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Abstract

Scheduling analysis of real time systems has been studied by most re-

searchers assuming the tasks of the systems have constant worst case

execution time bounds during their cycle of execution. However, this 1s
not the case in a multiframe task where the execution time could be dif-

ferent from one instance to another, as in multimedia applications like
MPEG.

Some researchers have introduced sufficient scheduling analyses for

a restricted model of multiframe tasks. The contributions in this thesis
present scheduling analysis for a less strict model of multiframe tasks.
The analysis is presented in two steps. In the first step, exact scheduling
analysis 1s presented by response time analysis; where the worst case
response time of multiframe tasks is formulated. This formulation is
then extended to multiframe tasks that are subjected to blocking, release
jitter and arbitrary deadlines. Another extension of the formulation is

given to cover frame specific deadlines; where a multiframe task has

more than one deadline relative to its frames.

With large systems of multiframe tasks, the exact response time anal-
ysis becomes computationally intractable. So, in the second step we
present and compare some sufficient approaches that analyze the schedu-
lability of large systems with multiframe tasks. In this step we first
study the safety of each approach then we compare them to find out the

schedulability performance each of them provides.
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1 Introduction

Timing requirements are the basic aspects of real-time systems; where a real-time sys-
tem, RTS, is a system that is required to react to stimuli from the environment within

time intervals dictated by the environment [25]. For example, an application running
on an operating system, like real-time Unix, can be considered as a real-time system 1f
it is expected to respond to a command within a defined time interval. Process control

is another example of a real-time system where the computer controls the operations

of the sensors and actuators to ensure that the correct operations are performed at the
appropriate times. RTSs are divided, according to timing requirements, into: hard
and soft real-time systems. A hard real-time system 1s a system whose responses must
occur within specified deadlines. A soft real-time system is a system that functions

correctly if the deadline is occasionally missed [25, 53]. Contributions in this thesis

are concerned with hard real-time systems.

From an analysis point of view, a RTS is usually represented by a set of tasks; and
each task consists of a number of jobs that are executed in a cyclic way. Execution
of the tasks is controlled by the operating system using some scheduling algorithms!;
where the operating system controls and coordinates the use of the hardware among
the various application programs for the user tasks [59, 68]. In other words, applica-
tion software is usually designed as a number of separate tasks that are scheduled by

the operating system [67, 63] via the scheduler; which is the part of the kernel that
determines the next runnable task [46].

The real-time tasks are divided, according to the arrival times of the tasks, into
periodic tasks and sporadic tasks. The arrival times of periodic tasks are fixed so that

each task arrives into the system every fixed interval of time, called a period. On the

A scheduling algorithm is a set of rules that determine the executing task at a particular moment

[52]).
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1 Introduction

other hand, the arrival times of a sporadic task are not fixed, instead, the task has a

minimum interval of time to arrive in the system. Within the contributions of this

thesis, we primarily consider periodic tasks.

A basic ordinary periodic real-time task is usually characterised by three parame-
ters. The first parameter is the execution time of the task to charactenise the time that
this task takes during the execution of its jobs. The second one is the period of the task
to characterise the arrival times of this task. The third one is the deadline of the task

to characterise the time in which this task has to complete the execution of 1ts jobs.

Most research considers the execution time of the real-time task as a constant value

for all invocations of its jobs. However, for some real-world applications the execution

times of the task are not constant for all its jobs. We call the task whose execution time

could vary from one invocation to the next a multiframe task.

1.1 Multiframe Tasks

The fundamental principle in the real-time multiframe, MF, task is that its worst-case
execution time is different from one invocation to another, for instance, a task that

executes with the worst-case execution times of 10ms and Sms is said to have two
different frames. An example, found in industrial applications [26], is a periodic task
that does a small amount of data collection in each period consuming a small execution

time, but then summarises and stores this data every n cycles using a much more

expensive algorithm that consumes a larger execution time.

Scheduling research into MF tasks started when Mok and Chen [56, 57] introduced
this MF concept in 1996 as a generalisation of the classic Liu and Layland model [52].
They proposed a utilisation based schedulability test, for fixed priority scheduling, un-
der Rate Monotonic, RM, [52] priority assignment?. They gave a utilisation bound, as-
suming the execution time sequence of each MF task has a particular restrictive prop-
erty called Accumulatively Monotonic, AM. Subsequent papers have improved this
utilisation bound but their tests remain inexact (sufficient but not necessary). These

tests and the formal definition of the AM restriction will be given in Chapter 2.

°In RM priority assignment, the greater period the task has, the lower priority it is assigned.

16



1.2 Fixed Priority Scheduling

An example of scheduling MF tasks is found within the MPEG coding standard
where there are three types of video invocations (usually represented by the letters
I, P and-B). The I invocation usually takes much more decoding than the others, but
may occur only every 10 invocations. The assumption that all invocations are I 1n-
vocation leads to poor utilisation and the system could be theoretically unschedulable
whilst practically it is schedulable. In addition, recently some researchers show how
to efficiently utilise MF tasks using Dynamic Voltage Scaling, DVS, techniques for
energy-eflicient scheduling [74]. Adopting MF tasks in the system reduces the overall

energy consumption of the system without missing its deadlines. Also, MF tasks may

implement state machines, as in some avionics and automotive applications, with a

well defined cycle of behaviour and worst case execution time bounds for each state.

1.2 Fixed Priority Scheduling

As scheduling 1s a fundamental function of an operating system to determine the Or-

der in which tasks execute, many researches are concerned with this area to either

construct schedulable systems or to analyze the schedulability of proposed systems.

The most popular scheduling policies are known as: Fixed Priority Scheduling (FPS),
Earliest Deadline First (EDF), and Value Based Scheduling (VBS). This thesis is con-
cerned with scheduling analysis of MF tasks for a fixed priority scheme.

Fixed priority scheduling, FPS, is a scheme where a priority is associated with each
task in the system and the CPU is allocated to the highest priority runnable task. In
FPS scheme all invocations of each task are assigned the same priority [53] so the

priority of each task is fixed relative to other tasks in the system.

Fixed priority scheduling is recommended for many years as it is able to predict
the ability to meet application response requirements [54]. From this recommenda-
tion, different operating systems support this fixed priority scheduling. For exam-

ple, OSCAN, which is a preemptive® real-time multitasking operating system?, offers

3In the preemptive systems, if a higher priority task is released during the execution of a lower priority

task, there is an immediate switch to the higher priority task and the lower priority task has to wait
until the higher priority task has finished its execution.

*In the preemptive multitasking operating system, tasks are preempted by the scheduler, and this
preemption is accomplished with the aid of a timer interrupt [35].

17



1 Introduction

priority-controlled task management [1]. Many commercial operating systems sup-
port FPS, for example, VxWorks, which is a real-time operating system, has a priority

based preemptive scheduler[11]. PSOS, which is an object oriented operating system,

schedules tasks using priority based criteria [15].

Likewise, there are academic operating systems supporting FPS, for example, server
scheduling in the real-time operating system SHaRK can be based on fixed priority
servers [2]. MaRTE [64] is another operating system that supports FPS. LynxOS

[3], which i1s POSIX compatible, multitasking operating system, uses priority based
scheduling [15].

1.3 Thesis Goal

The most popular paradigms for analysing the schedulability of real time systems are
utilisation analysis and response time analysis. Having exact attributes of a system, the

utilisation based analysis provides a sufficient but not necessary scheduling test whilst

response time analysis provides an exact scheduling test in many situations. This

thesis is concerned with the exact scheduling analysis of hard real-time systems with

MF tasks supported by preemptive FPS, where a hard real-time system is considered
as schedulable if all its MF tasks meet their relative deadlines.

Thesis Hypothesis

“The schedulability of real-time systems with multiframe tasks can be exactly analysed
using formulated response time analysis.that is extensible to a wide variety of situa-

tions. Where response time analysis is intractable, appropriate non-optimal heuristics

exist and allow all systems to be analysed.”

As the response time scheduling test is an exact test and the worst case response
time analysis of MF tasks has not been fully studied yet, the objective of the thesis

is to provide worst case response time analysis of MF tasks, so the schedulability of
systems with MF tasks can be decided. However, exact response time analysis of large

- systems with un-restricted MF tasks is intractable, so the other objective of the thesis

18



1.3 Thesis Goal

is to provide some approaches to determine the schedulability of large systems with

general MF tasks. The objectives of the thesis can be achieved in three steps as in the

following:

1. In the first step, we present exact worst case response time analysis for systems
with AM multiframe tasks. Analysis in this step starts from introducing a basic
response time analysis and ends up with the response time analysis of AM mul-

tiframe tasks with blocking, release jitter, and arbitrary deadlines (i.e. including
deadline greater than period).

2. Then in the second step, we relax the AM restriction and extend the response
time analysis to cover non-AM multiframe tasks. In this step, a new concept
called critical frame is used. In general, testing the schedulability of a set of
MF tasks requires all possible phases of the tasks to be examined, which leads
to an exhaustive enumeration problem (i.e. an intractable problem). However,
for a particular application, not all invocations may need to be examined. We
show how the critical frames, that can give rise to the worst-case response times
of lower prionty tasks, can be 1dentified and their usage reduces the processing
required for the response time analysis. Analysis in this step is developed in
two further directions, the first direction is to be applicable to MF tasks with
blocking, release jitter and arbitrary deadline; whilst the second direction is

to cope with the scenario of having different deadlines per MF task where the
deadline is relative to the frame of the MF task.

3. Having an intractable scheduling problem for large systems with non-AM mul-
tiframe tasks, some tractable but sufficient approaches are introduced in this
step. Three of these tests depend on transforming all multiframe tasks in the
system into AM tasks, which have only one critical frame, and then applying
the exact response time formula on the transformed systems. The fourth ap-
proach depends on off-line calculation of the maximum interference from all
higher priority MF tasks within the deadline of the analysed task. These differ-

ent approaches are then compared.
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1 Introduction

1.4 Thesis Structure

This thesis is divided into nine chapters starting from this introduction and ending
up with the conclusions of the contributions, whilst chapters in between are arranged
according to the dependency and generalisation level. Chapter 2 defines the system
model that is used throughout the thesis and presents a historical study of related

research that has been done in fixed priority scheduling of multiframe tasks.

In Chapter 3, the exact scheduling analysis of a specific restricted model (1.e. Accu-
mulatively Monotonic (AM) model), is given. The goals of this chapter is to present

the basic response time formula of the AM multiframe tasks and show the performance
of this exact scheduling analysis by a comparison with the most recent published, but
non-optimal, schedulability analysis. Exact analysis in this chapter considers the situ-
ation where tasks share resources, which causes blocking to the MF tasks. Chapter 4

extends the analysis of the AM model, that is given in Chapter 3, to include blocking,
release jitter and to cope with the arbitrary deadline scenario.

Chapter 5 relaxes the restriction of AM and presents the basic exact response time
analysis of non-AM multiframe tasks, where the number of frames that have to be

considered in such analysis 1s reduced using the critical frame concept. An evaluation

of this analysis is given in this chapter by investigating the number of critical frames of
randomly generated multiframe tasks. Further, this analysis is extended in Chapter 6 to

again include blocking, release jitter and to cope with the arbitrary deadline scenario.

Chapter 7 presents an exact response time analysis of MF tasks, where each frame

of a MF task has its own deadline which could be different from other deadlines of
the frames of the same MF task. A new concept called covering frames is used in the
analysis to reduce the number of frames that have to be analysed per MF task. An

optimal priority assignment is also considered in this chapter.

As the schedulability analysis becomes intractable for large systems, Chapter 8 in-
troduces four approaches for sufficient schedulability tests of systems with non-AM

multiframe tasks. A comparison between those four approaches is presented in this

chapter to show the percentage of their scheduling performance rates.

The final evaluations and conclusions of the contributions in this thesis are given in

20



1.4 Thesis Structure

Chapter 9. Further directions for future work are also presented in this chapter.

21



2 System Model and Related Work

This chapter defines the model of the basic system that is analysed in this thesis and
provides a review for all related contributions to this thesis. The following section

introduces the basic system model whilst Sections 2.2 and 2.3 present a historical

review of the related work.

2.1 System Model

The basic system model that is considered in this thesis is a system that consists of
N multiframe tasks that execute on a uniprocessor using the preemptive fixed priority
scheduling policy. Each MF task 7; consists, in its tum, of a sequence of n; frames
that are distinguished by their execution times; where a MF task, 7;, has n; worst
case execution times, Cf‘;k = 0..n; — 1. All frames in the same MF task have the
same priority which is represented by the prionity of the MF task and these priorities

are assigned according to a priority assignment such as Rate Monotonic (RM) [52,
45] which is an optimal priority assignment for certain systems with MF tasks [57].

Priorities of the MF tasks in the system are ordered consecutively with 7} having the

highest priority in the system and Ty the lowest priority (i.e. 1 in 7 refers to the
highest priority and N in Ty refers to the lowest priority).

MF tasks in the system are permitted to share resources, so there could be a situation
where the execution of a MF task is stopped by a lower priority task and we say
that the MF task is blocked by a lower priority task. However, due to using some
priority ceiling protocols, a MF task has an opportunity to be blocked at most once
per invocation during its execution. So, we assume in the model that each MF task 1;

i1s considered to have a maximum blocking time equal to B;. Further explanation for
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2 System Model and Related Work

blocking and priority protocols is given in Section 2.3.2. All system overheads such
as context switch are ignored and assumed to be zero as we assume that there 1s an

immediate switch between the MF tasks in the system.

Without loss of generality, we assume that the sequence of the execution time values
1s always within shortest form; where the shortest form of a sequence 1s the shortest
sub-sequence when repeated a number of times generates the original sequence. This
1s because from the analysis point of view, the behaviour of the execution of a MF
task whose execution times consist of repetitive subsequences is the same as the be-
haviour of the original sequence. For example, the execution behaviour of the MF task
whose execution times are presented by the sequence (8, 1,4,3,8,1,4,3) is the same
as the execution behaviour of the subsequence (8,1,4,3). The extracted subsequence,

(8,1,4,3), is referred to as the shortest form of the sequence (8,1,4,3,8,1,4,3).

Frames of the same MF task, 7;, arrive in the system with minimum inter ar-
rival time, 7;, and as soon as they have arrived, they are released having a relative
deadline D;. T; is presented as constant for all frames of a MF task. So, a MF
task 7; 1s characterised by a triple < C;, T;, D; >, where C; is a vector of n; values,
C; = (C?,C},..,C" 1), whilst T; and D; are vectors with one value. As an initial re-
striction on the model, D; 1s considered to be less than or equal to 7; so no execution

(1.e. interference) from the analysed task itself is considered when analysing its worst

case response time.

Later on in Chapters 4, 6 and 7, the basic system model is extended from three

ﬁoints of view. Firstly, in Sections 4.1 and 6.1 the MF task 1; is considered to have
release jitter, J;, so the minimum time between two successive releases of a MF task is
less than the fixed time interval 7;. Secondly, in Sections 4.2 and 6.2 7; is considered to
have D; > T; so 7; could have interference from previous frames during the execution
of 7; itself. Thirdly, in Chapter 7 each frame of a MF task has a deadline that could be

“different from other frames in the same MF task, so D; is a vector of n; values that are

relative to the frames of the MF task, 7; but no blocking or release jitter are considered
in this chapter.

As this thesis is about the scheduling analysis of MF tasks from the worst case

response time point of view, a definition of the symbol R; is given in the following. R;
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of the MF task 7; is defined as the longest time from when any frame of 7; is released
until it finishes its execution, so R; has only one value per MF task 7;. However, 1n
Chapter 7 the MF task 7; has n; deadlines relative to each frame of 7;, so R; in this case

1s a vector of n; values relative to the deadlines of 7;.

To illustrate the problem of analysing the response time of MF tasks, Table 2.1

represents a simple example system with 2 tasks 7) and 7, where 7) is a MF task with

- 4 frames represented by the execution time values 8, 1, 4 and 3, and 7, has just one
frame.

Table 2.1: Example System

0 (81,43] 8 [ 9 [ 13|16
1 (1438 1 [ 5 8 [ 16

Table 2.2: Possible Interference from 7y

Finding the worst case response time R, of 7, whatever its execution time is, re-
quires finding the maximum amount of possible interference from 7). Table 2.2 shows
values of interference that 7; generates from different initial frames in the execution
sequence (exe. seq. and inv. respectively stand for execution time sequence and
number of invocations). It can be seen from Table 2.2 that the maximum amount of
interference 7] generates, in the case of one invocation (i.e. 1 inv.), is when it is firstly
released having an execution time of 8. While the maximum amount of interference,
In the case of two invocations, is when it is firstly released having an execution time
of 3 followed by 8. The maximum amount of interference, in the case of three in-

vocations, is when 7 is firstly released having an execution time of 4 followed by 3
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followed by 8. While, in the case of four invocations, the amount of interference from

T; remains the same (i.e. 16 in this example) whatever the release frame is.

Frames that could generate the maximum amount of interference are called critical
frames; which are, in this example, frame whose execution times are 8, 4, and 3, but
not 1 since any of 8, 4, 3 can be considered as a critical frame on behalf of 1 (full
details of the reasons are given in Chapter 5). A frame of a MF task 7; is considered
as critical when it has two properties; firstly, it can generate the maximum amount
of interference within lower priority task for at least one number of 7;’s invocations;

and secondly there are no other frames in 7; that generates greater or equal amount of
interference for all possible number of 7;’s invocations.

So, to calculate the amount of interference a frame release generates within the

response time of a lower priority task, we have to know the relative number of invo-
cations (i.e. interference) the MF task is experiencing within this response time. For
this reason we define a cumulative function of the x'* frame release’ of a MF task 7;

to represent the amount of interference this frame generates. Definition 1 illustrates

this cumulative function.

Definition 1 . Given a MF task Tj with n; execution times (C?,Cl,..,CJ(."f_l)). The
cumulative function (§;) of the x' frame release for a given number of 7;’s invo-

cations, k, is the amount of interference that the MF task generates starting from that

frame and proceeding for that number of invocations and is given by Equation (2.1)

Er)y=y, c ™ 2.1)

wherex=0,..,n;— 1, and k= 1,2,.., for example, the value of £0(2) for the MF task
73 in Table 2.1 is 9. In fact, for an ordinary single frame task the cumulative function

1s well defined as &;(k) = kC; because of the constancy of C; for all frames of the
multiframe task.

From the criticality point of view, a frame in a MF task is considered critical when

it can give rise to the maximum interference within lower priority tasks and so it can

¥ frame release is the frame that is released with the X execution time of the MF task.
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lead to the worst case response time of a lower priority task. On the other hand, when
the cumulative function of a frame of a MF task is always greater than the cumulative

function of all other frames of the same MF task for at least one possible number of
interference, this frame definitely generates the maximum interference within lower
priority tasks for that number of interference. The following definition formally intro-

duces a condition on a frame of a MF task to be a definitely critical frame.

Definition 2 . The x* frame of a MF task Tj, whose execution time sequence is
in its shortest form, is definitely critical if 3k=1,2,..,n;—1,Vy #x:

5j (k) > &j (k) . (22)

For example, the first frame (i.e. the frame whose location is 0) of the MF task 7; in
Table 2.1 1s a critical frame because 3 k= 1,Vy #£ 0;£9(1) > £7(1).

We call the frame whose execution time is maximum the Peak Frame.

Definition 3 A Peak frame of a MF task is one of the frames, in the MF task, whose

execution time is the maximum of the execution times of this MF task.

For example, the MF task 7, whose execution time sequence is (8,4,8,3), has two

peak frames with locations 0 and 2, where their execution times are both 8.

Note from Definition 2 that having the execution time sequence in its shortest form
means that if we have more than one peak frame then at least one of the peak frames
must be a critical frame; otherwise the execution time sequence is not in its shortest

form. For example, in the above MF task T whose two peak frames with locations 0
and 2, the first peak is critical but the other one is not.

Mok and Chen [56] force one of the peak frames of a MF task to be the only critical
frame of this MF task by introducing the accumulatively monotonic, AM, condition
on the execution time sequence. The AM condition depends on the peak frame being
the only frame that generates the maximum amount of interference for all possible
number of interference (i.e. invocations). Informally, all frames of the AM multiframe

task are dominated by one of its peak frames. The AM restriction is mathematically
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formalised by an equation using the mod function to reach the execution time values

from its sequence. Equation (2.3) represents this AM restriction

m+-j i+J
2 C(k mod n) > ZC(I mod n); (23)
k=m [=i |

Vi,j=0,1,2,..,n—1;

where C™ is one of the peak values in a list of execution times (C°,C!,..,C*"!) that
satisfies Equation (2.3). For example, for the AM multiframe task whose execution

time sequence is C = (8,4,8,3), m = 0 and CY = 8, also the frame whose execution

time is C is the only critical frame of this AM multiframe task.

2.2 Related Work to Scheduling MF Tasks within
Fixed Priority Scheduling Scheme

The most popular scheduling tests for real-time systems within fixed priority policy
are the utilisation test and the response time test. In the utilisation test, the system can
be scheduled if the overall processor utilisation of the system is less than a pre-defined
upper bound. In the response time test, the system can be scheduled if all its tasks meet

their relative deadlines, and the task meets its deadline if its worst case response time

is less than or equal to its relative deadline.

As this thests 1s concerned with the worst case response time scheduling analysis
of multiframe tasks within fixed priority policy, previous contributions within fixed
priority scheduling policy must be covered within two fields. The first field is the
contributions of scheduling MF tasks, which covers the contributions within the util-

1sation domain and other scheduling contributions related to MF tasks. The second

field is response time analysis.

The MF model is a generalisation of Liu and Layland’s model where in Liu and
Layland’s model the execution time of the task is constant for all its jobs, so the first
~ contribution to start the review with is Liu and Layland’s contribution. Liu and Lay-

land [52] were the first who employed FPS on the uni processor system, the following
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section explains Liu and Layland model.

2.2.1 Liu and Layland Contributions

Liu and Layland introduced a simple system model with the following assumptions:

1. tasks of the system are periodic, independent, fuily preemptive and with no
overheads;

2. no sharing of resources is permitted, so the runnable task is always the highest
priority task;

3. all tasks are released at the beginning of their relative periods;

4. deadline of each task is equal to its period;

5. no task may suspend itself.

Worst case execution time of each task is considered as constant for all its jobs, so they
do not vary from one invocation to another of the task. Tasks in this model are assigned
priorities according to what is called Rate Monotonic, RM. In RM priority assignment,
priorities are assigned to the tasks according to their periods; where the shorter period
the task has, the higher prionty it obtains. The executing task at a specific moment
is the runnable task whose priority is the highest one. Liu and Layland [52] and

Labetoulle [45] showed, for a single processor, that if a task set can be scheduled with

any priority assignment it is scheduled with the RM assignment. In this sense RM 1s
optimal.

Liu and Layland [52] and Serlin[65], with the RM algorithm for FPS, introduced

a sufficient but not necessary utilisation scheduling test. The test was based upon
the upper bound of the processor utilisation factor; where they proved that a task set

1s schedulable if its processor utilisation is less than or equal to a pre-defined upper
bound. This test is represented by Equation (2.4).

s S <onph-), e
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Where C; stands for the execution time of the #” task, 7; represents the period of the
i'" task, and N is the number of tasks in the system. When the number of tasks N,
becomes very large, the upper bound of the processor utilisation factor simplifies to
0.693. This utilisation scheduling test is inexact as it is sufficient but not necessary,
hence it is pessimistic. For example assume we have a simple system with two tasks,
each task has a worst case execution time equals half of its relative period (1.e. €1 = %1
and G5 = 1}) and one of the periods is half of the other period (1.e. T = 2T;) then the
task set, depending on Liu and Layland’s test (i.e. Equation (2.4) ), is unschedulable.

However, the set is in practice schedulable as when the two tasks are released at the

same time (which is the worst case situation) the first task executes for one half of its
period and the second task executes for the other half of its period and both of them are
schedulable. Lehoczky et al. [48] estimated the average maximum utilisation for rate

monotonic fixed priority scheduling and they showed by simulation that this average
is around 88% for uniformly distributed tasks. |

Within the context of the preemptive system, the critical instance of a task is defined
as the instant when this task is preempted the most so the processor is occupied the
most with the execution of this task. Liu and Layland proved in their model that the
critical instance, for any task, occurs, when the task is released simultanecously with

all higher priority tasks in the system. So, the critical instance of the system 1s when

all tasks in the system are simultaneously released at the same time.

However, this model restricts the worst case execution time for each task to be con-
stant for all its jobs. In 1996 Mok and Chen [5 6;57] relaxed this constancy restriction
to introduce the multiframe model; and proposed a utilisation based schedulability
test, for fixed priority scheduling, under RM priority assignment assuming the AM

restriction for all multiframe tasks in the system. The following section covers Mok
and Chen’s contribution.

2.2.2 Mok and Chen Contribution

In Mok and Chen’s model [56, 57], execution time values of each task in the system
are not presented as a constant value any more. Instead the execution time values

of each task are presented as a vector and the values of this vector satisfy the AM
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restriction that is given by Equation (2.3). In the AM multiframe task, one of the peak
frames always generates the maximum amount of interference within the execution
of lower priority tasks, for any number of its invocations (i.e. interference). So, an
AM task has only one critical frame which is the peak frame whose execution time
satisfies Equation (2.3). For example, the critical frame of the multiframe task whose
execution time sequence is C = (8,4, 8,3), is the first frame whose execution time 1s
8 (i.e. the 8 that is followed by 4 but not the 8 that is followed by 3).

In Mok and Chen’s model, all jobs of a MF task are assigned the same prionty
which is called the priority of the MF task. Mok and Chen proved that the optimal
priority assignment of a system with AM multiframe tasks is RM, where the lower
period the MF task has the higher priority it is assigned. Also, they considered the

critical instance of an AM multiframe task as the instant from when its critical frame is

released simultaneously with the critical frames of all higher priority AM multiframe

tasks. So, this AM multiframe task is schedulable if it is schedulable at its critical
instance.

The main contribution of Mok and Chen was in the utilisation domain. They
proved an upper bound for the peak utilisation of a system with AM multiframe

tasks. They proved that the system is schedulable if its peak utilisation factor which
n;-—l Cj
is given by U™ = 2?_[__ _';T,u is less than or equal to an upper bound given by

]
r.N .((@) ¥ —1). Equation (2.5) represents the schedulability test of a system with N
AM multiframe tasks.

N n,-l Cj ,
R PRty

i=1

) —1); (2.5)

where r is the minimum ratio, over all AM multiframe tasks in the system, of the
execution times of the critical frame and the frame that follows the critical. r 1s given
by r = minfil {ri}; ri, in its turn, is givenbyri=11fN=1orr;= g—?} if N > 1. Note
that Equation (2.5) returns to Liu and Layland’s test when the execution times of each

MF task are constant. This is because, for Liu and Layland’s model, r =1 as C? = C,.-1
and max} ' {C/} =C;

Although Mok and Chen’s utilisation test is an improvement test of Liu and Lay-
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land, both tests are inexact (i.e. sufficient but not necessary) as well as being only
applicable to RM priority assignment. However, Mok’s utilisation bound has been
improved by subsequent papers but these tests remain inexact. The following section

covers subsequent contributions for scheduling MF tasks including the contributions

that improved Mok and Chen’s utilisation bound.

2.2.3 Subsequent Contributions for Scheduling MF Tasks

As Mok and Chen’s test was the first scheduling test for MF tasks, Han [37] presented
another scheduling test and compared its results with the results of Mok and Chen’s
test. Han’s scheduling test [37] was also under RM priority assignment and was better

than Mok’s test in the sense that multiframe task sets with peak utilisation (1.e. the

utilisation of the peak frame) larger than Mok’s bound were not feasible using Mok

and Chen’s utilisation bound but can be found feasible by Han’s test. The test was not
based on utilisation test, it was based upon transforming the AM system to a system
with harmonic periods, using a proposed algorithm for the transformation process,
and then if the transformed system 1s schedulable, the original system is schedulable.

Although Han showed by evaluation that his test is always better than Mok and Chen’s

test, Han’s model restricts periodic AM multiframe tasks in the system while Mok’s
model is applied to sporadic AM multiframe tasks as well as periodic. However, both

tests are inexact and only applicable to RM priority assignment as well as assume a

non-flexible model as the model has to satisfy all restrictions of Liu and Layland’s that
are given in Section 2.2.1 apart from having non constant execution times and also all

execution time sequences have to be AM.

Another scheduling test was given by Kuo et al. [44] who improved Mok’s utilisa-

tion bound; where they gave another improved utilisation bound for a schedulability

test of systems with AM multiframe tasks. The main 1dea of the test was to merge the
tasks whose periods are harmonic (i.e. one of the period is a multiple of the others) to
reduce the number of tasks that has to be considered in the schedulability test and then
apply Mok’s bound to the merged tasks. The combined task, under Kuo’s test, will
have a period of 7" and a sequence of execution times C/ with the size #; where T is the

maximum period of the merging tasks, 7 is the least common multiple of the number
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of execution times of the merged tasks, and C/ is given by the following formula

)+k) mod n;
Z( 2 ¢ );

i=1 k=0

where j =0,1,..,n—1, N is the relative number of tasks that are under merging proce-
dure, n; and T; are respectively the relative number of frames and the relative period of

- the #* AM multiframe task. The example below gives more explanation about these
calculations.

In 2007, Lu et al. [55] improved Kuo’s utilisation test and presented new schedul-

ing conditions for AM multiframe tasks within the utilisation domain and assuming
RM prionty assignment. They considered the ratio of the periods in their test. The
improvement was that they used Kuo’s method to merge the tasks and then they ap-
plied their test to the merged tasks. The schedulability status, under their approach,
depends on the total peak utilisation, U, of the AM multiframe tasks being less than a
defined upper bound. They called this upper bound the Conditional Bound function,
CB. Symbolically, the AM task set is schedulable if inequality (2.6) is satisfied.

U < CB: (2.6)

where the total peak utilisation, U, is the summation of all peak utilisations of the

multiframe tasks in the system; and it is given by

U= Z max{ }

0<_]<n,

Whilst the CB function is defined by Equation (2.7); for number of tasks, N > 1,

and with regard to two parameters r and z.

CB(r,z) = z+r(z—1)+r(N 1)((%)3’_ ~1) 2.7)

where #; and T; are respectively the number of frames and the period of the i MF
task. r is given as |

r=min, ;4 17}, where r; is defined depending on 7; as
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C}
cl ’
Z 1S given as

ri= = forn;>1,and r; =1, for n; = 1.

Z = max {m1n1<l< o { }, 7=}, where V; is called a virtual period and is given by

Section 3.4 in Chapter 3 compares between the response time scheduling test of AM
multiframe tasks and Lu’s scheduling test as Lu’s analysis 1s the most recent published
scheduling analysis for MF tasks within FPS. So, we fully illustrate Lu’s test by the
following detailed example to give more explanation of the test.

Example

Table 2.3 represents an example system that consists of five tasks with their attributes.

able 2.4: Merged System Using
Table 2.3: Example [1lustrates Kuo’s Method

Lu’s Analysis- Original
System’s Afttributes

Using Lu’s approach, 7, 74, and 75 are merged using Kuo’s method [44] to 7, with
a period equal to the maximum period of Tj, 74 and Ts; which is 60 in this example.

72 has number of execution times equal to the least common multiple of n;, n4 and ns;

which is 2 in this example. Values of 7;’s execution times are found by applying

(T) 1 -1
+k mod n 4 +k mod n 5 +k mod n
=() k=0 k=0

for j=0,1.

Therefore, Cg = 31 and an‘ = 27. Also, 7 and T3 are merged, using Kuo’s method,

to 77 with the number of execution time equal to 7} = 2 and execution time values
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C1 = (7,5) and a period of 18. Table 2.4 represents the attributes of the merged tasks.

Once the merged tasks are identified, the scheduling test is to check if the total peak
utilisation, U, is less than or equal to a pre defined conditional bound, CB. U, is the

summation of all peak utilisations of the multiframe tasks in the system; and it is given
by
2 c. 71 31
— hut 1 R —
U=> max {—-}= TR 0.905.

CB 1s found depending on two parameters r and z.

r 1s given as r = min,; ., & {7}, where r; is the ratio of the first two execution times

of 7; and is defined by
o 7 31
ri = Cl,SO ry = 572 = ik

Therefore, r----mm{s,g7 = 1.148.

z 1s given by z = max {mlnli: <A1 {%\{;}, 1 }» Where V; is called a virtual period and

1S given by

L%JT E: JT So, V1 = |$3]18 = 54.
Therefore z—max{ﬁo,%} 0.9.

Once r and z are identified, CB(r,z) is given by

CB(r,z) = z + r(z—1) + (A —1)((-2-1;)1‘*’11_'“1 -;-l)
= 09 4 1.148(09-1) + 1.148(2—1)((g5)* " —1)
= 0.912.

Theretore, the total peak utilisation of the system is less than the conditional bound

function (CB) of the merged tasks (1.e. U < CB) which means using Lu’s test that the
" original system that 1s given by Table 2.3 1s schedulable.

Moving on to non-AM multiframe tasks, Takada et al. [69] investigated the schedu-
lability of the general MF tasks and gave a necessary and sufficient condition for
the schedulability of the MF model, under the fixed priority scheme. They showed
that the complexity of the feasibility decision becomes at least? [[3-, n;. They also
introduced an efficient feasibility decision algorithm using a maximum interference

function. However, Takada’s estimation of the complexity of the exact analysis is pes-

21,1 n: means the product of all numbers of frames over all tasks in the system.
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simistic as we show in Chapter 5 that the complexity of the exact scheduling analysis
is [T, (n;— 1) in the worst case. Also, his test was applicable to a restricted model
where the deadline of the task should not extend beyond its period.

Baruah et al. [13] used the fixed point approach motivated by the response time

analysis to give a tractable but sufficient schedulability test for a system of general

MF tasks. They preprocessed the execution time sequences of the MF tasks taking into
account the maximum amount of interference that higher priority MF tasks provide.
Then, they apply the fixed point algorithm to estimate the worst case response time of

the peak frame of the lower priority MF task considering the maximum amount of 1n-

terference each higher priority MF task can provide. Although this analysis 1s in some

sense related to response time domain, the test is inexact as it estimates the maximum
interference before processing the response time analysis; while in our contribution
we provide an exact analysis of the response time. However, an approach called com-

plementary approach; which is equivalent to Baruah et al.’s approach is presented in
Chapter 8 in this thesis.

Baruah et al. [12] also did some work in scheduling multiframe tasks related to
Earliest Deadline First, EDF, scheduling scheme; which is an alternative scheduling

scheme. However, this thesis is concerned with FPS so this EDF approach 1s not

expanded upon here.

As can be seen from the above contributions, all schedulability analyses are inex-
act as all of them are either in the utilisation domain or only sufficient. For example,
Lu’s analysis improves previous results, but still remains inexact as well as 1t 1s de-.
pendent on the RM priority assignment. Moreover, their test is only applicable to a
system whose deadlines are identical to their relative periods. Whilst response time

analysis that is presented in this thesis gives an exact scheduling analysis for less strict

models (systems with sharing resources, release jitter and arbitrary deadlines) and is
applicable to any priority assignment.
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2.3 Contributions of Response Time Analysis

Most research within fixed priority scheduling assume RM as an optimal priority as-
signment assuming deadlines of the tasks are identical to their relative periods. How-
~ ever, if deadlines of the tasks are permitted to be less than their relative periods RM
priority assignment is not optimal any more [41] and Deadline Monotonic, DM, takes
the place [51] (the smaller relative deadline the task has the higher priority 1t 1s as-
signed). So, as most utilisation scheduling tests depend on RM priority assignment
or restrict the system to satisfy most of Liu and Layland’s assumptions, studying the
schedulability of a system from the utilisation point of view is not flexible enough to

be extendable to the systems with sharing resources, release jitter, and arbitrary dead-
lines. However, Harter [58] solved this problem by introducing the idea of analysing

the schedulability of a system using worst case response time analysis.

2.3.1 Basic Response Time Analysis

Basically, analysing the worst case response time of a task 7; within Liu and Lay-

land’s model can be achieved once three issues are identified: 7;’s critical instance,
7;’s amount of execution and the amount of execution of tasks other than 7;. Joseph
and Pandya [40] followed by Audsley et al. [9] mathematically applied response time
analysis and introduced an 1terative equation, Equatién (2.8), for finding the worst case
response time of a task 7; assuming the basic model of Liu and Layland (see Section

2.2.1 for details). They assumed Liu and Layland’s critical instance [52]; where the

worst case response time, of a task is when this task is released simultaneously with

all higher priority tasks.

R:
Ri=Ci+1i=0C;+ z l--]-,f:-le (2.8)
jehp(n) *J
hp(1;) is the set of tasks whose priorities are higher than the priority of 7;. As 7;is a

preemptive task, [; =3 icp () [%]C ;j represents the maximum amount of interference
from higher priority tasks within the execution of 7;. In other words, J; represents the

maximum amount of interference within the worst case response time of 7;, from the
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tasks whose priorities are higher than the priority of ;.

As the priorities of the tasks are assigned from 1 being the highest priority and N 1s

the lowest, Ap(7;) returns to the values 1, .., i— 1. So, Equation (2.8) is rewritten to
be as Equation (2.9)

Ri=Ci+L;=Ci+ ), [=]C;. (2.9)

To solve Equation (2.9), a recurrence relation is given as in Equation (2.10); where
/=0,1,2,...and R? = C;. The smallest non-negative solution of Equation (2.10) rep-

resents the worst case response time of 7;, R;. In other words, the worst case response
time 1s obtained when it is found that Rﬁ“ = R{ = R; (for the smallest value of /).

However, 1n the case that Rﬁ'“ becomes greater than the deadline of 7;, then 7; 1s not

guaranteed to meet its deadline, so we say that the task is unschedulable.

’ i1 pl
R =Ci+ Y, [Z1C;. (2.10)

Equation (2.9) assumes that there 1s no sharing resources between the tasks, so only
the runnable task, 7;, can access the resource. In fact, there are situations where 7; asks
for resources that are occupied by tasks whose priorities are lower than t;, so 7; can
not access this resource until the lower priority tasks give up this resource. In this case
we say that 7; 1s blocked awaiting lower priority tasks to finish their execution. The

following section gives details about response time analysis of tasks with blocking.

2.3.2 Tasks with Blocking Time

To explain the blocking scenario, assume there are two tasks 7; and 1, attempting to
access shared data (71 has higher priority than 7). If 75 gains access first and then 1
request access<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>