not random in

this model (but is in models C, D and E) and so the same for all patients. The syntax of

these models has been described in general in Chapter 5.

• Model A = lme(Flow∼ ABP, random = 1/Patient)
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• Model B = lme(Flow∼ ABP+Phase, random = 1/Patient)

• Model C = lme(Flow∼ ABP+Phase, random = ABP/Patient)

• Model D = lme(Flow∼ ABP+Phase, random = ABP+Phase/Patient)

• Model E = lme(Flow∼ ABP*Phase, random = ABP+Phase/Patient)

• Model F = lme(Flow∼ ABP*Phase, random = ABP*Phase/Patient)

The information criterion of all models are presented in table 6.4.

Table 6.4: Information criterion of models A to E

Model df AIC BIC logLik

Model A 4 36116.64 36142.27 -18054.32

Model B 6 35108.04 35146.48 -17548.02

Model C 8 34942.95 34994.21 -17463.47

Model D 15 30395.85 30491.95 -15182.92

Model E 17 30409.37 30518.28 -15187.68

It is not possible to carry out likelihood ratio tests between all these models since the

specification of the fixed effects is not the same in all models. The LRT requires strict

nesting, which does not occur here. The complexity increases through models A to

E; as model complexity increases the loglikelihood of the models should also increase.

When phase is included as a random effect this greatly reduces AIC, BIC and increases

the loglikelihood from the models without random effects, observed by the differences

between Models C and D. Including an interaction between phase and ABP as in Model

E (i.e. different slopes in each of the three phases) does notimprove model fit, in terms

of reducing AIC or BIC any further than from model D. Additionally, the interaction

terms are not statistically significant. Model E is more complex than model D, where the

loglikelihood should increase, though it decreases. Modelestimates are obtained using
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RIGLS, which is an iterative fitting procedure. This procedure aims to converge upon the

global maximum of the loglikelihood profile. Thus, the estimated coefficients obtained

in attempting to model the complexity of model E would suggest that the loglikelihood

profile is not increasing strictly monotonically towards the global maxima (from either

direction) and that the solution found is that of a local maxima. The model could be

specified to find the global maxima, though this option was notimplemented as the results

of model E were not convincing.

Therefore the results for model E indicate that there may be numerical difficulties with

this model, such that the model does not converge to the optimal solution. The solution

obtained may be a solution of a local maximum rather than the optimal solution. The

expected increasing trend is observed from models A to D. This leads us to question

whether model E is overly complex and perhaps unstable. Thus, the preferred choice

of model is model D. From models C to D there is an improvement in AIC, BIC and

loglikelihood, thus believing in the numerical solution asthis is the pattern that is expected

to be observed. . There are a number of clinical justifications for the choice of model D,

which will be discussed in Chapter 8. The full summary of Model E is shown in table 6.5.

It was not possible to fit a model with a random interaction (Model F) as this was unstable

and did not converge.

Model D = lme(Flow∼ ABP+Phase, random = ABP+Phase/Patient)

Model D was deemed to be the most appropriate model from the models fitted above.

The algebra for the general version Model D is presented in equation 6.1 and the specific

model with coefficients is presented in equation 6.2. The model coefficients are presented

in table 6.6 and further diagnostics in table 6.7. The standardised residuals vs. fitted

values for this model is presented in figure 6.13 and the autocorrelation function of the

normalised residuals is presented in figure 6.14.
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Table 6.5: Coefficients of model E. Note that the degrees of freedom for this model is

4441.

Fixed effects: Value Std.Error p-value

(Intercept) 35.86 3.76 ≤ 0.0001

ABP 0.16 0.04 ≤ 0.0001

Phase2 -10.01 3.56 0.0049

Phase3 7.58 3.70 0.0406

ABP:Phase2 0.030 0.02 0.1551

ABP:Phase3 0.004 0.02 0.8616

Random effects: Intercept ABP Phase 2 Phase 3 Residual

StdDev 20.65 0.22 16.59 16.37 6.66

F lowtj = β0 + u0j + (β1 + u1j)ABP + (β2 + u2j)P2 + (β3 + u3j)P3 + etj (6.1)

F lowtj = 34.81+u0j+(0.17+u1j)ABP +(−6.83+u2j)P2+(8.01+u3j)P3+etj (6.2)

Figure 6.13 shows that the range of standardised residuals is relatively large (-9.59 to

7.93), in relation to the ideal range of -2 to +2. The residuals also seem to display

heteroskedasticity, whereby as the fitted values increase the range of residuals also

increases (fans out). These features of this plot suggest that model 6.2 may not be the

best fitting model.

Figure 6.14 highlights that the normalised residuals are strongly correlated (for the first

five lags). This means that the assumption that the lowest level residuals are independent

is not upheld. A solution for this would be to look at other specifications for the

model and also incorporating an additional complexity for the residuals, to account for

the dependency amongst the observations (which has resulted in correlated normalised

residuals). After the issue of the correlated residuals is resolved by incorporating an
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Table 6.6: Coefficients of model 6.2. Note that degrees of freedom for this model are

4443

Fixed effects: Value Std.Error p-value

(Intercept) 34.81 3.62 ≤ 0.0001

ABP 0.17 0.04 ≤ 0.0001

Phase2 -6.83 2.78 0.014

Phase3 8.01 2.78 0.004

Random effects: StdDev Corr

(Intercept) 20.46 (Intr) ABP P2

ABP 0.22 -0.761

Phase2 16.59 -0.154 -0.013

Phase3 16.35 -0.191 0.262 0.086

Residual 6.66

Table 6.7: Diagnostics of model 6.2

Information criterion: AIC BIC logLik

30395.85 30491.95 -15182.92

Residuals: Min Q1 Med Q3 Max

-9.59 -0.36 0.01 0.42 7.93
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Figure 6.13: Standardised residuals vs fitted values for model 6.2
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Figure 6.14: ACF of normalised residuals for model 6.2
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autocorrelation structure, this may alleviate apparent heteroskedasticity seen in figure

6.13.

6.3.2 Model with autoregressive correlation

In order to resolve the issue of the correlated residuals models were fitted with a

variety of correlation structures, including autoregressive, autoregressive moving average

and moving average. Table 6.8 shows an example of two models with autoregressive

correlation structures that were fitted. The additional correlation structures were

incorporated with the best fitting model from the previous section (Model 6.2). An AR(2)

correlation structure was shown to improve model fit the most(Model 6.4). See table 6.10

for the coefficients of this model, table 6.11 for model diagnostics and table 6.12 for 95%

confidence intervals of the model coefficients. Various residuals plots are presented in

figures 6.16 to 6.19. The general algebra for this model is presented in equation 6.3 and

the specific equation in equation 6.4.

F lowtj = β0+u0j+(β1+u1j)ABP +(β2+u2j)P2+(β3+u3j)P3+ρ1et−1,j+ρ2et−2,j+Zt

(6.3)

F lowtj = 38.88+u0j+(0.14+u1j)ABP+(−14.97+u2j)P2+(11.14+u3j)P3+0.65et−1,j+0.31et−2,j+

(6.4)

Table 6.8: Diagnostics of models with autoregressive correlation structures

df AIC BIC logLik

Model 6.2 15 30395.85 30491.95 -15182.92

Model 6.2 + AR(1) 16 27913.12 28015.63 -13940.56

Model 6.2 + AR(2) (= Model 6.4) 17 27509.62 27618.53 -13737.81
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Table 6.9: Likelihood ratio test of models with autoregressive correlation structures

Test L.Ratio p-value

Model 6.2 vs Model 6.2 + AR(1) 2484.73 ≤ 0.0001

Model 6.2 + AR(1) vs Model 6.4 405.50 ≤ 0.0001

Table 6.10: Coefficients of model 6.4. Note that the degrees of freedom in this model are

4443

Fixed effects: Value Std.Error p-value

(Intercept) 38.88 2.70 ≤ 0.0001

ABP 0.14 0.03 ≤ 0.0001

Phase2 -14.97 3.12 ≤ 0.0001

Phase3 11.14 4.04 0.0058

Correlation Structure: ρ1 = 0.65 ρ2 = 0.31

Random effects: StdDev Corr

(Intercept) 10.43 (Intr) ABP P2

ABP 0.14 -0.391

Phase2 18.13 -0.095 -0.427

Phase3 23.14 -0.832 0.548 -0.442

Residual 16.17

Table 6.11: Diagnostics of model 6.4

Information criterion: AIC BIC logLik

27509.62 27618.53 -13737.81

Residuals: Min Q1 Med Q3 Max

-3.89 -0.45 -0.02 0.46 4.45
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Table 6.12: 95 % confidence intervals for all coefficients in model 6.4

Fixed effects: lower est upper

Phase1 intercept 33.59 38.88 44.18

ABP slope 0.09 0.14 0.19

Phase2 contrast -21.09 -14.97 -8.85

Phase3 contrast 3.23 11.14 19.06

Random Effects:

sd((P1 int)) 5.96 10.43 18.24

sd(ABP) 0.10 0.14 0.19

sd(P2 con) 14.11 18.13 23.29

sd(P3 con) 17.75 23.14 30.15

cor((Int),ABP) -0.75 -0.39 0.16

cor((Int),P2) -0.70 -0.10 0.58

cor((Int),P3) -0.99 -0.83 0.38

cor(ABP,P2) -0.72 -0.43 -0.00

cor(ABP,P3) 0.21 0.55 0.77

cor(P2,P3) -0.71 -0.44 -0.05

Correlation structure:

ρ1 0.64 0.65 0.67

ρ2 0.28 0.31 0.34

Within-group standard error : 13.73 16.17 19.04
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Figure 6.15: Autocorrelation function of normalised residuals for model 6.4

Figure 6.15 shows that the normalised residuals are no longer correlated with each

other, as the autocorrelation is not (strongly) significantat the lags. At some lags

the autocorrelation is significant, although this is very small and occurs at arbitrary

and relatively large lags, hence is not considered important or problematic. It is

therefore possible to conclude that the residuals are not correlated and the assumption

of independence is upheld.

Figure 6.16 shows that the range of the standardised residuals has greatly reduced from

(-9.59 to 7.93) to (-3.89 to 4.45) due to the inclusion of the correlation structure. Even

though the range has reduced it still remains larger than theapproximate range of -2 to 2.

The residuals appear to be randomly scattered about zero, though perhaps for the largest

fitted values (greater than 100) there are more negative residuals. When the residuals are

split due to phase (figure 6.17) and patients (figure 6.18) it is possible to see where the

outlying values occur (i.e. why there are more larger negative residuals for larger fitted

values).
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Figure 6.16: Standardized residuals vs fitted values for model 6.4

Figure 6.17: Phase residuals for model 6.4
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Figure 6.17 shows graphically that as the surgical procedure progresses then the variation

between patients also increase. This is evident from the range of residuals increasing as

the phases increase. The range of residuals in phase 1 is relatively narrow in comparison

to phases 2 and 3, where the range for phase 3 is only slightly larger than phase 2. The

phase 1 residuals are centered on zero with an equal balance of positive and negative

values, whereas the residuals in phase 2 are more heavily balanced with more positive

residuals and in phase 3 more heavily balanced with more negative residuals.
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Figure 6.18: Patient residuals for model 6.4

Figure 6.18 shows the residuals for each patient, although not taking phase into account.

The range of residuals varies greatly between patients, there does not appear to be a

standard behaviour. This figure shows that some patients experience a huge range of

residuals, in two cases there are patients whose residuals range -50 to 50. In these patients

the three phases are clearly evident from the pattern of residuals. The other extreme is

that a patient experiences a range -5 to 0. The majority of patients seem to experience a

balance of positive and negative residuals, though there are a few who experience only
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negative residuals. This is a particularly useful plot as itis possible to identify patients

with interesting features. If there were a larger number of patients, however, it is likely

that this plot would not be so effective.
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Figure 6.19: Random patient coefficients for model 6.4. Red line represents the fixed

(mean) coefficient

A further assumption of MLM is that the random coefficients are normally distributed

around the mean (fixed) coefficient. It is evident from figure 6.19 that this assumption

is upheld. The figure shows four plots (3 for the random intercept and 1 for the random

slope). Each plot shows that the random patient effects are scattered randomly and equally

balanced around the mean.

6.3.3 Individual models

The assumption of multilevel models with an additional correlation structure is that the

correlation parameters are the same for each patient. The aim of this section is to
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determine whether this is a reasonable assumption to make. Models were fitted using

generalised least squares with thegls command in R, which permitted the modelling

of different correlation parameters due to patient (and also due to phase within patient).

The fitting of these models will also allow different slopes to be fitted for each patient,

which is similar to the random slopes philosophy in the MLM framework. The random

patient element is incorporated by fitting single models foreach patient. Similar to the

previous section the model slope will represent static autoregulation, and the correlation

parameters may represent dynamic autoregulation. The reasoning behind this theory will

be discussed in detail in Chapter 8.

All models were fitted (described below) incorporating an AR(1) correlation structure

for the residuals, as the AR(2) was not suitable for every patient, due to models being

fitted with a reduced amount of data. The initial model to be fitted is shown in equation

6.5 shows the model fitted to each patient, where the static (slope) and dynamic (ρ)

autoregulation varies between patients, though remains constant across phases.

F lowtj = β0tj + β1tjMBP + β2tjP2 + β3tjP3 + ρ1et−1,j + Zt (6.5)

Equation 6.6 shows where the static parameter varies between phases and the dynamic

remains constant between phases, though both vary between patients.

F lowtj = β0tj+β1tjMBP+β2tjP2+β3tjP3+β4tjMBP∗P2+β5tjMBP∗P3+ρ1et−1,j+Zt

(6.6)

Equations 6.7 6.8 and 6.9 show where both the static and dynamic parameters vary

between phases, and between patients.
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F low1tj = β0tjP1 + β1tjMBP + ρ1et−1,j + Z1t (6.7)

F low2tj = β2tjP2 + β3tjMBP + ρ2et−1,j + Z2t (6.8)

F low3tj = β4tjP2 + β5tjMBP + ρ3et−1,j + Z3t (6.9)

The plots of the dynamic and static parameters from these models are shown in figures

6.20 to 6.23
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Figure 6.20: Dynamic vs static for equation 6.5

Figure 6.20 shows the dynamic parameter plotted against thestatic parameter for the

model where each of the parameters varies due to patient, butnot taking phase into

account. There seems to be a slight increasing trend betweenthe two parameters, such

that static increases as dynamic increases. This suggests that the patients who experience a

steeper slope (larger static parameter, which would indicate impaired autoregulation) will

also experience a stronger correlation between adjacent measurements (larger dynamic

parameter).



Chapter 6. Results - Cerebral Autoregulation 118

In this model there are a small number of patients whose static parameters are negative. It

is not plausible that these values actually occur, as a negative slope would mean that CBF

would decrease as ABP increases. The negative slopes, however, are relatively small. In

figure 6.21 the negative static values have been constrainedto zero, which is plausible as

this phenomenon may occur if all the patients measurements are clustered together and

thus the estimate of a negative slope is inaccurate.
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Figure 6.21: Dynamic vs static for equation 6.5 (restricting negative slope to zero)

Figures 6.22 and 6.23 show plots of dynamic vs static where dynamic is fixed and static

varies between phase, and where dynamic and static vary between phases, respectively.

These models seem a little impractical, however, as in figure6.22 there are many patients

who have one or more negative static parameters. In figure 6.23 there are many negative

static parameters again and also negative dynamic parameters. Furthermore, there does

not appear to be any significant relationship between the dynamic and static parameters

for either of these models. It therefore seems that model 6.5is the best representation of

the data, when the few negative static parameters are restricted to zero. This finding also
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supports the result that each patient requires different (random) parameters, though it is

not necessary to vary these due to phase of CEA.
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Figure 6.22: Dynamic vs static for equation 6.6

6.3.4 The effects of anaesthesia on cerebral autoregulation

A further aim of this work was to investigate whether CA was affected due to type

of anaesthesia. This aim was addressed by using boxplots to compare the static and

dynamic parameters, calculated from previous models, for local and general anaesthesia.

Figure 6.24 shows the static parameter from the multilevel model with AR(2) correlation

structure (model 6.4) by anaesthesia type. Figure 6.25 shows boxplots of the dynamic

and static parameters from the individual models with AR(1)correlation structure (model

6.5) and the negative static parameters constrained to zero, by anaesthesia type.

Individual patient slopes were extracted from model 6.4 to permit comparison of their

values between local and general anaesthesia. Figure 6.24 shows the gradient of the CBF-
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Figure 6.23: Dynamic vs static for equations 6.7 (phase 1 - black) 6.8 (phase 2 - red) and

6.9 (phase 3 - green)
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Figure 6.24: Boxplots showing static parameter (model slope) from equation 6.4 by

anaesthesia type
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ABP relationship for patients undergoing surgery under local and general anaesthesia.

The median (range) gradient for local anaesthesia was 0.09 (-0.03 to 0.31) and for general

anaesthesia 0.17 (0.01 to 0.53). At-test showed that there is a statistically significant

difference in the means of static autoregulation in local and general anaesthesia. Patients

undergoing general anaesthesia generally had greater gradients, that is to say less efficient

autoregulation.
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Figure 6.25: Boxplots showing static and dynamic parameters from individual models

(equation 6.5) by anaesthesia type (0 = Local, 1 = General)

Figure 6.25 shows that the range and interquartile range of dynamic parameters is

particularly large for both types of anaesthesia. In addition there is no significant

difference in the dynamic parameters for the two types of anaesthesia. Similar to

figure 6.24 the static parameters for patients undergoing general anaesthesia are generally

greater than those undergoing CEA with local anaesthesia. The median (range) gradient

for local anaesthesia was 0.05 (0.00 to 0.34 – excluding extreme values) and for general

anaesthesia 0.22 (0.00 to 0.27 – excluding extreme values).A t-test suggests that there
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is a statistically significant difference in the means of thestatic parameter, though not

between the means of the dynamic parameter.

CEA is often associated with marked changes in blood pressure. Further, it is generally

perceived that ABP generally falls after induction of general anaesthesia, which is true of

these patients, as seen in figure 6.26. Figure 6.27 shows thatthis finding is consistent in

each of the three phases. In phase 2 of CEA patient ABP is raised compared with ABP in

phase 1. ABP then decreases in phase 3.
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Figure 6.26: Boxplot of arterial blood pressure by anaesthesia type (0 = Local, 1 =

General)

Figure 6.28 shows that across all phases CBF does not change due to type of anaesthesia,

in fact the box plots appear almost identical. When this is broken down by phase (see

figure 6.29 there is again no difference in CBF due to anaesthesia type. Furthermore, this

figure again shows that the variability in CBF increases as CEA progresses.
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Figure 6.27: Boxplot of arterial blood pressure by anaesthesia type (0 = Local, 1 =

General) in each phase
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Figure 6.28: Boxplot of cerebral blood flow by anaesthesia type (0 = Local, 1 = General)
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Figure 6.29: Boxplot of cerebral blood flow by anaesthesia type (0 = Local, 1 = General)

in each phase
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Chapter 7

Results - Renal Anaemia

The results from the analysis of the data from the renal anaemia biomedical system will

be presented in this chapter. This includes exploratory tables and kernel density plots,

the application of FDA (including B-spline curves and phaseplots) and the application

of MLM (which includes the fitting of complex models with autoregressive correlation

structures and a more pragmatic clinical model).

7.1 Exploratory Analysis

In this section summary statistics for the data from the renal anaemia biomedical system

are presented, in the form of tables and kernel density plots. These figures and tables are

useful to give an initial insight to the data. Table 7.1 presents summary statistics about

the patients in this study, for each agent. Table 7.2 presents numerical summary statistics

about Hb and dose, for both agents combined and individually. Rows 2 and 5 of this

table show the summary statistics of Hb and dose across all patients, rows 3,4,6,7 show

the summary statistics of Hb and dose by epoetin agent. Kernel density plots are used to

show the distribution of Hb and dose overall (figure 7.1) and also by agent (figure 7.2).
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Agent DA EB

Patients 74 77

Observations 962 1001

Age (median(range)) 64(51-73) 63(46-72)

Gender(Male:Female) 37:37 50:27

Table 7.1: Summary statistics of the patients and observations for this study by epoetin

agent .

No. patients Min. Q1 Median Mean Q3 Max. SD

Hb (all data) 151 7.20 11.00 11.80 11.84 12.70 17.20 1.36

Hb DA 74 8.00 11.20 12.00 12.03 12.80 17.20 1.32

Hb EB 77 7.20 10.90 11.60 11.66 12.50 16.20 1.39

Dose (all data) 151 0.00 51.50 91.24 114.70 155.80 493.80 86.06

Dose DA 74 0.00 43.54 74.00 98.30 125.90 493.80 84.46

Dose EB 77 0.00 67.05 115.20 130.40 179.60 461.50 84.68

Table 7.2: Summary statistics for Hb (g/dL) and Dose (IU/kg)
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The summary statistics (in table 7.2) show that across all patients the mean and median Hb

is 11.8 g/dL, which is the same as the ideal level for patientswith renal anaemia. When

these values are calculated for individual agents, the meanand median Hb for patients

receiving DA is 12.0 g/dL, which is slightly higher than the target. In the EB group the

mean and median for Hb is 11.6 g/dL, which is slightly lower than target. The spread

of the data appears to be very similar overall and by agent, evident from the standard

deviations being approximately the same (≈ 1.36) and also the lower (Q1) and upper

(Q3) quartiles of the data.

The mean and median values for the dose data are quite different from each other, whereby

the median is less than the mean. This indicates that dose is positively skewed. In this

instance the median should be used as a central measure rather than the mean, as the mean

is highly influenced by outliers. The median dose for the DA group (= 74 IU/kg) is much

lower than the median dose in the EB group (= 115 IU/kg), and the third quartile in the

DA is also smaller then the EB group. These features of the data suggest that patients

receive a higher dose in the EB than the DA group.

Figure 7.1 shows that Hb for both agents combined follows thenormal distribution

very closely, this is also the case when the data are separated by the agent (see figure

7.2). Figure 7.1 shows that overall dose is positively skewed, suggesting that patients

tend to receive lower doses more than larger ones, and only a few patients on a few

occasions receive doses greater than 300 IU/kg. The distribution for EB dose is much

wider than for DA dose, seen in figure 7.2. There are a few patients on a few occasions

that receive DA dose greater than 200 IU/kg; however in the EBgroup the distribution

does not tail off until after 300 IU/kg. From these plots it seems that patients receiving

EB are administered larger doses than patients receiving DA; however further and more

sophisticated analysis will highlight whether this is truly the case.
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Figure 7.1: Kernel density plot of Hb (left) and Dose (right)
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Figure 7.2: Kernel density plot of Hb (top) and Dose (bottom)by agent, DA (left) and EB

(right)
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7.2 Functional Data Analysis

The results from the application of FDA to the data from the renal anaemia biomedical

system are presented in this section. FDA was used as features of the methodology and

the data inferred that it would be an appropriate methodology to analyse the dynamics

and control of renal anaemia in the patients, which are highlighted below.

• Hb (and dose) may be regarded as a smooth trajectory over time, which can be

modelled using smoothed B-spline curves.

• It may be possible to model control of Hb using phase plots. Inparticular the first

derivative of the Hb function would indicate the rate of change of the trajectory.

• Fitting individual curves will permit analysis of each individual patient.

• The mean functions may be a useful way to compare and contrastpatients response

to the two agents.

Four graphs are presented for a representative sample of patients representing a variety of

scenarios that may occur with regards to control of Hb and Dose over time (figures 7.3

- 7.7). The top two graphs show the fitting of B splines to the Hb(left) and dose (right)

data. The dotted pink line in the left plot indicates the optimum Hb of 11.8 g/dL. The

bottom left graph shows the phase plot for Hb; this is the firstderivative plotted against

Hb measurement. A tight spiral in the center of the dotted lines would represent a patient

who has good control of Hb. The red dot indicates the start of the trajectory in the phase

plane and hence indicates the direction of the spiral. The plot in the bottom right is the

first derivative of the Hb curve, in other words modelling therate of change of Hb.

Ramsay and Silverman considered phases plots of the second derivative against the first

derivative, in their examples [105]. This approach was implemented in this thesis with

the renal data, but plots of the first derivative against Hb measurement produce very
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similar results and identical conclusions are made. Therefore, in the interest of simplicity

for the clinical domain, the original approach has not been used. This demonstrates a

development of the FDA methodology.

A pragmatic solution is required when determining the appropriate position and number

of knots for the B-splines, since the algorithmic rules thatdo exist are not readily

implementable nor would they yield appropriate solutions for each curve. The aim was

to choose a number of knots that represented the whole group of patients, opposed to

having a different number of knots for each patient. Having adifferent number of knots

for each individual would mean that the curves could not all be interpreted in the same

way. Furthermore, the algorithm for the fitting of the curveswould be more complex and

the running time longer, if the knots varied between patients. Importantly, it was found

necessary to place knots at the first and last data points (0 and 12 months) as the routine

will not run unless the end points are knots. It was necessaryto specify the knots to be

evenly spaced, since these data are evenly spaced. In an example where the data are not

balanced, it may be necessary to place more knots where thereare more data points and

fewer knots where there is less data.

This involved evaluating the relative merits of the permutations of knot number and

position subject to the constraints outlined above. Placing a knot at each month was taken

as a sensible starting point, as this option positions a knotat every time point the data

were collected. This fully saturated possibility overfitted the curve as it passed through

every measurement and the long term trend was not evident. Asthe B-splines needed

more flexibility, the number of knots was reduced. Maintaining the equal balance in

the position of knots, knots were considered at two month intervals (0,2,4,6,8,10,12),

thus giving 7 knots points. While the B-splines became more representative of the data,

further relaxation appeared possible, investigating 5 knot points at months 0,3,6,9 and

12. These B-splines displayed a good fit to the data. Reducingthe number of knots

further, i.e. to 4 (0,4,8,12) yielded some B-splines that needed further restriction (via
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additional knots). Fewer than 5 knots resulted in curves that did not pass through many of

the actual measurements. Therefore 5 knot points were deemed the most appropriate as

statistically this produced flexible curves with enough freedom to represent the discrete

measurements, while placing equidistant knots at sensibletime positions.

Smoothness of the curves was ensured by fitting fifth degree B-splines polynomials and

penalizing the fourth derivative to be smooth. This was doneas it is reasonable to assume

that Hb varies smoothly with time, in response to epoetin dose [98]. Furthermore, it

permits phase plots to be constructed from smooth derivatives up to the third order,

allowing assessment of Hb control.
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Figure 7.3: Graphs showing the fitting of B-splines to the Hb (left) and dose (right) data.

The bottom graph shows the phase plot and velocity trajectory of the Hb curve for patient

2.
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Figure 7.3 is used to show an example of a patient whose Hb begins off target then comes

under control, albeit slightly below the optimum value. This is shown in the phase plot as

the red dot indicates initially Hb is not under control or on target, the plot then spirals in to

a very tight circle indicting good control. The dose seems toremain constant until month

10 around 100 IU/kg, this is then increased at the last two months when Hb is shown to

be decreasing.
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Figure 7.4: Graphs showing the fitting of B-splines to the Hb (left) and dose (right) data.

The bottom graph shows the phase plot and velocity trajectory of the Hb curve for patient

4.

Figure 7.4 illustrates a patient whose Hb begins on target, then goes slightly below target,

after month 5 Hb goes greatly above target but after month 8 isbrought back to target.

This is shown in the phase plot by an initial tight circle, which then spirals out to form

a large circle that returns to the centre of the plot indicating the patient is coming back



Chapter 7. Results - Renal Anaemia 133

under control. The dose for this patient reflects their Hb, where the patient is below target

dose is increased in order to bring the patient to the optimumvalue, then from month 5

onwards the dose is decreased every month due to the patientsHb being out of control

and well off target. The velocity curve is quite stable indicating that the change in dose

is steady and there is no large dose change between adjacent months, although between

month 4 and 12 the difference in dose is approximately 250 IU/kg.
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Figure 7.5: Graphs showing the fitting of B-splines to the Hb (left) and dose (right) data.

The bottom graph shows the phase plot and velocity trajectory of the Hb curve for patient

7.

Figure 7.5 represents a patient whose Hb oscillates, albeitaround the optimum value.

There is a periodicity of approximately 5 months, whereby the patient’s Hb will begin

on target and will then increase or decrease for 2 months, then being brought back to the

target. The dose for this patient shows the similar oscillating pattern, which mirrors the
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respective patient’s Hb curve. For example, where Hb is at its maximum, the dose is at

its minimum. This is demonstrated by the phase plot by a largecircle, representing poor

control, around the centre of the plot. Similarly the velocity curve shows the oscillating

behaviour.
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Figure 7.6: Graphs showing the fitting of B-splines to the Hb (left) and dose (right) data.

The bottom graph shows the phase plot and velocity trajectory of the Hb curve for patient

30.

Figure 7.6 shows a patient whose Hb is extremely well controlled, such that it is almost

constant at 11.8 throughout the whole study period. The doseis maintained at a low and

constant level (approximately 50 IU/kg) throughout. The phase plot shows a small tight

circle in the centre of the plot and the velocity curve is almost a horizontal line. This is

highly likely to represent a patient who went on to receive a kidney transplant.
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Figure 7.7: Graphs showing the fitting of B-splines to the Hb (left) and dose (right) data.

The bottom graph shows the phase plot and velocity trajectory of the Hb curve for patient

43.
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Behaviour Number of patients Percentage

Spiral in 33 22%

Spiral out 37 24%

Oscillate 48 32%

Stable 24 16%

Curve does not fit 9 6%

Table 7.3: Numerical summary of behaviour exhibited by renal anaemia patients phase

plots

Figure 7.7 is used to represent an occasion where the B-spline curve for the Hb data

does not pass through all of the individual data points; instead the curve passes through

the middle of the data. The curve models the underlying behaviour of Hb rather than

the slightly oscillating behaviour. The phase plot and velocity curve suggest that this

patient’s Hb is well controlled, although on this occasion less smoothing would be more

appropriate.

Many patterns of Hb waveform variation were revealed by fitting the B-spline functions,

some appeared to be sinusoidal and others irregular. The amplitude of the waves also

varied widely. The decision was made not to categorise the wave patterns as the time

frame and number of data points were limited. Table 7.3 is used to present the number

(and percentage) of the 151 patients displaying the behaviour as shown in figures 7.3 to

7.7.

A particularly interesting group of patients that were apparent were those whose Hb wave

shows evidence of Hb cycling. These patients are not adequatly controlled by the CDSS,

which may occur due to external problems (such as experiencing an adverse event) or

because they are receiving an inappropriate dose. This willbe investigated further in

section 7.3.
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7.2.1 Functional Mean Curves

Figure 7.8: The two group mean curves for the two agents, with68 % confidence limits.

Where the confidence limits do not overlap the mean curves areseparated by at least two

standard errors and thus indicate where there is a significant difference between the two

agents. The red curve represents the DA (Darbepoetin) groupand the blue curve for the

EB (Epoetin beta) group.

In order to compare the two agents in the FDA framework, mean functions were

constructed from the Hb patient trajectories for the DA and EB groups, which are plotted

with 68 % confidence limits. Figure 7.8 shows that there is a slight difference between the

mean curves initially, with Hb for DA being slightly higher than Hb for EB. The patients

were randomised at the beginning of the trial, therefore theslight difference in patients

initially should be due to random sampling variation. Afterthe first month the two mean
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curves diverge, to the extent that the confidence limits no longer overlap, which indicates

a statistically significant difference between the groups.From month 9 onward the mean

functions converge until they reach similar levels at month12.

7.3 Multilevel Modelling

The results from the application of multilevel modelling tothe data from the renal anaemia

biomedical system are presented in this section. The process of fitting the models is

explained, together with the reasons behind the steps takento find an appropriate model

for the data.

7.3.1 Relationship between Haemoglobin and Epoetin

As discussed previously, epoetin doses are managed with theassistance of a computerised

decision support system; which adjusts a patient’s dose each month by examining their

current Hb, which is believed to be the result of the previousmonths epoetin. Models were

subsequently fitted to model this relationship. A further postulation is that the relationship

between Hb and dose is nonlinear, since the dose ladder is asymmetric. It is not plausible

to assume that Hb will increase linearly as dose increases; aclinical maximum dose is

300 IU/kg since beyond this no significant effect is seen in Hblevels. A quadratic effect

was tested, since this would reflect that Hb increases as doseincreases together with the

plateauing affect that dose has when a certain level of Hb is reached.

The inclusion of random intercepts and slopes in the model was investigated. A random

intercept would mean that patients Hb levels would vary (fora zero dose), this would give

an assessment of renal health. A random slope would indicatevariation in the relationship

between Hb and dose for each patient. This has clinical meaning in terms of patient

sensitivity. A steep slope would represent a patient who is more sensitive, whereby a small
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Model DF AIC BIC loglik

1 4 5962.156 5984.160 -2977.078

2 6 5949.692 5982.699 -2968.846

3 5 5978.935 6006.438 -2984.468

4 7 5969.800 6008.304 -2977.900

5 10 5967.404 6022.410 -2973.702

Table 7.4: Information criterion for initial models investigating relationship between

Hb(i) and dose(i-1)

dose adjustment achieves a large change in Hb. Conversely, aless sensitive patient maybe

less responsive and a large adjustment in dose achieves a small increase in dose (i.e. a

shallow slope). As the model coefficients have great clinical importance and meaning,

this emphasises the practicality of these models in the clinical domain.

7.3.2 Haemoglobin(i) vs dose(i − 1)

The initial set of models fitted was to investigate the relationship between Hb(i) and

Dose(i-1), these are shown in the list below. Information criterion from the models are

presented in table 7.4

1. lme(hb(i)∼ dose(i-1), random = 1\ patient)

2. lme(hb(i)∼ dose(i-1), random = dose(i-1)\ patient)

3. lme(hb(i)∼ dose(i-1)+ dose2(i-1), random = 1\patient)

4. lme(hb(i)∼ dose(i-1)+dose2(i-1), random = dose(i-1)\patient)

5. lme(hb(i)∼ dose(i-1)+dose2(i-1), random = dose(i-1)+dose2(i-1)\patient)
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The best fitting model (according to AIC) between Hb(i) and dose(i-1), at this point,

includes a random intercept and slope for each patient (model 2), a quadratic term was

found not to improve the model fit. The residuals of this modelwere investigated and

found to be autocorrelated (shown in figure 7.9), suggestingthat a correlation structure

for the residuals is required.
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Figure 7.9: ACF of normalised residuals from model lme(hb(i) = dose(i-1), random =

dose(i-1)\ patient)

When model 2 was fitted with AR(1) correlation structure thisimproved model fit and

yielded uncorrelated normalised residuals, however this model yields a non positive

definite variance-covariance matrix. The models with AR(2)and AR(3) also improved

model fit, although in these cases the fixed effects dose term was not statistically

significant, which further suggests that the models including dose(i-1) are unstable and

do not represent the data.
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7.3.3 Haemoglobin(i) vs. dose(i − γ)

Further investigation for a suitable model was required, since the models between Hb(i)

and dose(i-1) yielded erroneous results. Moreover, Hb cycling has been shown to occur in

some of these patients, through the fitting of the B-spline curves. It is possible to speculate

therefore that current Hb being based on dose(i-1) is sub-optimal. One suggestion is that

a response in Hb, from epoetin dose, is seen within 2 to 6 weeksand there are a number of

exogenous factors that may affect this and thus lengthen thetime lag. A longer time lag

than one month may occur from the administration of epoetin to response in Hb, which

would mean that the 4 week lag currently implemented would besub-optimal.

Models were fitted between Hb(i) and dose(i-2) and similarlyHb(i) and dose(i-3). It

would not be plausible to include adjacent doses in the modelas covariates, as there is

very strong correlation (=0.95), hence collinearity, between both dose(i-1) and dose(i-

2), which is clearly illustrated in figure 7.10. In general, including variables that are

correlated would introduce problems associated with severe collinearity into the model,

i.e. biased estimates of the coefficients and inflated standard errors. In this particular

model, which shall be referred to as the collinearity model (see table 7.5), the fixed effect

coefficient for dose(i-1) is negative and the variance-covariance matrix is non-positive

definite. It is not plausible for the slope to be negative as this would suggest that Hb

decreases as dose increases, which is not biologically feasible. A possible method of

removing collinearity would be to include the mean and difference of dose(i-2) and dose(i-

3), as both variables will not be included explicitly in the model [142]. In this case there

would not be correlation between the variables and a combination of the effect from both

doses can be modelled.

The difference and mean models are presented below, some include AR(1) correlation

structures as thus far these have been necessary in yieldingsuitable models:

A1 lme(Hb(i)∼ Mean+Diff, random= 1\ pt)
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Table 7.5: Coefficients of the collinearity model. This model includes dose(i-1) and

dose(i-2) as covariates, which introduces collinearity into the model as the adjacent doses

are correlated. There are 1508 degrees of freedom in this model.

Fixed effects Coefficient SE p-value

Intercept 11.18 0.10 ≤ 0.0001

Dose(i-1) -0.015 0.0013 ≤ 0.0001

Dose(i-2) 0.023 0.0015 ≤ 0.0001

Random effects SD Rand Corr Fix Corr

Intercept 0.96 Int Dose(i-1) Int Dose(i-1)

Dose(i-1) 0.01 -0.334 -0.304

Dose(i-2) 0.014 -0.025 -0.824 -0.141 -0.794

Residual 0.88

Diagnostics AIC BIC logLik

4910.184 4964.318 -2445.092

Residuals Min Q1 Med Q3 Max

-4.07 -0.53 0.05 0.57 2.82
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Figure 7.10: Scatter plot to show relationship between dose(i-1) and dose(i-2)
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Model df AIC BIC logLik Test L.Ratio p-value

A1 5 4769.775 4796.364 -2379.887

A2 7 4584.280 4621.506 -2285.140 A1 vs A2 189.49438≤ 0.0001

A3 10 4567.079 4620.258 -2273.540 A2 vs A3 23.20128≤ 0.0001

A5 7 4596.839 4634.064 -2291.420

A6 10 4532.341 4585.520 -2256.171 A5 vs A6 70.4982≤ 0.0001

A7 8 4191.565 4234.108 -2087.782

A8 11 4186.868 4245.365 -2082.434 A7 vs A8 10.6966 0.0135

Table 7.6: Information criterion for initial models investigating relationship between

Hb(i) and the mean and difference of dose(i-2) and dose(i-3)

A2 lme(Hb(i)∼Mean+Diff,random= Mean\ pt)

A3 lme(Hb(i)∼Mean+Diff,random= Mean+Diff\ pt)

A4 lme(Hb(i)∼Mean+Diff,random= Mean+Diff\ pt, corARMA(p=1))

A5 lme(Hb(i)∼Mean+Mean2, random= Mean\ pt)

A6 lme(Hb(i)∼Mean+Mean2, random= Mean+Mean2 \ pt)

A7 lme(Hb(i)∼Mean+Mean2, random= Mean\ pt, corARMA(p=1))

A8 lme(Hb(i)∼Mean+Mean2, random= Mean+Mean2) \pt, corARMA(p=1))

After fitting the model the difference is not statistically significant and does not improve

model fit, which suggests difference is not required in the model. When the AR(1)

correlation is included with the difference models, these did not converge, highlighting

further numerical problems within these models. The best fitting model with Hb(i) as

the response anddosei−2+dosei−3

2
as the covariate, includes a random intercept and slope

and fixed quadratic effect together with an AR(1) correlation structure (Model A7), the
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full summary is shown in table 7.7. The loglikelihood ratio test suggests that the random

quadratic term is required in the model, but this model has a non positive definite variance-

covariance matrix, hence is unstable.

Table 7.7: Coefficients of model A7. Note that there are 1357 degrees of freedom in this

model.

Fixed effects Coefficient SE p-value

Intercept 10.53 0.15 ≤ 0.0001

Mean 0.017 0.00197 ≤ 0.0001

Mean2 -0.000026 0.00000604≤ 0.0001

AR(1) coefficient (ρ) 0.66

Fix Corr Int Mean

Mean -0.75

Mean2 0.53 -0.85

Random effects SD Rand Corr

Intercept 0.96 Int

Mean 0.01 -0.37

Residual 1.15

Diagnostics AIC BIC logLik

4191.57 4234.11 -2087.783

Residuals Min Q1 Med Q3 Max

-3.22 -0.48 0.04 0.52 3.41

7.3.4 Haemoglobin(i) vs dose(i − (2 + γ))

The model shown in table 7.7 can be developed further; instead of simply using an

arithmetic mean of dose(i-2) and dose(i-3), models will be fitted with a linear combination

of dose(i-2) and dose(i-3) as the covariate. This approach means that it will be possible
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to identify where between dose(i-2) and dose(i-3) the strongest relationship occurs with

Hb(i). A model will be fitted with Hb(i) as the response and thedose covariate as equation

7.1, where0 ≤ γ ≤ 1. See equation 7.2 for the fitted model; this includes random

intercept and slope parameters and fixed quadratic term, together with AR(1) correlation

structure. Models will be fit withγ values between 0 and 1, at intervals of 0.1, the

model which yields the lowest AIC will be concluded as being the best fitting model

andi − (2 + γ) will be concluded as being the optimum time lag.

dosei−(2+γ) = (1 − γ)dosei−2 + (γ)dosei−3 (7.1)

Hbij = (A + α) + (B + β)dosei−(2+γ) + (C)dose2
i−(2+γ) + ρei−1,j + Zij (7.2)

Table 7.8: AIC for lag models 7.2, where0 ≤ γ ≤ 1

Lag (months) AIC

2 4207.978

2.1 4200.183

2.2 4193.557

2.3 4189.261

2.4 4188.408

2.5 4191.565

2.6 4198.408

2.7 4207.834

2.8 4218.441

2.9 4229.02

3 4238.795

The lowest AIC occurs when the time lag is 2.4 months (γ=0.4), this suggests that the
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optimum response in Hb is seen from the dose 2.4 months (10 weeks) previously. Note

that, minimizing the AIC here is identical to maximizing theloglikelihood as the number

of parameters is fixed. Figures 7.11 and 7.12 show the graphical representation of the

model 7.3 and tables 7.9 and 7.10 showing model coefficients and confidence intervals.

Hbij = (10.52+α)+(0.017+β)dosei−(2.4)−0.000025dose2
i−(2.4)+0.66ei−1,j+Zij (7.3)
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Figure 7.11: All patient curves from model 7.3. The red horizontal lines representing Hb

control limits 10-12.5 g/dL

Figure 7.12 appears to be a reasonable representation of thepatient curves shown in figure

7.11, as many patients follow the same trajectory although at different levels (due to the

random intercepts). These patients tend to be in the middle of the so called spectrum
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Figure 7.12: Mean curve from model 7.3, with 95 % confidence interval. The red

horizontal lines representing Hb control limits 10-12.5 g/dL
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of patients. However, the patients at the upper and lower endseem to have extreme

behaviour, whereby there are patients with high Hb who experience a large slope. At

the lower end there is a patient whose Hb seems to decrease with larger doses. The

patients curves are summarised by a mean curve with 95% confidence limits, shown in

figure 7.12. The 95 % confidence limits are calculated from thestandard deviation of the

random patient intercepts. Figure 7.12 shows that on average (from the mean curve) for

reasonably low doses, between 0 and 150 IU/kg, the patients would attain a Hb within the

target range (10 - 12.5 g/dL). The patients towards the lowerconfidence interval seem to

require a larger dose. Below 50 IU/kg in these patients wouldresult in Hb that is lower

than 10g/dL, hence being dangerously low. A dose of around 175 IU/kg would put them

in the middle of the target range. At the other end of the spectrum where patients Hb is

relatively high, a dose of more than 50 IU/kg would result in aHb exceeding the limits.

These patients require a low dose to maintain their Hb. On thewhole, in terms of the mean

curve, it seems that a dose of around 100 IU/kg should maintain / help patients achieve

Hb around 12 g/dL.

The intercept of model 7.3 is 10.52 g/dL, this is the mean Hb for a zero dose, across all

patients and both agents. This is less than the optimum 11.8,though within the limits 10 to

12.5 g/dL. This suggests that patients do require some dose to maintain their Hb at a more

acceptable level. The fixed slope is 0.017, meaning that for a1 unit increase in dose then

Hb will increase by 0.017 units. In more clinically meaningful terms a 100 unit increase

in dose would achieve an increase of 1.7 units. The standard deviation of the random

slope is 0.006, indicating that there is relatively small variation in the sensitivity between

patients. The quadratic term should also be taken into account when considering this,

although the coefficient is particularly small (= -0.000025) so will only have a substantial

effect for large doses. As the coefficient is negative it accounts for the tailoring off of Hb

at large doses, however at very large doses it would suggest that Hb decreases. This is

implausible thus suggesting that the model is limited up to amaximum value which is too

small to be considered as a true maximum.
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Table 7.9: Coefficients of model 7.3. This model includesDose(i−2.4) in the fixed and

random specification and AR(1) correlation structure. Notethat this model has 1357

degrees of freedom

Fixed effects Coefficient SE p-value

(Intercept) 10.52 0.155 ≤ 0.0001

Dosei−2.4 0.017 0.0019 ≤ 0.0001

Dose2
1−2.4 -0.000025 0.00000603≤ 0.0001

AR(1) coefficient (ρ) 0.66

Fix Corr Int Dosei−2.4

Dosei−2.4 -0.75

Dose2
1−2.4 0.53 -0.85

Random effects SD Rand Corr

Intercept 0.97 Int

Dosei−2.4 0.006 -0.38

Residual 1.15

Diagnostics AIC BIC logLik

4188.408 4230.951 -2086.204

Residuals Min Q1 Med Q3 Max

-3.19 -0.47 0.03 0.52 3.41
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Table 7.10: 95 % Confidence intervals for all coefficients in model 7.3

Fixed effects: lower est. upper

(Intercept) 10.21 10.52 10.82

Dosei−2.4 0.013 0.017 0.021

Dose2
1−2.4 -3.69 e-05 -2.51 e-05 -1.32 e-05

AR(1) coefficient (ρ) 0.60 0.66 0.72

Random effects:

sd(Intercept) 0.74 0.97 1.27

sd(Dosei−2.4 ) 0.004 0.006 0.010

cor(Intercept,Dosei−2.4 ) -0.695 -0.375 0.069

sd(Residual) 1.05 1.15 1.26

Table 7.10 shows that the standard deviation between patients is approximately equal to

1 (sd(Intercept) = 0.97), and so is the standard deviation within patients (sd(Residual) =

1.15). This suggests that there is as much variability between patients as there is within

patients.

The model shown in figure 7.13, where the quadratic term varies between patients, is not

an accurate representation of the data. Since the quadraticterm varies between patients

some patients experience curves with turning points at doses of around 100 IU/kg. In

these patients doses greater than 100 would result in Hb being reduced, though from

clinical knowledge it is known that this behaviour would notoccur. In theory as the Hb

increase so does the epoetin dose, up to a maximum where the effect in Hb tails of and

a dose greater than this maximum is not influential. The maximum dose is stated as 300

IU/kg, however for the model in figure 7.13 model the maximum for the mean function

is 250 IU/kg, which is less than the clinical maximum and hence unrepresentative. The

maximum in model 7.3 is 328 IU/kg, which is a more realistic representation of the data

albeit slightly higher than 300 IU/kg, yet still plausible as some patients do receive doses

greater than 300 IU/kg when it is known that the effect may notbe so influential.
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Figure 7.13: The figure on the left shows all patient curves from a model including

different quadratic terms for each patient. The figure on theright shows a mean

representation of the curves in the left figure. The green lines on both plots represent

the mean curve with 95 % confidence intervals. Red horizontallines representing Hb

control limits 10-12.5 g/dL.
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It is no coincidence that that maximum dose for the model is 300 IU/kg, nor is it that

a dose of 100 IU/kg corresponds to a Hb response of 11.8 g/dL, as these are the values

that have been found by trial and error in clinical practice [69] [94]. This highlights a

successful outcome of the modelling, as clinically meaningful results have been yielded.
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Figure 7.14: ACF of normalised residuals from model 7.3 (table 7.9)

Figure 7.14 shows that the normalised residuals from model 7.3 are (mostly) uncorrelated.

There is significant autocorrelation at lags 1 and 2, but thisis only very small. The

same model was fitted with an AR(2) correlation structure, instead of AR(1), though

did not improve the fit of the model significantly more than theAR(1), in contrast to the

normalised residuals of the model without correlation structure (see figure 7.15), which

are highly autocorrelated. Model 7.3 is therefore a substantial improvement.

Figure 7.16 shows that there is no relationship between the standardised residuals and
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Figure 7.15: ACF of normalised residuals model 7.3 without the correlation structure
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Figure 7.16: Standardised residuals vs fitted values for model 7.3
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fitted values from model 7.3, i.e. that they are randomly scattered around zero, which is

expected from a model that is appropriately specified. Furthermore, the majority of the

residuals are within the range -2 to +2, thus approximately within the 95% confidence

interval of the mean. Figure 7.17 shows that the random intercept and random slope from

model 7.3 are normally distributed, with a mean zero. From each of the figures, the model

assumptions have been checked and suitably adhered to. It therefore seems that model 7.3

is an appropriate representation of the data.
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Figure 7.17: Histogram of random intercept and random slopefor model 7.3

7.3.5 Haemoglobin(i) vs dose(i − γ) for each agent

Models were then fitted for each agent using the same approachas in the previous section,

in order to determine whether there is a difference in the lagtime due to the agent. The
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time lag was investigated between 1 and 3 months at intervalsof 0.1, again the best fitting

model was decided by the one which yielded the lowest AIC. AICis used in favour of

BIC as it is usually the case that the same conclusions will bemade about the selection

of model. In this case, the model yielding the lowest AIC willyield the lowest BIC, as

constant adjustment for complexity is being made.

Epoetin Beta Model

Table 7.11 shows the EB dose lags between 1 and 3 months (at intervals of 0.1) together

with the AIC from the respective model. The lowest AIC occursin this instance at 2.3

months. The coefficients from the fitted model are shown in table 7.12.

Table 7.11: AIC for lag models for EB

Lag (months) AIC Lag (months) AIC Loglik

1.0 2388.861

1.1 2384.438 2.1 2088.374 -1036.187

1.2 2378.267 2.2 2085.523 -1034.762

1.3 2370.091 2.3 2084.686 -1034.343

1.4 2360.144 2.4 2086.259 -1035.130

1.5 2349.086 2.5 2090.225 -1037.113

1.6 2337.923 2.6 2096.137 -1040.669

1.7 2327.645 2.7 2103.292 -1043.646

1.8 2318.903 2.8 2110.954 -1047.477

1.9 2311.923 2.9 2118.525 -1051.263

2.0 2306.609 3.0 2125.609 -1054.805
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Figure 7.18: Profile log-likelihood for the optimal time lagfor Epoetin Beta
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Table 7.12: Model fitted to EB data, withEB(i−2.3) as the covariate and AR(1) correlation

structure. Note that there are 691 degrees of freedom in thismodel.

Fixed effects: Value Std.Error p-value

(Intercept) 9.77 0.26 ≤ 0.0001

EBi−2.3 0.020 0.0028 ≤ 0.0001

EB2
i−2.3 -0.000030 0.00000834 3e-04

AR(1) coefficient (ρ) 0.70

Fix Corr Int EBi−2.3

EBi−2.3 -0.76

EB2
1−2.3 0.56 -0.89

Random effects SD Rand Corr

Intercept 1.26 Int

EBi−2.3 0.005 -0.476

Residual 1.14

Diagnostics AIC BIC logLik

2084.686 2121.826 -1034.343

Residuals Min Q1 Med Q3 Max

-3.19 -0.48 -0.001 0.50 3.01
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Darbepoetin Alpha model

Table 7.13 shows the DA dose lags between 1 and 3 months (at intervals of 0.1) together

with the AIC from the respective model. The lowest AIC occursin this instance at 2.4

months. The coefficients from the fitted model are shown in table 7.14.

Table 7.13: AIC for lag models for DA

Lag (months) AIC Lag (months) AIC Loglik

1.0 2369.203

1.1 2367.329 2.1 2123.379 -1053.690

1.2 2364.638 2.2 2120.614 -1052.307

1.3 2360.144 2.3 2118.636 -1051.318

1.4 2356.319 2.4 2117.976 -1050.988

1.5 2350.686 2.5 2118.991 -1051.494

1.6 2344.380 2.6 2121.612 -1052.806

1.7 2337.784 2.7 2125.337 -1054.669

1.8 2331.769 2.8 2129.510 -1056.755

1.9 2326.766 2.9 2133.596 -1058.798

2.0 2322.9 3.0 2137.287 -1060.644

Comparison

There are slight differences between the EB (table 7.12) andthe DA (table 7.14) models,

although in terms of the lag time from dose administration toresponse in Hb the

conclusions are approximately the same; such that the optimal lag time is 2.3 months

for EB and 2.4 months for DA. It does not seem therefore that there is a difference in

the response time due to the agent. The 95% confidence interval for the EB optimal time

lag, derived from the profile log-likelihood is (2.09, 2.49), this is shown in figure 7.18.
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Figure 7.19: Profile log-likelihood for the optimal time lagfor Darbepoetin Alpha
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Table 7.14: Model fitted to DA data, withDA(i−2.4) as the covariate and AR(1) correlation

structure. Note that there are 664 degrees of freedom in thismodel

Fixed effects: Value Std.Error p-value

(Intercept) 11.17 0.18 ≤ 0.0001

DAi−2.4 0.014 0.0026 ≤ 0.0001

DA2
i−2.4 -0.00002 0.00000873 0.02

AR(1) coefficient (ρ) 0.64193

Fix Corr Int DAi−2.4

DAi−2.4 -0.78

DA2
1−2.4 0.50 -0.79

Random effects SD Rand Corr

Intercept 0.61 Int

DAi−2.4 0.01 -0.64

Residual 1.19

Diagnostics AIC BIC logLik

2117.976 2154.796 -1050.988

Residuals Min Q1 Med Q3 Max

3.11 -0.51 0.01 0.55 3.92
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Figure 7.19 shows the 95% confidence interval for DA is (2.15,2.60). It seems that the

point estimate and 95% confidence interval of the optimal time lags are relatively similar

for each agent. Additionally the confidence intervals are quite narrow in both cases,

and it would not be clinically important whether a patient receiving EB, for example,

would have their dose adjusted at every 2.1 months or 2.5 months. Note that, the 95%

confidence interval for the optimum lag time was calculated by subtracting 1.92 from the

point estimate [143].

There are a few slight differences between the agents, shownfrom the fitting of the models

to each agent. The first notable difference is the value of thefixed intercept, which is 9.77

g/dL for EB and 11.17 g/dL for DA. This suggests that on average for the patients under

the DA regime, their Hb is within the target range even when they don’t receive any of

the agent, but for the EB patients they do require some agent before their Hb is within

the target range (as they experience 9.77 g/dL with a zero EB dose). The difference

in the fixed effects intercepts may be as a result of the conversion factor from EB dose

to DA dose not being precise, thus resulting in patients receiving too much of the DA

agent. It is evident that the DA conversion predicts a too high dose because for a zero

dose the baseline Hb is relatively high (11.17 g/dL). A further possibility is that the initial

randomisation process was not effective and patients with low Hb were selected for the

EB group and those with high Hb to the DA group. This feature ofthe patients was seen

from the functional mean curves, though with the MLM the timeis not evident, and it

is not possible to determine if the overdosing occurs through the whole 13 months or a

shorter time period. The patients receiving DA may be receiving slightly larger doses

than required, especially as it is predicted that they are within the target range without

receiving any of the agent. The value of the fixed slope in the EB group (0.020) is slightly

larger than that of the DA group (0.014), which suggests thatthe patients in the EB group

may be more responsive to the agent than those in the DA group.

In the EB model the between patient variation (1.26) is similar to the within patient
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variation (1.14), which is consistent with the overall model (model 7.3). This varies

from the DA model where the between patient variation (0.61)is half the within patient

variation (1.19). This suggests there is less variation in patients Hb and dose in the DA

group than the EB group, which further emphasises that therewas initially a difference in

the baseline randomisation and in the conversion of EB to DA.

The model fitted to all the data (model 7.3) is essentially a balance of the features from

two agents, such that the coefficients from model 7.3 are approximately the mid values of

the coefficients from the separate agent models.

7.4 Clinical algorithm

Model 7.3 was found to be too complex to be applied in clinicalpractice, since it was

difficult to rearrange the model in terms of dose and hence predict dose due to the

large number of complex parameters (such as the correlationstructure) - further details

are given in Chapter 8. The model was made more pragmatic for aclinical approach.

There were advantages of fitting the complex models, since this has advised the clinical

approach. The clinical model has been fitted using the patients who received EB, since

this was the standard drug used before the introduction of the newer DA and patients were

already on the EB regime. Note that, in the previous section the models could have been

fitted with dose as a fixed effect, which would have been usefulin describing the statistical

difference between the two groups. The choice was made to fit different models for the

two agents as this was used to develop the clinical algorithm. Dose administered two

months previously will be modelled as the covariate. The model (equation 7.4) includes

a random patient intercept and fixed slope and quadratic terms, no correlation structure is

included.

Hbij = 9.74 + Patientoffsetij + 0.021EBi−2,j − 0.000032EB2
i−2,j + eij (7.4)
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The patient offset (PO) represents the random intercept term which varies between time

points and patients, the mean value across all patients and time points is -0.045 g/dL. This

was substituted in figure 7.20 which shows the mean behaviourof the patients together

with 95 % confidence interval of the curve; the standard deviation for the patient offset

was calculated as 1.28 g/dL. The blue curve shows that ‘on average’ to reach the target

11.8 g/dL, a dose of 120 IU/kg is required. For a zero dose, mean Hb is 9.74 g/dL, which

is slightly less than the lower limit of the target range, which suggests that on average

most patients require ‘some’ dose of the agent. Patients close to the lower confidence

limit will not necessarily reach the 11.8 g/dL target, although a large dose (> 250 IU/kg)

would ensure the patients Hb is within the target limits. Patients at the upper confidence

interval achieve greater than the target value without receiving any dose. A low dose

(< 40 IU/kg) would ensure they are within the target range. The parameter estimates in

model 7.4 do not vary so much from those shown in the model presented in table 7.12.

Figure 7.20: Hb vs predicted EB dose (as in model 7.4), the blue curve represents the

mean and the pink curves represents the 95 % confidence interval

In order to predict dose, the following two equations (models 7.5 and 7.6) are solved

simultaneously, and then rearranged for PO to yield model 7.7.
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Table 7.15: Model for algorithm. Note that this model has 768degrees of freedom.

Fixed effects: Value Std.Error p-value

(Intercept) 9.74 0.20 ≤ 0.0001

EBi−2 0.021 0.0018 ≤ 0.0001

Eb2
i−2 -0.000032 0.00000522≤ 0.0001

Fix Corr Int EBi−2

EBi−2 -0.597

EB2
1−2 0.435 -0.908

Random effects SD

Intercept 1.31

Residual 0.97

Diagnostics AIC BIC logLik

2623.821 2647.512 -1306.911

Residuals Min Q1 Med Q3 Max

-3.77 -0.52 0.02 0.59 3.07
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Hbij = 9.74 + POij + 0.021EBi−2,j − 0.000032EB2
i−2,j + eij (7.5)

Hbi+1,j = 9.74 + POi+1,j + 0.021EBi−1,j − 0.000032EB2
i−1,j + ei+1,j (7.6)

POij = (Hbi−1,j+Hbi−2,j−19.48−0.021(EBi−3,j+EBi−4,j)+0.000032(EB2
i−3,j+EB2

i−4,j))/2

(7.7)

The equation for predicting dose is found by using the quadratic equation to solve model

7.4 and substituting Hb as the target value (11.8 g/dL):

Predicteddoseij = −0.0021 +
√

0.00017732 + 0.000128POij/ − 0.000064 (7.8)

Substituting equation 7.7 into 7.8 yields:

Predicteddoseij = −0.0021 + (0.00017732 + 0.000128((Hbi−1,j + Hbi−2,j − 19.48

−0.021(EBi−3,j + EBi−4,j) + 0.000032(EB2
i−3,j + EB2

i−4,j))/2))1/2/ − 0.000064(7.9)

7.4.1 Comparing predicted and true dose

The first predicted dose can be used from month 4 onwards; for the first four months the

old algorithm should be used to calculate the dose. These months of data are required to

validate the new algorithm. Table 7.16 shows summary statistics of the predicted doses at

month 4. The mean of predicted dose (= 96.59 IU/kg) is less that the mean of the true dose

(124 IU/kg) at month 4, which could suggest that patients receive too great a dose than

is actually required. The NA’s represent patients for whom it is not possible to predict a
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Min Q1 Med Mean Q3 Max NA’s

-73.42 28.92 92.64 96.59 173.30 274.20 13

Table 7.16: Summary of predicted doses at month 4

dose value, where the value under the√ is negative in equation 7.9 , this occurs when

the offset value is less than -1.38 g/dL. These patients typically have low unstable Hb and

seemingly require a large dose. The maximum value the equation predicts is 328 IU/kg,

found by taking the derivative of equation 7.4 with respect to dose and setting this to zero

to find the maximum (see equation 7.10). The maximum value (328 IU/kg) is just slightly

more than the suggested clinical maximum dose, although patients do receive greater than

300 IU/kg, which suggested that the model is a good representation of the data. Figure

7.21 is used to show the relationship between predicted doseand patient offset, at month

4. The rules are given below of how to interpret a patient offset value:

• If Patient offset< -1.385→ give maximum dose = 328 IU/kg/week (or clinical

maximum)

• If Patient offset> 2.06→ give dose = 0 IU/kg/week (or clinical minimum)

• If Patient offset = else→ give dose according to figure 7.21

∂

∂EB
(9.74 + Patientoffsetij + 0.021EBi−2,j − 0.000032EB2

i−2,j + eij)

→ 0 = 0.021 − 0.000064EB

→ EB =
−0.021

−0.000064

→ EB = 328 (7.10)

Figure 7.22 is used to compare predicted and true dose at month 4; the first possible

occasion to predict dose using the new algorithm. There are five instances where predicted
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Figure 7.21: Predicted dose plotted against patient offsetfor month 4
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Figure 7.22: Predicted dose plotted against true dose at month 4. The red squares highlight

where Hb is below or equal to 11.8 g/dL, the black circles highlight where Hb is greater

than 11.8 g/dL. The blue line indicates where predicted doseand true dose are equal; the

black line is an arbitrary sectioning of the data where the majority of points above the line

are red squares and black circles below.
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dose is equal to true dose, this is evident from the points which lie on the blue line. The

black line is used to identify the separation between two groups of patients; patients in the

upper sector (red squares) typically have lower than targetHb and their predicted dose is

higher than the true dose; the patients in the lower sector (black circles) Hb is typically

greater than the target value and their predicted dose is lower than the true dose.

In summary:

• If Hb < 11.8 g/dL (Below target) - Predicted dose higher than true dose

• If Hb > 11.8 g/dL (Above target) - Predicted dose lower than true dose

Figures 7.23, 7.24 and 7.25 are examples to show how predicted dose and true dose

compare for all months, for selected patients; this is showntogether with Hb.

Figure 7.23 is used to illustrate a scenario whereby predicted dose does not resemble true

dose. The true dose is relatively stable, with a slight oscillation about 50 IU/kg, which

is lower than the mean dose, thus suggesting that Hb is high but stable. In fact, Hb is

high (around 13 g/dL) for the first three months, it then dropswell below target for the

next four months to around 9 g/dL, which is highlighted in thepatients dose increasing

though only slightly in this period. Hb then increases greatly to around 13/14 g/dL, which

is reflected in the true dose slightly decreasing. The predicted dose is a more accentuated

response to the patients Hb than the true dose; it is suggesting a very high dose when Hb is

lower than average and then large decreasing steps when the patients Hb increases greatly.

It would be of interest to know how the predicted dose regime would have affected the

patient. For example, would their Hb be better controlled ifthe dose was more responsive

to their fluctuating Hb levels rather than maintaining a relatively stable dose? It might be

that the patient experienced an inter-current complication, and hence their Hb does not

respond in the ideal way.

Figure 7.24 is another example where predicted dose does notresemble true dose. It can

be seen from the plot of true dose over time that almost identical doses are given to the
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patient each month, around 74 IU/kg. This would suggest thata stable Hb is maintained

throughout, though possibly a little higher than target. The predicted dose suggests that

the dose should be increased for the patient each month, which could imply that Hb is

reducing, at a steady pace. In fact Hb begins quite low, then reaches target at month 3

where it remains for three months, it then oscillates around9 g/dL and 10 g/dL. It seems

that the predicted dose is trying to increase Hb to the 11.8 g/dL target value, but as Hb is

not responding to the dose given, then more and more dose is required.

Figure 7.25 shows an example where the true and predicted doses are almost identical. In

both cases there is slight oscillation of dose around 120 IU/kg, which was shown to be the

required dose to achieve Hb = 11.8 g/dL, in figure 7.20. This isreflected in the Hb, which

is almost on target at all time points. It has been suggested that for stable Hb patients a

relatively low dose of epoetin should be administered, thiswould improve the efficiency

of the treatment

In summary, the clinical algorithm is different from the full model due to:

• no correlation structure of the residuals is incorporated

• only a random intercept is modelled (no random slope)

• based on EB data only

• based on dosei−2 rather than dosei−2.3 or dosei−2.4
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Figure 7.23: Plots of Hb, true dose and predicted dose for EB patient 30
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Figure 7.24: Plots of Hb, true dose and predicted dose for EB patient 40
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Figure 7.25: Plots of Hb, true dose and predicted dose for EB patient 34
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Chapter 8

Discussion

8.1 Overview of chapter

The first part of this chapter will consider the aims of this thesis. The findings about the

biomedical systems will then be discussed in detail; in terms of the important findings

from the applications of functional data analysis and multilevel modelling. Following this

the methodologies will then be discussed, in particular howthe methods have developed

from being applied to the two biomedical systems and also thelimitations which arose.

Discussion will then follow into the purely clinical aspects of the work. The chapter will

conclude with a comparison of the two statistical methodologies and general discussion

of the work.

8.2 Aim of research

The motivation for this research was to develop the unexploited statistical techniques

of functional data analysis and multilevel modelling. There was particular interest in

their novel application to diverse biomedical systems where repeated measurements were
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collected. A further aim was to assess ‘control’ within the systems. Control was defined as

the process of managing the patients by a particular means, such as surgery or course of

treatment, and determining how to adjust this process so thepatients achieve a ‘good’

quality of life. Examples of biomedical systems were from the fields of nephrology

(renal anaemia management) where there was opportunity to refine the system to improve

patient management, and stroke (cerebral autoregulation during carotid endarterectomy)

where the aim was to find a superior method for assessing cerebral autoregulation. Even

though there is the similarity of assessing control within the systems, the nature of the

assessment is very different. Within the renal anaemia system the aim was to improve

patient control, whereas assessment of control was the primary aim in the cerebral

autoregulation system with the aim of improving patient safety.

A number of statistical challenges were raised by application to the biomedical systems,

which included the clustering of repeated measurements within patients and the high

degree of autocorrelation amongst repeated measures. These issues required resolution to

enable the specific clinical questions posed about the systems to be answered successfully.

This research demonstrates that through development of thestatistical methodology it was

possible to answer clinical questions and in addition to gain an improved understanding

of the biomedical systems. The analysis undertaken also provided extra insight about

the biomedical systems which provoked further inquiry, which could be addressed by the

methods.

8.3 Cerebral Autoregulation

The biomedical system of cerebral autoregulation is self-regulatory, whereby mechanisms

within the body ensure a constant blood flow to the brain is maintained over a range

of arterial blood pressure. The aim of this work was to determine whether this natural

mechanism is exhibited in patients undergoing carotid endarterectomy; surgery which
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could alter blood flow (increase or decrease within the carotid artery) and so alter the

relationship between perfusion of arterial blood pressure. This situation could potentially

influence the entire biomedical system. In addition to actually determining whether any

degree of CA is seen in these patients during surgery, it was investigated whether carotid

endarterectomy directly influenced CA and hence caused it tovary.

The specific aim of the research within this system was to determine whether it was

possible to assess autoregulation in an operating theatre setting, as this had not been

reported in the literature. CA had previously been assessedin various groups (of patients)

and scenarios. The techniques used, however, were deemed inappropriate for this patient

group and the repeated measures data-set they generated. Statistical methodologies were

sought to address this issue. It was necessary to determine if it was actually possible to

assess and model CA; with particular interest in whether CEAresulted in an improvement

in CA. This would allow us to establish if there is any immediate patient benefit from

CEA.

The initial multilevel modelling allowed us to model staticautoregulation. The modelling

framework was extended to permit varying autocorrelation between patients, which meant

that dynamic autoregulation could also be addressed. This idea and associated analyses

arose as a consequence of considering the assumptions of theMLM, such that the

autocorrelation structure is the same for all patients in a multilevel model. The assessment

of static and dynamic autoregulation was progressed even further to answer whether the

choice of anaesthesia had an impact on CA.

8.3.1 Application of functional data analysis

The fitting of loess curves WAS a useful exploratory tool for these data, as they allowed

features of the data to be extracted with only limited assumptions. This methodology

was ideal as the relationship between CBF and ABP in these patients was unknown.
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The relationship was also unpredictable, since the patients were undergoing a surgical

procedure and patients suffered with carotid artery stenosis, a condition which can

severely impair CA.

Prior to fitting loess curves to the individual patient data,a loess curve was fitted to

data where ideal CA had been shown to exist (see figure 6.3). Figure 6.3 was shown to

approximate successfully the CA curve (figure 2.4). This suggests that if CA were present

in the individual patient data then a loess curve would reveal the ideal relationship.

We anticipate that the majority of the patients ABP measurements will be within the

range of the plateau region (50-150 mmHg), since the interquartile range is 88 to 119

and the whole range is 38 to 188 (see summary statistics in table 6.2). Before loess

curves were fitted to the data it was predicted that a single (possibly horizontal) slope

would be revealed, as the majority of patients measurementsare within the theoretical

range of autoregulation. It was not thought that it would be necessary to estimate a

piecewise relationship or where the CA curve is estimated atthe change points, although

it would have been possible as demonstrated by figure 6.3 . Since the patients are elderly

and possibly suffering with comorbidities, it is possible that they are already receiving

medication for blood pressure control, hence the reason forthe majority of measurements

being within the ideal range.

The features of the individual curves are discussed in the respective results section

(Chapter 6). In general, the range of ABP and CBF of the phase 2curve is often quite

different from the phase 1 and 3 curves. This is the clamped phase of the operation, so the

patient was likely to be under stress when ABP is usually higher (see figure 6.2). In the

majority of patients CBF is reduced during phase 2. This is contrary to the principle of

the circle of Willis, which states that CBF is not impaired ifflow down one artery ceases.

A possible explanation of this inconsistency is that CBF measurements are taken in the

region where the artery has been clamped. There is a minority, however, such as patient

A (figure 6.4), for which CBF increases. Another finding is that CBF is increased for
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some patients in phase 3 in comparison to phase 1. This is a keyfinding; if it is truly

the general case it would indicate that CEA is a factor in increasing CBF, hence being a

positive outcome of the operation.

Another key finding is that the loess curves fitted to the individual patient data do not

exhibit evidence of fully intact CA, i.e. no evidence of a zero slope in any phase; not

even phase 1, which is prior to surgery commencing. There might be a number of

possible explanations for this. Firstly, the patients are elderly, frail and undergoing a

major surgical procedure. The complex mechanism of CA may not therefore be fully

intact in these patients. Secondly, it is possible there is measurement error in the CBF

and ABP measurements, since collection throughout surgeryis difficult and may not be

accurate. Thus noise in the data obscures the true underlying relationship. In the operating

theatre CA is not assessed as it would be in a laboratory, for example using tilt tables. This

is a new scenario for the assessment of CA, hence it cannot be expected that CA would be

evident, such as in other situations. Thirdly, in the surgical scenario it may not be possible

to experience the full range of ABP to model the whole CA curve. It would not be ethical

to induce blood pressure changes to acquire a larger range, as that would not be safe for

the patients undergoing surgery. Thus fitting the loess curves over a small range of ABP,

may be the reason that ‘typical’ behaviour is not exhibited.Perhaps not experiencing a

wide range of ABP means it is not possible to see CA. Consequently, it is possible that a

number of extraneous factors are masking the ‘ideal’ relationship between CBF and ABP.

In particular, the measurement setting makes the relationship unclear.

Another possibility that the typical intact autoregulatory behaviour is not seen is that

measurements are collected every 15 seconds. As discussed previously, it is not clear

if 15 seconds signifies static CA or dynamic CA. Dynamic CA assessment occurs when

there are rapid changes in CBF or ABP. Since there are no clearguidelines of the time

frame that amounts to ‘rapid’ then it may be that 15 seconds istoo long a time between

measurements, or alternatively it may be an appropriate time to be assessed under the
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dynamic framework. The assessment of static autoregulation is clearer, whereby ‘static’

amounts to a time period that allows for stabilisation between measurements, although it

is unlikely that 15 seconds would result in stabilised CBF and ABP, as static CA is usually

assessed with 20 minutes between measurements [144].

A disadvantage of the loess methodology is that outlying points can have high leverage,

influencing the fit of the loess curve by drawing the curve towards that point; this is seen

in figure 6.5 in phases 1 and 2, and 6.9 in phase 3. There are limitations also with figure

2.4, where the lower and upper limits (L1 andL2) are not well defined due to the curvature

around the change points. Furthermore, the plateau region in figure 6.3 is not perfectly

flat, which is in disagreement with the theory that perfect CAis represented by a zero

slope. Loess is still useful in exploring the ABP–CBF relationship, however, as it makes

no assumptions about the underlying function.

In summary, loess has shown:

• To be able to fit the ideal CA curve, albeit with some limitations/ caveats

• The relationship between CBF and ABP varies greatly betweenphases and patients

• The slope of the CBF – ABP relationship varies between patients

• The slope of the CBF – ABP relationship appears to approximately linear

• In many patients, there is an improvement in CBF in phase 3 compared to phase 1

• Fully intact CA is not detected amongst these patients

• Analysis is restricted as patients are explored individually.

8.3.2 Application of multilevel modelling

Following the loess analysis, MLM was subsequently applied. There were a number of

reasons why MLM was deemed an appropriate technique to analyse these data:
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• More sophisticated analysis is required as loess only provides an exploratory (albeit

useful) approach.

• The data comprises a hierarchical structure: multiple repeated measurements are

nested within patients. There will be greater power and insight from the modelling

if all patients are considered concurrently, which will be possible using MLM.

• The relationship between CBF and ABP was approximately linear with a positive

gradient. The assumption that the CBF–ABP relationship is linear originates from

previous analysis undertaken where a correlation coefficient is calculated between

the two variables.

• There were three distinct phases which may be modelled by three random

intercepts, and 3 random slopes.

• To address the main clinical aim of the analysis, since within the MLM framework

it is possible to test whether the slope differs between the three phases, providing

a formal statistical test of the hypothesis that CA has changed (or not changed, for

the null hypothesis).

A particular challenge in the construction of these multilevel models was in deciding

whether phase of CEA should be included as a random effect or as an additional level of

the model (between patient and repeated measurements), or even possibly both. It was not

appropriate to include phase as a fixed effect for each patient, as this would yield too many

parameters. Including phase as a random effect and additional level would also yield a

model with too many parameters, as the phase effect would unnecessarily be included

twice. The decision was made to incorporate phase into the model as a random effect,

which would yield a more parsimonious model. The process of investigating whether

random intercepts and slopes are actually required will be discussed later in this section.

The reason for choosing to include phase as a random effect asopposed to an another

level is that phase as a third level resulted in a model that was more difficult to interpret.
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A three level model would have yielded a phase level variancecomponent. A statistically

significant positive, non-zero, phase variance would then indicate variation in slope and

formally test the main hypothesis: does CEA alter CA? The complexity of the third level,

however, is greater than the inclusion of a random slope in the two level models. Hence

the principle of parsimony dictates the two level random slope approach. Within the three

level models there is a substantial variance – covariance matrix to determine. In particular,

there were difficulties in the implementation of the three level models due to problems

of convergence in R. A reason for this may be that a level with only three groups is too

limited, as large samples are preferred to increase the precision of the parameter estimates.

The preferred MLM required a second order autoregressive correlation structure to

account for autocorrelation amongst the residuals. A variety of autoregressive models

were tried, including AR(1) and also higher orders, as well as ARMA models. The

model with AR(2) yielded the best fit to the data. In this context, model fit was judged

in terms of reducing AIC and also greatly reducing the range of the residuals. The model

fitting procedure was repeated with the correlation structures and resulted in the same

model being preferred with the correlation structure as well as without. The correlation

structure was necessary as there was more correlation in themodel than what could

be accounted for by a traditional MLM, due to the autocorrelation within the CBF and

ABP measurements. MLM with autoregressive correlation structures provides a novel

assessment of static cerebral autoregulation, and also by extending the model this leads to

assessment of dynamic autoregulation (which will be discussed in the following section).

Not only did this modelling approach yield novel research inthe clinical domain, in

statistical terms it is important to note that the correlation structure greatly improved

model fit. In the model with AR(2) correlation structure the fixed effects coefficients

were larger than in the model without. This shows that the effect size is decreased if

the correlated residuals are not accounted for appropriately. The standard deviations for

the random effects are also different in the two models. In the model with correlation
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structure the standard deviations for the phase interceptsincrease throughout the phases,

highlighting that variation is more homogeneous at baseline and as time develops the

extent of variation amongst the patients increases. This isexpected as at the beginning

of surgery patients are more similar and their CBF will be stable, as surgery progresses

patients respond differently and hence the variation between the behaviour of their CBF

is larger. In particular at the end of surgery the standard deviation is largest; as some

patients may experience a dramatic increase in CBF after theocclusion in the carotid

artery is removed, whilst other patients may experience a more modest increase in CBF.

It may be perceived as a problem that the variation/range of residuals increase as the

phases increase, as it is assumed that the variances (in eachphase) are homogeneous. This

was accounted for as much as possible, by including phase explicitly as a random effect,

and only became apparent after including the AR(2) correlation structure. In the model

where no correlation structure was included, the phase variances were relatively similar

with no obvious pattern. Once the modelling became more sophisticated, it was then

revealed that the variation increased throughout the phases. The proportional increase in

residual variance, although clear, is insufficient to causemajor concern: that is less than

a two fold increase. Additional terms could have been included for heteroskedasticity,

though would have resulted in a model with more parameters, further complexity, and

which would have been more difficult to interpret. It seems that the more sophisticated

and complex the modelling procedure is, the more errors within the model are revealed.

The preferred model may be presented with small caveats, although a major issue with

the model was resolved by accounting for the dependency amongst the residuals with the

autoregressive correlation structure.

The differences across phases were not constant within patients, which was evident

from the loess curves, whereby the difference between phases 1 and 2 varies between

patients. This is also evident from the MLM framework by allowing a random effect

for phase intercept. The inclusion of random effects in the model was justified by
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investigating a variety of models and showing model superiority (in terms of model fit)

using likelihood ratio tests and by inspection of model residuals; the inclusion of random

effects consistently provided a substantially better fit tothe data.

Furthermore, the relationship between CBF and ABP is not predictable due to the large

variability in the slope, which translates as much variation in CA between patients. There

is also large variability in the range of ABP between patients and also between phases

within patients. There are some patients who experience a small range of ABP values; in

these cases the slope estimate will be less accurate than forABP covering a larger range.

The standard error of the slope will be much larger where a smaller range of values occurs.

The gradient of the slope (= 0.14 cs.s−1 mmHg−1) within patients was fixed across the

three phases. The slope is, however, allowed to vary across patients. This was one of the

main findings of the MLM: a non-statistically significant random phase slope suggests

that there is no change in CA immediately following surgery.A slope of 0.14 suggests

that, on the whole, CA is impaired in these patients, as it is different from zero. The

value is statistically significantly different from zero, though it is unknown whether 0.14

is clinically significant. Views on this will be discussed later in this chapter.

8.3.3 Individual models

An assumption of the multilevel modelling is that the correlation parameters are the

same for all patients. In the MLM framework it is not yet possible to readily allow

this to vary between patients, i.e. by incorporating the correlation structure into the

random specification of the model. Therefore in model 6.4 we assume that the correlation

parameters 0.65 and 0.31 are a reasonable estimate for all patients.

Using the gls function in R, it is possible to fit individual patient modelswhich

incorporates complex correlation structures. This allowsthe correlation parameter to vary

between patients. It is also not possible to fit individual patient models usinglme , as
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this requires a grouping structure to be specified. Thegls function is within thenlme

package, as is thelme command.

Models were initially fit withgls which included an AR(2) correlation structure. The

AR(2) correlation structure was used as this yielded the most appropriate model in the

MLM framework, so may have also been the ‘best fitting’ withgls . Not all models

could be fit with AR(2), however, as some were numerically unstable. Models were

subsequently fit with AR(1) correlation structure, which fitsuccessfully for all patients. It

seems that the AR(2) correlation structure was more appropriate in the MLM framework

as those models were fit with a large amount of data, hence a more complex correlation

structure could be fit. In the individual models there is lessdata to fit the models, hence

a simpler structure was more appropriate and the AR(1) correlation coefficient is simple

to interpret. This also suggests that an AR(1) correlation structure is more robust and is

applicable in more circumstances than higher order autoregressive models.

Within these models the slope will represent static autoregulation which is analogous

to the MLM. In thegls modelling scenario the AR(1) correlation parameter may be

used as a proxy, and/or quantification, for dynamic autoregulation as this will indicate

the strength of the relationship between measurements in a short time period. This is

similar to dynamic autoregulation which incorporates a time element into the ABP-CBF

relationship. Since measurements were collected at 15 second intervals the correlation

parameter will reveal the strength of the relationship between adjacent measurements,

thus representing CA in a short time frame. This varies from the static parameter which

investigates the relationship between ABP and CBF across the whole time frame. The

larger the dynamic parameter the stronger the relationshipwithin the time frame. If

the time frame were different from 15 seconds, then it may be possible to assume that

the parameter would increase if the time frame was shortenedand decreased if the time

frame was longer. In contrast, 15 seconds may be too long between measurements to

be considered dynamic CA and hence the correlation parameter would not provide an
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accurate representation of dynamic CA.

Models were fit representing three different scenarios. Firstly, where the static and

dynamic parameters varied between patients, but not between phases. These models

included a random intercept for each phase. The primary interest, however, was in the

slope and correlation structure, though the random intercepts are required to reliably

estimate the slope and correlation coefficients. The secondscenario allowed static

autoregulation to vary between phases (i.e. random phase slopes), though the dynamic

parameter remained constant for all phases. Note that only one model was required for

these estimated parameters, whereas the third situation requires three different models to

be fit for each patient. In this third instance the static and dynamic parameters varied

between phases. These models were assessed by examining theplots of dynamic vs.

static, as it would not be reliable to assess the models basedon AIC as the sample size

varies between phases, hence the AIC’s are not directly comparable.

According to the plots of static CA against dynamic CA, it seemed that the first scenario

best represented the data, which ascertains that CEA does not alter static autoregulation

during surgery. It also shows that static autoregulation varies in degree between patients.

This is consistent with the MLM analysis, such that the patient slope does not vary

between phases, again emphasizing there is not sufficient evidence to suggest there is

a difference in static autoregulation between phase 1 and phase 3 of CEA. The general

relationship between dynamic and static, evident from the scatter plot (figure 6.20), is

that the dynamic parameter increases as the static parameter increases. A static parameter

larger than zero indicates that CA is not intact. A larger dynamic parameter indicates

that there is stronger correlation between adjacent measurements. This means that high

AR(1) correlation resulting in a large dynamic parameter, indicates less short timescale

regulation of CBF: that is poorer dynamic autoregulation. Thus there is evidence to

suggest that dynamic and static CA are impaired ‘together’.

A limitation of this model is that for a small number of patients their static parameters are
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estimated as negative. A negative slope for the ABP–CBF relationship would suggest that

as ABP increases then CBF decreases, which seems clinicallyimplausible. A possibility

for this result is that the measurements are clustered closetogether and in fact there is

no obvious slope within the data. It may be the case that a negative slope exists as a

result of a patients CBF and ABP measurements being clustered together. This argument

is further strengthened by the fact that the negative slopesare relatively small. Thus in

the cases where patient’s experience a negative slope, models were refitted, restricting

the value of the slope to zero. This model was chosen above allothers because the static

parameter varying between phases is not consistent with thefindings from the MLM,

which takes into account information from all patients. Also in the models where the

dynamic parameter varies between phases there does not appear to be a clear relationship

between the static and dynamic parameters. This is indicative from the points being

randomly scattered and there being no association between the two parameters, unlike

the first scenario where there is a clearer increasing trend.

8.3.4 Effect of anaesthesia

Following the MLM andgls analysis and the subsequent investigation of the patients’

static and dynamic parameters, the question was asked whether the static and dynamic

parameters vary between patients undergoing CEA under local or general anaesthesia.

Even though some of the patient data were collected from those involved in the GALA

trial, it was not initially a primary goal of the analysis to investigate this hypothesis.

A relatively simple approach was taken to investigate the hypothesis. Boxplots were

constructed of the static parameter from the MLM (model 6.4)by anaesthesia type and

also of the static and dynamic parameters (from model 6.5 with negative static parameters

constrained to zero) by anaesthesia type. Formal t-tests were also carried out to investigate

if there was a difference in the mean values between local andgeneral anaesthesia.

In general (from model 6.4) the slope was found to be higher inthose patients who
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were under general anaesthetic during CEA, suggesting thatstatic autoregulation is better

preserved under local anaesthesia. The same conclusion canbe made about the static

parameter from the individualgls models. There is no statistical significant difference

between local and general anaesthesia in the dynamic parameter. This suggests that it is

not necessary to model different correlation structures for each patient and that the MLM

assumption that the correlation structure is the same for all patients is reasonable.

It is a very important finding, in the clinical domain, that static CA varies due to

anaesthesia type. Patients undergoing CEA under general anaesthesia were more likely to

experience impaired CA than those under local anaesthesia.This is particularly important

in terms of patient care as it may be the case that LA is safer. It may not be accurate,

however, to infer this as the patients were not randomised toanaesthesia type. It may

be more reasonable to suggest that patients undergoing CEA under general anaesthesia

are those whose CA is more impaired prior to the surgical procedure. In order to draw

unbiased conclusions about this hypothesis, analysis should be carried out on data where

patients have truly been randomised to anaesthesia type.

In terms of ABP, this is higher in patients under local anaesthesia than general anaesthesia,

which is consistent across all three phases. This is consistent with other research

which has highlighted that carotid endarterectomy may be associated with marked

changes in blood pressure in the perioperative period [9]. Blood pressure generally

falls after induction of general anaesthesia. There is alsoan increase in ABP in phase

2 (compared with phase 1). Some patients are also thought to show signs of hypotension

or hypertension in phase 3. In these patients, ABP appears more controlled in those

undergoing general anaesthesia, particularly in phase 3. The range of ABP is much

greater in the local anaesthesia patients particularly in phase 3, suggesting that ABP is

less controlled. In terms of CBF there is no difference due toanaesthesia type, in any of

the three phases.
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8.3.5 Summary - Cerebral Autoregulation

The analysis of the data from the CA biomedical system has shown that:

• CEA is successful in immediately increasing the patients CBF from the level prior

to the surgical procedure.

• CBF is reduced in phase 2, compared to phase 1. This emphasises the need to

monitor CBF during surgery.

• Variation in CBF increases throughout CEA, suggesting thatpatients may be

initially more homogeneous but tend to respond differentlyto surgery.

• There is no notable change in ABP due to CEA (albeit a slight increase in phase

2). This may be due to careful monitoring on behalf of the clinician or alternatively

CEA does not affect ABP.

• A key finding of the MLM analysis is that there is no significantchange in

slope between phases of CEA, suggesting that CEA does not immediately effect

(improve) CA.

• The slope does vary between patients, indicating that patients experience different

degrees of CA.

• MLM with an AR(2) correlation structure has provided a novelway of assessing

static CA. The models fitted usinggls also allowed the frequent recording of

measurement to be modelled explicitly for each patient, thus allowing modelling

of dynamic CA.

• Patients undergoing CEA under general anaesthesia were found to experience larger

slopes than patients under local anaesthesia. This could mean that CA is better

preserved in local anaesthesia.
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• In terms of implementation for clinical practice (of the above point): LA may be

safer for patients undergoing CEA.

• MLM was well suited for the data and application in the intraoperative setting,

where other methods would be difficult to apply.

8.4 Renal anaemia

The renal anaemia system is driven by the administration of epoetin agents to replace

a naturally occurring hormone in the body (erythropoietin), which has declined due to

failure of the kidneys. This differs from the CA system such that the renal anaemia

patients are controlled externally and managed by the clinician, opposed to a natural

biological mechanism. This shows that control may be viewedin different contexts; i.e.

a patient may be controlled by external drugs and clinical management or alternatively a

natural intrinsic mechanism of the body.

The aim within this system is to determine whether Hb is adequately controlled in

patients with renal anaemia, who receive epoetin agents where the dose is determined

by a computerised decision support system. In order to consider this aim it is necessary to

determine whether Hb cycling occurs in these patients, since (large amplitude) Hb cycling

indicates that a patients Hb is poorly controlled.

FDA revealed that Hb cycling did occur in some of the patients. The subsequent step was

to identify possible sources of cycling and suggest ways forit to be reduced, which was

undertaken in the MLM framework. There was also clinical interest in comparing the

two agents in regards to control. It was important to adapt anapproach to this analysis

which considered patients as individuals, as the same mechanism for control may not be

appropriate for all patients.
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8.4.1 Application of functional data analysis

There are a number of features (listed below) of the FDA methodology which make it an

appropriate tool for analysing the data within the renal anaemia system, such as:

• To visually represent the data.

• To investigate the patients Hb and dose trajectory over time.

• To assess patients on an individual level by fitting individual B-spline curves and

phase plots.

• Phase plots may be a useful mechanism for modelling control.

There were a number of factors to overcome before the functions could be fitted to the

data. In particular it was vitally important to choose the most appropriate basis function.

Prior to the analysis it was unknown that some patients wouldexhibit evidence of Hb

cycling, hence a basis function that assumes the data are periodic (such as Fourier series)

would have been inappropriate. Furthermore, it is more credible that the Hb cycling was

not imposed by the modelling, but rather arose from the data.Wavelets would not have

been suitable as the data are not discontinuous or rapidly changing. Polynomial bases

were not used either, as these are relatively simple and a more complex function was

required. Furthermore, the derivatives (of the polynomialfunction) are not satisfactory

estimates of the true derivative, due to rapid localisationwhich is typical of high order

polynomials.

Figures 7.3 to 7.7 show a representative sample of the patients in this study and highlight

examples of different characteristics exhibited by the patients. A patient whose Hb level is

oscillating is an indication that Hb is not under control, even if the oscillations are around

the target value (i.e figure 7.3). The reason that a patient’sHb comes under control after

a long time period might be due to an adjustment to the treatment regime. Since the
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patients Hb becomes stable then the regime is successful forthis patient. The inward

spiral of the phase plot illustrates that the patients’ Hb iscoming under control. After

initially spiralling in, the phase circle is relatively large but centred around the target

value. This implies there is still scope for improvement before the patient is considered

to be optimally under control. A patient who is under control(figure 7.6 ) will have a

Hb trajectory that shows small oscillations around the target Hb level. Their phase circle

will be relatively small and tight around the target value. The dose for a stable patient

will also be usually stable, as in this example. This patientrepresents someone who is

under control for the period of investigation. Figure 7.4 represents a patient who begins

on target, and then their Hb is out of control, but is brought under control to the target

at the last month of the trial. This patients dose varies greatly, presumably to bring Hb

back under control. The phase plot in this instance shows a tight spiral at first and then a

large spiral outwards, before coming back to target and under control. The B-spline fits

the Hb measurements very well, implying that the spirallingout of the phase plot is not an

artefact of a poor fitting curve. Hence, this is a real representation that the patient is not

under control. This patient was then investigated further and found to be suffering with

adverse health, consequently affecting Hb, which in turn isincreasing the risk of mortality

due to oscillating Hb. Figure 7.5 is used to represent a patient whose Hb experiences large

cycles around the target value. This patient is at risk of mortality due to oscillating Hb

even though it is around the target.

Figure 7.7 is used as an example to show both a limitation and advantage of fitting B-

spline curves to data. The limitation is that the B-spline curve does not pass through all

of the individual measurements, but passes through the middle of the data. One possible

view for this is that the curve is actually modelling the underlying behaviour of Hb over

time and that it is this curve that is more reflective of the true relationship rather than the

measurement itself. This is because the individual measurements are taken at ‘snap shots’

in time and these ‘snap shots’ may not be true due to biological or measurement error.
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It is important to note that phase plots are not only useful inmathematical terms for

representing control but also in clinical terms as they may be used as a measure of patient

stability and control. They may also be a predictive tool to determine if the patient is at

either end of the spectrum; either at increased risk of deathor stable and therefore suitable

for transplant.

Mean functions

The purpose of the original data collection [99] was to compare patients’ response to the

two epoetin agents (EB and DA). It was not an original aim of the thesis to compare

the agents, however, but rather to demonstrate that the sameaim could be considered in

the FDA framework. This was achieved by comparing the mean functions of the two

groups, by plotting them with their 68% confidence intervalson the same axes. The 68

% confidence intervals indicate the region of the graph wherethe trajectory is within 1.0

standard error of the respective group mean trajectory. Consequently, where the limits fail

to overlap, the two mean trajectories are separated by at least 2 standard errors, 1 standard

error from each group. Such a plot therefore indicates wherethe mean trajectories differed

significantly from one another at the 5% level from. This is not a formal test to compare

the two mean functions, the 68 % confidence limits are merely avisual guide. In general,

further theory needs to be developed for hypothesis testingwith FDA.

Figure 7.8 shows that there is a slight difference between the curves initially, with mean

Hb for the DA group being slightly higher than mean Hb in the EBgroup. Patients

were initially randomised to the agent, so the slight difference between the groups is due

to random measurement variation. The mean functions then diverge to the extent that

the confidence intervals no longer overlap, indicating a statistically significant difference

between the two groups. From month nine onwards the mean functions converge, until

they reach similar levels at month twelve. The mean Hb in the DA group is higher than

the ideal target value of 11.8 g/dL, although remains withinthe optimum clinical limits
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of (10.0 - 12.5 g/dL), though consistently above 12 g/dL until month 10. The mean in

the EB group starts approximately at the optimum target, though is subsequently is below

11.8 g/dL, yet remains within the target range.

In terms of managing renal anaemia, the CDSS seems to performslightly better for the

EB group than the DA group. A possible explanation for this isthat the conversion ratio

200:1 (EB:DA) used to convert the standard EB dose to DA, yields a too high dose for the

DA group. Similarly, shifting from thrice weekly to once weekly doses of epoetin, is not

sufficient or as simple as merely trebling the dose per injection. Another possibly is that

using the same algorithm for the DA agent as the EB agent may bewrong and slightly

different dosing strategies may be required for each agent.Note that there is no statistical

difference between the two groups initially, as the patients were randomised to two

groups, or finally once the CDSS protocol had time to bring patients under control. The

mean functions do not show that the agents are equivalent, rather where they are different.

The mean function was a useful comparative mechanism; yielding the same conclusion

as the findings by Tolman et al [99]. In conclusion, EB and DA have comparable control

of HB levels for patients with renal anaemia.

Functional principal components analysis was applied to these data to determine the

sources of variation around the mean functions. The idea forthis application was that

it could have revealed similarities between patients (in their Hb trajectories) and identify

groups of patients. This analysis did not prove useful, however, as it did not yield any

additional insight into the patients or epoetin managementregime.

Summary - FDA

In summary FDA has shown:

• B-splines were effective in fitting curves to Hb measurements over time. This

allowed for Hb to be represented as the continuous trajectory that it is, opposed
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to single monthly measurements.

• Phase plots were valuable in identifying the stability of the patients Hb

measurements. They also provided insight of whether the patient is under control or

not. This provides information on the success of the CDSS in managing Hb levels,

through the administration of epoetin on a weekly basis.

• The mean functions show that DA and EB are comparable in managing Hb in

patients with renal anaemia.

• This is an effective and useful technique in modelling thesedata, which has

a temporal pattern. This suggests that FDA is a particularlyeffective tool in

modelling data which are autocorrelated.

• The graphical representations are clear and allow for an efficient portrayal of

control.

8.4.2 Application of multilevel modelling

Functional data analysis revealed that Hb oscillations occur in a number of these patients.

The current algorithm considers that epoetin dose administered at monthi is predicted

from Hb at monthi, which is believed to be the result of epoetin at monthi−1. Since Hb

cycling occurs in some of these patients, this suggests thatHb at monthi may be based on

the wrong past epoetin dose and in fact a longer time lag is required to elapse for epoetin

to have its optimum effect on Hb. The FDA approach essentially investigated Hb and

dose as individual entities in time. It was possible to compare the Hb and dose functions

to determine how they were related. The MLM approach allows the complex relationship

between Hb and dose to be investigated by exploring the variables together rather than

how they vary in time.
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The initial approach investigated Hb(i) and dose(i-1), as this is the relationship that the

CDSS is based on. If this was a well fitting model, then it wouldhave suggested that the

CDSS is using an appropriate algorithm. A possibility then would have been that the Hb

cycling is the result of other factors and not the wrong dosing strategy.

An important feature of the epoetin dosing algorithm is thatit should be tailored to the

individual, as each patient’s Hb (and their past Hb measurements) will vary, and also in

their response to epoetin. This can be incorporated into theMLM with random effects. A

random intercept will reflect that each patient’s Hb varies (for a zero dose) and a random

slope accounts for varying Hb-dose relationships between patients. It was predicted that

a random slope and intercept would be required. Models were fitted with this in mind

but also considering the approach of choosing the ‘best’ model which was outlined in the

MLM chapter.

Another possibility was that a nonlinear effect would be required: firstly, due to the

asymmetry of the dose ladder; secondly, we anticipated thatas dose increased Hb would

also increase, although it is unlikely that this is purely linear, as the increase would not

continue indefinitely. Using prior clinical knowledge it isknown that a dose higher than

300 IU/kg/week is the maximum, and above this would not have an additional significant

effect on Hb. It seems therefore that for larger doses the effect on Hb will level off,

though increase slightly. The initial approach though was to model this effect with a

quadratic term. Furthermore, it was suspected that there would be correlation between

measurements within the same patient (resulting in correlated residuals within the model)

due to longevity of red blood cells and other biological mechanisms. To overcome this

autocorrelation, a correlation structure can be incorporated, specifically autoregressive.

A selection of models were fitted, shown in table 7.4, which included a variety of random

effects, quadratic terms and correlation structures. The best fitting model (decided by the

outlined scheme) with dose(i-1) as the covariate was:lme(hb(i) ∼ dose(i-1),

random = dose(i-1) \ patient) . The model, however, did not include the
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expected quadratic term. The residuals of this model were also found to be autocorrelated,

thus was extended to include a correlation structure. This model also had problems as it

yielded a non-positive-definite covariance matrix, which means that the model is unstable

and possibly incorrectly specified.

The combination of these features suggest that models with Hb(i) regressed on dose(i-

1) are not an accurate representation of the data. Work undertaken by Gupta and

Beserab [145] found that the most appropriate relationshipwas between current Hb and

dose administered one month previously. This finding was based on large intravenous

administered epoetin, with the one month being defined as first response in Hb. The most

relevant lag should rather be between subcutaneous administration and peak Hb response

whilst under steady dosing, which may be different from administering patients large

impulse doses. Other work [86] [69] suggests that the optimum response time is 2 to 6

weeks. The reason the CDSS was based on 1 month is that this lies mid way through

this time interval, though it could be anytime within this interval (or longer). It has been

suggested that the CDSS is not updated immediately, in termsof the next dose to be

administered calculated from the blood sample. It may be up to 8 weeks later before

the dose is adjusted (personal communication - Dr. E.J. Will). This further suggests the

reason the Hb(i) – dose(i-1) relationship is erroneous.

Two approaches were taken to investigate Hb(i) and its relationship to other dose lags. The

first approach was to include adjacent doses (i.e dose(i-1) and dose(i-2)). The reasoning

for this was that the effect on Hb may be from a combination of doses. This approach,

however, was deemed inappropriate due to the high correlation between adjacent doses.

If included together in the model this would introduce collinearity, which is associated

with biased coefficients and inflated standard errors. The second approach was to include

a linear combination of adjacent doses. This would remove collinearity as both variables

are not included individually but are replaced by a latent variable representing dose. Initial

models were fitted with the mean of dose(i-2) and dose(i-3). The decision was made not to
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include dose(i-1) as this resulted in unstable models. Models were also fitted that included

the mean and difference between dose(i-2) and dose(i-3). The difference did not improve

model fit, nor were the coefficients statistically significant. The best fitting model included

Hb(i) as the response and dose(i-2.4) as the covariate, see equation 7.3. This suggests

that the optimum response in current Hb is from dose administered 10 weeks previously.

The model also required an additional correlation structure as the models without yielded

correlated normalised residuals. An autoregressive correlation structure of order 1 best

improved the model fit (see table 7.9).

Model 7.3 also includes a random intercept and slope, a random quadratic term did not

improve model fit and the term was not statistically significant. Figure 7.13 of the random

quadratic model shows this is implausible as a larger numberof the patients maximum

values are for low doses (approximately 100 IU/kg), thus suggesting after they receive

their maximum Hb will decrease. This is extremely unlikely and hence the model is not

an accurate representation of the data. In model 7.3 the standard deviation of the random

intercept is approximately 1 unit, thus we would expect 95 % of patients’ Hb to be within

the range 8.6 to 12.4 g/dL for a zero dose. The random slope suggests that the relationship

between Hb and the dose lag at 2.4 months (≡ 10 weeks) varies significantly between

patients. This means that some patients will have a steeper slope and their Hb will be

more responsive to the dose, hence smaller doses may be required. Conversely there are

those patients with a shallower slope, whereby these patients are less responsive, so may

require a larger dose for a small change in Hb. It is of course possible that the ‘best’

lag varies between patients, although within the MLM framework it was not possible to

account for this. It is reasonable to use the same lag for all patients, as this appears to be

the best procedure at present. It would be difficult to implement clinically if each patient

required their dose adjusting at different time periods, inparticular there would be large

possibility for error if the lag times became disorganised.

The correlation parameter is 0.66 suggesting that there is reasonably strong correlation
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between adjacent residuals. We also saw previously that there was strong correlation

coefficient between adjacent doses (figure 7.10). There is also strong correlation (= 0.71)

between Hb measurements. Due to the nature of the system, Hb does not fluctuate greatly

and the clinician aims to maintain stable doses as a fluctuating dose is more expensive.

8.4.3 Clinical algorithm

The aim of fitting the MLM was so that improvements to the CDSS could be suggested to

reduce Hb cycling and hence improve patient care. The modelling resulted in a different

lag time being found from that used currently, thus it was necessary to find ways to present

the model to a clinical audience to highlight why the new timelag should be implemented.

A more pragmatic approach was sought to express this complexmodel in an appropriate

way.

The first step was to rearrange the model to make dose the outcome variable, however a

number of difficulties arose. First, as current Hb is based onthe dose administered 2.4

months previously, it would not make sense to predict this dose for the patient (as they

will have already received this). It was essential therefore to rearrange the formula so

current dose was made the outcome variable which is based on past Hb (and past doses

also). This process was made more difficult due to the inclusion of the random effects and

also the AR(2) correlation structure.

The decision was then made to refit the model without the correlation structure. Even

though the residuals of this model would be correlated the model coefficients are very

similar in the model without the correlation structure compared with the model with

AR(1) correlation structure. The clinical model also only includes a random intercept

and not a random slope as this parameter was particularly small and most of the variation

between patients can be explained by the random intercept rather than in the relationship

between Hb and dose. Furthermore, the clinical model is onlybased on the EB data as
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this is the drug the patients were already being administered prior to the RCT. The dose

lag in the clinical algorithm was 2 months (rather than 2.4 months). The reason for this is

that less data were required to formulate the simultaneous equations.

The predicted dose is based on the patients’ Hb from the previous two months and the EB

dose from the months 3 and 4 months previously. This algorithm can only be used from

month 4 onwards, which is a limitation to this new algorithm.This means that another

method for choosing the patient’s dose should be used in the patients’ first 4 months of

treatment. This is a vital period for the patient as they are being introduced to epoetin

therapy, and since they are not currently being administered epoetin it may be that their

Hb levels are relatively low. Therefore the algorithm currently employed should be used

during this period as this will change the patients’ epoetinlevels monthly, which may be

necessary during the initial period to monitor the patientsmore regularly. This may be

seen, therefore, as a benefit to the new algorithm as after this close monitoring period the

patient will be accustomed to the epoetin therapy which could enable the longer time lag

to be more effective for the patient. The patient is likely tospend longer than 4 months

receiving epoetin therapy, possibly a year or more, so the patient will experience the

benefit of a number of dose changes based on the new algorithm.

The algorithm only using 4 months of the patients data history could be an advantage

or disadvantage. In terms of disadvantages, if a long seriesof data is collected on each

patient it seems ineffective to use such a small selection ofthis data and that a better

prediction could be based on more data. On the other hand it could be seen as more

effective to base the prediction on less data, in particularcomputationally when fitting the

algorithm. Also if a patient was very unstable at the beginning of their treatment but then

came under control, then their past history may adversely affect their current prediction

rather than if it was based on just the past 4 months of data.

A positive feature of the algorithm is that there is a limit tothe maximum dose predicted

(= 328 IU/kg/week). The patients where the maximum was predicted were investigated
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and typically experienced low and unstable Hb. This value isonly slightly higher than

the stated clinical maximum, thus could be adjusted to 300 IU/kg/week. Even though

the maximum in the current algorithm is 300 IU/kg/week, patients have been given doses

much larger than this. Therefore, with the new algorithm, the maximum dose would be

constrained. In other instances, negative doses are predicted, however these are where

a patient’s Hb is too high and ideally need some epoetin removing from their bodies.

As this is clearly not possible, patients should receive a zero dose, though as discussed

earlier, patients do not tend to receive a zero dose, but a clinically accepted minimum

since a complete cessation of epoetin may cause a sudden breakdown of the new cells and

hence would be harmful for the patient.

The instances described above are when the patients either require the minimum or

maximum dose, for all other patients a specific dose is predicted. In Chapter 7 examples

are shown which compare the true dose given to the patient andthe predicted dose from

the algorithm. These will not give a true reflection as the predicted value is based on

the values from the old algorithm and does not account for what would have happened

if the patients received the predicted dose from the new algorithm the month previously.

An example is shown, however, where the patients true dose and predicted dose are very

similar, though the reason for this is probably because the patients’ Hb is relatively stable

around the 11.8 g/dL target. The only way to determine how thenew algorithm performs

is to implement this in clinical practice, this will be discussed further in Chapter 9 (Future

work).

Albeit with limitations, this model and the whole process ofMLM has demonstrated that

the methodology can be used in clinical practice, yields meaningful results and contributes

knowledge to the medical domain.
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8.4.4 Summary - Renal anaemia

The analysis of the data from the renal anaemia biomedical system has shown that:

• The B-spline curves indicated that Hb cycling occurs in somepatients, indicating

poorly controlled Hb.

• Phase plots were useful to identify the extent by which patients were controlled,

identifiable from the spiralling nature of the plots.

• The two agents EB and DA are comparable in managing renal anaemia, evident

from the mean functions and their confidence limits.

• FDA is an effective technique, in particular its graphical nature, though to an extent

the methodology is only exploratory. For example, it was notpossible to quantify

the phase plot in respect of assessing control.

• MLM revealed how dose administered 10 weeks previously yields the optimum

response in Hb (opposed to the 4 weeks previously anticipated).

• The complexity of the MLM advised a more pragmatic approach,which developed

an update to the current clinical algorithm. The clinical algorithm was gained from

a fuller model with the whole cohort of patients, in terms of knowledge of behaviour

(lag) and understanding. In practice simplicity was favoured above complexity (in

the model fit).

8.5 Methodological discussion

To be able to assess control within these systems, a number ofstatistical challenges needed

to be addressed and overcome, before the analysis could be undertaken. There were some

similarities between the systems which meant that there wasoverlap in how the issues
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were tackled. This means that some aspects may be applied to assessment of control in

general. Through using both FDA and MLM to analyse both biomedical systems this

meant that information learnt from the application to one system fed into the knowledge

and development for the second system. The systems also posed their own challenges

which were addressed individually. In this instance these features are only relevant to the

particular area.

In this section the methodological results will be discussed. In particular: how

the methodologies were developed through their application to the two biomedical

systems; how well the methodologies performed, in terms of their success and also their

limitations. It will be considered what the applications brought to the methodologies.

New approaches have been taken by using FDA and MLM to answer questions

from the respective biomedical systems since standard analytical techniques were not

appropriate (such as; ordinary least squares modelling or time series analysis) and more

sophisticated methodology was required. The presentationof the methods required

careful consideration for clinical implementation and presentation to non-specialist

audiences.

8.5.1 Functional Data Analysis

The data within the biomedical systems under considerationwere not suitable to apply

traditional time–series analysis. Time–series analysis usually consists of just one series,

where the aim is to investigate a variable over a long period.In the biomedical systems

of interest, multiple time series would need to be considered. Furthermore, the length of

time considered within the systems is relatively short, compared with a period of years

where time series is more often used. Other methods were sought which would allow

investigation of repeated measurements over time.

A number of features of FDA made it suitable for analysing thedata from both systems.
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The question arose of whether 13 observations per individual (from the renal anaemia

system) would be valid for robust analysis; the answer to this question was that 13 data

points per individual with 151 subjects were suitable to apply functional data analysis

techniques. Once the curve is fitted to the data, the individual points are essentially

discarded. As long as the curve is a reasonable representation of the data, then it is

irrelevant whether the curve was fit from 13 data points or 1300 data points.

The fit of the curve was judged by screening the curves to determine whether they

accurately fitted the data. As there were only a small number of patients in the biomedical

systems this procedure was feasible, which may not have beenthe case with a larger group

of patients. With a larger number of patients a more realistic approach would be to select

a sample of curves to determine the suitability of the fit.

The fitting of individual curves to the data raised a number ofissues, in particular the fit

of the curves at the extremes was difficult to implement. Thisproblem occurs with most

data–sets before the optimum parameters are found, although it was intensified in the renal

anaemia application due to the short series. This issue was resolved by placing knots at

the first and last data points and increasing the smoothing parameter. This highlights a

potential limitation of using FDA with relatively short series, as the smoothing parameter

would be greater than hitherto considered.

These issues with the fitting of the curves were successfullyovercome, which

demonstrates development of the methodology. The application of FDA to the renal

anaemia data shows an illustration of the method that uses relatively few values

compared with 100’s or even 1000’s of measurements. A possibility for the successful

implementation of the method to the data is that the data werecomplete and did not

contain any missing values. Furthermore, the data were balanced (i.e. the same length for

each patient and with equally spaced time points) which madethe fitting of the B-splines

more efficient.

The phase plots were a useful way of modelling control of Hb inrenal anaemia patients,
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albeit with limitations. First, it was not clear how to quantify the phase plots, hence there

was no numerical summary of control. It was therefore necessary to examine each phase

plot individually to determine whether the patient’s Hb waswell or poorly controlled,

with a large number of patients this is not so practical. Thismay not be as problematic as

first considered; as in reality patients would experience one-to-one communication with a

clinician, for example, at the patients dialysis session. In this scenario the clinician would

be able to examine the patient’s individual phase plot and determine at that moment if

the patient Hb is well controlled. This suggests that the phase plots may have a practical

use. A clinical trial could be implemented to investigate whether using the phase plots, to

determine if the patients Hb is well or poorly controlled, would lead to an improvement

in a patients condition by enabling the clinician to clearlyidentify control and monitor the

patient more closely.

The FDA methodology has also been developed through its application to the renal

anaemia system. The phase plots used by Ramsay and Silvermanwere of acceleration

against velocity (i.e. the second derivative of the curve against the first derivative).

The phase plots used to model control of Hb in the patients with renal anaemia were

plots of velocity against Hb measurement (i.e. the first derivative of the curve against

displacement). The plots of acceleration against velocitywere initially plotted for the

renal anaemia data which yielded identical conclusions about the patients as the velocity

vs. Hb plot. There are a number of benefits to using the velocity vs. Hb plot, firstly

the added complexity of the accelerations vs. velocity was not justified, particularly as

the phase plots were for use in the clinical domain. Secondly, the B-spline curves could

be of a lower order as one less derivative needed to be penalized. Finally, the added

complexity of the smoothing parameter was essential, as this yielded smooth functions

and derivatives were smooth. This gave clarity to the phase plots and allowed control to

be clearly expressed.
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Limitations of Functional Data Analysis

Phase-plots were not applied to the data from the CA biomedical system (as they were

in the renal anaemia system), because the definition of CA depends on the relationship

between CBF and ABP, not CBF alone. The phase plots therefore, would not have been a

useful mechanism for assessing and modelling CA. Prior to the analysis the relationship

between CBF and ABP in the patients was unclear, thus exploratory FDA techniques were

sought, which would permit the exploration of CBF against ABP. This was possible with

the loess curves. In the renal anaemia biomedical system, the relationship between Hb

and epoetin dose was not clear (before the MLM analysis). Thephase plots therefore,

were a more appropriate tool for this biomedical system as itwas necessary to determine

the control of Hb alone. The relationship between Hb and dosewas explored using more

complex methodology in the MLM framework.

A further difficultly was encountered in the FDA analysis in the fitting of B-splines to

the CA data. The onerous difficultly arose due to the different lengths of data for each

patient and phase, as B-splines require a full matrix of measurements. Furthermore,

it was not possible to simply fit the B-splines to each patientas single entities. One

option to overcome this was to interpolate each patients measurements, which would

have resulted in each phase and patient having the same length of data. This option was

rejected, however, as this would have removed the importantinformation that the length

of the whole procedure and the length of each phase varies from patient to patient. It

seems therefore that B-splines are better suited to balanced data sets where there are no

missing values. B-splines should be used where the primary interest is in investigating

the trajectory of a variable over time, whereas loess curvesare an appropriate tool for

exploring (graphically) the relationship between a response and explanatory variable,

where the explanatory variable may be time or some other quantity. Furthermore, loess

may be used for varying lengths of data.

Mean function were constructed by taking a smooth version ofthe smoothed (Hb)
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trajectories. This could be regarded as potentially an over-smoothed function, if there is

a large amount of smoothing in the functions and then including further smoothing in the

mean curve. In the renal anaemia application a smoothing parameter was chosen so that

the mean function was not over-smoothed and thus provided anaccurate representation

of the data. The smoothed trajectory, however, can be regarded as a better representation

than the individual points. This is because measurements are taken at ‘snap-shots’ in

time, whereas in reality the entities (such as Hb, CBF and ABP) are continuous. The

curves therefore represent the variable across the whole time frame, rather than individual

measurements. Hence, the FDA approach increases accuracy and confidence in the

conclusions.

8.5.2 Multilevel Modelling

The important issues arising from the MLM analysis are discussed under the respective

headings below.

Correlation Structures

Modelling with autoregressive correlation structures is an existing technique in the

statistical domain, though remains relatively unexploited, to the extent that it is currently

not possible to implement correlation structures for the residuals in a major multilevel

modelling statistical package. Thus the aim of this work wasto demonstrate that the

technique is essential and to advocate that it should be morewidely used, whilst indicating

the pitfalls that occur if it is not used in certain instances.

Due to the nature of the measurements (that there is strong correlation autocorrelation

present) the residuals of the MLM are highly correlated. This also applies in the renal

anaemia system where measurements are taken a month apart. Apossible reason for this

occurring is that the variation in dose and Hb from month to month is not so high, which
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means that there is not frequent changes between measurements. The fitting of models

with autoregressive correlation structures is a major aspect of this work and where data

are potentially correlated this methodology should be considered.

Traditional MLM does account for the fact that measurementswithin patients are more

similar than measurements between patients. The difference in the measurements in

the two biomedical systems considered here is that measurements within individuals are

actually autocorrelated, where traditional MLM would assume they were just ‘similar’.

Checking for autocorrelation in the residuals is often overlooked in the model validation

procedure. It is usually the assumption of normality of residuals and random effects that

are more often examined.

The autoregressive correlation structure greatly improved model fit; in particular in

reducing the range of model residuals. Most importantly, however, the autoregressive

correlation structure yields uncorrelated normalised residuals. This is assessed from the

autocorrelation functions of the normalised residuals. The majority of autocorrelations

are not significant at the 5% level. There are some, however, that are. Note that

multiple testing is undertaken here which increases the chances of a false positive. Simple

corrections such as Bonferroni are not appropriate since the autocorrelation estimates have

a complex correlation structure themselves. This situation is usually considered to be one

where judgment based on experience is the best guide. Given the few significant values

scattered at different lags, and the relatively small excursion beyond the 5% limits, the

ACF is taken to be satisfactory: thus evidence of lack of autocorrelation.

Complexity of models

The models fitted are rather complex due to the inclusion of the correlation structure;

the question should be asked whether the use of complex models is justified, particularly

when they are applied in the clinical domain. In the renal anaemia models, the models
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were too complex when rearranging the expressions so the dose could be predicted. The

models were subsequently tailored (and simplified) so they could be used to suggest

updates to the CDSS. Without the complex modelling, and the results gained from this

approach, it would not have been possible to formulate the simpler strategy. Therefore one

can conclude that the complexity of the models is justified, though perhaps less directly

applicable, rather it is useful to advise a more pragmatic course and yield simpler, yet

more robust models.

In the CA system the complex models were necessary for important clinical findings to

be revealed from the MLM models. The correlation structure was particularly important,

such that it was deemed a proxy for dynamic autoregulation. In this application in

particular, the modelling had complexity that would have been useful to investigate

further, though it was not possible to vary the correlation structure for each patient. It

was assumed therefore that the same correlation structure was applicable for all patients.

A different correlation structure for each patient can be investigated where individual

patient models were fitted (using thegls command within thenlme library). In these

models, however, an AR(2) correlation structure was too complex for many patients,

which resulted in a non-positive-definite variance-covariance matrix, though AR(1) could

be fitted to all patients. This demonstrates that additionalnecessary complexity provides

more knowledge about the patients that can be achieved within the model when all patient

data is used. An advantage of the MLM is that the different lengths of data in the CA

system did not result in problems when fitting the models, such as those encountered in

the FDA methodology which requires balanced data.

Another finding is that the sample size of the data seems to affect which correlation

structure is most appropriate. In the renal anaemia application, where the series of data for

each patient is relatively short, an AR(1) correlation structure yielded the best model. In

the CA application, where the series of data for each patientis longer, an AR(2) structure

yielded a better fit in the MLM setting. Although, when individual models were fitted to
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these data, and hence fitted to less data overall, the AR(1) provided a better fit.

In the renal anaemia application, the Hb–dose relationshipwas nonlinear, as was

suspected before the analysis was undertaken; hence was taken into consideration when

fitting the models. The best fitting model for these data included a quadratic term and

this was incorporated into thelme model by simply specifying that dose was linear and

quadratic. This could have been achieved in the nonlinear framework within thenlme

library in R, though in the interest of interpreting the model in the clinical domain this

approach was not developed. Furthermore, the quadratic term within the model yields a

suitable representation of the Hb – dose relationship.

Choosing the model

A number of factors were involved when choosing the most suitable model, such that

there is no specific rule that can be used to judge the fit of the models. First, clinical

knowledge was used to formulate the models. Without using prior clinical knowledge,

the conclusions drawn from the model may be inaccurate or medically implausible. It

may be the case, however, that the results of the modelling draw new findings about the

specific clinical area. If prior clinical knowledge is used to formulate model development

there will generally be more confidence in the results.

In terms of judging the most appropriate model when determining which parameters

should be fixed, random or included at all, the model which yields the lowest AIC will be

investigated further. Initially the models were investigated to determine if the parameters

were statistically significant, and likelihood ratio testswere carried out to determine

whether the additional parameters resulted in an improvement in model fit.

The next step of the modelling was to investigate a variety ofplots of the model residuals;

in particular the autocorrelation function to check whether the normalised residuals were

autocorrelated. The plot of standardised residuals vs. fitted values was useful for checking
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a number of other assumptions. From this plot it was possibleto determine whether the

residuals were homogeneous and normally distributed, and the range of the residuals was

revealed.

It is the combination of statistical and clinical viewpoints that allows a medical statistician

to make reliable judgments about the models. It is importantthat a balance is maintained

between the complexity of the model and ease of interpretation.

Limitations of Multilevel Modelling

The inclusion of the autoregressive correlation structures greatly improved model fit,; e.g.

in reducing AIC and the range of the standardised residuals from (-10, 10) to (-4, 4).

The range of the standardised residuals in the preferred model (-4, 4) is relatively large,

however, in comparison to the ideal range (-2, 2). There may be a number of reasons

for this. First, one may speculate that the model is indeed a poor fit, although it should

be noted that this is ‘real’ (noisy) and thus one cannot expect the model to fit perfectly

to every individual. Models were fitted using a limited number of covariates, as other

covariates were not available, i.e. not collected. The inclusion of other covariates (such

as: age of patient, additional comorbidities) may have improved the model fit and hence

reduced the range of the residuals. It may be argued that the missing variable causes

bias in the model, however, the decision of which variables to collect was made by the

clinician. The variables collected therefore, would be themost important and clinically

relevant. A possibility for the large range of residuals in the CA model is that the model

fitted poorly at the extremes of the series in the three phases. One way to resolve this may

have been to truncate the data in the phases, however this would reduce the number of data

points in the model. This would have required discussion with the clinician to determine

appropriate truncation. Alternatively, observing the surgical procedure at first hand would

enable a more informed outlook on the analysis. For example,it would be possible to see

how the patients react under different type of anaesthesia and also determine how distinct
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the three phases really are within CEA.

An alternative way of improving model fit may have been achieved by accounting for

heteroskedasticity, such that we could have accounted for the random variables having

different variances. Heteroskedasticity will result in the variance estimates of the model

being biased. To account for heteroskedasticity, variancefunctions are used to model

the variance structure of the within group errors using covariates. The decision was

made not to account for heteroskedasticity in the models in this thesis as this would

have yielded models with additional complex parameters, thus making the model too

difficult for interpretation in the clinical domain. There was no worrying pattern evident

when examining the residuals of the model. Furthermore, themain complexities of the

data were resolved through random and fixed effects modelling and the addition of the

autoregressive correlation structure.

On numerous occasions, some models could not be fit since the covariance matrix was

non-positive definite. When this issue occurred the conclusion was made that this model

was not suitable and alternatives were sought. The models fitted are not perfect. In

particular, the range of residuals is still larger than desired and that the phase variation

increases throughout the phases for the CA models. The models were greatly improved

with the correlation structures, other adjustments are unlikely to improve the model to

this extent.

8.5.3 Software

The statistical software package R was used for all analysispresented within this thesis.

The idea was that the statistical methods would be easier to implement if they could be

applied using one software package. The methods would be more generalisable if they

could be implemented in more than one package, but there are anumber of advantages

however for using R as the chosen package, for practical and statistical reasons. First, it
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is better to be more proficient with one package than more superficial with a number of

packages.

Initially the MLM analysis was carried out in MLwiN, particularly the CA analysis,

which is a specialist package for MLM. When it became apparent that a correlation

structure was needed for the autocorrelated residuals, other software was sought, as it

is not straightforward to implement correlation structures in MLwiN. In the first edition

of MLwiN, macros were available for only an AR(1) correlation structure. In the

recent versions of MLwiN these macros are not yet available or failed to work This

further highlights that MLM with correlation structures isan unexploited methodology.

Therefore thenlme library was used for all mlm analysis, in particular thelme

command.

It would be possible to undertake the analysis in other packages, though a number of

packages would be required, whilst R is freely available thus making it more attractive

than using costly packages such as M-plus (for MLM) or Matlab(for FDA).

There were no particular problems with the implementation of the MLM within thenlme

library, other than when fitting a three level model. This waspossible, though with a 3-

level model there is a substantial variance-covariance matrix to determine. Thus, the 3-

level model proved difficult to fit due to numerical fitting reasons and also in the efficiency

of the program.

There were a number of issues with theFDA library, which was used for the functional

data analysis. At the start of this PhD theFDA library was relatively new and contained

a small number of bugs; the library was updated at the end of the first year of this PhD.

In the updated version of the library a number of commands changed, which resulted in

the existing code no longer working. Consequently the code was revised so the B-spline

curves and phase plots could be fitted to the renal anaemia data in the newFDA library.

The loess curves were implemented using theloess function, for which there was no

problems.
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8.6 Clinical Discussion

In this section the clinical implications will be discussed, i.e. how the statistical

methodologies have yielded results that are meaningful andclinically interpretable. In

this section there will be discussion of the results of applying FDA and MLM to each of

the clinical applications and what these methodologies brought. Subsequently, there will

be discussion of the more general clinical issues which arose.

8.6.1 Cerebral Autoregulation

The data collected for the CA biomedical system was for monitoring of patients in an

intra operative setting. There were 62 patients undergoingCEA who were approached

for participation in this study, however there were 26 patients who were not eligible for

participation, resulting in measurements collected on 36 patients. There is the possibility

of bias here due to the number of non–responders for the study. The exclusion criteria

included absence of a temporal window for TCD monitoring andthe presence of atrial

fibrillation and other arrhythmias. It may be the case that the data included in the study

are of relatively stable and routine patients, and those with complications are not included,

which means that the estimation of CA was conducted in the healthy (eligible) patients.

MLM was deemed an appropriate analysis technique as other methods of assessing

CA would not be suitable because of the difficultly to apply during the intra operative

setting. Techniques used to examine CA such as the thigh cuffrelease test, the transient

hyperaemic response test, drugs to manipulate ABP, and transfer function analysis are

not ideal for use during carotid surgery. The transient hyperaemic response test requires

manual compression of the carotid artery. It would have to beperformed on the side

opposite to surgery and would not be safe in patients with bilateral carotid artery disease,

as it could not be guaranteed that CBF would be maintained if the flow down both carotid
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arteries is obstructed. Measuring static autoregulation by giving drugs would require

the administration of an agent that causes a rise in blood pressure to many patients

who already had a markedly elevated blood pressure. Transfer function analysis makes

the assumption that the underlying form of mean arterial pressure and cerebral blood

flow (over time) is a sinusoidal wave, suggesting that ABP andCBF vary periodically

over time. This assumption is suitable for CBF and ABP measured at a steady state,

for example on an intensive care unit, but not for CBF and ABP during CEA. These

techniques require data to be collected for a period of minutes whilst the patient is

left undisturbed. This would cause significant delays during surgery which would not

be acceptable whist the carotid artery is cross clamped. Furthermore, the sinusoidal

decomposition used in transfer function analysis would notsufficiently represent the step

changes in ABP and CBF between the phases of CEA. In this research, CA is investigated

in a original way by applying multilevel modelling, with theadditional complexity of a

correlation structure, to cerebral blood flow and blood pressure data recorded during and

after surgery.

CA was quantified as the gradient of the slope of the CBF–ABP relationship. In the

preferred MLM the mean (fixed) slope was estimated as 0.14. Intheory, a slope different

to zero would indicate impaired CA. If this is to be accepted,then the conclusion could

be made that on the whole this patient group does not exhibit intact CA (and hence is

impaired). In the literature, there is no guidance which states a cut-off between intact and

impaired CA; it is therefore not possible to clarify for certain whether 0.14 is impaired

or intact. Furthermore, the ideal CA (zero slope) is based ona laboratory setting, there

is again no guidance of ideal CA within the operative setting. This raises questions of

validity in this new setting. It therefore seems that the MLMwith correlation structure is

a useful tool for assessing CA in the operative setting.

One must recognise that 0.14 is a slight slope and in the opinion of the collaborating

clinician this value would imply intact autoregulation. The wide variation in the slope
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was deemed clinically important as this would suggest that in the patients where ABP

was manipulated through CEA their CBF would change. Hence, for the most susceptible

patients this would result in a slope greater than 0.14, developing into impaired CA. An

additional finding is that the slopes were higher in the patients undergoing CEA under

general anaesthesia, suggesting that CA is better preserved in local anaesthesia. This is

informative for clinical practice. If patients initially have poor CA the more appropriate

choice of anaesthesia for surgery would be local anaesthesia.

Furthermore, it was anticipated that CA would improve following CEA. Previous research

has shown that CA improves in the weeks and months following surgery ??. It has

not been reported, however, if there is an immediate improvement/change in CA. The

application of MLM on these data has revealed that there is nosignificant evidence that

there is a difference in CA from the beginning of CEA to the endof CEA. A possibility for

this is that there has not been sufficient time of the complex mechanism for CA to adjust,

especially as the patients have just undergone a surgical procedure. Ideally, to investigate

this hypothesis further, follow–up data should have been collected on the patients in the

hours or days following CEA, which may have allowed CA to return to the patients.

MLM has not previously been used within this field or to assessCA. This finding is for

the group of patients as a whole, thus representing the behaviour in the majority of cases.

This conclusion cannot be made for all patients, as it may be that there are a minority

who do experience a change in CA. Within clinical practice, however, it is often the case

that treatments/operations are administered to benefit themajority of patients and that

there is often anomalous results which differ from the norm.The novel application of

this research is evident from the novelty of the statisticalmethodology used and also the

important clinical findings yielded from the analysis.

In the individual models, the correlation parameter was used as a proxy for dynamic

autoregulation. The question should be asked whether 15 seconds between measurements

amounts to immediate changes in ABP and CBF required for assessment of dynamic
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CA. Again, there was no clarification in the literature of theexact time between

measurements suitable for dynamic CA. Since there was a large correlation between

adjacent measurements this suggests that 15 seconds is applicable. Within 15 seconds

there is no evidence to suggest that measurements have had time to stabilize, which would

mean static autoregulation. It has been possible to assess static CA with these data, though

the measurements were taken every 15 seconds, since the relationship between CBF and

ABP was explored, which does not account for the time when themeasurement was taken

(other than acknowledging phase of CEA).

8.6.2 Renal Anaemia

The data provided for analysis within this thesis were originally collected as part of a

randomised controlled trial to compare the two epoetin agents EB and DA. The data

were of excellent quality, such that for all 151 patients there were complete Hb and dose

measurements for 12 months (plus an initial value). These patients were specifically

chosen as they yielded complete data, though may introduce bias. The data essentially

represent the patients in the middle of the spectrum, i.e. the data will not contain those

who have died or those who have transplant (within the trial period), it is the patients who

are regularly attending dialysis. Since there are so many patients who provide complete

measurements it is likely to be the case that these patients are representative of patients

with end stage renal disease. In fact the clinician was only interested in those patients

with complete data, as this was the focus of the CDSS.

Another factor to consider is whether the dose conversion from EB to DA was accurate in

the ratio of 200:1. It was highlighted, in the mean curves from the FDA, that initially the

patients were similar but in the intermediate period of the trial there was a statistically

significant difference in the mean Hb levels of the two agent groups. Following the

intermediate separation, the patients mean Hb came together at the last month of the trial.

The differences in Hb for the two agents were marginal for a period, albeit a detectable
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difference. It seems that the DA group were slightly overtreated, the reason for which

being the wrong conversion from EB to DA. In contrast, the EB group were seemingly

undertreated, which may be a result of the conversion of onceweekly EB from thrice

weekly EB. Consequently, the doses were corrected over timeby the CDSS, seen from

the coalescing of the doses in the final month.

Even though there was a marginal difference in the two agent groups (for a short period)

this is comparing the patient curves to the optimum Hb of 11.8g/dL. It should be noted

that the patients mean curves and confidence limits are clearly within the range 11.0 -

12.5 g/dL, which is stated as an acceptable range of Hb for renal anaemia patients. This

therefore raises the question as to whether 11.8 g/dL is a realistic target value? This is the

subject of much debate and there is still no clear guidelines. Table 3.2 showed that there

are a number of different organizations that publish different optimum Hb guidance. It

seems therefore that a target range (approximately 10 - 12.5g/dL) is the most appropriate

means of attaining an appropriate Hb for the patients, rather than a specific value.

Following the FDA analysis, it became apparent that the levels of control in the patient

group varied. There were the patients who were under controlfor the whole 12 months,

who are likely to be the patients that would be considered forkidney transplant soon after

the end of the trial. The second group is the patients who are not on target initially but

then come under control, which is a possibly a result of the patients adjusting to the new

dosing regimen before settling. Another group is those thatare under control but then

go out of control, which may be due to an adverse event. The final group is those that

experience fluctuating (cycling) Hb throughout the whole trial period. It is these patients

who are of most concern, as there are a number of possibilities for Hb cycling; such as

the patient being administered an inappropriate epoetin dose. Subsequent to the discovery

that a number of patients experienced Hb cycling, analysis was under taken to investigate

how current Hb relates to different epoetin lags.

The CDSS used within this trial based current Hb on the epoetin administered 4 weeks
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previously, which suggests that there is 4 week lag from administration to response in

Hb. The 4 week suggestion is the midpoint of the 2 to 6 week guidance from Epogen.

Following MLM analysis, the relationship between current Hb and dose administered 1

month previously was found to be erroneous and a more appropriate relationship was

deemed to be 10 weeks. This is much longer than the 4 week time lag, though still

plausible. It has been suggested that even though the patients dose should be adjusted

monthly, it may actually take a further two weeks before it isactually updated, which

means that the wrong dose is being administered to the patient before it is changed.

Additionally a patient may require a longer period that 4 weeks to receive a stable dose,

which may allow the epoetin to work more efficiently and allowthe patients to see a better

response in Hb.

It would be necessary to implement a trial to investigate the10 week lag vs. 4 week

lag, although another possibility would be to incorporate an additional parameter into

the model which allows the time lag to vary between patients.The second option would

require complex programming to enable a model to be fitted in the MLM framework that

varies the lag. Hence, there are two suggestions for furtherwork: first to maintain all

patients on the same regime though investigate the 10 week lag vs. 4 week lag; or second,

devise a scheme where patients dose adjustment is based on anindividual time lag.

8.7 Comparison of methods

FDA is a relatively new technique that is not yet fully established and has a more limited

network of users, whereas MLM is more established with a widerange of users and

applications. In particular there are a number of software packages that are primarily for

MLM, that have been developed over the years. Since FDA is relatively new there is no

specialised software, though is implementable in a few packages.

When fitting a MLM there are a number of ways to check the validity of the model (i.e.
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AIC, LRT, plots of residuals), though with FDA there are no formal checks to assess

model fit. This is because the choice is relatively arbitraryfor the smoothing parameter,

order of function and choice and position of knots, however as one becomes more familiar

with the method, it will aid in the decision making of the ‘arbitrary’ choices.

In regards to the formality of the methods, the fitting of MLM yields an equation to

represent the relationship between the outcome and explanatory variables. In the FDA

framework there is no equation to represent the function.

The functions fitted using FDA enable the (MLM) assumption ofpatients being similar to

be checked. Simple examination of the curves can determine whether there is an overall

similarity or difference amongst the patients. FDA curves would highlight whether there

is a linear relationship between the response and explanatory variables. This would be

useful in graphically representing random intercepts and curves.

The similarities and differences between the two statistical methods are summarised

below.

MLM

• Models can be expressed by a formal equation

• Formal tests and checks available to test model validity, i.e. residual plots, LRT’s

and ACF’s

• Autoregressive correlation functions to account for correlated residuals (due to

measurements being autocorrelated)

• Powerful technique which allows data from all individuals to contribute to model

fit

• Complex modelling technique (particularly with autoregressive correlation

structures)
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FDA

• Functions are not specified as formal equations

• No formal test of model validity, i.e. arbitrary choice of smoothing parameters and

knots

• The smooth functional representation of the data benefits from the temporally

correlated measurements

• Models are fit to individuals, with limited population analysis

• Mostly an exploratory data analysis tool

8.8 General Discussion

This thesis was driven by clinical application. In relationto both biomedical systems

the clinicians had a number of clinical questions that needed answering, using statistical

methodology. In both situations the clinicians were aware that the methodology used

previously in the respective fields was not applicable for the biomedical system and

that consultation with a statistician would allow for new avenues of analysis to be

explored. Initial consultations indicated that there was potential to advance the statistical

modelling employed and through better modelling be able to answer fully and more

appropriately clinical questions. For example, in the cerebral application the clinician

believed that simply calculating a correlation coefficientbetween ABP and CBF is too

naive to model such a complex entity as CA. Consultation witha statistician would be

useful to suggest more sophisticated methodology to be usedfor analysis from a so–called

‘mathematical tool box’. This thesis is a novel applicationof multilevel modelling and

functional data analysis to the biomedical systems; it was their use in other application
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areas and particular features of the methodology, which have shown their potential and

appositeness.

New clinical questions arose from the analysis of the initial questions. In the cerebral

system the multilevel modelling revealed that it was possible to model parameters that

represent static and dynamic autoregulation. In the renal anaemia system, the initial aim of

the analysis was to find an appropriate methodology to graphically express control. This

question was successfully addressed in the FDA domain through phase plots being used to

model control. When the relationship between epoetin and Hbwas modelled using MLM

it was determined that the CDSS was basing current Hb on the wrong previous dose.

The MLM methodology required further development to determine the time lag from

administration of epoetin to response in Hb. These additional questions were clinically

relevant and also allowed for further development of the statistical methodology.

In the biostatistics field there is a delicate interface between the medical domain and the

statistical domain. From a pure theoretical statistical point of view, answering questions

such as those posed in this thesis would be difficult for a number a reasons. First, the data

used in theoretical work is not as ‘real’ as the data from a group of patients undergoing

an operation for example. This would mean, therefore, that the models fitted to the data

would not be ‘perfect’. In the clinical domain, it is not plausible for one to expect a perfect

model and that a somewhat approximate solution is necessarily acceptable.

A further task for the biostatistician is to express complexstatistics to clinicians and

other non–statisticians. It is necessary for the biostatistician to learn about the context

of the data they are analysing; this may be from the clinicianthemselves or other more

traditional sources (books, Internet, etc). For someone from the statistical domain learning

the technical medical details and understanding the clinician is in itself challenging. It

is important therefore that both the statistician and clinician adapt their language and

communication techniques to portray their work and ideas tonon-specialist audiences.

It was possible to use ‘pictures’ to present the two methodologies used in this thesis,
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which was appreciated by clinical (and statistical) audiences. It was possible to

educate the audience about the methodologies and the applications through the graphical

representation of the statistics. There would be no purposein using and developing

complex statistical methods if they are not accessible. A reasonable question that may

then be asked is: could we have managed with simpler methodology? In short the answer

is no. The statistician should explore greater complexity,but then be able to simplify and

make the methodology and results accessible to a variety of audiences.

In order to publish material in clinical journals, multidisciplinary collaboration is required

between the clinician and statistician. Outputs that focuson clinical issues are best

received, though ideally this requires the statistician tograsp the clinical details as well

as having statistical expertise. It is also important that the clinical domain is open and

accommodating to novel approaches.
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Chapter 9

Conclusions and Future work

9.1 Conclusion

The application of FDA and MLM were novel approaches for assessing control within the

biomedical systems. The assessment of cerebral autoregulation in patients with carotid

artery stenosis and the management of renal anaemia with epoetin agents are existing

issues that have been addressed previously, though with no ‘gold standard’ method of

assessment. It was necessary therefore to find a suitable technique that may become this

standard. Furthermore, there were a number of features of the data collection and data

itself, which made the previously used methods for the respective systems unsuitable.

Within the CA system the aim was to assess CA during CEA, whichhad not previously

been attempted. Assessment of CA was made under conditions that did not reflect a

controlled laboratory setting, nor was assessment being made with fit healthy individuals.

In fact patients suffered with a condition (carotid artery stenosis), which adversely affects

CA, and patients were most likely ‘under stress’ due to the invasive surgical procedure.

The result was that the ‘ideal’ autoregulatory behaviour was not seen in these patients.

CA (static) was quantified as the slope of the relationship between CBF and ABP.
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Furthermore, it was found that there was no change in CA immediately following CEA

(compared with CA before CEA). This is an additional noveltyof the work, such that

assessment of CA is being made immediately following surgery, whereas previously this

has only been done in the weeks and months after CEA. It was also revealed that the CEA

was successful in increasing CBF immediately following surgery, which in the longer

term (i.e. hours and days) may improve the patients’ CA.

The loess curves were an ideal exploratory tool for the CA data as they revealed the

underlying relationship between CBF and ABP (since the datawere relatively noisy due

to collection during surgery and patients not experiencingideal CA). This exploratory

analysis revealed features of the data and CBF–ABP relationship, which highlighted

that MLM (with an autoregressive correlation structure), was an appropriate analysis

technique for these data. The analysis of the data in the MLM framework highlighted that

there were advantages to analysing the group of patients, such that this yielded a more

powerful model and also the conclusions drawn could be aboutthe patients in general.

Thus, clinical practice could be advised about how the surgical procedure affected (and

benefited) the majority of patients. MLM with autocorrelation structure directed further

analysis, which meant that dynamic CA could also be modelled, as well as static CA. This

analysis was used to determine whether there was a significant difference in dynamic and

static CA due to anaesthesia type. It was found that static CAwas better preserved under

local anaesthesia compared with general anaesthesia, though there was no statistically

significant difference in dynamic CA for the anaesthesia types. This suggests that it may

be safer for patients to undergo CEA under local anaesthesia.

In the renal anaemia biomedical system, the interest was in assessing control of Hb with

epoetin agents, in patients with renal anaemia. These patients were managed with a CDSS

which adjusted their epoetin dose each month, by basing their current Hb on the epoetin

administered one month previously. FDA of these data revealed that some patients were

adequately managed by this regime, although there were somepatients who experienced
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Hb cycling. In the patients where Hb cycling was shown to occur, this was represented

in the phase–plots by large spirals. The patients who experience Hb cycling may be

experiencing an adverse event or not receiving the correct dose of epoetin. In these

patients the CDSS may not have predicted the correct dose that they should receive. A

reason for this may be that current Hb is being based on the sub-optimum past dose.

MLM was used to investigate this theory further. It was discovered that the relationship

between Hb(i) and dose(i-1) yielded erroneous statisticalmodels, which highlighted that

this relationship was in fact not ideal. The MLM with autoregressive correlation structure

did in fact reveal that the most appropriate relationship was between current Hb and dose

administered 10 weeks previously. This is a vital finding forthe nephrology field as it

means that the current CDSS may not be letting the epoetin agent have enough time to

have its optimum effect on Hb and that the current CDSS may require updating.

The statistical methodologies have also been developed, inaddition to the novel findings

that were revealed about the biomedical systems. MLM with anautocorrelation structure

was an existing, though unexploited and relatively unused technique. The research in this

thesis has demonstrated that this is a particularly useful technique for repeated measures

data, where measurements are temporally correlated. Checking for autocorrelated

residuals is an often overlooked assessment of model fit, though if autocorrelation is

present this could induce bias in the model (underestimatedstandard errors) and result

in incorrect inferences being drawn. The approach of MLM with an autoregressive

correlation structure is a relatively complex modelling procedure, though has been

successfully presented and accepted by clinical audiences.

FDA is a relatively new statistical analysis technique, with relatively few applications.

This thesis presents two additional successful applications of FDA. The FDA

methodology has also been developed, in particular throughits application to the renal

anaemia biomedical system. This application has demonstrated that FDA may be

successfully applied to relatively short time series (i.e.13 measurements per individual).
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It was key in this application that the measurements (withinindividuals) were temporally

correlated and that the data could be reasonably represented by a smooth trajectory

over time. The application of phase–plots have also been developed, such that the

construction of the phase plots has been simplified from plots of the second derivative

against the first derivative, to plots of first derivative against the actual measurement. The

simplified approach resulted in identical conclusions being made about the patients. This

is beneficial for interpretation in clinical practice and also the initial function fitted has

less constraints (i.e. being able to penalize one less derivative).

The use of B-splines and loess curves within this thesis has demonstrated that there is a

variety of ways to fit curves to data. Using both techniques has highlighted the advantages

and limitations of each method. The application of each technique revealed some of these

advantages and limitations, though other features were revealed in the comparison of

techniques.

A key feature of the research in this thesis has being to communicate somewhat complex

statistics to clinical and other non–specialist audiences. Furthermore, it was important

not to compromise the statistical integrity of the work in doing so. This work has

demonstrated that it is possible to use and apply existing interesting statistical technique

to achieve novel findings in the clinical domain, and also develop and validate the

methodology.

9.2 Future Work

There are a number of suggestions for future work that have arisen from this thesis,

which will be discussed in this section. In addition to future applications within the same

biomedical areas, the methodologies may be used to assess control in other biomedical

areas; such as managing glucose level with insulin therapy in patients with diabetes. It

would be possible to collect repeated measures data in this area as patients with diabetes
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are required to measure their blood sugar daily (or more frequently), which would yield

a wealth of measurements. A device known as a GlucoWatch is available, which does

not measure blood glucose directly, but measures slight chemical reactions on the surface

of the skin. It potentially has the ability to help insulin users to fine tune their overnight

minimum insulin rates. The GlucoWatch gives readings every20 minutes, thus yielding a

wealth of measurements each day. It would be possible to assess control in these patients

to monitor how the administration of insulin manages the patients’ glucose level.

In both applications, if further studies were to taken place, it would be beneficial

for additional variables to be collected or provided to the statistician, so confounding

factors could be accounted for. Explanatory variables suchas age, sex, comorbidities,

deprivation, and risk factors for acquiring the disease maybe shown to be important

factors. Specific important confounding factors for the renal anaemia application may

be iron status, serum ferritin level and time on dialysis. For the cerebral autoregulation

application confounding factors may include whether the patient has bilateral or unilateral

stenosis, length of CEA and degree of atherosclerosis.

9.2.1 Cerebral Autoregulation

In order to determine appropriately whether anaesthetic type has an effect on CA then

patients should be randomised to anaesthetic type to enableunbiased comparison of

general and local anaesthesia. It may not be the case that this is possible for all patients

as in certain situations the patient or clinician may favoura particular anaesthetic choice

on medical grounds. Although in the cases where it is possible to randomise, the data

from these patients should be available for statistical analysis. This would be the ideal

scenario, however, it is unlikely that another RCT would be justified, particularly as the

GALA trial [51], which was carried out on such a large scale, was inconclusive. A more

reasonable possibility would be to analyse the data where there is no medical preference

for anaesthetic type, just simply the choice of the patient.The patient could be matched
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and analysis undertaken with the reasonable assumption that choice of anaesthesia was

made randomly.

The collection and recording of CBF and ABP measurements throughout surgery was a

difficult task to undertake, thus further data collection would require much effort on behalf

of the surgical team. Following the difficult data collection, it would be time consuming

to extract (and clean) the data from the surgical equipment.This suggests that there would

be a high cost in a future investigation of this kind.

Since there was doubt whether measurements collected every15 seconds amounted to

‘rapid’ changes in CBF and ABP, in any further investigation, measurements could be

collected at intervals shorter than every 15 seconds (whichis possible with TCD and ABP

monitoring). This would further establish the method for assessing dynamic CA.

In this thesis CA was being assessed immediately following CEA, which was a novel

setting for assessing CA. In the same patients, it would havebeen useful to collect

longitudinal measurements on CBF and ABP, every 15 seconds for a 5 minute period,

in a period following surgery. For example, after patients have left recovery, or even 24

hours after. This would be a particularly interesting area of investigation, as it would

demonstrate whether there is a time lag in CA changing due to CEA.

There was difficultly when assessing CA in the MLM framework in determining whether

a slope not equal to zero meant that patients were not autoregulating. This work has

revealed the need for guidance or a grading system of autoregulation, as it was established

that it is not as straightforward as declaring that a zero slope indicates perfect CA and

a non-zero (positive) slope indicates impaired CA. This would require collaboration

between the clinician and statistician.

Making the correlation structure a random parameter in the MLM framework was not

implementable, therefore in regards to prospective futurework it may be possible to

write the code for this to be possible in R. This would be particularly relevant for the
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cerebral autoregulation application as it would make it possible to model dynamic and

static autoregulation in the MLM framework. This would alsoyield development for the

MLM methodology.

9.2.2 Renal Anaemia

As suggested previously, the CDSS may be basing current Hb onthe suboptimal past dose.

In order to determine whether this is truly the case a RCT should be carried out, whereby

one group is randomly allocated to having their epoetin adjusted each month based on the

previous months dose (i.e. the CDSS already in place). The second group’s epoetin dose

will be adjusted, basing current Hb on epoetin administered10 weeks previously, though

still updating the dose each month. An RCT is likely to be justified in this area as patients

are already undertaking haemodialysis, thus it would simply be a matter of enrolling

patients and randomising to the two groups. There are a largenumber of patients who

require haemodialysis, thus a large sample is likely.

The success of this trial could be judged using FDA, whereby the Hb trajectories and

phase plots could be used to determine whether there is significantly more Hb variability

in one group than the other. Furthermore, the R code to createthe phase–plots could be

made user friendly. This would enable clinicians to input patient data, with the output

being the phase–plot for that patient. This would allow clinicians (and patients) to see the

data in a way that ‘control’ is graphically represented and meaningful to the patient.
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