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Abstract 

 

Drosophila melanogaster has become a versatile model organism, with high genetic 

tractability and ease of manipulability, mixed with low cost and low space constraints. 

Genetic tools with which to modify flies in myriad ways are constantly developed and 

updated, whilst physical tools have also become more apt for access to various biological 

systems. In this thesis I have used several such tools, such as the Drosophila flight 

simulator, High Pressure Freezing and Transmission Electron Microscopy to test visual 

behaviour and synaptic function, respectively. 

In Drosophila’s early visual system, R1-R6 and R7/R8 information channels carry visual 

information to the visual brain. These channels have been thought separated on the basis 

of their structure and function, however it is our hypothesis that these channels can 

functionally inform each other and that this occurs at an early stage of the visual pathway. 

Here I have used the flight simulator to show that the absence of ‘chromatic’ 

photoreceptors adversely affects visually-driven optomotor behaviour. In conjunction with 

other electrophysiological data, I have helped to support the idea that this influence may 

result from functional connection between R1-R6 and R7/R8 photoreceptors. 

Similarly, I have used the flight simulator to show that Ca2+-activated K+ channel mutations 

in post-synaptic Large Monopolar Cells can affect visual behaviour, but that these effects 

are often managed by homeostatic mechanisms that serve to maintain biologically-relevant 

function. Additionally, I have shown that the absence of dietary Polyunsaturated Fatty 

Acids can influence visual behaviour.  

Pre- and post-synaptic information at Drosophila photoreceptor synapses has been shown 

to adapt in accordance with changing visual conditions. I used programmes of light- and 
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dark-adaptation, along with High Pressure Freezing and Transmission Electron Microscopy 

to test how these adaptations are translated at the synapse. 

All of these conclusions are discussed alongside electrophysiological findings acquired from 

the early visual system. 
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Investigating Through Multiple Experimental Approaches How Early 

Visual Circuit Functions Affect Drosophila Behaviour 
 

1 General Introduction 
 

Organisms that navigate the world require sensory-neural systems to provide information 

regarding the state of the external environment, as it is relative to the navigator. As the 

world is often in a state of flux and an organism’s priorities may change, these systems 

must be flexible to capture dynamic information. Through genetic evolution organisms can 

accrue optimal neural processing mechanisms that possess a direct relevance to their 

respective environmental niche, which Heisenberg & Wolf (1984) call “phylogenetic 

information”. However, the collaboration between the environment and an organism’s 

genes is indirect and is usually temporally remote. Therefore, such intermediate neural 

circuitry and resulting processing must be able to reflect the diversity present in the 

outside world and be subject to short-term changes that allow dynamic interaction with 

external phenomena. 

 

1.1 The Drosophila Visual System 

 

1.1.1 Structure 

 

Dipteran vision is predicated upon the function of an externally arrayed set of optical 

facets, or ommatidia (Fig. 1-1a). Each is composed of a subset of 8 photoreceptors which 

project in neural superposition (Kirschfeld, 1967). Both the ommatidia and comprising 

photoreceptors are asymmetrically arranged in a fashion that allows the dissemination of 
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spatially similar visual information to common synaptic targets in the early visual brain (Fig. 

1-1b, c & d). Such an arrangement enables the summation of photoreceptor responses for 

a specific stimulus, thus enhancing sensitivity without hindering spatial resolution. 

The photoreceptors themselves are arrayed in stereotypical fashion across the eye, each 

unit based upon an outer ring of 6 photoreceptors (Fig. 1-2a), known as R1-R6 

(Braitenberg, 1967), which express a single photopigment, and an inner pair of 

photoreceptors with tiered rhabdomeres, i.e. R7 &R8 (Trujillo-Cenóz, 1965). The latter pair 

express different subsets of photopigments, giving rise to a subset of photoreceptors (R7 

yellow/pale & R8 yellow/pale) with a 70:30, yellow to pale ratio (Franceschini et al., 1981). 

R1-R6 photoreceptors express the Rh1 photopigment, which possesses a dual-peaked 

spectral sensitivity (Horridge and Mimura, 1975; McCann, 1972). R7 and R8 photoreceptors 

express combinations of Rh3 and Rh4 (Fryxell and Meyerowitz, 1987; Montell et al., 1987; 

Zuker et al., 1987), or Rh5 and Rh6 (Chou et al., 1996; Huber et al., 1997; Papatsenko et al., 

1997), respectively. 

Each photoreceptor possesses a distal, brush-like membrane specialisation that expresses 

the photo-sensitive pigments (Fig. 1-2b). There are approximately 30,000 of such microvilli, 

each thought to contain a unitary instance of the phototransduction machinery (Howard et 

al., 1987), which effectively forms a photon sampling unit (Song et al., 2012). Microvilli 

comprise highly folded structures known as rhabdomeres that in Drosophila, are ‘open’ and 

composed of separated structures. The open rhabdom structure serves to best exploit the 

amount of available photo-sensitive membrane, allowing each individual photoreceptor 

maximal exposure to light with the rhabdom acting like a light guide (Kirschfeld and Snyder, 

1976), channelling light along its length and insulating adjacent ommatidia to enhance 

resolution. 
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In addition to the aforementioned photo-instable opsins, i.e. those whose structure and 

function are modified by interaction with light and that confer specific spectral sensitivities, 

there are also photo-stable screening pigments  (Fig. 1-2d) whose structures are not 

altered but whose function is to ‘insulate’ individual ommatidia and the eye as a whole 

from the effects of extraneous, reflected light (Tomlinson, 2012). These pigments, stored in 

granules, migrate from the ommatidial periphery towards the rhabdomere in a light-

dependent fashion (Kirschfeld and Franceschini, 1969), generating a ‘pupillary’ reflex and 

serving as an inaugural mode of light adaptation.  

Further to these protective pigments, evidence suggested that a second class of modifying 

pigment may exist (Goldsmith et al. 1964; Kirschfeld et al. 1977; Vogt 1983), and that such 

pigments may act as dichroic filters, blue-shifting the spectral sensitivities of associated 

Rhodopsin photopigments. In fact, the short wavelength, U.V. sensitivity peak of Rh1 arises 

due to the co-expression of such an “accessory” sensitising pigment (Hamdorf et al., 1992; 

Kirschfeld et al., 1983), which can absorb light quanta, biophysically transferring energy to 

the opsin component, thus extending its functional range. R7 photoreceptors are also 

associated with a sensitising pigment that due to its positioning, affects both R7 and R8 

function (Hardie and Kirschfeld, 1983; Hardie, 1977; Kirschfeld, 1979; Kirschfeld et al., 

1978). 

In parallel to the aforementioned specialisations, these subsets of photoreceptors are 

segregated not only on the basis of their relative photopigment expression and resulting 

variance in spectral sensitivity, but also in terms of their synaptic targets. Outer, R1-R6 

photoreceptors project to Large Monopolar Cell (LMC 1-3) targets situated in the lamina 

ganglionaris (optic lamina), whilst the central R7 and R8 associate with multiple targets in 

the medulla (Fig. 1-3c). The specific trajectories of these cells and their associated target 

areas have been systematically and intimately defined using serial electron microscopy, see 
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Meinertzhagen & O’Neil (1991) and Takemura et al. (2008). These studies elucidate a dense 

interconnectivity that allows for complex feed-forward, feedback and sometimes re-

entrant information communication. 
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Such apparent structural segregation and functional specialisation has fuelled the notion 

that fly motion and colour vision are conducted by separate channels (Strausfeld and Lee, 

2009). Agreeing with this view are other solely functional studies on visual mutants such as 

Heisenberg & Buchner (1977) or Yamaguchi et al. (2008). Despite this long-standing 

ideology, there have been several relatively recent studies suggesting that this is not a 

“black and white” story (Gegenfurtner and Hawken, 1996; Schnaitmann et al., 2013).  

In Wardill et al. (2012), using various techniques including intracellular electrophysiology, 2-

photon Ca2+ imaging, modelling and behavioural assay, each of the photoreceptor classes 

and relevant sub-classes were tested to determine their relative contribution to motion 

vision. The paper conclusively showed that prior assumptions about the functional 

segregation of R1-R6 and R7/R8 channels were incorrect and that in fact, the two 

photoreceptor subsets share functionally- and behaviourally-relevant information at an 

early stage of vision. Some key findings of this paper are outlined and discussed in Chapter 

1.  

 

1.1.2 Phototransduction 

 

Drosophila phototransduction (Fig. 1-4a) is initiated by receipt of a photon of light 

occurring with a relevant wavelength range at a corresponding photosensitive, G-protein 

linked Rhodopsin pigment molecule (Cowman et al., 1986; Zuker et al., 1985). This 

interaction leads to Rhodopsin photoisomerisation, a conformational change that produces 

an active, meta-Rhodopsin intermediate (M). The M configuration activates a subsequent 

Gαq/Transducin-driven chemical cascade (Stryer et al., 1981), that eventually culminates in 

the activation of TRP and TRPL cation channels (Niemeyer et al., 1996; Reuss et al., 1997).  
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Downstream of Transducin, the phototransduction pathway progresses via the activation 

of Phospholipase C, which in turn cleaves the membrane-bound phospholipid PIP2. Such a 

metabolic event generates two main products, IP3 and DAG, but also results in the release 

of a proton thus producing a local acidification. These cleavage products possess a number 

of roles, i.e. IP3 is known to facilitate the release of intracellular calcium from stores within 

the Endoplasmic Reticulum, whilst DAG has been shown to affect the activation of 

Drosophila eye Protein Kinase C (PKC – inaC gene), response inactivation and adaptation 

(Hardie et al., 1993; Smith et al., 1991). 

Despite the mechanism of activation up to this point being relatively well characterised, the 

exact mechanism of TRP/TRPL channel activation is not fully understood. Both IP3 and DAG 

are potential candidates for such a role. However, IP3 mutants do not lack 

phototransduction (P Raghu et al., 2000), nor is IP3 sufficient to activate TRPL channels in 

cell culture (Hardie and Raghu, 1998), whilst the involvement of DAG and its associated 

proteins has become a confusing and convoluted topic. 

DAG is well known to activate inaC/PKC, though recent evidence has highlighted another 

role in phospholipid metabolism. DAG levels are regulated through phosphorylation by the 

action of DAG Kinase (DGK), encoded by the rdgA gene (Masai et al., 1993). Such 

phosphorylation, producing Phosphatidic Acid, allows DAG to be used as a substrate for re-

generating PIP2. Moreover, DAG may also be metabolised by the action of DAG Lipase, 

whose action upon DAG can produce Polyunsaturated Fatty Acid metabolites (PUFAs). 

PIP2 hydrolysis and DAG were implicated in TRPL channel activation (Estacion et al., 2001), 

and at the same time, a role for DGK function was also postulated (Raghu et al. 2000), as 

was the potency of certain DAG metabolites (Chyb et al., 1999). The effects of DAG and its 

metabolites have since been further implicated by using patch-clamp studies (Delgado and 

Bacigalupo, 2009; Delgado et al., 2014) with the latter study suggesting that DAG Lipase 
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inhibition does not affect TRP/TRPL channel activation, thus potentially ruling out the 

action of PUFAs. 

As previously outlined, the immediate consequences of PIP2 cleavage are PIP2 depletion, 

the generation of IP3 and DAG and acidification, of which depletion and acidification have 

been shown to activate TRP channels in patch configuration (Huang et al., 2010). Hardie & 

Franze (2012) explored such an avenue further by using atomic force microscopy and 

electrophysiology. They showed that photoreceptors generate light intensity-dependent 

contractions that are able to gate mechano-sensitive channels when ectopically expressed 

in dissociated photoreceptors that simultaneously lack light-sensitive channels. These 

findings stoked further the burgeoning idea that membrane contractility may be involved in 

channel gating and that PIP2 depletion may play a role in such a phenomenon.  

Taking these findings, and coupling them with techniques gleaned from other lipidomic 

investigations (Carvalho et al., 2012), Randall et al. (2015) reported on a multi-pronged 

approach showing that dietary PUFA restriction indeed results in reduced photoreceptor 

contractility, and that this is accompanied by a slowing of photoreceptor voltage responses 

and of visual perception also. Some of the findings of this paper are further outlined and 

discussed in Chapter 4.  

 

1.1.3 Synaptic Transmission 

 

Completion of the phototransduction cascade results in the generation of graded voltage 

potentials that themselves drive synaptic transmission, or the activity/voltage-dependent 

release and receipt of chemical signals across the synaptic cleft.  
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Histamine (Gengs et al., 2002) is released from vesicles in the pre-synaptic terminals of 

dipteran R1-R6 photoreceptors in a tonic (Uusitalo et al., 1995) and Ca2+-dependent 

fashion. Histamine molecules diffuse across the cleft and interface with receptors at the 

post-synapse, ultimately producing a graded voltage response in L1-L3 LMC target cells 

(Jarvilehto and Zettler, 1971; Zheng et al., 2006) in the Drosophila visual lamina (Strausfeld, 

1971). 

 

Synaptic transmission (Fig. 1-4b) is a highly regulated process, consisting of multiple phases 

that are co-ordinated by intracellular Ca2+ dynamics, see Südhof & Rizo (2011) for a review. 

Rates of exocytosis (vesicle release) and endocytosis (vesicle re-capture/generation) must 

be optimised to best reflect the input signal, but also to allow for its ongoing 

representation. Traditional theories of synaptic release have outlined a Clathrin-dependent 

exocytic process (Fig. 1-5b), where synaptic vesicles fully fuse with the plasma membrane, 

discharging their contents in their entirety (Heuser, 1973). Due to apparent constraints 

governing membrane depletion and the timing of vesicle recycling, this process had initially 

been deemed too slow (Ceccarelli et al., 1972). In this view, the traditional process would 

be unable to support the high rates of information transfer that the Drosophila retina is 

known to be capable of (Juusola et al., 1995b, 1996; Zheng et al., 2006). 

(Kononenko and Haucke, 

2015) 
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This perceived need for optimisation of membrane retrieval has led to the proposition of 

several theories of synaptic vesicle exo-/endocytosis, one such theory being “kiss-and-run” 

(Ceccarelli et al. 1973; review - Harata et al. 2006). In parallel to full-fusion exocytosis, kiss-

and-run employs partial vesicle fusion (Fig. 1-5a); where vesicle content can be retained, as 

can the vesicle membrane and its bound signalling structures, thus facilitating its re-use 

when needed. There have been reports of multiple modes of kiss-and-run (Gandhi and 

Stevens, 2003), using techniques ranging from conventional Transmission Electron 

Microscopy (Bartolomé-Martín et al., 2012), electrophysiological recording (Klyachko and 

Jackson, 2002), to live confocal microscopy with quantum dot-loaded vesicles (Zhang et al., 

2009). 

Despite the glut of supportive data, there have also been many dissenting voices. Examples 

include experimental discrepancies found to relate to the time course of endocytosis (Ryan 

et al., 1996). Questions have been raised considering the physical characteristics of the 

dyes and markers used for visualising fast membrane dynamics (Granseth et al., 2009), 

suggested to impinge upon normal vesicular fusion. And most recently, an innovative 

stimulation and fixation paradigm was developed by Watanabe et al. (2013), where they 

reveal a novel form of Clathrin-independent ‘ultrafast’ endocytosis in mouse hippocampal 

cells that can occur at speeds that far outstrip those of kiss-and-run (Fig. 1-5c). They went 

on to show the same process in C. elegans (Watanabe et al., 2013a), and also clarified the 

existence of an intermediate, large synaptic endosome, where Clathrin-coated vesicles can 

be regenerated after bulk endocytosis (Watanabe et al., 2014). Given these findings it is 

reasonable to explore alternative explanations as to how synaptic transmission can support 

high-rates of information exchange and the communication of highly-dynamic changes in 

photoreceptor voltage across the synapse. One such idea is that synaptic vesicle size may 

also be dynamically altered in response to varying environmental light conditions and that 

pre- and post-synaptic mechanisms may modify such communication. 
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1.1.4 Adaptation 

 

Sensory-neural apparatus are tuned to detect changes in the environment, however the 

range of possible detectable states can theoretically surpass the physical capabilities of the 

encoding machinery, leading to response saturation (Williams and Noble, 2007). The 

nervous system has evolved many adaptive mechanisms in an attempt to avoid this loss of 

information and reconcile the changing world with an intrinsic need for reliability (Nelson 

and Turrigiano, 2008).  

Drosophila photoreceptor responses show a ≈50 mV range. Therefore, adaptive 

mechanisms must modulate their response gain, scaling mean activity levels in accordance 

with input levels so that extreme inputs  do not become saturating (Fig. 1-6). Both the 

Drosophila photoreceptor and their LMC targets generate graded, macroscopic voltage 

responses (Juusola et al., 1995a). These integrated and adaptive (Juusola et al., 1995c) 

responses arise due to the summation of unitary voltage responses (quantum bumps) 

occurring at the rhabdomere (Henderson et al., 2000) and histamine-evoked voltage 

responses at the LMC post-synapse (Li, 2011).  

 

Juusola & Hardie (2001a) studied adaptation in photoreceptor voltage responses and the 

unitary events of which they are comprised (Fig. 1-7). They systematically characterised the 

effects of dynamic broadband (“white-noise”) stimulation at varying background light 
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intensities. These data indicated that photoreceptor voltage signals adapt positively with 

incremental light intensity, whilst signal noise appears inversely correlated. This illustrates 

the idea that Drosophila photoreceptors must find a way of elevating the representation of 

actual inputs above the level of system noise at low light levels. They also show that 

quantum bump size and latency reduce with increases in light levels. Conversely, on 

average quantum bump information content is least in dim conditions, however it is likely 

that the information per quantum bump may be higher at lower light intensities as more 

light means there are less available sampling units overall, thus a mid-level light stimulus 

may better allow faithful representation of highly dynamic input information.  

Further to this, with increasing background illumination photoreceptor voltage responses 

appeared more closely tied to the timing of the stimulus, they lasted less long and response 

dynamics could modulate more often. The latter data together imply that visual 

information is potentially best encoded by smaller, shorter bumps, as these can usefully 

inform voltage-based representations at higher frequencies during bright conditions. A 

sister paper, Juusola & Hardie (2001b),  elaborated upon these findings and showed that 

photoreceptor voltage responses can be further refined by the physiological temperature 

of the organism.  

Nikolaev et al. (2009) and Zheng et al. (2009) went on to demonstrate the sign-inverted 

effects of persistent stimulation upon the voltage responses of LMCs (Fig. 1-8). Together 

these papers show that both Drosophila photoreceptors and LMCs dynamically reduce their 

response latencies, and that this aids temporal encoding at varying mean light levels. These 

data also help support the premise that adaptation in these visual components is necessary 

to overcome basal noise and that such cells can modify their dynamic voltage range to 

better represent persistent and temporally varying information.  
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In Li (2011), analysis of LMC voltage noise afforded further insight into the existence of 

quantum bumps at the Calliphora LMC post-synapse. By exposing preparations to a 

prolonged, saturating light pulse (6s), one can induce the compensatory activation of 

Na+/K+-exchange pumps that attempt to re-balance the now-heavily skewed ionic 

equilibria. This process results in a large hyperpolarisation of the photoreceptor voltage; 

thus negating tonic synaptic transmission and indicating a period of synaptic silence that is 

also reflected in the voltage response of LMCs (Uusitalo and Weckström, 2000; Uusitalo et 

al., 1995). The remaining voltage dynamics are thought to correspond to intrinsic synaptic 

noise and that arising due to the experimental set-up. This can then be subtracted from 

measurements taken in dark conditions; a process which is thought to reveal the minimal 

average voltage responses (possibly composed from responses to individual vesicle release 

from tens of histamine receptor openings), i.e. postsynaptic histamine bumps. Analysis of 

these proposed LMC bumps has exposed adaptational trends which show similar 

characteristics to microvillar quantum bumps in photoreceptors, i.e. responses get smaller 

and shorter with increasing light levels (Fig. 1-8e). 

Given that macroscopic photoreceptor/LMC voltage responses and the summed 

quantum/histamine-induced bumps upon which they are founded, both adapt in the face 

of changing light intensities, it is therefore natural to conclude that co-ordination of these 

phenomena must be communicated through the synapse. In Chapter 2 I use light- and 

dark-adaptation protocols, in conjunction with conventional Transmission Electron 

Microscopy, in order to ascertain whether activity influences synaptic vesicle size in the 

Drosophila retina. These analyses were conducted on slices obtained from the visual 

laminae of wild-type flies that were raised as normal, but subjected to either saturating 

light or complete darkness prior to fixation. 
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1.2 Drosophila Behaviour 

 

1.2.1 The Drosophila Optomotor Response 

 

From the eye to the brain, its musculature and back again, Drosophila flight requires the co-

operation of multiple modalities of fly biology. Such co-ordination enables the visuo-motor 

coupling required to fine tune and match the fly’s behaviour with relevant environmental 

cues. With advances in genetic tractability and the ease of physical manipulation afforded 

by Drosophila, it has become increasingly simple to affect, mis-express and modify the 

specific biological components that govern such behaviours. 

The term optic flow refers to the perceived motion of environmental visual features that 

occur relative to the motion of the organism. For example, stationary elements in the visual 

field or those moving more slowly than the fly, will move from front to back (expansion) if 

the organism is moving forwards. This relative motion reverses for organisms moving in the 

opposite direction (contraction) and is similar for movement of the organism around other 

body axes (Blondeau and Heisenberg, 1982). Visual elements with their own agency may 

produce other unwanted diversions from normal, motion trajectories. Flies attempt to 

mitigate the effects of such visual deflections and exploit optic flow; updating their own 

sense of position within the world and generating the optomotor response.  

The optomotor response is composed of the syn-directional turning response of a moving 

fly when faced with a directional stimulus, i.e. the fly will turn in the same direction as the 

perceived motion (Heisenberg and Wolf, 1979).  



- 32 - 
 

 

of the changing environmental visual signal upon the fly’s behaviour (Heisenberg and Wolf, 

1988a; Holst and Mittelstaedt, 1971). The optomotor response correlates with alterations 

to wing-beat frequency and amplitude (Theobald et al., 2010), which form the basis for 

manoeuvrability during flight, thus the optomotor response requires sensorimotor 

integration to match muscular output with visual input (Heide and Götz, 1996). 
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2 General Methods 
 

2.1.1 Genetics 

 

The fruit fly, Drosophila melanogaster, has been used as a biological model for over 100 

years, having been proposed as a useful organism for genetic analysis. Here, particularly 

favourable is their ability to generate large numbers of progeny that require little space, 

upkeep and resources. Seymour Benzer (1967) kick-started the neurogenetic study of 

behaviour in Drosophila, showing that Canton-S flies are robustly phototactic. When 

disturbed into a period of action, flies will migrate towards a light source. Benzer tested 

around a hundred individuals at a time, using dual-chambered fly tubes and an external 

lamp. The study also incorporated several mutant fly strains, generated using the novel 

technique of Ethyl Methane Sulfonate (EMS) mutagenesis (Alderson 1965), used to ethylate 

DNA bases, resulting in their hydrolysis from the backbone thus causing weakness and 

strand breakage. This experimental protocol and many others like it, illustrate the level of 

simplicity that has helped elevate Drosophila to its ubiquity as a model organism.  

EMS was used to successfully induce mutation at high rates in bacteria in Loveless (1958), 

though its use in Drosophila was first recorded in the 1950’s (Bird, 1951). Until then, 

mutagenesis techniques had taken much time to evolve, beginning from observations of 

naturally occurring mutations, to the use of irradiation (Muller, 1927), and then the use of 

other chemical mutagens (review - Auerbach 1949). Since these initial investigations, a 

plethora of genetic techniques and assays have been developed, allowing its use for the 

study of a vast number of biological processes.  

Key genetic discoveries relating to gene sequencing, cloning and amplification 

notwithstanding; the ability to introduce exogenous genetic material into the nuclei of 

cells, and have the introduced genetic material induce inheritable phenotypic effects 
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(Graham and van der Eb, 1973; Pellicer et al., 1980; Schaffner, 1980), was another major 

leap forward in genetic modification techniques. Though due to chromosomal re-

arrangements, these procedures initially generated unstable results.  

Rubin & Spradling (1982) went on to develop the P-element transformation system. This 

constituted a hi-jacking of the abilities of transposable genetic elements discovered in 

laboratory strains of Drosophila (Kidwell et al., 1977). P-elements are free to move around 

a genome due to the co-expression of a transposase enzyme that possesses the ability to 

remove and insert itself and associated DNA at specific genetic sequences. However, this 

ability is normally repressed in somatic cells (Laski et al., 1986). Montell et al. (1985) co-

injected a P-element engineered to contain the TRP channel gene sequence into 

functionally-null trpCM mutants; they also inserted an active transposase and a marker gene 

for transformation. Using this novel technique, they mated transformants successfully to 

give rise to flies with normal wild-type electroretinograms (ERGs). This technique conferred 

a lasting advantage, eventually contributing to the deciphering of the Drosophila genome. 

In addition to the ability to rescue function in loss-of-function genetic mutants, P-elements 

also showed aptitude for the disruption of gene function (Spradling et al., 1995). 

Suffice it to say that a panoply of techniques has paved the way and facilitated the genetic 

dissection of Drosophila biology and behaviour. However, this is only a compressed history 

of the genetic tools relevant to this thesis. Nevertheless, current research and effort 

continues to produce novel and innovative methods by which to specify particular 

biological components in a spatio-temporally controlled fashion. 
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2.1.2 Electrophysiology 

 

The eye, as an electrical organ, has been studied since the mid-1800s and since then a 

plethora of techniques have been developed and realised. The ERG was the first technique 

to be used across several species throughout the early 20th century. In Nobel prize-winning 

work, the ERG was thoroughly characterised and shown to consist of multiple electrical 

components originating from various sources (Granit, 1938). Several components comprise 

the ERG, on and off transient potentials that derive from stimulus-dependent LMC 

hyperpolarisation and depolarisation respectively, and the receptor component which 

originates from the light-dependent voltage change occurring in the photoreceptors. The 

ERG is therefore, an extracellular, polyphasic and composite signal and is therefore an 

indirect but informative measure of overall electrical activity in the distal visual system.  

The development and use of microelectrodes (Curtis and Cole, 1940; Graham and Gerard, 

1946; Ling and Gerard, 1949; Nastuk and Hodgkin, 1950) afforded a direct approach, as 

individual cells of interest are ‘impaled’ and current or voltage can be simultaneously 

measured. Voltage clamp techniques allow the injection of current into a cell, whilst 

simultaneously measuring the electrical properties of an associated membrane. This 

technique allows electrophysiological assay whilst the membrane is held at a particular 

potential. These early intracellular works helped to deduce the dynamic electrical 

properties of many biological systems, and have given rise to several variants (Ogden, 

1994).  

Single-electrode techniques are such a variation; they negate the necessity for dual clamp 

and stimulation electrodes, which are often inappropriate for measuring currents in in vivo 

preparations. Current clamp recordings differ from voltage clamp techniques in that the 

membrane voltage is not controlled, so dynamic, stimulus-specific membrane properties 
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can be recorded (Juusola, 1994; Weckström et al., 1992). Juusola & Hardie (2001) further 

refined a single-electrode current clamp technique for studying Drosophila photoreceptors 

in vivo, providing a thorough analysis and further insight in to mechanisms of light 

adaptation at the level of ‘quantum bumps’ and photoreceptor voltage. These modern 

techniques are boosting the quality of recorded data and are bolstered by innovative 

analysis and modelling. 

 

2.1.3 The Drosophila Flight Simulator 

 

With fly behaviour being a veritable black box, it is necessary to possess simple and highly 

controllable stimulation and detection methods that impinge minimally upon the fly’s 

experience of the world. The study of Drosophila flight behaviour was facilitated by the 

invention of the flight simulator, as described in Götz (1964). This device, through 

exploitation of the optomotor response, allowed observation of the effects of the 

environment upon the flight of the organism. 

In the flight simulator (Fig. 2-1), flies are tethered to a torque meter and are presented with 

a rotating visual stimulus. The fly’s relative optomotor turning responses are transduced by 

the torque meter and converted into an electrical signal that can be read out and analysed. 

The stimulus pattern can be pre-specified, the illumination of the environment can be 

precisely controlled, as can the speed and directionality of the stimulus. Stimulus rotation 

can be generated in different directions relative to the mounted fly, thus allowing the 

detection of stimulus-specific torque outputs, i.e. yaw, pitch and roll.  
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Furthermore, the device can be used in either an open- or closed-loop configuration, where 

either the experimenter or the fly itself has control over the visual environment, 

respectively. Thus these variant paradigms can be very useful for studying visual behaviour 

and visual learning in a controlled fashion. 

  

Adapted from Liu et al. (1999). 
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3 Colour, Motion & Optomotor Behaviour 
 

3.1 Introduction 

 

Dipteran vision is limited by the function of its compound eye, across which stereotypical 

ommatidia are arranged in hexagonal fashion. Each ommatidium is composed of an outer 

ring of six photoreceptors, the achromatic R1-R6 (Braitenberg, 1967); and a central, tiered 

and multi-class pair, R7 and R8 (Trujillo-Cenóz, 1965).  R1-R6 photoreceptors express the 

dual-peaked Rh1 photopigment, giving rise to their supposed achromaticity and the belief 

that they subserve motion vision, whereas R7 and R8 photoreceptors subdivide into classes 

defined by the differential expression of several photopigments, Rh3-Rh6 (see Hardie 1979 

for a comparative functional characterisation), thus being thought to subserve colour 

vision. In conjunction with this differential expression of photopigments is the fact that 

each ‘channel’ terminates within a different layer of the optic lobe. R1-R6 photoreceptors 

synapse with Large Monopolar Cells (LMC’s) in the optic lamina, and R7/R8 with intrinsic 

and trans-medullary targets in the medulla (Bausenwein et al., 1992; Strausfeld, 1971; 

Takemura et al., 2008). 

The UV-Fly, developed by the Juusola laboratory (Wardill et al. 2012),  provides a means 

through which to functionally segregate these visual channels. In these flies, Rh1 function 

has been annulled in R1-R6 photoreceptors, using ninaE8 or ninaEP334 mutations (Johnson 

and Pak, 1986), and has been replaced with the UV-sensitive Rh3, expressed under control 

of the Rh1 promotor. Using this system, R1-R6 photoreceptors can be stimulated using UV 

light, whilst R8 can be excited by longer wavelength light such as green, or in this case 

amber, thus affording a degree of photoreceptor channel-directed stimulus separation that 

was not available beforehand. 
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In contrast to previous assumptions (Yamaguchi et al., 2008), electrophysiological and 

imaging data upon such UV-Flies and other visual mutants (Wardill et al. 2012), has shown 

that motion-relevant colour information is reflected in the voltage responses of 

photoreceptor LMC targets, and that this information is absent in flies lacking R7 and R8 

photoreceptors. This study went on to show that this information likely comes from R8 cell 

types (R8p or R8y), and their potential contacts with R6 (Shaw et al., 1989). This is because 

the relative contributions of Rh5 and Rh6 photopigments to the overall spectral sensitivity, 

approximately match the second peak of the bi-phasic LMC responses to blue or yellow-

green light flashes, respectively.  

A fly’s head and body reorients to maintain straight flight by reducing the retinal slip of 

optic flow signals that naturally occur due to environmental motion (Götz, 1968). This 

classic Drosophila optomotor response results from the integration of sensorimotor 

information and serves to stabilise a fly’s gaze during flight through an involuntary 

displacement from a straight course. This behaviour is re-afferent (Heisenberg & Wolf 

1988), conditionable (Brembs and Heisenberg, 2001), and spontaneous (Wolf and 

Heisenberg, 1990).  

In this chapter, I exploit the classic optomotor response by using open-loop experiments in 

the traditional, Drosophila flight simulator (Götz, 1964). I set out to characterise the 

behavioural consequences of manipulating the colour and motion visual channels by 

observing optomotor responses to predominantly monochromatic, horizontal grating 

rotation, and testing the limits of the fly’s coloured motion vision. I utilised flies of differing 

visual phenotypes, derived from various photopigment knock-outs and rescues. These 

methods allowed me to isolate the colour and motion channels and to assess the relative 

inputs of each photopigment, thus allowing identification of the specific spectral influences 

upon the behavioural response.  
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My experiments ultimately confirm that, rather than being solely achromatic, coloured 

motion can be used to evoke Drosophila optomotor behaviour. Thus, it appears to be 

driven by combined, additive and spectrally-variant inputs from R1-R6 and R7 + R8 

photoreceptor subsets. Akin to the electrophysiology (Wardill et al., 2012), the behavioural 

data suggests a role for R8y and R8p in sharing colour information with R1-R6 

photoreceptors and also reflects the way that Drosophila’s  visual function is tuned to its 

natural environment. 

 

3.2 Methods 

 

3.2.1 Drosophila Genetics 

 

3.2.1.1 Stocks 

 

Most of the flies used in this study were generated in-house by Dr. Trevor Wardill and Dr. 

Olivier List, though some original lines used for these crossings were acquired from external 

sources; norpA36/P24 from Roger Hardie (University of Cambridge), ninaE8/P334 from William 

Pak (Purdue University), UAS-GCaMP3.0 from Vivek Jayaraman (HHMI Janelia Farm) and 

3A-Gal4 from Martin Heisenberg (University of Würzburg). UV-fly R1-R6 rescue lines were 

derived from Rh1+3 norpA mutants from Charles Zuker (Columbia University), and 

Rh1+norpA R1-R6 rescue constructs from Steve Britt (University of Colorado). 
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3.2.1.2 Crosses & Optimisation 

 

Many neurally-directed mutations have unwanted, secondary effects upon an organism’s 

biology, thus these ancillary phenotypes must be minimised and controlled for. In this 

study, all crosses and genotypic optimisation were carried out by Dr. Trevor Wardill and Dr. 

Olivier List.  

 

3.2.1.2.1 ninaE 

 

The ninaE gene encodes for the Rhodopsin-1 opsin, expressed in R1-R6 photoreceptors 

(O’Tousa et al., 1985; Zuker et al., 1985), conferring a dual-peaked spectral sensitivity 

(Hardie, 1979). To achieve silencing of R1-R6 photoreceptors, this study initially employed 

the ninaE17 mutation, due to its aberrant optomotor response (Strauss et al., 2001), and 

Table 3-1 – Table of lines used and their specific 
genotypes. 
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impaired ERG function. However, in accordance with previous reports (Kumar and Ready, 

1995), using electron microscopy it was confirmed that R1-R6 structure was 

catastrophically damaged; thus function could not be separated from the developmental 

effects of the mutation upon rhabdomere structure. ninaE8 was shown to possess similarly 

impaired ERG and optomotor responses. These flies also displayed a wild type-like 

rhabdomeric and overall ommatidial morphology (T. J. Wardill et al., 2012), thus ninaE8 was 

used instead. Taking flies with a ninaE8 background, UV rescue flies were generated by 

introducing a P-element containing Rh1+3 (functional Rh3 under control of an Rh1 

promotor, for technique see Feiler et al. 1992).  

 

3.2.1.2.2 P-elements 

 

P-elements are a form of transposable genetic element, specific to Drosophila, that are able 

to move around a genome (for review see Castro & Carareto 2004). Though such motility is 

normally repressed in somatic cells (Laski et al., 1986; Misra et al., 1993). Experimentally 

this repression can be circumvented through the simultaneous use of fly lines, which are 

engineered to lack P-elements or their repressors and the incorporation of an active form 

of P-element. This allows their inherent function to be exploited for the further generation 

of transgenic Drosophila strains. P-element motility is enabled by the expression of a 

transposase enzyme (Kaufman and Rio, 1992); a type of restriction endonuclease which 

cuts DNA at specific sequences of base pairs, allowing a P-element containing the relevant, 

complementary 3’ and 5’ sequences, to insert under control of host genetic machinery (Rio 

et al., 1986). Both the transposase and P-element can be engineered to show specificity for 

any target gene, and can be used to insert coding DNA sequences into the control region of 

an endogenous gene of interest, thus placing the construct’s expression under control of 

the host organism’s promotor (Karess and Rubin, 1984). 
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3.2.1.2.3 norpA 

 

The norpA gene encodes for Phospholipase C (Bloomquist et al., 1988), a critical 

component of the phototransduction cascade in Drosophila (Hardie et al., 2002). PLC, in 

response to activation by Rhodopsin’s Gαq GPCR subunit, is responsible for metabolism of 

the membrane phospholipid PIP2, resulting in the generation of the DAG and IP3 secondary 

messengers. PLC-null mutants lack normal phototransduction in all photoreceptors (Pearn 

et al., 1996). Specifically norpA36/P24 is associated with normal synaptic structure (Hiesinger 

et al., 2006), so it can be used without fear of impact from structural aberrancy. The 

norpA36/P24 mutation was used to produce several, selective photopigment rescue lines, i.e. 

lines expressing only individually functional photopigments. The same mutation was also 

used to generate UV-flies that lacked functional R7 + R8 photoreceptors (norpA Rh1 rescue 

via P-element insertion). 

3.2.1.2.4 UV-Flies 

 

We also used UV-flies that contained a Genetically Encoded Calcium Indicator (Palmer et 

al., 2011), expressed in the Vertical System cells (VS cells) of the Lobula Plate. Using two-

photon microscopy, Wardill et al. (2012) studied changes in VS cell Ca2+ flux occurring as a 

result of the vertical motion of a black & white striped grating lit by UV (385±30 nm) or 

amber light (590±40 nm) for details see Wardill et al. (2012) supplementary materials.  

 

3.2.2 Flight Simulator 

 

Experiments were carried out in open loop fashion using a traditional Drosophila flight 

simulator. To maximise body and response size, large, virgin female flies of 3-5 days old 

were selected for experiments and kept in large ICRF-type bottles, the latter to provide 
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increased flight space. Flies were raised at 25oC on a 12hr:12hr day/night light cycle and 

were fed on a standard, plant-based diet. During preparation, single flies were cold-

anaesthetised and tethered using a micro-manipulator to manoeuvre a triangular, copper-

wire hook. This was superglued between the head and thorax; so as to remove head 

movements relative to the direction of turning.  

 

3.2.3 Motion Stimulus 

 

The motion stimulus, programmed using an in-house developed MATLAB script, consisted 

of a cylindrical arena comprising a black grating of vertical elements with a 14o distribution. 

Via the use of a stepping motor, the arena was bi-directionally rotatable in the horizontal 

plane. Preceded and concluded by a 1 second pause, the arena was rotated anti-clockwise 

then clockwise at 45o/s, separated by a 2 second cessation of motion. For each fly, this 

stimulus was repeated 10 times and the yaw torque responses that made up each set of 10, 

sampled at 1 kHz, were averaged to make one recording and the process was then 

repeated for a number of flies per genotype. Individual flies were tested for a best of 10 

and average responses were selected if the traces in each recording were consistent in 

characteristic. For a given trace, periods of cessation of flight, turning or other severe 

behavioural erraticism were cause for rejection of the averaged response. 

 

3.2.4 Light Stimulus 

 

To illuminate the motion stimuli, the grating was either backlit by a broadband, external 

ring light (Philips, ≈380-900nm) or with the use of LED’s with relatively specific wavelength 

ranges, controlled and driven using a Cairn Research OptoLED light source. Using the latter, 

in conjunction with a silver, reflective acetate insert, meant that the arena could be lit from 
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above, producing simple, uniformly illuminated coloured motion of various types (UV: 

≈350-405nm, amber: ≈560-620nm, green: ≈460-580nm, red: ≈590-670nm). The spectral 

characteristics of the stimulus were calibrated using a Hamamatsu spectrometer and were 

shown to be attenuated with respect to the LED output specifications, due to the indirect, 

reflected nature of the stimulus set-up. The Cairn LED driver also enabled a degree of real-

time, manual control over the light stimulus. This became useful to employ a ‘transitional’ 

stimulus, where continuous rotation of the grating could be coupled with a manually 

dimmable and switchable light stimulus.Different protocols were designed to test whether 

R7/R8 photoreceptors could modify behaviour by taking over the ongoing processing of 

motion information when the background illumination of the scene changed, i.e. upon a 

gradual switch from a UV-lit arena, to one lit with an Amber hue. 

 

3.3 Results 

 

3.3.1 Wild-type Drosophila Optomotor Response 

 

I acquired torque responses of Canton-S Isoline flies in a traditional, Drosophila flight 

simulator. Torque responses were pooled and averaged for a particular fly in open-loop 

configuration. See methods for stimulus parameters. 

The Drosophila optomotor response shown here, manifests as a syn-directional, bi-phasic 

yaw torque turning response, peaking first at the point of termination of the anti-clockwise 

grating rotation. For each individual fly, the time taken for the complete decay of the 

optomotor response can vary taking up to 20 s (pg. 45 - Heisenberg and Wolf, 1984), as 

such when the rotation stops the torque response tends towards zero, but never reaches 

abolition, as insufficient time is given in which to do so. Upon clockwise grating rotation, 
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the yaw torque turning response resumes, but in the opposite direction, i.e. responses are 

always syn-directional to the new stimulus program, and due to the aforementioned time 

discrepancy, the response appears to be of reduced amplitude. 

 

 The ability of this study to successfully stimulate R1-R6 and R7/R8 visual channels 

separately hinged directly on the fidelity of the UV-Fly. With R1-R6 photoreceptors 

allegedly being responsible for motion vision through Rh1 functionality, the UV-fly; with its 

replacement of Rh1 with Rh3, required testing under open-loop flight simulator conditions 

and its performance was then compared against wild-type responses (Fig. 3-1). 

Because of the UV-sensitising pigment expressed in wild-type R1-R6 photoreceptors 

(Hamdorf et al., 1992; Kirschfeld et al., 1983), wild-type Canton-S flies performed similarly 

to UV-Flies when responding to UV-illuminated 45o/s arena rotation. T-test on mean 

variances shows a lack of statistical significance (p=0.671), thus helping to validate the use 

of UV-flies for the purpose of this study (Fig. 3-1 inset). 
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3.3.2 ninaE Variants 

 

The ninaE gene encodes Rh1. Thus ninaE8 mutant flies formed not only the basis for 

functional isolation of the R7/R8 channel, but also for the generation of UV-flies and 

associated variants. 

ninaE8 mutants completely lack R1-R6 function, as shown by separate intracellular 

electrophysiological experiments, but these flies show a sizeable optomotor response in 

accordance with a 45o/s, broadband light stimulus (Fig. 3-2). Surprisingly, the magnitude of 

this response approached that of the otherwise blind flies, whose R1-R6 functions were 

rescued by expressing Rh1 or Rh3 visual pigments (Fig. 3-3a). 
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3.3.3 norpA Rescue Lines 

 

norpA gene expression gives rise to the Phospholipase C enzyme in Drosophila, essential for 

the production of critical downstream signallers of phototransduction. Its mutation results 

in an abnormal phototransduction cascade, thus impairing vision in general. To test the 

relative contributions of individually expressed photopigments, norpA[36] mutant lines were 

created, and individual photopigment expression was re-instated by expressing norpA 

cDNA contained in various P-elements, alongside specific Rhodopsin photopigment 

promotor sequences.  

Driven by a broadband light stimulus, some norpA rescue lines showed some ability to 

produce stimulus driven motor behaviour in the flight simulator, though with considerably 

different relative contributions. 

Rh1 in R1-6 rescue flies, with inherent UV sensitivity, displayed substantial but incomplete 

rescue of the optomotor response (Fig. 3-3a). This was also true for norpA R1-R6 rescue 

flies, whose R1-R6 function was rescued using Rh3, making them purely UV-sensitive 

rescue flies. In contrast (Figs 3-2 & 3-3a), UV-Flies that lacked R7/R8 function performed 

less well than standard UV-Flies (Fig. 3-4; T-test on mean variances, p=0.04).  

Flies in which Rh3, Rh4 and Rh5 were expressed alone in R7-pale, R7-yellow and R8-pale 

photoreceptor subtypes respectively, contributed little to the optomotor behaviour (Fig. 3-

3b). Contrastingly, flies whose Rh6 photopigment was rescued (expressed in R8-yellow), 

showed a higher efficacy, generating much larger optomotor responses than their rescue 

counterparts. 
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3.3.4 ‘Transitional’ Stimulus 

 

The transitional stimulus was designed to test whether the R7/R8 channel could assume 

responsibility for R1-R6 derived motion vision when flies were subjected to a change in the 

chromatic background illumination during field rotation stimulation. Here tethered, flying 

flies were exposed to a UV-motion stimulus and their subsequent behavioural responses 

were monitored. The rotational stimulus was continuous, thus traces appear in the style of 

a response string, rather than an averaged single trace. 
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In real time and during recording, the UV illumination was gradually dimmed, until 

optomotor responses had ceased, as confirmed by eye. Upon confirmation of cessation of 

motion behaviour, longer wavelength, amber illumination was swiftly introduced and its 

contribution to motion behaviour was observed. 

Whilst the exact stimulus paradigms vary on the basis of illumination duration (not 

intentionally controlled for), the patterns of behaviour appear very similar in UV- (Fig. 3-5) 

and Canton-S flies (Fig. 3-6). The flies’ optomotor responses were executed synchronously 

with the stimulus program. Larger optomotor responses to initial UV stimulation, 

diminished to an approximate halt in accordance with the dimming illumination.  
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Responses were partially rescued by replacing UV illumination with bright Amber 

illumination that was further enhanced by a return to the initial UV stimulus setting. 

Doubling in size, responses were on the whole larger in Canton-S flies, as was the level of 

amber-mediated rescue (Fig. 3-7).  

For individual UV-Flies, the variance for periods of the total response, corresponding with 

either dim UV or amber stimulus illumination, was compared; the inter-period variance for 

periods 40-100 s and 100-140 s respectively, were significantly different when compared by 

one-way, repeated measures ANOVA (Fig. 3-7; n=10, p=0.05). Values for the first 20 s, 

corresponding to the UV-dimming stage, were removed from the dim UV dataset for all UV-

Flies. 
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Likewise, this was also the case for Canton-S flies (ANOVA, n=10, p=<0.01)   albeit for the 

following timings; variances were compared for dim UV (25-70 s) and Amber sections (70-

130 s) though due to the aforementioned duration inconsistencies, only the last 20 s of 

values, corresponding to the UV-dimmed and late-amber stages, were used from each 

period for this comparison. 

 

3.3.5 Painted Ocellus 

 

The Drosophila ocelli are a tripartite, light sensitive organ, located centrally on the dorsal 

aspect of the head casing. Each ocellus uniquely expresses the Rh2 photopigment, and 

their functional characteristics and facilitatory role in phototactic behaviour have been 

reasonably well characterised (Hu and Stark, 1980; Miller et al., 1981). Additionally, ocelli 
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have been shown to feed rotational information to lobula plate tangential cells (Parsons et 

al., 2010) which drive optomotor responses (Krapp and Hengstenberg, 1996). Given that 

ocelli are known to contribute to visual behaviours, and that this role is thought dependent 

upon R7/R8 function, it was prudent to test whether their occlusion would alter the 

responses of some of our key lines. To do so I applied a non-toxic, all-natural and opaque, 

charcoal-based black paint (Winsor & Newton, Winton Oil Colour, Ivory Black -1414331) 

covering the ocelli in situ whilst flies were tethered at the torque meter. 

Both painted norpA Rh1 in R1-6 rescue flies (Supp. Fig. 1), responding to 45o/s spectrally 

broadband (380-900 nm) field rotation and painted ninaE[8] flies responding to the same 

stimulus (Supp. Fig. 2), appeared to show similar response characteristics to each other. 

Comparable responses were absent in other, relevant rescue flies. Also of interest here is 

the suggestion that such ninaE[8] flies display a comparable behavioural response to the 

broadband stimulus than was shown by Rh1 in R1-6 rescue flies (Supp. Fig. 2). This is 

possibly due to the lack of a functional connection between R1-6 and R7/R8 

photoreceptors in the Rh1 in R1-6 rescue flies, a pre-requisite which I will discuss later. 

The latter Rh1 in R1-6 rescue flies however, showed larger and approximately equivalent 

responses to UV and amber stimuli (Supp. Fig. 1 & 3) both of which appear relatively 

absent in Rh6 in R8y rescue flies.  

The ability of wild-type Canton-S flies to show very small, but appropriately shaped 

responses to red stimulus illumination (≈590-670nm) is noteworthy. This is further 

reflected in the responses of Rh1 in R1-6 rescue flies (Supp. Fig. 4). These findings reflect 

the prolonged long-wavelength tail of Rh1 pigments which, once integrated over the whole 

eye, seem to provide sufficient sensitivity to detect very bright red field motion. 
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3.4 Discussion 

 

In accordance with the electrophysiological and Ca2+ imaging results (Trevor J Wardill et al., 

2012), the data outlined here confirm the validity of the use of UV-Flies as a means to study 

visual behaviour (Fig’s 3-1, 3-5 & 3-6).  

 

Line UV-fly 

Canton S p=0.671 

UV-fly lacking R7/R8 p=0.04 

 

 

But more importantly, they are fully supportive of the finding that the separate ‘colour’ 

vision information channel can drive the Drosophila optomotor response in isolation (Fig’s 

3-2 & 3-3a), and that its normal function is shaped by additive inputs from individual 

photoreceptors (Fig. 3-3b). Also supported here is the suggestion that such colour-motion 

integration depends upon connectivity between R1-R6 and R7/R8 photoreceptors (Fig’s 3-

3b, 3-5, 3-6 & Supp. Fig. 1) and these data implicate the Rh6-expressing R8y in this role 

(Fig. 3-3b). 

The finding that flies lacking any R1-6 function produced optomotor responses comparable 

to those of norpA Rh1 in R1-6 rescue flies (Fig. 3-3a) became central to the hypothesis that 

there is transfer of functional information between the colour- and motion-information 

channels. Moreover, genetic dissection of the relative contributions of distinct 

Table 3-2 – Table showing WT/UV-Fly similarity and 
 the difference in response when R7/R8 are missing.
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photopigment classes helped shed light on how this may originate. Aside from previous 

morphological data (Shaw et al., 1989), such a hypothesis has been supported more 

recently with behavioural (Schnaitmann et al., 2013), and structural experiments (Jagadish 

et al., 2014), which respectively suggest that R1-R6 photoreceptors can contribute to 

colour discrimination, whilst R7/R8 synaptic targets may also connect with downstream R1-

R6 targets in the lobula plate. 

norpA Rh1 in R1-6 rescue flies showed slightly different responses to broadband and UV 

grating rotations (Fig’s 3-3a & Supp. Fig. 1). This is likely to reflect changes in the collective 

capacity of their available photoreceptors to see these stimuli. UV-sensitive Rh3, whilst 

capable of driving the optomotor response when expressed in place of Rh1 in R1-6 

photoreceptors (UV-Flies and UV R1-R6 rescue), when re-expressed alone, the norpA Rh3 in 

R7p rescue line was incapable of doing so in any meaningful way (Fig. 3-3b, Supp. Fig’s 1 & 

2). norpA Rh4 in R7y rescue flies, and norpA Rh5 in R8p rescue flies, also showed such 

impotence. Only the green-sensitive Rh6, expressed in norpA R8y rescue photoreceptors, 

showed any ability to modify the optomotor response (Fig. 3-3b). Given these findings, it is 

reasonable to infer that the Rh6-expressing R8y photoreceptor, above others, is 

responsible for conveying motion-relevant colour behaviour for the enhancement of 

optomotor responses in relevant environs. 

Electrophysiologically, each photoreceptor class in isolation may contribute a wavelength 

and stimulus intensity-dependent voltage response (Wardill et al. 2012 - Fig. 2c and 

supplementary fig's S4 & S5). However, in the real world this response will be shaped and 

tempered by a plethora of environmental factors. For example, Drosophila’s neural 

superposition eye pools spatially-similar photoreceptor information into a single lamina 

cartridge (Kirschfeld, 1967), whilst information acquisition is temporally controlled by their 

biophysical state (Song et al., 2012). Such pooling appears to be reflected in the summatory 
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behavioural responses of flies expressing single photopigments (Wardill et al. 2012 - Fig. 4). 

Figure 3-3b here likewise compares optomotor responses driven by individual 

photoreceptors contrasted against; wild-type flies, flies lacking R7/R8 function and the 

summed behaviour of the contributions from individual photoreceptors. The latter 

however, is not fully identical to the data shown in Wardill et al. (2012). This lack of 

correlation is down to the data selection process, with all data shown here being based on 

averages of 10 responses per individual fly, which sometimes included traces showing 

saccadic noise, or traces with instrumental and other external noise in the individual traces. 

Such noise and other artefacts can mask the true shape and magnitude of the response 

skewing subsequent analyses, thus in the published work, such distracting individual traces 

were excluded from the data before averaging. Despite these differences in selection, both 

Wardill et al. (Fig. 4) and the current datasets clearly indicate that the relative spectral 

sensitivities of each photoreceptor class sum up to approximately match estimates based 

upon real optomotor measurements. 

The norpA Rh6 in R8y rescue line showed small, but well-correlated responses to 45o/s, UV-

illuminated grating rotations (Fig. 3-3b). This is interesting as it corroborates the 

electrophysiological findings, in which R1-6 voltage responses are modified by R8y input 

before synaptic transmission to lamina targets (Wardill et al. 2012 - Fig. 3). Certainly, UV-

Flies lacking the dual-peaked spectral sensitivity of Rh1 can effectively respond to ≈560-

620nm amber light (Fig. 3-5) and recover a failing optomotor response to an ongoing 

stimulus paradigm with an alternating illumination pattern. The same recovery was shown 

by Canton-S flies (Fig. 3-6), though to a slightly different stimulation protocol and with an 

apparent increase in response consistency and amplitude. 

norpA-mutant photoreceptors lack any phototransduction due to the functional knock-out 

of PLC. These findings show that alone, norpA Rh6 in R8y rescue flies lack an optomotor 
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response during amber grating rotations, but that norpA Rh1 in R1-6 rescue flies show such 

a response (Supp. Fig. 3). These data therefore help to contest the idea that R1-R6 are 

achromatic and further add weight to the proposition that communication of such colour 

information should come from a pre-laminar, activity-dependent connection between R1-

R6 and R7/8. 

Ephaptic coupling, a non-synaptic method by which adjacent neurons can influence the 

synaptic output of their neighbours, has been suggested as a means of communication 

within nervous systems since the 1960’s (Ruck, 1962). The process has been reasonably 

well characterised in the vertebrate retina (Byzov and Shura-Bura, 1986; Kamermans and 

Fahrenfort, 2004; Vroman et al., 2013), where such communication is mediated by mutual, 

intercellular ion exchange afforded by Connexin hemichannels (Kamermans et al., 2001) 

that occur between vertebrate cones and lateral horizontal cell dendrites.  

In Drosophila there is no Connexin homologue. However, through misexpression in 

Xenopus oocytes, the Innexin, shaking B, was found to compose Drosophila gap junctions 

(Phelan et al., 1998). The shaking B gene is differentially processed in Drosophila, 

generating different functional alleles (Crompton et al., 1992; Krishnan et al., 1995, 1993). 

Moreover, the shakB2 mutant has been shown to have structural defects in the Drosophila 

retina, affecting the close apposition of R1-R6 photoreceptor terminals in the lamina. Using 

electron microscopy, Shaw et al. (1989) conclusively showed the presence of gap junctions 

between R1-R6 and R7/8 photoreceptor in the distal lamina of both Musca domestica and 

Lucilia cuprina, two alternative Dipteran species, thus lending further support to this 

argument. 

The exact mechanism of information transfer between R1-6 and R7/R8 is as yet unknown, 

though this work, in conjunction with Wardill et al (2012), and other structural data, 

suggests that communication may well occur via gap junctions, prior to response 
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summation in the Large Monopolar Cells. As shakB2 is widely expressed across the Dipteran 

nervous system, it will be necessary to find some way of targeting it for future experiments. 

Its expression could be knocked-down specifically in photoreceptors in a temporally 

controlled fashion, e.g. by using a Gal-4/80 coupled RNAi or temperature-sensitive 

mutation. Coupling such a genetically-targeted knock-down with structural, 

electrophysiological and behavioural assay may help further elucidation and consolidation 

of this view, though it is not a given that such techniques are technically feasible.  

Alternatively, perhaps shakB2 gap junctions may not be the sole source of the proposed 

lateral connectivity. There are descending medullary feedback from R7/R8 through C2/C3 

fibers, whose profiles can be seen in electron micrographs of cartridges, adjacent to R1, R6 

and other LMC’s (Meinertzhagen and O’Neil, 1991). In this case, visualisation of cell targets 

during electrophysiological study with the concomitant use of injected dyes may elucidate 

target specificity. Or perhaps the use of flash-and-freeze electron microscopy (Watanabe et 

al., 2013b) may allow the tight, temporal control of optogenetic uncaging of an RNAi 

construct, coupled with simultaneous light stimulation and high pressure freezing, thus 

allowing imaging of synaptic changes occurring as a result of gap junction ablation.  

Irrespective of the mode of communication, as multi-pronged experimental protocols are 

honed and new techniques are developed or adapted, the ability to simultaneously control 

several variables will only help achieve better certainty in currently ambiguous 

experimental results. 
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4 The Vesicle Hypothesis; Adaptation States and Quantal Dynamics 

 

4.1 Introduction 
 

Drosophila R1-R6 and R7/R8 photoreceptors transmit visual information to the visual brain 

via Large Monopolar Cell (LMC 1-3) and Amacrine Cell (AC) interneurons in the Optic lamina 

(Strausfeld, 1971) and multiple potential cell targets in Medulla layers M1-M6 (Fischbach 

and Dittrich, 1989; Morante and Desplan, 2008; Takemura et al., 2008), respectively. 

Phototransduction occurs via a G-Protein Coupled Receptor (GPCR) mediated signalling 

cascade (Hardie, 2001), resulting in pre-synaptic voltage changes. These in turn, lead to 

vesicular quanta release in the form of histaminergic discharge from active zones (Gengs et 

al., 2002). Acting at the post-synapse through Histamine-gated Cl- channels (Ort/HisCL-

α1/hclA), Histamine serves a summatory and inhibitory effect upon LMC targets (Pantazis 

et al. 2008), thus affecting a hyperpolarisation of the LMC voltage in a graded fashion 

(Zheng et al., 2006). 

Through these components, the Drosophila visual system has acquired the ability to resolve 

and adapt to environmental light patterns at wildly varying intensities, from individual 

photons (Henderson et al., 2000) to bright daylight (Juusola & Hardie 2001). These data 

show that graded photoreceptor voltage responses and the unitary microvillar responses to 

single photons of which they are composed, adapt in response to changes in ambient light 

levels. Such adaptation optimises their temporal resolution and information carrying 

capabilities for varying lifestyles (Gonzalez-Bellido et al., 2011) and light levels (Song et al., 

2012), respectively.  

Further work from the Juusola laboratory has shown that post-synaptic, macroscopic LMC 

voltage responses also adapt to variance in ambient illumination (Zheng et al., 2009) and 



- 61 - 
 

that this is also reflected in the estimated, bump-like responses to histamine vesicle receipt 

(Li, 2011). The latter data indicate that for increases in light intensity, estimated bump 

responses are reduced with respect to both their latency and amplitude and become more 

numerous. Similarly, LMC macroscopic voltage responses across Diptera become more 

transient and develop an improved resolution when faced with ongoing light 

incrementation (Laughlin et al., 1987; Juusola et al., 1995b; Nikolaev et al., 2009).  

Relevant literature has reported the possibility of context-dependent variations in synaptic 

vesicle size. These include unexplained differences between R1-R6 (≈31nm) and R7/R8 

terminals (44.45nm) (Takemura et al., 2008), increases in quantal size due to compound 

vesicle fusion in mammalian Calyx of Held synapses (He et al., 2009), and activity-

dependent increases in synaptic vesicle size in the Drosophila neuromuscular junction 

(Steinert et al., 2006). 

Such quantal bump adaptation can be observed in both rhabdomeric and LMC post-

synaptic responses, with each subset of events being translated into macroscopic voltages, 

which themselves are inextricably linked (Li, 2011). Given this and the fact that differences 

in synaptic vesicle size have been observed before, it is reasonable to speculate that these 

adaptations may be similarly expressed in the quantal release and capture of 

neurotransmitter across the photoreceptor-LMC synapse. It is hence our hypothesis that, in 

line with the aforementioned photoreceptor and LMC data, synaptic vesicle 

size/volume/area will change in accordance with light intensity; decreasing in response to 

light increment, leading to reductions in LMC bump characteristics, whilst the converse 

should be true for light decrements (Juusola et al. 1995). 

Here I explore such a possibility in the Drosophila retina. I initially employed transmission 

electron microscopy to visualise changes in synaptic vesicle area occurring at R1-R6 

photoreceptor terminals, in accordance with variations in ambient light levels. I used a 
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conventional, aldehyde-based fixation protocol (similar to Meinertzhagen & O’Neil 1991), 

in tandem with a program of either light or dark adaptation. I used semi-thin and ultra-thin 

microtomy techniques to expose synaptic terminals of the first visual synapse in resin-

embedded, half-head specimens of Drosophila. 

Initial experiments using conventional fixation yielded suggestive, preliminary data 

implying that both synaptic vesicle area and number change during periods of light or dark 

adaptation. However, images acquired using this technique; whilst able to provide a proof 

of principle, were poor in contrast and plagued by non-seriality and common fixation 

artefacts, making them difficult to standardise or interpret with fidelity. For this reason I 

decided to undertake further experiments, utilising High Pressure Freezing and Automatic 

Freeze Substitution to fix and infiltrate the specimens. These methods remove fixation 

artefacts associated with aldehyde-based techniques, (Smith and Reese, 1980), and sample 

dehydration (Grace and Llinás, 1985) and also enable simultaneous fixation and light 

stimulation, as per Erik Jorgnsen’s work on Ultrafast Endocytosis (Watanabe et al., 2014, 

2013a, 2013b). This latter investigation is still ongoing.  

 

4.2 Methods 

 

All initial experiments were carried out on wild-type, Canton-S Isoline flies; 3-5 day old, 

female virgin flies were raised at 25oC, on a standard, plant based medium in standard vials 

and selected for size.  
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4.2.1 Adaptation & Fixation (Conventional Aldehyde-based) 

 

For experiments, flies were cold anaesthetised on ice, whilst being simultaneously pre-

exposed to a given, 2-3 minute adaptation paradigm; either being enclosed in a uniformly 

reflective vial and subjected to light stimulation using a Cairn, broadband LED (range ≈410-

740 nm) or being enclosed in an aluminium foil-covered vial also attached to the 

aforementioned LED, but without power. 

Light-adapted subjects were transferred to a drop of pre-fixative (modified Karnovsky’s 

fixative; 2.5% glutaraldehyde, 2.5% paraformaldehyde in 0.1 M sodium cacodylate buffered 

to pH 7.3 - as per Shaw et al. 1989) on a transparent agar dissection dish and were lit from 

above by a second, gooseneck, broadband light source (Luxeon Star/O, p/n: LXHL-NWE8, 

≈410-740 nm range). Dark-adapted subjects were dissected in a dark, windowless room, lit 

using a Kodak Beehive darkroom safelight with Kodak 1 Safelight Filter attached.  

Dissection was performed using a shard of Feather S razor blade, held in a blade holder. 

Flies were transferred onto their backs and insect pins, inserted into the lower abdomen 

and distal proboscis, were used to restrain them. The proboscis was first excised from the 

head, and then the head was removed from the body and halved. Left half half-heads were 

collected in fresh pre-fixative and kept for two hours at room temperature under relevant 

lighting conditions, in accordance with their adaptation paradigm. 

After pre-fixation samples were subjected to two, 15 minute washes in 0.1 M Cacodylate 

buffer, and then transferred to a 4 oC, 1 hour post-fixative step in the fridge, comprising 

Veronal Acetate buffer and 4% Osmium Tetroxide. Flies were moved back to room 

temperature and after a nine minute wash in 1:1 Veronal Acetate and ddH2O, samples 

were serially dehydrated in multi-well plates; using subsequent, nine minute washes in 

50%, 70%, 80%, 90%, 95% and 2x 100% ethanol.  
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Post-dehydration, samples were then transferred to small, glass vials for infiltration. Fixed 

half-heads were covered in Propylene Oxide (PPO) for two, nine minute washes, then 

transferred into a 1:1 PPO:Epoxy resin mix (Poly/Bed® 812) and left overnight. The 

following morning fly heads were placed in freshly made, pure resin for four hours, then 

again into the oven in fresh resin for a further 72 hours at 60 oC. 

Fixation protocol was kindly provided by Professor Ian Meinertzhagen at Dalhousie 

University, Halifax, Nova Scotia. 

 

4.2.2 Sectioning & Staining 

 

Embedded samples were first subjected to semi-thin sectioning (1 µm section thickness) 

using a glass knife mounted in a Leica Ultracut UCT microtome. Samples were sectioned, 

collected on glass slides, stained using Toluidine Blue and then observed under a light 

microscope. This process was repeated and the cutting angle continuously optimised, until 

the correct orientation and sample depth was achieved; stopping when a dense spot of 

pigment, comprising the distal lamina, was discernible. Semi-thin sectioning was continued 

until approximately 40 lamina cartridges were visible, the block was then trimmed and 

shaped for ultra-thin sectioning. The latter preparation becomes necessary to reduce 

cutting pressure on the sample block, thus helping to prevent ‘chattering’ artefacts in the 

sections. 

Ultra-thin (60 nm section thickness) sections were taken using a DiATOME Ultra 45 o 

diamond cutting knife, mounted and controlled using the Leica Ultracut. The knife edge 

was first cleaned using a special polystyrol rod, to ensure integrity of the samples block face 

upon cutting, cutting angles were aligned and automatic approach and return speeds set 
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on the microtome. Sectioning was automatic and samples were collected in the knife water 

boat. 

Sections were collected on Formvar-coated, mesh grids and were then stained for imaging; 

ten minutes in Uranyl Acetate, wash in ddH2O, then five minutes in Reynolds’ Lead Citrate, 

(Reynolds 1963), with a final ddH2O wash.  

Cutting for the conventional methodology was performed by Zhiyuan Lu at Dalhousie 

University, Halifax, Nova Scotia. 

 

4.2.3 Terminal Selection, Microscopy & Image Encoding/Blinding and Analysis 

 

4.2.3.1 Selection 

 

For each condition (dark and light adaptation), three flies were selected and from these 

flies, 30 cartridges were imaged, of which a single terminal was chosen for analysis. Lamina 

cartridges were selected from sections at random, throughout the depth of the Optic 

Lamina and were chosen based on the stipulate that six photoreceptors, without cutting 

blemish or fixation artefact, must be observable.  

 

4.2.3.2 Encoding 

 

To afford a blind analysis of the data all images were given a coded name by Dorota 

Tarnogorska at Dalhousie University, Halifax, Nova Scotia. Sections from each fly were 

mounted on separate grids and each grid was assigned a letter (K, N, & O for the light 

condition, L, M, & P for the dark condition). Each imaged terminal was given an encoded 
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name. This contained a randomised 4 digit prefix and a suffix, containing the latter grid 

assignation and an additional two randomised letters. The central pair of prefix digits were 

used to further distinguish between light and dark terminals, with light adapted sample 

codes containing digits that add up to an even value,  and dark codes containing an uneven 

central digit pair, thus producing an image name such as the following: 

 

Light – 8221QKg 

Dark – 3251CWm 

 

4.2.4 Image Analysis & Vesicle Selection Criteria 

 

Images were analysed using ImageJ v1.46r software. Images were analysed so that the   

200 nm scale bars for each image were standardised to 261 pixels in length (1 nm = 1.305 

pixels). Photoreceptor synaptic terminals were identified by the presence of capitate 

projections, i.e. stalk-like epithelial glia connections occurring at photoreceptor synapses 

(Trujillo-Cenóz, 1965; Stark and Carlson, 1986). Histaminergic synaptic vesicles were 

identified by their electron dense outer boundary and clear inner core (dense core vesicles 

are electron dense throughout). 

To begin with, a subset of images were analysed in two different ways to ascertain the 

optimal selection strategy. Images were firstly subjected to a traditional, stringent selection 

process, in which vesicles were selected and analysed based upon the uniformity of planar 

profiles, the perceived/apparent ‘roundness’ of vesicles, their distinguishability based upon 

their relative contrast and measurement of their external vesicle diameter. 
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A less restrictive strategy was trialled next. Here vesicles were selected based upon 

accommodating vesicular diameter variance, allowing elliptical vesicle profiles and the use 

of less well defined subjects and a perceived/apparent adherence to the internal diameter 

of the vesicle membrane. 

 

4.2.5 High Pressure Freezing & Automatic Freeze Substitution 

 

The practicalities of using this process require that dissection and adaptation be carried out 

in a slightly different manner. Additionally, due to its novel application, the process was 

subject to considerable troubleshooting and ongoing optimisation. 

In similar fashion to that employed during conventional fixation, flies were pre-adapted 

whilst being kept in either; uniformly reflective fly vials and lit using a broadband, Cairn 

Research LED (light condition) or in aluminium foil-covered vials and unpowered LED. Flies 

were, one-by-one, transferred to a transparent Sylgard®-covered dissection dish, pinned 

and dissected. Upon dissection, left-half fly half-heads were placed into gold-plated, Leica 

specimen carriers (0.6 mm thickness, 1.2 mm diameter, 400 µm depth) then inserted into a 

manual, Leica bayonet sample holder. Before insertion, any remaining, ‘empty’ space in the 

carrier basin was filled using Hexadecene, an hydrophobic and inert cryoprotectant that 

helps prevent the ingress of ice crystals into the sample. Later iterations of the protocol 

utilised Heptane, as per Thijssen et al. (1998). The bayonet system was loaded into the 

Leica EM PACT2 High Pressure Freezer system and was exposed to broadband light 

stimulation, from an LED fastened onto the loading corridor wall; the LED was positioned to 

maximise illumination of the preparation whilst awaiting proper loading in situ. Illumination 

was continued until the specimen was fired into the freezer proper. 
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Upon freezing, which typically takes around 60 ms at between 2040-2100 bar, specimens 

were retained in their pods in a liquid nitrogen chamber, cooled to -96 oC, until ready for 

transfer into a Leica EM AFS2 for semi-automated Freeze Substitution (AFS). Samples were 

transferred from liquid nitrogen into the AFS cocktail (Acetone dried over CaCl2, 1% OsO4, 

0.25% glutaraldehyde, 1% Uranyl Acetate) and kept at -90 oC for 30 hours. From then fly 

heads were brought up to -60 oC, heating at a rate of       5 oC/hour. Heads were held at -60 

oC for eight hours, then brought up to -30 oC, heating at a rate of 5 oC/hour. After holding 

the samples at -30 oC for another 8 hours, they were put on ice at 0 oC for one hour, and 

then were subjected to three, one hour washes in fresh Acetone. Fly heads were then 

moved to a mix of Acetone and Poly/Bed 812 resin (2:1 or 50:50) for three hours at +4 oC, 

following which heads were moved into fresh Acetone:Poly/Bed mix over night at room 

temperature on a rotor to aid infiltraton. The next morning samples were twice placed in 

fresh Poly/Bed for seven hours per change, again on a rotor, after which they were ready 

for embedding. 

After infiltration, specimens were transferred into moulds containing fresh Poly/Bed resin 

for embedding. Heads were oriented using a toothpick and then placed in the oven, at      

60 oC for 72 hours. Sectioning occurred in the aforementioned fashion. 

 

4.3 Results 

 

4.3.1 Conventional, Aldehyde Fixation 

 

Using conventional fixation and infiltration techniques, it was possible to produce electron 

micrographs of photoreceptor terminals in the Drosophila Optic Lamina for analysis (using  
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the open-source ImageJ v1.46r software). This approach allowed me to record and analyse 

the number and area, in pixels, of apparent synaptic vesicles.  

 

4.3.2 Selection Optimisation 

 

Vesicle selection methods were compared and criteria were optimised to not restrict the 

range of possible vesicle shapes and sizes available for selection (see methods section 4.2.4 

for details). Stringent selection criteria produced undifferentiated, shotgun-type scatter of 

vesicle area vs. number data plots (Fig. 4-3).  
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Conversely, using relatively indiscriminate selection criteria gave rise to distinct vesicle 

population plots which were distinguishable based upon both their pixel area and their 

numbers (Fig. 4-4).  

 

4.3.3 Indiscriminate, Internal Vesicle Selection 

 

Based upon the aforementioned selection criteria optimisation, vesicle selection was 

undertaken using the relatively indiscriminate selection criteria and measurement of the 

internal vesicle diameter. Using this methodology, I was able to record many more vesicles 

per electron micrograph (Figs 4-2 & 4-5) ultimately resulting in the finding that light and 

dark adapted vesicle populations separated on the basis of vesicle area and number 

(n=174). 
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From 174 electron micrographs 30355 synaptic vesicles were recorded in total, 11804 dark 

adapted and 18551 from the light condition. Vesicle areas were measured in pixels and 

converted into nm, with dark adapted vesicles averaging 834.551 px2/640.940 nm2 and 

light adapted vesicles averaging 1010.041 px2/772.486 nm2.  

Due to the inherent subjectivity in the vesicle selection process and the resulting necessity 

for third-party verification, 10 random electron micrographs per condition were sent to 

Dorota Tarnogorska at Dalhousie University, Halifax, Nova Scotia. Only vesicle areas were 

recorded and analysed, and more stringent selection criteria were employed. In 

concordance with the full dataset analysed previously, light and dark adapted vesicle 

populations significantly showed respectively bigger and smaller synaptic vesicle areas (n = 

20, p = 0.01).  
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Moreover, by the same two-tailed, two sample Student’s T-Test for equal variances, the 

dark and light adapted mean vesicle areas from the full dataset also proved to be 

significantly different (Fig 4-6; n = 174, df = 172, p = 7 x 10-11). Statistical analyses of vesicle 

numbers was not carried out for reasons alluded to in the section introduction and will be 

further discussed in depth later. 

 

4.3.4 High Pressure Freezing & Automatic Freeze Substitution 

 

Achieving good relative contrast and organelle integrity are tantamount to faithful analysis 

of imaged cellular components. To this aim, I utilised High Pressure Freezing (HPF) and 

Automatic Freeze Substitution (AFS) to better the aforementioned characteristics of future 

imaged synaptic terminals (Fig. 4-7). The theoretical limitations of cryofixation suggest that 

the beneficial effects of freezing drop off with increased specimen size. This is unless 

samples are frozen at high pressure, (Moor et al., 1980), and relevant cryoprotectants are 

used (Thijssen; Van Went; Van Aelst, 1998). These and other pre-requisites gave rise to the 

need for considerable protocol optimisation and troubleshooting.  
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Starting with the rapid freezing and AFS of Drosophila retinae (Mun et al., 2005), I tested 

the effects of various protocol modifications upon the integrity of Drosophila half-head 

tissue samples. Such variations were deemed necessary based upon observations on the 

consistency of embedding made during cutting, image-based observations of contrast, 

freezing artefacts and cartridge integrity. 

Modifications included the ratio of Acetone and Poly/Bed resin during infiltration, changed 

from 2:1 to 50:50 due to poor embedding. This resulted in spontaneous collapse of sections 

cut from the resin block. Further changes were made in the amount of OsO4 used in the 

AFS cocktail for lipid staining, (Collin, 1974; Collin et al., 1973); and the type of 

cryoprotectant used; changed from 1-Hexadecene to Heptane (Thijssen; Van Went; Van 

Aelst, 1998).  

 

4.4 Discussion 

 

Previous electrophysiological investigation has shown that presynaptic photoreceptor 

responses are tightly linked via synaptic transmission to post-synaptic LMC responses (Li, 

2011). In parallel, microvillar quantum bumps (Song et al., 2012) and light-induced 

photoreceptor voltage changes (Juusola & Hardie 2001), have been shown to adapt 

dynamically to varying environmental light conditions. Since the mechanisms by which 

photoreceptors both receive and encode information are modified by experience-driven 

external input, it is a reasonable assumption to make that these presynaptic processes 

should translate into synaptic adaptations also. This given, using transmission electron 

microscopy (T.E.M.)  in association with traditional aldehyde-based fixation, standard 

alcohol dehydration and an LED-driven light/dark adaptation protocol, I have attempted to 
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quantify changes in synaptic vesicle size, occurring as a result of changes in light intensity in 

R1-R6 photoreceptor terminals.  

To address the inherent subjectivity of the vesicle selection process, a substantial 

optimisation of the selection process had to precede the analysis. In standard practice, it is 

usual to select organelles for analysis on the basis of their adherence to a rigid set of 

characteristics, i.e. a typical profile, size, depth, etc… This set of criteria helps to ensure 

that, due to the inevitable generation of image artefacts caused by the dehydration and 

fixation steps, only subjects that fall within ‘ideal’ parameters are selected for analysis.  

During selection optimisation, it became apparent that a large number of obvious synaptic 

vesicles were being rejected, often 100s per image, and that the majority of these rejected 

vesicles were those that potentially could indicate important differences between the 

populations (Figs 4-2, 4-3 & 4-4). Taking this into consideration, alongside the 

accommodation of signs of typically observed image artefacts (e.g. non-round vesicle 

profiles or non-standard sample depth) I decided to employ a less stringent selection 

process. This was based around the use of a non-traditional methodology which allowed 

the acceptance of elliptical vesicle profiles, overlapping vesicle profiles and lower contrast 

objects (see section 4.2.4 for more details). To offset this relaxation in vesicle acceptance I 

decided to measure their size using the internal diameter as an outer boundary. This 

helped to ensure that I did not over-estimate vesicle diameters during measurement. 

Additionally, all optimisation and subsequent selection was carried out in a blinded fashion, 

with images being both generated and encoded by a third party. 

Such intrinsic subjectivity of selection means that large numbers of samples must be 

analysed, 174 synaptic terminals in this case. This in turn requires that very small p-values 

must be attained in order to achieve statistical significance, and counter their dilution by an 

increasing sample size. The means of 30355 synaptic vesicles were recorded and analysed 
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across all imaged terminals, resulting in a highly significant difference between light and 

dark adapted conditions (p = 7 x 10-11); with light-adapted terminals showing larger and 

more numerous vesicles than those in dark-adapted flies (Fig. 4-5 & 4-6). Our initial 

hypothesis had stated that synaptic vesicle diameter/area/volume, and therefore efficacy, 

should increase or decrease as a result of light decrements or increments, respectively. This 

was assumed to optimise the temporal resolution and information carrying capacity of 

Drosophila photoreceptors in line with the aforementioned electrophysiological data. 

However, the conventional E.M. data presented here suggest the opposite. 

In support of our findings, different diameter synaptic vesicles (31 nm in R1-6, 44.45 nm in 

R7/R8)  have previously been observed for the same neurotransmitter type (Takemura et 

al., 2008). These preliminary, blind analyses of electron micrographs shown here confirm 

this, showing an approximate >20% increase in mean vesicle area across all terminals 

quantified for a given condition. 

To further validate these results we sent 10 random images for each condition to the third 

party responsible for blinding the study. These images were analysed and compared using 

separate criteria, ultimately producing a similarly relevant significant result (p = 0.01). 

An aside to these findings is the physical relationship between the generation of synaptic 

vesicles and the amount of available plasma membrane. Vesicle recycling rates determine 

the amount of available plasma membrane, and thus impose restrictions upon the size and 

number of synaptic vesicles generated per synaptic event (Heuser, 1973). According to this 

view, and in line with our original hypothesis, changes in vesicle diameter/area/volume 

should be accompanied by changes in the number of vesicles in other words, for images 

where vesicles possess larger profiles there should be lower total numbers of vesicles, 

whilst the converse should be true for images where vesicle profiles are smaller. Somewhat 
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controversially these initial analyses do not correlate with these assumptions, instead 

showing results contrary to prior expectation. 

Furthermore, due to ubiquitously poor image quality, I was unable to confirm the validity of 

the numbers of synaptic vesicles recorded in this study. As such, I have relinquished the 

opportunity to conduct any in-depth statistical analysis on synaptic vesicle number data 

acquired during this study so far. 

These preliminary findings appear potentially contradictory to the electrophysiological LMC 

voltage analysis (Li, 2011), which suggests that the amplitude of their bump-like histamine 

responses decreases with increasing brightness. However, my results show that exposure 

to a saturating broadband light stimulus results in an increase in vesicle area and may 

increase vesicle numbers also. Should these results be a true reflection of the mode of 

neurotransmission at the synapse, this may necessitate the expression of an unknown 

mode of regulation that serves to change the distribution of post-synaptic responses. This 

is because larger vesicular quanta are expected to generate larger post-synaptic bumps. 

Such regulation may manifest in several ways. Perhaps there is a selective, diffusion-based 

filtering of synaptic content, shaping post-synaptic exposure to released Histamine. 

Alternatively, Ort receptor kinetics may be modified, producing decreasing bump responses 

in the face of a saturating stimulus. Or maybe the increase in synaptic size is a consequence 

of dual-packaging and release of multiple neurotransmitters, leading to dual-gating of post-

synaptic Ort receptors. One interesting consideration may be that post-synaptic receptors 

may display a ‘refractoriness’, whose time-course matches the stochasticity and level of 

histamine input. Song et al., (2012, 2014), elucidate a mechanism in Drosophila 

photoreceptors, whereby the number of available microvilli (photon sampling units) is 

regulated by their intrinsic refractoriness occurring after photon absorption. As large 

numbers of photons may be involved, the refractory period prevents saturation allowing 
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the sampling unit pool to be refreshed. Post-synaptic receptor activation could employ 

such a mechanism allowing similar dynamic optimisation for varying levels of input. 

There are other findings, which lend support to the notion that modified receptor function 

may be responsible for this discrepancy. In dissociated L1/L2 LMCs, the potency of 

Histamine at the Ort receptor has been shown to be greatly reduced in OrtP306 receptor 

mutants (Gengs et al., 2002). Such mutants show altered photoreceptor voltage dynamics, 

responding with similar amplitudes, but faster and with a greater SNR at saturating light 

intensities (Zheng et al., 2006). These dynamics are suggestive of enhanced synaptic 

feedbacks acting upon photoreceptor output. Moreover, OrtP306 mutants show reduced 

adaptability in both photoreceptor and LMC outputs (Nikolaev et al., 2009). It would be 

interesting to carry out these electron microscopic analyses upon such OrtP306 flies, to test 

whether LMC-derived feedback is responsible for alteration to synaptic vesicle dynamics. 

Another such experiment would be to see whether the expression of Kir2.1 in R1-R6 

photoreceptors might result in reductions in synaptic vesicle size. The Kir2.1 channel is a 

human inwardly-rectifying K+ channel, whose expression can be genetically induced in 

neurons of a variety of organisms for the purpose of causing hyperpolarisation (Johns et al., 

1999). Expression of this channel would mimic dark-adaptation through the enforcement of 

a constitutive hyperpolarisation, and could be used to test the voltage-dependence of 

these synaptic phenomena. 

The Drosophila eye expresses two different Histamine-gated chloride channel sub-units, 

HisCl-α1 and HisCl-α2 (Gisselmann et al., 2002; Zheng et al., 2002). Each sub-unit, when 

expressed in Xenopus oocytes, appears to possess different functional characteristics. The 

α2 sub-unit shows dual sensitivities to both Histamine and GABA when expressed in 

homomeric channels (Gisselmann et al., 2004), responding with a much greater sensitivity 

to Histamine. Conversely, Histamine shows lower potency at the α1 sub-unit, when 
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expressed in a homomeric fashion, alongside an absence of a response to GABA (Zheng et 

al., 2002). Gisselmann et al. (2004) also suggests that α1 and α2 sub-units, when expressed 

together in heteromeric channels, show a vastly greater sensitivity to Histamine. These 

findings were confirmed in Pantazis et al. (2008), who further showed that LMC voltage 

responses develop an enhanced latency when HisCl1 (α2 sub-unit) is mutated, the converse 

to what appears to be so for the α1 subunit (Nikolaev et al., 2009). The α1 sub-unit, 

expressed in homomeric channels, is also known as Ort. Perhaps in a similar fashion to 

Glutamatergic NMDA receptors in vertebrates (Philpot et al., 2007), there may be an 

activity-dependent regulation in the ratio of such α1/ α2 sub-units. This may contribute to 

homeostatic control of post-synaptic responses to increasing Histamine release. 

From the current data, it appears that the relationship between pre-synaptic 

photoreceptor voltage, synaptic vesicle size and post-synaptic LMC responses is not a 

simple one, and what these findings actually mean certainly remains to be seen. This 

ambiguity manifests in some part due to the ‘quality’ of the images generated; which 

becomes confounding as a result of bad contrast and definition, both of which are 

tantamount to efficient vesicle identification, selection and quantification. To attain better 

preparation integrity, image definition and consistency, we aim now to use T.E.M. and 

similar adaptational protocols in conjunction with High Pressure Freezing and Automatic 

Freeze Substitution (HPF/AFS). These techniques, in recent times, have been revitalising the 

study of synaptic transmission. Specifically, they have helped to challenge previous 

assumptions related to synaptic vesicle dynamics by allowing simultaneous millisecond 

optogenetic control of synaptic function. When coupled with instantaneous sample 

freezing, they have  elucidated the temporal time scale of endo- and exo-cytotic processes 

that had previously been unresolvable (Watanabe et al., 2014, 2013a, 2013b). 
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With regards to use of the latter technique in this context, as the preparation (Drosophila 

half-heads)  must be fixed inside the confines of the high pressure freezer, unlike during 

conventional processing, we are currently unable to continuously light-adapt the specimen 

once it is loaded into the relevant specimen carrier. As a result of this complication, we are 

attempting to produce a light stimulation preparation holder (see Watanabe et al., 2013; 

Nägerl et al., 2014), which would allow simultaneous light stimulation and freezing, along 

with a very precise temporal control of the adapting stimulus. Moreover, current protocols 

are not optimised for using such a large preparation, as they tend to be based upon the use 

of samples that adhere to the theoretical size limits for maximal benefits of high pressure 

freezing (≈200 µm at 210 MPa - Studer et al. 2008). Given these factors, several aspects of 

the protocol must be optimised further for this technique to work. These include, for 

example, the type of cryoprotectant used; i.e. Hexadecene, which is insoluble in Acetone at 

low temperatures (Hohenberg et al. 1994; Thijssen; Van Went; Van Aelst 1998), and 

therefore may affect the infiltration of acetone, stains and other AFS cocktail components 

during freeze substitution. Additionally, the initial ratio of Acetone to Poly/Bed resin 

appears to adversely affect the solidity of the resin block during cutting. 

Despite the necessity for considerable tuning, and the potential for some inconsistency due 

to environmental factors, the ability to use HPF/AFS will allow the generation of images 

that are more faithful to actual morphology. This will bring about the realisation of specific 

light stimulation and visualisation of synaptic events at a temporal scale not afforded by 

other techniques. 
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5 Ca2+-activated K+ Ion Channels and the Behavioural Response 
 

5.1 Introduction 

 

Neurotransmission and its immediate consequences require homeostatic regulation. Such 

mechanisms curb the functional tendency towards excessive amplification of excitation or 

inhibition during correlative stimulus-evoked pre- and post-synaptic activity, such as Long 

Term Potentiation or Long Term Depression, respectively (Abbott and LeMasson, 1993; 

Miller and MacKay, 1994). Such bi-directional synaptic gain regulation can have several 

implications, not least upon adaptability (Li, 2011), information processing (Niven et al., 

2003b), metabolic cost (Niven et al., 2003a) and toxicity (Franklin et al., 1992). Due to the 

inherent robustness of neuronal homeostasis, modification of ion currents through the 

manipulation of channel expression can result in normal-like neuronal outputs (Golowasch 

et al., 1999; Marder and Goaillard, 2006; Prinz et al., 2004). But the effects of manipulation 

and intrinsic homeostasis can be difficult to separate and interpret. 

Ca2+-activated K+ ion channels can shape action potentials and dampen neuronal 

excitability. Their expression has been evolutionarily conserved (Abou Tayoun et al., 2011; 

Grimes et al., 2009; Klöcker et al., 2001), as has their function, with K+ extrusion serving to 

re-balance positive ionic charges across the plasma membrane and affecting the after- and 

hyper-polarisation phases of generated action potentials. 

In Drosophila, the SK Ca2+-activated K+ channel (dSK) and the Slowpoke BK channel (pore-

forming α subunit, dSlo) show similar expression patterns in the optic lamina and retina 

(Abou Tayoun et al., 2011; Becker et al., 1995), though each channel displays its own 

defining gating and kinetics (Faber and Sah, 2003; McManus, 1991; Park, 1994). dSK 
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channels are small conductance channels, which are activated solely by Ca2+, whilst dSlo-

containing BK channels show a large conductance and are both voltage- and Ca2+-gated. 

Drosophila only has one copy of each gene for each of these channel sub-types, which in 

theory should make study of them more tractable. However the dSlo gene is subject to 

variable gene splicing in a tissue-specific fashion (Bohm et al., 2000; Yu et al., 2006), giving 

rise to functional differences (Lagrutta et al., 1994). To add to this complicated scenario, 

there are several known dSlo null alleles, which may generate functional effects upon both, 

muscular and neuronal systems (Atkinson et al., 2000; Brenner et al., 2000). 

Following on from the findings in Abou Tayoun et al. (2011), in as yet unpublished data 

from the Juusola laboratory, dSK, dslo4, dslo18 and dSK;;dslo4 double mutant R1-R6 resting 

potentials were shown to be more positive than in wild-type flies, and all showed a lower 

membrane resistance. In each case, the findings suggested a lower activation threshold. 

Differences in visual performance were also reflected in R1-R6 voltage responses; with 

wild-type, dSK, dslo4 and dSK;;dslo4 double mutants showing faster rising times in bright 

light than dslo18, whilst all mutants responded with a lower latency than wild-type flies.  

In this chapter, by using optomotor assay, I set out to determine whether disruption to the 

function of dslo and/or dSK channels, and therefore a change in the feedback contribution 

of Drosophila LMC’s upon photoreceptor synapses, can be indicated in the behavioural 

performance of flies tethered in a traditional flight simulator. In the same set up as 

explained in Chapter 1, I used spectrally-broadband fast (180o/s) and slow (45o/s) grating 

rotations in an open-loop configuration to ascertain if differences in the optomotor torque 

response correlated with previous electrophysiological data.  

The data here suggest that the channel perturbations may be subject to descending 

homeostatic control that helps stabilise behaviour but drives fly vision to slightly different 
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perceptual regimes. This is because dSK;;dslo4 double mutants, dslo4 and also dslo18 hybrid 

flies showed fast and large responses to slow grating rotations that appear to be 

comparable in size to wild-type Canton-S optomotor responses in both conditions where 

responses are smaller with fast grating rotation, and larger for slow rotation; these findings 

also mirror current electrophysiological data. However, the opposite was evident for dSK 

mutants alone, showing enhanced responses to fast rotation stimuli and reduced responses 

for slow grating rotations, ultimately indicating a predisposition towards a decreased 

activation threshold.  

 

5.2 Methods 

 

5.2.1 Drosophila Genetics 

 

5.2.1.1 Stocks 

 

dSK- mutant flies were generated as described in Abou Tayoun et al. (2011), whilst dslo4- 

mutants were gifted by Nigel Atkinson, University of Texas, Austin (Atkinson et al., 1991).  

dslo4 is a null allele of the dslo gene, in which dysfunction is implicated in mutant neural 

and muscular phenotypes (Atkinson et al., 2000). Muscular dysfunction results in aberrant 

spike generation and irregularity in flight muscle action potentials (Elkins et al., 1986), thus 

impairing flight. The neural phenotype has been behaviourally characterised previously 

using the ‘sticky feet’ assay, where after exposure to a heat blast, or light flash, flies will fail 

to escape and will ‘cling’ to a given surface when pushed. 

Ash218 is a mutant allele of the Ash2 gene, located directly adjacent to dslo (Adamson and 

Shearn, 1996) and normally required for maintaining relevant genetic regulation during leg 
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and haltere patterning in the Drosophila embryo (LaJeunesse and Shearn, 1995). Co-

expression of Ash218 with dslo in a transheterozygous hybrid (dslo18) results in a 20 kb 

deletion in the dslo C1-C2 promotor region, which confers a knock-out of dslo expression 

specifically in the Drosophila CNS (Atkinson et al., 2000). Such a knock-out ‘rescues’ the 

muscular phenotype (Atkinson et al., 2000; Brenner et al., 2000) whilst retaining the neural 

mutation. dslo18 hybrid flies were also a gift from Nigel Atkinson.  

From each genotype, I used 3-7 day old, female flies throughout the experiments. All flies 

were raised on standard plant-based media. 

 

5.2.1.2 Flight Simulator 

 

Optomotor experiments were predominantly carried out as described in Chapter 1, 

however two different types of rotational stimulus were used in order to test the ability of 

mutant flies to respond normally to stimuli of different speeds. Stimuli of 45o/s and 180o/s 

were programmed in MATLAB and applied at the flight simulator. Stimuli were illuminated 

by spectrally broadband light and had the same time-course and stimulus pattern, as used 

in previous standard optomotor experiments. 

 

5.3 Results 

 

Here I have used the traditional Drosophila flight simulator to determine whether 

behavioural change may come about through the genetic manipulation of dSK and/or dslo 

Ca2+-activated K+ Ion Channels. Statistics were calculated on the total mean response (T-

Test), and the variance for the period 2.5-3 s (one-way ANOVA), i.e. the peak optomotor 
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response to anti-clockwise grating rotation, so as to ascertain the effects of inter-subject 

variability.  

 

In opposition to Canton-S (Fig. 5-1), but corroborating the electrophysiology; where time-

to-peak and response half-widths suggested a quickening of the photoreceptor response in 

bright conditions, dSK mutant flies showed larger responses to fast, 180o/s grating rotations 

(unpublished - T-Test, p=0.05).  

Aside from catastrophic problems with their breeding and rearing, it became apparent 

after the observation of >20 flies that dslo4 mutants were also unable to fly consistently 

(Fig. 3a). Insufficient numbers were gathered to allow any statistical analysis. This failure to 

produce essential behaviours in robust fashion was attributed to the ‘muscular’ phenotype 

observed in dslo null mutants (see Atkinson et al. 2000 and Brenner et al. 2000). Such 

phenomena will be discussed at length later.  
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dSK;;dslo4 double mutant flies did fly consistently and were shown to behave in a similar 

fashion to wild-type Canton-S flies (Fig. 5-1 & 5-2); they responded more strongly to slow 

45o/s grating rotations than fast (n = 20, T-Test p = 0.01). For such double mutants, mean 

optomotor responses to fast 180o/s rotation were significantly different to wild-type (T-

Test, p = 0.006), suggesting a deficiency in the ability to respond to high-frequency 

information. In contrast, differences in peak response variance were not found (one-way 

ANOVA, p = 0.45), implying that flies of each genotype responded in a relatively 

stereotypical fashion.  

Conversely, when comparing dSK;;dslo4 and wild-type flies during slow  45o/s rotation, such 

inter-subject variability appeared statistically divergent (one-way ANOVA, p = 0.03), whilst 

mean responses did not (T-Test, p=0.58). To counteract the muscular phenotype, I used 

flies where dslo expression was rescued in the flight muscles, but retained in a  
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dysfunctional state in neuronal cells. Known as dslo18, such flies were easier to assay for 

optomotor responses, despite being equally as difficult to breed and raise (Fig. 5-3b). 

Numbers are as yet insufficient for proper statistical analysis, but preliminary optomotor 

data from such flies appear to correlate well with wild-type responses, with responses 

looking fast and strong to slow 45o/s grating rotation as compared visually to fast 180o/s 

motion.  

 

5.4 Discussion 

 

The data outlined in this chapter and other, aforementioned unpublished data, allude to 

the fact that, despite major alterations to the voltage function of Drosophila 

photoreceptors, robust and often wild-type like behavioural and electrophysiological 

responses can be generated by dSK and/or dslo mutants. Perhaps their involvement in 

photoreceptor homeostasis is not critical but synergistic and facilitatory, and therefore 

their respective and combined absence may be manageable at a cost, either by 

upregulation of the expression of their counterpart or by other underlying mechanisms, 

e.g. existence of a compensatory K+/Cl- leak conductance. 

From previous data it can be inferred that wild-type Drosophila should generate stronger 

optomotor responses to slow grating rotation than to fast rotation (Blondeau and 

Heisenberg, 1982). dSK- flies showed atypical behaviour in this respect, as compared to 

wild-type Canton-S flies; responding more strongly to fast 180o/s grating rotation but  

conversely with slow 45o/s grating rotation. This preference for faster stimulation is further 

reflected in the apparent excitability of dSK- photoreceptors; i.e. faster voltage responses 

with a short time-to-peak, membrane resistance and high resting potential also (Abou 

Tayoun et al., 2011). dSK- LMC’s show larger voltage responses at lower light levels, as 
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compared to Canton-S. They also show short time-to-peak response times, further 

suggesting a hyper-excitability. 

Double, dSK;;dslo4 mutants almost seemed to mimic wild-type dynamics, but statistical 

differences suggest that this is not a simple story. Mean total responses to fast 180o/s 

rotation are significantly different, with wild-type performing slightly better. In contrast, 

mean total responses to slow 45o/s rotation were statistically similar, whilst response 

variation at peak response values for each individual fly was largely different. These data 

suggest that such flies are unable to respond to higher frequency information as well as 

wild-type; a suggestion that is again corroborated by the electrophysiology, with lower 

information capacities being observed at increasing light levels (unpublished data) and the 

presence of a delayed and sustained LMC voltage response.  

dslo4 mutant flies appeared to possess the potential for producing responses in the image 

of their wild-type counterparts. However, muscular and neuronal co-morbidities and a lack 

of time have hindered further study. The dslo4 mutation is one of several slowpoke null 

mutants that show a dual phenotype, affecting both muscular and neuronal function in 

homozygotic mutants (Atkinson et al., 2000; Brenner et al., 2000). These papers highlight 

both a discrepancy in flight behaviour and the presence of a prolonged startle-type 

response known as the “sticky-feet phenotype”, both resulting from the homozygotic 

expression of one of several dslo null mutations.  

What is not mentioned in these papers are the problems associated with breeding and 

raising these flies, with Atkinson et al. (2000)  actually stating that flies are “healthy and 

fecund”. In our experience, Drosophila larvae between the 1st and 3rd instar stages tended 

to burrow into the media and remain there through pupariation, ultimately requiring 

manual extraction to prevent their death. Upon rescue and subsequent hatching, many 1-3 

day old flies would also die, seemingly getting stuck at the bottom of a vial if left 
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unsupervised. Even if manual rescue of stuck, adult flies was achieved, the wings of such 

flies were often damaged, thus preventing their use in the flight simulator. These 

confounding characteristics of the relevant mutations often compounded with time 

constraints, meaning that I was incapable of generating sufficient behavioural data before 

the completion of my research timeframe.  

For any analysis of the effects of dslo mutation to be relevant it is imperative that the 

muscular phenotype is rescued, as an inability to produce the relevant motor actions due 

to faulty biomechanics would invalidate any argument that behavioural differences are 

derived from visual dysfunction. As such, despite dSK;;dslo4 double mutant flies being 

apparently healthy and that a full set of data was acquired from these double mutants, the 

presence of the un-rescued homozygotic dslo4 mutation means that conclusions based 

upon visual impairment cannot be made faithfully.  

dslo18 flies are transheterozygotic mutants flies that contain a second mutation appended 

to the dslo4 promotor region, which can be used to ‘rescue’ the muscular dslo4 phenotype. 

This mutation, Ash218, induces a break in the dslo4 neuronal promotor (see Chapter 3 

methods for details), resulting in failed CNS expression of dslo4 whilst retaining its 

expression in muscular tissue. Such hybrid mutants were easier to assay for optomotor 

responses and appeared to reflect a wild type-like preference for slow grating rotation. 

However, such flies were also as difficult to breed and raise as homozygotic dslo4 flies, 

which meant that it was not possible to generate sufficient optomotor data for statistical 

analysis here either. 

Comprehensive study of the dslo18 transheterozygote will be necessary to ensure faithful 

investigation of the visual effects of dslo mutation in this context. To follow the effects of 

dslo mutation through structure and function, it will be necessary to use intracellular 

electrophysiology, structural imaging and behavioural assay in a similar program to that 
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employed towards dSK and dslo4 mutants. Furthermore, expression of the 

transheterozygote in a double mutant dSK;;dslo18 construct and subsequent assay will also 

be necessary. 

Likewise, although Abou Tayoun et al. (2011) show that dSK expression is “enriched” in the 

Drosophila optic lamina, the dSK gene is also known to be expressed in other adult organs; 

e.g. at ‘moderate’ levels in the adult heart, where its mutation has been suggested to affect 

adult heart rates (Sénatore et al., 2010). The specific role of dSK in such organs is not well 

characterised, but it is generally believed to universally function by opposing activity-driven 

Ca2+ loads, occurring in many excitable cell types. Whilst extra- or intra-cellular 

electrophysiology and structural studies may possess an inherent regional or cellular 

specificity, in a behavioural context where causal processes are not amenable to 

observation, it would be prudent to find a way of further localising expression of the 

mutant construct in the Drosophila eye before drawing definitive conclusions. 

If taken alongside the electrophysiology, the behavioural data often appears confusing, as 

the specific characteristics may not follow intuitively. Certainly, dSK- mutants seem hyper-

excitable both in terms of their photoreceptor voltage time-to-peak response, response 

half-widths and their behaviour, but their information rates are wild type-like in bright 

conditions (Abou Tayoun et al., 2011). In un-rescued double mutant dSK;;dslo4 flies, there 

are some similar electrophysiological discrepancies that translate into impaired information 

rates in bright conditions, but their behavioural responses mimic wild-type dynamics, 

responding to slower grating rotations more strongly than to fast. Current dslo18 data 

suggests that photoreceptor voltage response half-widths are more compact than wild-

type in brightening conditions and that their resting potentials are much more negative. 

Despite this, their information rates do not appear statistically significant when compared 
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to wild-type, and whilst being an incomplete dataset, behavioural responses also appear to 

mimic wild-type characteristics.  

From these initial comparisons it is impossible to paint a clear picture without further 

specification and investigation, however it is reasonable to assume that unknown 

homestatic regulatory processes serve to maintain wild-type like behavioural function in 

dSK;;dSlo double mutants and are likely to function in other mutant derivatives. Ca2+-driven 

voltages in excitable cells are well known to be subject to homeostatic regulation, e.g. in 

Drosophila through the function Slowpoke (Lee et al., 2008), SK (Abou Tayoun et al., 2011) 

and Shaker K+ channels (Niven et al., 2003a, 2003b).  As such, the potentially deleterious 

effects occurring due to channel mis-expression or mutation could well be managed and 

compensated for homeostatically, perhaps through upregulation of the expression of 

synergistic ion channels, or alternatively the suppression of antagonistic components such 

as intracellular Ca2+ release and influx and/or Ca2+ persistence at the synapse. Despite not 

knowing the exact mechanism of regulation employed here, it is however, possible to see 

that behavioural responses can continue to be robust, appearing to resist changes in visual 

information processing capabilities that arise from mutation/expression-derived 

deleterious effects upon the proclivity and timing of photoreceptor responses.   
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6 Dietary Polyunsaturated Fatty Acids and the Optomotor Response 
 

6.1 Introduction 

 

In Drosophila eyes, light from the environment is channelled through the optics to the 

retinal surface using conduits known as Rhabdomeres. Along their length, these light guides 

(Kirschfeld and Snyder, 1976) contain ≈30,000 specialised microvilli, each possessing the 

necessary phototransduction machinery (Song et al., 2012). This PLC-mediated, Gαq GPCR 

phototransduction cascade is reasonably well characterised (for reviews see Hardie & 

Raghu 2001; Montell 2012). However, upon activation of Rhodopsin, exactly how light 

information is converted to the photoreceptor voltage response, through action of PLC 

upon PIP2, is currently not fully understood.  

Previous data has suggested that PIP2 depletion and the resultant acidification is capable of 

activating the TRP/TRPL ion channels responsible for producing the light response (Huang 

et al., 2010). Other work has shown that mechanical forces are capable of activating 

TRP/TRPL channels and that PIP2 depletion generates changes in membrane tension, 

leading to reduced membrane contractility in Drosophila photoreceptors (Hardie and 

Franze, 2012). Whilst further evidence advocates the idea that dietary restriction of 

Polyunsaturated Fatty Acids (PUFA’s) and reinstatement of specific PUFA types are able to 

modify and rescue the light response, respectively (Chyb et al., 1999). 

Drosophila are unable to synthesise PUFAs biologically thus must acquire them through 

their diet. Randall et al. (2015) suggests that a dietary absence of PUFAs not only reduces 

photoreceptor contractility, but that it leads to slowing of the photoreceptor voltage 

response and to slowing of behaviourally-relevant visual perception, as indicated here by 

the Drosophila optomotor response. The paper also shows that for 3rd-generation dietary-
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deficient flies, supplementation of the PUFA – Linolenic Acid in the diet (18:3 LNA) is able to 

rescue these phenotypes under certain conditions.  

In addition to showing a close relationship between the electrophysiology and behaviour, 

together with the aforementioned works, these data serve to show a link between diet and 

behaviour in Drosophila through the biophysical actions and biological function of a class of 

molecule. These data further support a model of Drosophila phototransduction where PIP2 

depletion, acidification, and perhaps the action of DAG metabolites are responsible for 

activation of TRP/TRPL channels, ultimately directing vision and visual behaviour. 

 

6.2 Methods 

 

6.2.1 Drosophila Genetics 

 

6.2.1.1 Stocks 

 

Wild-type red eyed Oregon Red flies (ROR) were used for control and dietary variance 

experiments. 

 

6.2.1.2 Diet 

 

Flies kept on a yeast-based diet (YF-Diet) and control flies were reared and fed as per 

Randall et al. (2015), and were kept on their relative diets for three generations before use. 

YF-Diet food consisted of; 100 ml tap water, 1 g of agar, 8 g of baker’s yeast, 5 g of sucrose,  

5 ml of nipagin (2.9%), and 25 mg of β-carotene. Rescue flies (LNA-Rescue) were raised on 
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an YF-Diet but in their 3rd generation were supplemented with 50 µl/ml of Linolenic Acid 

(18:3 LNA) before use in the flight simulator. 

 

6.2.2 Flight Simulator 

 

Experiments were carried out on 3-7 day old, female flies reared as previously mentioned, 

and in the same way as outlined in Chapter 5. 

 

6.3 Results 

 

Here, I recorded open loop Drosophila optomotor torque responses using a traditional 

flight simulator, as described in Chapters 1 and 3. Statistics were carried out on the mean 

response of each individual fly, for times that corresponded to the peak response, i.e. 2.5-3 

s (one-way ANOVA).  

 

6.3.1 Wild-type Oregon Red 

 

In Fig. 6-1, red-eyed Oregon Red (ROR) flies responded in a statistically similar fashion to 

both fast (180 o/s, n = 8) and slow (45 o/s, n = 10) grating rotations despite appearing 

considerably different by eye (n = 18, one-way ANOVA on the mean variance for the period 

2.50-3.00 s, p = 0.177).  
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6.3.2 Slow 45o/s Grating Rotation 

 

For slower stimuli (Fig. 6-2), where grating bars spend more time in a given region of the 

visual field, YF-Diet flies showed an appreciably reduced optomotor response as compared 

with wild-type ROR flies (n = 20, one-way ANOVA, p = 0.05).  
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However, when evaluating the apparent similarities between LNA-Diet and YF-Diet flies 

(Fig. 6-2), comparison of their response variance showed that such flies were indeed 

statistically indistinguishable (n = 20, one-way ANOVA, p = 0.90). 

Surprisingly, despite appearing substantially different by eye, the responses of LNA-Diet 

rescue flies, also compared to wild-type, were equally as indistinct (n = 20, one-way 

ANOVA, p = 0.15). 

 

6.3.3 Fast 180o/s Grating Rotation 

 

When facing a much faster rotational speed (Fig. 6-3), a scenario in which flies must be able 

to respond to higher frequency visual information, YF-Diet flies were much less able to 
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follow the stimulus, as compared with wild-type ROR flies (n = 18, one-way ANOVA p = 3 x 

10-6).  

LNA-Diet ‘rescue’ flies (n = 20, one-way ANOVA p = 0.0001), were also able to respond 

better than the PUFA-restricted YF-Diet flies.  

 

Furthermore, such LNA-Diet flies were equally as capable as ROR flies, suggesting a 

complete rescue of the behavioural phenotype in this context (n = 18, one-way ANOVA p = 

0.841). 
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6.4 Discussion 

 

Carvalho et al., (2012) showed that changes in the lipid composition of the Drosophila diet 

alters the proportionality of phospholipids in the Drosophila head and retina, which 

appears to correlate with changes in quantum bump timing and phototransduction that 

affect visual performance and ultimately behaviour (Randall et al., 2015). They go on to 

suggest that such dietary modification affects the mechanical properties of the 

photoreceptor membrane, previously indicated in TRPL channel gating (Hardie and Franze, 

2012), and that such effects are still present in phototransduction mutants. Here I have 

attempted to ascertain whether assay of the Drosophila optomotor response can be used 

to support the idea that restriction of dietary PUFA intake can lead to changes in visual 

information processing that translate further into behavioural dysfunction. 

My investigation used 3rd generation flies that had been deprived of all PUFA content in 

their diet (YF-Diet), along with wild-type, red-eyed Oregon Red flies (ROR) and flies whose 

diet had been supplemented solely with Linolenic Acid (LNA-Diet); a PUFA whose dietary 

re-instatement correlated with a significant rescue of quantum bump and photoreceptor 

voltage response properties, i.e. response time-to-peak, latency, SNR and information 

transfer rate. 

Behaviourally, wild-type ROR flies performed equally well during fast, 180 o/s and slow, 45 

o/s grating rotation (Fig. 6-1); with optomotor responses not appearing to be statistically 

significant, despite seeming distinct by eye (Fig. 6-4). In light of previous findings suggesting 

that wild-type Drosophila respond more strongly to slow stimulation than to fast (Blondeau 

and Heisenberg, 1982), it is potentially surprising to see that ROR flies seem to respond 

more robustly to fast grating rotation. However, inter-subject variation at slow speeds may 

account for this finding. 
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ROR flies outperformed YF-Diet flies during both fast and slow stimulation (Figs 6-2, 6-3 & 

6-4). Reflecting the loss of high frequency information in photoreceptor voltage responses 

to naturalistic stimulation, YF-Diet flies generated poor responses to fast grating rotations, 

whilst responding more strongly to slow stimulation. Contrastingly, LNA-Diet rescue flies 

showed stronger responses to fast rotations, performing with similar efficacy to YF-Diet 

flies during slow grating rotation (Figs 6-2, 6-3 & 6-4). 

It makes sense that longer latency bump responses, as shown for YF-Diet flies in Randall et 

al. (2015), will take longer to integrate and photoreceptors will accordingly take longer to 

surpass their refractoriness (Song et al., 2012). Such protraction of the photoreception 

process may lead to the generation of a delayed but sustained photoreceptor voltage 

response, also shown in Randall et al. (2015), ultimately leading to a retardation of the 

ability to process faster visual input and impairing subsequent visuo-motor coupling. 

Given such robust rescue of visual function in the fast rotation condition, and seeing as 

LNA-Diet flies appear capable of encoding higher frequency stimulus components when 

presented with a naturalistic light time series, it was unexpected that only ROR flies could 

statistically outperform YF-Diet flies at slow rotation speeds, despite appearing statistically 

similar to LNA-Diet flies (Fig. 6-4).  

Again, such a finding may simply arise from examples of inter-subject variability present 

between samples for LNA-Diet flies at slow rotation speeds. Thus, LNA-Diet flies may well 

outperform YF-Diet flies with different subjects.  
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On the other hand, the lipidomic analysis conducted in Randall et al. (2015) shows diet-

specific alterations to the prevalence of lipids with different saturation states in the head of 

Drosophila. From such analyses, it is apparent that the relationship between the depletion 

and rescue of these different PIP2 species, in flies raised on the PUFA-deprived YF-Diet or 

the LNA-supplemented diet respectively, is not a linear one; with some species 

considerably increasing in relative abundance as a result of a decline in others. It may be 

possible that in the rescue, LNA-Diet flies, such remaining species still highlight a relative 

imbalance in a necessary proportionality of relevant PIP2 species, leading to an inability to 

support approximately normal behaviour at slow rotational speeds or stimulation rates. 

Thus, YF- and LNA-Diet flies may well behave similarly for slow stimulus paradigms, perhaps 

because supplementation of Linolenic Acid alone is insufficient to fully restore membrane 

deficiencies. 

To investigate this further, it may be helpful to test for changes in photoreceptor and LMC 

voltage responses that occur both as a function of diet and changes in light intensity. Such 

future electrophysiological assay, coupled with additional dietary modifications and 

variations of optomotor stimulus speed at the flight simulator, might help further elucidate 

the effects of diet upon the temporal representation of visual information and its relevance 

to optomotor behaviour. 
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7 Concluding Remarks: 
 

The Drosophila optomotor response is a robust and easily reproducible method by which 

researchers can ascertain the behavioural relevance of visual-biological components. 

Moreover, the assay is inexpensive and does not require any highly sophisticated 

equipment. The optomotor response is generated through the integration of sensory 

information and motor function, thus can be used to provide an indirect measure of the 

fidelity of complex visuo-motor neuronal circuit function.  

This thesis primarily uses the optomotor response and examples the wide range of visual-

behavioural function that it can be used to investigate; from the effects of nutrition on 

visual behaviour, to the behavioural consequences of failed/altered feedback regulation 

and the contribution of complex inter-cellular connectivity to the communication of 

behaviourally-relevant visual information. Each subset of processes co-operates biologically 

at some level and these contributions have been shown here to be reflected in the fly’s 

behavioural performance.  

Furthermore, I have shown that the technique can be used to echo the findings of more 

direct and reductionist techniques such as electrophysiology, making a case for its use to 

build a wide-reaching and more holistic picture of the effects of investigation upon visual-

behavioural function. So despite being simplistic and decades old, the assay can be an 

elegant method in the gamut of techniques used to study vision in Drosophila.  

The use of Electron Microscopy has been of utmost importance to elucidating structural 

detail in all manner of scientific subjects and for countless purposes within the spectrum of 

scientific fields. Its ubiquity however, comes with its own set of foibles derived from 

processing effects, such as subtle morphological changes and protracted fixation durations.  
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As already evidenced by the work from Eric Jorgensen’s laboratory (Watanabe et al., 2013a, 

2013b, 2014), the use of High Pressure Freezing with simultaneous light stimulation, 

combined with subsequent Automatic Freeze Substitution, is going to revolutionise 

research aimed at the study of membrane trafficking and synaptic transmission. Adapting 

this technique to study synaptic vesicle dynamics in larger preparations will soon help 

provide more accurate representations of how adaptive states may be translated through 

the synapse, from light-driven photoreceptor voltage responses into adapting voltage 

responses in the post-synaptic LMCs. Future experiments may further exploit developing 

optogenetic tools, perhaps allowing more precise imaging of activity-dependent changes in 

synaptic morphology. 
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Supplementary Figures 
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