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Abstract

The metric space approach to quantum mechanics is a new, powerful method
for deriving metrics for sets of quantum mechanical functions from conserva-
tion laws. We develop this approach to show that, from a standard form of
conservation law, a universal method exists to generate a metric for the phys-
ical functions connected to that conservation law. All of these metric spaces
have an “onion-shell” geometry consisting of concentric spheres, with func-
tions conserved to the same value lying on the same sphere. We apply this ap-
proach to generate metrics for wavefunctions, particle densities, paramagnetic
current densities, and external scalar potentials. In addition, we demonstrate
the extensions to our approach that ensure that the metrics for wavefunctions
and paramagnetic current densities are gauge invariant.

We use our metric space approach to explore the unique relationship between
ground-state wavefunctions, particle densities and paramagnetic current den-
sities in Current Density Functional Theory (CDFT). We study how this rela-
tionship is affected by variations in the external scalar potential, pairwise elec-
tronic interaction strength, and magnetic field strength. We find that all of the
metric spaces exhibit a “band structure”, consisting of “bands” of points char-
acterised by the value of the angular momentum quantum number, m. These
“bands” were found to either be separated by “gaps” of forbidden distances,
or be “overlapping”. We also extend this analysis beyond CDFT to explore
excited states.

We apply our metrics in order to gain new insight into the Hohenberg-Kohn
theorem and the Kohn-Sham scheme of Density Functional Theory. For the
Hohenberg-Kohn theorem, we find that the relationship between potential and
wavefunction metrics, and between potential and density metrics, is mono-
tonic and includes a linear region. Comparing Kohn-Sham quantities to many-
body quantities, we find that the distance between them increases as the elec-
tron interaction dominates over the external potential.
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Chapter 1

Introduction

The quantum revolution in physics over the last century has resulted in an im-
pressively detailed understanding of the physical world. The theory of quan-
tum mechanics allows for physical descriptions of fundamental particles and
radiation, where the predictions of classical mechanics have been shown to
break down. In quantum mechanics, the deterministic description of matter is
replaced by a description based on probabilities, with the information about
the system given by a wavefunction. The development of quantum mechanics
introduced concepts fundamentally different from those of classical physics,
in particular: the quantisation of physical quantities such as energy and mo-
mentum; the notion of wave-particle duality for radiation and matter; and the
uncertainty principle limiting the accuracy to which quantum observables can
be measured [1].

Quantum mechanics has had an enormous influence on modern technology,
with devices such as lasers and transistors that operate on the quantum scale.
The phenomenon of quantum mechanical tunnelling is exploited in scanning
tunnelling microscopes and tunnel diodes. In addition, our knowledge of
quantum phenomena has led to the development of new fields of physics such
as solid state physics and superconductivity.

Quantum mechanics is sufficiently well developed to be applied to describe
real materials. However, direct quantum mechanical modelling of materials
consisting of 1023 interacting atoms is impossible practically, due to the com-
plexity of the many-body wavefunction. This has led to the development of
approaches such as Density Functional Theory (DFT), which utilises the den-
sity, rather than the wavefunction, in a prominant role [2–4].

Mathematically, there is a deep connection between wavefunctions and vec-
tors. Indeed, the wavefunction describing a quantum system is represented
mathematically as a vector in a complex Hilbert space. This strong analogy

15



Chapter 1 Introduction

extends to defining lengths and scalar products of wavefunctions, as well as
basis sets of linearly independent wavefunctions.

The motivation of this thesis is to use metric spaces in order to describe and
compare quantum mechanical functions. Metric spaces define the concept of
a distance between each of their elements. The use of metric spaces is moti-
vated by the fact that the advantageous structures and operations conferred
by the Hilbert space for wavefunctions do not carry over to the set of densi-
ties. Therefore, when changing the framework of quantum mechanics from
the many-body wavefunction approach to the DFT approach, we lose these
properties. However, a metric can be defined on any non-empty set. Thus we
can define the concept of a distance for any set of functions, including wave-
functions, densities and any other set of quantum mechanical functions, and
treat all of these quantities on the same footing.

1.1 Quantum Mechanics

Quantum mechanics has its origins in Max Planck’s work on black-body radia-
tion. In this work he proposed that the frequency of an oscillator, which in this
case is the thermal vibration of the atoms making up the black body, can only
take discrete values, and the energy of the oscillator is quantised. The allowed
values of the frequency were hypothesised to be multiples of a fundamental
physical constant, now known as Planck’s constant, h (in quantum mechan-
ics, it is more common to see h̄ = h

2π
). Planck’s hypothesis matched with the

experimental data, which could not be explained by classical physics. The no-
tion of quantisation of energy was further developed by Albert Einstein in his
quantum interpretation of the photoelectric effect [5]. Einstein proposed that
light itself was quantised, such that it is composed of quanta, which were later
called photons, of energy E = h̄ω [1]. This work suggested that light, which
was always considered to be a wave, also has a particle-like nature [1].

In 1923, Louis de Broglie made the hypothesis that, alongside the particle na-
ture of radiation, matter possessed wave-like properties, and hence the concept
of wave-particle duality is universal in nature. By considering wave packets,
de Broglie proposed that matter waves have an energy given by the Einstein
relation, E = h̄ω , and wavelength

λ =
h
p
. (1.1)

This hypothesis was confirmed by the electron diffraction experiments of C. J.
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Davisson and L. H. Germer, and G. P. Thompson [1].

These ideas were developed into the theory of quantum mechanics between
1925 and 1930 [1]. One of the key postulates of quantum mechanics is that
the most complete knowledge of a quantum system is given by the wave-
function, ψ (r, t), and this wavefunction obeys a wave equation known as the
Schrödinger equation.

The wavefunction was given a statistical interpretation by Max Born in 1926 [6].
The Born rule states that if we consider a large number of identically prepared
systems described by the wavefunction ψ (r, t), it is postulated that if the posi-
tion of the particle is measured for each of the systems, |ψ (r, t)|2 dr represents
the probability of finding the particle within the volume element dr. Hence,
|ψ (r, t)|2 is known as the position probability density [1].

In non-relativistic quantum mechanics, the wavefunction is obtained by solu-
tion of the time-dependent Schrödinger equation, which is given by

Ĥψ (r, t) = i
∂ψ (r, t)

∂ t
, (1.2)

where Ĥ is the Hamiltonian of the system and, as is the case throughout this
thesis, we use atomic units h̄ = me = e = 1

4πε0
= 1. In this thesis, we will restrict

ourselves to the limit of time-independent quantum mechanics, and therefore
we consider the time-independent Schrödinger equation,

Ĥψ (r) = Eψ (r) , (1.3)

where E is the energy of the system.

The form of the Hamiltonian in Eq. (1.2) and Eq. (1.3) depends on the system
under consideration. The most common form of the Hamiltonian is for a par-
ticle moving in a potential, V (r), which is given by [1]

Ĥ =−1
2

∇
2 +V (r) , (1.4)

where V (r) is a scalar potential. This potential corresponds to an electric field
via E =−∇V (r).

In this thesis, we will study systems subject to external magnetic fields. In this
case it is necessary to introduce a dependence on the magnetic field into the
Hamiltonian. The magnetic field is represented by a vector potential, A(r), such
that B(r) = ∇×A(r). Including a vector potential gives us the Pauli Hamilto-
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nian [7],

Ĥ =−1
2

[
∇+

1
c

A(r)
]2

+V (r) . (1.5)

Quantum mechanics tells us that every observable quantity corresponds to a
Hermitian operator, Ô. The probabilistic nature of quantum mechanics means
that, when measuring an observable for the same state, there is a range of
possible results. Each of these results occurs with a well-defined probability.

The mean value of an observable, O, is given by the expectation value of the
operator Ô,

〈O〉= 〈ψ | Ô |ψ 〉=
∫

ψ
∗ (r) Ôψ (r)dr. (1.6)

Following Born’s interpretation of the wavefunction, the expectation value of
an operator should be interpreted as the mean value of measurements of the
observable O on a large number of identically prepared systems all represented
by the wavefunction ψ (r) [1].

In 1923, Niels Bohr formulated a principle connecting quantum mechanics
with classical mechanics, that proved useful in the early development of quan-
tum theory. Bohr’s correspondence principle states that the results from quan-
tum mechanics must tend asymptotically to those of classical mechanics, in
the limit of large quantum numbers [1]. More precisely, when studying the
classical limit of quantum mechanics, the “classical particle” is identified as
a quantum mechanical wave packet. In order to specify the state of a sys-
tem classically, both its position and momentum are required. However, the
Heisenberg Uncertainty Principle states that it is impossible to specify position
and momentum in quantum mechanics to accuracy better than h̄/2 [1]. There-
fore, the classical limit of quantum mechanics is attained when the values of
distance and momentum are sufficiently large that the Heisenberg uncertainty
principle can be neglected, i.e., for a sharply peaked wave packet [1, 8].

It can be shown that the expectation values of operators provide this connec-
tion to classical mechanics. We will now consider the behaviour of the quan-
tum mechanical expectation values of observables with the Ehrenfest theorem.

1.1.1 Ehrenfest’s Theorem

Ehrenfest’s theorem [9] enables one to obtain the time evolution of the expecta-
tion value of physical quantities. Given that, for an operator Ô, its expectation
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value is given by 〈O〉= 〈ψ | Ô |ψ 〉, its time derivative is given by [8, 10]

d
dt
〈O〉=

〈
dψ

dt

∣∣∣∣Ô∣∣∣∣ψ〉+

〈
ψ

∣∣∣∣dÔ
dt

∣∣∣∣ψ〉+

〈
ψ

∣∣∣∣Ô∣∣∣∣dψ

dt

〉
. (1.7)

Substituting in the time dependent Schrödinger equation (1.2) and its Hermi-
tian conjugate we get

d
dt
〈O〉=− 1

ih̄

〈(
ψĤ
)∣∣ Ô |ψ 〉+〈ψ

∣∣∣∣dÔ
dt

∣∣∣∣ψ〉+
1
ih̄
〈ψ | Ô

∣∣(Ĥψ
)〉

,

=
1
ih̄
〈ψ |

(
ÔĤ− ĤÔ

)
|ψ 〉+

〈
ψ

∣∣∣∣dÔ
dt

∣∣∣∣ψ〉.
By applying the definition of a commutator, we get the result,

d
dt
〈O〉= 1

ih̄
〈ψ |

[
Ô, Ĥ

]
|ψ 〉+

〈
ψ

∣∣∣∣dÔ
dt

∣∣∣∣ψ〉. (1.8)

This is Ehrenfest’s theorem. Applying the theorem to the expectation values
of position and momentum shows that, in the classical limit, these expectation
values obey Newton’s equations of motion [1]. Also, if d

dt

〈
Ô
〉
= 0 then the

operator Ô does not vary with time and is thus stated to be a constant of motion
and conserved [8].

1.1.1.1 Noether’s Theorem

The importance of conserved quantities in physics was established by the work
of Emmy Noether in 1918 [11]. Noether’s theorem is a powerful concept in the-
oretical physics that draws a clear link between the symmetries of a physical
system and conservation laws [12].

The proof of the theorem proceeds by considering the Euler-Lagrange equa-
tions,

∂L
∂Q

=
d
dt

∂L
∂ Q̇

, (1.9)

where L is the Lagrangian, Q is a generalised coordinate and a dot denotes dif-
ferentiation with respect to time. We consider a continuous coordinate trans-
formation, s, such that s = 0 represents the identity transformation. If Q(s, t) is
a solution of the Euler-Lagrange equations for any value of s, the Lagrangian
is L

(
Q(s, t) , Q̇(s, t)

)
and the Lagrangian after an infinitesimal transformation,

ds, is L′
(
Q(s+ds, t) , Q̇(s+ds, t)

)
. In order for s to represent an invariant coor-

dinate transformation, we require that

L′
(
Q(s+ds, t) , Q̇(s+ds, t)

)
= L

(
Q(s, t) , Q̇(s, t)

)
, (1.10)
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which can also be written as

d
ds

L
(
Q(s, t) , Q̇(s, t)

)
= 0. (1.11)

Applying the chain rule to Eq. (1.11) gives

dL
ds

=
∂L
∂Q

dQ
ds

+
∂L
∂ Q̇

dQ̇
ds

. (1.12)

Substituting in the Euler-Lagrange equation for L
(
Q(s, t) , Q̇(s, t)

)
gives,

dL
ds

=
d
dt

(
∂L
∂ Q̇

)
dQ
ds

+
∂L
∂ Q̇

d
dt

(
dQ
ds

)
,

=
d
dt

(
∂L
∂ Q̇

dQ
ds

)
= 0.

This means that
I (q, q̇) =

∂L
∂ q̇

dQ
ds

∣∣∣∣
s=0

= const, (1.13)

where I is a conserved quantity, and q = Q(0, t), q̇ = Q̇(0, t). Noether’s theo-
rem can hence be stated as: If the Lagrangian is invariant under a continuous
symmetry transformation, there are conserved quantities associated with that
symmetry [12]. This link between symmetries and conserved quantities holds
for both classical and quantum mechanics.

1.1.2 Conservation Laws in Quantum Mechanics

We will now use Ehrenfest’s theorem in order to derive conservation laws in
quantum mechanics. The operators we consider are time-independent, so we
can establish whether an operator is a constant of motion simply by determin-
ing whether or not it commutes with the Hamiltonian.

1.1.2.1 Conservation of the Norm of a Wavefunction

The norm of a wavefunction is given by 〈ψ | ψ〉, which we can write as 〈ψ | Î |ψ 〉,
where Î is the identity operator, defined by

Î |ψ 〉= |ψ 〉 . (1.14)

From Eq. (1.14), we note that the identity operator commutes with any other
operator by definition, hence [

Î, Ĥ
]
= 0. (1.15)
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Therefore,
d
dt
〈ψ | ψ〉= 0 =⇒ 〈ψ | ψ〉= const, (1.16)

with the constant depending on how the wavefunction is normalised. The
choice of normalisation is conventionally guided by the Born Rule, which de-
fines |ψ (r)|2 as the position probability density [1]. When calculating this ex-
pectation value, we integrate this position probability density over all space.
Therefore this sum of all probabilities should be equal to 1.

Thus, the conservation of the norm of a wavefunction is

〈ψ | ψ〉= 1. (1.17)

By writing the definition of the particle density,

ρ (r) = N
∫

. . .
∫
|ψ (r1,r2 . . .rN)|2 dr2 . . .drN , (1.18)

and substituting into Eq. (1.17), we have

〈ψ | ψ〉=
∫

. . .
∫
|ψ (r1,r2 . . .rN)|2 dr1dr2 . . .drN ,

=
1
N

∫
ρ (r1)dr1 = 1.

Rearranging this gives the conservation of the number of particles∫
ρ (r1)dr1 = N. (1.19)

1.1.2.2 Conservation of Angular Momentum

The z-component of the angular momentum is given by

L̂z = [r× p̂]z , (1.20)

where p̂ is the linear momentum, p̂ = −i∇. Hence, the expectation value of L̂z

is,

〈Lz〉= 〈ψ | [r× p̂]z |ψ 〉 ,

= 〈ψ |xpy− ypx |ψ 〉 ,

=

〈
ψ

∣∣∣∣−i
[

x
∂

∂y
− y

∂

∂x

]∣∣∣∣ψ〉. (1.21)
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First, we will consider the case where A(r) = 0 and the Hamiltonian is of the
form of Eq. (1.4). In this case, the commutator of L̂z and Ĥ is

[
L̂z, Ĥ

]
ψ =

i
2

(
x

∂

∂y
− y

∂

∂x

)
∇

2
ψ− i

(
x

∂

∂y
− y

∂

∂x

)
V (r)ψ

− i
2

∇
2
(

x
∂

∂y
− y

∂

∂x

)
ψ + iV (r)

(
x

∂

∂y
− y

∂

∂x

)
ψ,

=
1
2

x∇
2 ∂ψ

∂y
− 1

2
y∇

2 ∂ψ

∂x
− x

∂ [V (r)ψ]

∂y
+ y

∂ [V (r)ψ]

∂x

− 1
2

∇
2
(

x
∂ψ

∂y

)
+

1
2

∇
2
(

y
∂ψ

∂x

)
+ xV (r)

∂ψ

∂y
− yV (r)

∂ψ

∂x
,

=
1
2

x∇
2 ∂ψ

∂y
− 1

2
x∇

2 ∂ψ

∂y
−∇x ·∇∂ψ

∂y
− 1

2
∂ψ

∂y
∇

2x

− 1
2

y∇
2 ∂ψ

∂x
+

1
2

y∇
2 ∂ψ

∂x
+∇y ·∇∂ψ

∂x
+

1
2

∂ψ

∂x
∇

2y

− xV (r)
∂ψ

∂y
− xψ

∂V
∂y

+ yV (r)
∂ψ

∂x
+ yψ

∂V
∂x

+ xV (r)
∂ψ

∂y
− yV (r)

∂ψ

∂x
,

=
∂

∂y
∂ψ

∂x
− ∂

∂x
∂ψ

∂y
+ yψ

∂V
∂x
− xψ

∂V
∂y

,

=yψ
∂V
∂x
− xψ

∂V
∂y

,

=⇒
[
L̂z, Ĥ

]
=y

∂V
∂x
− x

∂V
∂y

So,
[
L̂z, Ĥ

]
= 0 only when y∂V

∂x = x∂V
∂y , i.e., the potential must be rotationally

symmetric about the z-axis.

For the Pauli Hamiltonian (1.5), where A(r) 6= 0, Lz commutes with the Hamil-
tonian when the scalar potential satisfies the condition of rotational invariance
about the z-axis and the vector potential is of the form

A =
[
xα
(
x2 + y2,z

)
+ yβ

(
x2 + y2,z

)
,yα

(
x2 + y2,z

)
− xβ

(
x2 + y2,z

)
,γ
(
x2 + y2,z

)]
,

(1.22)
where α,β ,γ are arbitrary functions; a proof of this is given in Appendix A.

When
[
L̂z, Ĥ

]
= 0 is satisfied, we have,

d
dt
〈ψ | L̂z |ψ 〉= 0 =⇒ 〈ψ | L̂z |ψ 〉= m, (1.23)

where m is the angular momentum quantum number.
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1.1.2.3 Conservation of Energy

By considering the commutator

[
Ĥ, Ĥ

]
= 0, (1.24)

in the time-independent case, we obtain the conservation of energy directly,

d
dt
〈ψ | Ĥ |ψ 〉= 0 =⇒

〈
Ĥ
〉
= E. (1.25)

1.1.3 The Many-Body Problem

Realistic quantum systems consist of many electrons. If we consider the case
of N particles that do not interact with one another and where the confining
potential can be written as V (r1,r2 . . .rN) =∑

N
i=1 v(ri), the Schrödinger equation

can be separated into N single-particle Schrödinger equations of the form of
Eq. (1.3), with the solution given by [1, 10]

ψ (r1,r2 . . .rN) = Π
N
i=1φ (ri) . (1.26)

If each coordinate of this wavefunction is determined by p parameters, the en-
tire wavefunction therefore requires N p3 parameters to be determined, with
the particle density requiring only p3 parameters. The value chosen for p re-
flects the desired accuracy for the wavefunction and density.

In reality however, the N electrons do interact with one another. Therefore, in
order to write the Schrödinger equation for systems of more than one electron,
we must introduce into the Hamiltonian a term, U

(
ri,r j

)
, that accounts for the

pairwise interaction between each of the electrons. This yields the following
form for the Schrödinger equation,

(
T̂ +V̂ +Û

)
ψ (r1,r2, . . . ,rN) = Eψ (r1,r2, . . . ,rN) , (1.27)

where T̂ is the operator for the kinetic energy, V̂ is the operator for the external
potential energy, and Û is the operator for the pairwise electron interaction
energy. Typically, the electrons interact via a Coulomb potential, such that

Û = ∑
i< j

U
(
ri,r j

)
= ∑

i< j

1∣∣ri− r j
∣∣ . (1.28)

This term is non-separable, which means that we cannot write the Schrödinger
equation as N single-particle equations, and must instead solve it directly.
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Hence, the presence of many-body interactions result in the Schrödinger equa-
tion being considerably more difficult to solve as N increases.

In addition, the interaction between electrons results in many-body wavefunc-
tions increasing considerably in complexity as the number of particles in the
system increases. For a system of N interacting particles, the number of param-
eters, M, required to determine the many-body wavefunction is given by [13]

M = p3N , (1.29)

with p the number of parameters required for each coordinate. The parame-
ter p could, for example, represent the number of meshpoints each coordinate
is sampled over. Taking a modest value of 20 meshpoints leads to the result
that the wavefunction for a ten-particle system requires 1034 times more stor-
age space than storing ten single-particle wavefunctions, and 1035 times more
storage space than storing the density [3, 13].

1.2 Density Functional Theory

Density Functional Theory is a highly successful approach to the many-body
problem in quantum mechanics [14]. The approach of DFT is to promote the
density, ρ (r), from being merely one of many observables to taking a central
role when modelling many-body systems in the ground state [3]. DFT states
that the mapping between the wavefunction and the particle density is one–
to–one and, therefore, the ground state wavefunction and all ground state ex-
pectation values can be written as functionals of the density. As discussed in
Sec. 1.1.3, the explicit use of the density rather than the wavefunction serves to
reduces the complexity of many-body problems enormously.

In addition, the Kohn-Sham framework of DFT provides a reformulation of
the many-body problem, that is in principle exact. The Kohn-Sham scheme re-
places the system of N interacting particles with a system of N non-interacting
particles confined by an effective potential, that incorporates the interactions
present in the many-body system implicitly. The Kohn-Sham system yields
the same density as the many-body system. Hence the density of an N-particle
interacting system can be obtained by solving N single-particle Schrödinger
equations. Despite the fact that approximations are required when implement-
ing DFT practically, the use of DFT has achieved results far beyond what could
be obtained by direct solution of the many-body Schrödinger equation.
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1.2.1 Hohenberg-Kohn Theorem

The theoretical justification for the prominance of the density in DFT is due to
the Hohenberg-Kohn theorem [15]. In 1964, Hohenberg and Kohn proved that
a one-to-one map exists between the ground state wavefunction, ψ , and the
ground state density, ρ (r), and hence the density, despite being a function of
three variables rather than 3N variables, contains exactly the same information
as the ground state many body wavefunction [3].

The Hohenberg-Kohn theorem was originally proved by showing that two
wavefunctions cannot produce the same density by reductio ad absurdum. Con-
sider two distinct external potentials V1 (r) ,V2 (r) (distinct meaning that they
do not merely vary by the addition of a constant) and their corresponding
non-degenerate ground state wavefunctions ψ1 (r) ,ψ2 (r). We will assume that
they both give rise to the same density ρ (r). The Rayleigh-Ritz variational
principle [16] tells us that the ground state energy is lowest in energy, i.e., for
any arbitrary wavefunction ψ ,

E0 6 〈ψ | Ĥ |ψ 〉 , (1.30)

where E0 is the ground state energy and the equality applies when ψ is the
ground state wavefunction. Hence, for the Hamiltonian Ĥ1, which differs from
Ĥ2 only by its potential term [15],

E1 = 〈ψ1 | Ĥ1 |ψ1 〉< 〈ψ2 | Ĥ1 |ψ2 〉= 〈ψ2 | Ĥ2 +V1−V2 |ψ2 〉 . (1.31)

Expanding the final term, with the definition 〈V 〉=
∫

V (r)ρ (r)dr, gives

E1 < 〈ψ2 | Ĥ2 |ψ2 〉+ 〈ψ2 |V1−V2 |ψ2 〉 ,

E1 < E2 +
∫

[V1 (r)−V2 (r)]ρ (r)dr. (1.32)

If we now consider the ground state of Ĥ2,

E2 = 〈ψ2 | Ĥ2 |ψ2 〉< 〈ψ1 | Ĥ2 |ψ1 〉= 〈ψ1 | Ĥ1 +V2−V1 |ψ1 〉 . (1.33)

Expanding the final term gives

E2 < 〈ψ1 | Ĥ1 |ψ1 〉+ 〈ψ1 |V2−V1 |ψ1 〉 ,

E2 < E1 +
∫

[V2 (r)−V1 (r)]ρ (r)dr. (1.34)
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If we add equations (1.32) and (1.34), we produce the inequality

E1 +E2 < E1 +E2. (1.35)

Therefore, two wavefunctions cannot give rise to the same density. We have
thus proven that the mapping between wavefunctions and densities is injec-
tive, i.e., ρ1 = ρ2 =⇒ ψ1 = ψ2.

In order to establish that the map between wavefunctions and densities is
one-to-one, or bijective, we must also establish that the mapping is surjective,
that is, whether all physical densities arise from an antisymmetric, N-electron
wavefunction, i.e., whether they can be written in the form of Eq. (1.18). This
issue is known as the N-representability problem. This problem has been suc-
cessfully resolved: it was first discussed by Coleman [17] for fermionic den-
sity matrices, and then was addressed for arbitrary N-electron densities by
Gilbert [18] and Harriman [19]. Harriman begins his proof by considering den-
sities that are positive semidefinite and normalised to the number of particles
as in Eq. (1.19) [19]. We show here the proof for N particles in one dimension,
the extension to three dimensions is treated in Refs. [2, 4]. The proof begins by
constructing a phase function

f (x) =
2π

N

∫ x

−∞

ρ
(
x′
)

dx′ (1.36)

such that f (−∞) = 0 and f (∞) = 2π . The phase function also has the property

d f
dx

=
2π

N
ρ (x) (1.37)

Thus, we construct the orbitals

φk (x) =
[

ρ (x)
N

] 1
2

eik f (x). (1.38)

We now show that these orbitals are orthonormal,∫
∞

−∞

φ
∗
k′ (x)φk (x)dx =

1
N

∫
∞

−∞

ρ (x)ei(k−k′) f (x)dx,

=
1

2π

∫
∞

−∞

ei(k−k′) f (x)d f
dx

dx,

=
1

2π

∫ 2π

0
ei(k−k′) f d f ,

= δk,k′ (1.39)

as is required for non-degenerate eigenstates of the Hamiltonian [2, 19]. We
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can also show that these orbitals form a complete set [2]

∑
k

φ
∗
k
(
x′
)

φk (x) =

√
ρ (x)ρ (x′)

N ∑
k

eik[ f (x)− f (x′)],

=

√
ρ (x)ρ (x′)

N
δ
(

f (x)− f
(
x′
))

,

=

√
ρ (x)ρ (x′)

N
δ
(
x− x′

)(d f
dx

)−1

,

= δ
(
x− x′

)
, (1.40)

making use of a series expansion of the Dirac delta function [20].

We can construct an antisymmetric, N-particle wavefunction from the Slater
determinant of these orbitals [2]

Φk1...kN =
1√
N

det(φk1 . . .φkN ) , (1.41)

where the density is given by

ρ (x) =
N

∑
i=1
|φki (x)|

2 ,

=
ρ (x)

N
N,

= ρ (x) . (1.42)

We have therefore constructed an antisymmetric, N-particle wavefunction that
yields a given density, resolving the N-representability problem.

In addition to a unique map between wavefunctions and densities, the Hohenberg-
Kohn theorem also states that the map between the external potential (modulo
a constant) and the wavefunction is also unique. The forward map is demon-
strated by Eq. (1.27). In order to prove the reverse map, we consider two po-
tentials, V1 (r), V2 (r), that give rise to the same ground state wavefunction ψ .
From Eq. (1.27)

(
Ĥ1− Ĥ2

)
ψ = (E1−E2)ψ

(
Ĥ1− Ĥ2

)
ψ = [V1 (r)−V2 (r)]ψ (1.43)

=⇒ [V1 (r)−V2 (r)]ψ = (E1−E2)ψ (1.44)

and hence the difference between the potentials V1 (r)−V2 (r) must be a con-
stant.

By analogy to the case for wavefunctions and densities, the v-representability
problem (more precisely the interacting v-representability problem – since U 6= 0)
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asks whether or not all physical, ground-state densities arise from a potential.
In this case there is no clear construction for a potential, and there are known
counterexamples [4, 21, 22].

Hohenberg and Kohn [15] have thus proved the following

V (r)
 ψ (r,r2, . . . ,rN)
 ρ (r) , (1.45)

demonstrating the existence of a unique map between the density and the po-
tential. The Hohenberg-Kohn theorem therefore states that the potential, the
ground state wavefunction, and hence ground state expectation values of any
observable, are all functionals of the ground state density. In particular, the
ground state energy can be written as

E0 = E [ρ0] = 〈ψ [ρ0] | Ĥ |ψ [ρ0]〉 , (1.46)

which, given that the Hamiltonian can be decomposed as Ĥ = T̂ +Û + V̂ , can
be written

E [ρ0] = 〈ψ [ρ0] | T̂ +Û |ψ [ρ0]〉+
∫

V (r)ρ0 (r)dr = F [ρ0]+V [ρ0] (1.47)

where F = T +U is a universal functional (in that it does not depend on the
external potential), for a given U ; whereas V is specified by the system.

This energy is subject to the variational principle,

E [ρ0]6 E [ρ] . (1.48)

Thus, after specifying a system, minimising the energy with respect to ρ (r)
yields the ground state density ρ0 (r) and hence the ground state energy E0 =

E [ρ0]. Hence, an important implication of the Hohenberg-Kohn theorem is that
the ground state density is that which minimises the energy. This statement is
sometimes known as the second Hohenberg-Kohn theorem.

However, in practice, minimisation of the functional E [ρ] is itself a difficult
problem, particularly since the Hohenberg-Kohn theorem does not provide
any indication about the form of the functional E [ρ]. The work of Kohn and
Sham resolved this difficulty, and set out the approach widely implemented
for practical DFT applications.
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1.2.2 Kohn-Sham Equations

A major problem in performing the minimisation of the energy is that the form
of the universal functional, F [ρ], in Eq. (1.47) is not known. In order to approx-
imate it effectively, Kohn and Sham decomposed it into three parts: the kinetic
energy of non-interacting particles of density ρ (r), Ts, the Hartree energy, UH ,
which is the classical electrostatic energy of the charge distribution ρ (r) inter-
acting with itself, and the remainder, which is called the exchange-correlation
energy, Exc [ρ]. We thus rewrite the energy functional as

E [ρ] = F [ρ]+V [ρ] = Ts [ρ]+UH [ρ]+V [ρ]+Exc [ρ] (1.49)

where the exchange-correlation energy contains all of the many-body aspects
of the system. The first three terms of the right hand side of Eq. (1.49) are
known, but Exc [ρ] is an unknown functional of ρ .

Subject to the condition of particle conservation in Eq. (1.19), we minimise the
energy in Eq. (1.49) by taking functional derivatives, which gives

δE [ρ]

δρ (r)
=

δTs [ρ]

δρ (r)
+VH (r)+V (r)+Vxc (r) = 0. (1.50)

Consider now Eq. (1.50) for a system of non-interacting particles, i.e., no Hartree
or exchange-correlation terms,

δEs [ρs]

δρ (r)
=

δTs [ρs]

δρ (r)
+Vs (r) = 0. (1.51)

By choosing Vs (r) =VH (r)+V (r)+Vxc (r), we find that ρs (r) = ρ (r). Therefore,
we see that we can calculate the ground state density, ρ (r), of the interacting
N-particle system in an external potential V (r) by solving a system of N non-
interacting particles in a potential Vs (r). The Schrödinger equation in this case
is

N

∑
i=1

[
−1

2
∇

2 +Vs (r)
]

φi (r) = εiφi (r) , (1.52)

which yields single-particle orbitals, φi (r), that reproduce the density of the
interacting system, as

ρ (r) =
N

∑
i=1
|φi (r)|2 , (1.53)

where ∑
N
i=1 εi is the energy of the Kohn-Sham system. Eqs. (1.52) and (1.53)

are known as the Kohn-Sham equations. Solving these equations yields the
ground state density that satisfies the minimisation problem for the ground
state energy. The Kohn-Sham scheme has thus replaced the interacting N-

29



Chapter 1 Introduction

particle system with a system of N non-interacting particles. We note that,
as discussed in Sec. 1.1.3, this is a considerably easier problem to solve.

This approach is in principle exact, however, the exchange-correlation energy
is an unknown functional and hence must be approximated. Fortunately Exc [ρ]

is sufficiently small compared to Ts [ρ] and UH [ρ] that it is possible to approx-
imate Exc [ρ] with only a small fractional error in E. However, the impor-
tance of the exchange-correlation term to DFT should not be underestimated.
Typical approximations used for Exc [ρ] are the local density approximation
(LDA) [23, 24], generalised gradient approximations (GGA) [25–27], and meta-
GGAs [28]. Although all of these approximations have limitations, DFT in the
Kohn-Sham scheme has had considerable success in ground-state electronic
structure calculations [29], and has even been applied to biological systems [30]
and the study of exoplanets [31].

Following this success many extensions to DFT have been developed that ex-
tend the applicability of the theory to systems subject to different Hamiltoni-
ans. Such extensions include spin densities [32–34], relativistic effects [35, 36]
and time-dependence [37, 38] as well as magnetic fields, which we consider
next.

1.3 Current Density Functional Theory

In this thesis, we will study systems subject to external magnetic fields. We
represent the magnetic field in the Hamiltonian by the vector potential, giv-
ing the Pauli Hamiltonian, Eq. (1.5). As a consequence of this vector potential,
the wavefunction and all quantum observables will be a functional of another
variable in addition to the particle density. Current Density Functional The-
ory (CDFT) is the extension of DFT that is motivated by the desire to model
systems subject to external magnetic fields. Vignale and Rasolt, when deriving
CDFT in 1987 [39, 40], showed that this additional basic variable is the param-
agnetic current density, given by [4]

jp (r) =
1
2i

N

∑
j=1

∫ (
ψ
∗
∇ jψ−ψ∇ jψ

∗)dr2 . . .drN . (1.54)

Vignale and Rasolt then proved the basic theorems of DFT when magnetic
fields are present, beginning with the Hohenberg-Kohn theorem.
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1.3.1 Hohenberg-Kohn Theorem for CDFT

Vignale and Rasolt showed that a Hohenberg-Kohn type theorem also exists
for systems subject to magnetic fields [39]. Specifically, they proved that there
is a unique map between the wavefunction and, when taken together, the par-
ticle density and the paramagnetic current density. In the spirit of the original
proof of the Hohenberg-Kohn theorem for DFT, Vignale and Rasolt proceed
by supposing that there are two sets of potentials V1 (r), A1 (r) and V2 (r), A2 (r)
that give rise to the same ground state expectation values of the particle den-
sity, ρ (r), and paramagnetic current density, jp (r), and then proving a contra-
diction.

We let ψ1 (r1,r2 . . .rN) and ψ2 (r1,r2 . . .rN) be the non-degenerate ground states
corresponding to the two sets of potentials, with Hamiltonians Ĥ1, Ĥ2 and
ground state energies E1 and E2 respectively. Again, we apply the variational
principle to Ĥ1 and prove the inequality

E1 = 〈ψ1 | Ĥ1 |ψ1 〉< 〈ψ2 | Ĥ1 |ψ2 〉=E2 +
∫

ρ (r) [V1 (r)−V2 (r)]d3r

+
1
c

∫
jp (r) · [A1 (r)−A2 (r)]d3r

+
1

2c2

∫
ρ (r)

[
A2

1 (r)−A2
2 (r)

]
d3r. (1.55)

By applying the variational principle to Ĥ2, we generate the following inequal-
ity

E2 = 〈ψ2 | Ĥ2 |ψ2 〉< 〈ψ1 | Ĥ2 |ψ1 〉=E1 +
∫

ρ (r) [V2 (r)−V1 (r)]d3r

+
1
c

∫
jp (r) · [A2 (r)−A1 (r)]d3r

+
1

2c2

∫
ρ (r)

[
A2

2 (r)−A2
1 (r)

]
d3r. (1.56)

Adding together equations (1.55) and (1.56) gives the contradiction

E1 +E2 < E1 +E2, (1.57)

which proves that two sets of potentials V1 (r), A1 (r) and V2 (r), A2 (r) that give
rise to two different ground states ψ1 (r1,r2 . . .rN) and ψ2 (r1,r2 . . .rN) cannot
give rise to the same set of densities ρ (r), jp (r) [39]. We will refer to this theo-
rem as the CDFT-HK theorem.
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1.3.2 The Non-Uniqueness Problem

Having proved that there is a unique map between the densities and the wave-
function, Vignale and Rasolt supposed that this proof also extended to the po-
tentials, as is proved for standard DFT. Capelle and Vignale [41] showed that
a set of potentials V (r), A(r) correspond to at most one wavefunction, deter-
mined by solution of the Schrödinger equation, but that it is possible to find
different scalar and vector potentials that yield the same wavefunction (and
hence the same particle and paramagnetic current densities) and thus the map
from potentials to wavefunction is many-to-one.

The proof of this proceeds by considering a condition for which two differ-
ent sets of potentials, {V (r) ,A(r)} and {V (r)+∆V (r) ,A(r)+∆A(r)}, yield the
same ground-state wavefunction ψ0. A necessary condition for this is for ψ0 to
satisfy the equation

〈ψ0 |∆Ĥ |ψ0 〉= ∆E,∫ {
ρ0 (r)∆V (r)+

1
c

jp0 (r)∆A(r)+
1

2c2 ρ0 (r)∆

[
A(r)2

]}
dr = ∆E, (1.58)

where ρ0 (r) and jp0 (r) arise from ψ0. Particular solutions of Eq. (1.58) can
be obtained by constructing linear combinations of the density operators that
are constants of motion, and thus have simultaneous eigenfunctions with Ĥ.
Provided that the energy difference ∆E satisfies

∆E < 〈ψ1 | Ĥ |ψ1 〉−〈ψ0 | Ĥ |ψ0 〉 , (1.59)

for the ground state and first excited state of Ĥ, then ψ0 is the ground-state
eigenfunction of both Ĥ and Ĥ +∆Ĥ.

As was the case for standard DFT in Sec. 1.2.1, Eq. (1.58) is satisfied for ∆V =

const, ∆A = 0. Inspection of Eq. (1.58) reveals that this case corresponds to
the constant of motion N̂ =

∫
ρ (r)dr. A non-trivial example of a constant of

motion that satisfies Eq. (1.58) is L̂z =
∫
[r× jp (r)]z dr. In this case, comparing

coefficients with Eq. (1.58) gives,

∆A =
∆B
2

rθ̂ , ∆V =− A2

2c2 , (1.60)

with ∆B = const.

This is known as the non-uniqueness problem of potentials, and is present in
spin DFT and DFT for superconducting systems as well as CDFT [41]. This
problem occurs for both the many-body and Kohn-Sham systems, and hence it
does not follow that the densities ρ (r), jp (r) can be used to construct a Kohn-
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Sham scheme for systems subject to vector potentials. This is one of a number
of open questions with regards to CDFT, see for example Refs. [42–47].

Hence, the mappings between the wavefunction, basic potentials and basic
densities in CDFT are

{V1 (r) ,A1 (r)}↘

{V2 (r) ,A2 (r)} −→ ψ (r,r2, . . . ,rN)

{

ρ (r) , jp (r)
}

. . .

{Vn (r) ,An (r)}↗

1.4 Metric Spaces

The concept of a metric was first introduced by Maurice Frechét in 1906 [48].
Frechét’s motivation was to generalise theorems of functional calculus from
cases such as real numbers and functions of one real variable to more abstract
sets. Frechét first considered the notion of continuity, for which a definition
of neighbouring elements of a set, and of the limit of a sequence of elements
was required. This presented a difficulty, since these concepts tended to be
defined ad hoc for the particular set being considered. Frechét noted that many
of the conventional definitions of a limit can be derived by considering, for
each pair of elements A, B in the set, a positive semidefinite number (A,B)

with properties like that of a distance between two points, such that (A,B) = 0
for A = B, i.e., the distance between identical points is zero, and (A,B)→ 0 as
A→ B [48]. This map was called a metric by Felix Hausdorff [49].

By considering continuity, we can gain insight into the concept of the distance
between elements for a range of sets. We note that a real-valued function, f , of
one real variable is continuous at a point a if given any ε > 0, there exists δ > 0
such that | f (x)− f (a)| < ε for any x such that |x−a| < δ . In other words, the
function is continuous if the distance between f (x) and f (a) can be made as
small as desired with an appropriate choice of the distance between x and a. If
we now consider f to be a function of two real variables, then our definition of
continuity still applies, but we must modify the definition of distance appro-
priately. A real-valued function, f , of two real variables is continuous at a point
(a,b) if given any ε > 0, there exists δ > 0 such that | f (x)− f (a)| < ε for any

x such that
√[

(x−a)2 +(y−b)2
]
< δ , i.e., the Pythagorean distance between

two points in the plane. From this, it can easily be seen how the definition
of continuity can be extended to a real-valued function of three real variables,
and then to N real variables [50].
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To consider the definition of continuity for a general map f : X → Y , we must
define the distance between any two elements of X and Y . Since ε and δ are
real numbers, this distance must also be real. We present the properties of the
distance next.

1.4.1 Axioms of Metric Spaces

A metric space consists of a non-empty set X and a metric, or distance function,
D and is hence written (X ,D). The set X forms the “points” of the space whilst
the metric is a map D : X ×X → R used in order to assign a distance between
any two elements of X . In order to describe distances between the elements in
the space, the metric must satisfy the following axioms for all x,y,z∈ X [50, 51]:

D(x,y)> 0 and D(x,y) = 0 ⇐⇒ x = y, (1.61)

D(x,y) = D(y,x), (1.62)

D(x,y)6 D(x,z)+D(z,y). (1.63)

These axioms are also known as positivity, symmetry and the triangle inequal-
ity respectively. From Eq. (1.63), we also have the reverse triangle inequality
[50, 51]

D(x,y)> |D(x,z)−D(y,z)| . (1.64)

1.4.2 Examples of Metric Spaces

1.4.2.1 Euclidean Metric

The Euclidean metric is the distance between points in Euclidean space. This
metric is intuitively familiar as it is the distance between two points that one
would measure with a ruler. In two and three dimensions, the Euclidean met-
ric is simply Pythagoras’ theorem. In one dimension, this metric reduces to the
absolute value of the difference between two points

d2 (x,y) =
[
(x− y)2

] 1
2
= |x− y| . (1.65)

For points x,y in N-dimensional space, the Euclidean metric is defined as

d2 (x,y) =

[
N

∑
i=1

(xi− yi)
2

] 1
2

. (1.66)

We will now prove that this metric satisfies the metric axioms (1.61)–(1.63).
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The axioms (1.61) and (1.62) hold because (xi− yi) is squared, removing the
negative and non-symmetric terms. For the axiom (1.63)

[
N

∑
i=1

(xi− yi)
2

] 1
2

6

[
N

∑
i=1

(xi− zi)
2

] 1
2

+

[
N

∑
i=1

(zi− yi)
2

] 1
2

. (1.67)

By writing ri = xi− zi and si = zi− yi we can write the equivalent inequality

[
N

∑
i=1

(ri + si)
2

] 1
2

6

[
N

∑
i=1

r2
i

] 1
2

+

[
N

∑
i=1

s2
i

] 1
2

. (1.68)

If we square both sides,

N

∑
i=1

r2
i +

N

∑
i=1

s2
i +2

N

∑
i=1

risi 6
N

∑
i=1

r2
i +

N

∑
i=1

s2
i +2

[
N

∑
i=1

r2
i

] 1
2
[

N

∑
i=1

s2
i

] 1
2

,

N

∑
i=1

risi 6

[
N

∑
i=1

r2
i

] 1
2
[

N

∑
i=1

s2
i

] 1
2

,[
N

∑
i=1

risi

]2

6

[
N

∑
i=1

r2
i

][
N

∑
i=1

s2
i

]
. (1.69)

This is Cauchy’s inequality [50]. Cauchy’s inequality is proved by expanding
the left hand side using Lagrange’s identity [52][

N

∑
i=1

risi

]2

=

[
N

∑
i=1

r2
i

][
N

∑
i=1

s2
i

]
− ∑

16i< j6N

(
ris j− r jsi

)2
,

∑
16i< j6N

(
ris j− r jsi

)2
=

[
N

∑
i=1

r2
i

][
N

∑
i=1

s2
i

]
−

[
N

∑
i=1

risi

]2

. (1.70)

The left hand side of Eq. (1.70) is a sum of squares and thus always non-
negative, so [

N

∑
i=1

r2
i

][
N

∑
i=1

s2
i

]
−

[
N

∑
i=1

risi

]2

> 0,[
N

∑
i=1

r2
i

][
N

∑
i=1

s2
i

]
>

[
N

∑
i=1

risi

]2

. (1.71)
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1.4.2.2 Discrete Metric

The discrete metric can be defined on any non-empty set as

d0 (x,y) =

0, x = y

1, x 6= y
(1.72)

The metric (1.72) clearly satisfies axioms (1.61) and (1.62). For the triangle in-
equality, (1.63), consider

d0 (x,y)6 d0 (x,z)+d0 (z,y) (1.73)

The left hand side of this equation must equal 0 or 1, and the right hand side
must be equal to 0,1 or 2. Thus, the only way in which the inequality is violated
is in the case that d0 (x,y) = 1 and d0 (x,z)+d0 (z,y) = 0. For the right hand side
to equal 0, x = z and z = y. Hence, x = y and d0 (x,y) = 0, meaning this situation
cannot happen and axiom (1.63) holds.

1.5 Vector Spaces

In quantum mechanics, the state of the quantum system, given by the wave-
function, is represented by a vector in a complex vector space. Vector spaces
(also known as linear spaces) are another type of mathematical space, moti-
vated by generalising the properties of vectors in three-dimensional Euclidean
space to more abstract sets. Certain vector spaces possess considerable addi-
tional structure, which we will detail in this section.

A vector space is a set V of objects called vectors over a field F, which is com-
posed of elements called scalars and could be either the real numbers, R, or
complex numbers, C. A vector space is equipped with two laws: a law of com-
bination which associates two vectors u,v ∈ V with a third vector u+v ∈ V ,
and a scalar multiplication law which associates each vector v ∈V and a scalar
α ∈ F with another vector, αv ∈V [51, 53, 54].

These laws are subject to several axioms. For the vector addition law:

• The addition law is associative for all u,v,w∈V , i.e., u+(v+w)= (u+v)+
w

• There exists a null vector 0 such that v+0 = v for all v ∈V

• For all v ∈V there exists an inverse element −v such that v+(−v) = 0
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• The addition law is commutative, i.e. u+v = v+u

The scalar multiplication law must obey the following axioms for all u,v ∈ V

and α,β ∈ F:

α (u+v) = αu+αv, (1.74)

(α +β )v = αv+βv, (1.75)

α (βv) = (αβ )v, (1.76)

1v = v, (1.77)

0v = 0. (1.78)

We note here that, unlike for metric spaces as described in Sec. 1.4, the axioms
for vector spaces above place restrictions on the elements of the set V . As a
result, it is not possible to form a vector space from any desired set. Indeed,
although the set of all wavefunctions forms a vector space, the set of all densi-
ties does not form a vector space, since there are no inverse elements present
in the set.

1.5.1 Normed Vector Spaces

A norm on a vector space, V , is a function, ||.|| : V×V →R, that assigns a length
to each vector in the space. Although the concept of a norm had been hinted
at by various authors in the early 20th century, the norm was first indisputably
defined in 1922 by Hahn [55] and Banach [56].

The norm must satisfy the following axioms for all u,v ∈ V and α ∈ F [51, 53,
54]:

||v||> 0 and ||v||= 0 ⇐⇒ v = 0, (1.79)

||αv||= |α| ||v|| , (1.80)

||u+v||6 ||u||+ ||v|| . (1.81)

With a function satisfying these axioms, we have the normed vector space
(V, ||.||).

In all normed vector spaces, a metric is induced by the norm, resulting in a
metric space where the metric is defined by [51]

D(x,y) = ||x− y|| . (1.82)

We now show that the axioms of a metric are satisfied for any metric induced
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from equation (1.82). The axiom (1.61) is clearly satisfied for D(x,y) = ||x− y||
given the norm axiom (1.79). Axiom (1.62) is satisfied by considering

D(x,y) = ||x− y|| ,

= ||−(y− x)|| ,

= |−1| ||y− x|| ,

= ||y− x|| ,

= D(y,x).

Making use of the axiom (1.81), the triangle inequality is satisfied since

D(x,y) = ||x− y|| ,

= ||(x− z)+(z− y)|| ,

6 ||x− z||+ ||z− y|| ,

= D(x,z)+D(z,y).

1.5.2 Completeness and Banach Spaces

A metric space (X ,D) is complete if every Cauchy sequence in X converges to a
point in X . A sequence, (xn), in a metric space is a Cauchy sequence if, for ε > 0
there exists a natural number N such that D(xm,xn)< ε whenever m,n > N. For
a sequence in a metric space to converge to a point, x ∈ X , for any real number
ε > 0, there must exist a natural number N such that xn is contained in the
ball B(x,ε) whenever n > N. From these definitions it can be seen that any
convergent sequence in a metric space is a Cauchy sequence.

If a norm induces a complete metric on its vector space, it is known as a Banach
norm and the vector space is a Banach space [51].

1.5.3 Scalar Product Spaces

For vectors in three-dimensional Euclidean space, a useful concept is the dot
product, u ·v, which is a product of two vectors that returns a scalar. This scalar
represents the projection of the vector u onto v, i.e., the component of u in the
direction of v. If the dot product of two Euclidean vectors is zero, they must be
perpendicular to one another. Indeed, in Euclidean space, the dot product can
be used to determine the angle between two vectors. The scalar product is the
generalisation of the dot product to general vector spaces.

A scalar product space is a vector space that is also equipped with a scalar
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product (or inner product). A scalar product on the vector space V is a map
〈·, ·〉 : V ×V → F that satisfies the following axioms for all u,v,w ∈V and α,β ∈
F [53, 54]

〈v , v〉> 0 and 〈v , v〉= 0 ⇐⇒ v = 0, (1.83)

〈u , v〉= 〈v , u〉∗ , (1.84)

〈u , (αv+βw)〉= α 〈u , v〉+β 〈u , v〉 . (1.85)

where the ∗ denotes the complex conjugate when considering a complex scalar
field.

Returning to the motivating example of three-dimensional Euclidean space,
we note that the length of a vector is found from the square root of the scalar
product of the vector with itself, i.e., |v| =

√
v ·v. This relationship holds for

norms and scalar products in general vector spaces, allowing us to define a
norm on a scalar product space from [53]

||v||= 〈v , v〉
1
2 . (1.86)

It can clearly be seen that the function 〈v , v〉
1
2 obeys the norm axiom (1.79)

given the scalar product axiom (1.83). Axiom (1.80) of a norm is satisfied by
considering axiom (1.84) and axiom (1.85) of a scalar product,

||αv||2 =〈αv , αv〉 ,

=α
∗ 〈v , v〉α,

=α
∗
α 〈v , v〉 ,

= |α|2 〈v , v〉 ,

= |α|2 ||v||2 ,

=⇒ ||αv||= |α| ||v|| .

For the triangle inequality, we use the Schwarz inequality [53],

|〈u , v〉|6 〈u , u〉
1
2 〈v , v〉

1
2 , (1.87)

39



Chapter 1 Introduction

and consider the sum of two vectors,

〈u+v , u+v〉=〈u , u〉+ 〈v , v〉+ 〈u , v〉+ 〈v , u〉 ,

=〈u , u〉+ 〈v , v〉+ 〈u , v〉+ 〈u , v〉∗ ,

=〈u , u〉+ 〈v , v〉+2Re〈u , v〉,

6〈u , u〉+ 〈v , v〉+2 |〈u , v〉| ,

6〈u , u〉+ 〈v , v〉+2〈u , u〉
1
2 〈v , v〉

1
2 ,

=
(
〈u , u〉

1
2 + 〈v , v〉

1
2

)2
,

=⇒ 〈u+v , u+v〉
1
2 6〈u , u〉

1
2 + 〈v , v〉

1
2 ,

||u+v||6 ||u||+ ||v|| .

Therefore, we can state that all scalar product spaces are normed vector spaces,
with the norm induced by the scalar product.

Two vectors u,v in a vector space are said to be orthogonal if their scalar product
is zero, and normalised if the inner product of the vector with itself is equal to
one. A set of vectors, {e1 . . .eN}, for which the following holds,

〈
ei , e j

〉
= δi j, (1.88)

for all i, j = 1 . . .N form an orthonormal basis of the vector space [53]. An or-
thonormal basis is extremely useful for a vector space, because, provided the
basis spans the entire vector space, any vector can be written in terms of the
basis vectors as

v =
N

∑
i=1

viei. (1.89)

1.6 Spaces of Quantum Mechanical Functions

1.6.1 Hilbert Spaces

The mathematical framework used to describe quantum mechanics states that
all wavefunctions are represented by vectors in a Hilbert space. A Hilbert
space is a scalar product space where the scalar product is complete. If we
recall that scalar products induce norms, and norms induce metrics, we can
use the same definition of completeness as for Banach spaces in Sec. 1.5.2.

The scalar product of wavefunctions is defined as

〈φ | ψ〉=
∫

φ
∗ (r)ψ (r)dr, (1.90)
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which satisfies the axioms (1.83)–(1.85). In the language of Hilbert spaces, an
observable is represented by a Hermitian operator acting on the Hilbert space
of all states [53]. An operator is a map from H onto itself; Ô : H →H . This
operator is linear, which means that

Ô(αψ +βφ) = αÔψ +β Ôφ (1.91)

for all complex numbers α,β and all ψ,φ ∈H [53].

1.6.2 Lp Spaces

One class of vector spaces that is of particular importance to this thesis are the
Lp spaces. These spaces consist of functions, f , for which∫

| f (x)|p dx < ∞, (1.92)

applies. The Lp spaces are Banach spaces, with the usual norm given by

|| f (x)||p =
[∫
| f (x)|p dx

] 1
p

. (1.93)

This norm is known as the p-norm. Inspection of Eq. (1.19) shows that the
space of all densities is an Lp space, with p = 1.

1.6.3 Metric Spaces for Quantum Mechanical Functions

Longpré and Kreinovich [57] developed a metric for the wavefunction in order
to consider a question raised by Pauli – to what extent can we determine the
wavefunction from the measurements? Longpré and Kreinovich noted that
for every state ψ , and real number α , the probability of obtaining the measure-
ment result ζ is the same for eiαψ as it is for ψ , i.e., the constant global phase
factor eiα is physically trivial. Thus, they stated that a quantum state is asso-
ciated with an equivalence class of states in the Hilbert space, with the class
characterised by wavefunctions of the same magnitude but different global
phase factors, and hence that the actual space of possible quantum states is the
projective Hilbert space constructed from the union of the equivalence classes.
Given this, Longpré and Kreinovich noted that the standard Hilbert metric is
not a sufficient way of determining the distance between two physical states
as it discriminates between wavefunctions ψ and eiαψ that describe the same
physical state. Longpré and Kreinovich thus chose to define a metric between
a wavefunction ψ and all wavefunctions representing the physical state ψ ′ [57].
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Figure 1.1: Plots of density distance against wavefunction distance for (a)
Helium-like atoms, and (b) Hooke’s Atom.

They then used this metric to give a definition for distinguishability of states.

The groundwork for the metric space approach to quantum mechanics was
laid in the work of D’Amico et al. in 2011 [58]. Some of their results, pre-
viously published in Ref. [58], have been reproduced in Fig. 1.1. This work
introduced the Longpré and Kreinovich metric for wavefunctions along with
a metric for particle densities, and observed that both of these metric spaces
could be characterised by an “onion-shell” geometry that consists of concen-
tric spheres in the metric space. When focusing on ground states, it was shown
that the Hohenberg-Kohn mapping between wavefunctions and particle den-
sities is a mapping between the associated metric spaces. By studying model
systems, additional properties of this mapping were discovered, namely that
it is monotonic and almost linear, with nearby wavefunctions mapped onto
nearby densities, and distant wavefunctions mapped onto distant densities.
D’Amico et al. studied three model systems of two electrons, and found that
the relationship between the metrics for wavefunctions and particle densities
could be almost superimposed onto one another, which suggested a univer-
sality of this relationship for different systems. In their studies of the Hubbard
model [59, 60] (not shown), it was observed that different values of the on-
site interaction parameter made little difference to the relationship between
the wavefunction and particle density metrics, but studies involving different
numbers of particles resulted in different curves for this relationship. These
findings were complemented by analysis of a different model system by Nagy
and Aldazabal [61].
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Introducing the Metric Space
Approach to Quantum Mechanics

The axioms of a metric (1.61)–(1.63) are sufficiently general to allow a num-
ber of valid metrics to be introduced for any set. Indeed, the discrete metric
(1.72) is a metric for any non-empty set. The question that immediately arises
therefore is: which choice of metric is best for the set under consideration?

The metric space approach to quantum mechanics provides an answer to this
question for sets of quantum mechanical functions subject to conservation laws.
The metric space approach involves deriving a metric that applies to the set of
functions subject to the conservation law from the law itself. Thus, we ensure
that the proposed metric stems from core characteristics of the systems anal-
ysed and contains the related physics, and is therefore a “natural” metric for
the particular set of functions.

With the metric space approach to quantum mechanics, we have both a unified
theoretical grounding for the metrics for wavefunctions and particle densities
introduced in Refs. [57, 58], as well as a method to derive new metrics, which
we apply to paramagnetic current densities and scalar potentials.

We published the general approach for deriving metrics presented in this chap-
ter in Ref. [62], along with the paramagnetic current density metric. The dis-
cussions of gauge theory with regard to the metrics was published in Ref. [63],
and the metric for scalar potentials is ongoing research [64].
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2.1 Derivation of Metric Spaces from Conservation

Laws

In quantum mechanics, many conservation laws take the form∫
| f (x)|p dx = c, (2.1)

for 0 < c < ∞. For each value of 16 p < ∞, the entire set of functions that satisfy
Eq. (2.1) belong to the Lp vector space, where the standard norm is the p-norm
[51]

|| f (x)||p =
[∫
| f (x)|p dx

] 1
p

. (2.2)

From any norm a metric can be introduced in a standard way via Eq. (1.82) so
that with p-norms we get

D f ( f1, f2) =

[∫
| f1 (x)− f2 (x)|p dx

] 1
p

. (2.3)

However before assuming this metric for the physical functions related to the
conservation laws, an important consideration must be made: Eq. (2.3) has
been derived assuming the ensemble { f} to be a vector space; this is in fact
necessary to introduce a norm. If we want to retain the metric (2.3), but re-
strict it to the ensemble of physical functions satisfying Eq. (2.1), which does
not necessarily form a vector space, we must show that Eq. (2.3) is a metric for
this restricted function set. This can be done using the general theory of metric
spaces: given a metric space (X ,D) and S, a non empty subset of X , (S,D) is it-
self a metric space with the metric D inherited from (X ,D). The metric axioms
(1.61)–(1.63) automatically hold for (S,D) because they hold for (X ,D) [50, 51].
Hence, we have a metric for the functions of interest, as their sets are non-
empty subsets of the respective Lp sets.

This procedure can be extended to conservation laws of the form

n

∑
i=1
| fi|p = c, (2.4)

as the lp vector spaces for sums are directly analogous to the Lp spaces for
integrals [51]. In this case the induced metric will be

D f ( f1, f2) =

[
n

∑
i=1
| f1i− f2i|

p

] 1
p

. (2.5)
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Thus, we have a general procedure to construct a metric for any conservation
law that is, or can be cast, in the form of Eq. (2.1) or Eq. (2.4).

Eqs. (2.3) and (2.5) are then the metrics that directly descend from the conserva-
tion laws (2.1) and (2.4) respectively. Conversely any conservation law which
can be recast as Eq. (2.1) (for example conservation of quantum numbers) or
Eq. (2.4) can be interpreted as inducing a metric on the appropriate, physically
relevant, subset of Lp or lp functions. This provides a general procedure to
derive “natural” metrics from physical conservation laws. As they descend
directly from conservation laws, these “natural” metrics are non-trivial and
contain the relevant physics.

2.2 Geometry of the Metric Spaces

Now that we have derived “natural” metrics from conservation laws, we can
examine the properties of these metrics. By considering spheres in the metric
spaces, the geometry of the space can be determined. A sphere in a metric
space (X ,D) is the set of elements in the space that satisfy the condition

S(x0,r) = {x ∈ X : D(x,x0) = r} , (2.6)

where x0 is the centre and r is the radius of the sphere [51]. In order to con-
struct our metric space geometry, we will consider the centre of a sphere to be
the zero function, i.e., f (0)(x)≡ 0. It can be seen that when we consider the dis-
tance between the zero function and any other element in the metric space, we
recover the p-norm, Eq. (2.2), defined from the conservation law, and therefore

the distance of any function from the zero function is one of a set of values c
1
p
i .

A sphere of radius c
1
p
i consists of all the functions which are conserved to the

same value ci. From this it can be seen that the conservation law has induced

a geometry consisting of a series of concentric spheres with radii c
1
p
i , and cen-

tred at the zero function, forming an “onion-shell” geometry [58, 62]. This is
pictorially shown in Fig. 2.1.

With the onion geometry in mind, we can find the extreme values that the met-
ric (2.3) can take. When considering points on different spheres in the onion
geometry, the minimum value of the metric can be found from the reverse tri-
angle inequality, Eq. (1.64),

D f ( fA, fB)>
∣∣∣D f ( fA, f (0))−D f ( fB, f (0))

∣∣∣= ∣∣∣∣c 1
p
A − c

1
p
B

∣∣∣∣ . (2.7)
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3

Figure 2.1: Sketch of the “onion-shell” geometry, consisting of a series of con-

centric spheres. The first three spheres are shown, with radii c
1
p
i , i = 1,2,3.

This value is the difference in the radii of the two spheres representing fA and
fB in the geometry. When considering the same sphere, we obtain an absolute
minimum value of zero, as required by axiom (1.61). The maximum value
of the metric for functions fA and fB is found from the triangle inequality,
Eq. (1.63),

D f ( fA, fB)6 D f ( fA, f (0))+D f ( f (0), fB) = c
1
p
A + c

1
p
B . (2.8)

On a single sphere in the geometry this reduces to 2c
1
p , which is the diameter

of the sphere. There is no absolute maximum for the metric in general because
there is not necessarily an upper limit to the value of c, and therefore to the
number of spheres in the onion geometry.

From the metric (2.3) and conditions in Eqs. (2.7) and (2.8), it can be seen that
maximally distant functions are those which do not overlap at all and when
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the functions overlap exactly everywhere, i.e., they are the same function, they
are minimally distant [as required by axiom (1.61)]. Given this, we can inter-
pret physically that the distance is inversely related to a measure of the spatial
overlap of the two functions.

2.3 Applying the Metric Space Approach to Quan-

tum Mechanical Functions

We now show how to apply the metric space approach to quantum mechanics
in order to obtain metrics for the fundamental quantities in DFT and CDFT.
In order to do so, we will use the conservation laws derived in Sec. 1.1.2 to
obtain metrics for paramagnetic current densities and scalar potentials, and
show how the metrics presented in recent literature for wavefunctions and
particle densities [57, 58] arise from their respective conservation laws.

2.3.1 Particle Densities

The particle density metric is derived from the conservation of the number of
particles, Eq. (1.19), which can be written as∫

|ρ (r)|dr = N. (2.9)

Thus, as stated in Sec. 1.6.2, it can be seen that the particle density is an L1

function. Hence, the metric is given by [58]

Dρ (ρ1,ρ2) =
∫
|ρ1 (r)−ρ2 (r)|dr. (2.10)

From Eq. (2.9), it can be seen that the geometry of the particle density met-
ric space consists of concentric spheres of radius N, such that the densities of
one-particle systems lie on a sphere of radius 1, two-particle densities lie on a
sphere of radius 2 and so on, as shown in Fig. 2.2.

2.3.2 Wavefunctions

In order to derive a metric for wavefunctions, we begin with the conservation
of the norm of the wavefunction.

∫ ∣∣∣∣ψ (r,r2, . . . ,rN)√
N

∣∣∣∣2 dr1 . . .drN = 1, (2.11)
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N=1
N=2

N=3

Figure 2.2: The first three spheres of the “onion-shell” geometry for particle
densities, with radii N = 1,2,3.

where we follow the convention of Refs. [58, 62] and normalise wavefunctions
to the particle number, N. This ensures that, rather than a single sphere repre-
senting all wavefunctions, wavefunctions describing systems of different par-
ticle numbers lie on different spheres in the “onion-shell” geometry and thus
the wavefunction metric space has a geometry similar to that for particle den-
sities [58].

Equation (2.11) is of the form of Eq. (2.1), so following the procedure in Sec. 2.1
we note that the wavefunction is an L2 function, and derive the metric

D̃ψ (ψ1,ψ2) =

[∫
|ψ1−ψ2|2 dr1 . . .drN

] 1
2

, (2.12)

which is the standard Hilbert space metric [57]. However, as first noted by
Longpré and Kreinovich [57], the metric (2.12) induced by the norm is not a
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sufficient measure of the distance between wavefunctions. This is because the
distance between the states ψ and ψ ′ = eiφ ψ , which differ only by a constant
global phase factor, is non-zero. However, wavefunctions differing by such
a phase factor describe the same physics, as the solutions of the Schrödinger
equation are only defined up to a constant global phase factor. To have physi-
cally meaningful metrics, it is therefore important to define equivalence classes
such that the metric assigns zero distance to wavefunctions differing only by a
constant global phase factor.

An equivalence class for an element x ∈ X is defined as [65]

[x] =
{

x′ ∈ X : x∼ x′
}
, (2.13)

where ∼ is the equivalence relation characterising the class. Each element of
the set X belongs to a single equivalence class [65].

In order to account for an equivalence relation between elements, x∼ x′, we fol-
low a general procedure for introducing an equivalence relation into a metric
space (X ,D). We define the following function [66]

D∼(x,y) = inf

{
k

∑
i=1

D(pi,qi) : p1 = x,qk = y,k ∈ N

}
, (2.14)

where the infimum is taken over all choices of {pi} ,{qi} such that pi+1 ∼ qi.
This implies that if x∼ y, D∼ (x,y) = D(x,x)+D(y,y) = 0 even if D(x,y) 6= 0 [66].
This function is a semi-metric (or pseudometric) on the set X , known as the
quotient semi-metric associated to the relation ∼. A semi-metric is a distance
function that obeys all of the axioms of a metric except axiom (1.61): D(x,y) =

0 ⇐⇒ x = y, replacing it with: D(x,y) = 0 for x = y, i.e., we allow zero distance
between non-identical elements as well as identical ones.

For Eq. (2.12) we have in general that D̃ψ

(
ψ,eiφ ψ

)
6= 0. If we introduce an

equivalence relation between wavefunctions differing by only a global phase
factor, and take k = 2 in Eq. (2.14), we find

Dψ (ψ1,ψ2) = inf
{

D̃ψ

(
ψ1,ψ

′)+ D̃ψ (ψ2,ψ2)
}
, (2.15)

= inf
{

D̃ψ

(
ψ1,ψ

′)} , (2.16)

where ψ ′ = eiφ ψ2 ∼ ψ2 and we have used the positivity axiom of the metric.
The choice of ψ ′ that will minimise the value of the semi-metric is determined
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by the phase factor, hence [57]

Dψ (ψ1,ψ2) = min
φ

{
D̃ψ

(
ψ1,eiφ

ψ2

)}
. (2.17)

With this semi-metric space
(
{ψ} ,Dψ

)
, we can recover a metric space in a nat-

ural way, by “gluing” equivalent elements to form a set of equivalence classes.
By considering the set of equivalence classes of wavefunctions, rather than
the set of all wavefunctions, wavefunctions differing only by a constant global
phase factor are identified with one another. Thus, the set of equivalent wave-
functions with Dψ is a metric space, with the metric defined between each of
the equivalence classes, as required [65].

Longpré and Kreinovich showed that we do not need to perform this minimi-
sation explicitly, and instead we can simplify the metric (2.17) by writing [57]

Dψ = min
φ

[∫ ∣∣∣ψ1− eiφ
ψ2

∣∣∣2 dr1 . . .drN

] 1
2

,

= min
φ

[∫ (
ψ1− eiφ

ψ2

)∗(
ψ1− eiφ

ψ2

)
dr1 . . .drN

] 1
2

,

= min
φ

[∫ (
ψ
∗
1 − e−iφ

ψ
∗
2

)(
ψ1− eiφ

ψ2

)
dr1 . . .drN

] 1
2

,

= min
φ

[∫ (
ψ
∗
1 ψ1 +ψ

∗
2 ψ2− eiφ

ψ
∗
1 ψ2− e−iφ

ψ
∗
2 ψ1

)
dr1 . . .drN

] 1
2

,

= min
φ

[∫
|ψ1|2 + |ψ2|2 dr1 . . .drN−

∫
eiφ

ψ
∗
1 ψ2dr1 . . .drN−

∫
e−iφ

ψ
∗
2 ψ1dr1 . . .drN

] 1
2

,

= min
φ

[∫
|ψ1|2 + |ψ2|2 dr1 . . .drN−

∫
eiφ

ψ
∗
1 ψ2dr1 . . .drN−

(∫
eiφ

ψ2ψ
∗
1 dr1 . . .drN

)∗] 1
2

,

= min
φ

[∫
|ψ1|2 + |ψ2|2 dr1 . . .drN−2Re

(∫
eiφ

ψ
∗
1 ψ2dr1 . . .drN

)] 1
2

.

It can now be seen that the distance is at a minimum when the real part of∫
eiφ ψ∗1 ψ2dr1 . . .drN is at a maximum.

For any complex number, z,

|z|2 = Re(z)2 + Im(z)2.

Since Im(z)2 is always positive,

|z|2 > Re(z)2 =⇒ |z|> |Re(z)|> Re(z),
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so it can be seen that the real part of any complex number is at a maximum
when it is equal to the magnitude of the complex number.

This allows us to write the wavefunction metric as [57, 58, 62]

Dψ (ψ1,ψ2) =

[∫
|ψ1|2 + |ψ2|2 dr1 . . .drN−2

∣∣∣∣∫ ψ
∗
1 ψ2dr1 . . .drN

∣∣∣∣] 1
2

, (2.18)

which is the form we use.

2.3.2.1 Orthogonal Wavefunctions

The term
∫

ψ∗1 ψ2dr1 . . .drN in the wavefunction metric (2.18) shows a connec-
tion between the wavefunction metric and the Born Rule of quantum mechan-
ics [6], which, as discussed in Chapter 1, interprets the wavefunction as a sta-
tistical quantity, such that |ψ (r)|2 dr represents the probability of finding a par-
ticle within the volume element dr [1].

To consider the Born Rule for two different wavefunctions, φ and ψ , we expand
φ in the complete set of eigenfunctions of a Hermitian operator Ô, φ = ∑n cnφn.
The Born Rule states that the inner product of the one of the eigenfunctions φn

with ψ represents the probability of measuring the state ψ with the operator
Ô and obtaining the eigenvalue corresponding to the eigenstate φn. In the case
that 〈φn | ψ〉 = 0, the wavefunctions are orthogonal, and represent mutually
exclusive physical states [1, 67].

The principal consequence of this with regards to the wavefunction metric
is that whenever two wavefunctions ψ1 and ψ2 are orthogonal, they will al-
ways be assigned the maximum distance by the wavefunction metric, which
is
√

N1 +N2, where Ni is the number of particles in the system described by the
state ψi. This point was first raised by Artacho [68, 69] with regards to wave-
functions corresponding to systems of different numbers of particles, but also
applies in any other situation where wavefunctions are orthogonal, for exam-
ple, when considering a ground state and an excited state of the same system.

For the case of systems of different particle numbers, the wavefunction met-
ric (2.18) will always assign their wavefunctions as maximally distant. For this
reason, we restrict our use of the the metric (2.18) to systems with the same
number of particles, N.
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√N
√2N

Figure 2.3: A sphere of the “onion-shell” geometry for wavefunctions, with
radius

√
N and maximum value

√
2N.

2.3.2.2 Geometry of the Metric Space

Writing the metric in the form of Eq. (2.18) has interesting consequences for the
“onion-shell” geometry of the wavefunction metric space [58]. From Eq. (2.8),
it can be seen that the maximum distance between two N-particle wavefunc-
tions is 2

√
N, which corresponds to the maximum value obtained when writing

the wavefunction metric in the form of Eq. (2.12). However, it can be seen that
the maximum value of the metric (2.18) is obtained for orthogonal wavefunc-
tions, and is

√
2N < 2

√
N.

As far as the “onion-shell” geometry is concerned, we can find the angle be-
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tween two wavefunctions with a distance of
√

2N from the cosine rule,

cosθ =

(√
N
)2

+
(√

N
)2−2

(√
N
)2

2
(√

N
)2 = 0 ⇒ θ =

π

2
, (2.19)

i.e., one wavefunction is located halfway around the sphere from the other. In
other words, if we consider an arbitrary wavefunction to lie on the north pole
of the sphere, a wavefunction that is maximally distant, according to Eq. (2.18),
lies on the equator. This is shown in Fig 2.3.

2.3.3 Paramagnetic Current Densities

In Ref. [62] we derived a metric for the paramagnetic current density, jp (r). In
order to apply the metric space approach to generate a metric for the param-
agnetic current density, we must first relate it to a conservation law of the form
of Eq. (2.1). We will show that the paramagnetic current density obeys∫

[r× jp (r)]z dr = 〈ψ | L̂z |ψ 〉 , (2.20)

where L̂z is defined as in Eq. (1.20), and jp (r) =
〈
ĵp
〉
. The form of the paramag-

netic current density operator is [7]

ĵp =
1
2

N

∑
i=1

[δ (r− ri) p̂ri + p̂riδ (r− ri)] . (2.21)

The expectation value of r× ĵp is,

〈
r× ĵp

〉
=〈ψ (r1,r2, . . . ,rN) |r× ĵp |ψ (r1,r2, . . . ,rN)〉 ,

=
1
2

N

∑
i=1

{∫ ∫
. . .
∫

ψ
∗ (r1,r2, . . . ,rN) [r×δ (r− ri) p̂ri]ψ (r1,r2, . . . ,rN)dr1dr2 . . .drN

+
∫ ∫

. . .
∫

ψ
∗ (r1,r2, . . . ,rN) [r× p̂riδ (r− ri)]ψ (r1,r2, . . . ,rN)dr1dr2 . . .drN

}
,

=
1
2

N

∑
i=1

{∫ ∫
. . .
∫

ψ
∗ (r1,r2, . . . ,rN)δ (r− ri) [r× p̂ri]ψ (r1,r2, . . . ,rN)dr1dr2 . . .drN

+
∫ ∫

. . .
∫

ψ
∗ (r1,r2, . . . ,rN) [r× p̂ri]δ (r− ri)ψ (r1,r2, . . . ,rN)dr1dr2 . . .drN

}
.
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We rewrite the second integral by noting that the operators r× p̂ri and δ (r− ri)

are both Hermitian. Therefore, we can apply the relation [8],

〈φ | ÂB̂ |ψ 〉= 〈φ | B̂Â |ψ 〉∗ . (2.22)

This gives,

〈
r× ĵp

〉
=

1
2

N

∑
i=1

{∫ ∫
. . .
∫

ψ
∗ (r1,r2, . . . ,rN)δ (r− ri) [r× p̂ri]ψ (r1,r2, . . . ,rN)dr1dr2 . . .drN

+
∫ ∫

. . .
∫

ψ (r1,r2, . . . ,rN)δ (r− ri) [r× p̂ri]
∗

ψ
∗ (r1,r2, . . . ,rN)dr1dr2 . . .drN

}
.

We now have a series of 2N N-dimensional integrals. The delta function re-
moves one integral from each term in this series, resulting in 2N N−1-dimensional
integrals. By renaming each set of dummy variables as r2 . . .rN , we have,

〈
r× ĵp

〉
=

1
2

N

∑
i=1

{∫
. . .
∫

ψ
∗ (r,r2, . . . ,rN) [r× p̂r]ψ (r,r2, . . . ,rN)dr2 . . .drN

+
∫

. . .
∫

ψ (r,r2, . . . ,rN) [r× p̂r]
∗

ψ
∗ (r,r2, . . . ,rN)dr2 . . .drN

}
.

Integrating over r gives

∫ 〈
r× ĵp

〉
dr =

1
2

N

∑
i=1

∫ {∫
. . .
∫

ψ
∗ (r,r2, . . . ,rN) [r× p̂r]ψ (r,r2, . . . ,rN)dr2 . . .drN

+
∫

. . .
∫

ψ (r,r2, . . . ,rN) [r× p̂r]
∗

ψ
∗ (r,r2, . . . ,rN)dr2 . . .drN

}
dr.

(2.23)

Since the vector r is independent of the coordinates (r2 . . .rN), and the cross
product is a linear operation, we can remove the vector r from the integrals
over the coordinates (r2 . . .rN),

∫ 〈
r× ĵp

〉
dr =

1
2

N

∑
i=1

∫
r×
{∫

. . .
∫

ψ
∗ (r,r2, . . . ,rN) p̂rψ (r,r2, . . . ,rN)dr2 . . .drN

+
∫

. . .
∫

ψ (r,r2, . . . ,rN) p̂∗r ψ
∗ (r,r2, . . . ,rN)dr2 . . .drN

}
dr,

=
∫

r×− i
2

N

∑
i=1

{∫
. . .
∫

ψ
∗ (r,r2, . . . ,rN)∇rψ (r,r2, . . . ,rN)dr2 . . .drN

−
∫

. . .
∫

ψ (r,r2, . . . ,rN)∇rψ
∗ (r,r2, . . . ,rN)dr2 . . .drN

}
dr,

=
∫

r× jp (r)dr.
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Returning to Eq. (2.23), and noting that r× p̂r is Hermitian,

∫ 〈
r× ĵp

〉
dr =

1
2

N

∑
i=1

∫ {∫
. . .
∫

ψ
∗ (r,r2, . . . ,rN) [r× p̂r]ψ (r,r2, . . . ,rN)dr2 . . .drN

+
∫

. . .
∫

ψ
∗ (r,r2, . . . ,rN) [r× p̂r]ψ (r,r2, . . . ,rN)dr2 . . .drN

}
dr,

=
∫ N

∑
i=1

∫
. . .
∫

ψ
∗ (r,r2, . . . ,rN) [r× p̂r]ψ (r,r2, . . . ,rN)dr2 . . .drNdr,

=
∫ ∫

. . .
∫ N

∑
i=1

ψ
∗ (r,r2, . . . ,rN) [r× p̂r]ψ (r,r2, . . . ,rN)drdr2 . . .drN ,

=
〈
L̂
〉
.

We have thus proved that∫ 〈
r× ĵp

〉
dr =

〈
L̂
〉
=
∫

[r× jp (r)]dr. (2.24)

Since Eq. (2.24) applies to the vectors [r× jp (r)] and L̂, it must also apply to
each component of these vectors, hence∫

[r× jp (r)]z dr =
〈
L̂z
〉
= m, (2.25)

provided that L̂z is a constant of motion. In order to turn Eq. (2.25) into a
conservation law of the form of Eq. (2.1), we note that m can be any positive
or negative integer, hence we take the absolute value to ensure that the final
constant is positive, ∣∣∣∣∫ [r× jp (r)]z dr

∣∣∣∣= ∣∣〈L̂z
〉∣∣= |m| . (2.26)

Provided that [r× jp (r)]z has the same sign everywhere, which applies when
the system under consideration is rotationally invariant about the z axis (i.e.,
jp (r) has no θ dependence), we can write,∫ ∣∣[r× jp (r)]z

∣∣dr = |m| , (2.27)

giving us the form of conservation law required. From this, we can now follow
our procedure and derive the metric,

Djp⊥
(jp1, jp2) =

∫ ∣∣∣{r× [jp1 (r)− jp2 (r)]
}

z

∣∣∣dr. (2.28)

The radii of the concentric spheres in the “onion-shell” geometry for the para-
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magnetic current density metric space are |m|, with the paramagnetic current
densities located on the spheres corresponding to the value of |m| given by
Eq. (2.25).

As we take the z-component of the cross product in the paramagnetic cur-
rent density metric (2.28), it is clear that the z-component of the paramag-
netic current density itself does not affect the value of the metric. Therefore,
Djp⊥

is a distance between equivalence classes of paramagnetic currents, each
class characterized by current densities having the same transverse component
jp⊥ ≡ ( jpx , jpy).

It transpires that a metric for the transverse components of the current den-
sity is well suited for studying systems subject to longitudinal magnetic fields.
Classically, it is well known that a particle moving in a magnetic field experi-
ences the Lorentz force, which is given by [12]

F = E+
1
c

v×B, (2.29)

where F is the force, v is the velocity and E and B are the electric and magnetic
fields. By virtue of the cross product in Eq. (2.29), the particle experiences a
force perpendicular to the direction of the magnetic field, which will act to
induce motion in the plane transverse to direction of the field.

Quantum mechanically, the physical current density is given by [7],

ĵ(r) =
1
2

N

∑
i=1

{
δ (r− ri)

[
p̂ri +

1
c

A(ri)

]
+

[
p̂ri +

1
c

A(ri)

]
δ (r− ri)

}
. (2.30)

The physical current density can be written as a superposition of transverse
and longitudinal components,

ĵ(r) = ĵT (r)+ ĵL (r) , (2.31)

where the components are defined by the identities,

∇ · ĵT (r) = 0, ∇× ĵL (r) = 0. (2.32)

We can also split the vector potential, A(r), into transverse and longitudinal
components obeying the same identities,

A(r) = AT (r)+AL (r) , ∇ ·AT (r) = 0, ∇×AL (r) = 0. (2.33)

We can see immediately from Eq. (2.33) that the longitudinal component of
the vector potential cannot contribute to the magnetic field. Therefore, the
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magnetic field is entirely captured by the transverse component of the vector
potential. Thus, changes in the magnetic field correspond to changes in the
transverse component of the vector potential, which is captured in the trans-
verse component of the physical current density.

2.3.4 Scalar Potentials

For scalar potentials, we consider the conservation of energy, Eq. (1.25), in or-
der to derive a metric [64]. The expectation value of the Hamiltonian is∫ ∫

. . .
∫

ψ
∗ (r,r2, . . . ,rN) Ĥψ (r,r2, . . . ,rN)dr1dr2 . . .drN = E. (2.34)

In order to ensure that the resulting metric will satisfy the positivity axiom
(1.61), we must take the absolute value of the energy,∣∣∣∣∫ ∫ . . .

∫
ψ
∗ (r,r2, . . . ,rN) Ĥψ (r,r2, . . . ,rN)dr1dr2 . . .drN

∣∣∣∣= |E| . (2.35)

To derive a non-trivial metric, we must ensure that the conservation law is of
the form of Eq. (2.1), i.e., be able to “move” the absolute value signs inside the
integral, taking the absolute value of the integrand. This can be done only if
the integrand always has the same sign throughout its domain. Writing the
Hamiltonian explicitly, we have:

∫ ∫
. . .
∫

ψ
∗

N

∑
i=1

[
−∇2

i
2

+∑
j<i

1∣∣ri− r j
∣∣ +V (ri)

]
ψdr1dr2 . . .drN = E

∫ ∫
. . .
∫ N

∑
i=1

[
−ψ∗∇2

i ψ

2
+∑

j<i

|ψ|2∣∣ri− r j
∣∣ + |ψ|2V (ri)

]
dr1dr2 . . .drN = E (2.36)

where the three terms on the left hand side correspond to the kinetic energy,
the energy of the Coulomb interaction between the electrons and the potential
energy respectively. We will now demonstrate that each of the terms in the
integrand can be written such that they are positive semidefinite everywhere.
The integrand of the Coulomb term clearly satisfies this requirement already,
so we need only consider the remaining two terms.

2.3.4.1 Kinetic Energy

The kinetic energy of the ith particle is given by

T =−1
2

∫
ψ
∗ (r,r2, . . . ,rN)∇

2
i ψ (r,r2, . . . ,rN)dr1dr2 . . .drN . (2.37)
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Writing this integral explicitly gives:

−1
2

∫
ψ
∗
∇

2
i ψdri =−

1
2

∫
∞

0

∫
π

0

∫ 2π

0

(
ψ
∗
∇

2
i ψ
)

r2
i sinθidridθidφi,

=−1
2

∫
∞

0

∫
π

0

∫ 2π

0
ψ
∗
[

1
r2

i

∂

∂ ri

(
r2

i
∂ψ

∂ ri

)
+

1
r2

i sinθi

∂

∂θi

(
sinθi

∂ψ

∂θi

)
+

1
r2

i sin2
θi

∂ 2ψ

∂φ 2
i

]
r2

i sinθidridθidφi.

Taking each of the three terms in turn, we will perform integration by parts
in order to rewrite the kinetic energy. For the first term, we will evaluate the
radial integral by parts,

−1
2

∫
∞

0
ψ
∗
[

1
r2

i

∂

∂ ri

(
r2

i
∂ψ

∂ ri

)]
r2

i dri =−
1
2

[
r2

i ψ
∗∂ψ

∂ ri

]∞

0
+

1
2

∫
∞

0
r2

i

(
∂ψ∗
∂ ri

∂ψ

∂ ri

)
dri,

=
1
2

∫
∞

0

∣∣∣∣∂ψ

∂ ri

∣∣∣∣2r2
i dri,

where we have used that ψ → 0 as ri→ ∞. For the second term, we calculate
the θ integral by parts,

−1
2

∫
π

0
ψ
∗
[

1
r2

i sinθi

∂

∂θi

(
sinθi

∂ψ

∂θi

)]
sinθidθi =−

1
2

[
ψ∗

r2
i

sinθi
∂ψ

∂ ri

]π

0

+
1
2

∫
π

0

1
r2

i
sinθi

(
∂ψ∗
∂θi

∂ψ

∂θi

)
dθi,

=
1
2

∫
π

0

∣∣∣∣ 1ri

∂ψ

∂θi

∣∣∣∣2 sinθidθi.

Finally, we perform the φ integral by parts for the third term,

−1
2

∫ 2π

0
ψ
∗

[
1

r2
i sin2

θi

∂ 2ψ

∂φ 2
i

]
dφi =−

1
2

[
ψ∗

r2
i sin2

θi

∂ψ

∂φi

]2π

0

+
1
2

∫ 2π

0

1
r2

i sin2
θi

(
∂ψ∗
∂φi

∂ψ

∂φi

)
dφi,

=
1
2

∫ 2π

0

∣∣∣∣ 1
ri sinθi

∂ψ

∂φi

∣∣∣∣2 dφi,

where we use the fact that the wavefunction and its derivatives must be con-
tinuous in order to eliminate the first term.
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Therefore, for the full integral, we have,

−1
2

∫
ψ
∗
∇

2
i ψdri =

1
2

∫
∞

0

∫
π

0

∫ 2π

0

[∣∣∣∣∂ψ

∂ ri

∣∣∣∣2 + ∣∣∣∣ 1ri

∂ψ

∂θi

∣∣∣∣2 + ∣∣∣∣ 1
ri sinθi

∂ψ

∂φi

∣∣∣∣2
]

r2
i sinθidridθidφi,

=
1
2

∫
|∇ψ|2 dri,

and the kinetic energy is given by

T =
1
2

∫ ∫
. . .
∫
|∇ψ|2 dr1dr2 . . .drN . (2.38)

Thus, the integrand of the kinetic energy term is positive semidefinite every-
where.

2.3.4.2 Potential Energy

The potential energy is given by

V =
N

∑
i=1

∫ ∫
. . .
∫

ψ
∗ (r,r2, . . . ,rN)V (ri)ψ (r,r2, . . . ,rN)dr1dr2 . . .drN , (2.39)

where V (ri) is defined by the system under consideration. Although we can-
not guarantee the sign of V (ri), we can make use of a gauge transformation.
If the potential is modified by a constant, V (ri)→ V (ri)+ c, then the solution
to the Schrödinger equation is unaffected. Thus, when considering potentials
that have a single minimum, we can choose a constant c such that the value
of the integrand is positive everywhere for all of the potentials that we con-
sider. Hence, when studying systems with the potential metric, we must al-
ways work in the same gauge and that gauge must be chosen in order to allow
the expectation value of the Hamiltonian to be written as a well-defined norm.
This approach works well for potentials with a single minimum, but we are
aware of some cases where more care must be taken in order to ensure that the
potential metric gives physically relevant results.

2.3.4.3 Forming the Potential Metric

Our expectation value is now given by

∫ ∫
. . .
∫ N

∑
i=1

[
1
2
|∇ψ|2 +∑

j<i

ψ∗ψ∣∣ri− r j
∣∣ +ψ

∗ [V (ri)+ c]ψ

]
dr1dr2 . . .drN = E + c,
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and we can write∣∣∣∣∣
∫ ∫

. . .
∫ N

∑
i=1

[
1
2
|∇ψ|2 +∑

j<i

ψ∗ψ∣∣ri− r j
∣∣ +ψ

∗ [V (ri)+ c]ψ

]
dr1dr2 . . .drN

∣∣∣∣∣= |E + c| ,

∫ ∫
. . .
∫ ∣∣∣∣∣ N

∑
i=1

[
1
2
|∇ψ|2 +∑

j<i

ψ∗ψ∣∣ri− r j
∣∣ +ψ

∗ [V (ri)+ c]ψ

]∣∣∣∣∣dr1dr2 . . .drN = |E + c| ,∫ ∫
. . .
∫ ∣∣Ĥ ′∣∣dr1dr2 . . .drN =

∣∣E ′∣∣ , (2.40)

where E ′ = E + c. Hence, we derive the following metric,

DV =
∫ ∫

. . .
∫ ∣∣Ĥ ′1− Ĥ ′2

∣∣dr1dr2 . . .drN (2.41)

with spheres of radii E ′ for the “onion-shell” geometry. It can be seen that
this metric can be applied to the potential, rather than the whole Hamiltonian,
by considering each of the terms in H ′. All of the terms contain the many
body wavefunction, ψ (r,r2, . . . ,rN); from the Schrödinger equation, the many
body wavefunction can be seen to be defined uniquely by the external poten-
tial V (r). Hence, we can write,

ψ = ψ [V (r)] . (2.42)

In DFT, it is sometimes stated that T and U are universal functionals of the
density. This is because, assuming the nature of the interaction between the
electrons is fixed, T and U are identical for all systems - where a system is
prescribed by the external potential [3]. Applying a similar argument to the
potential metric allows us to write Eq. (2.40) as

∫ ∫
. . .
∫ ∣∣∣∣∣ N

∑
i=1

[F [V ]+ψ
∗ [V (ri)+ c]ψ]

∣∣∣∣∣dr1dr2 . . .drN = |E + c| , (2.43)

where F [V ] is a functional of the potential analogous to the DFT universal
functional F [ρ].

2.3.4.4 A Note on Coulomb Potentials

An important class of systems studied in quantum mechanics are atomic-like
systems, where the external potential is of the form of − 1

ri
for each particle. At

first glance, this causes a problem with the argument in Sec. 2.3.4.2, because if
V (0) = −∞ and ψ (0) 6= 0, then it is impossible for a gauge transformation to
enable the integrand of the potential norm, given by Eq. (2.40), to be positive
everywhere.
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However, in two dimensions, dri = ridri, and in three dimensions, dri = r2
i sinθdri.

Hence, the factors of ri in the Jacobean determinant cancel with the factor of ri

in the potential, resulting in the potential energy term being finite and, there-
fore, amenable to a gauge transformation provided we study the system in
at least two dimensions. In one-dimensional modelling of quantum systems,
Coulomb potentials are typically replaced by softened potentials that are finite
at ri = 0 [70, 71].

2.4 Gauge Theory

In this thesis, we will consider systems subject to magnetic fields. When deal-
ing with electromagnetic fields, it is important to consider the choice of gauge.
The scalar and vector potentials in the Hamiltonian (1.5) are not unique, as a
change of gauge transforms the potentials according to:

V ′ (r) =V (r)+ c, A′ (r) = A(r)−∇χ, (2.44)

where c is a constant and χ (r) is a scalar field [39]. These transformations
preserve the electromagnetic fields and all physical observables.

With regard to the quantities we have considered in this chapter, the particle
density is gauge invariant, but the wavefunction, paramagnetic current den-
sity and scalar potential are not. After a change of gauge, the wavefunction
undergoes a unitary transformation, which is given by [72]

ψ
′ (r) = e[iχ(r)]ψ (r) . (2.45)

The paramagnetic current density transforms according to [39]

j′p (r) = jp (r)+ρ (r)∇χ. (2.46)

Thus, when considering changes in the vector potential, we must be aware of
the effect of gauge transformations on the physical quantities we are consid-
ering. Our metrics are constructed to provide non-trivial information that is
physically relevant, since they are based on conservation laws. It is paramount
then that they are also gauge invariant.

For wavefunctions, a gauge transformation introduces a global phase factor.
In Sec. 2.3.2, we defined all wavefunctions differing only by a constant global
phase as equivalent and wrote the wavefunction metric in the form of Eq. (2.18).
This has ensured that the wavefunction metric is gauge invariant. We now
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consider the effect of gauge theory for the paramagnetic current density met-
ric [63].

2.4.1 Gauge Invariance for the Paramagnetic Current Density

Metric

In Ref. [63], we analysed the paramagnetic current density metric in different
gauges. In order to consider the gauge properties of Djp⊥

(jp1, jp2), first of all we
require that jp1 and jp2 are within the same gauge. Then, applying the gauge
transformation in Eq. (2.46) we obtain

Djp⊥

(
j′p1

, j′p2

)
=
∫ ∣∣∣{r×

[
j′p1

(r)− j′p2
(r)
]}

z

∣∣∣dr,

=
∫ ∣∣∣(r×{jp1 (r)− jp2 (r)+ [ρ1 (r)−ρ2 (r)]∇χ

})
z

∣∣∣dr. (2.47)

Equation (2.47) states that, in general, the paramagnetic current density dis-
tance defined by Eq. (2.28) is modified by a gauge transformation. This seems
to contradict the fact that we base our metrics on conservation laws, which
must be gauge invariant. In order to reconcile this apparent contradiction let
us explore more closely which quantities are gauge variant and which are the
ones that must be conserved.

With reference to Eq. (2.25), the measurable physical quantity which must be
conserved by gauge transformations is m, which, in the gauge chosen, corre-
sponds to the component L̂z of the angular momentum. However it is crucial
to note that L̂z is not (nor need be) gauge invariant.

The operator L̂z is defined in Eq. (1.20) as the cross product of r and the canon-
ical linear momentum, p̂. Although r is gauge invariant, p̂ is gauge variant,
and therefore, so is L̂z. In the following we wish to extend Eq. (2.28) so that the
metric associated to the conservation of m is indeed gauge invariant.

We consider a system for which there exists at least one gauge such that [L̂z, Ĥ] =

0, with Ĥ the system Hamiltonian. We name this the reference gauge and re-
fer to its vector potential as Are f (r) and to its paramagnetic current density as
jpre f (r). In this reference gauge the set {m} corresponds to the eigenvalues of L̂z

and both equalities in the relation (2.25) hold. The set {m} are then constants
of motion, and in this gauge they represent the z-component of the angular
momentum, L̂z.

We now focus on the generic gauge corresponding to a generic vector potential
A(r). In this generic gauge, the first equality of Eq. (2.25) holds, but the second
equality holds only if L̂z is a constant of motion in this gauge.
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We will now consider the quantity

j̃p (r)≡ jp (r)−ρ (r)∇χre f (2.48)

and the operator

L̃z ≡
N

∑
i=1

[
r×
(
p̂−∇χre f

)]
z , (2.49)

where ∇χre f is defined by A = Are f −∇χre f . We note that j̃p (r) is gauge invari-
ant, as, from equation (2.46),

j̃p (r)≡ jpre f (r) (2.50)

always. It follows that ∫ [
r× j̃p (r)

]
z
dr = m, (2.51)

independently of the gauge. Furthermore, by using the definition (2.48), and the
first equality of Eq. (2.25), which holds regardless of whether or not L̂z is a
constant of motion, we obtain∫ [

r× j̃p (r)
]

z
dr = 〈ψ | L̂z |ψ 〉−

∫ [
r×ρ (r)∇χre f

]
z dr,

= 〈ψ | L̂z |ψ 〉−〈ψ |
(
r×∇χre f

)
z |ψ 〉 ,

= 〈ψ | L̃z |ψ 〉 . (2.52)

This demonstrates that equation (2.49) defines the operator associated to the
conservation law (2.51), independently of the gauge. In particular, compar-
ison of Eq. (2.51) and Eq. (2.52) shows that indeed L̃z is the operator whose
eigenvalues are {m} independently of the gauge.1

L̃z reduces to L̂z in the reference gauge, and in all gauges where L̂z is a constant
of motion, as should be expected. This is because the limited set of gauges
for which

[
L̂z, Ĥ

]
= 0 holds, is the same within which both L̂z and [r× jp (r)]z

are unaffected by gauge transformations. These gauges correspond to vector
potentials of the form of Eq. (1.22). These vector potentials are linked by gauge
transformations of the form χ

(
x2 + y2,z

)
. The proofs of these statements are

given in Appendices A and B respectively.

1We note that L̃z is related to the gauge invariant z component of the moment of mechanical
momentum K̂z = L̂z +[r×A(r)]z as L̃z = K̂z−

(
r×Are f

)
z, but that K̂z would not be a constant of

motion in all gauges, that is, its eigenvalues are generally different from {m}. Likewise j̃p (r)
does not coincide with the gauge invariant total current density j(r) = jp (r)+ρ (r)A(r).
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Chapter 3

Applying the Metric Space
Approach to Current Density
Functional Theory

For systems subject to a vector potential with a Hamiltonian of the form of
Eq. (1.5), CDFT states that the ground state wavefunction obtained from the
Schrödinger equation is uniquely defined by the particle density and the para-
magnetic current density taken together, and vice versa [39, 40]. Equations (1.18)
and (1.54) clearly demonstrate how each of the densities are obtained from the
wavefunction. However, no suggestion on the details of the map from the
basic densities to the wavefunction is offered by either Hohenberg and Kohn
with regards to standard DFT, or Vignale and Rasolt for CDFT.

The metric space approach to quantum mechanics allows us to explore this
unique relationship, comparing the distances between wavefunctions to the
distances between their corresponding particle densities and their correspond-
ing paramagnetic current densities. Building on the analysis for standard DFT
in Ref. [58], we will consider model systems, for which we can generate highly
accurate solutions, and calculate the wavefunctions, particle densities and para-
magnetic current densities for a range of Hamiltonians. Comparing the dis-
tances between corresponding quantities will enable us to build up a picture
of the unique relationship at the core of CDFT. The results in this chapter that
relate to varying the confinement potential were published in Ref. [62].
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3.1 Model Systems

In this Chapter, and the next, we will consider two model systems: the mag-
netic Hooke’s Atom, and the Inverse Square Interaction System. Both of these
are two-dimensional systems, immersed in a magnetic field that is applied per-
pendicular to the plane of confinement.

3.1.1 Magnetic Hooke’s Atom

Hooke’s Atom is a system consisting of two electrons confined in a harmonic
oscillator potential. It is particularly notable as one of few examples of quan-
tum many-body systems for which exact solutions exist [73, 74]. Analytical
solutions also exist when the system is subject to a magnetic field. The Hamil-
tonian in this case, in atomic units, is given by [42, 75]

Ĥ =
2

∑
i=1

{
1
2

[
pi +

1
c

A(ri)

]2

+
1
2

ω
2
0 r2

i

}
+

1
|r2− r1|

(3.1)

where ω0 is the harmonic confinement frequency and c is the speed of light.
We introduce centre of mass and relative motion coordinates, defined as,

R =
1
2
(r1 + r2) , r = r2− r1. (3.2)

This allows us to define the momentum operators,

pR = p1 +p2, pr =
1
2
(p2−p1) , (3.3)

and the vector potentials,

AR (R) =
1
2
[A(r1)+A(r2)] , Ar (r) = A(r2)−A(r1) . (3.4)

We will study the system in two dimensions, and work in cylindrical coor-
dinates with the magnetic field applied perpendicular to the plane such that
B = Bẑ [42, 75].

In centre of mass and relative motion coordinates, we have

Ĥ = 2

[
1
2

(
pr +

1
2c

Ar (r)
)2

+
1
8

ω
2
0 r2 +

1
2r

]
+

1
2

[
1
2

(
pR +

2
c

AR (R)

)2

+2ω
2
0 R2

]
.

(3.5)
It can be seen that the Hamiltonian is separable into relative motion and cen-
tre of mass components. The centre of mass Hamiltonian is simply that of a
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single particle harmonic oscillator subject to a magnetic field, which is treated
in Refs. [76–78]. Writing the centre of mass wavefunction as ξ (R) = eiMθU (R),
the Schrödinger equation reduces to [77]

d2U
dR2 +

1
R

dU
dR
−M2

R2 U (R)− ω̃
2r2U (R) = 2

(
η− mωc

4

)
U (R) , (3.6)

where η is the centre of mass energy and M is the angular momentum quantum
number for the centre of mass. The frequency ω̃ is the effective frequency of
the harmonic oscillator, which we define using Taut’s convention [42, 75] as,

ω̃ =

√
ω2

0 +
(

ωc

2

)2
, (3.7)

where ωc =
B
c is the cyclotron frequency. The solution for the centre of mass

is [75],
ξ (R) = (2ω̃R)|M| eiMθ L|M|N

(
2ω̃R2)e−ω̃R2

, (3.8)

where L|M|N are associated Laguerre polynomials [20, 79], N = 0,1,2, . . . and M =

0,±1,±2, . . . ,±N.

The centre of mass energy is given by [75],

η = (2N +1+ |M|) ω̃ +
Mωc

2
. (3.9)

For the ground state, N = M = 0, so η = ω̃ and the normalised ground state
wavefunction is

ξ0 (R) =

√
2ω̃

π
e−ω̃R2

. (3.10)

Turning our attention to the relative motion, we expand the Hamiltonian and
choose the symmetric gauge, Ar (r) = 1

2B× r = 1
2Brθ̂ , which is of the form of

Eq. (1.22). The time-independent Schrödinger equation reads,[
1
2

(
−i∇r +

1
2c

Ar (r)
)2

+
1
8

ω
2
0 r2 +

1
2r

]
φ (r) =

ε

2
φ (r) , (3.11)

which can be expanded as,

1
2

[
−∇

2
r φ − i

2c
(φ∇ ·Ar (r)+2Ar (r) ·∇φ)+

A2
r

4c2 φ

]
+

1
8

ω
2
0 r2

φ +
1
2r

φ =
ε

2
φ ,

From our choice of gauge, we know that ∇ ·Ar (r) = 0. Expanding the remain-
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ing vector operations gives,

1
2

[
−∂ 2φ

∂ r2 −
1
r

∂φ

∂ r
− 1

r2
∂ 2φ

∂θ 2 −
iωc

2
∂φ

∂θ
+

1
16

ω
2
c r2

φ

]
+

1
8

ω
2
0 r2

φ +
1
2r

φ =
ε

2
φ ,

1
2

[
− 1√

r
∂ 2

∂ r2

(√
rφ
)
− 1

4r2 φ − 1
r2

∂ 2φ

∂θ 2 −
iωc

2
∂φ

∂θ
+

1
16

ω
2
c r2

φ

]
+

1
8

ω
2
0 r2

φ +
1
2r

φ =
ε

2
φ .

(3.12)

At this point, Taut writes the ansatz [42, 75],

φ (r) =
eimθ

√
2π

u(r)√
r

m = 0,±1,±2, . . . , (3.13)

where m is the quantum number corresponding to the z-component of the an-
gular momentum for the relative motion. This ansatz reduces Eq. (3.12) to

− 1
2

[
d2

dr2 u(r)+
1

4r2 u(r)− m2

r2 u(r)− 1
2

mωcu(r)− 1
16

ω
2
c r2u(r)

]
+

1
8

ω
2
0 r2u(r)+

1
2r

u(r) =
ε

2
u(r) ,

− 1
2

d2

dr2 u(r)+
1

2r2

(
m2− 1

4

)
u(r)+

1
8

ω̃
2r2u(r)+

1
2r

u(r) =
(

ε

2
− 1

4
mωc

)
u(r) .

(3.14)

As r → ∞, the system will tend towards that of two isolated single-particle
harmonic oscillators. Therefore, we write

u(r) = e−
ω̃r2

4 t (r) , (3.15)

so that the solution for the single-particle harmonic oscillator dominates at
large r. This reduces Eq. (3.14) to

−1
2

d2t
dr2 +

1
8

ω̃r2 dt
dr

+

[
− 1

32
ω̃

2r4 +
1

2r2

(
m2 +

1
4

)
+

1
8

ω̃
2r2 +

1
2r

]
t (r)=

(
ε

2
− 1

4
mωc

)
t (r) .

(3.16)
At this point, we note that Eq. (3.16) is amenable to solution via the Frobenius
method.

The Frobenius method [80, 81] states that any differential equation of the form

x2 d2y
dx2 + xb(x)

dy
dx

+ c(x)y = 0 (3.17)

has at least one solution that can be written as

y(x) = x j
∞

∑
i=0

aixi. (3.18)
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By expanding b(x) and c(x) as polynomials, and differentiating Eq. (3.18), we
can write Eq. (3.17) as,

x2
∞

∑
i=0

(i+ j)(i+ j−1)aixi+ j−2 + x
∞

∑
i=0

bixi
∞

∑
i=0

(i+ j)aixi+ j−1 +
∞

∑
i=0

cixi
∞

∑
i=0

aixi = 0.

(3.19)
Equation (3.19) yields a system of equations for each coefficient ai by compar-
ing the coefficients of each power x j,x j+1 . . . The coefficients of x j yield,

[ j ( j−1)+b0 j+ c0]a0 = 0,

j ( j−1)+b0 j+ c0 = 0,

which allows us to determine j.

For Eq. (3.16) the Frobenius method yields the solution [75]

t (r) =

(√
ω̃

2
r

)|m|+ 1
2 ∞

∑
i=0

ai

(√
ω̃

2
r

)i

, (3.20)

with coefficients,

a0 6= 0, (3.21)

a1 =
1

2
(
|m|+ 1

2

)√ 2
ω̃

a0, (3.22)

av =
1

v(v+2 |m|)

{√
2
ω̃

av−1 +
[
2(v+ |m|−1)− ε

′′]av−2

}
, (3.23)

where v> 2 and

ε
′′ =

2
ω̃

(
ε− 1

2
mωc

)
.

Although the polynomial in Eq. (3.20) has an infinite number of terms in gen-
eral, for each v = n there are particular values of m and ω̃ for which the poly-
nomial consists of only n terms. In these cases, ε ′′ = 2(|m|+n). Hence we have
a discrete, infinite series of exact solutions. For frequencies where an exact so-
lution does not exist, we construct an approximate solution by building on the
method of Coe et al. [82] by taking as many terms of the polynomial such that
its value converges within an acceptable tolerance.

The wavefunction for the magnetic Hooke’s Atom is hence given by,

ψ (r,R) = R|M|eiMθ L|M|N
(
2ω̃R2)e−ω̃R2 eimθ

√
2πr

e−
ω̃r2

4

(√
ω̃

2
r

)|m|+ 1
2 ∞

∑
i=0

ai

(√
ω̃

2
r

)i

.

(3.24)
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In order to be in the ground state, N = M = 0 for the centre of mass, so the
ground state wavefunction for the magnetic Hooke’s Atom is given by,

ψ (r,R) =
1
π

√
ω̃

r
eimθ e−ω̃R2

e−
ω̃r2

4

(√
ω̃

2
r

)|m|+ 1
2 ∞

∑
i=0

ai

(√
ω̃

2
r

)i

,

=
1
π

√
ω̃

r
eimθ e−ω̃R2

u(r) . (3.25)

The particle density for the magnetic Hooke’s Atom is given by [42],

ρ (r1) =
4ω̃

π
e−2ω̃r2

1

∫
∞

0
e−

ω̃

2 r2
I0 (2ω̃r1r) [u(r)]2 dr, (3.26)

where In (x) is a modified Bessel function. The paramagnetic current density is
given by [42],

jp (r1) = θ̂1
4mω̃

π
e−2ω̃r2

1

∫
∞

0
e−

ω̃

2 r2
I1 (2ω̃r1r)

[u(r)]2

r
dr. (3.27)

These expressions are proved in Appendix C.

3.1.2 Inverse Square Interaction System

Our second system also consists of two electrons confined in a harmonic os-
cillator potential, but the Coulomb repulsion between the electrons is replaced
by an α

r2 potential [83]. This has the significant advantage that the Schrödinger
equation is now exactly solvable for arbitrarily strong confinement potentials,
many-body interactions and magnetic fields. We again focus on the two di-
mensional case with the field applied perpendicular to the plane of confine-
ment. The Hamiltonian for the Inverse Square Interaction (ISI) system is:

Ĥ =
2

∑
i=1

[
1
2

(
pi +

1
c

A(ri)

)2

+
1
2

ω
2
0 r2

i

]
+

α

(r2− r1)
2 , (3.28)

which can be decoupled into centre of mass and relative motion coordinates
as,

Ĥ = 2

{
1
2

[
pr +

1
2c

Ar (r)
]2

+
1
8

ω
2
0 r2 +

α

2r2

}
+

1
2

{
1
2

[
pR +

2
c

AR (R)

]2

+2ω
2
0 R2

}
.

(3.29)
The centre of mass Hamiltonian is the same as that for Hooke’s Atom, and the
solution is therefore given by Eq. (3.8). For the relative motion, we again work
in the symmetric gauge, which, following Sec. 3.1.1 allows the Schrödinger
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equation for the relative motion to be written as

−∂ 2φ

∂ r2 −
1
r

∂φ

∂ r
− 1

r2
∂ 2φ

∂θ 2 −
iωc

2
∂φ

∂θ
+

1
16

ω
2
c r2

φ +
1
4

ω
2
0 r2

φ +
α

2r2 φ = εφ , (3.30)

Using the substitution φ (r) = eimθ u(r), we can write

− d2

dr2 u(r)− 1
r

du
dr

+
m2

r2 u(r)+
1
2

mωcu(r)+
1

16
ω

2
c r2u(r)+

1
4

ω
2
0 r2u(r)+

α

2r2 u(r) = εu(r) ,

d2

dr2 u(r)+
µ2

r2 u(r)+
1
4

ω̃
2r2u(r)+

1
2

mωcu(r) = εu(r) ,

(3.31)

where we have defined µ =
√

m2 +α . It can now be seen that Eq. (3.31) is
identical to Eq. (3.6), the corresponding equation for the centre of mass with
modified parameters. Consequently, we can obtain the solution to Eq. (3.31)
by substituting the appropriate parameters into the solution of Eq. (3.6), which
is given by Eq. (3.8). The relative motion wavefunction is therefore,

φ (r) =

(√
ω̃

2
r

)µ

eimθ Lµ
n

(
ω̃r2

2

)
e−

ω̃r2
4 . (3.32)

The full wavefunction for the ISI system is given by,

ψ (r,R) = (2ω̃R)|M| eiMθ L|M|N
(
2ω̃R2)e−ω̃R2

(√
ω̃

2
r

)µ

eimθ Lµ
n

(
ω̃r2

2

)
e−

ω̃r2
4 .

(3.33)
and the normalised ground state, with the centre of mass parameters M and N

set to zero, is,

ψ (r,R) =
ω̃

π

√
1

Γ(µ +1)

(√
ω̃

2
r

)µ

eimθ Lµ
n

(
ω̃r2

2

)
e−

ω̃r2
4 e−ω̃R2

. (3.34)

The energy of the ISI system is given by,

E = 2ω̃

[
N +1− 1

2

(
1− ωc

2ω̃

)
M+n+

ωc

4ω̃
m+

1
2

µ

]
. (3.35)

The particle density for the ISI system is written as

ρ (r1) =
2ω̃2

π

1
Γ(µ +1)

(
ω̃

2

)µ

e−2ω̃r2
1

∫
∞

0
e−ω̃r2

I0 (2ω̃r1r)r(2µ+1)dr, (3.36)
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Figure 3.1: Energy is plotted against the confinement frequency for (a) Mag-
netic Hooke’s Atom and (b) the ISI system. The energy is plotted for several
values of the angular momentum quantum number m (as labelled), and with
constant cyclotron frequency and interaction strength. Arrows indicate where
the value of m for the ground state changes.
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and the paramagnetic current density is

jp (r1) = θ̂1
2mω̃2

π

1
Γ(µ +1)

(
ω̃

2

)µ

e−2ω̃r2
1

∫
∞

0
e−ω̃r2

I1 (2ω̃r1r)r2µdr. (3.37)

The derivation of the densities is demonstrated in Appendix C.

3.1.3 Ground States

The unique relationship between the wavefunction, and the particle density
and the paramagnetic current density in CDFT applies only to ground states.
Therefore, we must ensure that when we select a particular state for analysis,
that state is a ground state. From Eq. (3.9) we can clearly see that for ground
states, N = M = 0 for both systems. Similarly, Eq. (3.35) states that, for the ISI
system, n = 0 in the ground state. However, the value of the angular momen-
tum quantum number, m, is not so easy to determine. Figure 3.1 shows for both
systems how the energy varies with the confinement frequency for several val-
ues of m. For any particular value of ω0, the lowest-lying curve represents the
ground state. For both systems, it can be seen that the curve, and therefore the
value of m, corresponding to the ground state changes through the range of
frequencies plotted. This change in m is an abrupt change between two con-
secutive values at particular “transition frequencies”, where the values of the
energy for m and m+1 are equal. When sweeping values of ω0, with all other
parameters constant, crossing a “transition frequency” means that the ground
state value of m switches from one value of m to another, such that large values
of |m| are ground states at small confinement frequencies, and small values of
|m| are ground states at large confinement frequencies.

Since the ISI system can be solved analytically for all values of ω0 (and ωc), we
can derive an expression for the points of intersection in Fig. 3.1(b) by consid-
ering the ground state energy, which is given by [83]

Em = 2ω̃

(
1+

ωc

4ω̃
m+

1
2

√
m2 +α

)
. (3.38)

The values of ω0, or ωc, at the points of intersection can be found by determin-
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ing the frequencies where Em = Em+1,

2ω̃

(
1+

ωc

4ω̃
m+

1
2

√
m2 +α

)
= 2ω̃

(
1+

ωc

4ω̃
(m+1)+

1
2

√
(m+1)2 +α

)
,

ωc

2ω̃
m+

√
m2 +α =

ωc

2ω̃
(m+1)+

√
(m+1)2 +α,√

m2 +α =
ωc

2ω̃
+

√
(m+1)2 +α,

ωc

2ω̃
=

(√
m2 +α−

√
(m+1)2 +α

)
.

By writing

Ωm,α =
√

m2 +α−
√
(m+1)2 +α, (3.39)

and using the definition of ω̃ from Eq. (3.7), we have

ω2
c

ω2
c +4ω2

0
= Ω

2
m,α ,

ω
2
c = Ω

2
m,αω

2
c +Ω

2
m,α4ω

2
0 ,

1 = Ω
2
m,α +4Ω

2
m,α

ω2
0

ω2
c
.

This gives the following expression for the relationship between ω0 and ωc

when Em = Em+1, (
ω0

ωc

)2

=
1−Ω2

m,α

4Ω2
m,α

. (3.40)

3.2 Varying the Confinement Potential

In Ref. [62], we concentrated on the sets of ground state wavefunctions, related
particle densities, and related paramagnetic current densities to study the rela-
tionship between them at the core of CDFT. Since ground states are non-empty
subsets of all states, ground-state-related functions form metric spaces with
the metrics (2.18), (2.10), and (2.28). To produce families of ground states, for
each system we systematically vary the value of ω0 (while keeping all other
parameters constant), and for each value we calculate the ground state wave-
function, particle density, and paramagnetic current density. A reference state
is determined by choosing a specific ω0 value, and the appropriate metric is
then used to calculate the distances between it and each member of the family.
To ensure that we select ground states, varying ω0 may require varying the
quantum number m [42, 83]. In Fig. 3.1, we see that as ω0 increases, we must
decrease the value of |m| in order to remain in the ground state. As a result of
this property, within each family of ground states, paramagnetic current den-

73



Chapter 3 Applying the Metric Space Approach to CDFT

0

0.4

0.8

1.2

1.6

2

0 0.8 1.6 2.4 3.2 4
Dρ

ωc=5.5, α=5, mref=-10

(f)m=-11
m=-12
m=-13

m=-45m=-1

m=-2

m=-3

m=-4

m=-5

m=-6
m=-7

m=-8
m=-9

0

0.4

0.8

1.2

1.6

2

0 0.4 0.8 1.2 1.6 2 2.4
Dψ

ωc=5.5, α=5, mref=-10

(d)m=-11
m=-12

m=-13

m=-45m=-1

m=-2

m=-3

m=-4

m=-5

m=-6
m=-7

m=-8
m=-9

0

0.8

1.6

2.4

3.2

4

0 0.4 0.8 1.2 1.6 2 2.4
Dψ

ωc=5.5, α=5, mref=-10

(b)m=-11
m=-12

m=-13

m=-45m=-1

m=-2

m=-3

m=-4
m=-5

m=-6
m=-7

m=-8
m=-9

0

0.4

0.8

1.2

1.6

0 0.4 0.8 1.2 1.6
Dψ

ωc=5, mref=-5

(c)
m=-6

m=-8

m=-10

m=-12

m=-4

m=-3

m=-2

m=-1

D
j p

⊥

2
|m

1
|+
|m

2
|

0

0.4

0.8

1.2

1.6

0 0.4 0.8 1.2 1.6 2 2.4
Dρ

ωc=5, mref=-5

(e)
m=-6

m=-8

m=-10

m=-12

m=-4

m=-3

m=-2

m=-1

D
j p

⊥

2
|m

1
|+
|m

2
|

0

0.4

0.8

1.2

1.6

2

0 0.4 0.8 1.2 1.6

D
ρ

Dψ

ωc=5, mref=-5

(a)
m=-6

m=-8

m=-10

m=-12
Decreasing ω0

m=-4

m=-3

m=-2

m=-1
Increasing ω0

Figure 3.2: Results for ground states. Left: Hooke’s atom (reference state ω0 =
0.5,ωc = 5,mre f =−5). Right: ISI system (reference state ω0 = 0.62,ωc = 5.5,α =
5,mre f =−10). Panels (a) and (b): Dρ vs Dψ ; (c) and (d): rescaled Djp⊥

vs Dψ ; (e)
and (f): rescaled Djp⊥

vs Dρ . Frequencies smaller than the reference are labelled
with circles, larger with triangles.
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θmax

θmin

Δθ

Figure 3.3: With reference to the “onion-shell” geometry of our metric spaces,
we define the maximum and minimum angles between paramagnetic current
densities on each sphere and the reference. We also define the difference be-
tween these angles as ∆θ .

sities will “jump” from one sphere of the onion-shell geometry to another (see
Fig. 2.1, where the reference state is the “north pole” of its sphere). To obtain
ground states with non-zero paramagnetic current densities, we must use ω0

values corresponding to m < 0 [42, 83].

In Fig. 3.2, we plot the relationship between each pair of distances for the two
systems. The reference states have been chosen so that most of the available
distance range can be explored both for the case of increasing and for the case
of decreasing values of ω0. When considering the relationship between ground
state wavefunctions and related particle densities, Figs. 3.2(a) and 3.2(b), our
results confirm the findings in Ref. [58] (shown in Fig 1.1): a monotonic map-
ping, linear for low to intermediate distances, where nearby wavefunctions are
mapped onto nearby particle densities, and distant wavefunctions are mapped
onto distant particle densities, and the curves for increasing and decreasing ω0

collapse onto each other. However closer inspection reveals a fundamental
difference with Ref. [58], the presence of a “band structure.” By this we mean
regions of allowed (“bands”) and forbidden (“gaps”) distances, whose widths
depend on the value of |m|, at least for the systems considered here. This struc-
ture is due to the changes in the value of the quantum number m, which result
in a substantial modification of the ground state wavefunction (and therefore
particle density) and a subsequent large increase in the related distances.

When we focus on the plots of paramagnetic current densities’ against wave-
functions’ distances, shown in Figs. 3.2(c) and 3.2(d), we find that the “band
structure” dominates the behaviour. Here the change in |m| has an even stronger
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(b)(a)

Figure 3.4: Sketch of the “onion-shell” geometry of the metric space for param-
agnetic current densities, where: (a)

∣∣mq
∣∣> |mr|>

∣∣mre f
∣∣ and (b)

∣∣mre f
∣∣> |ms|>

|mt |. The reference state is at the north pole on the reference sphere. The
dark grey areas denote the regions where ground state currents are located
(“bands”), with dashed lines indicating their widths. mq,r,s,t are arbitrary val-
ues of the quantum number m, such that

∣∣mq
∣∣> |mr|>

∣∣mre f
∣∣> |ms|> |mt |.

effect, in that the gradient dDjp⊥
/dDψ is noticeably discontinuous when mov-

ing from one sphere to the next in jp metric space. This discontinuity is more
pronounced for the path |m| <

∣∣mre f
∣∣ than for the path |m| >

∣∣mre f
∣∣. Similarly

to Figs. 3.2(a) and 3.2(b), the mapping of Dψ onto Djp⊥
maps vicinities onto

vicinities and remains monotonic, but for small and intermediate distances it
is only piecewise linear. In contrast with Dρ vs Dψ , curves corresponding to
increasing and decreasing ω0 do not collapse onto each other.

Figures 3.2(e) and 3.2(f) show the mapping between particle and paramagnetic
current density distances: this has characteristics similar to the one between
Dψ and Djp⊥

, but remains piecewise linear even at large distances.

We will now concentrate on the jp metric space to characterize the “band struc-
ture” observed in Fig. 3.2. Within the metric space geometry, we consider the
polar angle θ between the reference jpre f and the paramagnetic current density
jp of angular momentum |m|. Using the law of cosines, θ is given by

cosθ =
m2

re f +m2−D2
jp⊥

(jpre f , jp)

2
∣∣mre f

∣∣ |m| . (3.41)

We define the polar angles corresponding to the two extremes of a given band
as θmin and θmax, shown in Fig. 3.3. The width of each band is then ∆θ = θmax−
θmin, and its position defined by θmin. We will now calculate the widths and
positions of the bands by sweeping the values of ω0 corresponding to ground
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Figure 3.5: Results of the angular displacement of ground state currents for
(a) Hooke’s Atom and (b) the ISI system with the behaviour of ∆θ close to the
origin shown in the inset. Lines are a guide to the eye.
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states for each value of |m|.

For both systems under study, we find that as |m| increases from
∣∣mre f

∣∣, both
θmax and θmin increase. This has the effect of the bands moving from the north
pole to the south pole as we move away from the reference. Additionally, we
find that the bandwidth ∆θ decreases as |m| increases [sketched in Fig. 3.4(a)].
As |m| decreases from

∣∣mre f
∣∣, we again find that both θmax and θmin increase,

with the bands moving from the north pole to the south pole. However, this
time, as |m| decreases, ∆θ increases, meaning that the bands get wider as we
move away from the reference [sketched in Fig. 3.4(b)].

Quantitative results for Hooke’s Atom and the ISI system are shown in Fig. 3.5.
The band on the surface of each sphere indicates where all ground state para-
magnetic current densities lie within that sphere. In contrast with particle den-
sities or wavefunctions, we find that, at least for the systems at hand, ground
state currents populate a well-defined, limited region of each sphere, whose
size and position display monotonic behaviour with respect to the quantum
number m. This regular behaviour is not at all expected, as the CDFT-HK the-
orem does not guarantee monotonicity in metric space, and not even that the
mapping of Dψ to Djp⊥

is single valued. In the CDFT-HK theorem ground state
wavefunctions are uniquely determined only by particle and paramagnetic
current densities together. In this sense we can look at the panels in Fig. 3.2
as projections on the axis planes of a 3-dimensional DψDρDjp⊥

relation. The
complexity of the mapping due to the application of a magnetic field – the
changes in quantum number m – is fully captured by Djp⊥

only, as this is re-
lated to the relevant conservation law. However the mapping from Dρ to Dψ

inherits the “band structure,” showing that the two mappings Djp⊥
to Dψ and

Dρ to Dψ are not independent.

3.3 Varying the Electron Interaction

As well as the confining potential, the interaction between the electrons also
contributes to the potential energy of our model systems. For the ISI system,
the parameter α allows us to vary the strength of the electronic interaction,
hence we can repeat the analysis of the CDFT-HK theorem in Sec. 3.2 for the
case of varying α . Additionally, |m| for the ground state increases as α in-
creases, in contrast to the decrease in the ground state value of |m| shown in
Fig. 3.1 for ω0.

Figure 3.6 shows plots of each pair of distances. As was the case for Fig 3.2, all
of the plots show a “band structure” corresponding to the value of the angu-
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Figure 3.6: Results for ground states for the ISI system when varying α (ref-
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lar momentum quantum number m, that consists of “bands” of distances for
each particular value of m separated by “gaps” of forbidden distances. When
considering Dρ against Dψ [Fig. 3.6(a)], the path traced out by the curve is al-
most identical to that in Fig. 3.2, and again depicts a monotonic relationship
between Dρ and Dψ which is almost linear for small to intermediate distances
and follows the same curve for the cases of increasing α and decreasing α .
Figures 3.6(b) and 3.6(c) show that, as before, the “band structure” causes dis-
continuities in the gradient when we introduce the paramagnetic current den-
sity. However, in contrast to Fig. 3.2, the discontinuity in the gradient between
“bands” is considerably less pronounced, and also as |m| decreases, the bands
cover a smaller range of distances. Comparison of the results for both sys-
tems in Fig. 3.2 and Fig. 3.6 suggests that as the reference value of |m| becomes
larger, the discontinuity in the gradient between bands is reduced. A conse-
quence of the less pronounced discontinuity is that the curves for increasing
and decreasing α are more similar than those for increasing and decreasing ω0.

Figure 3.7 shows the angular displacement of the bands on each of their metric
space spheres for the paramagnetic current density. As for the case of varying
ω0, we observe that the bands move from the north pole to the south pole as we
depart from mre f , and that the bands get narrower as |m| increases. However,
we note that the width of the bands, particularly for small values of |m|, are
considerably smaller compared to those in Fig. 3.5. Consequently, the band-
width is plotted in Fig. 3.7(b), in which we observe that the width of the band
for mre f is considerably smaller than the bands corresponding to all nearby
values of m. We suggest that this is an artifact of the arbitrary choice of our ref-
erence, especially given that the shape of the reference band is different from
all of the others, as depicted in Fig. 3.4. Comparing with the case of varying
ω0, the insets of Fig. 3.5 show a similar decrease in the bandwidth for the ISI
system, but not for Hooke’s Atom (albeit we do observe a discontinuity in the
gradient of the overall decrease in ∆θ ).

In conclusion, we find that the metric space approach to quantum mechanics
offers considerable insight into the mapping at the core of CDFT. The mapping
between the fundamental quantities in CDFT inherits the features observed
for standard DFT. However, varying the potential energy through either the
confinement potential or the strength of the electronic interaction introduces a
“band structure” into the ground state metric spaces for wavefunctions, parti-
cle densities and paramagnetic current densities; a feature that is entirely ab-
sent when a magnetic field is not present. The origin of the “band structures”
is changes in the value of the quantum number for the angular momentum, m,
and the value of |m| is shown to control the shape of the “bands”.
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Chapter 4

Exploring the Effects of Varying
Magnetic Fields With the Metric
Space Approach

In Chapter 3, we have shown the effect of changes in the scalar and electronic
interaction potentials on the wavefunction, particle density and paramagnetic
current density, and their unique relationship for ground states, as defined in
CDFT. However, a quantity far more amenable to varying experimentally is
the strength of the magnetic field itself. Systems immersed in magnetic fields
are subject to a vector potential, A(r), which represents the magnetic field in
the Hamiltonian (1.5). Hence, by exploring changes in this vector potential,
we can use the metric space approach to quantum mechanics to study systems
subject to a magnetic field as the field changes.

Systems immersed in magnetic fields are a fundamental research topic, for ex-
ample, atoms immersed in strong fields [84, 85], and phenomena such as nu-
clear magnetic resonance [86] and the quantum hall effect [87]; and are also an
integral part of emerging quantum technologies such as quantum computation
which utilise quantum systems controlled or otherwise affected by magnetic
fields. For example the inhomogeneous magnetic field generated by the nu-
clei’s spins decreases quantum coherence of electron spin qubits in III-V quan-
tum dots [88], while full polarisation of the spin bath through an applied mag-
netic field suppresses electron-spin decoherence in nitrogen-vacancy centres
and nitrogen impurities in diamond [89]. Understanding systems immersed
in a magnetic field at a quantum level is therefore both of fundamental and
technological importance.

Varying the strength of the magnetic field for ground state systems will allow
us to enhance the insights into the fundamental relationship between the ba-
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sic variables of CDFT provided by the results in Chapter 3. In particular, in
the presence of a magnetic field, the metric spaces for ground state wavefunc-
tions, particle densities and paramagnetic current densities are characterised
by a “band structure” [62]. In paramagnetic current density metric space,
when considering variations in the scalar potential [62], the “band structure”
is formed by spherical segments of allowed and forbidden distances on the con-
centric spheres, at least for the systems analysed. The specific arc length of
these segments varies depending on the radius |m| of the sphere. The “band
structure” of allowed and forbidden distances also presents itself in the metric
spaces for wavefunctions and particle densities, but only on a single sphere in
these cases. We will investigate how this “band structure” responds to changes
in the magnetic field.

One of the key strengths of the metric space approach to quantum mechanics
is that it can easily be applied to excited states as well as ground states, which
makes the approach a widely applicable tool for the study of many-body sys-
tems. We will then study the relationship between the wavefunction, particle
density and paramagnetic current density for excited states when varying the
magnetic field, and compare and contrast the results with those for ground
states.

The results in this chapter were published in Ref. [63].

4.1 Ground States

4.1.1 Ground States of Model Systems

We again focus on the model systems employed in Chapter 3: the magnetic
Hooke’s Atom and the Inverse Square Interaction (ISI) system [42, 75, 83]. We
vary the strength of the magnetic field via the cyclotron frequency, ωc. Once
again, we must ensure that the value of the angular momentum quantum num-
ber m is such that we are in the ground state for all values of ωc.

Figure 4.1 shows how the energy varies with the cyclotron frequency for sev-
eral values of m, with the lowest-lying curve representing the ground state, as
in Fig. 3.1. As was the case for the confinement frequency, Fig. 4.1 shows that
the ground state value of m changes as we sweep through the values of ωc,
with abrupt changes in the ground state value of m at “transition frequencies”.
However, there is one significant difference which is that when varying ωc, the
value of |m| for the ground state increases as ωc increases. This difference indi-
cates that the relationship between the basic variables in CDFT may differ as
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of m for (a) Magnetic Hooke’s Atom and (b) the ISI system. The confinement
frequency and interaction strength are held constant. Arrows indicate where
the value of m for the ground state changes.
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we vary the vector potential compared to varying the scalar potential.

As in Chapter 3, we generate families of states, this time by varying the mag-
netic field via the cyclotron frequency ωc, whilst holding the confinement fre-
quency, ω0, and all other parameters in the Hamiltonian constant. Within each
family, one value of ωc (and hence m) is selected as a reference (ωcre f ,mre f re-
spectively), with the appropriate metrics used to find the distance between the
physical functions at the reference and all of the others in the family.

4.1.2 Band Structure of Metric Spaces

We will start by comparing the distances between wavefunctions, their related
particle densities and their related paramagnetic current densities. Figure 4.2
shows plots of the relationships between the various distances considered,
with each point referring to a particular value of ωc. Let us consider first the
plots of particle density distance against wavefunction distance [Figs. 4.2(a)
- 4.2(d)]. As observed in Chapter 3, metric space regions corresponding to
ground states present a “band structure”, where points associated to the same
value of |m| are grouped into distinct segments, i.e., bands. However, in con-
trast to the band structure observed in Chapter 3 [sketched in Fig. 4.3(a)], when
varying the vector potential we obtain a series of “overlapping bands”, where
the minimum wavefunction and minimum particle density distances for one
value of |m| are smaller than the maximum distances for the previous value
of |m|. This implies that there is now an overlap between the projections of
the bands on the metric space sphere representing the densities, as sketched
in Fig. 4.3(b) (similarly for the projection on the sphere representing the wave-
functions). Though overlapping, this band structure still results in disconti-
nuities in the relationship between Dρ and Dψ when the value of m changes.
Unlike when varying ω0 [62], by varying the magnetic field we do not observe
any forbidden distances, so we cannot identify forbidden regions for ground
states by considering the density and wavefunction metric spaces alone. In
the range of distances explored here, nearby wavefunctions are mapped onto
nearby particle densities and distant wavefunctions are mapped onto distant
particle densities. However, in contrast to Chapter 3, the mapping is only
piecewise linear; when acting on the vector potential, as ωc is swept through
each “transition” frequency, ground states and their densities abruptly revert
to be closer to the reference state, while a (almost) linear mapping is main-
tained within two consecutive “transition” frequencies. Also, in contrast with
the results in Chapter 3, the two families of ground states corresponding to
|m| <

∣∣mre f
∣∣ and |m| >

∣∣mre f
∣∣ describe distinct paths in metric space [e.g., com-
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Figure 4.2: Plots of distances for Hooke’s Atom with reference state ω0 =
0.5,ωc = 5.238,mre f = −5 (top two rows) and for the ISI system with refer-
ence state ω0 = 0.6,ωc = 5.36,α = 5,mre f = −10 (bottom two rows). (a) - (d)
show particle density distance against wavefunction distance, (e) - (h) show
paramagnetic current density distance against wavefunction distance and (i)
- (l) show paramagnetic current density distance against particle density dis-
tance. The reference frequency is taken halfway between the two “transition
frequencies” related to mre f .

pare Figs. 4.2(a) and 4.2(b)], with the size of the bands greater for |m| <
∣∣mre f

∣∣
compared to |m| >

∣∣mre f
∣∣. For all of these reasons the CDFT-HK mapping be-

tween wavefunctions and related densities acquires added complexity when
varying the vector potential compared to varying the scalar potential [com-
pare Figs. 3.2(a) and 3.2(b) with Figs. 4.2(a) - 4.2(d)].

In Figs. 4.2(e) - 4.2(h) we consider paramagnetic current density distance against
wavefunction distance. Here we find once more an overlapping band structure
for wavefunction distances, however a band structure with regions of allowed
(“bands”) and forbidden (“gaps”) distances is observed for paramagnetic cur-
rent density distances. In contrast with the one sketched in Fig. 4.3(a), in this
case each band resides on a different sphere according to the value of |m| (the
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Figure 4.3: Sketches of “band structures” consisting of (a) “bands” and “gaps”
and (b) “overlapping bands” in particle density metric space for three consec-
utive bands, where a different patterning corresponds to a different value of
m. The reference state is at the north pole.

radius of the sphere). For both wavefunction and paramagnetic current den-
sity distances, there are discontinuities between the bands. As for Figs. 4.2(a) -
4.2(d), the curves for increasing and decreasing ωc (and hence |m|) do not over-
lap, with larger bands for small values of |m|. Finally Figs. 4.2(i) - 4.2(l) present
the plots of paramagnetic current density distance against particle density dis-
tance. These exhibit similar behaviour to Figs. 4.2(e) - 4.2(h).

The overlapping band structures observed in Fig. 4.2 demonstrate that map-
pings between some of the distances considered here are multivalued. This
multivalued mapping does not represent a contradiction of the CDFT-HK the-
orem as it is entirely possible to have distinct functions at the same distance
away from a reference. In particular, in terms of the “onion-shell” geometry,
all states situated at the same polar angle and on the same sphere will have the
same distance from the reference state.

In Fig. 4.4 the wavefunction and paramagnetic current density distances are
plotted against ωc for both systems, enabling the band structures for individ-
ual functions to be analysed. We firstly note that, as observed in Fig. 4.2, there
is a decrease in the wavefunction distance at transitions [Figs. 4.4(a) and 4.4(b)],
but an increase in the paramagnetic current density distance [Figs. 4.4(c) and
4.4(d)]. These features give rise to “overlapping bands” and “bands and gaps”
band structures respectively. The other major feature is that, when varying
ωc, there is non-monotonic behaviour within bands corresponding to values
of m close to mre f (see insets). For both wavefunctions and paramagnetic cur-
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Figure 4.4: For Hooke’s Atom (top) and the ISI system (bottom), wavefunction
distance [(a) and (b)] and paramagnetic current density distance [(c) and (d)]
are plotted against ωc. The behaviour around the reference frequency is shown
in each inset. The reference states are ω0 = 0.5,ωcre f = 5.238,mre f = −5 for the
Magnetic Hooke’s Atom and ω0 = 0.6,ωcre f = 5.36,α = 5,mre f =−10 for the ISI
system.

rent densities, we observe that immediately after each transition frequency, the
distances initially decrease to a minimum for that particular band, before in-
creasing to the maximum for the band. This occurs at the transition frequency
to the next band. This behaviour is more pronounced for wavefunctions than
for paramagnetic current densities. As stated, the non-monotonicity is not in
contradiction with the Hohenberg-Kohn theorem of CDFT, but shows a richer
behaviour with respect to what was observed in Chapter 3 when varying the
scalar potential.

We point out that the band structure in metric space for paramagnetic current
density is fundamentally different from the ones for particle density and wave-
function, as the first develops on different spheres, one band for each sphere,
while the latter are within a single sphere where they may display “distinct” or
“overlapping” bands, see Fig. 4.3. All these band structures originate from the
conservation law characterising the paramagnetic current density, and the fea-
tures of the metric spaces for wavefunctions and particle densities are a direct
consequence of the mapping of jp (r) onto ψ (r) and onto ρ (r). In this sense
the band structure features of the metric spaces for wavefunctions and particle

88



Chapter 4 Exploring the Effects of Varying Magnetic Fields

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2

(D
j p

⊥
/D

ρ)
2

|m
1|

+|
m

2|

Dψ

ω0=0.5, mref=-5

(a)

Decreasing ωc
Increasing ωc

0

0.4

0.8

1.2

1.6

0 0.2 0.4 0.6 0.8 1 1.2
Dψ

ω0=0.6, α=5, mref=-10

(b)

Decreasing ωc
Increasing ωc

(D
j p

⊥
/D

ρ)
2

|m
1|

+|
m

2|

m=mref

m=mref

Figure 4.5: Plots of the ratio of paramagnetic current density distance to par-
ticle density distance against wavefunction distance for (a) Magnetic Hooke’s
Atom with reference state ω0 = 0.5,ωcre f = 5.238,mre f =−5, and (b) the ISI sys-
tem with reference state ω0 = 0.6,ωcre f = 5.36,α = 5,mre f =−10.
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densities could be seen merely as the “projections” of the band structure char-
acterising the paramagnetic current density, that result from these mappings.

Finally, we wish to concentrate on the implications of our findings for CDFT.
CDFT requires that both ρ (r) and jp (r) are taken together to ensure a one-to-
one mapping to the wavefunction. The metric analysis allows us to provide
evidence for an important aspect of this mapping, that is to understand the
relative contributions of ρ (r) and jp (r) when mapping to the wavefunction,
which may provide insight as to when the inclusion of jp (r) in the mapping
becomes really crucial for the one-to-one correspondence to hold.

We present in Fig. 4.5 the ratio Djp⊥
/Dρ against Dψ for both the Magnetic

Hooke’s atom and the ISI system. From the data it is immediately clear that,
in metric space, to a good level of approximation, Djp⊥

= const ×Dρ as long
as m = mre f . This constant is the same for ωc > ωcre f and ωc < ωcre f . These
findings suggest that, at least for the systems at hand, as long as we remain
on the same sphere in the paramagnetic current density metric space, jp (r) and
ρ (r) carry very similar information and the role of jp (r) in the core mapping
of CDFT is secondary. The situation becomes very different for ground states
with m 6= mre f . In this case the ratio Djp⊥

/Dρ is far from constant and Fig. 4.5
clearly shows that the information contents of jp (r) and ρ (r) are both neces-
sary to define the state.

To support these results, we will analyse in the next section the behaviour of
states where m is kept equal to mre f at all values of ωc.

4.2 Excited States

Although an understanding of the ground state is important, for studying sys-
tems subject to magnetic fields it is often necessary to go beyond ground states,
for example, when studying rapidly varying fields or spintronic devices that
operate with excited states. With the metrics at hand, we investigate for the
first time excited states, and consider distances between families of states cor-
responding to fixed values of m.1 For each value of m, we will construct a
family of states by varying ωc (with ω0 and α kept constant), and calculating
the corresponding wavefunctions, particle densities and paramagnetic current
densities. As for ground states, we choose m < 0. With respect to Fig. 4.1,
this corresponds to following individual energy curves smoothly, i.e., with-
out switching to a different curve at crossings, as done for the ground state
case. Each family of states will then lie on a particular sphere in the paramag-

1The centre of mass quantum number, M, is held constant at zero throughout this analysis.
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Figure 4.6: Plots of: (a) and (b) particle density distance against wavefunction
distance, (c) and (d) paramagnetic current density distance against wavefunc-
tion distance, (e) and (f) paramagnetic current density distance against particle
density distance for m =−1,−2,−3,−8,−9,−10. The reference states, for each
value of m, are: For Hooke’s Atom (left) ω0 = 0.1,ωcre f = 30.0, and for the ISI
system (right), ω0 = 0.1,ωcre f = 5.0,α = 5. Closed symbols represent decreasing
ωc and open symbols represent increasing ωc.
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Figure 4.7: Plot of paramagnetic current density distance against wavefunction
distance for m = −1,−2,−3,−8,−9,−10 for the ISI system. We take the state
with ω0 = 0.1,ωcre f = 5.0,α = 5 as a reference for each value of m and consider
distances across the surface of each individual sphere.

netic current density metric space. As the states considered are not necessar-
ily ground states, there is no one-to-one mapping between the wavefunction
and particle and paramagnetic current densities, but, these being fundamental
quantities that characterise the system, we will still explore their relationships.
Additionally, the study of these quantities allows us to corroborate the findings
related to Fig. 4.5.

Fig. 4.6 shows the relationship between each pair of distances for six different
values of m. For each pair of distances discussed, we find a monotonic rela-
tionship that is linear in the low to intermediate distance regime, before one of
the two functions rises more sharply to its maximum (see also Fig. 4.7). The
mapping between the each of the three physical functions considered is such
that nearby functions are mapped onto nearby functions and distant functions
are mapped onto distant functions for each function set. Crucially, as opposed
to ground states, the distances do not form any kind of metric space “band
structure” – confirming that the origin of band structures is changes in m.

Looking at wavefunction distances against particle density distances, Figs. 4.6(a)
and 4.6(b), and contrasting with Figs. 4.2(a)-4.2(d), we observe that the curves
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for increasing and decreasing ωc and all values of |m| collapse onto one an-
other. This hints to a universal behaviour of the mapping between particle
density and wavefunction when all the physical quantities describing the sys-
tem remain on the same sphere in the related metric space whilst a physical
parameter is smoothly changed.

When considering paramagnetic current density distance against wavefunc-
tion distance in Figs. 4.6(c) and 4.6(d), although the curves for increasing and
decreasing ωc collapse onto one another, the curves for different values of m are
distinct, particularly when |m| is low. For lower values of |m| the linear region
extends across a larger range of distances. There is also a relatively small in-
crease in the gradient at greater distances for low |m|. The curves in Figs. 4.6(c)
and 4.6(d) all start and end at the same points. With the rescaling for Djp⊥

used
in Fig. 4.6, the curves tend to a limiting curve with increasing value of |m|. In
Fig. 4.7, we show the relationship between wavefunction distance and para-
magnetic current density distance for the ISI system without rescaling Djp⊥

.
Here, the curves for each value of |m| intersect only at the origin, and each has
a unique maximum of 2 |m| for the paramagnetic current density distance. We
observe that the gradient of the initial linear region increases with |m|. Fig-
ure 4.8 shows, for both systems, that the gradient in this region increases lin-
early with |m|, Djp⊥

≈ k |m|Dψ , with k≈ 0.69 for Hooke’s Atom and k≈ 0.68 for
the ISI system, and is approximately equal for both decreasing and increasing
ωc. These results imply that when rescaled as in Fig. 4.6, the initial slope of the
curves will always be below 45◦, a result also observed in Ref. [58] for the case
in which different spheres in the wavefunction metric space geometry were
considered.

When considering paramagnetic current density distance against particle den-
sity distance [Figs. 4.6(e) and 4.6(f)] we see that, as for Djp⊥

vs Dψ , with the
rescaling of Fig. 4.6 there are distinct curves for each value of m which con-
verge onto a single curve as |m| increases. As opposed to Djp⊥

vs Dψ , the extent
of the linear behaviour of these curves is increasing as |m| increases.

The behaviour of the curves observed in Fig. 4.6 reflects the “onion-shell”
geometry of the metric spaces. For wavefunctions and particle densities the
sphere radius is associated to the number of particles in the system, which is
fixed for the systems considered. Thus, regardless of the value of |m|, wave-
functions and particle densities always lie on the same sphere in their respec-
tive metric spaces. The fact that the related curves still superimpose for differ-
ent values of |m| seems to imply that the value of |m| has no significant effect on
the curves that represent the relative change of ψ and ρ for changing parame-
ters. In paramagnetic current density metric space, the sphere radius is related
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Figure 4.8: Plot of the ratio of paramagnetic current density distance to wave-
function distance against |m| for (a) Magnetic Hooke’s Atom, with reference
ω0 = 0.1,ωcre f = 30.0, and (b) the ISI system, with reference ω0 = 0.1,ωcre f =
5.0,α = 5. The gradient is taken at the frequencies corresponding to the clos-
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94



Chapter 4 Exploring the Effects of Varying Magnetic Fields

to |m|, so paramagnetic current densities are on the surface of different spheres
each time we consider a different value of |m|. As a result we see that the shape
each of the curves is affected and they do not collapse onto each other. A sim-
ilar “universal” behaviour within each sphere and, by contrast, the breaking
of this universality when different spheres were considered was also observed
in Ref. [58], where different values of N, and hence different spheres, for both
wavefunctions and particle densities were considered. This seems to suggest
that different behaviour for the mappings should be expected when curves on
different spheres in the metric spaces are involved.

Finally Fig. 4.9 combines all distances for each system in a single plot. Im-
portantly this figure shows that for small to medium wavefunction distances
Djp⊥

/Dρ ∼ const, where the constant depends on |m|, so that this ratio is in-
dependent over variations of the wavefunction for relatively close wavefunc-
tions. In this respect, for relatively close wavefunctions this suggests that the
mappings between paramagnetic current densities and wavefunctions, and
between particle densities and wavefunctions, are very similar, as long as the
family of states follows the evolution of the same energy curve as driven by
the varying parameter (see Fig. 4.1).

In conclusion we have shown that varying the magnetic field has a profound
effect on the “band structure” in ground state metric spaces, illustrating the
important role played by the vector potential in such systems, and providing
additional insight into the CDFT-HK theorem. Changes in the magnetic field
generate a “band structure” that consists of overlapping bands for the wave-
function and particle density, whilst the gaps of forbidden distances observed
when varying quantities related to the scalar potential in Chapter 3 were not
observed for the wavefunction or particle density. Combining the metrics for
the particle and paramagnetic current densities and comparing with wave-
function distances, we find that the nature of the ratio of the paramagnetic
current density distance to the particle density distance has a strong depen-
dence on whether or not the values of m are the same for the two functions
considered to calculate each distance. When m = mre f , the ratio is a constant
depending on m, but when m 6= mre f , the value of the ratio fluctuates consider-
ably. We also gain additional insight into the geometry of our metric spaces by
exploring excited states, where we observe that the value of m studied affects
the relationships involving the metric for the paramagnetic current density, the
geometry of which is characterised by the angular momentum quantum num-
ber. When considering the ratios of paramagnetic current density to particle
density distances, the constant relationship found for ground states is shown
to persist up to fairly large values of the wavefunction distance.
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Figure 4.9: Plots of the ratio of paramagnetic current density distance to par-
ticle density distance against wavefunction distance for (a) Magnetic Hooke’s
Atom, with reference state ω0 = 0.1,ωcre f = 30.0, and (b) the ISI system, with
reference state ω0 = 0.1,ωcre f = 5.0,α = 5. Closed symbols represent decreasing
ωc and open symbols represent increasing ωc.
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Chapter 5

Comparing Many-Body and
Kohn-Sham Systems Using the
Metric Space Approach

The vast majority of practical implementations of DFT make use of the Kohn-
Sham scheme, where the system of interacting electrons confined within a par-
ticular potential is replaced with an auxiliary system of non-interacting elec-
trons confined by a different potential. The particle density of this auxiliary
system is identical to that generated by the original many-body interacting
system. The principle reason for the success of the Kohn-Sham scheme is that
the majority of the Kohn-Sham potential is known, and the unknown part of
the Kohn-Sham potential, the exchange-correlation potential, Vxc, can be effec-
tively approximated. Indeed, even relatively crude approximations to Vxc can
yield good results [24].

So far, the metric space approach to quantum mechanics has been used to
explore the relationships between wavefunctions and densities for DFT and
CDFT. In order to further our understanding of the fundamentals of DFT we
will now investigate the Kohn-Sham scheme with the metric space approach,
which has already been attempted [90]. In this chapter we will apply our
metrics to the wavefunctions and potentials used to describe systems in the
many-body picture, alongside the wavefunctions and potentials used in the
Kohn-Sham description. We will compare the distances between many-body
and Kohn-Sham quantities as we vary a particular parameter for model quan-
tum systems. We will also use our metrics to determine distances between
the many-body and Kohn-Sham quantities that describe the same system, pro-
viding a quantitative analysis of how the effective quantities employed in the
Kohn-Sham picture differ from those of the many-body picture.
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In addition, our metric for potentials allows us to expand on the analysis of
the HK theorem in Ref. [58], by considering the unique relationship between
potentials and wavefunctions and, consequently, potentials and densities, de-
fined in standard DFT. We will also compare and contrast the information
given by each of the three metrics in order to assess the relative merits of each
of our three metrics for quantitative comparisons of many-body systems.

The results in this chapter are ongoing research [64].

5.1 Model Systems

In this chapter, we require model systems from which we can obtain both the
many-body and Kohn-Sham quantities with high accuracy. Since it is possible
to reverse engineer the Kohn-Sham equations exactly for systems of two elec-
trons [91–93], we will study two-electron model systems: Hooke’s Atom and
Helium-like atoms.

5.1.1 Hooke’s Atom

The Hamiltonian for the three-dimensional Hooke’s Atom is [73]

Ĥ =
1
2
(
p2

1 +ω
2
0 r2

1 +p2
2 +ω

2
0 r2

2
)
+

1
|r1− r2|

. (5.1)

We solve this system using the method in Ref. [73], which is exactly analagous
to the method used for solving the Magnetic Hooke’s Atom in Sec. 3.1.1 [75].

In centre of mass and relative motion coordinates, the Hamiltonian is

Ĥ =
1
4

p2
R +ω

2
0 R2 +p2

r +
1
4

ω
2
0 r2 +

1
r
. (5.2)

The Hamiltonian for the centre of mass is simply that of a one-particle har-
monic oscillator, hence the solution is given by [1, 10]

ξ (R)=Hn1

(√
2ω0Rsinθ cosφ

)
Hn2

(√
2ω0Rsinθ sinφ

)
Hn3

(√
2ω0Rcosθ

)
e−ω0R2

,

(5.3)
and the normalised, ground-state wavefunction is

ξ0 (R) =

(
2ω0

π

) 3
4

e−ω0R2
. (5.4)
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For the relative motion, we write the ansatz [73]

φ (r) =
u(r)

r
Ylm (r̂) , (5.5)

where Ylm are the spherical harmonics and r̂ is the unit vector in the direction
of the relative motion.

This ansatz reduces the Schrödinger equation for the relative motion to[
− d2

dr2 +
1
4

ω
2
0 r2 +

1
r
+

l (l +1)
r2

]
u(r) = εu(r) , (5.6)

where ε is the energy related to the relative motion. For large values of r, the
relative motion should correspond to two isolated harmonic oscillators, which
allows us to write,

u(r) = e−
ω0r2

4 t (r) . (5.7)

Substituting Eq. (5.7) into Eq. (5.6) and performing the Frobenius method gives,

t (r) =
(√

ω0

2
r
)l+1 ∞

∑
v=0

av

(√
ω0

2
r
)v

, (5.8)

with coefficients that obey a three-term recursion relation:

a0 6= 0,

a1 =
1

2(l +1)
√

ω0
2

a0,

av =
1

v(v+2l +1)

 1√
ω0
2

av−1 +

[
2(l + v)−1− 2ε

ω0

]
av−2

 ,

for v> 2.

The ground-state wavefunction (i.e., l = m = 0) for Hooke’s Atom is

ψ (r,R) =
1

2
√

πr

(
2ω0

π

) 3
4

e−ω0R2
e−

ω0r2

4

√
ω0

8π

∞

∑
i=0

ai

(√
ω0

2
r
)i

,

=
1

2
√

πr

(
2ω0

π

) 3
4

e−ω0R2
u(r) , (5.9)

and the density is given by,

ρ (r1) =

(
2ω0

π

) 3
2

e−2ω0r2
1

∫ u(r)2 e−
ω0r2

2 sinh(2ωr1r)
ωr1r

dr, (5.10)
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which is shown in appendix C.

As was the case for the magnetic Hooke’s Atom in Chapter 3, there are certain
values of the confinement frequency for which the polynomial terminates after
a finite number of terms, n. In these cases, the relative motion energy is given
by ε =ω0

(
l +n+ 1

2

)
. We therefore have two types of solution of Hooke’s Atom:

the discrete, infinite set of exact solutions; and the approximate solutions con-
structed by taking a sufficiently large number of terms in order to converge the
value of the polynomial [82].

5.1.2 Helium-like Atoms

The Helium atom consists of two electrons orbiting a nucleus of charge Z =

2. We will study the Helium isoelectronic series, i.e., two electrons orbiting a
nucleus of any charge Z. The Hamiltonian for these Helium-like atoms is given
by,

Ĥ =
1
2

p2
1 +

Z
r1

+
1
2

p2
2 +

Z
r2

+
1

|r1− r2|
, (5.11)

where we have neglected the nuclear degrees of freedom by applying the Born-
Oppenheimer approximation [94].

We solve the Helium atom quantum mechanically using the Rayleigh-Ritz
variational method [1, 8]. At the core of this method is the Rayleigh-Ritz vari-
ational principle [16], which states,

E0 6 E [ψ] , (5.12)

where E0 is the ground state energy, and the equality applies only if ψ is the
ground state wavefunction. Therefore, if we evaluate E [ψ] for a set of wave-
functions, the wavefunction that minimises E [ψ] provides an approximation
to the ground state. The Rayleigh-Ritz method involves the use of a trial func-
tion of the form [8]

ψ (r) =
n

∑
i=1

ciχi (r) , (5.13)

where the coefficients ci are referred to as variational parameters. It can be seen
that Eq. (5.13) represents a vector in an n-dimensional Hilbert space spanned
by the basis χi (r). By optimising the coefficients ci with the objective of min-
imising E [ψ], we obtain the best approximation to the ground state within the
n-dimensional Hilbert space explored, the energy of which will be an upper
bound on the true ground state energy.

The choice of basis for the Helium atom is a very well studied problem, first

100



Chapter 5 Comparing MB and KS Systems Using the Metric Space Approach

considered by Kellner [95] and shortly followed by the seminal work of Hyller-
aas [96, 97]. This research has led to the development of highly sophisticated
basis functions capable of modelling ground and excited states of the Helium
atom and the Helium isoelectronic series to very high precision [98–101]. It
has been shown that the minimum nuclear charge required for a bound state
containing two electrons is Z ≈ 0.911 [102], hence, we will restrict our study to
atoms with Z > 1.

For our purposes, we need a basis set that will allow us to obtain the ground
state for any entry in the Helium isoelectronic series, i.e., two-electron ions
with any nuclear charge, Z. The basis set chosen is

ψ (r1,r2) =
1√
8π

e−Z(r1+r2)
i+ j+k6Ω

∑
i, j,k

ci jkNi jkL(2)
i (2Zr1)L(2)

j (2Zr2)Pk (cosθ) , (5.14)

with,

Ni jk =

√
1

(i+1)(i+2)

√
1

( j+1)( j+2)

√
2k+1

2
, (5.15)

where L(2)
n are the generalised Laguerre polynomials, Pn are Legendre poly-

nomials and θ is the angle between r1 and r2. This choice combines the ap-
proaches taken by Accad et al. [103] and Coe et al. [104]. It has the important
advantages that, with the constants Ni jk, each basis function is orthonormal,
and separable in the three coordinates (2Zr1,2Zr2,cosθ). These coordinates are
chosen so that the basis function with i, j,k = 0 corresponds to the ground state
of a Hydrogen-like atom of charge Z. This basis function always makes the
largest contribution to the ground state (i.e., c000 >> ci jk), particularly for large
Z, and hence enables the ground state to converge more rapidly with respect
to the number of basis functions.

For the wavefunction given by Eq. (5.14), the density is,

ρ (r1)=
1

2π
e−2Zr1

i+ j+k6Ω,
i′+ j′+k′6Ω

∑
i, j,k,

i′, j′,k′

δ j, j′δk,k′ci jkci′ j′k′

√
1

(i+1)(i+2)(i′+1)(i′+2)
L(2)

i (2Zr1)L(2)
i′ (2Zr1) ,

(5.16)
which is demonstrated in Appendix C.
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5.2 Solving the Kohn-Sham Equations for the Model

Systems

In order to be able to apply our metrics to quantities in the exact Kohn-Sham
picture, we must be able to exactly solve the Kohn-Sham equations, Eqs. (1.52)-
(1.53). This is a formidable task in general as it is usually impossible to deter-
mine the Kohn-Sham potential a priori. However, since the exact Kohn-Sham
equations must reproduce the density from the many-body picture, we can use
the exact density to reverse engineer the Kohn-Sham equations.

The density is given in terms of Kohn-Sham orbitals by Eq. (1.53). For our
model systems, the two electrons have opposite spins in the ground state.
Therefore, in the Kohn-Sham picture, both electrons are described by the same
Kohn-Sham orbital and, thus, are expressed in terms of the exact density as [93],

φKS =

√
ρ (r)

2
. (5.17)

Now we have the Kohn-Sham orbitals, we can reverse engineer Eq. (1.52) in
order to obtain the Kohn-Sham potential [93],

VKS (r) = εKS +
1
2

∇2φKS

φKS
. (5.18)

In order to obtain VKS (r) from Eq. (5.18), we require the value of the Kohn-
Sham eigenvalue, εKS. In general, Kohn-Sham eigenvalues do not possess any
physical meaning (but are of semiquantitative value [105]), however, the work
of Perdew et al. [91] demonstrated that, provided VKS (r)→ 0 as r→ ∞, the
eigenvalue of the highest occupied Kohn-Sham state is equal to the ionisation
energy of the system.

For our model systems, only one Kohn-Sham state is occupied, and thus both
eigenvalues are equal to the ionisation energy. For Hooke’s Atom, the centre
of mass energy is identical to that of a one-electron harmonic oscillator, so the
ionisation energy is clearly equal to the relative motion energy [92, 93]. Ion-
ising an electron from any entry in the Helium isoelectronic series results in
a Hydrogenic atom with energy −Z2/2 Hartrees. Therefore the ionisation en-
ergy is found from the difference between the Helium and Hydrogen ground
state energies.

In order to make a direct comparison with the many-body picture, we will
form the two-electron Kohn-Sham wavefunction from the product of the or-
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bitals,
ψKS (r1,r2) = φKS (r1)φKS (r2) , (5.19)

and the two-electron potential from the sum of the single-particle Kohn-Sham
potentials,

VKS (r1,r2) =VKS (r1)+VKS (r2) . (5.20)

We will apply our metrics to these two-electron Kohn-Sham quantities.

5.3 Extending the Hohenberg-Kohn Theorem Anal-

ysis

We will first revisit the Hohenberg-Kohn theorem of standard DFT, which was
first studied with the metric space approach to quantum mechanics in Ref. [58].
Previously only the second part of Eq. (1.45), concerning ground state wave-
functions and densities, has been studied. The results of this, previously pub-
lished in Ref. [58], have been reproduced in Fig. 1.1. Now, with the exter-
nal potential metric, we will extend the study to incorporate the first part of
Eq. (1.45), which establishes a unique map between the external potential and
the wavefunction.

Following directly from the methods in Chapters 3 and 4, we will generate
families of states by varying a parameter in the Hamiltonians of our systems.
For Hooke’s Atom, we vary the strength of the harmonic confinement via the
frequency ω0, and for the Helium-like atoms we will vary the nuclear charge,
Z. After choosing a reference state we will use our metrics to determine the
distance between the wavefunctions, densities and potentials at the reference
and all of the other physical functions in each family of states.

Figure 5.1 shows plots of the potential metric against the wavefunction and
density metrics for both systems. Considering firstly the plots of wavefunction
distance against potential distance [Figs. 5.1(a) and 5.1(b)], we observe many
features in common with Fig. 1.1. The relationship between the wavefunction
and potential is again monotonic, with nearby wavefunctions mapped onto
nearby potentials, and distant wavefunctions mapped onto distant potentials.
The curves for increasing parameters and decreasing parameters are also seen
to overlap, or almost overlap, with one another. Finally, both curves have a
region where the relationship between the two distances is linear. Interest-
ingly, when considering the potential, we observe that this linear region cov-
ers a greater extent of the distance range for Helium-like atoms compared to
Hooke’s Atom, and that the curves for Helium-like atoms overlap more closely
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Figure 5.1: Plots of rescaled potential distance against: wavefunction distance
[(a) and (b)], and density distance [(c) and (d)]. The Helium-like atoms are
shown on the left, with Hooke’s Atom on the right.

than the curves for Hooke’s Atom.

In Figs. 5.1(c) and 5.1(d) we plot the potential metric against the density met-
ric. Again we observe a monotonic mapping with a linear region at small dis-
tances. We observe that, for both systems, the linear region covers a smaller
range of distances in this plot compared to Fig. 1.1 and Figs. 5.1(a) and 5.1(b).
As was the case for the previous plots, the relationship between the potential
and density metrics is monotonic, with curves for increasing and decreasing
parameters overlapping or almost overlapping one another.

5.4 Comparison of Metrics for Characterising Quan-

tum Systems

The metric space approach to quantum mechanics allows us to generate var-
ious metrics which we can use in order to study changes in physical quanti-
ties associated with quantum systems. The metrics for wavefunctions, parti-
cle densities and potentials are equally appropriate for characterising systems
subject only to scalar potentials, therefore it is worthwhile to make a compar-
ison between the information given by each of these metrics when used in
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Figure 5.2: The wavefunction, density, and potential distances for the many-
body systems are plotted (a) against the nuclear charge for Helium-like atoms,
and (b) against the confinement frequency for Hooke’s Atom. All of the metrics
are scaled such that their maximum value is 2.

105



Chapter 5 Comparing MB and KS Systems Using the Metric Space Approach

practical calculations. This analysis will also shed light on the results found
for the HK theorem.

Figure 5.2 shows the values of the wavefunction, particle density and potential
metrics plotted against the parameter values for both of our model systems.
The metrics are all scaled to have a maximum value of 2 for ease of compar-
ison. We can immediately observe that all of the metrics follow broadly the
same trend, increasing monotonically from the reference and converging on
the maximum value. The curves for increasing and decreasing values of the
parameters are mirror images about the reference in all cases, and incorporate
a linear region of increasing distance for parameter values close to the refer-
ence, a region where the distance asymptotically approaches its maximum for
parameter values far from the reference, along with a transition region in be-
tween. The crucial difference between the three metrics however, is how the
metrics converge to the maximum value. Figure 5.2 shows that, as we depart
from the reference, the potential metric is the first to converge to its maximum,
followed by the wavefunction metric, with the density metric being the slowest
to converge. This means that when comparing systems that are significantly
different from one another, the density metric is the most useful tool for anal-
ysis, as it is capable of providing non-trivial information over a wider range
of parameter space than the metrics for wavefunctions and potentials. When
comparing systems that are relatively similar to one another, all three metrics
provide useful information to quantitatively characterise the differences be-
tween the systems.

In Fig. 5.3, we again plot the values of our three metrics across parameter space,
this time comparing Kohn-Sham quantities. We observe a clear similarity to
the many-body picture for both systems, with the density metric again provid-
ing non-trivial information across the largest extent of parameter space.

With regard to practical calculations, the density metric confers another signifi-
cant advantage in that, in general, it is considerably easier to calculate than the
metrics for wavefunctions and potentials. This is because the density metric
need only be integrated over three degrees of freedom, compared to 3N de-
grees of freedom for the other two metrics. The same value of the density met-
ric can also be obtained from both the many-body and Kohn-Sham systems,
since, unlike for wavefunctions and potentials, the densities must be identical
in these cases.
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Figure 5.3: The wavefunction, density, and potential distances for Kohn-Sham
systems are plotted (a) against the nuclear charge for Helium-like atoms, and
(b) against the confinement frequency for Hooke’s Atom. All of the metrics are
scaled such that their maximum value is 2.
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5.5 Determining the Distances between Correspond-

ing Many-Body and Kohn-Sham Quantities

Finally, we will use our metrics to determine the distance between the wave-
functions and potentials used in the many-body picture, and those used to
describe the same system in the Kohn-Sham picture.1 For the first time, we
are able to provide a quantitative description of the differences between the
many-body and exact Kohn-Sham descriptions of quantum systems.

In Fig. 5.4, the distances between many-body and Kohn-Sham wavefunctions
and potentials are plotted for a range of parameter values. We firstly observe
that the wavefunction and potential distances always take approximately the
same value throughout the parameter range explored for both systems. This
demonstrates that the two metrics provide a consistent measure of how the
many-body description differs from the Kohn-Sham description of our sys-
tems. For both systems we have also plotted the ratio of the expectation value
of the Coulomb operator to the expectation value of the external potential op-
erator. This ratio can be seen to follow broadly the the same trend as the met-
rics. This is an important observation as it provides further confirmation that
the metrics derived from the metric space approach to quantum mechanics
provide a physically relevant comparison of quantum mechanical functions.
It also shows that, alongside the two metrics, this ratio is a useful measure of
how much the many-body and Kohn-Sham descriptions of the system differ
from one another.

For Helium-like atoms, we observe that the many-body and Kohn-Sham de-
scriptions of the system are always relatively similar across the parameter
range studied, with the distances between the quantities decreasing monoton-
ically as Z increases. For this system, the external potential always dominates
over the Coulomb interaction between the electrons. We also observe that the
distance between the potentials is always larger than the distance between the
wavefunctions.

For Hooke’s atom, we consider three regimes: large values of ω0, where the ex-
ternal potential dominates over the Coulomb interaction; intermediate values
of ω0, where the external potential and Coulomb interaction make comparable
contributions; and small values of ω0, where the Coulomb interaction domi-
nates over the external potential. For small and large values of ω0, we observe
that the value of the potential metric is greater than that of the wavefunction
metric. However, in the region where the ratio is approximately unity, the

1For densities, it is required that Dρ (ρMB,ρKS)≡ 0.
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Figure 5.4: For (a) Helium-like atoms and (b) Hooke’s Atom, the distances be-
tween many-body and Kohn-Sham wavefunctions, and between many-body
and Kohn-Sham potentials, are plotted against the parameter values. In ad-
dition, the ratio of the expectation of the electron-electron interaction to the
many-body external potential energy is plotted and shown to follow a similar
trend to the metrics. In the inset, we focus on Hooke’s Atom in the regime of
distances covered by the Helium-like atoms.
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wavefunction metric takes a larger value than the potential metric.

Physically, the values of the wavefunction and potential metrics for the dis-
tances between many-body and Kohn-Sham systems can be interpreted as a
measure of the electron-electron interaction effects. Specifically, the Kohn-
Sham wavefunction is the product of single particle states, hence the wave-
function distance can be interpreted as a measure of the features present in
the many-body wavefunction that go beyond single particle approximations.
For potentials, the Kohn-Sham potential is composed of three components:
the external potential used for the many-body description, the Hartree poten-
tial and the exchange-correlation potential. Therefore, the value of the metric
DV (Vext ,VKS) can be interpreted as measuring the contribution of the Hartree
and exchange-correlation potentials to the Kohn-Sham potential.

The results in this Chapter provide us with a new perspective on Kohn-Sham
DFT. Previous studies comparing many-body and Kohn-Sham (either exact
or approximated) quantities have either made qualitative statements [82, 106,
107], or identified features of Kohn-Sham quantities [71, 108, 109]. With our
metrics, we have a well-defined numerical value that gives a simple descrip-
tion of how different the many-body and Kohn-Sham descriptions of a quan-
tum system are. This measure is an important addition to the range of tools
used to explore the Kohn-Sham picture. When developing functionals and
approximations for DFT, our metrics can be used in order to quantify how
closely they reproduce the exact KS quantities, and how they compare to other
approximations. In addition, the fact that, for the systems studied, the ratio of
the Coulomb interaction between the electrons to the external potential closely
mirrors the values of the metrics is a significant result. Although further anal-
ysis is required to see if this result holds for more complex systems, this ra-
tio, which is relatively simple to approximate for many systems, could poten-
tially give users of DFT an indication of the significance of Hartree-exchange-
correlation effects, and, consequently, could act as a guide as to which approx-
imation to Vxc is most appropriate for the system studied.
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Conclusions

In this thesis, we have developed and applied the metric space approach to
quantum mechanics, which is a new method to derive physically relevant
metrics for quantum mechanical functions. We have applied the approach
to study many-body quantum mechanics, specifically by considering Density
Functional Theory (DFT) and Current Density Functional Theory (CDFT), and
in doing so have gained additional insight into the fundamental nature of these
theories.

In Chapter 1, we introduced the theory of quantum mechanics, drew atten-
tion to the significance of conservation laws in developing theoretical physics,
and proved various conservation laws in quantum mechanics. We then out-
lined the many-body problem in quantum mechanics and introduced one of
the main approaches employed in order to tackle it, namely DFT. We discussed
the Hohenberg-Kohn theorem and the Kohn-Sham scheme, highlighting that
both of these fundamental elements of DFT draw connections between dif-
ferent quantum mechanical functions, and are therefore amenable to studies
involving comparisons between these functions. We then introduced the con-
cept of a metric space, and showed the connection between vector spaces and
quantum mechanics. Finally, we examined previous work in the literature that
applied metric spaces to quantum mechanical functions.

The fundamental theory behind the metric space approach to quantum me-
chanics was set out in Chapter 2. We argued that the best choice of metric
for studying quantum mechanical functions is one that captures fundamental
physics at its core, and for this reason we chose to base our metrics on con-
servation laws. Another highly significant advantage of developing metrics
from conservation laws is that we demonstrated a straightforward, general
method to derive metrics from integral, or sum, conservation laws. These met-
rics were shown to possess an “onion-shell” geometry consisting of concentric
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spheres, that allows us to visualise the metric spaces. We then applied the met-
ric space approach to generate metrics for specific quantum mechanical func-
tions: wavefunctions, particle densities, paramagnetic current densities, and
scalar potentials. All of these quantities can be linked to quantum mechanical
conservation laws, and are fundamentally important for DFT and CDFT.

We also demonstrated the extensions to the metric space approach that enable
the theory to be applied to a wider range of functions. For wavefunctions,
we showed how equivalence classes can be defined in order to restrict the de-
rived metric to wavefunctions that correspond to different physical situations,
ensuring that wavefunctions that differ by a trivial phase factor are assigned
zero distance. Equivalence classes were also utilised in order to associate the
metric derived from the z-component of angular momentum to the transverse
component of the paramagnetic current density. In this case the equivalence
classes were directly induced by the conservation law. In addition, we showed
that the gauge variant paramagnetic current density can be associated with a
gauge invariant current density. This enables the paramagnetic current den-
sity metric to be used in all gauges. All of these measures have ensured that
the metrics we define are gauge invariant.

Having established the physical and mathematical framework of the metric
space approach to quantum mechanics, the approach was then used to gain a
deeper insight into CDFT. Specifically, we calculated the wavefunctions, par-
ticle densities and paramagnetic current densities of two different model sys-
tems, generating a family of states by varying a single parameter in the Hamil-
tonian. Applying our metrics to each of these quantities allowed us to compare
the distances between ground-state wavefunctions, and their corresponding
particle densities and paramagnetic current densities; and to study the unique
relationship between these three variables defined in CDFT. In Chapter 3, we
considered variations in the potential energy, firstly by changing the strength
of the harmonic confining potential for the Magnetic Hooke’s Atom and the
Inverse Square Interaction (ISI) system and then the strength of the electron-
electron interaction for the ISI system. We considered the relationships be-
tween each of the three metrics; the relationship between the wavefunction
and particle density metrics was found to bear a close resemblence to that
found for systems without magnetic fields in Ref. [58]. Specifically, we once
again observe a monotonic relationship, which is linear for low to intermediate
distances, and the curves for increasing and decreasing confinement strength
overlapping one another. However, the application of a magnetic field caused
a significant feature to emerge for ground state metric spaces – the “band
structure” of allowed (“bands”) and forbidden (“gaps”) distances, caused by
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changes in the angular momentum quantum number, m. When considering
the “onion-shell” geometry of our metric spaces, we observed that paramag-
netic current densities “jump” from one sphere to another when the value of m

changes, and as such we can determine the angular width of each of the bands
in this metric space. It was found that the bands moved from the north pole of
the sphere to the south pole as we departed from the reference value of m, and
that the width of the bands decreased as m increased.

In Chapter 4, the analysis of the metrics and their interrelationships was ex-
tended to encompass variations in the magnetic field, and we examined how
the “band structure” arising from the presence of the magnetic field responded
to changes in the field. The principal result of this analysis was the emergence
of “overlapping bands” in the metric spaces for ground state wavefunctions
and particle densities, resulting in a lack of forbidden distances for these quan-
tities. We also used our metrics in order to gain an insight into the unique
relationship between wavefunctions, particle densities, and paramagnetic cur-
rent densities in CDFT by examining the ratio of the metrics for paramagnetic
current densities and particle densities, where we found that there was a stark
difference between the situations where m = mre f , and m 6= mre f . When con-
sidering functions with the same value of m, the ratio of paramagnetic current
density and particle density metrics was seen to be constant, but this was not
the case for functions with different values of m. We then extended our analysis
beyond CDFT to consider excited states. In this case, when considering differ-
ent values of m, the curves for wavefunctions and particle densities were seen
to collapse on to one another, but this was not the case when paramagnetic
current densities were considered. Examining again the ratio of paramagnetic
current density and particle density metrics, the constant relationship for equal
values of m was seen to persist up to fairly large wavefunction distances. All of
these findings indicate that changes in m are very significant when modelling
systems subject to magnetic fields.

Chapter 5 was concerned with the Kohn-Sham scheme of ground-state DFT,
and extending the analysis of the Hohenberg-Kohn theorem using the metric
for potentials. The relationship between the external potential and the wave-
function was seen to share many characteristics with the relationship between
wavefunctions and densities, principally the monotonic relationship that in-
corporates a linear region. We observed that the extent of this linear region
was different depending on which two metrics were considered. With three
metrics now available for characterising many-body systems, we analysed the
performance of each of them, and found that the density metric is more useful
for comparing systems at large distances, as this metric will provide non-trivial
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information about these systems. Finally, we studied the distances between
corresponding many-body and Kohn-Sham systems in order to quantify how
different the many-body interacting and Kohn-Sham descriptions of quantum
systems are. We found that both wavefunctions and potentials gave comple-
mentary results, showing the same qualitative picture and a similar quantita-
tive picture throughout the parameter space explored. For the model systems
studied, we also found that the ratio of the expectation of the electronic pair-
wise Coulomb interaction to that of the potential energy followed the same
qualitative trend as the metrics.

Overall, the metric space approach to quantum mechanics has enabled us to
examine quantum mechanics beyond the wavefunction. This has been achieved
by constructing metric spaces for a range of quantum mechanical functions,
allowing all of them to be treated on an equal footing. DFT is a particularly
useful illustration of the metric space approach, since the fundamental tenet of
DFT is to move from the Hilbert space of wavefunctions to the set of densities,
which does not form a vector space. When applied to relationships fundamen-
tal to DFT and CDFT, our approach has revealed distinctive signatures such
as: monotonicity, (piecewise) linearity, and “band structures”, that go beyond
what is defined by the theories. Our metrics also provide quantitative, physi-
cally meaningful information when comparing quantum systems. Hence, they
could enhance the development of approaches to quantum modelling, and
provide a physically relevant way to assess the construction of approxima-
tions to quantum mechanical functions. The results in this thesis suggest that
the metric space approach to quantum mechanics is a powerful tool to study
quantum systems governed by conservation laws.

6.1 Future Work

Having established the formalism of the metric space approach to quantum
mechanics, there are many possible applications and directions for future re-
search. We have primarily considered DFT and CDFT in this thesis, but our
approach is easily applicable to the study of quantum mechanical functions in
order to gain insight into quantum phenomena and other approaches used to
model quantum systems. Although most of the research in this thesis has been
concerned with systems in the ground state, in Chapter 4 we showed that the
metric space approach to quantum mechanics can be easily applied to excited
states. Given that there are fewer approaches to modelling systems in excited
states compared to ground states, the metric space approach could prove use-
ful in improving the understanding of excited state properties.
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One example of a theory that provides insight into excited states, and on which
a significant amount of research is currently underway, is time-dependent DFT
(TDDFT). The metric space approach may also be able to provide insight into
this rapidly developing theory. In TDDFT, the Runge-Gross theorem states that
the many-body wavefunction and potential at a particular time are uniquely
determined by the density at the current time and all previous times, along
with the initial wavefunction of the system [37]. TDDFT also defines a version
of the Kohn-Sham scheme for time-dependent systems. Our metrics for wave-
functions and densities are immediately applicable in the time-dependent case,
and thus the metric space approach to quantum mechanics could be applied
to gain insight into the relationships between many-body wavefunctions and
densities, as defined by the Runge-Gross theorem, and many-body and Kohn-
Sham quantities. These relationships can be studied at particular points in
time, and we can also use our metrics to quantify how much wavefunctions
and densities evolve in time.

The most significant result from our studies of CDFT is the presence of the
“band structure” in ground-state metric spaces. It would be worthwhile to
explore a greater range of systems in order to establish how universal this fea-
ture is, and whether changes in the value of m continue to carry significance.
A metric-space-based analysis of the non-uniqueness problem may provide
some interesting insights, particularly since this problem is one of the biggest
issues curtailing practical implementation of CDFT. However, there are some
challenges; in particular we do not have a metric for the vector potential, and
our metric for scalar potentials applies only to systems where A(r) = 0. If these
issues could be overcome, it would be interesting to take a range of potentials
that map to the same wavefunction, and compare the distances between them.
The values of distances between scalar and vector potentials and the relation-
ship between these distances could both provide a much greater insight into
the non-uniqueness problem.

The fact that the ratio of Coulomb interaction energy to external potential en-
ergy closely follows the values of the distances between many-body and Kohn-
Sham systems is an intriguing result that is worthy of further consideration. It
would be interesting to see if this result continues to hold for a wider variety of
systems than those studied in this thesis. Also, as it has been indicated that this
measure of interaction is not applicable for non-monotonic potentials [110], it
would also be interesting to see how other proposed measures compare to the
metrics in these cases, and whether or not measures of interaction are a suit-
able way to estimate how the many-body picture differs from the Kohn-Sham
picture for the system under consideration.
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A natural, and promising, extension to the calculations of distances between
many-body and Kohn-Sham systems in Chapter 5 would be to consider the
wavefunctions, densities, and potentials arising from approximations in DFT
and TDDFT, and hence use the metric space approach to quantum mechanics
in order to quantify the performance of these approximations. For model sys-
tems like the ones studied in this thesis, our metrics could be used to measure
how much the wavefunctions and potentials corresponding to approximations
such as the local density approximation [24] differ from those used in the exact
Kohn-Sham description. For more complex systems where the exact Kohn-
Sham quantities cannot be obtained, the metrics could still be useful in order
to compare approximations with one another, which can help to determine re-
gions of parameter space where certain approximations may perform better
than others for the system considered. This analysis could also be performed
in order to guide the development of new approximations.
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Appendix A

Determining the Gauges where L̂z is
a Constant of Motion

In order to be a constant of motion, the z-component of the angular momen-
tum L̂z =−i [r×∇]z must commute with the Hamiltonian. Given that a vector
potential is present, we consider the Pauli Hamiltonian

Ĥ =−1
2

∇
2− i

2
(A ·∇+∇ ·A)+

1
2

A2 +V (r) , (A.1)

with V (r) such that
[
V (r) , L̂z

]
= 0. The Hamiltonian Eq. (A.1) does not neces-

sarily commute with L̂z for a particular A(r), because L̂z is gauge variant. For
instance, L̂z commutes with the Hamiltonian Eq. (A.1) in the symmetric gauge
A = [y,−x,0] and does not commute with it in the Landau gauge A = [0,−x,0].
We wish to determine the general set of vector potentials where

[
Ĥ, L̂z

]
= 0.1

A.1 Simplifying the Commutator

The commutator we wish to evaluate is:

[
Ĥ, L̂z

]
=− i

[
A ·∇
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∂x
− x

∂

∂y

(
A2

ψ
)
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∂

∂x

(
A2

ψ
)
, (A.2)

1In the case where we have many-body interactions, we only consider the case[
U (ri,r j) , L̂z

]
= 0, as is the case for the Coulomb interaction.

117



Appendix A Determining the Gauges where L̂z is a Constant of Motion

where we have used that
[
−1

2∇2 +V (r) , L̂z
]
= 0. We will impose the condition[

Ĥ, L̂z
]
= 0, and then solve the commutator to obtain the vector potential A.

Eq. (A.2) reduces to

[
Ĥ, L̂z

]
=− i

[
A ·
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]
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∂x
= 0.

We now perform the vector operations. For compactness, we use a notation
ri = r1,r2,r3 = x,y,z, which gives,

[
Ĥ, L̂z

]
=

3

∑
i=1

{
−i
[

Aix
∂

∂ ri

∂ψ

∂y
+Ai

∂ψ

∂y
∂x
∂ ri
−Aiy

∂

∂ ri

∂ψ

∂x
−Ai

∂ψ

∂x
∂y
∂ ri

−2x
∂

∂y

(
Ai

∂ψ

∂ ri

)
+2y

∂

∂x

(
Ai

∂ψ

∂ ri

)
+

∂

∂ ri

(
Aix

∂ψ

∂y

)
− ∂

∂ ri

(
Aiy

∂ψ

∂x

)
− x

∂

∂y

(
ψ

∂Ai

∂ ri

)
+ y

∂

∂x

(
ψ

∂Ai

∂ ri

)]
−xψ

∂A2

∂y
+ yψ

∂A2

∂x

}
,

=
3

∑
i=1

{
−i
[
−xAi

∂

∂ ri

∂ψ

∂y
−2x

∂ψ

∂ ri

∂Ai

∂y
+2Ai

∂ψ

∂y
∂x
∂ ri

+ yAi
∂

∂ ri

∂ψ

∂x
+2y

∂ψ

∂ ri

∂Ai

∂x

−2Ai
∂ψ

∂x
∂y
∂ ri

+Aiy
∂ψ

∂y
∂x
∂ ri

+ xAi
∂

∂ ri

∂ψ

∂y
+ x

∂ψ

∂y
∂Ai

∂ ri
−Ai

∂ψ

∂x
∂y
∂ ri
− yAi

∂

∂ ri

∂ψ

∂x

−xψ
∂

∂y
∂Ai

∂ ri
− x

∂Ai

∂ ri

∂ψ

∂y
+ yψ

∂

∂x
∂Ai

∂ ri
+ y

∂Ai

∂ ri

∂ψ

∂x

]
−xψ

∂A2

∂y
+ yψ

∂A2

∂x

}
,

=
3

∑
i=1

{
−i
[

2Ai

(
∂ψ

∂y
∂x
∂ ri
− ∂ψ

∂x
∂y
∂ ri

)
−2x

∂ψ

∂ ri

∂Ai

∂y
+2y

∂ψ

∂ ri

∂Ai

∂x
− xψ

∂

∂y
∂Ai

∂ ri
+ yψ

∂

∂x
∂Ai

∂ ri

]
−xψ

∂A2

∂y
+ yψ

∂A2

∂x

}
= 0.
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Writing this out explicitly, we obtain

− i
[(

2Ax
∂ψ

∂y
−2Ay

∂ψ

∂x

)
−2x

(
∂ψ

∂x
∂Ax

∂y
+

∂ψ

∂y
∂Ay

∂y
+

∂ψ

∂ z
∂Az

∂y

)
+2y

(
∂ψ

∂x
∂Ax

∂x
+

∂ψ

∂y
∂Ay

∂x
+

∂ψ

∂ z
∂Az

∂x

)
− xψ

∂

∂y

(
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂ z

)
+yψ

∂

∂x

(
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂ z

)]
− xψ

∂A2

∂y
+ yψ

∂A2

∂x
= 0. (A.3)

In order to progress with the solution of this equation, we first consider the
case where ψ, ∂ψ

∂x ,
∂ψ

∂y and ∂ψ

∂ z are all independent of each other. This choice
allows us to decompose Eq. (A.3) into a set of simultaneous equations, which
we can then solve. The solution of these equations will provide properties of
the general set of vector potentials where

[
Ĥ, L̂z

]
= 0. Using these properties,

we will then solve Eq. (A.3) for A(r) using a general wavefunction.

With our choice of trial wavefunction, we write the set of simultaneous equa-
tions

ix
∂

∂y

(
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂ z

)
− x

∂A2

∂y
− iy

∂

∂x

(
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂ z

)
+ y

∂A2

∂x
= 0,

(A.4)

Ay + x
∂Ax

∂y
− y

∂Ax

∂x
= 0, (A.5)

Ax− x
∂Ay

∂y
+ y

∂Ay

∂x
= 0, (A.6)

y
∂Az

∂x
− x

∂Az

∂y
= 0. (A.7)

We concentrate first on Eqs. (A.5)-(A.7), a set of three equations for the three
unknowns Ax, Ay and Az. Firstly, we consider Eq. (A.7). In order to solve this
partial differential equation (PDE), we use the method of characteristics [111].

The method of characteristics requires the visualisation of Eq. (A.7) in 4D co-
ordinates (x,y,z,u). By considering the solution surface u = Az (x,y,z), we can
write

Az (x,y,z)−u = 0.

For any surface, S, a normal vector to the surface is given by ∇S. Thus, the
vector

[
∂Az
∂x ,

∂Az
∂y ,

∂Az
∂ z ,−1

]
is normal to the solution surface. We now write the

PDE (A.7) as a scalar product

[y,−x,0,0] ·
[

∂Az

∂x
,
∂Az

∂y
,
∂Az

∂ z
,−1

]
= 0.

Since the scalar product of these two vectors is zero, they must be orthogo-
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nal. Given also that the vector
[

∂Az
∂x ,

∂Az
∂y ,

∂Az
∂ z ,−1

]
is normal to the surface, this

tells us that the vector field [y,−x,0,0] is tangent to the surface at every point,
providing a geometrical interpretation of the PDE. Thus, any curve within
the surface Az (x,y,z)− u = 0 that has the vector [y,−x,0,0] as a tangent at ev-
ery point must lie entirely within the surface. Such curves are called char-
acteristic curves [111]. Any curve can be described by a parameter, t, and
the tangent of such a curve, r(t), is given by the derivative with respect to
this parameter r′ (t). Therefore, the tangent of a characteristic curve, r(t) =
[x(t) ,y(t) ,z(t) ,Az (t)], is given by the vector

r′ (t) =
[

dx
dt

,
dy
dt

,
dz
dt

,
dAz

dt

]
.

This vector is therefore proportional to the tangent vector [y,−x,0,0] for this
characteristic curve, allowing us to construct the equations

dx
dt

= y, (A.8)

dy
dt

=−x, (A.9)

dz
dt

= 0, (A.10)

dAz

dt
= 0. (A.11)

These are the characteristic equations of the PDE (A.7).

Solving this set of ordinary differential equations (ODEs) yields the solution of
the original PDE (A.7), since

dAz

dt
=

dx
dt

∂Az

∂x
+

dy
dt

∂Az

∂y
+

dz
dt

∂Az

∂ z
,

= y
∂Az

∂x
− x

∂Az

∂y
= 0.

By eliminating the parameter t in Eqs. (A.8)-(A.11), we can reduce the set of
ODEs to three equations

dy
dx

=−x
y
, (A.12)

dz
dx

= 0, (A.13)

dAz

dx
= 0. (A.14)

We now note that the “constant” of integration in Eq. (A.14) has a functional
dependence on the solutions to Eqs. (A.12) and (A.13). This is because the
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ODEs are solved along characteristic curves; the constants of integration are
constant along a particular characteristic, but can vary between characteristics.
The solutions to Eqs. (A.12) and (A.13) are

x2 + y2 = a, z = b, (A.15)

respectively, where a and b are the constants of integration. Thus, the solution
for Az is

Az = γ
(
x2 + y2,z

)
, (A.16)

where γ is an arbitrary function.

A.2 Solving the Simultaneous Equations

We will now solve Eqs. (A.5) and (A.6) simultaneously. Firstly, we differentiate
Eq. (A.5) with respect to both x and y which gives:

∂Ay

∂x
+

∂Ax

∂y
+ x

∂ 2Ax

∂x∂y
− y

∂ 2Ax

∂x2 = 0, (A.17)

∂Ay

∂y
+ x

∂ 2Ax

∂y2 −
∂Ax

∂x
− y

∂ 2Ax

∂x∂y
= 0, (A.18)

respectively. Now, we substitute these expressions for ∂Ay
∂x and ∂Ay

∂y into Eq. (A.6),
and obtain

Ax− x
(
−x

∂ 2Ax

∂y2 +
∂Ax

∂x
+ y

∂ 2Ax

∂x∂y

)
+ y
(
−∂Ax

∂y
− x

∂ 2Ax

∂x∂y
+ y

∂ 2Ax

∂x2

)
= 0, (A.19)

y2 ∂ 2Ax

∂x2 −2xy
∂ 2Ax

∂x∂y
+ x2 ∂ 2Ax

∂y2 − x
∂Ax

∂x
− y

∂Ax

∂y
+Ax = 0. (A.20)

We now have an equation containing only the unknown Ax that we can solve.

We begin to solve this equation by again using the method of characteristics.
For second order PDEs, it is firstly necessary to determine the type of equation,
either hyperbolic, parabolic or elliptic. This is done by calculating the discrim-
inant b2− 4ac, where a,b,c are the coefficients of ∂ 2Ax

∂x2 ,
∂ 2Ax
∂x∂y ,

∂ 2Ax
∂y2 respectively.

This will then allow us to perform an appropriate change of variables from
(x,y,z) to (ξ ,η ,z), where ξ and η are the characteristics [81]. The discriminant
is

b2−4ac = 4x2y2−4x2y2 = 0. (A.21)

Therefore, the characteristic equation is parabolic and has one repeated solu-
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tion, which we take for ξ . The characteristic equation is the ODE [81]

y2
(

dy
dx

)2

−2xy
dy
dx

+ x2 = 0, (A.22)

solving for dy
dx gives

dy
dx

=−x
y
.

Hence, from Eq. (A.15), we know that the first characteristic is ξ = a = x2 + y2.
Since there is only one root of the characteristic equation, we have complete
freedom in the choice for η , provided that it is not the same as ξ . Given that
we know that the symmetric gauge satisfies the commutator

[
Ĥ, L̂z

]
= 0, and,

specifically, that Ax = y is a solution for Eq. (A.20), we choose η = y. By using
the chain rule, we find the derivatives in Eq. (A.20).

∂Ax

∂x
= 2x

∂Ax

∂ξ
,

∂Ax

∂y
= 2y

∂Ax

∂ξ
+

∂Ax

∂η
,

∂ 2Ax

∂x2 = 4x2 ∂ 2Ax

∂ξ 2 +2
∂Ax

∂ξ
,

∂ 2Ax

∂y2 = 4y2 ∂ 2Ax

∂ξ 2 +4y
∂ 2Ax

∂ξ ∂η
+

∂ 2Ax

∂η2 +2
∂Ax

∂ξ
,

∂ 2Ax

∂x∂y
= 4xy

∂ 2Ax

∂ξ 2 +2x
∂ 2Ax

∂ξ ∂η
.

Substituting into equation (A.20), we get

4x2y2 ∂ 2Ax

∂ξ 2 +2y2 ∂Ax

∂ξ
−8x2y2 ∂ 2Ax

∂ξ 2 −4x2y
∂ 2Ax

∂ξ ∂η
+4x2y2 ∂ 2Ax

∂ξ 2 +4x2y
∂ 2Ax

∂ξ ∂η
,

+ x2 ∂ 2Ax

∂η2 +2x2 ∂Ax

∂ξ
−2x2 ∂Ax

∂ξ
−2y2 ∂Ax

∂ξ
− y

∂Ax

∂η
+Ax = 0,

x2 ∂ 2Ax

∂η2 − y
∂Ax

∂η
+Ax = 0,

and completing the change of variables gives

(
ξ −η

2) ∂ 2Ax

∂η2 −η
∂Ax

∂η
+Ax = 0. (A.23)

We have now completed a change of variables and reduced the complexity of
the equation. The next step is to perform a reduction of order through the use
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of the known solution Ax = η . The reduction used is

Ax = uη ,
∂Ax

∂η
= η

∂u
∂η

,
∂ 2Ax

∂η2 = η
∂ 2u
∂η2 +2

∂u
∂η

,

which we substitute into Eq. (A.23) to give

(
ξ −η

2)(
η

∂ 2u
∂η2 +2

∂u
∂η

)
−η

2 ∂u
∂η
−ηu+ηu = 0,

η
(
ξ −η

2) ∂ 2u
∂η2 +

(
2ξ −3η

2) ∂u
∂η

= 0. (A.24)

We now make the substitution v = ∂u
∂η

, obtaining

η
(
ξ −η

2) ∂v
∂η

+
(
2ξ −3η

2)v = 0. (A.25)

This equation can now be solved separably,

∫ 1
v

dv =
∫ [ 3η2−2ξ

η (ξ −η2)

]
dη .

We decompose the denominator through the use of partial fractions, giving,

3η2−2ξ

η (ξ −η2)
=

I
η
+

Jη +K
ξ −η2 ,

=
I
(
ξ −η2)

η (ξ −η2)
+

(Jη +K)η

η (ξ −η2)
,

3η
2−2ξ = I

(
ξ −η

2)+ Jη
2 +Kη .

By comparing coefficients, we see that K = 0, −I + J = 3⇒ I =−2, J = 1,

3η2−2ξ

η (ξ −η2)
=− 2

η
+

η

ξ −η2 .
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Returning to the solution of equation (A.25), we find

∫ 1
v

dv =−
∫ 2

η
dη +

∫
η

ξ −η2 dη ,

=−
∫ 2

η
dη− 1

2

∫ −2η

ξ −η2 dη ,

lnv =−2lnη− 1
2

ln
∣∣ξ −η

2∣∣+ ln [α (ξ )],

= lnη
−2 + ln

(
ξ −η

2)− 1
2 + ln [α (ξ )],

= ln

[
α (ξ )

η2 (ξ −η2)
1
2

]
,

v =
α (ξ )

η2 (ξ −η2)
1
2
,

where α is an arbitrary function, and we note that ξ −η2 = x2+y2−y2 = x2 > 0,
hence, ξ −η2 is always positive.

Now that we have a solution to (A.25), we must reverse our substitutions to
get a solution for Ax. Firstly, we integrate v to get u,

u = α (ξ )
∫ 1

η2 (ξ −η2)
1
2

dη . (A.26)

We make the substitution η = ξ
1
2 sinθ ,

u = ξ
1
2 α (ξ )

∫ cosθ

ξ sin2
θ
(
ξ −ξ sin2

θ
) 1

2
dθ ,

= ξ
1
2 α (ξ )

∫ cosθ

ξ sin2
θ (ξ cos2 θ)

1
2

dθ ,

=
α (ξ )

ξ

∫ 1
sin2

θ
dθ ,

=−α (ξ )

ξ
cotθ +β (ξ ) ,

=−α (ξ )

ξ
cot

[
sin−1

(
η

ξ
1
2

)]
+β (ξ ) ,

=−α (ξ )

ξ

ξ
1
2

η

(
1− η2

ξ

) 1
2

+β (ξ ) ,

=−α (ξ )

ξ η

(
ξ −η

2) 1
2 +β (ξ ) ,
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where β is another arbitrary function. Next, we write Ax = uη , obtaining

Ax = α (ξ )
(
ξ −η

2) 1
2 +ηβ (ξ ) , (A.27)

where we absorb the factor of − 1
ξ

into α . Finally, we substitute back from
(ξ ,η ,z) to (x,y,z),

Ax = α
(
x2 + y2,z

)(
x2 + y2− y2) 1

2 + yβ
(
x2 + y2,z

)
,

= xα
(
x2 + y2,z

)
+ yβ

(
x2 + y2,z

)
, (A.28)

to give the solution for Ax. We find Ay from equation (A.5),

Ay =y
∂Ax

∂x
− x

∂Ax

∂y
,

=y
[
α
(
x2 + y2,z

)
+2x2

α
′ (x2 + y2,z

)
+2xyβ

′ (x2 + y2,z
)]

− x
[
2xyα

′ (x2 + y2,z
)
+β

(
x2 + y2,z

)
+2y2

β
′ (x2 + y2,z

)]
,

=yα
(
x2 + y2,z

)
− xβ

(
x2 + y2,z

)
,

giving us solutions for all three components.

We will now verify that the solutions for Ax,Ay,Az, satisfy the remaining equa-
tion, Eq. (A.4)

ix
∂

∂y

(
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂ z

)
− x

∂A2

∂y
− iy

∂

∂x

(
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂ z

)
+ y

∂A2

∂x

=ix
∂

∂y

(
2α +2x2

α
′+2xyβ

′+2y2
α
′−2xyβ

′+
∂γ

∂ z

)
− iy

∂

∂x

(
2α +2x2

α
′+2xyβ

′+2y2
α
′−2xyβ

′+
∂γ

∂ z

)
− x
(
4x2yαα

′+2yβ
2 +4y3

ββ
′+2yα

2 +4y3
αα
′+4x2yββ

′+4yγγ
′)

+ y
(
2xα

2 +4x3
αα
′+4xy2

ββ
′+4xy2

αα
′+2xβ

2 +4x3
ββ
′+4xγγ

′) ,
=i
(

4xyα
′+4xyα

′+4x3yα
′′+4xy3

α
′′+2xy

∂γ ′

∂ z

−4xyα
′−4x3yα

′′−4xyα
′−4xy3

α
′′−2xy

∂γ ′

∂ z

)
= 0,

where a prime denotes differentiation with respect to
(
x2 + y2).

Therefore, the form of the vector potential required for
[
Ĥ, L̂z

]
= 0 is,

A =
[
xα
(
x2 + y2,z

)
+ yβ

(
x2 + y2,z

)
,yα

(
x2 + y2,z

)
− xβ

(
x2 + y2,z

)
,γ
(
x2 + y2,z

)]
,

(A.29)
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or, in cylindrical polar coordinates (r,θ ,z),

A =
[
rα
(
r2,z

)
,−rβ

(
r2,z

)
,γ
(
r2,z

)]
. (A.30)

This form of the vector potential satisfies the condition
[
Ĥ, L̂z

]
= 0 for wave-

functions with ∂ψ

∂x ,
∂ψ

∂y and ∂ψ

∂ z all independent of each other. Clearly, vector
potentials that are not of the form of Eq. (A.29) do not satisfy the condition.
But in order to ensure vector potentials of this form satisfy this condition for
an arbitrary wavefunction, we use the properties of the vector potentials to
solve the original commutator Eq. (A.3) for an arbitrary wavefunction. This
gives

[
Ĥ, L̂z

]
ψ =− i

{
2(xα + yβ )

∂ψ

∂y
−2(yα− xβ )

∂ψ

∂x

−2x
[(

2xyα
′+β +2y2

β
′) ∂ψ

∂x
+
(
α +2y2

α
′−2xyβ

′) ∂ψ

∂y
+2yγ

′∂ψ

∂ z

]
+2y

[(
α +2x2

α
′+2xyβ

′) ∂ψ

∂x
+
(
2xyα

′−β −2x2
β
′) ∂ψ

∂y
+2xγ

′∂ψ

∂ z

]
−xψ

∂

∂y

(
2α +2x2

α
′+2xyβ

′+2y2
α
′−2xyβ

′+
∂γ

∂ z

)
+yψ

∂

∂x

(
2α +2x2

α
′+2xyβ

′+2y2
α
′−2xyβ

′+
∂γ

∂ z

)}
− xψ

(
4x2yαα

′+2yβ
2 +4y3

ββ
′+2yα

2 +4y3
αα
′+4x2yββ

′+4yγγ
′)

+ yψ
(
2xα

2 +4x3
αα
′+4xy2

ββ
′+4xy2

αα
′+2xβ

2 +4x3
ββ
′+4xγγ

′) .
This simplifies to

[
Ĥ, L̂z

]
ψ =ixψ

∂

∂y

(
2α +2x2

α
′+2y2

α
′+

∂γ

∂ z

)
− iyψ

∂

∂x

(
2α +2x2

α
′+2y2

α
′+

∂γ

∂ z

)
,

=i
(

4xyα
′+4xyα

′+4x3yα
′′+4xy3

α
′′+2xy

∂γ ′

∂ z

−4xyα
′−4x3yα

′′−4xyα
′−4xy3

α
′′−2xy

∂γ ′

∂ z

)
,

=0.

Thus, the vector potentials of the form Eq. (A.29) fulfill the condition
[
Ĥ, L̂z

]
=

0, and, in these gauges, L̂z is a constant of motion.
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Gauge Transformations between
Vector Potentials for which Lz is a
Constant of Motion

In Appendix A, we found that
[
Ĥ, L̂z

]
= 0 only when A(r) is of the form of

Eq. (A.29). We now consider a gauge transformation between two gauges of
the form of Eq. (A.29). A vector potential of this form gives the magnetic field

B(r) = ∇×A(r) ,

= ∇× [xα + yβ ,yα− xβ ,γ] ,

=

[
2yγ
′− y

∂α

∂ z
+ x

∂β

∂ z
,x

∂α

∂ z
+ y

∂β

∂ z
−2xγ

′,2xyα
′−β −2x2

β
′−2xyα

′−β −2y2
β
′
]
,

=

[
2yγ
′− y

∂α

∂ z
+ x

∂β

∂ z
,x

∂α

∂ z
+ y

∂β

∂ z
−2xγ

′,−2β −
(
2x2 +2y2)

β
′
]
.

Since any modification to β would affect the −2β term in the z-component
of B(r), and B(r) must be unchanged by gauge transformations, β must be
constant in a gauge transformation.

A gauge transformation is given by A′ (r) = A(r)+∇χ and takes the form

∇χ = A′ (r)−A(r) ,

= [x∆α + y∆β ,y∆α− x∆β ,∆γ] ,

= [x∆α,y∆α,∆γ] , (B.1)

using that ∆β must be zero. We obtain χ (r) by integrating each of the compo-
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nents of the vector ∇χ in Eq. (B.1):

∫
x∆αdx =

λ
(
x2 + y2,z

)
2

,∫
y∆αdy =

µ
(
x2 + y2,z

)
2

,∫
∆γdz = ν

(
x2 + y2,z

)
.

Clearly then, the scalar field χ (r) must be a function χ
(
x2 + y2,z

)
.

Finally, we demonstrate that [r× jp]z is unchanged by gauge transformations
between gauges of the form Eq. (A.29). The paramagnetic current density
transforms according to j′p (r) = jp (r)+ρ (r)∇χ

[
r× j′p

]
z =
{

r× [jp +ρ (r)∇χ]
}

z ,

= [r× jp]z +[r×ρ (r)∇χ]z ,

= [r× jp]z +[r×ρ (r)(x∆α,y∆α,∆γ)]z ,

= [r× jp]z +ρ (r)(xy∆α− xy∆α) ,

= [r× jp]z .

So, when we are in any gauge of the form of Eq. (A.29), and when we transform
between any of these gauges, both L̂z and [r× jp]z are unaffected.
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Appendix C

Evaluation of Densities for Model
Systems

Having solved the Schrödinger equation for our model systems, we must use
the resulting wavefunction in order to determine an expression for the particle
density and, for the magnetic systems, the paramagnetic current density, in
order to study these quantities with the metric space approach to quantum
mechanics. In this Appendix, we will evaluate the densities for the model
systems that we study in Chapters 3, 4, and 5.

C.1 Conversion of Coordinates

In time-independent quantum mechanics, the particle density is defined as
the probability of finding one of the particles in the system within the volume
element dr1 about the point r1, independently of the positions of the other par-
ticles [1]. As such the particle density is a function of one of the particle coordi-
nates. However, Eqs. (3.25), (3.34) and (5.9) for the ground-state wavefunctions
of the 2D magnetic Hooke’s Atom, ISI system and 3D isotropic, non-magnetic
Hooke’s Atom respectively are in terms of relative motion and centre of mass
coordinates, (r,R).

Before we can proceed with the calculation of the densities for these systems,
we must therefore make a coordinate transformation. Following the approach
of Taut et al. [42], we will write the centre of mass coordinate in terms of the
relative motion coordinate and a particle coordinate.
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θ

2
r

R

r1

θ1̂

r1̂

r2

θ

r̂ θ̂

θ1

π-θ
2

Figure C.1: The relationship between the vectors R, r
2 and r1 and the unit vec-

tors for the r1 and r coordinates in 2D.

C.1.1 Two Dimensions

In two dimensions, the coordinates R, r
2 and r1 form a triangle in the plane, as

shown in Fig. C.1. Hence, we can write the coordinate R in terms of the others
using the cosine rule,

R =

√
r2

1 +
r2

4
− r1r cosθ . (C.1)

When evaluating the paramagnetic current density, we must also be able to
write the unit vectors associated to the relative motion coordinate in terms of
the unit vectors for the particle coordinate. From Fig. C.1, we can determine
that

r̂ =− cosθ r̂1 + sinθθ̂1, (C.2)

θ̂ =cos
(

π

2
−θ

)
r̂1 + sin

(
π

2
−θ

)
θ̂1,

=sinθ r̂1 + cosθθ̂1. (C.3)
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R

r1

2
r

2
r sinθ

2
r cosθ

θ

φ

x

Figure C.2: The relationship between the vectors R, r
2 and r1 in 3D.

C.1.2 Three Dimensions

The relationships between the vectors R, r
2 and r1 in three dimensions are shown

in Fig. C.2. We can determine the length of the line x using the cosine rule,

x2 = r2
1 +

r2

4
sin2

θ − r1r sinθ cosφ . (C.4)

Hence, using Pythagoras’ theorem,

R2 = r2
1 +

r2

4
sin2

θ +
r2

4
cos2

θ − r1r sinθ cosφ ,

R =

√
r2

1 +
r2

4
− r1r sinθ cosφ . (C.5)

C.2 Two-Dimensional Magnetic Hooke’s Atom

In terms of the particle and relative coordinates, the ground state wavefunction
for the magnetic Hooke’s Atom is given by,

ψ

(
r,

√
r2

1 +
r2

4
− r1r cosθ

)
=

1
π

√
ω̃

r
eimθ e−ω̃

(
r2
1+

r2
4 −r1r cosθ

)
u(r) , (C.6)

using Eq. (3.25) and the fact that this is a 2D system. We will use this form of
the wavefunction in order to evaluate the particle and paramagnetic current
densities.
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C.2.1 Particle Density

We evaluate the particle density of the magnetic Hooke’s Atom using [42],

ρ (r1) = 2
∫ ∫ ∣∣∣∣∣ψ

(
r,

√
r2

1 +
r2

4
− r1r cosθ

)∣∣∣∣∣
2

dr. (C.7)

Inserting Eq. (C.6) into Eq. (C.7) gives,

ρ (r1) =
2ω̃

π2 e−2ω̃r2
1

∫
∞

0
e−

ω̃r2
2 |u(r)|2

∫ 2π

0
e2ω̃r1r cosθ dθdr,

=
2ω̃

π2 e−2ω̃r2
1

∫
∞

0
e−

ω̃r2
2 |u(r)|2

(∫
π

0
e2ω̃r1r cosθ dθ +

∫ 2π

π

e2ω̃r1r cosθ dθ

)
dr,

At this point, we note that the theta integrals define a modified Bessel function
of the first kind. The definition of a modified Bessel function as an integral is
[112]

In (z) =
1
π

∫
π

0
ezcosθ cos(nθ)dθ . (C.8)

Returning to the density, and after recasting the limits of the second theta inte-
gral, we have,

ρ (r1) =
2ω̃

π2 e−2ω̃r2
1

∫
∞

0
e−

ω̃r2
2 |u(r)|2

(∫
π

0
e2ω̃r1r cosθ dθ +

∫
π

0
e2ω̃r1r cos(θ−π)d (θ −π)

)
dr,

=
2ω̃

π
e−2ω̃r2

1

∫
∞

0
e−

ω̃r2
2 |u(r)|2 [I0 (2ω̃r1r)+ I0 (2ω̃r1r)]dr.

Hence, the particle density of the magnetic Hooke’s Atom is given by,

ρ (r1) =
4ω̃

π
e−2ω̃r2

1

∫
∞

0
e−

ω̃r2
2 |u(r)|2 I0 (2ω̃r1r)dr, (C.9)

in agreement with Ref. [42].

C.2.2 Paramagnetic Current Density

With the wavefunction for Hooke’s Atom written in terms of the coordinates(
r,
√

r2
1 +

r2

4 − r1r cosθ

)
in Eq. (C.6), the paramagnetic current density is given

by [42]

jp (r1) =−i
∫

[ψ∗∇rψ−ψ∇rψ
∗]dr. (C.10)
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The gradient of the wavefunction is

∇rψ =
∂ψ

∂ r
r̂+

1
r

∂ψ

∂θ
θ̂ ,

=
1
π

√
ω̃e−ω̃r2

1

[
eimθ ∂

∂ r

(
e−

ω̃

4 r2
eω̃r1r cosθ u(r)√

r

)
r̂+

e−
ω̃

4 r2
u(r)

r
3
2

∂

∂θ

(
eimθ eω̃r1r cosθ

)
θ̂

]
,

and evaluating the derivatives gives

∇rψ =
1
π

√
ω̃

r
e−ω̃r2

1 eimθ e−
ω̃

4 r2
eω̃r1r cosθ u(r)×[(

−ω̃r
2

+ ω̃r1 cosθ +
1

u(r)
du
dr
− 1

2r

)
r̂+

(im− ω̃r1r sinθ)

r
θ̂

]
, (C.11)

and for the complex conjugate

∇rψ
∗ =

1
π

√
ω̃

r
e−ω̃r2

1 e−imθ e−
ω̃

4 r2
eω̃r1r cosθ u(r)×[(

−ω̃r
2

+ ω̃r1 cosθ +
1

u(r)
du
dr
− 1

2r

)
r̂+

(−im− ω̃r1r sinθ)

r
θ̂

]
. (C.12)

Forming the terms in the integrand of Eq. (C.10), we have,

ψ
∗
∇rψ =

1
π2

ω̃

r
e−2ω̃r2

1 e−
ω̃

2 r2
e2ω̃r1r cosθ u(r)2×[(

−ω̃r
2

+ ω̃r1 cosθ +
1

u(r)
du
dr
− 1

2r

)
r̂+

(im− ω̃r1r sinθ)

r
θ̂

]
, (C.13)

and,

ψ∇rψ
∗ =

1
π2

ω̃

r
e−2ω̃r2

1 e−
ω̃

2 r2
e2ω̃r1r cosθ u(r)2×[(

−ω̃r
2

+ ω̃r1 cosθ +
1

u(r)
du
dr
− 1

2r

)
r̂+

(−im− ω̃r1r sinθ)

r
θ̂

]
, (C.14)

Thus, we form the integrand in Eq. (C.10) by subtracting Eq. (C.14) from Eq. (C.13),
and get

ψ
∗
∇rψ−ψ∇rψ

∗ =
2imω̃

π2
1
r2 e−2ω̃r2

1 e−
ω̃

2 r2
e2ω̃r1r cosθ u(r)2

θ̂ . (C.15)

Equation (C.15) is a vector represented in the relative motion coordinates. Since
we will integrate over this coordinate, we wish to rewrite Eq. (C.15) in terms
of the particle coordinates (r1,θ1). Substituting the unit vector from Eq. (C.3)
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into Eq. (C.15) gives

ψ
∗
∇rψ−ψ∇rψ

∗ =
2imω̃

π2
1
r2 e−2ω̃r2

1 e−
ω̃

2 r2
e2ω̃r1r cosθ u(r)2 (sinθ r̂1 + cosθθ̂1

)
.

(C.16)

Now we have written the integrand in the desired coordinate system, we can
evaluate the paramagnetic current density using Eq. (C.10),

jp (r1) =−i
∫

∞

0

∫ 2π

0

2imω̃

π2
1
r

e−2ω̃r2
1 e−

ω̃

2 r2
e2ω̃r1r cosθ u(r)2 (sinθ r̂1 + cosθθ̂1

)
drdθ ,

=
2mω̃

π
e−2ω̃r2

1

∫
∞

0

e−
ω̃

2 r2
u(r)2

r
1
π

∫ 2π

0
e2ω̃r1r cosθ

(
sinθ r̂1 + cosθθ̂1

)
drdθ .

For the first term in the theta integral, we have from tables of integrals [112],

∫ 2π

0
e2ω̃r1r cosθ sinθdθ = 0, (C.17)

and Eq. (C.8) shows that the second term defines a first order modified Bessel
function,

jp (r1) =
2mω̃

π
e−2ω̃r2

1

∫
∞

0

e−
ω̃

2 r2
u(r)2

r
1
π

(∫
π

0
e2ω̃r1r cosθ cosθdθ +

∫ 2π

π

e2ω̃r1r cosθ cosθdθ

)
θ̂1dr,

=
2mω̃

π
e−2ω̃r2

1

∫
∞

0

e−
ω̃

2 r2
u(r)2

r
[I1 (2ω̃r1r)+ I1 (2ω̃r1r)] θ̂1dr,

Therefore, the paramagnetic current density for the magnetic Hooke’s Atom is
given by

jp (r1) = θ̂1
4mω̃

π
e−2ω̃r2

1

∫
∞

0

e−
ω̃

2 r2
u(r)2 I1 (2ω̃r1r)

r
dr. (C.18)

in agreement with Ref. [42].

C.3 Inverse Square Interaction System

The ground state wavefunction of the Inverse Square Interaction (ISI) system is
expressed in terms of the relative motion coordinate and a particle coordinate
as,

ψ

(
r,

√
r2

1 +
r2

4
− r1r cosθ

)
=

ω̃

π

√
1

Γ(µ +1)

(√
ω̃

2
r

)µ

eimθ e−
ω̃r2

4 e−ω̃

(
r2

1+
r2
4 −r1r cosθ

)
.

(C.19)
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C.3.1 Particle Density

By substituting Eq. (C.19) into Eq. (C.7), we see that the particle density of the
ISI system is given by,

ρ (r1) =2
(

ω̃

π

)2 1
Γ(µ +1)

(
ω̃

2

)µ

e−2ω̃r2
1

∫
∞

0
r2µe−ω̃r2

∫ 2π

0
e2ω̃r1r cosθ rdθdr,

=2
(

ω̃

π

)2 1
Γ(µ +1)

(
ω̃

2

)µ

e−2ω̃r2
1×∫

∞

0
r(2µ+1)e−ω̃r2

(∫
π

0
e2ω̃r1r cosθ +

∫ 2π

π

e2ω̃r1r cosθ

)
dθdr.

We again use Eq. (C.8) in order to introduce a modified Bessel function and
obtain an expression for the density,

ρ (r1) =
4ω̃2

π

1
Γ(µ +1)

(
ω̃

2

)µ

e−2ω̃r2
1

∫
∞

0
r(2µ+1)e−ω̃r2

I0 (2ω̃r1r)dr. (C.20)

C.3.2 Paramagnetic Current Density

The wavefunction of the ISI system is given by Eq. (C.19). The gradient of this
wavefunction is,

∇rψ =
∂ψ

∂ r
r̂+

1
r

∂ψ

∂θ
θ̂ ,

=
ω̃

π

√
1

Γ(µ +1)

(√
ω̃

2

)µ

e−ω̃r2
1×[

eimθ ∂

∂ r

(
rµe−

ω̃r2
2 eω̃r1r cosθ

)
r̂+ rµ−1e−

ω̃r2
2

∂

∂θ

(
eimθ eω̃r1r cosθ

)
θ̂

]
,

=
ω̃

π

√
1

Γ(µ +1)

(√
ω̃

2
r

)µ

eimθ e−ω̃

(
r2

1+
r2
2 −r1r cosθ

)
×[(

µ

r
− ω̃r+ ω̃r1 cosθ

)
r̂+

(im− ω̃r1r sinθ)

r
θ̂

]
,

and for the complex conjugate,

∇rψ
∗ =

ω̃

π

√
1

Γ(µ +1)

(√
ω̃

2
r

)µ

e−imθ e−ω̃

(
r2

1+
r2
2 −r1r cosθ

)
×[(

µ

r
− ω̃r+ ω̃r1 cosθ

)
r̂+

(−im− ω̃r1r sinθ)

r
θ̂

]
.
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Forming the terms in the integrand of Eq. (C.10) gives

ψ
∗
∇rψ =

(
ω̃

π

)2 1
Γ(µ +1)

(√
ω̃

2
r

)2µ

e−ω̃(2r2
1+r2−2r1r cosθ)×[(

µ

r
− ω̃r+ ω̃r1 cosθ

)
r̂+

(im− ω̃r1r sinθ)

r
θ̂

]
,

and

ψ∇rψ
∗ =

(
ω̃

π

)2 1
Γ(µ +1)

(√
ω̃

2
r

)2µ

e−ω̃(2r2
1+r2−2r1r cosθ)×[(

µ

r
− ω̃r+ ω̃r1 cosθ

)
r̂+

(−im− ω̃r1r sinθ)

r
θ̂

]
.

Therefore, the integrand of Eq. (C.10) is

ψ
∗
∇rψ−ψ∇rψ

∗ =2im
(

ω̃

π

)2 1
Γ(µ +1)

(
ω̃r2

2

)µ e−ω̃(2r2
1+r2−2r1r cosθ)

r
θ̂ ,

=2im
(

ω̃

π

)2 1
Γ(µ +1)

(
ω̃r2

2

)µ e−ω̃(2r2
1+r2−2r1r cosθ)

r

(
sinθ r̂1 + cosθθ̂1

)
.

(C.21)

We now evaluate the paramagnetic current density using Eq.(C.10),

jp (r1) =− i
∫

∞

0

∫ 2π

0
2im

(
ω̃

π

)2 1
Γ(µ +1)

(
ω̃r2

2

)µ

e−ω̃(2r2
1+r2−2r1r cosθ) (sinθ r̂1 + cosθθ̂1

)
drdθ ,

=
2mω̃2

π

1
Γ(µ +1)

(
ω̃

2

)µ

e−2ω̃r2
1

∫
∞

0
r2µe−ω̃r2 1

π

∫ 2π

0
e2ω̃r1r cosθ

(
sinθ r̂1 + cosθθ̂1

)
drdθ ,

=θ̂1
2mω̃2

π

1
Γ(µ +1)

(
ω̃

2

)µ

e−2ω̃r2
1

∫
∞

0
r2µe−ω̃r2 1

π

∫ 2π

0
e2ω̃r1r cosθ cosθdrdθ ,

Noting that the θ integral defines a first order modified Bessel function, we
have the following expression for the paramagnetic current density for the ISI
system,

jp (r1) = θ̂1
4mω̃2

π

1
Γ(µ +1)

(
ω̃

2

)µ

e−2ω̃r2
1

∫
∞

0
r2µe−ω̃r2

I1 (2ω̃r1r) . (C.22)
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C.4 Three-Dimensional Isotropic Hooke’s Atom

Using Eq. (5.9) and the coordinates
(

r,
√

r2
1 +

r2

4 − r1r sinθ cosφ

)
, the ground-

state wavefunction for the 3D isotropic Hooke’s Atom is

ψ

(
r,

√
r2

1 +
r2

4
− r1r sinθ cosφ

)
=

1
2
√

π

(
2ω

π

) 3
4 u(r)

r
e−ω

(
r2

1+
r2
4 −r1r sinθ cosφ

)
.

(C.23)

C.4.1 Particle Density

For the density, we have,

ρ (r1) =
1

2π

(
2ω

π

) 3
2

e−2ωr2
1

∫
∞

0
|u(r)|2 e−

ωr2
2

∫
π

0

∫ 2π

0
e2ωr1r sinθ cosφ sinθdφdθdr.

(C.24)
For the φ integral we make use of the definition of the modified Bessel function
as for the magnetic case, giving,

ρ (r1) =

(
2ω

π

) 3
2

e−2ωr2
1

∫
∞

0
|u(r)|2 e−

ωr2
2

∫
π

0
I0 (2ωr1r sinθ)sinθdθdr. (C.25)

In order to evaluate the theta integral, we use the series expansion of the mod-
ified Bessel function [112],

I0 (z) =
∞

∑
k=0

( z
2

)2k

(k!)2 . (C.26)

Returning to the density, and using tables of integrals [112],

ρ (r1) =

(
2ω

π

) 3
2

e−2ωr2
1

∫
∞

0
|u(r)|2 e−

ωr2
2

∞

∑
k=0

(ωr1r)2k

(k!)2

∫
π

0
sin2k+1

θdθdr,

=

(
2ω

π

) 3
2

e−2ωr2
1

∫
∞

0
|u(r)|2 e−

ωr2
2

∞

∑
k=0

(ωr1r)2k

(k!)2
22k+1 (k!)2

(2k+1)!
dr,

=

(
2ω

π

) 3
2

e−2ωr2
1

∫
∞

0
|u(r)|2 e−

ωr2
2

1
ωr1r

∞

∑
k=0

(2ωr1r)2k+1

(2k+1)!
dr,

=

(
2ω

π

) 3
2

e−2ωr2
1

∫
∞

0

1
ωr1r

|u(r)|2 e−
ωr2

2 sinh(2ωr1r)dr.

This form for the density is in agreement with Ref. [92].
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C.5 Helium-like Atoms

C.5.1 Particle Density

For the Helium-like atoms, the wavefunction given by Eq. (5.14) is expressed in
terms of the coordinates (2Zr1,2Zr2,cosθ). Hence, we can calculate the density
by integrating out two of these coordinates and transforming the remaining
radial coordinate from 2Zr1 to r1. We evaluate the density using the expression,

ρ (2Zr1) = 4π

∫
∞

0

∫ 1

−1
|ψ (2Zr1,2Zr2,cosθ)|2 (2Zr2)

2 d (2Zr2)d (cosθ) . (C.27)

Inserting Eq. (5.14) into this gives,

ρ (2Zr1) =
1

2π

∫
∞

0

∫ 1

−1
e−2Z(r1+r2) (2Zr2)

2×

i+ j+k6Ω,
i′+ j′+k′6Ω

∑
i, j,k,

i′, j′,k′

[
ci jkci′ j′k′Ni jkNi′ j′k′L

(2)
i (2Zr1)L(2)

j (2Zr2)Pk (cosθ)

L(2)
i′ (2Zr1)L(2)

j′ (2Zr2)Pk′ (cosθ)
]

d (2Zr2)d (cosθ) .

The polynomials L(α)
n (x) and Pn (x) obey the orthogonality relations [20, 79]√

m!
(m+α)!

√
n!

(n+α)!

∫
∞

0
xαe−xL(α)

m (x)L(α)
n (x)dx = δmn, (C.28)√

2m+1
2

√
2n+1

2

∫ 1

−1
Pm (x)Pn (x)dx = δmn. (C.29)

By using the orthogonality relations (C.28) and (C.29), we can evaluate the
integrals in the density, and obtain,

ρ (2Zr1)=
e−2Zr1

2π

i+ j+k6Ω,
i′+ j′+k′6Ω

∑
i, j,k,

i′, j′,k′

δ j, j′δk,k′ci jkci′ j′k′

√
1

(i+1)(i+2)(i′+1)(i′+2)
L(2)

i (2Zr1)L(2)
i′ (2Zr1) .

(C.30)

For the Helium-like atoms, we use the coordinates (2Zr1,2Zr2,cosθ), and hence
the density is given in terms of the coordinate 2Zr1. This is advantageous both
for implementing the variational method and calculating the density, as it al-
lows us to use the orthogonality relations (C.28) and (C.29) to evaluate the in-
tegrals. The density is expressed in terms of the coordinate r1 by transforming
the coefficients ci jk,ci′ j′k′ by multiplying them by (2Z)

3
2 .
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[108] R. W. Godby, M. Schlüter, and L. J. Sham, “Accurate exchange-
correlation potential for silicon and its discontinuity on addition of an
electron,” Phys. Rev. Lett., vol. 56, pp. 2415–2418, Jun 1986.

[109] M. J. P. Hodgson, J. D. Ramsden, J. B. J. Chapman, P. Lillystone, and R. W.
Godby, “Exact time-dependent density-functional potentials for strongly
correlated tunneling electrons,” Phys. Rev. B, vol. 88, p. 241102, Dec 2013.

[110] J. P. Coe, Entanglement and density-functional theory in two-electron systems.
PhD thesis, University of York, June 2009.

[111] H.-K. Rhee, R. Aris, and N. R. Amundson, First order Partial Differential
Equations. David & Charles, 2001.

[112] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products.
Academic Press, 2000.

147


