
Scheduling Analysis of Fixed Priority

Hard Real-Time Systems with
Multiframe Tasks -

Areej Zuhily.

Submitted for the degree of doctor of philosophy

University of York

Department of Computer Science

January 2009

Abstract

Scheduling analysis of real time systems has been studied by most re-

searchers assuming the tasks of the systems have constant worst case

execution time bounds during their cycle of execution. However, this is

not the case in a multiframe task where the execution time could be dif-

ferent from one instance to another, as in multimedia applications like

MPEG.

Some researchers have introduced sufficient scheduling analyses for

a restricted model of multiframe tasks. The contributions in this thesis

present scheduling analysis for a less strict model of multiframe tasks.
The analysis is presented in two steps. In the first step, exact scheduling
analysis is presented by response time analysis; where the worst case
response time of multiframe tasks is formulated. This formulation is

then extended to multiframe tasks that are subjected to blocking, release
jitter and arbitrary deadlines. Another extension of the formulation is

given to cover frame specific deadlines; where a multiframe task has

more than one deadline relative to its frames.

With large systems of multiframe tasks, the exact response time anal-

ysis becomes computationally intractable. So, in the second step we
present and compare some sufficient approaches that analyze the schedu-
lability of large systems with multiframe tasks. In this step we first

study the safety of each approach then we compare them to find out the

schedulability performance each of them provides.

2

Contents

1 Introduction

1.1" Multiframe Tasks
1.2 Fixed Priority Scheduling
1.3 Thesis Goal
1.4 Thesis Structure

2 System Model and Related Work

2.1 System Model
2.2 Related Work to Scheduling MF Tasks within Fixed Priority Schedul-

ing Scheme
2.3 Contributions of Response Time Analysis
2.4 Summary

3 Basic Exact Scheduling Analysis of AM Multiframe Tasks
3.1 Basic Response Time Analysis of AM Multiframe Tasks
3.2 Adding Blocking Time to the Response Time Analysis
3.3 Numeric Examples
3.4 Evaluating Exact Response Time Scheduling Analysis for MF Tasks .'
3.5 Summary

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks

4.1 Analysis of AM Multiframe Tasks with Release Jitter
4.2 Analysis of AM Multiframe Tasks with Arbitrary Deadlines
4.3 Combined Analysis of Release Jitter and Arbitrary Deadlines
4.4 Example
4.5 Summary

................................

15
16

17

18

20

23

23

28

37

54

55

56

59

60

64

70

71

72

77

82

86

89

3

Contents

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks 91

5.1 Identifying the Critical Frames
92

5.2 Exact Response Time Analysis of Non-AM Multiframe Tasks 96

5.3 Numeric Example
98

5.4 Evaluating the Number of Critical Frames
101

5.5 Summary
108

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks 113

6.1 Analysis of MF Tasks with Release Jitter
114

6.2 Analysis of MF Tasks with Arbitrary Deadlines 123

6.3 Example
127

6.4 Combined Analysis of Release Jitter and Arbitrary Deadlines
129

6.5 Example
132

6.6 Summary
135

7 Exact Analysis of Frame Specific Deadlines 137

7.1 Exact Response Time Analysis of MF Task with no Interference from

the Analysed Task 138

7.2 Exact Response Time Analysis of MF Tasks Having Deadlines Be-

yond the Period
143

7.3 Example
147

7.4 Policy of Assigning Priorities to the MF Tasks
149

7.5 Summary
150

8 Approaches for Sufficient Scheduling Tests 153

8.1 Maximum Approach
154

8.2 Re-ordering Approach
156

8.3 Complementary Approach 158

8.4 Max Accumulations Approach
161

8.5 Coverage of the Sufficient Approaches
164

8.6 Comparison Between Sufficient Scheduling Approaches
166

8.7 Summary and Recommendations
184

ý9
Evaluation, Conclusions and Future Work 189

4

Contents

9.1 Contributions of the Thesis
189

9.2 Future Work
191

9.3 Concluding Remarks
192

List of References 195

5

ALL MISSING

PAGES ARE

BLANK

IN

ORIGINAL

Acknowledgments

Many thanks to some organisations and people who contributed in achiev-
ing this thesis. First of all, huge thanks and gratefulness to Damascus

University who sponsored me during my study and to The University of
York who gave me the opportunity to get a degree from a5* department.

A particular gratitude to my supervisor Prof Alan Bums who pa-
tiently provided me valuable advice and support throughout years of

study. Also, many thanks to Dr. Robert Davis for the bright ideas we

end up with each time I got stuck with a problem.

A special thanks to the person who without him I would not have

finished this thesis, the one who enthusiastically encouraged me and

supported me as much as he could without any doubt, my husband,

Ehsan.

Finally, many thanks to the people who keep providing me all encour-

agement and support, my parents and family.

7

Declaration

Parts of this thesis have been published in some proceedings and jour-

nals . This material represents the author's contributions, but was pub-
lished jointly with the author's supervisor Prof. Alan Bums.

Material based on Chapter 3 was published in the international con-
ference "International Colloquium, on Theoretical Aspects of Comput-
ing (ICTAC)"[77]. Material based on Chapter 4 was published in the
international conference "IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA)"[78].

Parts of the material based on Chapter 5 was published as a technical

report [75]. Other parts of the material based on Chapters 5 and 6 were

published in the international conference "International Conference on
Real-Time and Network Systems (RTNS) "[79]. An extended version of

this RTNS paper has been invited to be published in Real Time Systems

Journal.

Theorem 16 in the appendix was published in the journal "Inforrna-

tion Processing Letters"[76].

9

List of Tables

2.1 Example System
25

2.2 Possible Interference from T,
25

2.3 Example Illustrates Lu's Analysis- Original System's Attributes ...
34

2.4 Merged System Using Kuo's Method
34

2.5 Example System
43

2.6 Tasks Description's
44

2.7 Example System of Arbitrary Deadlines
46

2.8 Original Example System
52

2.9 Transformed System Having Offsets
52

3.1 Example System
58

3.2 Example Systeml.
60

3.3 Example System2
61

3.4 Merged System
61

4.1 Example System Attributes
76

4.2 Example of Arbitrary Deadline
78

4.3 Possible Values of the Busy Periods
81

4.4 Example of Arbitrary Deadlines and Release Jitter
83

5.1 Possible Interference From Tj
92

5.2 Possible Interference From Tj
95

5.3 Example System
99

5.4- Cumulative Functions of Tj
99

5.5 Cumulative Functions of T2
100

5.6 Possible Response Times of T3
101

II

List of Tables

5.7 Numeric Example to Illustrate Algorithm 4.............. 105

5.8 Values of the Parameter: Locations-Sync-Release 105

6.1 Example System
117

6.2 Responses of T3 When No Release Jitter
118

6.3 Responses of T3 When J, =I...................... 118

6.4 Attributes of the Tasks in the System 127

6.5 Possible Busy Periods
128

6.6 Example System
133

6.7 Possible Busy Periods
134

7.1 Example System
142

7.2 Example System
............................

147

7.3 Values of t................................ 148

7.4 Values q)
........................... 148 4 Of W2, i;, f (C2

7.5 Example System 150

8.1 Original Example System 156

8.2 Transformed System I............. 156

8.3 Transformed System Using Re-ordering Approach 158

8.4 Example System 161

8.5 Transformed System Using Complementary Approach 161

12

List of Figures

2.1 Optimal Instant Situation of T3
43

2.2 Execution of T, and T2 at the Critical Instance of T2
44

2.3 Timeline Diagram of the System in Table 2.7
.............

47

2.4 Usage of Offsets for Increasing Schedulability
.............

50

2.5 Execution Scenario of the Transformed System in Table 2.9 53

3.1 Percentage of Schedulable Systems Regarding the Overall Utilisation

of the System after Applying Response Time and Lu's Tests (N=5) .. 67

3.2 Percentage of Schedulable Systems Regarding the Overall Utilisation

of the System after Applying Response Time and Lu's Tests
,
(N=20)

. 68

3.3 Percentage of Schedulable Systems Regarding the Overall Utilisation

of the System after Applying Response Time and Lu's Tests (N= 100) 69

4.1 Illustration of Release Jitter Problem 73

4.2 Illustration of Arbitrary Deadline Scenario- Timeline Diagram 78

4.3 Execution of the Tasks in the Example 83

5.1 Mean and Most Frequent Number of Critical Frames When the Range

of Execution Times is [1,10] and [100,200] 106

5.2 Number of Schedulable Tasks Versus Number of Critical Frames When

n=3 (10000 Tasks in Total) 107

5.3 Number of Schedulable Tasks Versus Number of Critical Frames When

n=5 and 7 (10000 Tasks in Total)
109

5.4 Number of Schedulable Tasks Versus Number of Critical Frames When

n=II and 13 (10000 Tasks in Total) 110

13

List of Figures

5.5 Number of Schedulable Tasks Versus Number of Critical Frames When

n= 17 and 19(10000 Tasks in Total)
5.6 Number of Schedulable Tasks Versus Number of Critical Frames When

n= 23 and 29 (10000 Tasks in Total) 112

6.1 Illustration of Release Jitter Problem 116

7.1 Timeline Figure of rA and TB's execution 151

8.1 Percentage of Schedulable Systems U=0.2 and N=5 and 10 170
8.2 Percentage of Schedulable Systems U=0.3 and N=5........ 171
8.3 Percentage of Schedulable Systems When U=0.4 and N=5.... 172
8.4 Percentage of Schedulable Systems When U=0.5 and N=5.... 173
8.5 Percentage of Schedulable Systems When N= 10 and U=0.3 and 0.4

174

8.6 Percentage of Schedulable Systems When N= 10 and U=0.5 and 0.6
175

8.7 Number of Schedulable Systems When N= 10 and U=0.3 176
8.8 Number of Schedulable Systems When N= 10 and U=0.4 177
8.9 Number of Schedulable Systems When N= 10 and U=0.5 178
8.10 Number of Schedulable Systems When N= 20 and 40 and U=0.3 . 179
8.11 Number of Schedulable Systems When N= 80 and 100 and U=0.3 . 180
8.12 Number of Schedulable Systems When N= 20 and 40 and U=0.4 . 182
8.13 Number of Schedulable Systems When N=80 and 100 and U=0.4 . 183
8.14 Number of Schedulable Systems WhenN= 20 and 40 and U=0.5 . 185
8.15 Number of Schedulable Systems When N= 80 and 100 and U=0.5 . 186

14

1 Introduction

Timing requirements are the basic aspects of real-time systems; where a real-time sys-

tem, RTS, is a system that is required to react to stimuli from the environment within
time intervals dictated by the environment [25]. For example, an application running

on an operating system, like real-time Unix, can be considered as a real-time system if

it is expected to respond to a command within a defined time interval. Process control
is another example of a real-time system where the computer controls the operations

of the sensors and actuators to ensure that the correct operations are performed at the

appropriate times. RTSs are divided, according to timing requirements, into: hard

and soft real-time systems. A hard real-time system is a system whose responses must

occur within specified deadlines. A soft real-time system is a system that functions

correctly if the deadline is occasionally missed [25,53]. Contributions in this thesis

are concerned with hard real-time systems.

From an analysis point of view, a RTS is usually represented by a set of tasks; and

each task consists of a number of jobs that are executed in a cyclic way. Execution

of the tasks is controlled by the operating system using some scheduling algorithms';

where the operating system controls and coordinates the use of the hardware among

the various application programs for the user tasks [59,68]. In other words, applica-

tion software is usually designed as a number of separate tasks that are scheduled by

the operating system [67,63] via the scheduler; which is the part of the kernel that
determines the next runnable task [46].

The real-time tasks are divided, according to the arrival times of the tasks, into

periodic tasks and sporadic tasks. The arrival times of periodic tasks are fixed so that

each task arrives into the system every fixed interval of time, called a period. On the
'A scheduling algorithm is a set of rules that determine the executing task at a particular moment

[52]).

15

I Latroduction

other hand, the arrival times of a sporadic task are not fixed, instead, the task has a

minimum interval of time to arrive in the system. Within the contributions of this

thesis, we primarily consider periodic tasks.

A basic ordinary periodic real-time task is usually characterised by three parame-
ters. The first parameter is the execution time of the task to characterise the time that

this task takes during the execution of its jobs. The second one is the period of the task

to characterise the arrival times of this task. The third one is the deadline of the task

to characterise the time in which this task has to complete the execution of its jobs.

Most research considers the execution time of the real-time task as a constant value
for all invocations of its jobs. However, for some real-world applications the execution
times of the task are not constant for all its jobs. We call the task whose execution time

could vary from one invocation to the next a multiframe task.

1.1 Multiframe Tasks

The fundamental principle in the real-time multiframe, MF, task is that its worst-case
execution time is different from one invocation to another, for instance, a task that

executes with the worst-case execution times of 10ms and 5ms is said to have two
different frames. An example, found in industrial applications (26], is a periodic task

that does a small amount of data collection in each period consuming a small execution
time, but then summarises and stores this data every n cycles using a much more
expensive algorithm that consumes a larger execution time.

Scheduling research into MF tasks started when Mok and Chen [56,57] introduced

this MF concept in 1996 as a generalisation of the classic Liu and Layland model [52].
They proposed a utilisation based schedulability test, for fixed priority scheduling, un-
der Rate Monotonic, RM, [52] priority assignment2. They gave a utilisation bound, as-
suming the execution time sequence of each MF task has a particular restrictive prop-
erty called Accumulatively Monotonic, AM. Subsequent papers have improved this

utilisation bound but their tests remain inexact (sufficient but not necessary). These

tests and the formal definition of the AM restriction will be given in Chapter 2.
2 In RM priority assigrunent, the greater period the task has, the lower priority it is assigned.

16

1.2 Fixed Pýiority Scheduling

An exarnple of scheduling MF tasks is found within the MPEG coding standard

where there are three types of video invocations (usually represented by the letters

I, P an&B). The I invocation usually takes much more decoding than the others, but

may occur only every 10 invocations. The assumption that all invocations are I in-

vocation leads to poor utilisation and the system could be theoretically unschedulable
whilst practically it is schedulable. In addition, recently some researchers show how

to efficiently utilise MF tasks using Dynamic Voltage Scaling, DVS, techniques for

energy-efficient scheduling [74]. Adopting MF tasks in the system reduces the overall
energy consumption of the system without missing its deadlines. Also, MF tasks may
implement state machines, as in some avionics and automotive applications, with a
well defined cycle of behaviour and worst case execution time bounds for each state.

1.2 Fixed Priority Scheduling

As scheduling is a fundamental function of an operating system to determine the or- 4,
der in which tasks execute, many researches are concerned with this area to either
construct schedulable systems or to analyze the schedulability of proposed systems.
The most popular scheduling policies are known as: Fixed Priority Scheduling (FPS),
Earliest Deadline First (EDF), and Value Based Scheduling (VBS). This thesis is con-
cerned with scheduling analysis of MF tasks for a fixed priority scheme.

Fixed priority scheduling, FPS, is a scheme where a priority is associated with each
task in the system and the CPU is allocated to the highest priority runnable task. In
FPS scheme all invocations of each task are assigned the same priority [53] so the

priority of each task is fixed relative to other tasks in the system.

Fixed priority scheduling is recommended for many years as it is able to predict
the ability to meet application response requirements [54]. From this recommenda-
tion, different operating systems support this fixed priority scheduling. For exam-
ple, OSCAN, which is a preemptive3 real-time multitasking operating system4, offers

31n the preemptive systems, if a higher priority task is released during the execution of a lower priority
task, there is an immediate switch to the higher priority task and the lower priority task has to wait
until the higher priority task has finished its execution. 4 In the preemptive multitasking operating system, tasks are preempted by the scheduler, and this
preemption is accomplished with the aid of a timer interrupt [3 5].

17

1 Introduction

priority-controlled task management [1]. Many commercial operating systems sup-

port FPS, for example, VxWorks, which is a real-time operating system, has a priority
based preemptive scheduler[I 1]. PSOS, which is an object oriented operating system,

schedules tasks using priority based criteria [15].

Likewise, there are academic operating systems supporting FPS, for example, server

scheduling in the real-time operating system SHaRK can be based on fixed priority

servers [2]. MaRTE [64] is another operating system that supports FPS. Lynx. OS

[3], which is POSIX compatible, multitasking operating system, uses priority based

scheduling [15].

1.3 Thesis Goal

The most popular paradigms for analysing the schedulability of real time systems are
utilisation analysis and response time analysis. Having exact attributes of a system, the

utilisation based analysis provides a sufficient but not necessary scheduling test whilst

response time analysis provides an exact scheduling test in many situations. This

thesis is concerned with the exact scheduling analysis of hard real-time systems with
MF tasks supported by preemptive FPS, where a hard real-time system is considered
as schedulable if all its MF tasks meet their relative deadlines.

Thesis Hypothesis

"The schedulability ofreal-time systems with multiframe tasks can be exactly analysed
usingformulated response time analysis. that is extensible to a wide variety of situa-
tions. nere response time analysis is intractable, appropriate non-optimal heuristics

exist and allow all systems to be analysed. "

As the response time scheduling test is an exact test and the worst case response
time analysis of MF tasks has not been fully studied yet, the objective of the thesis
is to provide worst case response time analysis of MF tasks, so the schedulability of
systems with MF tasks can be decided. However, exact response time analysis of large

systems with un-restricted MF tasks is intractable, so the other objective of the thesis

18

1.3 Thesis Goal

is to provide some approaches to determine the schedulability of large systems with

general MF tasks. The objectives of the thesis can be achieved in three steps as in the
following:

1. In the first step, we present exact worst case response time analysis for systems

with AM multiframe tasks. Analysis in this step starts from introducing a basic

response time analysis and ends up with the response time analysis of AM mul-
tiframe tasks with blocking, release jitter, and arbitrary deadlines (i. e. including
deadline greater than period).

2. Then in the second step, we relax the AM restriction and extend the response
time analysis to cover non-AM multiframe tasks. In this step, a new concept
called criticalframe is used. In general, testing the schedulability of a set of
MF tasks requires all possible phases of the tasks to be examined, which leads

to an exhaustive enumeration problem (i. e. an intractable problem). However,
for a particular application, not all invocations may need to be examined. We

show how the critical frames, that can give rise to the worst-case response times

of lower priority tasks, can be identified and their usage reduces the processing
required for the response time analysis. Analysis. in this step is developed in

two ftu-ther directions, the first direction is to be applicable to MF tasks with
blocking, release jitter and arbitrary deadline; whilst the second direction is

to cope with the scenario of having different deadlines per MF task where the
deadline is relative to the frame of the MF task.

3. Having an intractable scheduling problem for large systems with non-AM mul-
tiframe tasks, some tractable but sufficient approaches are introduced in this

step. Three of these tests depend on transforming all multiframe tasks in the

system into AM tasks, which have only one critical frame, and then applying
the exact response time formula on the transformed systems. The fourth ap-
proach depends on off-line calculation of the maximum interference from all
higher priority MF tasks within the deadline of the analysed task. These differ-

ent approaches are then compared.

19

I Latroduction

1.4 Thesis Structure

This thesis is divided into nine chapters starting from this introduction and ending

up with the conclusions of the contributions, whilst chapters in between are arranged

according to the dependency and generalisation level. Chapter 2 defines the system

model that is used throughout the thesis and presents a historical study of related

research that has been done in fixed priority scheduling of multiframe tasks.

In Chapter 3, the exact scheduling analysis of a specific restricted model (i. e. Accu-

mulatively Monotonic (AM) model), is given. The goals of this chapter is to present
the basic response time formula of the AM multiframe tasks and show the performance
of this exact scheduling analysis by a comparison with the most recent published, but

non-optimal, schedulability analysis. Exact analysis in this chapter considers the situ-
ation where tasks share resources, which causes blocking to the MF tasks. Chapter 4

extends the analysis of the AM model, that is given in Chapter 3, to include blocking,

release jitter and to cope with the arbitrary deadline scenario.

Chapter 5 relaxes the restriction of AM and presents the basic exact response time

analysis of non-AM multiframe tasks, where the number of fi-ames that have to be

considered in such analysis is reduced using the critical frame concept. An evaluation
of this analysis is given in this chapter by investigating the number of critical ftýmes of

randomly generated multiframe tasks. Further, this analysis is extended in Chapter 6 to

again include blocking, release jitter and to cope with the arbitrary deadline scenario.

Chapter 7 presents an exact response time analysis of MF tasks, where each frame

of a MF task has its own deadline which could be different from other deadlines of
the frames of the same MF task. A new concept called coveringframes is used in the

analysis to reduce the number of frames that have to be analysed per MF task. An

optimal priority assignment is also considered in this chapter.

As the schedulability analysis becomes intractable for large systems, Chapter 8 in-

troduces four approaches for sufficient schedulability tests of systems with non-AM
multiframe tasks. A comparison between those four approaches is presented in this

chapter to show the percentage of their scheduling performance rates.

The final evaluations and conclusions of the contributions in this thesis are given in

20

1.4 Thesis Structure

Chapter 9. Further directions for future work are also presented in this chapter.

21

2 System Model and Related Work

This chapter defines the model of the basic system that is analysed in this thesis and
provides a review for all related contributions to this thesis. The following section
introduces the basic system model whilst Sections 2.2 and 2.3 present a historical

review of the related work.

2.1 System Model

The basic system model that is considered in this thesis is a system that consists of
N multiframe tasks that execute on a uniprocessor using the preemptive fixed priority
scheduling policy. Each MF task Ti consists, in its turn, of a sequence of nj frames

that are distinguished by their execution times; where a MF task, 'ri, has ni worst

case execution times, Cik; k = O.. nI - 1. All frames in the same MF task have the

same priority which is represented by the priority of the MF task and these priorities

are assigned according to a priority assignment such as Rate Monotonic (RM) [52,

45] which is an optimal priority assignment for certain systems with MF tasks (57].
Priorities of the MF tasks in the system are ordered consecutively with Tj having the

highest priority in the system and TN the lowest priority (i. e. 1 in r, refers to the
highest priority and N in TN refers to the lowest priority).

MF tasks in the system are permitted to share resources, so there could be a situation
where the execution of a MF task is stopped by a lower priority task and we say
that the MF task is blocked by a lower priority task. However, due to using some
priority ceiling protocols, a MF task has an opportunity to be blocked at most once
per invocation during its execution. So, we assume in the model that each MF task Tj
is considered to have a maximum blocking time equal to Bi. Further explanation for

23

2 System Model and Related Work

blocking and priority protocols is given in Section 2.3.2. All system overheads such

as context switch are ignored and assumed to be zero as we assume that there is an
immediate switch between the MF tasks in the system.

Without loss of generality, we assume that the sequence of the execution time values
is always within shortest fon-n; where the shortest form of a sequence is the shortest

sub-sequence when repeated a number of times generates the original sequence. This

is because from the analysis point of view, the behaviour of the execution of a MF

task whose execution times consist of repetitive subsequences is the same as the be-
haviour of the original sequence. For example, the execution behaviour of the MF task

whose execution times are presented by the sequence (8, l, 4,3,8, l, 4,3) is the same
as the execution behaviour of the subsequence (8,1,4,3). The extracted subsequence,
(8,1,4,3), is referred to as the shortest form of the sequence (8,1 7 4,3,8 7 1,4,3).

Frames of the same MF task, Ti, arrive in the system with minimum inter ar-
rival time, Ti, and as soon as they have arrived, they are released having a relative
deadline Di. T, is presented as constant for all frames of a MF task. So, a MF

task Tj is characterised by a triple < Ci, Ti, DI >, where Ci is a vector of nj values,
Ci = (COICI'..

'C,
"i-1), whilst Tj and DI are vectors with one value. As an initial re-

striction on the model, Di is considered to be less than or equal to Ti so no execution
(i. e. interference) from the analysed task itself is considered when analysing its worst
case response time.

Later on in Chapters 4,6 and 7, the basic system model is extended from three

points of view. Firstly, in Sections 4.1 and 6.1 the MF task Tj is considered to have

release jitter, Ji, so the minimum time between two successive releases of a MF task is
less than the fixed time interval Ti. Secondly, in Sections 4.2 and 6.2 Ti is considered to
have Di > Ti so Ti could have interference from previous frames during the execution
of Ti itself. Thirdly, in Chapter 7 each frame of a MF task has a deadline that could be
different from other frames in the same MF task, so Di is a vector of ni values that are
relative to the frames of the MF task, Ti but no blocking or release jitter are considered
in this chapter.

As this thesis is about the scheduling analysis of MF tasks from the worst case
response time point of view, a definition of the symbol Ri is given in the following. Ri

24
.1

2.1 System Model

of the MF task Tj is defined as the longest time from when any frame of Tj is released

until it finishes its execution, so Ri has only one value per MF task Ti. However, in

Chapter 7 the MF task Tj has ni deadlines relative to each frame of Ti, so RI in this case
is a vector of ni values relative to the deadlines of Ti.

To illustrate the problem of analysing the response time of MF tasks, Table 2.1

represents a simple example system with 2 tasks -rI and T2 where T, is a MF task with
4 frames represented by the execution time values 8,1,4 and 3, and T2 has just one
frame.

_task,
ri Ci I Tj = Di priority

Tj 8,1,4,3-1 -10 1
T2 x1 20 2

Table 2.1: Example System

Initial Frame Location exe. seq. I inv. 2 inv. 3 inv. 4 inv.
0 8,1,4,3 8 9 13 16
1 1,4,3,8 1 5 8 16
2 4,3,8,1 4 7 15 16
3 3,8,1,4 3 11 1 12

Table 2.2: Possible Interference from -r,

Finding the worst case response time R2 of T2, whatever its execution time is, re-

quires finding the maximum amount of possible interference from TI. Table 2.2 shows

values of interference that Tj generates from different initial frames in the execution

sequence (exe. seq. and inv. respectively stand for execution time sequence and
number of invocations). It can be seen from Table 2.2 that the maximum amount of
interference ri generates, in the case of one invocation (i. e. 1 inv.), is when it is firstly

released having an execution time of 8. While the maximum amount of interference,
in the case of two invocations, is when it is firstly released having an execution time

of 3 followed by 8. The maximum amount of interference, in the case of three in-

vocations, is when -rl is firstly released having an execution time of 4 followed by 3

25

2 System Model and Related Work

followed by 8. While, in the case of four invocations, the amount of interference from

Tj remains the same (i. e. 16 in this example) whatever the release frame is.

Frames that could generate the maximum amount of interference are called critical
frames; which are, in this example, frame whose execution times are 8,4, and 3, but

not 1 since any of 8,4,3 can be considered as a critical frame on behalf of I (full

details of the reasons are given in Chapter 5). A frame of a MF task Tj is considered

as critical when it has two properties; firstly, it can generate the maximum amount

of interference within lower priority task for at least one number of Tj's invocations;

and secondly there are no other frames in Tj that generates greater or equal amount of
interference for all possible number of Tjs invocations.

So, to calculate the amount of interference a frame release generates within the

response time of a lower priority task, we have to know the relative number of invo-

cations (i. e. interference) the MF task is experiencing within this response time. For

this reason we define a cumulativefunction of the XIh frame releasel of a MF task Tj
to represent the amount of interference this frame generates. Definition 1 illustrates

this cumulative function.

Definition 1. Given a AlF task Tj with nj execution times (CO CI C (nj-1)). The p p. -I j
cumulative function (4j) of the P frame release for a given number of rj's invo-

cations, k, is the amount of interference that the AlF task generates startingfirom that
firame andproceedingfor that number of invocations and is given by Equation (2.1)

x+k-I
Cý mod nj

f=X

where x=0,.., nj - 1, and k=1,2, - -, for example, the value of 4,0 (2) for the MF task

T, in Table 2.1 is 9. In fact, for an ordinary single frame task the cumulative function
is well defined as gj(k) = kCj because of the constancy of Cj for all frames of the

multiframe task.

From the criticality point of view, a frame in a MF task is considered critical when
it can give rise to the maximum interference within lower priority tasks and so it can

I. T, h frame release is the frame that is released with the P execution time of the MF task.

26

2.1 System Model

lead to the worst case response time of a lower priority task. On the other hand, when
the cumulative function of a frame of a MF task is always greater than the cumulative
function of all other frames of the same MF task for at least one possible number of
interference, this frame definitely generates the maximum interference within lower

priority tasks for that number of interference. The following definition formally intro-
duces a condition on a frame of a MF task to be a definitely critical frame.

Definition 2. The Xth frame of a MF taskrj, whose execution time sequence is

in its shortest form, is definitely critical if 3 k= 1,2,.., nj- I, Vy 54x:

4ý(k) > 4jy(k)
i (2.2)

For example, the first frame (i. e. the frame whose location is 0) of the MF task Ti in
Table 2.1 is a critical frame because 3k=1, Vy =/- 0; 41 (1) > gy (1).

We call the frame whose execution time is maximum the Peak Frame.

Definition 3A Peak frame of a MF task is one oftheframes, in the AlF task, whose
execution time is the maximum of the execution times of this MF task.

For example, the MF task r, whose execution time sequence is (8,4,8,3), has two

peak frames with locations 0 and 2, where their execution times are both 8.

Note from Definition 2 that having the execution time sequence in its shortest form

means that if we have more than one peak frame then at least one of the peak frames

must be a critical frame; otherwise the execution time sequence is not in its shortest
form. For example, in the above MF task r whose two peak frames with locations 0

and 2, the first peak is critical but the other one is not.

Mok and Chen [56] force one of the peak frames of a MF task to be the only critical
frame of this MF task by introducing the accumulatively monotonic, AM, condition
on the execution time sequence. The AM condition depends on the peak frame being
the only frame that generates the maximum amount of interference for all possible
number of interference (i. e. invocations). Informally, all frames of the AM multiframe
task are dominated by one of its peak frames. The AM restriction is mathematically

27

2 System Model and Related Work

formalised by an equation using the mod function to reach the execution time values
from its sequence. Equation (2.3) represents this AM restriction

M+j i+j
C(k mod n) > C(l mod n); (2.3)

k=m

Vi, j=0,1,2,.., n-1;

where C' is one of the peak values in a list of execution times (CO, C',.., Cn- I) that

satisfies Equation (2.3). For example, for the AM multiframe task whose execution
time sequence is C= (8,4,8,3), m=0 and CO = 8, also the frame whose execution
time is CO is the only critical frame of this AM multiframe task.

2.2 Related Work to Scheduling MF Tasks within
Fixed Priority Scheduling Scheme

The most popular scheduling tests for real-time systems within fixed priority policy

are the utilisation test and the response time test. In the utilisation test, the system can
be scheduled if the overall processor utilisation of the system is less than a pre-defined

upper bound. In the response time test, the system can be scheduled if all its tasks meet
their relative deadlines, and the task meets its deadline if its worst case response time
is less than or equal to its relative deadline.

As this thesis is concerned with the worst case response time scheduling analysis

of multiframe tasks within fixed priority policy, previous contributions within fixed

priority scheduling policy must be covered within two fields. The first field is the

contributions of scheduling MF tasks, which covers the contributions within the util-
isation domain and other scheduling contributions related to MF tasks. The second
field is response time analysis.

The MF model is a generalisation of Liu and Layland's model where in Liu and
Layland's model the execution time of the task is constant for all its jobs, so the first

contribution to start the review with is Liu and Layland's contribution. Liu and Lay-
land [52] were the first who employed FPS on the uni processor system, the following

28

2.2 Related Work to Scheduling MF Tasks within Fixed Piioifty Scheduling Scheme

section explains Liu and Layland model.

2.2.1 Liu and Layland Contributions

Liu and Layland introduced a simple system model with the following assumptions:

1. tasks of the system are periodic, independent, fully preemptive and with no

overheads;

2. no sharing of resources is permitted, so the runnable task is always the highest

priority task;

3. all tasks are released at the beginning of their relative periods;

4. deadline of each task is equal to its period;

5. no task may suspend itself.

Worst case execution time of each task is considered as constant for all itsiobs, so they

do not vary from one invocation to another of the task. Tasks in this model are assigned

priorities according to what is called Rate Monotonic, RM. In RM priority assignment,

priorities are assigned to the tasks according to their periods; where the shorter period
the task has, the higher priority it obtains. The executing task at a specific moment
is the runnable task whose priority is the highest one. Liu and Layland [52] and
Labetoulle [45] showed, for a single processor, that if a task set can be scheduled with

any priority assignment it is scheduled with the RM assignment. In this sense RM is

optimal.

Liu and Layland [52] and Serlin[65], with the RM algorithm for FPS, introduced

a sufficient but not necessary utilisation scheduling test. The test was based upon
the upper bound of the processor utilisation factor; where they proved that a task set
is schedulable if its processor utilisation is less than or equal to a pre-defined upper
bound. This test is represented by Equation (2.4).

ci I
- :5 N(277 - 1). (2.4)
T

29

2 System Model and Related Work

Where Cl stands for the execution time of the Oh task, Tj represents the period of the
Ih task, and N is the number of tasks in the system. When the number of tasks N,

becomes very large, the upper bound of the processor utilisation factor simplifies to

0.693. This utilisation scheduling test is inexact as it is sufficient but not necessary,
henýe it is pessimistic. For example assume we have a simple system with two tasks,

ri
T'

each task has a worst case execution time equals half of its relative pe od (i. e. CI = 2'

and C2 12)
and one of the periods is half of the other period (i. e. T2 = 2TI) then the 2

task set, depending on Liu and Layland's test (i. e. Equation (2.4)), is unschedulable.
However, the set is in practice schedulable as when the two tasks are released at the

same time (which is the worst case situation) the first task executes for one half of its

period and the second task executes for the other half of its period and both of them are

schedulable. Lehoczky et al. [48] estimated the average maximum utilisation for rate

monotonic fixed priority scheduling and they showed by simulation that this average
is around 88% for uniformly distributed tasks.

Within the context of the preemptive system, the critical instance of a task is defined

as the instant when this task is preempted the most so the processor is occupied the

most with the execution of this task. Liu and Layland proved in their model that the

critical instance, for any task, occurs, when the task is released simultaneously with

all higher priority tasks in the system. So, the critical instance of the system is when

all tasks in the system are simultaneously released at the same time.

However, this model restricts the worst case execution time for each task to be con-

stant for all its jobs. In 1996 Mok and Chen [56,57] relaxed this constancy restriction
to introduce the multiframe model; and proposed a utilisation based schedulability
test, for fixed priority scheduling, under RM priority assignment assuming the AM

restriction for all multiframe tasks in the system. The following section covers Mok

and Chen's contribution.

2.2.2 Mok and Chen Contribution

In Mok and Chen's model [56,57], execution time values of each task in the system

are not presented as a constant value any more. Instead the execution time values
of each task are presented as a vector and the values of this vector satisfy the AM

30

2.2 Related Work to Scheduling MF Tasks within Fixed Pziozity Scheduling Scheme

restriction that is given by Equation (2.3). In the AM multiframe task, one of the peak
frames always generates the maximum amount of interference within the execution

of lower priority tasks, for any number of its invocations (i. e. interference). So, an
AM task has only one critical frame which is the peak frame whose execution time

satisfies Equation (2.3). For example, the critical frame of the multiframe task whose

execution time sequence is C= (8,4,8,3), is the first frame whose execution time is

8 (i. e. the 8 that is followed by 4 but not the 8 that is followed by 3).

In Mok, and Chen's model, all jobs of a MF task are assigned the same priority

which is called the priority of the MF task. Mok and Chen proved that the optimal

priority assignment of a system with AM multiframe tasks is RM, where the lower

period the MF task has the higher priority it is assigned. Also, they considered the

critical instance of an AM multiframe task as the instant from when its critical frame is

released simultaneously with the critical frames of all higher priority AM multiframe
tasks. So, this AM multiframe task is schedulable if it is schedulable at its critical
instance.

The main contribution of Mok and Chen was in the utilisation domain. They

proved an upper bound for the peak utilisation of a system with AM multiframe
tasks. They proved that the system is schedulable if its peak utilisation factor which

Ri-I li maxj--o JCIj
is given by

I
U, Z-1

Ti , is less than or equal to an upper bound given by

r. N. ((E±-')N- 1). Equation (2.5) represents the schedulability test of a system with N
r

AM multiframe tasks.

NnIiI maxj'-o JCj'}
.. N. ((r+l (2.5)

Tr

where r is the minimum ratio, over all AM multiframe tasks in the system, of the

execution times of the critical frame and the frame that follows the critical. r is given
byr=m* N- CIO

inj=1 jrj; ri, in its turn, is given by ri =1 if N=I or ri = ýCj if N>1. Note

that Equation (2.5) returns to Liu and Layland's test when the execution times of each
MF task are constant. This is because, for Liu and Layland's model, r=I as C. 0 = C!

ni-I and maxý=O {CJ, } = Ci.

Although Mok and Chen's utilisation test is an improvement test of Liu and Lay-

31

2 System Model and Related Work

land, both tests are inexact (i. e. sufficient but not necessary) as well as being only

applicable to RM priority assignment. However, Mok's utilisation bound has been

improved by subsequent papers but these tests remain inexact. The following section

covers subsequent contributions for scheduling MF tasks including the contributions

that improved Mok and Chen's utilisation bound.

2.2.3 Subsequent Contributions for Scheduling MF Tasks

As Mok and Chen's test was the first scheduling test for MF tasks, Han [37] presented

another scheduling test and compared its results with the results of Mok and Chen's

test. Han's scheduling test [37] was also under RM priority assignment and was better

than Mok's test in the sense that multiframe task sets with peak utilisation (i. e. the

utilisation of the peak frame) larger than Mok's bound were not feasible using Mok,

and Chen's utilisation bound but can be found feasible by Han's test. The test was not
based on utilisation test, it was based upon transforming the AM system to a system

with harmonic periods, using a proposed algorithm for the transformation process,

and then if the transformed system is schedulable, the original system is schedulable.
Although Han showed by evaluation that his test is always better than Mok and Chen's

test, Han's model restricts periodic AM multiframe tasks in the system while Mok's

model is applied to sporadic AM multiframe tasks as well as periodic. However, both

tests are inexact and only applicable to RM priority assignment as well as assume a

non-flexible model as the model has to satisfy all restrictions of Liu and Layland's that

are given in Section 2.2.1 apart from having non constant execution times and also all

execution time sequences have to be AM.

Another scheduling test was given by Kuo et al. [44] who improved Mok's utilisa-
tion bound; where they gave another improved utilisation bound for a schedulability
test of systems with AM multiframe tasks. The main idea of the test was to merge the

tasks whose periods are harmonic (i. e. one of the period is a multiple of the others) to

reduce the number of tasks that has to be considered in the schedulability test and then

apply Mok's bound to the merged tasks. The combined task, under Kuo's test, will
have a period of t and a sequence of execution times 6i with the size h; where 1, is the

maximum period of the merging tasks, h is the least common multiple of the number

32

2.2 Related Work to Scheduling MF Tasks within Fixed Pziozity Scheduling Scheme

of execution times of the merged tasks, and 6i is given by the following formula

N (ý)+k) mod nj 1(1 Cý

i= I k=O

where j=0,1, - -, h-1, N is the relative number of tasks that are under merging proce-
dure, ni and Tj are respectively the relative number of frames and the relative period of
the ýh AM multiframe task. The example below gives more explanation about these

calculations.

In 2007, Lu et al. [55] improved Kuo's utilisation test and presented new schedul-
ing conditions for AM multiframe tasks within the utilisation domain and assuming
RM priority assignment. They considered the ratio of the periods in their test. The
improvement was that they used Kuo's method to merge the tasks and then they ap-
plied their test to the merged tasks. The schedulability status, under their approach,
depends on the total peak utilisation, U, of the AM multiframe tasks being less than a
defined upper bound. They called this upper bound the Conditional Bound function,

CB. Symbolically, the AM task set is schedulable if inequality (2.6) is satisfied.

U< CB; (2.6)

where the total peak utilisation, U, is the summation of all peak utilisations of the

multiframe tasks in the system; and it is given by

R 6ii U=l max 1-0.
j=jo: a5ni-I Tj

Whilst the CB function is defined by Equation (2.7); for number of tasks, N>1,

and with regard to two parameters r and z.

CB(r, z) =z+r(z- 1)+r(fV- 1)(((2.7)
z

where hi and ti are respectively the number of frames and the period of the eh MF
task. r is given as

r= minl<i<k jrj}, where ri is defined depending on hi as

33

2 System Model and Related Work

ri = Rjor hi > 1, and ri = ljor hi = 1.

z is given as

z= max Imin, V. ' 1, where Vi is called a virtual period and is given by
Tr N

Vi

Section 3.4 in Chapter 3 compares between the response time scheduling test of AM

multiframe tasks and Lu's scheduling test as Lu's analysis is the most recent published

scheduling analysis for MF tasks within FPS. So, we fully illustrate Lu's test by the
following detailed example to give more explanation of the test.
Example
Table 2.3 represents an example system that consists of five tasks with their attributes.

task C T=D
Tj (1) 3
T2 (2) 9
T3 (3,1) 18
T4 (2,1) 20
T5 (6,3) 60

Table 2.3: Example Illustrates
Lu's Analysis- Original
System's Attributes

task c T
fl (7,5) 18
f2 (31,27) 60

le 2A Merged System Using
Kuo's Method

Using Lu's approach, ri, T4, and T5 are merged using Kuo's method [44] to f2 with

a period equal to the maximum period of TI, T4 and T5; which is 60 in this example.
f2 has number of execution times equal to the least common multiple of n I, n4 and n5;

which is 2 in this example. Values of f2's execution times are found by applying

60 (67
, -1 (670 -1 60 (j(60

r4 (j(
0)

5))+k) mod ni (j(60)+k) mod n4)+k) mod n5 7A IC4 Cl M
6-,

)+(I Cý C2

k=O k=O k=O

for j=0,1.

Therefore, 620
= 31 and 621

= 27. Also, T2 and T3 are merged, using Kuo's method,
to fj with the number of execution time equal to ifl =2 and execution time values

34

2.2 Related Work to Scheduling MF Tasks within Fixed Primity Scheduling Scheme

di = (7,5) and a period of 18. Table 2.4 represents the attributes of the merged tasks.

Once the merged tasks are identified, the scheduling test is to check if the total peak

utilisation, U, is less than or equal to a pre dcfined conditional bound, CB. U, is the

summation of all peak utilisations of the multiframe tasks in the system; and it is given
by

2 31
U=j max +-= 0.905.

i= I 0: 5j: 5? h -I TI 18 60

CB is found depending on two parameters r and z.

r is given as r= minj., ýI., ýR frij, where ri is the ratio of the first two execution times

of fi and is defined by
CO

ri = 4, so rl = Z, r2 = 31
Cil 5 27'

Therefore, r= min 12, R 1.148. 5 27
V z is given by z =max Iminj<,

<g-j J-ýL}, r 1, where Vi is called a virtual period and Tj
, ý; I+r

is given by
Vi =L

ýr' I Pi L TO, j Pi
-So, VI L LO j 18 =54. T1 18

Therefore, z max
&T1.148 0.9.
60 1+1.14T

Once r and z are identified, CB (r, z) is given by
CB (r, z) z+ r(z - 1) +

0.9 + 1.148(0.9-1) + 1.148(2-1)((-oLq-)7-r-1)
z

= 0.912.
Therefore, the total peak utilisation of the system is less than the conditional bound
function (CB) of the merged tasks (i. e. U< CB) which means using Lu's test that the

- original system that is given by Table 2.3 is schedulable.

Moving on to non-AM multiframe tasks, Takada et al. [69] investigated the schedu-
lability of the general MF tasks and gave a necessary and sufficient condition for

the schedulability of the MF model, under the fixed priority scheme. They showed
that the complexity of the feasibility decision becomes at leaSt2 r1ly

,I ni. They also
introduced an efficient feasibility decision algorithm using a maximum interference
function. However, Takada's estimation of the complexity of the exact analysis is pes-

2N r1i=1 ni means the product of all numbers of frames over all tasks in the system.

35

2 System Model and Related Work

simistic as we show in Chapter 5 that the complexity of the exact scheduling analysis
is T-Or

.L &I= I
(ni - 1) in the worst case. Also, his test was applicable to a restricted model

where the deadline of the task should not extend beyond its period.

Baruah et al. (13] used the fixed point approach motivated by the response time

analysis to give a tractable but sufficient schedulability test for a system of general
MF tasks. They preprocessed the execution time sequences of the MF tasks taking into

account the maximum amount of interference that higher priority MF tasks provide.
Then, they apply the fixed point algorithm to estimate the worst case response time of
the peak frame of the lower priority MF task considering the maximum amount of in-

terference each higher priority MF task can provide. Although this analysis is in some

sense related to response time domain, the test is inexact as it estimates the maximum
interference before processing the response time analysis; while in our contribution

we provide an exact analysis of the response time. However, an approach called com-

plementary approach; which is equivalent to Baruah et al. 's approach is presented in

Chapter 8 in this thesis.

Baruah et al. [12] also did some work in scheduling multiframe tasks related to

Earliest Deadline First, EDF, scheduling scheme; which is an alternative scheduling

scheme. However, this thesis is concerned with FPS so this EDF approach is not

expanded upon here.

As can be seen from the above contributions, all schedulability analyses are inex-

act as all of them are either in the utilisation domain or only sufficient. For example,
Lu's analysis improves previous results, but still remains inexact as well as it is de-,

pendent on the RM priority assignment. Moreover, their test is only applicable to a

system whose deadlines are identical to their relative periods. Whilst response time

analysis that is presented in this thesis gives an exact scheduling analysis for less strict

models (systems with sharing resources, release jitter and arbitrary deadlines) and is

applicable to any priority assignment.

36

2.3 Contributions of Response Time Analysis

2.3 Contributions of Response Time Analysis

Most research within fixed priority scheduling assume RM as an optimal priority as-

signment assuming deadlines of the tasks are identical to their relative periods. How-

ever, if deadlines of the tasks are permitted to be less than their relative periods RM

priority assignment is not optimal any more [4 1] and Deadline Monotonic, DM, takes

the place [5 1] (the smaller relative deadline the task has the higher priority it is as-

signed). So, as most utilisation scheduling tests depend on RM priority assignment

or restrict the system to satisfy most of Liu and Layland's assumptions, studying the

schedulability of a system from the utilisation point of view is not flexible enough to
be extendable to the systems with sharing resources, release jitter, and arbitrary dead-

lines. However, Harter [58] solved this problem by introducing the idea of analysing
the schedulability of a system using worst case response time analysis.

2.3.1 Basic Response Time Analysis

Basically, analysing the worst case response time of a task ri within Liu and Lay-

land's model can be achieved once three issues are identified: Ti's critical instance,

, ri's amount of execution and the amount of execution of tasks other than Ti. Joseph

and Pandya [40] followed by Audsley et al. [9] mathematically applied response time

analysis and introduced an iterative equation, Equation (2.8), for finding the worst case

response time of a task ri assuming the basic model of Liu and Layland (see Section

2.2.1 for details). They assumed Liu and Layland's critical instance [52]; where the

worst case response time, of a task is when this task is released simultaneously with

all higher priority tasks. -

R-
Ri=Ci+Ii=Ci+ Y, f-"lCj (2.8)

jEhp(Ti) T-

hp(, ri) is the set of tasks whose priorities are higher than the priority of Ti. As Ti is a

preemptive task, I, =
ljchp(T,)

F &T Cj represents the maximum amount of interference

from higher priority tasks within the execution of 'ri. In other words, Ii represents the

maximum amount of interference within the worst case response time of Tj, from the

37

2 System Model and Related Work

tasks whose priorities are higher than the priority of Ti.

As the priorities of the tasks are assigned from I being the highest priority and N is

the lowest, hp(Ti) returns to the values 1, .. ' i-1. So, Equation (2.8) is rewritten to
be as Equation (2.9)

R.
Ri =Ci+Ii=Ci+ f-"JCj. (2.9)

j=1 Tj

To solve Equation (2.9), a recurrence relation is given as in Equation (2.10); where
I=0,1,2,... and RO = Ci. The smallest non-negative solution of Equation (2.10) rep-

resents the worst case response time of ri, Ri. In other words, the worst case response
time is obtained when it is found that Rj'+' = Rli = Ri (for the smallest value of 1).

However, in the case that RI1+1 becomes greater than the deadline of TI, then Tj is not

guaranteed to meet its deadline, so we say that the task is unschedulable.

'-' Ri
R11+1 = Ci I -f (2.10) +r

.
1ci.

j=l i

Equation (2.9) assumes that there is no sharing resources between the tasks, so only
the nmable task, TI, can access the resource. In fact, there are situations where Ti asks
for resources that are occupied by tasks whose priorities are lower than Ti, so Tj can

not access this resource until the lower priority tasks give up this resource. In this case.

we say that Tj is blocked awaiting lower priority tasks to finish their execution. The

following section gives details about response time analysis of tasks with blocking.

2.3.2 Tasks with Blocking Time

To explain the blocking scenario, assume there are two tasks T, and T2 attempting to

access shared data (TI has higher priority than T2). If T2 gains access first and then Tj

request access to the shared data; 'the higher priority task T, -would be blocked until the
lower priority taskr2 completes its access to the shared data. Blocking in this example
is a form of priority inversion; where T2 completes its execution with a priority higher

than or equal to ri, as r2 executes before r, whilst rl actually has higher priority than

T2 .

38

2.3 Contributions ofResponse Time Analysis

Long duration of blocking could lead to missed deadlines of the task and so the sys-
tem could be unschedulable as, in some cases, a low priority task may unnecessarily
block the execution of higher priority tasks. So, researchers in this area attempt to

minimise this blocking time to reduce the chance of missing the timing requirements.
This minimisation was achieved by introducing some priority inheritance protocols.

Lampson and Redell [47] were the first who discussed priority inheritance in the

context of monitors. Each monitor was associated with the priority of the highest

priority task which enters that monitor. Then, whenever a task enters a monitor, its

priority increases temporarily, to the monitor's priority.

In 1990, Sha and his colleagues [66] gave two protocols to minimise this blocking

time, basic priority inheritance protocol and priority ceiling protocol . The following

are the details of these protocols.
Basic Priority Inheritance Protocol (BPIP)
The basic priority inheritance protocol is described as following: when a task Tk blocks

one or more higher priority tasks, it ignores its original priority and executes the criti-
cal section with the highest priority level of all tasks Tk blocks. After exiting its critical
section, Tk returns to its original priority level. Sha and his colleagues proved in their

work that, under BPIP, if there are m semaphores that can block Ti, then Tj can be
blocked at most m times.
Priority Ceiling Protocols (PCP)

In the priority ceiling protocols, priorities of the tasks at run time are not strictly fixed,

although priorities of the tasks and resources are assigned before run time. The best
known two priority ceiling protocols are the original ceiling priority protocol and the
immediate ceiling priority protocol.

In the original ceiling priority protocol [66], each resource has a static ceiling value
which is the maximum priority of the tasks that use this resource. Whilst the task
that shares the resources has two kinds of priorities one of them is fixed which is the

original default priority and the other is dynamic which copes with the execution of
the critical sections. The dynamic priority of the task is the maximum of its own
default priority and any it inherits due to blocking higher priority tasks. A task can
lock a resource if its dynamic priority is higher than the ceiling of any currently locked

resource. The benefit of the original ceiling priority protocol is that once the task is

39

2 System Model and Related Work

released it will be blocked at most once during its execution.

In the immediate ceiling priority protocol, each resource has a static ceiling value

which is the maximum priority of the tasks that use this resource. Whilst a task that

shares the resources has two kinds of priorities one of them is fixed which is the

original default priority and the other is dynamic which copes with the execution of

the critical sections. The dynamic priority of the task is the maximum of its own
default priority and the ceiling values of the shared resources. Priority of the task

at run time is chosen according to its dynamic priority. The bencfit of the immediate

ceiling priority protocol is that the task could be blocked at most once at the beginning

of its execution.

The immediate priority ceiling protocol was derived Erom the basic protocol for in-

corporation in programming languages and operating system standards. For example
it is available in Ada, in POSIX (where it is known as the Priority Protect Protocol)

and Real-Time Java (where it is known as Priority Ceiling Emulation) [25]. Immediate

ceiling priority protocol is a significant protocol for tasks executing on a uni processor
because applying immediate ceiling protocol to a uni processor system with sharing

resources allows the task to be blocked at most once at the beginning of its execution.
This is because once a task Tj requires an occupied resource, TIs priority increases to

the maximum ceiling value of the shared resources. So, once the resource becomes

free, Tj access it and completes its execution with its dynamic priority without any in-

terruption from any lower priority task. In addition, Pilling, Bums and Raymond [60]

proved formally that immediate ceiling protocol prevents the deadlocks3. Also, im-

mediate ceiling protocol prevents transitive blocking as the task returns to its default

priority after finishing the execution of its critical section.

In 1991, Baker [10] extended the PCP to the Stack Resource Policy, SRP, that sup-

ports three issues: multiunit resources, sharing runtime stack resources, and EDF as

well as FPS, schemes. SRP depends on the preemption level of the task; which might
be its priority in some cases. As this thesis uses PCP rather than SRP no more details

of SRP are introduced.

In the deadlock situation, a task is blocked forever as it and another tasks are waiting each other to
finish its critical section, and thus neither ever does.

40

2.3 Contributions ofResponse Time Analysis

Adding Blocking Time to the Response Time Analysis

We showed in the previous discussion that PCP allow the task to be blocked at most
once during its execution, so the worst case response time formula of the task that is

subjected to blocking must take into account the maximum expected blocking time.
Audsley et al. [9] enhanced the response time equation (i. e. Equation (2.9)) to include

the maximum blocking time, Bi, as in Equation (2.11) assuming the PCP.

'-l RjjC
Ri=Ci+Bi+lr- 1 (2.11)

j= I Ti

Similar to how Equation (2.9) is solved, Equation (2.11) is solved by forming a re-
currence relation as in Equation (2.12); where I=0,1,2,... and RO = Ci. The smallest
non-negative solution of Equation (2.12) represents the worst case response time of
TI. In other words, the worst case response time of Tj is obtained when it is found that
Rý+' = Rý = Ri for the smallest value of 1. However, in the case that r'+1 becomes

greater than the deadline of Ti, Tj is not guaranteed to meet its deadline, so we say that
the task is unschedulable.

'-' Rli Rli+'=Ci+Bi+l - (2.12) 1
j=l

r
Ti

1 Ci

2.3.3 Tasks Subjected to Release Jitter

One of the flexibilities of the response time scheduling test is being applicable to tasks
that are subjected to Release Jitter. A periodic task Tj has to arrive in the system
within a fixed time which is its period, Tj, then it will be released as soon as it ar-
rives. However, when this periodic task Tj is subjected to release jitter, its arrival time
becomes under some circumstances different from its release time. So, Tj does not
become strictly periodic and a variation in its release times has arisen. So, release
jitter of a task Tj is defined as the maximum variation in Tj's release times [39]. To
clarify, when rj is subjected to release jitter, its release times take place somewhere
within time interval of length Jj and then every period Tj. Mathematically, let ý be Si

41

2 System Model and Related Work

the time when the kth release of Tj takes place, then

k. Tj +x< sjk :5k. Tj + y; Vk EZ (2.13)

where Jj =y-x.

More explanations and diagrams are given in Chapters 4 and 6 when a generalised

model of MF tasks that are subjected to release jitter is analysed.

The problem of release jitter happens when the task is not released as soon as it

arrives [71,70]; which mostly happens within two popular situations represented by

"end to end jitter" [6 1] and granularity of the system timer. The situation of "end to

end jitter" is an important issue to be considered in distributed systems as a task could
be delayed awaiting the arrival of a periodic message that is not delivered completely

regularly. Whilst the situation of granularity of the system timer is an important issue

to be considered in uni processor systems. The following is an illustration of both

situations of granularity of the system timer and "end to end jitter".

From the granularity of the system timer point of view, in some cases, the granular-
ity of the system timer forces the periodic task to experience release jitter because of
the bounded time the scheduler mechanism takes to recognise the arrival of a task [9].

For instant, a task with period of 10 but a system granularity of 9 will imply a jitter

value of 8 at time 18 the periodic task will be released for its 2"d invocation.

From end to end jitter point of view, the following example clarifies this phe-

nomenon, assume there are, on different processors, two related periodic tasks: rf

and rj with the same period. Task Ty calls Tj as soon as Ty has finished its execution.
Due to system load, Ty does not finish its first execution until the end of its period;

while it executes at the very beginning of its next period. As a result, Tj is released
twice within its period instead of once (i. e. the time between the two successive frames

of Tj, on'the processor Tj is executing on, is less than the usual minimum inter arrival
time of the task Tj). It is obvious that as a result of this scenario, the amount of inter-

ference from task Tj, on a lower priority task ri on the same processor, may be greater

than that assumed for with a purely periodic task.

As an estimation of jitter, some researchers [36] considered the optimal instant of

42

2.3 Contributions of Response Time Analysis

the task, that was presented by Bri I et al. [2 11, and derived an upperbound for jitter

considering the best case response time (BCRT). An optimal instant of a task occurs

when the completion of the task coincides with a simultaneous release of all higher

priority tasks. BCRT, in its turn, was defined as the minimum response time of a

task. Figure 2.1 explains the optimal instant of 'r3 for a system with three tasks with

attributes in Table 2.5.

lasý L(I T=D
TI 3 10
T2 11 19
'r3 5 56

Table 2.5: Example System

, r, -
ýum mt

ý: ý- mt ,ý

r
time

t
executing

fini, hoxccuting

Figure 2.1: Optimal Instant Situation of T3

Kim et al. [42] and Bril et al. [2 11 enhanced the best case response time analysis

and gave simpler best case response time equation. However, this thesis is concerned

with the worst case response time analysis, hence no need for further details about
best case response time analysis.

43

2 System Model and Related Work

Release jitter analysis can also be used for predicting the behaviour of deferrable

servers [18] and devices such as Bus Gurdians [23].

Worst Case Response Time for Tasks Subjected to Release Jitter

As tasks with release jitter are not purely periodic, the worst case response time for-

mula (i. e. Equation (2.9)) requires modification to cope with the releasepter situation.
The first issue to be considered in any response time analysis is to identify the criti-

cal instance of the analysed task Ti. Tindell [71,70] identified the critical instance of

Ti within the release jitter situation as when 'ri is released at the same time as when
higher priority tasks finish waiting. For example, consider a system with the attributes
in Table 2.6. Figure 2.2 represents the critical instance of the task T-).

Task T C
Tj 11 5
T2 13 4 4

Table 2.6: Tasks Description's

Tj

T21
0

c lease

amve

Figure 2.2: Execution of T, and 'r-, at the Critical Instance of T-,

As the interference from higher priority tasks could be increased by release jitter,

the required modification within the response time formula is at the side Ii of the

44

2.3 Contributions ofResponse Time Analysis

response time formula (i. e. Equation (2.9)). Audsley and his colleagues [9] modified

the side of the interference and gave a complete formula for the response time that

takes into account release jitter situation. They gave Equation (2.14) that represents

the interference on the worst case response time of Ti, Ri, from all higher priority tasks

assuming Tindell's critical instance.

Rj+ jC F -T1 J. (2.14)
j

So, the worst case response time of ri is presented in Equation (2.15)

Ri=Ci+Bi+Ii. (2.15)

Solving Equation (2.15) is similar to Equation (2.10) by forming a recurrence relation

and once Rl+ 1= RI has been found, the worst case response time of Tj is RI = MI+ I-

Schedulability of Tj is guaranteed if Ri :5 Di - Ji, however, if R'j+ 1 becomes greater
than Di - JI, the task is not guaranteed to meet its deadline so we say that Tj is un-

schedulable.

Optimal Priority Assignment for Tasks with Release Jitter
Although the response time formula is applicable to any priority assignment, an in-

teresting issue to mention in fixed priority scheduling for tasks with release jitter is

that neither deadline monotonic nor rate monotonic priority assignments are optimal
in the case of release jitter. Priorities are assigned according to the optimal prior-
ity assignment technique that depends on feasibility. Audsley[5], in his report, cov-

ered this technique, which is explained, in summary, as following. For a task set

S= 1'rh'r2,... TNJ, firstly, attempt to find a task TA that is feasible at priority level

j=N. Next, find a feasible task at priority j=N-1. Successively, feasible tasks will
be found at priorities N to 1. If a feasible task, at priority level i, could not be found,

no feasible priority assignment function exists. Full details can be found in Audsley's

report [5].

However, Bums et al. [24] mentioned, without proof, that for tasks that are sub-
j ected to release jitter, priorities should be assigned according to (D-J) since DM is no

45

2 System Model and Related Work

longer optimal. In (D-J)-Monotonic priority assignment, the lower value of (D - J)

the task has, the higher priority it is assigned. Aproof of the optimality of (D-J)-

Monotonic priority assignment is given in the appendix4.

2.3.4 Tasks with Arbitrary Deadlines

Up to this point, contributions within fixed priority scheduling have been covered for

a system model whose tasks are assumed to have deadlines less than or equal to their

relative periods. So the response time of the analysed task does not need to take

into account interference from the analysed task itself as it is not released during its

execution. However, some contributions have been done for systems whose tasks have

deadlines greater than their relative periods.

Lehoczky [49] proved that the critical instance of a task within the arbitrary dead-

line model is the simultaneous release of the task itself and higher priority tasks. He

also introduced a sufficient but not necessary feasibility tests based upon utilisation.
The test was an extended utilisation test of Liu and Layland's test with the restriction

that all tasks have deadlines equal to multiple of their periods. However, as this the-

sis is interested in response time scheduling, no ftu-ther details of scheduling within

the utilisation domain for arbitrary deadline model are given; whilst response time

scheduling is covered.

To illustrate the arbitrary deadline scenario, Figure 2.3 represents the timeline dia-

gram of a small example system that is given by Table 2.7. The system consists of two

tasks T, andT2; where the deadline of r2 extends beyond its period.

task CI T D
Tj 2 5 5
T2 4 7 8

Table 2.7: Example System of Arbitrary Deadlines

Figure 2.3 shows how T2's second invocation has interference from T2's first invoca-

tion; where the second release of T2 does not start its invocation until its first invocation
4This proof was also published in [76].

46

2.3 Contn*butions of Responsc Timc Analysis

Tj

P release of r, 2"" r elease of r,

invocation of r,

first invocation of Tý, release

M
, econd invocation of r, 0 ineet deadline

Figure 2.3: Timeline Diagram of the System in Table 2.7

has finished. So, response time of -r2 has to take into account the interference from the

task itself as well as interference from higher priority tasks. In other words, response

time formula (i. e. Equation (2.9)) requires modification to cope with the tasks whose
deadlines are greater than their periods.

Tindell [70,71,72] modified Equation (2.9) and analysed the response time of tasks

with arbitrary deadlines, blocking, and release jitter within the same model. Analysis

of the response time of 'ri is summarised in five steps. In the first step, define the busy

period of a task as the time from when this task is released until it finishes the execution

that is related to this release. In the second step, define q and ri(q) as the number of

invocations of ri and the length of the continuous q busy periods respectively. In the

third step, ri(q) is found by a recurrence relation as in Equation (2.16).

ri(q)=Bi+qCi+
ri (q) + Jj

Ic
.1.

(2.16)
T. VjEhp(i) i

Solving Equation (2.16) is achieved by forining an iterative equation as in Equation

(2.17).

47

2 System Model and Related Work

YJi+'(q)=Bi+qCi+ ci (2.17)
VjEhp(i) Ti

where rio =qCi andl =0, I, until +1 =r, '. However, if r, '+'(q) - (q- 1)Ti >DI-Ji, 14
Tj is not guaranteed to meet its deadline and we say that TI is unschedulable.

Forth step of the analysis is to find all needed busy periods for the analysis. Assum-

ing wi(q) is the q'h busy period of Ti, wi(q) is given by Equation (2.18).

wi(q) = ri(q) - (q - I)Tj +Jj (2.18)

q is a finite integer value starting from 1 until no further interference from Tj occurs;

which happens when the busy period of Tj finishes within the period it is released in.

In other words, q=1,2, .. until condition (2.19) is satisfied.

wi (q) :5 Ti - Ji (2.19)

Once all busy periods of Tj are identified, the last step of the analysis is to find the

worst case response time of Ti, Ri, by maximising the busy periods over all number of
its possible invocations.

Ri - max jwj (q) 1 (2.20)
q=1,2,..

The following simple numeric example clarifies how to apply response time anal-

ysis to tasks with arbitrary deadlines. Suppose a example system in Table 2.7, for

simplicity of the explanation we assumed all blockings and jitter in the example are

zero. To analyze the response time of T2, we begin with finding r2 and w2 of T2 by

applying Equations (2.17) and (2.18) respectively for different values of q.

q=I
r2o (I) =4

r2l (1) =4+ F4 12 =6
r22(l) = 4+ rý12 =8 5

r23(l) =4+ rý12 =8 5
Therefore, r2(l) = 8. So, w2(l) =8- 0(7) = 8. As w2(l) > T2, we increase q to be 2

and find r2(2) and w2 by applying Equations (2.17) and (2.18) respectively.

48

2.3 Contributions ofResponse Time Analysis

q=2

r2o (2) =8

r2l(2) =8+ rý12 = 12 5
r22 (2) =8+ FI-212 = 14 5

r23(2)=8+rL412= 14. Therefore, r2(2)= 14. So, w2(2)= 14-1(7)=7w2(1), < T2;
5

which satisfies the condition of Equation (2.19), so we stop increasing the values of q.

Therefore, by applying Equation (2.20), we find that the worst case response time of

T2 is R2 = maxf8,7} =8

Analysis in this section assumes that each task in the system has constant execution
time. However, Section 4.2 in Chapter 4 and Section 6.2 in Chapter 6 relax the restric-
tion of constant execution time and present full analysis of the worst case response
time of MF tasks within arbitrary deadlines.

2.3.5 Tasks with Offsets

Fixed priority scheduling contributions that have been mentioned so far consider sys-

tem models where the critical instance of a task is the simultaneous release of the task
itself and all higher priority tasks. In 1980, Leung and Mirrcll [50] gcneraliscd Liu

and Layland's [52] model from the point of view that all tasks arc not always released

at the beginning of their relative periods. Instead, the first invocation of each task

in the system is allowed to have a specific offset and then the other invocations (i. e.

second, third, ..) arc released at the beginning of the relative period. The motivation
behind the offset model is to increase the feasibility of the system. For example, a

system with two tasks, that have periods of 10, execution time of 2 and deadline of
2, is unschedulable if the tasks do not have offsets, but the system is schedulable if

either tasks has an offset equals to 2. Figure 2.4 illustrates how both ri and T2 are

schedulable when T2 has an offset equals to 2.

Leung and Miffell [50] gave an interval of the scheduling analysis duration, of a
task, rl, that was improved later on by Audsley [6].

In the offiet analysis, many researchers used a concept called transaction; that is

a collection of related tasks and each task, that is a member of the transaction, has

49

2 System Model and Related Work

II

12

ii

. rm --- --- -- --319 --

7,1 AAR

mime mieu

(Case 1: Ojj'sels = 0) (Case 2: T, has Offset =2

Figure 2.4: Usage of Offsets for increasing Schedulability

a relative offset. Tindell [70] gave an exact but not tractable test for a system with

offsets. The intractability problem comes from the fact that the cfitical instance of

a system with offsets is hard to identify and it is no longer as in Liu and Layland's

model. The second case in Figure 2.4 is an example to deny Liu and Layland's critical

instance. So, the basic feasibility analysis can not be applied directly to a system with

offsets. Batc[16,17] presented a tractable but non-exact "composite" approach to

analyze task sets featuring offsets. The approach depends on transferring the system

into another one by composing, according to a specific algorithm, tasks with non-

zero offsets and the same period; into one task with zero offset. The benefit of the

composite task approach is that the computational complexity is kept sufficiently low.

Many researches have been done in scheduling systems with offsets like Audsley

et al. [8] who presented some work for a system with offsets using Gencralised Chi-

nese Remainder Theorem [43]; where they introduced the concept of common release.
Goossens et al. [34,33] who showed that neither RM nor DM is optimal for systems

with offsets and presented two scheduling rules to choose the offsets, one of them is

optimal but computationally unreasonable for large systems; while the other one is a

50

2.3 Contributions ofResponse Time Analysis

pearly optimal heuristic scheduling rule. Baruah et al. [14] and Goossens [32] who
have shown that if an offset free system with arbitrary deadlines is not schedulable
for all non-negative integer offset assignments, then this is also the case for all offset

assignment with a granularity of m for all m (m is a non zero positive integer).

In 2006, Traore et al. [73] mentioned in their paper that the MF model is a particular

case of tasks with offset (transactions), so they assumed that their offset analysis can
be applied to the systems with MF tasks; where a MF task Tj can be modeled to a
transaction with period equals njTj (ni and T, are respectively the number of frames

and the period of the MF task Tj). In fact, analysis in this thesis would assume that
the multiframe model is different from the transaction model as Traore's suggestion
could only be applicable to a very strict MF models. For example, this offset analysis
is applicable only to MF task that is AM (having its critical frame at the first position
of its execution time sequence) and all frames in the same MF task have the same
deadline; whilst offset analysis is not applicable to the general MF task and frame

specific deadlines.

The incorrectness of the assumption that the MF model is a particular case of the

offset model lies in the fact that offset model fails to correctly identify the worst-

case combination of MF tasks. For example, a MF task with execution times (1,2),

deadline 2 and period 10 would be considered equivalent, for scheduling analysis

purposes, to two tasks TI and T2 such that both have deadline 2 and period 20, T' III
has an execution time equals 1, and T2 has an execution time equals 2 and also has an I
offset from T11 by 10 units (in the sense that the first invocation of T11 is released at 0 and
successive invocations are released exactly 20 units apart, while the first invocation of
2 is released at 10 and successive invocations are released exactly 20 units apart).

However, to see why such an approach for scheduling analysis is incorrect, consider
a MF system consisting of two tasks; the one above, and the task T2 with execution
time 1, deadline 2, and period 20. Using the same assumption, this second MF task

would be transformed to a task with execution time 1, and its first invocation at 0

and the successive invocations exactly 20 units apart. The system would therefore
2 be considered schedulable as rl and T2 are not released simultaneously according to

the offset assumption. However, in reality T2* is actually unschedulable because we
assume in the system model that all frames of a MF have same priority and periods,

51

2 System Model and Related Work

task D T
Tj (3,2) (5,5) 10
T2 (8,6,7,4) (15,9,9,10) 15

Table 2.8: Original Example System

so both r' and T2 have the same priority and periods. So there is a situation where
2 T, and r2 are released simultaneously which results that r2 does not meet its deadline

and so it is unschcdulablc.

However, even for the AM multiframe tasks whose deadlines are different from one
frame to another within the same MF task, Traore's suggestion is not applicable. For

example, assume a system in Table 2.8, according to Traore's suggestion, the system
will be transformed to the system in Table 2.9.

_task
Offset c D T

Tj (0,10) (3,2) (5,5) 20
T2 (0,15,30,45) (8,6,7,4) (15,9,9,10) ZO

Table 2.9: Transformed System Having Offsets

So the frames of Tj and T2 whose execution times are 3 and 7 respectively, do not

share a simultaneous release in the transformed system (Figure 2.5) whilst in reality
they do. Figure 2.5 represents the execution scenario of the system in Table 2.9.

According to the offset analysis, T2 is considered as schedulable as all its deadlines

are met. Whilst in reality it is not schedulable; as when T2 is released having an
execution time of 7 simultaneously with Tj having the execution time of 3, T2 does not
meet its deadline as its response will extends beyond 9.

Therefore, this thesis considers the MF model as a different model from the offset
model.

2.3.6 Other Contributions Related to Response Time Analysis

within Fixed Priority Scheduling

Eisenbrand et al. [29] has recently showed that the response time computation for
RM preemptive scheduling is NP-hard. However, some research [3 8,22,2 8] has been

52

2.3 Conuibutions of Response Time Analysis

2

tau
10

864

tau2 a
Z-1, I

...
[j

1 151 1111 3u 41

executing release meet deadline

Figure 2.5: Execution Sccnario of the Transformed System in Table 2.9

done to improve the efficiency of the exact response time test, providing an effective

initial value of the fixed point solution of the response time equation.

Another sufficient response time test was developed by Fisher and Baruah [31,30];

where they estimated the workload requested by higher priority tasks using an ex- Z--
act request bound function for a specific number of invocations and a linear function

thereafter. In 2007, Richard et. al. [62] extended this work to include tasks that are

subjected to release jitter.

Bini and Baruah [19] derived a closed form upper bounds on the response times

and an associated linear-time sufficient test for independent preemptive tasks with

arbitrary deadlines but no jitter. Davis et al. [27] had derived another flexible closed
form upper bounds on the response times of tasks with arbitrary deadlines, release

jitter and blocking.

53

2 Systcm Modcl and Rclated Work

2.4 Summary

As can been from all covered contributions, all contributions that are related to schedul-
ing MF tasks are inexact. Moreover, non of the exact worst case response time con-
tributions within fixed priority scheduling considered MF tasks. However, this thesis

presents an exact scheduling test of MF tasks by analysing their worst case response
times. The analysis depends on formulating the response time of a MF task assuming
the MF tasks arc released synchronously (i. e. they share a common release). The

response time analysis in this thesis is hierarchically presented depending upon the

generalisation of the MF model starting by the classic AM model and AM with block-

ing time, release jitter and arbitrary deadlines then ending up with non-AM model

with blocking time, release jitter, arbitrary deadlines and frame specific deadlines.

54

3 Basic Exact Scheduling Analysis of

AM Multiframe Tasks

This chapter' provides exact and tractable analysis based on the response time for-

mulation for multiframe tasks when the AM restriction is applied. In general, to test

the schedulability of a set of multiframe tasks, regardless of the AM restriction, re-

quires examining all possible phases of the tasks [69]; which leads to an intractability

problem for the scheduling analysis. But, having the AM restriction applied to a mul-

tiframe task, we show that only the critical frame can give rise to the worst-case re-

sponse times for lower priority tasks. As a result the analysis is tractable. The follow-

ing section provides the response time analysis of basic AM multiframe tasks2. This

basic analysis is given in two stages, firstly we give the basic formula of the worst case

response time of an AM multiframe task. Secondly, we extend this formula to include

blocking time. An evaluation of this analysis is given as a comparison between this

exact scheduling analysis and the most recent published, but non-optimal, scheduling

analysis.

This chapter is organised as follows: the following section gives the exact response

time analysis of AM multiframe tasks; then the analysis is developed to include block-

ing in Section 3.2. Numeric examples are given in Section 3.3 to illustrate the two

scheduling schemes: the worst case response time scheduling analysis of AM mul-

tiframe tasks and Lu's scheduling analysis [55]; which is the most recent published

scheduling analysis for multiframe tasks. In this section (i. e. Section 3.3), we also

show how the response time analysis determines the schedulability of the system
I Material based on this chapter was published in [77].
2A basic AM multiframe task means that the task does not have release jitter and does not include

invocations from previous frames of the analysed MF task but is permitted to share resources, so it
has blocking.

55

3 Basic Exact Scheduling Analysis ofAM Multiframe Tasks

where Lu's analysis does not. Section 3.4 provides an analysis of randomly gener-

ated task sets to show how the response time test is better than any one previously

published. A summary of the chapter is provided in Section 3.5.

3.1 Basic Response Time Analysis of AM Multiframe

Tasks

This section covers the response time analysis of a basic multiframe task assuming
that all multiframe tasks in the system satisfy the AM restriction (i. e. Equation (2.3)).

The worst case response time of the AM multiframe task is the maximum response
time of all frames of the MF task assuming their critical instance. Mok and Chen [56]

identified the critical instance of an AM multiframe task as the simultaneous release

of the critical frames 3 of both the analysed MF task and MF tasks whose priorities are
higher than the analysed task (see Section 2.2.2 for details). As we assume that no
frame interferes with any other frame in the same MF task, we will consider Mok and
Chen's critical instance of the AM multiframe task to analyze its worst case response
time.

For the AM multiframe task, T, the cumulative function of its only critical fi-ame is i

presented by Equation (3.1)

mj+k-I
I cl mod n (3.0 gmJ(k) =j ;k=1,2,..

J=Mj

where mj is the location of the critical frame of the AM multiframe task. For example,
the value of ý, O (3) for the AM multiframe task T, whose execution times are (8,4,8,3)

is 20. Using Equation (3.1) to present the amount of interference the higher priority
AM multiframe tasks generate, the basic response time formula that is represented
by Equation (2.9) is modified to be in the form used in the following theorem (i. e.
Theorem 1).

3 In the AM multiframe task, the critical frame is a peak frame.

56

3.1 Basic Response Time Analysis ofAM Multiframe Tasks

Theorem I Given a real-time system consisting of N independent AM multiframe
tasks, the worst case response time of the multiframe task Tj is given by the smallest

non-negative solution to Equation (3.2):

R-

j=l Ti
(3.2)

R
where 4jmj ffýýLj) is the cumulative function of the criticalframe ofrj as defined by Tj

Equation (3.1).

Proof: As Ri is the worst case response time of the task Ti, then for each multiframe

task whose priority is higher than the priority of Tj (i. e. Tj :j= IJ - 1); the number

of invocations of Tj within RI is given by rR-Lj assuming the simultaneous release of Tj
the critical frames of Tj and Ti. So, when Tj is released with its critical frame, the

amount of interference that Tj generates within RI is given by: 47J ff-R-Lj). In addition, i Tj
as the critical instance of Tj is the simultaneous release of the critical frames of all Tj;

for j=I, J - 1, the maximum amount of interference that all Tj generate within Ri is

given by adding all interference that is generated by the higher priority AM multiframe
*IR tasks (i. e. Ij'-=, 4jffjý

jj)).
In addition, the maximum amount of time TI takes for execution is represented by

C', ni. So the response time of Tj is given by Equation (3.2); which presents the execu-
tion of both the AM multiframe task Ti itself as well as interference from all higher

priority AM multiframe tasks. 0

Equation (3.2) can be solved by a recurrence relation as in Equation (3.3).

i-I
Ci m Rl mi + 14" J (r"i 1) Rl

j=l j Ti
(3.3)

where R9 = Cj'i and I=0,1,2, until M+ M. However, if M+ 1 becomes greater IIII
than the relative deadline, Ti is not guaranteed to meet its deadline. In other words, if

Rill' > Di then Tj is unschedulable.

Equation (3.2) calculates an exact worst case response time of an AM multiframe
task assuming exact attributes of the system. On the other hand, a schedulable real

57

3 Basic Exact Scheduling Analysis ofAM Multiframe Tasks

time system is the system whose all tasks can be scheduled on time. In other words,

a schedulable real time system is the system whose all tasks meet their relative dead-

lines. Also, a task, in its turn, meets its deadline when its worst case response time
is less than or equal to its relative deadline. So, the scheduling test, of a system with
AM multiframe tasks, is presented as follows: a system with AM multiframe tasks is

schedulable if and only if all its multiframe tasks meet their relative deadlines. Where

the AM multiframe task meets its deadline if its worst case response time, that is cal-
culated by Equation (3.2), is less than or equal to its relative deadline. The following

example illustrates this test.
Example

Table 3.1 presents an example of two AM multiframe tasks, T, and r2. To analyze

task c D T
, rj (4,3,1,8) 9 10
T2 (2,7,2) 20 20

Table 3.1: Example System

the schedulability of the system, we first identify the location of the critical frames

(i. e. mi). As there is only one peak frame per MF task, the critical frame is the peak
frame4, so, mI=3 and M2 =I-

Because T, is the highest priority MF task in the system, its worst case response
time is RI = CIm' =8< DI. To analyze the worst case response time of T2, we apply
Equation (3.3) for i=2 and RO = C22 = 7, so we get 2

Cýn2+1ý-j mj R'
n R12+1 =2 J=1 Tj

7+ 4m' ff'ýO' 1), I=0, R21 I T,

R1 = 7+43(f 7 1),
21 10

R' =7+8= 15. 2

Similarly, we find R2= 19 for I=I and R3= 19 for I=2. As R3 = R2, the worst case 2222

response time of r2 is R2 = 19 < D2. Therefore, r2 is schedulable.

As r, and r2 are schedulable, the whole system is schedulable.

4jf the MF task has more than one peak frame, then we apply Equation (2.3) for all peak frames and
choose the frame that satisfies this equation as the critical frame.

58

3.2 Adding Blocking Time to the Response Time Analysis

3.2 Adding Blocking Time to the Response Time

Analysis

As mentioned earlier in Chapter 2, blocking of a task is when this task is waiting

for lower priority tasks to complete some execution. So, when we have a system

of multiframe tasks, we expect more than one blocking value for the execution of

Tj from each lower priority MF task that shares the same resource with Ti. That is

because also all lower priority tasks are multiframe tasks and therefore could have

different execution times. However, using priority ceiling protocols [66,60] allows

the task to be blocked at most once during its execution, so we only add, to the worst

case response time formula, the maximum of the expected blocking values which we

symbolise as B1. Thus, assuming that Tj has a maximum blocking of B1, the worst case

response time formula, is presented by Equation (3.4) as a collection of three kinds of

execution: maximum execution of the task itself Cin', maximum blocking time Bi and

maximum interference from the higher priority multiframe tasks, 1171 R
Tj

i-I R-
Ri = Cin'+ BI + Tj (r'-ýJ) (3.4)

.1 Tr j=l i

Similar to above, Equation (3.4) is solved using a recurrence relation given by Equa-

tion (3.5); where rOi = C'ji and I=0,1,2,... until R', +1 = Mi. The worst case response

time of Tj is obtained when it is found that R, 1+1 = R11 (= RI for the smallest value

of 1). However, when R1j+1 becomes greater than the deadline of the task, ri is not

guaranteed to meet its deadline, so we say that the task isunschedulable.

i-I
m Rl

Cmi + Bi +I-
..,

gj J (r i 1) (3.5)
j=l j Ti

This response time scheduling analysis is an efficient scheduling test, better than

the utilisation test that is given by Lu et. al [55], from three points of view. Firstly,

the response time test is a sufficient and necessary test when Bi is exact, which means
that the response time test is an exact test. Secondly, it is applicable to the system

model when the tasks have deadlines less than their relative periods. Thirdly, the

59

3 Basic Exact Scheduling Analysis ofAM Multiframe Tasks

response time test does not depend on the priority assignment scheme of the tasks

in the system. For example, the response time test is still applicable to the system

model where priorities are assigned according to RM, DM or any other fixed priority

assignment scheme; while the utilisation based test is not.

For more illustration of the efficiency of the response time test, we compare this

analysis with the most recent published scheduling test (i. e. Lu's test [55]); in two

steps. In the first step we give in the following section two numeric examples, the first

one illustrates the worst case response time analysis that is presented in this section.
The second example is a modified example of the first one; this example illustrates the

analysis of Lu's test and at the same time shows the insufficiency of Lu's test. In the

second step we give, in a following section, an evaluation of the comparison between

the worst case response time analysis and Lu's analysis.

3.3 Numeric Examples

Table 3.2 represents an example task set of 5 AM multifraL tasks with their param-

eters and their worst case response times according to RM priority assignment (the

smaller period the task has the higher priority it is assigned). To simplify the example,

we assume that all deadlines are identical to their relative periods and all blocking

terms are zero.

task C T=D R
Tj (1) 3 1
T2 (2) 9 3
T3 (3,1) 18 8
T4 (2,1) 20 14

(6,3) 60 321

Table 3.2: Example Systeml

Lu et al. [55] noted that the schedulability of this task set is unknown using Kuo's
5 [44] method , while response time analysis shows that the task set is schedulable as

5Details of applying Lu's test is given in Section 2.2.3.

60

3.3 Numezic Examples

explained below, so the worst case response time test is better than Kuo's test [44].

Also, the analysis gives an exact value of the worst case response time of each AM

multiframe task in the system. For example, to find the worst case response time of
T4, we solve Equation (3.4) for i=4 by applying Equation (3.5) so we get

2 Rl
R'+l =

Cý4 +4
41

ý7 U-1);

j=l Ti

where C' T' -2 RO = 2. 44
MI R (FR
I

(f-jj)+4M2
_jj)+4M3(rROj) I=O, Rl -2+4 A 4- T, 2 T2 3 T3

R1 =2+4m'(r! j)+42M2(FZJ)+4M3(r-Zj)
= 2+1+2+3 = 8. 41393 18

Similarly, we find Rl+', for I=1,2,3,4,5, so we get R 2= 10, R 3= 13, R 4= 14, R 5
44444

14 respectively. As R4- R5 we stop increasing I and the worst case response time of 4- 41

, r4 is 14 which is less than the deadline of T4, so T4 is schedulable.

Similarly, we find all worst case response times of all AM multiframe tasks TI, T2, T3,

, r4,, r5 as given in Table 3.2 (i. e. the R column). As all of the worst case response times

are less than their relative deadlines, all multiframe tasks in the system are schedula-
ble. So, the system is schedulable.

However, if we modify the execution times of the task T4 to be (3,2) instead of
(2,1) and keep all other parameters as in Table 3.2 (see Table 3.3); we find that the

schedulability of the system is unknown using Lu's method but it is schedulable using
our response time analysis. The following is the explanation.

task C T
Tj (1) 3
T2 (2) 9
T3 (3,1) 18
T4 (3,2) [20)]
T5 (6,3))_ Lýfl

task
fi (7,5) 18
f2 (34,30) 60

Table 3.4: Merged System

Table 3.3: Example System2

Using Lu's approach6, TI, T4, and T5 are merged using Kuo's method [44] to f2 with
6Further details can be found in Section 2.2.3.

61

3 Basic Exact Scheduling Analysis ofAM Multiframe Tasks

a period equals to the maximum period of TI, T4 and T5; which is 60 in this example.
i2 has number of execution times equals to the least common multiple of nj, n4 and

n5; which is 2 in this example. Values of i2's execution times'are found by applying

(760 6 (760
1 (60)+k) mod n,

(7
40')-l (j(60)+k) mod n4 (j(60)+k) mod n5 j=(Ci(i 71 M 1: Cý T4 Cý '5 Cý2 1:

k=O k=O k=O

for j=0,1.

So, 620
= 34 and

621
= 30.

Also, T2 and T3 are merged, using Kuo's method, to T^1 with the number of execution
time equal to til =2 and execution time values 61 = (7,5) and a period of 18. Table

3.4 represents the attributes of the merged tasks.

Once the merged tasks are identified, the scheduling test is to check if the total peak

utilisation, U, is less than or equal to a pre defined conditional bound, CB. U, is the

summation of all peak utilisations of the multiframe tasks in the system; and it is given
by

A 2
Iýjj I=7 +34 U=j max = 0.95556.

i-- I 0: 5j: 5, ii -I Ti TI -8 0-

CB is found depending on two parameters r and z.
r is given as

r= min fri};
i<i<fv

where ri is the ratio of the first two execution times of T^i and is defined by

A cio 7 34
r! . so rl = -, r2

cil 5 TO

Therefore, r= min 12, L4 M=1.13 3333. 5 30 30

z is given by

z= max I min I VI r
T
,p

I+r

62

3.3 Numeric Examples

where Vi is called a virtual period and is given by

Tg 60
vi L --I T=L -- Ti.

Ti Ti

So, VI = Lý-Oj 18 = 54. 18

Therefore, z= max
&T1.13333
60 1+1.1313-31 =rnax 10.9,0.531251 = 0.9.

Once r and z are identified, CB (r, z) is given by

I
CB (r, z) z+ r(z -

1) + r(fV- 1)((!)N-1
z

0.9 + 1.13333(0.9-1) + 1.13333(2-1)((--! --) 0.9

= 0.91259.

Therefore, the conditional bound function (CB) of the merged tasks is less than the

total peak utilisation of the system (i. e. CB < U) which means using Lu's test that the

schedulability of the original system that is given in Table 3.3 is unknown. However,

the exact response time analysis that is given in this chapter shows that the system is

schedulable because:

=I < 3,
R2 =3<9,
R3 =8< 18ý
R4 = 15 < 20,
R5 = 35 < 60.

The example in Table 3.3 illustrates how the worst case response time analysis is

better than Lu's analysis, in the sense, that the schedulbility status of the example sys-
tem is not known using Lu's test but is found using worst case response time analysis.
In the following section, we investigate the performance of both worst case response
time analysis and Lu's analysis and then we make a comparison between both of them

over randomly generated AM rýiultiframe tasks.

63

3 Basic Exact Scheduling Analysis of AM Multiframe Tasks

3.4 Evaluating Exact Response Time Scheduling

Analysis for MF Tasks

We show in this section how the worst case response time test is a clear improvement,

compared to the most recent scheduling test that is represented by Lu et. al [55].

Comparison in this section requires the generation of real-time systems to check their

schedulability status under each approach (i. e. each of the resp onse time and Lu's

approaches) and then evaluate the performance of each of these two approaches to
determine to what extent the worst case response time test is better than Lu's test.
This evaluation is presented as experiments that are explained in three steps, the first

step shows how each experiment is constructed, the second step illustrates how each

experiment is run, and the third step shows the results of the experiments.

3.4.1 Experimental Setup

The generation of the real-time system means the generation of the size of the system

as well as the generation of the multiframe tasks that form the system. From the system

size point of view, we assign the number of tasks in the system for each experiment to
be one of the values 15,20,1001. While from the multifmme task's generation point

of view, we require the generation of four parameters for each multiframe task, Ti,
(i. e. ni, Ti, Di, Cj; which are respectively: number of frames, Period, Deadline, and
the execution time sequence).

The four parameters of a multiframe task are generated, in summary, as follows.

The first parameter that is the number of frames of the multiframe task is assumed
as fixed for all multiframe tasks in the system and is chosen, for each experiment, as

one of the values 13,7,13,23}. The values are chosen to be prime numbers so the

execution time sequence is guaranteed to be in its shortest form. The second and third

parameters, which are the period and deadline of the multiframe task, are assumed
to be identical to each other for each multiframe task and are randomly generated in

the range of [1,25001 using the uniform distribution. Once the deadlines are assigned
to each task, the priorities of the tasks are also assigned according to DM (which is

equal to RM in our experiments) priority assignment.

64

3.4 Evaluating Exact Response Time Scheduling Analysis for MF Tasks

The sequence of the execution times, which is the fourth parameter, is generated in

two steps. In the first step we generate the utilisation for each frame of the multiframe

task, while in the second step we assign the execution time of this frame by multiplying
its utilisation by its period. The following is the full details of the generation scheme
for the execution times.

First of all, we give an overall utilisation of the system and then we distribute this

utilisation to all multiframe tasks in the system. Bini et al. [20] introduced an cfficient

algorithm called UUniFast algorithm; which is used to randomly distribute the overall

utilisation of the system to all tasks in the system. The algorithm is surnmarised by

the pseudocode that is given by Algorithm 1; where Average-Uti represents the vector

of the average utilisation portions for the MF tasks in the system.

Algorithm 1 Uunifast Pseudocode
inputs: Overall-Utilisation, Tasks-Number.
Outputs: Array Average-Uti.

Sum-Uli -ý-= Overall-Utilisation
N , t-= Tasks-Number
for i =1 to N-1 do

nextSumU --# Sum-Uli. randv--l
Average-Uti(i) 4-= Sum-Uti - nextSumU
Sum-Uti <-- nextSumU

end for
Average-Uti(N) -ý-- Remaining-Uti

We consider each portion of the utilisation for each multiframe task as the mean util-
isation of this multiframe task, and we multiply this mean by the number of frames,

then we again apply the UUnifast algorithm to the results of the multiplication. In this

case, we get the utilisation of each frame in the multiframe task and therefore the exe-

cution time of this frame is the multiplication of its utilisation by its period. Algorithm

2 represents the descriptions of the way that is used in generating the execution times

of each MF task. Once we get the execution time sequence we re-arrange it to be AM

using Mok's algorithm [57].

For each experiment, we modify one and fix two of the three attributes of the anal-

ysed system: utilisation, number of frames and number of tasks. All experiments

65

3 Basic Exact Scheduling Analysis ofAM Multiframe Tasks

Algorithm 2 Generating Execution Time Vectors
Inputs: Overall-Utilisation, Tasks-Number, Frames-Number, Array Period.
Outputs: Matrix of Execution-Time.

Array Averag-Utilisation -ý-- Uunifast (Overall-Ut ilisat ion, Tasks-Number)
for i=I to Tasks-Number do

Sum-Uti-MF ý-- Averag-Utilisation(i) . Frames-Number
Array Frame-Utilisation -ý-- Uunifast(Sum-Uti-MF, Frames-Number)
for j=0 to Frames-Number-1 do

Execution-Time(i, j) ý-- Frame-Utilisation(j). Period(i)
end for

end for

show, as expected, that the number of schedulable systems when the exact response

time test is applied is always greater than when Lu's test is applied.

3.4.2 Scope of Running the Experiments

We run each experiment 1000 times, for each chosen number of frames, in four steps

as following. Firstly, we generate the parameters of the experiment (i. e. number of
frames, periods, deadlines, and execution time sequences) as previously explained.
Secondly, we check the worst case response time of each task, using Equation (3.2),

whether it is less than the relative deadline. In other words, we check the schedulabil-
ity of the system by checking if the worst case response times of all multiframe tasks

in this system are within their relative deadlines. Thirdly, for the same parameters of
the system we check the schedulability of the same generated system using Lu's test.

Lastly, for each of the two tests, we count the percentage of the number of schedulable

systems out of the 1000 ones that are randomly generated.

3.4.3 Results of the Experiments

From the utilisation point of view, we investigate the values of the utilisations that

are in (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8). Figures 3.1,3.2,3.3 show the percentage

of the schedulable systems versus the overall utilisation of the systems regarding two

parameters: number of tasks, N, and number of frames, n. Each line in each graph in

66

3.4 Evaluating Exact Response Time Scheduling Analysis for MF Tasks

Figures 3.1,3.2,3.3 shows the results of the schedulability percentages for a value of

n and a value of N. To simplify the presentation of the results, we present only two

values of n in each graph. So, each graph has four lines, each two lines have the same

values of parameters and present the results of both the response time test and Lu's

test. For example, graph (a I) in Figure 3.1 shows the results for 5 number of tasks

and two values of n, that are 3 and 13; and likewise all graphs of Figures 3.1,3.2,3.3

show the results for different values of the number of tasks and number of frames.

Figures 3.1,3.2,3.3 show that when the overall utilisation of the system is very
low, 0.1, both of the response time and Lu's tests give the same performance of 100%

schedulable systems. While when the utilisation is very high, greater than 0.6, al-

though the exact test is better than Lu's one, the success of both tests is very low (as

these systems are indeed unschedulable). So, we emphasise the range [0.2.0.6] of the

overall utilisation to show how much the exact response time test is better than Lu's

test.

N=5

(a!)

0i05

4

03

ol

0

(a2)

Figure 3.1: Percentage of Schedulable Systems Regarding the Overall Utilisation of
the System after Applying Response Time and Lu's Tests (N=5)

67

0040 -1 1ý !ý,,, ,

Utilizabon of lhe qjlem

--ir-Lut tet=7 -*--n=23 --4--Lu', t

3 Basic Exact Schcduling Analysis of AM Multiframc Tasks

Graph (a I) in Figure 3.1 shows that there is less than 10% better performance of the

exact test than Lu's test; when the overall utilisation of the system is 0.2, for 5 tasks

in the system, and number of frames equal to 13. While this standard of performance

rises to 20% in graph (a2) (i. e. percentage of the number of schedulable systems is
100%, according to the exact test, while this percentage is 80%, according to Lu's

test), when the number of frames is 23 for the same other parameters.

The performance of the response time test becomes even better by increasing the

number of tasks and number of frames. For example, graphs (b I) and (b2) in Figures

3.2 show that there is 55% better performance of the exact test than Lu's test; when

the overall utilisation of the system is 0.2, for 20 tasks in the system, and number of
frames is 13 or 23. While this standard of performance rises to 95% in graph (c2),

N=20

V) ,4

(b2)

Figure 3.2: Percentage of Schedulable Systems Regarding the Overall Utilisation of
the System after Applying Response Time and Lu's Tests (N=20)

Figure 3.3 (i. e. percentage of the number of schedulable systems is 100%, according
to the exact test, while this percentage is 5%, according to Lu's test); when the number

68

041;
I1053

lizlion ýi the -ýýStem

--b-Lu'stest-3 -0--nzI3 -*--Lu'stestn=13

3.4 Evaluating Exact Response Time Scheduling Analysis for MF Tasks

of tasks is 100 and the number of frames becomes 23 for the utilisation 0.2.

(c I) (c2)

Figure 3.3: Percentage of Schedulable Systems Regarding the Overall Utilisation of
the System after Applying Response Time and Lu's Tests (N= 100)

All graphs apart from (a2), in Figure 3.2, show that when the overall utilisation of

the system increases up to 0.4 (and sometimes 0.5 as in graphs (b 1) and (c 1)) and the

number of frames is 3. or 7; the performance of the exact test stays higher than 90%

for all studied number of tasks (i. e. 5,20. and 100) while at the same time, graph (b2)

shows that the performance of Lu's test decreases to about 22% when the utillsation

is 0.3, number of tasks is 20 and number of frames is 7. Also, from graph (c2), there

is around 97% better performance of of the exact than Lu's test; when the overall

utilisation of the system is 0.3, for 100 tasks in the system, and number of frames is

23.

In addition, graph (b 1) shows that there is about 42% better performance of the exact

test when the overall utilisation of the system is 0.4, the number of frames is 13 and the

number of tasks is 20. While graph (b2) shows that there is 80% better performance

69

3 Basic Exact Schcduling Analysis ofAM Multiframe Tasks

of the exact when the overall utilisation of the system is 0.3, the number of frames is

23 and the number of tasks is 20; where 80% of the number of the random tasks are

schedulable by the response time test but none of them were schedulable using Lu's

test.

So, the percentage of the schedulability performance of the exact response time test

is much better than Lu's test and some times reach around 100% better performance.
For example, graph (c 1) shows that 100% of the random systems are schedulable using

exact test while non of the systems are schedulable using Lu's test; when the overall

utilisation is 0.3, the number of tasks is 100 and number of frames is 13. Similarly,

graph (c2) shows that when the overall utilisation is 0.3, the number of tasks is 100

and number of frames is 23; the percentage of the schedulable systems using exact

test is about 97% while 0% of the systems are schedulable using Lu's test.

3.5 Summary

In this chapter, we present an exact scheduling test for a system of AM multiframe
tasks in terms of worst case response time analysis. The test shows a clear improve-

ment in the scheduling performance from three points of view, firstly, the test is exact

and tractable. Secondly, the test is applicable to the system model when deadlines of

the tasks are less than their relative periods and regardless of the scheme for priority

assignment. For example, response time test is still applicable to the system model

where priorities are assigned according to RM, DM or even any other priority assign-

ment scheme

Thirdly, evaluations show that this exact response time test has better performance
than the most effective utilisation-base scheduling test for AM multiframe tasks. This
improvement could reach 100% for some system parameters.

70

4 Extensions of the Exact Scheduling

Analysis of AM Multiframe Tasks

This chapterl extends the basic system model that was given in the previous chapter
(i. e. Chapter 3) and presents the worst case response time analysis that copes with

the extended model. The extension of the basic model is achieved in two directions

relating to release jitter and arbitrary deadlines. In the first direction we assume that

each AM multiframe task, Tj, has a maximum release jitter, Jj, but its deadline is less

than its relative minimum release times. In the second direction we assume that each
AM multiframe task, TI, has a deadline could be greater than its relative period, so

an AM multiframe task, Ti, could have interference from its previous frames during

its execution, but no release jitter is permitted in this stage of extension. However, a

combination of having release jitter and arbitrary deadlines is also given later on.

This chapter is organised as follows: the next section provides an exact worst case

response time analysis of AM multiframe tasks assuming that these tasks are subjected
to release jitter but no interference from the analysed task itself is permitted. Section

4.2 gives an exact worst case response time analysis of AM multiframe tasks assuming

no task in the system has release jitter and, also, the analysed task could have arbitrary
deadline so there could be interference from its previous frames during its execution.
Section 4.3 analyses the worst case response time of AM multiframe tasks when these

tasks have release jitter and arbitrary deadlines at the same time. A summary of the

chapter is given in Section 4.5.

I Material based on Sections 4.1 and 4.2 have been published in [78].

71

4 Extensions of the Exact Scheduling Analysis ofAM Multiframe Tasks

4.1 Analysis of AM Multiframe Tasks with Release

Jitter

When a task rj is subjected to release jitter, Jj, this task is not released as soon as it

arrives in the system; where the maximum time from when it arrives in the system

and being released is Jj. So, release jitter of a task rj could increase the number of
interference that rj provides within the execution of a lower priority task, in the sense

that rj could be released within less than its minimum inter arrival time, Tj. So, Tj is

not purely constant for all jobs of Tj; which means that the number of interference that

, rj provides within Ri (i. e. the worst case response time of a lower priority task ri) can

not be purely presented as [RýILJ. Therefore, the basic worst case response time formula TJ
of AM multiframe tasks (i. e. Equation (3.4)) requires a relative modification to cope

with the release jitter model. This section presents full details of this modification

assuming no interference from the analysed MF task.

mj+k To formulate the release jitter situation mathematically, assume sj is the time

when the frame that follows rj's critical frame by k steps is released (k = 0,1,2,..)

(this implies that sj7J is the time when rj's critical frame is released). As the criti-

cal frame of an AM multiframe task, Tj, always generates the maximum amount of
interference within the execution of a lower priority task, ri, for all number of T 's J-
invocations, we assume that rj's critical frame is released first in the execution of the
AM multiframe task Tj. So, when Tj is subjected to release jitter, snJ takes its place

within a time interval of length Jj < Tj whilst sTj+k take their places after k periods. J
Equation (4.1) represents mathematically release jitter situation of Tj.

< mj+k kTj +x- sj -<
kTj + y; Vk E Z(i. e. k=0,1,2,..) (4.1)

where Jj =y-x.

In fact, Tj indeed preempts Ti the most when sjmJ takes place rightmost in its release
mj+k jitter interval (i. e. Jj) whilst 3i , take place leftmost in their release jitter interval,

(Vk = 1,2,..). From Equation (4.1) sTi =y and mj+k =x+ kTj; (k = 1,2, ...
). In J. 3i

addition, the maximum execution of the lower priority MF task Ti is presented by the

72

4.1 Analysis ofAM Multiframe Tasks with Release Jitter

peak frame of T, 2. Therefore, the worst case preemption scenario of Tj is when TI's

peak frame is released simultaneously with the critical frames of all higher priority

AM multiframe tasks. Assume s is the time when TIs peak frame is released, Figure

4.1 illustrates the worst case execution scenario of Tj having only two AM multiframe

tasks, a low priority one Tj and a high priority one Tj.

Jj Tj

x+Tj y+Tj x+2. Tj y+2. Tj

+2 r4"J

Tj C11"i

Ti

1 +4 44-
f

Ri

t

Task release executing r ftnish executing

Figure 4.1: Illustration of Release Jitter Problem

As Tj does not have interference from its previous frames and Ti's peak frame pro-

vides the maximum amount of execution of Ti, analysing the peak frame of Tj is enough

to determine the schedulability status of Ti. We call the situation that leads Tj to exe-

cute for the longest time, the critical instance of Ti. The following definition illustrates

this critical instance of Ti, for the system model in this section.

Definition 4 Yhe critical instance of an AM multiframe task, Ti, in a system sub-
jected to release jitter is the simultaneous release of Tispeakfrdme and the critical
frameS3 of the higherpriority AMmultiframe tasks; taking into account that the crit-
icalframes are released at the very end of their relative release jitter interval (after

their relative arrival times) whilst nextframes are released at the very beginning of

their relative releasejitter interval (so, they are released as soon as they arrive).

20r the critical frame of Tj as the critical frame of AM multiframe task is a peak frame.
3Remember that an AM multiframe task has only one critical frame.

73

4 Extensions of the Exact Scheduling Analysis ofAM Multih-ame Tasks

So, the worst case response time of an AM multiframe task Tj is found by finding

the worst case response time of TI's peak frame, assuming the critical instance of Tj

that is given by Definition 4. Finding this worst case response time needs the worst

case interference from all higher priority AM multiframe tasks. The following lemma

proves the worst interference from a higher priority AM multiframe task Tj.

Lemma 1 For a real-time system whose tasks are AM multiframe tasks Tj; j=

1,2,.., N. Each multiframe task rj has a maximum release jitter equals Jj, and its

criticalframe is at position mj. Assuming Definition 4, ij is given by Equation (4.2);

where Ij standsfor the maximum interferencefrom a higherpriority multiframe task

,r in Rj; where Ri is a period of execution of ; at its critical instant. i

4imia'ITji 1). (4.2)
j Ti

Proof

We divide 1j into two parts 1j = C" +1j"; where C71 is the first interference that ii
, rj provides within (Tj - Jj) while 1jres' is the amount of interference that -rj provides
within RI - (Tj - Jj) starting from the release that follows the critical one. So, 1j rest is

given by: 1j rest
= gTj+l(rRi-(Tj-Jj),).

Tj

Therefore,
= CMJ + -(Tj-Jj)l) gTj+l (rRI

Tj

j= gTj(rRi-(Tj-Jj), Ri-(Tj-Jj), + 1, + 1) because the cumulative function, Tj Tj

starts from the release that is immediately previous to (mj + 1) so an extra interference
has been added to 4j whilst the relative release is subtracted by one to be mj instead

of Mj+ 1.
1 j 4Tj(rRj-(Tj-Ji)

i Tj + 11) because we add an integer to the ceiling fimction so we
can move this integer into the ceiling function

=
m- Ri-(Tj-Jj) T 4Tj(rL+--JLJ). n 4ý ju

Tj + ý1)
j Tj i

Using Lemma 1, the following theorem proves the worst case response time formula

of an AM multiframe task assuming release jitter scenario.

Theorem 2 Given a real-time system consisting ofNmultiframe tasks Tj; j=1,2,.., N

,. that satisfy the AM restriction, 'each multiftame task Tj has a maximum release jitter

74

4.1 Analysis ofAM Multifz-xne Tasks with Release Jitter

equals Jj, and its critical frame is at position mj; the worst case response time of

the multiframe task TI is given by the smallest non-negative solution to Equation (4.3)

assuming the priority ceiling protocols [66,60]:

'-' m Ri+Jj
Ri = Cmj+ BI +j (r-1) (4.3)

j j=l

R +J
where 4jmj (F' Tj

11) is the cumulativejunction ofthe criticalframe of Tj as defined by

Equation (2.1) and Bi is the maximum expected blocking time of TI.

Proof

Assume 1 is the maximum interference from tasks whose priorities are higher than the

multiframe task Ti. Definition 4 introduces TI's critical instance as the simultaneous

release of all higher priority tasks, so 1 can be presented by a summation of all 1j;

where 1j is the maximum interference from Tj:

i-I

j=l

Assuming Lemma 1, the maximum amount of interference from all AM multiframe

tasks that have higher priority than Tj is given by

4jmj(rRi +Jj
T j=l j

On the other hand, using priority ceiling protocols [66,60] allows the task to be

blocked at most once during its execution, so we only add, to the worst case response
time formula, the maximum of the expected blocking values which we symbolise as
Bi.

Thus, the worst case response time formula of Ti, is presented as a collection of three
kinds of execution: maximum execution of the task itself C, 1, maximum blocking M

time BI and maximum interference from the higher priority multiframe tasks; which
is identical to Equation (4.3). 0

75

4 Extensions of the Exact Scheduling Analysis ofAM Multiframe Tasks

Solving Equation (4.3) is given by a recurrence relation as in Equation (4.4).

i-I
j Rli +Jj M+ C7'+ Bi + gjm ff 1); (4.4)

11 Ti

where RO = CTi and I=0,1,.. until we get R11+ 1=R, = RI. However, if Rli+ 1+ JI

becomes greater than the deadline, we say that the system is unschedulable. This is

because the deadline of the task is relative to its arrival time4 whilst the response time

of the task is relative to its release time. Hence, the scheduling test for a task TI with
release jitter Ji is: Ti is schedulable if RI + Ji :5 Di; where Ri is found by applying
Equation (4.4).

Example

As an illustration of the presented analysis in this section, Table 4.1 represents a sim-

ple system example of two tasks: rl and T2. Priorities of the tasks are assigned ac-

cording to (D - J) - monotonic priority assignment that is presented by Theorem
16 in Section 2.3.3. To simplify the example, we assume all blocking times are

zero. To find the worst case response time of r2 we apply Equation (4.4) to get:

Task D T J Priority
Tj (5,4, T 10 0 12 2 1
T2 (6,4) 20 0

1
0 2

Table 4.1: Example System Attributes

RI +J R'+1 = CO, + ýOff '1 1); RO = C20 = 6. 221T, 2

1=0, R1=6+40([ýý+-21)=6+5=11, 21 12

1=1, R2=6+4o(r11+21)=6+9=l5, 21 12

1=2, R3=6+go(r 15+21)=6+9=15=R2 So, R2 = 15. 21 1-2 2.

R2 + J2 < D2; which is 20 in this example. Therefore, r2 is schedulable, also rl is

schedulable because R, =5. RI+Jl <D, as 5+2< 10.
Hence the whole example system is schedulable.

4 The arrival times of the AM multiframe task rj in Figure 4.1 is presented by the term x+ kTj.

76

4.2 Analysis ofAM Multiframe Tasks with Arbitraiy Deadlines

4.2 Analysis of AM Multiframe Tasks with Arbitrary

Deadlines

This section extends the basic response time analysis that is given in Chapter 3 to be

applicable to the AM multiframe task whose deadline is arbitrary and could be greater
than its relative period. So there could be a situation where an AM multiframe task

could suffer from interference from its previous frames during its execution. Analysis
in this section does not permit any release jitter for any AM multiframe tasks.

To start with, we modify Definition 4 of the critical instance of an AM multiframe
task to cope with the arbitrary deadlines model. As the AM multiframe task may suffer
from interference from its previous frames and the critical frame of the AM multiframe
task always provides the maximum amount of interference, for any possible number of
its invocations (i. e. interference); we define the critical instance of the AM multiframe
task as the simultaneous release of the critical frames of the analysed task and all
higher priority AM multiframe tasks as in Definition 5.

Definition 5 77ie critical instance of an AM multiframe task Tj with arbitrary
deadlines is the simultaneous release ofthe criticalframe of'; with the criticalframes

of the higher priority multi-frame tasks, taking into account that all TIs frames are

released as soon as they arrive.

Assuming this critical instance, the first step of the worst case response time analysis

of ; is to introduce the term busy period of a frame of a MF task ri as the time from

when this frame is released until it finishes its execution. So, the worst case response
time of ri is the maximum of all busy periods of TI. We symbolise the busy period of
the qlý frame5 of the MF task Tj as wi(q); q=I, -

The restriction of having deadlines less than their relative periods leads all busy

periods of a schedulable MF task not to extend beyond its period. However, having

arbitrary deadlines could lead the busy periods of a task to extend beyond its period
and therefore its response time would include extra interference from the analysed task
itself. So, the analysis in this scenario is concerned with analysing the interference

5AIthough q's values are 1,2, - ., we say q1h to simplify the presentation.

77

4 Extensions of the Exact Scheduling Analysis of AM Multiframe Tasks

from the analysed AM multiframe task itself as well as interference from other tasks

in the system.

To identify the amount of interference from the analysed task itself that should
be considered in its response time analysis, we have to identify the relative number of

invocations (i. e. interference) this task experiences within its busy period. To illustrate

the problem of arbitrary deadlines more, Table 4.2 gives a simple numerical example

system consisting of two tasks: a high priority task -rl and a low priority task r-,. For

simplicity and clarity we assume that none of the MF tasks has blocking; and -C, has

one frame whilst only T-, is AM multiframe task with 4 frames.

Task c D T
Tj 5 10 10
T2 (10,6,8,4) 25 15

Table 4.2: Example of Arbitrary Deadline

Figure 4.2 shows four invocations of T2 starting from the execution of its critical

� ----J ____j

14
--

ý41;
11ia- im

: -- -- . VtL'ICI) i
I" invocation , C21 jý

; ed w, C3)
invocation

ýed invocation w, (4)

invocation

Release ofbusy period
Execution of higher Second husy period of :

'o,
ýrlh busy

Priority Task od of T,

F,, d ot busy period
First busy period of Third busy peno, i ,I tion it T,

Figure 4.2: Illustration of Arbitrary Deadline Scenario- Timeline Diagram

78

4.2 Analysis ofAM Multiframe Tasks with Arbitrazy Deadlines

frame and, also, shows how last three invocations (i. e. 2, d invocation, Yd invocation,

and 41h invocation) of T2 include interference from previous frames of Tj itself. In other

words, Figure 4.2 shows four busy periods of T2 (i. e. w2 (q); q=1, .. ' 4). As the worst

case response time of a task is the maximum busy period that this task can experience,

the worst case response time of T2 is w2(2); which equals 21 in this example (full

details of the analysis and calculations are provided in the example at the end of this

section).

As can be seenfrom. the above example, to find the worst case response time of

an AM multiframe task in the arbitrary deadline scenario, we have to check all its

busy periods that include interference from the analysed task itself-, and then take the

maximum of them. However, to find the busy period of the qh frame of Tj we first

find ri(q) that represents the time from when Ti's critical frame is released until the

qth frame has finished its execution; then we subtract the execution that is related to

the previous frames. The following theorem gives a formula for finding the q1h busy

period of Tj (i. e. wi(q)).

Theorem 3 Having a system ofAM multiframe tasks, each task TI has an arbitrary
deadline Di, the q Ih busy period of Tj (i. e. wi(q)) is given by Equation (4.5) assuming

thepriority ceiling protocols [66,60].

wi (q) = ri (q) - (q - 1) Ti; (4.5)

where ri(q) isfound by the smallest non-negative solution to Equation (4.6).

1-1

ri(q) = ý, P(q)+Bj+ 4jo(f2(-q)j). (4.6)
Ti

where 4jo (q) is introduced by Definition I and Bi is the maximum blocking time of Ti.

Proof

The busy period of a task Tj represents two kinds of invocations: one of them belongs

to ri itself whilst the other belongs to the tasks other than Ti. Within preemptive fixed

priority scheduling, invocations of other tasks represent two kinds of invocations one

79

4 Extensions of the Exact Scheduling Analysis ofAM Multiframe Tasks

of them is interference from tasks whose priorities are higher than Tj and the other one
is blocking from tasks whose priorities are lower than TI.

The term that represents the interference from higher priority tasks in this scenario is

,,: - I mj w (q)
J=1

4; ' (r ý' 1); as long as two factors are considered. The first one is the previous Tj

critical instance (as in Definition 5); and the second one is that the qh busy period

of the analysed multiframe task Ti, wi(q), is the time from when its qh execution is

started until this execution is finished. In addition, using priority ceiling protocols
[66,60] allows the task to be blocked at most once during its execution. However,

in this model, we are analysing continuous busy periods of the same priority due to

the interference from the MF task itself So there is only one opportunity for a lower

priority task to gain access to a shared resource and cause blocking. We therefore have

the single term BI, that is the maximum expected blocking. So, what is left to analyze
is the interference from Tj itself.

To analyze the interference from the analysed task itself, we consider q as the num-
ber of invocations of Ti, so the amount of execution that Tj provides starting from its

critical frame is given by 4il (q); q=1,2,... Therefore, the time from when the criti-

cal frame of Ti starts its execution until achieving the q1h execution, ri(q), is given as a

collection of three terms: the maximum blocking B1, the interference from the higher

J=1 j
Epq

fI
I I. - priority AM multiframe tasks within ri(q) (i. e. and the amount of

execution of ; itself (i. e. 4j'i (q)). So, ri (q) is given by Equation (4.6).

Both- ri(q) and wi(q) have same end time but different start times where the dif-

ference between the two start times is (q - 1) Tj having wi (q) starts at (q - I) Tj after

ri(q). So to find wi(q), we subtract (q - I)Tj from ri(q); which is identical to Equation

(4.5). D

Solving Equation (4.6) requires a recurrence relation as in Equation (4.7).

i-I
, mj rJ (q) +'(q)=4j'i(q)+Bj+j4j` (rwl"-'J); (4.7) Fli I

i= T-

Where, rio(q) = 4j"(q) and I= 0,1, until finding +'(q)=rj'(q)=rj(q). However, II r1i
if ýj+' (q) becomes greater than (q - 1) Tj + DI we say that Tj is unschedulable.

Theorem 3 represents a formula for finding the q th busy period of ri. Now, we have

80

4.2 Analysis ofAM Multiframe Tasks with Arbitrary Deadlines

q r2 (q) w2(q)
1 20 20 > T2

2 36 21 > T2

3 49 19 > T2

T r 58 13 < T2

Table 4.3: Possible Values of the Busy Periods

to identify how many busy periods we have to consider. In other words, how many

values of q we have to consider for the'analysis. As the analysis is mainly interested in

the interference from the analysed task itself, we will consecutively analyze the busy

periods until no interference from the frames of Tj itself occurs; which means that the

busy period is finished within the same period it is released in. Therefore, q takes

values as q=1,2, until wi(q) < Tj is satisfied.

Once all needed busy periods are identified, the final step of the analysis is to find

the maximum busy period which represents the worst case response time of Ti, RI.

Symbolically, RI is found by maximising wI(q) over all possible values of q as in the

following equation Ri = maXq=1,2 ... wi(q).

Example
In this example, we apply the response time analysis that is presented in this section

to check the schedulability of T2 in the example system that is given by Table 4.2. To

begin with, we give a starting values for r2o (q) as r2o (q) =40 (q); then, we give values 2
to q starting from 1. So, when q=1, r2o(l) = ý0(1) = 10. Then we apply Equation 2

(4.7) for I=0,1,2 so we get
1=01 r2l(l)=40(1)+40(FfL(- 21

1)1) 10+40(r-ý051) = 15, T, to
2(j)

= 40(j) + gO(rf2LI) 1) 10 + 10 = 20, 1= 11 r2 21 Tj
1=2, r23(1)=20=r22(l). So, r2(1)=20.

Now, we find the busy period of the first frame of Tj by applying Equation (4.5):

w2(l) = 20 - 0(15) = 20 > T2. So we increase q to be 2 and similarly we apply
Equation (4.7) and (4.5) to get all possible values of r2(q) and w2(q) as in Table 4.3.
As we get w2 (4) < T2, we stop increasing q.

To get the worst case response time of T2, R2. we now maximise over all possible
busy periods in Table 4.3. Therefore, R2 = maxJ20,21,19,13} = 21 < D29 SO T2 is

81

4 Extensions of the Exact Scheduling Analysis ofAM Multiframe Tasks

schedulablC6 . Also Tj is schedulable because R, =5< DI. Hence, the whole system

example is schedulable.

4.3 Combined Analysis of Release Jitter and Arbitrary

Deadlines

This section combines the two models of Sections 4.1 and 4.2 within one model and

presents an exact worst case response time analysis of AM multiframe tasks that are

subjected to both release jitter and arbitrary deadlines at the same time. So, each AM

multiframe task Ti has a sequence of execution times Ci, a maximum release jitter Ji, a

deadline Di, and a period Ti. In fact, when T1 is subjected to release jitter, there could
be a situation where the minimum time between two successive frames of its frames

is T1 - J1 instead of TI, so having D1 greater than Ti - Ji means that there could be a

situation where Ti is released more than once during its execution and therefore an

interference from the analysed task T1 itself could happen during an execution of one

of its frames. So, analysis of the worst case response time of T1 must take into account
interference from Ti itself as well as interference from other tasks in the system taking

into account the situation of having two consecutive frames of a task Tj (i = 1, J)

within time interval Tj - Jj instead of Tj. Without lose of generality, we assume that

the first frame of each AM multiframe task Ti is its critical frame, so mi = O; V!

1, .., N.

As all MF tasks in the system satisfy the AM restriction, the situation that leads to

the worst case response time of Tj is when its critical frame is released simultaneously

with the critical frames of all higher priority AM multiframe tasks. That is because the

critical fi-ame of an AM multiframe task always provides the maximum interference

in the execution of the same or lower priority tasks. So, when Tj has interference from

previous invocations of its frames, the maximum generated interference from Ti comes
from when its critical frame is released.

Also, due to release jitter situation, all Tj (j = 1, .., i) could be released up to Jj units

6 Note how the worst case response time of T2 does not fall into the busy period of its critical frame,
but in the busy period of its second frame (i. e. the frame whose execution time is 6). .

82

4.3 Combined Analysis of Release Jitter and Arbitrary Deadlines

after they arrive. So, from the preemption point of view, Ti is preempted the most by

a higher priority AM multift-ame task T, when the critical frames of both Ti and TJ are

simultaneously released rightmost in their release jitter interval whilst next frames are

released leftmost in their release jitter interval as explained by Figure 4.1 in Section

4.1.

For more illustration, Figure 4.3 shows the execution behaviour of the example

system in Table 4.4 whose both AM multiframe tasks are subjected to release jitter

and arbitrary deadlines where T, has deadline greater than its period. Figure 4.3

Task c D T J
Tj (2.1) 5 5 1
T? (4,3.1) 10 6 12

Table 4.4: Example of Arbitrary Deadlines and Release Jitter

I

Tj
: jl

P' frame execution

2`1 frame execution

execution or Tý,

execution of r)

execution of T,

3`1 frat c execution

s first frame preemption of 'r-,

s second frame execution of T,
task is released

s third frame deadline met task is arrived

Figure 4.3: Execution of the Tasks in the Example

shows the worst case preemption of T-, 's peak frame where this preemption situation
lets two frames of T-, to interfere with the execution of the following frames. So, ri's

83

4 Extensions of the Exact Scheduling Analysis ofAM Multiframe Tasks

critical instance that leads to its worst case response time can be modeled by Definition

6.

Definition 6 The critical instance of an AM multiframe task Ti, in a system sub-
jected to release jitter and arbitrary deadlines, is the simultaneous release of the

criticalframe of Ti with the criticalframes ofthe higherpriority multiframe tasks, tak-

ing into account that the criticalframes are released at the very end of their relative

releasefitter interval (after their relative arrival times) whilst nextframes are released

at the very beginning of their relative releasefitter interval (so, they are released as

soon as they arrive).

Note the differences between Definitions 4,5 and 6. In Definition 4, the critical in-

stance of Tj is characterised, from the eh level point of view, by its peak frame whilst
in Definition 6 this critical instance is characterised by its critical frame. In addition,
Definition 5 assumes that the arrival time of Tj is the same as its release time for all

Ti's frames whilst Definition 6 assumes that release time of Ti's critical frame is after

its arrival time.

Analysis in this section considers Definition 6 to analyze Ti's worst case response
time. As a first step of the worst case response time analysis of TI, we define the busy

period of a fi-ame of Ti as the time from when this frame is released until it finishes its

execution. So, the worst case response time of Tj is the maximum busy period of Tj

over all Ti's frames that include interference from TI itself. Assume q is the number of
invocations of TI (q = 1,2,..), to find the busy period of the qth frame of Tj we follow

two steps: first we find ri(q) that represents the time from when TIs critical frame is

released until the qth frame has finished its execution; then we subtract the execution
that is related to the previous frames. The following theorem proves the technique that
is used to find the qth busy period of Ti.

Theorem 4 Having a system ofAM multiframe tasks, each task Ti has an arbitrary
deadline Di and is subjected to releasefitter Ji, the q th busy period of Ti (i. e. wi (q)) is

given by Equation (4.8) assuming the priority ceiling protocols [66,60].

wi(q) = ri(q); for q=1,
(4.8)

=ri(q)-(q-I)Ti+Ji; 'forq>l.

84

4.3 Combined Analysis of Release Jitter and Arbitrary Deadlines

where ri(q) isfound by the smallest non-negative solution to Equation (4.9).

i-I
0 ri(q) +J.

ri(q) = ýjo(q) +Bj+ 1: 4j(r
T.

J (4.9)
j=l

where 4jo (q) is introduced by Definition 1 and Bi is the maximum blocking time of ri.

Proof

ri(q) represents two kinds of execution; one is related to the execution of Ti and the

other is related to MF tasks other than Ti. The execution that is related to rj is rep-

resented by its cumulative function 4jo(q) and the execution that is related to the MF

tasks other than Tj is represented by blocking from lower priority tasks and interfer-

ence from higher priority tasks.

As priority ceiling protocols allow the task to be blocked at most once during its exe-

cution and as ri (q) is a continuous execution of the same priority MF task, the blocking

term from lower priority tasks is represented by the maximum expected blocking time
Bi. Furthermore, as we assume the simultaneous release of ri and higher priority tasks
(Definition 6 of the critical instance of Tj), the interference from the MF tasks whose

priorities are higher than Tj is presented by a summation of all interference from those

tasks.

Assume 1j is the interference from a higher priority AM multiframe task Tj in ri(q),
applying Lemma 1 leads to 1j being presented by gTj(rrj(q)+Jjj. So, the maximum i Tj
interference from the MF tasks whose priorities are higher than Ti's is presented by

I10 ri(q)+Jj ri(q)+Jj 4) (FT 1). Therefore, ri(q) is a collection of 49(q), Bi and Vý-! 0 Ij4;
(r

Tj
1);

which is identical to Equation (4.9).

ri(q) consists of q number of Ti's execution starting from ri's critical frame. So,
the first busy period of Tj is the busy period of Ti's critical frame. In addition, wi(q)
starts from when the qih frame of Tj is released whilst ri(q) starts from when the
first frame is released; also, both of wi(q) and*rj(q) have the same end duration. So,

when q=I both of wi(l) and ri(l) have the same start and end duration; which
means that wi(l) = ri(l). However, when q>1, wi(q) and ri(q) have different starts
where the first frame starts its execution at J1 and the qth frame starts its execution at

85

4 Extensions of the Exact Scheduling Analysis ofAM Multifi-ame Tasks

(q-I)Ti-Ji. So, wi(q) =ri(q)-((q- I)Ti-JI) =rj(q)-(q-l)Tj+Jj which is

identical to Equation (4.8). D

Equation (4.9) is solved by a recurrence relationship given by Equation (4.10);

where r0i (q) (q) and I=0,1,2,... ri (q) is found once r j+' (q) Iji (q) is satis-
fied. However, if r'i+ 1 (q) > (q - 1) Tj - J1 + Di we say that the AM multiframe task Tj
is unschedulable because one of Ti's frames could miss its deadline in this case.

i-I
0 tJ(q)+Jj

rli+l (q) = 4jo(q) +Bi +I 4j([w "" "1 ýj 1).
j=l Ti

Final step of the worst case response time analysis of Tj in this section is to identify

the upper bound of q that we have to consider in the response time analysis. In other

words, how many invocations of Ti we have to consider in the analysis. Actually, q

takes values from 1 until no interference from Tj occurs; which happens when the

relative busy period falls in the same period that Tj is released in. In other words,

q=1,2,... until we get wj (q) < Ti - J1 for q=1 or wi (q) < T, for q>1. Therefore,

the worst case response time of Tj, Ri, is the maximum busy period over all values of

q. Symbolically,

max {wi(q)}.
q=1,2...

As the deadline of a task is relative to the arrival time of the task while the response
time is relative to the release time, the scheduling test of the model in this section is

the following: Tj is schedulable if its worst case response time Ri is less than or equal
to Di - Ji.

As this section generalises the analysis of both analyses in Sections 4.1 and 4.2,

the following section presents an example that applies all details of the worst case

response time analysis that is presented in this section.

4.4 Example

Assume the system in Table 4.4, with no blocking assumed. To find the worst case re-
sponse time of T2, we first find the busy periods wi(q) depending on ri(q) by applying

86

4.4 Example

Equations (4.10) and (4.8) for i=2 and r2o (q) = 420 (q)
, so we get:

r21+1 (q) =40 (q) + Bi + yjl= I
4jo (F r2l (q) +Jj

2 Tj

+ ?I q= 1,1ý 1(l)=40(l)+40(r 2(1)+j
2-21T, 'j). To solve this equation,

0 1) +il 2
(1) +410(rri-

T,

4+ 410(r 4+1
5

= 4+2 = 6.
I

2(j)=40(,)+40(, rj 1)+Jl
r2- 21T,

=4+410(f6+
11)

5

=4+3 = 7.

0 r. 2(1)+jl
21 r2l- (1) + 41 (r2T,

471 ou +
5

2(j).
=4+3 =7=r2-

SO, r2(l) = 7, therefore w2(l) = r2(l) = 7.

w2 (1) > T2 - J2, so we increase q to 2 and apply Equations (4.10) and (4.8) for i=2,
q=2 and r2o(2) = 40(2) = 7, so we get 2

2, r2'+1(2) = 420 (2) + 410 To solve this equation,

10 ro 2) + J, 1=01 ri(2) 42 (2) + ý10([i
T,

7+ 410(rZ +1 1)
5

= 7+3 = 10.
1 2) +Jl r22(2) 420(2)+ 4,

louri T,

7+ giou 10+1
1

5

87

4 Extcnsions of the Exact Schcduling Analysis ofAM Multiframc Tasks

=7+5 = 12.

r, 2 (2) + J1
r23 (2) =ý0 (2) +gO(r 2

21T,

off 12+1 1) = 7+41
5

=7+5 = 12=r22(2).

So, r2 (2) = 12, therefore w2 (2) = r2 (1) - T2 + J2 = 12 -6+2=8. w2 (1) > T2, so

we increase q to 3 and again apply Equations (4.10) aýd (4.8) for i=2, q=3 and
00 ri (3) -= 42 (3) = 8, so we get

3, r1+1 (3) =40 3) +ý0(r?
j2(3)+Jj

1). To solve this equation, 2 2(1-T,

0
00 ri (3) + Ji

0, ri(3) = 42 (3) + 41 (r-
T,

=8 +410([8
+I
5

= 8+3 = 11.

40(r2l(3)+Jll)
r22(3)=40(3)+ Ir 2 T,

8+ 410(r
11 +1 1)

5

= 8+5 = 13.

40(
ý2(3)+Jjj)

+40(rl3+11)= 1=27 r23(3)=420(3)+ IrT, =8 15 13 = r22 (3).

So, r2 (3) = 13, therefore W2 (3) = r2 (3) -2 T2 + J2 = 13 - 12 +2=3. w2 (1) < T2, so

we stop increasing q. Hence, the worst case response time of r2 is the maximum of

the busy periods we have got

R2 = max 17,8,31 = 8.

As a result R2 < D2 - J2, so T2 is schedulable 7, also Tj is schedulable because R1=2<

DI- JI. Therefore, the whole example system that is given in Table 4.4 is schedulable.

7Note how the worst case response time of T2 is fallen in the busy period of its second frame.

88

4.5 Summary

4.5 Summary

This chapter has shown that the worst case response time analysis of AM multiframe
tasks is tractable and flexible enough to be extended in two directions. Firstly, the

worst case response time analysis is applicable to the system model whose AM mul-
tiframe tasks are subjected to release jitter. Secondly the worst case response time

analysis is applicable to the system model whose AM multiframe tasks have arbitrary
deadlines. Furthermore, this chapter gives full details of the exact worst case response
time analysis'of AM multiframe tasks that are subjected to release jitter and arbitrary
deadlines at the same time.

89

5 Exact Scheduling Analysis of
Non-AM Multiframe Tasks

The previous two chapters presented the worst case response time analysis of mul-

tiframe tasks that are restricted to satisfy the AM restriction. In this chapter 15, the

restriction of having AM multiframe tasks is relaxed, so, the assumption that having

only one critical frame per MF task is not satisfied any more; which affects the re-

sponse time analysis of the MF tasks. Initially, the worst case response time analysis

of the general MF task Tj requires checking all possible combinations of all frames of

the MF tasks whose priorities are higher than Ti; which means we have to consider

111: -l 2
, =, nj different combinations of the frames [69]. However, having introduced the

critical frame concept (see Section 2.1) leads to the requirement of only checking the

critical frames of the MF tasks whose priorities are higher than Ti's. Evaluation shows
that this usage of the critical frames reduces the number of required combinations for

finding the worst case response time of Ti.

This chapter is organised as follows: Section 5.1 introduces a criterion to identify

the critical frames per MF task. Using critical frames, Section 5.2 presents the exact

response time formula of general MF tasks. Section 5.3 explains the application of the

response time analysis of general MF tasks by a numeric example. Section 5.4 gives

a formal evaluation of the number of critical frames in practice.

I Material based on Sections 5.1 and 5.2 in this chapter was published in [79].
2rcmember that ll, ': =-llnj means the product of nj for j= 1. rlj'-=llnj=nI. n2. n3- .. ni-I.

91

5 Exact Scheduling Analysis ofNon-AM Multiframe Tasks

5.1 Identifying the Critical Frames

Recall Definition 2 in Section 2.1, a frame of location x is considered critical when
this frame provides a maximum interference for at least one number of its invocations.

However, this definition is not enough for non-AM multiframe tasks, for example
Table 5.1 shows all possible interference from a MF task Tj with an execution time

sequence (8,5,7,6,8,5). Applying Definition 2 onrj leads to having only one critical
frame whose execution time is 6. However, this criterion does not cover all critical
frames of a non-AM multiframe task as the critical frame, whose execution time is 6, is

not the only critical frame because it does not provide the maximum interference in the

case of one, three and five interference from rj. So, Definition 2 does not identify all

critical frames of a non-AM multiframe task. This is because there could be a frame,

of a MF task Tj, that does not satisfy Equation (2.2) but is critical; because, from one

side, it provides the maximum interference for a specific number of rj's invocations,

and from another side, the frames that satisfy Equation (2.2) do not provide more
interference than it does. This section presents a criterion for identifying the set of

critical frames for a non-AM multiframe task.

Location of
Released Frame

exe. seq. I inv. 2 inv. 3 inv. 4 inv. 5 inv. 6 inv.

0 (8,5,7,6,8,5) 8 13 20 26 34 39
1 (5,7,6,8,5,8) 5 12 18 26 34 39
2 (7,6,8,5,8,5) 7 13 21 26 34 39
3 (6,8,5,8,5,7) 6 14 19 27 32 39
4 (8,5,8,5,7,6) 8 13 21 26 33 39
5 (5,8,5,7,6,8) 5 13 18 25 31 39

Table 5.1: Possible Interference From Tj

To identify the critical frames of a MF task, we follow a reversing scenario where
we first identify the non-critical frames then consider the remaining frames of this MF
task as critical. To identify the non-criticality of a frame whose execution time is C of j
the MF task rj, we invert Definition 2 in Section 2.1. So, we say that the frame whose
execution time is C is not critical if there is another frame of rj whose execution i
time is CjI; where the amount of interference that this frame provides is always greater

92

5.1 Identiýýg the Czitical Frames

than or equal to the amount of interference that the frame whose execution time is CY,

provides for all number of Tj's invocations. In other words, the cumulative function of

the frame whose execution time is C' is always cater than or equal to the cumulative i gr
function of the frame whose execution time is & for all number of rj's invocations.

j
However, we sufficiently consider only hj -I invocations of Tj because the amount

of the generated interference from any of rj's frames increases with a fixed rate after

nj -I invocations.

To symbolise the definition of the non-critical frame of a MF task Tj having nj
(nj-1)

execution times (CjO i Cj1 Cj') within its shortest form, we consider the frame

whose execution time is C is definitely not critical if 3x = 0,.., nj -I and x 5A y; j
where Equation (5.1) is satisfied Vk = 1,2,.., nj -I

gj'(k) ý: 4, v(k). (5.1)

The non-criticality criterion that is represented by Equation (5.1) means that the amount

of interference the frame whose execution time is C generates is never more than the J
amount of interference the frame whose execution time is Cjx generates, so the frame

whose execution time is C is never critical. We call the frame whose execution time J
is Cý in this case the dominatedframe. So, applying this criterion on all frames of a J
MF task judges the non-critical frames, and therefore the remaining frames of the MF

task are critical.

In fact, although this criterion of identifying critical frames is safe, it does not pro-

vide an optimal set of critical frames of a MF task. This is because there could be a
frame, in the generated set, that is dominated by more than one other frames in the

same generated set. However, finding the minimum set of critical frames is equiva-
lent to the set-covering problem[4] and is known to be NP-complete, so we apply the

non-criticality criterion which is tractable. One successful application of this crite-

rion results in the frames whose execution time is the minimum are never critical, the

following theorem proves this.

Theorem 5 Given a MF task Tj whose execution time is in its shortestform, with n!
frames where ni > 1, a minimumframe3 is never a criticalframe.

3The minimum fi-ame is the frame whose execution time is the minimum value of the execution times.

93

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

Proof

The cumulative functions of the two frames whose execution times are respectively
the minimum and next to the minimum are respectively given by Equations (5.2) and
(5.3)

min+k-I
g! nin (k) I (j mod nj)

a
Cil (5.2)

j=min

min+k
4! nin+l I c, (j mod ni). (k) =i (5.3)

j=min+l

where min is the location of the minimum execution time in its sequence.
For each k=1,2, , we subtract Equation (5.2) from Equation (5.3), so we get

4! n'n+ 1 (k) - 4! nln (k) = C((min+k) mod ni)
- C(min mod nj)

I11i

As C, "'" is the minimum execution time of all frames, the right side of the equation is

never negative so the left side of the equation is also never negative. So, 4, "'+1 (k) ý:
41nin (k); Vk = 1,2,; which means that each frame with the minimum execution time
is always dominated by the frame it is followed by. El

Corollary I nen aW task has more than one minimum in its sequence of execu-
tion times, then all minimumframes are not criticaL

Proof

Followed directly from Theorem 5 where each minimum frame (i. e. the frame with
the minimum execution time) is dominated by the followed frame, which means that

all minimum frames are not critical. 0

For example, Table 5.2 presents all possible interference from a MF task Tj with
an execution time sequence (8,3,8,3,3,4). We can see from this table that, for all
number of interference, the amount of interference the minimum frame provides is

always less than or equal to the amount of interference the followed frame provides.
So, each minimum frame is dominated by the frame that is followed by and therefore

all minimum frames are non-critical.

Theorem 5 shows that in the worst case, when there is only one minimum frame

of ; and there is no dominated frames other than one minimum, there is a maximum

94

5.1 Identifying the Ditical Frames

Location of
Released Frame

exe. seq. 1 inv. 2 inv. 3 inv. 4 inv. 5 inv. 6 inv.

0 (8,3,8,3,3,4) 8 11 19 22 25 29
1 (3,8,3,3,4,8) 3 11

.
14 17 21 29

2 (8,3,3,4,8,3) 8 11 14 18 26 29
3 (3,3,4,8,3,8) 3 6 10 18 21 29
4 (3,4,8,3,8,3) 3 7 15 18 26 29
5 (4,8,3,8,3,3) 4 12 15 1 23 1 26 29

Table 5.2: Possible Interference From Tj

of nj -I critical frames as only this minimum is definitely non-critical. So, for a MF

task with at least two different execution times, the frames that have to be checked for

the critical criterion are the frames whose execution times are not minimum. So, in'

the worst case, the maximum number of enumeration that is needed in evaluating the

U. - .I response time of a MF task Tj is
J,

I- (nj - 1) and not as previously claimed rlj'=, nj
[69].

Moreover, dominated frames, of which the minimums are one example, are never

critical while the remaining frames are critical., So, the number of enumeration that
is needed in evaluating the response time of a MF task Tj could be even less than
Ill. -' (nj - 1) when the dominated frames are discard from the criticality criterion. J=I

Once the critical frame set for each MF task is identified, the worst case response
time analysis uses the combinations of the critical frame sets of higher priority MF

tasks to find the worst case, response time of a lower priority MF task. The critical
frame set is represented by the locations of the relative critical frames in the MF task,

so the combinations of the critical frame sets are relatively represented by the com-
binations of the indices of the critical frames. So, assume Lj is the set of the critical
frame locations of the MF task Tj. Then, from Li we define Al to represent the com-
binations of the critical frames of higher priority MF tasks as the cartesian product of
all sets of the critical frame locations for all tasks whose priorities are higher than Ti.
This cartesian product Al is defined as follow:
Let PI = 11, P2 =. Cl and for i>2 define Pi to be the cartesian product of Lj^ 1.

95

5 Exact Scheduling Analysis ofNon-AM Multiframe Tasks

In other words,
Vi = Ll x L2 Xx Li-I.

For example, assume we have fi = 11,2,41,42 = 10,1} and L^3 = 13,6}. Then PI, P2

and P3 are found as follows

V,
P2

=, Cl = f(l), (2), (4) 1,

173 = ii x f2 = 1(1,0), (1,1), (2,0), (2,1), (4,0), (4,1)}.

The following section uses Pi in presenting the worst case response time analysis.

5.2 Exact Response Time Analysis of Non-AM

Multiframe Tasks

This section presents the response time analysis of multiframe tasks that do not satisfy
the AM restriction. The system model in this section assumes the basic MF model that
is introduced in Section 2.1. In this model, all MF tasks are not subjected to release
jitter and no interference from the analysed task is permitted. However, sharing re-

sources is permitted and is represented for each MF task TI by the maximum blocking

time Bl.

Usually, the first step of analysing the worst case response time of Tj is to identify

the situation that leads to this worst case response time. This situation is called the

critical instance of Ti. From the preemption point of view, TI's response is the worst

when Tj is preempted the most. In addition, Tj is preempted the most when the amount

of interference from the higher priority MF tasks is the maximum. As the critical
frames of a MF task are the only frames that provide the maximum interference in the

execution of lower priority MF tasks, we now identify the critical instance of a MF

task Tj as in Definition 7; where the peak frame of Ti is the frame that generates the

worst case execution amount of Tj assuming no interference from Tj itself.

Definition 7. The critical instance of a MF task Ti is the simultaneous release of
the peakframe of Tj with the criticalframes of the higherpriority MF tasks, that lead

to the worst case response time of Ti.

96

5.2 Exact Response Time Analysis of Non-AM Multiframe Tasks

Assuming the critical instance in Definition 7, the response time analysis of Tj con-

siders its peak frame and the previous reduced set of critical frames for each MF task

whose priority is higher than the priority of ri. So, to find the worst case response time

of Tj we have to maximise its response time over all critical frame combinations of the

higher priority MF tasks. Symbolically, the worst case response time of Tj has to be

maximised over all values in Pj; which is given by Equation (5.4).

Ri = maxfRi, vl; ýEPj
(5.4)

where jRj, -; j is the response time of Tj that is relative to the simultaneous release, of

critical frames of higher priority MF tasks, that is presented by the combination V from

the cartesian product Pi and is found by Equation (5.5) as in the following theorem.

Theorem 6 Ri,.; is the worst case response time, ofa non-AMmultiframe task Ti, that

is relative to V which represents one ofthe simultaneous releases ofthe criticalframes

of higher priority AlF tasks. Assuming Definition 7, Rj, V is given by Equation (5.5)

assumingpriority ceiling protocols [66,60].

i-I - Rf - Ri,, v = Cni + Bi +v (5.5)
j=l Ti

where mi is a location of a peakframe of the MF task Ti. 17i is the jth element of the

vector V (i. e. the index of Tjs criticalframe that is relative to the combination V).

Proof As we are assuming a simultaneous release of both Tj and higher priority MF

tasks, the worst case response time of Tj can be presented by a summation of the worst

case execution of Ti, maximum interference from higher priority MF tasks within this

execution, and maximum blocking from lower priority tasks BI as priority ceiling
protocols let the task to be blocked at most once during its execution. The worst case
execution of Tj is represented by the execution time of its peak frame (i. e. Cj').

On the other hand, the interference from the higher priority MF tasks are presented
by a summation of the interference from each higher priority MF task. Assume 1 is the
amount of interference that is generated by the MF tasks whose priorities are higher

97

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

than TI's,
i-I
I 1j; (5.6)
j=l

where lj is the amount of interference that is generated by the MF task rj.

We already know that Ri, V starts from when Tj is released; and Tj is released simulta-

neously with Tj which is released every period Tj; so the number of interference from

,r within Ri, v is

r Rj, j; j.
Tj

However, Tj is first released having an execution time CvJ, so the amount of interfer-
i

ence that is generated by rj is given by:

1f j gj
Ti

Therefore, substituting lj in Equation (5.6) ends up with Equation (5.5). D

Equation (5.5) is solved by forming a recurrence relation given by Equation (5.7).

Mt Cmi'+ BI (5.7)
I, V +r

j=l Ti

whcre4 R9f, = C, i and I=0,1, until Mt' = M,,
v. Howcver, if MtI bccomcs grcatcr 1, I, V I, v

than DI, we say that Ti is not schedulable.

5.3 Numeric Example

This section presents a simple example system to illustrate the application of the pre-

sentcd exact response time analysis of the non-AM multifmme tasks. Table 5.3 reprc-

scnts the parameters of this example that consists of three MF tasks TI, T2 and T3.

This example shows how using the critical frames in the analysis reduces the num-

4 To reduce the number of iterations over calculations for the response time of a MF task Ti, an alterna-
tive value of R, 9, v can be found as the minimum interference within the execution of Ti's peak frame

(i. e. RO,,, = I: ji-21 I., =I
MinXELj I ýjx

'Tij

98

5.3 Numezic Example

task c T=D priority
_ , r, 3,4,6,8,7,5 10 high

T2 5,6,10,7 40 medium
T3 1,2,3 60 low

Table 5.3: Example System

ber of combinations that are needed for the response time analysis. For example,

previously before presenting the critical frame concept, we had to evaluate the re-

sponse time of T3 over all possible combinations of the frames of -ri and r2; which

means we have to do 24 evaluations (because rj has 6 frames and r2 has 4 frames

so the number of combinations is 6x4= 24). However, as minimum frames are not

critical, the number of evaluations reduces, in the first step, to 5x3= 15. Also, as

dominated frames are never critical, so considering only the critical frames of both Tj

and T2 reduces the number of needed evaluations to only 6 as explained below.

To find the critical frames of T, and T2, we first find the cumulative ffinctions for

each frame. Tables 5.4 and 5.5 show the amount of cumulative functions each frame

of each MF task r, and r2 generates; which are represented by the function 4, (1 inv.

means k=I for 4, (k), and so on). j

frame location I inv. 2 inv. 3 inv. 4 inv. 5 inv.
0 3 7 13 21 28
1 4 10 18 25 30
2 6 14 21 26 29
3 8 15 20 23 27
4 7 12 15 19 2ý-
5 5 8 12 18 26

Table 5.4: Cumulative Functions of T,

Once all cumulative functions are found, we apply Equation (5.1) to each frame

to identify the critical oneS5. So, T, and T2 have less than nj -1 critical frames; for

j=1,2; where applying Equation (5.1) to T, shows that the frame with the execution

time 8 dominates both frames with the execution times 7 and 5. So, both frames

5Note how the minimum frame is always dominated by the fi-ame that it is followed by.

99

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

frame location I I inv. 2 inv. 3 inv.
0 5 11 1 21
1 6 16 23
2 10 17 22
3 7 12 18

Table 5.5: Cumulative Functions of T2

with the ekecution times 7 and 5 are never critical. The same argument is applied to

the frame with the execution time 10 in T2; where it dominates the frame with the

execution time 7. So, the critical frame locations of T, and T2 which are presented by

A L, and L2 are LI = 11,2,31and. C2=11,21. Asa result,

17, =0
P2 = f(l), (2), (3)}
P3 =fj xC2 = f(l, 1), (l, 2), (2, l), (2,2), (3, l), (3,2)}

Therefore, to find the worst case response time of T2 and T3 we have to evaluate

their response time over the critical frames of Tj and -r2 while T, is the highest priority
MF task, its worst case response time is RI =8< DI. So, Tj is already schedulable.
For T2 and T3 we apply Equation (5.7) for the relativeVi.

For the worst case response time of T2,

R1 10 + Vj 10
j=1

4j ([Tjl) = 10 + 41 (FI-01) 10 +4= 14,
2 (1) 1 10

R2 Vj 14 10+2" T-)= 10 + 10 = 20
2'(1) j=1 j
3 VJ 20 R 10+1" ' (rT So, R 20 j=1 gj J) = 10 + 10 = 20 R2 2 (1) j2, (1) 2, (1)

Similarly, we find that R2, (2) = 36 and R2, (3) = 30. So, R2 = max {20,30,36} 36.

R2 < D2 so T2 is schedulable.

7 To find the worst case response time of r3, for each combination'V EJ3. we find the

relative response time of T3 by applying Equation (5.7). For example, to find R3, (I, I),
we do the following RO "'43, 3, (1, I)

R "O,
l) 3+): 2 v1 (rT3,1) =3+4+6= 13, 3 j=

4j.
i

2+ z2 vj 13
j=l j(7, -)= 19

j

100

5.4 Evaluating the Number of Czitical Frames

R3 So, R 3 (1,1) '=
19 = r32(,,,)' 3, (11) == 19-

Similarly we find all R3, V for all elements in P3 to get the values in Table 5.6. There-

fore6, R3 = max 119,3 0,29,3 8,3 9,3 61 =39. R3 < D3 Y SO T3 is schedulable.

frame location 0 1 2 3 4 5
0
I - 19 30 29
2 - 38 39 36
3 -1 - I- I-

Table 5.6: Possible Response Times of T3

As TI, T2 and T3 are schedulable, the Whole example system is schedulable.

Although evaluating the exact worst case response time is still formally an in-

tractable problem as in the worst case there could be a maximum of nj(nj - 1) eval-

uations, the exact analysis can be applied to many non-AM multiframe tasks. The

following section investigates the number of critical frames likely to occur in practice.

5.4 Evaluating the Number of Critical Frames

In this section, we evaluate the number of critical frames that are likely to occur to

see how often we could optimise the response time analysis in general. This is done
in summary by generating a set of random execution time sequences; which represent
the execution time sequence of the MF tasks. Then, for each execution time sequence
we find its relative number of critical frames. The following two sections show the

scope of the experiments (i. e. choosing parameters and how each of the experiments
is running) while the last section presents the results of the experiments.

6Note the maximum is only over 6 values instead of 24.

101

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

5.4.1 Experimental Setup

The experiments in this chapter require the generation of a multiframe task to find its

relative number of critical frames. Generating the multiframe task, in its turn, requires

generating two parameters, first one is the number of frames of the multiframe task

and second one is the shortest form of the execution time sequence.

To guarantee the execution time sequence to be in its shortest form (as we request in

the system model, see Section 2.1 for details), the experiments are done for all prime

numbers in the range [3,291 to be as the number of frames. That is because a sequence

with at least two different values and of a prime size can not consist of repetitive

sub sequences. After identifying the number of frames of the MF task, we randomly

generate the execution times using a uniform distribution. Values of the execution
time sequences are randomly generated within two ranges [1,10] and [100,2001. This

is to try different ratios of the execution time values; where the ratio of the first range
is 5 times the second one.

5.4.2 Scope of Running the Experiments

The experiments are done in two sessions: one session is when execution times are

generated within range [1,101 and the other is when execution times are generated

within range [100,200]. Within each session we run the experiment 10000 times for

each chosen number of frames in four steps as following. Firstly, we construct a mul-
tiframe task by generating the parameters of the experiment (i. e. number of frames

and execution time sequence) as explained in the previous subsection (i. e. Section

5.4.1). Secondly, we count the number of critical frames of the generated parameters
(i. e. the generated MF task) by checking Equation (5.1) for each of its frames. Algo-

rithm 3 represents the psodocode of the algorithm used for finding the indeces and the

number of critical fi-ames. Thirdly, we repeat this experiment for the same parameters
10000 times and then calculate the mean number of critical frames. Lastly, to present
clearer overview on the generated data with the knowledge that the number of criti-
cal frames does not exceed n-1 where n is the number of frames, we find the most
frequent number of critical frames that appears the most within the 10000 set for the

102

5.4 Evaluating the Number of Ditical Frames

same generated parameters.

Each experiment is done for each prime number of frames within range [3,291 and,

as can be seen from Figure 5.1, each graph (i. e. [1,101 and [100,200]) has three lines

two of them represent the two functions: the mean number of critical frames and

the most frequent number of critical frames; and the third line represents the lowest

bound of the percentage that is greater than the two mentioned functions of the critical
frames. Consequently, each point in Figure 5.1 represents one of two options (i. e.

regarding to the line that it belongs to). The first option is the mean number of critical
frames for the relative number of frames out of 10000 set of randomly generated

execution times. The second option is the number of critical frames that is appeared

the most, for the same relative number of frames, in the same 10000 set of generated

execution times.

5.4.3 Algorithms of the experiment

To clarify the experiment steps', we present here all algorithms that are related to the

experiments. To start with, Algorithm 3 represents the required steps for finding the

number of critical frames.

103

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

Algorithm 3 Finding Number of Critical Frames
Inputs: Array Execution-Times.
outputs: Array Critical-Indices, Integer Size-Criticals.

if Frames-Number I then
Critical-Indices 0
Size-Criticals I

else
Cumulat-Matrix -ý-- cumulative matrix of Execution-Times
Size-Criticals -ý-- FramesJVumber -I
for i=0 to Frames-Number -I do

for j=0 to Frames-Number -1 do
Counter . 4-- 0
if i 54 j then

for k=0 to Frames-Number -I do
if Cumulat-Matrix(i, k) :5 Cumulat-Matrix(j, k) then

Counter -ý-- Counter +I
end if

end for
if Counter--Frames-Number -1 then

Execution-Times -ý-- -1
Size-Criticals -ý-- Size-Criticals -I

end if
end if

end for
end for
Counter2.4-- 0
for i=0 to Frames-Number -I do

if Execution-Times(i) :, A -I then
Critical. Jndices(Counter2) ý-- i
Counter2 Counter2 +1

end if
end for

end if

Algorithm 4 illustrates the steps that are followed to find the combinations of the

critical frames that are presented by the cartesian product Vi in Section 5.1.

For more illustration of the steps in Algorithm 4, we present the following numeric

example. Assume we have the inputs that are given in Table 5.7. Applying the steps
in Algorithm 4 leads to the parameters in Table 5.8; which leads to the needed combi-
nations.

104

5.4 Evaluating the Number of Oitical Frames

Algorithm 4 Finding Combinations of Critical Frames
Inputs: Counter-Cartesian, Task-Level, Critical-Indices.
Outputs: Array Locations-Sync-Release.

Require: Task-Level =/- I
if Task-Level- 2 then

Local ions-Sync-Release -t-= Critical-Indices(l)
else

Multiple: array of size Task-Level -2 -ý-- 1'
for i= Task-Level-2 to I do

Multiple(i) -ý-- Mulliple(i + 1) . Size-Criticals(i + 1)
end for
Locations-Sync-Release(Task-LeveI - 1) -ý-=
Critical-Indices(Counter-Cartesian mod Size-Criticals(Task-Level - 1))
for j= Task-Level-2 to 1 do

Locations-Sync-Release(j)
Critical-Indices(Lc'uj"W'u7-'l'-t-i-pc-l'-e'T'T') ianj mod Size-Criticals(j))

end for
end if

Task Size-Criticals Critical-Indices Multiple
Tj 3 (0,1,2) 2
T2 2 (0,1) -

I T3 1 (0)

Table 5.7: Numeric Example to Illustrate Algorithm 4

Counter first
element

Task-Level -I
element

Locations-
Sync-

Release
0 Critical-Index(L22Jmod3)=O Critical-Index(Omod2)=O (0,0)
1 0 1 . (0,1)
2 0 (1,0)
3 1 (1,1)
4 2 0 (2,0)
5 2 1 (2,1)

Table 5.8: Values' of the Parameter: Locations-Sync-Release

105

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

5.4.4 Results of the Experiments

2

14

0-

ýý "IF 8
1 lo 6

z

0

357 17 19 11 13 .3 29

Numbei of Piames

-*-60% of tne original numter of frames

-*-The most frequent number of criticals

-I-- Mean of number of criticals

([1,101)

(100,2001)

Figure 5.1: Mean and Most Frequent Number of Critical Frames When the Range of
Execution Times is [1,101 and [100,200]

Figure 5.1 presents the evaluation of the number of cfitical frames over 10000 MF

tasks with randomly generated execution time values. This evaluation is presented by

106

5.4 Evaluating the Number ofCritical Frames

the two functions: the mean number of critical frames and the most frequent number

of critical frames over the 10000 randomly chosen multiframe tasks. Figure 5.1 shows

that both functions of the mean and the most frequent number of critical frames are
less than 60% of the original number of frames for the range of the execution times
[1.101; whilst these functions are less than 65% of the original number of frames for Z--
the range of the execution times [I 00ý 2001. This implies that the number of critical

frames in practice is likely to be significantly less than (n -I). In addition, Figure 5.1
Z--

demonstrates a linear relationship between the number of frames and the number of

critical frames; which implies that these conclusions can be extrapolated to tasks with

more than 29 frames.

To give a better coverage of the generated data, Figures 5.2 - 5.6 give details of

where each point in Figure 5.1 comes from. In other words, Figures 5.2 - 5.6 show

the distribution of the number of critical frames, over the 10000 randomly chosen

multifi-ame tasks for each of n where n represents the number of frames and has one

of the values f3,5ý7,11,13,17,19,23.291. We can see from all mentioned figures

(3 frames)

Figure 5.2: Number of Schedulable Tasks Versus Number of Critical Frames When
n=3 (10000 Tasks in Total)

that reaching the peak when the range of execution times is [L 10] Is faster than when
the range is [100.200]. To illustrate more, we can deduce from the above figures that

107

5 Exact Schcduling Analysis ofNon-AM Multiframe Tasks

the bigger ratio the execution times have the less number of critical frames they could

contain.

Although we can see a similar behaviour for all graphs in Figures 5.2 - 5.6, an ex-

ample is given here to support and illustrate the previous mentioned deduction. Figure

5.6 (29 frames) shows that when the range of the execution times is [1,10] (i. e. ratio is

10), the maximum number of tasks (i. e. about 1150 out of the 10000) have 16 critical
frames while about 800 tasks have the same number of critical frames when range of

the execution times is [100,200] (i. e. ratio is 2). On the other hand, for the same gen-

erated set of data, when the ratio is 2, similar number of tasks (i. e. nearly 1150,1200

and 1150 tasks out of 10000 tasks) have the number of critical frames equal 18,19,20

critical frames respectively; while about 950,750 and 500 tasks have the same number

of critical frames (i. e. 18,19,20 respectively) when the ratio is 10; which supports the

idea of the bigger ratio the execution times have, the lower number of critical frames

the MF task could get.

5.5 Summary

This chapter is concerned with the basic response time analysis of MF tasks when the

AM restriction is relaxed. The analysis is done in two main steps and then evaluated.
Firstly we introduce the critical frame concept, secondly we use this concept to give

the basic response time formula of non-AM multiframe tasks. Evaluating the critical
frame concept is also given to show how this concept improves the response time anal-

ysis by reducing the number of combinations that need to be examined to determine

the worst case response time of a MF task. Although we proved that number of critical
frames could reach in the worst case to n-I where n is the original number of frames

of the MF task, evaluation shows that number of critical frames are mostly less than
65% of the original number of the frames.

108

5.5 Summary

n=5

(5 frames)

n=7

3500

3000

0
2000

1000

501

range= 1- 1av ange=1 00-200

(7 frames)

Figure 5.3: Number of Schedulable Tasks Versus Number of Critical Frames When

n=5 and 7 (10000 Tasks in Total)

109

Number of CrMcal Frames

5 Exact Scheduling Analysis of Non-AM Mult1frame Tasks

nall

(I I frames)

rr-13

(13 frames)

Figure 5.4: Number of Schedulable Tasks Versus Number of Critical Frames When
n=II and 13 (10000 Tasks in Total)

110

5.5 Summary

(17 frames)

na 19

(19 frames)

Figure 5.5: Number of Schedulable Tasks Versus Number of Critical Framcs When
n= 17 and 19(l 0000 Tasks in Total)

III

17

5 Exact Scheduling Analysis of Non-AM Multiframe Tasks

n= 23

1600

1400

1200

loco

0 800
t
.0 E
Z 6CO
z

40(

M

(21 frames)

(. zg irames)

Figure 5.6: Number of Schcdulable Tasks Versus Number of Critical Frames When

n= 23 and 29 (10000 Tasks in Total)

112

123456789 10 11 12 1,1 14 15 16 17 18 19 G 21 2-'

Number ot Crtical Frames

6 Extension of the Exact Scheduling

Analysis of Non-AM Multiframe

Tasks

This chapter' extends the system model that was given in Chapter 5 and presents the

worst case response time analysis of each relative extended model. This extension is

firstly done in two directions relative to release jitter and arbitrary deadlines. In the

first direction we assume that each MF task Ti has a maximum release j itter. Ji but no

interference from the analysed MF task itself is allowed. In the second direction, the

analysed NIF task, Ti, is permitted to have a deadline greater than its period so -r, Could

have interference from previous frames during its execution. Then, the two models of

release jitter and arbitrary deadline are combined and the relative exact response time

analysis is presented.

This chapter is orgamsed as follows: the next section presents the worst case re-

sponse time analysis of MF tasks that are subjected to release jitter. The worst case

response time analysis of MF tasks whose deadlines are arbitrary is presented in Sec-

tion 6.2. Section 6.3 presents an example to illustrate the analysis of the arbitrary
deadlines senario. Section 6.4 presents the worst case response time analysis of MF

tasks whose deadlines are arbitrary and are subjected to release jitter. In Section 6.5

we present an example to illustrate the analysis of the combined model of release jitter

and arbitrary deadlines .

1 Parts of Sections 6.1 and 6.2 in this chapter are published in [791.

113

6 Extension of the Exact Scheduling Analysis ofNon-AM Multiframe Tasks

6.1 Analysis of MF Tasks with Release Jitter

Section 4.1 in Chapter 4 explained how release jitter affects the periodicity of the

tasks. However, we presented in Chapter 5 the worst case response time analysis of

purely periodic non-AM multiframe tasks. In this section, we cover the extension

of this analysis when non-AM multiframe tasks are subjected to release jitter. The

analysis is presented in a self contained manner rather than as an extension to the AM

analysis of Section 4. L

When a task rj is subjected to release jitter, its release time takes place somewhere

after its arrival time in an interval of length equals to the maximum release jitter, JJ.

To symbolise the releasejitter problem mathematically, let aý and Sk be the times when JJ
the (k+ l)Ih frame2 of rj arrives and is released respectively. ak, and A must satisfy Ji
Equations (6.1) and (6.2) as rj arrives periodically and has to be released after its

arrival time within a maximum interval of time equals to Jj.

ak -x+kT-; ii (6.1)

aik :ý sik : 5, y+k Tj; (6.2)

y-x=Jjand k=0,1,2,..

As release jitter affects the periodicity of the release times of Tj, the worst case

situation of a lower priority task Ti is when Tj is released the most during Ti's exe-

cution because, in this case, Tj provides the maximum number of interference within

Ti's execution. However, the maximum number of releases that Tj practices is when
its release times are close to each other as much as-possible. The following lemma

explains this situation.

Lemma 2 Having Tj subjected to releasefitter, Jj, Tj is released the most when its

firstframe is released rightmost in its releasefitter interval while subsequentframes

are released leftmost in this releasefitter interval.

Proof

2AIthough k=0,1,.., for simplicity of the prescntation wc say (k + 1)lh.

114

6.1 Analysis ofMF Tasks with Release Jitter

Substitute Equation (6.1) for Equation (6.2), so we get

+ kTj < sjk,

Now, substitute k+1 for k to get the following inequality

x+ (k+ 1)Tj < Sjk+l.

k from both sides of this inequality, so Subtract sý

j Sk < Sý+l -sk. x+(k+l)T-- jj

We already know, from Equation (6.2), that -sjk ',: ý - (y + kTj). So,

x+ (k+ 1)Tj- (y+kTj): ý x+ (k+ 1)Tj-sjk: 5 sjk+' -sjk.

T i

Therefore,
k+l >A Sj - j+Tr-J- (6.3) i J.

Equation (6.3) presents a relationship between release times of each two successive
frames when rj is subjected to release jitter. Without lose of generality and to clasp
the first two releases of rj's frames, we assume Tj first arrives as early as possible (i. e.
first arrival time is x) but is released as late as possible so release time of the first frame

(i. e. k=O)is q =y which is rightmost of Tj's release jitter interval. Si

For k>0, rj is released the most when release times of its successive frames are

closest to each other. In other words, rj is released the most when sk+l equals to the

actual lower bound value of sý+ 1. We already know that A> a' , and ak, -x+ kT. so i J- i J- JI,
Equation (6.3) becomes

k+l >x+kTj+Tj-Jj, Si -

skj+' '�ý x+ (k+ 1)Tj -Jj.

As ajk+' = x+ (k+ 1)Tj,

sk+1 > ak+1

115

6 Extension of the Exact Scheduling, Analysis of Non-AM Multltýamc Tasks

However, Sk .41>aki1 as the release time of a task is always after its arrival time.

So's krI should not take values in the range [a kiI- Jj. akiI). Therefore, the lowest
ii. J

k11 k+ I
value that s, takes is a, ; which means that the latest time 'rj is released after

the first release is as soon as it arrives. However, the arrival times are always at the

beginning of release jitter interval; which is I eftmost of relcasejitter interval. So Tj is

released the most when the first frame is released rightmost of its release jitter interval

while next frames are released leftmost of its release jitter interval. El

Figure 6.1 illustrates the situation where Tj is released the most in the interval [s, '
.. /].

T,

Tj j, TI x 2. T, yt IT,

c2

R,

Figure 6.1: Illustration of Release J liter Problem

Lemma 2 presents the situation where ri is invoked for the maximum number of

times. As Tj is a MF task, the amount of invocation (i. e. interference on lower priority

tasks) that is relative to this maximum number is relatively different according to the

first released frame of 'ri. However, we explained in Section 5.1 how critical frames

of a MF task are the only frames that provide the maximum amount of interference in

lower priority tasks. The following lemma proves that this critical frame set remains

the same when rj is subjected to release jitter.

Lemma 3 Having non-A M multifýame task 'r, subjected to release jitter, its criti(-al I
ftame set remains the same as when rJ does not have releasejitter

116

6.1 Analysis of MF Tasks with Release Jitter

Proof

The maximum amount of interference from a MF task Tj, for all number of interfer-

ence (i. e. Vk = 1,2,..), are generated by its critical frames. On the other hand, release
jitter of Tj could affect the number of interference Tj generates on a lower priority task
but does not affect the execution times of the frames. So, the frame that is relative
to the maximum interference on this lower priority task could be different from the

one that is relative to the maximum interference when Tj was not subjected to release
jitter. However, both frames are from the critical frame set because this set depends

on the maximum amount of interference that Tj generates for all its possible number

of interference. So, even if the number of interference increases by release jitter, the

relative critical frame will be one of the original critical frame set. Therefore, the crit-
ical frame set keeps the same as explained in Section 5.1.0

Example

The following example illustrate Lemma 3. Suppose a system with three MF tasks in

Table 6.1, the critical frame locations of Tj and T2 are 11,2,. 3,4} and t 1,2,3 } respec-
tively.

task c T priority
, rl 3,4,6,7,8,6,8 10 high
T2 5,6,7,10 40 medium
T3 1,2,3 60 low

Table 6.1: Example System

Firstly, we present all possible response times of T3 assuming there is no release
jitter for any tasks in the system. Table 6.2 presents all possible response times that are
relative to all critical frames of T, and T2. So, we see from the table that the worst case
response time of T3 is 50 and the relative critical frames of T, and T2 are the execution
times whose locations are 3 and 3 respectively; which represent the execution times 7

and 10 respectively.

Now, assume T, has release jitter of 1 then this release jitter gives rise to an extra
interference from TI and therefore its critical frame is changed to be relative to the
new number of interference. To find out how the critical frame is changed, Table 6.3

117

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

frame location 0 1 2 3 4 5 6
j 0

I - 19 30 30 34
2 - 20 37

-
39 35

3 - 30 T45 7 50 3 8 =

Table 6.2: Responses of T3 When No Release Jitter

presents all possible response times of T3 (calculated3 by applying Equation (6.5))

that are relative to all critical frames of ri and T2. We see from this table that the

worst case response time of T3 is now 56 and critical frames of TI and r2 are 6 and

10 respectively. At the same time, according to the frames of 7 and 10 of T, and T2,

the relative response time of -r3 in the case JI =I is R3 = 54. So, the specific critical

frame of rI has changed when release jitter exists but is still one member of the critical

frame set.

frame location 0 1 2 3 4 5 6
0
1 - 19 3 38 34 - -
2 - 27 37 39 35 - -

d

3 - 38 1 56 ý4-

Table 6.3: Responses of T3 When JI =1

As a first step in any worst case response time analysis of a task TI we have to iden-

tify its critical instance that is considered as the worst case situation in TI's response

time analysis. For preemptive real-time tasks under fixed priority scheduling, TI's re-

sponse time is the worst when Ti is preempted the most during its execution. A higher

priority MF task Tj preempts Tj the most when Tj provides as much interference as

possible in Ti's execution. Having Tj and Ti subjected to release jitter and consider-
ing Lemma 2, Tj interferes ri the most when both Tj and Ti start their first executions

simultaneously and Tj's first frame is released rightmost in its release jitter interval

while subsequent frames are released leftmost in this release jitter interval. On the

other hand, as Tj is a non-AM multiframe task, its critical frames provide the maxi-

3 Full details of the calculation are given by the example at the end of this section.

118

6.1 Analysis of MF Tasks with Release Jitter

mum amount of interference in lower priority tasks. Also, as Tj does not preempt itself,

studying the schedulability status of Ti's peak frame is enough to decide its schedula-

bility status. Therefore, we define the critical instance of a non-AM multiframe task

, ri as in the following definition.

Definition 8 Having a system whose MF tasks are subjected to release jitter, the

critical instance of a non-AM multiframe taskrl is the simultaneous release of its

peakframe and the criticalframes, of the higher priority AlF tasks, that lead to the

worst case response time of Ti; where the simultaneous release takes its place at the

end (i. e. rightmost) of their release jitter intervals whilst subsequent releases of the

frames thatfollow the criticalframes take theirplace leftmost in their relative release
jitter intervals.

Figure 6.1 illustrates this critical instance by presenting the simultaneous release of

two MF tasks; a higher priority MF task rj and a lower priority MF task Ti.

Assuming Definition 8 of the critical instance and according to Lemma 3, analysis

of the worst case response time of Tj has to be maximised over all combinations of the

critical frames of the higher priority MF tasks. However, assume R1, P is Ti's response
time that is relative to a specific combination, that is represented4 by V, of the critical
frames of the higher priority MF tasks; to find RI'V we have to find the amount of in-

terference from the higher priority MF tasks within Rq. The following lemma proves

a formula for finding this amount of interference.

Lemma 4 Given a real-time system consisting of N non-AM multiframe tasks rj;
j=1,2, - -, N, each AlF task Tj has a maximum release jitter equals Jj. Assuming

Definition 8 where the simultaneous release ofthe criticalframes ofthe higherpriority

AE tasks is represented by V, Ri, i; is the response time of -ri that is relative to a specific
ý; the maximum amount of interference in Ri,, p from the tasks whose priorities are
higher than Ti is given by Equation (6.4).

Ri, v+Jj 4jvj (r 1). (6.4)
j=l Ti

4ý E Pj; where Pi is given in Section 5.1 as the cartesian product of the locations of the critical frames
of Tj, more details in Section 5.1.

119

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

Proof

Assume 1 is the maximum amount of interference from tasks whose priorities are

higher than Ti, then we can present 1 as a summation of all interference from higher

priority tasks because of the simultaneous release of all higher priority MF tasks (Def-

inition 8). So,

j=l

where lj is the maximum amount of interference from the higher priority MF task Tj.
According to Definition 8 we divide this amount into two parts

+ Irest; j

where CJ'7j is the first interference that Tj provides within (Tj - Jj) while Ijrest is the

amount of interference that rj provides within Rj, -; - (Tj -Jj) starting from the release

that follows the first one. So, Fj' is given by:

Irest =
(, 7j+l) Rif, vi -'j)

Tj

Therefore,
- (i7j+l) (rR'i, g-(T -jj) + 4. j

VRi
Ij

itr + 1) because the cumulative function starts from a previous Tj

release so an extra interference has been added,
gvi f rRi, v-(Tj-Jj) +

-15 kI- Tj
1) because we add an integer to the ceiling function so we

can move this integer into the ceiling function,
Vr R-g- r 17- R +J ýJljff-" (Ti-ii) T

jT j T + Tj

So, the maximum amount of interference from tasks whose priorities are higher

than the MF task Ti, assuming Cvj is the first execution time of rj (remember that 17j Vi
is a location of a ýritical frame, of rj, that is relative to the combination V), is given by

Equation (6.4). 0

Having a formula for the amount of interference from higher priority MF tasks,

what is left in the response time analysis is to find the formula that represents R1,; for

120

6.1 Analysis ofMF Tasks with Release Jitter

a specific combination, VE Pi, of the critical frames of all higher priority MF tasks.

The following theorem proves a formula of Ri, ý.

Theorem 7 Given a real-time system consisting of N non-AM mulliframe tasks Tj;
j=1,2,.., N, each MF task T has a maximum release itter equals Jj and has its peak ii
frame at position mj; assuming Definition 8, the worst case response time of Ti, that
is relative to VE Pi is given by the smallest non-negative solution to Equation (6.5)

assuming priority ceiling protocols [66,60]. V represents a combination vector of the

criticalftame locations of the MF tasks whose priorities are higher than TI.

'-'
V- R-; +Jj Ri, v = Cim'+ BI +y

, j=l Ti
(6.5)

where i7j is the fh element of the vector V.

Proof

As rI does not preempt itself, the maximum amount of TI's execution is represented by
its peak frame. Also, priority ceiling protocols let the task to be blocked at most once,
so we just add the maximum blocking time to the response time formula. In addition,
Lemma 4 presents a formula for the amount of interference from higher priority MF

tasks. So as we are assuming the simultaneous release of 'r, and higher priority MF

tasks, we can present the worst case response time of ri as a summation of its execution
and interference from the higher priority MF tasks. Therefore, the worst case response
time of the task Ti is given by the smallest non negative solution to Equation (6.5). D

Solving Equation (6.5) is given by forming a recurrence equation given by Equation
(6.6).

Rli'j; +Jj Rýtl = Cj" +BI +1 (6.6) I'V ,4
Vi (r1)

j=1
i Tj

I, V=C,,,
n

where R9 and I=0,1, till Rýt M Rq. However, if R1+ I> DI - Ji, we I, V I, V 1,1V
say that Tj is not schedulable.

Corollary 2 The worst case response time ofa non-AMmultiframe task Tj in a system

121

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

subjected to releasefitter is given by Equation (6.7)

Ri = max IRI, v} (6.7)
VEPi

Proof

For each combination of VE Aj, we find the worst case response time of T, that is

relative to this combination V. Therefore, the worst case response time of Tj is the

maximum of all of them as in Equation (6.7). M

Schedulability Test

As the response time is calculated from the time when Tj is released while deadline

is scheduled from when Tj arrives in the system, the response time scheduling test is

given as following: Tj is schedulable if Ri :! ý Di - Ji.

Example

Recall the example in Table 6.1 with no blockings and J, = 1, J2 = 0, and J3 = 0, to

find the worst case response time of T3 we apply Equation (6.6) for all VE ý'3; where
ý'3 =1(1,1), (2, I), (3,1), (4,1), (1,2), (2,2), (3,2), (4,2), (1,3), (2,3), (3,3), (4,3)}. For

example, when (2,3) then
- R' +ij 1+1 CM3 +12 3, (2,3)

i
gv) (r R j=1 j ki 3, (23) 3 Tj

+42(rRI3, (2,3)+'j)+43(r!
L(2,3

R1+1 3
3, (2,3) 1 TI 2 T2

1=0, RO 3 3, (2,3) =

1=1, R' 3+ 42(l) + 43(l) =3+6+ 10 19. 3, (2,3) 12
3+42(rI9+11)+gý 2 3(r! 91)

=3+ 13 + 10 = 26. 1=2, R3
, (2,3) 1 10 40

1=3, R 3+42(r26+1j)+43(rL 36 1) =3+ 21 + 10 = 34. 3, (2,3) 1 10 2 40

= 3+g2(r34+1j)+43(rL4j) 1=49 R43, (2,3) 1 10 2 40 =3+ 27 + 10 40.

1=5, R5 =3+ 35 + 10 = 48. 3, (2,3)

1=6, R6 =3+ 35 + 15 = 53. 3, (2,3)

1=7, R7 =3+ 38 + 15 = 56. 3, (2,3)

1=8, R8=3+ 38 + 15 = 56. 3, (2,3)

So, R3, (2,3) = 56. Similarly, we find all R3, V for all VE 173 to get values that were

previously presented by Table 6.3. Therefore, R3 is the maximum of all values in Ta-

ble 6.3, so R3 = maxfl9,36,38,34,27,37,39,35,38,56,54,38} = 56 < D3- S09 T3 is

schedulable.

122

6.2 Analysis ofMF Tasks with Arbitrazy Deadlines

6.2 Analysis of MF Tasks with Arbitrary Deadlines

The previous section presents an extension of the worst case response time analysis

of the non-AM multiframe tasks from the point of view that tasks have release jitter

but the analysed task does not have interference from its previous frames during its

execution. This section presents another extension of the worst case response time

analysis of the non-AM multiframe tasks; where the MF tasks have arbitrary deadlines

but does not have release jitter. In other words, the deadline of the analysed task could

be greater than its period, so analysis of the worst case response time has to take into

account the interference from the analysed MF task itself as well as interference from

higher priority MF tasks.

As a first issue we start by identifying the situation of the MF task T, that could lead

to its worst case delay of its response time; which we call the critical instance of TI.

As there is a possibility of having interference from the task itself within its execu-

tion as well as the interference from the higher priority MF tasks, to demonstrate the

maximum amount of interference from Ti, we have to consider its own critical frames

besides the critical frames of the higher priority MF tasks. So, the arbitrary dead-

line scenario leads us to the situation of analysing all critical frames of the analysed

MF task instead of analysing only its peak frame because its critical frames are the

frames that generate the maximum amount of interference within the same or lower

priority tasks. In other words, the critical instance of Tj is presented by the following

definition.

Definition 9 -. The critical instance of a non-AM multiframe task Tj whose dead-

line is arbitrary is the simultaneous release, that leads to the worst case response time

of Ti, ofthe criticalframes ofboth Tj and all MF tasks whose priorities are higher than

Tj 'S.

In the previous section, the simultaneous releases of the critical frames of the MF

tasks whose priorities are higher than Tj are represented by the cartesian product Ai Of
fj; where j=1,2, .., i-1. However, Definition 9 considers all simultaneous releases

of the critical frames of the analysed MF task Ti and the MF tasks whose priorities are
higher than Ti's. So, we represent the simultaneous releases in this section by the

123

6 Extension of the Exact Scheduling Analysis ofNon-AM Multiframe Tasks

cartesian product Pi of ij; where j=1,2, .. ' i. Therefore, the response time of Tj has

to be analysed for all its critical frames whose locations are presented by 171, which is

the ýh element of the vector ýE PI, as well as critical frames of higher priority MF

tasks, whose locations are presented by Vj; j=1,2,.., i-1.

To analyze the response time of TI that is relative to the combination of the critical
frames V, the first step is to define the busy period of a frame of a MF task as the time
from when this frame is released until it finishes its execution that is relative to this
frame. So, assuming Definition 9, the worst case busy period of Tj that is relative to

the combination V is the maximum busy period of Tj taking into account that the busy

period could include interference from Tj itself.

Assume q is the number of invocations of ; (q = 1,2,..), to find the worst case

busy period of the q1h frame5 of Tj that is relative to the combination V we follow two

steps: first we find ri, v(q) that represents the time from when -ri's critical frame whose

location is Vi is released until the qth frame has finished its execution; then we find

wj, V(q) that represents the q1h busy period of ri that is relative to the combination of

the critical fi-ames V by subtracting the overlap invocations that are not related to the

th E busy period of the q rame. The following theorem proves the technique that is used

to find wj, ý (q)
-

Theorem 8 Having a system of non-AM multiframe tasks, each MF task T, has an
arbitrary deadline Di. Assuming Definition 9, the qIh busy period of Tj that is relative
to the combination V (i. e. wj, ý(q)) is given by Equation (6.8) assuming the priority
ceiling protocols [66,60].

wi, v(q) = for q=1,
(6.8)

= rj, ý (q) - (q - 1) Ti; for q>1.

where ri, f (q) isfound by the smallest non-negative solution to Equation (6.9).

1-1 7 r- -(q) rj, v(q)=ýY'(q)+Bj+j: 4. J(r "v
i T. j=l i

With the knowledge that q's values start with 1,2,..

(6.9)

124

6.2 Analysis ofMF Tasks with Arbitrwy Deadlines

where 4i'7' (q) is introduced by Definition I and BI is the maximum blocking time of Ti.

Proof

As we are assuming the simultaneous release of Tj and higher priority MF tasks, rl, V(q)

can be represented by a summation of two kinds of execution; one is related to the

execution of Ti and the other is related to MF tasks other than Ti. The execution that

is related to TI is represented by its cumulative function (q) and the execution that

is related to the MF tasks other than Tj is represented by blocking from lower priority
tasks and interference from higher priority tasks.

As priority ceiling protocols allow the task to be blocked at most once during its ex-

ecution and as ri, v(q) is a continuous execution of the same priority MF task, the block-

ing term from lower priority tasks is represented by the maximum expected blocking

time B1. Furthermore, as we assume the simultaneous release of Tj and higher priority
tasks (Definition 9 of the critical instance of Ti), the interference from the MF tasks

that have higher priority than Tj is presented by a summation of all interference from

those tasks.

Assume 1j is the interference from a higher priority MF multiframe task Tj in rj, p(q),
Vj ri v (q)

applying Lemma I leads to 1j being presented by 4; (r -i-, 1 (with the assumption j
that Jj = 0). So, the maximum interference from the MF tasks whose priorities are
higher than TI's is presented by v rý'-"(-q)j). Therefore, ri, v(q) is a collection of

4; (
Tj

1v -7(q 4i i(q), Bi and F-j=i which is identical to Equation (6.9). Tj

ri, j; (q) consists of q number of Tj's execution starting from TI's critical frame whose
location is fi. So, the first busy period of Tj is the busy period of the fith critical frame

of Ti. In addition, wj, v(q) starts from when the qth frame of Tj'is released whilst ri, v(q)
starts from when the first frame is released; also, both of wi, v(q) and ri, v(q) have the

same end. So, when q=I both of wU(l) and ri, v(l) have the same start and end;

which means that wi, f (1) = rj, ý(I). However, when q>1, wj, v(q) and rq(q) have

different starts where rj, ý(q) starts at 0 and wi, v(q) starts at (q - I)TI. So, wj, v(q)
wi, f(q) - (q - 1)Tj which is identical to Equation (6.8). D

Equation (6.9) is solved by forming a recurrence relationship as in Equation (6.10);

where I=0,1,.. until getting rlt' (q) = rj -(q). However if (q) > (q - 1) Tj + DI I, V I, V

125

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

then Tj is not schcdulable as Tj would have passed the q1h deadline in this case.

i-I 7 rý -(q) r'tl(q)=4ý'(q)+Bj+j4-J(r "v 1). (6.10)
I, V I j=l i Ti

Theorem 8 provides a way for finding the q1h busy period of rj that is relative to the

combination V; for q=1,2, ... To identify the worst busy period that is relative to the

combination 1P, we have to maximise all relative busy periods that includes interference

from TI. In other words, we have to maximise wi, v(q) over all q; where q takes values
from I until Tj stops interfering within its invocations. So, we keep increasing values

of q and finding wi, v(q) until Equation (6.11) is satisfied.

wi, v(q) < Ti. (6.11)

That is because satisfying Equation (6.11) means that Tj has finished its execution

within the period it is released in; and no fin-ther interference from Tj itself will occur.
Therefore, the worst case busy period wi,, p that is relative to the combination VE PI is

the maximum busy period over all q that is bounded by Equation (6.11). Mathemati-

cally, wi, f is found by Equation (6.12).

max lwi, p(q)}. q=1,2,..
(6.12)

Therefore, to find the worst case response time of TI, Ri, we have to maximise all

worst case busy periods wi,, v over all possible combinations, V. In other word, the worst

case response time of Tj is given by Equation (6.13).

RI = max lwi,, pl VE P (6.13)

Scheduling Test

The schedulability test of Tj within the arbitrary deadline scenario is as follows: Tj is

schedulable if its worst case response time, that is calculated by Equation (6.13), is
less than or equals to its deadline (i. e. Ri:! ý Di).

126

6.3 Example

6.3 Example

Assume a system with three independent tasks TI, T2 and T3 with the parameters given
in Table 6.4. For simplicity of the example we assume all blockings are 0. To identify

task c T D priority
, ri 5,3,4,6,8,7 10 10 1
T2 6,10,7,5 40 40 2
T3 6,7,8 5T 60 3

Table 6.4: Attributes of the Tasks in the System

the schedulability status of T3, we have to find its worst case response time. As D3 >

T3, we need to evaluate the response time of T3 over all its critical frames of the MF

tasks TI, T2 and T3.

Using analysis in Section 5.1, locations of the critical frames fj; j=1,2,3 are
found as follows

i: l = 12,3,4},
L2 = 10,11 and
A L3 = 11,21.

So, the cartesian product 173 of L^j; j=1, A is found as
173 = 1(2,0,1), (2,012), (2,1,1), (2,1,2), (3,0,1), (3,0,2), (3,1,1), (3,1,2), (4,0,1),

(4,0,2), (4, l, l), (4, l, 2)}.

Now, we apply the response time analysis in this section in two steps. In the first step,
we find wi, V using Theorem 8 and Equation (6.10) and in the second step, we find the

worst case response time R1 by maximising wi, v over all VE 173 -
For cxamplc for the combination V= (2,0,1), applying Thcorem 8 Icads to

12- r3, (2,0.1)(q)
r3, (2,0,1) (q) (q) +YL=l 4JVJ(r : -- 93

j Tj
1

ý 17i r3, (2,0,1) 1, then r3 j=l j 1(2,0,1)
M7+ 12

Ti

By solving this iterative equation, we find that r3, (2,0,1) M=38. So,

127

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

W3, (2,0,1)(1) = 38 < T3.

So restriction (6.11) is satisfied and therefore, no need to increase q's values any more.
TIIUSý W3, (2,0,1) == 3 8.

Similarly, we find r3 + 39. SO) W3, (2,0,2) (1)
,
(2,0,2)(1) =8 Tj

39. In the same way, we find all w3, p using r3, v(q) to get the results in Table 6.5. Where

we calculate all possible worst case busy periods that are relative to all critical frames

of T3 and higher priority MF tasks. Note from Table 6.5 that values of q increases to

v q r3, ý(q) W3, P(q) W3, i;
(2,0,1) 1 38 38 38
(2,0,2) 1 39 39 39
(2,1,1)
(2,1,1)

1
2

57
69

57 > T3
19 maxJ57,191 = 57

(2,1,2)
(2,1,2)

1
2

58
68

58 > T3
18 maxJ58,181 = 58

(3,0,1) 1 39 39 39
(3,0,2) 1 40 40 40
(3,1,1) 1 ý6 46 46
(3,1,2) 1 47 47 47
(4,0,1) 1 36 36 36
(4,0,2) 1 37 37 37
(4,1,1) 40 40 _ 40
(4,1 2)
(4,1: 2)

58 > T3
29 maxJ58,291 = 58

Table 6.5: Possible Busy Periods

2 for the combinations (2,1,1), (2,1,2), and (4,1,2) as the relative w3, o(l) is greater
than T3.

Once all worst case busy periods that are relative to all VE V3 are identified, the

worst case response time of T3, R3, is the maximum of all identified busy periods

and found by applying Equation (6.13) (i. e. w3, i; 's column in Table 6.5). Thus, R3

maxf38,39,57,58,39,40,46,47,36,37,40,581 = 58 < D3s SO T3 is schedulable.

128

6.4 Combined Analysis of Release Jitter and ArbitrW Deadlines

6.4 Combined Analysis of Release Jitter and Arbitrary

Deadlines

Section 6.1 restricts the system to have deadlines less than their relative periods and
Section 6.2 restricts the system to have no release jitter. In this section we relax the

two previous restrictions and present the worst case response time analysis of systems

whose deadlines are arbitrary and the MF tasks are subjected to release jitter.

The first issue of the analysis is to identify the situation that leads to the worst

case response time of the analysed MF task. Within the context of the analysis in

this section, we consider the simultaneous release, of the critical frames for both the

analysed MF task and higher priority MF tasks, is the situation that leads to the worst

case response time of the analysed task. We call this situation the critical instance of

a MF task; which is given by Definition 10.

Definition 10 . The critical instance of a non-AM multiframe taskrl whose dead-

line is arbitrary and the MF tasks are subjected to release jitter is the simultaneous

release, that leads to the worst case response time of Ti, of the criticalframes of both

, rI and all AIF tasks whose priorities are higher than TIs; where the simultaneous re-
lease takes itsplace rightmost in their releasefitter interval whilst subsequent releases

of theframes thatfollow the criticalframes take their place leftmost in their relative
releasefitter intervals.

Definition 10 considers the simultaneous releases of the critical frames of both Tj
and higher priority MF tasks. So, we use the presentation of the simultaneous releases
as in the previous section; which is the cartesian product Pi of Cj; where fj is the
critical frame locations of Tj=1,2, .., i. Note that Pi takes into account the critical
frames of the analysed MF task; where their locations are presented by L^i., So, P, is

a set of vectors, each vector represents a combination of the critical frames of both Tj
and higher priority MF tasks.

Assuming Definition 10, we divide the response time analysis into two steps. Firstly,
for each simultaneous release of Tj and higher priority MF tasks (i. e. VE Pj), we find

WO , that is the worst case busy period of Tj that is relative to VE Vi. Secondly, we

129

6 Extension of the Exact Scheduling Analysis ofNon-AM Multiframe Tasks

maximise all found worst case busy periods over all combinations VE Pi.

To find wi, v, we have to consider all busy periods that could include interference

from ri itself as well as higher priority MF tasks. So, assuming wi,,; (q) is the qth busy

period, of TI, that is relative to6 V, wi, v(q) is found by firstly finding rl, V(q). ri, v(q) is the

response time of q frames starting from the frame that is synchroniscd With the higher

priority MF tasks. The following lemma introduces a formula for finding ri, v(q).

Lemma 5 Having a AlF task TI in a system that is subjected to release jitter and

arbitrary deadlines. rj, ý(q) is Tis response time, that is relative to V which represents

a combination of the criticalframes of both TI and the higher priority MF tasks, of q
frames startingfrom theframe whose location is Vi. ri, v(q) isfound by the smallest

non-negative solution to Equation (6.14) assuming the priority ceiling protocols [66,

601.
'-l v, riv(q)+J.

rj, ý(q)=ýj"(q)+Bj+14; (r ' 1). (6.14)
j=l Ti

where 4fi (q) is introduced by Definition 1 and BI is the maximum blocking time of TI.

Proof

As we assume a simultaneous release of all higher priority MF tasks at the starting

time of ri, v(q), we can represent rj, V(q) by a summation of the amount of execution of

Tj and the amount of interference from higher priority MF tasks. Using Lemma 4, the

maximum interference within ri, ý(q) from higher priority MF tasks and that is relative
to the combinationP is given by

7 rjý(q)+J-

j=l Ti

Furthermore, the amount of execution of Ti for q frames starting from the frame whose
location isVi is given by 4fi(q). In addition, as rixq) represents a continuous execu-
tion of a same priority MF task, the priority ceiling protocols [66,60] would not allow
this MF task to be blocked for more than once at most during the execution of ri, v(q).
So, we just need to add the maximum blocking time to ri, V(q). Therefore, rl, p(q) is

represented by the summation of the three terms as in Equation (6.14). Cl
6ý represents the simultaneous release of the critical frames of both Ti and higher priority MF tasks.

130

6.4 Combined Analysis of Release Jitter and Arbitrazy Deadlines

Solving Equation (6.14) is done by forming a recurrence relationship as in Equation

(6.15).
4, tl (q) +Bj

i-I 7 r, ',, (q) +Jj
I 4jT I, V

j=l Ti
(6.15)

where I =O, 1,2, .. until rJtl(q)=? J-(q). However, if r1tl(q) > (q-I)Ti+Di-Ji
I'V I, V I'V

then Tj is not schedulable.

Once ri, ý(q) is calculated, wi, v(q) is found by taking out the overlapping execution
that does not belong to the execution of the ýh frame. The following theorem proves
a formula for finding wiv(q).

Theorem 9 Having a system of non-AM multiframe tasks, each task TI has an arbi-
trary deadline Di and is subjected to releasefitter Ji and a simultaneous releaýe ofthe

criticalframes of Ti andhigherpriorityAlF tasks that ispresented by their locations V.

The qh busy period of Ti that is relative to V (i. e. wi, v (q)) is given by Equation (6.16).

wl, v(q) = for q= 1,
(6.16)

= rq(q) - (q - 1) Tj + Ji; for q>1.

Proof

wi, f (q) starts from when the qth frame (starting from the frame whose location is ýj

of Tj is released; and ends by when this frame has finished its execution. ri, f (q) starts
from when ri's frame whose location is Vi is released and ends by when the q1h frame

of ri has finished its execution. So, when q=1, ri, ý(q) and wj, p(q) start and end at the

same time so wi, v(q) = rj, ý(q). However, when q ý! 1, rj, V(q) and wi, f (q) end at the

same time but ri, V(q) starts earlier than wi, v(q) so the amount of rj, V(q) is greater than

wi, f (q). To find wi, f (q) we subtract the start time of wj, ý(q) (i. e. -ýj + (q - 1) Tj - J)
from the start time of ri, v(q) (i. e. Vj) because wj, 'r, (q) starts later than rjj; (q). In other
words,

rq(q) - wi, p(q) = iýj + (q - 1) Tj - Ji -, Vj.

Therefore, wi, v(q) = ri, v(q) - (q - 1) Tj +Jj; which is identical to Equation (6.16). []

Theorcm 9 finds the qth busy period, of Ti, that is relative to i;. Td find the worst
case busy period that is relative to V we have to maximise the busy periods that are

131

6 Extension of the Exact Scheduling Analysis of Non-AM Multiframe Tasks

relative to V over all values of q as in the following Corollary.

Corollary 3 wj,, v is the worst busy period of a AIF task TI that is relative to the si-

multaneous release, of the criticalframes, that is represented by V. w1,9 is given by

Equation (6.17).

wl, v = max jwi, ý(q)}; (6.17)
q=1,2,..

where q=1,2, until wi, v(q) :! ý Tj - Ji for q=I and wi, v(q) :ý Tj for q>1. This is

because Ti, in this case, stops interfering its execution when wi,, p (q) falls in the same

period it is released in.

Up to this point, for each V we have identified the relative worst case busy period.
So, to find the worst case response time of Tj we have to maximise these wij; over all

possible combinations V as in the following Corollary.

Corollary 4 The worst case respons time of a AN Ti, in a system that is subjected

to release jitter and arbitrary deadlines, is the maximum worst case busy period of

Ti over all combinations of the critical releases of the higher priority MF tasks. This

maxim isation is presented by Equation (6.18).

Ri = max lwi, v} (6.18)
VEPj

Schedulability Test

We already know that Ri is found from when TI is released while Di is scheduled from

when ri arrives in the system. So, the schedulability test is as the following: Tj is

schedulable if Ri :5 Di - Jj; where Ri is found by applying Equation (6.18).

6.5 Example

To apply the analysis in this section, assume a simple example system that consists

of two tasks; T, with only one frame and T2 with three frames. To simplify the ex-
ample we assume all blocking times are zero. To analyze the schedulability of T2 we

132

6.5 Example

task C T D
Tj 3 5 5 1

1

-
r2 (2,3,4) 10 20 2

Table 6.6: Example System

have to maximise all its worst case busy periods over all VE V2 which represent the

combinations of the critical frames of both T2 and higher priority MF tasks.

First of all, using policy in Section 5.1, we find the critical frame locations of Tj and

T2 (i. e. LI and L2 respectively). So, LI= (0) and L2 = (1,2) and therefore,

V2 = {(0,1), (0,2)}.

Now, for each VE V2 we find all busy periods that could include interference from

T2. In other words, we apply Theorem 9 to find W2, V(q) for all q=1,2, .. until

W2, -P (q) :5 T2 - J2 for q=1 or w2, v (q) < T2 for q>1. So, for V= (0,1), we have to

find w2, (O, I) (q) which requires finding r2, (O, I) (q) by applying Equation (6.15) where
B2 ý 0.

gI (1) +12-1 g.
/vj([?

j2,
(O, I)(')+JJ

q= jT To solve this equation, 2, (0 2 =1 j

r2
1 0,1 102, (0,1)(1) +JI

ri, (0,1)(1)
421 (1) +gl (F-

T,

3+410(r3+ 11)
5

=3+3 = 6.

I= 1, r22, (O, I)(1) = 421(1)+V(F
T,

1)

= 3+6 = 9.

21 3,
(0,1)(1) =3+6=9=A r2- 2(l)-

So, r2, (O, I) (1) = 9, therefore w2'(0,1) (1) = r2, (o , 1)(1) = 9. W2, (0, I)(l) > T2 -J29 SO We
increase q to 2 and apply Equations (6.15) and (6.16) for i=2, q=2 and r20'(0'j) (2)

1(2) = 7, so we get 2

133

6 Extension of the Exact Scheduling Analysis ofNon-AM Multiframe Tasks

? J,,
(O,,)(2) +Jj

41(2) +40([_2 21T,

By solving this equation we get, r2, (O, I) (2) = 19, therefore W2, (O, I) (2) = r2 (I) - T2 +

J2 = 19 - 10 +2= 11. w2, (O, I) (2) > T2, so we increase q to 3 and again apply

Equations (6.15) and (6.16) to get r2, (O, I) (3) = 24, so w2, (O, I) (3) = 24 - 20 +2=6.

w2, (O, I) (3): 5 T2, so we stop increasing q and finding more busy periods that are relative

to V= (0,1).

As all needed busy periods are identified, we now find W2, (O, I) by applying Corollary

3 (i. e. Equation (6-17)). Therefore,

w2, (O, I) = max 19,11,6} = 11.

Sifnilarly, whenV = (0,2) we find W2, (0,2) (q) for q=1,2,.. until W2, (0,2) (q) :5 T2,

so we get the values in Table 6.7.

V qI r2, v(q) W3,.; (q) W3, -;
(011) 1 9 9> T2

2 19 11 > T2
3 24 6 max{9,11

(0,2) 1 13 13 > T3
2 18 10 <T 3 max 113,

Table 6.7: Possible Busy Periods

Thus, the worst case response time of T2 is found by applying Equation (6.18)

R2 =maxfl I, 13} = 13 <D2-J2-

So, T2 is schedulable.

134

6.6 Sununary

6.6 Summary

This chapter has shown the flexibility of the response time scheduling analysis of non-
AM multiframe tasks by extending the analysis in two ways. One is to include MF

tasks that are subjected to release jitter, and the other is to include MF tasks whose
deadlines are arbitrary so interference from the analysed MF task has been taken into

account. Then, the two models have been combined and the exact response time

analysis has been presented for the new combined model.

135

7 Exact Analysis of Frame Specific

Deadlines

Up to this chapter, the response time analysis of MF tasks assumes that all frames of

the MF task have the same deadline, so analysing the maximum response of the critical
frames is enough to decide the schedulability of the MF task itself. In this chapter, we

generalise the system model to the situation that is called the frame specific deadline

model; where the MF task could have different deadlines relative to each of its frames.

So, each MF task Ti has nj deadlines (Dki); for each k=0,.. ' ni - 1. The model in this

chapter covers the arbitrary deadlines model but no blocking from lower priority tasks

is allowed to simplify the presentation.

The frame specific deadline model rises an issue of how to optimise the priority

assignment for the MF tasks in the system. This chapter suggests an optimal priority

assignment that can be used in this model.

This chapter is organised as the following: the next section presents the worst case

response time analysis of the model assuming that all deadlines of each MF task are
less than their relative period, and that priorities have been allocated. Section 7.2

relaxes the restriction on the deadlines and presents the worst case response time anal-

ysis of the model assuming that all deadlines of each MF task arc arbitrary, so inter-

ference from the analysed task itself has to be taken into account in the analysis. in
Section 7.3, the analysis is practically illustrated by a numeric example. Section 7.4

covers the priority assignment that is used for the frame specific deadlines model.

137

7 Exact Analysis of Frame Specific Deadlines

7.1 Exact Response Time Analysis of MF Task with no

Interference from the Analysed Task

In general, as ri has ni deadlines relative to its frames, to test the schedulability of

the MF task ri we have to find the worst case response time for each of its frames,

Ri (Cjk); k=O.. nj - 1, and then check Ri (Clk) :5 Dk, for all values of k. However, when

there is no interference from previous frames of the same task, there are some cases

where there is no need to check the schedulability of all n, frames. One of these cases
is when the schedulability of the Xth frame implies the schedulability Of the hE ame, ./r
so no need to explicitly check the schedulability of the)ýh frame. This argument leads

to a concept of coverage.

Definition 11 - Having twoframes x andy of a AIF task T, we say that frame x

covers frame y if the schedulability ofx implies the schedulability ofy.

Applying Definition II reduces the number of frames that are needed for checking

the schedulability status of the MF task; where only uncovered frames are required
for testing the schedulability of the MF task. Within the following two subsections

we first introduce a criterion for identifying the covered frames, then we introduce

the response time analysis within the frame specific deadlines scenario assuming no
interference from the analysed task itself.

7.1.1 Identifying Covered frames

To investigate a criterion for identifying covered frames, we first introduce a sim-

ple example to illustrate how the schedulability of an uncovered frame leads to the

schedulability of the covered frame. Assume a MF task Ti with two frames one frame

has a worst-case execution time of 3 (i. e. 3) and a deadline equals 10 (i. e.
Doi = 10); and another frame with C11 =2 and Dil = 12. Then, the schedulability of
the first frame leads to the schcdulability of the second frame because CO, > CI and
Doi < D). Informally, if 3 units of execution can be achieved in 10 units then, clearly,
2 units of execution are achievable in 12 units. Furthermore, if 3 units are executable
in 10 units then 2 units are guaranteed to be also executable in 9 units. The following

138

ZI Exact Response Time Analysis ofMF Task with no Interference from the Analysed Task

lemma introduces a schedulability criterion for a frame of a MF task depending on the

schedulability of another frame of the same MF task.

Lemma 6 For a MF task -ri whose execution times are Cjý, deadlines are Djý, P- k-

0'.., ni - 1, and RI (C,) is the worst case response time of an arbitrary frame whose

execution time is C,, then having RI (Cx) :: ý, Dif leads to RI (C'I' - p) :ý Dil - p; where p
is an integer and C, >p>0.

Proof As we assumed no interference from same priority tasks, finding Rj(CIj) is found

as a collection of two kinds of execution one is the execution of the Xth frame of Tj

which is represented by Cli, and the other is related to the interference on the execution

of C11. In other words,
Rj(Cj') = Cif + I(CjI)

Where I(C'j) stands for the interference on the P execution of Ti. So, having RI(Cj):: 'ý,
Df means that Cl, + I(C'j) :5 Df and therefore for any positive integer p that is less

than Cl, then
Cill -p+ I(Cix) :5 vi -

similarly, Ri (C'j - p) is found as

RI(q-p) =q- p +I(q -p)

where,

p+ i(q -p) :5c, Ic I-p+ i(q) (7.2)

because obviously I(C, - p) :5 I(C,) for each simultaneous release of the frames

whose execution times are C, -p and C'j with the higher priority MF tasks.

It is clear that the right side of inequality (7-2) is identical to the left side of inequal-
ity (7.1). Therefore, we can say that

Ri(Ci'-p) :5 Cif -p+ I(CI). -5 Dlif - p.

In other words, Rj(C'j - p) :5 Dil - p. 0

139

7 Exact Analysis of Frame Specific Deadlines

Having Lemma 6, the following theorem introduces a criterion for identifying cov-

ered frames of a MF task.

Theorem 10 For aW task TI whose execution times are Cjý and deadlines are Dk, - 10

k=0,.., ni - 1, the Xth frame of Tj covers the 31h frame if C', ýý Cyj and D, ' :5 Dyj + (CIII -
Cyi).

Proof. To prove the theorem, we assume that Xth frame is schedulablc and then check

Xth the schedulability of the 31h frame. As the ý frame is schedulable then, Ri(C,) 5 Di';

where Rj(C'j) is the response time of the Xth frame. Using Lemma 6, we find that

Ri(Ci'): 5 Vi =: ý. Rj(C'j-p): 5 Df-p where Cjfý: p ý: 0.

Let p= (Cx - CY,), so,

Ri (Cj' - (Cj' - Cyi)) :5 Dif - (Cif - Cyl)

Therefore,

R1 (Cyi) -5 Vi - (Cif - Cyj) (7.3)

We already have

Di' < Dyj + (Ci' - Cyj) (7.4)

So, by substituting inequality (7.4) for inequality (7.3) we get Rj(CYj) < Dyj + (Cx -
CY,) - (Cx, - Cyj). Hence, Rj(CY,) < DY1.

Therefore, 'the. /h frame is schedulable; which means that the schedulability of the

x1h frame leads to the schedulability of the. ýý frame. So, x" frame covers)ýh frarne. 0

Using Theorem 10 in the scheduling analysis of the MF task Ti, whose frames have

specific deadlines, reduces the number of frames that are required for the scheduling
test of Ti. This is because of the efficiency of only analysing the uncovered frames for

the schedulability status. The following is the policy of analysing the response time
of the uncovered frames.

140

7.1 Exact Response Time Analysis ofMF Task with no Interference from the Analysed Task

7.1.2 Response Time Analysis

To analyze the schedulability of a MF task with frame specific deadlines, we just

need to analyze the worst case response time of its uncovered frames. Once all its

uncovered frames are schedulable we say that the MF task is schedulable.

To analyze the response time of an uncovered frame of a MF task, we apply the

worst case response time analysis of non-AM multiframe tasks that is given in Section

5.2 substituting the execution time of the analysed uncovered frame for the execution

time of the peak frame. For more clarification, to analyze the response time of the

uncovered frame whose execution time is C, we first find the worst case response time

of this frame that is relative to the combination VEP, by applying Equation (7.5);

which is an application of Equation (5.5) with Cm, ' = C111.

1-1 7 Ri . (rxN
Ri, v(q q+ 14; 1 (r 'v -" 1); (7.5)

J=l Ti

where V represents the combination of the critical frames of MF tasks whose prioritics

are higher than Ti.

. Equation (7.5) can be solved by forming an iterative cquation givcn by Equation

(7.6).
I-I

J,
7, (,

R',,, (Cx,)
Rlt 1 (Ci') = Cj' + 1: (7.6) i, v J=I Tj

j C'j and Ri, v(CI,) is found when M+1 (Cx) = R1, O(Cxj). HowcvcrifR'+'(Cli)>
, V(CI R91 I'l; 1 1,0

IY, then the frame whose execution time is Cjx is not schcdulable and thcrefore Tj is not

schcdulable.

To find the worst case response time of the frame whose execution time is Cf, we

maximise RI, v(C'j) over allP E Pi. In other words, we apply Equation (5.4) with the

same A that is defined in Section 5.1. Vi

Example

Assume a simple system with two MF tasks Tj with only one frame and T2 with
4 different frames as in Table 7.1. To analyze T2's response time we firstly have to
identify its covered frames. To identify the covered frames of T2 we apply the criterion
of Theorem 10 on T2's frames starting with its peak frame.

141

7 Exact Analysis of Frame Specific Deadlines

task c D T Priority
Tj 3 6 10 high
T2 (1,3,5,2) (8,10,8,5) 10 w 10=

Table 7.1: Example System

Basically, the third frame of T2 (i. e. the frame whose execution time is 5) covers all

other frame of r2. That is because

>1 and 8<8+4, so the frame whose execution time is 5 covers the frame whose

execution time is 1-

5>3 and 8< 10 + 2, so the frame whose execution time is 5 covers the frame whose

execution time is 3.
5>2 and 8<5+3, so the frame whose execution time is 5 covers the frame whose

execution time is 2.

Therefore, to check the schedulability status of T2 we just need to analyze the worst

case response time of the frame whose execution time is 5 and its location is 2. For

this reason, we first find P2 = 1(0)} because we only have one higher priority task

with only one frame. Then we apply Equation (7.6) so we get.

2)
ý2 ý2+gO (r

R 12,
(0)

(C2z

R'+l - C2z

i
2, (O)(C2 T,

I

Solving this equation leads to R (O)(C22) = 8, so R2(C22) =8<D2=8. So, the 22

frame whose eiecution time is 5 is schedulable and therefore T2 is schcdulablc.

7.1.3 Improving the Efficiency of the Analysis

One way of improving the efficiency of response time analysis of the uncovcrcd
frames, that are obtained by Theorem 10, is to reduce the number of iterations that

are used in the recurrence relations that solve the response time equations. An cxpcdi-
tious way of solving the response time equation (i. e. Equation (7.6)) is to first analyze
the schedulability of the frame whose execution time is the minimum and once found

142

7.2 Exact Response Time Analysis ofMF Tasks Having Deadlines Beyond the Pciiod

schedulable we then solve the recurrence relation of the response time of the frame

whose execution time is immediately greater than the minimum and we start the solu-

tion with the response time of the frame whose execution time is the minimum. For

example, if we are checking the schedulability status of three frames with the cxe-

cution times and deadlines (2,3,8) and (10,15,30) respectively, the execution time

value of 2 is used as a starting point of the recurrence relation of the response time

equation. Once we get the worst case response time less than 10 (for example 8) then

we check the frame with the greater execution time (i. e. the second frame with the

execution time 3). The starting point of the recurrence relation of the response time

equation is now 8 instead of the 3 (i. e. RO, (3) = Rj, ý(2)), as the solution for the value
3 cannot be less than the solution of 2. Similarly, when the new response time is found

less than 15 (e. g. 12) then we check the third frame with the execution time 8 with

starting point of 12. In fact, this means that we do not rc-run the solution process for

each frame of the analysed MF task.

7.2 Exact Response Time Analysis of MF Tasks Having

Deadlines Beyond the Period

The analysis in the previous section was based on analysing the interference from

higher priority MF tasks and does not consider any interference from the analysed MF

task itself. However, this section covers the worst case response time analysis of MF

tasks whose deadlines are greater than their periods so interference from the analysed
task itself has to be taken into account.

The coverage concept that is introduced in the previous section is not applicable any
more when the MF task has arbitrary deadlines. This is because there could be two
frames of a MF task ri whose execution times are Cif and C- where Cx, > CY, but the 19
interference from Tj within d is greater than the interference from Tj within Cjf; in the I
sense that results Ri(C'I') < RI(CY,). Therefore the schedulability of the frame whose

execution time is Cli does not necessarily lead to the schcdulability of the frame whose

execution time is CY,. Therefore, to analyze the schcdulability of the MF task Tj we
have to analyze the worst case response time of all its frames.

143

7 Exact Analysis of Frame Specific Deadlines

To analyze the response time of a frame of a MF task Ti, we have to consider all

simultaneous releases of all frames of ri with the higher priority MF tasks. This is

because the simultaneous release of the higher priority tasks leads to the worst case

preemption of a lower priority task. In addition, we analyze the simultaneous release

of each frame of Tj and critical frames of higher priority MF tasks to analyze the

interference that could be generated by each frame of T, within the analysed frame. To

clarify the policy of the analysis, assume we are analysing the frame whose location

is q in the MF task Ti, so we have to consider in the analysis all simultaneous releases

of all frames of Ti with the critical frames of higher priority MF tasks to check if the

simultaneous release could lead T1 to interfere with the frame whose location is q.

Assume f is the location of the frame of Tj that is released simultaneously with the

higher priority MF tasks, so values of f are f=0,1,.., nj - 1. For the purpose of

the analysis, we recall the term busy period of a frame, that is the time from when

this frame is released until it finishes its execution. The worst case response time

of the frame whose location is q is the maximum busy period of this frame for all

simultaneous releases of all frames whose locations arc f=0,1,, nj -I with the

critical frames of the higher priority MF tasks. So, response time analysis also has

to consider all combinations of the critical frames of the higher priority MF tasks. In

other words, the worst case response time analysis has to consider all combinations

of f and critical frames of higher priority MF tasks. We present this combination as

lV Pi where Pi is given by

Vi = L, x L2 Xx Lý-I;

where Lj; j = 1,2, i-I is the set of locations of the critical frames of the MF

task rj -

The following observation is pertinent to the situation when a Erame of Tj could
interfere with another frame of the same MF task.

Observation I Having MF task Ti with ni frames that are indexedfrom 0 to nj - 1.
When Tj is released with the frame whose location is f, Tj interferes with theframe

144

7.2 Exact Response Time Analysis OfMF Tasks Having Deadlines Beyond the Period

whose location is q when the number of interferencefrom Tj is:

q-f + 1; when q>f, (7.7)
n- (f -q- 1); when f>q.

Basically, Observation I measures, on one direction, the number of frames that f has

to enter to reach the frame whose location is q taking into account its own frame and

the q frame. For example, when n=5, q=0, and f=2; the frame whose location is

f has to enter 4 frames to reach the frame whose location is q because f has to pass

the frames whose locations are 2,3,4 and 0.

As the worst case response time of a frame is the longest busy period that this

frame can practice, we have to find a way that calculates the busy periods of this

frame. However, finding the busy period has to take into account the interference from

the MF task itself as well as the interference from higher priority MF tasks. Taking

Observation I into account, the following theorem proves a formula for finding the

busy period of the frame whose location is q of a MF task TI. This busy period is

relative to the simultaneous release of the frame whose location is f of the MF task Tj

and the critical frames, whose locations are presented by VE Pi, of the higher priority
MF tasks.

Theorem 11 Having a system ofMF tasks. wi, vf (C'jq) is the busyperiod, ofaframe

of a AlF task Ti, with location q that is relative to the simultaneous release of the
frame whose location is f from Tj with the criticalframes of the higher priority AfF

tasks whose locations are presented by V. wj, Pj(Cjq) is given by Equation (7.8).

Wi, v, f (Cl) = ri, vf (C, ') - (t - 1) TI;

where
+I j

(Cl

ri, v, f(q) gj
j=l Ti

(7.8)

(7.9)

145

7 Exact Analysis of Frame Specific Deadlines

and where t is given by

t=q-f+l; whenq>f, (7.10)
t=n-(f-q-1); whenf>q.

Proof

To prove the theorem, we will assume that the simultaneous release of the frame whose
location is f leads to continuous busy periods of Ti's frames until interfering the frame

whose location is q. So, according to Observation 1, Tj is invoked for t number of

times (t is given by Equation (7.10)) starting from the frame whose location is f. So,

the amount of execution that Tj has to perform is given by 4if (t) and therefore, the time
Cq that is consumed for achieving this amount of execution is presented by ri, vj(and

given by Equation (7.9).

The busy period of the frame whose location is q starts from when this frame is rc-
Cq leased until finishing its execution that is presented by I. On the other hand, rj, v 'f

(Ciq)

starts from when the frame whose location is f is released until the frame whose lo-

Cq q cation is q finishes its execution. So, both ri, v, f (i) and wi,, vf (CI) have same end

and different starting point. So, as the busy period of a frame is the time from when

this frame is released until finishing its execution, the busy period of the frame whose
location is q is given by Equation (7.8). 0

Equation (7.9) is solved by forming a recurrence relationship as in Equation (7.11)

vj r I, V, f
(Ci i-l*

_ ri, -
q)l)

rj+j q) + 1: - (C (7.11) i
j=l Ti

0- r1+1 (Cq) q) = 4ý(t), and I=0,1,2,.. until , q). However, if where ri, = YJI Vj (Ci J
(Ci

i

r, I+ If (Cjq) - (t - 1) Tj > Dq, Tj is not schedulable.
, V, ý I

Note that if one of the busy periods of -ri extends beyond its deadlines, the frame

will miss its deadline and will not be schedulable and therefore the whole MF task

will not be schedulable. So, if wi, vf (C'iq) > Dq,, then Tj is unschcdulablc.

Corollary 5 Having wj, ý(Cq) as the worst case busy period, of theframe whose Jo-

146

7.3 Example

cation is q and that is relative to the combinations of the criticalframes of the higher

priority IF tasks. wj, ý(q) is the maximum busyperiodover all simultaneous releases

of Tisframes. In other words,

WI, V(Ciq) max {Wi, i;, f(Ciq)} (7.12)
f=0,1,.., ni-I

Corollary 6 The worst case response time ofaframe whose location is q is given by

Equation (7.13).
Ri(Ciq) = max lw,, V(Cq)} (7.13)

VE Pj

Scheduling Test

The schedulability test of a MF task in the frame specific deadline scenario is the

following: TI is schedulable if Rj((ýjq) :5Dq; Vq = 0,2, .. nj - 1; where Rj(Cqj) is
i

found by Equation (7.13).

7.3 Example

task c D TI -
Tj 3 6 5 high
, r2 (5,2,1,3) (20,10,8,10) 10 low

Table 7.2: Example System

Assume a simple system with two MF tasks, Ti with only one frame and 'r2 with

4 different ftames as in Table 7.2. To analyze the schcdulability of T2, we have to

analyze all simultaneous releases of T2 and Tj and also we have to find P2 which isf,

because we only have two tasks.
101- SO9 ;ý 2 101-

f belongs to the set of all frame locations of T2, so, fE {O, 1,2,3}. Now, to analyze

147

7 Exact Analysis ofFrame Specific Deadlines I

the worst case response time of the frame whose location is q, we have to find its

maximum busy period over all simultaneous releases of the frames whose locations

are fE 10,1,2,31 and for each VE Pi. So, for each f and q we first find the relative

t by applying Equation (7.10) so we get values in Table 7.3. Then for each VE VI we
find the response time of t frames starting from the frame whose location is f and

Cq ending by the frame whose location is q; which is presented by rj. Vj(and found

by applying Equation (7.9). Therefore, the busy period of the frame whose location is

q, wi. vf (Cjq), that is relative to f and V is found by applying equation (7.8).

fq
01 1 2 3
11 4 3 2
21 1 4 3
3 12 1
4 13 2

q
-0 -

1 2 3
1 4 -1 4 10 14
9 5 -1 -10 9
0 -1 4 -1 4
-1 -5 0 9 9

Table 7.3: Values of Table 7A Values of w2, vf (C2q)

For example, to find W2, V, O(C21) (i. e. f=0 and q= 1) we first find I=2. Then we
find r2, j;, o(C21) by applying Equation (7.9). -;, = (0) as P2 has only one value that is (0).

So,
r2, -;, o (CII

r2, (0), 0 (C21 0 (2) + 4J'7j tr
2

j=1 \1 Tj

By solving this equation we get 40 (2) = 7, r2l, (O), o =7+6= 13. 2
21 r2-, (O), O

(C21) =7+9= 16.

r23, (O), O(C2') =7+ 12 = 19.

r24, (O), o
(C21)=7+ 12 = 19 = 3,

(O), o r2- (C21

SO, r2, (O), O(C21) = 19'

To find w2, (O), o(C2') we apply Equation (7.8) to get
W2, (O), O(C21) ý r2, (O), O(C21) - T2 ý 19 - 10 ---: 9

Similarly, we find all w2, (O), f (C21) for all possible values of f so we get the valucs
in the third line of Table 7.4. As there is only one value of V= (0), there is only one
combination of the critical frames of the higher priority tasks. So,

W2, f (C21) ý-- W2,0, f (C21). Therefore, to find the maximum busy period of the frame

148

7.4 Policy ofAssigning Plioritics to the MF Tasks

whose location is 1, we maximise W2, f (C21) over all values of f. In other words,
RI =M

I
2(C2) aXfE(0,1,2,3} IW2, f (C21)1 =9< D2*

Similarly,
A

W2J (C2q) == W2,0, f (C2); Vq = 0,11 2,3. So,

R2K20) = MaXfE10,1,2,311W2, f (C2(»} = 14 < Do2'

R2 (C22) = MaXfE 10,1,2,31 {W2J (C22) 1=4<D2
2'

R3 =M
3

2(C2) aXfE (0,1,2,31 {W2J (C23) 9< D2'

As all R2 (C2q) :5D
qV 0,1,2,3, T2 is schedulable. 2

Release jitter could also be added to this analysis following the approaches that is

given in Sections 4.3 and 6.4.

7.4 Policy of Assigning Priorities to the MF Tasks

All frames of a MF task have the same priority and also no blocking is allowed in the

model, so the response time of each frame of Tj is not dependent upon lower priority

tasks and also does not increase when it is assigned a higher priority nor decrease

when it is assigned a lower priority. In addition, the response time of each frame of

, ri is also not dependent upon the relative priority ordering of higher priority MF tasks

because we check all combinations of the critical frames of both Tj and higher priority
MF tasks to check the schedulability of Ti. So, the optimal priority assignment that
is presented in [7,5] and reviewed in Section 2.3.3 is applicable to our model; where
the priority assignment scheme depends on finding the MF task that is schcdulable at
the lowest priority (i. e. priority of N) then the schcdulable MF task that is relative to

the priority N-1, and so on until we get all priorities assigned to the MF tasks whilst

preserving schedulability. If we did not find a schedulable MF task at one level of the

priorities then the system is unschedulable for any priority assignment.
Example

To illustrate the policy of the priority assignment, Table 7.5 presents a simple example

of two MF tasks TA and TB; where TA has only one frame and TB has thrcc frames with
three deadlines. Clearly, DM priority assignment is not applicable to this example as
the deadline of TA lies between the deadlines of TB.

149

7 Exact Analysis ofFrame Specific Deadlines

task c D
TA 3 6 0
, rB (1,3,4) (5,10,8) 5

Table 7.5: Example System

Furthermore, if we assign TA the lowest priority (i. e. 2), we find that TA is un-

schedulable when TB is released with the execution time of 3 or 4; whilst TA and TB are

schedulable when TB is assigned priority 2. Figure 7.1 presents the timcline diagram

to illustrate the execution of TA and TB when they are assigned different priorities. Fig-

ure 7.1 shows that in the worst case, the response times of TB when it is assigned the

priority 2 are (6,7,4).

7.5 Summary

This chapter has presented exact worst case response time scheduling analysis for MF

tasks whose frames could have different deadlines (i. e. frame specific deadlines). The

analysis is presented in two steps regarding to the state of the MF's deadlines.

In the first step we restrict the deadlines to be less than or equal to the relative period,

so no interference from the analysed task is considered. In this state, we introduced a
coverage concept to reduce the number of frames, of the analysed task, that are needed
for checking the schedulability status of the analysed MF task. This chapter has shown
that we sufficiently need to analyze the uncovered frames of the analysed MF task to
check its schedulability status. Further to the presentation of the basic response time
analysis of frame specific deadlines, we have introduced a way to reduce the number
of iterations used in finding the response time of a frame of a MF task.

In the second step we have relaxed the restriction of having deadlines less than the

relative period and presented exact response time analysis. The coverage criterion
that was presented in the first step is not applicable to MF tasks whose deadlines

are arbitrary. Although the coverage criterion could be improved to cope with the

arbitrary deadlines, we analysed all frames for checking the schedulability status of
the analysed MF task.

150

7.5 Suinrnarý,

miss deadline

release

40 Illect deadlille

(execul ion Of T4 and Tg when TA's priority is the Io%% est)

TA

TB

execution with first release

execution with second release
release

execution with third release mcýýi deadline

(execution of r., and rH when rB's priority is the lowest)

Figure 7.1: Timeline Figure of 'r.., and r13's execution

Finally, in this chapter we have considered a priority assi-grinient t'()r franie specific
deadlines model. We have shown that the priority assignment that was presented b,,

151

7 Exact Analysis ofFrame Specific Deadlines

Audsley [7,5] is applicable to this model and we have explained the procedure of its

application by a simple numeric example.

152

8 Approaches for Sufficient

Scheduling Tests

Exact response time scheduling analysis becomes exhaustively intractable when the

systems are respectively large. However, sufficient tractable approaches solve this

problem; where a real-time system is exactly schedulable if it is schedulablc using a

specific approach. This chapter introduces and compares four sufficient approaches

with the usage of the given response time analysis in this thesis. These approaches are

called the maximum, the reordering, the complementary and the max accumulations

approaches. The first three approaches depend on transforming all multiframe tasks

in the system into AM tasks that have one critical frame, and then applying the exact

response time formula on the transformed system. The fourth approach depends on

pre-calculation of an upper bound interference from higher priority MF tasks within

the deadline of the analysed task.

Comparisons between the approaches are done in two steps: in the first step we

compare the results of the approaches with the exact results having small systems with
5 or 10 MF tasks; where the exact analysis is tractable. In the second step, we evalu-

ate the comparison between the approaches, for big systems with 20,40,80, and 100

tasks, without taking the exact results into account so the comparison is done accord-
ing to the approach that provides the best results.

The contents of this chapter is presented as the following: the first section introduces

the maximum approach and proves the safety of this approach. Similarly, second,
third and fourth sections cover the reordering, complementary and max accumulations

approaches. In Section 8.5, we discuss the covering order of the approaches in the

context of scheduling sufficiency. Section 8.6 compares, by evaluations, all mentioned

153

8 Approaches for Sufficient Scheduling Tests

approaches. Summary of the chapter is given in the last section.

8.1 Maximum Approach

The major principle of the intractability problem of analysing the response times of

non-AM multiframe tasks for big systems is the problem of analysing all simultane-

ous releases of all frames of the MF tasks. So, the first way to think of solving this

intractability problem is to substitute the execution times of each multiframe task by

its maximum execution time and then apply the basic original response time schcdul-

ing analysisi on the substituted tasks. We call the substituted task in this model the

maximum approximation; where its period and deadline are identical to those of the

original MF tasks while its execution tithe is constant and equals the maximum cxc-

cution time of the original MF task. In other words, given a multifrAme task Tj having

ni frames with execution times (i. e. Ck; k=O.. nj - 1); the maximum approximation

of rjis: a task ij that results by substituting Tj's peak frame for all frames of Tp So,

fj's deadline and period are respectively 15j = Dj and Pj = Tj but the execution time,

Cp is constant for all its jobs and equals to the maximum execution time of Tj (i. e.

j= CMJ)2. For example, the maximum approximation of the MF task T 0j whose cx

ecution times, deadline, and period are < (3,7,4), 10,15 > is the task ij whose just

mentioned attributes are < 7,10,15 >.

In the maximum approach, we transform all multifmme tasks in the system to thcir

relative maximum approximations and then check the schedulability of the trans-
formed system using basic response time test [40]. To be more accurate, chccking

the schedulability of a multiframe task relies on testing the schcdulability of its peak
frame assuming the maximum approximations for all higher priority MF tasks. The

test assumes that having schedulable transformed system means that the original sys-
tem is schedulable.

To consider the scheduling test using maximum approach as a sufficient scheduling

test for a MF task, this approach has to be safe. The following theorem proves the

We mean by the basic original response time scheduling analysis the response time analysis of the
tasks whose execution times are constant for all of their jobs.

2Note that CjmJ is the execution time of Tj's peak frame.

154

8.1 Maximum Approach

safety of the maximum approach.

Theorem 12 Given a system S with N multiftame tasks, S= (Ti; i=I.. N}. A

multiframe task Tj is definitely schedulable if its peakframe is schedulable using the

maximum approach.

Proof

The execution time of the maximum approximation is always greater than or cqual
to the execution times of the original MF task. In other words, dj 2: d; VI

0,.., nj - 1. So, the cumulative functions of the maximum approximation is always

greater than or equal to the cumulative functions of the original MF task for the same

number of invocations and regardless of the releasing frame of the original MF task.
Symbolically,

gj? k) (k) ; Vk =I nj, VI =0t... nj - 4j,

Therefore, the amount of interference the maximum approximation provides within
lower priority task is always greater than or equal to the amount of interference the

original MF task provides within this lower priority task; for each number of invoca-

tions (i. e. interference). So, the response time of the multiframe task Tj under maxi-

mum approach is greater than or equals to the exact worst case response time of the

original MF task (i. e. f? i ý: Rj). Thus, having Tj as a schedulable task under maximum

approach means that it is exactly (i. e. dcfinitely) schedulabic. El

The following example illustrates the procedure of analysing a MF task using the

maximum approach.

Example

Table 8.1 represents a simple numeric example system consisting of two MF tasks. To

analyze the schedulability of T2 we will consider the maximum approximation Of TI.
Table 8.2 represents the attributes of the merged system using maximum approxima.

tions for the MF tasks whose priorities are higher than T2(i. c. TI)).

The response time of 'r2 using maximum approach is found by applying Equation
(2.9) on the attributes in Table 8.2 which leads the response time being 17 < D2. As

-r2's response time under maximum approach meets the deadline, T2 is schedulable.

155

8 Approaches for Sufficient Scheduling Tests

task c T=D
(1,6,1,1,2) 10

T2 (1,2,5) 20

task cT
il (6) 10
T2 (1,2,5) 20

Table 8.1: Original Example
System Table 8.2: Transformed System

The exact response time of T2 according to the exact analysis given in Chapter 5 is

12. So, although T2s response according to the maximum approach is safe and casy

to apply, it evaluates a very pessimistic response time. Pessimism of the maximum

approach comes from the fact that the execution times of the maximum approximation

could be hugely deviated from the real execution times of the original MF tasks. For

example, the execution times of fl in Table 8.2 has the deviations (5,0,5,5,4) from

each execution time of the original MF task TI. So the amount of interference that fj

generates when ii provides four interference would be 24 while in reality the amount

of interference that Tj generates for four interference is only 10 in the worst case, so

there is a deviation of 14 from the real amount of interference. To reduce the deviation

of the approximation from the real values of the execution times we introduce anothcr

schedulability test called the Reordering approach. The advantage of the maximum

approach is however its ease of application.

8.2 Re-ordering Approach

Another way of solving the intractability problem of analysing response times of MF

tasks is to safely transform the non-AM multiframe tasks into AM multiframc tasks

that generate the same or greater amount of interference within lower priority tasks.

one way of performing this transformation is to transform the MF task Tj into its

re-ordering approximation ij with a deadline and a period identical to Tj's while its

execution time sequence is a descended sequence of the execution times of Tj; so the

reordering approximation satisfies the AM restriction and therefore it has only one

critical frame. For example, the execution time sequence of the re-ordcring approxi.

mation of Tj whose execution times are (1,6,1,1,2) is (6,2,1,1,1).

156

8.2 Re-ordering Approach

In the reordering approach, we transform all multiframe tasks in the system to their

relative re-ordering approximations and then check the schcdulability of the trans-

formed system using the response time formula of the AM multiframc tasks (i. e.

Equation (3.2)). To be more accurate, checking the schedulability of a MF task relics

on testing the schedulability of its peak frame assuming the reordering approximations

for all higher priority MF tasks. The test shows that having a schcdulable transformed

system means that the original system is schedulable.

As mentioned earlier, the schedulability test using reordering approach must bc dcf-

initely safe to be considered, the following theorem proves the safety of the reordering

approach.

Theorem 13 Given a system S with N MF tasks, S={, rj; j=I.. N}. Each multi-

frame taskrj has nj execution times. A lowerpriority multiframe task Tj is definitely

schedulable if it is schedulable assuming the re-ordering approximationsfor all mul-

tiftame tasks whosepriorities are higher than Ti's.

Proof

For any arbitrary order of an execution time sequence of a multiframe task Tj; the

descending order of that sequence provides, for any number of invocations of -rj, the

maximum amount of interference on lower priority tasks. So, for any numbcr of
invocations of Tj, the peak frame in the re-ordering approximation that is rclativc to rj

generates amount of interference greater than or equal to the amount that the original

Tj generates. Therefore, the response time of a lower priority task -rj under rcordcring

approach is always greater than or equals to the exact worst case response time of

Tj due to the bigger amount of interference the reordering approximations of highcr

priority tasks provide. As a result, schedulability of T, using rc-ordcring approach

means that its response time meets its deadline, therefore its exact response time is

within its deadline and hence, Ti is schedulable. 0

The following example illustrates the procedure of analysing the response time of
MF tasks using re-ordering approach.

157

8 Approaches for Sufficient Scheduling Tests

Example

Table 8.3 represents the re-ordering approximation of the MF task Tj that is given in

Table 8.1. To analyze the schedulability of r2, we will consider this approximation

of the only MF task whose priority is higher than T2, then apply Equation (3.2) to

the attributes in Table 8.3. So, the response time of T2 according to the re-ordering

task c T
fl (6,2,1,1,1) 10
T2 (1,2,5) 20

Table 8.3: Transformed System Using Re-ordering Approach

approach is 13 which is much closer to the exact response time of T2 than when using

the maximum approach as explained in the previous section.

However, although re-ordering approach evaluates better response than the maxi-

mum approach, there are some situations in which the re-ordcring approach evaluates

a pessimistic response of the original MF task. For example, the execution time se-

quence of the reordering approximation, that is relative to the multifmme task whose

execution times are (1,10,1,1,1,8,4,1), is (10,8,4,1,1,1,1,1). So, the amount of in-

terference that the reordering approximation provides for two invocations is 18 while

in reality the maximum amount of interference the original relative multiframc task

provides for just two invocations is just 12. To think positively towards optimising the

approach so it gives response time value closer to the exact one, we introduce another

schedulability test called the Complementary approach.

8.3 Complementary Approach

The complementary approach is another way of solving the intractability problem of

response time analysis of non-AM multiframe tasks by transforming the tasks into

AM multiframe tasks. In this approach, we apply Mok and Chen [57]'s way of mod-

elling a MF task to what we call the complementary approximation. All attributes of
the complementary approximation arc identical to the original ýIF task apart from the

execution time values where they arc derived from the original execution times as the

158

8.3 Complcmentary Approach

subtraction between each two consecutive maximums of interference that the original

multiframe task provides. Symbolically, given a multiframe task Tj having nj execu-
tion times (i. e. C4; 10n. - 1); its complementary approximation is the multiframe ji j
task Tj whose execution times j; k = O.. nj -I are derived from the execution times

of Tj according to the Formula (8.1).

C* = max fgj'(k+ 1)} - max lgj'(k)}; where; k=O.. nj -1 J 1=0.. nj-1 1=0.. nj-1

The following example illustrates Formula (8.1), assume a multiframe task Tj with
the execution times (1,10,1,1,1,3,3,1), Tj could provide the sequence of maximum

amounts of interference, regarding to the number of its invocations, as following

(10,11,12,15,18,19,20,21). So, the execution times of the complementary approxi-

mation, Uj, is found by subtracting each two consecutive values in the former sequence

assuming that maxl=o..,, j- 1 14JI (k)} =0 when k=0, and therefore Uj = (10,1,1,3,3,1,

1,1). Note that Uj has only one critical frame that is the first frame whose execution
time is 10 while the original multiframe task has three critical frames which are the

one that is at position 1 where the execution time is 10, the one that is at position 5

where the execution time is 3 and the one that is at position 6 where the execution
time is again 3. To explain more, the complementary approximation satisfies the AM

restriction [57] so that is why it has only one critical frame.

The main idea of the complementary approach for testing the schedulability of
a multiframe task ri is to check the schedulability of its peak frame assuming the
complementary approximations for all higher priority multiframc tasks. So, if r, is

schedulable under complementary approach then TI is definitely schedulable; while
unschedulability of Tj under complementary approach does not mcan that T, is not
schedulable. However, to make certain that this approach is applicable to the schedul.
ing tests so what we can argue it is safe, we have to prove the safety of this test.
Although [57] proved the safety of the transformation to the complementary approx-
imations, the following theorem proves the safety of the complementary approach
within the response time scheduling context.

Theorem 14 Given a system S with N multifirame tasks, S=I Tj; j=I.. N}, each

159

8 Approaches for Sufflcient Scheduling Tests

multiframe taskrj has nj execution times. A lower priority multifirame task T, is defi-

nitely schedulable if it is schedulable under the complementary approach.

Proof

To start with, we investigate the amount of interference that the complementary ap-

proximation Tj- generates, within the execution of the lower priority tasks, for f num-
ber of its invocations, then we find out what this amount is equivalent to. The exccu-
tion times of Tj- are given by Equation (8.1), so the amount of interference Tj generates
is given by the following function:

f-I
Y, (max 14j' (k + 1)} -
k=O 1=0.. nj-1

which is equal to

maxI fgjl(l)}

" maxI 14j' (2)}

" maxI 14j' (3)}
maxi 14ý (1) 1

maxi 14ji (2)1

+ maxi maxi lgjl(f - 1)}

I
max JýJ(kffl

1=0.. nj- I

= maxi 14! (J) I

which is identical to the maximum amount of interference that Tj generates for the

same number of invocations f; which is given by the following cumulative function:

max ?
1=0.. nj-l j

So, Vf = L-nj - 1, the maximum amount of interference that Tj generates is always
equal to the maximum amount of interference that Tj generates within the lower pri-
ority multiframe tasks. Therefore, considering Tj for all MF tasks whose priorities are
higher than Tj doesn't affect the schedulability of Tj since the amount of interference
from the higher priority tasks within Tj is the same in both cases. 0

Example

The following example explains the procedure of analysing the schedulability of a MF

160

8.4 Max Accumulations Approach

task using complementary approach. To analyze the schedulability of T2 in the system

in Table 8.4, we will consider the complementary approximation Of TI, then apply

Equation (3.2) to the attributes in Table 8.5. So, the response time of T2 assuming

task

T2

Table 8.4: Example System

task c T=D
, rl (10,2,1,1,10,1,1,1) 15
T2 (1,2,6) 20

Table 8.5: Transformed System
Using Complementary
Approach

the complementary approximation of T, is 18 < D2. As the response time meets T2's

deadline T2 is definitely schedulable. Note that the exact response time of T2 is 17;

which is less than estimated by the complementary approach.

As a matter of fact, the complementary approach is an equivalent approach to the

one that was presented by Baruah et. al [13] in 1999. The differcricc bctwccn the two

approaches is the way that each of them is presented.

8.4 Max Accumulations Approach

The previous three approaches (i. e. Maximum, Reordering, and Complementary ap.

proaches) were based on solving the intractability problem of response time schcdul.

ing of non-AM multiframe tasks by using transformation ways of converting the non-

AM multiframe tasks into AM tasks. However, as we arc only considering suffi-

cient scheduling tests, here we consider an alternative means of constructing sufficient

scheduling test.

This section introduces a straightforward approach that does not analyze any re-

sponse times and does not need any transformation. The main idea of the presented

approach is to pre-calculate the worst case expected interference within the deadline

of the analysed multiframe task and then add this interference to its maximum cxc-

cution time. If the calculated amount is less than or equal to the deadline then the

161

8 Approaches for Sufficient Scheduling Tests

analysed task is schedulable. We call this way of testing the schedulability the Max

Accumulations Approach.

Max accumulations approach is a simple way of testing the schedulability of MF

tasks using off line calculations of the expected amount of interference within the
deadline of the analysed task. We assume two aspects of this approach, the first aspcct
is the synchronous release of the analysed task and higher priority MF tasks. The

second aspect is that, for the schedulable MF task, all MF tasks whose priorities arc
higher than the analysed MF task that are released within the deadline of the analysed
task have finished their execution, within this deadline, with the maximum amount of
interference they can provide.

To explain the procedure of the approach, we give the analysed MF task a virtual
busy period; which is the execution time of its peak frame plus all interference from

higher priority MF tasks within its deadline. So, the schedulability test is the follow.

ing: Tj is schedulable if its virtual busy period that is calculated by Equation (8.2) is

less than or equal to its deadline.

1-1
1 DI

C'ji +I max 14j(r-fl)}.
j

(8.2)
, -11=0,.. nj-1 I

Similar to the previous three approaches, the scheduling approach has to bc safc
to be accepted. The following theorem proves the safety of the max accumulations
approach.

Theorem 15 If a AlF task is schedulable using max accumulations approach, it is
definitely schedulable.

Proof

Trivial, as the interference from higher priority MF tasks using max accumulations

approach is greater than or equal to the exact interference from higher priority MF

tasks. So, the virtual busy period of the analysed task is greater than or cqual to
its exact response time. Therefore, if the virtual busy period of the analyscd task is
less than or equal to its deadline, its exact response time is less than or equal to its
deadline. 0

162

8.4 Max Accumulations Approach

For more clarifications, Algorithm 5 presents the pseudocode of calculating the

virtual busy period that is given by Equation (8.2). Max-Cum in this algorithm is a

non-square matrix and has N raws and maximum number of columns equals n; where

n= maxj=l,.., N Inil- The value Max-Cum(j, k) represents the maximum cumulative
function of the MF task Tj for k number of its invocations. In other words,

Max-Cum(j, k) = max 14j'(k)}. (8.3)
1=0,.. nj-l

The benefit of Max-Cum is to determine the term maxl=o,..,,, - IIID 4j'(r?, J)} in Equa.

tion (8.2). However, Algorithm 5 is followed by a numeric example to illustrate the

procedure of the max accumulations approach.

Algorithm 5 Finding Virtual Busy Period
inputs: N: Number of Tasks, Task-Level, Execution-Times sequences
Outputs: V-Busy-Pcriod: Estimated amount of execution within Di.

Max-Cumo, k) -ý-- matrix of maxl=o,..,, j-l
{4j' (k)}; j=1, .., N and k 1, .., nj

V-Busy-Period 4-- 0
for j=I to Task-Level do

V-Busy-Period -ý-- V-Busy-Period + Max-Cum (j, rD 1)

end for
?i

Example

Assume the system that was previously given by Table 8.4 in the previous scction. To
test the schedulability of T2 we first find Max-Cum that is given by Algorithm 5; for
j=1,2, k=1,.. nj. Max-Cum is found by applying Equation (8.3), so we get:

Max-Cum
10 12 13 14 24 25 26 27)
689

Therfore, the virtual busy period of T2 (i. e. V-Busy-Period in Algorithm 5) is found

163

8 Approaches for Sufflcient Scheduling Tests

by applying Equation (8.2). In other words,

D2
V-Busy-Period(2) = C22 + Max-Cum (1,

20
=6+ Max-Cum(l, r j-5

= 6+12

= 18.

As V-Busy-Period(2) = 18 < D2 we say that r2 is schedulable.

8.5 Coverage of the Sufficient Approaches

Up to this point, we have covered four sufficient scheduling approaches but what we
do not know about is the schedulability coverage of each of them. In other words, what
is the order of the approaches in which if a task is schedulable using one approach it is

definitely schedulable using followed approaches. In this section, we discuss the cov-

erage order of the approaches depending on the amount of interference, from higher

priority tasks, each approach estimates as the difference between the approaches is

the estimation of this interference. As the first three approaches (i. e. the maximum,

the reordering and the complementary approaches) use the same manner of using re-

sponse time analysis but different ways of transforming MF tasks into AM multiframe
tasks, we discuss the coverage order of these approaches and leave the coverage order

of the max accumulations approach to be determined by the experiments.

As a matter of fact, the estimated interference from higher priority MF tasks under

maximum approach is greater than or equal to the estimated interference from higher

priority MF tasks under any of the other approaches. This is because in the maximum

approach, the execution times of the higher priority MF tasks are estimated by their

maximum execution times. So, if a task is schedulablc under the maximum approach,
it is definitely schedulable under any of the reordering or complementary approaches.
In this sense, we say that the schedulability of a MF task using maximum approach is

sufficient to determine the schedulability of this MF task using any of the other two

approaches. Therefore, the maximum approach covers the other two approaches.

164

8.5 Coverage of the Sufficient Approaches

To determine the second approach after the maximum approach according to the

coverage criterion, we compare the estimated interference from higher priority tasks

under each of the reordering and complementary approaches. We already know that

the descending order of a sequence of integers always provides equal or greater sum-

mation of any consecutive numbers than any other order of the original sequence. On

the other hand, the reordering approximation transform the execution time sequence

of the original MF task into a descent sequence. So, the cumulative functions of the

reordering approximation 4j'(k) are greater than or equal to the cumulative functions

of the original MF task 4jl(k). In other words,

gI-I
jl (k) ý: 4j(k); VI = 0,1 nj - 1, Vk = 1,2,...

So,

ýjl (k) max (k); Vk = 1,2,... (8.4)

The right side of Equation (8.4) represents the estimation amount of interference

from the complementary approximation Tj for k number of its invocations. So, the

amount of interference from higher priority MF tasks under reordering approach is

greater than or equal to the amount of interference from higher priority MF tasks

under complementary approach. Therefore, if a task is schedulable using reordering

approach, it is definitely schedulable under the complementary one. In this sense we

say that the reordering approach covers the complementary approach.

As a result of the previous discussion, the coverage order of the approaches starts

with the maximum approach followed by the reordering approach followed by the

complementary, approach. In addition, the case of applying the tests goes in the same
direction where the easiest is the maximum then the reordering then the complemen.
tary. One aim of the experiments is to determine if it is worthwhile to apply the more
complicated tests.

165

8 Approaches for Sufflcient Scheduling Tests

8.6 Comparison Between Sufficient Scheduling

Approaches

in this section, we compare by evaluation the previous mentioned approaches to con-

sider the trade off between the ease of use against accuracy. In the comparison, we

look at the scheduling performance each approach provides. Evaluations are done by

generating random real-time systems.

The comparison is done, in summary, in two ways;
'
one for small systems where

the exact test is possible and another for large systems where the exact test is not

possible. The system is considered as large (or big) when the experiments took more

than one day to process the exact analysis of the system, using the departmental PC.

This is because the exact analysis of a MF task must maximise its busy periods over

all combinations of the critical frames of all higher priority MF tasks. So, the function

of the worst case response time of a MF task is a polynomial function so the exact

response time analysis is NP-hard. Hence, the analysis is intractable.

In the first set of experiments we find the percentage of the schedulable systems,
for each approach, out of the exactly schedulable systems. The second way is based

on finding the number of schedulable systems under each approach out of 10000 ran-
domly generated systems. The following sections show the scope and algorithm of the

experiments (i. e. choosing parameters and how each of the experiments is run) whilst

the last section presents the results of the experiments.

8.6.1 Experimental Setup

Experiments in this chapter require the generation of real-time systems to check their

schedulability under each approach and then compare them. The generation of a real-

time system, in its turn, means the generation of the size of the system as well as the

generation of the multiframe tasks that form the system. From the system size point

of view, the exact experiments (i. e. experiments that take the exact test into account)

are done for systems with 5 and 10 multiframe tasks because once the size of the

system becomes greater than 10 multiframe tasks, the time of running the experiments

166

8.6 Compazison Between Sufficient Scheduling Approaches

becomes too long. On the other hand, the non-exact experiments are done for systems

with 5,10,20,40,80,100 multiframe tasks.

From the multiframe task's generation point of view, we require generating four

parameters for each multiframe task, Ti, (i. e. ni, Ti, Di, Cj; which are respectively:

number of frames, Period, Deadline, and the execution time sequence). These four

parameters of the MF task are generated similarly to what is done in Chapter 3 and

5 as the following. The number of frames of the multiframe task is assumed as fixed

for all multiframe tasks in the system and it is chosen, for each experiment, as a prime

number in the range [3,29]. Choosing prime numbers for the number of frames is

to follow similar scenario to what was introduced before in Chapters 3 and 5 so all

parts of the thesis can be coherent and therefore, the results of the chapters can be

compared to each other. Second and third parameters that are the period and deadline

of the multiframe task are assumed to be identical to each other and are randomly

generated in the range of [1,25001 using uniform distribution. Once the deadlines are

assigned to each task, the priorities of the tasks are also assigned according to DM

assignment; where the lower deadline the task has, the higher priority it is assigned
[51].

The sequence of the execution times, which is the fourth parameter, is gcncratcd

similarly to Chapter 3. Algorithm 2 illustrates the procedure of this generation; which

uses UUnifast algorithm [20] that is illustrated by Algorithm 1. Further dctails can be

found in Chapter 3.

8.6.2 Scope of Running the Experiments

We run the experiment 10000 times for each chosen parameters on five steps as follow.

ing. Firstly, we generate the multifi-ame tasks by generating the parameters of the ex-

periment (i. e. number of frames, periods, deadlines, and execution time sequence) as

previously explained. Secondly, from the execution times, we find the critical frames

of the generated multiframe tasks. Thirdly, we calculate the exact worst case response
time of each task taking into account all critical frames of the higher priority multi-
frame tasks and then check if it is within its deadline. In other words, we check the

schedulability of the system by checking the schedulability of all multifmmc tasks

167

8 Approaches for Sufflcient Scheduling Tests

in this system. Fourthly, for the same parameters of the system we find the relative

approximations of each approach and check the schedulability of the approximations.
Lastly, for each approach and for small systems, we find the percentage of the schcdu-
lable systems out of the ones that are exactly schedulable; whilst for big systems we
find the number of schedulable systems out of the 10000 generated systems.

For the small systems where the exact schedulability test is possible, we investigate

all values of the utilisations within (0.2,0.3,0.4,0.5,0.6) but we did not investigate the

values that are less than 0.2 or greater than 0.6. That is because, for the most assumed

number of frames, the number of the exact schedulable systems is very high and close

to 100% when the overall utilisation of the system is below 0.2 as well as the number

of the exact schedulable systems becomes very low and close to zero when the overall

utilisation of the system goes beyond 0.6.

For the big systems where the exact schedulability test is not possible, we investi-

gate the values of the utilisations that is in [0.3,0.5] = (0.3,0.4,0.5). That is because

the range of U within [0.3,0.5] represents a converted range for most behaviours of

the number of exactly schedulable systems; where the number of schedulablc systems
decreases within this range from around 100% to around only 10% (see Chapter 3

Figure 3.2) which gives importance to investigate the percentage of the improvement

each approach gives.

8.6.3 Results of the Experiments

This section discusses the results of the experiments in two groups: the first group that
is presented by Figures 8.1 - 8.6 considers the systems with 5 or 10 MF tasks where
the systems are small enough to exactly test their schedulability. The second group
that is presented by Figures 8.7 - 8.15 does not take the exact analysis into account as
the systems are too big to exactly test their schedulability.

Figures 8.1 - 8.6 present the percentage of the number of schedulable systems for

each of the four approaches (i. e. maximum, reordering, complementary, max accu.
mulations approaches) out of the systems that are exactly schcdulable. For more clar-
ification for the results, those figures include the exact line which is the one hundred

168

8.6 Comparison Between Sufficient Scheduling Approaches

percent of the exact schedulable systems. Results show that for small systems the

closest approach to the exact one is the complementary one with different scheduling

performance for all chosen parameters of the experiments; while the worst approach
is always the maximum one, even when the overall utilisation of the system is very
low 0.2 where the results of the approaches are so close to each other as in the last

graph in Figure 8.1; where the systems have 10 MF tasks. Another example in Figure

8.1 is the first graph where it shows that, for systems with 5 MF tasks and number

of frames is less than 19, more than 95% of the exactly schedulable systems arc also

schedulable by the four approaches; whilst this percentage decreases to about 91%

using the maximum approaches when the number of frames increases to 23 frames.

So, the complementary approach gives between 5% and 9% better performance than

the maximum approach when the number of frames is between 19 and 23.

In addition, Figures 8.2,8.3 and 8.4 show that when the systems have, only 5 MF

tasks the performance of the complementary approach becomes even better than the

other approaches. For example, Figure 8.2 shows that when the overall utilisation of

the system is 0.3 the complementary results is very close to the exact results. Also,

this figure shows that when the overall utilisation of the system is 0.3 the complcmen-
tary approach gives more than 95% schedulable systems for all chosen parametcrs;

where its performance reduces from about 100% to 95% when the number of frames

increases from 7 to 23; while at the same time the performance of the max accumu.
lations approach, reordering approach, maximum approach reduce from 98%, 98%,

and 83% respectively to about 82%, 58%, and 18% respectively when the number

of frames increases from 7 to 23. So, the complementary approach gives ranges of
[2%, 13%], [2%, 37%], and [17%, 77%] better performance than the maximum accu-
mulations approach, reordering approach and maximum approach when the number
of frames increases from 7 to 23. Similarly, Figure 8.3 shows that when the overall

utilisation of the system is 0.4 the complementary approach gives ranges of [8%, 19%],
[5%, 611/o], and [45%, 91%] better performance than the maximum accumulations ap-
proach, reordering approach and maximum approach respectively when the number
of frames increases from 5 to 23.

Using same argument, Figure 8.4 shows that when the overall utilisation of the sys.
tem is 0.5 the complementary approach gives ranges of [10%, 220/ol, [1%, 61%], and

169

8 Approaches for Sufficient Scheduling Tests

', and N= 5

100

'97

:- 96

.

94 - --- ---------
93 - --
-- - -- --

91 --
90

3456789 10 11 1? U 14 15 16 17 18 15 20 21 22 23

11 u mbe r of Fia me s

-*-Exact --t-Maximum -*-Reordering -Complementaý P-M ax Accm

Figure 8.1: Percentage of Schedulable Systems U=0.2 and N=5 anil 10

170

:

8.6 Comparison Between Suthclcnt Scheduling Approaches

[49%. 90%] better performance than the maximum accumulations approach, reorder-

ing approach and maximum approach when the number of frames increases from 3 to

19.

U 0.3 and N=5

----------------- ------------------------ ------------------------------

............................ f 60

> 40 -- ---------------------------------

---

345678 10 11 1? 13 14 15 S 17 18 11 20 ?1

11 unib eir of Fw nies

ý-*-E
(aLl -a-Maximum --. --Reordering -Complemelarký -wa-Max Accum

Figure 8.2: Percentage of Schedulable Systems U=0.3 and N=5 1

171

8 Approaches for Sufficient Scheduling Tests

For more investigation, Figures 8.5 and 8.6 present the scheduling performance for

systems with 10 MF tasks and from different overall utilisations point of view. The

first graph in Figure 8.5 shows that for the systems with 10 MF tasks and 0.3 overall

utilisation, the performance of all four approaches is very close to the performance

of the exact analysis for MF tasks with 3 or 5 frames. However, Figures 8.5 and
8.6 show that when the overall utilisation of the system increases from 0.4 to 0.6 tile

complementary approach and reordering approach give similar performance when the

number of frames is 3 whilst the complementary approach gives ranges ofý011,,. 21""!

and [61%. 97%] better than the max accumulations and maximum approaclics respcc-

tively. However, the performance of the reordering approach decreases to 60""' " hell

the number of frames becomes 5; whilst the complementary approach gives ranges

of about [0%. 30%], [0%, 29%], and [61%. 89%1 better performance than the nlaxi-

mum accumulations approach, reordering approach and maximum approach wilcii tile

overall utilisation increases from 0.4 to 0.6 and the number of frames is 5.

U =0.4 and N=5

AA 100

90 --- 7 ...

80
-- ------------- I ----------_---------_---

?0 ---- ------------------ --------------------- --------------- ------------

60 ------ ---------------------- ---
60 -------- ----------------------------

>
... 40 ---------- -------------------------- -----------

30 ------------- ------------------------------------ -------------------

------------------- ---
10 -------------------------- ...
0

3456789 10 11 12 13 '14 15 16 17 118 19 20 21 22 23

Illumbet of hames

ý-*-Exacl
-&-Maximum -*-Reordering -Complementary -*-M: 3: X: AC: CUM]

Fioure 8.3: Percentage of Schedulable Systems When Uý0.4 and. N' -5

172

8.6 Comparison Between Suthclcnt Scheduling Approaches

U= 03 and N=S

AA 1001

90 --- --------------

80 ------ ---

................... ---------------------------
................................

......

.....................................

60 ---------------------------- -------------------
50 --

> 40 -- ---------------------------------------

.... 30

...........

..... .. 20

10

------ -----------

3456781 10 11 12 13 14 15 16 17 18 It

Ilumbet of Frimes

--o-Exad -a-Maximum -*-Reordering -Complementary: -ý-m-Maxkcum

Figure 8A Percentage of Schedulable Systems When U=0.5 and N=5

On the other hand, for more coverage of the performance ofthe approaclics, Fig-

ures 8.7 - 8.15 present the schedulability performance for big systems where tile exact

schedulability analysis is intractable. The schedulability performance in tllc. se fig-

ures is represented by the number of schedulable systems out ofthe 10000 randomly

generated systems. All results show that the best approach for the big, systcnis IS

the complementary approach while the worst one is the maximum one. For exam-

pie, Figure 8.7 shows that for systems with an overall utilisation of 0.3,10 MF lasks

and number of frames is 29, there are 6400 schedulable SyStenIS Out Of tile 10000

generated systems using complementary approach while there are 5500 sclic(lulable

systems out of the 10000 generated systems using max accumulations approach. So

6400 5500o., the complementary approach gives 9% (i. e. 10000 ,)) better pert'Orinaticc than tile

reordering approach for the mentioned parameters. Using similar argUnICIlt Figure 8.7

also shows that the complementary approach provides ranges of [011,,. ýO" 0ý 42"

and [0%, 64%] better performance than the max accumulations, rcorderim, and inax- I-

173

8 Approaches for Suthcicnt Scheduling Tests

U=0.3 and N -- 10

100 5

100

L8

97 5
97

11 u nibet of F fa mes

I OExact IMaximum oReordering OComplementary IMax Accum. I

U=OA and Nc 10

120

4,100

40

0

11 umber of Frames

13E xact I Maximum IlReordenng CC om plemeitary EM ax Accum.

Figure 8.5: Percentage of Schedulable Systems When N= 10 and U=0.3 wul 0.4

174

35

3

8.6 Comparison Between Suthcicnt Scheduling Approaches

U=0.5 and N= 10

120

40

5

Humber of Frames

I IIE xact EM aximum oReordenng oCom plemertary IM D Accum. I

Figure 8.6: Percentage of Schedulable Systems When N= 10 and U=0.5 antl 0.6

175

8 Approaches for Sufficlent Scheduling Tests

imum approaches respectively when the overall utillsation is 0.3 and the number of

frames increases from 3 to 29.

Similarly, Figure 8.8 shows that the complementary approach provides ranges of

around [0%. 10%], [0%ý 26%], and [10%. 45%] better performance than the max ac-

cumulations, reordering and maximum approaches when the overall utilisation is 0.4

and the number of frames increases from 3 to 13. Moreover, Figure 8.8 shows that the

complementary approach provides about 75% better performance than the maxii-nurn

approach when the number of frames is 7.

However, Figure 8.9 shows that when the overall utilisation is 0.5 the performance

of the complementary approach becomes lower with increasing the number offranies,

although it provides better performance than the other approaches. For example, the

number of schedulable systems under complementary approach decreases from about
1200 out of the 10000 generated systems to 0 when the number of frames increases
from II to 19.

U 0.3 and 11 = 10

1000D

9000 - ----- ------ -------------------------

9DOD ý --------- --------- ------ I ------ ---------------
E

? OOD - ---------- ------------ ---------- ---- -----

----------- ------------- -------- ------ ----

D TIM ------------- ------------------ -----------------

40001 --------------- -------------------- ----------

ýD 3DOD ----------------- ----------------- --- -----
J3

ýIILID --------------------- ---------------------------
z

1000 -------------------------- ----------------------

ol .I1 -9 .I-
3579 11 13 115 17 1'3 11 23 26 27 29

Number of Frames

1--6,
-Ma, <irnum -, *-Reordering -&-Corrplementar)f -00--M&<_ - I'M

E: I-

Figure 8.7: Number of Schedulable Systems When N= 10 and U=0.3

176

8.6 Comparison Between Suthclcnt Scheduling Approaches

In the following, we discuss the schedulability performance of the approaches when

the number of MF tasks increases from 20 to 100 for each overall utilisation 0.3,0.4,

and 0.5. Figures 8.10 and 8.11 show that for both complementary approach and max

accumulations approach, the greater number of MF tasks the system has the better

performance the approach provides whilst the other way round with both maximum

and reordering approaches. For example, for number of frames equals 29, the number

of schedulable systems using complementary approach increases from 7000" to mOO'I

when number of MF tasks increases from 20 to 100. Also, the second graph in I'l"Ure

8.11 shows that the complementary approach gives ranges of ý0%. ý0, `,,. 70"'ol and
[0%, 78%] better performance than the max accumulations approach, reordering ap-

proach and maximum approach respectively when the overall utilisation is 0.3, IILIIII-
ber of tasks is 40 and number of frames increases from 3 to 29. Moreover, Figure S. II

shows that the maximum accumulations approach becomes very close to the comple-

'Found from the first graph in Figure 8.10.
'Found from the second graph in Figure 8.11.

U=0.4 a nd 11 = 10

10000

900D --

IA
BOOD ---- - ---

E
n _T ---- -- -------------------------------------- C

6000 - ------- - -----------------------------------

50cfj -- -------- - -- --------------------------------

VCO - -- -------- --- --- ----------------------------

L ------ ----- ----------------------

DDOO ---- --------

IOUD ------ -------------- ------------

0301,.

5 11 13 15 17 19 21 23 25 27 29
Number of Frames

-*, -tvtTdrrum -*"-Reordering -11-Corrplerrentary -00-Mx< Accurri

Figure 8.8: Number of Schedulable Systems When Ný 10 and L' = 0.4 Cý

177

8 Approaches for Sufficient Scheduling Tests

U=0.5 a Ild 11 = 10

1000D ro

900D ---

8000 --

700D - ---

6 -ID ------------------ OL- -- ----------------------------

'5 5000 -- o

400D ---- - ---
'6 3000 ----- - ---

---------------------- 20CO ---- -- -------------------------------------
z

1000 - -- ---- -------------- ------------

0ý
3579 11 13 15 17 19 21 23 215 27 29

Number af Frames

-0-Mavirrum-Oll-Reordefing -90-Conplementary

Figure 8.9: Number of SchedulabIc Systems When N= 10 and 11 - 0.5

mentary one when the number of tasks is 80 or 100 and their performance COUId be

identical for number of frames less than 19.

From another point of view, Figures S. 12 and 8.13 show that when the overall util-

isation of the system is 0.4 and number of frames arc less than or equals to 13 tile

performance of the complementary and max accumulations approaches becomes bet-

ter with increasing the number of MF tasks in the system from 20 to 100. For example,

the number of schedulable systems under complementary and max accurill. 1 lat lolls ap-

proaches increase from 5900 and 5000 respectively when the number offrames is II

and number of tasks is 20 in Figures 8.12 to 7000 and 6400 for the same number

of frames and number of tasks is 100 in Figures S. 13. However, the performance of

these two approaches reduces with increasing the number of frames beyond 13 and

increasing the number of tasks from 20 to 100. For example, the number of schcdula-

ble systems under complementary and max accumulations approaches decrease from

about 2100 and 1800 respectively when the number of frames is 19 and number of

tasks is 20 in Figures 8.12 to 900 and 800 for the same number of frames and number

178

8.6 Comparison Between Sufficient Scheduling Approaches

U=0.3 a nd 11 =20

10000

9000
8000

0 Lyi

ffloc)

5D00
13

ADOO

t
30C9: 1 ID

.0
x

iooc

- ------ ----------- ------- -- - ------------------

- ------- ----------- ----------- ---- --------
- --------- ------------- ------------------ ----
---------- --------------- ----------------------
------------ ---------------- ------------------

--

------------------- ---------------------------- 3579 li 13 15 17 19 21 23 2-5 27 29

Number of Frames

--O--M3xirrum -*-Reordering -4b-Complerrentary -"-, Mx<_A ! . 1-M

Figure 8.10: Number of Schedulable Systems When N= 20 un(14O and U =- 0.3 C: l

179

8 Approaches for Sufficient Scheduling Tests

U=0.3 a nd 11 =80

10000

9000

IA
9DOO

E
701-C

elDOO
m

5000

4000

3000

C :, 2000
z

------------ ---------------------------

---- ------------ \ -----------------------
---------- I

----------- ------------------- --------------------------
------------ ------------------ \ --------------

----- ---- ------------------ --------------

looc

3579 11 13 15 17 19 21 23 25 27 29

Number of Prames

--$-Maximum -1'1, -Reotderi)g -4-Complementary -m-MD<_ . 2m]
I L.

--m

U=0.3 and 11 = 100

lc()00

9000

-------- ------------- ----------------------------
--------- -------------- --------------------------

---------------------- 4,41ý I

IA
8000

E

7000

EOOD

5000

4DOO

OOCCI

.0

loly

------------------ -------------------- I
------------- ------------ ---------------- m -------------- t ----------------------- = ----------- I

3579 11 13 15 17 19 21 23 25 27 29

Number of Frames

1--$-Mx<irrum -'-Reordering -*-Complementary

Figure 8.11: Number of Schedulable Systems When N= 80 and 100 and U=0.3

180

8.6 Comparison Between Sufficient Scheduling Approaches

of tasks is 100 in Figures 8.13.

In addition, Figures 8.12 shows that, when the overall utilisation is 0.4 and num-
ber of MF tasks is 40, there is a sharp decrease in the performance of the reordering

approach when the number of frames increases from 5 to II where the number of

schedulable systems decreases from 10000 to about 1500. At the same time the num-
ber of schedulable systems using complementary approach decreases from 10000 to

about 6200. So the complementary approach provides 47% (i. e. 6200-1500%) better 10000
performance than the reordering approach for the mentioned parameters. Using sim-
ilar argument, Figures 8.13 shows that the complementary approach gives ranges of
[0%, 60/o], [0%, 46%] and [0%, 100%] better performance than the max accumulations

approach, reordering approach and maximum approach respectively when the overall

utilisation is 0.4, number of tasks is 100 and number of frames increases in the ranges
[3,13], [3,13], and [3,51 respectively.

181

8 Approaches for Sufficient Scheduling Tests

U=0.4 a nd 11 =20

10000

9000
8000

7000

e000

5000

3000

21 3D0D

loco

--
- ----- ---------------------------------------

-- ------ -- -------------------------------------
--- ------- -- - ----------------------------------

- -------- --- - ---------------------------------

-- --------- ----- - ----------------------------

-- ---------- ------- -- -----------------------

--- -------------- ---------- - -----------------

---- -------- --- ----------------- 3579 11 13 15 17 19 21 23 25 27 29

Number of Frames

1--"-M3xirrum --&-Reordering --dP-Corrplementary -"-Mm<_ tL-l

U=0.4 a nd If = 40

100oD

9000

9000

7000

(U 6000
7D

.2
5000

4000

3000

. la

2000

---- ------------------------------- ----- \-V--

3579 11 13 15 17 19 21 23 25 27 29

Number of Frames

-40-Maximum -0-Reordering -v-Corrplerrentanj

Fioure 8.12: Number of Schedulable Systems When N= 20 and 40 and U=0.4

182

8.6 Comparison Between Sufficient Scheduling Approaches

U=0.4 a nd 11 =80

1 OOLU

9000

8000

le 7000

e000
Z

woo

301: 0

.0 20Lü

3579 11 13 15 17 19 21 23 25 27 29

Number of Frames

--*-Maxirrum-10-Reordering -6-Corrplementary -m-Mv<_A m

U=0.4 and 11 = 100

10000

9000

kn
SOOD

700D

w 8000

'a

14000

3OL-0

2000

IOLO

3579 11 1*3 15 17 19 . 21 23 25 -'7 Z, 3

Number of Frames

1-4-Ntvirrum -**-Reordering --a-Corrplementary

Figure 8.13: Number of Schedulable Systems When N= 80 and 100 and U-0.4

183

8 Approaches for Sufficlent Scheduling Tests

For more investigation about the schedulability performance of the approaches, Fig-

ures 8.14 and 8.15 present the schedulability performance of the four approaches

when the overall utilisation of the system Is 0.5 and number of tasks is 20.40.80. a/0

100. Figures 8.14 and 8.15 show that although the performance of the complementary

and max accumulations approaches becomes low when increasing the overall titilisa-

tion and size of the system, their performance is still better than the reordering and

maximum approaches. Moreover, Figure 8.15 shows that each of the complementary,

max accumulations, reordering approaches provides about 1001"o better performance

than the maximum approach when the number of tasks is greater than so and number

of frames is only 3.

8.7 Summary and Recommendations

This chapter has investigated by evaluation four sufficient scheduling approaches (i. c.

Maximum, reordering, complementary, and max accumulations approaches) for rcla-

tively small and big systems. The main idea of the first three approaches was to sallely

transform the non-AM multiframe tasks to AM multiframe tasks and then apply the

tractable response time analysis on the transformed system. Oil the other hand, the

idea of the fourth approach (i. e. max accumulations approach) was to pre-calculatc

the maximum execution of both the analysed task and higher priority MF tasks; then

check if this maximum execution can be achieved within the deadline oftlic analyscd
MF task to consider it as a schedulable MF task.

Results show that for all chosen parameters the best scheduling performance is gen-

crated by the complementary approach for both big and small systems so we classify

the complementary approach as the best approach. This is because oftwo issues, tile
first issue is that the complementary approach provides the closest results to the exact

one when the systems are small enough to exactly test their schedulability where the

maximum differentiation between the exact performance and complementary pcrt'or-
mancc was only about 9% showed by Figures 8.3,8.4 and 8.6. Tile second issue, is
that all results show that the complementary approach always provides better results
than the other three approaches for both small and big systems.

184

8.7 Surnmarv and Recommendations

U=0.5 a Ild 11 =20

10000
9OLLI

:3

73

11000
3000

E 20CC
1 Z

locc

3579 11 13 15 17 19 21 23 25 27 29

Number of Frames

Max imu mm Reordering -dr-Corrplementary -"*-Nlx<_Accum

U=0.5 a nd H= 40

10000

9000

k4
9000

E
ei 7000

e000

50L0

30Lü

.0
20CC

3579 11 13 1-5 17 19 21 2-: 255 2- 29

Number of Frames

Fi, (, Yure 8.14: Number of Schcdulable Systems When N= 20 cinil 40 and U=0.5 Z,

185

8 Approaches for Sufficient Scheduling Tcsts C7

0.5 a Ild 11 =80

10000

9000

8000

COLO

'5 CDOD
'0

.D 21 2000

10130

------------ ----------------------------------
k --

k
-- ---
. It

A 4-M --- I

& ýý ---I

3579 11 13 15 17 13 21 23 25 27 29

Number of Rames

Miý irrm rn -16-R eo r de rin g -*- Co rrp lerre nta ry
ýccurn

U=0.5 and 11 = 100

IODOO -

GOOD ---

kA 8000 --
E

7000 -- ---

6000 -- - ---

'5 5000 --- -- '0
40001 ---- --

---- - ---

xwo --- -------------------------------------

100D ---- ------------------------------------

3579 11 13 15 17 19,21 Z3 ý. 1'5 --7. -.;

Number of Frames

-4--Mavirrum -*-Reordering -9k--Corrplementary A ccum

Figure 8.15: N umber of SchedulabIc Systems When N= 80 clilcl 100 and U -- 0.5

186

8.7 Summary and Recommendations

Actually, we are interested in the best approach for big systems because when the

system is small we can exactly analyze it without using any approximation approach.
However, for big systems, the performance of the max accumulations approach be-

comes very close to the complementary approach where results show that in the worst

case, the complementary approach provides a maximum better performance of only
8%. So, from the coverage point of view, we say that the max accumulations approach

covers the complementary one; where if a task is schedulable using max accumula-
tions approach, it is definitely khedulable using complementary one. On the other
hand, the max accumulations approach is the easiest approach to perform where no

need to do any recurrence calculations but we do need for the complementary ap-

proach. So, there is a trade off between the ease of use of the approaches and the

accuracy of the results they provide, although all of them are safe. Therefore, to ar-

range the schedulability performance of the approaches, we identify the maximum

accumulations approaches the second approach after the complementary one with a

maximum differentiation rate between their performance of only 9%.

187

9 Evaluation, Conclusions and Future

Work

This chapter summarises the contributions of this thesis and presents an overview

of some ideas for future work. The main idea of the thesis is to exactly analyze

the schedulability of hard real time systems with MF tasks. This has been done by

analysing the response time of each MF task in the system. However, for big systems

with general MF tasks; the response time analysis is not tractable so some sufficient

approaches are introduced to test the schedulability of the systems that can not be

exactly analysed.

9.1 Contributions of the Thesis

An exact response time scheduling test is an exact scheduling test in terms of being

sufficient and necessary for hard real-time systems. This thesis has shown the flcxi-

bility of the response time analysis by analysing systems with MF tasks.

This thesis started to prove its claims when Chapter 3 presented a formula that cal-

culates the worst case response time of basic MF tasks whose execution times are ac-

cumulatively monotonic (i. e. AM). This formula allows MF tasks to share resources,

so it allows MF tasks to suffer blocking. To show the performance of the response time

analysis, this chapter compares schedulability of the presented response time analysis

with the most improved utilisation based scheduling test (i. e. Lu's test [551). All rc-

sults show a clear improvement in the schedulability performance using response time

analysis rather than using Lu's test where the performance of response time test can
be 100% better than Lu's test.

189

9 Evaluation, Conclusions and Future Work

Chapter 4 has proved the flexibility of the response time analysis of MF tasks by

extending the basic response time analysis', that is presented in Chapter 3, to two

models more general than the basic model. In the first model, MF tasks* are allowed
to be subjected to release jitter. In the second model, the MF tasks are allowed to
have arbitrary deadlines that could be greater than their relative periods, so the worst

case response time analysis must include some amount of execution from the analysed
task itself. Moreover, Chapter 4 has joined these two models and analysed the worst

case response time of AM multiframe tasks that are subjected to both release jitter and

arbitrary deadlines.

To further generalise the response time analysis, Chapter 5 has relaxed the AM

restriction and analysed the worst case response time of non-AM multiframe tasks.
Analysis in this chapter has used a new concept called a critical frame; where the

analysis has considered only the synchronous releases of the critical frames of MF

tasks whose priorities are higher than the analysed task. This chapter has shown that,
in the worst case, a MF task with n frames could have n-I critical frames. How-

ever, evaluation has shown that the number of critical frames per MF task is likely to
be significantly less than n-I and usually less than 65% of the original number of
frames.

Chapter 6 has extended the response time of non-AM multiframe tasks to two mod-

els. The first model is when the MF tasks are subjected to release jitter and the second
model is when the MF tasks have arbitrary deadlines. In addition, a combined analysis
of the release jitter and arbitrary deadlines has been presented in this chapter.

For finther proof of the flexibility of the response time analysis of MF tasks, Chapter
7 has presented an analysis of the worst case response time of MF tasks whose frames

can have different deadlines; which has been called the frame specific deadlines scc-
nario. A new concept called covering frame has been introduced in this chapter to

optimise the number of frames that have to be analysed when the deadlines of the MF

task are less than the relative period. However, general response time analysis has

also been presented in this chapter when the deadlines of the MF task becomes greater
than the relative period. As deadline monotonic priority assignment is not optimal
anymore within the frame specific deadline scenario, another priority assignment for
this model has been introduced in this chapter.

190

9.2 Future Work

As the response time analysis is computationally intractable for relatively big sys-

tems, Chapter 8 has introduced four sufficient and computationally tractable approaches

that can test the schedulability of big systems with non-AM multiframe tasks. These

approaches are called maximum, reordering, complementary and max accumulations

approaches. As the response time is tractable for AM multiframe tasks, three of these

approaches have been based on transforming the non-AM multiframe tasks to AM

tasks. Whilst the fourth one has been based on pre-calculations of the maximum in-

vocations of higher priority MF tasks within the deadline of the analysed task. In

this chapter the safety of these four approaches has been proved, coverage of the ap-

proaches has been explained, and a comparison between the approaches by evalua-

tions has been presented. Results have shown the performance of the complementary

approach comparing to each of the other approaches. Results have shown that al-
though the best approach is the complementary one, its schcdulability performance is

very close to the performance of the max accumulations approach when the system is

relatively big. This latter test is the easiest one to perform.

9.2 Future Work

Although this thesis has addressed some problems, there are some issues, related to

what has been done in this thesis, are still open to be solved. The following is an
overview of these open issues arranged according to the order of the chapters.

1. The analysis in this thesis considers that priorities of the MF tasks are assigned
before performinging the analysis. However, a non covered issue in this thesis
is to find an optimal priority assignment for the MF model and whether DM is

optimal for this model.

2. The analysis in Chapters 3,4,5 and 6 can be improved to include variable
blocking times instead of considering it as a single value.

3. In Chapter 5, the policy of identifying the critical frames could generate critical
frames that can be safely discard from the response time analysis. Actually, this
policy can be optimised to generate an optimal number of critical frames; where
in reality there are frames in the generated critical frames who arc dominated by

191

9 Evaluation, Conclusions and Future Work

more than one other critical frames. This will involve using the critical frames

that have been already generated in Chapter 5. -

4. Solving exact response time equations, that is presented in Chapters 5,6 and 7,

requires a huge number of iterations to get either a stable solution or to identify

the unschedulability of the MF task. To speed up the solutions of these exact

response time equations we could start the solutions by calculating the minimum
interference from higher priority MF tasks plus the maximum execution time

of the analysed MF task instead of only the maximum execution time of the

analysed task. This could be done by incorporating the work in [27] to serve as

the system model in this thesis.

5. Moving on to the frame specific deadlines scenario, that is presented in Chapter

7, a number of issues arose within this chapter. The first issue is an improve-

ment of the identification of the covering frames in the case of having arbitrary

deadlines (i. e. Section 7.2) could be achieved using the cumulative function

that is given by Definition 1. The second issue is to find a way that can avoid

overlaps for solving ri, vf (q). In this issue we can consider two points: one is

the minimum interference from higher priority MF tasks within the maximum

iV Cq execution of the analysed MF task and another is to make use of r, J for a

specific value of f= fj as a starting point to solve Equation (7.9) in Theorem

11. The third issue is an open problem that is still in progress; this problem
is summarised by the following question: Is there a method that can optimise
Corollary 5 so that there is no need to check all values of P. The fourth issue is

to improve the analysis to include blocking time and release jitter.

9.3 Concluding Remarks

In the introduction, we claimed that the
"The schedulability ofreal-time systems with multifirame tasks can be exactly analysed

usingformylated response time analysis that is extensible to a wide variety of situa-
tions. "ere response time analysis is intractable, appropriate non-optimal heuristics

exist and allow all systems to be analysed. "

192

9.3 Concluding Remarks

This claim has been supported when three issues are considered. The first issue is

the presentation of exact worst case response time formula for AM multiframe tasks

and non-AM multiframe tasks, then extending these formulas to the situation where
MF tasks suffer from blocking, release jitter and arbitrary deadlines. The second issue

is the presentation of exact worst case response time formula for MF tasks whose
deadlines are different from one frame to another. The third issue is the presentation

of four sufficient and tractable scheduling approaches that can be applied to large

systems.

193

List of References

[1] Available Online http: //www. vector. com/vi_oscan_en. html, ac-

cessed in 07/01/2009.

[2] Available On line http: //shark. sssup. it /di strib/s 1 ides/

2005_first_shark_workshop/handouts/FIRST_michael_
handouts. p df , accessed in 07/01/2009.

[3] Available On line http: //www. lynuxworks. com, accessed in

07/01/2009.

[4] Available On line http: //www. mathreference. com/lan-cx-np,

vcp. html, accessed in 07/01/2009.

[5] N. C. Audsley. Optimal priority assignment and feasibility of static priority tasks

with arbitrary start time. Technical report, University of York, 199 1.

(6] N. C. Audsley. Flexible Scheduling of Hard Real-7-Ime Systems. PhD thcsis,

University of York, 1993.

[7] N. C. Audsley. On priority assignment in fixed priority scheduling. Information

Processing Letters, (79): 39-44,2001.

[8] N. C. Audsley and A. Bums. On fixed priority scheduling, officts and co-primc

task periods. Information Processing Letters, pages 65-69,1998.

[9) N. C. Audsley, A. Bums, M. Richardson, K. W. Tindell, and A. J. Wcllings. Ap-

plying New Scheduling Theory to Static Priority Preemptive Scheduling. Soft.

ware Engineering Journal, 8(5): 284-292, Scptcmbcr 1993.

[10] T. P. Baker. Stack-based scheduling of rcaltimc processes. Real I-Ime Systems

Journal, 3(1): 67-99, March 1991.

195

List of Rcferences

[11] N. Bala. Real time operating systems (rtos) modelling. Technical report, Uni-

versity of Califomia, June 2004.

[12] S. K. B aruah, D. Chen, and A. Mok. Generalized multiframae tasks. The Inter-

national Journal Of Pme Critical Computing Systems, 17: 5-22,1999.

[13) S. K. Baruah, D. Chen, and A. Mok. Static-priority scheduling of multiframe

tasks. Inproceedings Ilth Euromicro Conference on Real-Time Systems, pages
38-45, June 1999.

[14] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity con-

cerning the preemplive scheduling of periodic real time tasks on one processor.

Real 777me Systems, 2: 301-324,1990.

[15] S. Baskiyar and N. Mcgh'anathan. A survey of contemporary real time operating

systems. Infonnatica, 29: 233-240, June 2005.

[16] 1. Bate. Scheduling and 7"Iming Analysisfor Safety Critical Real-7-Ime Systems.

PhD thesis, University of York, 1999.

[17] 1. Bate and A. Bums. An integrated approach to scheduling, in safety-critical

embedded control systems. Real Time Systems, pages 6-37,2003.

[18] G. Bernat and A. Bums. New results on fixed priority aperiodic servers. In 201h

IEEE Real Y"Ime Systems Symposium, pages 68-78,1-3 December 1999.

19] E. Bini and S. K. Baruah. Efficient computation of response time bounds under
fixed-priority scheduling. In Real-77"me and Network Systems (R7WS07), pages
95-104, March 2007.

[20] E. Bini and G. C. Buttazzo. Biasing effects in schcdulability measures. In

16th Euromicro Conference on Real-7-ime Systems (ECRTS'04), pages 196-203,

2004.

[21] R. I Bril, L. Steffens, and W. F. J. Verhaegh. Best-casc rcsponsc timcs of

real-time tasks. - In Philips Workshop on Scheduling and Resource Manage-

ment(SCHARM, pages 19-27, June 2001.

[22] P, J. Bril, W. R J. Verhaegh, and E-J. D. Pol. Initial Values for on-line response

196

List of References

time calculations. In 15th Euromicro Conference on Real-771me Systems, pages

13-22, July 2003

[23] L Broster and A. Bums. An analysable bus guardian for event-triggered com-

munication. In 24th IEEE International Real Time Systems Symposium, pages
410-420,3-5 December 2003.

(24] A. Bums, K W. Tindell, and A. J. Wellings. Effictive analysis for engineering

real-time fixed priority schedulers. IEEE Transactions On Software Engineering,

pages 475-480,1995.

[25] A. Burns and A. J. Welfings. Real Time Systems and Programming Languages.

Addison-Wesley, England, 2001.

[26] A. Bums, A. J. Wellings, C. H. Forsyth, and C. M. Bailey. A performance analysis

of a hard real-time system. Control Engineering Practice, 3(4): 447-464,1995.

[27] R. 1. Davis and A. Bums. Response time upper bounds for fixed priority real-time

systems. In. Real time Systems Symposium, pages 407-418, December 2008.

[28] R. I. Davis, A. Zabos, and A. Bums. Efficient exact schcdulability tests for fixed

priority real-time systems. IEEE Transactions on Computers, 57(9): 1261-1276,

September 2008.

[29] R Eiscnbrand and Th. Rothvob. Static priority real-time scheduling response
time computation is np-hard. In Real time Systems Symposium, pages 397-406,

December 2008.

[30] N. Fisher and S. Baruah. A fully polynomial-time approximation scheme for
feasibility analysis in static-priority systems with arbitrary relative deadlines. in
EuroMicro Conference on Real- Time Systems, pages 117-126,2005.

[3 1]N. Fisher and S. Baruah. A fully polynomial-time approximation scheme for
feasibility analysis in static-priority systems with bounded relative deadlines. In
13th International Conference on Real-771me Systems, pages 233-249,2005.

[32] J. Goossens. Scheduling ofHardReal Time Periodic Systems with Various Kinds

ofDeadline and Offset Constraints. PhD thesis, University Liber de Bruxelles,
Belgium, 1999.

197

List of References

[33) J. Goossens. Scheduling of offiet free systems. Real Pme Systems, vol. 24: 239-

258,2003.

[34] J. Goossens and R. Devillers. The non-optimality of the monotonic priority as-

signments for hard real-time offset free systems. Real Time Systems, vol. 13: 107-

126,1997.

[35] R. Grehan, R. Moote, and I. Cyliax. Real-771me Programming, A Guide To 32-

Bit Embedded Development. Addison Wesley Longman, Inc, United States of
America, 1998.

[36] J. C. P. Guti6rrez, J. J. G. Gracia, and M. G. Harbour. Best-case analysis for im-

proving the worst-case schedulability test for distributed hard real-time systems.
In 10th Euromicro Workshop on Real Time Systems, pages 35-44,17-19 June

1998.

[37] C. I Han. A better polynomial-time schedulability test for real-time multiframe

tasks. In proceedings of 19th IEEE Real-Time Systems Symposium, pages 104-

113, December 1998.

[38] H. Hansson and M. Sjodin. Improved rcsponse-time analysis calculations. In 19

th IEEE Real-Time Systems Symposium, pages 399-408, December 1998.

[39] M. Joseph. Real Time Systems Specification, Verification andAnalysis. Prcnticc

Hall Inc., I st edition, 1996.

[40] M. Joseph and P. Pandya. Finding Response Times in a Real-Time system. The
Computer Journal, 29(5): 390-395, October 1986.

[41] D. Katcher, H. Arakawa, and J. Strosnider. Engineering and analysis of fixcd

priority schedulers. IEEE Tran. Software Engineering, 19: 920-34,1993.

[42] T. Kim, J. Lee, H. Shin, and N. Chang. Best-case response time analysis for
improved schedulability analysis of distributed real-time tasks. In ICDCS Hbrk-

shop on Distributed Real-Time Systems, pages B 14-B20,2000.

[43] D. E. Knuth. The Art of Computer Programming, volume 2: Scminumcrical Al-

gorithms. Addison-Wesley, 2ed edition, 198 1.

[44] T. W. Kuo, L. P. Chang, Y. H. Liu, and K. J. Lin. Efficient on-line schedulability

198

List of Refercnccs

tests for real-time systems. IEEE Trans. on Software Engineering, 29(8), 2003.

[45] 1 Labetoulle. Computer Architecture and Networks. North-Holland, Amster-

dam, 1974.

[46] J. J. Labrosse. MicroCIOS-ff The Real Time Kernel. Miller Freeman, Inc, United

States of America, 1999.

[47] B. W. Lampson and D. D. Rcdell. Expericrices with proccsses and monitors in

Mesa. Communication ACM, 23(2): 105-117, Feb 1980.

[48] J. lehoczk;, L. Sha, and Y. Ding. The Rate Monotonic Schduling Algo-

rithm: Exact Characterization and Average Case Behaviour. In IEEE Real Time

Systems Symposium, pages 166-171,5-7 December 1989.

[49] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task Set with Arbitrary

Deadlines. In IEEE Real T"Ime Systems Symposium, number 11, pages 201-209,

Decenýber 1990.

[50] J. Y. T. Leung and M. L. Merrill. A note on preemptive scheduling of periodic

real time tasks. Information Processing Letters, 11(3), Novcmber 1980.

[5 1] J. Y. T. Leung and J. Whitehead. On the Complexity of Fixed Priority Scheduling

of Periodic, Real Time Tasks. Performance Evaluation, 2(4): 237-250, Deccm-

ber 1982.

[52] C. L. Liu and J. W. Layland. Scheduling Algorithm for Multi programmimg
in a Hard Real-Time Environment. Journal of the Association for Computing

Machinery, 20(l): 46-61, January 1973.

[53] J. W. S. Liu. Real Time Systems. Prentice Hall, United States of America, 2000.

[54] C. D. Locke. Software architecture for hard real-time applications: Cyclic exec-

utives vs fixed priority executives. Real Pme Systems, 4(l): 37-53, March 1992.

[55] W. C. Lu, K. J. Lin, H. W. Wei, and W. K. Shih. New schedulability conditions
for real-time multiframe tasks. In 19th Euromicro Conference on Real 771me

Systems, (ECRTS07), Pisa, Italy, July 4-6 2007.
w-

[56] A. K. Mok and D. Chen. A multiframe model for real time tasks. Inproceedings

199

List of References

of IEEE International Real Time System Symposium, pages 22-29, December

1996.

[57] A. K. Mok and D. Chen. A multiframe model for real-time tasks. IEEE Trans.

on Software Engineering, 23(10): 635-645, Oct 1997.

[58] K. Paul and JR. Harter. Response Times in Level-Structured Systems. ACM

Transactions on Computer Systems, 5 (3), 19 87.

[59] J. L. Peterson and A. Silberschatz. OperatingSystem Concepts. Addison-Wesley

Publishing Company, United States of america, 1983.

[60] M. Pilling, A. Bums, and K. Raymond. Formal specification and proofs of in-

hcritance protocols for real-time scheduling. Software Engineering Journal,

5(5): 263-279,1990.

[6 1]R. Rajkumar. Real time synchronisation protocols for shared memory multupro-

cessors. In 10th IEEE Int. conf on Distributed Computing Systems, 28 May-

Uune 1990.

[62] P. Richard and J. Goossens. Approximate feasibility analysis and response-time
bounds of static-priority tasks with release jitters. In Real-771me and Network

Systems (RTWS07), pages 105-112, March 2007.

[63] D. L. Ripps. An Implementation Guide To Real-777me Programming. Prenticc

Hall, Inc, United States of America, 1990.

[64] A A. Rivas and M. G. Harbour. Marte os: An ada kernel for real-time embedded

applications. In International Conference on Reliable Software Technologies,

Ada-Europe, May 2001.

[65] 0. Serlin. Scheduling of time critical processes. In AMPS Spring Computing

Conference, 1972.

[66] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocol: An

Approach to Real Time Synchronization. IEEE Transactions on Computers,

39(9): 1175-1185, Sept 1990.

[67] A. Silberschatz, P. Galvin, and G-Gagne. Applied Operating System Concepts.

John Wiley & Sons, Inc, New York, United States of America, 2000.

200

List of Referenccs

[68] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. John

Wiley & Sons, Inc, United States of America, 2002.

[69] H. Takada and K. Sakamura. Schedulability of gcncmlized multiframe task scts

under static priority assignment. In Real 7-Ime Computing Syvtems andApplica-
tions, pages 80-86,1997.

[70] K. W. Tindell. Fixed Priority Scheduling Of Hard Real-771me Systems. PhD

thesis, University of York, 1993.

[71] K. W. Tindell, A. Bums, and A. J. Wellings. An extendible approach for analyz-
ing fixed priority hard real-time tasks. Real-777me Systems, 6: 133-151,1994.

[72] K. W. Tindell and J. Clark. Holistic schedulability analysis for distributed hard

real-time systems. Microprocessing and Microprogramming, 40: 117-134,1994.

[73] K. Traore, E. Grolleau, A. Rahni, and M. Richard. Response-timc analysis

of tasks with offsets. In 11th IEEE International Conference on Emerging

Technologies and Factory Automation, (ETFA 2006), Prague, Czech Republic,

September 2006.

[74] C. Y. Yang, J. J. Chen, and T. W. Kuo. Efficient on-line scheduling for cnctb'Y

minimization of multifmme real-time tasks on a dynamic voltage scaling proccs-

sor. In IEEE Real Time Systems Symposium, number 29, pages 17-20, December

2008. Work In Progress.

[751 A. Zuhily. Exact response time analysis for multiframc tasks. Technical Report

YCS 410, Univcrsity ofYork, 2007.

[76] A. Zuhily and A. Bums. Optimal (D-J)-monotonic priority assignmcnt. Infor-

mation Processing Letters, 103(6): 247-250, April 2007.

[771 A. Zuhily and A. Bums. Exact response time scheduling analysis of accumula-
tivcly monotonic multiframe real time tasks. In 5th International Colloquium on
Theoretical Aspects of Computing (ICTAQ, pagcs 410-424,2008.

[78] A. Zuhily and A. Bums. Exact scheduling analysis of accumulativcly monotonic
multiframc tasks subjected to rclcascjittcr and arbitrary deadlines. In 131h IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA), * pages 600-608,2008.

201

[79] A. Zuhily and A. Bums. Exact scheduling analysis of non-accummulativcly
monotonic multiframe tasks. In 161h International Conference on Real-Time

and Network Systems (RTNS), pages 67-76,2008.

202

Appendix

Theorem 16 The priority assignment scheme (D - J) -monotonic is an optimalpri-

ority scheme in the sense that ifany task set, Q, is schedulable by priority scheme, IV,

it is also schedulable by (D -J) - monotonicpriority ordering.

Proof

To prove the optimality of (D - J) - monotonic priority assignment, the priorities of

Q (as assigned by W) will be transformed until the ordering is (D - J) - monotonic

while preserving schcdulability. Let Tj and Tj be two tasks with successive priorities

in Q such that under W: P1 > Pj and D1 - Ji > Dj - Jj. If it is not possible to find tasks

Tj and Tj with this property then the tasks are already in (D - J) order. Define scheme

W' to be identical to W except that tasks T, and Tj arc swapped. The schcdulability of

all tasks whose priorities are higher than Tj or whose priorities are lower than Tj arc

not affected by swapping the two tasks Tj and Tj. Moreover, the schcdulability of task

, rj will also not be affected by the swap since it will have higher priority than before

and therefore it will suffer less interference. It remains to prove that task T, is still

schedulable under W'.

Let RjW be the response time of task Tj under scheme IV, and R, ýv' be the response
time of task Tj under scheme W'. It can be seen that Rjw < Dj - Jj because Tj is

schedulable and in the worst case may not be released until time t= Jj. In addition, it

is given that Dj -Jj < DI -JI < Di :5 Ti. Therefore, task T, only interferes once during

the execution of rj (under TV). So, the worst case response time of task Tj can be split,

under scheme TV into

Rjw = Cj + Ci + 1:
RW+Jk

.,
r

-7ý-lCk,
kES k

203

where S is the set of tasks whose priorities are higher than 'ri under IV (which is equal

to the set of higher priority than Tj under W'). Equation (9.1) can be rewritten as

Rjw + Jk
Rjw-Cj=Ci+y, [J lCk- (9.2)

kES Tk

The response time equation of the task Tj under scheme JV' is given by

Rw'=
R, +A

I
Cl+ Y, r-ICk-

kEhp(l)
Tk

Hence,
wl +jj Rw'

Ri lCk- (9.3) =ci+r- I Ci +Ir
Ti kES Tk

Assuming Lemma 1 (given below), RjW is a solution of this equation for RjW'; which

means that RTI :5 RjW j-

On the other hand, we have that Rjýr < Dj - Jj as well as Dj - Jj <A- J1.
Therefore,

Tr Ri < (DI - JI)

which implies that task Tj is schcdulable after swapping tasks T, and Tj.

Now, priority scheme TV' can be transformed to IV" by choosing two more tasks

that are in the wrong order for (D - J) -monotonic, and swapping them. Each such

swap preserves schedulability. Eventually, there will be no more tasks to swap and the

priority ordering will be exactly (D -J) - monotonic. Hence, (D -J) - monotonic is

optimal. 0

Lemma 7 The response time of the task Tj under scheme IV, Rj; r, is a solution of
Equation (9.3).

Proof

The idea of the proof is to substitute RjW for Rjw' into the right side of Equation (9.3)

then we get its left side. Therefore, we say that RW satisfies Equation (9.3):
RW+jj RW+J ý"t C, + FY -T"tlc

J'JIcj+7-kEsr::
Ljýk-

k

204

RW+J-
=RT-Cj+r

J
i Tj

=RW-C-+C- j
Rjw

This is because of Equation (9.2) and because task-Tj is schedulable under scheme TV,

rRW+Jj
j so RjW < Dj - Jj; which means Rjw + Jj < Dj < Tj. So, aý-'j 1=1.0

205

