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Abstract 
This thesis examines a Distributed Interference Impact Probing (DIIP) strategy for 

Wireless Ad hoc Networks (WANETs), using a novel cross-layer Minimum Impact 

Routing (MIR) protocol. Performance is judged in terms of interference reduction 

ratio, efficiency, and system and user capacity, which are calculated based on the 

measurement of Disturbed Nodes (DN). A large number of routing algorithms have 

been proposed with distinctive features aimed to overcome WANET's fundamental 

challenges, such as routing over a dynamic topology, scheduling broadcast signals 

using dynamic Media Access Control (MAC), and constraints on network scalability. 

However, the scalability problem of WANET cannot simply adapt the frequency 

reuse mechanism designed for traditional stationary cellular networks due to the relay 

burden, and there is no single comprehensive algorithm proposed for it. 

DIIP enhances system and user capacity using a cross layer routing algorithm, MIR, 

using feedback from DIIP to balance transmit power in order to control hop length, 

which consequently changes the number of relays along the path. This maximizes the 

number of simultaneous transmitting nodes, and minimizes the interference impact, 

i. e. measured in terms of 'disturbed nodes'. The performance of MIR is examined 

compared with simple shortest-path routing. A WANET simulation model is 

configured to simulate both routing algorithms under multiple scenarios. The analysis 

has shown that once the transmitting range of a node changes, the total number of 

disturbed nodes along a path changes accordingly, hence the system and user capacity 

varies with interference impact variation. By carefully selecting a suitable link length, 

the neighbouring node density can be adjusted to reduce the total number of DN, and 

thereby allowing a higher spatial reuse ratio. In this case the system capacity can 

increase significantly as the number of nodes increases. In contrast, if the link length 

is chosen regardless of the negative impact of interference, capacity decreases. In 

addition, MIR diverts traffic from congested areas, such as the central part of a 

network or bottleneck points. 
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Chapter I Introduction 

Chapter 1 Introduction 

Contents 

1.1 Background ........................................................................................................... 
1.2 Scope of this research ........................................................................................... 4 

1.3 Structure of the Thesis .......................................................................................... 6 

1.1 Background 

This thesis investigates a Distributed Interference Impact Probing (DIIP) strategy and 
issues associated with routing protocol cross layer design for Wireless Ad hoc 

Networks (WANETs). A WANET is a self-configuring packet network of Wireless 

routers and associated hosts (e. g. Personal Digital Assistants, Bluetooth Devices, 

Laptops etc. ). Members of WANET can autonomously organize themselves into an 

arbitrary topology, and relay packets on behalf of other members, due to the assumption 
that not all members can directly communicate with each other[ I- 11 ]. 

WANET was initially developed for military applications. The earliest research by the 
US Department of Defence (DoD) can be traced back to the 1970s, under the project 

name of Packet Radio Network (PRN), which later evolved into the Survivable 

Adaptive Radio Networks (SURAN) programs in the 1980s [2]. The goal of the project 
PRN and SURAN was to provide packet switched communication networking to 

mobile elements in an infrastructureless or hostile environment such as soldiers, 

vehicles, ships, or aeroplanes [5,6,12,131. The unique and flexible characteristics of 
WANET, combined with the rapid evolution of electrical technology have given 
WANET great commercial potential. Following the success of cellular networks in the 
1980s and IEEE 802.11 wireless LAN in 1990s, DoD continues the program under the 

name of Global Mobile Information Systems (GloMo), and Near-term Digital Radio 

(NTDR). The goal of project GloMo and NTDR was to provide office environments 
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Chapter I Introduction 

with multimedia connectivity anytime, anywhere. WANET provides low construction 

cost and a potentially unlimited wide range of applications, which have attracted an 
increasing number of researchers and developers to join in the force to accelerate the 

maturing process of pervasive deployment of WANET in modem society [2,5,6,12, 

13]. 

The peculiar characteristic of WANET is like a two-sided blade, one side shows great 

potential benefit for a wide range of applications, the other side produces tough 

challenges that prohibit the implementation of WANET. 

The flexibility of WANET allows fast and easy deployment of such networks without 
the cost of base-stations and could serve users anywhere (i. e. in the air, sea, or on land) 

at anytime, in situations where the infrastructure is neither reliable nor available. This 

provides great potential for civilian (commercial or non-commercial) and military 
applications, such as the following examples [5,6,12,13]: 

Military autonomous networks (e. g. personnel, vehicles, ships, and aircraft 

autonomous networks; sensors distributed in hazard areas etc. ) 

Environment monitoring systems (e. g. sensors scattered in buildings located 

within earthquake or natural disaster high risk zones, pollution, wildlife, and 

environment change monitoring etc. ) 

Commercial WANETs (e. g. ubiquitous computing for home and temporary 

offices; automobile networks; wireless gaming; extension of the internet etc. ) 

* Public authority applications (e. g. policing, traffic control, bailed criminal 

monitoring, disaster and emergency relief etc. ); 

* Research and Scientific utilizations (e. g. academic and research networks; 

undersea operations; space exploration etc. ) 

Before these beneficial applications turn into reality, many technical challenges lay 

ahead [5,6,12,13]: 

* The broadcast nature yields co-channel interference that limits both channel and 

system capacity. 

2 



Chapter 1 Introduction 

The lack of fixed infrastructure requires the network to deal with a dynamic 

topology, distributed control problems (e. g. Routing, MAC, Congestion 

Control, Administration etc. ). 

* The limited resources (e. g. spectrum, energy, channel capacity etc. ) demand 

high consumption efficiency with fair distribution concerns (e. g. QoS). 

WANET suffers a scalability problem due to its unique nature. WANET system 

perforrnance is known to be limited, not only by the node level capacity, e. g. raw 

channel, node or link throughput or capacity, but also by the network level capacity, 

e. g. maximum number of users (or user population) supported by the system, or 

network aggregated throughput etc. Both means of capacity measurement are under the 

influence of factors of consequence, e. g. relaying burdens, interference (co-channel or 

adjacent-channel), energy constraint, node density, network size (or user population), 
traffic patterns, relay and topology variations etc [2,6,11,13-44]. 

Scalability of such a network is associated with user population and the satisfiable 

channel capacity (i. e. how many users can a channel serve with an acceptable level of 

service). The more users that a system can support, the more scalable the network can 

be, e. g. in an ornni-directional antenna environment where every node can reach the 

furthest node in one hop distance. The channel capacity of the throughput per node 

decreases, at a data rate of I, where N is the number of nodes (or user population). If 
qrN- 

a network has 100 nodes, each node can only get approximately one tenth (I / 10) of the 

theoretical maximum data rate [8]. This is due to multiple impact from relaying 

burdens, interference etc. We refer to the effect where a transmitting node interferes 

with surrounding co-channel nodes while communicating, and the resulting effect on 

system capacity, as the "interference impact"[17,33,36,37]. 

Previous research has attempted to relate and resolve this problem via many means, 

including routing protocol design. The proactive (i. e. constantly maintained by a global 

topology in each routing table) type of routing protocol cannot cope with the dynamic 

network topology, so that the routing control overheads will overflow the whole 

network. The reactive (i. e. discover and maintain a path in an on-demand manner) type 

of protocol will allow the user population (i. e. number of nodes) to be increased at the 
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expense of proportionally increased route acquisition latency. Hierarchical routing (i. e. 

operating routing and other network functions on several hierarchical levels) can relieve 

the scalability problems to a certain degree via clustering, i. e. proactively routing within 

a cluster, and reactively routing outside the cluster. It is one of the few methods that can 

cut down the proportion of overheads, and shorten the routing acquisition latency. 

However the growing demand on channel capacity and the user population capacity 

cannot be satisfied by any single technique, but instead, a combination of effects of 

multiple techniques across the functional layers of a system, as listed below: 

o For the physical layer, dynamic channel characteristic changes channel and 

physical devices adaptations. 
For the Multiple Access Control (MAC) layer, distributed scheduling takes on 
the task of minimizing collisions for fair access, avoiding hidden-terminal 

transmissions. 

* For the network layer, dynamic routing distributes information to discover and 

maintain connectivity of paths between nodes, whilst interconnecting with 

conventional systems. 

9 For the transport layer, distributed traffic congestion, packet loss, delay, and 

retransmission control manages packet or stream transmissions. 

o For the application layer, distributed disconnection and reconnection 

management with peer-to-peer applications. 

Nevertheless the complexity of the wireless environment is in conflict with the growing 
demand for capacity and new applications from the ambitioned visionaries. The 

question of whether WANET can provide an acceptable level of channel capacity, even 
in the presence of a large number of nodes in the network, and furthermore, how large 

can WANET grow has become an ever more challenging task. 

1.2 Scope of this research 

This thesis examines research carried out on a Distributed Interference Impact Probing 

(DIIP) strategy, based on a cross layer routing protocol that is designed and developed 
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with an aggregation of techniques, for partially overcoming the scalability problem in 

multi-hop WANET. 

The first objective of this research is to develop a deep and thorough understanding of 

the technologies and issues associated with the interference, relaying, overhead impact, 

protocol design (i. e. routing, MAC, physical layer sensing etc. ) and system scalability, 

which has resulted in development of a unique Distributed Interference Impact Probing 

(DIIP) architecture through a comprehensive literature review. 

The follow on work is focused on designing, developing and improving the Minimum 

Impact Routing (MIR) protocol, which uses an original approach of DIIP that is 

dedicated to minimizing the co-channel interference impact, and utilises the outcome of 
DIIP as a routing criteria. MIR tackles the scalability problem from a network layer 

perspective, optimizing the spatial reuse, and therefore enhancing he WANET system 
capacity and user population in terms of maximizing the total number of simultaneous 
transmitting nodes in the network. There is a more detailed discussion and proof of this 
in later chapters. 

MIR is improved with a range of dynamic techniques to enhance its adaptability in 

WANET. The following improvements are made throughout each stage of research: 

* Stage one is to modify the primitive reactive MIR routing to a hierarchical type 

of routing operation. The major changes include: adaptation of Next Forwarding 

Nodes (NFN) for a Controlled Flooding; Local Communication Group (LCG) 

clustering for Dynamic Topology Control (DTQ. This resulted in the original 

adaptive MIR. 

e Stage two is the integration of an adaptive MAC protocol, Busy Tone Multiple 

Access, which is particularly beneficial in providing a reduction in control 

traffic (in other words with no Request and Acknowledgement packets), and 

solving hidden terminal problems during the transmission. 

9 Stage three is to integrate the Variable Transmit Power in connection with the 

DIIP measure, which is a unique and original contribution, and allows wireless 

nodes to dynamically adjust their transmit power based on the surrounding node 
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density while forraing the LCG. This resulted in a MIR-VTP protocol published 

at an international conference, WPMC, in sep 2004 [17,3 3,3 6,3 7]. 

Stage four is the ftirther upgrading of the MIR-VTP (i. e. MIR with Variable- 

Transmit Power) to operate in a unidirectional environment where asymmetrical 
links are studied and simulated. The result of this study was the novel MIRNA 

(i. e. MIR with Variable-transmit-power plus Asymmetrical-routing) protocol, 

which uses a unique asymmetrical transmitting of the routing control packets to 

achieve the asymmetrical routing. This resulted in a contribution to the routing 

model in a European research project called NEWCOM, and another 
international publication in WiCOM Oct 2006, which describes the spatial reuse 
theory based on a concept called Time Sequenced Interference Region (TSIR). 

The final analysis of the complex simulation results, collected from those simulation 
models composed in early stages, had an inspiring consequence in deriving the findings 

conclude later. It triggered the derivation and development of an original WANET 

system capacity model, and a new series of innovative WANET system capacity 

enhancement strategies. 

1.3 Structure of the Thesis 

This thesis explores different aspects associated with research conducted on reducing 

the scalability problem in WANET, using a DIIP mechanism. This research results in a 

new family of MIR metrics, which incorporate DIIP, LCG, variable transmit power, 

and asymmetrical routing. The MIR routing algorithm is a cross layer aggregation 
developed in order to achieve high system user population, and is extended from 

previous mathematical analysis [3,16,18,20,21,45]. 

Chapter 2 reviews the challenging issues and technologies that are essentially 

associated with effective routing strategies which are aimed at enhancing the system 

capacity and reducing or eliminating the scalability problem in WANET. Some 

influential factors such as WANET features and challenges; transmit power control; 

multiple access techniques; routing challenges; and system level considerations are 
included. 

6 



Chapter 1 Introduction 

Chapter 3 provides an overview of issues associated with WANET routing. A 

comprehensive literature review of related areas is presented, in terms of routing 

environment and routing algorithms, in order to have a deep and thorough 

understanding of technologies and issues associated with interference environment and 
impact, protocol design (i. e. routing, MAC, physical layer sensing etc. ), system 

capacity, and related techniques, used in the development of a unique Distributed 

Interference Impact Probing (DIIP) architecture, in which these factors are incorporated 

by a novel routing algorithm, Minimum Impact Routing (MIR), aimed at enhancing 

system scalability in WANET. 

Chapter 4 introduces the modelling methodology, statistical result collection and 

measurement, and the validation and evaluation methodology. Among these are a brief 

review of the simulation tool (i. e. OPNET), the different means of design, simulation, 

result collecting, and result evaluation. 

Chapter 5 is dedicated to the analysis of system performance, and identifies the 

interconnections of multiple influencing factors in system operation. This analysis is 

lead by the three important trade-off relationships. Some analysis is based on the 

abstractive assumptions to simplify the situation, and this is supported with a series 
MATLAB simulation results. 

Chapter 6 presents a description of a novel MIR protocol, as well as some related 

aspects. The interference impact is firstly quantified using a Disturbed Node (DN) 

concept, then a DIP mechanism is developed to measure such impact using DNs, 

which reflect the local interference impact, and define a Local Communication Group 

(LCG) with a constrained interference impact region. The routing decision is made 

using a measure of accumulated DNs along a path, as the criteria to calculate a shortest 

path between two nodes. In order to study the performance of MIR, a 32-node 

simulation model is developed, with three basic topology scenario. The simulation 

results are analysed from a network layer perspective, and verified. This stage of 
development resulted in an international publication. 
Chapter 7 introduces the later improvement of MIR, the more mature MIR-VTP 

protocol, with details of essential theories and techniques such as: variable transmit 
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power, spatial reuse theory, asymmetrical routing strategy, path capacity derivation 

based on the time sequenced interference impact region concept, and consequently the 

network user capacity derivation. This section also provides a description of a series of 

simulations conducted using an improved model, under different network topologies 

and scenario configurations, using different routing algorithms. The resulting analysis 

reviews the adaptive routing algorithm such as MIRNA, which incorporates the 
interference impact evaluation and balancing into the routing operation, resulting in 

increased system scalability, under optimal local interference impact threshold that is 

measured in disturbed nodes. In which case, this extended the capacity boundary 

defined by Gupta and Kumar in [20], and the mathematical analysis of capacity region 
by Toumpis and Goldsmith, uses variable transmit power and interference cancellation. 
The theory of MIR-VA is then verified using simulation result analysis and evaluation. 
This stage of research resulted in another international publication. 

Further more, a 60-node WANET model is developed using OPNET in order to 

simulate and evaluate the centralized or distributed type of network control scenario, 
with the variation of single-hop or multihop transmissions, with or without spatial 

reuse, based on a random topology. 

Chapter 8 presents the possible future extension of the current research. This includes 

the improvement of the current unified channel capacity assumption; diversity of 
interference impact measuring; improvement of distributed MAC schemes; extended 

study of the complex network scenarios, such as multiple random network coexistence; 

and the extended capacity analysis for Frequency, Time, and Code Division Multiple 

Access (F/T/CDMA) systems. 

This is followed by the overall summary and conclusion in chapter 9. 
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2.1 Introduction 

This chapter presents a literature review of the key issues that influence the system 

capacity and behaviour of a Wireless Ad Hoc Network (WANET). The distinctive 

features of WANET provoke the technological challenges in physical characteristics 

management, power control, contention control, routing, spatial reuse, system level, 

and other higher layer function design. 

Early research on WANET can be traced back to the 1970s, when it focused on 

providing low data rate packet switched wireless communication networking for 

military applications. It was only after the cellular systems successfully delivered high 

9 



Chapter 2 Literature Review 

system scalability, in terms of user populations of a system, with a frequency reuse 

technique implemented in cellular structures in the 1980s; and the Wireless LAN 

(WLAN) demonstrated the feasibility of Ethernet type high channel capacity (i. e. high 

data rate assigned to each user) for mobile computing in the 1990s, that global interest 

in WANET re-emerged. The technological development of cellular networks, WLAN, 

and Bluetooth, enables much higher data rate communication from small wireless 

terminals, such as mobile phones, laptops and Bluetooth devices, to support a large 

amount of users with centralized control mechanisms. 

The question that remains unsolved is: Can we develop a high channel and system 

capacity for WANET by adapting and improving technologies utilized in conventional 

wireless communication networks, such as cellular, WLAN, Bluetooth etc, to support 
infrastructureless high data rate mobile communications with high user population? In 

terms of channel capacity, WLAN can provide higher data rates in contrast to cellular 

networks, due to the use of high transmission frequency, and relying on the centralized 

control at a stationary access point that is connected to the fixed infrastructure. 

However WLAN cannot support the same user population as a cellular network, due to 

the uncoordinated frequency reuse planning between WLAN access points. On the 

contrary, cellular networks can support high system user populations with the 

frequency reuse mechanism carefully organized between stationary base stations. This 

chapter discusses the interrelationship of key factors and technologies for conventional 

wireless systems, later discussed in detail in chapter 5 in order to understand their 

impact on solving the scalability problem in WANET, and proposing an innovative 

routing mechanism for WANET. 

10 
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2.2 Wireless Ad Hoc Networking 

The trend of future communication networks is to combine conventional cable or 

wireless systems with Internet or future generation networks (e. g. 4G or Universal 

Telecommunication Systems UMTS). The major difference between WANET and 

other wireless systems is the capability of operating independently without the support 

of a fixed infrastructure. Accelerating WANET research in recent years has generated 

numerous potential application proposals, and consequently more challenges are 

realized. This section outlines the advantages and potential applications, together with 

the disadvantages and challenges of WANET. 

According to the coverage areas, modem wireless communication systems can be 

broadly divided into four categories[12]: 

9 Wireless Body Area Networks (WBANs), i. e. wearable devices or components 

distributed on a body, interconnected using Bluetooth or infrared technology. 

* Wireless Personal Area Networks (WPANs), i. e. wireless devices carried by a 

person interconnected with other mobile or stationary devices in the 

enviromnent around a person. 

e Wireless Local Area Networks (WLANs), i. e. wireless mobile or stationary 

devices interconnected in home or office with a communication range of, in a 

single or a cluster of buildings, up to 500 meters. 

o Wireless Wide Area Networks (WWANs), i. e. widely distributed wireless 

devices across an area in the order of kilometres, such as urban areas, or 

villages. 

Figure I shows the coverage region, interconnection and comparison between cable- 

based modem wireless and future integrated systems. In terms of existing or under 

development standards utilizing these networks, WBAN and VVTAN are small area 
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networks for wearable computers or Bluetooth devices, using communication standards 

such as Bluetooth (IEEE 802.15); WLAN is the most popular for mobile computing 

using IEEE 802.11 (also know as WiFi) standards. WWAN covers larger areas and is 

aimed at using standards under development such as IEEE 802.15.5 (Mesh network), 

IEEE 802.16 (also known as WiMAX) for urban areas, the countryside, and even 

between countries. 
Cable Networks with 

Cable links 

----------------- 

Wireless Networks with T Global wide Wireless links Coverage Area Internet 
--------------- %, 

% 
4G 

S 
S 

------------- 

WBAN I -IOMS I 
-'Oj 

loo-soom WPAN : 
HMAN 

I I 
-kms 
WAN 

Figure 1 Type of Network and Coverage [121 

2.2.1 Centralized vs. Distributed Control 

The distributed control is one of the fundamental differences between WANET and 

other wireless communication systems that use centralized controls. As a conceptual 

network, WANET provide means of use that can be deployed in any type of 

conventional networks (i. e. WBAN, WPAN, WLAN, and WWAN). However the 

technologies used in WANET are distributed type controls, whereas existing system 

standards for WBAN, WPAN, WLAN, and WWAN are more or less based on 

centralized controls. 
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Centralized control operations are conducted and coordinated by a central location, e. g. 

base stations of a cellular or early radio network; an access point of Wireless LAN, or 

master devices of Bluetoothpiconets. 

Distributed control operations on the contrary, are used by the user terminals, i. e. 

mobile or stationary wireless terminals or devices. This gives WANET great 

advantages, such as highly flexible structure and configuration, fast and easy 
deployment, and low cost implementation etc., for potential applications. However 

these existing application opportunities also pose significant technical challenges, 

which involve cross layer design and finite-capacity resource (e. g. spectrum, spatial, 

and energy etc) management. 

2.2.2 Advantages and Applications of WANET 

The visionary pioneers proposed applications of WANET covering a wide range of 

aspects in our society associated with daily life. Without the burden of fixed 

infrastructure, WANET could overcome many limitations that are inhibited in 

conventional communication networks. Military applications initiated the WANET 

research in order to design and implement autonomous networks that interconnect 

personnel, battle vehicles, ships, and aircraft distributed in the battlefield or operating 

areas; sensors deployed in hazardous or monitoring regions for information gathering. 

Civilian applications of WANETs cover a wide range of daily utilizations, for example: 

* Environment monitoring systems, i. e. sensors scattered in buildings located 

within earthquake or regions at high risk of hazard and natural disaster; nuclear, 

industrial or chemically polluted areas monitoring; wildlife research tracking 

and monitoring; constantly monitoring climate, temperature, and other 

environmental changes etc. 

Commercial WANETs, i. e. ubiquitous computing for the home and temporary 

offices; automobile or traffic networks along the motorways; indoor or outdoor 

wireless gaming; wireless extension of the internet; industrial property tracking; 

13 
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farming; storage; retail item tagging; intelligent buildings; medical networks 

etc. 

9 Public authority applications, i. e. police patrol; home and building security 

monitoring; traffic control; bailed criminal monitoring; crime watch; facility 

usage statistics; disaster and emergency relief etc. 

9 Research and scientific utilizations, i. e. educational networks for academic 

study, medical research, remote teaching, and outdoor scientific research; 

undersea operations and investigations; space exploration etc. 

WANET provides anytime and anywhere applications under circumstances such as: 

where a cable network is either impractical or not reliable; locations that are beyond 

reach; environments where it is dangerous for the presence of humans; highly random 

network structures etc. The numerous potential applications have put WANET in a vital 

position in future integrated networks. 

2.2.3 Disadvantages and Challenges of WANET 

Researchers must overcome many challenges before the wide deployment of WANET 

is a reality, due to the three inherent disadvantageous features of WANET: 

9 the broadcast nature of communication in complex wireless environment; 

the lack of support of the fixed infrastructure; 

the limited resource; 

Table I shows the broadly surnmarised interconnection between features of WANET, 

the challenges that these features pose, and the related issues in relation to the different 

functional layers. 

14 
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2.2.3.1 Broadcast Nature of WANET 

WANET inherited the broadcast nature of conventional wireless networks. The highly 

complex wireless environment creates adjacent and co-channel interference demanding 

efficient multiple access and contention control, and the restricted spectrum and spatial 

resources together concerns WANET development deeply. In such an environment, 
both the adjacent channel (i. e. neighbouring frequency channels used by different users) 

and the co-channel (i. e. the same frequency channel used by different users) 
interference will result in negative effects (e. g. noise and collisions) to the 

communication. Consequently this results in a reduction of the channel capacity for 

each user, and reduces system user population for the whole network. Interference from 

a co-channel node in the same region may cause transmission collisions that eventually 

make wireless communication impractical [ 1,12,13,42]. 

In terms of spatial reuse, the interfering nature of broadcasting wireless systems needs 
careful spacing of interference sources to make sure the two co-channel transmitting 

nodes are spatially separated, so that they do not become a source of interference for 

each other. In cellular networks spatial reuse is often implemented by using a frequency 

reuse mechanism, which carefully spaces the co-channel cells in a cellular structure[27, 
42]. In WLAN a master node can use a frequency hopping spread spectrum (FHSS) 

technique to poll all wireless users (slaves), which employs contention-free services 
inside each single cell, in this case spatially separating the co-channel interference[l, 

11-14]. WLAN also supports contention-based communications using Direct Sequence 

Spread Spectrum (DSSS, which is also known as CDMA), however this type of 
transmission poses side effects problems such as the Near-far problem also known as 
the capture effect [13,46-49]. This requires a distributed power control scheme to 

prevent the stronger transmitter from capturing a receiver whilst other weaker 
transmitters are also trying to communicate with the same receiver. This problem will 
be discussed in finther detail in the next section. 

In a contention-based wireless network, without an efficient contention control for 

collision detection and a spatial reuse mechanism, the co-channel interference can 
seriously damage WANET system and user capacity. In conventional wireless systems, 
such as cellular networks and WLAN, contention control was implemented using 
Multiple Access Control (MAC) protocols with a collision detection function called 
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Carrier Sense Multiple Access with a Collision Detection I Avoidance (CSAM-CDICA) 

[42,43]. 

2.2.3.2 Lack of Infrastructure 

The lack of support of a fixed infrastructure in WANET gives it flexibility for 

deployment and mobility, but it also poses challenges such as distributed controls and 
dynamic topology. There is no centralized control from a base station or similar central 
locations, which means the burden of conventional centralized control (e. g. routing, 
flow, congestion, contention, channel characteristics, transmit power control etc. ) of a 
base-station, router or bridge, now has to be shared by end-users in a distributed 

manner. In terms of routing, the fast changing network configuration due to the node 

movement, and nodes joining and leaving the network, yields changes in the network 
topology. These topology changes trigger frequent route or topology updates that 

generate massive route control overheads, which have a negative effect on network 
traffic. Also because of the lack of central control, members of WANET have to 

cooperate with each other to coordinate and relay traffic, and allocate valuable resources 
etc. 

2.2.3.3 Restricted Resources 

WANET has limited resources, such as bandwidth and energy. Members of WANET 

are most likely to be battery powered wireless terminals, which means they have a 
limited power source to operate in a limited lifetime. Energy and spectrum efficiency 

are two essential aspects that need to be considered in a WANET system and protocol 
design, so that the system can carry out energy and spectrum efficient operations. A 

variety of methods have been proposed for energy conservation and spectrum 

efficiency. In system design, the total energy consumption has been concluded as the 

sum of computation and communication energy consumption [10]. 

Numerous power control, modulation and coding, and quality of service mechanisms 
have been proposed for high efficiency system design[ 1,2,4,10,25,26,38,40,41,50- 

59]. In protocol design, power aware and spectrum efficient routing and MAC protocols 

are proposed with the consideration of energy conservation and spectrum utilization 

efficiency [2,4,8,9,52-54,60]. The WANET has an unique characteristics of requires 

nodes to cooperate with each other, and relay traffic on behalf of others. 

17 



Chapter 2 Literature Review 

This unavoidable duty of relaying consumes both energy and spectrum in the network, 

therefore the nature of relaying needs to be carefully studied and organized to ensure 
fair share of relay burden, and diverting traffic to prevent congestion is essential. 

In order to analyse WANET performance, one needs to abstract out the essential 

aspects that governs the performance of the system. This is a complex and challenging 

task since such analysis must take into account the interactions between challenging 

problems that are associated with the three essential system functional layers, which are 
broadly classified as the Physical layer, the Media Access Control (AMC) layer, and the 
Network layer. The Physical layer deals with channel characteristics such as the use of 

variable transmit power to adjust signal strength to ensure appropriate Signal to 
Interference and Noise Ratio (SLNR). The MAC layer takes care of contention controls 
during the communication. The network layer handles addressing and routing, which 

ensures the network connectivity and topology control. 

2.3 Physical Layer 

In telecommunication, the FM capture effect is a phenomenon associated with FM 

reception in which only the stronger of two signals at, or near, the same frequency will 
be demodulated, when the weaker signal at the receiver is not amplified, but attenuated 

and suppressed. For a nearly equal in strength, and independently fading signal, the FM 

transmitter will cut in and out as it nears the capture threshold of the receiver, this is so 

called picketfencing. Therefore some applications chose to use AM radio instead, since 
in digital modulation schemes, it has been shown that OOK/ASK systems are more 

capable in co-channel rejection than FSK systems. [42,43] 

: 
------------ 

llmý 
Transmission Strength 

Figure 2 Near- Far problem 113,42-441 
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The other devastating effect in wireless communication systems is the Near Far, or 
Hearability problem. In CDMA systems, if two simultaneous transmitting nodes (i. e. 

one nearer, one farther) use equal transmit power that shares a common receiver, then 

the receiver will receive, due to inverse square law, higher power from the nearer 
transmitter than the farther one. The Signal-to-Noise-Ratio (SNR) for the farther 

transmitter is much lower so its signal may not be detectable by the receiver, hence it 

may as well not to transmit. This has effectively closed the communication channel. 
This problem is commonly solved by exhibiting physical layer Power Control i. e. 
dynamically adjusting the transmitter's output power, so that the closer transmitter uses 
less power the SNR from both transmitters is roughly the same at the receiver. 
Sometimes this has a significant impact on prolonging battery life. Figure 2 illustrates 

the principle of this phenomenon. 

%%% 

%% 

One Concurrent Transmission 

%%%%%%I 

I% 

%% 

%%I%% 

Three Simultaneous Transmissions 

Figure 3 Improve Spatial Reuse by allowing simultaneous transmission [42,431 

Power Control is an important technique that improves signal quality, energy 

conservation, and interference reduction. In cellular systems, base-stations constantly 

control the power levels transmitted by each terminal within its service coverage area, 

so that each terminal transmits at the smallest power level necessary to maintain usable 

SNR or signal quality, prolonging their battery life, and at the same time reducing the 
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interference between transmitting nodes to an acceptable level. Base stations rapidly 

sample the radio signal strength level from each user terminal. If a user's SNR level is 

above a threshold, i. e. signal strength too high, it will reduce its transmitting power 
level. 

In distributed systems, power control also provides high spatial reuse efficiency by 

allowing more simultaneous transmissions. Figure 3 demonstrates a distributed system 

power control, in which the reduction of transmit power level enables multiple 

simultaneous transmissions in the network. 

The drawback of power control is the variation in wireless links may result in 

weakened connectivity, due to reduced signal strength, and the Power Control Run 
Away situation. The Power Control Run Away is a process which occurs when the 

nearer transmitter raises output power to improve its SNR in a high-noise situation, in 

which case it forces the farther transmitter to raise output to maintain good SNR. Other 

neighbours react to this raising noise floor by increasing their transmit power 
accordingly, since the signal of one transmitter is noise to the others. Eventually the 
farther transmitter unable to match the increasing noise floor and maintain a usable 
SNR, drops out from the network. This principle explains why the service quality of a 

system could degrades significantly when the traffic load increase. 

The power control, link quality variation, dynamic network topology, control 

overheads, and traffic intensity are important factors for the performance of a wireless 

system. In some cases it is arguable that using a longer or shorter link length will be 

more beneficial to connectivity, transmission success rate, less relays, energy 

conservation, and overheads reduction [10]. However short link length may improve 

spatial reuse by allowing more simultaneous transmission, which is a desirable feature 

in terms of supporting more users in a distributed wireless system like WANET. These 

issues are ftirther discussed in chapter 5 in more detail. 
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2.4 MAC Layer 

Contention control is the main function of Media Access Control (MAC) layer in the 

traditional Open System Interconnection (OSI) reference model. In a contention-based 

communication network, transmitters of a user terminal compete with other co-channel 

nodes. In this process, without any contention control, simultaneous transmissions 

competing for the same receiver will most likely result in collisions at the receiving 

end. This is also known as the hidden terminal problem, which in conventional 

centralised wireless systems, is dealt with by the MAC scheme, such as Carrier Sense 

Multiple Access with a Collision Detection / Collision Avoidance (CSMA-CD/CA). 

Figure 4 (a) demonstrates the scenario where both transmitters, Tj and T3, are trying to 

communicate with the same receiver T2, but remain hidden from each other. The 

simultaneous transmission for these two transmitters will collide at R, as the result of 
lack of contention control. 
Figure 4 (b) shows the CSMA uses Request To Send (RTS) and Clear To Send (CTS) 

dialogue to organize the transmission sequence of the pair of competing transmitters. 
When T3 overhears the CTS message for T1, with the time required for the 

communication, T3 will remain silent for the period of time that T, and T2 are 

communicating, and retry its RTS message after the communication[42,43 ]. 

T, T2 

Collision 

(a) 

T2 T3 

CTS, 

Data 

Silent 
ACK 

RTST2 

Time 

(b) 

Figure 4 Hidden Terminal Problem 

(a) Hidden Terminals TI and T3 Collide at T2 (b) RTS-CTS dialogue between TI and T2 
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Another way of solving the collision problem is to use a contention-free multiple access 

scheme, called polling[43,44,46,51,61-65]. In this case, wireless terminals get 

regular questioning from the central controller, asking if they have any data to send. 
The central controller then polls in sequence all wireless terminals within its coverage 

area. The IEEE 802.15 Bluetooth standard uses this mechanism as its contention 

control. 

A master node polls all slave nodes within the same Piconet cell, and allows multiple 

access to take place in turns. IEEE 802.11 WLAN uses a Point Coordination Function 

(PCF), which is similar to a polling system, for the contention-free traffic, and a 
Distributed Coordination Function (DCF), which is a CSMA-CA MAC protocol for 

contention-based type of traffic coming through each access point [ 12,13,42]. 

S, 

S5,, 
% 

m 

. 'S2 S4%,, 

S3 

(a) 

Figure 5 Multiple Access Control Schemes 

(b) 

(a) Polling in Bluetooth (b) IEEE 802.11 WLAN Point Coordination Function -PCF and 
Distributed Coordination Function-DCF 

Figure 5 (a) shows a simple polling mechanism, where (b) shows the MAC layer 

mechanism of IEEE 802.11 WLAN. Both of above described methods can effectively 

solve the collision problem in a contention-based wireless, however WANET cannot 
directly adapt these conventional contention control schemes due to their lack of 

Contention based 

Contention free 

DCF 

Physical 
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centralised control nature. Therefore ftirther study on the conversion of contention 

control schemes is an important issue for WANET implementation. 

2.5 Network Layer 

Routing is the premier task of the network layer for determining the best route between 

two points in a network, and is the most fundamental research issue in WANET. The 

main function of routing is to learn existing destinations, and establish connections 
between source and destination for later relaying or initiating data traffic. The 

distinctive feature of WANET has redefined the characteristics for routing algorithm 
and protocol design. 

The fundamental difference between conventional routing and routing in WANET is 

that conventional system uses centralised routing operating in a stationary central 
location, such as routers or base-stations, whereas WANET routing operates in a 
distributed manner carried out by each user terminal, which is possibly mobile [1,2, 
12,13,42]. Stale or duplicated packets in the network could cause the network traffic 

overflow. A sequence number in conjunction with a packet lifetime could be used to 

prevent the stale packet travelling in the network being duplicated endlessly [66]. Table 

2 shows the broadly classified types of routing that appear in sequence. 

Conventional centralized routing collects and maintains routing information (e. g. 
topology, route cost, updates etc) at a centralized location (e. g. router, hub, or a base 

station), and interconnected these stations to form a larger network. The routing 
information updates are broadcast to all these stations, so that each station will 
determine one (or multiple) best path to reach other remote stations, and record this 

path in the entries of its own routing table. The routing table is usually constructed 

using a routing matrix, which consists of a row index and a column index that represent 
the known source and destination nodes accordingly. Each source node is indexed by a 

row of destination nodes, each has an entry, which records a next/first relay node 
towards that destination. 
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Routing Advantages Disadvantages 

Types 

Static routing: Dijkstra's /Shortest Insensitive to the network condition 

path: simple method use unchanged / changes. Failure on central stations or 
Centrallised estimated routing information. Hence any links result in severe network 

Routing low latency. Simple static routing breakdowns. 
tables with low latency. 

Adaptive routing: High latency, high overhead. 
Bellman Ford/Distance Vector: 
Routing decision made reflects 
network changes dynamically. 
Proactive: lower latency since routing high routing overhead for maintain 
information are proactively updated routing information update. 
Reactive: low routing overhead due High latency caused by node-by-node 

Distributed to the less frequent routing acquisition update propagations. Poor scalability 
Routing from the source, which also means since overhead mount up as the 

higher spectrum efficiency. number of nodes increases. 
Hierarchical: lower latency in long The combination of proactive and 
distance routing, lower routing reactive type of routing in a 
overhead in large networks hierarchical structure is complex to 

implement. 

Table 2 Types of Routing 

Routing algorithms used for routing in conventional systems can be broadly classified 

as static and adaptive routing algorithms [66]. Static routing algorithms, e. g. the 

optimal principle, Dijkstra algorithm [66] also known as shortest path or forward search 

routing algorithm, perform well as long as the network status does not change. Routing 

information is gathered in the network before sending any data, hence this type of 

routing has lower latency[66]. The drawback of these types of algoritluns is that once 

the route table is determined, it does not change in response to network changes. 

Adaptive routing algorithms allow a station or a node to respond to network changes 

and update its routing tables accordingly. However they are slow when the size of the 

network grows. The Bellman Ford algoriflun [66], also known as the distance vector or 
backward search algorithm, was initially developed for centralised systems, and later 

evolved into a distributed version for service points that is connected to a fixed 
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infrastructure [66]. In this kind of system, every station learns route information only 
from its neighbours, and works in reverse order as listed below: 

0 Each node calculates the distances between itself and all its neighbours, and 

then stores this information in its routing table. 

Each node sends its table to all neighbouring nodes. 

When a node receives distance tables from its neighbours, it calculates the 

shortest routes to all other nodes and updates its own table to reflect any changes. 
In contrast, WANET uses distributed routing, everything that centralised routing does 

in conventional wireless systems, e. g. gather routing information, to determines the best 

routes, construct routing tables etc, is executed in WANET independently at the 

terminals instead of at the central stations[66]. Initially each node only exchanges 
information with its neighbours. These neighbours then propagate the known route 
information to their neighbours, and gradually all remote nodes can learn about further 

away destinations by receiving node-by-node propagated routing information. By 

adding its own cost to reach a known neighbour to the cost from the neighbour to the 

remote destination, it can calculate the cost to reach any remote destination, and it 

constructs its own routing table with a record of the best route and the cost to reach 
these destinations. The main disadvantage of this mechanism is: 

0 It has low scalability, due to the fact that routing overheads mount up as the 

total number of nodes in the network increases. 

0 Slow updates on network topology changes, due to the node-by-node 
information spreading. 

0 it may trigger a deadlock called count-to-infinity (i. e. a broken link to an 

unreachable node may cause the rest of the nodes to gradually increase their estimates 

to reach the unreachable nodes using information from their neighbours) 

Depending on how their routing tables are constructed, distributed routing algorithms 

proposed for WANET can be roughly classified into three fundamental categories: the 

proactive or table driven routing algorithms, the reactive or source initiate on-demand 

routing algorithms, and the hierarchical routing. [2,6,8,9,11,13,15,29,33,36,67- 

70] 
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The proactive, known as table-driven, distributed routing algorithms are similar to the 

static routing algorithms, in that they constantly maintain routing information, and 

routes are selected and stored even before they are needed. The advantage of proactive 

algorithms is that they have shorter initial route discovery delay, and select a route from 

the routing table without initial route discovery each time. The drawback of proactive 

algorithms is additional routing control traffic, which means each router wastes 
bandwidth to maintain routes even when it is not in use. 

The reactive, also called source-initiated on-demand distributed routing algorithms, 

activates a route discovery procedure by the source node, and the routing tables do not 

maintain routes to all destination nodes all the time. The established routes are 

maintained until the destination becomes inaccessible via every path or the route is no 
longer required. The advantage of on-demand routing algorithms is that the bandwidth 

consumption to maintain the routing table in each node is far less than with table driven 

algorithms, and it is loop free. The drawback of reactive algorithms is the longer initial 

route discovery delay, and low scalability due to the routing overhead expended as the 

number of nodes in the network increases. 

The hierarchical routing algorithms are based on the concept of a cluster-based 
hierarchical network structure, in which all nodes are grouped into a set of clusters. A 

cluster head is responsible for scheduling transmissions and resource allocation 
between one or more peripheral nodes within the same cluster. A cluster head then uses 

proactive routing to manage communication within the cluster, and uses reactive 

routing to communicate with nodes in the far distance. The advantage of hierarchical 

routing is the reduced routing overhead for long distance communication, and shorter 
latency for short distance communications. However, this type of routing algorithm is 

more complicated to implement. Chapter 3 discusses the distributed algorithms for 

WANET routing in more detail. 

2.6 System Level 

The core issue of this research is to eliminate the combination impact of interference 

from system level, and improve system scalability by improving spatial reuse, which 
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has a similar objective for frequency reuse in a cellular structure in conventional 

wireless systems. Early mobile communication networks, e. g. the United States Bell 

mobile phone system developed in the 1970s, used a high power transmitter broadcast, 

with an antenna mounted on a high tower to achieve a large coverage area. This 

resulted in very low spectrum efficiency and user capacity of approximately twelve 

simultaneous calls over a thousand square miles, due to the fact that the frequency 

channel cannot be reused in the same area. 

Instead of use a single high power transmitter, the later cellular systems (e. g. GSM) use 

multiple lower power transmitters, where each one only manages a portion of the total 

number of channels available to the entire system. Neighbouring base-stations are 
assigned a different set of channels, so that all available channels are assigned to a 
cluster of (e. g. 3,5,7 etc) neighbouring cells. This is achieved by systematically 
spacing the co-channel cells, and repeating this cluster as many times as necessary to 

cover a large area. In this case a cellular system can achieve high user capacity, up to 
thousands of users, by carefully organizing the same set of frequency channels to be 

reused at a safe distance. 
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Figure 6 (a) and (b), shows the coverage area and the transmission radius differences 

between the early mobile systems and the later cellular systems, frequency reuse in the 

cellular structure with centralised control solves the scalability problem in a centralised 

system. However, this mechanism cannot be directly adapted in WANET, due to its 

highly integrated system structure. The challenge raised here is: can WANET develop a 

similar mechanism to provide high spatial and frequency reuse? More discussion about 

this issue will be presented in chapters 7 and 8. 

2.7 Conclusion 

This chapter has provided a literature review of the fundamentally relevant technical 

issues associated with the scalability problem for WANET capacity enhancement. The 

peculiar nature of WANET has influential impact on both the identified application 

potential and associated technological challenges. WANET is fundamentally different 

from previous wireless communication systems, and it has to deal with interference 

differently in an infrastructureless wireless transmission environment, with resource 

constrains. These are the sources of all WANET technological challenges. 

The iniftastructureless structure of WANET requires distributed control, meaning 
functions of a central location in a conventional wireless system now have to be 

performed by wireless terminals. The dynamically changing link and network 

characteristic demands a higher degree of inter-terminal cooperation and organization. 

The limited resources, e. g. energy and power, have to be allocated and shared fairly 

with higher efficiency. Most importantly, as the radiation radius of each wireless 

controlling unit becomes shorter, the burdens of relaying and scheduling have made the 

user population of a system even more difficult to scale, hence the low scalability. 

Power control schemes of the physical layer, can improve energy conservation, reduce 

interference, increasing the number of simultaneous transmissions, and consequently 

improve the user capacity of a system by improving spatial reuse. Contention control 

algorithms of MAC layer, such as CSMA-CA/D, spread spectrum access (e. g. FHSS, 

DSSS/CDMA), and polling, are proven capable of resolving collisions in a contention 
based wireless enviromnent that is shared by all wireless tenninals. Distributed routing 
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algorithms, with the capability of managing dynamic network status, can establish the 

robust connection that a system needs for various types of traffic. 

The foundation of this research is a distributed routing algorithm, incorporating a 

unique Distributed Interference Impact Probing (DIIP) technique, collaborating with 

power control and dynamic topology control, to control collision and contention in a 
WANET environment. This combination of a set of beneficial technologies, indexed by 

a DlIP mechanism is aimed at enabling the system to achieve higher capacity. This 

mechanism will be ftirther discussed with more detailed analysis in chapter 5. 
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3.1 Introduction 

Routing is often referred to as a two part process: one is identifying the existence of the 

destination nodes (called Addressing), used for exchanging local topology information 

for establishing and maintaining optimal connections between two communication 

points (also called Topology Control); the other is to construct a routing table in each 

router (called Route Discovery), which looks up a path from this routing table to direct 

outgoing traffic to determine the next-hop router (called Routing). Routing protocol is 

the recognized standard of algorithm support by all subsystems that share the same 

30 



Chapter 3 Overview of Routing Strategies 

standard, e. g. the Routing Information Protocol (RIP) [34] and the Open Shortest Path 

First (OSPF) [71] routing protocol etc. 

This chapter presents an overview of routing, in two major sections: the routing 

environment (relevant limitations, challenges), and a summary of representative routing 

algorithms. Each communication network can be considered as constructed by many 

routers, which are interconnected by links with a function of initiating or processing 
traffic. Each router in the following article, without a specific explanation, is referred to 

as a node in the network topology. Routing is a network layer responsibility as 
illustrated in Figure 7, in context of the OSI reference model [22]. 

The general goal for developing a distributed routing algorithm for WANET is: identify 

the wireless nodes, establish a network connection in a dynamically changing topology, 

and frequently update their routing table for possible changes of existing connections. 
The challenges for achieving such an objective include minimizing routing control 

overheads, reducing the route initiate latency, maximizing the network capacity, and 
improving the routing efficiency, in a distributed manner. In order to achieve this goal, 
the WANET routing algorithm design should consider various factors in the complex 

wireless operating environment, as well as the distributed inter-node cooperation 

mechanism. 

Routing algorithms are characterised by the way they obtain routing information to 

form the routing table or their route selection criteria. In communication systems with 

centralised controls, routing algorithms can be classified into two categories: static/non- 

adaptive and dynamic/adaptive. Static algorithms make a routing decision not based on 

the most up-to-date network status measurements, e. g. traffic or topology, and do not 

reflect network changes. The simple routing algorithms such as shortest path routing, 
flooding and flow-based routing algorithms are in this group. Adaptive algorithms, on 

the contrary, make routing decisions referring to up-to-date network changes. Distance 

Vector Routing (DVR), link state routing algorithms, and numerous centralized routing 

algorithms derived from them belong to this category. 
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Distributed routing algorithms can be summarised, depending on how their routing 

table is constructed, into three basic classes: proactive/table driven, reactive/source 
initiate on-demand, and hierarchical/hybrid. 

This chapter will first introduce the routing environment, which includes key elements 

(e. g. radio interference, transmit power, link length, and node density etc. ) that affect 

the routing operation. A brief summary of classical centralized (static and adaptive) and 

distributed (proactive, reactive, hierarchical etc) type routing algorithms is given. 

3.2 Routing Environments and Strategies 

WANET inherits the complex wireless communication environment characteristics of 

conventional wireless communication systems, therefore WANET also suffers from 

similar problems. The development of multi-function wireless data communication 

devices, and the increasing available bandwidth, make realization of WANET possible 

in the near future [13]. However, there are still challenges that remain unmet before 

WANET can be deployed for service. Before the overview of routing algorithms, it is 

necessary to understand the environment that a routing algorithm may be operating in. 

In terms of routing environment, the wireless inteýference, variable transinitting 1)ower, 

variable link length, and the node density, are the four most influential key elements in 

the perforinance of a routing algorithm. 
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3.2.1 Wireless interference 

Interference is one of the most important factors that affect the performance of the 

wireless system, and a major bottleneck in improving the WANET system and user 

capacity. Interference in a wireless system can be broadly categorized as co-channel 
interference, and adjacent-channel interference. Other wireless nodes, or another 

system that operates utilizing the same frequency in nearby area, could generate the co- 

channel interference, which causes errors during control signalling or data transmission. 

On the other hand, wireless nodes or systems that operate on adjacent frequency 

channels in nearby areas could cause adjacent-channel interference, which results in 

energy leaks into the utilized frequency spectrum, and may cause cross-talk at the 

receivers. 

Co-channel Cells (e. g. B, B4 B7 1310) Base Station (B) 

Channel (C) 

Co-channel Cell 
Distance (D) 

Radius of Cell (R) 

Cluster size (N) 

Co-channel Reuse 
ratio (Q) 

-ý3-N 

Figure 8 Frequency Reuse in a cellular structure 143] 

Co-channel interference (between nearby nodes or systems) could be overcome by 

physical separation of co-channel terminals with a minimum distance to provide 

sufficient isolation. Conventional wireless systems, such as the cellular systems shown 

33 

Adjaicent-chahnel Cells (e. g. B, B2 133) 



Chapter 3 Overview of Routing Strategies 

in Figure 8, manage co-channel interference by utilizing aftequency reuse mechanism. 
This mechanism carefully organizes a group of 'N' base stations, which each use part 

of the available frequency spectrum in each cell, and a few of these cells form a cluster. 
This cluster is then repeated for as many times as necessary to satisfy the user capacity, 

whilst making sure those co-channels cells are not deployed near each other, as shown 
in Figure 8. 

In this example, base station Bj, B4, B7, and 1310 are co-channel cells. Each cell has a 

coverage area with a radius 'R', and each co-channel cell is separated from any other 

co-channel cells with a distance of 'D'. If we assume each cell in the system is 

approximately the same size and uses the same transmit power level, then the co- 

channel reuse ratio 'Q' is the function of the radius of the cell (R) and the minimum 

separation distance of two nearest co-channel cells (D). In this case, in the same 

physical area, if the cluster size/number of cells N is small, the user capacity of the 

system will be lower, but each user may receive higher transmission quality. If N is 

large, which means the R of each cell is smaller, the user capacity will be higher. 

However the transmission quality may be poor due to each user having a smaller 

proportion of the bandwidth utilization. 

By contrast, adjacent-channel interference, from nearby nodes in the same system, or 

other nearby systems, is far more difficult to predict and manage. Imperfect filtering 

mainly causes this type of interference, in which case it results in receivers that are 

confused and have difficulty in distinguishing weaker transmitting terminals from 

strong crossover adjacent-channel terminals, hence resulting in errors in decoding 

signals. 

This is similar to the co-channel capture effect, or so-called near-far problem in 

wireless systems. There are different means that could minimize the adjacent-channel 
interference, for example: use of better filters or careful filtering mechanisms to prevent 

cross-over signals; use of power control to reduce interference, and hence reducing 

errors; and a channel assignment strategy to keep frequency separation between each 

channel in a given cell as large as possible [43]. 
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Both the co-channel and the adjacent-channel interference from wireless terminals 

could cause significant impact on the system and user capacity in WANET, due to its 

distributed nature. Therefore WANET needs a high degree of cooperation and 
interoperation both within the system and between other systems. Within the system a 
frequency-reuse mechanism, similar to a cellular system, is essential to solve the 

scalability problem in WANET, and deliver high system and user capacity, in terms of 

proving adequate channel capacity serving mass number of users. Between co-existing 

adjacent and co-channel systems, a highly cooperative protocol will be the foundation 

of future wide deployment of WANET in any noisy environment, such as in urban 

areas. 

3.2.2 Transmit Power 

In WANET, the transmit power of each wireless terminal could be controlled, so that it 

can adapt to the network status changes. However, the variation of transmit power 

causes a series of impacts in a wireless environment, such as variation of link length, 

changing network connectivity, and formation of a dynamic network topology. All 

these variations, each pose a challenge for routing in WANET [3,16,18,20,21,45, 

72]. 

The Variable Transmitting Power (VTP) allows terminals to use minimum transmit 

power to achieve adequate Signal-to-Interference and Noise Ratio (SINR) at the 

receiver side, hence accomplishing the purpose of energy conservation. By adjusting 

the transmit power level, the interfering range of each transmitter becomes adjustable 

thereby reaching only the desired receiver, avoiding interference on irrelevant 

neighbouring nodes or the near-far problem, allowing more simultaneous transmissions 

to take place, therefore achieving higher spatial reuse. The VTP mechanism is also 

useful in a high node density environment. In some cases, the VTP is used simply 
because of insufficient remaining battery power at a wireless terminal, so instead 

reaching the nearest neighbour to carry out a minimum distance communication 
becomes a priority. 

As a result of variable transmit power, the wireless link-lengths will change 

accordingly, in which case it will pose a chain reaction concerning routing overhead 
increases in WANET. Firstly, variable link length triggers a variation in the number of 
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relays made by intermediate nodes, i. e. the number of hops between a pair of 

communicating nodes. In this sense, the increase and reduction in the number of hops 

will affect any routing algorithm that uses hop-count as the routing decision criteria. 

Consequently if more intermediate nodes are involved in a routing operation, the 

routing control information exchanges between them will increase proportionally, 
hence the routing overhead may increase accordingly. Secondly, the variation in link- 

length will cause the connection or disconnection of wireless terminals, which 
depending on the situation, hence the network topology will change, which means the 

routing update as a result of topology changes will also occur more often, and the 

consequence of this is an increased routing overhead. 

Both the increased number of relays and frequent topology updates, caused by variable 
link-length due to transmit power changes, results in routing overheads increasing 

proportionally, even dominating the network traffic. Hence control of the transmit 

power is no doubt an unavoidable issue in WANET routing that should be addressed of 

with serious consideration. 

3.2.3 Link Length 

Variable transmit power causes variation in wireless link length and has significant 
impact on routing, in terms of overheads and system capacity, which will affect the 

sustainable user population and the transmission quality [ 16]. 

In terms of system connectivity, the long link length enables the transmitting nodes to 

reach destination with fewer hops or relays, and consequently less relaying burden and 
delays. 

For system throughput, the increased link length, means high transmit power, and 

stronger signal energy, however, it also implies high interference and noise, hence the 

overall throughput and SINR will decrease as a result. 

In terms of routing, longer link lengths bring benefits such as a smaller number of relay 

overheads. The adverse short link length may suffer a high proportion of relay 

overheads. In reference to the above reasons, one can conclude that an optimal link 
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length is essential both for enhancing the system throughput and for routing in 

WANET. 

3.2.4 Node Density 

In a network, the same routing operation with different node densities could produce 

completely different result [73]. In WANET, a high node density means higher network 

connectivity, as well as more interference, more interruption, and more contentions 
between nodes, hence higher routing and control overheads, and a higher chance of 

collisions. Strong connectivity is beneficial for maintaining a network connection for 

routing but the high interference ftirther complicates the wireless environment. 
Frequent contention for transmission triggers an increasing number of collisions. 

The potentially increasing hops and relaying, due to the increased number of 
intermediate nodes on a multi-hop path, generate more routing maintenance and relay 
overheads, which could increase proportionally as the number of node increases 

asymptotically. Eventually if the node density increases to a dense enough situation, the 

routing control traffic will simply dominate the network traffic, in which the network 

will transmit no data traffic, but only routing overheads. On the contrary, the low node 
density implies weaker network connectivity, lower interference, less contention, fewer 

collisions, and fewer relay overheads. However, the increasing demand on WANET 

user capacity means the node density in such a network will in most cases, 

asymptotically increase. 

It has been suggested that variable transmit power could deliver the optimal link length, 

hence system throughput [73]. Further more, an optimal number of surrounding nodes, 

which form a strong enough connectivity, will enable a transmitting node to achieve 

optimal throughput. 

However in a random network where wireless nodes are randomly distributed, if one 

node has determined its optimal number of neighbouring nodes, can other nodes be 

satisfied concurrently? There exists a trade-off between optimal node density and 

optimal transmit power, which also influences the number of hops for relaying in the 

network. Any routing algorithm design should ignore such an issue, since the important 

interrelationship between optimal transmit power, optimal link length, optimal 

37 



Chapter 3 Overview of Routing Strategies 

neighbouring node density, and optimal number of hops for relaying, can significantly 

affect the perfonnance of a routing algorithm, and finihermore the performance of the 

wireless network. 

3.3 Routing Algorithms 

Routing algorithms for wireless communication systems have evolved from the 

centralized era to distributed era. Depending on where the routing process takes place 

within a system, existing routing algorithms can be broadly summarised into two 

categories: centralised routing, and distributed routing. 

Centralized routing algorithms operate in a central location, such as a base station in 

the cellular system, where all the function and burdens of routing are carried out by this 

central location in a centralized manner [1,2,4,9,12,14,22]. Most conventional 

communication systems use this type of routing. Depending on the adaptability to 

network status changes, centralised routing algorithms can be classified as static or 

adaptive algorithms. In the centralized stage of routing algorithm development, static 

routing algorithms are designed to determine and maintain connection in relatively 

stable networks, where status changes are rare. The adaptive type of routing algorithms 

are designed for networks which have variable connection conditions, but based on 

centralized controls, such as infrastructure based wireless systems [42,43]. 

Distributed routing algorithms, in contrast, operate at terminals, such as wireless nodes 

in WANETs, and carry out the burden of routing and function as a router, in a 

distributed manner [1,12,14]. Communication networks, such as WANET, tend to 

develop wireless systems that operate without the support of fixed infrastructure, whilst 

it remain inter-connectable to existing infrastructured cable or wireless systems. 

Depending on the method used for constructing their routing table, this type of routing 

algorithm can be classified as proactive, reactive, hierarchical etc. 

Proactive routing algorithms evolved from earlier centralized algorithms, for 

distributed operation with short initial route discovery delay. However, this type of 

algorithm has very high route control overheads, is due to the proactive maintenance of 
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routes that are not in use. The reactive type of routing algorithms can reduce these 

routing overheads, since they only initiate routes when needed, and discard them when 

not in use, but these algorithms can take too long to converge. Hierarchical routing 

algorithms combine the proactive and reactive algorithms, and this type of algorithms 
have less routing overhead than proactive algorithms, and fin-thermore they converge 
faster than reactive algorithms. Miscellaneous distributed routing algorithms are 
derived from these three basic routing categories. 

3.3.1 Static Routing Algorithms 

The static/non-adaptive routing algorithms make routing decisions and compute routes 
in advance, which means the route is chosen and stored in each router long before the 

communication starts. The path leading to the destination node is pre-calculated and 
depends on static network topology and pre-estimated traffic information. However this 

pre-stored routing information does not reflect any network status changes that take 

place over any period of time. 

3.3.1.1 Optimality Principle and Shortest Path Routing 

The optimality principle is one of the basic static routing algorithms that select the 

optimal path according to a network topology map. The map is plotted when the 

network has just started. Each node draws an optimal route map that is rooted from 

itself, and records all optimal routes leading to every known destination in the network. 
This tree shaped map is called a sink tree, as shown in Figure 9. 

Figure 9 (a) illustrates an overall network topology map, which contains nodes, 
indicating routers, and arcs, indicating links. Figure 9 (b) is the sink tree plotted by the 

node A, in which case from node A to node E there are two alternative paths, the A-H- 

E and the A-H-F-E, whereas the optimal path in the map according to the optimality 

principle is the shorter route A-H-E. Figure 9 (c) and (d) is the sink tree rooted from the 

source nodes B and C respectively, and shows paths leading to all destinations in the 

network. 
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(a) 

(d) 

Figure 9 Optimal Principle 

(b) 

(c) 

(a) Subnet Map (b) sink tree of node A (c) Sink tree of B (d) sink tree of C 

Shortest Path Routing (SPR) is the most fundamental routing algorithm jointly used 
in many different forms because of its simplicity [1,13,42,74-76]. The idea of the 

SPR algorithm is to construct a graph of a communication network, where each link is 

labelled with a measure in the graph. In this case a route weight can be calculated as the 

function of these measures, such as distance in the number of hops, mean queue size, 
bandwidth, average traffic load, transmission delay, communication cost, mean queue 
length and other factors. 

The Dijkstra algorithm (Dijkstra 1959) is one of the numerical algorithms used for 

computing the shortest path in SPR [76]. The measuring of a shortest path can be one 

criterion or a combination of different criteria, whilst the selection of a route in some 

cases could be the fastest path rather then shortest distance. After all the links have 

been measured and labelled, the graph of the network is ready for a particular routing 

operation. Figure 10 illustrates the first four steps of finding a route from node A to H 

using SPR. 
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Figure 10 (a) shows the whole map of a network of eight nodes, each interconnected 

with neighbouring nodes by links labelled with an initial weight. Figure 10 (b) 

illustrates the first step inspection of all adjacent nodes to the working node A, where 

there are two alternative next-hop nodes, B or C, and because B has a shorter link, it 

will be marked as the working node in the next hop. 

Figure 10 (c) shows the second step, node B repeats the previous inspection and marks 
D as the next working node. Figure 10 (d) and (e) are the third and fourth step, where 

each working node repeats this router discovery operation until the destination is 

reached. Each node along the shortest path is labelled with a distance to the source, A, 

and the last hop node that it passes through. 

(ce, . 1) 

\4 ">< \5 
I \fr N\ 

. 1) 

(a) 

WA(3, A) ýItAl (3t. 

---------- 
6, B) 

(b) (c) 

J3, EF 00, ----------- E IRV- D) 

I, 
0 "L! fL-UH (4, G) ---------- 

(d) 

Figure 10 Shortest Path Routing 

(e) 

(The first four steps of route discovery [221) 

The optimality principal and SPR introduces the basic method of selecting the shortest 

path, and the rest of section 3.3.1 introduces another basic routing algorithm called 
flow-based routing, which reflects network status changes. 
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3.3.1.3 Flow-based Routing [221 

Routing algorithms introduced so far only take network topology into account, ignoring 

the traffic loads, whereas Flow-Based Routing (FBR) considers traffic flow when 

making a route decision, since traffic load variations may also affect routing decisions 

[28]. Imagine a chosen shortest path has heavy traffic on part of its links, in which case 
it may be better to choose a longer path with less traffic, hence shorter delay. FBR uses 

mean packet delay, which could be affected by traffic loads, on each links to measure 
the shortest path, in other words, the shortest path is the series of link with the shortest 
time delay caused by traffic loads, rather than the shortest distance. 

It is possible to analyse the stable and consistent traffic flows mathematically in a 

network, and compute the average packet delay. Because the average packet delay 

reflects the traffic load on a particular link, a route selection decision could be made 
based on measures such as average link delay. The mean packet delay can be calculated 

as a fraction of the traffic load on a link. Assuming the traffic flow is "), " in 

packets/second, and the link capacity is "C" in bits/second, 1/ýt is mean packet size in 

bits. Then the link capacity in packets/second is "C/(I/g) = PC". The mean packet 
delay on a link represented by "T" can then be calculated using following equation: 
"T= 1/(gC - X)" (e. g. if 1/g = 800 msec, C= 20,000 bits/sec and %= 14 packets/second, 

the mean packet delay T is 91 msec). 

The drawback of FBR is that routing information recorded in the routing table will not 

change, due to its static routing nature, in which case later routing decisions cannot 

reflect traffic loads and network topology changes. The static routing algorithms use the 

estimated routing information to make a routing decision, but this cannot satisfy the 

growing demand on network size, complexity, traffic load, and topology changes. The 

later developed dynamic/adaptive routing algorithms make a routing decision referring 
to calculations using the most up-to-date routing information such as network topology 

changes or traffic loads changes [22]. 

3.3.2 Dynamic Routing Algorithms 

The evolution of modem networks poses challenges such as fast changing network 

status, hence using static routing algorithms becomes less attractive, and routing 
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algorithms that select a path that reflects network changes dynamically become more 

preferable. A dynamicladaptive routing algorithm is defined in contrast to the 

static/non-adaptive algorithms that were reviewed in the previous section. Routers use 
dynamic routing algorithms to execute routing operations by communicating with their 

neighbours periodically. 

The basic difference between dynamic and static routing algorithms is: static algorithms 

make routing decisions based on one-off routing inforrnation obtained at the beginning 

of the network operation; dynamic routing algorithms make decisions using 
information periodically exchanged between nodes. In general dynamic routing 

algorithms for centralised systems can be classified into two categories: Distance 

Vector Routing (DVR), and Link State Routing (LSR). The way of routing information 

maintained in the routers provides a distinguishing feature between these two types of 
algorithms. DVR algorithms maintain all routing information in a routing table, which 
indicates the cost to each destination and the next outgoing link towards it. The Routing 

Information Protocol (RIP) and its version 2 (RIPv2) belong to this category [34]. 

LSR algorithms maintain a buffer, which stores Link State Packets (LSP) that carry 

routing information of the entire network topology, whereas its routing table only stores 

the calculated shortest path for each known destination. The Open Shortest Path First 

(OSPF) [71] and Intermediate System-Intermediate System (IS-IS) [27,28] routing 

protocols belong to this category. The following section describes only the common 
features of DVR and LSR, instead of details of each specific routing protocol. 

3.3.2.1 Distance vector routing 
The classic DVR uses the Distributed Bellman-Ford (DBF) algorithm, developed long 

before the Internet existed [22]. The modifications of DVR were used in Advanced 

Research Project Agency Network (ARPANET) for the U. S. Department of Defence, 

and were also applied to the later formed Internet under the name of RIP [34]. 

Each node in the network topology map represents a router, and it maintains a regularly 

updating routing table indexed by their IDs. The routing table has one entry for each 

node, containing two parts of the routing information of that router. The first part is the 
distance vector (e. g. number of hops; average delay time measured from a time stamped 
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ECHO packet; queue length on its outgoing link; or any other metrics), which records 
the route weight to reach a destination node; the second part is the preferred next-hop 

node leading towards that destination. Each node periodically updates its routing table 

by exchanging Distance Vector Lists (DVL) with its neighbours (e. g. once every 'x' 

rns), and updates its own routing table referring to those received DVLs [1,77]. 
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Figure 11 Routing table update process 

(a) The subnet map (b) Routing table of node J and DVL from neighbours [I] 

Figure 11 illustrates a network topology map, a routing table in node J, and four DVLs 

sent from J's neighbours. Figure II (a) is the topology of the network, and node J is 

connected with four neighbours (A, I, H, K) by communication links. Figure II (b) 

shows the two-columned routing table of J, which records the distance measured by 

delay time, and a preferred next-hop node list for forwarding packets; and 4 single 

column DVLs sent from J's neighbours for exchanging knowledge about further away 
destinations. Eventually J's routing table will have the distance measurements to all 
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known destinations in the network. On the other hand, J will send its own DVL to its 

neighbours. 

For example, assuming that J needs to calculate a route to reach B, which is a node not 
directly connected to J, and there are four optional paths from J, via its four immediate 

neighbours; A, I, H, and K, that need to be measured. Path J-A-B will take, from J to A, 

8 ms, plus from A to B, 12 ms, of the total 20 ms to reach node B. Then an alternative 

path, J-H-G-B is measured at approximately 29 ms; J-K-L-H-G-B takes about 40 ms; 

and node B cannot be reached via I. After calculation and comparison, the optimal path 
J-A-B then is selected for updating the entry for node B in J's routing table. 

The major drawback of DVR is that sometimes it is very slow to converge to the 

correct solution. In other words, the good news about available links travels fast in the 

network at the speed of one hop per exchange, and the bad news about broken links 

travels very slowly, and lead to an endless routing loop error, known as the count-to- 
infinity problem. This is due to the nature of DVL exchanges for routing table updates. 

When the count-to-infinity problem occurs, the message about available links is 

noticed and propagated during DVL exchanges, and travels in the network at the speed 

of one hop per exchange. However, the message about a broken path is not propagated 

as effectively as the good news. 

Figure 12 shows the count-to-infinity occurring process in a chain network, which 

consists of five routers using DVR [1,22]. Figure 12 (a) shows the exchange process of 

the distance vector measured in number of hops, where all links are normally 

connected, and the message of the available 1-hop path via B to A propagates at the 

speed of 1 hop per exchange. B's neighbour C will add the length of B-C to A-B, so 

that C learns the route via B to A in 2 hops. After a finite time of DVL exchanges all 

nodes will learn the distance to A [22]. 
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1221 (a) Normal vector exchanges (b) Count-to-infinity 

Figure 12 (b) demonstrates the routing error that occurs when a broken link triggers the 

count-to-infinity loop [22]. Assuming the link between B and A has broken, the DVL 

exchange causes conftision for nodes in opposite directions, since the routing table only 

records a next hop forwarding information. 

For example, B learns that the link to reach A via itself is not available, but C can reach 
A in 2 hops, so after I exchange, B updates the entry for A in its routing table for the 

path B to A via a route weight/cost of a total of 3 hops (B to C in I hop plus C to A in 2 

hops). Then C later learns the same error message from B, and updates the entry for A 

with a cost of 4 hops. Eventually all the nodes on the other side of the broken link will 
be locked in a endless routing loop, and the route weight for reaching A from 

themselves will be increased up to infinity. This routing error will continue to loop 

amongst these five routers, and if the path between A and B does not come back on, the 

routing process will never converge to a correct answer. This problem can be solved by 

a method called split horizon. 

Tim 
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The DVR uses split horizon, which operates in the same way as the DVR described 

previously, the only difference being when a link failure occurs, the DVL sends 
different stories to both sides of a node [22]. For example, the link connecting B to A is 

broken, as shown in Figure 12 (b), so B learns from its left that the link is not available, 

and C tells B the distance to A is infinity, so that B realises A is not reachable from 

both side. On the other side, C still tells D that the distance to A is 2 hops. As a result, 
B marks the distance to A as infinity for A's entry in its routing table. In the next 

exchange, both B and D tell C the distance to A is infinity. C then updates A's entry in 

its routing table with a distance indicating infinity. This process continues to propagate 

the message of link failure at a speed of one hop per exchange, eventually all nodes 
learn this message and endless routing loops can be prevented. 

However, the split horizon will fail under certain circumstances, like other algorithms 

[22]. Figure 13 illustrates the network topology where split horizon does not work very 

well, and confusion reoccurs when more than one node operates on the other side of the 

broken link. For instance, router B detects the direct link to A is down, and both router 

C and D tell B that the distance to reach A is infinity, so that B marks the distance to A 

as infinity. However, D tells C it can reach A in 3 hops, so C marks the distance to 

reach A via D is 3 hops in distance. The following DVL exchange will continue this 

confusion, and another routing loop starts, eventually causing the count-to-infinity 

routing error. 

Figure 13 Split horizon hack 

The DVR algorithm is efficient and easy to implement for networks that do not have 

many changes of topology and transmission delay. It was used in ARPANET until 1979 
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when it was replaced by the Link State Routing (LSR) algorithm. There are two major 
drawbacks which caused dismissal of the DVR. Firstly, it takes too long to converge 

even with improved variants like split horizon. Secondly, DVR uses the queue length as 
the primary metric, which does not reflect transmission speeds or bandwidth changes 
between different networks, Whilst the transmission speed has changed greatly in the 
last few decades (e. g. PSTN was 56k bps; ISDN was 128k bps, DSL can transmit up to 

500k bps, ATM and Broadband ISDN networks can transfer up to 150-600M bps). 

3.3.2.2 Link state routing 
The classic link state routing (LSR) algorithm operates in two stages: route discovery 

and route maintenance. The first stage obtains routing information for later construction 

of the global network map; the second stage calculates the shortest path using certain 

types of measure (e. g. delay time, traffic loads etc), and updates the routing table with a 

route weight cost for each destination node [22]. Two stages of LSR can be surnmarised 
in five steps of operation. 

The first step allows each node in the network to learn information about all its 

neighbours. In this case, each node learns which is its neighbour node and what their 

address identity (ID) is. 

The second step is to measure the cost for each hop to reach all immediate 

neighbouring nodes. There is an argument about whether the traffic loads should be 

included in the measurement, since if the traffic load is counted, the round-trip time 

should start counting when the packet is queued; otherwise the round-trip time should 

start counting when the packet reaches the front of the queue. In this case, if two links 

have the same bandwidth, the link that is always heavily traffic loaded will not be 

chosen as part of a shortest path. 

On the other hand, the argument against traffic-induced delays is that this method will 
trigger a routing oscillation problem. Figure 14 (a) illustrates such circumstances, 

where two links (BE and DG) connect 2 nodes on the left and the other 2 nodes on the 

right, where BE is loaded with heavy traffic, and link DG has the same bandwidth but a 
lighter traffic load, then DG will become the preferable route, and all subsequent traffic 

will congregate on this link. Soon DG becomes overloaded, and BE become vacant, so 
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all the traffic will move back to BE. This process repeats itself and triggers an 

oscillating routing loop. In this sense, it is better to just measure the time delay instead 

of taking into account the traffic loads or bandwidth on the link. 

The third step is to construct a Link State Packet (LSP), with a source node ID, a 

sequence number, an age field and a link cost table in it, so that it can record all routing 
information previously learnt, as illustrated in Figure 14 (b). LSPs are constructed either 
in a fixed period of time, or when there is a significant change in the network (e. g. a link 

or router goes down or comes back up again), and are propagated in the network using 
flooding. 
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Figure 14 Link state routing algorithm 

(a) 8 nodes network (b) link state packets (c) Packet buffer for router B 

The fourth step is to propagate the LSP in the network to distribute routing 
information. This includes receiving, processing, and copying LSPs from other nodes, 
and then constructing a new LSP and sending it out to other nodes. The intermediate 
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nodes receiving an LSP will store it into a local packet buffer for comparison. The 

intermediate routers will only overwrite the old record with a LSP if it has a newer 

sequence number and fresher information, and acknowledges or forwards it to its 

neighbours. Figure 14 (c) illustrates an example of a packet buffer, which holds 

information about source node ID or address, the LSP sequence number, the age or 
lifetime of LSP, and the matrix of "send" and "acknowledgement" flags that indicates 

whether a newly arrived LSP should be forwarded on to, or acknowledge neighbouring 

nodes. Every router stores such a packet buffer, so that all nodes in the subnet can 

construct a graph of the entire network. This means every node knows its neighbouring 

nodes and the cost to all possible destinations in the network. 

The fifth step is to calculate the shortest path, using Dijkstra's algorithm, according to 

the information held in the local packet buffer, and then update the local routing table. 

Each node constructs a routing table, where each known source node is referenced by a 

routing entry which records the cost to reach a source node and the preferred next hop 

neighbour node. Yet LSR has a major drawback, which is the large amount of routing 

overheads due to the propagation and exchange of LSP, as well as the routing table that 

grows proportionally with network size. The next section will introduce three different 

types of routing, i. e. broadcast, multicast or unicast, each of which can send messages 

to different destinations simultaneously. 

3.3.3 Broadcast, Multicast and Unicast routing 
Transmitting packets from source to destination can be achieved in many different 

ways, such as broadcast packets to all destinations simultaneously, or multicast packets 

to a specific group of destinations, or unicast to a particular destination, depending on 

the type of application and the number of destinations. Broadcasting or multicasting is 

for point-to-multipoint packet transmissions, and unicasting is used for point-to-point 

packet transmissions. 

3.3.3.1 Broadcast routing 
Broadcast routing is a method used for applications where packets need to be sent to 

unspecified destinations simultaneously, for example route update information, or 

online broadcast real time applications that can be shared by the public. Tbree methods 

can achieve packet broadcasting. 
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First is to send a packet to each destination simultaneously on predetermined routes. 
However, this method requires a complete list of routes leading to all destinations, and 

requires a lot of bandwidth. 

The second isflooding, in which case the nodes do not need a complete list of routes. 
The problem with this method is routers may generate too many duplicates and 

consume too much bandwidth. One of the most fundamental and simple methods for 

propagating routing information and packets is flooding, in which it forwards 

information without predetermined routes. Each node simply copies the received 

packets and forwards copies to all its neighbour nodes, except the node where the 

packet from. Such a way of propagation without control is very simple, but poses an 
infinite number of duplicated packets and stale routing information travels inside a 

network, causing confusion between the nodes, and triggers routing loops. 

To prevent these problems, a hop count can be used as the packet's residual lifetime 

counter, to limit the distance that the packet can travel, and source nodes can attach a 

sequence number to an individual packet, so that other nodes can read this number and 

record the highest seen sequence number to later determine if a packet from the same 

source has been forwarded before or carries stale information. 

Figure 15 (a) illustrates the Internet Protocol version 6 (lPv6) addressed packet header, 

containing a hop limit field, which is a hop count field with a maximum initial limit 

(e. g. 15 hops) and decreases at each relaying hop. Figure 15 (b) shows a sequence 

number entry recorded in node B's routing table, where only a packet from a source (A, 

C, D, E, F, G or H) with the highest sequence number will be used to update and 

overwrite routing information for the record of source, otherwise it is discarded as a 

stale duplication. For example, B has received 12 packets from A, I packet from C, 10 1 

packets from F. 
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Figure 15 IPV6 addressed Packet 

(a) Hop limit field (b) Sequence number table in router "B" 

Flooding has the advantageous feature of being simple, is robust, has a short delay. and 

updates all the databases concurrently selecting every possible path in parallel, which 

could be beneficial in distributed database applications. However the exponentially 
increasing packet duplication exacerbates routing overheads. Many modified versions 

of flooding have been suggested in different routing algorithms developed over the 

years. 

The third method is multi-destination routing, which uses the packets themselves to 

carry a complete list of routes instead of storing them, as in a router. Each packet 

contains a list of destinations, the router checks all the destinations and deten-nines the 

set of outgoing lines needed for transmission. This method is less demanding on the 

nodes, since it generates a large number of packets. 
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3.3.3.2 Multicast routing 
Multicast routing is a method of sending packets, to a well-defined or selected group 

of destinations simultaneously instead of sending to all destinations. This group is 

numerically large but small compared with the whole network. To create, maintain and 
destroy groups, either the hosts inform their nodes about changes in the group, or nodes 

must query their hosts periodically in order to learn which other nodes are in the group 
[22]. 

Nodes will compute a spanning tree that covers all other nodes in the network or group. 
When a packet needs to be multicasted to a group, each node will examine its spanning 

tree of the network and mark different groups on the tree, then this packet will be sent 

only to those nodes that belong to the same specified group. Figure 16 (a) shows a map 

of the network with all routers represented by a node. 

(a) 
E 

(d) 

C 

2 

(b) 

(c) 

Figure 16 Multicasting network map and groups 

I 

(a) Network map (b) A's spanning tree (c) Multicast Group I (d) Multicast Group 2 
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Figure 16 (b) illustrates a spanning tree computed by node A, in which case all nodes 

are marked with a group ID to indicate which group they belong to. Figure 16 (c) shows 

all the nodes belonging to multicast group 1, including node A, B, G, H, E, and D. 

Figure 16 (d) is all nodes of group 2, including node A, B, G, H, F, and C. If a packet 

sent for group I is received by node A, it will forward this packet to all nodes on the 

spanning tree of group 1, but not to other nodes belonging to unrelated groups, as well 

as the multicast packet for group 2. 

3.3.3.3 Unicast routing 
Unicast routing is a method to propagate packets or information in a point-to-point 
fashion from a source to a unique destination [78,79]. This method is commonly used 
in point-to-point communications on local area networks or Internets, where a 

connection is established for two tenninals to communicate with each other. Unicast is 

one of the considerations of the IPv6 addressing standard. Moreover, protocols such as 
RIP and OSPF are designed to operate in unicast fashion. Table 3 shows a summary of 

the above three types of routing. 

Type of Transmission 

Broadcast Multicast Unicast 

Destination Address to Unspecified Address to a group Address to a 
Addressed destinations specified destinations unique 

destination 

Type of Public sharing Group sharing Paired user 
Communication communication communication sharing 

communication 
Sent to all members with Sent to multiple Point-to-point 

Method of predetermined routes; specified destinations routing 

routing Flooding with control; 
Sent to multiple known 

destinations 

Table 3 Different types of transmission used for Routing 

3.3.4 Proactive (Table-Driven) 

The routing algorithms introduced so far are designed and developed for centralized 

networks, whereas this section investigates routing algorithms that have evolved from 
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these earlier schemes, for distributed routing in networks such as WANETs. Distributed 

routing algorithms can be classified, depending on how their routing table is 

constructed, into three basic categories: proactive known as table-driven routing 

algorithms, reactive or so-called on-demand source initiate algorithms, and hierarchical 

or hybrid routing algorithms, which combine proactive and reactive types of 

algorithms. This section carries out a brief overview of proactive routing algorithms. 

The proactive type of routing algorithms predetermine and maintain a routing table, 

which records a track of routes connecting itself to all destinations in the network, in 

each node at all times, before the routing process actually starts. The advantage of 

proactive routing algorithms is: they have shorter initial route discovery delay, meaning 
that when a route is required, nodes can immediately select a predetermined route from 

the routing table without initiating route discovery each time. 

However, proactive routing algorithms generate additional routing control traffic, due 

to each node wasting bandwidth to maintain routes even when it is not in use. The 

Destination Sequenced Distance Vector (DSDV) routing protocol [80], and the 

Optimised Link State Routing (OLSR) algorithm [75,81] are the representative 

algorithms of this category. 

3.3.4.1 Destination-Sequenced Distance Vector (DSDV) routing 
DSDV is derived from the classic Distance Vector Routing (DVR) algorithm and is 

designed to suit dynamic network changes in WANET [1,80]. DSDV preserves the 

simplicity of RIP [34], which is a well-known Internet routing protocol that fails to 

handle network changes in WANET, but at the same time avoids the routing loops 

caused by frequent route information exchanges. DSDV tags each routing table entry 

using a sequence number, so that nodes can distinguish stale routes from newly 

advertised routes, avoiding routing loops. The logical steps of routing operation used 

with DSDV can be summarized as follows: 

0 Each node maintains a routing table, in which are listed all known destinations 

and the distance (number of hops) required to reach them. 

0 Each route entry in the routing table is tagged with a sequence number. 
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0 Each node broadcasts its own routing table to all its neighbours periodically or 

whenever there is a significant change of topology. 

0 If a route is unstable, broadcasting of a routing table could be delayed to reduce 

the number of rebroadcasts arriving with the same sequence number. 

0A routing table can be updated by using its neighbours' routing tables, thus 

remaining consistent with the dynamically changing topology. 

Figure 17 shows an example of a WANET topology map and the routing operation of 

node C using DSDV. Consider the node H moves from left to right on the map. The 

existing route in node C's routing table will change accordingly. Figure 17 (b) 

illustrates the routing table of C, which contains one entry for each destination before H 

moves. The contents of each entry are listed as follows: 

0 The Destination node address (Des. ) indicates each available node in the 

network. 

0 The Next hop address (Next. ) indicates the preferred neighbouring node to be 

used to forward a packet towards a particular destination. 

0 The metric (number of hops) indicates the measured distance to reach a 

destination. 

0 The Sequence number (Seq. ) indicates sequence numbers originated by a 

destination for the new route leading to it. 

The Install time (Install. ) indicates the time of deletion of a stale route. 

The Stable data (Stable) indicates a null structure, meaning no routes are to be 

superseded by be in competition with other possible routes. 
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Figure 17 DSDV Routing 

11,801 (a) WANET topology map (b) C's routing table (c) Updated routing table of C (d) 

Broadcast C's routing table (e) Broadcast of updated C's routing table 

Figure 17 (c) illustrates the updated routing table of node "C" after node "H" has 

moved from its left to the right of the network. The highlighted entry is the updated 

entry for node H. Figure 17 (d) is the routing table of node "C" broadcast to all its 

neighbours before node "H" has moved. Figure 17 (e) is the updated version of the 

routing table broadcast to all its neighbours after node "H" has moved and the updated 

entry for node H has been highlighted. The broadcast table includes the Destination 

node address (Des. ), the "metric" (number of hops) and the Sequence number (Seq. ). 

All neighbouring nodes of C receiving the updated routing table will update their own 

routing tables. The updating process occurs either periodically, or when a link is broken 

off or comes back on. To maintain consistency of the dynamic network topology, the 

rapid update of routes is necessary. 

The advantages of DSDV are the simplicity, short initial route discovery delay, and 

periodical updates of route information according to topological changes. The 

drawback of DSDV is when a new node joins in, or an existing link breaks off, it will 
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broadcasting of connectivity information, which wastes network resources as it 

maintains all paths leading to all destinations at all times, even for routes not presently 

needed. The packet overhead will increase exponentially as the number of nodes in the 

network grows larger. The proposed Optimised Link State Routing algorithm (OLSR) 

can thus minimise part of the negative impact of DSDV. 

3.3.4.2 Optimised Link State Routing 

OLSR is the optimization of the classic LSR introduced earlier. It is different from 

DSDV, in the sense that it only maintains those routes needed. OLSR is also different 

from LSR, since it uses a set of selected neighbouring nodes for relaying packets that 

are send from any node [ 1,8 1 ]. 

Any source node (e. g. S, shown in Figure 18) selects a set of relaying nodes among its 

one-hop neighbours, known as the Multipoint Relay (MPR) set (shown as the grey dots 

in Figure 18). The MPR nodes must cover all two-hop nodes and only a member of this 

MPR set may retransmit packets from the corresponding working source node. The 

working node can also be selected as a member of another node's MPR set, and that 

neighbouring node is called a Multipoint Relay Selector (MPRS as S2 shown in Figure 

18). 

2-hops circla 

1 -hop circle 

Source node 0 

MPR nodes 0 

Neighboudng nodes 0 MPRS 

Figure 18 Multipoint Relay mechanism of OLSR 1821 
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The source node records the MPR in a HELLO packet, which is broadcast periodically. 
If a node receives a HELLO packet from a neighbour, and if this node's ID is in the 

MPR set that comes from that neighbour, it will list the source node of the HELLO 

packet as an MPRS. 

Each node learns those MPRS surrounding it and generates a Topology Control (TC) 

packet, then broadcasts this to all other nodes in the network, only via their MPRs, so 
that other nodes can update their topology map [82]. In this way the route information 

in TC packets can be broadcast to the entire network, Whilst significantly reducing 
duplicated retransmissions. 

Each node has a Multipoint Relay Selector Sequence Number (MSSN), which is 

increased whenever the MPR list of this node is updated. Each node relies on MPRs to 

obtain and propagate routing information, then calculates or updates the shortest paths 
in its routing table. Each node periodically broadcasts the route information detailing 

which neighbours have selected it as an MPR. The route is a sequence of hops through 

the MPRs from the source to the destination [1,82]. 

Figure 19 illustrates two different routing information packets used by OLSR: (a) 

shows the HELLO message, which records an MPR node set with their addresses and 

their link state; (b) shows the structure and content of a TC packet, which records the 

list of MPRS of a working source node. 
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Figure 19 OLSR route information packets [1,81,821 

(a) Hello message (b) Topology control message 

OLSR has made additional improvements in comparison to the classic LSR. Firstly, it 

reduces the size of the control packets, so each packet only records information of MPR 

set nodes. Secondly, OLSR uses MPRs to minimise the control packets (similar to the 

link state packets in LSR) flooded in the network and reduces the routing control traffic 

caused by packet retransmission. OLSR simply reduces the time interval for periodic 

control packet transmission, so that the route information stays consistent with network 
topology changes [1,81,82]. 

The major drawback of OLSR is the proactive nature of routing, which means network 

resources are wasted due to predetermined routes leading to all destinations being 

maintained at all times, even for routes not currently in use. To solve this problem, 

reactive or source initiate on-demand type of routing algorithms are proposed. 

3.3.5 Reactive (Source-initiated/On-Demand) 

Reactive routing algorithms activate a route discovery procedure by source nodes when 
a route is needed. This results in more efficient use of network resources owing to the 
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fact that no maintenance is required for routes that are not in use. The route discovery 

process is complete once a route is found, or all possible routes have been examined, 

and the established route is maintained until the destination becomes inaccessible via 

every path or the route is no longer required [1,9,13]. 

The advantage of reactive routing algorithms is that the bandwidth consumption for 

maintaining the a routing table in each node is far less than proactive algorithms and it 

is loop free. On the other hand, reactive algorithms are slow to converge in initial route 
discovery, which causes long initial delay before the real data communication starts. 
Dynamic Source Routing (DSR) [83], ad hoc on-demand distance vector (AODV) [84], 

temporally ordered routing algorithm (TORA) [85], and the Associativity Based 

Routing (ABR) [86] belong to this category. 

3.3.5.1 Dynamic Source Routing (DSR) 

DSR is designed for multi-hop WANET routing, and is composed of two mechanisms, 

route discovery and route maintenance. DSR uses source routing, which obviates the 

use of intermediate nodes to forward routing packets and obtains up-to-date routing 
information. DSR accesses and propagates routing information that is piggybacked in a 
data packet header instead of advertising routing information periodically, or sensing 
link status, or using neighbour detection packets. DSR allows the routing overhead in 

the data packet to be scaled to only what is needed for reacting to changes on the 

currently used routes [83]. 

DSR can discover single or multiple routes in a one-route discovery operation. Each 

packet carries in its header the complete list of intermediate nodes that it must pass 

through. Routing information is cached and updated in intermediate nodes when 
forwarding or overhearing packets. DSR avoids initiating a new route discovery when a 

source route fails and instead uses alternative routes previously discovered for the same 
destination. DSR records routes that have been discovered previously in a route cache 

that is equivalent to a routing table in each node. 
DSR supports unidirectional routes and asymmetric links, in which case a link between 

two nodes may not work equally well in both directions due to different antenna 
functions, propagation patterns, or transmission power levels. In the case where reverse 
links are not available on some part of a route, DSR allows nodes to send packets to 
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any other nodes using multiple links. This is a major advantage for a reactive routing 

algorithms that were later proven to be very useful in developing our own original 

routing strategy called Minimum 1mpact Routing (MIR), which will be discussed in 

more detail in chapter 5-7. 

In a single route discovery, the initiator can learn and cache multiple routes to any 

particular destination. In this way, if one source route is changed, the initiator can still 

use other routes leading to the destination. This increases the capacity for rapid reaction 

to route changes and avoids the increasing packet overheads caused by initiating a new 

route discovery procedure whenever a route is broken. 

Figure 20 illustrates the DSR mechanisms, where (a) shows a Route Request (RREQ) 

packet with an ID number (2) originating from initiator A (Sour. in the packet), and 

records intermediate nodes (Int. in the packet) along one of the paths (A-B-C-E-H-1) to 

the target node I (Des. in the packet). 

Sour A Sour A 

ID 2 ID 2 

Des. I Des. I 

Int. 
-A 

Int. A, 

IB 

RREQ 

So ur Sour A 

ID 2 Sour 
'11) 2 

Des. I 'ID 2 Des. I 

Int. A, Des. I Int. A, 
R, 

I nt. : 'L, 
B, F, 

(a) 
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(b) 

Figure 20 DSR routing mechanisms 

(a) Route discovery (b) Route maintenance 
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The intermediate node address field accumulates the addresses of each node along this 

path, increasing as nodes along this path forward the RREQ packet. Figure 20 (b) 

illustrates route maintenance when one link along the source route is broken. A packet 
is sent from source node A towards destination node I along a known multi-hop path A- 

B-C-F-1. Along this path, node B will be responsible for sending acknowledgement 
back to A, telling A it has received the packet, and respectively C acknowledges to B, F 

to C, I to F and so on. Assuming the link between node I and F is not available, F may 

send the packet to I via G or H, and returns an Route Error (RER) message to node A. 

When node A receives the RER, it scans the local route cache, sending out the packet 

using an alternative route to the same target 1. 

DSR is a simple and effective algorithm, by which a source node can learn routes to 

each intermediate node on the "source route" by using a single request and reply cycle 

in the route discovery process. All intermediate nodes can learn the route to other nodes 

in the network, as each node stores all source routes learned in the "route cache". The 

improvement on DSR is to achieve the integration of a set of algorithms or protocols to 

allow effective connectivity, seamless coverage, and scalability. This includes adding 

new features, such as multicast routing (since DSR broadcasts the packet), adaptive 

Quality of Service (QoS), and resource management etc. Many novel improvements 

and modifications of on-demand routing algorithms for WANET have been designed. 

One significantly important algorithm is the Ad hoc On-demand Distance Vector 

(AODV) routing. 

3.3.5.2 Ad-hoc On-demand Distance Vector routing (AODV) 

The AODV is based on the DSDV. AODV is designed to localize control messages to a 

very small set of nodes close to any topological changes in the network. This design 

can provide minimal control overhead and minimal route acquisition latency [1,84]. 

AODV does not maintain routes from each node to every other node in the network but 

instead maintains only the route in active use[ 1,84]. Unlike the "source route" used in 

DSR that stores the entire path routing information, AODV keeps only the next hop 

routing information. It also reduces the number of broadcasts triggered by link breaks; 

if the link does not affect ongoing communication or actively maintained route, no 
broadcast of routing information occurs. 
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AODV supports three types of communication: unicasting, multicasting, and 
broadcasting. For unicast and multicast routing, each method has two stages of 

operation: route discovery and route maintenance[l, 84]. Routes are discovered on an 

on-demand basis and maintained only as long as they are needed. 

Route establishment is associated with aging, i. e. each route is established for a source 

node that exists only within its lifetime[l, 84]. This means nodes do not store 

unnecessary route information in order to maintain a route that is not being used. The 

aging of -route packets" prevents a network from wasting system resources through 

exchanging stale route information. It also prevents confusion in routing operations 

caused by receipt of stale route information. The aging of a route entry is also applied 

in AODV. Each node maintains a routing table, which consists of one route entry for 

each destination node. The aging of a route entry prevents a node from using stale 

routes to transmit packets to other nodes after they have moved from their previous 

position. Whenever a route is not used, its route entry in the routing table will expire 

and be discarded [1,84]. 
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AODV supports both point-to-point and point-to-multipoint communications. For 

point-to-point communication, AODV uses unicast routing, and for point-to-multipoint 

communication, it uses multicast routing. The route information obtained when 

searching a multicast route can also be used for updating unicast routing knowledge. 

Figure 21 illustrates the route request and reply process in AODV, where (a) shows the 

route request process, and (b) is the route reply process. The following review of 
AODV consists of two parts: unicast and multicast routing. 

Unicast routing in AODV follows a request-reply cycle. AODV utilises source and 
destination sequence number to ensure that the routing process is loop-free, and the 

routing table only keeps the most recent route information. Once a source node starts a 

route discovery process, it creates a Route Request (RREQ) packet, and broadcasts the 

RREQ packet, at the same time setting a timer to wait for the reply. If no Request Reply 

(RREP) is received before the timer expires, either the RREQ is not being correctly 

transmitted or the destination has not been reached before the RREQ's lifetime runs 

out, and the source node will broadcast a RREQ retry procedure, with a longer lifetime. 

The route maintenance procedure is used to maintain an existing route as long as it is 

needed. Only the movement of a node on an active route will affect communication 
between a source-destination pair, and trigger the route maintenance procedure. 

Multicast routing supported by AODV utilizes the same RREQ and RREP cycle used 
in unicast routing. However, the route information for multicast routing is stored in 

each node's multicast routing table instead of using the same unicast routing table. The 

multicast routing table uses a multicast group address and a group sequence number for 

all nodes within a multicast group. Wireless nodes are able to join and leave the group 

at any time, and the multicast group leader maintains the group address and sequence 

number. 

The AODV routing algorithm is effective to some extent as it is routing loop free. 

However, a disadvantage of AODV is that it may be too complicated to implement for 

certain applications. The other routing loop free on-demand algorithm uses a different 

approach, called a Temporally Ordered Routing Algorithm (TORA). 
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3.3.5.3 Temporally Ordered Routing Algorithm (17ORA) 

TORA is a highly adaptive, loop-free, distributed routing algorithm. The concept of this 

algorithm is based on link reversal routing (LRR) [87,88]. Three representative 

algorithms are developed base on LRR, the Gafni-Bertsekas [89] algorithm, the 
Lightweight Mobile Routing (LMR) [90] algorithm, and TORA [1,87,88], where all 
these algorithms are based on the concept of "link reversal", but differ in their routing 

organization. Instead of maintaining a distributed network state to compute a shortest- 

path, LRR maintains only sufficient state information to constitute a Directed Acyclic 

Graph (DAG). For each source - destination pair, LRR gives each known node a 

reference level measured by a "height metric", LRR uses this reference level construct 

a DAG temporarily. 

TORA combines features of both GB and LMR, and the following description will 

concentrate TORA. It utilizes the "request-reply" mechanism and the "partial link 

reversal" mechanism, in order to exchange control information and maintain routes. 
The routing information is carried in three types of control packets: Query (QRY), 

Update (UPD) and Clear (CLR). The routing used by TORA can be briefly explained in 

three basic fimctions: route creation, maintenance, and erasure. 

Route creation of TORA measures the height array of each of its neighbours, and 
determines link direction to construct a DAG, which contains multiple routes leading to 

a destination node in a previously undirected network. 

Figure 22 (a) shows a DAG with three routes starting from the source node (N I) to the 
destination node (N8) via different intermediate nodes, and in (b) a height array list 

indexed by destination node IDs, the reverse order depends on the height of each node. 
Figure 22 (c) illustrates the first four steps of directed link reversal. The upstream node 

of the broken link reverses its incoming links by broadcasting an UPD packet to its 

neighbours, and this operation continues to reverse all related links in the DAG. 
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TORA route maintenance process starts after any node in the DAG has lost its last 

outgoing link. It removes its height and link status metrics from them, and then 

reselects their heights and reorients the DAG, all directed paths would then lead to the 
destination again after a DAG reconstruction. 

Figure 23 illustrates 5 cases, which will start the maintenance procedure in a logical 

top-down diagram. All directed paths then will lead to the destination again after a 
DAG reconstruction. TORA route erasure takes place if a small group of nodes find 

themselves apart from other nodes in the network, this situation is called network 

partition, and a route erasure procedure will start. 
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The advantage of TORA is minimization of the amount of routing overhead exchanged 
between nodes by localizing exchanges of control messages to a very small set of nodes 

near topological changes. TORA maintains only sufficient routing information to 

constitute a DAG, which is rooted at the destination node. TORA can be described as 
"topological change-oriented", which means maintaining routes only in response to 

topological changes. The drawback of TORA is the use of a physical or logical clock, 
in order to achieve the synchronization of building a DAG temporally, and there will be 

a DAG for each source-destination pair. 

3.3.5.4 Associativity Based Routing (ABR) 

Another on-demand algorithm developed by C-K Toh and Vasos is called Associativity 

Based Routing (ABR) [86], which is a source-initiate/on-demand that considers 

associativity of neighbouring nodes, and emphasises associativity of mobile hosts 

(referred to as nodes in the following) in a dynamic network environment such as 
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WANET. Associativity is measured by a node's connectivity relationship with its 

neighbours, which will change when a node moves across its neighbour's wireless 

cell/coverage area. 

This transition period is measured by an associativity ticks (Athreshold) [86]. For 

example, a wireless cell size is about 10 meters (m) in diameter, and a node moves at a 

speed of 2 m/sec across a wireless cell. One or more neighbouring nodes will record an 

Athreshold of no more than 5 seconds, any Athreshold greater than 5 indicating a period of 

association stability. A node with a high associativity (i. e. greater than Afteshold) means, 

neighbouring nodes surrounded the node, and its connectivity with them is stable. If a 

node has a high associativity, and is in a stable state, it has low mobility. On the other 

hand, a lower associativity means high mobility, and an unstable state. 

During a routing process, all nodes can be categorised into three types: Source node 
(SRC), Destination node (DEST) and Intermediate node (INT). Each node periodically 
broadcasts beacons (like a hello message) to identify itself and learns its neighbouring 

nodes. Each node constantly updates its associativity ticks in accordance with other 

neighbouring nodes. ABR employs a Broadcast-Query (BQ) and Await-Reply (REP) 

cycle to accomplish route establishment and maintenance. When a route is no longer 

needed for a source node, it will delete the route by sending a Clear (CLR) message. 
The mechanism of ABR can be described in three phases: route discovery, route 

reconstruction and route deletion. 

Route discovery starts when a SRC needs a route to communicate with a DEST. SRC 

broadcasts a BQ packet with few packet header fields. These fields include a unique 
Sequence Number (SEQ), a source address/identifier (ID), destination address/ID and a 
hop count. Any node receiving this BQ packet, will check the sequence number of it. If 

the BQ from the same source with a greater sequence number has been recorded 

previously, the new arrived BQ with a less fresh sequence number will be discarded. If 

the new arrived BQ with a greater sequence number, the node will update the route 

entry in its routing table use this new BQ. 

Route reconstruction (RRQ procedure will be activated when the association stability 

relationship is violated. ABR attempts to manage link break up by relocating an 

alternative valid route instead of restarting a route query broadcast. Assuming that the 
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direction towards the destination node is downstream and that the direction towards the 

source node is upstream, the RRC may consist of four different types of operations, 
depending on which node is along the route move. These four types of operations are as 
follows: new route discovery, partial route discovery, invalid route erasure, and valid 
route update. 

Route deletion will begin when an SRC no longer desires a route. A route Delete (RD) 

packet broadcast will be initiated by the SRC. In this event all INTs will update their 

routing table entries for this SRC and delete the route announced in the clear up. A 

route deletion may be accomplished either by broadcasting RD packets, or just time out 

of the route entry when no traffic is related to the route over a period of time. 

The drawback of the ABR is that when the system prepares to shutdown, it actually 

uses more power than usual, which does not meet the design goal of reducing the power 

consumption. Both the proactive routing and the reactive routing algorithms have some 
drawbacks and some advantages. Neither pure proactive nor reactive routing can 

perfectly manage a high mobility network with frequent changes in topology, 

nevertheless hierarchical routing combines the benefits of the two, to accommodate 
drawbacks of each type to some extent. 

3.3.6 Hierarchical (Hybrid) 

Hierarchical/hybrid routing algorithms reduce routing control traffic, packet overheads, 
improve routing efficiency, network capacity, and throughput. This type or routing uses 

a two level hierarchy to organize routing, where the first level groups a small number of 

routers into a cluster/zone, and the second level connects a number of clusters into a 

subnet. 

Each cluster has one cluster head, which is a node responsible of resource allocation 

etc. Each node will constantly store routing information only for other nodes in the 

same cluster. In this case the amount of routing information stored in each router is 

much smaller. Each cluster contains one node acting as cluster head, which is 

responsible for scheduling transmissions and resource allocation. Each cluster has one 

or more peripheral nodes, within the radius of a cluster head, and zero or more 

ordinary nodes, which are neither a cluster head nor a peripheral node. 
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This section will introduce two hybrid routing algorithms: the Clusterhead Gateway 

Switch Routing (CGSR) protocol [91], and the Zone Routing Protocol (ZRP) [92]. 

CGSR and ZRP are distinguished by different clustering algorithms, which consist of 

cluster formation and clusterhead selection methods. CGSR groups nodes into a 

cluster, and then elects a node to act as the clusterhead, whilst ZRP forms a cluster for 

each node, and this inspires the later development of MIR in this research. The 

following sections will describe the clustering algorithms and scheduling algorithms of 
CGSR and ZRP. 

3.3.6.1 Clusterhead Gateway Switch Routing (CGSR) 

The main feature of CGSR is that the network is organised on a cluster-based structure, 

and transmission between nodes is scheduled in a contention-free manner. 
Transmission to adjacent clusters can be isolated through spread-spectrum multiple 

access schemes with each cluster using different spread codes [91]. CGSR routing 

algorithm can be summarized into three phases: clustering, gateway switching, and 

routing. 

Clustering in CGSR could be identifier-based [93,94] or connectivity-based [95], in 

which both serves two objectives: the selection of clusterheads and formation of 

cluster. CGSR uses different spreading codes (i. e. TDMA or CDMA) to achieve spatial 

reuse across clusters. To communicate with members in the same cluster, the 

clusterhead uses a "controlled transmit permission token protocol" (i. e. polling) to 

allocate the channel for transmission. This allows clusterheads to prioritise the 

transmission of packets in its queue. 

Gateway switching in CGSR is carried out by a peripheral node, which belongs to 

more than one cluster or is linked to a gateway node in another cluster. To 

communicate with a node in an adjacent cluster, the gateway node needs to switch from 

one set of codes to another. Conflicts may occur in terms of loss of the permission 
token for transmission when gateway nodes tune to another code. 

Figure 24 illustrates a subnet using CGSR, and mobile nodes organized in a link- 

clustered control structure. In this subnet, three clusters are formed. Cluster 2 and 3 

overlap each over, and one gateway node is directly linked with the two cluster heads. 
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Cluster I is disjoined from the other two clusters, with two gateway nodes indirectly 

connecting the clusterhead in cluster I with the two cluster heads in clusters 2 and 3. 

Clusterhead node 

Gateway node 

Ordinary node 

Radio links 

Cluster 2 

Figure 24 CGSR link-clustered control structure 1911 

Cluster 3 

Routing in CGSR combines scheduling and hybrid routing, as shown in Figure 24, 

transmitting a packet from node A (the clusterhead of cluster 2) to node C (the 

clusterhead of cluster 3) via node B (the gateway). 

CGSR uses the hybrid c lusterhead-to -gateway routing approach to route traffic, which 

means an ordinary node will forward all its packets to the clusterhead node, and 

connect to another clusterhead node via gateway nodes. 

The drawback of CGSR is that the clusterhead acts as a point of concentrated traffic, 

which may become congested, and so, a point of failure. In addition, because CGSR 

uses DSDV as the underlying routing scheme, it has the same overhead as DSDV. The 

proactive routing algorithms (i. e. DSDV) are not applicable, since they continuously 

use significant network capacity to keep the routing information current (quick on route 
discovery, but wastes network resources on maintenance). However, the reactive 

routing algorithms (e. g. DSR, AODV etc. ) also need a global route search procedure, 

and this causes significant control traffic during searching (slow on route discovery, 
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and costly network resources when searching for a route). The ZRP is another hybrid 

routing algorithm proposed to improve the robustness of routing and to reduce the 

overhead. 

3.3.6.2 Zone Routing Protocol (ZRP) 

ZRP initiates global route determination procedure based on demand of the source 

node, limiting the search cost by querying a subset of network nodes, and proactively 

maintaining routes within the local neighbourhood (a routing zone) to reduce the initial 

route discovery delay [92]. The fundamental concept of ZRP is routing zones, which is 

a description of node connectivity in terms of hops instead of physical distance. The 

routing zone is defined as a collection of nodes whose minimum distance from the node 
in question is less than the zone radius. This zone radius is the maximum distance at 

which a node's transmission will be received without errors (i. e. I hop or 2 hops), and 

any node with a distance equal to the zone radius is called a peripheral node. 

The Neighbour Discovery Protocol (NDP) in ZRP is responsible for discovering 

neighbour nodes and constructing zones for each node. The Intra-zone Routing 

Protocol (IERP) is responsible for proactively discovering and maintaining routes for 

destinations inside a routing zone. The IERP is responsible for reactively discovering 

routes leading to destinations outside local routing zones. 

During the discovery and maintenance of routes, ZRP produces control traffic, which 
includes intra-zone route update packets and inter-zone route request/reply/failure 

packets. ZRP generates control overhead when exchanging beacons. Therefore the 

performance of ZRP is mostly affected by control traffic and the control overhead. 
However, ZRP produces less control traffic than purely proactive routing algorithms 
(i. e. DVR or LSR) by using IARP to limit proactive routing within a routing zone. The 

amount of IARP control traffic required to maintain a routing zone increases with the 

routing zone size. 

The drawback of ZRP is that when the network is relatively small, and wireless nodes 

are less active, the instantaneous network load will be dominated by the control traffic 
from a single route discovery, in which case, congestion may frequently occur. There is 
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also an argument that the node acting as a clusterhead will consume more power to 

process additional tasks, such as administration or resource allocation and so on. 

3.4 Asymmetrical Routing 

Most of the current work on mobile ad hoc networks assumes symmetric connective in 

both directions, i. e. if node A can communicate directly with node B, then node B must 
be able to communicate directly with node A. In practice this will not be the case, due 

to different node capabilities (e. g. limited or variable transmit power, or limited battery 

life), or because of excessive localised interference requiring higher received powers in 

order to achieve an adequate SINR (reducing the maximum link lengths that can be 

supported). In AODV, each node receiving a Route Request (RREQ) packet will 

rebroadcast it until it has reached the destination node or it has a route to the 

destination. Such a node then replies with an Route Reply (RREP) packet, which is 

routed back to the source [96]. 

A number of strategies have been developed to establish asymmetric routes but these 

normally rely on establishing connectivity at full transmit power and then decreasing 

the node transmit power once the optimal routes have been determined. Route 

discovery information is distributed separately for each direction (forward and reverse 

path). The previously proposed methods maintain the connectivity relies on 
bidirectional routing with heavy control traffic. This result in complex routing 

operations is accompanied with redundant routing overheads. The algorithm provided 
here overcomes the reciprocity assumption in order to establish the most appropriate 

routes through a network. Moreover, it can operate over multi-hop networks where 

source and destination are not indirect contact when transmitting at full transmit power 
[96-100]. Tailoring the transmit power and routes through the network to fit in with 
desired constraints (e. g. hop count, battery life, interference) calls for cross layer design 

of the routing algorithm. 
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If we consider the topology shown in Figure 25 and we assume that the forward path is 

a route we wish to determine, then the arrows depict the maximum link lengths that can 
be achieved, during this in a detenninate time interval 

Conventional route selection constraint often relates to shortest path (either physical 

path or minimum number of hops), minimum energy consumption, or selecting nodes 

with longest battery life. The latter two require cross-layer knowledge to be used, 

especially as they will often adjust the transmit power [96-100]. 

Figure 26 shows a scenario, where a path in general has a greater number of hops, 

resulting in longer packet delays. If variable transmit power is used, the transmit power 

can be varied to disturb a set number of nodes. In this way high transmit powers can be 

used in not congested parts of the network, resulting in fewer hops, with lower transmit 

powers used on parts of the route that are in close proximity to other networks. This 

provides more of a balance between disturbance and packet delay. 
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Figure 26 Scenario illustrating benefits of minimum impact routes 

3.5 Conclusion 

The routing related issues reviewed in this chapter start with a brief introduction of 

routing environment in wireless networks, which are related with four major issues: 

interference, transmit power, link length, and node density. These factors are essential 
for developing efficient routing strategies in WANETs, as well as enhancing capacity, 

to improve system performance. 
Different routing algorithms introduced later in this chapter provide some important 

concepts that form part of later design and modelling of Minimum Impact Routing 

(MIR), which is the foundation of this research. The routing algorithm review includes 

fifteen classical algorithms, which are classified into three categories: table-driven, 

source-initiate/on-demand and hybrid routing. 
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Conventional routing for networks with a stationary infrastructure can be classified into 

two categorises: static (non-adaptive) or dynamic (adaptive) routing algorithms. The 

difference between them is the way they obtain routing information, and whether the 

routing decisions reflect the network, and topology changes. As networks grow in size 

and complexity, dynamic routing algorithms become more and more preferable. 

Nodes in a network can transmit routing information simultaneously to different 

numbers of members connected to the network. Broadcasting is the way of sending 

routing information to all nodes, multicasting is the way of sending information to a 

specified group of nodes, unicasting is the way of sending information to a particular 

node. The use of any of these three transmitting methods in routing is dependent on the 

applications and amount of destination nodes. Also, conventionalised networks do not 

have significant problems such with dynamically changing topologies, especially not as 

frequently as the Wireless Ad hoc Network (WANET). 

The proactive algorithms operate a proactive form of routing, which estimates the 

shortest-path between source and destination pairs. In general, it provides advantages 

such as short initial route discovery delays, and is relatively simple to implement. 

However, it may generate a significant amount of control traffic, which wastes network 

resources in maintaining routes that may never be used. 

Reactive algorithms operate a reactive form of routing, which establishes and maintains 

a route only when it is in demand of a source node. It prevents constant maintenance of 

routes to all destination nodes, but only initiates a route discovery procedure in 

response to a route request. Further more it reduces the amount of control traffic 

generated by route discovery and maintenance, yet it has longer route discovery delay 

since routes have not been previously recorded. 

Hierarchical routing algorithms provide a flexible solution using hierarchical routing, 

which constructs routing clusters/zones that contains all recognised wireless nodes. 

Proactive routing is used inside each cluster, and reactive routing is used for cross 

cluster route discovery and maintenance. Therefore, it reduces the control traffic and 
intra-zone route discovery delay; network loads dominated by control traffic are thus 

prevented. However it is complicated to implement such an algorithm. 
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The simplicity of proactive form of routing can be incorporated with the efficiency of 

the reactive form of routing, and can be incorporated into the development MIR. The 

polling strategy in CGSR can be used to solve the problem such as interference 

between adjacent nodes. The next chapter will introduce the simulation tool that used in 

network modelling, and this will help to understand the network model design used 
later. 

The asymmetric routing algorithms distribute routing information separately on forward 

(source to destination) and reverse (destination to source) paths. This is due to the 

different transmitting power utilization or battery reserve remaining in each node. 
Therefore in real world applications, it is vitally important to take into account the 

asymmetric feature of wireless ad hoc networks in system, protocol, or standards 
design. 
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4.1 Introduction 

Mixtures of simulative and analytical methods have been employed to investigate, 

analyse, and evaluate the behaviour and performance of WANET under different 

scenarios and configurations. The cross layer routing metric design and protocol 
development for this research conducted uses software, namely OPNET and MATLAB, 

for simulation and modelling, and the supporting theoretical analysis like Queueing 

Theory, Traffic Engineering Theory, Probability, and Stochastic Process Analysis. The 

computer-based test-bed are time and economically cost-efficient for abstractive and 
flexible comparison of different routing algorithms and protocols, hence above methods 

are the primary tools in this research. 

Software simulation has certain limitations, such as approximated assumptions due to 
imperfect implementation or programming of the system details, and time consuming 

programming due to the complex structure as well as debugging process. On the other 
hand analytical models under these assumptions can provides table, graph, or diagrams 

to assist perfoýmance evaluation, and as a way of comparing with simulations in order 
to validate results. 
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In order to observe, analyse, and even predict the performance of WANET behaviour, 

we must first, analysis the behaviour or performance of WANET system use Queueing 

Theory. Then simulate WANET operations use OPNET simulation and modelling 

environment. This is followed by validation, evaluation, and analysis, using MATLAB 

to plot the collected raw data from OPNET simulation. 

OPNET OPNET 
Theoretical Netmorklevel --0 node level 
modelling Implern entation implementation 

Modify& OPNET 
Redesign process I ev el 

implem entation 

MATLAB T 
Graphical OPNET 

Evaluation and process of source code 
Analysis collected raw programming & 

data debugging 

Figure 27 Design and Modelling Cycle 

OPNET is a complicated network simulator, and a brief introduction of its modelling 

structure is necessary for understanding the later evaluation, and validate routing 

algorithm model. The design and modelling cycle apply to this research is shown in 

Figure 27. 

4.2 Mathematical and Operational Modelling 

We study the phenomena of the interference impact on WANET system capacity using 

analytical theory derived using Queueing Theory and stochastic analysis. The 

operational modelling simulates, using OPNET, the interaction between transmitting 

nodes that use different routing schemes. 
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4.2.1 Mathematical Analysis 

Any system in which arrivals place demands upon a finite-capacity resource may be 

termed a Queueing System [31,32,101]. The Queueing System theory can describe the 

complex behaviour of a single terminal (such as a transmitting node, or a channel), or a 

communication network that contains multiple servers (e. g. WANET, or a source and 
destination pair with multiple intermediate relaying nodes). 

4.2.2 Operational Simulation using OPNET 

OPNET is an event based, interrupt driven simulator, originally developed at 
Massachusetts Institute of Technology (MIT), and introduced in 1987, for network 
design and protocol simulation. OPNET Modeler (short for OPNET) contains different 

integrated tools that support modelling and simulation of cable-based/wired systems, 

satellite systems, mobile and fixed wireless systems [ 102]. 

OPNET simulation is event-driven, and it constructs packets to transfer data rather than 

simulating bit streams. It uses "event time stamp", which associates each event that 

simulated with a specific simulation time, therefore the simultaneously occurring events 

at different nodes can be accurately modelled and recorded, and the simulation 

executed on a conventional serial-based computer simulating those events of nodes 

operating in a parallel manner. OPNET is packaged with a model library, which 

contains standard network models, and protocols (e. g. ATM, TCP/IP and RIP etc). 
OPNET using a graphical interface/window for most stages of a simulation, and it is 

powerful, because most functions of systems can be represented in a graphical form. 

OPNET simulates systems in a hierarchical fashion, and generally, a model is specified 
in three levels: network level, node level and process level. Each level defines one 

modelling domain, and it is different from most modelling frameworks, which specify 

all aspects of a system by using a single paradigm. OPNET specifies features of each 
level using a hierarchical set of editors, namely, Project Editor for the network level, 

Node Editor for node level, and Process Editor for process level. 
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Figure 28 illustrates an example of a cable-based network model, in which a model is 

constructed in four hierarchical editors. Figure 28 (b) is the project editor for network 
level/domain design; (c) is the node editor for node level design; (d) is the process 

editor for process level design; (e) is a specification panel, which defines logical states 
in a processor block of a node, from a source code level. 

(c) 
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(b) 

/ 
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/ 
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/ 
/ 
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.. - (ý. O. ýý6. ... ) 

(e) 

/ 
/ 

Figure 28 OPNET Model Hierarchical Structure 11021 

(a) OPNET Modeler starting window (b) Project Editor for Network Level 

(b) Node Editor for Node Level (d) Process Editor for Processor level 

(e) State Specification in Proto-C for source-code level. 

4.2.2.1 Network domain 

The highest layer of the hierarchy is the network domain, which specifies high-level 

devices (i. e. nodes and communication links) and the topology of a network model uses 

a Project Editor. A network may contain any number of nodes, which can be placed on 

(d) 
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a geographical area, and different network layers may be configured through multiple 
layer nesting. It can also specify the orbit of a satellite or a mobile node. The same type 

of Hexagon routers symbol represent the wireless nodes later developed in the MIR 

software models. 

Figure 29 illustrates an example of 6-node-network with cable link connections in the 

"work space" of a project editor. In the network domain, packets are sent through 

communication links between nodes. OPNET can develop a customized library of 

predefined nodes and link models for construct a network model of user's own design. 

Project Editor 

Figure 29 Network level design in project editor 

4.2.2.2 Node domain 

The second layer of the hierarchy is the node domain, which specifies the functional 

elements of each node model using the Node Editor. The node model represents a 

communication node of a network model, which is defined in the network domain, and 

the functional elements of the node is a processor block, which is capable of 

performing a specific task in the node, (e. g. transmitter, receiver, hub and packet 

generator). 

The node model can be used to represent any network equipment such as routers, 

workstations, terminals, servers, switches and satellites etc. Packets are transmitted 

through packet streams connecting these processor blocks. Statistic wires are used to 

transfer discrete statistics between processor blocks. Packet streams and statistic wires 
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are connections and logical associations to allow information flow between processor 
blocks. 

Node, Editor 

. 
Bb Ew jnuwfac- 94§Cts WWAIM" 

Node Model Tool Bar 

Processor: 
Transmitter ------------------ Processor: 

to Receiver 

tl 

Processor: ----------- ------------------------------ 
Hub ----------------------- Packet Streams 7 

--------------------- Statistic Wire 

Processor: 
Packet Generator 

Figure 30 Node level design in node editor 11021 

Figure 30 illustrates a node level design for communication node (Rl) shown in Figure 

29 above. This node model design consists of processor blocks for executing the 

function of. hub, transmitter, receiver (5 pairs) and packet generator of the node model. 

4.2.2.3 Process domain 

The lowest layer in the hierarchy is the process domain, which defines the process 

model of a processor block using the Process Editor. The process model describes, in 

the process level, the operating process or state of a processor block, which is defined 

in node level previously. Process level is where the protocol mechanisms or routing 

algorithm are designed and developed, and it takes most of the modelling time to 

describe states when developing a new scheme or algorithm. 

Process models are designed using a graphical extension of the "C" computer language, 

called "Proto C" [ 102], which consist of states, and it is similar to those states used in 

Finite State Machine (FSM). At any particular time, only one state is active, and a 
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simulation may execute at this state and then transfer control to another state later. A 

series of states are connected together by transition wires, organized into a graphical 
State-Transition-Diagram (STD). 

States in the process level indicate processes, which the processor block will execute, 

and they can be either "forced states" (black/green states in Figure 3 1) or "unforced 

states"(white/red states in Figure 3 1). Transition from one state to an unforced state 
does not need a condition. Transition to a forced state need a special condition, and this 

is equivalent to an 'if statement, which executed a interrupt, known as "Transition 

Executive" in OPNET, and labelled a on transition wire pointing to a "forced" state, 

which indicates that an event has occurred in the process. These instants occur, when a 

message/packet arrives, timer expires, resources are released and so on. Therefore 

unforced states can be considered as waiting states. 

Each state has Entry or Exit Executive, which contains source code that is written in 

"Proto C" syntax. Forced states execute entry and exit conditions sequentially with no 

pause between them; the unforced states execute with a pause between them, with the 

exit condition being executed on the next interrupt. 

The base facilities in "Proto C" use conventional "C", and in addition, "Proto C" has a 
library of high-level commands known as "Kernel Procedures (KPs), which are 

equivalent to "C" functions. 

Each process model in a node operates in parallel with all the other models, and this 

allows OPNET to simulate a real network, which each processor in a node operates 
independently. The parallel event simulation is achieved by time stamping every event 

with an instantaneous simulation time. 
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Figure 31 Processor domain 

(a) Processor Editor (b) State Specification Window[102] 

Figure 31 (a) illustrates the process level design, which is a STD of the processor block 

"hub" that defined in Figure 30 above. There are four states in the STD: initial state, 
idle state, route arrived packet (Route_pk) state and route local generated packet 

(source) state. Figure 31 (b) illustrates the entry executive defined by "Proto C" source 

code written in a state specification window. 

4.2.2.4 Radio Transceiver Pipeline 

Radio links do not exist as physical object in an OPNET simulation, therefore the radio 

transmissions are simulated using radio pipeline stages, which support a particular radio 

transmission, and are associated with the radio transmitter and receiver. 

The radio transceiver pipeline (RTP) is executed separately for each eligible receiver in 

OPNET, because for a given transmission, the radio link to each receiver may exhibit 
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The radio transceiver pipeline (RTP) is executed separately for each eligible receiver in 

OPNET, because for a given transmission, the radio link to each receiver may exhibit 
different behaviour and timing, even though it provides a broadcast medium and the 
link may receive affects from other transmissions. The function of each RTP stage are 

summarised as follows: 

0 Stage "0" (receiver group) is invoked once for each pair of transmitter and 

receiver channels, in order to establish a static binding between each transmitter 

channel and the set of receiver channels it allowed to interact with. 

0 Stage 'T' (transmission delay) is executed once per transmission, to compute a 

result that is common to all destinations. 

0 Stage 'T' (closure) decides if each individual pipeline sequence may or may not 

complete by determining if communication between the transmitter and receiver is 

possible on a dynamic basis. 

a Stage "Y (channel match) decides if a transmission is relevant in regard to its 

effect on a particular receiver channel, and terminates the pipeline sequence if it is 

irrelevant. Following this stage, the pipeline sequence will continue or stop progress, if 

the pipeline sequence progress, the packet transmitting is approved as a valid packet, 

and then the process continuous. 

0 Stage "4" (Tx antenna gain) and stage "6" (Rx antenna gain) will determine the 

antenna gain associated with transmitter and receiver. 

0 Stage 'T' (propagation delay) calculates the time required for the packet's 

signal to travel from the transmitter to the receiver. 

0 Stage 'T' (received power) computes the received power of the arriving packets 

signal in watts. 
Stage 'T' (background noise) represents the effect of all noise sources. 
Stage "9" (interference noise), stage " 10" (signal to noise ratio), stage "II" (bit 

error rate), stage "12" (error allocation) evaluate a link's performance in response to 

changes in the signal condition. 

0 Stage "13" (error correction) determines whether or not the arriving packet can 
be accepted and forwarded via the channel's corresponding output stream to one of the 

receiver's neighbours. 
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Figure 32 illustrates an example of the RTP, which consists of these fourteen stages 
[102]. OPNET executes these computational states to simulate radio transmission 

between transmitter and receiver. 
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Figure 32 Radio Transceiver Pipeline in OPNET [1021 

4.3 Validation of Simulation Results use MATLAB 

The analysis, evaluation, and validation process for the mathematical and operational 

model are carried out by use OPNET and MATLAB. The 'global variables' in the 
OPNET simulation model enables the statistical data to be collected during the 

simulation, and a text file, collects the raw data during the simulation, that reflects the 

performance of the WANET model, which is made available to the end of the 

EwaWed once at start of slrrý 

receiver ulabon ix each palf of varw 
mItter and recehw channels group to determine leasibilly of 

r 

communication; not executed 
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simulation process. These raw data files then will be processed using MATLAB to 

produce analytical plots, rather depends only on the data analysis tools that embedded 
in OPNET. 

Considerable effort has been devoted to validate the simulation and analytical models 

and results presented in this thesis. The reproductions of the classical routing algorithm 

e. g. Shortest Path (SP), is compared with novel Minimum Impact Routing (MIR), under 
different network environments. A wireless network with regulated and random 

topology that can be configuring into multiple scenarios is used as a simulation test-bed 

for system performance analysis. 

The theoretical analysis of the WANET system is simulated use the model mentioned 

above, the statistical and analytical results that validate these theories are presented 

throughout chapter 6 and 7. Various of measure, such as disturbed nodes, hop counts, 
delays, generated traffic, and throughputs, are made for collect raw data in order to 

produce validation results. 

4.4 Conclusion 

This chapter overviews the analytical and statistical procedures and operational 

simulation methodology for analysis system performance, statistical results and 

evaluate the performance of WANET under different scenarios use MIR routing 

strategies. 

The advantage of the OPNET approach has been discussed when the problem of 

modelling considers both system's behaviour and its structure. For example, 

communication protocols and real-time operating systems are different types of entities 
from communication links or packet buffers. 

OPNET modelling is based on three paradigms, which specifically target the distinct 

levels identified in a communications network. The single-paradigm modelling must be 

stretched to develop adequate models. 
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OPNET provides a useful tool and powerful support in simulation and analysis of 

network protocols. However it is complicated to learn and takes significant amount of 
time before a complex algorithm can be effectively implemented. Therefore a detailed 

understanding of behaviour of the standard OPNET model and the radio transceiver 

pipeline is essential for modelling a wireless system. 

Verification of results is provided where possible by comparing performance using a 

mixture of analytical and simulation technique Statistical data that collected throughout 

the simulation use OPNET model. These data, which representing various of system 

performance measures, are processed use MATLAB to produce sensible analytical 

plots and graphs that presented in chapter 6 and 7. 
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5.1 Introduction 

In order to understand how a routing mechanism may affect the system performance, an 

analysis of system behaviour must be carried out prior to the routing algorithm design. 

This chapter identifies, in section 5.2, the pivotal trade-offs used in evaluating the 

WANET system performance, namely the system supported user population, system 

traffic handling capability, and system scalability. In section 5.3, various solutions for 

these trade-offs are proposed in order to resolve the resulting challenges. These 

techniques have become the inspiration for the design of the Minimum Impact Routing 

(MIR) scheme, with its premier objective dedicated to resolving the system scalability 

problem in WANET by minimising the interference impact and maximising the spatial 

reuse in the system. 

91 



Chapter 5 Minimum Impact Routing Preliminary 

5.2 Cross-Layer Challenges 

WANET was initially known as a Packet Radio Network, which is a special form of 

packet switched wireless communication network. The system capacity analysis and 

mathematical modelling of the system behaviour quite often forces researchers to make 

simplified or idealized assumptions for their analytical results. However, the analysis in 

this chapter will investigate system behaviour, under the some strong assumptions, 
from a cross-layer aspect. There is strong influence from the physical and multiple 

access control layer on the routing activity, which relates more to the networking layer. 

Some of the well-known fundamental principles from Queueing Theory are mentioned 

to assist the analysis. 

WANET can be considered a Queueing System where each terminal is a potential 

server that processes a flow of traffic. In such a system, the system performance is 

generally measured by throughput, delay, system supported user population, or system 

utilization performance, as shown below: 

* Throughput: Number of Tasks (N) = Average Arrival Rate (k) x Delay (T) 

N=A T Or 
Successful Tbroughput X(s) = Offered Load X(o) x Probability of k Success (Pk) 

A (S) ýA (0) Pk 

o Delay: System Response Time (T) = Waiting Time in Queue (w) + Service Time (x) 

T=w +x =NIA Or 

T=11(p-A) (when N=pl(l-p) in MMI Queue System) 

ob User Population: User Population supported by the system. E. g. in cellular system is: 

((Total Available Bandwidth (BO /Channel Bandwidth (B, ))/Cluster Size (CO)*Number of Cells 

(N) in the system. 

User population = ((BlBdl Cn) N 

System Utilization: Total busy period of the system can be represented as follow, 
Utilization (p) - Average Arrival Rate (X) * Service Time (x) - Average arrival rate (X) / Average Service Rate 

P= Ax ='V'u 

Relaying Burden: Number of Accumulated Tasks (Ný =Number of Simultaneous 

(Transmitting Node (n, )*Number of Neighbouring Node (n, ) increases exponentially to the 
power of Number of Hops (H). ) 
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Ni= nt n. 

* Reuse Ratio: Reuse Ratio (S)= per path Occupied Resources (N, )/per hop Occupied Resource (ný 

S= N1nj 

In WANET, the choice of a routing mechanism that can support more users is one of 

the first well-explored challenges. However, none of the proposed routing protocols can 

support a large user population as conveniently as cellular networks do today. In other 

words, the scalability of the WANET system is not as good as cellular systems. This 

measure of the user population that can be supported by a system leads to the first 

argument in terms of single-hop routing versus multihop routing. 

5.2.1 User Population: Single Hop versus Multihop Routing 

WANET terminals can communicate with any other member of the same system by 

using a one-hop link with high transmit power, or multihop links that use lower 

transmit power. If simultaneously transmitting nodes in both scenarios can reach the 

same per node throughput, then the overall system/network aggregated throughputs will 
be higher in a system with more simultaneous transmitting points, disregarding the 

level of service, relaying burden, and avalanche effects of flooding in multihop 

systems. 

The first trade-off concerns whether the system performs better using single-hop 

transmission for routing without relaying, in which case packets experience shorter 
delays but more nodes are interfered with instantaneously; or instead use multihop 

transmission for routing with more relaying packets, which allows more simultaneous 

transmissions. 
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(a) Single Hop System (b) Multihop System 

5.2.1.1 System Throughput 

In terms of system throughput, consider two identical systems that have perfect 

scheduling, along with the highly abstractive assumption of system throughput that is 

not influenced by increasing relaying burdens. The system that has a higher number of 

simultaneous transmissions, could support a larger user population, which is a desirable 

feature [101]. Figure 33 (a) shows an example of a single-hop network, and (b) is the 

multihop case. 

If there is only one simultaneous transmitting node, corresponding to I server in a 

queueing system, operating at any moment in the system, then the aggregated system 

throughput, denoted by C, in equation 5.1, equals the average throughput of an 
individual node, denoted by C, in which A(s) is successful throughputs of the offered 

traffic A(b), and x is the average service/delay time or system response time without 

queueing delay. 

6-., C, =( 
(S) - X) 
server 
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In multihop systems, multiple simultaneous transmissions, "m", provide the system 

with an aggregated throughput C,, that is equal to the sum of all simultaneously 
transmitting node' throughput shown as follows: 

Cl =k 
(A(s) - X)- (5.2) 

- =2: 1, 
"ým servers 

5.2.1.2 Link Quality 

In terms of link quality, single-hop links transmit over a specific distance, the signal 

will suffer fromfastfading problems on a frequency band, and this will require a higher 

SINR in order to maintain the quality-of-service at the receiver end. On the other hand, 

high transmit power creates higher interference to other users of the same system, and 

this will also increase the chance of a transmission error and introduce more 

retransmission traffic into an already dense traffic flow. In the multihop case, signals 

transmit over a shorter link length with less fading, and the lower transmit power 

creates less interference to others, thus resulting in higher SINR and a lower error rate 

that leads to a lower retransmission rate and consequently lower retransmission 
traffic[10]. 

If only the above considerations of the system throughput or link quality are a tenable 

base to make, one could conclude that multihop routing is more desirable than the 

single-hop routing mechanism, due to the fact that multihop transmission supports a 
larger user population operating simultaneously, assuming perfect scheduling. 
However, in practice, routing in a multihop system is conducted by relaying, which 

results in unavoidable relaying delays and extra traffic forwarding burdens that may 
decrease the goodput over successes and fin-thermore, a system reducing the throughput 

per node to an unacceptable level. 

In terms of delay performance of a system, the drawback of multihop transmission is 

the multiple relaying delays, which is H times (indicating number of hops) longer than 

a single-hop system. 
H 

EndToEndDe1qy(x) =Zx, = PerHopDe1qy(x, ) x NumberOjRopsPerRoute(H) (5.3) 
1-0 
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Table 4 shows a summary and comparison of routing using single-hop or multihop 
transmissions in the system, and the corresponding node and system throughput at a 

transient moment. 
Single-Hop Routing Multi-Hop Routing Characteristics 

Characteristics 

Advantages 0 High Connectivity 0 Lower Interference 

0 Low Intermediate Relay & 0 Lower Error Rate (BER, PER) 

Delays 0 Lower Retransmissions Rate 

0 Low Relay & Control 0 Higher Spatial Reuse 

Overheads 0 More Scalable 

0 Lower Access Request Intensity 

0 High Contention and Collision 

Disadvantages 0 High Interference 0 Weak Connectivity 

" High Error Rate (BU, PER) 0 High Intermediate Relays & 

" Higher Retransmissions Rate Delays 

" Low Spatial Reuse 0 Higher Relay & Control 

" Less scalable Overheads 

" High Access request intensity 

" High contention and collision 

Average Node C, A(s) -x no relays A(s) -x 
throughput with relays C, 

In 

Average System C', C, no relays k 

C,, C, with relays throughput 

Table 4 Comparisons of Single-hop and Multihop Routing 

Apart from the user population consideration, the relaying burden and the avalanche 

effect due to the use of flooding relating to the routing algorithm leads to the second 

sets of arguments that are covered in next section. 

5.2.2 Traffic Handling: Centralized versus Distributed Control 

If the single-hop and multihop discussion is more related to the physical (PHY) layer 

issues such as SINR, error and retransmission rates, and interference, then there is a 

second trade-off between centralized and distributed control, which more relates to 
Multiple Access Control (MAC) layer issues, namely, the contention control, and 

overheads due to control and relaying burdens. 
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This second trade-off leads us to the decision of whether to use centralized control, 

which provides a lower number of relays and shorter delays, hence lower relaying 

overhead, but on the other hand, has a large number of neighbouring node access 

contention or to use distributed control that has lower contention control overhead due 

to the use of'localized routing informationftom a lower density of neighbouring nodes. 

In terms of system utilization and efficiency, the system throughput consists of two 

portions of data, one part is the useful information reaching its preferred destination, 

and the other part is the overheads. Goodput is the application level throughput that 

measures the number of useful bits per unit time forwarded from a source to a 
destination, excluding overheads of the protocol, control, relaying, or retransmitting 
data packets. 

Throughput = Goodput + Overheads (5.4) 

The channel or system throughput will consist of a smaller proportion of goodput if the 

overhead is high in the traffic flow. 

5.2.2.1 Relaying 

In terms of overhead control or reduction, the relaying burden and the consequent 

avalanche effect due to flooding are critically important and give rise to exponentially 

growing control or protocol overheads. Overheads are extremely sensitive to the 

neighbour node density at each hop and the route length (measured in hops) of each 

routing task. In WANET systems, the relaying burden is one of the major limitationsfior 

system or link throughput[2,11,13-15,17,24,27,28,43,103,104]. 

n2n. n4 

0 -0 - *----o 
Each node's own traffic Fp C FP20 ][P3-]FP4-] 

Relaying Burden 

Pl 11P2 11P3 1 

IP [Pl P2 

rp-, 1 

Figure 34 Relaying Burden along the path 
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The relaying burden is the unwanted forwarding tasks and traffic from other 

neighbouring nodes. Figure 34 demonstrates this by showing a simplified channel 

utilization case along with a three-hop relaying, in which the source node, nj, generates 

a packet, P1, to be forwarded to its destination node n4- Intermediate nodes n2 and n3 

carry the relaying burden for nj, at the same time transmitting traffic of their own, with 

the remaining 50% and 33% of their own channel or processing resource. 

In the WANET environment, where all terminals share a common channel frequency, 

the relaying creates an extra burden for intermediate nodes. Furthermore, the flooding 

related routing scheme (mostly at route discovery stage) has an avalanche effect 

problem, which means it accumulates this relaying burden at each hop and can make 

packets duplicate exponentially out of control. Apart from limiting the residual life of a 

packet, and using a packet sequence number that refers to the packet source to reduce 
duplicates, maintaining an optimal local neighbour node density is the key to this 

problem. 

Figure 35 shows the accumulated relaying burden denoted by NJ (later defined as end- 

to-end accumulated disturbed nodes) that is the accumulated per-hop interfered node, 

ni, which consists of a cluster of neighbouring nodes, n,, and a transmitting/relaying 

node, n, along the path. 
H 

=n, -n, 
H 

=En, 
1-0 

(5.5) 

This Nj grows non-linearly in number that is in inverse proportion to the average node 

throughput, Q thus we can derive the following equation to measure relaying burdens 

in terms of node throughput. 

-1 (A(S) - x) v Ni 
(5.6) 

The avalanche effect, in a two-hops relaying scenario, in different network topologies, 

namely the chain, square, hexagon, and random topology, is shown in Figure 35 

(a)(b)(c)(d). In each case, every transmitting node has 2,4,6, and a random number of 

neighbours respectively. In (d), the random number of neighbouring nodes surround 

each working node (Green dot) follows Poison Random Distribution (PRD). 
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Figure 35 Avalanche Effect and Relaying Burden in different network topology 

(a) Chain Topology (b) Square Topology (c) Hexagon Topology (d) Random Topology 

Figure 36 (a), (b) shows the variation and increase on the number of interfered node per 

hop, n, , according to different link length, r, for every constant value of node density, 

A. 
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Figure 36 Variation of Interfered Nodes ni per hop with different link length r 

3500, 

3001) 

2SOO 

MOO 

ism 

1000 

; rn 

lnt. rfor. d Am ý 

Figure 37 Variation of Interfered Nodes per hop with different neighbour density 
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Figure 37 (a), (b) shows the variation on the number of interfered node per hop 

n, according to different node density A for each constant value of link length r. In 

terms of delay, assuming the transmission, queueing, processing, and propagation time 

of all the transmissions are the same, then the same amount of traffic sent through a 

path will experience longer delays in a multihop transmission system, and the average 

end-to-end delay x will be H times of the single-hop delay x, 

x= x, x (5.7) 

In this sense the longer the path length, the longer the delay in multihop transmission 

style, and the lower per node throughput or channel utilization for processing the local 

node's own traffic, due to the relaying burdens and avalanche effects. 

If a large number of interfered nodes is accumulated over an H hop path, this means the 

relaying burden along the path is also high. On the other hand, the throughput is low. 

The accumulation of N, over a number of hops H is shown in Figure 38, where (a) 

shows the N, growth in number over H hops with a different neighbour node density A, 

and (b) is with different link length r. This matches the phenomenon described earlier 

with equation 5-5. 

36M - 
(a) Interfered modes he per path VSP. 1h L-gil, H 

3000 Ni 
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-NO, 
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Ni A, 
1 000 N. AV ý 

Sm 
M ý, o ý.. -74 
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Path Length H (Annige number of hops per path) 

Path L$Vh H (Average number of hops par path) 

Figure 38 Accumulation of the Interfered Nodes over an H hops path 
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Substituting equation 5.7 for 5.6, we get the equation shown in 5.8 and 5.9 for the 

average per-node throughput, which is in proportion to the number of hops, H, and 

neighbouring node density, ni. These two measures represent the influence of relaying 
burden and the avalanche effect of flooding on the per-node throughput Ci. 

C, Multihop node Throughputs = (A(s) -x- H) (5.8) 
ni 

Ci Single - hop node Throughputs = (A(s) - x) (5.9) 
n, 

The per-hop throughput Cj is under the strong influence of the per-hop interfered node 

ni, and, if the neighbouring node density is constant, the link length, as shown 

separately in Figure 39 (a) and (b). In other words, a higher neighbour node density 

results in lower per-hop throughput; or with the same neighbour node density, a longer 

link length will also contribute to a larger number of neighbouring nodes. 
Consequently, the more neighbours sharing the same resource, the lower the amount of 

throughput a node could deliver. 
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Figure 39 Degradation of the Per Node Throughput over an H hops path 
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The same cause may also affect the system throughput, C, If the average per-hop 

throughput C, decreases, the aggregated system throughput will decrease accordingly, 
in a case where the system operates with little or no spatial reuse. The outcome of this 

effect on C, is show in Figure 40. 

(a) Network Throughput C. versus Node Density X 
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Figure 40 Aggregated System Throughput degradation over an H hops path 

The utilization, p, of the system at any moment can be thought of as in proportion to the 

number of simultaneous transmissions, regardless of the distribution of queueing and 

retransmission in practice, and the system utilization can be described using equations 

5.10 and 5.11. 

Single - Hop Utilisation p= 
A(s) -x (5.10) 

1 Servers 

A(s) -x MultiHop Utilisation mp = A(s) -x=: > p=m Servers 
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The utilization normally represents the throughput or server busy period in the 

percentage for assessing the system performance, hence equations 5.7 and 5.8 can be 

rewritten into equation 5.12 and 5.13 with the same assumptions. 

C, = Multihop node Throughputs = 
A(s). x. H 1 

(5.12) 
In N, 

-I C, =Single-hop node Throughputs =(A(s). x)- (5.13) 
N, 

5.2.2.2 Traffic Handling 

In terms of the traffic handling capability, the system throughput is sensitive to the 

impact of the relaying burden in different network structures and topologies. A 

WANET can be organised into or distinguished by the different types of system control 

and transmission styles. A WANET system may either use single-hop or multi-hop 

transmissions, and manages routing in a centralized or distributed control manner, as 

shown below in Figure 41. 

Centralized Systems Distributed 
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(b) 

>O. 4 *4,4 . -* 0 

0-4 4.4 4.4 *; 

Central Controlling Unit (Base Station/Access Point) Distributed Controlling Unit (Wireless Terminals) 

Figure 41 Network architectures in wireless networks 

a) Centralized single-hop routing, e. g. conventional or cellular system, or WLAN; 

b) Distributed single-hop routing, e. g. high transmit power WANET routing; 

C) Centralized multi-hop routing, e. g. proactive or hierarchical WANET routing; 

d) Distributed multi-hop routing, e. g. reactive WANET routing. 
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Under different network structures, traffic congestion and transmission collisions can 

seriously damage system throughput and accelerate the accumulation of relaying delay 

and burdens, consequently paralyzing system traffic. Centralized control, as shown in 

Figure 41 (a) and (c), in either single-hop or multihop transmission systems, will attract 

aggregated traffic towards a central controlling point, which results in aggravating 

transmission contention and collision problems during the higher local multiple access 

contention. Conventionally, improving the hardware capacity, or optimizing the 

queueing or scheduling scheme, may resolve traffic bottlenecks. 

This means that for any wireless terminal that schedules multiple access demands, a 
higher surrounding neighbouring node density results in a higher number of access 
demands at each hop, and consequently increases the probability of collision. On the 

contrary, the distributed control, as shown in Figure 41 (b) and (d), decentralizes traffic 

and can reduce the processing and scheduling burden of a controlling unit (i. e. a base- 

station in cellular system, or wireless router in WLAN, and a wireless terminal in 

WANET). 

Most of the important influencing effects seem to have been mentioned up to this point. 

However, there is another level of analysis for the WANET system performance, which 

leads us to the third trade-off, which is between connectivity and system scalability. 

5.2.3 System Scalability: Connectivity versus Scalability 

The third trade-off is whether to use high transmitpower to maintain high connectivity, 

which results in high interference impact, or to use lower transmit power to increase 

spatial reuse in the system, hence improving system scalability, in which case it may 

increase relaying burdens and overheads. 

One of the most influential factors in a wireless system is interference and, 

consequently, its impact on system performance. In telecommunication systems, 

scalability is a desirable property in a system that indicates the ability to handle 

growing numbers of tasks as the system size and user population grow [105]. However, 

problems such as co-channel interference, relaying overheads and delays, extra control 
information, contention collisions and congestions may seriously decrease the 

scalability of a WANET system. 
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A transmitting node interfering with the neighbouring co-channel and adjacent-channel 

users, and the resulting impact on system performance, is what we refer to as 
"interference impact". Interference impact is easier to understand with an example of 
"a conference room full of people", where if everyone speaks loudly at the same time, 

each individual can hear multiple conversations as, noise rather than any sensible words 

or sentences. A similar phenomenon may occur in a wireless system, when users or 

terminals transmit their signals via a shared frequency channel. If all terminals transmit 

at high power (implying loud speaking) and try to make their own message clear to the 

receiving end, then the communication air interface (equivalent to the conference room) 

will fill with relaying and control overheads, noise or interference, and messages 
delivered using the same shared channel may collide at the receiving end. 

Conventional cellular systems resolve this problem by introducing ftequency reuse, so 

that the overheads, interference, contention, and congestions, can be dealt with locally 

and separately by a stationary base-station. In WANET, spatial reuse combined with 
localized (distributed) control could improve scalability by physically separating two 

simultaneously transmitting co-channel terminals, and manage the interfering factors 

mentioned above. 

A safe reuse distance is a critical measure in both frequency reuse and spatial reuse. In 

both cases this safe reuse distance makes sure that two co-channel nodes that are 

simultaneously transmitting are not interfering with each other. The difference is that 

frequency reuse in the cellular case has a safe reuse distance that is pre-planned for 

stationary base-stations; the spatial reuse in WANET can only coordinate between 

terminals to make sure co-channel nodes do not transmit within a safe reuse distance 

neighbourhood. 

In general, a higher spatial reuse ratio in the WANET system means the scalability for 

this system is higher. Thus minimizing the transmission link length allows a higher 

ratio of spatial reuse in a distributed system, however coordinating between terminals is 

difficult due to the lack of centralized controls. 
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If the spatial reuse ratio between the wireless terminals is optimally arranged and 

coordinated, then these previous arguments all have a solution to themselves. By 

measuring and finding the optimal ratio of spatial reuse, the measures that influence 

system performance, such as the optimal number of hops along a path, optimal number 

of relays, optimal relaying delays, optimal number of transmission demands, and 

minimum interference ftom neighbouring nodes, can all be achieved or improved. 

N 
(5.14) 

n, 

Assuming that each routing task in the WANET has the same path length, in H hops, 

then each node that is uniformly located uses the same level of transmit power, the 

overall system user population, denoted by N, is in proportion to the average number of 

neighbouring nodes per hop, denoted by ni. The number of simultaneous transmissions 

that relate to the spatial reuse ratio, denoted by S, can be measured using following 

equation. This equation 5.14 holds in time division systems, whereas in frequency and 

code decision systems may vary, due to the different scheduling mechanisms. Figure 

42 (a) shows the neighbouring node ni in a single-hop system, and (b) shows Ni in a 

multihop system, where a number of simultaneous transmissions S takes place. 

N! ý N, 

Tx 

(a) N, -N 

N>N, 
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(b) N, N,, N,, = N, - N, = N, 

Figure 42 Neighbouring Node Densities (a) Single-hop (b) Multihop 

If we consider that the local per-node capacity or throughput will decrease eventually to 

zero along a multihop path, as either the neighbouring node density or the access 
demand grows, then the overall system throughput will definitely decrease to zero if no 
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spatial reuse is introduced to separate or reduce the combined effects of relaying 
burdens, interference impact and contentions. 

Figure 43 System Capacity C. in relation to Path Capacity CP 

On the contrary, in a system where spatial reuse exists, the degradation of a per node Ci 

and per-path capacity Cp (which is the accumulated Cj), due to the dragging effect of 

relaying and interference, will be separated from the overall growth in system capacity, 

as shown in Figure 43. 

In other words, the utilization of spatial reuse, allows the system not only to be less 

influenced by the relaying and controlling burdens to multiple points, but also reduces 

the interference and contention by distributing these impacts to multiple operating 

servers. The outcome of this theory stands in the case of multihop path, using different 

link lengths as shown in Figure 44 (a) and (b) respectively. 
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Figure 44 The variation of C,, and Cp 

(a) Variation over an H hop path (b) Variation when link length is different 

Table 5 presents a summary of the key issues and inter-connections in the analysis of 

WANET system. 
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WANET system Trade-Offs Conclusions Solutions 

Performance 

Advantages: Multihop Optimal link length 'Y' 

System User Single Hop system supports Larger User can reduce the multihop 
Populations Routing population negative effects such as 

(Number of users Versus 0 Disadvantages: Multihop relaying delays and 

supported by the Multihop system has higher relaying burden and overheads. 

system) Routing avalanche effect will fill the traffic 

=: > with overheads instead of goodput. 4 

0 Advantages: Distributed Optimal number of relays 
Traffic Handling Centralized system control can reduce control and (in hops) and optimal 

Capability Control relay overheads, but interference neighbouring node 
(Per node or Versus impact remains the major problem for density, "ný', can improve 

aggregated Distributed system scalability. system throughput, but the 
Throughput) Control 0 Disadvantages: Depending system is not as scalable 

=> on Only the optimal number of hops as a cellular system. 

and optimal number of neighbouring 

nodes cannot provide Distributed 

Multihop WANET with mass user 

population as scalable as frequency 

reuse in cellular systems. 4 

0 Advantages: Multihop Optimal spatial reuse ratio 
Connectivity Distributed system can achieve higher can improve scalability in 

Versus capacity and reduce control and relay some scenarios, and 
System Scalability overheads by balancing between dynamic spectrum sensing 

Scalability => Spatial Reuse and Interference can provide a dynamic 

(asymptotical Impacts. distributed frequency 

system capacity 0 Disadvantages: Distributed reuse that can completely 

which barely System has highly complicated resolve the interference 

exceed I Erlang) behaviour, thus difficult to scale (i. e. impact problem 

lower scalability). 4 

Table 5 Summaries of the Three Trade-Offs 
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5.3. Strategies for System Capacity Enhancement 

In the above analysis, some of the most influential factors in system capacity 

enhancement are identified and studied. A minimum impact routing (MIR) mechanism 
that is designed around these measures, e. g. interference impact, local neighbouring 

node density, and spatial reuse, is being developed. This remaining section in chapter 5 

will present the fundamental elements or techniques of this MIR mechanism. 

5.3.1. Physical Layer: Distributed Interference Impact Probing 

In order to measure and quantify the interference impact in a WANET environment, 
MIR uses a Distributed Interference Impact Probing (DIIP) mechanism can both 

quantify the impact of interference and detect the local neighbouring node density with 

a single measure of Disturbed Nodes (DNs). This I)Ns probing can be a periodic 
detection of the dynamically changing neighbouring node density, or it can be a one-off 

measure if the system is stationary. 

This mechanism gives each node two pieces of important information: one is the 

quantified interference impact measure, DNs, which later can be used for making a 

routing decision as its criteria depend on the impact situation in the network; the other 

one is the local neighbouring node density reflected also by DNs, achieved by 

comparing actual measured DN with a pre-defined optimal neighbour node density 

threshold, maximurn DNs (DN.. ). The transmitting node can adjust its transmit power 

with respect to DN to this DN.,. measure to adjust the area of interference impact it has 

made, as well as control the number of neighbouring nodes that suffer this impact. 

5.3.2. Access Control Layer: Distributed BTMA Scheduling 

The MIR routing mechanism requires a multiple access control (MAC) protocol model 
to deal with multiple access contention, avoid collisions, and prevent hidden terminal 

problems. 
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It was Kleinrock and Tobagi [32,106] that recognised and analysed the hidden terminal 

problems in wireless systems and proposed the Busy Tone Multiple Access (BTMA) 

solution to deal with this problem. The available frequencies are divided into a data 

channel and a control channel. While a terminal is receiving data on the former 

channel, it places a busy-tone on the control channel and signals to other potential 

senders that if the receiver is busy, they should defer their transmissions. This protects 
the system from normal contention collisions and hidden terminal problems. 

BTMA can also eliminate the exposed terminal problems if the sender ignores the 

carrier sense signal when there is no busy-tone on the control channel. The problem 

with BTMA is that it requires splitting the channel into two, making receivers more 

complex. The two bands also need to be separated by a guard band, which wastes radio 

spectrum. Also, since the propagation characteristics of the radio link are dependent on 
frequency, a terminal might hear just one of the two signals (busy-tone or data)[32, 

106]. 

5.3.3. Network Layer: Distributed Routing 

In terms of routing, a distributed Local Communication Group (LCG) is defined by 

each existing node to achieve localized topology control, which reduces the total 

amount of routing information that is managed by each terminal, as well as reducing the 

contention intensity by processing only the demand from its one-hop neighbours. The 

routing information propagation is achieved by distributed flooding with control in 

conjunction with the distributed asymmetrical routing. 

5.3.3.1 Distributed LCG 

A LCG is a cluster of all immediate neighbouring nodes within the transmission range 

of a terminal. Every node has its own LCG and declares a Next Forwarding Node 

(NFN) to forward data packets toward a known destination in a hop-by-hop manner. 
Figure 45 shows an example of LCGs and route selection in different types of network 
topologies (e. g. chain, square, hexagonal, and random) using different routing schemes, 

e. g. shortest path and MIR. A detailed MIR protocol description is in chapter 6. 
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Figure 45 LCGs and Route Selection In 3 different Network Topologies 

(a) Hexagon (b) Square (c) Chain 

The terminal defines its LCG by referring to the maximum DNs (DNr,, a,, ), which gives a 

predetermined optimal neighbouring node density. This DN,,, aý, is then compared to the 
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actual measure of DNs from a DIIP in order to adjust the transmission link length for 

minimum interference impacts and optimized neighbouring node density. The logical 

syntax of the LCG control is as follows: 

0 If DN.. < DNs, then reduce transmission power level; 

0 If DN.. > DNs, then increase transmission power level; 

In this case only the one-hop neighbours will communicate with each working node, 

and bring in the localized operations (e. g. relays, access contention control) and routing 
infonnation with a much lower intensity. 

5.3.3.2 Distributed Flooding Control 

Flooding is a robust routing information propagation method, yet it has a devastating 

avalanche effect as discussed in section 5.2.2. In order to extract its robustness, and 

eliminate the negative avalanche side effect, controlled flooding can be used within the 

MIR mechanism. Before a packet is flooded into the network to be duplicated, and 

relayed towards its destination, the packet is given a sequence number, which indicates 

the sequence of generation at a source node, and a residual life that indicates how far 

has the packet travelled. 

The sequence number allows an intermediate node to destroy any duplicates of the 

same packet that is has already received or that are being forwarded from the same 

source. In this case, the duplicates of the same packet that cause the relaying loop to 

eventually grow into an avalanche effect will be destroyed. 

The residual life of a packet indicates a maximum survivor period that a packet should 

exist in the network traffic, decreasing by I each time it forwarded, and eventually 
being destroyed before or after it reaches its destination. This prevents a packet being 

duplicated and relayed forever in the traffic flow. However, within this residual life, a 

packet could still create multiple duplicates and result in a small scale limited version 

of the avalanche effect, with a total number of duplicates that are measurable in an 

H idealized network scenario using equation 5.6, Nj = n, - n, , where each transmitting 

node nt has an average number of neighbouring nodes n, at each hop. The number of 

114 



Chapter 5 Minimum Impact Routing Preliminary 

duplicates, Ni (which also measures the number of interfered nodes i. e. the end-to-end 
accumulated disturbed nodes along a path), is in proportion to the path length H 

(measured in hops) and the number of neighbouring nodes n,, and Nj grows 

exponentially as the number of hops increases. 

5.3.3.3 Cross-layer Distributed Power Control 

The MIR mechanism requires Distributed Power Control (DPQ for each terminal for 

multiple purposes, or a cross-layer meaning. For the physical layer, DPC adjusts the 

transmission link length, so that any one transmitting node will not disturb or interfere 

with too many neighbouring nodes on a per-hop basis. For the AMC layer, the DPC 

adjusts its transmission link length according to the comparison of pre-defined I)Nma, 

with the actual measure of I)Ns per hop, to make sure that the transmitting node has a 

near optimal neighbouring node density, and consequently, each node only handles 

local access requests. 

For the network layer, the DPC is responsible for constraining the routing operation 

through the use of only the local routing information within a LCG instead of global. In 

this case, each node will process less routing control overheads and, at the same time, 

reduce the overall routing overheads in the system, due to each node only managing the 

routing information of its neighbours within its LCG. 

From a system level point of view, distributed power control operates in conjunction 

with DIIP, distributed BTMA, and distributed routing, creating a mechanism that can 

maintain the balance of transmission link length, neighbouring node density, and 
interference impact levels. Chapter 6 and 7 will explain in more detail how the 

mechanism operates. 

5.3.3.4 Distributed Asymmetrical Routing 

Using Variable Transmit Power (VTP) results in asymmetrical radio links on a 
Forward path (FP - from source towards destination) and a Reverse Path (RP - from 

destination return to source). Asymmetrical routes can appear in a network where the 

FP contains all the forward radio links starting from an originating source node towards 

the paired destination node; the RP contains the radio links in the opposite direction. 

This means the one-hop distance on a forward path may appear to be two-hops on the 
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reverse path, in which case it might confuse routing algorithms that use hop-counts as a 

routing constraint, as shown in Figure 46. 

Forward Path 

----------------- ---------- 

----------- 0 ----- 4) ---- - -- ----- 0 ---- 0 ----------- 
---------- ---------------- 

Rev arse Path 

Figure 46 Paths with Asymmetric Links 

Numerous strategies have been developed to establish connections on asymmetric 

routes, as discussed earlier in section 3.4 [96-100]. Route discovery information is 

disseminated separately for each direction (FP or SP). Previously proposed methods 

ensure the connectivity relay on bidirectional routing with frequent acknowledgement 

exchanges. 

This results in complex routing operations generating redundant routing overheads. The 

asymmetrical algorithms could provide a solution to establish the most appropriate 

routes through a network. WANET routing calls for routing algorithms tailoring the 

transmit power and routes through the network to fit in with desired constraints (e. g. 
hop count, battery life, interference) [96-100]. 

5.4 Conclusion 

The early section (5.2) of this chapter identified the key influential factors in enhancing 
WANET system capacity and scalability, analysing the interrelationship between these 

factors through the discussion of the three trade-offs. 

The first trade-off of whether using single-hop or multihop transmission for routing 
brings out the desirable feature of multihop transmission, enables simultaneous 

transmissions to take place, but has drawbacks such as relaying burden. The second 

trade-off continues the discussion of relaying burden from a centralized versus 
distributed control aspect, to illustrate the desirable feature of distributed control, in 
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terms of distributed relaying, controlling, and processing burden, among a smaller 

number of neighbouring nodes. The third trade-off continues with the discussion of 
localized information processing, further explaining the interference impact. This is the 

combined effect of relaying burden, control overheads, and the transmission block- 

outs, which are the major obstacle that constrain the system scalability, in addition, 
identifying the benefit of spatial reuse in this case. 

In the later section (5.3), a combination of different techniques, which are each aimed at 

solving one aspect of the system scalability problem, are proposed and these contribute 
to the construction of a new routing mechanism, the Minimum Impact Routing (MIR) 

algorithm, which will be discussed in more detail in the next two chapters. 

The MIR mechanism senses the interference impact existing in a network, and then 

constructs and maintains a localized communication group (LCG), where routing 
information is handled and forwarded with careful controlled flooding, to limit the 

avalanche effect. All these operations are more or less achieved using variable transmit 

power, which results in a side effect, known as asymmetrical paths, and hence the MIR 

propagates information using asymmetrical routing. 

Spatial reuse in WANET will contribute to the reduction of interference impacts and 
improve the system scalability. The optimal solution for WANET system scalability is 

distributed autonomous frequency or spatial reuse, and in this case, it requires 
dynamically sensing the neighbouring node's spectrum using, and selects non- 

conflicting channels for communication, in which case it could potentially provide 

scalability as high as cellular networks, subject only to the impact of relaying burden. 
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6.1 Introduction 

The majority of existing routing algorithms neglect the effect of interference impact 

and transmission spatial concurrency constraint on the reduction in capacity[17,33,36, 
37,70,107]. This reduction is caused by nodes close to a receiver that are required to 

be idle to avoid collisions [1,10,13,20]. The effect of a transmitting node interfering 

with surrounding nodes while communicating, and the resulting effects on system and 

user capacity, is what is referred to as "impact ". The throughput furnished to each user 

will eventually diminish to zero as the number of users is increased [20]. There is a 
limit on the number of users that can simultaneously communicate in the network, due 

to the interference between the transmitting nodes and the surrounding nodes that share 

the same spectrum. 

While one node is transmitting, nodes sharing the same spectrum close to a receiver are 

required to be idle to avoid collisions. Therefore neighbouring nodes of the receiver 

cannot communicate simultaneously. These nodes are considered to be the Disturbed 

Nodes (DNs) that are affected by interference, and this "lock out" results in decreased 
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system and user capacity. We consider when a source-destination pair communicates 

any intermediate nodes which receive significant unwanted interference, is a DN, i. e. 

except for the intended transmit and receive nodes. 

Most early proposed WANET routing algorithms focus on enhancing network 

connectivity, and they emphasize the benefit of power control on energy consumption 

or simple link length control, to achieve spatial reuse etc. Based on these theoretical 

algorithms, many simulations assume that links are symmetrical between neighbouring 

nodes, yet these assumptions neglect the fact that variable transmission power control 

yields asymmetrical links, and high connectivity using long links results in low spatial 

reuse. On the contrary, if each node simply uses the minimum link length, then a high 

ratio of relay overheads will dominate the network traffic, and therefore it is important 

to investigate how the transmission interference impact reduces spatial concurrency 
[10]. 

The Minimum Impact Routing (MIR) algorithm introduced in this chapter, operates 
based on the minimisation of the accumulated interference impact on multi-hop 

communications in WANET. It is very important to restrict such impact in WANET, 

since a transmitting node will block out adjacent nodes that share the same spectrum. 
MIR is designed to provide a low number of disturbed nodes, and low interference 

impact, and hence low routing overhead, high routing efficiency, and high system and 

user capacity. The MIR scheme is then simulated on a test bed and constructed using a 

network simulator OPNET. 

The simulation model constructed and used in this chapter has three basic network 
topology scenarios: square, hexagonal, and chain. In each of these scenarios, each 

transmitting node has been given a different number of immediate neighbours, e. g. 4 in 

square network, 6 in hexagonal network, and 2 in chain network. The simulation model 
has 32 identical wireless nodes, each capable of transmitting at an identical transmitting 

power, which can be manually configured with different power levels. The performance 

of a WANET simulation model using the MIR scheme is then evaluated and the results 

collected at the end of each simulation, and validated by processing the resulting data 

into different formats of plot. 
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6.2 MIR Theoretical Characteristics 

This section introduces MIR in three parts: first is the preliminaries of MIR, which 

defines link length, interference range, disturbed nodes, route weight, beacon packets, 

and local communication groups; second is the Distributed Interference Impact Probing 

(DIIP) principle; third is the MIR protocol, which includes routing information 

dissemination, route length measuring, and the two stages of the routing table related 

operation, the route discovery stage and the route maintenance stage. 

6.2.1 MIR Terminologies 

A Link Length (LL) is the distance between two adjacent radio nodes as shown in 

Figure 47. The LL is defined as the farthest edge that a node's minimum transmit 

power can reach its immediate neighbours, with the packets still being correctly 

received, which is adjustable according to the needs of transmitting node. 

Local Communication Group 

Interference Range (LCG) 
- 
With a radius 

- 
of Am 

-------------- With a radius of 6km 

0"', 001" *""0 

0 
Tx 

,00 "0 ", 0 '. 
I1 " %. 

*1 
N, 

III 

0" Link Length I (3km) 
Disturbed Nodes (DN) 

Figure 47 Interference Impact model 

Interference Range (IR) indicates the radius of an area where a transmitting node 

causes an interference impact, which prevents other nodes within the IR to transmit at 

the same time. The size of the IR is proportional to the LL. Figure 47 shows an example 

of LL and IR. 
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Disturbed Nodes (DNs) are all nodes, within an IR, that are receiving an adverse 
impact. (The DNs are similar to the exposed nodes in WLAN in the sense that they both 

suffer from transmission block outs, however, in this research, DNs are utilized for not 

only describing the interfered node, but also measuring interference impact, which we 
discussed previously in chapter 5) 

Route Weight (RW) is the sum of all the DNs along the path between a pair of source 

and destination nodes. 

Beacon Packet (BP) contains sufficient routing information to establish a connection 

or update other node's routing tables. The BP contains routing information, such as the 

transmitting nodes' ID, and location. It is broadcast periodically to nodes within the 

maximum LL range. Nodes receiving a BP update their routing information 

concurrently, and calculate their distance from the transmitting node. The example 

content of a BP is shown in Table 6. 

Table Content 

1 Transmitting Node's Identity (ID) and Location 

2 Route Weight from Known Source Nodes 

3 Sequence Number 

And so on 

Table 6 Contents of a Beacon Packet 

6.2.2 MIR Protocol 

Nodes using MIR will select a route based on the minimum number of DNs. Each node 
in the network disseminates routing information by periodically broadcasting BPs. This 

allows newly activated nodes to announce their existence, and lets other nodes learn 

their Identity (ID) and location etc. By receiving BPs, each node can calculate the 

distance from itself to the transmitting node and determine its immediate neighbours. 

In this way each node will construct a Local Communication Group (LCG), which 

contains all nodes within a one hop distance, for later transmission of any packets. To 

communicate with destinations that are outside of one's LCG, a chosen LCG member 
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will forward the packets approximately towards the desired destination by referring to 

the routing table. 

Initially when the routing tables are empty, every node starts to broadcast BPs 

embedded with a lifetime, so that other nodes can learn of their existence, deten-nine 

their position, and create entries in each nodes' routing tables. For example, the 

highlighted column in Table 7 shown below is the entry of N, in Ni's routing table (i 

does not equal 1). After a while every node will have a routing table consisting of one 

routing entry for each learned source node. 

Identified Source 

NodelD 

(Source/ 

Destination) 

Forwarding 

NodelD 

(Last/next) 

Number of 
Disturbed 

Nodes 

(DN) 

Sequence 

Number 

Other 

Routing 

Control factors 

N, Ni-, 20 015 ... 
N2 N, 

-, 
15 203 ... 

... ... ... ... ... 
N,., Ni 3 251 ... 
N, N/A N/A N/A ... 

Table 7 Example of routing table for Node Ni 

When a node needs to transmit a packet to a known source node, without knowing a 

predetermined route, the packet will be flooded into the network, in a hop-by-hop 

manner with a limited lifetime, (i. e. hop-count), and a sequence number. This ensures 

the packet will not cause endless retransmissions and unlimited duplication of stale 

packets. Every intermediate node that forwards this packet will add its own ID, together 

with the total number of local DNs, into this packet's header. By the time this packet 

reaches its destination node, its recorded route weight, which is the total number of 

DNs along the path, will be compared with other previously recorded packets from the 

same source. The packet with a lowest route weight will be used to update the 

destination node's routing table, and its last forwarding node's ID will be recorded. 

When a node needs to send a packet in a reverse direction, the recorded 'source node 
ID' will be used as a new 'destination node ID', and the previously recorded 'last- 
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forwarding-node ID' will become the next 'next-forwarding-node ID'. In this way 

every node will soon detennine a Next Forwarding Node (NFN) lead toward each 
identified node. 

Route maintenance is achieved by updating the forwarding node's ID, using 
information carried by received packets. Each node forwards a packet to its one-hop 

away NFN within its LCG. Packets with a valid lifetime are relayed in either the 

situation where the current node's ID matches the NFN's ID indicated in the packet's 
header field, or if no NFN ID is specified, then this packet should be broadcast onward. 
Otherwise, if a received packet is stale or the packet is not addressed to the receiving 

node, this packet will be discarded. This stops packets exponentially flooding the 

network and reduces the number of duplicated packets. Packets will time out after their 

lifetime limit has run out. If changes take place in the network, a node needs to update 

the routing table with an alternative 'next forwarding node ID' towards a destination 

node. 

6.3 MIR Performance Evaluation 

The performance of the WANET model using the MIR algorithm is simulated using the 

OPNET network simulator. A combination of network scenarios (e. g. hexagon, square, 

and chain) and link length configurations (e. g. 3,6,9,12 kms) is examined, and then the 

simulation results are processed using MATLAB. 

6.3.1 Simulation Models with Identical node transmit power 
The performance of the MIR simulation model was measured, mainly based on the 

reduction of the total/mean number of DNs, in a unified WANET simulation model 

with 32 nodes, which organized into three different network topology scenarios, as 

shown in Figure 48. 
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(a) (b) 

.............. 
ýMNO MN1 MN2' MN30 m" MN32 

(c) 

Figure 48 Network Topologies 

(a) Square Network (b) Hexagonal Network (c) Chain Network 

At this stage of the research work, the one-hop distance for all nodes in the network is 

regulated in different shaped network topologies, in order to connect a different number 

of neighbours. For instance, within one-hop distance, each node will have a maximum 

of 6 neighbours in hexagonal topology, 4 neighbours in square topology, and 2 

neighbours in chain topology respectively, as shown in Figure 48. These different 

topologies have been chosen in order to examine the effect of node connectivity on 

performance. 

In all three networks, the internal structure of each wireless node is the same, as 
demonstrated in Figure 49, where (a) shows the four function blocks (radio receiver-rr, 

radio-transmitter, hub, and source-src) of a radio node; (b) shows the State-Transition- 

Diagram (STD) of a processor 'hub', which is the control centre of the node; and (c) is 

the STD of a source. 
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(b) Processor Model: 
Hub 
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Figure 49 Internal structure example of a radio node 

Source 

(a) Node Model (b) STD of processor 'hub' (c) STD of Process 'source' 

The same network model can be configured to use either the common shortest path 

algorithm, for simplicity, or be configured to operate using the MIR algorithm, and it is 

in the STD where the routing algorithms are defined and programmed. Figure 50 shows 

an abstract logical function structure diagram. 

MIR router/node model 
-------------------------------------------- Processor Hub 

---- ------ 
-Process received packets Packets : Packets 

L 
-Calculate Shortest Path 

-Relay/Destroy packets 

Node 

Density 

------------- ------------- 

Sourc 

----------------------------------------------- 

Figure 50 Logical Structure of a MIR router/node 
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The transmit power of all nodes in the topology is set to the same fixed levels, but later 

adjusted as part of the simulation, for modelling different fixed link lengths. The 

Interference Range Ratio (IRR) is used to set the area affected by interference so that 

the number of DNs located within the area can be calculated (discussion of how to 
identify the disturbed nodes from a node perspective is beyond the scope of this thesis). 

The parameters used in these simulation models are listed in Table 8 below. 

Routing Algorithm used Shortest Path Routing I Minimum Impact Routing 
Network Model Size 60 krn x 60 km; 32 wireless nodes 
Wireless Channel Random Arrival Distribute between 0-50000 seconds 
Node spacing 2.5 krn 
Network Topology Hexagon, Square, Chain 

Number of Nodes 32 
Interference Range Ratio 2 

Radio Link Length 3,6,9,12,15,18,21 km 

Route Selection Criteria Shortest Distance (Hops) I Minimum number of DNs 

Table 8 Simulation Configurations 

6.3.2 Result Evaluation 

The simulation results from the network operated under the configuration using 
Shortest Path (SP) and MIR routing algorithm are compared. Firstly, the mean number 

of DNs is determined for a hexagonal node topology. The comparison of total number 

of DNs from SP and MIR with three basic fixed Link Lengths in a hexagon network is 

shown in Figure 5 1. The result indicates that the mean number of disturbed nodes with 
MIR is less than or equal to SP as expected. 
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Figure 51 Mean Disturbed Nodes Performance 

32 Nodes Hexagon Network SP and MIR Comparison 

The difference between SP and MIR is shown more obviously at Link Length level I 

(indexed as SPLL I, MIRLL I), where the one-hop distance is preset to 3 km, and more 

geographically different routes are possible (in terms of the nodes that get disturbed). 

This proves in theory that the total number of DNs from MIR is lower than SP, since 
MIR has chosen the route with lowest number of disturbed nodes. 

Link Length levels 2 and 3, where the one-hop distance is 6 and 9 km respectively, 

shows less difference in the number of DNs. This indicates that the shorter the link 

length, the better the flexibility with which a node can choose an alternative route using 
MIR. In this case, reducing the total number of disturbed nodes for each routing task 

improves the system and user capacity by allowing more nodes to communicate 

simultaneously. 

DNtotal DNj (6.1) 

It is possible to calculate the mean DN Reduction (DN, ), which is defined by equation 
6.2 for investigating the performance of each network topology. 

127 



Chapter 6 The Minimum Impact Routing Scheme 

DN, = 
MeanDNsp - MeanDNmR 

X100% (6.2) 
MeanDNsp 

To facilitate this, it is sensible to calculate the total number of DNs for an n hop route. 
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Figure 52 Disturbed Nodes Reduction of MIR in 32 Nodes Hexagon Network 

The percentage reduction in the number of DNs arising from use of the MIR algorithm 

for a fixed route length (measured in hops), is shown for a hexagonal topology in 

Figure 52. This graph shows that the biggest improvement takes place at a medium 

multi-hop route length. In the simulation, MIR provided an average reduction of up to 

14% in DNs in comparison with the SP which has been achieved. The highest DNR 

arises for such route lengths because changes in the route give the maximum benefit. In 

the case of the longer routes both, MIR and SP will disturb nodes multiple times on 

successive hop transmissions, which means that the reduction in the number of hops 

will have proportionally less effect. 

The mean number of disturbed nodes can be examined for each topology as a whole for 

different transmission link lengths. These results highlight the effect of the different 

topologies - see Figure 53. MIR performs differently in the three different topologies. 
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Figure 53 Mean DN vs Link Length of 32 Nodes Network in 3 Topologies 

In the hexagon and square networks, MIR has a lower number of DNs when 

transmission link length is very short and very long, but disturbs more nodes at a 

medium link length. The minimum link length results in a sub-optimum hop distance 

that means that nodes are repeatedly disturbed for little advancement along the link. 

With a chain network the effect is more pronounced, MIR performs well for short link 

lengths, and remains high for all link lengths above 8 km. This is because there is no 

alternative choice of route and the number of disturbed nodes is similar. If the graph 

were extended to a link length of 32, one would expect the mean number of disturbed 

nodes to reduce to 30. 
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Figure 54 MIR Mean Disturbed Nodes Efficiency vs. Link Length in 3 Scenarios 

Another performance measure is the Mean Value of DN Efficiency (MDNE), which 

indicates the fraction of nodes involved in the transmission compared with the optimum 

number. It is a measure that indicates how many percent of nodes were involved in a 

transmission compared with the optimum number that should be involved in the 

transmission (i. e. disturbing no nodes). The MDNE is calculated using the following 

formula: 

MDNE = 
Optimum number of Receiving nodes (6.3) 

Actual number of Receiving nodes 

Figure 54 shows the MIR performance measured in MDNE for three network 

topologies. The chain network has by far the best efficiency, since the average number 

of DNs is the lowest. Hexagon and square topologies have lower MDNE, since their 

average DNs are higher. This is largely due to the node connectivity. If a node has good 

connectivity, it is likely to disturb more nodes - i. e. fewer simultaneous transmissions 

can take place. The low values of efficiency indicate that there is much improvement 
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that can be made by controlling the number of disturbed nodes, e. g. by allowing 

variable transmit power and directional antennas. 
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Figure 55 Mean DNR vs. Link Length of 32 Nodes Network in 3 Topologies 

Figure 55 shows the effect on disturbed node reduction on each topology for different 

link lengths and it can be seen that MIR benefits the square topology best. This is 

because the topology requires many more hops to get across the network compared 

with the hexagon, which coupled with the reasonably flexible route choice ensures the 

biggest benefit. 
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6.4 Conclusion 

In this chapter, a new interference-aware routing scheme was discussed, Minimum 

Impact Routing (MIR), for a multi-hop wireless ad-hoc network. The fundamental 

difference between MIR and other routing algorithms is the criteria for making a 

routing decision. MIR use disturbed nodes (DNs) as its routing criteria, aiming to 

reduce the number of nodes disturbed by packet transmissions as it is sent across a 

network so as to improve the number of simultaneous communications. The 

performance of MIR was evaluated by measuring the total number of disturbed nodes 
for different transmission link lengths and network topologies. Then the result was 

compared with a similar configured model using shortest path routing. The results show 
how a 14% reduction in disturbed nodes can be achieved in certain scenarios when the 

transmission link lengths are short. The results additionally show that topology plays an 
important part in determining the overall efficiency of the routing algorithm (in terms 

of disturbed nodes). In general enhanced connectivity results in a greater number of 
disturbed nodes. 

In the communication networks, the packet transmission ETE delay will increase due to 

many causes, e. g. inefficient routing generates additional control traffic or packet 

retransmission. This results in the relaying burden that generates redundant traffic load 

dominating communication links, reducing the network capacity and throughput. MIR 

measures interference impact using DNs, and then compares this measure with an 

optimal node density threshold, maximum DNs (DNma,, ). When the number of 

surrounding nodes increases, then the transmitting node using DIIP to measure local 

DNs (DNL) reflects this density, and compares it with a preset DN ..... threshold. If the 

DNL is greater than DNT then two changes will be made. First, the transmit power level 

will decrease to a matching level. Then the working node will recalculate and 
determine its LCG members within the new radiation range. When the opposite 

situation happens, DNL decreases, the working node will increase its transmitting 

power, so that its DNL level remains within the limit of a DNT. 
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7.1 Introduction 

MIR with Variable-transmit-power plus Asymmetrical-routing (MIR-VA) is the further 

improved version of MIR. The routing scheme introduced in the last chapter can only 

choose a particular Local Communication Group (LCG) size according to a fixed 

identical transmit power in each node. The result of the previous simulations show that 

the model using MIR reduces the number of Disturbed Nodes (DNs) as predicted, and 

consequently increases the concurrent transmissions in the network, hence improving 

the system and user capacity. MIRNA, using the same total DN measure along a path 

as its routing decision making criterion, and will select a path with the minimum 

number of DNs for transmission or relay. 
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However, the fixed transmit power in each node does not reflect the real network 
behaviour, where every node could send their signals at a different strength to achieve 

adequate SINR for ensuring link quality. In addition, the interference impact 

measurement is fixed for every node, which means there is no coordination between 

nodes, and the node density around a transmitting node is not reflected by the 

transmitting node's LCG. In this case, the pure MIR scheme used by the simulation can 

only find a better configuration, in terms of reducing DNs, by manually adjusting the 

previously identical transmitting power in each node. 

In order to simulate interactive operations of MIR nodes, a variable transmit power 
feature is added into the scheme. Consequently, power variation triggers the link length 

variation, which generates asymmetrical links in the network, and in the size of an 
LCG, and can be adjusted to reflect the neighbouring node density of a transmitting 

node. Therefore the routing operation of pure MIR also incorporates an asymmetrical 

routing strategy for adaptation to the asymmetrical link environment. 

This chapter will introduce, the theoretical characteristics of MIR-VA, in which 

concerns Variable Transmit Power (VTP), asymmetrical routing strategy, spatial reuse 

theory, consequently the Time Sequenced Interference Region (TSIR) conceptual 

model, the derivation of system and user capacity based on the measure of interference 

impact, and finally the MIR-VA protocol in section 7.2. Section 7.3 looks at the 

performance of the simulation model using MIR-VA algorithm. 

7.2 MIRNA Theoretical Characteristics 

In addition to the Distributed Interference Impact Probing (DIIP) mechanism, and the 

LCG concept, the MIR-VA integrates and incorporates the VTP and the asymmetrical 

routing scheme into the pure MIR algorithm. 

7.2.1 Variable Transmit Power 

The transmit power control has been used in conventional wireless communication 
networks, such as cellular networks, for energy conservation and improving the 

likelihood of good link quality, and increasing capacity, so that each node can 
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communicate with a base station with minimum transmit power, yet with sufficient 

signal-to-interference ratio on the wireless link (referred to as short for link quality in 

the rest of this thesis) [5,13,42]. 

In cellular telecommunication systems cellular phones adaptively adjust their power 
level so as not to swamp all the other users in the system [5,13,42]. Cell phones close 

to a base station/cell tower transmit using very little power. As they get further away, 

the base station/cell tower tells them to transmit using more power. This adaptive 

transmission has two benefits [5,13,42]: 

0A fixed transmit power level would either (close to the tower) use more energy 

than necessary, reducing the battery life of the cell phone, or transmit too quietly to be 

heard, reducing the range of the cell phone. 

0 The cell tower adjusts the power level of each cell phone so that at the tower 

they all have close to equal power levels. This makes it much easier to separate all the 

signals from each other; if one phone were much "louder" than the others, it would be 

more likely to bleed through into the other signals. 

Power-awareness is one of the popular research fields of WANET. The purpose of 

power-awareness for WANET is summarized as follows: 

0 Energy conservation - increases energy consumption efficiency, to enable 
devices to operate new functions, and prolonging battery lifetime for a single node and 

the whole network. This ensures that smaller, lighter, and more environmentally 
friendly power sources can be used 

Interference Control - adjust transmit power level to reach adequate link quality 

without prohibiting all other nodes from communicating. Hence this increases the 

spatial reuse ratio in WANET, and increases user capacity. 

Conventional routing algorithms determine the most appropriate routes through the 

network using a route selection constraint. Usually this is achieved by using criteria 

such as the shortest path length (either physical distance or minimum number of hops), 

minimum energy consumption, or selecting nodes with the longest battery life [3,7]. 
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The latter two requires cross-layer knowledge to be used, especially as they will often 

adjust the transmit power [100]. 

A wide number of constraints can be used to select routes that have the minimum 
interference impact on the environment. This can be particularly helpful in congested 

environments, possibly where multiple networks are sharing a common band (either 

using the same standard or differing standards), as well as helping to conserve battery 

power. Impact is measured by determining the number of nodes that are disturbed by a 

transmission, or the overall levels of interference on the channel as shown in Figure 58. 

If the interference level is high, then it is possible that transmissions on the same 

channel will excessively interfere with other nodes [100]. 

MIR uses the DN measure as the routing criterion, which can be used in a number of 
different ways. Disturbed nodes may be nodes that can actually receive unwanted 

packets, or alternatively, just give rise to interference, reducing the SINR. Fixed 

transmit power routes which disturb fewest nodes can be selected [100]. 

0 

(a) 

(b) 

------------- 

Source Destinatiod, 

Figure 56 benefits of variable transmit power and minimum impact routes 

(a) Pure MIR (b) MIR with VTP 
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The nature of WANET has given power control a new meaning, which is to improve 

spatial reuse ratio in the network. MIRNA incorporates VTP into the pure MIR, taking 
into account measures of local interference impact, and adjusts its transmit power to 
dynamically form its own LCG, as shown in Figure 59. Such a scenario shows fixed- 

transmit-power routing, Figure 59 (a), has a greater number of hops, resulting in 

multihop relays, hence longer packet relaying delays. If variable transmit power is used, 
Figure 59 (b), the transmit power can be varied to disturb a set number of nodes. In this 

way, high transmit powers can be used in less congested parts of the network, resulting 
in fewer hops, with lower transmit powers used on parts of the route that are in close 

proximity to other networks. This provides more of a balance between disturbance and 

packet delay. 

7.2.2 Asymmetrical Routing 

As discussed earlier in chapter 5, the variable transmit power results in asymmetrical 
links on both directions of a path, hence the asymmetrical routing strategy has been 

developed especially to resolve this problem. 

(SAC-AARVL) 

an> 
(END) 

ffý-PK' KT) 

Figure 57 Hub Processing model for Asymmetrical Routing 
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The lower three state symbol in Figure 57 is the upgraded hub process model that splits 
the original "route_pk" state into three, so that the model is able to process the forward 

and reverse routing information separately. 

7.2.3 Spatial Reuse and Carrier Sensing Multiple Access 

The concurrent transmission, in systems that use Carrier Sensing Multiple Access 

(CSMA) for collision control, has a safe Spatial Reuse Distance (SRD) problem. This 

means in a shared spectrum environment, where it is assumed that hop length and node 
density are constant, and all the transmitting nodes are co-channel nodes, when one 

node is transmitting, the concurrent transmission that will not cause collisions must take 

place outside of a safe SRD distance (e. g. two hops between concurrent transmitting 

nodes, as the uniformed network shown in Figure 58). 

For instance in Figure 58, two concurrent co-channel transmitting nodes, TI and T2, 

have a safe distance to transmit simultaneously. In which case TI's receivers (i. e. RI 

and other receivers inside TI's transmission radius) will not receive potential 
interruptions from nodes that are inside of the ring region between TI and T2. 

iSpatial Reuse Distance I iSpatial Reuse Distance 2 
----------------------------------------------- ----------------------------------------------- 

RI 
41) 1 

11 
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........ T 1-0 pe ---*a ................. 1.0 
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A4 

f 
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C% 
CL '4k 
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Figure 58 Safe Spatial Reuse Distance in a regular network 
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Otherwise, if T2 moves to the location T2', and transmits concurrently, the hidden 

terminal problem is likely to occur, and simultaneous transmissions of TI and T2' 

could collide. 

Figure 59 shows a simultaneous transmission scenario in a unified square network. This 

theory inspired later spatial reuse theory derived for MIR to calculate system and user 

capacity using the number of disturbed nodes. From this regular matrix of nodes, the 

spatial reuse ratio is derived. More detail about the capacity derivation is shown in 

section 7.2.5. 

/ 

,, Transmission Area: AT, 
--N -------------------- 

/ 
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,, 
Transmission Area: AT2 
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Interference Area: A,, 
----------------- 

0 0 0-00 40,0 
TX2 Transmission Area: AT3 

inn i------------- 

Interference Area- A, 2 
------------------- 

Interference Area: 13 

------------------ ----- ---- -- 11 
TX3 

Figure 59 Simultaneous Transmissions in a Square Network. 

7.2.4 Time Sequenced Interference Region (TSIR) 

in any Time Division Multiple Access (TDMA) wireless system, considering all nodes 

on a path between a pair of source and destination nodes, should be considered. These 

therefore generate a series of transmissions as well as interference footprints along the 
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path. The overall interference region along this path is referred to as the Time 
Sequenced Interference Region (TSIR), as shown in Figure 60. 

TA4 
Time 

TA3 

TA2 

TAl 
TSIR 

-------------4------- 
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4K 
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Reuse Distan 

TAV 
0 

Figure 60 Time Sequenced Transmissions and resulting Interference Regions 

In this sense, the whole network contains multiple transmission sequences over a period 

of time, and as Figure 61 illustrates, each intermediate node can schedule different 

transmissions belonging to a different sequence. In this same period of time, concurrent 

nodes could complete their transmission simultaneously without collisions. 

t Time 

I, 

it 

----------- 10. 

Figure 61 Time Sequenced Transmission Groups Along Different Path 
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If we consider all the nodes that receive transmission impacts within a TSIR is a subnet 

or a part of the whole network, then the capacity of such regions existing over a short 

period of time can also be considered to be part of the overall capacity. 

7.2.5 Capacity Derivation 

Assuming that in an asymmetric packet-based network that consists of N nodes in 

total, similar to the network shown in Figure 62, where the forward and reverse radio 

links between a transmitting node, n,, and its next relay node, n, are uneven in length. 

This is due to the limited battery power or the use of variable transmit power. 

The hop length, r, shown as the dashed arrow lines in Figure 62, indicates the one-hop 
distance between any n, and its desired nr. The path length, L, is shown as the solid 
double arrow line in Figure 62, which is the sum of all hop lengths on either a forward 

or reverse path between a pair of Source and Destination (S-D) nodes. 

Path Length (L) 

FHN=X 
FHN=3 FHN=3 

THC=NO 
THC=NO+N3 THC=No+ N3+N4 

----------- Forward Hop Length (r) -- 
------ 

Path I If 
............. 0,1 / 

11 

----- is --- W___O --- ---- 4-b --- 4) ------ Reverse 
Path 

---------- -- .............. FHN=3; THC=No+ N3+N4+ N, 

FHN=3; THC=No+ N3+N4+N6+N3 

FHN=3; THC= No+ N3+N4+Nr, +N3+N2 

Figure 62 Illustration of Routing in a Asymmetrical Network 

The Total Hops Counted (THQ, h, along a path is the quotient of L divided by the 

average r. This measure can also represent the total number of relays that is equal to the 
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number of transmitting nodes per-path, N,, which reflects the number of end-to-end 
relaying on a path, as shown in equation 7.1. 

Lh 

(7.1) 

The hop length, r, is inversely proportional to the maximum transmit power, P, at each 

transmitting node. The power consumption gain, P, for each hop is the quotient of P,, 

divide r (watt/km). 

P -!!! 
C 

r 
(7.2) 

Each transmitting node, nj, creates two interfering areas. The first is a transmission 

area, A, with n, at its centre with a radius of r, shown as disk areas, TA, as shown in 

Figure 60. Inside each A, there is one transmit and receive node pair (n,, nr) Surrounded 
by silent nodes, n, The second is an interference area, Aj, which shares the same core 

with A, and it is proportional to an At, shown as the larger dashed edged elliptical area 
IA in Figure 60. 

Each Ai contains n, interfered nodes, which includes the n,, n, and n, nodes in A,, and the 

additional n, nodes, with all n, receive the adverse impact, i. e. ns can neither receive 

meaningful transmissions nor transmit simultaneously, since they are subject to 
interference from an interfering system that shares the same spectrum. If they are close 
to a receiver, they are required to be silent to avoid collisions. The n, and ns together are 

called disturbed nodes, nd. (ni = n, +nd = n, +nr+ns) Route Weight, R, is the per-path 
TDN, Nd, which is the round trip sum of all the nd at each hop along the path. This 

reflects the end-to-end interference impact of this path. 
h 

R,, = Nd=lnd (7.3) 
d=l 

The Time Sequenced Interference Region (TSIR), ATSIR, is an irregularly shaped 
interference region along a multi-hop path, shown as the largest elliptical area in Figure 

60. ATSIR consists of a series of footprints of A, which are generated by all nodes n, on 
this path in a time-sequence. Each S-D pair creates a per-path TSIR, which consists of 
N, interfered nodes that are the sum of all the nj on this path (0< ni = nt + nd < N,; N, 

M. Hence we derive the following: 
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hhh 

N, = 2ýn, = 2ýn, + 2ýnd =N, +N, (7.4) 
1-1 9-1 d-I 

Any TSIR is independent from other TSIRs created by different S-D pairs, since 

transmissions can be scheduled in turn to ensure successful reception. Any node can be 

a member of more than one TSIR in different time periods. If we assume the network 

size and node density is constant, and each node can transmit over a one hop distance, 

but interfere with its two hop neighbours, then A, is greater than At, but less than or 

equal to a ATSIR or the whole network A, t. (0 < A, :5A, :5 ATsJR :5 At c Aj a A7sjR c: 

Anet) 

7.2.5.1 Spatial Reuse and Capacity Calculation 

The per-path spatial reuse number, sp, and the per-network spatial reuse number, S', 
indicate the number of spatially divided simultaneous transmission areas, TA', as 

shown in Figure 60, of another TSIR and within the whole network respectively. 

sp = ýý, = 
N, 

S,, =NN (7.5) 
n, nt +nd N, N, +Nd 

Gupta & Kumar [20] have demonstrated that if the node's location and traffic patterns 

are optimally chosen, then the throughput capacity derived from a geographical 

analysis of a arbitrary network is W, N is the total number of nodes in the network, 77 

and W is the channel capacity. Toumpis & Goldsmith [21 ] show that in a time-division 

scheduling asymptotical network, the network capacity is the maximum achievable rate 

of the source and destination transmission schemes. 

Combining these two concepts, and developing a new way of describing the network 

capacity based on path capacity, Cp, calculates the regional capacity of a TSIR 

including factors affecting the routing decision. These factors are the interference and 

relay impact measured using Nt in equation 7.1 reflecting the THC, and the Nd in 

equation 7.3, reflecting the Total Disturbed Nodes (TDN); the path spatial reuse 

number, sp, and the power consumption gain, Pc, in equation 7.2. 

Consider that each TSIR is an independent sub-network consisting of N, nodes over a 
period of time, and assume that the maximum channel capacity W is I Erlang, then 
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adapting Gupta & Kumar's capacity bound, the path capacity Cp can be derived as 

shown below in equation 7.7. 

c=1 xs XP =1N, 
P. 

ppc-xw x- (7.7) ýNi JN, + Nd ni r 

The network capacity, Cn, is considered here to be the sum of all path capacities of 

several co-existing TSIRs over the round trip period. One node from each TSIR 

transmits concurrently and is sufficiently spatially divided from other transmissions in 

different TSIRs. In order to derive this new bound, we assume that these concurrent 

multiple transmissions will be continuous and will be kept spatially separate over the 

period of end-to-end transmission time. 
1 

XS Xp ; Cn =' cn = Ic, =Zpc Cp X S. (7.8) 

. P. 1 p. i 
JN7+-Nd 

The C,, can also be derived as the product of average path capacity, C,, ', and the per- 

network spatial reuse number, s,, as shown in equation 7.8. If Nd or Nt increases, the sp 

will decrease, and consequently the path and network capacity will decrease. 

7.2.6 MIR-VA protocol 
In this improved version, MIR-VA inherits the previous foundations developed and 

published, but introduces asymmetric routing and a variable transmit power strategy. 
Initially when routing tables are empty, each node will broadcast packets initialised 

with routing information such as: First Relay Node (FRN), Next Relaying Node 

(NRN), Total Hops Counted (THC), Total Disturbed Nodes (TDN), lifetime, and 

sequence number etc. 
By exchanging packets, routing information is disseminated to allow existing nodes and 

newly activated nodes to announce their existence, learn each other's identity and 
location, determine their immediate neighbours, and construct one entry for each 
known source in a local routing table etc. Each transmitting node nt declares a LCG, i. e. 

a cluster of interfered nodes, ni. Packets are broadcast within this group, and relayed by 

intermediate nodes on the forward and reverse paths separately on a hop-by-hop basis. 

On a forward path as shown in Figure 62, the first relaying node's IDentification (ID) 

will be recorded in the packet's header as the FRN. Each intermediate relay node adds 
the local disturbed nodes on to its total DN, increasing its total HC, reducing its 
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lifetime, and creating a new entry for this unknown source. When the packet 
successfully reaches its destination within its lifetime, its forward path routing 
information, together with a fresh lifetime and new sequence number, will be added 
onto a return packet back to the same source. The source address will be used as 
destination address for transmitting in a reverse direction. 

On a reverse path, shown in Figure 62, intermediate nodes relay the packet, accumulate 
the total HC and the total DN based on the forward path measures, and reduce the 

packet's lifetime, until it returns to its original source node. The round trip total HC and 
total DN, i. e. forward and reverse path, and its FRN on the forward path will be 

recorded in this packet's header. If there was no record of this destination, or the 

previously recorded route weight in the entry of this destination is greater than the 

packet's route weight, the routing information in this packet's header will be used to 

update the routing table. Its FRN will be chosen as NRN in the local communication 

group for next transmission towards the same destination. 

Intermediate nodes accomplish flood control by selecting and attaching an NRN's ID in 

each relaying packet according to its destination address. The node receiving this 

packet will forward it only if the node's ID matches the packet's NRN ID, or no NRN 

ID is attached for that destination. This minimizes duplicated packets. If the packet has 

a stale lifetime or sequence number, it will be discarded on arrival. Nodes using MIR 

select a route with the minimum route weight along a path. Route maintenance is 

achieved by updating the NRN's ID for each destination in each source node's routing 
table using the received packet. 

Initially when routing tables are empty, every node starts to broadcast BPs, so that other 

nodes can learn of their existence, determine their position, and create entries in the 

routing tables. For example, if N, transmits a BP, all nodes within the LCG will receive 
the packet and fill in the N, row in the routing table. The highlighted column in Table 

9, shown below, is the entry of N, in Ni's routing table (i does not equal 1). In this case, 

after a while every node will have a routing table consisting of one routing entry for 

each learned source node. 
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Identified 

Node 11) 

(Source/Destination) 

Forwarding 

NodelD 

(Last/next) 

Disturbed 

Nodes 

Sequence 

Number 

Other Routing 

Control factors 

Ni Ni-i 20 015 
... 

N2 N. - 1 15 203 
... 

... ... ... ... ... 

Ni-1 Ni 3 251 
... 

N, N/A N/A N/A 
... 

Table9 Example of MIR-VA routing table for Node Ni 

When a node needs to transmit a data packet to a known source node, without knowing 

a predetermined route. the data packet will be flooded into the network in a hop-by-hop 

manner with a limited lifetime (measures by HC), and a sequence number. This ensures 

the data packet will not cause endless retransmissions and limits the number of 
fom-ardcd packets. Ivery intermediate node that forwards this data packet will add its 

own 11), together with total number of local DNs into this data packet's header. By the 

tinle this data packet reaches its destination node, its recorded route weight, which is 

the total number ot'DNs along the path, will be compared with other data packets from 

the same source. The data packet with the recorded lowest route weight will be used to 

update tile destination node's routing table with the last forwarding node. 

When a node needs to send a packet in a reverse direction. The recorded 'source node 
ID' will be used as a new 'destination node ID', and the previously recorded 'last 

forwarding node 11Y ý, N ill become the next 'next forwarding ID'. In this way every node 

will soon determine a NFN for each identified node. 
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Figure 63 Balancing Interference Impact use DNmax threshold in MIRNA 

Route maintenance is achieved by updating the 'forwarding node's ID' by reading 

received data packets. Each source node only needs to forward a data packet to its next 
forwarding node within the LCG, which is one-hop away. Packets are only forwarded if 

the 'next forwarding node' indicates that it is the current node's ID, or no route is 

known to that destination. This stops data packets flooding the network, and minimises 
the number of duplicated packets. A data packet will time out after its lifetime limit has 

run out. If any changes take place in the network, a node only needs to update the 

routing table with an alternative 'next forwarding node ID' towards a destination node. 

The cycle of balancing interference impact using a maximum'disturbed node threshold 
in MIRNA is shown in Figure 63. In this cycle, whenever the immediate node density 

of a transmitting node rises, the DIIP of MIR will check the total number of this node's 
immediate neighbours, local disturbed nodes denote as DNL, ýcal, and compare it with the 

maximum disturbed nodes, denote DNm.. It will then adjust this node's transmit power 

accordingly to maintain an optimal number of DNLca within its LCG, and hence 

adjusting the degree of interference impact. 
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7.3 MIRNA Performance Evaluation 
This section shows the network perfonnance based on the calculation of Cp and C, 

using simulation results of a network model that was developed in OPNET. These 

results were then plotted using MATLAB in various fonnats. 

7.3.1 Simulation model 

The performance of the MIR-VA algorithm was investigated using a simulation test 

bed of 36 nodes distributed in a square topology approximately 60kM2, with a basic hop 

length of 3 km apart. The network model has three basic scenarios, i. e. square, chain, 

and hexagonal, which are similar to the network scenarios shown in Figure 48. 

The network model has been simulated in four separate configurations with the local 

disturbed node thresholds (i. e. maximum disturbed node threshold) of nd set to 5,10, 

15, and 20 respectively, and the Shortest-Path Routing (short for SP), MIR, SP with 

variable transmit power plus asymmetrical routing (SP-VA) and MIRNA routing 

algorithms being simulated for comparison. Each node model, as illustrated in Figure 

64, was configured to be capable of transmitting at a maximum power level, P,,, which 
is restricted by the nd. This creates an Ai that is twice the size of A,, due to each 

transmitting node communicating with its one hop neighbours, but interfering as far as 

two hops away. 

I 
Processor Model: Hub ' 

/1/i 

- 

Processor Model: Source 

---------- f> 

Figure 64 Illustration of Node Model used in OPNET simulator 
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Each node model using MIR-VA selects a route based on the route weight, Rw. F 

shows the functional diagram of a MIR-VA node model. When the SP algorithm is 

used, a route is selected based on the lowest number of accumulated disturbed nodes 
(DNs) as the routing criterion. The total DNs of each path between a pair of source and 
destination nodes were collected as a measure at the end of each simulation for analysis 

and comparison. 

MIR router/node model 
r -------------------------------------------- 

Processor Hub 
r --------------------- ---- 

Packets -process received packets Packets 

-Relay/Destroy packets 

VTP LCG 

Node 
DIIP 

Density 

----------- ---------- 

-------------------------------------------- I 

Figure 65 Logical Functions Diagram of a MIRNA node. 

7.3.2 Simulation Results 

The performance of MIR-VA has been evaluated through simulation. Some selected 

simulation results are shown in this section. The maximum total DNs performance in 

three network topologies are shown in Figure 66 (a), as a function of Line-of-Sight 

distance with 36 nodes using MIR-VA with the asymmetric routing strategy. 

7.3.2.1 Routing Analysis 

The Chain topology statistics, shown as the dash-circle-line in the graph, has the lowest 

number of disturbed nodes, owing to each transmitting node having only two 

neighbours, and disturbing one neighbour at each transmission. Consequently, the 
hexagonal topology, shown as dash-star-lines, has the highest number of disturbed 

nodes, since in this scenario, each transmitting node has the highest 6 neighbours, 

whilst the square topology result shows the median performance is in the middle. 
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Figure 66 Disturbed Nodes and Delay Performance 

20 25 

(a) MIRNA for 36 nodes for 3 topologies (b) 36 nodes in a square topology using 4 routing 

algorithms (SP, MIR, SP-VA, MIR-VA) 

The performance of the square topology with 36 nodes is shown in Figure 66 (b), where 

the median total hop count is a function of median total DNs, and the model using the 

routing algorithms SP, MIR, SP-VA, and MIRNA shows the variation matching the 

theoretical prediction. 

For the same distance a packet has travelled, measured in hops, MIR has, on average, a 

smaller total number of DN than SP, and MIR VA has less DN than SP-VA with 

variable transmit power. For instance, at the average path length of 4 hops, the model 

using MIR results has an average of 10 disturbed nodes per path; for the model using 

SP, it shows 12 disturbed nodes on average per path; for MIRNA, an average of 16 

disturbed nodes per path is shown; and for SP-VA, an average of 18 nodes are 

disturbed per path. This verified the simulation with theoretical prediction. 
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Figure 67 Cumulative Distribution Function (CDF) of Total Disturbed Nodes 

MIR versus Shortest-Path (SP), Maximum ndý 15, 

Figure 67 shows the cumulative distribution function plot of TDN of SP- and MIR. The 

solid cross line on top is the CDF format of MIR's TDN for all routing tasks measured 
in the network. It shows, on the vertical axis, that 90% of the routing tasks using MIR 

disturbed fewer than 30 nodes per-path. In contrast, 90% of routing tasks using SP 

disturbed 37 nodes per-path, about 27% higher than MIR. This result also provides 

significant evidence showing that MIRNA is capable of reducing higher ratios of DNs. 

Figure 68 shows the path capacity, Cp, and network capacity, C, of the same square 

topology of the 36-node model, plotted as a cumulative distribution function against 

packet travelled distance measures in total Hop Count (HC) per path, which indicates 

the number of relays on the path. 
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Figure 68 Network Capacity vs. Path Length for Maximum ndý5,10,15,20. 

The MIRNA scenario results in Figure 68 show that when the threshold of maximum 
disturbed node (DNmax) is set to a lower number, e. g. DNmax =5 nodes, marked as 
MxDN5VMIR, measuring each transmission should disturb not more than 5 nodes. In 

this case the path and network capacity increases as the path length becomes longer, or 
in other words, the size of the network has increased. This is because as the number of 

nodes in the network is increased, more space becomes available to benefit or enhance 

the spatial reuse in the network. In this sense the network/system and user capacity will 
increase as the number of nodes increases exponentially, if the disturbed node threshold 

is chosen optimally. 

This practical simulation result matches the mathematical prediction made by Toumpis 

and Goldsmith in [21] 2002, about the extended capacity boundary of WANET. In their 

investigation, the maximum system and user capacity was achieved by using a transmit 

power variation, in other words, it is the shortest link length routing. This can result in 

significant increase in multihop relaying traffic, delays, and routing overheads, which is 

not practical for implementation in WANET. Whereas MIRNA used the balancing 

cycle of node density, local disturbed nodes, variable transmit power, and LCG 
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maximum disturbed node threshold, to dynamically adjust transmission link length to 

reflect the interference impact in the network (as demonstrated in Figure 26), hence 

achieving optimal system and user capacity. 

The vertical axis indicates the capacity, measured as the percentage of active users (%), 

versus the average path length, h, which is on the horizontal axis and measured in hops. 

In the case of path capacity, the maximum capacity varies from 25% to 2.5%, due to the 

limited spatial reuse situation along each path. However, when nd -"": 5, the network 

model operates as shortest link length multi-hop routing with maximum spatial reuse 
(fixed transmit power). When nd = 10 and 15, the network operates as multi-hop routing 

with VTP and optimal spatial reuse; in the case of nd = 20, the model operates as a 

single-hop path network with no spatial reuse. With an interference threshold nd = 53, 

10,15, the maximum network capacity is 89%, 22%, and I I% respectively. 

The scenarios with nd=5,10,15 have fewer locally disturbed nodes, thereby allowing a 
higher spatial reuse ratio, which results in higher and incremental network capacity. 
When nd= 20, C,, decreases from 5% to 2%, since the local interference is high. As the 

number of relays increases, the network turns into a single-hop network with a low 

percentage of active users. 

When the DNmax chosen is small, the transmit link length is not necessarily short, 

since the link length is controlled by the node density defined in LCG in conjunction 

with other influencing factors, such as local disturbed node density DNLocd sensed and 

measured use DIIP. This means the optimal link length is chosen by referring to the 

combination measure of interference impact, and balanced by the maximum disturbed 

node threshold DNmax, as illustrated in Figure 63, whereas Toumpis and Goldsmith's 

analysis proves only to depend on power variation and interference cancellation. There 

is no dynamic balancing mechanism in the mathematical analysis. This verifies and 

proves that the simulation result matches the theoretical predictions in section 7.2.5, 

about optimal interference impact measures providing increased path and network user 

capacity, whilst reducing multi-hop relay overheads. 

On the contrary, if the disturbed node threshold DNmax is not chosen carefully or is too 
large, e. g. DNmax = 20, then both the path and network capacity will decreases as 

153 



Chapter 7 The MIR-VA Scheme 

Gupta and Kumar predicted in their paper [20], which indicates the system or channel 

capacity decreases at the ratio of I as the number of nodes increases. 
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Figure 69 Route Determination of SP and MIR use fixed transmit power 

Figure 69 demonstrates the route selection differences using shortest path routing 

(indicated by dash arrows lines) and MIR (indicated by solid arrows lines) with fixed 

transmit power that a packet will travel the same distance (10 hops), where SP disturbs 

26 node along the path but MIR disturbs 20 nodes. SP uses the path travelled through 

the centre, which is shortest in distance, yet is easily congested. MIR tends to route 

towards the edge of the network, hence could divert traffic from the easily congested 

centre network. 
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Figure 70 Route determination of SP and MIR use variable transmit power 

This is what we called the edging effect in MIR using a fixed transmit power. This is 

resolved using a flexible DN,,, a,, threshold in conjunction with the use of variable 

transmit power in a distributed manner, so that nodes close to edge of the network will 
be able to access neighbours that are closer to the centre of the network, and preventing 

traffic flow aggregating around the edge of the network. Figure 70 shows the same 

network scenario with a different configuration, where the transmit power in each node 
is variable. The similar outcome show SP-VA disturbs 30 nodes, whilst MIRNA 

disturbs 26 nodes. 

7.3.2.2 Neighbour Node Distribution Analysis 

In order to determine the optimal number of neighbours for a transmitting node, a 

random analysis has been carried out to investigate the probability of n, neighbouring 

nodes occurring within a total of nj interfered nodes (i. e. including the transmitting 

node n, and a number of interfered neighbouring nodes n, ). 
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Figure 71 Poisson Distribution of Neighbouring Node Density 

(a) Pdf of Probability of n, neighbours in ni interfered nodes 

(b) CDF of Probability of n, neighbours in ni interfered nodes 

Assume a total of N (e. g. 60) nodes randomly located in an area and only one node 

transmitting (nt) at a time. In this case the probability of having n, neighbouring nodes 
interfering within n, 's transmitting range is shown in Figure 71, in which (a) and (b) are 

the Pdf and CDF format of the Poisson distribution for ne respectively. 

7.3.2.3 System Structural Analysis 

The previous study and analysis in chapter 5 indicates that different network structures 

have a different impact on system throughput. In order to validate this finding, a system 

performance analysis is constructed using a network model test bed, which has a 

common setting as shown in Table 10, for 6 different scenarios, each of which is 
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configured differently to represent centralized or distributed, single-hop or multihop, 

with and without the spatial reuse using MIR. 
Simulation Model Configurations 

Network Topology Random 

Packet Size IK 

User population 60 nodes 
Basic Link Length 3 Units 

Link Capacity 1K 

Packet Size IK 

Transmission Delay I second 
Packet Interarrival Time Randomly Distributed Between (0-500secs) 

Max Hops (Packet Residual Time) 15 hops 

Max Disturbed Node >25 nodes 

Simulation Length 604,800 Seconds 

Table 10 Common Configuration of system model for throughput analysis 

The simulation model is a 60 node random network, which can be configured into 6 

different operation scenarios. The simulation specifically constructed includes a traffic 

counter to record the generation and successful delivery of packets in the network 

model, and the difference between these two measures will show the relaying or 

redundant traffic, and transmitted overhead in the network. 

The simulation result is then collected to calculate system throughput and utilization for 

each system scenario. The statistical result is listed in Table 11, where it shows an 

expected result that matches and agrees with our earlier theoretical analysis in chapter 5 

and the results presented earlier in this chapter. 
Simulation 

Sequence 

Representing System 

Configuration 

Generated 

Traffic 

(K packets) 

Successful 

Throughputs 

(K packets) 

System 

Utilization 

I Centralized Single-Hop No Spatial Reuse 117 9 7.69% 

2 Centralized Single-Hop With Spatial Reuse 118 13 11.02% 

3 Centralized Multihop No Spatial Reuse 120 40 33.33% 

4 Centralized Multihop With Spatial Reuse 125 120 96% 

5 Distributed Single-Hop No Spatial Reuse 128 46 35.94% 

6 Distributed Multihop With Spatial Reuse 131 127 _T6.95 % 

Table 11 Statistical results and simulation scenarios configurations 
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Among the 6 investigated system scenarios, 4 systems that transmit via single-hop, no 

spatial reuse, have in common a very low overall throughput that is less than 40%. This 

means less than 40% of the generated traffic (packets) successfully delivered to their 

destinations, in other words, the rest is overheads. In contrast, systems that transmit via 

niultihop with spatial reuse, regardless of whether it is centralized or distributed control, 

total throughput reaches over 96%, which means the relaying burden (overheads) in 

these two scenarios has been reduced to minimum. Figure 72 demonstrates a more 

intuition comparison of these 6 system scenarios. 
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[] Generated Traffic (KPackets) 
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12345 
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Figure 72 Statistical result for 6 Simulation with different network structures 

7.4 Conclusion 
This chapter has demonstrated the improved version of MIR with variable transmit 

power at each wireless node. MIR makes route select decisions depending on a 

minimurn number of disturbed nodes accumulated along a path. When combined with a 

variable transmit power strategy, which sets the power level according to the number of 

nodes that are disturbed locally, a high network capacity can be achieved. The 

theoretical network capacity is derived based on the concept of time sequenced 
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interference regions and the path capacity. The performances of the network in four 

scenarios are compared and show how network capacity can be improved. 

The performance of MIRNA was compared with simulations that use the same 

configuration, but different routing algorithms, i. e. shortest path (SP) routing algorithm, 

with a combination of fixed-identical and variable transmit power in each node. The 

MIRNA scenario result in Figure 68 shows that shorter link length results in fewer 

number of disturbed nodes, and consequently contributes to the increase of overall 

system throughput and capacity. This is because as the number of nodes in the network 
increases, more space becomes available to benefit or enhance the spatial reuse in the 

network. In this sense, the network/system and user capacity will increase as the 

number of nodes increases, if the disturbed node threshold is chosen optimally. 

Figure 72 shows the later simulation result that further backed up the statistical results 

collected from 6 separate simulations, with a different control configuration 
(centralized or distributed), transmission configuration (single-hop or multihop), and 

spatial setting (with reuse or no reuse), operating under the same OPNET WANET 

model. The multihop with spatial reuse featured simulation result shows a high system 

utilization and throughput of over 96%. 

The major achievement of this work is that by measuring interference and relay impact, 

and using TDN and THC as the feedback for making a routing decision, networks 

operating MIRNA can achieve a very high ratio of spatial reuse, and the variable 

transmit power dynamically adjusting the surrounding node density in each node's 
LCG eliminating the negative interference impact, whilst optimising the spatial reuse, 

and thereby achieving high network capacity. 
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8.1 Introduction 

The techniques and issues associated with WANET scalability and routing strategies 
have been under substantial investigation and development. This research work 
developed so far has concentrated on two phases of development for the Minimum 

Impact Routing (MIR) algorithm, which has been designed with an objective of 

reducing the interference impact in a multi-hop wireless environment for WANET. 

Previous research on WANET routing used either highly abstractive assumptions 
(sometimes not even practical), or dealt with many practical problems. However, so far 

there is no single technique or algorithm that could provide a comprehensive solution 
for the scalability problem in WANET. 
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Pure MIR has established the foundation of this research using a Distributed 

Interference Impact Probing (DIIP) technique for measuring local neighbouring node 
density, which is strongly related to the interference impact measured within a one-hop 
distance of any transmitting node. This resulted in a measured number of local 

Disturbed Nodes (DN). These DNs then formed a Local Communication Group (LCG), 

in which the optimal number of DNs within each LCG is associated with a transmission 

link length. A series of simulations have been conducted in relation to finding out an 

optimal link length to form an optimal size LCG. However, the results of these 

simulations conclude that a dynamic environment such as WANET, requires an 

adaptive strategy to measure and adjust transmit power in order to optimise the 

tradeoffs, which is between the need to use high transmit power to achieve better 

connectivity and lower relays, and the demand of lower transmit power to reduce 
interference or conserve energy. 

The MIR with Variable transmit power and Asymmetric routing (MIR-VA) 

incorporates variable transmit power with DIIP, LCG and asymmetrical routing. It 

thereby created an interference impact and connectivity balancing cycle as shown in 

section 7.2.6. In this mechanism, the balancing factor is a maximum disturbed node 
(DN.. ) threshold, which directs the VTP to change the size of a LCG in selection to 

the measure result from DIIP. This architecture enables a transmitting node to alter the 

size of its LCG referred to as DNm,,,,, hence controlling the interference impact region 

according to the local node density. 

This research work examined WANET's capacity from a new perspective, in terms of 
interference impacts. However, the similarity between the proposed routing algorithms 

suggests the previous technique for connectivity was either too slow to converge, or too 

complicated to implement. A comprehensive routing strategy should be a simple 

routing algorithm that incorporates a mechanism that provides better scalability in 

WANET. The following sections discuss the possible techniques and schemes that MIR 

could or should incorporate, in order to enhance scalability in WANET whilst 

remaining simple to implement. 
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8.2 Physical Layer Improvement 

8.2.1 Accurate Probing 
The use of different measures of interference impact could be beneficial in future 

routing strategy development. The routing criteria, measures the associativity, 
interaction, and influence between nodes and could be investigated in fiirther detail. For 

example, the SINR that gives a measure of signal strength can provide accurate 
detection on a physical layer. This can influence an LCG resizing during the operation. 
Other measures such as queue size and traffic load can also support the making of an 
LCG resizing decision. However, a single measure of these was proven to trigger 

routing oscillation [1,8,13]. A thorough study of issues associated with physical layer 

probing is helpful in order to understand and solve the scalability issue in relation to 

routing in WANET. 

8.2.2 Autonomous Network Synchronization 

In the case of WANET operating without the support of a fixed infrastructure, and the 

case where frequent time updates are not available, the synchronization between all the 

radio nodes could be a complex, yet important, issue that is essential for WANET 

implementation. Hence, a further study of synchronization related issues could be 

another direction for ftuther development. Existing synchronization techniques are 

more or less designed for wireless terminals that are supported by a stationary central 
location, whereas the situation is a different for WANET. A novel biotechnology 

synchronization technique inspired by southern America firebug is an interesting 

extension of this issue [108]. 

8.3 MAC Layer Improvement 

8.3.1 Perfecting Multiple Access Schemes 

Effective multiple access schemes are essential for multi-user operation in multi-hop 

networks. A previous MIRNA incorporates simple carrier sensing technique, Carrier 

Sensing Multiple Access / Busy Tone Sensing Multiple Access (CSMA/BTMA) in 

order to reduce collision, whilst maintaining simplicity to avoid overflow of routing 

overheads. Existing techniques proposed for WANET can be summarised as 
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contention-based, e. g. random access, CSMA etc, in which collisions can be avoided, 

yet can not be eliminated; or alternatively passive access schemes, e. g. polling, in 

which case a controlling node polls through its neighbouring nodes and assigns access 
time slots for the appointed neighbouring node. The use of a practical yet stable 

enhancement should be incorporated. One solution could be to incorporate CSMA/CA 

with Request-To-Send and Clear-To-Send dialogue. The other could be to incorporate 

the polling scheme with MIR-VA. 

8.3.2 Spread Spectrum Multiple Access Control 

On the other hand, spread spectrum techniques are another alternative: the Frequency 

Sequence Spread Spectrum (FSSS) and Direct Sequence Spread Spectrum (DSSS) / 

Code Division Multiple Access (CDMA). These may simplify the frequency reuse in 

WANET, so that with the use of these frequency separation techniques, radio nodes in 

WANET can separate co-channel transmissions by physical distance or angles. The 

challenge in this issue is the demand for a high degree of inter-node cooperation. It 

would be worth looking at the potential benefits and drawbacks. 

8.4 Network Layer Improvement 

8.4.1 Highly Adaptive Routing Strategies 

Current routing strategies generally have limited functionality, or are situation 
dependent. Therefore the development of a highly adaptive routing strategy is an 

essential trend as part of the routing evolution. Hence further investigation of the 

partition of networks and multi-point relay strategy (similar to the MPR used in 

OLSR), in which the whole network has only a proportion of active nodes to relay 

routing or data information, could be beneficial. In this case the total number of nodes 

needed to propagate and disseminate routing information could be significantly 

reduced. 

MIR starts controlled broadcasting at the route discovery stage, and later uses unicast. 
transmission inside each LCG, allowing a transmitting node to send towards a 
destination via a Last / Next Forwarding Node (LFN or NFN). This reduces packet 
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duplication significantly when sending out a flooding packet. However it takes time to 

converge on an optimal return route. Therefore interactive operation of multi-path 
routing is a potential solution for this problem. Furthermore, the intermediate node 
using AODV can reply to a route request with full path length knowledge without 
forwarding the request packet all the way to its destination, providing it knows the rest 
of the path. This mechanism can reduce the existing routing relays of MIR by half, or 
more. Therefore an intelligent route discovery or relay mechanism should be able to 
improve the scalability of MIR, in terms of high efficient route discovery and relaying. 

8.4.2 Coexistence of Co-channel users in Random Environments 

Different systems use distinct standards, yet sharing the same spectrurn can pose 
serious problems. Co-channel interference is manageable within the same system, 
however, such a type of interruption across a different system requires cross system 
cooperation. In some cases this could be difficult. Autonomous systems such as 
WANET have such an issue, e. g. coexistence of Bluetooth and WLAN. If WANET is 

operating in an urban area, the degree of noise and interference will be potentially 
higher among numerous wireless systems. Whether it can maintain communication, 

whilst not creating significant interference to others, is a complex and challenging 
issue. In such an environment, the network status is generally distributed in a random 
fashion. In this case, how WANET behave and performs in such an environment needs 
a deeper and a more thorough study. It is expected that an MIR based scheme could 
provide a solution, since it would be able to route around the system using the same 
channel. A more complex model should be developed. 

8.5 System and higher Layer Improvement 

8.5.1 Further investigation of Scalability in WANET issues 

System level analysis of WANET is important for routing strategy development, owing 
to the fact that the burden of routing on WANET radio nodes is more complex than a 
stationary base-station. Scalability is strongly associated with WANET user capacity, 
apart from the channel throughput capability, and routing operations could be vitally 
influential, depending on how the networks maintain their connectivity. The complex 
intcrrclationship between VTP, node density, transmission link quality, spatial reuse 
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etc, needs deeper investigation and understanding in practical user capacity for wide 
deployment of WANET. A version of variable power MIR that optimises the number of 
disturbed nodes within the LCG dynamically and autonomously should be investigated. 

Furthermore, the system and user capacity derived and evaluated in this research was 
based on a unified network, with the assumption of a TDMA system. However, such 

thought can be extended to FDMA, and CDMA systems. Hence further analysis of 

system and user capacity in systems that use these multiple access schemes will be 

invaluable. 

8.5.2 Traffic and Application oriented 
The QoS issue is important to different application with distinct traffic types which 

need to be supported. WLAN provides two different types of MAC protocol, polling 

and CSMA/CD/CA, to support both contention based and contention free services. In 

some cases, the quality of the communication services is distinguished by the cost of 

service. Therefore, the best-effort, integrated services and differentiated service types 

can co-exist in the same system to satisfy different type of demands such as email and 
Internet services, voice and video on IP, live TV, and future broadband applications. 

The implications of QoS constraints on MIR type schemes could be examined. One 

possibility would be to have several categories of disturbed nodes, where the level of a 

node could be set depending on the type of traffic transmitted by the node. This would 

provide a greater flexibility to divert route around highly vulnerable nodes. 
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9.1 Summary and Conclusion 

This thesis has investigated the techniques and issues associated with designing 

effective routing strategies to enhance user capacity in multi-hop Wireless Ad hoc 

NETworks (WANETs). WANET is well known for its potential to support a wide 

range of applications, however, its flexible and convenient nature also poses great 

challenges for implementation and deployment. Scalability of WANETs is a relatively 

new and unexplored research area for the international research community, and so far 

there has been no comprehensive single solution proposed for such a problem. 

Routing is a network layer responsibility in conventional wireless systems, where these 

systems have sufficient resources such as bandwidth, power supply, and stationary 

central control locations etc. However, it is a completely different scenario in 

WANETs, where resources are precious and limited, and the lack of the support from a 
fixed infrastructure requires wireless terminals to carry the controlling burden of 

conventional central control units, such as routers, gateways etc. In such systems, 

communication quality is difficult to maintain due to shortened communications link 

length, which provides less signal strength in some cases; and terminals dominate the 

network management, hence demanding a higher degree of collaboration between 

wireless nodes and/or routers. 
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Chapter 2 reviews the characteristics and nature of WANETs. Routing in WANET 

faces the challenge of role conversion from centralized connectivity maintenance to a 
distributed interactive controller. The management and control burden shifts from a 

central location to a distributed terminal. This makes routing in WANET no longer just 

a technique for establishing and maintaining network connectivity, but more 
importantly participating in the system and user capacity enhancement, even 

management. Therefore WANET routing strategies not only relate to the network 

connectivity but are also associated with a very fundamental problem of WANETs, that 

of scalability. 

In order to achieve this goal, a thorough background study of recent WANET research 
has been presented to highlight the challenges and issues associated with ad hoc 

networking, physical layer, MAC layer, network layer, system, and higher layers. This 

review of the literature identified some fundamental issues, such as interference, 

transmission power, contention control, and adaptive routing that need to be considered 
in relation to developing routing strategies for enhancing WANET system and user 

capacity. 

Chapter 3 reviews WANET routing techniques, identifying influential issues in the 

particular routing environment, and studies the evolution of routing algorithms. The 

radio environment in WANETs can be dominated by interference due to the wireless 

and broadcast nature of those networks. In such an environment, the transmit power is 

the source of many other effects in the network. For instance, variation in transmit 

power will trigger variations in the radio link length, signal strength, signal-to- 
interference ratio, spatial reuse, number of routing relays and overheads, and power 

consumption. As a result of these changes, the network topology, connectivity, 

reliability, stability, scalability will be affected. Also important is the node density in 

the network. A hip-her density means higher connectivity but more interference. In 

contrast, a lower node density means less interference but weaker connectivity, 
therefore requiring higher transmit powers for longer radio links, which also results in 

higher interference. Therefore it is fundamentally important to balance the tradeoffs of 
finding the optimal link length that provides adequate signal strength for maintaining 

radio link connectivity, whilst producing the minimum amount of interference, and 
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supporting a high degree of spatial reuse, thereby enhancing system and user capacity. 
This is the primary challenge that motivated this research. 

In order to find a solid foundation for later routing strategy development, the evolution 

of routing algorithms is studied. Routing algorithms developed so far can be broadly 

summarized into two categories: centralized (static and dynamic) algorithms and 
distributed (proactive, reactive and hybrid) algorithms. The centralized schemes 
developed first with static routing mechanisms to support routing based on a stationary 

central location, e. g. routers, gateways etc., in which case the network topology is 

relatively static and the network status does not change often. Later on, dynamic 

routing mechanisms were developed to enable these central locations to accommodate 

network status changes, e. g. traffic load variation, link connection, and topology 

changes etc. 

As communication systems develop, portable wireless terminals become capable of 

ever more functionality, and the developing concept about WANET gives wireless 
terminals the opportunity to operate with the function of a router. Distributed routing 

mechanisms were then developed to suit the demand of the decentralized type of 

routing in a proactive, reactive, or a hybrid manner. The proactive algorithms waste 
bandwidth to regularly update and maintain all routes leading to all destinations even 

when some are not in use, hence generating a large routing control overhead. Reactive 

algorithms, on the other hand, only initialise and maintain routes when needed. These 

algorithms take a long time to converge, however they cannot support low latency. 

Hierarchical algorithms are hybrid schemes that proactively maintain routes within a 

relatively small cluster of nodes, but route through the network in a reactive manner. 
These can be complicated to implement. The most important outcome from this study is 

that understanding of efficient routing strategies should have the feature of simplicity 

and adaptability. New routing algorithms were subsequently developed following this 

principle. 

Chapter 4 looks at simulation techniques, analysis or validation methods associated 

with routing algorithm design and performance evaluation, together with discussions of 

advantages and disadvantages of these methods. The simulation results represent 
primarily raw statistical data collected from a simulation model constructed in the 
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industry standard communication simulator, OPNET. This data is then processed in 

MATLAB for producing graphical evidence, used later for performance evaluation. 
Routing algorithm modelling in a wireless environment involves Proto-C source code 
(a programming language similar to Q programming in a hierarchical simulation 

model. This simulation model can be investigated and modified from the top network 
level down into the node level. Below this is the process level where the functional 

components of a node are then described, and finally in each processor there is a state- 

transaction-diagram, in which each state contains fundamental source code. This 

wireless simulation model required modification to the radio transceiver pipeline in 

OPNET, in order to tailor the simulation environment to suit the routing algorithm 

modelling demands. 

Chapter 5 examines and develops the foundation of a routing algorithm simulation 

model as a test bed for later design and improvement. A new routing strategy, 
Minimum Impact Routing (MIR), is introduced. Two fundamental issues, Distributed 

Interference Impact Probing (DIIP) and distributed Media Access Control (MAC), 

associated with later MIR design are introduced in this chapter. This basic routing 

simulation model uses the distance a packet has travelled (measured in hops) as the 

routing criterion and later for calculation of the shortest path. A cable-based and a 

wireless network model were developed for comparison. The construction of this model 
follows the principle of providing a fundamental routing model with high simplicity. 

Chapter 6 then describes how MIR was developed to minimize interference and 

enhance system and user capacity in WANET. It is not possible to eliminate 
interference to a defined level, since interference will always exist, however it can be 

reduced to an acceptable level for successful communication. It is shown how MIR 

combines essential factors, such as interference impact probing (using DIIP), 

distributed contention and topology control (use MAC and LCG) in order to reduce the 

impact of interference on system and user capacity, and reduce routing relay overheads. 
MIR focuses on the consequences of interference rather then the interference itself, and 

uses DIIP to measure such impact around any transmit nodes, thus quantifying the 

interference impact with the measure of Disturbed Nodes (DN), which reflects the 

interference impact on local immediate neighbours (within the reach of one hop). 
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Pure MIR established the foundation of this research by building on the DIIP 

mechanism for measuring local neighbouring node density, which is associated with the 

interference impact measurable within a one-hop distance of any transmitting node. The 

result of probing measures such as the number of local DNs, which in this case is used 
for defining the size of a Local Communication Group (LCG). The optimal number of 
DNs within each LCG is associated with transmission link length. A series of 

simulations have been conducted to find an optimal link length to form an optimal 
LCG. However, the results of these simulations conclude that in a dynamic 

environment such as a WANET, an adaptive routing strategy is required to measure and 

adjust transmit power dynamically, in order to better compromise the tradeoffs between 

the need to use high transmit power to achieve better connectivity (or lower relays) and 

the demand of lower transmit power to eliminate interference or conserve energy. 

Chapter 7 introduces further developments on the pure MIR scheme, specifically 
incorporating Variable Transmit Power (VTP) and an asymmetrical routing mechanism 
into the MIR framework. MIRNA is the improved version of MIR and dynamically 

controls interference impact by autonomously adjusting each node's transmit power 
level, based on the comparison result of a local DN measured by DIIP with a pre- 
determined maximum DN per LCG. The DNmax acts like a threshold, to balance the 

variation of interference impact (yielded by neighbouring nodes) and the variation on 
link length, by selecting an appropriate transmit power level. In this case, each wireless 

node can dynamically control the surrounding neighbour node density and hence 

control the interference impact among them. The performance evaluation of MIRNA 

verified that with an optimally chosen maximum disturbed node threshold (DNmax), a 

network capacity of 90% of nodes could actively make concurrent transmissions over a 

period of time. 

Inspired by spatial reuse theory analysis conducted originally for MIRNA, the system 

and user capacity of a unified network (measured as the percentage of active users) was 
derived based on the concept of Time Sequenced Interference Regions (TSIR) and the 

path capacity. The performance of MIRNA was compared with simulation models that 

use the same configuration but different routing algorithms, i. e. Shortest Path (SP) 

routing algorithm with a combination of fixed-identical or variable transmit power in 

each node. A number of comparisons were conducted in four routing scenarios, and it is 
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shown how the network capacity can be improved by using a lower value of DNmax 

with variable transmit power. This results in the highest path and network capacity, 

measured by the number of active transmitting nodes. The variable transmit power 
dynamically adjusts the surrounding node density of each node to reduce the negative 
interference impact, whilst optimising spatial reuse, thereby achieving higher network 

capacity. Both path and network capacity are proportional to a spatial reuse ratio 

calculated using the spatial reuse theory and TSIR conceptual model. This measure 

reflects the effect of spatial reuse and packet relays in the WANET simulation mode. 

When the DNmax chosen is small, the transmit link length is not necessarily short, 

since the link length is controlled by the node density defined in LCG in conjunction 

with other influencing factors, such as local disturbed node density DNLocw measured 

use DIIP. This means the optimal link length is chosen by referring to the combination 

of interference impact and maximum disturbed node threshold DNmax, as illustrated in 

Figure 63. This mechanism agrees with the mathematical analysis made by Toumpis 

and Goldsmith suggesting transmit power variation and interference cancellation can 
improve system and user capacity asymptotically. However, differently from their 

model, MIRNA uses a dynamic interference impact balancing mechanism to achieve 

the same goal. This is verified and proves that the simulation result matches the 

theoretical predictions in section 7.2.5, with regard to the optimal interference impact 

measures providing increased path and network user capacity, whilst reducing the 

multi-hop relay overheads. 

On the contrary, if the disturbed node threshold DNmax is not chosen carefully (either 

too small or too large, e. g. DNmax = 20), then both the path and network capacity will 

decrease asymptotically. This agrees with what Gupta and Kumar predicted in their 

paper [20], indicating the system or channel capacity decreases at the ratio of L as the 
; rN 

number of nodes increases asymptotically. The simulation results have demonstrated 

that the interference impact balancing cycle could achieve improved system and user 

capacity, based on the measure and calculation of node interactions in a spatial reuse 

theory in section 7.2.3. However, the channel capacity was set to a logical assumption 

of unified traffic with optimal throughput of I Erlang for the simulation model. Hence a 
detailed study on channel modelling in conjunction with the achieved MIR-VA model 
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is predicted to be invaluable for ftu-ther investigation in order to make it closer to the 

real wireless network environment implementation. 

This research work has only developed the foundations of a new adaptive WANET 

routing strategy for enhancing system and user capacity, and further extension of this 

work is essential. Chapter 8 shows the future development details of MIRNA, and 
improvements that can be made to the physical, MAC, network, and system level 

aspects. 

9.2 Original contributions 
The novel and original contributions of this work presented in this thesis can be 

summarized into three distinctive areas: MIR related; scalability related; and analytical 

or theoretical issues 

9.2.1 Minimum Impact Routing (MIR) Related 

40 An original approach to implementing adaptive interference-aware WANET 

routing has been invented (chapter 6). This technique quantifies the impact of co- 

channel interference, and uses the concept of disturbed nodes (DN) as a measure of the 

impact on making routing decisions. In this way, routing algorithms can enhance the 

spatial reuse and scalability of the system, whilst reducing the negative impact of co- 

channel interference on system and user capacity. 

0A novel distributed interference impact probing (DIIP) mechanism has been 

developed to measure the DNs of each transmitting node. This measure of DN defines 

the size of a LCG for each node. In this way, DN can define the neighbouring node 
density of this node, and the size of its interference impact region. 

0A new family of WANET routing protocols have been developed to incorporate 

the novel DIIP technique (chapter 5 and 6), with VTP, LCG, and asymmetrical routing 
(chapter 7). The MIR algorithms (pure MIR and MIR-VA) are able to make routing 
decisions dynamically based on the measure of interference impact, thereby improving 
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spatial reuse and scalability of the system, and fin-thermore enhancing system and user 

capacity. 

0A new routing protocol has been introduced (chapter 6). Pure MIR uses the 

novel accumulated interference impact measured along a path (Total DN per path) as 
the routing criterion for making routing decisions. This reflects the impact along any 

path, and also allows traffic to be directed away from highly congested areas, such as 

the centre of a network, where all shortest path type routing algorithms tend to direct 

traffic. MIR chooses the path with the minimum interference impact. In addition, 

networks using MIR tend to disturb neighbouring nodes that are not communicating 

with the transmitting node as little as possible, therefore maximizing the spatial reuse in 

the system, allowing more concurrent transmissions to take place. This work resulted in 

a publication for an international conference, WPMC'04. 

0A new routing strategy combining VTP, LCG, DNmax, and asymmetrical 

routing mechanisms has been developed (chapter 7). MIRNA associates a maximum 
DN threshold (DNmax) with VTP, DIIP, and LCG, to dynamically adjust the size of the 

LCG of each node, using power variation, based on the result of DIIP measured local 

DN (I)NL,, cal). In this case, the transmission link length (defining the size of a LCG) 

changes dynamically depending on the local node density (DNLocal) measured using 
DIIP. This results in asymmetric links along a path with a reduced number of relays. 
Therefore, additional to the pure MIR's beneficial nature, MIRNA can reduce the 

number of relays along the path, and therefore reduce both the relaying delays and relay 

overheads. This work resulted in a publication for an international conference, 
WiCOM'06. 

0A simulation test bed has been developed in OPNET, dedicated to the MIR 

routing algorithm family, with a series of configurations and scenarios (chapter 

4,5,6,7). 
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9.2.2 Scalability Related 

0 The major achievement of this work is that of measuring interference and 

relaying impact to dynamically adjust link length to alter the impact range, and using 
DNs for making routing decisions. As a result, networks using MIR and later MIRNA 

can achieve a higher spatial reuse ratio. This serves to enhance system and user 

capacity, and improves scalability in WANET. 

0A novel derivation of spatial reuse, path capacity and network capacity has been 

carried out. Later analysis of spatial reuse theory and the TSIR analytical model 
(chapter 7) associated the interference impact measuring mechanism with the system 

and user capacity analysis. 

9.2.3 Analytical and Theoretical issues 

0A novel interference impact analysis and measurement concept has been 

developed (chapter 6,7). The distinctive DlIP technique quantifies interference impact 

in a WANET environment. 

0A unique spatial reuse analytical model has been developed in order to 

understand the interaction between concurrent transmitting nodes in a unified wireless 
envirorunent (chapter 7). 

0A distinctive Time Sequenced Interference Region (TSIR) model has been 

developed to analyse the concurrent transmitting node behaviour over a period of time 
(chapter 7). A novel path capacity analytical model has been derived based on the 

analysis of the TSIR model. Consequently, a distinctive network capacity analytical 

model has been developed based on the path capacity model (chapter 7). A detailed 

performance evaluation through simulation and analysis of the MIR routing algorithms 

with DIIP measures has been carried out in chapter 6 and 7. Simulation results are 

analysed in MATLAB. 
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Appendix 1. Preliminary Knowledge 

A. 1.1 Probability Density Function 

The probability density function is an integral of the probability mass measured over a 

given interval. The probability mass associated with an interval can also be obtained by 

computing the difference in the CDF for the upper and lower limits of the interval. As 

interval widths become infinitesimally small, it can be seen that the PDF is the 

derivative of the CDF with respect to the outcome (i. e., ordinate) variable. 

The relationship between a PDF and a CDF is in fact the basis for the method used by 

the Analysis Tool to compute PDFs. A CDF is first computed, and a differentiation is 

performed to construct a PDF. The original statistic data is discrete, so that 

differentiation is performed in an approximate manner. This means dividing probability 

mass associated with an interval by the interval's width. The difference between two 

consecutive CDF values is divided by the difference in the corresponding ordinates. 

The resulting value is taken as the density associated with the interval and is placed at 

the intervals lower limit. Thus, if a statistic contains two consecutive ordinate values 

y I, and y2, the PDF will be computed as follows: 

PDF(yl) = 
CDF(y2) - CDF(yl) 

y2-yl 

An immediate consequence of this computation method is that PDFs can have 

extremely large values when the input statistic has distinct but closely spaced ordinate 

values. This is because the (y2 - yj) difference becomes small. 
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If input statistic ordinate values are unevenly spaced (i. e., some very small differences 

exist, but also some significantly larger ones), PDFs can have a discontinuous 

appearance with certain density values dwarfing others. In such cases, PDFs is not as 

useful as the PMF or histogram operations. 

A second consequence of this calculation is that the PDF contains one less entry than 

the CDF due to the fact that no forward-looking difference can be calculated for the 

final (i. e., maximum) ordinate value. 

Finally, the integral of the PDF statistic, which can be computed using the appropriate 

filter, produces a statistic, which is identical to the CDF in its shape. However, the 

initial value of the CDF is lost in computing the PDF, which means the two statistics 

differ by a constant. This difference is particularly noticeable when the original statistic 

has a small number of distinct ordinate values, since the CDFs value for the minimum 

ordinate is at least the reciprocal of this number (i. e., this is the probability mass 

associated with the first ordinate value). Total area under the curves of a PDF graph is 

always 1, which indicates 100% when expressed as a percentage. 

A. 1.2 Cumulative Distribution Function 

Like the probability mass function, the cumulative distribution function (CDF) of a 

statistic is related to the likelihood of occurrence of the statistic's ordinate values. 

However, rather than provide the probability mass of each ordinate's occurrence, the 

CDF shows the accumulated probability mass of all ordinates less than or equal to a 

particular ordinate. This form of presentation is useful when particular ordinate value 

thresholds are of interest, such as when determining the likelihood of receiving a 

message whose delay exceeds a particular value. For example, the probability of 

receiving a packet with a delay of 20 ms must be no greater than 0.1. 
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The computation of a CDF resembles that of a PMF in the sense that proportions for 

each ordinate value in the original statistic are computed. The same weight, which is 

the reciprocal of the number of entries, is attributed to each entry. Thus, if there are 100 

entries, each entry has a weight of 0.01, and if there are five entries whose ordinate 

value is y, the ordinate y has a total probability mass of 0.05. The entries of the CDF 

are constructed by positioning the distinct ordinate values of the original statistic in 

increasing order on the abscissa with one entry for each such value. The CDF value for 

the initial entry is simply the probability mass of the corresponding ordinate. The CDF 

value for the second entry is equal to the CDF value of the first entry augmented by the 

probability mass of its corresponding ordinate value and so on. The CDF is essentially a 

running sum of the values of the PMF. Two simple properties of the CDF result from 

the method of computation described as follows: 

(1) Since each CDF value is computed by adding a positive probability mass to the 

previous value, CDFs are monotonically increasing. 

(2) Since the sum of all probability masses must add up to unity, all CDFs must have a 

final value of 1.0. This also makes sense under the definition of the CDF because one 

would expect the likelihood of obtaining an ordinate value less than or equal to the 

maximum ordinate value to simply be 1.0. 

A. 1.3 Carrier Sense Multiple Access 

Carrier Sense Multiple Access (CSMA) is a MAC protocol that a node verifies the 

absence of other traffic before transmitting on a shared physical medium, such as a 

cable bus, or a band of spectrum. "Carrier Sense" describes the fact that a transmitter 

listens for a carrier wave before trying to send. That is, it tries to detect the presence of 

an encoded signal from another station before attempting to transmit. If a carrier is 

sensed, the node waits for the transmission in progress to finish before initiating its own 
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transmission. "Multiple Access" describes the fact that multiple nodes send and receive 

on a medium. All other nodes using the medium generally receive transmissions by one 

node. 

Concurrent transmission by multiple nodes results in frame collisions. The multiple 

transmissions interfere with one another so that all are garbled and receivers are unable 

to distinguish the overlapping received signals from each other. It is impossible to 

entirely prevent collisions in CSMA networks, but there are three ways to address 

them: 

In pure CSMA, only the carrier sense is used to avoid collisions. If two nodes try to 

send a frame at nearly the same time, neither detects a carrier so both begin transmitting 

at the same time. The transmitters do not detect collisions, so transmit the entire frame 

(thus wasting the bandwidth used). Receivers cannot distinguish between collisions and 

other sources of frame errors, so collision recovery relies on the ability of the 

communicating nodes to detect frame errors and invoke an error recovery procedure. 

For example, the receiver may not send a required ACK, causing transmitters to time 

out and retry. 

In Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), each node 

must inform other nodes of an intent to transmit. When the other nodes have been 

notified, the information is transmitted. This arrangement prevents collisions because 

all nodes are aware of a transmission before it occurs. However, collisions are still 

possible and are not detected so have the same consequences as in pure CSMA. 

In Carrier Sense Multiple Access with Collision Detection (CSMA/CD), sending nodes 

are able to detect when a collision occurs and stop transmitting immediately, backing 

off for a random amount of time before trying again. This results in much more 

efficient use of the media since the bandwidth of transmitting the entire frame is not 

wasted. However, it is not possible with all media (e. g., radio), and requires extra 
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electronics (not really an issue with today's technology, but. one reason Apple used 

CSMA/CA-based Local-Talk instead of the then much more expensive Ethernet). 

In Carrier Sense Multiple Access with Bitwise Arbitration (CSMA/BA), all of the 

nodes on the bus are assigned an identification number or priority code. When a 

collision occurs, one of the nodes that are attempting to send at the same time will be 

given priority to transmit according to its identification number or priority code (as 

opposed to waiting a random amount of time and then retransmitting, as in CSMA/CD). 

Erlang In communications, a unit of telecommunication traffic intensity determined 

by the product of the number of calls, carried by the circuit in one hour, and the average 

duration of the call in hours. Traffic Intensity (Erlang) = Number of calls (carried by 

circuit in I hour) x Average Duration per call (measured over a period of time). 

Near-Far problem is the problem of very strong undesired users' signals 

overwhelming the weaker signal of the desired user, can severely decrease 

perfonnance. 

A. 1.4 Queueing Systems Brief Summary 

Detail of the table refer to [ 10 1] 
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Appendix II. Glossary and Abbreviation 

Appendix 11. Glossary and Abbreviations 
A 

ABR Associativity Based Routing 

ACK Acknowledge Character 

ADSL Asymmetric Digital Subscriber Line 

AL Asymmetric Links 

AODV Ad hoc On-demand Distance Vector 

ARPANET Advanced Research Project Agency Network 

ATM Asynchronous Transfer Mode 

B 

BGP Border Gateway Protocol 

BP Beacon Packet 

BTMA Busy Tone Multiple Access 

c 

CCITT Consultative Committee for International Telephone & Telegraph 

CGSR Clusterhead Gateway Switch Routing 

CSMA-CD Carrier Sense Multiple Access with a Collision Detection 

CSMA-CA Carrier Sense Multiple Access with a Collision Avoidance 

CTS Clear To Send 

CPE Central Processing Equipment 

CMIP Common Management Interface/Information Protocol 

D 

DAG Directed Acyclic Graph 

DBF Distributed Bellman-Ford 

DCF Distributed Coordination Function 

DIIP Distributed Interference Impact Probing 

DN Disturbed Nodes 

DoD Department of Defence 

DPC Distributed Power Control 
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DSDV Destination Sequenced Distance Vector 

DSR Dynamic Source Routing 

DSSS Direct Sequence Spread Spectrum 

DTC Dynamic Topology Control 0 

DVR Distance Vector Routing 

DVL Distance Vector Lists 

F 

FBR Flow-Based Routing 

FHSS Frequency Hopping Spread Spectrum 

FP Forward Path 

FDD Frequency Division Duplexing 

FDM Frequency Division Multiplexing 

FDMA Frequency Division Multiple Access 

FRN First Relay Node 

FSM Finite State Machine 

FSSS Frequency Sequence Spread Spectrum 

FTP File Transfer Protocol 

G 

GEO Geostationary Earth Orbit 

GRE Generic Routing Encapsulation 

GloMo Global Mobile Information Systems 

H 

HC Hop Count 

I 

IERP Intra-zone Routing Protocol 

IR Interfere Range 

IRR Interference Range Ratio 

IRD Integrated Receiver Decoders 

ITU-T International Telecommunication Union - 
Telecommunication Standardization Sector 

is-is Intermediate System-Intermediate System 

182 



Appendix II. Glossary and Abbreviation 

IP Sec Secure Internet Protocol (IETF) 

IPv6 Internet Protocol version 6 

ISDN Integrated Services Digital Network 

K 

KPs Kernel Procedures 

L 
LAN Local Area Network 

LCG Local Communication Group 

LEO Low Earth Orbit 

LL Link Length 

LMR Lightweight Mobile Routing 

LSR Link State Routing 

LSP Link State Packets 

M 
MAC Multiple Access Control 

MIR Minimum Impact Routing 

MIR-VTP MIR with Variable Transmit Power 

MIR-VA MIR with Variable-transmit-power plus Asymmetrical-routing 

MIT Massachusetts Institute of Technology 

MF-TDMA Medium Frequency - Time Division/Demand Multiple Access 

MPR Multipoint Relay 

MPRS Multipoint Relay Selector 

MSSN Multipoint Relay Selector Sequence Number 

N 

NDP Neighbour Discovery Protocol 

NFN Next Forwarding Node 

NNI Network Node Interface / Network-to-Network Interface 

NRN Next Relaying Node 

NTDR Near-term Digital Radio 

NTP Network Termination Point 
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NWO NetWork Operators 

0 

OLSR Optimised Link State Routing 

OSI Open System Interconnection 

OSPF Open Shortest Path First 

OSS Operational Support Systems 

P 
PABX Private Automatic Branch Exchange 

PC Power Control 

PCF Point Coordination Function 

PHY Physical Layer 

POTS Plain Old Telephone Service 

PPTP Point-to-Point Tunnelling Protocol 

PR Packet Relays 

PRN Packet Radio Network 

PRD, Poison Random Distribution 

PSTN Public Switched Telephone Network 

Q 
QOS Quality of Service 

R 
RA Radio Communications Agency 

RP Reverse Path 

RIP Routing Information Protocol 

RIPv2 Routing Information Protocol Version 2 

RREQ Route Request 

RREP Request Reply 

RER Route Error 

RTS Request To Send 

RW Route Weight 
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S 

SC System Capacity 

SINR Signal-to-Interference and Noise Ratio 

so Satellite Operator 

SOHO Small Office Home Office 

SP Service Provider 

SP Shortest Path 

SPR Shortest Path Routing 

SLA Service Level Agreements 

SME Small to Medium Enterprises 

SNR Signal-to-Noise-Ratio 

SNMP Simple Network Management Protocol 

SNWO Satellite NetWork Operator 

SR Spatial Reuse 

SRD Spatial Reuse Distance 

STD State-Transition-Diagram 

SURAN Survivable Adaptive Radio Networks 

T 
TC Topology Control 

TCP/IP Transmission Control Protocol over Internet Protocol 

TDMA Time Division Multiple Access 

TDN Total Disturbed Nodes 

THC Total Hops Counted 

TINA Telecom Information Networking Architecture 

TORA Temporally Ordered Routing Algorithm 

TOM Telecommunication Operation Map 

TMF Tele-Management Forum 

TMN Telecommunications Managed Network 

TSIR Time Sequenced Interference Region 

TVRO Television Receive-Only (Satellite Dish) 

u 

UDPAP User Datagram Protocol over Internet Protocol 
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UML Unified Modelling Language 

V 
VTP Variable Transmit Power 

VPM Virtual Process Manager 

VSAT Very Small Aperture Terminal 

VSM Virtual Service Manager 

VPN Virtual Private Network 

VSAT Very Small Aperture Terminal 

W 

WANET(s) Wireless Ad hoc Network(s) 

WN Working Node (currently active and operating node) 
WBAN Wireless Body Area Networks 

WPAN Wireless Personal Area Networks 

WLAN Wireless Local Area Networks 

WWAN Wireless Wide Area Networks 

x 

XML eXtensible Markup Language 

x-DSL A family of "Digital Subscriber Line" protocol 

Z, 

ZRP Zone Routing Protocol 
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