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Abstract

Combined seismic and well interpretation methods can be used to elucidate detail
of the subsurface architecture of fluvial and fluvio-deltaic deposits. Observations
made from wireline and core logs, including facies and analysing the relative
proportions of architectural elements and facies associations indicative of
depositional sub-environments, can be used to interpret patterns of cyclicity,
changes in local accommodation conditions, and periods of increased seasonal,
tidal and marine influence.

Horizon slices, taken from 3D seismic volumes aid in the visualisation of laterally
discontinuous, often thinly-bedded, fluvial deposits. Seismic facies, when combined
with core and wireline log facies, can be interpreted as a series of ‘seismic
elements’. The relative proportions of seismic elements mapped out on horizon
slices allows the interpretation of depositional environments and accommodation
setting; allowing the distinction between fluvial and deltaic settings. A number of
data conditioning and seismic interpretation technigues can be used to enhance
the visualisation of channelized and non-channelized fluvio-deltaic deposits in the
subsurface. Frequency decomposition (and the making of colour-blended volumes)
allows the visualisation of the detail of channel belt deposits such as channel belt
migration and lateral accretion deposits.

Allogenic processes, particularly base-level (buttress) rise and fall have been
shown to exert a control on the overall stacking pattern of the studied fluvio-deltaic
deposits, whereas autogenic processes are interpreted as the major control on the
local arrangement and architecture of channel belt and overbank deposits.

The first study in this thesis uses the Upper Permian Rangal Coal Measures, a
large-scale fluvial system, which accumulated in a foreland basin setting in the
Bowen Basin, Queensland, Australia. The study investigates the architecture and
connectivity of splay and distributary channels. The second study uses the Late
Triassic Mungaroo Formation, a Mississippi-scale fluvio-deltaic system with a
fluvially-dominated, tidally-influenced delta, which accumulated in the Northern
Carnarvon Basin, Northwest Shelf, Australia. The study investigates different
seismic interpretation techniques and investigates the relative control on fluvio-
deltaic deposition of allogenic and autogenic processes.
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Chapter 1 Introduction

This chapter provides an overview of the thesis and its structure. The
key research questions are described at the outset and the rationale
behind the research is explained. Each subsequent chapter is outlined
in turn to summarise the thesis. The case studies for this research
were conducted from two principal study areas: part of the Upper
Permian Rangal Coal Measures, explored using a well-based dataset
from mining companies, Queensland, Australia; part of the Late
Triassic Mungaroo Formation, explored with seismic and well data
from the Exmouth Plateau, Northern Carnarvon Basin, offshore

Western Australia.

1.1 Project rationale

Fluvio-deltaic systems are increasingly recognised for their importance as
hydrocarbon reservoirs, yet the wide-ranging styles of deposits associated with
such systems, including those associated with overbank regions, crevasse
splay deltas, distributary channels, tidal and seasonally-influenced channels,
channel belts and the fill of incised valleys, introduces a level of complexity that
can make analysis and prediction of subsurface facies and architecture
problematic. The stratigraphic architecture of fluvio-deltaic systems records the
complex interplay of a range of allogenic and autogenic processes, which
collectively exert a variety of controls on palaeoenvironmental development in
both up-dip and down-dip settings; such controls are expressed in the
sedimentary architecture and morphology of the preserved sedimentary

succession.



Numerous studies into the subsurface architecture of large-scale fluvial and
fluvio-deltaic systems have been conducted in recent years (e.g. Miall, 1983;
Fielding, 1984, 1985; Miall 1985, 1988; Schumm, 1993; Miall. 1994; Hampson
et al.,, 1999; Miall 2002, Cohen et al., 2005; Gibling, 2006; Postma, 2008).
However, many of these studies have relied on analysis of combined datasets
that utilise both outcrop and well data (e.g. Hampson et al., 2005) because the
scale of fluvial deposits being investigated are commonly at or below the scale
necessary for seismic resolution of the details of fluvial stratigraphy (Bridge &
Tye, 2000). Many past studies of fluvial architecture that utilise 3D seismic data
rely on the examination of deposits from the relatively shallow subsurface, for
which seismic resolution is greater, such as those of the Gulf of Thailand, Malay
Basin or McMurray Formation, Alberta (cf. Miall, 2002; Posamentier, 2005;

Hubbard et al., 2011; Reijenstein et al., 2011; Hagstrom et al., 2014).

In recent years, seismic interpretation techniques have evolved from the
seismic stratigraphy methods developed by the likes of Vail & Mitchum (1997),
through the application of seismic attributes (e.g. Chopra & Marfut, 2005, 2007,
2008; Posamentier, 2005; Sarkar et al., 2010), stratal slicing (e.g. Zeng et al.,
1998a, 1998b; Hardage, 1999; Posamentier, 2005; Rabelo et al., 2007; Wood,
2007; de Groot et al., 2010; Zeng, 2010, 2013; Dorn, 2011, 2013) and spectral
decomposition (e.g. Henderson et al., 2008; Van Dyke, 2010; McArdle &
Ackers, 2012; Lowell et al, 2014; McArdle et al.,, 2014), which have greatly

improved the detail of observable depositional features in the subsurface.

There remains some debate as to the relative importance of extrinsic (allogenic
or boundary condition) controls and intrinsic (autogenic) controls on the
stratigraphy and architecture of fluvio-deltaic deposits, particularly in regard to

the applicability of some long-established sequence-stratigraphic models to



non-marine strata (Allen & Posamentier, 1993; Shanley & McCabe, 1994,
Ethridge et al., 1998; Weissmann et al., 2000; Plint et al., 2001; Holbrook,
2006). Specifically, it is uncertain how the relative interplay of allogenic and

autogenic controls is expressed in fluvial and fluvio-deltaic successions.

There remains, therefore, a need to develop a method for more accurately
constraining the subsurface architecture of more deeply-buried fluvial and
fluvio-deltaic deposits, at depths more typical of conventional hydrocarbon
reservoirs. Such a method is important because it provides the opportunity to
relate preserved sedimentary architecture and morphology of such successions
to the extrinsic and intrinsic controls that govern the accumulation of such

deposits.

This study addresses these shortcomings in two ways: firstly, by undertaking a
detailed architectural study of a fluvial overbank succession (Rangal Coal
Measures) in order to assess the impact of changing accommodation conditions
on the development of fluvial depositional sequences; secondly, by undertaking
a joint investigation of the sedimentological, architectural and seismic
geomorphological complexity of an ancient fluvio-deltaic system (the Triassic
Mungaroo Formation). Different seismic interpretation techniques are explored
and an idealised workflow is presented for the interpretation of stratigraphically
complex, (seismically) small-scale fluvial deposits, incorporating sedimentology,
stratigraphy and seismic geomorphology analysis. This research focuses
primarily on the channelized deposits of fluvio-deltaic successions, relating
them to their corresponding overbank setting in order to assess their

depositional sub-environments, and the nature of the governing controls.



The Rangal Coal Measures has been interpreted as a large-scale, high-
accommodation, low net:gross fluvial system (Fielding et al., 2003) and as such
provides an opportunity to study high-net:gross channel and overbank
successions that may be analogous to those of the non-marine-influenced
portion of the Mungaroo Formation. The dense network of wireline log data from
the South Blackwater Mine allows the examination of such deposits at a sub-

seismic scale, albeit within a restricted spatial extent (2 km?).

The seismic and well dataset used in the study of the Mungaroo Formation was
provided by Woodside Energy Ltd. The high quality seismic dataset (augmented
by wireline logs and over 300 m of core) was chosen in order to study fluvial

architecture on a wider scale (approx. 3000 km?).
The locations of the study areas for both case studies are shown in Figure 1.1.

1.2 Keyresearch questions (aims and objectives)

The aim of this research is to investigate the sub-surface architecture of fluvio-
deltaic settings, at a variety of scales, using a combination of seismic wireline
log and core data. Specific aims include: (i) to assess to what extent minor
(secondary and tertiary crevasse splay and distributary) channels contribute to
fluvial overbank successions, in order to determine the possible allogenic and
autogenic controls that influence the spatial variability of such deposits; (ii) to
investigate the sedimentary architecture and geomorphology of depositional
sub-environments of deeply buried fluvio-deltaic deposits; (iii) to assess
variations in the boundary conditions of fluvio-deltaic systems, and their
influence upon the sedimentology, stratigraphy and geomorphology of such
systems; thereby discuss the relative importance of extrinsic (allogenic) and

intrinsic (autogenic) processes as controls of the development of fluvio-deltaic



depositional sequences, and the detailed architecture of depositional (channel

and overbank) assemblages within the sequences.

The key research objectives of this study are as follows: (i) to develop and
employ a wireline log facies scheme for idendtifying fluvial channel and
overbank facies associations, and use this scheme to aid in the distinction
between high and low net:gross fluvial successions; to use simple stochastic
modelling to assess the potential for connectivity between small scale
channelised deposits; (iii) to establish a repeatable methodology for the
assessment of the sedimentary architecture and geomorphology of depositional
sub-environments of deeply buried fluvio-deltaic deposits, using a combination

of well-log and 3D seismic data.

1.3 Methods

The chapters of this thesis are intended to be read as stand-alone pieces of
work that collectively build upon an overarching research theme. Therefore, the
methods used in each chapter are specific to that chapter and as such are

detailed therein and described in brief below.

The study of the Rangal Coal Measures was conducted using wireline log and
core data, in order to create a wireline log-architectural element scheme. Fluvial
architectural elements (ranging from primary and secondary channels to
crevasse splay channels and overbank fines, for example lacustrine mudrocks
and coal) identified using the wireline log scheme were correlated and used to
create fence panels illustrative of interseam packages. Possible assemblages
and connectivity of crevasse splay and distributary channels were modelled
using a stochastic modelling package. A detailed description of methods used

can be found in Chapter 2.
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Figure 1.1: Location and simplified stratigraphy of the two study areas used in this thesis.



The study of the Mungaroo Formation was conducted as several sub-studies,
employing a range of well and seismic interpretation methods: Well log
interpretation techniques were correlation, sedimentary core logging, and facies
analysis. Seismic interpretation techniques included horizon slicing, creating a
‘seismic element’ scheme, linking sedimentology to seismic geomorphology,
attribute analysis and frequency decomposition. A detailed description of the

seismic methods used can be found in Chapters 4 and 5.

1.4 Thesis overview

1.4.1 Chapter 1: Introduction
Chapter 1 is an introduction to the thesis; setting the scene in terms of project
rationale and detailing the overall project aim and objectives. The chapter sets

out, the key research questions, and outlines the structure of the thesis.

1.4.2 Chapter 2: Prediction of fluvial style and connectivity of minor
channels in the flood basin successions of the Upper Permian
Rangal Coal Measures (Queensland)

Research question: To what extent do minor (secondary and tertiary

crevasse splay and distributary) channels contribute to fluvial

overbank successions and how likely are they to form connected

reservoir bodies?

Chapter 2 describes the architecture of two overbank (interseam) intervals from
the Upper Permian Rangal Coal Measures from the South Blackwater Mine,
Queensland, Australia. The Rangal Coal Measures and equivalents of the
Bowen Basin have been used to study fluvial processes and architecture (c.f.
Flood & Brady, 1985; Fielding et al., 1993) as the density of data available from

mining noreholes and sidewalls allows the study of such deposits in great detail.



The large-scale floodbasin deposits of the Rangal Coal Measures and
equivalents have been interpreted as analogous to those of the Mississippi
(Flood & Brady, 1985), with similar, large-scale crevasse delta deposits being
preserved. The lithofacies of the Rangal Coal Measures identified by Fielding et
al. (1993) are deemed typical of coal-bearing fluvial successions, and therefore

may be analogous to the coal-bearing intervals of the Mungaroo Formation.

Wireline log character is assessed with reference to literature encompassing
fluvial systems, the occurrence of coal interseam deposits and previous studies
of the Rangal Coal Measures, in order to create an architectural element
scheme describing channelized and non-channelized overbank deposits. The
relative infill proportions of each architectural element are calculated and likely
channel assemblages and connectivity are measured using Reckonnect™, a
fluvial stochastic modelling software package designed to run multiple iterations
of simple models in a short time period. The resultant channel distributions are
used as input for 3D architectural models of the two interseams, and likely

accommodation settings are distinguishing for the two interseams discussed.

1.4.3 Chapter 3. Sedimentology of fluvial system within a delta-plain
setting: a case study from the Triassic Mungaroo Formation
Research question: What is the range of styles of deposition within
the cored interval of the Mungaroo Formation; what insight into the
varied channel styles of fluvio-deltaic depositional systems can be

inferred from these observations?

Chapter 3 discusses the sedimentology and stratigraphy of the Late Triassic
Mungaroo Formation, primarily using core log data from block WA-404-P,

Exmouth Plateau, Northern Carnarvon Basin, Australia. This chapter serves as



grounding in terms of study location and stratigraphy of the Mungaroo
Formation, which is referred to throughout the subsequent chapters of the
thesis. Within this study, the Mungaroo Formation is divided into 6 seismic-
stratigraphic intervals bounded by flooding surfaces (S1-S2, S2-S3, S3-S4, S5-
S6, and S6-S7). The sedimentology of the Mungaroo Formation is described in
terms of lithofacies, facies associations, and the occurrence and distribution of
tidal indicators. The interpretation is based largely upon the S2-S3 interval,
which has a near-complete cored section. The relative proportions of the facies
associations are used to split the formation into packages of increased or
decreased marine influence, which are associated with lower delta plain, upper
delta plain and alluvial floodplain. The style of channel deposits is interpreted
from lithofacies assemblages, stacking characteristics and interpreted barform

migration styles in order to assess the evolution of channel style through time.

1.4.4 Chapter 4. Seismic geomorphology and sedimentology of fluvial
environments in the subsurface: fluvio-deltaic Triassic Mungaroo
Formation, North West Shelf, Australia

Research question: What are the broad variations in depositional

environment at key intervals of the Mungaroo Formation? Can seismic

facies be used to distinguish between fluvial and fluvio-deltaic

deposits?

Chapter 4 establishes a link between sedimentology and seismic expression of
the Mungaroo Formation through the development of a ‘seismic element
scheme’ that links the facies associations established in Chapter 3 to seismic
facies and seismic geomorphology. The element scheme encompasses
channel and channel belt deposits, crevasse belt deposits, overbank fines and

organic-rich deposits such as gleysols and mud-prone accumulations indicative
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of poorly-drained floodplains. Seismic techniques key to the visualisation of
fluvial deposits, such as stratal and horizon slicing, are introduced. The bulk of
this chapter focusses on the generation of ‘seismic element’ maps using the
aforementioned scheme and their use in the interpretation of the depositional
sub-environments of three of the intervals of the Mungaroo Formation (S1-S2,
S2-S3, S5-S6), horizon slices of which show contrasting channel and overbank

morphologies.

1.4.5 Chapter 5: Well log and seismic interpretation techniques useful in
the subsurface interpretation of fluvial deposits

Research question: What techniques can be employed to identify

channelized deposits and non-channelized floodplain deposits at a

range of scales? How can seismic interpretation techniques be used

to enable more detailed interpretations?

Chapter 5 builds upon the work of Chapter 4 by exploring different seismic and
supporting well-log interpretation techniques that are useful in the identification
of fluvial and fluvio-deltaic deposits in the subsurface. Such techniques
encompass well correlation, noise reduction, frequency enhancement, stratal
slicing and flattening of seismic cubes, spectral decomposition and colour
blending of seismic cubes. The chapter also outlines several further seismic
attributes, adjustment in the values of which may be beneficial in the
identification and analysis of fluvial and thinly-bedded deposits in the

subsurface.
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1.4.6 Chapter 6: Subsurface geomorphology of a fluvio-deltaic
succession investigated with seismic attribute analysis and
spectral decomposition: Late Triassic Mungaroo Formation,
offshore Western Australia

Research question: How can a range of seismic interpretation

techniques, including spectral decomposition, be used to resolve the

internal architecture of channel-belt deposits? Can these techniques
provide further insight into fluvial styles, distinguishing between

entrenched valleys and amalgamated channel belts?

Chapter 6 presents the most successful of the techniques outlined in Chapter 5
as a workflow that has been successfully employed in the interpretation of the
deposits of the Mungaroo Formation, and may be employed in other, analogous
depositional settings. The chapter principally demonstrates the improved
observations and interpretations that may be made from horizon slices taken
from spectrally decomposed and colour blended volumes, compared with
equivalent slices from seismic reflection data. The chapter demonstrates how,
in cases where only the larger-scale features of fluvial and fluvio-deltaic
systems may be identified using horizon slices, the equivalent slice taken from a
colour-blended volume may reveal substantially greater detail, including the
style of internal fill of channel belts within valley deposits, the ability to
distinguish between amalgamated channel belt sands and incised multi-valley
complexes, and even the presence of scroll bar surfaces within individual point-
bar elements. The chapter also places several of the intervals of the Mungaroo
Formation (S1-S2, S5-S6 and S6-S7) in a sequence-stratigraphic context, and
explains the overall stacking patterns of the Mungaroo Formation depositional

sequences in terms of base level changes.
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1.4.7 Chapter 7: Discussion: the application of subsurface interpretation
techniques to the investigation of controls on styles of fluvio-
deltaic sedimentation

Research question: What are the possible allogenic and autogenic

controls on fluvio-deltaic successions? Which combination of

allogenic and autogenic controls best explain the variations in
depositional style seen in the Mungaroo Formation? What can this tell

us about fluvio-deltaic depositional systems in general?

Chapter 7 draws together the findings and conclusions from chapters 2, 3, 4
and 6, the aim being to present a discussion of allogenic and autogenic controls
on fluvio-deltaic successions, with which to consider the development of the
Mungaroo Formation fluvio-deltaic system (and with reference to the Rangal
Coal Measures) in terms of temporal evolution, and the interplay of allogenic
and autogenic processes in controlling both the overall stacking pattern and
architecture of the Mungaroo Formation, and more detailed, local
geomorphological variations. This discussion is augmented by the presentation
of a series of ‘buffers and buttresses’ models (sensu Holbrook, 2006),
explaining the boundary condition variations at the time of deposition of several
of the Mungaroo Formation intervals (S1-S2, S2-S3, S5-S6 and S6-S7), as well
as a discussion of the interplay of accommodation and sediment supply. The
findings from the studies of the Mungaroo Formation and Rangal Coal
Measures are summarised as a series of predicted generic responses of fluvio-

deltaic systems to changes in allogenic and autogenic controls.

1.4.8 Chapter 8: Conclusions
Chapter 8 provides a concise overview to the thesis and outlines the following

summary points: (i) the main controls on the deposition of the Mungaroo
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Formation, and (ii) the techniques useful in the interpretation of fluvio-deltaic
deposits. Additionally, the chapter discusses each of the research questions
posed in Chapters 2 to 6, providing summary answers to each of the stated
research questions in turn. The chapter considers the overall implications of the
action of spatially and temporally variable allogenic and autogenic processes
during the deposition of fluvio-deltaic successions. The chapter concludes with
suggestions for future work that build upon the research carried out for this

thesis
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Chapter 2  Prediction of channel connectivity and fluvial style flood
basin successions using wireline logs and stochastic modeling: Case
study of the Upper Permian Rangal Coal Measures (Queensland)

The work presented in this chapter has been published in AAPG Bulletin as the

following paper:

Stuart, J. Y., Mountney, N. P., McCaffrey, W. D., Lang, S. C., & Collinson, J. D.
(2014). Prediction of channel connectivity and fluvial style in the flood-basin
successions of the Upper Permian Rangal coal measures (Queensland). AAPG

bulletin, 98(2), 191-212.

Research question: To what extent do minor (Secondary and tertiary
crevasse splay and distributary channels) contribute to fluvial
overbank successions; and how likely are they to form connected

reservoir bodies?

2.1 Chapter Overview

Predicting the presence and connectivity of reservoir-quality facies in otherwise
mud-prone fluvial overbank successions is important as such sandbodies can
potentially provide connectivity between larger neighboring sandbodies. This
paper addresses minor channelized fluvial elements (crevasse splay and
distributary channels), and attempts to predict connectivity between such
sandbodies in 2 interseam packages of the Upper Permian Rangal Coal
Measures of northeastern Australia. Channel body percent as measured in well
logs were 2% in the upper (Aries-Castor) interseam, and 17% in the lower

(Castor-Pollux) interseam. Well spacing was too great to allow accurate
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correlation of channel bodies. The Ob River, Siberia, was used as modern
analogue to supply planform geometric measurements of splay and distributary
channels, so that stochastic modeling of channel bodies was possible. The
resulting models demonstrated that (i) channel-body connectivity is more
uniform between minor distributary channels than between crevasse splay
channels; (ii) relatively good connectivity is seen in proximal positions in splays,
but decreases distally from the source as channel elements diverge; (iii)
connectivity tends to be greater down the axis of splays, with more isolated

channel bodies occurring at the margins.

2.2 Introduction

The distribution of sand bodies in fluvial overbank settings is strongly controlled
by processes that dictate the style and frequency of overbank flooding
(Benedetti 2003) via the breaching of levees, the generation of crevasse splays
(Morozova & Smith 2000), and the development of minor distributary channels
(Smith et al. 1989). In particular, size, longevity, spatial distribution and style of
connection of splays to primary channels governs the distribution of sand-prone
elements in overbank successions. The presence of reservoir-quality facies,
such as secondary and tertiary splay and distributary channel deposits, in
otherwise mud-prone fluvial overbank successions may provide significant
connectivity between neighboring major channel elements in avulsion-prone
channel belts, as in the Westphalian Coal Measures, Durham, UK (Fielding,

1986).

Although determination of three-dimensional sedimentary architecture and
overbank connectivity is crucial for reservoir prediction in low net.gross
floodplain settings, the typical km-scale well spacing in some hydrocarbon fields

is too great and the total number of wells too few for the development of the
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appropriate predictive models. Likewise tertiary splay and minor distributary
channel elements (€3 m thickness — Avenell 1998) are typically below the
vertical resolution of seismic data (Bridge & Tye 2000; Ethridge & Schumm
2007), and their presence cannot be ascertained, nor their impact on

connectivity inferred, from such data.

In low-accommodation fluvial settings, sand-prone channel elements are
preferentially preserved as stacked and overlapping multi-story and multi-lateral
bodies, whereas in higher accommodation settings, mud-prone overbank
elements have greater preservation potential and neighboring channel bodies
tend to be spatially isolated (Bristow & Best 1993). Figure 2.1 shows the classic
fluvial sequence stratigraphic model of Shanley & McCabe (1994), illustrating
the effect of changing accommodation (driven by base level change) on fluvial
systems. An increased rate of accommodation creation is commonly attributed
to one or both of the following driving mechanisms: (1) high rates of basin
subsidence such as encountered in many foreland basin settings (e.qg.
Marenessi et al. 2005); (2) base-level rise (Bristow et al. 1999; Bourquin et al.
2006). Most systems are governed by a combination of these factors, although

one may be dominant (Ethridge et al. 1998).

Facies associations routinely identified in low net:gross, relatively high-
accommodation fluvial overbank settings include those associated with mires,
levees, secondary and tertiary distributary channels, and splays and splay
complexes, including those composed of multiple tertiary splay channels, as
well as finer-grained units: floodplain-lake fills and floodplain fines, including
palaeosols (Smith & Pérez-Arlucea 1994; Jorgensen & Fielding 1996; Cazanacli
& Smith 1998; Farrell 2001). Figure 2.2 illustrates the typical architecture and

internal facies make-up of these depositional elements.



Fluvial strata Base level

Isolated, high sinuosity fluvial channels High Low

S RV
e =
SN

Time

Valley incision and terrace formation

Low-sinuosity
high gradient rivers

1-10's m

1-10's km

Figure 2.1: Fluvial sequence stratigraphic model (reproduced from Shanley & McCabe,
1994), demonstrating the effect of changing base level on fluvial stratigraphy.
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Figure 2.2: Schematic diagramiillustrating the typical facies associations and architectural
elements encountered in alow net:gross fluvial overbank environment.
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Reservoir-quality sandstones are most likely to be present in the overbank
setting as networks of secondary and tertiary channel elements, the
accumulated deposits of which typically attain thicknesses of up to a few
meters, and which may form laterally extensive splay bodies over distances of
several kilometers. It is, however, typically difficult to distinguish between
deposits of some of the smaller-scale overbank elements, particularly when

relying on core or well-logs alone for interpretation (Brierley et al. 1997).

The aim of this study is to demonstrate the architecture and connectivity of
secondary (distributary) and tertiary (distributary and splay) channelized sand
bodies in a low net:gross fluvial setting, to assess the potential for
communication between reservoir-quality (sandy) elements in overbank
settings. Specific objectives of this study are (i) to document criteria by which
minor channelized elements can be identified on wireline logs, (i) to quantify
infill proportions and dimensions of tertiary channels, (iii) to present quantitative
data on plan-view geometries of modern tertiary channel elements, and (iv) to
stochastically model the predicted lateral and vertical connectivity of tertiary
channels. The connectivity of such sand bodies is investigated for two
interseam intervals at the South Blackwater Mine, Queensland (location shown

on Figure 2.3), a Permian coal-bearing flood basin succession.

This work is significant for the following reasons: (i) current models that predict
sand-body occurrence in flood basin settings are overly simplistic and largely
gualitative in nature (Bridge & Tye 2000); (ii) current approaches to estimating
hydrocarbon reserves in fluvial reservoirs routinely only assess the geometry of
major (primary) fluvial sand bodies (e.g. multi-storey channel complexes), and
this potentially underestimates the true volume by ignoring the additional

significant volume associated with minor secondary and tertiary channel and
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splay elements; (iii) few models currently exist with which to assess the role of
minor secondary and tertiary channel and splay elements in terms of their role

in aiding communication and connectivity between primary channel bodies.
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Figure 2.3: Location of the Bowen Basin and South Blackwater Mine. Location of basins
fromAllen & Fielding (2007) and Fielding et al. (1993).
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2.3 Geological Setting

The Permian Rangal Coal Measures at the South Blackwater Mine, Bowen
Basin, Queensland (Figure 2.3) are exposed in a series of open cast workings
and have been penetrated by a series of shallow boreholes for which well-log
and core data are available. The coal measures are widespread throughout the
basin and they have been exploited through intensive open-cut mining since the
1970s (Mutton 2003). The Rangal Coal Measures form part of the fill of the
Bowen Basin, which evolved — along with several other Eastern Australian
Gondwanan basins — as part of the Middle-Late Palaeozoic Tasman Orogen
(Fielding et al. 1993; Fielding 2001). Three pulses of sedimentation directed
southwards along the basin axis occurred during the Late Permian, the last of
which was responsible for the accumulation of the Wuchiapingian-
Changhsingian age Rangal Coal Measures and equivalents, which represent
the preserved deposits of a large scale fluvial system (Fielding et al. 1993; Allen
& Fielding 2007). The sheet-like nature of primary channel deposits formed in
the Rangal Coal measures is indicative of a low-sinuosity system and the
Rangal Coal Measures are considered to have formed in a broad alluvial plain

setting (Fielding et al. 1993).

At the South Blackwater Mine, the Rangal Coal Measures are preserve three
mineable coal seams within the study area: Aries (A), Castor (B) and Pollux (C).
Within the Rangal Coal Measures, several facies associations have been
recognized by previous research. Fielding et al. (1993) identified the following:
Sheet-like sandstone channel bodies; laterally accreted, heterolithic channel
bodies; proximal overbank; crevasse channel fill; floodplain; lake floor; mire.
Avenell (1998) interpreted wireline and core data as recording: sheet-like

channel sandstone bodies (primary channel elements); heterolithic distributary
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channel bodies (secondary channel elements); minor crevasse channel bodies
(tertiary channel elements); levee; floodplain; lacustrine and mire. Michaelsen et
al. (2000) interpreted the interseam deposits as: trunk river channels and
crevasse feeder channels; levee bank—proximal crevasse splay; distal splay—

overbank; marsh; peat mire and floodplain lake.

2.4 Data and Methods

The study covers a 2km? area of the South Blackwater Mine, Queensland.
Detailed correlation of a subsurface part of the Rangal Coal Measures
succession was undertaken using a high-density subsurface dataset of wireline
logs from 63 coal exploration wells. Available well logs included, including

gamma-ray (GR), density, caliper and sonic logs were utilized.

High-resolution lithologic logs were made for each well in the dataset using
Oilfield Data Manager (ODM) software, primarily via the interpretation of GR
and density log responses. For the purpose of lithology interpretation, GR cut-
offs were defined as follows: clay and mudstone, >110 API GR; siltstone and
silty sandstone, 110-90 API GR; 'clean' sandstone (>60% sand), <90 APl GR
(Avenell, 1998). Coal was easily identified by its distinctive signature

characterized by very low GR values coincident with low density values.

After assigning lithologies to each well, architectural elements (Miall, 1985)
were assigned to packages of deposits deemed to have been formed by the
same processes. To help achieve this, an extended and refined lithology and
facies scheme for the Rangal Coal Measures was developed from a previous
core-based study at the South Blackwater Mine (Avenell 1998) and this was
used as the basis for the architectural-element scheme developed in this study.

Patterns in well-log curves and litholologic cycles were identified and assigned
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to fluvial and overbank architectural elements. Architectural elements were then
correlated between subsurface wells in an attempt to characterize two-
dimensional facies changes and, where possible, the likely three-dimensional
sedimentary architecture and style of connectivity of secondary and tertiary
fluvial channel elements considered to have arisen as a product of crevassing in

a distributary system.

Where it was not possible to predict architectural-element type and extent from
groups of neighboring well logs, measurements and estimates of likely plan-
form geometry were made via the adoption and implementation of geometries
of similar elements from analogous modern systems. Study of these modern
fluvial systems involved the measurement of channel widths, lengths and
sinuosities using Google Earth® imagery. These analogue data were integrated
into reservoir models of the study area using Reckonnect®, a fluvial stochastic
modeling software package. Reckonnect was chosen due to its ability to run
multiple iterations of models in a short time period, in order to test the effect on
reservoir connectivity of changing the dimensions and other parameters of the

channel-element sand bodies.

Interpretations of the depositional sub-environments of the Rangal Coal
Measures interseam intervals were then made based on the proportions and
distributions of architectural elements observed in each of the two interseam
intervals, one between the Aries (A) and Castor (B) seams, and the other

between the Castor (B) and Pollux (C) seams.

2.5 Architectural Elements
Seven principal architectural elements have been identified in the study area

between the Aries (A) and Pollux (C) seams (Figure 2.4) using defined GR cut-
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offs for sand (<90), silty sand (90-110) and mud (>110), together with
correlation of wireline log signatures between neighboring well-logs. The

architectural element scheme is based on that of Avenell (1998).

Secondary channel elements. The wireline log character of these elements
shows a sharp, erosional base, with a fining-up, blocky or bell-shaped gamma
response. These deposits are <90 APl GR. These elements are greater than 3
m thick and are interpreted as hetrolithic distributary channel-fill deposits
(Fielding et al. 1993). Distributary channels are typically bounded by levees, are
subject to some lateral accretion, and grade laterally into finer-grained
floodplain deposits (Avenell, 1998), in places causing local 'washouts' of the

Castor (B) seam.

Tertiary channel elements. These elements have a GR of <110 API GR, in a
succession of <3 m-thickness sandstone. They are typically sharp-based,
fining-up to clayey, silty sandstones. The overall log signature is blocky or bell-
shaped. Laterally more extensive tertiary channel elements are interpreted as
those of mature crevasse channels, analogous to the stage 3 splay channels of
Smith et al. (1989). Less extensive, poorly developed tertiary channel elements
are interpreted as immature or abruptly abandoned splay channels of a stage 1

or stage 2 crevasse splay (Smith et al. 1989).

Channel-margin (including levee) and lake-margin elements. Channel-margin
deposits form the finer-grained equivalent to adjoining channelized deposits.

They typically exhibit fine-grained (alternating high and low GR) log patterns,
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Rangal Coal Measures present in the interseam packages of the South Blackwater Mine,
(GRDE) and density (DENL) logs.

Queensland (Adapted in part from Avenell 1998). Lithologies and architectural elements

Figure 2.4: Architectural element scheme of the fluvial and overbank deposits of the
assigned using gamma-ray
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corresponding to interbedded sandstones, siltstones and clay drapes. Lake-
margin deposits routinely exhibit coarsening-up, progradational log patterns, but
are difficult to distinguish from levee channel-margin deposits where observed

in wireline borehole logs alone.

Proximal to medial floodplain elements. Deposits of these elements consist of
interlaminated sandstone, siltstone and clay-rich partings, with a highly variable

log pattern attributed to splays and flooding.

Distal floodplain elements. Deposits of these elements are characterized by
laminated siltstones and mudstones, with a GR log signatures generally >110
APl GR. Minor sandstone intervals identified in these packages likely represent

the distal deposits of crevasse splays.

Floodplain lake and frequently inundated floodplain elements. These deposits of
interlaminated claystones, mudstones and silty-mudstones, with rare lenses of
siltstone and sandstone, have GR log readings generally >110 GR API. They

are indicative of a system subject to seasonal flooding.

Mire elements. Within these deposits, a blocky, low GR-log signature is
indicative of coals. This ‘blocky’ GR response, together with a low DENL
response distinguishes coal from sandstone. These deposits constitute coal

seams and carbonaceous shales formed in peat mires.

Thick and sheet-like primary channel-fill elements are not encountered in the
interseam deposits of the study area, though such bodies are identified from
some wells beneath the C seam. Most wells stopped at or just beneath the C
seam, so correlation of these extensive sand-prone elements has not been

possible.
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2.5.1 Correlation

Figure 2.5a details a typical subsurface well correlation, taken from the
northeast of the study area (see inset map for location), demonstrating both
secondary and tertiary channels. The correlation utilizes caliper, gamma-ray
and density wireline logs to identify the three major coal seams present in the
studied interval, to interpret the interseam lithology, and to interpret the
architectural elements present in the interseams. Further correlation pannels
are demonstrated in Figures 2.5b-2.5e. Fence diagrams collating key
correlation panels were constructed to demonstrate the three-dimensional
architecture of the interseam deposits (Figure 2.6) and to identify key areas of

secondary and tertiary fluvial channel deposition.

2.5.2 Element Proportions

Proportions of the A-B, and B-C interseam intervals infilled by each architectural
element were measured from their thicknesses in each interpreted well log
(Figure 2.7). Net:gross was calculated for each interval (A-C, A-B, B-C), taking
only 'clean’ (GR <90 API) sandstone as net. The correlation panel and fence
diagram (Figs. 2.5 & 2.6) demonstrate that the B-C interseam has a greater
proportion of channel elements and therefore a higher net:gross than the A-B

interseam.

2.5.3 Channel Element Thicknesses and Widths

Channel-element thicknesses were determined from well logs. A frequency plot
reveals the distribution of the range of channel thicknesses (Figure 2.8), where
frequency refers to the number of appearances in well logs. It was not possible
to measure channel-element widths using the well correlation data alone
because well spacing was greater than the width of the channel elements in

most cases, such that estimated widths measured from correlation panels
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Figure 2.6: Fence diagram demonstrating presumed 3D spatial geometry of elements.
Laterally continuous fine-grained floodplain deposits are accurately correlated. Well
spacing was too wide (50 m to 250 m) to accurately correlate tertiary channels, which
globally are typically less than 250m width (Gibling 2006). Attempts to correlate
individual channel bodies has lead to some unrealistic correlations. Negligible net: gross
in A-B interseam, 20% net:gross in B-C interseam.
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a. Proportions of Architectural Elements in the A-B interseam interval
ofthe Rangal Coal Measures

2% 1%

O Tertiary Channel
6%

M Stacked Tertiary Channels or
Secondary Channel

@ ChannelMargin or Lake Margin

O Undiferentiated Floodplain or
Medial Fleodplain

O Distal Floodplain

I

O Lake or Frequently Inundated
Floodbasin

b. Proportions of Architectural Elements in the B-C interseam interval
ofthe Rangal Coal Measures

8% OSecondary Channel
(]

OTertiary Channel

B Stacked Tertiary Channels or
2% Secondary Channel
@ ChannelMargin or Lake Margin

OUndiferentiated Floodplain or
Medial Floodplain
ODistal Floodplain

16%

40%
OLake or Frequently Inundated
Floodbasin

Figure 2.7: Well logs provided proportions of infill by each architectural element in both
(a) the Aries-Castor (A-B) interseam and (b) the Castor-Pollux (B-C) interseam.
Proportions measured by thickness of occurrence in studied well logs. The A-B interseam
is dominated by distal deposits, with only 2% tertiary channel infill, whereas the B-C
interseam is dominated by medial deposits, with 17% tertiary channel infill.
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A-B (Aries-Castor) Interseam Tertiary Channel Body Thickness Distribution
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Figure 2.8: Tertiary channel element thickness data taken from well logs in both the
A-Band B-Cinterseams.
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Figure 2.9: (a) Overview image of the Ob River, Siberia. This large-scale, distributary
system has a up to 40 km-wide floodplain. The primary channel is low sinuosity, over
1km wide, and numerous secondary distributary and tertiary (distributary and
crevasse) channels are present. (b) A typical crevasse splay from the Ob River,
Siberia, measuring 5 km in length. Green areas represent the raised crevasse
complex, and tertiary channel levees. Dark areas of the floodplain are inundated by
spring flood waters. (c) Secondary and tertiary distributary channels in the Ob River,
Siberia. Channels exhibit a range of sinuosities and bifurcations are common. Splay
complexes exhibit a fractal nature, with mini ‘splays’ often originating from larger splay

complexes and tertiary channels.
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effectively became a function of the well spacing rather than a true indicator of

channel-body width.

2.6 Interpretation

2.6.1 Analogue Measurements

In cases where it is not possible to directly derive all the information necessary
to build accurate reservoir models from available datasets, analogue data may
be used to approximate the missing parameters (e.g. plan-form geometry) that
cannot be determined from the primary subsurface dataset alone (Alexander,
1993; Lang et al. 2002). For overbank depositional systems whose constituent
architectural elements (e.g. floodplain and splay) are readily preserved, such as
those of the Rangal Coal Measures, modern analogues must be chosen from
relatively high-accommodation fluvial and fluvio-deltaic settings in which
extensive peat-forming processes are acting and for which frequent flooding,

crevassing and deposition occurs on the floodplain.

One modern example is the Ob River, Siberia. The Ob River was selected as a
suitable analog as it is set within the large-scale, continental, non-tropical peat-
forming depositional system in the West Siberian Plain (Lang et al. 2002). The
Ob River has a very large primary channel (Figure 2.9). However it is the
numerous secondary and tertiary channels, running roughly perpendicular to
the primary channel, that have been identified as likely modern equivalents of
the distributary and splay channels present at the time of deposition of the
Rangal Coal Measures at the location of the South Blackwater Mine (Lang et al.
2002). This analogue is used to link surface geomorphology to subsurface
sedimentology in the South Blackwater Mine dataset. The Ob River system

floods seasonally (Figure 2.9a), with floods emanating from breaches in levees
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that result in widespread crevassing, the generation and maintenance of
secondary and tertiary distributary channels (Figure 2.9b) during spring floods.
As the floods dry during summer months, the receding water leaves abundant
floodplain lakes across the floodplain (Lang et al. 2002). Figure 2.9c illustrates a
typical crevasse splay complex of the Ob River, and this is considered to be
similar in both scale and morphology to those envisaged for the South
Blackwater study succession, based on the similarity in scale of the various

architectural elements known from the two systems.

Measurement of the dimensions of the planform geometries of tertiary channels
of the Ob River (both splay and distributary), including width, length and
sinuosity, were taken from Google Earth aerial photographs (Table 2.1).
Sinuosity is calculated as the channel length divided by the down-valley length
of the channel. Mean sinuosity (1.16) and width (41.60 m) of splay channels (N
= 43) was less than that of the distributary tertiary channels (sinuosity = 1.27;

width = 59.75 m, N = 24).

Table 2.1: Summary of tertiary channel dimensions from the Ob River, Siberia

Channel Type Mean Width (m) Mean Length A (km) Mean Sinuosity
Distributary Tertiary 59.75 11.12 1.27
Splay 1 Tertiary 50.95 5.85 1.23
Splay 2 Tertiary 41.14 1.83 1.06
Splay 3 Tertiary 34.40 3.92 1.18
Splay 4 Tertiary 34.38 2.22 1.21
Splay 5 Tertiary 32.57 1.81 1.12
All Splay Tertiary 41.60 3.13 1.16

2.6.2 Modeling
The tertiary channels in the Ob River record little evidence for significant lateral

migration via the accretion of point-bar deposits, so preserved sediment
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geometries are assumed to be similar to those on the surface. Measurements of
the widths and sinuosities of active channels from the Ob River analogue were
therefore used in combination with the subsurface data, to derive estimates of
likely infill proportions and channel thickness:width relationships for the Rangal
Coal Measures. These were in turn used to define input ranges for stochastic
models of the interseams made using Reckonnect (fluvial stochastic modeling

software).

Reckonnect is a stochastic, object-based model that quickly models channel
bodies to assess the effect of changing channel body dimensions and
distributions on connectivity (Collinson & Preater, 2009). Models are created
using channel body thickness and channel percentage data from wells, and
geometric data (e.g. channel body width and sinuosity). Modelled output is
simple, treating all channel bodies as reservoir, and all other deposits (model
background) as non-reservoir. The models allow quantification of channel body

connectivity, as well as connectivity to pseudo-wells.

For each model run, graphic output from a a randomly selected run was
generated to illustrate the form of modeled channel geometries, and predicted
style of clustering, channel connectivity (where channel connectivity by volume
is defined as the mean percentage of sand connected to a random sandy point),
and channel-body percentages observed in pseudo-wells. Results demonstrate
potential well connectivity to sand bodies in the model, where well connectivity
is defined as the probability (%) that pseudo-wells are connected by a

continuous sandy path (Figure 2.10a).

Reckonnect is not suitable for modeling two types of channel simultaneously

(i.e. secondary and tertiary channels), and therefore models were built to
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represent the distribution of tertiary channels, which make up a greater
proportion of interseam infill. In the A-B (Aries-Castor) interseam, infill by minor
channels is 2% by tertiary channels and <1% by secondary channels. In the B-
C (Castor-Pollux) interseam, the bias towards tertiary channels is greater with

17% infill by tertiary channels and 2% by secondary channels.

As both splay and distributary channels are identified in the South Blackwater
Mine (Avenell, 1998) and in the Ob River (Figure 2.10), both of these fluvial

styles were modeled for the interseam deposits.

Figure 2.10 (Over Page): (a) Schematic diagram explaining the graphic outputs of
Reckonnect modeling runs used in Figs. 10b-12. The graphic output represents one
random replication out of 100 iterations made in each modeling run. (b) Graphic output
of a random replication from a Reckonnect modeling run, representing the A-B
interseam, with a splay geometry. With only 2% channel infill in the interval, the cross-
section shows very few channels, the majority of which are isolated (shown in grey).
The depth slice demonstrates channel orientations and geometries (depth slice location
shown in light green on the cross-section). The connectivity scale can be used to
interpret the channel connectivity and channel percentage outputs: Channel
connectivity is negligible across most of the model. Mean channel connectivity is 11%;
i.e. 11% of the 2% of the model infilled by channel bodies is connected. In this
scenario, only 0.02% of the modeled interval is represented by reservoir-quality sand
bodies that are in some way connected. The pseudo wells demonstrate that in both
proximal and distal locations, the well is likely only to intersect isolated channels, if any.

Table 2c shows the statistical output from this replication.
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Figure 2.11: Graphic output of a random replication from a Reckonnect modeling run,
representing the B-C interval, with a splay geometry. The cross-section shows five main
channel clusters. As expected in a crevasse splay setting, isolated (grey) channels occur
most commonly towards the margins of the modeled splay complex. The depth slice
demonstrates channel orientations and geometries (depth slice location shown in light
green on the cross-section). The connectivity scale can be used to interpret the channel
connectivity, and channel percentage outputs: Channel connectivity is highest in a
proximal location and as it decreases distally, is greater along the axis of the splay than
towards the outer margins. Mean channel connectivity is 20%, but is as high as 80% near
the source of the splay. The pseudo-wells demonstrate that in a proximal location, it is
possible to intersect almost all of the channel clusters. In a distal location, however, the well
intersects fewer channels, and is likely to intersect isolated channels. Table 3c shows the
statistical output from this replication.
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Figure 2.12: Graphic output of a random replication from a Reckonnect modeling run,
representing the B-C interval, with a distributary geometry (i.e. the channels do not have a
fixed point of origin). The cross-section shows three main channel clusters. Only a few
isolated (grey) channels are present. The depth slice demonstrates channel orientations
and geometries (depth slice location shown in light green on the cross-section). The
connectivity scale can be used to interpret the channel connectivity, and channel
percentage outputs: The more random orientation of channels allows greater connectivity
between channel bodies (45% of channel bodies are connected). There is also a more
random spread of connectivities and channel percentages in the model. Mean channel
connectivity is 45%, but is as high as 90-100% in some areas. The pseudo-well
demonstrates that it is possible to intersect the two largest channel clusters, so that the
pseudo well is in communication with 77% of the channel bodies. Table 4c shows the
statistical output from this replication.
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Figures 2.10-2.12 show random replications from modeling runs conducted

with 100 replications in each run. As well as the graphic output, Reckonnect

also generates statistics covering channel proportion, channel connectivity and

sand connectivity to pseudo-wells for each modeling run, summaries of which

are given in tables 2.2-2.44. Model inputs are listed in Tables 2.2a, 2.3a and

2.4a.

Table 2.2. A-B interseam modeling results, modeled with a splay geometry

Table 2.2a. Reckonnect model parameters for the A-B (splay) interseam

Mean
Azimuth
deg.
170

Reservoir

Thickness
m

30

Channel
%

2

Mode
Thickness
m

1.26

%
53

Thickness
Variation

Mode
Width
m

41.6

%

Width
Variation

50

Sinuosity
Variation
%

28

Sinuosity
1.16

Table 2.2b. Output statistics for the A-B (splay) interseam

Channel Channel
\[o} % Single Connectivity  Connectivity Well
Channels Story No. % Connectivity
1 13 1 100 9 13 2
2 14 2 100 9 13 1
3 14 2 100 9 12 4
4 14 1 40 9 14 2
5 12 1 50 10 16 2
6 14 1 50 10 13 1
7 14 2 60 9 13 1
8 13 2 95 12 17 1
9 14 1 69 9 13 3
10 13 2 100 10 13 2
Mean 13.5 15 76.4 9.6 13.7 1.9

Table 2.2c. Output statistics for the A-B (splay) random replication (Fig. 2.11b)

No.
Channels

18

Run

Channel

Connectivity

Channel % No.

Channel

%
11

Connectivity Well

Connectivity
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Table 2.3. B-C interseam modeling results, modeled with a splay geometry

Table 2.3a. Reckonnect model parameters for the B-C (splay) interseam

Reservoir  Mean Mode Thickness Mode Width Sinuosity

Thickness  Azimuth  Channel Thickness Variation Width  Variation Variation

m deg. % m % m % Sinuosity %
30 170 17 1.59 40 41.6 50 1.2 28

Table 3b. Output statistics for the B-C (splay) interseam

Channel Channel

No. Channel % Single Connectivity Connectivity Well
Run Channels % Story No. % Connectivity
1 130 14 14 14 20 44
2 131 16 85 14 20 47
3 130 14 87 14 19 42
4 136 15 84 15 22 51
5 128 14 84 12 20 45
6 132 15 85 18 26 59
7 134 17 82 20 29 47
8 130 15 82 16 24 44
9 123 15 85 14 20 40
10 128 15 83 15 21 42
Mean 130.2 15 77.1 15.2 22.1 46.1

Table 2.3c. Output statistics for the B-C (splay) random replication (Fig.2. 12)

Channel Channel

No. Channel Connectivity Connectivity Well
Channels % No. % Connectivity

2 141 15 15 20 53
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Table 2.4. B-C interseam modeling results, modeled with a distributary geometry

Table 2.4a. Reckonnect model parameters for the B-C (distributary) interseam

Reservoir  Mean Mode Thickness Mode Width Sinuosity
Thickness Azimuth  Channel Thickness Variation Width  Variation Variation
m . m % m i %

30 170 17 1.59 40 59.8 50 1.3 28

Table 2.4b. Output statistics for the B-C (distributary) interseam

Channel Channel
(\[o} Channel % Single Connectivity Connectivity Well
Channels % Story \[e} % Connectivity
1 90 15 86 38 43 83
2 94 17 84 63 68 88
3 89 15 84 51 57 80
4 89 14 90 42 48 74
5 96 17 83 51 54 83
6 90 16 86 43 45 71
I 87 16 85 43 47 80
8 98 17 79 64 70 85
9 94 15 83 45 52 77
10 93 16 82 52 59 77
Mean 92 15.8 84.2 49.2 54.3 79.8

Table 2.4c. Output statistics for the B-C (distributary) random replication (Fig. 13)

Channel Channel

No. Connectivity  Connectivity Well
Channels Channel % No. % Connectivity
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The sand-poor A-B interseam was modeled with a splay (fan-like) geometry
(Figure 2.10b), whereby all modeled channels were forced to originate from a
single point; this is the most likely arrangement to account for the low proportion
of channel-infill and interpreted poor channel network development within the
modeled interseam volume. The B-C interseam was modeled with both splay
and distributary geometries, the latter type being characterized by channels that

have no fixed point of origin within the model.

Due to the low proportion (2%) of channel-body infill in the A-B interval, very few
channel bodies are modeled, and the majority (on average 87%) of those that
are present are isolated (i.e. are not in communication with another channel
body within the modeled interval) (Figure 2.10b). Channel-body connectivity
was low across most of the model (mean channel-body connectivity = 13%).
The pseudo-wells demonstrate that, in both proximal and distal locations, wells
are likely only to intersect isolated (i.e. non-clustered) channel bodies, if any,

with the mean well connectivity being only 1.9%.

The B-C interseam, when modeled as a crevasse splay complex (Figure 2.11),
displayed the following features compared to the model for the A-B interseam:
greater overall channel-body percentage (17%), greater mean channel-body
thickness (1.59 m), which resulted in higher mean connectivity of channel
bodies (22%) such that they formed multiple clusters of connected channel
bodies. As expected in a splay, channel-body connectivity decreased distally
and away from the axis of the splay, with isolated channel bodies more
commonly occurring towards the splay margins. Figure 2.11 demonstrates a
representative output from the B-C (splay) modeling runs: pseudo-wells
demonstrate that, for a proximal location, it is possible for wells to intersect

almost all of the channel clusters, whereas for distal locations, a well will
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intersect fewer channel bodies, the majority of which are likely to be isolated.
Mean well connectivity is 46%: i.e. by intersecting channel clusters, a single well
would be predicted, on average, to be in communication with 46% of the

channel bodies modeled.

When modeled with distributary tertiary channels — i.e. where channels have no
fixed point of origin (Figure 2.12) — the B-C interseam displayed the following
features: distributary tertiary channels were modeled with greater widths and
sinuosities than crevasse-splay channels, wusing width and sinuosity
measurements provided from the Ob River (Table 2.1). This resulted in greater
amalgamation and stacking of channel bodies and generated fewer but larger
channel-body clusters, yielding an average channel-body connectivity of 54%
by volume. Channel-body connectivity was distributed more randomly across
the modeled interval compared to that predicted by models of the interval that
used a splay-type geometry (Figure 11, ‘% channels connected’ inset Figure).
As a result, pseudo-wells were, on average, likely to intersect all of the channel

clusters, yielding a mean well connectivity of 79.8%.

2.7 Discussion

2.7.1 Depositional Models

Typical plan-form geometries of tertiary channel-body assemblages — i.e.
elements generated in splay complexes and distributary channel settings — from
the Ob River have been combined with channel body distributions resulting from
the random replications of stochastic modeling runs in order to propose three-
dimensional architectural models of the A-B (Aries-Castor) and B-C (Castor-

Pollux) interseam deposits of the Rangal Coal Measures succession.
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Upper (A-B interseam) interval: The A-B interseam is a poorly developed
crevasse splay complex, with few, poorly connected channel bodies in a very
low net:gross, distal floodplain setting (Figure 2.13). Negligible connectivity is
predicted for this interval. Channel bodies are mostly immature, being poorly
developed, thin and isolated. The inset well-logs taken from the South
Blackwater Mine dataset demonstrate typical successions from the interval
(Figure 2.13). Channel bodies present are interpreted as small scale-tertiary
channels that abruptly grade laterally into channel-margin levee and lake-

margin deposits.

Lower (B-C interseam) interval: The B-C (Castor-Pollux) interseam can be
interpreted as large, well-developed crevasse splay complex (Figure 2.14),
which evolved over time to preserve a network of interconnected splay-channel
elements in a medial floodplain setting (similar to those seen in the Ob River).
Connectivity likely exhibits a large spatial variation, being significantly greater in
proximal positions, where channels are more closely clustered adjacent to the
source of the splay. The inset wireline well logs demonstrate typical medial and

distal successions from the interval (Figure 2.14).

The B-C interseam can alternatively be interpreted as a complex assemblage of
bifurcating, meandering distributary channel bodies (Figure 2.15). Distributary
channel bodies interpreted from this part of the succession are considered to be
of low sinuosity (Fielding et al. 1993). A network of distributary-channel
elements will have a higher overall connectivity, and a more random distribution
of connectivity than channel elements modeled as a crevasse-splay

morphology.
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A network of distributary channels originating at various points along a reach of
the larger primary channel might explain the large number of channel bodies
observed in the subsurface succession, in contrast to the relatively channel-
poor overlying A-B interseam. The inset well-logs demonstrate successions
predicted at various locations in such a system. Deposits in the South
Blackwater Mine dataset generally grade laterally from channel element, to
channel-margin element, to medial floodplain element, and locally to distal
floodplain element (Avenell 1998). The B-C interseam is considered to be

closely analogous to the floodplain morphology of the modern Ob River.

The difference in fluvial style between A-B interseam deposits and the lower
B-C interseam deposits may be attributed to a number of factors. The deposits
could have formed during an episode of increased rate of accommodation
creation, resulting in drowning of mires, splays and more medial floodplain
deposits, thereby preferentially preserving distal floodplain deposits, rather than

primary channel deposits.

2.7.2 Limitations of data

The principal limitation for this study is the limited lateral extent of the data,
leading to uncertainty as to where the data is situated in the overall depositional
system, and how representative of that system it is. A single splay in the Ob
River (Figure 2.9c) is 4000 m by 5000 m, yet the entire study area at South
Blackwater Mine measures only 1000 m by 2000 m. Thus, the predictions of
subsurface fluvial architecture arising from this study could represent only a
small portion of a much larger system, so care must be taken when

extrapolating interpretations made from such small sub-sections of what
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is overall a much larger fluvial system. This may explain the contrasting styles
of deposition interpreted in the A-B and B-C interseams, including the observed
differences in the proportions of overall channel bodies — 2% versus 17%,

respectively.

Although apparently an extremely low net:gross interval, with negligible
reservoir potential, the A-B interseam examined in the study area might
represent a low net:gross fluvio-lacustrine environment located in a floodplain
setting, at a stratigraphic level which overall has a greater reservoir potential
elsewhere within the larger system. Analysis of a larger dataset from a wider
spatial area could provide additional insight into the regional variability of such

systems.

2.8 Conclusions

Subsurface datasets, even those of relatively high resolution such as the closely
spaced coal mine wells of the South Blackwater Mine, may still not provide data
of sufficient density of coverage to accurately resolve small-scale (tertiary)
channel-element dimensions in flood basin settings. Where the spacing of
subsurface wells is greater than the mean width of any channel elements
present, modern analogues can be a useful tool in supplementing the primary
dataset to yield information regarding likely analogous plan-form geometries. All
sand-prone elements interpreted with confidence in the wireline logs were
channelized deposits; thinner, sheet-like deposits being too thin to reliably

interpret or correlate.

Simple models created using Reckonnect reservoir modeling software
demonstrate some characteristic features of channel connectivity in small-scale

distributive fluvial systems developed in flood basin settings, such as those of
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the Rangal Coal Measures succession: (i) channel-body connectivity is more
uniform where levee breaches result in distributary channels rather than in splay
complexes; (i) relatively good connectivity is seen in proximal positions in
splays, but decreases distally from the source as channel elements diverge; (iii)
connectivity tends to be greater down the axis of splays, with more isolated

channel bodies occurring at the margins.

Good connectivity between channel bodies is expected in some cases (e.g. in
the B-C interseam, which has a 17% channel proportion). However, where
channel percentage is very low, as in the A-B interseam, connectivity between
channel bodies is negligible. It is therefore vital to accurately constrain the
proportions of infill by each architectural element in the system, in order to

produce models with realistic channel-body distributions and connectivities.

Care must be taken when extrapolating findings from small datasets to a larger
scale, as a small dataset may provide a biased, non-representative
representation of the subsurface at a regional scale. This may be of particular
relevance in petroleum exploration, where seismic datasets typically cannot
resolve small-scale channel elements, and where well data are sparse,
potentially leading to biased estimations of architectural-element proportions,
especially where inappropriate analogues have been used to provide

supplementary data.

2.9 Future work

This work has investigated small-scale channel deposits, at a sub-seismic
scale, and illustrates the importance of channelized deposits as inter-connected
reservoir deposits. The remainder of this thesis will investigate larger, seismic-

scale channel deposits from the fluvio-deltaic, Triassic Mungaroo Formation.
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Chapter 3 Sedimentology of a fluvial system within a delta-plain setting:
a case study from the Triassic Mungaroo Formation

Research question: What is the nature of the stratigraphy and

sedimentology of the Triassic Mungaroo Formation in block

WA-404-P, Exmouth Plateau, Australia?

3.1 Chapter overview

This Chapter aims to describe the sedimentology of a fluvial-dominated
succession that accumulated in a large delta-plain system. This will be achieved
through detailed examination of a case example from the Triassic Mungaroo
Formation of the Northwest Shelf of Australia to describe and interpret the
lithofacies, and facies associations present in the succession as revealed from
wireline and core logs from a specific study area (WA-404-P). Specific
objectives of this chapter are as follows: (i) to identify and describe the
lithofacies present in cored sections of the Mungaroo Formation; (ii) to group
lithofacies into facies associations relating to assemblages that accumulated in
response to sets of genetically related depositional processes; (iii) to explore
the possible depositional settings relating to architectural elements composed of
facies associations; (iv) to gain insight into the in-channel and overbank style

represented by cored sections of the Mungaroo Formation.

The description and interpretation of lithofacies, facies associations and
associated information from subsurface well-log and core data is important for
characterising the processes that operate in sedimentary successions known
only form subsurface settings, and for assessing the relative dominance of
fluvial and deltaic processes in relation to the various sub-environments that

have given rise to the preserved succession. The lithological observations made
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and discussed in this chapter form the basis for the interpretation of seismic
architectural elements and the recognition of larger-scale components of
depositional environments recognised from seismic data (valley, channel belt
and channel network assemblages), as discussed in chapters 5-6.
Sedimentological observations discussed in this chapter are specific to the
detailed study location: block WA-404-P, an approximately 3000 km? exploration
block situated on the Exmouth Plateau, one of the more distal regions of the
Northern Carnarvon Basin (Figure 3.1). Given the relatively outboard setting of
this block, the deposits described are not necessarily representative of the

sedimentology of more inboard locations on the Exmouth Plateau.

The core examined is of high quality and is well-preserved; the studied core
sections are particularly useful for reconstructing the gross-scale sedimentology
of the system because they penetrate both reservoir (channel-dominated) and
non-reservoir (overbank dominated) intervals, thereby providing a relatively
complete overview of the sedimentology of cored sections of the depositional
system. However, the cored sections examined represent only a small portion
of the Mungaroo Formation overall and are limited to the S2-S3 (TR21.1 —
TR22.1) interval, which itself is not necessarily representative of other
stratigraphic intervals of the formation. The majority of previous studies and
much of the past exploration and reservoir development of the Triassic
Mungaroo Formation has concentrated on more proximal areas of the system,
focussing on inboard sub-basins of the Northern Carnarvon Basin, including, for
example, the Dampier Sub-basin, where channel bodies tend to be large and
amalgamated than similar bodies present in more distal settings (Seggie et al.,
2007). This study provides insight into the less widely investigated distal

expression of the Mungaroo Formation.
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3.2 Dataset

This study utilizes data provided by Woodside Energy Ltd., primarily an open-
file 3D seismic survey (Colmbard 3D), with an area of approximately 3000 km?,
located in block WA-404-P, on the Exmouth Plateau, a province of the Northern
Carnarvon Basin, on the Northwest Shelf of Australia (Figure 1). The study also
utilized data from 12 wells with wireline log suites, 2 of which additionally had

core available; the locations of these well are shown in Figure 3.2.

3.3 Regional stratigraphy

3.3.1 Paleogeography

During the Late Triassic, the Northwest Shelf of Australia occupied a
palaeolatitude of approximately 30°S (Jablonski, 1997), in southeast Pangea,
on the southern margin of the Tethys Sea (Figure 3.3). At this time, the
Northern Carnarvon Basin formed an active margin megasequence (Jablonski,
1997) where accommodation space was created by subsidence associated with
post-rift cooling of the lithosphere following Paleozoic rifting. The active margin
megasequence comprised fluvio-deltaic sequences that were deposited
overlying the marine deposits of the Locker Shale, as the rate of subsidence in

the basin slowed (Jablonski, 1997; Westphal & Aigner, 1997).

3.3.2 Chronostratigraphy

The Mungaroo Formation records the overall transgression of a fluvio-deltaic
system by an advancing shoreline (Payenberg et al., 2013). Within this overall
trend, several high-frequency transgressive-regressive cycles are recorded and
the preserved sedimentary evidence for these has been identified using seismic

and well data, which forms the basis for a sequence stratigraphic correlation
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Figure 3.2: Location of wells and study subset (explored in Chapter 6) within the area
covered by the Colmbard 3D seismic survey. Location of inline 5670 (c.f. Figure 3.7) is
shown by hashed line. Grid measurements are giveninm (UTM zone GDA94_50S).
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Figure 3.4: Reproduced from Marshall & Lang (2013). Regional play intervals and relative
sea level curve for the North West Shelf of Australia, from 0-312 Ma. Key stratigraphic
surfaces (SB = sequence boundary, TS = transgressive surface, MFS = maximum flooding
surface) are also shown. Stratigraphic extent of Mungaroo Fm studies is shown: Seggie et
al, 2007 (orange); Stoner, 2010 (green); Adamson etal., 2013 (grey); Heldreich etal., 2013
(Itblue); Marshall & Lang, 2013 (dk blue); Payenberg et al., 2013 (red); this study (black).




66

framework (Adamson et al., 2013; Marshall & Lang, 2013). The stratigraphy of
the Northwest Shelf has been established using a combination of seismic,
sedimentological and panynological and dinocyst data (Marshall & Lang, 2013).
Figure 3.4 shows the 0-312 Ma play intervals identified by Marshall and Lang
(2013), for which the Triassic is divided into three regional play intervals, TR10
(252.2-237.0 Ma), TR20 (237.0-209.9 Ma) and TR30 (209.5-201.3 Ma) that are
themselves split into sub-plays. Within the sub-plays, third-order stratal surfaces
(c.f. Vall et al., 1977) were identified. Figure 3.5 shows the chronostratigraphic
chart devised by Marshall & Lang (2013), focusing on the Triassic, and showing
the regional plays, sub-plays, and significant stratigraphic surfaces and systems
tracts. Figure 3.6 presents a SE-NW regional stratigraphic section by Marshall &
Lang (2013) across the Northern Carnarvon Basin, through the Dampier Sub-
Basin and Exmouth Plateau, and highlights major stratigraphic packages and

fault arrangements.

Of 12 seismic horizons mapped in the dataset for this study, seven relate to
Triassic stratigraphic surfaces identified by Marshall & Lang (2013). Table 3.1
lists the horizons and related stratal surfaces used in the study. Figure 3.7
shows a synthetic seismogram used to tie well tops to their corresponding

seismic events.

Figure 3.8 shows a west-east correlation panel between Well05 and Wellll,
showing identified stratatigraphic ~ surfaces (following ~ Woodside
chronostratigraphic nomenclature), and seismic units. Time-structure maps and
elevation statistics for the horizons are presented in Appendix 1. This study
examines the TR20 play interval, investigating the Norian deposits of the

Mungaroo Formation.
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Table 3.1: Seismic horizons and related stratal surfaces used in the study.

Seismic  Mean Elevation Stratigraphic  Bounding surface Stage

horizon surface

Water 1876

Bottom ) ) )

S12 2191 T40.0 Sequence Messinian
boundary

S11 2842 K60.0 Sequence Campanian
boundary

S10 2934 K50.0 Sequence Cenomanian
boundary

S9 3041 K40.0 Sequence Aptian
boundary

S8 3244 J40.0 Sequence Oxfordian
boundary

S7 3335 TR30.1 Transgressive Norian
surface

S6 3517 TR27.2 Maximum Norian
flooding surface

S5 3592 TR26.5 Maximum Norian
flooding surface

S4 3713 TR26.1 Transgressive Norian
surface

S3 3955 TR22.1 Transgressive Norian
surface

S2 4175 TR21.1 Transgressive Norian
surface

Sl 4510 TR20.3 Sequence Norian
boundary

Figure 3.9 shows an east-west seismic section through the Colmbard 3D
dataset used in the study; this highlights the seismic horizons used, the major
faults present, and pre-, syn, and post-rift megasequences. The location of the

seismic line is shown on Figure 3.3.

3.3.3 Tectonostratigraphic evolution
The geologic evolution of the Northern Carnarvon Basin broadly comprises four

phases: (i) a Palaeozoic to Mesozoic pre-rift phase; (ii) a relatively short-lived,
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Figure 3.7: Right: example
synthetic seismogram created
in order to facilitate well-to-
seismic tie. Below: detailed
view of highlighted section,
illustrating that stratigraphic
markers (interpreted using
biostratigraphy and
lithostratigraphy by Woodside
Energy Ltd) and key fluvial
deposits identified in this study,
are correctly tied to their
corresponding events in the
Colmbard 3D seismic dataset
(Near Stack data).
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Pliensbachian to Callovian rift phase; (iii) a post-rift, passive margin phase that
lasted until the end of the Cretaceous; (iv) a convergence phase that is currently

still in progress (Westphal & Aigner, 1997).

Palaeozoic to Mesozoic pre-rift phase: Western and northwestern Australia
formed part of Gondwana during the Palaeozoic (Westphal & Aigner, 1997).
Basin subsidence, which commenced in the Permian, resulted in the
development of the Westralian Superbasin (Yeats et al., 1986). The Northern
Carnarvon Basin forms part of the relic Westralian Superbasin. Rifting in the
Late Permian gave rise to an unconformity of regional lateral extent at the
Permian-Triassic boundary (Westphal & Aigner, 1997; Jablonski, 1997). During
the Triassic, the Northern Carnarvon Basin formed a continental sag basin
(Boote & Kirk, 1989), with a sedimentary wedge overlying the Permian-Triassic
unconformity that accumulated throughout the Mesozoic (Boote & Kirk, 1989;
Jablonski, 1997); the Mungaroo Formation forms part of this wedge.. The onset
of fault movement associated with the breakup of Gondwana is evident in the
preserved succession dating from latest Triassic time (Westphal & Algner,

1997), at which time grabens and half-grabens developed.

The Mungaroo Formation is generally considered a high-accommodation fluvio-
deltaic system. Evidence for this is found not only in the sedimentary style but
also in the subsidence and sedimentation rates for the Northern Carnarvon
Basin. High rates of subsidence and sedimentation have been interpreted in
the Northern Carnarvon Basin throughout the Triassic (Kaiko & Tait, 2001), with
a peak subsidence rate of 0.3 mm//yr at the time of deposition of the Mungaroo

Formation.
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Figure 3.9: An E-W seismic section through the Colmbard 3D dataset, highlighting
major faults, and pre-, syn- and post-rift tectonostratigraphic packages. Location of
the sectionis shown oninset map of the Colmbard 3D survey area.
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Rift phase: An early syn-rift megasequence is recognized, bounded by
transgressive surfaces of Pliensbachian and Callovian age (Westphal & Aigner,
1997). The main phase of rifting on the Exmouth Plateau took place later (Exon
et al., 1982). The main syn-rift megasequence was deposited throughout the
Late Jurassic and is bounded by transgressive surfaces of Callovian and top
Tithonian age (Jablonski, 1997). The rifting resulted in the development of a
series of horsts and grabens controlled primarily by northeasterly trending
faults. These fault blocks form the main exploration targets for Triassic and

Jurassic reservoirs in the area (Wilcox, 1981; Westphal & Aigner, 1997).

Post-rift phase: A passive margin phase persisted in the region until the
beginning of the Cenozoic, when convergence between the Australian and
Asian plates resulted in northern Australia undergoing a phase of flexural

subsidence (Westphal & Aigner, 1997).

The timing of fault movement can be inferred by changes in sediment thickness
on the downthrown side of the faults, as demonstrated by isochron thickness
maps taken between the seismic horizons used in this project (Figure 3.10).
The differential thickness of sediment accumulations adjacent to faults can be
seen in the S7-S8 and S8-S9 isochron maps. These are interpreted as relating
to syn-rift sediment packages, resulting from the early and main syn-rift
megasequences, respectively. Figure 3.9 highlights major faults and syn-rift

packages on an E-W section from the Colmbard 3D survey.

3.3.4 Mungaroo Formation Sediment Provenance and climate
The main source of sediment during the Mesozoic active margin

megasequence is attributed to the Ross High Upland (location shown on
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Figure 3.3) where a foreland basin developed, creating an extensive fluvial
outwash plain. A major drainage system formed from the east to the west,
which transported sediments from the Ross High to the North West Shelf
(Jablonski, 1997), where they accumulated as the deposits of a large fluvio-
deltaic system (Westphal & Aigner, 1997). Triassic sediments are up to 4 km
thick in inboard areas such as the Dampier Sub-basin, and up to 6 km thick on
more outboard parts of the Exmouth Plateau (Adamson et al., 2013). It is
thought that the onshore Phanerozoic basins themselves had little unfilled
accommodation space at this time, and so acted as conduits for the bypass of a
large volume of sediment to the North West Shelf, rather than as significant
depocentres in their own right (Jablonski, 1997). Lewis & Sircombe (2013)
carried out heavy mineral analysis and dating of detrital zircons, the results of
which support the presence of continental-scale fluvial drainage systems. Lewis
and Sircombe (2013) also propose a major sediment input from the south;
however this is largely disputed by other regional studies (Adamson et al, 2013;
Payenberg et al., 2013) and is at odds both with the data from the Colmbard 3D
survey, which shows major channel body trends to aligned E-W, and only minor
trends from S-N, and with well data used in the study, where dip readings
favour E-W palaeocurrents. A secondary, local sediment source in the Triassic
for the Northern Carnarvon Basin is thought to have been the Pilbara Block
(Jablonski, 1997), though this likely only acted as a minor source of additional

sediment input.

The climate in the Triassic is interpreted to have been temperate to warm,
humid and monsoonal with wet and dry periods (Dickens, 1985; Bradshaw et

al., 1994)
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Figure 3.10: Isochron thickness maps taken
between seismic horizons from the Colmbard
3D survey. While faults can be seen propagating

down to S1, fault movement can only be seen between S7-S8, and S8-S9, representing both
the early (Pliensbachian to Callovian) and main (Callovian to to Tithonian) syn-rift
megasequences identified by Westphal & Aigner (1997) and Jablonski (1997).
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3.3.5 Summary of previous work

Numerous studies have investigated the regional-scale palaeogeography of the
Mungaroo fluvio-deltaic system (e.g., Bradshaw et al., 1994; Jablonski, 1997,
Longley et al., 2002), and these studies have shown that the main controls on
reservoir distribution on the are the palaeogeography and structure of the

Northwest Shelf.

Previous studies of the sedimentology of the Mungaroo Formation (Adamson et
al., 2013; Hocking et al., 1987; Payenberg et al., 2013) have benefited from
access to region-wide datasets with wells sited in several sub-basins of the
Northern Carnarvon Basin, with core penetrations of the TR20 and TR30 play
intervals. However, the majority of the previous studies that have considered
the sedimentology and reservoir characteristics of the Mungaroo Formation
have been undertaken in relatively inboard locations of the Exmouth Plateau
(Adamson et al, 2013; Bal et al., 2002; Heldreich et al., 2013; Jablonski, 1997;
Stoner, 2010) and hence tend to describe a more proximal expression of the
sedimentology of the palaeoenvironments represented by the Mungaroo
Formation than that encountered in this study. Several related studies (e.g.,
Seggie et al.,2007; Adamson et al., 2013; Payenberg et al., 2013) also describe
the stratigraphically younger and more marine influenced Brigadier Formation
(TR30 play interval) that directly overlies the Mungaroo Formation. The facies
associations described in these studies, including shoreface sands and marine
mudstones, reflect the generally more marine-influenced setting at the time of
deposition of the Brigadier Formation. Table 3.2 provides a summary overview
of previous published research studies that have investigated the lithology of

the Mungaroo Formation.
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3.5 Lithofacies of the Mungaroo Formation

3.5.1 Overview

Sixteen distinct lithofacies are recognised within the Mungaroo Formation
examined as part of this study and these are described through adoption of a
modified and extended version of Miall’s (1978) widely used facies classification
scheme. Seven lithofacies are associated with channelized deposits, three are
present in both channelized and non-channelized deposits, and nine are

associated solely with non-channelized deposits.

The lithofacies identified are as follows: Matrix-supported conglomerate (Gm);
Low-angle trough cross-bedded sandstone (St); Planar cross-bedded
sandstone (Sp); Planar laminated sandstone (Sh); Massive sandstone (Sm);
Ripple-laminated sandstone (Sr); De-watered and convoluted sandstone (Sdc);
Laminated mudstone (Fl); Discontinuous laminated siltstone (FIr); De-watered
mud and silt (Fdc); Sand-prone heterolithics (Hs); Mud-prone heterolithics (Hf);
Massive mud and silt (Fm); Mud, silt and very fine sand with root traces (Fro);
Gleysol (Pg); Coal and carbonaceous mud (C). These lithofacies are discussed
in detail in section 4.4.2 and key characteristic features are listed in Table 3.3.
Assemblages of genetically related lithofacies, forming facies associations, are

discussed in Section 4.4.3.

3.5.2 Lithofacies in detail

Each of the recognised lithofacies possesses a distinctive set of
sedimentological characteristics that enable identification in core. Core
photograph examples and sketches of each lithofacies are shown in

Figure 3.11. These specific examples are from Well-11 (Noblige-2).
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Matrix-supported conglomerate (Gm): This lithofacies is characterized by
dm-thick, light-brown, pebble-bearing sandstone with rare cross-bedding
(Figure 3.11a). Clasts are very coarse sand to pebble grade, poorly sorted,
angular to sub-rounded, lenticular in shape and are composed of mudstone,
siltstone, sandstone, quartz and carbonaceous material. Some examples
contain abundant plant material as leaf debris. Matrix is characterised by light-

brown to grey, fine- to medium-grained sandstone.

This lithofacies commonly occurs at the base of channel elements. It is
interpreted as basal lags of channel fill. The largely intra-formational clasts
indicate the re-working of fluvial overbank and previously deposited channel
sediments by erosive, high-energy flows. Mud-rich clasts may represent bank-

collapse events (Plint, 1986).

Low-angle trough cross-bedded sandstone (St): This lithofacies is a fine- to
medium-grained, pale-brown to grey sandstone (Figure 3.11b). Cross-sets are
typically inclined at angles <15°. Sets of facies St vary in thickness from 0.3 m
to 1.0 m. Most commonly, fining-up, erosive-based sets stack to form
compound cosets of strata that are themselves several metres thick, and have

coarser-grained, erosive-based lags at their base.

Facies St is a common constituent of channel complex deposits (Miall, 1985,
2006) and examples identified in this study most commonly represent deposits
of high-energy channel complexes. These deposits are interpreted as in-
channel bars deposited as 3-D dunes, in the lower flow regime (Miall, 1988) via

moderate to high-energy traction currents (Adamson et al., 2013).

Planar cross-bedded sandstone (Sp): This lithofacies is a very fine-grained to

medium-grained, often silty, pale-brown or grey sandstone (Figure 3.11c).
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Cross-sets dips are inclined at angles that vary from 15° to 25°. Relatively
uncommon changes in orientation have associated reactivation surfaces,
typically with mud drapes. Mud (occasionally carbonaceous) drapes are
common on cross bed surfaces. Rare bioturbation (unlined traces of an
unspecified ichnofacies) are recognised. Predominantly fining-up, approximately
0.3 to 1.0 m-thick sets, commonly with erosive bases, occur stacked as

compound cosets that are themselves each tens of metres thick.

Facies Sp is prevalent in channel complexes (Miall, 1985), and is commonly
interpreted as having been deposited during the downstream migration or
lateral accretion of barforms (Miall, 1985; 1988). Sp is interpreted as the
deposits of 2-D dunes, and is generally interpreted as deposited by flows that
experienced lower-energy conditions than those responsible for the gernation of
3-D, dunes represented by lithofacies St (Miall, 2006). Cleaner, coarser grained
sandstones are interpreted as high-energy deposits (Fisher & McGowen, 1963;
Davies & Ethridge, 1975); finer-grained, silty sandstones that are commonly
present are likely representative of relatively low-energy channel deposits (cf.
Davies & Ethridge, 1975; Donselaar & Schmidt, 2010). Lithofacies Sp also
occurs as the upper part of higher energy channel deposits relating to channel
abandonment and, as such, in core in this study is seen to commonly grade
vertically into planar laminated sandstone (Sh), ripple laminated sandstone (Sr)
and planar laminated mudstone (Fl) (cf. Miall, 1985; Bristow, 1993).
Figure 3.11c shows an example of Sp from within a high-energy channel

complex.

Planar-laminated sandstone (Sh): This lithofacies is characterised by very-
fine- to fine-grained pale-brown sandstone (Figures 3.11b and 3.11d). Mud and

carbonaceous drapes are common, as well as plant material. Beds are



85

commonly on a decimetre scale and can have either erosive or gradational
bases. This lithofacies is commonly associated with ripple-laminated sandstone

(Sr) and laminated mudstone (Fl).

This facies is most commonly present at the top of channel deposits. It is
interpreted to have been deposited under waning-low flow-regime conditions.
Where present as part of bay-fill assemblages, this lithofacies is tentatively
interpreted as representative of the fill of distal distributary channel and mouth-
bar elements (Adamson et al., 2013; cf. Coleman & Gagliano, 1960; Coleman et

al., 1964; Hyne et al. 1979; Tye & Hickey, 2001).

Massive sandstone (Sm): This lithofacies is expressed as dm-thick, sharp,
erosive based beds of very-fine, pale-grey to brown sandstone (Figure 3.11d).
Beds typically exhibit weak fining-upward trends. Rarely, cm- to dm-thick beds

with pronounced normal grading are present.

Lithofacies Sm is interpreted as being deposited rapidly in discharges with high
sediment-to-water ratios typical of hyperconcentrated or gravity-driven flows
(Miall, 1978; 2000; 2006), either in channel or overbank areas. In this study,
facies Sm is most commonly interpreted as being deposited by unconfined,
overbank flow, although they are also identified as forming part of channel fill.
Deposits of lithiofacies Sm in non-confined, overbank settings are commonly
associated both with crevasse splays (Mjgs et al., 1993), as splay channel or
sheet deposits, often forming part of the ‘splay belt’ running parallel to fluvial
channel deposits (Fielding, 1984), and with bay-fill in more distal areas, where
they represent storm or flood events, where incidences of pronounced normal
grading indicate pulsed flow (Collinson et al., 2006). Figure 3.11d shows an

example of Sm associated with bay-fill.
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Ripple laminated sandstone (Sr): This lithofacies is characterised by 0.1 to
2.0m-thick beds of very-fine- to fine-grained light-grey silty sandstone
(Figure 3.11e). This facies is commonly burrowed and root mottled, especially
toward the tops of beds. Sand filled rhizoliths are common. Mud drapes on
ripple laminae are common.. Rarely, sets of climbing-ripple strata can be

identified in core.

This lithofacies is interpreted as lower-flow regime fluvial deposits, representing
the downstream migration of small sandy bedforms — microforms (Miall, 1985;
1988). These deposits are interpreted as resulting from (i) both confined flow in
low-energy channels (Smith & Pérez-Arlucea, 1994), primarily in shallow areas
of active channels (Miall, 2006), (ii) unconfined flow on the surfaces of crevasse
splays (Hyne at al., 1979; Smith & Pérez-Arlucea, 1994), and (iii) bay-fill
deposition (Hyne at al., 1979). Mud drapes indicate variations in flow energy.
Figure 3.11e shows a well-developed section of Sr lithofacies from a low-energy

channel fill.

De-watered and convoluted sandstone (Sdc), de-watered mud and silt
(Fdc): Lithofacies Sdc is characterised by siltstone to very fine silty sandstone,
and is commonly associated with finer-grained deformed facies Fdc
(Figures 3.11f and 3.11g). Dewatering structures include convolute lamination,
flame structures, disrupted laminations and overturning of beds. Fdc and Sdc
sediments are typically cm-dm thickness (maximum thickness occurrence in the
studied core is 0.4 m). The extent of deformation is usually confined to a single
bed, and many such beds are erosionally truncated by overlying beds. Facies
Fdc commonly contains siderite nodules and iron staining. Original bedding can

be obscured, depending on the severity of the deformation.
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Soft-sediment (plastic) deformation due to dewatering is implied by the sharp,
upwards-pointing folds of the majority of the convolutions (Collinson et al.,
2006) and is attributed to rapid deposition and loading on saturated deposits
(Dzulynski & Smith, 1963; Collinson et al., 2006). This is interpreted as likely
being due to rapid deposition of sediment during flood events. Facies Sdc and
Fdc are commonly identified in this study in bay-fill deposits. Facies Sdc more
rarely occurs in the studied core within channel deposits; this current convolute
bedding likely developed very soon after deposition (Allen, 1982; Collinson et

al., 2006).

Laminated mudstone (Fl): This lithofacies is characterised by silty, dark-grey
mudstone with silt to very-fine sand grade laminae and rare to common
carbonaceous root traces. Beds typically range in thickness from 0.2 m to
1.5 m. Rhythmic, pinstripe laminae are common, with coarser, silt to very fine

sandstone grade laminae ranging from approximately 0.2 to 1.0 cm thickness.

Examples of this facies are interpreted as mudrocks of lacustrine origin,
whereby the fine-grained sediments settled out of suspension (Collinson et al.,
2006). Coarser laminae were likely deposited by pulsed flow into a lake e.g.
seasonal climatic variations controlling sediment supply (Collinson et al., 2006).
This facies is also interpreted as the finer-grained part of bay-fill deposits

(Horne et al., 1978). Figure 3.11h shows a typical example of Fl.

Massive siltstone and mudstone (Fm): This facies is characterised by
decimetre thickness individual beds that stack to form bedded deposits that are
collectively several metres thick, of dark grey, massive siltstone-dominated
mudstone (Figure 3.11h). This facies has either no discernable bedding or very

indistinct bedding, often grading into facies Fl. Low diversity bioturbation is
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common at the top of beds (carbonaceous root traces and indistinct burrows —
possibly Planolites). Metre-thick beds of massive, siltstone-dominated

mudstones with absent bioturbation are also present.

This facies is interpreted as floodplain fines (Fielding, 1984), and can be
interpreted as floodplain siltstones and mudstones, distal crevasse delta
mudstones and anoxic lake floor mudstones (Fielding, 1984). The paucity of
bioturbation (e.g. burrows and root traces) within the beds indicates a lack of
vegetation and fauna, favouring an interpretation of facies Fm as floodplain lake
mudrocks, deposited by settling out of suspension, with no discernable coarse
sediment input. The preserved root traces at the top of beds (often extending
down from overlying heavily rooted, siltstone and sandstone beds), indicates
the establishment of vegetation as the local accommodation within the lakes

and ponds became filled. Figure 3.11h shows an example of Fm overlaying Fl.

Discontinuous wavy laminated siltstone (FIr): This lithofacies is
characterised by light-grey to dark-grey siltstone, commonly with mud lining the
discontinuous internal laminae of the siltstone. Beds range in thickness from 0.1
to 0.6 m, and may stack with thinner (typically <0.1 m thickness) beds of
mudstone to form multi-metre-thick accumulations of stacked heterolithic strata
(Figure 3.11i). FIr beds are commonly burrowed (typically brackish water
ichnofacies including possible Diplocraterion) and root-mottled (grey),
containing carbonaceous root traces (preserved length <1.0 m) which frequently
disrupt the original bedding structures. Flr is commonly associated with Sr and

Sp.

This lithofacies commonly occurs at the top of coarser-grained channel

elements and in sandy and muddy crevasse splay elements. Facies FIr is
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interpreted as the deposits of waning-flow regimes during channel
abandonment. It can also be attributed to very low energy, periodically (possibly
seasonally) active distributary and crevasse channels and unconfined crevasse-
splay deposits (Fielding, 1984), forming part of crevasse-splay delta and inter-
distributary bay assemblages. The grey colour, mottling and preservation of
carbonaceous root traces indicates a poorly-drained setting (Kraus & Hasitosis,
2006). Figure 3.11i shows an example of FIr that has not been burrowed or

disturbed by root traces.

Sand-prone heterolithics (Hs) and mud-prone heterolithics (Hf): Lithofacies
Hs is characterised by dm-scale light-grey siltstone and very-fine sandstone that
occurs interbedded with cm-scale dark grey siltstone to silty mudstone
(Figures 3.11i and 3.11j.). Facies Hs is present both as sub-horizontal deposits
and as inclined heterolithic cross-stratification (IHS), foresets of which are
inclined at angles up to 20°. This lithofacies is commonly bioturbated with
burrows in finer-grained beds and rhizoliths (sand-filled rhizoliths and rhizoliths
containing preserved carbonaceous root traces) in coarser-grained beds.

Indistinct wavy and ripple laminations are common.

Lithofacies Hf is characterised as cm- to dm-scale, interbedded siltstone,
mudstone and very fine sandstone (Figure 3.11j and 3.11k). Sedimentary
features include ripple laminations, rare hummocky cross-stratification (HCS)
and dewatering structures. Bioturbation (both horizontal and vertical burrows,
notably Diplocraterion, Planolites, Chondrites, Zoophycos and Technichnus)
and mid- to dark-grey root mottling with carbonaceous root traces, are common

in sub-horizontal Hf, but less so in IHS examples of facies Hf.
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Facies Hs is attributed to unconfined deposition by low-stage, but varying
energy flow. This facies is present as part of both proximal and distal crevasse-
splay deposits (Fielding, 1984, 1986; Obrien & Wells, 1986; Smith et al., 1989;
Mjgs et al., 1993). IHS is also interpreted as tidally-influenced fluvial channel
deposits (e.g. Thomas et al., 1987; Smith, 1987, 1988; Johnson & Dashtgard,

2014).

Lithofacies Hf is interpreted principally as a more distal expression of facies Hs
(Stear, 1983; Fielding, 1984) and is present as crevasse-splay deposits (Bristow
et al., 2002). In some cases, associated inclined heterolithic cross-stratification
(IHS) has been interpreted as the inclined toes of crevasse-splay delta foresets,
and as bay-fill (Hillier at al., 2007; Adamson et al., 2013). Figure 3.11j shows an
example of facies Hf relating to crevasse spay deposits, and Figure 3.11k

shows Hf as bay-fill deposits.

Mudstone, siltstone and very fine sandstone, with root traces (Fro): This
lithofacies is most commonly present as very-fine sandstone and siltstone, with
mid to dark grey mottling and in-situ carbonaceous rootlets. Preserved length of
the traces is typically 0.3 to 1.0 m (the best example of which is found at
4092 m in Well-11; the preserved length is ~1.0 m in length, where the primary
root can be seen to give rise to second and third order rootlets (Figure 3.11l).
Depending on the intensity of the rooting, original bedding features are either

disrupted or completely destroyed.

This lithofacies is found throughout the formation, and where the roots are well
developed. This facies is interpreted as fine-grained overbank deposits,
including crevasse splay deposits (Bristow et al., 2002). This lithofacies is also

present in the uppermost deposits of channel complexes, where overlain by
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floodplain deposits. The preservation of carbonaceous root traces implies a
relatively poorly-drained depositional setting (Kraus & Hasitosis, 2006).
Figure 3.11l shows an example of Fro, with an exceptionally well-preserved

carbonaceous root trace in a silty sandstone crevasse splay deposit.

Gleysol (Pg): Facies Pg consists of palaeosol beds that are typically 0.5 to 1.5
m thick. The grain size of this lithofacies is typically siltstone-grade
(Figure 3.11m). Colour varies from grey to green-grey to dark-grey. Beds are
commonly pyritic and contain siderite nodules up to 10 cm diameter. Root
mottling affecting part or the whole of the bed and rhizoliths preserved as iron-
oxide precipitates and carbonaceous root traces (preserved length
approximately 0.3 to 1.0 m) are abundant in this lithofacies, as are fragments of

carbonaceous plant material.

The reduced (grey) colour of the matrix, in conjunction with abundant organic
fragments are indicative of very poorly drained, gleyed palaeosols (Kraus,
1998), Rhizoliths preserved as yellow-brown tendrils (Figure 3.11m) indicate
that the soil matrix was sufficiently poorly-drained to reduce and solublized iron
which is precipitated as goethite, lending the rhizoliths their yellow-brown colour
(Kraus & Hasitosis, 2006). Carbonaceous root traces are more commonly found
in very poorly-drained palaeosols; the preservation of the organic matter being
highly dependent on anoxic conditions in waterlogged soils (Kraus & Hasitosis,
2006).This lithofacies is interpreted as gleysol accumulating in poorly-drained
floodplain and marsh conditions, with variations in colour attributed to mineral
leaching. Facies Pg is commonly associated with (i) crevasse-splay deposits,
where it occurs both above and below the splay deposits (Slingeland & Smith,
2004), and in this study of the Mungaroo Formation has been found in close

association with (ii) lacustrine, (iii) coal and (iv) bay-fill deposits. Figure 3.11m
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shows an example of Pg with mottling due to iron (possible goethite) staining

and sideritized root traces.

Coal and carbonaceous mud (C): This lithofacies is typified by dark grey to
black, cm to dm-thickness beds of carbonaceous mudstones and borderline
coals, commonly with a blocky/rubbly texture (Figure 3.11n). Carbonaceous root
traces and sand to granule grade fragments of plant material are common. This

lithofacies is often closely associated with, and grades into facies Pg.

These borderline (poor-quality) coals and carbonaceous muds are interpreted
as accumulating in waterlogged settings, e.g. swamp or marsh conditions (cf.
Horne et al., 1978; McCabe, 1984; Ethridge et al., 1981; Slingerland & Smith,
2004). Figure 3.11n shows lithofacies C, where it is in association with facies Pg

and Fm.
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3.6 Lithofacies associations

Facies associations, comprising commonly occurring successions of lithofacies
are interpreted as successions of genetically-related strata that represent the
preserved record of depositional sub-environments (Walker and James, 1992).
Seven facies associations have here been interpreted from the Mungaroo
Formation and these associations have been recognised based on lithology, the
occurrence of sedimentary and biogenic structures, and on stacking patterns of
the individual lithofacies types. The typical expression of the facies associations

on wireline logs has also been investigated.

Table 3.4 lists and describes the seven facies associations recognised in the
Mungaroo Formation, and lists the lithofacies present in each facies
association. Figure 3.11 shows core photos of the facies associations, as well

as idealised logs and gamma-ray wireline log responses.

Figure 3.12: Facies associations of the Mungaroo Formation, incorporating
sedimentary and wireline logs, as well as core photo examples and brief description of
typical sedimentary features and interpreted depositional processes: a. High-energy
channel (F1); b. Low-energy channel (F2); c. proximal crevasse splay (F3); d. distal
crease splay (F4); e. gleysol, swamp and coal (F5), and floodplain lake (F6); f. Inter-

distributary bay heterolithics (F7).
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3.7 Depositional environment

In this section, the depositional environment of the Mungaroo Formation is

discussed, in particular tidal influence and sedimentary indicators thereof, and

the different styles of channel system interpreted from core deposits.

3.7.1 Tidal indicators

Sedimentary features: The following sedimentary features, whilst alone are

merely indicators of changing flow conditions, where several are found in close

association, are judged to be indicators of tidal influence on a fluvial regime.

Double and single mud drapes on cross beds (Willis, 2005; van den Berg
et al.,, 2007). Downdip, low-energy tidal bar complexes tend to be
relatively finer-grained and contain higher abundances of mud drapes

and mudstone rip-up clasts (Cheadle & McCrimmon, 1997).

Inclined, heterolithic cross-stratification (IHS), common in channels in the
fluvial-tidal transition zone (Thomas et al., 1987), in river-dominated
channels (Smith et al., 2009, 2011; Sisulak & Dashtgard, 2012), mixed
river and tidal channels (Smith, 1987, 1988; Thomas et al., 1987; Sisulak
& Dashtgard, 2012; Johnson & Dashtgard, 2014) and tide-dominated
channels (Choi et al., 2004; Dalrymple & Choi., 2007; Choi, 2010; Shiers
et al., 2014). Finer deposits in IHS can be attributed to downstream fining
in a reversing current in mixed tidal-fluvial settings (Johnson &
Dashtgard, 2014). Rhythmic bedding (alternating sand-rich and mud-rich
beds) and bundling of mud laminae on a mm to cm scale may be
attributed to diurnal and semi-diurnal tidal changes (de Boer at al., 1989;

Ainsworth & Walker, 1994; Choi et al., 2004; Dalrymple & Choi, 2007).
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e ‘Tidal bundles’ in cross-stratified sets indicating increasing and waning
tidal streangth, formed in response to spring and neap tides (Collinson et

al., 2006).

e Reactivation surfaces: erosional surfaces between cross-strata formed in
response to current reversals and variations in flow strength (Collinson et

al., 2006).

e Bi-directional current indicators, including herringbone cross bedding and
current-ripple lamination (van den Berg et al.,, 2007; Collinson et al.,

2006).

e Wavy, flaser and lenticular bedding indicative of repeatedly changing
energy levels associated with flows of different strengths such that sand
is moved and deposited during the flood or ebb tide, whereas mud is
deposited from suspension during the turning of the tide (van den Berg et

al., 2007).

e Synaeresis cracks, indicating fluctuating salinity levels (Burst, 1965;
Pemberton & Wightman, 1992), with both saline and fresh water inputs to

the system.

e Low diversity trace-fossil assemblages indicative of saline influence, e.g.
Glossifungites and Skolithos ichnofacies (Pemberton & Wightman,

1992).

Tidal indicators have been identified in core, where available. Indicators present
in the Mungaroo formation are: (i) single and paired mud/silt drapes on cross

beds; (i) His; (iii) wavy bedding and flaser bedding; (iv) ripple-laminated
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foresets indicative of possible current reversals; (v) synaeresis cracks; (vi) trace

fossil ichnofacies indicative of saline influence.

Figure 3.13 shows some of the more well-developed examples of some of the
above features from Mungaroo Formation cores (Well-09), including sandy and
mixed IHS, synaeresis cracks, brackish water trace fossils, wavy-flaser bedding,

paired and single mud drapes.

Limitations: Caution must be taken when inferring tidal influence from often
subtle and cryptic sedimentary features, as many of them, taken on their own,
can potentially be explained by other processes. For example: although mud
drapes on cross beds are indicative of fluctuating current energy, they could be
attributed to seasonal fluctuations in the flow regime (Jablonski & Dalrymple,
2014), rather than tidal fluctuations. As such, these structures are common in
certain fluvial settings (e.g., Collinson et al., 2006). Wavy and lenticular bedding
can also be attributed to seasonal discharge patterns (e.g., Cain and Mountney,
2009). Synaeresis cracks can be confused with desiccation cracks. However
given the dominantly poorly-drained floodplain facies of the Mungaroo
Formation (which are dominated by gleysols, coals and floodplain-lake
deposits), synaeresis cracks are interpreted with high confidence where

identified in core in this study.

Synthesis: The presence of synaeresis cracks, together with brackish and
marine ichnofauna within the Mungaroo Formation indicates that a marine-
influenced setting was prevalent at times, lending confidence to interpretations
of sedimentary features such as mud drapes as indicators of a tidally-influenced
regime. Where subtle mud drapes and wavy bedding are present but not in

association with bioturbated beds or synaeresis cracks, this is interpreted as



114

Figure 3.13: Annotated photographs from the S6-S7 interval (Well-09) showing
sedimentary features interpreted as tidal indicators. a: Mixed IHS deposits featuring:
(1) single and double mud drapes; (2) convolute bedding due to dewatering; (3) trace
fossils (probable Teichichnus); (4) synaeresis cracks; (5) ball and pillow structures; (6)
flaser bedding. Interpreted as sharp-based mouth-bar deposits. b: Mixed IHS coset
from the S6-S7 interval, featuring: (1) paired mud couplets; (2) tidal bundling of mud
laminae; (3) IHS sets formed of alternating mud-prone and sand-prone subsets; (4)
ripple laminations; (5) flaser bedding; (6) lenticular bedding, possible dewatering; (7)
possible current reversals (NB broken core, so could have twisted to give this
appearance). Probable tidal channel-bar deposits. c¢: Probable tidal channel-bar
deposits from the S6-S7 interval: (1) Sandy IHS set grading vertically into mixed (2)
IHS set with both single (3) and double (4) fine-grained laminae. In this case the fine-
grained sediment is plant material fragments, possibly indicating a peat substrate on
the floodplain. Lenitcular/flaser bedding (5) is present at the base of the IHS coset. IHS
channel-bar deposits underlain by very fine grained sandstone, indistinct bedding with

scattered plant material fragments (6), possible low-energy channel deposit.
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resulting either from seasonally fluctuating, or weakly tidally-influenced flow.
Where IHS, paired mud drapes, synaeresis cracks and wavy/flaser bedding are
well-developed, a stronger tidal influence, in a more down-dip setting is

interpreted.

3.7.2 Trace fossils and bioturbation

Trace fossils identified in the S2-S3 interval of the Mungaroo Formation are
Diplocraterion, Planolites, Chondrites, Zoophycos and Technichnus, which are
found primarily in bay-fill packages in the core, although they have also been
identified in IHS, lake-fill and distal crevasse-splay deposits. Diplocraterion is
part of the Skolithos and Glossifungites ichnofacies and can be found in a
variety of depositional settings, in saline or brackish water. Planolites,
Chondrites, Zoophycos and Technichnus, are found in brackish settings

(Beynon & Pemberton, 1992) and in more marine settings.

Bioturbation records the deformation and reworking of the primary depositional
fabric of sediments. The degree of reworking can be measured as a percentage
of the original sediment, and presented as a bioturbation index value (Taylor
and Goldring, 1993). Table 3.5 presents a summary of Taylor & Goldring’s

(1993) bioturbation index scheme.

Table 3.5: Bioturbation index (Bl) describing the proportion of deformation and

reworking of a sedimentary package by bioturbation. From Taylor and Goldring

(1993).

Bl grade Fraction Description
bioturbated (%0)
0 0 No bioturbation
1 1-4 Sparse bioturbation: few discrete traces

and/or escape structures.
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Bl grade Fraction Description

bioturbated (%)

2 5-30 Low bioturbation: bedding distinct, low trace

density, escape structures often common.

3 31-60 Moderate bioturbation: bedding boundaries

sharp, traces discrete.

4 61-90 High  bioturbation: bedding boundaries
indistinct, high trace density with overlap

common.

5 91-99 Intense bioturbation: bedding completely
disturbed (just visible), limited reworking,

later burrows discrete.

6 100 Complete bioturbation: sediment reworking

due to repeated overprinting.

Bay-fill packages with very low diversity and a bioturbation index (BI) of 2-3 are
typical of restricted, brackish bay settings (Pemberton & Wightman (1992) and
are herein most readily attributed to facies association F7a. Bay-fill packages
with higher diversity and moderate to intense bioturbation (Bl 2-4 — typically
grade 3 — at colonisation beds) are herein interpreted as bay settings with open
access to marine water, examples of which can be seen in facies association

F7b.

3.7.3 Interpreted logs

Graphic logs have been recorded for more than 250 m of succession from the
Mungaroo Formation, encompassing 4 cores from well Well-11, which
penetrates the TR21.1-TR22.2 (S2-S3) interval. Stacking patterns of lithofacies,

additional sedimentary features (including tidal indicators such as paring and
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Figure 3.14: Graphic logs for the cored section of
the Mungaroo Formation from Well-09/Noblige-2:
a. core 1; b. core 2; ¢. core 3, part 1; d. core 3, part
E 2;e.cored.
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bundling of laminae), biogenic features (such as trace fossils) and fining or
coarsening-up trends have been used to interpret facies associations and the
larger scale depositional setting of discernable intervals. Figures 3.14a-3.14e
show the interpreted core logs. For reference, Appendix 2 shows the core
photos for the well used in this study (Well-11), with the interpreted lithofacies

noted (same key as core graphic logs).

3.7.4 Facies association proportions within the logged section of the
Mungaroo Formation

Facies associations proportions have been calculated in the S2-S3 interval from
logged thickness (Figure 3.15a). Thirty per cent of the logged formation is
classified as channelized deposits (Figure 3.15b), of which 63% are high-energy
channel deposits (lithofacies association F1) from primary and secondary fluvial
and distributary channels. Thirty-seven per cent of channelized deposits are
low-energy channel deposits (lithofacies association F2), attributed to
distributary and crevasse splay channels. Seventy per cent of the logged
formation is classified as non-channelized (lithofacies associations F3 to F7).
Figure 3.15b gives a breakdown of facies associations present in the non-
channelized portion. Of the strata represented by non-channelized facies
associations, only proximal crevasse splay deposits (F1, 8%) and, less
frequently, bay-fill heterolithics (F7, 17%) are sand-prone; the remaining 75% of
the non-channelized facies associations consist of silt-prone to mud-prone

lithofacies.

3.7.5 Depositional setting
The general and regional depositional setting has been interpreted for large

(metre to tens of metres scale) stacked units of interpreted facies associations,
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Figure 3.15a: Facies association proportions calculated from logged thickness (Well-11).
b: Proportion of channelised and non-channelised elements and their constituent facies
associations, as measured from logged thickness.

Depositional setting (by % logged thickness)

. Fluvial (weak to
no tidal influence)

. Upper delta plain
. Lower delta plain

Figure 3.16: Proportions of the cored Mungaro Formation assigned to fluvial, upper delta
plain and lower delta plain settings, as calculated from logged thickness.
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and split into three broad classes: fluvial channel fill, upper delta plain and lower

delta plain.

Eighty per cent of the deposits within the S2-S3 logged section are interpreted
as deltaic (Figure 3.16): 41% upper delta plain, with more sand-prone
successions of crevasse splays, minor channels and soils; 39% lower delta
plain with more silt-prone successions of distal splays, swamps, lakes and bay-
fill. The remaining 20% of the logged section comprised stacked fluvial channel
fill, representing valley fill and stacked channel belts (cf. Holbrook, 2001). Weak
tidal influence is inferred in the S2-S3 channel fill from the presence of mud
drapes along cross-beds, as well as some (tentatively interpreted) bundling of
laminae. The tidal indicators within the channel deposits are weak and poorly-
developed: Although varying flow is indicated by mud drapes and IHS, the
majority of interpreted ‘tidally-influenced’” channel deposits do not show
evidence of current reversals, thus are interpreted as the deposits of a fluvially-
dominated, rather than tidally-influenced system. This indicates a very weak (if
any) tidal influence (cf. Johnson & Dashtgard, 2014; Jablonski & Dalrymple,
2014). More deltaic-influenced and more fluvially-influenced intervals can be
inferred from their constituent facies association. Figure 3.17 illustrates the
proportions of infill by each facies associations, for fluvial channel fill, upper-
delta-plain and lower-delta-plain settings. The facies association proportions
demonstrate how depositional setting influences reservoir distribution and
preserved deposits: without considering the large-scale, multi-storey channel
belt and valley deposits, of which all facies associations are sand-prone, 30% of
upper-delta-plain deposits are sand prone (F1, F2 and F3), whereas only 4% of

lower-delta-plain deposits (F2 and F3) are sand prone.
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Figure 3.17: lllustrating the contrasting proportions of infill by each facies association
(measured by logged thickness) within the three broad depositional settings of fluvial
channelfill, upper delta plain and lower delta plain.
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Previous studies of the Mungaroo Formation (Adamson et al., 2013; Payenberg
et al., 2013) interpret the Mungaroo Formation as dominantly deltaic. Adamson
et al. (2013) in particular cite evidence for tidal influence on the fluvial deposits.
Within this study, although some overbank-dominated intervals (particularly
bay-fill) indicate a marine or tidal influence, possible tidal features in
channelized deposits are typically subtle or cryptic, with channel deposits
indicating a unidirectional, episodically fluctuating flow. These deposits were
likely formed in the innermost (up-dip) part of the fluvial-to-marine transition
zone, in a fluvially-dominated, weakly tidally influenced setting. Figure 3.18
attempts to place the Mungaroo within the fluvial-tidal transition, in a fluvially-
dominated, tidally influenced, fresh-to-brackish water setting. The broad range
given for the Mungaroo Formation within the tidal-fluvia transition is because the
studied interval spans a period over which the shoreline likely transgressed and
retrograded many tens if not hundreds of km. As such, the position on the
depositional profile shown in Figure 3.18 would have varied considerably for

different intervals.

3.8 Palaeocurrent analysis

3.8.1 Channel complex paleocurrent readings

Dip logs (measuring dip azimuth of cross-beds, calibrated with image logs) were
available for the channel deposits with well-developed cross-beds, and were
used to infer palaeocurrent direction. Summary rose plots are presented on the
graphic logs (Figure 3.14). The rose plots reveal localised variations in
palaeocurrent directions and therefore fluvial style within the logged section. A

wider spread of palaeocurrent directions indicates a more sinuous channel,
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Martinius & Gowland, 2013 and Jablonski & Dalrymple, 2014), illustrating the variation
of depositional structures (seasonal bedding, tidal laminations, bioturbation) and
conditions (salinity) resulting from varying tidal and fluvial influences.
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likely with both downstream and laterally migrating bedforms. A narrower range
of palaeocurrent directions is interpreted as relating to lower sinuosity channels,
with dominantly downstream migrating bedforms. Similar patterns were
identified for the Mungaroo Formation by Adamson et al. (2013), who report that
palaeocurrents interpreted from image logs and core are consistent with the
orientation of large channel and channel belt geobodies identified using seismic
data, favouring an interpretation of predominantly downstream-migrating
bedforms. Bal et al. (2002) similarly utilised image logs and core, and found that
most bar-forms interpreted in their study of the Mungaroo Formation were

downstream-accreting.

Channel complex 1 (3881.40 - 3889.75 m): This complex has an 8.35 m
succession of stacked low-energy channel deposits (Figure 3.14a). Modal
paleocurrent direction is 280° (west) with a palaeocurrent range of 195° (80
readings were taken from image logs). The wide spread of palaeocurrents
indicates a relatively sinuous channel system, with downstream and laterally

migrating bedforms.

Channel complex 2 (3889.75 — 3902.84 m): This complex comprises 13.09 m
of stacked, high-energy fluvial channel deposits (Figure 3.14a), with a modal
palaeocurrent direction of 270° (west), and a 110° spread of palaeocurrents (44
readings were taken). There is a much stronger trend of readings taken due
west, with fewer readings taken to the southwest and northwest. The spread of
readings indicates relatively low-sinuosity channels, with predominantly

downstream migrating bedforms.

Channel complex 3 (3985.48 — 4001.50 m): This channel complex comprises

16.02 m of stacked, high-energy fluvial channel deposits (Figure 14c), with a
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modal palaeocurrent direction of 290° (WNW) and a 140° spread of
palaeocurrents. The majority of palaeocurrent readings are between 275° and
310°, with a weakly developed bi-directionality at 280° and 300° (74 readings
were taken). The palaeocurrent distribution indicates a low-sinuosity channel

system with predominantly downstream migrating bedforms.

Channel complex 4 (4001.50 - 4013.98 m): This channel complex is
amalgamated with channel complex 3 and comprises 12.48 m of stacked, high-
energy fluvial channel deposits with a modal palaeocurrent of 220° (southwest),
and a palaeocurrent spread of 90° (55 readings were taken). These deposits
likely represent a low-sinuosity channel system with predominantly downstream

migrating bedforms.

Channel complex 3 and 4 jointly comprise 28.5 m of stacked fluvial deposits.
Given the thickness and relatively coarse-grained nature of the deposits
(medium to course grained), they are likely stacked valley deposits. The change
in palaeocurrent direction from southwest in the lower part of the valley fill
towards the WNW in the upper part is interpreted as recording an avulsion

event, re-orienting the valley to the northwest.

Channel complex 5 (4039.25 — 4048.35 m): This channel complex comprises
9.10 m of stacked, high-energy channel deposits (Figure 3.14d), with a modal
palaeocurrent direction of 290° and a spread of 260° (51 readings were taken).
The palaeocurrent appears bi- or possibly tri-directional, with trends towards the
southwest, northwest, and a (tentative) minor trend to the northeast. This
channel complex was likely deposited by a moderately sinuous channel system,

with a combination of downstream and laterally migrating bedforms.



133

Channel complex 1 . Channel complex 2

Q
c. N=74| Channel complex 3 Channel complex 4 é
2
— >
= ——

e. N=51 Channel complex 5

Figure 3.19: Summary rose plots and sketch models of fluvial style for 6 channel
complexes identified in core from the Mungaroo Formation. a: Channel complex 1 fluvial
style is interpreted as moderate sinuosity channel with both laterally and downstream
migrating bedforms. Paleoflow is to the west. b: Channel complex 2 fluvial style is
interpreted as a low sinuosity channel with downstream migrating bedforms. Paleoflow is
to the west. ¢: Channel complex 3 fluvial style is interpreted as low sinuosity- braided, with
downstream migrating bedforms. Paleoflow is to the northwest. d: Channel complex 4 is
interpreted is shown as analogous to that of complex 3, and is interpreted as forming a
stacked, multi-valley fill, amalgamated with that of complex 3. Complex 4 is shown as a
braided valley deposit overlying that of complex 3, following an avulsion. e: Channel
complex 5 fluvial style is interpreted as moderate sinuosity with predominantly laterally
migrating bedforms. f: The range of paleocurrent orientations can be explained by this
small channel deposit’s location within crevasse splay deposits. The channel deposits are
interpreted as very low energy crevasse channel sands.
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Channel complex 6 (4125.80 — 4131.20 m): These deposits are interpreted as
5.40 m of low-energy, crevasse splay channel deposits (Figure 3.14d), with a
modal palaeoflow of 230° and a spread of 230° (13 readings were taken).
Palaeocurrent appears tri-directional, with trends to the southeast, southwest
and northwest, although the uneven spread of palaeocurrents could be biased
and due to the relatively small sample size in this bed (13 cross-bed dip
readings). These deposits are likely from stacked crevasse channels with
multiple nodal avulsions within a crevasse delta with low-moderate sinuosity,

low-energy crevasse splay channel deposits.

3.8.2 Fluvial style summary

The cored section of the Mungaroo Formation, although representing only a
small portion (stratigraphically limited section) of the extensive Mungaroo
Formation, exhibits considerable variability in fluvial style as is inferred from
paleocurrent data. Low, moderate and high-sinuosity channels are present, with
both laterally migrating and downstream migrating bedforms preserved. There
is an apparent tendency towards lower sinuosity in high-energy channel
deposits (channel complexes 2-4), and higher sinuosity in lower energy
deposits (channel complexes 1 and 6). Figure 3.19 summarises the
palaeocurrent trends and inferred fluvial styles responsible for each of the

above channel complexes.

3.9 Chapter summary
e The Mungaroo Formation is characterised by a mixed fluvio-deltaic
succession. The distribution of lithofacies and facies associations within
the formation demonstrates systematic and predictable transitions from
more fluvial-dominated to more deltaic-dominated episodes of

accumulation.



135

Sixteen distinctive lithofacies identified within the Mungaroo Formation
can be used to interpret seven discreet facies associations, the
proportions and vertical stacking patterns of which can be used to
distinguish depositional settings such that fluvial-channel, upper-delta-

plain and lower-delta plain-settings are each identified.

Tidal influence has been interpreted in some sections of the Formation,
as evidenced by (i) single and paired mud/silt drapes on cross beds; (ii)
His; (iii) wavy bedding and flaser bedding; (iv) ripple-laminated foresets
indicative of possible current reversals; (v) synaeresis cracks; (vi) trace

fossil ichnofacies indicative of saline influence.

In addition to the ability to recognise switches between relatively more
and less deltaic-influenced settings, the lithofacies analysis undertaken
within this study has enabled several alternations in fluvial style to be
recognised within the deposits of the Mungaroo Formation. ldentified
fluvial styles include: relatively more sinuous channel bodies
characterised by deposits arising from lateral (and downstream)
migrating bedforms; relatively less sinuous channel bodies characterised
by deposits arising from downstream migrating beforms. The formation

also records at least one major avulsion of a fluvial valley system.

The core sections studied in this chapter demonstrate that the formation
exhibits many small-scale changes in depositional style, many of which,
at a scale less than 10 m, are unlikely to be resolvable on seismic data.
Chapters 5 and 6 investigate larger-scale depositional styles of the
Mungaroo Formation, over a larger stratigraphic extent, utilising a

combination of seismic and well-data analysis.
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Chapter 4 Seismic geomorphology and sedimentology of fluvial
environments in the subsurface: fluvio-deltaic Triassic Mungaroo
Formation, North West Shelf, Australia

Research question: What are the broad variations in depositional

environment at key intervals of the Mungaroo Formation? Can seismic

facies be used to distinguish between fluvial and fluvio-deltaic deposits?

4.1 Chapter Overview

Fluvial and fluvio-deltaic successions of the Late Triassic Mungaroo Formation
accumulated in a long-term transgressive system tract. The formation represents
the principal reservoir for a major gas play offshore northwest Australia, the key
reservoir characterization challenge for which is to better understand the style and
distribution of sand-prone channelized depositional elements. This study
addresses this challenge by mapping architectural bodies within a high-resolution
3D seismic volume from the Exmouth Plateau of the Northern Carnarvon Basin.
Interpretations of the palaeoenvironmental significance of these bodies are
supported by analyses of lithofacies observed in core and wireline data. Specific
objectives of this study are to: (i) catalogue sub-seismic-scale fluvial and deltaic
architectural elements in core and wireline log data; (i) map the plan-form
morphology of seismic-scale fluvio-deltaic elements; (iii) classify key stratigraphic
intervals according to their accommodation setting; (iv) match the studied intervals

to likely modern analogues for the purpose of characterizing palaeoenvironments.

Seven sub-seismic-scale architectural elements are identified in core: primary

(high-energy) channel, low-energy channel, proximal crevasse splay, distal
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crevasse splay, gleysol (swamp), lake, and inter-distributary bay. Flattening the
seismic cube on key horizons has enabled visualization of stratally-aligned slices,
within which identified architectural element types have been mapped; attribute
analysis highlights fluvial elements. Valley and channel belt, valley margin,
floodplain, and gleysol (mire) seismic elements were identified and mapped in GIS.
Analyses of well-log data confirm that valley-margin elements contain sub-seismic
scale sand-prone intervals of probable crevasse-splay and accessory channel

origin.

The dimensions of seismic elements are used to assess likely accommodation
conditions within which the systems accumulated for different stratigraphic
intervals. Apparently higher-accommodation settings led to the progressive fill of
multi-lateral channel and valley elements (<7 km width), as well as the
establishment of distributary channel networks and widespread gleysol
development. Low-accommodation settings resulted in laterally constrained (<1 km
width) channel elements that potentially accumulated within incised valleys, with
associated valley-margin elements. Settings that experienced negligible rates of
accommodation generation are characterized by a complex mosaic of overprinted

channel elements and only minimal preservation of overbank elements.

4.2 Introduction

4.2.1 Project background

Detailed reconstruction of fluvial palaeoenvironments using datasets derived solely
from subsurface settings is challenging using relatively low-resolution of
subsurface seismic data (10-30 m vertical resolution) to discern the shapes of

architectural bodies. Although any accompanying well data are of relatively high
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resolution, they are essentially one dimensional in form, are generally (sub) vertical
and reveal little about the shapes of geo-bodies (architectural elements) which are
known to vary predictably according to the preserved geomorphic form represented
by the preserved fluvial succession (cf. Bridge 2003; Miall 1996). This is especially
the case in subsurface regions for which the number of wells is small and/or the
spacing between individual wells is large (Gundesg &Egeland, 1990; Pranter et al,

2007).

Reconstruction of complex fluvial palaeoenvironments in the subsurface usually
requires adoption of a holistic approach that incorporates a varied range of
subsurface data types (Leeder, 1993). Such interpretations typically also draw
comparisons with modern and ancient analogues, to support inferences made
regarding the likely dimensions of the various architectural elements present and
the geometrical relationships between these elements. However, the choice of
appropriate analogues is notoriously problematic because successions that appear
similar in their vertical profiles commonly exhibit marked differences in terms of the
three-dimensional arrangement of their geobodies (Alexander, 1993). Thus, there
exists a need to glean as much detailed information as possible from seismic data

to better quantify geometrical relationships between geobodies.

Since the early 2000s a growing trend has emerged in hydrocarbon exploration
relating to the recognition of smaller ‘thin-bed pay’ targets, especially in maturing
hydrocarbon provinces where most of the larger ‘primary’ reservoir targets have
been identified (Zhu et al., 2014). For example, Cuba et al (2013) assess point-bar,
crevasse-channel, and crevasse-splay deposits from a tight gas reservoir

perspective. In fluvial environments, this philosophy extends to the recognition of
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minor distributive channel and crevasse-splay complexes, the deposits of which
are typically well below seismic resolution (Bridge & Tye, 2000; Ethridge &
Schumm, 2007). Given the wide spacing of well data and the relatively low average
width of minor distributive channels, these bodies are rarely intersected by
exploration wells, and may be overlooked where intersected due to their thin nature
(Klein, 1996). However, secondary and tertiary channel bodies and crevasse-splay
networks can form a significant proportion of the sand content of some fluvial
systems, for example the Permian Rangal Coal Measures (Fielding et al, 2003;
Stuart et al, 2014) of Queensland, Australia and the Westphalian Coal Measures of
England (Fielding, 1986). Such systems are being increasingly targeted for
hydrocarbon exploration and CO, sequestration, with research into both modern
and ancient analogues having been undertaken by Donselaar et al (2011), Blowles
& Moslow (1999). One such example is the Oligocene Frio Formation which hosts
the Seeligson Field, Texas (Ambrose et al, 2008). A thorough understanding of the
relationships known to occur between primary channel elements, minor channel
elements and their relationship to the surrounding overbank must be applied to
identifiable subsurface data to reduce uncertainty range and enable properties to
be extrapolated from well control, lending increased accuracy to the interpretation
of the precise depositional setting of such accumulations. In turn, this results in the

development of more realistic and higher-resolution reservoir models.

The aim of this study is to demonstrate how a combination of seismic and well data
can be used to define the sedimentology and geomorphology of a complex fluvio-
deltaic succession (the Triassic Mungaroo Formation) known only from the

subsurface and to show how the developed workflow can be applied to other
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similar datasets. Detailed, core-based sedimentological and stratigraphic analysis
are needed as they aid in the understanding of sub-seismic details of the
depositional system of interest. Specific objectives of this investigation are as
follows: (i) to describe the sub-seismic scale sedimentology of the fluvial and fluvio-
deltaic deposits through assignment of a lithofacies scheme based on available
well data (ii) to develop a seismic element scheme which incorporates both seismic
facies response and seismic geomorphology, integrating well data where available;
(i) to apply the seismic element scheme to map out seismic-scale fluvial and
fluvio-deltaic deposits in three key intervals; (iv) to use the seismic element maps
to assess the depositional setting at each of the key intervals and to account for

the depositional style in terms of accommodation setting.

The principal results of this study are novel, timely, significant and of broad appeal
to those working on subsurface characterization more generally for the following
reasons: (i) the exceptionally high-quality seismic dataset enables visualisation of
fluvial deposits even at depths of several kilometres; (ii) the workflow employed
sets out a method for fast, efficient screening of large datasets to highlight stratally-
aligned deposits; (iii) the generally applicable method demonstrates how
geomorphology and sedimentology can be efficiently combined to allow
interpretation of depositional environments to a greater level of detail than has

traditionally been possible.
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4.3 Study area and data

The study focuses on a 3D seismic data cube (Colmbard) from a 3000 km? area of
the Woodside operated block WA-404-P, situated on the Exmouth Plateau, in the
Northern Carnarvon Basin (Figure 4.1). A succession of the fluvial-deltaic
Mungaroo Formation (>1 km thickness) is covered by the dataset. Supporting data
in the form of wireline logs from 11 wells within the block, as well as core from one
well were analysed. Figure 4.2 depicts a typical expression of one of the
interpreted horizons from the Colmbard dataset, and shows the locations of the
wells. The core data presented in Chapter 3 covers the entire S2-S3 interval. Core
data illustrating tidal-fluvial point bar deposits (Figure 3.12) are from the S6-D7
interval. As such, the seismic data covers a greater stratigraphic range than the
core data. Wireline log facies and seismic facies are therefore used to link the
wider Mungaroo Formation geology to the deposits encountered in the S2-S3 and

S6-S7 core.
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Figure 4.2: Depth map from within the Colmbard dataset, showing the locations of 11
wells with Triassic penetrations.
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Figure 4.3: Stratigraphy of the Northern Carnarvon Basin (after Longley et al., 2002) Inset lists
stratigraphic nomenclature for key horizons used in this study (after Marshall & Lang, 2013). Red
lines denote surfaces of regional extent and seismic horizons that represent sequence
boundaries; green lines denote transgressive surfaces; blue lines denote maximum flooding
surfaces. Seismic surfaces used in this study (S1-S7) correlate to region-wide stratigraphic
surfaces.
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4.3.1 Geologic setting

The Northern Carnarvon Basin is located in the southern-most part of the North
West Shelf, and is one of four basins that form the “Westralian Basin”: the Northern
Carnarvon, Browse, Bonaparte and Offshore Canning/Roebuck basins (Yeates et
al., 1986; Westphal & Aigner, 1997; Longley et al., 2002; Lewis & Sircombe 2013;
Marshall & Lang, 2013). Bounded to the east by the Precambrian Craton and to the
west by the Gascoyne Abyssal Plain (Hocking et al., 1987; Falvey & Veevers,
1974), the Northern Carnarvon Basin is filled with a succession of Mesozoic and
younger strata up to 10 km thick (Marshall & Lang, 2013). The Basin formed in
response to pre-rift and rifting events related to the breakup of Gondwanna
(Westphal & Aigner, 1997). Figure 4.3 shows a tectonostratgraphic column for the
Northern Carnarvon Basin. The offshore Northern Carnarvon Basin is 535,000 km?2,
and is structurally subdivided into the Barrow-Dampier, Exmouth, Dixon and

Beagle sub-basins and the Exmouth Plateau (Longley et al., 2002).

During the accumulation of the Mungaroo Formation in the Late Triassic, the
Northern Carnarvon Basin evolved as a large, Westerly dipping, flat ramp cratonic
margin, forming part of the southern Tethyan Continental Margin (Figure 4.4;
Blakey 2013). The climate in the Late Triassic is interpreted to have been
temperate-warm, humid and monsoonal, with wet and dry episodes (Dickens,

1985; Bradshaw et al., 1994; Payenberg et al., 2013, Preto et al., 2010; Arche &
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Lépez-Gdmez, 2013). The Carnian to Norian fluvial to fluvio-deltaic Mungaroo
Formation is generally interpreted to be sourced from the Ross High (Jablonski,
1997) in eastern Australia, with a drainage system that developed through the
Canning region and from the Pilbarra Cratonic Rock (Seggie et al., 2007) passing
towards a palaeoshoreline that lay to the west, including material sourced from
long distance hinterland areas, reworked glacials and also first cycle material from
the basement terrains that fringe the Canning Basin and Western limits of the
Northern Carnarvon Basin. However, an alternative regional palaeogeographic
drainage pattern has also been suggested by Lewis & Sircombe (2013) who argue
for a south-to-north draining system, based on U-Pb provenance studies, although
this disagrees with channel trends observed in both core and seismic data. The
drainage system feeding the fluvio-deltaic deposits of the Mungaroo Formation is
interpreted to have developed on a comparable scale to that of the present-day
Mississippi drainage network (Jablonski, 1997), with predominantly low-sinuosity

rivers.

A comprehensive internal chronostratigraphy and lithostratigraphy of the Mungaroo
Formation (Figure 4.3) has been proposed by Marshall & Lang (2013), who built on
work by Jablonski (1997) and Longley et al., (2002), applying an alpha-numeric
stratigraphic nomenclature, using sedimentological, micropalaeontological and
palynological observations to present a new regional stratigraphic framework. The
framework integrates major hydrocarbon play intervals by fitting key regional
surfaces to a third-order sequence stratigraphic model, using sedimentological,
biostratigraphic and seismic data. Chapter 3 describes the stratigraphy and

sedimentology of the Mungaroo Formation.
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Figure 4.4: 220Ma paleogeographic map (Blakey, 2013), given for paleogeographic
context, showing the approximate location of the Mungaroo Delta, on the southern margin
of Tethys.
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The Mungaroo Formation records the preserved stratigraphic expression of
numerous cyclical changes in accommodation space within the context of an

overall long-term rise throughout the Norian to Rhaetian (Longley et al., 2002).

4.4 Methods

4.4.1 Well-log interpretation

Core from a distal well of the Mungaroo Formation (Well-11, Figure 3.2), sited
within the boundary of Colmbard dataset was described in order to interpret
lithofacies and architectural elements, based on the facies scheme devised by
Adamson et al. (2013). Sedimentary lithofacies and architectural elements were
matched to corresponding wireline log packages, facilitating interpretation of
lithofacies associations and depositional environments for regions where core was
not available. Figure 4.5 shows a representative section of core photos, together
with wireline-log and lithological-log signatures from a low net-to-gross section of

the Mungaroo Formation.

4.4.2 Seismic Interpretation & Attribute Analysis

Seven horizons were recognised within the Mungaroo Formation and used to
interpret the fluvial deposits of the formation. The Mungaroo Formation has proved
difficult to interpret in the past due to the discontinuous nature of accumulations of
fluvial deposits apparently filling incised-valley systems associated with sequence
boundaries (Payenberg et al., 2013). For this reason, the surfaces that are most
useful for correlation purposes tend to be transgressive surfaces, these being the

most continuous events visible in the seismic volume. Following the stratigraphic
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nomenclature developed by Marshall & Lang (2013), the surfaces used in this
study are from the TR20 play interval. Table 3.1 lists the stratigraphic surfaces and
the corresponding seismic horizons and summarizes whether they are

transgressive surfaces, sequence boundaries or maximum flooding surfaces.

Stratal slicing of 3D seismic data by creating flattened volumes serves as the basis
for a fast and efficient method for screening 3D seismic datasets to gain an
improved understanding of depositional environments and geomorphology of
deposits (Possamentier, 2005; White et al., 2012). In this study, seven horizons
were used to create flattened volumes for near, far and full stack data, such that
stratally-aligned slices could be viewed, enabling clearer imaging of the planform
geomorphology of contemporaneous fluvial deposits. The near stack volume most
clearly imaged the channelized deposits of the Mungaroo Formation. Figure 4.6
shows the workflow employed in the flattening and viewing of stratal slices.
Flattening the volume on correlatable horizons made it possible to visualise

stratally aligned fluvial deposits above and below those horizons.

The flattened seismic cube was used to identify three intervals where the fluvio-
deltaic deposits were most clearly imaged. The analysed intervals related to
horizons S6, S3 and S1. Amplitude ranges corresponding broadly to different
lithologies were highlighted to better delineate fluvial deposits. For the seismic
volume that was flattened using the deepest (near base S1-S2 interval) S1 surface,
where stratal slices did not adequately resolve the deposits, attributes including
maximum positive amplitude were extracted for a 50ms window below the horizon

to better visualise the fluvial deposits.
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The horizon slices used for S3 and S6 are extracting amplitudes at a discrete
depth (as they are time-slices taken from a flattened volume). The amplitude map
extracted beneath S1 represents a 50ms time window. As such they represent
discrete intervals within stratigraphic intervals, rather than amalgams of all the
deposits within that interval. The interpretations of depositional environemtn

made therefore represent a specific ‘snapshot’ in time, and may not be

representative of the whole stratigraphic succession.

A joint seismic geomorphological and seismic sedimentological approach was
employed to identify both channelized and non-channelized deposits, and to assign
them to seismic-scale elements. This involved combining analyses of planform
geomorphologies and seismic facies response of different horizon slices, using an
approach similar to that employed by Zeng (2001). The seismic elements were
calibrated using core and wireline logs to confirm lithology. Seismic slices and
attribute maps from key stratigraphic intervals were exported to Arc GIS, and
georeferenced. The seismic elements were then mapped to contrast depositional

environments within the succession.

Using GIS to map geobodies visible on seismic slices and attribute maps allowed
geospatial analysis of the mapped elements. Measurements were taken, including
element proportions, channel-body length, width, sinuosity and palaeo-drainage
orientation to further characterize the fluvial components present within the studied

intervals and to relate them to likely depositional and accommodation settings.
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4.5 Mungaroo Fm Lithofacies associations

Seven sub-seismic scale non-marine lithofacies associations were interpreted from
studied core and wireline logs, describing the rocks in terms of their lithology,
texture, and sedimentary features, as well as evidence of bioturbation. The
lithofacies associations are: (i) high-energy, primary channel deposits representing
stacked fluvial bars, (ii) low-energy channel deposits (secondary or tertiary splay
and distributary channels), (iii) proximal crevasse-splay deposits, (iv) distal
crevasse-splay deposits, (v) gleysol (local coal equivalent indicating swamp/mire

environment), (vi) floodplain-lake deposits, and (vii) inter-distributary bay deposits.

Table 3.1 and Figure 3.11 provides a detailed description of each facies
association, detailing conceptual sedimentary logs, wireline logs and core
photograph examples. Figure 4.7 links the previously interpreted facies

associations to seismic expression of those deposits.

Lithofacies associations identified here are considered to represent distal
expressions of the lithofacies associations described by Adamson et al. (2013)
focussing on a more inboard section of the formation. They are also deemed to
correspond to the facies associations described by Heldreich et al. (2013)
approximately 100km SW of the Colmbard dataset, and those identified by
Payenberg et al. (2013). As such, the scheme utilised here is considered to be
representative of the fluvial and fluvio-deltaic system present on a basin-wide

scale.
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4.6 Seismic element mapping

4.6.1 Seismic element scheme

Seismic-scale channel bodies and valleys are identifiable by virtue of their sinuous
planform geomorphologies (Figure 4.7), although it is difficult to distinguish
between channel-belt and incised-valley deposits. Within the studied intervals, the
elongate trends of these features are generally aligned E-W. One way to
distinguish between channel-belt deposits versus valley-fill deposits is the
associated presence of thin-bedded sandstones that likely correspond to crevasse-
splay and minor distributary channel deposits in areas laterally adjacent to major
channels. Such ‘channel-margin’ elements are characterized by a ‘messy’ seismic

facies, and are represented by thinly-bedded sandstone packages where wells

penetrate the facies (Figure 4.7). Gleysols represent waterlogged, marshy
floodplains, and are sometimes present in conjunction with cm-scale minor coal
lenses. They have a distinct seismic facies: such elements appear ‘bright’ on near
stack data, and ‘dim’ on far stack data (Figure 4.7). Seismically homogeneous
zones are interpreted as undifferentiated floodplain deposits. Post-depositional
faults are visible as generally N-S trending features imaged as high-amplitude

lineations.



Seismic Element

Seismic Expression
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Example

[] Fluvial

channel
and valley
deposits

~100m to 20km wide, low
to moderate sinuosity
features with clear
boundaries. Positive
amplitude. Clearer on
near stack data than far
stack.

‘ Measurements Lithofacies

Width
Length
Area
Sinuosity
Orientation

F1, F2

m

B Margin

Discontinuous, “messy”
seismic facies. Positive
amplitude, lower
amplitude than channel
elements. Adjacent to
channel deposits.
Indicates splay belt and
sub-seismic scale
channels at the margin of
channel belts.

Width
Axial length
Area

F

I

I

n

F3,

|

rw*\". E‘L!."" ::‘L:‘__} 171

B Gleysol,
coal

organic-rich
mudrocks

Class IV AVO: Appear as
bright spots on near stack
data, dim on far stack data,
away from channel
deposits.

a) Near stack
b) Far stack
c) ‘Organics’
mapped on
near stack

Area

F7

[[] Floodplain:
Undifferen-
tiated
deposits

Dim or homogenous
seismic facies, with no
discernable gleysol or
channel elements.
Represents floodplain
fines.

Total area

) Faults

N-S aligned, very high
amplitude, linear
features. Identifiable
using attributes including
variance, RDR edge
detection and dip angle.

3 ) 2
a) RDR edge detection attribute
b) Dip angle attribute

c) Mapped faults

NA

NA

Figure 4.7: Seismic-scale fluvial-deltaic deposits have been assigned to mapable ‘seismic elements’ to
aid in identifying depositional settings at several stratigraphic intervals. The seismic element scheme
incorporates planform geometry and seismic facies, with reference to wireline data and lithofacies where
possible. The facies associations (interpreted in Figure 3.11) relevant to each seismic element are noted.



157

46.2 Sl

S1 is the deepest of the horizons used to create the flattened volumes (mean
elevation -4510 msTWT). Due to the reduced resolution of the data at this depth,
the stratal slices were not able to clearly resolve the fluvial deposits. To counter
this limitation, a maximum amplitude (maximum positive peak) attribute was
extracted on a 50ms window beneath the horizon (Figure 4.8a), thereby enabling
resolution of the large-scale geomorphology of the fluvial system for this time
interval. Large (>8 km-wide), low-sinuosity geobodies, interpreted as valleys and
primary channels are clearly visible, as is a very large (38 km-wide) feature
interpreted as a possible overprinted multivalley or stacked multivalley complex
(Blum & Price ,1998; Holbrook, 2001), (i.e., a multilateral and amalgamated valley
fill over a regionally smooth erosional surface, in this case the S1 sequence
boundary). Some tentative ‘channel-margin’ elements are interpreted close to
channel geobodies, but because there were no well penetrations at this level in the
study area, neither core- nor well-log-based analysis of the seismic facies has
been possible. Figure 4.8 shows both the uninterpreted attribute map and the

interpreted seismic element map for the S1 horizon slice.
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4.6.3 S3

Stratal slices derived from the seismic volume following flattening at the S3 horizon
clearly delineate some large-scale fluvial features (Figure 4.9a), as well as areas of
less coherent seismic facies that are shown to correspond to sandstones of
crevasse splay origin where penetrated by a well. Smaller channel geometries are
also visible. Areas with a strong, ‘bright’ response are interpreted as gleysols
corresponding to a waterlogged, marshy floodplain setting. Colouring the amplitude
ranges according to seismic facies further delineates both channel and overbank
deposits. Nevertheless, distinguishing between valley-fill and channel-belt deposits
from the seismic data where there are limited well penetrations remains difficult.
Figure 4.9b shows the S3 seismic element map, highlighting channel, margin,

floodplain and gleysol deposits.

Distinguishing between valley and channel-belt deposits is important as it has
implications for what deposits may be preserved adjacent to the valley or channel
belt. Channel belt deposits may also have a coeval splay belt, which may be
preserved (as in Figure 4.9). These splay belt deposits can be sand-rich (c.f.
Figure 3.11c) and may represent additional, thinly-bedded reservoirs, or provide
connectivity between adjacent channel belts.. Valley deposits are laterally
constrained within the incised valley and as such repeatedly overprint, potentially
leading to higher net:gross amalgamated sand-fill, but with no adjoining ‘fringe’ or
splay-belt deposits. Therefore, the identification of a preserved splay-belt

necessitates the interpretation of a channel belt, rather than valley deposit.
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4.6.4 S6

A stratal slice taken below S6 reveals a markedly different planform
geomorphology to those of the S1-S2 and S2-S3 intervals. Channel and valley
geobodies have an apparently distributive morphology, and exhibit a greater
variety of channel orientations. A large (7 km-wide), low-sinuosity feature shows
internal overprinting and can be interpreted as amalgamated, multi-lateral, multi-
story channel-belt deposit. The nature of the overbank seismic facies also
contrasts with that of the S2-S3 study interval, being characterized by an apparent
dominance of gleysol deposits. Figure 4.10 shows both the uninterpreted stratal
slice and the seismic element map for this interval. Figure 4.11 shows the cross-
section view of the deposits interpreted in Figures 4.8-4.10. Large-scale incised

features and organic-rich floodplain deposits can be identified.
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0 1000 .. 2000m

1000 .. 2000m

Figure 4.11a: Seismic profile (uninterpreted above, interpreted below) illustrating some of
the incised features interpreted in Figure 4.8. Cross-cutting reflections indicate incised
events. some of these are laterally extensive (several km wide) and may represent incised
valleys. The locations of seismic profiles take from the Colmbard 3D survey for Figure 4.11
(a-c) are shown inset.

¥
lower amplitudes: channel belt
and splay deposits

i

Figure 4.11b: Seismic profile through Well-11, illustrating the seismic facies typical of the
channel belt, splay belt and gleysol deposits in the S2-S3 interval, interpreted in Figure
4.9.



moderately bright amplitudes seen to
incise into each other: amalgamated
channel belt and/or valley deposits

laterally continuous, brigh amplitudes:
gleysol / organic-rich mud

1000 2000m

Figure 4.11c: Seismic profile illustrating the cross-section expression of the amalgamated
channel belt and gleysol deposits interpreted in map view in Figure 4.10.
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4.7 Statistical Analysis

4.7.1 Element proportions
Relative proportions of seismic elements were measured to further highlight

differences in fluvial style between the three mapped intervals (Figure 4.12).

The S1-S2 interval is dominated by channel and valley deposits, notably due to the
presence in the region of a large multi-valley fill at this level, which accounts for
37% of the mapped area. Channel bodies and floodplain interfluve areas are of
similar proportion, accounting for 32% and 29% of the map, respectively. Channel-
margin deposits account for only 2% of the mapped area and are not likely to

contribute significantly to sand volume in this interval.

The S2-S3 interval is dominated by undifferentiated floodplain deposits, which
account for 81% of the mapped area. The narrow valley and channel-belt elements
account for only 9%. The thinly-bedded channel-margin elements associated with
channel-belt deposits account for 5% of the mapped area. The small, restricted

gleysol elements account for 5% of the mapped area.

Within the S5-S6 interval, a substantially greater proportion of the mapped area is
represented by gleysols (25%), indicating a poorly-drained setting within which
channel development was not confined to entrenched valleys, as indicated by the
divergent, distributive pattern of channels visible on the stratal slices.
Amalgamated channel belts and distributive channel elements account for 28% of

the mapped area. Channel-margin elements were not recognized in this interval.
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TR20.3 area assigned to seismic elements

Valley / Multi-valley
37% m Channel / Channel-belt
m Margin

(0]
2% = Floodplain

TR22.1 Area assigned to seismic elements
5%

5% = Valley / Channel Belt /

Channel
= Margin
m Gleysol

= Floodplain

b)

TR27.2 Area assigned to seismic elements

= Valley / Channel Belt
Channel
m Gleysol

= Delta plain

c)

Figure 4.12: Relative proportions of seismic elements at each
mapped interval. a) S1-S2 interval is dominated by valley and
channel elements. b) S2-S3 is dominated by ‘undifferentiated’
floodplain deposits. The mapped area interpreted as channel
margin sands is proportionally significant compared to the
percentage of the mapped area interpreted as
channels/valleys. This may indicate the preservation of splay
belts at the margin of channel belts. Restricted gleysol
develpmentindicates a well-deained floodplain. ¢) S5-S6 has a
far higher proportion of mapped area interpreted as gleysol,
indicating a poorly-drained, swamply floodplain, potentially in a
delta plain setting. The development of a distributary network of
channels at various scales accounts for the high proportion of
channeland valley elements.
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Dimensional attributes relating to the identified elements, including width, length,
area and sinuosity of visible portions of elements within the bounds of the survey,

are summarised in Tables 4.1 — 4.3.

Table 4.1: Dimensions of seismic elements for the S1-S2 interval

Measurement

Channel Sinuosity 1.0117 2.0811 1.1056
Channel Max Width (km) 0.6294 8.6175 2.3264
Channel Area (km?) 2.2067 147.4713 35.1831
Valley Width (km) 39.1888

Valley Area (km?) 1149.4950

Margin Axial Length (km) 0.7351 6.1674 2.2505
Margin Max Width (km) 1.9298 5.2872 2.5076
Margin Area (kmg?) 0.7448 21.7747 45613
Table 4.2: Dimensions of seismic elements for the S2-S3 interval

Measurement

Channel/Valley Length 5.0181 60.0100 23.8133
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Channel/Valley Sinuosity 1.0210 1.5714 1.1732
Channel/Valley Max Width 0.2780 1.8819 0.9171
Channel/Valley Area 1.1159 111.5643 22.1458
Margin Axial Length 0.1904 4.0307 1.2801
Margin Max Width 0.5074 13.7958 3.7663
Margin Area 0.1549 18.5012 3.0622
Gleysol Area 2.5058 42.0169 13.6911

Table 4.3:

Dimensions of seismic elements for the S5-S6 interval

Measurement

Channel Length (km) 0.88518 39.38414 11.29873
Channel Sinuosity 1.003423 1.520827 1.07308

Channel Max Width (km) 0.101419 1.996168 3.158849
Channel Area (km?) 0.119218 22.07021 4.478524
Valley Length (km) 10.67798 67.63019 25.89899
Valley Sinuosity 1.013609 1.090761 1.063554
Valley Width (km) 1.12043 9.344592 3.158849
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Valley Area (km?)

10.83576

383.841

75.56158

Gleysol Area (km?)

1.335652

173.4524

21.10325

4.7.2 Channel and valley orientations — palaeodrainage

Reconstructed orientations of channelized and valley elements were measured for

the features present in each of the three intervals (Figure 4.13).

Overall, there is an E-W trend in drainage orientation. The S2-S3 interval shows
the least variation in drainage orientation, with two distinct trends to the SW and

NW. However, this may be biased by the comparatively small number of channel

bodies mapped at this interval. As indicated by the element map, the S5-S6
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interval has a relatively evenly distributed spread of channel-body orientations,
ranging from 230° to 310°. The S1-S2 interval exhibits the greatest range of
orientations, with the bulk of the channel bodies orientated between 230° and 320°,
and a secondary, minor trend of channels orientated to the SE, between 120deg

and 200°.

4.8 Depositional environment

48.1 S1-S2

The channel elements mapped in the S1-S2 interval are larger than those seen in
the stratigraphically higher intervals. This, together with the lack of significant areas
of preservation of overbank deposits (notwithstanding the possibility that the
resolution may simply be too low at this depth to image them), is interpreted to
represent deposition within large, incised valleys. The ‘undifferentiated’ elements
likely represent interfluve areas, and are considered unlikely to contain significant
crevasse-splay or minor distributary-channel elements because deposition would
have been confined to within the incised valleys. Large, incised valleys may

suggest a purely fluvial regime in a more proximal position at this time.

4.8.2 S2-S3

The relatively small-scale of the channel elements (<2km width) at this interval and
their association with channel-margin elements suggests that these deposits likely
represent channel belts with associated splays and distributary channels that are
present at the sub-seismic scale. Restricted development of gleysols indicates a
relatively well-drained floodplain. This interval is interpreted as having accumulated
during a relatively dry episode, with overbank sedimentation restricted to splay

belts possibly formed by seasonal flood events (Slingerland & Smith, 2004).
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4.8.3 S5-S6

The widespread development of gleysols in this interval indicates a relatively
poorly-drained floodplain in which swamp/marsh zones likely developed. This
interval shows a large multi-lateral channel belt feature with overprinted, sinuous
deposits forming the internal architecture. Many small, relatively low-sinuosity
channels are also identified. Given the numerous minor channels, the distributive
pattern of channel orientations, and seemingly wetter depositional setting, this
interval is best interpreted as representing an upper delta plain. Payenberg et al.,

(2013) also interpret delta plain deposits at this interval.

4.9 Ambiguity in interpretations

A major challenge in this study has been the establishment of unambiguous criteria
with which to reliably distinguish between valley-fill and channel-belt successions.
In cases where wells penetrate such seismic elements, the thickness of the deposit
may assist with the identification of likely valley-fill deposits from single- and multi-
storey channel-belt deposits. The width of the seismic element might additionally
be useful in assisting with recognition but caution should be exercised: it is
possible to have a 1 km-wide valley just as it is possible to have a 10 km-wide
channel belt. Indeed, studies such as those by Gibling (2006) and Colombera et al.
(2012, 2013) demonstrate a large overlap in widths of channels, channel belts and

valleys from both modern settings and the ancient preserved record.

Although primary channel-element and valley deposits can be interpreted with
confidence, and discerned from gleysols — chiefly by virtue of the distinct

geomorphological expression of channel-element and valley deposits, and the
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characteristic seismic facies response of the gleysols — other elements, including
channel-margin deposits should be interpreted more tentatively, due to their small-

scale and spatially restricted and discontinuous nature.

Within this study the overprint of post-depositional faulting causes only minor
iImaging problems, mainly because preferred orientations of fault arrays are close
to perpendicular to the trend of the major channels (Figure 4.13). Thickening of
packages between horizons was also detrimental to the imaging of deposits as the
‘stratal slices’ become mis-aligned with the fluvial deposits where the thickness of
the package is non-uniform (Figure 4.14). This effect is evident in the northern half
of the S6 horizon slice. The flattened interval is thicker in the north of the dataset
than in the south, hence slices taken through the dataset do not necessarily fully

align with the fluvial deposits.

4.10 Conclusions

Using high resolution seismic data it is possible to identify a range of architectural
elements present in subsurface fluvial and fluvio-deltaic successions using stratal
slicing and attribute extraction techniques. Seismic facies can be linked to
sedimentology through adoption of a holistic approach integrating wireline log, core
log and seismic data. From careful analyses of planform geomorphology and
assessment of relative proportions of seismic elements, it is possible to recognise
key aspects of the depositional palaeoenvironment, namely: (i) wet versus dry
substrate conditions, as indicated by the presence or absence of gleysols
indicative of a poorly drained floodplain, as is seen at the S5-S6 interval; (ii) the

presence of incised valley systems, as identified around S1, an interval with large
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valley features, with negligible deposition away from the large features, indicating
deposition is confined within them; (iii) aggradational delta plain, as indicated by
fluvio-deltaic deposits accumulated across a broad floodplain area, as identified at
near S6. It is, however very difficult to distinguish definitively and routinely between
valley-fill and channel-belt deposits at this scale, especially at deeper levels where
there are few well penetrations and where the relatively low-resolution of the
seismic data hampers interpretation. For the three studied intervals, which
represent ‘snapshots’ at key stages in the accumulation of the Mungaroo
Formation, three distinct depositional palaeoenvironmental settings have been
reconstructed: (i) the S1-S2 interval represents dominantly incised valley deposits;
(i) The S2-S3 interval represents dominantly channel-belt and associated splay
deposits within a relatively well-drained floodplain setting; (iii) The S5-S6 interval
represents large and small distributary channel networks present in a poorly
drained upper delta-plain setting. The Mungaroo drainage system had a consistent
E-W trend, with only minor systems developing draining to the south. Looking at
the deposits interpreted moving up through the succession, the transition from
valley fill, to relatively well-drained fluvial floodplain, to poorly drained delta plain,
the Mungaroo Formation records several small-scale fluctuations in base-level but

overall records a general base-level rise.
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Chapter 5 Seismic interpretation techniques useful in the interpretation
of subsurface fluvial deposits

Research question: What techniques can be employed to identify

channelized deposits and non-channelized floodplain deposits at a

range of scales? How can seismic interpretation techniques be used

to enable more detailed interpretations?

5.1 Introduction

Channel deposits of fluvial and fluvio-deltaic systems are common targets in
reservoir exploration (Shanley & McCabe, 1993; Miall, 2006, Wood, 2007).
Examples of well-known fluvial channel reservoir plays include the Cretaceous
(Campanian) McMurray Formation, Alberta, which comprises lateral-accretion
deposits present in composite valley-fill features (cf. Fustic et al., 2012;
Hubbard et al, 2011; Labrecque et al., 2011; Musial et al, 2012; Smith et al.,
2009); Triassic Snadd Formation, offshore Norway (Klaussen et al., 2014)
Pliocene and Miocene fluvial systems from the Gulf of Mexico (Wood, 2007;
Zeng & Hentz, 2004), and the Triassic Mungaroo Formation, Australia, which
comprise fluvio-deltaic deposits present across much of the North West Shelf
region (Adamson et al., 2013; Heldreich et al, 2013; Jablonski, 1997; Seggie et

al ,2007; Stoner, 2010).

Many past and current studies of fluvial deposits present in the subsurface have
sought to define the location, size (geometry and lateral extent) and
depositional style of such deposits by adopting a combined sedimentologic,
stratigraphic and geomorphic approach (e.g. Chopra & Marfurt, 2008;

Reijenstein et al., 2011; Posamentier, 2013).
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Channel deposits can be laterally discontinuous, exhibiting complex lateral and
vertical connectivities influenced by net:gross, channel element size, channel
element 3D architecture and mud drapes (Colombera et al.,, 2012a, 2013;
Gibling, 2006; Larue & Hovadik, 2006 Wood, 2007). Figures 2.9-2.11 illustrate
the influence of varying channel configuration and net:gross on channel body
connectivity. Figure 5.1 (after Orton & Reading,1993) illustrates some of the
basic fluvial depositional styles. The typical thickness of individual channel
elements and channel-belt deposits is commonly <10 m (Colmbera et al.,
2012b; Gibling, 2006), meaning that many such examples are below seismic
resolution. The boundaries of these complex, often erosive deposits can prove
difficult to map using seismic data as continuous surfaces (Hardage et al, 1994;
Roksandic, 1995; Payenberg et al., 2013). Although advances in 3D seismic
acquisition, processing and analysis have advanced to the point of being able to
detect geomorphic elements, the vertical resolution of conventional 3D surveys
is not yet sufficient to detect bed-scale stratigraphic and sedimentary features

(Reijenstein et al., 2011).

The aim of this chapter is to introduce the seismic interpretation methods
utilised in this project that have proven useful in the identification and
interpretation of subsurface fluvio-deltaic deposits of the Triassic Mungaroo
Formation, North West Shelf, Australia. The methods employed include those
for horizon interpretation, data conditioning, horizon slicing and spectral
decomposition. Additionally, this chapter considers methods associated with the

™ and

analysis of several further seismic attributes carried out in Petre
Geoteric™ that are potentially useful when studying fluvial deposits, including
edge detection, dip angle and azimuth, relative acoustic impedence, and two

Geoteric™ attributes designed to enhance thin bedforms .
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Figure 5.1: Simple block diagrams showing some of the varieties of suspended-load and
bed-load fluvial architecture as relates to grain size, width/depth ratio, channel stability,
sedimentload and stream power (After Orton & Reading (1993).
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5.2 Well-log correlation

Sequence boundaries are interpreted as: unconformity surfaces of regional
extent and their correlative conformities (Vail & Mitchum, 1977, Mitchum at al.,
1977), which are most commonly expressed in fluvial sequences as major
erosion and incision to form valleys (Van Wagoner et al.,, 1990). These
sequence boundaries were mapped with high detail in well logs provided by
Woodside; however correlation problems have arisen when trying to map out
seismic horizons corresponding to these sequence boundaries. Due to
limitations in vertical seismic resolution, the cross-sectional expression of
geomorphic elements such as incised channel and valley elements is often too
crudely imaged in seismic data to delineate stratigraphic discontinuities
(Reijenstein et al., 2001). This is the case in the Colmbard 3D survey examined
as part of this study. For this dataset, the vertical and lateral extent of fluvial
valley and channel deposits is such that although they are readily identifiable in
core and wireline log data, and are discernible on seismic data, they are
typically not clearly expressed in seismic cross-section (Figure 5.2a).
Additionally, the laterally confined nature of channelized deposits associated
with the sequence boundaries gives rise to a laterally variable seismic reflection
character (c.f. Payenberg et al., 2013) meaning that mapping over regional
extents is problematic (Figure 5.2a & b). This is not a problem that is specific to
the channelized deposits of the Triassic Mungraoo Formation, per se but is
common to most subsurface fluvio-deltaic successions. To circumvent this
problem, generally more recognizable, distinctive and laterally extensive have
been used to map key seismic horizons within the succession. Flooding and
atransgressive events have widespread, stratigraphic manifestations and so the

resultant thin but recognisable flooding and transgressive surfaces provide
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Figure 5.2a: Expression of laterally discontinuous fluvial bodies on a seismic cross-
section. The base of the major incised valleys represents a sequence boundary but it is
hard to distinguish between these and entrenched channel belt features from seismic
cross-section alone. The discontinuous and variable seismic character means that
confident correlation is problematic. b: Channel-related sand bodies do not necessarily
correlate between adjacent wells. c: Key stratal surfaces were tied as closely as possible
to seismic events prior to horizon interpretation in the 3D cube. Abbreviations: TS
(Transgressive Surface), MFS (Maximum Flooding Surface), SB (Sequence Boundary).
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particularly useful time-stratigraphic markers for regional correlation (Galloway,
1989a, 1989b) The flooding and transgressive surfaces within the Mungaroo
Formation are associated with gleysols, coals, and mud-prone sediments that
can be regionally correlated in wells (Adamson et al, 2013) and having a more
continuous, uniform seismic character such that they can be mapped as
surfaces of regional extent. In the Colmbard survey, 7 horizons relating to
regionally correlateable transgressive and flooding surfaces were interpreted
within the Mungaroo Fm (Figure 5.2c); these serve as the basis for the
subdivision of the Formation into study intervals used in this study. Further
detail of the interpreted horizons and how they link into the chronostratigraphic
framework of the Mungaroo Formation can be found in Chapter 3, Figures 3.4-

3.6.
5.3 Seismic methods

5.3.1 Data conditioning
Before detailed interpretation of the volume could be undertaken, steps were
taken to reduce the noise present in the volume, and enhance the resolution of

the volume.

5.3.1.1 Noise reduction

Noise reduction was carried out using GeoTeric'™, to reduce coherent noise
(including linear noise and multiples) and random noise. Two noise filters used
in the study are: (i) TDiffusion, which removes random noise while preserving
structural details such as edges; (i) SO FMH (Structurally Orientated: Finite
Mean Hybrid filter), which reduces random and coherent noise while preserving
edges and dipping features. This filter uses dip and azimuth steering volumes to

steer the filter, so has higher fidelity than traditional filters (such as Petrel™
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Figure 5.3: Comparison of the
seismic volume before and after
noise reduction. a: Example
seismic cross section from the
Colmbard 3D (Near Stack)
volume. Reflections are highly
discontinuous with considerable
noise. b: The same cross section
showing the noise removed from
the volume. c: The resultant
structurally smoothed, noise-
filtered cross section. Reflections
appear more laterally continuous,
whereas edges of features are
preserved and not smeared
through over-smoothing, as can
occur as a result of traditional
smoothing techniques.
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structural smoothing filter), and is less likely to confuse subtly dipping features
with noise. This filter gives a similar output to the OpendTect™ dip-steered
median filter. Figure 5.3 compares a seismic cross-section from the original
volume with that of the noise-filtered volume, and depicts the same cross-

section to demonstrate how noise has been removed from the volume.

5.3.1.2 Spectral enhancement

The vertical resolution of seismic data is partially dependent on the frequency
content of the seismic signal (Partyka et al., 1999). Maximising the mean
frequency and bandwidth of the seismic data by enhancing the higher frequency
content of the seismic volume can aid the delineation of seismic events that
were poorly resolved in the original seismic volume (FFA, 2013). The
Geoteric™ Spectral Enhancement workflow produces a more balanced
frequency spectrum with a higher vertical resolution. Figure 5.4 compares a
seismic cross section from the noise cancelled volume with that of the spectrally

|T|V|

enhanced volume. The equivalent process in Petre utilizes the Graphic

Equalizer volume attribute.

5.3.2 Horizon slicing (Petrel™)

In seismic surveys where deposits are horizontal to sub-horizontal, and have
not been post-depositionally deformed, time slices can be used to visualise
fluvial channel-belt deposits (c.f. Miall, 2002; Posamentier, 2005; Ethridge &
Schumm, 2007; Reijenstein et al., 2011), particularly where deposits are
shallowly buried (c.f. Reijenstein et al., 2011). The quality of image produced
decreases with depth. Figure 5.5 compares a shallow time slice (~125 m SS)
from Reijenstein et al. (2011) with a deep (~1500 m SS) slice from Wood

(2007), showing how the level of detail of the deposits discernable within a
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Figure 5.4: Demonstrating the effects of the Spectral Enhancement workflow. a: Seismic
cross section from the noise-filtered seismic volume. b: Frequency spectra for the original
and enhanced volumes. The mean frequency and bandwidth have been enhanced by
increasing the input from higher frequencies, whilst keeping the dominant frequency as
close to the original as possible. The inset figure shows enhanced reflections relating to
thinly bedded strata. ¢: The same cross section as in a, from the spectrally-enhanced
volume. Reflections appear crisper; some previously discontinuous reflections are more
laterally continuous. d: Detailed view of poorly imaged, discontinuous reflections.
e: Detailed view of better resolved, more laterally continuous reflections.
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Time slice:
160 ms
(=125 m bsl

Figure 5.5: Comparison of (a) a shallow (~125 m SS) and (b) a deeper (~1500 m SS) time
slice, illustrating the fluvial features visible at the different depths. a: Very shallow time
slice from the Gulf of Thailand (reproduced rom Reijenstein et al., 2011) shows the detailed
geomorphology of meandering channel and point bar deposits in an exceptionally well-
imaged volume. b: This deeper slice from the Gulf of Mexico (reproduced from Wood,
2007) shows less detail of the fluvial deposits, although both large and small channel and
channel belt bodies can be discerned.
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seismic cube is less in more deeply-buried deposits than in shallowly buried

deposits.

The Mungaroo Formation has been subject to post-depositional faulting, the
result of which is that the fluvial deposits cannot be visualised using
conventional time slices. The method employed in this study to visualise the
deposits is horizon slicing. To achieve this, a series of sub-volumes were
created, flattened on individual seismic horizons (Figure 5.6 shows the horizon
slicing workflow). Time slices taken within the flattened volumes are effectively
horizon slices, and show deposits that are stratally aligned with the flattened
horizon (Hardage, 1994). Horizon slices are only effective in cases where strata
are parallel to the interpreted seismic horizon (Zeng & Ambrose, 2001). This
method is effective for the Colmbard 3D survey as deposits of the Mungaroo

Formation are parallel to sub-parallel.

5.3.3 Proportional slicing and amplitude extraction (Petrel ™)

Where flattened slices did not image the deposits, proportional slices extracting
amplitudes over a larger window were used to capture large-scale features.
Proportional slices are stratal slices taken aligned with strata between two
seismic horizons (Zeng et al., 1998). Figure 5.7 (after Zeng & Hentz, 2004)
illustrates the difference between time slices, horizon slices and stratal slices. In
very deep sections of the dataset (>4000 msTWT), resolution was reduced
such that visualisation of the fluvial deposits was not possible. For very deep
(>4000 msTWT) sections, amplitudes were extracted over a window around a
proportional slice in order to image the large-scale geometry of the fluvial
deposits. Figure 5.8 compares the amplitude map of a proportional slice, from
the deepest interval of the Mungaroo Formation investigated in this study, with

an amplitude map where the values (in this case, a maximum amplitude
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Horizon slice
(3508 ms)

Figure 5.6: Flattening workflow used on the Colmbard 3D survey. a: Seismic cross-section showing interpreted seismic horizons. The horizon to be
flattened (target horizon), and some stacked, channelized sand bodies identified in well logs are labelled. b: Cross-section view showing the flattened
volume (flattened on the orange horizon), and the location of a horizon slice taken below the flattened horizon. ¢: The horizon slice is able to image a

distributary network of channels and channel belts, at the approximate stratigraphic location of the stacked, channelized sand bodies encountered in the
well.
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Figure 5.7: Comparison of time,
horizon and stratal-slicing
techniques (after Zeng & Hentz,
2004). a: As neither horizon is
horizontal, time slices cross the
dipping horizons and would not
reveal time-equivalent strata. b:
Horizon slices aligned with
horizon A are conformable with
stratigraphy when taken close to
horizon A, but as the lower
horizon B is dipping at a higher
angle, they are not stratally-
aligned lower down. This is
common where there are lateral
changes in the thickness of the
stratal package. If the two
horizons are close to parallel,
horizon slices would be stratally
conformable throughout the
interpreted package. c: Stratal

Horizon B

b HorizonB | (yroportional) slices are
Horizon A conformable with both horizons,
and provide a ‘best’ fit through

___________________ dipping strata with lateral
thickness changes.

T‘ Horizon B

B

Figure 5.8a: Proportional (stratal) slice showing poorly-imaged, laterally discontinuous
geobodies relating to fluvial deposits. b: Amplitude map for the same slice as in a, with a
maximum amplitude attribute extracted over a 50 ms window, showing more laterally
continuous and clearly defined features, some measuring >10 km width, interpreted as
valley deposits.
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attribute — maximum positive peak value — extracted over a 50 ms window).
Large-scale, likely palaeovalley, geobodies are visible in both slices, but are
clearer and more continuous in the 50 ms window. Implementation of this
techniqgue meant that large-scale features were able to be imaged, that would

otherwise have remained undetected.

5.4 Spectral (frequency) decomposition (Geoteric™)

Spectral decomposition breaks down a seismic volume into its constituent
frequencies and then creates amplitude volumes tuned around specific
frequencies. Application of this method makes it possible to visualise the same
seismic interval (and the deposits within it) at different frequencies (Partyka et
al., 1999; Henderson et al., 2008). Thickly bedded features tend to have
relatively higher amplitude at lower frequencies, whereas thinly bedded features
tend to have higher amplitude at higher frequencies (Partyka et al., 1999).
Spectral decomposition can help to delineate features that fall below normal
seismic resolution. Two methods of spectral decomposition were used in this
project, using Geoteric™. The methods are explained in detail by McArdle &
Ackers (2012) and McArdle et al. (2014), and are summarised below with

examples from this study.

5.4.1 RGB blending

A region of interest around a seismic slice is defined (Figure 5.9a), from which a
frequency spectrum is generated. Next, a series of frequency bands are
projected onto the spectrum (Figure 5.9b). The minimum frequency, maximum
frequency and number of bands can be altered. The distribution of the
frequency bands depends on the decomposition method chosen: the Constant
Bandwidth method produces equally sized and spaced frequency bands within

the minimum and maximum range defined (Figure 5.9b); Uniform Constant Q
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Figure 5.9: Stages in the creation of an RGB blended volume. a: Target horizon slice (seismic amplitude), poorly imaged. b: Frequency spectrum with
Constant Bandwidth frequency bands. ¢: Frequency spectrum with Uniform Constant Q frequency bands. d: Preview slices from frequency band volumes.
Those at 24, 28 and 33 Hz show different details of features. e: Chosen input volumes for the blended volume are coloured red, green and blue
respectively. f: RGB blended volume showing much more detail than the horizon slice (a), with contrasting channel (blue) and overbank (yellow) deposits.
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Figure 5.9 continued: Improperly balanced RGB colour blends. g: Colour blend biassed
towards the lower frequency (red). h: Colour blend biassed towards the middle frequency
(green). i: Colour blend biassed towards the higher frequency (blue). Inset figure shows
sketched outlines of channel belt deposits. j: Colour blend where frequencies are too close
together, giving a grey colouration. Inset figure shows sketch outline of valley geobodies.
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(analogous to Fast Fourier Transform) increases the bandwidth of the
frequencies by a constant amount (Figure 5.9c). This latter method gives a
better vertical resolution then Constant Bandwidth, but less separation of

frequency colours.

A series of magnitude volumes is generated (one for each of the frequency
bands defined on the spectrum), which show the same seismic slice at different
frequencies (Figure 5.9d). Three magnitude volumes are selected, from a low,
medium and high frequency, these are coloured red, green and blue,
respectively (Figure 5.9e). Volumes that show different, contrasting features
should be selected. When blended together, the RGB blended volume
highlights features corresponding to the three frequency channels. Where the
volume has a strong response from all three frequencies, the volume appears
white; a red, green or blue hue indicates a bias towards a particular frequency.
The resulting volume highlights features that were not discernable using the
original seismic volume (Figure 5.9f), with contrasting colours corresponding to

the frequency responses of different lithologies and fluid content.

5.4.2 HD frequency decomposition (HDFD)

High-definition frequency decomposition (HDFD) is based on a matching pursuit
algorithm (McArdle & Ackers, 2012). This method of frequency decomposition is
useful in fluvial settings where thinly-bedded deposits abound as greater vertical
resolution is achieved with less vertical ‘smearing’ of the data, thereby giving
better delineation of subtle features (Figure 5.10). However, the contrast
between frequencies is not as great as with RGB blending, and the process is
considerably more time-consuming. Chapter 6 details a case study where

HDFD lends more detail to the interpretations of depositional architecture made.
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Figure 5.10a: Cross-section view from an
HDFD volume with well-defined reflections
(good vertical resolution). b: RGB colour
blend volumes have a greater degree of
vertical smearing of data (less vertical
resolution).
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5.5 Additional seismic methods: attributes

This section briefly considers other seismic attributes that may be useful in the
interpretation of fluvial and fluvio-deltaic deposits, but were not focussed upon
in this project. The attributes discussed herin were computed in Petrel™ and

Geoteric™,

5.5.1.1 RDR Edge Detection (Petrel™)

This surface attribute highlights sharp edges in seismic data and is typically
used to identify faults (which are expressed as approximately N-S aligned
lineaments in the Colmbard survey Mungaroo Formation). The attribute also
appears to have highlighted some individual meander loops within channel belt

deposits (Figure 5.11).

5.5.1.2 Dip angle (Petrel™)

The dip angle was calculated as a surface attribute, highlighting higher-angle
inclined reflections associated with faults and channel belt deposits
(Figure 5.12). Relatively high-angle dipping features that may represent
individual incision events by mobile channels within the channel belt are
highlighted. Care must be taken when inferring such deposits in cases where
the dipping beds are at the channel-belt margin, as the dip angles may simply
be responding to the edge of the channel belt rather than a smaller channel

body nested within it.

5.5.1.3 Dip Azimuth (Petrel™)
The dip azimuth, calculated as a surface attribute, reveals a structural trend
within the Colmbard survey, aligned E-W (Figure 5.13), that is not associated

with N-S aligned, post-depositional extensional faulting, and may be exerting a
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RDR Edge Detection

RDR Edge detection run
on TR22.1 surface.
Highlights sharp edges in
the data, which are usually
used to identify fault
breaks. In large channel
belts, can aid in the
identification of single
channel incisions and
meander loops.

Meanders in channel within
channel belt clearly visible

£

Figure 5.11: RDR Edge Detection surface attribute, highlighting sharp edges in the data,
including faults and incised channel features.

Dip Angle Surface Attribute
Dip Angle attribute on TR22.1
surface.

Dip angle highlights incised
channels within valley
complexes.

~100 m wide incised channel bodies, possibly
corresponding to abandonment mud plugs

Clear E-W Clear E-W trend

trend in
channels
within belt

Random channel orientation- possible unconfined distributary channels on floodplain

Figure 5.12: Dip angle surface attribute highlighting faults and other relatively high-angle
inclined features. Two possible incised, meandering channel features are highlighted.
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subtle structural control on the orientation of regional drainage patterns

(regional Mungaroo Fm palaeoflow is approximately east-to-west).

5.5.1.4 Relative Acoustic Impedance (Al) (Petrel™)

Relative acoustic impedance indicates apparent acoustic contrast, and can
highlight variations in porosity and fluid content. Figure 5.14 shows an example
from one of the channelized sand-bearing intervals, where channel-belt
deposits have a positive RAI and overbank deposits have a negative RAI. This
attribute can indicate sand-rich areas, but does not delineate the overall plan-

form geometry of the deposits in as much detail as horizon slices.

5.5.1.5 Bedform (Geoteric™)

The bedform attribute is a phase-based attribute (ffA, 2013). Lineaments are
extracted along their minimum and maximum phase. This can aid in resolving
discontinuous, thin events into a continuous, mapable reflection. Figure 5.15
shows a cross-section view of the bedform attribute. Reflections are relatively
continuous across the cross section. An area showing multiple phases of infill

within an entrenched valley or channel-belt feature is highlighted.

5.5.1.6 Terrace Thickness (Geoteric™)

The where 2 beds of thinly bedded deposits show as a doublet rather than two
discrete wavelets, the terrace attribute attempts to resolve the inflection points
of the doublets into discrete wavelets. The resulting output is displayed as
voxels (Figure 5.16). Terrace thickness is a measure of the difference between
inflection points on a trace. Thickness of beds is represented as a colour
response. Darker colours indicate thicker beds. Application of this technique

can help to identify discrete channelized bodies.
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Dip Azimuth

Dip azimuth attribute produced
for seismic horizon S7. Similar
trends are seen on other
horizons.

Dip azimuth reveals E-W / SE-
NW structural trend.

Possibly influencing Triassic
drainage network orientation
(Mungaroo Fm regional
paleoflow approx E-W).

Dip Azimuth (Deg)
0

270 90

180

Figure 5.13: Dip azimuth surface attribute highlighting local (N-S faults) and regional
structural trends.

Relative Acoustic Impedance

Positive relative acoustic
impedance at ~4000 m within
sinuous channel form

relates to 40 m fluvial channel
sand intersected by well
Martin-1 at 3942-3982 m
TVDSS (responding to higher
porosity, sand-prone
deposits).

Martin-1: Channel Sand

b

Figure 5.14: Relative accoustic impedance attribute responding to porosity contrasts
within the formation.
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Bedform Attribute Heavily faulted zone

Approx. Iocatior_E z
of flattened -
horizon

Internal
bedding of
large channel
belt feature
highlighted

Figure 5.15: Bedform attribute (bedform frequency) showing continuous beds and,
circled, fluvial deposits with multiple phases offill below a flattened horizon.

Terrace Thickness Attribute

Thinly bedded deposits
that can resultin a
doublet in the seismic
volume are can in some
cases be resolved into
discrete wavelets. The
resulting output is
displayed as voxels.
Terrace thickness
displays relative bed
thickness as a colour
response.

A

Wavelets defined ~ Wavelets defined F "f
by zero crossings by inflection pointsI

Figure 5.16: Terrace thickness attribute. Darker areas indicate thicker deposits.
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5.6 Chapter summary

Accurate interpretation of fluvial deposits using seismic data requires integration
with well log data, including wireline and core, and, where possible, placing the
deposits within a sequence stratigraphic context. Flooding and transgressive
surfaces, being regionally continuous and recognizable both in seismic data and
well logs, form more reliable well correlation and seismic interpretation horizons
than sequence boundaries. Noise reduction and frequency enhancement
workflows can aid in enhancing thinly-bedded deposits, while horizon slicing
and proportional slicing reveal stratally aligned deposits. Frequency
decomposition enables the visualisation of deposits that are below normal
seismic resolution by allowing the viewer to focus on specific frequency ranges
revealing subtle features. The aforementioned techniques proved the most
consistently reliable while studying the Mungaroo Formation, however a number
of other structural, signal processing and stratigraphic attributes have also been
shown to aid in the identification and interpretation of fluvial deposits, most
notably dip angle, tentatively identifying single channel bodies within channel
belts, and relative acoustic impedance, distinguishing between higher porosity

sand-rich channel belt deposits, and lower porosity overbank fines.
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Chapter 6 Architecture of a fluvio-deltaic succession investigated with
seismic attribute  analysis and spectral decomposition:
Late Triassic Mungaroo Formation, offshore Western Australia

Research question: How can a range of seismic interpretation

techniques, including spectral decomposition, be used to resolve the

internal architecture of channel-belt deposits? Can these techniques
provide further insight into fluvial styles, distinguishing between

entrenched valleys and amalgamated channel belts?

6.1 Chapter Overview

Many reservoir targets in relatively low net-to-gross fluvio-deltaic successions
comprise thinly bedded sandstone bodies with complex geometries; such
architectural elements are, typically, poorly imaged using conventional seismic
interpretation technigues. The Late Triassic Mungaroo Formation present in the
subsurface offshore Western Australia comprises a succession of fluvial and
deltaic architectural elements at a variety of scales. Reliable interpretation of the
paleoenvironmental significance of these deposits requires a combined
stratigraphic and geomorphologic approach using core, wireline and seismic
data. The high-resolution Colmbard 3D seismic cube (block WA-404-P)
encounters fluvial-deltaic deposits between ~3000 and 5000 ms TWTSS and
within this interval the succession has been studied in detail from 3400 - >4300
ms TWT. A workflow is presented for the recognition and interpretation of fluvial
deposits from subsurface datasets that involves data conditioning, horizon
slicing (domain transform) and spectral decomposition. The preserved

Mungaroo Formation has been interpreted at 3 different intervals, representing
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two fluvial and one deltaic paleoenvironment. Interpreted deposits include:
multi-story, multi-lateral meander-belt deposits contained within incised valley
systems, vertically amalgamated channel-belt deposits, and successions
composed of individual meandering channels with associated point-bar
deposits. Results from analysis of reflectivity horizon slices are compared to
spectrally decomposed horizon slices: spectral decomposition more clearly
images valley, channel-belt and even individual channel features, at depths >3
km. Interpretations made using spectral decomposition have significance in
planning well placement. Morphological components of the modern Peace
River, Alberta, Canada, are analogous to the meandering channel and bar
elements. The deposits represent lowstand systems tracts (incised valley and
low accommodation lateral accretion deposits) and highstand systems tracts
(high accommodation delta plain distributary deposits) that can be interpreted
within the framework of a series of stacked buffer zones and transgressive

events that, themselves, record repeated base-level rise and fall.

6.2 Introduction

6.2.1 Context

Most fluvial successions include sandstone bodies that can be laterally
constrained on a scale of several tens of meters to hundreds of metres. Many
such bodies are thinly-bedded (commonly <10 m) and commonly exhibit
complex lateral and vertical connectivity relationships (Colombera et al., 2012,
2013; Gibling, 2006; Wood, 2007). As hydrocarbon exploration increasingly
targets smaller, thin-bed pay, it has become ever more important to glean as
much geologic information from subsurface core, well-log and seismic data as
possible, by adopting an integrated sedimentology, stratigraphy and

geomorphology approach (Chopra & Marfurt, 2008; Posamentier, 2013).
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From the standpoint of imaging fluvial bodies using seismic techniques, thin-
bedded units are those that are near or below seismic resolution. If a sand body
is thinner than 2 wavelength (A) of the seismic wavelet, the top and bottom of
the unit are difficult to resolve independently (Widess, 1973; Kalweit & Wood,
1982). M8 is generally considered the limit of seismic resolution (Widess, 1973),
although greater resolution has been demonstrated in experimental setups

(Chopra et al, 2006).

Currently employed seismic interpretation techniques have developed from 2D
seismic sequence stratigraphy (Vail et al, 1977), which assumes that seismic
reflections are stratigraphically significant surfaces, thereby allowing the
interpretation of genetic depositional units. The advent of 3D interpretation
techniques has incorporated attribute analysis and stratigraphic techniques
such as 3D and 4D Wheeler diagrams, computed from 3D seismic data (e.g.,
de Groot et al, 2010; Qayyum et al, 2014). Spectral decomposition — a
technique to improve seismic imaging by breaking down the seismic signal into
its component frequencies — can be used to reveal geologic information in 3D
seismic datasets that cannot be fully resolved using standard reflectivity data
(McArdle & Ackers, 2012), particularly where clastic deposits have sharp
impedence contrasts (Partyka et al, 1999). Spectral decomposition allows the
visualization of the seismic response at discrete frequency intervals.
Decomposing seismic data into its spectral components can reveal stratigraphic
and structural details that are often poorly imaged in the seismic volume.
Frequency responses can be interpreted; for example, lower frequencies
typically image thicker beds, whereas thinner beds are best imaged at higher

frequencies (Partyka et al, 1999; Van Dyke, 2010).
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The use of stratal slicing (Zeng et al., 1998% Zeng et al., 1998"; Zeng et al.,
2001) and domain transforms (Dorn, 2011; 2013) to produce flattened horizon
and stratal cubes allows for the visualization of complex or subtle depositional
geomorphologies (Posamentier, 2013) that cannot be seen on time slices.
Stratal slicing and domain transforms overcome some of the visualization
problems associated with time slicing; principal among these is that to view
stratal geometries, time slices need to be time-conformable with seismic-stratal
events but this is rarely the case due to the structural dip and thickness
variations of deposits (Zeng et al., 2001). Stratal slices are proportionally sliced
between interpreted horizons. In a proportionally flattened cube, the cube is
viewed in the stratal domain such that time slices are effectively stratal slices. In
a cube that is flattened on one horizon, time slices are ‘horizon slices’. These
stratal viewing techniques are particularly useful in analysis of fluvial
successions (Hardage & Remington, 1999; Wood et al, 2000; Wood, 2007),
where discontinuous, erosive deposits prove difficult to map as continuous
seismic horizons (Hardage et al, 1994; Roksandic, 1995; Payenberg et al.,

2013).

6.2.2 Aim and objectives

The aim of this study is to present a workflow whereby seismic data can be
conditioned, stratally interpreted and spectrally decomposed to better image
relatively thinly-bedded fluvial deposits, more fully resolving features that are
near or below conventional seismic resolution. Specific objectives are as
follows: (i) identify areas within the formation that are likely to be composed
internally of a substantial proportion channelized architectural elements of
fluvio-deltaic origin; (ii) to illustrate how frequency decomposition can be used to

better resolve the external geometry and internal architecture of a range of
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complex sandstone geo-bodies of fluvio-deltaic origin; (iii) to outline a technique
for the identification of deposits revealed by the spectral analysis; (iv) to present
a method for the classification of fluvial channel styles; (v) to show how a range
of integrated seismic analysis techniques can be applied to provide further
insight into the depositional environment of the Late Triassic Mungaroo

Formation of the NW shelf of Australia.

This chapter develops the observations and interpretations presented in
Chapter 4 by allowing a more detailed view of the internal architecture of
channel belt and valley deposits: Frequency decomposition allows the
visualization of features that are below the normal resolution of seismic data.
This chapter also attempts to place the more successful techniques employed
in Chapters 4 and 5 in a concise, repeatable workflow. Study area & geological

setting

6.2.3 Study area & data

The study area is the ~3000 km? Woodside Endergy Ltd operated, offshore
block WA-404-P, on the Exmouth Plateau, NW Australia (Figure 6.1), which is
imaged by the Colmbard 3D seismic survey. The Colmbard survey is a pre-
stack depth-migrated, zero-phase, 3D seismic reflection survey. The inlines and
cross-lines are oriented E-W and N-S, with spacings of 15 m and 12.5 m,
respectively. This study uses the Near Stack volume of the survey. The survey
has negative polarity, such that a downward increase in acoustic impedance
(hard kick) corresponds to a negative amplitude reflection and a downward
decrease in acoustic impedance (soft kick) is represented by a positive
amplitude reflection. For the purpose of this study, positive amplitudes are
shown as red or black, negative amplitudes are shown as blue or white. The

study area has an average water depth of 1.3 km.
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This study focuses on a ~1200 km? subset of the survey area, studying a >1
km-thickness succession of the Late Triassic Mungaroo Formation. The study
additionally makes use of 11 wells with wireline log suites, 2 of which also have
core (Figure 6.2). The approximate vertical resolution of the Colmbard dataset

at the depth of the Mungaroo Formation is 20 m.

6.2.4 Geological setting

The NW Shelf of Australia spans >2400 km along the NW margin of Australia
(Figure 6.1b) and forms part of the Westralian Basin. The NW Shelf comprises
four offshore basins: Northern Carnarvon Basin, Roebuck Basin, Browse Basin
and Bonapart Basin (Yeates et al., 1986; Westphal & Aigner, 1997; Longley et
al., 2002; Marshall & Lang, 2013). The Exmouth Plateau forms the outboard
section of the Northern Carnarvon Basin. The Northern Carnarvon Basin is
bound to the north, west and southeast by the Argo, Gascoyne and Cuvier

Abyssal plains, and to the east by the Australian Craton (Hocking et al., 1987).

The Triassic deposits of the NW Shelf comprise the Locker Shale, Mungaroo

Formation and Brigadier Formation (Jablonski, 1997). At this time the pre-rift

sag Northern Carnarvon Basin formed a large, westerly dipping, flat ramp
cratonic margin, and constituted part of the continental margin on the NE edge
of Gondwanna (Westphal & Aigner, 1997). Drainage from the east may have
originated from the Ross High in central Australia and passed through the
Canning Region, and also from the Pilbarra Craton (Seggie et al., 2007;
Payenberg et al., 2013). Triassic sediments are known to be up to 4 km thick in
the inboard NW Shelf, and are suggested to be up to 6 km thick in some parts

of the Exmouth Plateau (Adamson et al., 2013).
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The Mungaroo Formation is a Carnian-Norian age fluvio-deltaic system that
developed to a size similar to that of the modern Mississippi delta system
(Jablonski, 1997). The climate in the Late Triassic is interpreted to have been
temperate-warm, humid and monsoonal, with wet and dry episodes (Dickens,
1985; Bradshaw et al., 1994; Payenberg et al., 2013, Preto et al., 2010; Arche &
Lépez-Gdmez, 2013). Studies of the Mungaroo Formation identify a variety of
depositional styles associated with multi-valley complexes (i.e. multi-phase
valley fills; multilateral and amalgamated valley fill over a regionally smooth
erosional surface, cf. Holbrook, 2001). Multi-phase valley fills (Marshall & Lang,
Adamson et al 2013; Payenberg et al 2013) have been interpreted in areas
penetrated by relatively more in-board wells in an up-dip location relative to
WA-404-P (Figure 6.1). Both large (<2 km wide, <15 km long) and small-scale
(250-750 m wide, 50-10 km long), predominantly low-sinuosity channels have
been interpreted in the Mungaroo Fm ~200km to the south of the study area
buy Heldreich (2013), as have tidally-influenced and deltaic deposits (Longley et

al, 2002; Marshall & Lang, 2013).
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Figure 6.2: Location of wells and study subset within the area covered by the Colmbard 3D
seismic survey. Grid measurements are giveninm (UTM zone GDA94 _50S).
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6.2.5 Stratigraphy

The Mungaroo Formation records the overall transgression of a fluvio-deltaic
system (Payenberg et al., 2013). Within this overall trend, several high-
frequency transgressive-regressive cycles are recorded and these have been
identified using seismic and well data (Adamson et al., 2013; Marshall & Lang,
2013). The stratigraphy of the Mungaroo Formation has been described by
Marshall & Lang (2013) and Adamson et al (2013). Using a combination of
seismic, sedimentological and panynological data, these authors describe third-
order cyclicity within the formation whereby cycles are bound by key stratal
surfaces linked to regionally correlatable seismic horizons. In the Marshall &
Lang (2013) study, the Triassic is split into three regional play intervals, TR10
(252.2-237.0 Ma), TR20 (237.0-209.9 Ma) and TR30 (209.5-201.3 Ma) that are
themselves split into sub-plays. Within the sub-plays, third-order stratal surfaces
were identified. This study examines the TR20 play interval, investigating the
Norian deposits of the Mungaroo Formation. Figure 6.3 shows a
chronostratigraphic column for the region, and highlights the stratigraphy and
seismic horizons studied The Mungaroo Formation stratigraphy is summarized

in further detail in Chapter 3.

6.3 Methods

The workflow adopted is set out in Figure 6.4. Six of the regionally-defined key
stratal surfaces (c.f. Marshall & Lang, 2013) were interpreted in the TR20 play
interval in this study; one surface was interpreted from the TR30 interval. Due to
the discontinuous nature of the accumulations of sand-prone fluvial deposits,
many of which apparently fill incised-valley systems associated with major
incision events (Payenberg et al., 2013), sequence boundaries proved difficult

to map in the seismic data. The majority of the surfaces interpreted are
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Figure 6.3: Stratigraphy of the Northern Carnarvon Basin (after Longley et al., 2002) Inset
lists stratigraphic nomenclature for key horizons used in this study (after Marshall & Lang,
2013). Red lines denote surfaces of regional extent and seismic horizons that represent
sequence boundaries; green lines denote transgressive surfaces; blue lines denote
maximum flooding surfaces. Seismic surfaces used in this study (S1-S7) correlate to
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transgressive surfaces (TS), as these were the most laterally continuous and
readily traceable seismic events. Table 6.1 lists the stratigraphic surfaces and
the corresponding seismic horizons (S1-S7) interpreted. These stratigraphic
surfaces were identified in well logs and used in a seismic-to-well-tie (Figure

3.7)

Table 6.1: Stratigraphic surfaces used in the study.

Seismic  Mean Elevation Stratigraphic | Bounding

horizon  (-ms TWT) surface surface type

S7 3335 TR30.1 Transgressive Norian
surface

S6 3517 TR27.2 Maximum Norian

flooding surface

S5 3592 TR26.5 Maximum Norian
flooding surface

S4 3713 TR26.1 Transgressive Norian
surface

S3 3955 TR22.1 Transgressive Norian
surface

S2 4175 TR21.1 Transgressive Norian
surface

Sl 4510 TR20.3 Sequence Norian

boundary
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Figure 6.4: Summary of workflow undertaken in the study involving noise
cancellation, horizon slicing (flattening on stratal surfaces), and spectral

decomposition.
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Figure 6.4: Seismic interpretation and frequency decomposition workflow.
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A subset from the central region of the seismic data cube measuring 30 km x 40
km and encompassing the TR20 and TR30 play intervals was selected for
detailed analysis (location shown on Figure 6.2). The subset volume was
conditioned to eliminate structural and random noise. The resultant noise-
cancelled volume was spectrally enhanced to boost the higher frequency data
and improve the vertical resolution of the data. This was undertaken to better

image thin beds in the higher frequency ranges.

Flattened volumes were then created for each horizon. This domain transform
enabled the visualization of horizon slices, imaging channelized deposits that
were approximately time-conformable with the flattened surface. Horizon slicing
is deemed appropriate where formations are relatively sheet-like, but not flat-
lying (Zeng & Hentz, 2004). The sub-parallel nature of the key horizons in the
Mungaroo Formation lends itself to this method. The flattened cubes were used
to identify target intervals for spectral decomposition. Contrast enhancement
(Kidd, 1999), which involved re-scaling the color scale to fit the range
responding to the fluvio-deltaic deposits, was carried out where necessary in
zones with low contrast between channelized and non-confined (i.e. floodplain)

deposits.

Spectral decomposition was performed over target intervals around the S2, S6
and S7 horizons. Three methods of spectral decomposition were employed,
using GeoTeric™ software. The methods are explained in some detail by
McArdle & Ackers (2012) and McArdle et al. (2014). Two band-pass filtering
decomposition methods were employed: (i) Constant Bandwidth frequency
decomposition (CBFD), in which an identical bandwidth is assigned to each
frequency decomposition band; and (ii) the Uniform Constant Q (UCQ) method,

analogous to Fast Fourier Transform (FFT), where the bandwidth of the
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frequencies increases by a constant amount. High-definition frequency
decomposition (HDFD) is based on a matching pursuit algorithm (McArdle &
Ackers, 2012), which is useful for visualizing thin-bedded deposits, since there

is less vertical ‘smearing’ of the data.

The reflectivity attribute maps shown in Figure 6.5 are horizon slices, taken from
a flattened volume and as such represent amplitude extractions at discrete
depths. The flattened volume has been frequency decomposed and colour
blended, so that the same horizon slice may be viewed in the frequency

domain.

Fluvial and fluvio-deltaic deposits were identified in the spectral decomposition
volumes. The architecture of key deposits was mapped out such that the

depositional environment could be interpreted for each studied interval.

6.4 Results

6.4.1 Comparison of seismic reflection to frequency decomposition data

The results of frequency decomposition applied to three key target intervals
(S1-S2, S5-S6, S6-S7) within the subset volume are shown in Figure 6.5. The
locations of wells are shown within the subset. Although the fluvial and fluvio-
deltaic deposits are poorly imaged on the (flattened) seismic volume, the
corresponding spectral decomposition volumes more clearly imaged these
deposits. The poor realization of the deposits on reflectivity data is most likely
due to the relatively thin nature of some of the deposits: individual channel-belt
architectural elements range 6 m to 12 m thick in core and are composed of
fining-upwards units of fine to coarse grained, poor to moderately sorted
sandstone with high-angle inclined trough and planar cross-bedding (Stuart et

al, in review). The subsurface depth of the study intervals (interpreted flattened
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slices) range from -3414 ms TWT to -4320 ms TWT. The lithology of many of
the relatively low-energy channel bodies is characterized by heavily cemented
siltstones, giving a poor impedance contrast between these channels channel

and concurrent silt-prone overbank deposits.
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The S1-S2 interval deposits were best imaged with the CBFD method. The
lower vertical resolution of this method was well suited to the large-scale
deposits, which are encountered over a 40ms window. The greater separation
of frequencies offered by this method (McArdle & Ackers, 2012) gives rise to
high-contrast, vivid output. Figure 6.5 shows the reflectivity and CBFD slice at

-4320 ms TWT from the stratally flattened volume (flattened on S2).

The UCQFD method gave the sharpest imaging of the deposits in the S5-S6
interval. Figure 6.5 shows a representative stratal slice at -3458 ms TWT, taken
from the volume flattened on S6. The large, unclear deposits visible on the
reflectivity data are resolved into numerous, contrasting deposits with spectral

decomposition.

A stratal slice taken from the S6-S7 interval at -3414 ms TWT shows deposits
that appear to have an overprinting form, but these are poorly imaged on the
reflectivity slice. Both UCQFD and HDFD techniqgues were employed; the
greater vertical resolution of the output from HDFD most clearly imaged the

form of the overprinting deposits.

6.5 Fluvio-deltaic architectural elements

6.5.1 Meander belts (S1-S2)

Description. Horizon slices from the S2 flattened volume reveal several large
(~2 km-wide), very-low sinuosity features (Figure 6.6a). Two of these features
are orientated ENE-WSW and are almost straight. A region of interest (ROI) is
identified around the southern-most of these features. Within the valley, a
bright, apparent higher sinuosity feature can be identified and was mapped on
horizon slices over a 44 ms window (Figure 6.6b-f). As the feature is traced on

successively shallower slices, it can be seen to migrate laterally.
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:

-4320 msTWT

2 km

Figure 6.6: Interpretation of fluvial features identified in Figure 6.5a. Several low-sinuosity
features can be mapped on CB frequency decomposition data (a) features highlighted by
solid lines are interpreted with higher confidence than those with stippled outlines. (b) to (f)
show slices from the same CB volume, moving up through a 40 ms window. Within the
channel belt, a brighter area is interpreted as meander-belt deposits, with only the
brightest areas outlined (ROI outlined in white, and shown in inset diagram). (g) These
deposits accumulated via lateral migration. (h) over-page, uninterpreted view of the ROI
between -4296 and -4340 ms.
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Interpretation. The feature is interpreted as having undertaken some lateral
migration and comprises vertically stacked channel belt deposits, within the
confines of an incised valley (Figure 6.6a). Other incised features from this
interval can be seein in profile in Figure 4.11a. The criteria for the interpretation
of incised valleys at this interval are as follows: (i) presence within a regionally
identified lowstand systems tract, as interpreted by Adamson et al. (2013); (ii)
the border of the features appear sharp, and much more well-defined than
those of the internal ‘bright’ features (interpreted as the sand-rich meander belt);
(i) absence of visible splay belt, lacustrine or other alluvial plain deposits
associated with non-confined fluvial deposits. Incised valleys commonly contain
fluvial deposits at their base (Posamentier, 2001), transgression and erosion
typically leads to poor, patchy preservation of these deposits (Allen, 1991; Allen
& Posamentier, 1993; Zaitlin et al., 1994). Posamentier (2001) suggests that
two mechanisms for the exceptional preservation of fluvial deposits within
incised valleys: firstly, rapid transgression would cause high energy coastline
deposits to pass swiftly over the fluvial deposits, minimizing the potential to
erode the underlying fluvial deposits; secondly, a low energy coastal system

would also have a lower potential to erode

Although only the large-scale valley and channel belt morphologies can be seen
in the spectrally decomposed volume (and not the small-scale, individual
channel morphology), an attempt can be made to classify the types of channels
active in the system. The planform geomorphology of the meander belts
provides some insight into the nature of the deposits. The channel-belt rugosity
(Payenberg et al, 2014) can be used as a means to estimate the nature of the
rivers that formed the deposits. Payenberg et al. (2014) use rugosity to describe

how dissimilar the opposing sides of a fluvial channel belt are in planview:
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rugosity is used as a measure of smoothness, whereby the more rugose a
channel belt, the less parallel two sides of the channel belt, and the less smooth
the channel-belt profile . Via analysis of modern analogues, Payenberg et al.
(2014) demonstrated how an increased prevalence of lateral accretion barforms
from higher sinuosity channels formed higher rugosity channel belts than those
formed by low-sinuosity or braided rivers with downstream accretion. Qualitative
assessment of meander belts interpreted in the S1-S2 interval, —reveals a
highly rugose form. Rugosity (R) can be assessed quantitatively (Payenberg et

al., 2014):

R = (L1+L2)/(2*D) 1)

Where L1 & L2 are the lengths of the channel belt margins and D is the straight-
line distance between the end points of the channel-belt length (L3). The
amount that the channel belt wanders (i.e. a measure of its sinuosity) can be

quantified as:

W =13/D (2)

W affects the value of R. Large values of wandering (W), will artificially increase
the value of R. In cases of channel belts where W is high, a value of rugosity

weighted for W is more appropriate:

Rw = (L1+L2)/2*L3 3)

Figure 6.7 demonstrates the method for measuring rugosity. Channel-belt
dimensions have been determined by tracing and rugosity has been measured
for 5 interpreted channel belt deposits from the S1-S2 interval. Table 2 shows

the results of the rugosity calculations. The channel belts interpreted in the S1-
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S2 interval have a R value range of 1.275-1.735. There is little difference

between the values of R and Ry, due to the low (<1.10) wandering (W) value.
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Rugosity (R):
R = (L1+L2)/(2*D)

Where L1 & L2 are the lengths of
the channel belt margins and D is
the straight line distance between
the end points of the channel belt
length (L3).

Channel belt wandering (W):

W =L3/D

Rugosity for belts with large

wandering, (Ru):
Rw = (L1+L2)/2*L3

Figure 6.7: Method for determining the rugosity of an interpreted channel belt as
described by Payenberg et al. (2014), using the traced S1-S2 channel belt deposits shown
in Figure 6.6. Rugosity is used as a measure of how dissimilar the two opposite margins of
a channel belt are. The higher the value of rugosity, the greater the disparity between the
two margins. Laterally accreting bar forms from higher sinuosity channels form higher
rugosity channel belts than those formed by low-sinuosity or braided rivers with
downstream accretion. Using the cutoffs of Payenberg et al. (2014) whereby low- and
high-sinuosity rivers are characterized by R<1.1 and R>1.3, respectively, the rivers
responsible for the S1-S2 meander belts were most likely moderate to high sinuosity.
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Table 6.2: Rugosity measurements for meander belts of the S1-S2 interval

Meander Elevation L1 L3 D (km) Rw =
Belt (TWTms) (km) (L1+L2)/(2*D) L3/D  (L1+L2)/(2*L3)
MB_01 4340 15.103 | 11.454 | 10.824 | 10.411 | 1.275 1.040 | 1.227
MB_02 4332 16.575 | 11.923 | 10.049 | 9.936 1.434 1.011 | 1.418
MB_03 4320 20.886 | 14.323 | 10.185 | 10.147 | 1.735 1.004 | 1.728
MB_04 4312 16.138 | 11.187 | 9.362 9.018 1.515 1.038 | 1.459
MB_05 4296 11.881 | 10.701 | 8.854 | 8.292 | 1.362 1.068 | 1.275
Mean: 1.464 1.032 | 1.422

Using the cutoffs of Payenberg et al. (2014) whereby low- and high-sinuosity
rivers are characterized by R<1.1 and R>1.3, respectively, the rivers
responsible for the S1-S2 channel belts were most likely moderate sinuosity,
although the relatively long reach of channel belt used in the measurements

may have biased towards a higher rugosity value.

The interpretation of the S1-S2 interval deposits as stacked fluvial valley
deposits is further supported by the core and interpreted core log of Well-09
(Figure 6.8) which penetrates stacked channel deposits with no preserved
overbank deposits at this interval. The lack of tidal indicators also supports the
interpretation of this interval as purely fluvial rather than within the tidal-fluvial
transition zone, pulsed sedimentation is in stead interpreted here as an indicator
of seasonal flow variation. It should be noted that a predominance of

downstream accreting barforms seen in the core may indicate
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Figure 6.8: Interpreted sedimentary log from Well-09 and supplementary photographs,
showing the typical sedimentology of the S1-S2 channel deposits. The upper portion of the
log shows pulsed sedimentation with regular variations in grain size, possibly indicating
seasonal variations in flow conditions. The relatively course grain size indicates a high-
energy setting. No overbank deposits were preserved in the cored interval. Infrequent
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that while moderately sinuous channel belts are indicated by their rugosity value,
the rivers within them were more likely to have formed bars through downstream,

rather than lateral migration.

6.5.2 Amalgamated channel belts (S5-S6)

Description. Figure 6.9 shows a horizon slice from the S5-S6 interval (Figure 6.9a),
two spectral decomposition horizon slices (Figure 6.9b-c), a map of deposits based
on reflectivity data alone (Figure 6.9d), a sample well log (Well 04, position given
on Figure 6.2), and a map of deposits interpreted from reflectivity and spectral
decomposition data. The flattened volume (Figure 6.9a) shows several broad linear
to arcuate features, most notably a large (~7 km wide), SE-NW trending feature in
the NE of the subset. Well 04 penetrates the feature. The features seen in the
flattened volume are significantly more clearly imaged in both the UCQ (Figure
6.9b) and the HDFD (Figure 6.9c) volumes. Both spectral volumes resolve the SE-

NW trending feature into several smaller (~0.5-2 km width) features.

Interpretation. Through analysis of the flattened volume alone (Figure 6.9a), the
feature in the north of the subset appears to be a large, NE trending, valley deposit.
Given the width (9.3 km) and vertical extent (>50 ms) of the feature, the
interpretation based on analysis of the flattened cube alone was a large, multi-
valley deposit, i.e. a multilateral and amalgamated valley fill over a regionally

smooth erosional surface (Blum & Price, 1998; Holbrook, 2001).

The two spectral decomposition volumes (UCQ and HDFD, Figure 6.9b-c) allow an
alternative interpretation, since they clearly show numerous, amalgamated, channel
belt deposits (~1 km to 2km width), rather than one large valley deposit. This
feature can be seen in profile in Figure 4.11c. Based on the interpretation of a
large, multivalley accumulation from the reflectivity data (Figure 6.9d), Well 04,

situated within the bounds of the ‘multivalley’, should therefore contain high net:
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gross fluvial sands at this interval. Instead, the wireline logs at this interval (Figure
6.9e) show low net:gross, silty deposits. The low net:gross deposits intercepted by
the well are explained by its position on the margin of one of these channel belts
(Figure 6.9f). Other well penetrations in the SW of the subset show that the bright,
features relate to high organic content gleysols. The general arrangement of the
channel belts indicates annabranching patterns (Stuart et al., in review), typical of
fluvio-deltaic distributary channels. Other overbank deposits interpreted from well
logs at this interval (Adamson et al, 2013) included heterolithic bay-fill, with tidal

indicators and bioturbation, indicating a poorly-drained, delta plain setting.

6.5.3 Lateral migration (S6-S7)

Description. Although the flattened volume struggles to resolve any deposits at this
interval (Figure 6.10a), the UCQ (Figure 6.10b) and HDFD (Figure 6.10c) volumes
image several sinuous features (< 1.5 km wide), several of which appear to -
overprint each other. The UCQ volume shows these features as relatively low

frequency (red features) whose extents have been traced on the HDFD volume.

Interpretation. Fluvial deposits imaged in the S6-S7 interval are interpreted as
predominantly moderate sinuosity (mean sinusotity 1.28, sinuosity range 1.05-
1.61), 0.5 to 1.5 km-wide channel bodies (Figure 6.10). Where seismic reflectivity
(Figure 6.10a) shows a poorly imaged ‘footprint’ of some of the larger features,
spectral decomposition (Figure 6.10b-c) is able to more clearly image individual
channel deposits with multiple phases of overprinting demonstrating the action of
lateral migration and accretion (Figure 6.10d). Deposits interpreted with greater
confidence are shown in solid outlines; those interpreted with less confidence are
denoted by dashed lines, and possibly relate to deposits underlying or overlying the

horizon slice shown.
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Figure 6.9: Reflectivity data (a) shows a broad, SE-NW aligned feature,
interpreted as a wide channel belt or valley deposit, as well as some smaller
features (most likely channel belts), which are more clearly resolved with a
contrast-enhanced slice. Frequency decomposition (b) - (c) resolves the large
‘valley’ feature into a series of low-sinuosity, overprinting, stacked and
amalgamated channel belts. Other features are also more clearly resolved
using the frequency decomposed data compared to reflectivity data.
Interpretations of channel-belt deposits using only reflectivity data are shown
(d). Wireline logs from Well 04 (e) show low net:gross deposits at this interval.
The interpretation of channelized deposits incorporating reflectivity and
frequency decomposition data has been made (f). The positions of wells are

shown on all the figures.
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Similar features have been noted in the Cretaceous McMurray Formation of
Alberta, Canada (Smith et al, 2009; Hubbard et al, 2011), where they have been
interpreted as point-bar and counter-point-bar deposits. The channels
interpreted in the S6-S7 interval of the Mungaroo Formation are of a
comparable scale to those described from the McMurray Formation and Smith
et al (2009) and Hubbard et al (2011) cite the Peace River, Alberta, Canada as
a possible modern analog for the McMurray. Analogous channel and bar
deposits of the modern Peace River have been traced (Figure 6.11) and have a
similar plan-form geomorphology to similar elements imaged in the Mungaroo
Formation (Figure 6.10). Assuming an analogous depositional setting to that of
the current Peace River, the S6-S7 deposits (Figure 6.10) are in sharp contrast
to the lower sinuosity valley (S1-S2) and deltaic (S5-S6) deposits, and are
interpreted as lateral accretion deposits relating to several phases of channel
migration and abandonment. This interpretation is considered representative of
this section, but not the Mungaroo Formation as a whole: Adamson et al. (2013)
interpret the majority of the Mungaroo Formation using image logs and dip-
meters as low sinuosity, with downstream-migrating bars. The interpretation of
the S6-S7 depsoits as ‘McMurray-type’ point bar deposits is further supported
by the Well-09 core at this interval (Figure 6.12). The core shows inclined
heterolithics with paired mud drapes and bundling of mud drapes, leading to the

interpretation of the S6-S7 interval deposits as tidal-fluvial point bars.
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Figure 6.12: Interpreted sedimentary log and supplementary core photographs from Well-
09, showing typical channelized and non-channelized deposits from the S6-S7 interval. In
the upper core log, tidally indicators including rhythmic bedding and synaeresis cracks are
present, as are marginal marine trace fossils e.g. Teichichnus. mud-prone hetrerolithics
are interpreted as interdistributary bay fill, with distributary mouth bars interpreted where
relatively clean, dm-thickness sandstone beds are present. The lower log shows the
typical expression of the channelized deposits of the S6-S7 interval. This core is from the
approximate location of the S6-S7 stratal slice (Figure 6.10). Rhythmic bedding, paired
mud-drapes, wavy bedding and (tidal) bundling of laminae support the interpretation of
these sand-prone IHS deposits as tidally-influenced lateral accretion deposits.
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6.6 Discussion

6.6.1 Sequence stratigraphic setting

The horizon slices used in this study are taken at discrete depths, as such they
cannot be used to reconstruct a high-resolution model of relative sea—level
variations: the slices represent ‘snapshots’ in time during the deposition of the
Mungaroo Formation. The contrast in depositional style between the different

slices has however been used to tentatively interpret the stratigraphic setting.

Each of the three interpreted intervals fluvial deposits of the Mungaroo
Formation are here placed within the context of a sequence stratigraphic model
(Figure 6.13), by adapting the idealized incised valley system models of Zaitlin
et al (1994). The S1-S2 interval is represented by Figure 6.13a-b. Base-level fall
led to the creation of narrow and relatively straight incised valley system via
fluvial down-cutting that culminated in sediment bypass to a new lowstand
shoreline fan (Figure 6.13a). The S1-S2 deposits represent the lowstand
system tract, where fluvial deposition commenced within the incised valley as
base-level stabilized at lowstand. Within the valley system, a fluvially-dominated
delta likely passed up-dip through a zone of meandering and braided fluvial
system development within the confined incised valley before emerging as a
non-confined fluvial system in the relatively up-dip part of the system. The
meander belt morphology interpreted in the S1-S2 interval suggests a relatively
low sinuosity river within the valley. The proposed position of the deposits is

shown in Figure 6.13b.

The S5-S6 deposits within the studied subset are interpreted as upper delta-
plain deposits, with channels able to migrate across the delta plain, with no

evidence of confinement within a valley system. As such, they are interpreted
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as having accumulated in a highstand system tract, where the earlier valley
system had been filled and buried, thereby allowing the deposits to extend
beyond the confines of the former paleo-valley (Adamson et al., 2013; Stuart et
al., in review), and these would likely pass up-dip into the alluvial plain deposits

(Figure 6.13c).

The S6-S7 intervals feature highly overprinted channel deposits. This, together
with a lack of preserved interpreted overbank deposits indicates a relatively low-
accommodation setting, and these are interpreted as having accumulated
during a relative lowstand, within a much larger system than the S1-S2 deposits
(S1-S2 valley is ~2 km wide; S6-S7 individual channel bodies are 0.5-1.5 km
wide). The idealized position of the tidally-influenced fluvial S5-S6 deposits on

the delta plain is shown in Figure 6.13d.

6.6.2 Buffers and buttresses model

An alternative model that can be used to explain the stacking patterns of the
Mungaroo Formation is the buffers and buttresses model (Figure 6.14; Holbrook
et al, 2006, Holbrook, 2009), which accounts for the creation of accommodation
through repeated episodes of base-level change. The model assumes that
fluvial sediment storage must be contained within an upper and lower buffer
profile, which constrains the limits of a buffer zone (Figure 6.14a). The profiles
of a river recorded at given instants for so-called instantaneous profiles that lie
within the buffer zone, and the limits of this buffer zone delineate the
preservation space where fluvial sediment can be stored. The upper and lower
limits of the buffer zone meet down-dip at the level of a buttress (e.g. sea level,
lake level). A rise or fall of this buttress level will induce a shift in buffer and will
therefore impact preservation space. Figure 6.14b demonstrates the effect of a

rise in buttress (sea level). Preservation space is created by a rise in buttress.
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This effect would be greater in proximity to the buttress, and reduces up-dip

away from the buttress.

Within the context of this study, it has not been possible to define whether
tectonics or eustacy is driving the inferred sea level changes, however previous
studies have interpreted a relatively rate of subsidence (0.03 mm/yr) during the
Late Triassic (Kaiko & Tait, 2001), indicating that tectonics may have been the

controlling factor.

Figure 6.14c shows a generic model demonstrating a typical sequence of
stacked buffer zones (B) and transgressions (T) in a down-dip region. The

stacking patterns of the Mungaroo Formation are represented by Figure 6.14d,

Figure 6.13: Four schematic models demonstrating the effect of base level change on
incised valley fill as relates to the three interpreted intervals of the Mungaroo Formation
(based in part on Zaitlin et al., 1994). (a) Model depicting a falling-stage system tract
and the generation of an incised valley similar to those that confine the S1-S2 deposits;
generation of relatively straight, narrow sediment bypass features. (b) Model depicting
a lowstand system tract with fluvial accumulation within the valley as a fluvially-
dominated lowstand delta that passes up-dip through meandering and braided fluvial
deposits within the incised valley, to non-confined fluvial deposits. The S1-S2 deposits
are interpreted as low-sinuosity deposits within the incised valley. (c) Model depicting a
highstand system tract, representative of the S5-S6 deposits, where the incised valley
has been filled allowing the development of a largely unconfined delta-plain,
characterized by distributary channel networks and inter-distributary bays that pass up-
dip into alluvial-plain deposits. (d) Model for the S6-S7 deposits in which fluvial systems
form laterally accreting, low accommodation fluvial deposits in a low-accommodation,

lowstand setting.
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Figure 6.14: Buffers and buttresses model, adapted from Holbrook et al (2006). a: The
buffer and buttress model argues that fluvial sediment storage must be contained
within an upper and lower buffer profile, which constrain the limits of a buffer zone. The
profiles of a river recorded at given instants (instantaneous profile) will lie within this
buffer zone, and delineate the preservation space where fluvial sediment can be
stored. Buffer zones meet down-dip at the level of a buttress (e.g. sea level, lake level).
b: A rise or fall of the buttress level will case a shift in buffer and therefore preservation
space. The effect of a rise in buttress level (sea level) is shown. Preservation space is
created by a rise in buttress. This effect is greater in proximity to the buttress, and
reduces up-dip away from the buttress. c: Generalized model demonstrating stacked
buffer zones (B) and transgressions (T) in a down-dip region of a fluvio-deltaic system.
d: Buffers and buttresses model demonstrating the aggradation of the Mungaroo
Formation as a result of successive incremental but punctuated rises in buttress level.
The location of the three studied intervals is annotated. The resultant formation is a
series of stacked buffer zones and transgressions. The model represents only the

down-dip section of the buffers present in the study area.
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a buffers and buttresses model demonstrating the overall net aggradation of the
Mungaroo Formation in response to a series of progressive but punctuated
rises in buttress level as recorded by the preserved architectural style in the
study area. This architectural style is representative of the relatively down-dip
setting within the overall Mungaroo system studied here. The location of the
three studied intervals has been annotated. The resultant formation is a series
of stacked buffer zones and transgressions, recording the cyclical movement of

buffers driven by punctuated rises in buttress.

6.7 Conclusions

Attribute analysis and horizon slicing is a useful tool for identifying fluvial
deposits on seismic data. Reflectivity data alone cannot properly image thinly
bedded or deposits of fluvial bodies for which there is poor contrast with
surrounding facies. Spectral decomposition can more clearly image valley,
channel-belt and even individual channel features, even at depths >3 km. The
interpretations made using spectral decomposition have significance in terms of
well placement decisions. The preserved Mungaroo Formation has been
interpreted at 3 different intervals, representing two fluvial and one deltaic
paleoenvironment. Interpreted deposits include (i) migrating, stacking meander
belt deposits within an incised valley (interval S1-S2), (ii) amalgamated channel
belts (interval S5-S6), and (iii) individual fluvial channel and point-bar elements
(interval S6-S7) that are analogous to the modern Peace River, Alberta in terms
of scale and geometries and may also form an analogue to the tidally-influenced
McMurray Formation. The S1-S2 and S6-S7 deposits represent low
accommodation settings, whereas the S5-S6 fluvio-deltaic deposits are
interpreted as representing a highstand systems tract with higher

accommodation conditions. The preserved deposits of the Mungaroo Formation
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can also be described as a series of stacked buffer zones (higher net.gross
intervals dominated by alluvial deposits) and zones influenced by

transgressions (lower net:gross intervals with increased marine influence).
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Chapter 7 Discussion: Controls on depositional style of fluvio-

deltaic deposits: case study of the Mungaroo Formation

Research question: What are the possible allogenic and autogenic
controls on fluvio-deltaic successions? Which combination of
allogenic and autogenic controls best explain the variations in
depositional style seen in the Mungaroo Formation? What can this tell

us about fluvio-deltaic depositional systems in general?

7.1 Chapter overview

This chapter discusses the possible influence of autogenic and allogenic forcing
mechanisms that acted to determine the preserved fluvio-deltaic stratigraphic
expression of the Mungaroo Formation, in terms of the overall pattern of
stacking of architectural elements present in the formation, as well as the
detailed architectural expression of key stratigraphic intervals and surfaces. The
chapter will discuss the applicability of these findings to generalised models of
fluvio-deltaic stratigraphy and will draw comparisons to the morphology and

style of evolution of analogous modern systems.

7.2 Introduction

Fluvio-deltaic stratigraphy is ultimately controlled by the interplay of autogenic
(intrinsic) and allogenic (extrinsic) processes (van Dijk et al., 2009;
Karamitopoulos et al., 2014). Understanding the relative importance of
autogenic vs. allogenic controls on sedimentation is crucial for understanding
how such mechanisms are responsible for determining the resulting

depositional architecture (Blum & Tornqvist, 2000; Stouthamer & Berendsen,
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2007; Hajek et al., 2012). Traditional thinking around the controls on fluvial
deposition link fluvial stratigraphy to basin boundary conditions, i.e. climate,
tectonics and sea level (Shanley & McCabe, 1994; Jerolmack & Paola, 2010;
Abels et al., 2013). However, recent research has assigned greater significance
to the influence of autogenic controls, with many studies recognising how
continental successions exhibit patterns of stratal architecture that are most
readily explained by self-organisation behaviour over basin-filling time scales of
10%-10° years (Blum & Térnqvist, 2000; Muto & Steel, 2001; van Dijk et al.,
2009; Van De Wiel, 2010; Stouthamer et al., 2011; Hajek et al., 2012; Straub &
Wang, 2013). The major challenges in unravelling the relative influence of
autogenic vs. allogenic processes are (i) the lack of quantitative understanding
of autogenic processes and their interactions with allogenic forcing mechanisms
(Karamitopoulos et al., 2014; Kim et al., 2014), and (ii) the ability of the deposits
formed by autogenic processes to overprint and obscure and be confused with
the results of allogenic processes, such as basin subsidence and sediment

supply (Hajek et al., 2010, 2012).

This chapter aims to identify the upstream and downstream controls on the
stratigraphic architecture of the Mungaroo Formation and fluvio-deltaic
successions more generally. This will be achieved by drawing on literature and
observations made from the dataset used in this study, in order to determine
what can be learned about the boundary conditions of fluvio-deltaic systems by
studying their geomorphology (seismic stratal slices), sedimentology (wireline

and core logs) and stratigraphy (stacking of preserved sequences).
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Specific research objectives of this chapter are as follows: (i) to discuss the
allogenic processes that are known to affect fluvial stratigraphy, and which may
act as significant controls on the preserved stratigraphy of the Mungaroo
Formation, including climate, source-area uplift, basin subsidence and base-
level (buttress) rise (Shanley & McCabe, 1994; Holbrook et al., 2006; Miall,
2014); (ii) discuss the autogenic processes (including avulsion and localised
floodplain effects) that may act to control stacking patterns seen in the studied
intervals of the Mungaroo Formation; (iii) discuss how the interaction of
allogenic and autogenic processes might express themselves in the preserved
succession based on an understanding of the style of accommodation
generation and sediment supply, and how an awareness of the action of such
processes may be used to gain an understanding of how the depositional
setting of a fluvio-deltaic system such as the Mungaroo Formation may evolve

through time.

7.3 Allogenic controls

7.3.1 Introduction

The role of allogenic processes in controlling stratigraphy, and in particular
alluvial architecture, has been extensively investigated (cf. Allen & Posamentier,
1993; Aitken & Flint, 1994; Leeder & Stewart, 1996; Ethridge et al., 1998; Blum
& Tornqvist, 2000; Cohen et al., 2005; Ethridge et al., 2005; Ambrose et al.,
2009; Abels et al., 2013), with much of the body of research focussing on fluvial
response to changes in base-level (cf. Allen & Posamentier, 1993; Aitken &
Flint, 1994; Leeder & Stewart, 1996; Ethridge et al., 2005; Hollbrook et al.,

2006; Holbrook & Bhattacharya, 2012; Zaitlin et al., 2012). This section
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Figure 7.1: Upstream and downstream relative influence of allogenic controls on fluvial
architecture (after Shanley & McCabe, 1994)
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Figure 7.2: Allogenic controls (Source area uplift, climate change, basin subsidence,
eustacy) on upstream (sediment supply) and downstream (base level) conditions (after
Ethridge etal., 1998).
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discusses the allogenic factors that may be considered as controlling factors
during the deposition of the Mungaroo Formation. Figures 7.1 and 7.2
demonstrate the relative influence of upstream and downstream allogenic

controls on fluvial deposition.
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7.3.2 Climate

Climate is known to exert a primary control on deposition in upstream regions
(Blum, 1993; Shanley & McCabe, 1994) and is seen to affect fluvial and fluvio-
deltaic deposition by influencing sediment discharge (Cecil & Edgar, 2007).
Many previous studies on the upstream climatic and downstream sea-level
control on fluvial deposition have concentrated on case studies of the Texas
Gulf Coastal Plain (Suter & Berryhill, 1985; Knox, 1987; Anderson et al., 1996;
Aslan & Autin, 1999; Aslan & Blum, 1999; Blum & Tdornqvist, 2000; Benedetti,
2003) and on the Rhine-Meuse Delta (Torngvist, 1993, 1994; Van der Woude,

1984).

Climate controls discharge rate and sediment yield through precipitation, e.qg.
rainfall floods (Benedetti, 2003; Holbrook et al., 2006) and hence controls
primary sediment supply from the source region that lies up-dip of the receiving
basin. Climate also controls seasonal fluctuations in discharge and sediment
supply, e.g. through snowmelt floods (Benedetti, 2003), which are expressed as
variations in grain size within formations and thin silt drapes representing a
decrease in flow strength (Jablonski & Dalrymple, 2014). Temperate, seasonal
conditions tend to have the highest sediment yields (Miall, 2014). Allen et al.,
(2013) summarise the sedimentology of seasonally-influenced fluvial deposits,
demonstrating that fluvial systems with a strong seasonal influence would have
a more frequent occurrence of channel deposits with low-angle-inclined cross-
bedding, parting laminations and silt drapes, climbing ripple cross-lamination
and convolute bedding. Seasonally influenced floodplain deposits of wet

systems tend to be preserved as successions with laterally discontinuous, thin
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coals present in poorly-drained floodplain successions, and crevasse-splay

deposits generated by flood events.

Evidence for seasonal sedimentation patterns is present in the Mungaroo
Formation in the weakly-tidal S2-S3 interval (Figures 3.13; 4.10), including
variations in grain size (taken to mean episodically increased and decreased
discharge) where there are no salinity indicators. Other indications of seasonal
influence on sedimentation patterns are present in the S1-S2 interval (Figure
6.8), which is characterised by thick (>50 m-thickness), multi-story, downstream
accreting sand-bodies, which are more typical of perennial fluvial channels
(Allen et al., 2013); however, the presence of fine-grained laminae on cross-bed
surfaces, and regular changes in grain size from medium to fine-grained
sandstone indicates some fluctuation in flow regime. Given the absence of
evidence to support tidal influence interpreted from core at this interval, a
seasonal variation in flow rates is inferred. The interpretation of the Mungaroo
Formation as being influenced by varying sediment yields responding to
seasonal variations in discharge is supported by Triassic climate research and
previous studies of the Mungaroo Formation. The climate can be interpreted to
have been temperate-warm, humid and monsoonal, with wet and dry episodes
(Dickens, 1985; Bradshaw et al., 1994; Payenberg et al., 2013, Preto et al.,
2010; Arche & LOpez-GOmez, 2014), which would infer high rates of
sedimentation in temperate-warm seasonal periods, and lower rates of

sedimentation in more humid periods (Figure 7.3 (Cecil, 1990, 2003)).
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Figure 7.3: Response of sediment transport to climate change (after Cecil, 1990).
Sediment transport rates are highest in wet-dry seasonal climates, such as the S1-S2 and
S3-S4 intervals of the Mungaroo Formation, and are lower in humid climates (possible
humid climate at the time of deposition of the S5-S6 interval).
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Figure 7.4: Sedimentary response to climate cycles (After Cecil, 1990). In climates with
shorter wet seasons, mature paleosols develop on the floodplain, while decreased
discharge leads to decreased rates of clastic sedimentation. In climates with long wet
seasons, gleysols and coals (such as those seen in the S3-S4 and S5-S6 intervals of the
Mungaroo Formation) form on the floodplain. Intermediate conditions favour updip
incision by fluvial systems and downdip deposition of sandstones and siltstones.
Intermediate climates will have the highest potential for sediment transport.
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Climate changes between wetter and drier episodes has been shown to exert
an influence on floodplain development (Fielding, 1986; Benedetti, 2003). One
such climate indicator recorded in floodplain deposits is the development of
palaeosols and related coals (Blum & Price, 1998; Abels et al., 2013), which
may be used to discern the role of climate cycles in floodplain sedimentation. It
has been proposed by Abels et al. (2013) that the development of cycles of
mature, red palaeosols (an indicator of relatively dry, stable floodplain
conditions) can be linked to climate cycles. Humid and very humid conditions
are characteristically associated with increased vegetation and the development
of coals (Miall, 2014). Figure 7.4 (after Cecil, 1990) demonstrates the
sedimentary response of fluvial systems to wetter and drier climates.
Cantuneanu (2006) also recognises the significance of gleysols as indicators of
episodes of sediment aggradation, within sequences, whereas mature entisols
and vertisols tend to be indicative of episodes of non-deposition at sequence
boundaries. Cantuneanu (2006) states that where driven by allogenic forcing,
alternations between the formation of gleysols and coals (e.g. S5-S6 floodplain
deposits) are most likely the result of climate and fluvial discharge variations
(subaerial exposure vs. flooding of overbank environments), rather than base-

level changes.

No mature palaeosols are encountered in the Mungaroo Formation within the
study area, although gleysols and thin coals develop in some intervals.
Payenberg et al. (2013) postulate that the widespread development of gleysols
and poorly developed coals represent ‘wetter’ episodes in the development of
the Mungaroo Formation, whereas intervals with few gleysols or where such soil

intervals are thin and of restricted lateral extent may represent ‘drier’ episodes.
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This conjecture is supported by biostratigraphic analysis of the ‘wet’ and ‘dry’
intervals: Payenberg et al. (2013) also interpret a transgressive surface at TR22
(equivalent of S3 in this study), below which they interpret relatively dry
conditions, and above which they interpret relatively wet conditions, with an
abundance of freshwater algae and hydrophytic spores. This is in line with the
transition from the S1-S2 fluvial deposits, to the S2-S3 upper delta plain
deposits (with restricted gleysol development), to the ‘wetter’ S5-S6 delta plain
deposits with widespread gleysols, muds and thin coals. The abundance of
plant material (‘tea-leaf structures’) in the S6-S7 deposits (Figure 3.12c) is
indicative of a humid climate with thick vegetation cover, likely a wetland
environment with a high water table and surface water ponding (Hillier et al.,

2007).

7.3.3 Tectonic controls

Tectonic style controls the magnitude, development and position of developing
drainage basins (Leeder, 1993) though the creation of accommodation space
as determined by complex spatio-temporal patterns of subsidence, commonly
driven by fault movement. Such complex patterns of tectonic basin development
influence sediment supply (uplift of the source area) and set up preferential

pathways for drainage networks.

7.3.3.1 Tectonic uplift (of source area)
Clastic wedges form in response to the regional uplift of source areas (Sloss,
1962; Miall, 2014). The Mesozoic deposits of the Northern Carnarvon Basin

form a clastic wedge (Exon, 1982; Boot & Kirk, 1989; Westphal & Aigner, 1997)
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that prograded approximately westward from the Pilbarra High and Ross High
(Jablonski et al., 1997; Westphal & Aigner, 1997). It can therefore be inferred
that the source areas of the Ross High and Pilbarra High were uplifting

throughout the Mesozoic.

7.3.3.2 Basin subsidence

The Mesozoic sedimentary wedge, to which the Triassic Mungaroo Formation
contributes, formed in a continental sag basin (Boote & Kirk, 1989; Westphal &
Aigner, 1997), in a relatively quiescent tectonic period, following Permian rifting
(Boote & Kirke, 1989). Triassic movement of faults defining structural terraces is
evidenced by thickening of the Locker Shale across the faults and deep
lowstand-canyon erosion of the Locker Shale on some terraces (Gorter, 1994).
Relatively slow, asymmetric subsidence can be inferred from this tectonic style
(Mitchell & Reading, 1986). However, Kaiko & Tait (2001) demonstrate that at
wells Brigadier-1 and North Rankin-1 in the Dampier Sub-basin (Figure 7.5
shows the location of the Dampier Sub-basin) record relatively high rates of
subsidence and sediment supply in the late Triassic, which occurred
concurrently with the accumulation of the Mungaroo Formation, although these
rates may not be consistent with subsidence rates across the Exmouth Plateau
overall. Indeed, low rates of subsidence are seen in the northern and eastern

parts of the Northern Carnarvon Basin (Kaiko & Tait, 2001).
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Figure 7. 5: Subsidence and sedimentation rates for the
Northern Carnarvon Basin, Dampier Sub-basin (Kaiko &
Tait, 2001). High rates of sedimentation and subsidence
are seen through out the Triassic in Rankin-1 and in the
latest Triassic in Brigadier-1.



261

7.3.4 Base-level rise and fall

Base-level — the lower erosional limit of river profiles (Powell, 1875) — is
commonly taken as sea level, or in the case of fluvio-lacustrine systems, lake
level (Holbrook et al., 2006). There has been considerable debate over the
impact that changes in base-level have on the accumulation and preservation of
continental strata (e.g. Shanley & McCabe, 1994). Traditional models by
Mackin, 1948, and built upon by Miall (1991), Schumm (1993), Leeder and
Stewart (1996) Blum and Térngvist (2000) among others, express the fluvial
response to base-level change in terms of changing gradient of the fluvial profile
in that streams will attempt to grade themselves to base-level (i.e. strive to
attain an equilibrium profile). Depending on the rate of base-level fall or rise,
rivers will adjust their profiles in an attempt to equilibrate with the new base-
level by changing their channel pattern, discharge and sediment load, and in
cases of significant base-level fall, undertaking valley incision (Shanley &
McCabe, 1993; Westcott, 1993; Koss et al., 1994). However, care should be
taken when applying such concepts generally because natural systems are
inherently complicated. The effects of changes in base-level (e.g. valley incision
or drowning, deposition of marine strata within valleys, changes in channel style
in response to change in the gradient of the fluvial profile) tend to diminish up-

dip (Saucier, 1996; Blum & Tdrnqvist, 2000).

7.3.4.1 Base-level fall as expressed in fluvial stratigraphy
Following a fall in base-level, fluvial systems initially tend to adjust rapidly

toward a new base-level through down-cutting of fluvial valleys, although the
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degree to which the fluvial system will be affected depends on the gradient of
the graded shelf-slope profile, discharge rate, sediment load and the rate of
base-level change (Miall, 1991; Westcott, 1993; Shumm & Ethridge, 1994). It is
also possible for a fall in base-level to trigger accumulation: for example, in
cases where the gradient of a recently exposed shallow marine shelf is less
than the gradient of the alluvial profile (Emery and Myers ,1996). Given that tidal
effects lessen up-dip and seasonal effects lessen down-dip within a system
(Figures 6.17 (after Jablonski & Dalrymple, 2014) and Figure 7.1, (after Shanley
& McCabe, 1994)), following a fall in base-level, the bayline will tend to shift
further down-dip, and greater seasonal effects and decreased tidal effects will

be expected to be seen in deposits overlying tidally influenced deposits.

7.3.4.2 Base-level rise expressed in fluvial stratigraphy
The response of the fluvial system to base-level rise will be affected by the rate
of relative sea-level (or lake-level) rise and the contrast in gradient between the

the shelf and the alluvial system (Posamentier & Vail, 1988).

Bristow et al. (1999) propose a link between crevasse-splay development,
channel aggradation and base-level rise, such that an abundance of crevasse
splays in braided systems may be used as an indicator of base-level rise and
aggradation. This has relevance for the S2-S3 deposits, which have an
abundance of crevasse-splay deposits (accounting for 25% of the S2-S3
deposits (36% of non-channelized deposits) by logged thickness (Figure 3.14),
whilst having channel deposits formed by predominantly low-moderate sinuosity

rivers (with downstream accreting barforms). This also has relevance for the B-
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C seam deposits interpreted at the South Blackwater Mine (Figures 2.6, 2.13,
2.14), where an abundance of splay deposits interpreted within a succession
whose primary channels record a low-sinuosity fluvial system (Fielding et al.,

1993), indicates a high-accommodation setting.

The rate of base-level rise can influence channel morphology in fluvio-deltaic
settings (Shanley & McCabe, 1994): a high rate of base-level rise, with
accompanying high ground water levels (as seen in the Rhine-Meuse delta
(Torngvist, 1993; Térngvist et al., 1993), may give rise to anastomosing stream
patterns, whereas a lower rate of base-level rise may preferentially give rise to
meandering streams. The anastomosing pattern of channels seen in the S5-S6
interval (Figure 4.10), together with the interpretation of the floodplain as being
poorly-drained (as evidenced by gleysols and coal formation) is most obviously
explained as a record of fluvial system development under the influence of a
rapid rate of base-level rise. Flooding surfaces may be identified in seismic data
within fluvial successions as continuous, laterally extensive reflections. Within
core data, the flooding surfaces in the down-dip section of fluvial successions
may be present as mudrocks (particularly where marine-influenced inchnofauna
are present). In wireline logs, these may be identified as high GR peaks. In
high-accommodation fluvial successions, coals may be present in as the up-dip
equivalent of maximum flooding surfaces (e.g. Fanti & Cantuneanu, 2010).
These are identifiable in cores and in wireline logs (as a low GR combined with
low density (c.f. Figure 2.4). Both of these possible flooding surface types have

been identified in the Mungaroo Formation.
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7.3.4.3 Buffers and buttresses models

Holbrook et al. (2006) introduced the concept of “buffers and buttresses” to
explain the varying influences of upstream and downstream allogenic controls
on fluvial geometry and architecture, including channel-body stacking patterns
through time and space, by illustrating the processes by which preservation
space can be created along a depositional profile. Chapter 6.7.2 and Figure

6.14a explains the buffers and buttresses model as described by Holbrook et al.
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and buttress rise. e: localized subsidence and buttress rise. Accommodation space created within
buffer zones and transgressions are shown, as well as areas of deposits that areoverprinted by
deposits of successive buffer zones.
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(2006) and Holbrook (2009). Figure 7.6 demonstrates the response of a fluvial
profile to variations in upstream (uplift) and downstream (buffer level rise or fall,
localized subsidence) parts of the system, illustrated as a series of dip-

orientated profiles.

The buffers and buttresses model can be used to explain how allogenic factors
control the overall generic configuration of a fluvio-deltaic succession as a
stacked series of buffer zones and transgressions (Figure 7.7), which can then
be tailored to specific settings. Figure 6.14d attempts to demonstrate the
temporal evolution of the Mungaroo Formation in the study area, as a series of
stacked buffer zones and transgressions, which is in line first-order base-level
rise occurring throughout the TR20-TR20 Mungaroo Formation deposits

interpreted by Marshall & Lang (2013).

7.3.4.4 Using buffers and buttresses model to distinguish between low- and

high-accommodation settings

Low accommodation

When the buttress (e.g. sea level) falls, river profiles fall, typically causing
incision (cf. Miall, 1991). In these circumstances the buffer profile will fall as well
(Holbrook, 2006, 2009). Figure 7.8a demonstrates that up-dip, there will still be
potential preservation space for the aggradation of deposits between the old
and new buffer profiles, despite the overall incisional conditions. The same
applies where a lowering of the base-level fall results in a down-profile shift in

buttress and an extension of the buffer profile: there will be repeated incision
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Figure 7.7: Buffers and buttresses models showing effect of buttress rise on a fluvio-
deltaic succession. a: Buttress (relative sea level) rise results in stacked fluvio-deltaic
buffer zones and marine-influenced transgression zones down-dip, and stacked buffer
zones containing fluvial deposits that incise into and/or overprint underlying buffer zone
deposits up-dip. b: buttress rise with differing rates of relative sea level rise. The greater
rate of buttress rise between t, and t, results in a larger transgression that extends further
up-dip, extending deltaic deposits further up-dip, explaining the successive stacking of
more deltaic-influenced deposits within the stacked buffer zones of the Mungaroo
Formation.



268

a]

buttress
fall

T ~ potentially
| _ overprinted D eroded
younger deposits D time (t) 1 |:| time 2

b]

younger deposits
%

— o

AN\

Base level fall,
down-profile buttress shift
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a: base-level fall forces a drop in river profiles through valley incision. Buffer profiles drop,
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does not force a drop in river profiles, the buffer profile will be extended down-profile, and
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and aggradation of deposits up-dip (Figure 7.8b). Buffer profiles may move
laterally and vertically, such that even during low stand systems tracts, there will
still be deposition and preservation of deposits up-dip through lateral and
vertical migration of profiles. This in turn results in repeated stacking, incision
and lateral migration of channel belts, underlain by a scour surface. This
surface is reshaped by each successive incision and stacking event and is
referred to as a ‘composite surface’ (Figure 7.9, after Holbrook, 2009); such

surfaces are commonly interpreted as sequence boundaries.

This ‘composite surface’ as described by Holbrook (2009) differs from traditional
interpretations of sequence boundaries as it does not represent a single point in
time (c.f. Hunt & Tucker, 1992); rather, it is formed over the duration of the
falling stage. The Buffers and Buttresses model allows for sediment
accumulation above this surface throughout the falling stage (cf. Figure 7.8) and
so the ‘composite surface’, although erosional in appearance, would not be a
sub-aerial exposure surface. The surface may be formed not through
downcutting valley incision but by lateral planation of a migrating channel belt or
valley. Figure 7.9 shows this ‘composite surface’ as expressed by thin and thick
preservation space. In zones of thicker preservation space, large-scale multi-
valley complexes will tend form with a composite surface or sequence boundary
at the base. In zones of thinner preservation space, laterally migrating channel
sheets will tend to form above the composite surface. Hence, following this
model, the interpretation of an incised valley is not necessary for the

interpretation of a sequence boundary.
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Figure 7.9: Composite surfaces: architectural sequence boundaries as formed in both
a) thin preservation space, where they form by lateral planation of channel belt sheets,
and b) in thicker preservation space, where they form following repeated phases of
incision, infilland lateral migration of a multivalley complex. After Holbrook (2009).
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In the Mungaroo Formation, sequence boundaries have been interpreted at the
base of many of the interpreted valley and multi-valley fills (such as those seen
in the S1-S2 interval (Figure 3.6)). With the relatively limited extent of core
(limited to the upper S1-S2 interval, S2-S3 interval and S6-S7 interval), it has
not always been possible to observe the nature of the surface at the base of
many of the interpreted channel-belt and valley deposits, and many scour
surfaces seen in core (within the S2-S3 interval) are predominantly interpreted
as the scour surfaces of individual channel belts or valleys within stacked
complexes. However, where large-scale multi-valley complexes are interpreted
from seismic slices (Figure 4.9), a sequence boundary may be interpreted at its
base. The varying expressions of the ‘composite surface’ sequence boundary
has implications for the interpreted sequence stratigraphy of the Mungaroo
Formation: by applying the Buffers and Buttresses model, it is not necessary to
identify valley or multivalley deposits in order to interpret a sequence boundary;
rather, all that is necessary is evidence for repeated overprinting, amalgamation
and lateral planation of channel-belt deposits, as is seen in the S6-S7 deposits.
This is of particular interest because upon detailed examination of the seismic
geomorphology of the Mungaroo Formation, many of the channelized deposits
previously identified as valley fill (cf. Adamson et al., 2013), have been re-
interpreted as channel-belt deposits as a result of this thesis, as they are

without evidence of regional erosion or incision events.



272

High accommodation

Applying the Buffers and Buttresses model to higher accommodation settings
may explain the lack of composite surfaces encountered in the cored intervals
of the Mungaroo Formation, despite the presence of channel-belt, amalgamated
channel-belt and valley deposits. In high-accommodation settings, high rates of
aggradation result in the preservation of both channel and overbank deposits
(Wright & Marriott, 1993). Although rates of lateral migration of sinuous
channels may be lower (Berenden & Stouthamer, 2001), avulsion rates tend to
be high. The high rate of accommodation generation and aggradations means
that buffer profiles tend not to be stable (Holbrook, 2009), regional erosion is
rare, and composite surfaces may not form (Figure 7.10). In the S5-S6 interval
of the Mungaroo Formation, the numerous, anabranching channels, together
with interpreted lacustrine and mire deposits indicate a high accommodation
setting. The amalgamated channel-belt deposits which form an approximately
east-west aligned cluster indicate multiple avulsions during aggradation. One
would not expect to see a ‘composite surface’ sequence boundary at the base
of these deposits as they were unlikely to have been deposited under falling-

stage conditions.

7.3.4.5 The buffers and buttresses model as it applies to selected intervals
from the Mungaroo Formation
This section will apply the Buffers and Buttresses model to selected intervals of

the Mungaroo Formation.
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Figure 7.10: High accommodation scenario. Rapid aggradation leads to greater
sediment storage, including fine-grained overbank deposits. Channels tend to be low
sinuosity, however channel clusters form due to high rates of avulsion. Crevasse splay,
coal and lacustrine deposits are more commonly preserved in high accommodation
settings. Due to the high aggradation rate, incision may not occur, such that composite
surfaces do not form. This has implications for identifying sequence boundaries in high
accommodation settings.
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S1-S2: Buttress fall

The S1-S2 interval shows evidence of a fall in base-level (buttress), with
regional erosion and incision forming multivalley complexes in the lower S1-S2
interval (cf. Figure 4.9) and narrow, incised valleys in the upper S1-S2 interval
(cf. Figure 6.6). The Buffers and Buttresses model relevant to this interval
shows a lowering in buffer profile due to relative sea-level (buttress) fall , with a

composite surface at its base (Figure 7.11).

S2-S3: Slow rate of buttress rise

The S2-S3 interval shows a landward shift in facies compared to the S1-S2
interval. The preservation of channel, splay and fine-grained overbank deposits
indicates a relatively high-accommodation setting, although relatively narrow
incised and stacked channel belt deposits indicate that there could still be a
candidate composite surface at the base of this interval, either through the
presence of a stable buttress level, or a slight lowering in buttress level (Figure

7.12).

S5-S6: Rapid buttress rise

In the S5-S6 interval, buttress rise leads to an increasing rate of
accommodation generation and marine influence. Fine-grained overbank
deposits are preserved, whereas channels form a distributary network prone to
avulsion. The Buffers and Buttresses model relevant to this interval is the
generic ‘buffer rise’ model presented as Figure 7.7, and shows a rise in buffer

profile with an associated marine transgression, shifting marine influence further
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Figure7.11: Buffers and buttresses model appropriate to the S1-S2 interval. a: seismic
element map (approx S1) showing interpreted valley complexes. b: RGB blended slice
from the same approximate location. ¢: RGB blended slice from within the S1-S2 interval,
showing narrower valley deposits. d: Simple schematic depositional cross-section; multi-
valley complexes with composite surface (sequence boundary) at the base. e: Buffers and
buttresses model: The extensive incised deposits indicate a response to drop in base
level. This lowering of the buttress has caused a drop in the buffer profile, with a composite
surface (sequence boundary) at the base.
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transition further up-dip
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Figure7.12: Buffers and buttresses model for the S2-S3 interval of the Mungaroo
Formation. a: horizon slice from near S3, and b: interpreted seismic element map (refer to
Chapter 4 for detailed description). c: schematic representation of S2-S3 deposits:
channel belts, small, shoestring channels, crevasse splays and laterally restricted
lacustrine and coal deposits. Due to relative base-level rise, accommodation space has
increased, such that no composite surface is interpreted at the base of channel belt
deposits. d: buffers and buttresses model appropriate to the S2-S3 interval: a slight rise
base-level causes a rise in buffer profile, pushes the deltaic-to-fluvial transition further up
dip.
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up profile (Figure 7.13). There would not be a composite surface interpreted at

the base of the channel deposits in this interval.

S6-S7: Base-level fall, down-profile buttress shift

The S6-S7 interval is a candidate for the ‘thin preservation space’ buffer
described by Holbrook (2009) in a low-accommodation setting. The likely buffer
& buttress model has been inferred from the low accommodation but laterally
migrating and aggrading (rather than incising) tidal deposits. For this interval,
base-level has fallen, but this has not resulted in a drop in buffer profile, rather it
is interpreted as causing an elongation in the fluvial profile. Therefore valley
incision does not occur; rather, repeated cross-cutting and aggradation of

channel-belt deposits takes place (Figure 7.14).

7.4 Autogenic controls

7.4.1 Introduction

Autogenic processes, such as flood events, bar deposition and migration, and
lateral accretion control the construction and potential reworking of floodplain
deposits. Such autogenic controls on deposition can explain some of the
stacking patterns and the configuration of channel bodies within the buffer
zones described in the previous section. This section will discuss the effects of

avulsion and localised floodplain effects as seen in the Mungaroo Formation.

7.4.2 Avulsion

Avulsion — the shifting of channels to new positions on the floodplain (Smith et
al., 1989; Mohrig et al., 2000; Slingerland & Smith, 2004) — is arguably the most
important floodplain process (Miall, 2014) and the main process by which

coarse-grained channel deposits are introduced to the floodplain. As discussed
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Figure 7.13: Buffers and buttresses model for the deltaic S5-S6 interval of the Mungaroo
Formation. a: seismic element map from near S6 (c.f. Figure 4.11 for more detail), and
b: RGB frequency blended horizon slice showing detail of overprinting channel belts in the
central area of the dataset (refer to Chapter 6 for detailed description). ¢: schematic
representation of S5-S6 deposits: clustered channel belts, channel deposits, crevasse
splays and extensive lacustrine and coal deposits. Due to relative base-level rise,
accommodation space has increased, such that no composite surface is interpreted at the
base of channel belt deposits. d: buffers and buttresses model appropriate to the S5-S6
interval: The rate of relative base-level/buttress rise is greater than that of the S3-S4
interval, so the marine-influenced section is pushed further up the buffer profile.
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Figure 7.14: Buffers and buttresses model for the tidally-influenced, fluvial S6-S7 interval
of the Mungaroo Formation. a: horizon slice from the S6-S7 interval (RGB blended
volume) showing overprinting of deposits, indicating very low accommodation setting. b:
schematic diagram showing low accommodation fluvial channel belt deposits with a basal
composite surface, in a ‘thin preservation space’ setting. ¢: buffers and buttresses model
appropriate to the S6-S7 interval: A slight lowering of base-level results in a down-dip
translation in buttress and an extension of the buffer profile down-dip.
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in Chapter 2, avulsion occurs primarily through the erosion of channel banks,
forming a crevasse channel, which will either form a progradational crevasse
splay delta, or an incisional crevasse channel (Smith et al., 1989; Mohrig et al.,
2000; Hajek & Edmonds, 2014). The tendency for crevasse channels to
prograde or incise depends in part on the floodplain composition: sandy
floodplains tend to be prone to incision, whereas finer-grained, muddy
floodplains tend to host avulsions by progradation (Hajek & Edmonds, 2014).
Avulsion can also occur by annexation of previously fully or partially abandoned
channels, such as is seen in the Saskatchewan River (Smith et al., 1998;

Pérez-Arlucea & Smith, 1999).

Slingerland and Smith (2004), summarise six types of avulsion: partial, full,
nodal, local, random and regional. The S2-S3 interval appears to have both
local and regional avulsions (Figure 7.15 after Heller & Paola, 1996), but in fact

shows evidence of a partial avulsion, and subsequent local avulsion.

The preservation space available and the channel aggradation rate act to
determine the avulsion frequency (Bryant et al., 1995; Postma, 2014). This will

be discussed in more detail in section 7.4.4.

7.4.3 Local floodplain effects

As the S5-S6 interval in particular of the Mungaroo Formation has preserved
possible raised mire deposits as poor-quality coals, it is possible that a local
control on channel location is given by compaction of peat (van Asselen, 2011),
which created localised, small-scale basin subsidence (cf. Figure 7.6e for the
effect of localised subsidence on the creation of preservation space for fluvial

successions). This could account in part for the concentration (clustering) of
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Figure 7.15: The effect of local (a) and regional (b) avulsion, after Heller & Paola (1996).
The stratal slice from the S2-S3 interval ¢), shows evidence of both local and possible
regional avulsion of channel belt deposits. Fig. 7.14d shows a simple cartoon illustration
of the local and regional avulsions identified in the highlighted box in Fig. 7.14c. Closer
investigation of the channel belts in planform shows a change in scale between the
norther and southern channel belt, indicating that rather than a regional avulsion, it is a
partial avulsion (Fig. 7.14e c.f. Slingerland & Smith, 2004).
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channel-belt deposits in the S6-S7 interval seen in Figures 4.11 and 6.9. A
similar response to differential compaction is proposed as one of the controls on
local abundance of channel deposits in the B-C seam of the Rangal Coal
Measures.The floodplain substrate of poorly-drained floodplains may locally
control channel morphology (Bos et al., 2009), depending on whether channels
incise into organic-rich lake deposits, or peat mire deposits: organic-rich, clastic
lake deposits tend to develop lower stability banks, leading to higher-sinuosity
channels, whereas peat deposits tend to be resistant to erosion, thereby leading
to the development of relatively straight channels. The presence of mud-rich
lake and gleysol deposits on the delta plain of the S5-S6 interval Mungaroo
Formation may account for the moderate sinuosity (Table 4.2c) of some of

these channels, despite their lower delta plain depositional setting.

7.4.4 Channel-body clustering (discussion of avulsion rate v floodplain
aggradation)
Recent research by Hajek et al. (2010; 2012) indicates that autogenic
processes will tend to obscure the sedimentary signals of allogenic processes,
and that over basin-filling timescales, autogenic processes may produce similar
sedimentary patterns to those caused by allogenic processes, i.e. changing
boundary conditions (Jerolmack & Paola, 2007; Kim et al., 2006; Van de Well,
2010). Although avulsion is generally assumed to be random or quasi-random,
research by Hajek et al. (2012), focussing on the Late Cretaceous to Paleocene
Ferris Formation (Wyoming, USA), suggests that channel-belt clustering may
not be due to allogenic forcing (e.g. by differential subsidence) but may instead
be the result of long-term self-organisation of channel belts though avulsion,

formed under constant boundary conditions (Figure 7.16). It cannot therefore be
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Figure 7.16: Alluvial stratigraphy produced by a) increased aggradation rates and b)
non-random avulsive clustering. After Hajek et al. (2012).
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assumed that avulsion deposits, and in particular clustering of channel-belt
deposits (such as is seen in the S5-S6 interval), are necessarily indicative of a
change in boundary conditions; instead autogenic avulsive clustering must be
considered as a potential control on the style of aggrading fluvial architecture.
The Ferris Formation floodplain morphodynamics are somewhat analogous to
those interpreted in the S5-S6 interval of the Mungaroo Formation: fine-grained,
dark, often carbonaceous floodplain muds, with rare thin coal seams, and
immature palaeosols, indicating a high-accommodation, poorly drained
floodplain, such as that of the S5-S6 interval. Of note, erosional surfaces in the
Interval of the Ferris Formation studied by Hajek et al. (2012) are similar to
those of the S5-S6 Mungaroo Formation interval, as they are restricted to basal

channel scours, with no regional erosional ‘composite’ surfaces.

7.5 Discussion

7.5.1 Accommodation vs. Sediment supply

The interplay of accommodation rate and sediment supply rate can have distinct
effects on alluvial architecture (Martinius et al., 2014). Assessing fluvial (and
fluvio-deltaic) systems in terms of accommodation vs. sediment supply ratio
may provide an alternative to sequence stratigraphic approaches (such as
those of Allen & Posamentier, 1993; Shanley & McCabe, 1994; Plint et al.,
2001; Weissmann et al., 2000; Holbrook, 2006), as no universal non-marine
sequence stratigraphic model has yet been developed (Martinius et al., 2014)
and it may not be possible or appropriate to apply ‘traditional’ (marine)
sequence stratigraphic terms to alluvial stratigraphy (Ethridge et al., 1998). This

has particular resonance with theories of ‘self-organisation’ of channel belts
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(Hajek et al., 2010; 2012), which have shown experimentally and in ancient
outcrops that the sedimentological signature of the changes in boundary
conditions required to apply systems tracts to alluvial deposits may be patrtially

or completely obscured by the product of autogenic processes.

The accommodation vs. sediment supply approach does not attempt to place
deposits within systems tracts, but instead focuses on identifying parameters
that indicate a change in the accommodation/sediment supply (A/S) ratio. Table

7.1 lists these parameters.

Table 7.1: Parameters indicating a change in A/S ratio (after Martinius et al.,

2014)

Parameter indicating A/S Change indicated Importance

change ______
Changes in degree of | Less mature paleosols indicate | High

maturation and thickness [ an increased accommodation
of paleosol rate

Variation in type and|Change in channel style in|a) High
proportion of preserved | response to upstream changes in | b) Moderate
fluvial  sandstone  a) | discharge and/or sediment load
lithofacies and b) facies
associations

Variation in channel belt | Changes in vertical and lateral | High
thickness and  width | connectivity off sandstone related
compared to channel [to changes of accommodation
thickness and width generation with respect to
sediment flux and stream
discharge. High accommodation
generation coupled with high
sediment supply rate will give rise
to frequent avulsions with highly
connected sandstone deposits,
as channel deposits erode finer
floodplain deposits and the tops
of channel deposits. High
accommodation rate with a lover
sediment supply rate will result in
the  preservation of more
floodplain fines.
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Change indicated

Importance

change
Variations in the amount
of fine grained deposits

preserved in the

succession

Changes in rate of
accommodation generation with
respect to sediment delivery to
the floodplain

High (in low-
mod
subsidence

rate)

Frequency of occurrence
and characteristics of
erosion surfaces between
facies associations

May indicate floodplain-wide
degradation, or just local
downcutting by channels and
valleys

Moderate

Variations in long-term

Higher aggradations rates are

Moderate

in higher
lower
indicate

avulsion frequency and
channel stability

expected to result
avulsion  frequencies;
avulsion frequencies
lower aggradation rates

Application of the A/S variation indicators (Martinius et al., 2014) gives further
insight into the conditions present at the time of deposition of the studied
intervals of the Mungaroo Formation. The high proportion of preserved
sandstone (interpreted from seismic section and wireline log) in the S1-S2
interval, coupled with interpreted regional incision events in the lower S1-S2
interval, indicates a low A/S ratio. The S2-S3 interval appears to have a
moderate to relatively high A/S ratio, with more complete preservation of both
channel and floodplain facies associations, but also some evidence of
downcutting by higher-energy channel belt complexes. The S5-S6 interval
appears to have both moderate- and low-sinuosity channel forms, possibly
indicating a fluctuating rate of sediment supply. The high frequency of avulsions
and preservation of floodplain facies indicates high accommodation rates,
whereas stacking of channel belts with high connectivity may indicate
concurrent high sediment supply rates. The deposits of the lower S6-S7 interval
show preferentially high preservation of sandstone lithofacies coupled with

amalgamation and overprinting of the channel deposits, which indicates a low
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A/S ratio with high rate of sediment delivery. These channel deposits are
overlain by lower net:gross tidal bay-fill deposits with greater preservation of
floodplain fines, (Figure 6.12), probably indicating an increase in A/S ratio
towards the top of this interval. Figure 7.17 attempts to describe conceptually
the possible variations in A/S ratio throughout the Mungaroo Formation using a

series of Barrell (Barrell, 1917) diagrams.
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Figure 7.17: Barrell diagrams (Barrell,
1917) demonstrating the influence of
accommodation rates and sedimentation
rates for each of the key intervals of the
Mungaroo Formation between interpreted
seismic horizons S1-S7 (no scale implied),
compiled from observed fluvio-deltaic
architecture in intervals 1-2, 2-3, 5-6 & 6-7;
and for intervals S3-S4 & S4-S5, the marine
influence curve of Marshall & Lang (2013)
together with two stratal slices courtesy of
Woodside Ltd.

Reduction in accommodation space (e.g.
through fall in base level/buttress) leads to
incision and valley formation. Increases in
accommodation space through buttress
rise allow accumulation of fluvial and deltaic
sediments.
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7.6 Mungaroo Fm Depositional model

The Mungaroo Formation deposits encountered in this study show a range of
localised depositional sub-environments: (i) incised multi-valley deposits; (ii)
alluvial and upper delta plain deposits; (iii) lower delta plain distributary network
and mires; (iv) tidal point bar deposits. Figure 7.18 shows a generalised fluvio-
deltaic depositional setting, with possible locations of the studied intervals of the

Mungaroo Formation annotated.

7.6.1 Modern analogues
For each of the studied intervals of the Mungaroo Formation, an attempt has

been made to assign a suitable modern analogue.

7.6.1.1 S1-S2: Incised valley system

The S1-S2 interval deposits show high-energy channel fill, with mostly
downstream migrating barforms, poor preservation of overbank deposits, and
an erosive (candidate ‘composite surface’ sequence boundary) base. The lack
of marine and tidal indicators implies a purely fluvial regime; variations in grain
size indicate a possible seasonal influence on sedimentation. The
geomorphology of the upper S1-S2 interval deposits (Figure 6.6), in particular,
is interesting: straight valleys (possible bypass valleys), with moderate-high
sinuosity channel belts, which is somewhat at odds with the dominantly
downstream migrating barforms observed in core. A possible modern analogue

for the S1-S2 deposits is found in one of the modern rivers of Madagascar,
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where sinuous channel belts contain downstream-migrating, low-sinuosity

channels (Figure 7.19).

7.6.1.2 S2-S3: Upper delta plain

The S2-S3 interval is characterised by a combination of low-sinuosity, high-
energy channel bodies, and higher-sinuosity, low-energy channel bodies. The
frequency of crevassing encountered in core and identified on seismic slices
indicates a relatively high-accommodation setting, prone to local, partial and
regional avulsion. The presence of gleysols, lacustrine deposits and thin,
laterally restricted coals, as well as weak tidal indicators, indicates a poorly
drained upper delta plain setting. The Cumberland Marshes (Saskatchewan,
Canada) show this wide range of deposits (albeit in a lacustrine rather than
marine delta setting) and are presented as a possible modern analogue for the

S2-S3 interval (Figure 7.20).

7.6.1.3 S5-S6: Lower delta plain

Deposits interpreted from the S5-S6 interval represent a high-accommodation,
poorly drained, high-water table setting, prone to avulsions in an anastomosing,
distributary network. Autogenic clustering of channel belts (possibly driven in
part by peat compaction) is noted. The depositional setting is interpreted as the
lower delta plain of a river-dominated delta, with abundant lakes and mires
(possibly raised mires). The Kobuk river is chosen as a modern analogue due to
similarities in scale and the variety of deposits: however, a caveat must be
attached to the use of this analogue as the Kobuk River is affected by

permafrost and is therefore not analogous in terms of its climate setting,
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although the higher-sinuosity  permafrost-influenced channels share
morphologic similarities with those interpreted as being affected by incising into

and through clastic lake fill in the Mungaroo Formation (Figure 7.21).

7.6.1.4 S6-S7: Tidally-influenced point bars

The dominant deposits of the S6-S7 interval are tidally influenced point-bar
deposits, showing a high level of amalgamation and overprinting, in a highly
vegetated floodplain. This setting is highly analogous to the ancient deposits of
the McMurray Formation (cf. Hubbard et al., 2011). The modern system widely
considered to be analogous to the McMurray Formation is the Peace River
(Smith, 1988; Smith et al., 2009; Smith et al., 2011). Figure 7.22 shows modern
point- and counterpoint-bar deposits from the Peace River (reproduced from

Figure 6.11).

No single modern analogue describes the Mungaroo Formation as various
boundary conditions and autogenic responses have changed during the

temporal evolution of the formation.

7.6.2 Generic observations of response to allogenic and autogenic
controls

The variations seen in the Mungaroo Formation deposits in response to

changing allogenic and autogenic controls may be applied to make more

generic predictions of the response of fluvio-deltaic systems to changing

allogenic and autogenic controls.
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Response of fluvio-deltaic systems to allogenic and autogenic

controls, as observed in the Mungaroo Formation.

Type Control Response
Allogenic Base-level fall Incised valley deposits, or low
accommodation, amalgamated channel
deposits. Basinwards shift in facies.
Allogenic Base-level rise Increased marine influence e.g. salinity
indicators, marine/brackish ichnofacies,
tidal indicators. Higher rate of
accommodation space creation. Poorly-
drained floodplain (rise in water table).
Allogenic Wetter climate Floodplain response: gleysol and coal
deposits, increased vegetation (leading to
plant material in channel deposits),
poorly-drained floodplain.
Allogenic Sediment  supply | Changes in grain size distribution
(function of climate | indicating intermittent or pulsed flow.
& tectonic uplift of | Change in ratio of channel v overbank
source area) fines in preserved section.
Autogenic Increased avulsion | Increase in crevasse splay deposits in
frequency preserved overbank section, increased
connectivity of channel deposits.
Autogenic Local floodplain | Floodplain substrate may exert a local
effects control on channel morphology and
create localised accommodation space
for channel deposition.
Autogenic Channel belt | Increased channel connectivity &
clustering clustering of channel belts does not

necessarily require a change in boundary
conditions.

7.7 Conclusions

The following allogenic controls have been

identified as affecting the

architecture of the Mungaroo Formation.
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Base-level. There is a gradual evolution from purely fluvial, incised-valley
deposits, through fluvial and upper delta plain deposits, to lower delta plain and
tidally influenced point-bar deposits, largely forced by a regional rise in sea level

(cf. Marshall & Lang (2003) Triassic sea-level curve).

Source uplift and subsequent erosion provided the sediment load deposited as

the Mungaroo Formation.

Climate. In addition to the generally wetter and drier periods interpreted by
Payenberg et al. (2013), evidence has been presented here to support episodes
with higher seasonal variations in discharge (implying wet-dry seasonality and
possible monsoonal events), as well as generally wetter periods with increased
vegetation, as evidenced by ‘tea-leaf structures, coals, and gleysol

development, for example.

Allogenic controls have been shown to control the overall regional stacking
patterns of sequences within fluvio-deltaic successions, such as the Mungaroo

Formation.

Autogenic controls, such as crevassing (leading to avulsion) and channel belt
clustering, have been shown to have exerted a control on the local arrangement
of channel and floodplain architecture through substrate compaction, erosion

and autogenic clustering of channel belts in some intervals.

The various interpreted deposits of the Mungaroo Formation have been applied
to a general depositional model of fluvio-deltaic deposits, and modern
analogues have been assigned based on observed plan-form architecture, as

well as interpreted climate, tidal, accommodation and vegetation conditions.
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Chapter 8 Conclusions and future work

8.1 Chapter overview

This chapter aims to provide concise answers to each of the research questions
proposed in Chapter 1. The findings and conclusions of each chapter within this
study are drawn together to provide summaries and final conclusions for this
work. This chapter considers possible future work that could build upon the

outcomes of this body of research.

8.2 Research questions
The following sub-sections address each research question in turn to

summarise this body of research.

8.2.1 To what extent do minor (secondary and tertiary crevasse splay and
distributary) channels contribute to fluvial overbank successions,
and how likely are they to form connected reservoir bodies?

This question was addressed by the investigation of the deposits of two

interseams of the Rangal Coal Measures, at the South Blackwater Mine,

Queensland. The interseam packages were investigated using high-resolution,

closely-spaced wireline logs, and were found to be composed predominantly of

overbank deposits. Small-scale (crevasse and distributary) channel deposits are

a potentially significant repository for sandstone lithofacies in overbank

successions, with 22% of the B-C interseam deposits of the Rangal Coal

Measures at the South Blackwater Mine accounted for by secondary and

tertiary channel-fill deposits. The proportion of infill composed of these deposits

is both temporally and spatially variable, as deposits are interpreted to be

intimately associated with avulsive deposits (e.g. crevasse splay deltas) and so
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are influenced by local autogenic controlling factors such as bank stability, as
well as regional allogenic controls such as changing rates of accommodation
creation that are potentially attributed to factors such as rises in base level. The
change in accommodation conditions is interpreted as responsible for the
contrast in architectural element proportions in the two studied interseams: the
low net:gross (3% channel infill) of the A-B interseam is interpreted to reflect
deposition under higher accommodation conditions than the B-C interval (23%
channel infill), with a wider spread of lacustrine deposits (constituting 70% of

infill) attributed to base-level (lake-level) rise.

Stochastic modelling of both splay and distributary channel elements was
undertaken to estimate the potential connectivity between sand-prone minor
channel deposits in the Rangal Coal Measures, as well as to observe general
trends applicable to crevasse and distributary channel sandstone-body
connectivity. The connectivity of minor channel deposits is influenced not only
by the infill proportion of the deposits, but by the channel type, i.e. likely
planform geomorphology of the deposits. Where channel deposits form during
progradational events (i.e. as part of a crevasse splay delta), relatively good
connectivity is observed in proximal positions in the splays; however,
connectivity decreases distally from the source as channel elements diverge.
Connectivity between crevasse channels tends to be greater down the axis of
splays, with more isolated channel bodies occurring at the margins.
Connectivity tends to be greater and more uniform between distributary
channels rather than splay channels. Modern analogues were used to
demonstrate potential plan-form geomorphological arrangements of the
channelized deposits, as well as the pattern of interconnectivity between

channels.
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8.2.2 What is the nature of the stratigraphy and sedimentology of the
Triassic Mungaroo Formation in block WA-404-P, Exmouth Plateau,
Australia?

The Late Triassic Mungaroo Formation represents a large fluvio-deltaic system

that was constructed in the Northern Carnarvon Basin throughout the Norian.

The temporal evolution of the Mungaroo Formation represents a stratigraphic

response to a first-order transgression, with the depositional setting evolving

from a purely fluvial regime to a tidally-influenced, fluvially-dominated deltaic
setting. The deposits of the Mungaroo Formation studied herein can be split into
six intervals (S1-S2, S2-S3, S3-S4, S4-S5, S5-S6, S6-S7), each separated by

transgressive and flooding surfaces that are recognised and interpreted using a

high-resolution 3D seismic survey.

Sixteen lithofacies and seven facies associations were interpreted from core,
and related to wireline log expression. Owing to the limited stratigraphic extent
of core available within the study area, observations regarding the lithology of
the Mungaroo Formation are based primarily on the S2-S3 interval, which has a
complete cored interval in one well, encompassing both channelized and
overbank successions. Within the S2-S3 interval, lithofacies and facies
associations indicate a fluvially-dominated, at times tidally-influenced, upper
delta plain setting, with systematic and predictable transitions from more fluvial-
dominated to more deltaic-dominated episodes of accumulation. Core samples
from the uppermost interval (S6-S7) show a greater tidal influence, consisting of
tidally influenced point-bar deposits, overlain by tidal and marine-influenced

bay-fill deposits.

Several styles of channels were interpreted from their lithological expression

and dip-log data. Certain trends in channel style were observable, most notably
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that higher energy channel deposits tended to be low sinuosity, composed of
downstream migrating barforms, whereas lower-energy channels (including
splay channels) tended to be higher sinuosity. Within the studied interval, it
remained difficult to distinguish from well data alone between incised valley and

amalgamated channel-belt deposits.

8.2.3 What are the broad variations in depositional environment at key
intervals of the Mungaroo Formation? Can seismic facies be used
to distinguish between fluvial and fluvio-deltaic deposits?

Each of the three intervals (S1-S2, S2-S3, S5-S6) studied in Chapter 4

represent ‘snapshots’ at key stages in the accumulation of the Mungaroo

Formation, and have, distinct depositional palaeoenvironmental settings: (i)

S1-S2 represents dominantly incised valley deposits; (i) S2-S3 represents an

upper delta plain setting, with channel belts and associated splay belts. The

floodplain shows evidence of being poorly drained at certain times during its
evolution (with the development of spatially restricted mires, and gleysol
deposits), though within the regional context of this relatively distal study of the

Mungaroo Formation, this interval represents a relatively well-drained floodplain

setting; (iii) S5-S6 represents a poorly drained upper delta-plain setting, with a

distributary network of channel belts and minor distributary channels, as well as

extensive organic-rich deposits including gleysols and coals. Considering the
deposits interpreted in a vertical sense moving up through the succession, as
they record a transition from valley fill, to relatively well-drained fluvial
floodplain, to poorly drained delta plain: Although the Mungaroo Formation
represents several small-scale fluctuations in base-level it overall records a

general base-level rise.
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Seismic facies has been linked to sedimentology through by integrating wireline
log, core log and seismic data, developing a ‘seismic element’ scheme that can
be used to identify key depositional elements of fluvial and deltaic
environments. From careful analyses of plan-form geomorphology and
assessment of relative proportions of seismic elements, it is possible to
distinguish between purely fluvial, upper delta plain and lower delta plain
depositional sub-environments. Key distinguishing observations included: (i) wet
versus dry substrate conditions, as indicated by the presence or absence of
gleysols indicative of a poorly drained floodplain, as is seen at the S5-S6
interval; (ii) the presence of incised valley systems, as identified around S1, an
interval with large valley features, with negligible deposition away from the large
features, indicating deposition is confined within them; (iii) aggradational delta
plain, as indicated by fluvio-deltaic deposits accumulated across a broad
floodplain area, as identified at S6. Reduced seismic resolution at greater
depths remains a limiting control on data quality and granularity and this has
implications for interpretations; in particular, it remains very difficult to

distinguish definitively and routinely between valley-fill and channel-belts.

8.2.4 What techniques can be employed to identify channelized deposits
at a range of scales, and also non-channelized floodplain deposits?
Can any seismic interpretation techniques be used to bring out
more detailed interpretations?

A range of seismic interpretation techniques were investigated and proven to be

useful in the interpretation of both channelized and non-channelized fluvio-

deltaic deposits. The need for such an investigation stems from the scale of

fluvial deposits, which are often approaching or even below conventional

seismic resolution. A robust stratigraphic framework aids in the identification of
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horizons that represent key surfaces of stratigraphic significance. A major
outcome of this study has been the recognition that flooding surfaces overlying
fluvial and fluvio-deltaic sequences, which are more laterally continuous than
the basal erosive surfaces underlying channel deposits, are more useful for
seismic interpretation as they can be traced over a greater area. Due to the
small scale of some of the fluvial deposits, noise cancellation and frequency
enhancement provided a considerable uplift in the visible detail of deposits.
Horizon or stratal slicing is an essential technique for viewing non-horizontal
deposits, particularly where there has been post-depositional faulting, although
the quality and reliability of the horizon and stratal slices depends on the fidelity
of the interpreted seismic horizons. Frequency decomposition enabled the
visualisation of deposits that are below normal seismic resolution by allowing
the viewer to focus on specific frequency ranges revealing subtle features.
Several seismic attributes including structural attributes, signal processing and
stratigraphic attributes also demonstrated their utility in identifying the edge of
channelized features, as well serving to distinguish between higher porosity

sand-rich channel belt deposits, and lower porosity overbank fines.

8.2.5 How can a range of seismic interpretation techniques, including
spectral decomposition, be used to resolve the internal architecture
of channel belt deposits within the Mungaroo Formation? Can these
techniques provide further insight into fluvial styles, distinguishing
between entrenched valleys and amalgamated channel belts?

As previously discussed, horizon slicing through flattening of the 3D seismic

cube enables the visualisation of large-scale fluvial deposits; however, this

techniqgue does not enable the visualisation of the detailed architecture of

individual channel-belt deposits, as they are typically close to the limit of seismic
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resolution. Spectral decomposition and colour blending of frequency volumes
has proven effective for visualising the channelized deposits of the Mungaroo
Formation, even at depths >3 km, representing a significant uplift in the
resolution compared to seismic reflectivity data. Three intervals (S1-S2, S5-S6,
S6-S7) of the Mungaroo Formation were studied. By analysing horizon slices
from colour blended volumes, it was possible to distinguish between incised
valleys and amalgamated channel belts, where previously interpretations had
been ambiguous, i.e. S5-S6 interval deposits. In the deepest interval (S1-S2), it
was possible to make some interpretations regarding the nature of the channel-
belt fill within an incised valley, charting the lateral migration of the deposits
through time, and estimating the relative sinuosity of the formative rivers from
channel-belt rugosity. The shallowest interval (S6-S7) showed the most
improvement in resolution: for this interval it was possible to trace out
overprinting lateral accretion deposits, which, when related to core samples,
were found to be tidal point-bar deposits, analogous to those of the Cretaceous

McMurray Formation of Alberta, Canada.

8.2.6 What are the possible autogenic and allogenic controls on the
variations in depositional style identified in the Mungaroo
Formation? What can this tell us about fluvio-deltaic systems more
generally?

Up-dip and down-dip allogenic and autogenic controls on fluvial deposition were

discussed with reference to literature, and related to observations and

interpretations of the Mungaroo Formation made in Chapters 3-6 of this thesis,
in order to explain of the overall pattern of stacking of architectural elements
present in the formation, as well as the detailed architectural expression of key

stratigraphic intervals and surfaces.
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Allogenic controls have been found to be the major control on the overall
stacking of fluvio-deltaic sequences; notable allogenic controls include base-
level change, source uplift, and climate. Allogenic controls were also deemed
responsible for some smaller-scale depositional variations, for example climate-
induced variations that promoted increased vegetation and which resulted in the
accumulation of thick deposits of ‘tea-leaf’ structures in the tidally influenced S6-

S7 interval.

The Buffers and Buttresses model (Holbrook, 2006) has proven useful in
describing the temporal evolution of the Mungaroo Formation, as a series of
stacked buffer zones and transgressions. The model has been used to explain
the preservation of deposits even in the very low-accommodation S6-S7
interval. The four intervals of the Mungaroo Formation studied in this thesis (S1-
S2, S2-S3, S5-S6, S6-S7) have been described in terms of their responses to
rising and falling buttresses at the time of deposition: S1-S2, buttress fall; S2-
S3, slow buttress rise; S5-S6, rapid buttress rise; S6-S7, base-level fall with a

down-profile buttress shift.

Autogenic controls have been interpreted as having exerted a control on the
local arrangement of channel and floodplain architecture through crevassing
(leading to avulsion in the S2-S3 interval), substrate compaction (potential local
accommodation space creation through peat compaction in the S5-S6 interval
may have influenced the clustering of channel belts), erosion and avulsion-

driven clustering of channel belts via compensational stacking in some intervals.

The Mungaroo Formation has been used to demonstrate how observations of

interpreted deposits in specific intervals can be related to a more general



307

assessment of depositional environments in terms of their accommodation vs.

sediment supply (A/S) ratio driven by allogenic and autogenic controls.

The depositional sub-environments at each of the four interpreted intervals of
the Mungaroo Formation have been assessed and modern analogues have
been assigned to each of the intervals. No single modern analogue fully
matches the complexity present in the Mungaroo Formation because various
boundary conditions and autogenic responses have changed during the
temporal evolution of the formation. Observations of the response of the
Mungaroo delta system to changing boundary and autogenic conditions have
been summarised as potential generic trends that arose in response to the
evolution of a fluvio-deltaic system governed by a complex set of allogenic and

autogenic controls.

8.3 Concluding remarks

The preserved stratigraphy of the Rangal Coal Measures and the Mungaroo
Formation demonstrate that fluvio-deltaic systems respond in terms of
proportion of preserved depositional elements and connectivity of channel
deposits to changes in both allogenic and autogenic controls, with different
depositional intervals being classified in terms of their accommodation setting

and their relative degree of marine influence.

Base-level rise drives an overall increase in marine influence during the
temporal evolution of the Mungaroo Formation. However the interpretation of
deposition is much more complex than a simple transgression, as multiple,
small-scale fluctuations in base level, as well as climate changes and changes
in autogenic controls have created several distinct depositional sub-

environments within the Mungaroo Formation. The interplay of allogenic and
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autogenic controls has resulted in large-scale (regional) stacking patterns, as
well as more localised channel and overbank deposit architectures and related
subtle sedimentological features. Tidal influence varies greatly within the
formation, and is generally interpreted as increasing up-stratigraphy. A
summary table of generic responses of fluvio-deltaic systems to allogenic and
autogenic controls based on observations from the Mungaroo Formation has

been compiled (Table 7.2).

Seismic or well data alone cannot provide detailed interpretations of fluvio-
deltaic deposits; instead a more holistic approach, incorporating well data and
advanced interpretation techniques such as spectral decomposition and
frequency blending has been employed. A generic workflow for the optimised
interpretation of fluvial and fluvio-deltaic deposits in the subsurface has been
presented, whereby it is possible to make detailed interpretations of individual
channel-belt deposits, providing greater confidence in interpretations of

depositional sub-environment.

8.4 Recommendations for future work
The findings outlined above and the research carried out as part of this study

could be continued and extended in several ways.

8.4.1 Three-dimensional modelling of the Mungaroo Formation

Three-dimensional modelling was beyond the scope of this project but could
form the basis for a follow-up study. The seismic element maps, in particular,
could be scaled up in order to populate reservoir models, following the methods
outlined by Massey et al. (2014). Reservoir property data (e.g. porosity and
permeability) could be interpreted from well data in order to provide a greater

understanding as to which facies associations would act as effective net
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reservoir and non-net reservoir, and also to quantify connectivity between the

various channel deposits identified.

8.4.2 Seismic QI

Although this study has focussed on qualitative interpretation techniques, a
quantitative interpretation (QI) study of the seismic and well data would enable
guantitative assessment of the seismic response to different lithofacies,
modelling AVO response, for example. This would allow greater constraint of
the lithofacies present at each of the studies intervals, potentially removing
some ambiguity; for example, coals and gleysols are seen (qualitatively) to have

the same seismic response in this study.

8.4.3 Comparison with modern and ancient analogues

Comparison of the findings from this study with ancient tidally influenced,
fluvially dominated delta settings would further augment the dataset and
improve the quality of subsurface interpretations, particularly with respect to
analysing three-dimensional, sub-seismic scale architectural elements, which

were not fully constrained as part of this study.

Assessment of the detailed geomorphology of modern analogue systems in the
vein of Smith et al. (2009) and Russell et al. (2014) would provide additional
granularity to the interpretations of channel and channel-belt deposits
(particularly point-bar deposits) that can be made from seismic and well data.
The combined study of modern and ancient analogues could help to elucidate
the interplay of different controlling factors, including the extent to which local
and regional architecture is controlled by changing boundary conditions or

through self-organisation, for example.
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This work could benefit from extension through comparison with analogous
systems characterised in relational databases describing fluvial and fluvio-
deltaic sedimentary architecture that are currently being developed. One such
example is the Fluvial Architecture Knowledge Transfer System (FAKTS)

database (cf. Colmbera et al., 2012, 2013).
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Appendix 2

Noblige-2 / Well-11 core photographs with interpreted lithofacies

associations.

Core depths:
Core 01: 3866.50m - 3902.84m

Core 02: 3918.00m - 3974.80m
Core 03: 3975.00m -4073.97m
Core 04: 4074.00m - 4147.71m

Lithofacies association key

. High-energy channel Gleysol
Low-energy channel Lake
Proximal splay Bay-fill
Distal splay Coal
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Core Photos
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Bottom of core 2
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bottom of core 3
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