
Agile Security for Web Applications

Xiaocheng Ge

Submitted for the degree of Doctor of Philosophy

University of York
Department of Computer Science

June 2007

ylozu

sm"Oewso-W, ,

To my parents,
wife,

and children

4--h *A 13ý E-=
i e__rl ,A

-1 T
I-R T

Abstract

Web-based applications (or more concisely, Web applications) are a kind of information

system with a particular architecture. They have progressively evolved from Internet
browser-based, read-only information repositories to Web-based distributed systems.
Today, increasing numbers of businesses rely on their Web applications. At the same
time, Web applications are facing many security challenges and, as a result, are exposing
businesses to many risks.

Security is a system property. To build a secure system is a difficult task. It has been
suggested that a security development method should be integrated into more general in-
formation system development methods [I]. A suitable and promising class of methods
for building Web applications is agile software development methods. These methods
provide the ability to manage requirements change, which is desirable for the develop-
ment of Web applications. However their use introduces substantial tension between the
need to deliver a secure system and the desire to "embrace change".

This thesis proposes a novel approach to building secure Web applications using ag-
ile software development methods. The approach provides early analysis of threats,
design for security, and subjects the design to thorough objective risk assessment, in
an iterative, incremental, agile style. This approach addresses the tension mentioned
previously.

The key contribution of this thesis is to provide a concrete example of agile security
software development based on existing development practices, rather than to invent a
brand new software development methodology or theory to address security problems.
This is the "rightfirst" step in the direction of agile security engineering.

Contents

List of Figures

List of Tables

1 Introduction
1.1 Challenges of the Internet
1.2 Motivation and Proposition
1.3 Assertions of Information Security

1.3.1 Security development is an exercise in risk management
1.3.2 Applying agile development to build a secure system is chal-

lenging
1.3.3 A good process is a product too
1.3.4 Unaddressed but important issues

1.4 Framework of Research
1.5 Structural Overview

I Background Knowledge and Analysis

2 Security and Security Practices
2.1 Infon-nation Security

2.1.1 Security is a broad issue
2.1.2 Security is a process

2.2 Security Improvement Artefacts
2.2.1 Security Development Methods
2.2.2 International Security Evaluation Criteria
2.2.3 Risk Assessment
2.2.4 Other security artifacts

2.3 Conclusions

3 Web-Application
3.1 Introduction
3.2 Security of Web Systems
3.3 Security of Web Applications

3.3.1 Typical Architecture of Web Applications
3.3.2 Web Application and Risk Analysis
3.3.3 Common Vulnerabilities of Web Applications

vii

ix

I
1
2
5
5

6
7
8
9

10

13

15
15
16
19
21
22
24
33
38
40

43
43
44
47
48
51
53

Contents

3.4 Development of Web Applications 54
3.4.1 Agile Attempts for Building Web Applications 56

3.5 Conclusions 57

4 Agile Software Development 59
4.1 Agile Software Development 59
4.2 Agile Methods 60
4.3 Selection of Agile Methods 61
4.4 Feature Driven Development 62
4.5 FDD and Architecture 65
4.6 Agility, FDD and Security 66
4.7 Conclusion 67

11 Integration of Agile and Security Development 69

5 Security in Agile Development 71
5.1 Difference of Agile and Security Development 71
5.2 An Integration of an Agile Process and Security 74

5.2.1 Overall Process 75
5.2.2 Overall Models 76
5.2.3 Initial security requirements 77
5.2.4 Security Architecture 78

5.3 Conclusion 78

6 Secure FDD in Detail 81
6.1 Overall Process 81

6.1.1 Linear Development
.......................

82
6.1.2 Iterative Development

......................
84

6.2 Secure FDD in Details: Linear Development
...............

86
6.2.1 Develop an Overall Model

....................
86

6.2.2 Design a security architecture
89

6.2.3 Build a Features List
.......................

90
6.2.4 Plan By Feature

..........................
92

6.3 Secure FDD in Details: Iterative Development
..............

93
6.3.1 Design by Feature

........................ 95
6.3.2 Risk Assessment

.........................
96

6.3.3 Build by Feature
.........................

98
6.3.4 Security Inspection

........................
99

6.4 Summary of Secure FDD
.........................

100
6.4.1 Similarity

.............................
100

6.4.2 Differences
............................

100
6.5 Conclusion

................................
101

7 Case Study 103
7.1 Introduction 103

iv

Contents

7.2 Overview
103

7.2.1 Initial Requirement Analysis
104

7.2.2 Initial Security Requirements 105
7.3 Preparation of the Case Study

107
7.3.1 Tool Support 107
7.3.2 Environment and programming language 110

7.4 Development Process
7.4.1 Develop an Overall Model
7.4.2 Design Security Architecture 112
7.4.3 Build a Features List 115
7.4.4 Plan by Feature

116
7.4.5 Development Iteration 1: Searching 116
7.4.6 Development Iteration 11: Authentication 122
7.4.7 Development Iteration III: Buying 126
7.4.8 Evaluation of First Release 131

7.5 A New Requirement 135
7.5.1 Response to Change 135
7.5.2 New Feature 136

7.6 Evaluation of Case Study Against Security Criteria 139
7.6.1 Security Evaluation 139
7.6.2 Agility Evaluation

146
7.7 Conclusion 147

8 Limitations of the Case Study and Research 149
8.1 Domain of Agile Software Development 149
8.2 Limitations Related to Size of a System 150

8.2.1 Small Case Study
151

8.2.2 Small Changes
152

8.3 Limitations Related to Team Work 154
8.4 Challenges From Other Layers

154
8.5 Lack of Coverage of Software Development Life Cycle 155
8.6 Conclusion

155

III Conclusion and Future Work 157

9 Evaluation of Research 159
9.1 Framework of Research

159
9.2 Discussion of Agility 160
9.3 Overall Quality of sFDD Process 161

10 Conclusions and Future Work 163
10.1 Overall Conclusions

163
10.2 Future Work

164

V

contents

IV Appendix

A Description of Use Case

Bibliography

165

167

171

List of Figures

2.1 Information Life Span 16
2.2 Three Elements of Security

16
2.3 Overview of Security ***'**''*... *'****** 19
2.4 System Qualities, Artefacts, and the Software Development Life Cycle . 21
2.5 Security Artefacts and their relation to the SDLC 22
2.6 Overview of SSADM-CRAMM Interface [I] 24
2.7 History of Security Evaluation Criteria 25
2.8 Security Analysis and Security Requirements

38
2.9 A Framework of Security Development Process 42

3.1 Typical Architecture of a Web application
44

3.2 Security Considerations of Web Systems 45
3.3 Holistic Approach to Web System Security 46
3.4 MVC Architecture of Web Applications

49
3.5 Iterative Risk Analysis Process [2] 51
3.6 Web Application Security Check-list

57

4.1 FDD process and its deliverable [31
63

5.1 Framework for the Security Development Process 72
5.2 Framework for the Plain FDD Process 72
5.3 Process of Secure FDD (sFDD) 76

6.1 Secure FDD Process
...........................

82
6.2 Plan-driven SDLC, Plain FDD and Secure FDD

101

7.1 Use Cases of the Application 104
7.2 FDDPMA Components and Services [4]

.................
108

7.3 Development Stages of Case Study
....................

109
7.4 Screen Shot of Project Management

...................
110

7.5 Overall UML Class Diagram
.......................

112
7.6 Overall Security Architecture

.......................
113

7.7 Design of Searching
............................

118
7.8 Revised Design of Searching

.......................
120

7.9 Screen Shot of WebScarab Scan
.....................

122
7.10 Design of Authentication

.........................
123

7.11 Revised Design of Authentication
....................

125
7.12 Screen Shot of WebScarab Scan

.....................
127

7.13 Design of Buying
129

vii

List of Figures

7.14 Revised Design of Buying 130
7.15 Screen Shot of WebScarab Scan 132
7.16 Screen Shot of Search Inputs 133
7.17 New Architecture 136

8.1 Success of Agile Practices on Various Projects (figures from [5]) 150
8.2 Framework of Change Analysis 153

viii

List of Tables

1.1 Benefits of Agile Processes (derived from [6]) 3
1.2 Agile vs. Plan-driven method (derived from [7]) 3

2.1 Summary of Baskerville's Generations of Methods [1] 23
2.2 Security Requirements in TCSEC (derived from [8,9]) 27
2.3 Relationship of ITSEC (functional and assurance levels) toTCSEC [10] 29
2.4 Security in the SDLC 37

3.1 Risk Modelling Activities 52
3.2 Vulnerabilities and Guidelines 54
3.3 Analysis of Common Vulnerabilities 55

4.1 General Features of Agile Methods [11] 61

5.1 Overall Model of Web Application 77

6.1 Secure FDD Steps and Their Milestones 95

7.1 Contributions of Security Service 114
7.2 Features List and Plan 117
7.3 Risk Assessment of Searching 120
7.4 Risk Assessment I of Authentication

.................. 123
7.5 Risk Assessment 11 of Authentication 124
7.6 Risk Assessment III of Authentication

................. 124
7.7 Risk Assessment I of Buying 128
7.8 Risk Assessment II of Buying

...................... 129
7.9 Requirements of Level C (derived from [8]) 143

A. I Use case: Searching proper-ties 167
A. 2 Use case: User Authentication 168
A. 3 Use case: Send message 169

ix

List of Tables

Acknowledgments

I would like to express my sincere gratitude to my supervisors, Dr. Fiona A. C. Polack

and Dr. Richard F. Paige, for their encouragement, patience, and guidance on my way to
become a researcher. I also want to especially thank Professor Howard Chivers for his

encouragement and influence. Without them, the work would not been possible. Thanks

also to my internal assessor, Professor John A. Clark, and external assessor, Dr. Phillip
J. Brooke, for their insightful comments.

Finally, very special thanks to my parents,: 9AC-*, and my sisterXýM, for
their continuing love and support; to my wife, ýKrij, for her understanding and selfless
love; and to my children, X WN", IC4 9, for giving me inspiration.

Xiaocheng Ge

: 90AU

List of Tables

Declaration

This thesis is the work of Xiaocheng Ge and was carried out at the University of York.
Work appearing here (or closely relating to it) has appeared in print as follows:

X. Ge, R. R Paige, F. A. C. Polack, H. Chivers and P. J. Brooke. "Agile Develop-
ment of Secure Web Applications", in Proceedings of 6th International Confer-
ence on Web Engineering (ICWE2006), July 2006 [12].

X. Ge, H. Chivers, F. A. C. Polack and R. R Paige. "Adapting Security Risk Anal-
ysis to the Design of Database-centric Web-based Infon-nation System", in Pro-
ceedings of 18th International Conference on Software Engineering and its Ap-
plications (ICSSEA2005), November 2005 [13].

The discussion of database security protection used in Chapter 7 comes from the fol-
lowing papers:

X. Ge, F. A. C. Polack and R. Laleau. "Secure Databases: an Analysis of Clark-
Wilson Model in a Database Environment", in Proceedings of 16th International
Conference on Advanced Information Systems Engineering (CAiSE04), LNCS
3084, Springer-Verlag, page 234-247, June 2004 [14].

X. Ge, RA. C. Polack and R Laleau, "Secure Database Development and the
Clark-Wilson Security Model", in Proceedings of Atelier Securite des Systernes
d'Information (SSI'04), May 2004 [15].

xi

xii

1 Introduction

Tjjis chapter states the motivation and hypothesis of the research presented in this the-
sis. It also lists several statements of infonnation security which are foundation of the
research. At the end of this chapter, an outline stnicture of this thesis is given.

1.1 Challenges of the Internet

Security has been a major concern in the development [16] and use of all types of in-
formation system for a long time. After decades of efforts, many contributions have
been made by the security engineering community. One key recommendation is that
security should be taken into account at every stage of the system development life cy-
cle [17,18]. As well, concrete security practices have been produced [19,20,21], and
many security development engineering methods (Le, systematic and with well defined
procedures) [1,221 have been introduced and applied.

Security is a system issue that takes into account both security mechanisms (such as
access control) and the engineering of security (such as a robust design that makes it
difficult for software attacks to succeed). Sometimes these overlap, but often they do
not. Security engineering is concerned with building secure software. It relies heavily
on the discipline of software engineering, liberally borrowing methods that work and
making use of critical engineering artifacts. A sound software engineering method is a
prerequisite to sound software security.

The Internet is driving a quiet revolution I: it is able to deliver infon-nation to anyone,
anywhere, quickly and inexpensively. A significant impact of this power will be increas-
ing the inter-connectivity of people, regardless of geography and time zone. In fact, this
impact has already been discernible with Internet paradigms of work, for example with
IBM's Jazz projectý.

The Internet brings many new security challenges, particular to businesses, mainly be-
cause the operational environment of Internet applications is wide open (and sometimes
unpredictable). For example, access control is normally designed and implemented in

Idetails at hitp: //news. bbc. co. uk/l /hi/bu sines s/523 53 32. stm
2http: /Tjazz. net

introduction

Web applications but once applications are made available on the Internet, they are
sometimes difficult to manage correctly.

Another impact comes from the fact that changes during the life cycle of Web applica-
tions are unavoidable. These changes include modified business processes due to com-
petition pressure, adoption of new development techniques, etc. As a result, Web appli-
cations have the ability to change in response to the changes in business needs [23]. The

phrase ability to change refers to the definition of agility, "a comprehensive response
to the business challenges of profitingfrom rapidly changing, coil tillually fragmenting,

global niark-etsfor high-quality, high-perforinance, custonler-configured goods and ser-
vices" [24]. This definition of agility was introduced more than ten years ago initially
for manufacturing, but it remains valid today for software development. This, in partic-
ular, has led to the development of so-called agile softivare development.

1.2 Motivation and Proposition

The ideas of agile software development emerged in the early 1990s as part of a reaction
against plan-driven methods, as typified by a heavily regulated, regimented, microman-
aged use of the waterfall model of development. Agile methods are evolving, and are
becoming more mature after the proposal of the Agile Manifesto [25]. Today, Agile
methods have become a family of development processes seeing increased use. How-
ever, their application in building secure Web applications remains an underdeveloped
research area.

Agile methods grew out of the real experiences of leading software professionals, such
as Kent Beck (the founder of Extreme Programming), who had experienced the chal-
lenges and limitations of traditional waterfall development on project after project. The
approach promoted by agile development is in direct response to those challenges.

In its simplest form, agile software development offers a lightweight, iterative and incre-
mental framework for helping teams, given a constantly evolving functional and techni-
cal landscape, and maintains a focus on the rapid delivery of business value.

Particularly, agile software development can accelerate the delivery of initial business
value through a process of continuous planning and feedback. As a result of this iterative
loop of planning and feedback, teams are able to easily adapt to changing requirements
throughout the process. By measuring and evaluating status based on working soft-
ware, there is much greater visibility into the actual progress of projects. As a result of
adopting an agile development process, it is suggested that a software system is finally
produced that better addresses the business and customer needs.

In 2006, over 700 developers and managers responded to a survey conducted by Ver-
sionOne and sponsored by the Agile Alliance. According to this survey [6], most

1.2 Motivation and Proposition

respondents said that they have been practising agile development methods for 2 or
3 years. When asked to estimate their successes and quantify the benefits they have

achieved, 40 percent claimed that they had significantly improved their ability to man-
age changing priorities and 24 percent observed enhanced software quality (see Table
1.1).

What value have you actually realised from implementing Agile practices?
Significantly

Improved
Improved

Enhanced ability to managing changing priorities 40% 52%

Enhanced software quality 24% 50%

Alignment between IT and business goals 22% 44%

Improved team morale 20% 54%

Accelerated time-to-market 20% 51%

Increased productivity 17% 58%

Reduced project risk 17% 55%

Table 1.1: Benefits of Agile Processes (derived from [6])

As the survey [61 suggests, Agile methods can potentially bring much benefit. But
when considering development methods that focus on guaranteeing system-wide prop-
erties, such as security or safety, it is found that they are overwhelmingly plan-driven;
in particular, established security development methods are all plan-driven [1,22]. Thus
a general question of feasibility arises: can an Agile method successfully be used to
establish system-wide properties?

To attempt to answer this question, it is useful to first step back and compare plan-driven
and Agile methods. Such a comparison was given in [7]; the differences are surnmarised
in Table 1.2.

Agile Methods Plan-driven Methods

Low criticality High criticality

Senior developers Junior developers

Requirements change very often Requirements do not change too often

Small number of developers Large number of developers

Culture that thrives on chaos Culture that demands order

Table 1.2: Agile vs. Plan-driven method (derived from [7])

[71 concluded that Agile methods are a more appropriate choice when a small number
of senior developers are working on a project of low criticality. Most projects of Web
applications are the typical example of this. However, criticality concerns cannot easily

3

I introduction

be, avoided, particularly for businesses that interact with, or run over, the Internet. In

such situations, security is a key concern; however, most businesses do not do enough
to ensure that their Web applications are acceptably secure [26].

Research on agile secure software development, such as [27,28,29,30], has already ad-
dressed the importance and key difficulties of rigorously and fully considering security
concerns when applying an Agile method. The two main challenges are as follows:

Security is an emergent property, and cannot be fully considered simply by en-
suring the security of individual components. Plan-driven security engineering
processes deal with this by developing an understanding of the overall system ar-
chitecture, which allows components and security mechanisms to be modelled,
and their relationships understood. However, most Agile methods do not build,
nor do they encourage, a description of the software architecture.
Arguing that a software system is secure relies on evidence; if the argument re-
quires evaluation against standard security criteria, evidence must be produced.
Evidence is normally in the form of docitinentation, for example fault tree anal-
ysis report, system models, test plans and results (see the next section). Agile
software development de-emphasises documentation and concentrates on the pro-
duction of working software quickly. Thus, the question is: how can we record
the evidence requirements for security in a development method that emphasises
the production of code?

Therefore, there is a gap between ambition and reality. The ambition of business is to
build software systems using Agile methods, so as to better manage different kinds of
change. The reality of software system development is that there are properties - such
as security - that are difficult to establish using Agile methods, particularly due to their
iterative and incremental nature, and because of their deprecation of documentation.
What could fill this specific gap is Agile security engineering methods.

The aim of the research presented in this thesis is to investigate the feasibility of devel-
oping an Agile security engineering method. This is done by producing such a method
and demonstrating its use on a concrete and relevant case study: a Web application.
Such applications have important security requirements. However, it is believed that the
results may be more generally applicable to any kind of application that has security re-
quirements. The fundamental requirement for assessing whether it is a suitable method
is that it is adaptive to changing requirements and can deliver an acceptably secure
(or secure enough) software system (acceptably secure is defined in the sequel).

The hypothesis of this thesis is: it is possible to develop a secure enough Web appli-
cation by adopting an agile method.

There are several dimensions to this problem, in particular:

- What kind of systems are the focus of agile software development? Agile meth-

4

1.3 Assertions of Information Security

ods generally are best suited to developing low criticality, small-to-medium size
systems, for example a Web application. The research in this thesis focuses on
the development of Web applications.
How should security be considered in an agile development process, and what
are the limitations encountered when attempting to build a secure enough system
using an Agile method?

This thesis will contribute towards answering these questions.

in the hypothesis, the notion of "secure enough" refers to the fact that the predicted
security risks of the target application are mitigated to an acceptable level (Le, the level

required by the customer at a specific point in time). It is used because there is no
absolute definition of security.

1.3 Assertions of Information Security

The scope of the research presented in this thesis will cover multiple aspects of soft-
ware engineering, including security engineering, agile software development, and Web
engineering. There are several questions to be answered:

1. What is the state-of-art in security development and agile software development?
2. What are the hurdles to adopting an Agile method to build a secure Web applica-

tion?

3. What will be the concrete deliverables of the research and how will they be eval-
uated?

The first question will be answered in Part I of this thesis. The second question will
be addressed throughout the thesis as a whole. The third question will be discussed in
the remainder of this chapter. As a prelude to doing so, several fundamental assertions
are made firstly about security development, in order to properly set the context for
answering, in particular, the second question and the overall research hypothesis.

1.3.1 Security development is an exercise in risk management

Security may mean different things to different people. Sometimes it even means dif-
ferent things to the same person, depending on the context. For example, security to
a college porter is whether the doors to the college are locked; but to a manager of a
company it is whether the sensitive assets of the company are protected. In order to
evaluate security in a standardised way, there are several published international secu-
rity standards; for example, there is the Trusted Computer System Evaluation Criteria

5

1 Introduction

(TCSEC, also known as the Orange Book) [8], Information Technology Security Evalu-

ation Criteria (ITSEQ [101, and Common Criteria for Information Technology Security
Evaluation (Common Criteria, or CC) [9]. These security evaluation criteria promote a
standard way of evaluating systems, and also provide sets of standard assessable secu-
rity requirements.

Sometimes, security requirements may be inconsistent with the functional requirements
of the system. The means to addressing this type of inconsistency is to understand
the trade-offs that must be made from a business perspective. In other words, when we
need to reconcile functional and security requirements, we must determine how to avoid
security problems in a way that is acceptable to the stakeholders. A technical means to
achieve this is through software risk management, which can help balance security and
functionality, and bridge the gap between security and development staff.

in mature engineering disciplines, more general risk management has been de rigeur
for a very long time [3 1]. It has been practised in many are

-
as: in planning financial

strategy, in construction engineering, and even in life science. Software security risk
management is also a mature discipline (see [32,33,34,35,36]). Risk management
is widely regarded as the only viable method of providing a cost benefit justification
for security controls, or alternatively, of judging which controls provide most benefit.
As a consequence, security risk management is the basis of most national standards
for information security management, such as [32,37,38,39], and best practice, for
example [32,40].

1.3.2 Applying agile development to build a secure system is
challenging

Agile development is, by definition, iterative and incremental; but building a secure
enough system requires knowledge of the whole system. The challenge is to reconcile
these two aspects.

This challenge is considered in more detail. Security concerns are applied to all layers
of a software system architecture: from the bottom (the infrastructure) to the top (the
data). Application security is only one layer in that architecture. Application security is
challenging because it is not easy to isolate security related concerns in the architecture
of a software system. The primary reason for this difficulty is that security is a pervasive
concept. For example, the security of a Web application depends not only on the absence
Of vulnerabilities in the application logic, but also on the security of the network and the
operating system.

Therefore, an overall architecture and plan (i. e., where and when to implement security
rnechanisms) are essential. This will be feasible and, in some cases, straightforward in
a plan-driven development, because the method itself may require a thorough analysis

6

1.3 Assertions of Information Security

at the beginning of the development. But with Agile methods, developing an overall
architecture is generally not mandatory. So the first hurdle in adopting an Agile method
to build secure software is the trade-off between understanding the overall architecture
against a loss of agility.

Another obvious issue with developing a secure system using an Agile method is the
production of documentation. For the needs of security development and security eval-
uation, a large amount of documentation is useful, and sometimes required. For ex-
ample, the Common Criteria addresses a series of documents covering every phase of
the software development life cycle (SDLC), including requirement specification, de-
sign documents (i. e., functional specification, design, source code), testing documents,
and operation documents (i. e., user manuals, administrator manuals). Agile methods
in general attempt to minimise documentation. An extreme example is that of Extreme
Programming (XP), which claims that source code is the best documentation a soft-
ware needs. Thus, when using an Agile method for building a secure system, it must
somehow ensure that documentation needs are met without unduly sacrificing agility.
Providing the means for qualitatively assessing the value and importance of documen-
tation in an Agile method may prove to be a useful way forward.

1.3.3 A good process is a product too

The research in this thesis aims to deliver an Agile method that can help to produce
a secure Web application. It is necessary for us to be able to evaluate the quality of
the method that we produce. [41] explained the factors that detennine the quality of a
software product. The method engineering community takes the view that a process,
one of the constituent parts of a development method, is a product too. The quality
requirements of a software development process are [42]:

Effectiveness. An effective process must help produce the right product. It does
not matter how elegant and well-written the software, nor how quickly it has been
produced. If it is not what the customer wanted, or required, it is of no value.
The process should therefore help to determine what the customer needs, produce
what the customer needs, and, crucially, verify that what has been produced is
what the customer needs.

Maintainability. However good the developers, things will still go wrong with
the software. One of the goals of a good process is to expose the developers'
thought processes in such a way that their intention is clear. This allows faults to
be discovered and remedied, and desired changes to be made more easily.

Predictability. Any new product development needs to be planned, and those
plans are used as the basis for allocating resources including time and people. It
is important to predict accurately how long it will take to develop the product. A
good process will help lay out the steps of development.

7

introduction

" Repeatability. If a process is discovered to work, it should be replicated in future
projects.

" Quality. Quality is defined as the product's fitness for its purpose. In this thesis,
security is the major criterion of quality. The goal of the proposed process is to
enable software engineers to ensure a secure Web application. The process should
provide a clear link between a customer's desires and a developer's product.

" Improvement. A process must be able to identify and prototype possibilities for
improvement in the process itself.

" Tracking. A defined process should allow management, developers, and customer
to follow the status of a project. It continuously monitors how good the predic-
tions are, and hence how to improve them.

These requirements for a software process help to form the criteria used for evaluating
the research. Evaluation will consist of two parts: evaluation of the software deliverable
and evaluation of the process itself. The evaluation of the software deliverable is given
in Chapter 7. It discusses the quality requirements of the product (i. e. security in this
thesis). The evaluation of the process itself is in Chapter 9, which discusses the rest of
the requirements listed above.

1.3.4 Unaddressed but important issues

There are several identified issues that, while important, are outside of the scope of the
research presented in this thesis.

Management issues

Building software is usually not just a technical process; it also requires management,
including tasks such as constructing a development team, organising the members in the
team, managing the deadlines and the cost of the project, etc. All of these are mentioned
in the Agile Manifesto [25]. Hence, applying an agile method is a mixture of people
and technology under the umbrella of agile principles and practices. This thesis focuses
on technical issues of building secure system; while aspects of management issues will
be touched on throughout the thesis, they will not be the main focus.

Size of team and project

So far, most methods in the class of agile software development claim they are lightweight
methodologies for small-to-medium-sized teams, and for developing software in the
face of vague or rapidly changing requirements. In a large team, it is not realistic, or

8

1.4 Framework of Research

at least very difficult, to achieve good communication and quick feedback between cus-
tomers and developers, which are key aspects of Agile methods. It is worth noting that a
few Agile practitioners have looked at the problems of agile methods for large projects
or organisations, for example (43,44,45]. But results so far are inconclusive.

The methods proposed in this thesis are targeted at small projects and focus on technical
aspects of development.

1.4 Framework of Research

The approach taken in the thesis to incorporating security into agile methods is based on
a comprehensive understanding of software security and security practices, particularly
Web application security. Moreover, the solutions developed and proposed in this the-
sis are also based on a good understanding of existing agile practices. Many project
managers and software engineers have already applied agile methods in various types
of projects and have noticed the importance of software security at the same time. Their
experience is accumulated and shared via many means, such as articles, personal blogs,
forums etc. Initial ideas and some background knowledge come from these sources,
which are discussed in Part I of the thesis.

This research has a simple and clear thread which has three stages:

1. Literature review, and determination of a suitable Agile method with which secu-
rity practices can be integrated;

2. Proposal of an integrated version of the Agile method that includes security prac-
tices; and

3. Demonstration that the process satisfies its requirements in a case study.

Consequently, the results of the research at each stage produce the following:

- Understanding Information Security and Security of Web Applications

After reviewing the literature of security of the Web and Web applications, key
security requirements for Web applications are categorised. This will help devel-
opers simplify their understanding of their security problems. This is presented in
Chapter 2- Security and Security Practices, and Chapter 3- Web Application.

Exploring Agile Software Development Methods
Many Agile methods have been proposed and applied in different projects. This
is presented in Chapter 4- Agile Software Development.

Toward Agile Security Engineering
The Feature Driven Development (FDD) method is reviewed in Chapter 4- Agile

9

1 introduction

Software Development. Consideration is given to the theory of agile security, the
models and their relations involved in the development process are analysed. Each
Agile method has its own special characteristics; adding explicit consideration of
security should keep the agility of the process as much as possible. The author
proposes an integration of FDD and security practices to the combination of Agile
methods and security concerns. These are presented in Chapter 5- Security in
Agile Development, and Chapter 6-A Solution of Security Integration: secure
FDD.

Evaluation of Proposed Process
Finally, the integrated method is demonstrated on a case study. The method and
the case study are evaluated. The most important lessons learned from the case
study are stepping-stones to future research. These are presented in Chapter 7-
Case Study and Chapter 8- Limitations of Case Study and Research.

1.5 Structural Overview

The structure of this thesis is shown below.

Part I Background Knowledge and Analysis provides a general background to the
research and discusses several issues related to the research.

Chapter 2- Security and Security Practices reviews the several commonly used se-
curity artifacts.

Chapter 3- Web Application explains "what is a Web application?, and "what are
the security concerns of Web applications? " The answer to these questions provides a
general background of the research. At the end of this chapter, a list of common security
vulnerabilities of Web applications is summarised, which will provide security criteria
for the case study discussed in later chapters. The integrated method will therefore
target these security criteria using specially developed Agile security practices.

Chapter 4- Agile Software Development introduces a suitable Agile method, and
discusses in depth several issues about feature driven development (FDD). These dis-
cussions explain why this Agile software development method is suitable.

Part II Integration of Agile and Security Development is the body of the research, in-
cluding chapters of presenting the arguments of the integration, the details of the exam-
ple of security integration, and the demonstration of how it works in a Web application
project.

Chapter 5- Security in Agile Development gives an analysis of the problems encoun-
tered when attempting to integrate risk assessment and Agile software development.
Based on the analysis, a foundation for security integration is drawn in this chapter.

10

1.5 Structural Overview

Chapter 6-A Solution of Security Integration: secure FDD demonstrates a concrete
example of Agile security integration. The principles of security integration are: 1) the
integration is an Agile software development method, and 2) the integration improves
the security of the target software system. In this chapter, the security artifacts in secure
FDD are described in detail.

Chapter 7- Case Study demonstrates an example of the integration in a Web-based
application project. At the end, an analysis of the case study helps to evaluate the
proposed agile security engineering approach.

Chapter 8- Limitations of Case Study and Research identifies and discusses the
limitations of the case study and the research presented in this thesis. It helps the readers
gain a better understanding of the research.

Part III Conclusion and Future Work summarises the conclusions in the thesis and
lists some interesting directions for possible future research.

Chapter 9- Evaluation of Research summarises the contributions of the research and
evaluates the quality of the proposed process. This chapter also draws an overall conclu-
sion from the research, and indicates several possible directions for the future research
work.

11

12

Part I

Background Knowledge and Analysis

13

2 Security and Security Practices

Infonnation security is a broad domain, and it is thefirst engineering field reviewed in
the research. The purpose of the review is to gather enough knowledge so that a set of
requirementsfor a security development process can be proposed which can be used as
criteria of Agile process selection. The concepts related to security development will
also be reviewed, including a general view of infonnation security, and some security
development artefacts. At the end of this chapter, a set of requirements for a security
development process is proposed.

2.1 Information Security

Information security means protecting information and information systems from unau-
thorised access, use, disclosure, disruption, modification, or destruction in order to pro-
vide security goals, which are often summarised as confidentiality, integrity and avail-
ability [19,21,46,47]:

confidentiality means preserving authorised restrictions on read access and disclo-
sure, including ways of protecting personal privacy and proprietary information;

integrity means guarding against improper infonnation creation, modification or
destruction, and includes ensuring information non-repudiation and authenticity.
Integrity always includes the following overlapping sub-goals [48]:

1. Preventing unauthorised users from making modifications.
2. Preventing authorised users from making improper modifications.
3. Maintaining internal data consistency (self-consistency of interdependent

data) and external data consistency (consistency of data with the real-world
environment that the data represents).

availability means ensuring timely and reliable access to, and use of, information.
Goals of availability include timely response, fair allocation, utility or usability,
and controlled concurrency [49).

Information security must protect information throughout its life span, from initial cre-
ation to final disposal. Figure 2.1 is a simple illustration of the life span; the information
must be protected in storage, in transit, and in use. There are many different ways that

15

2 Security and Security Practices

information and information systems can be threatened, and their protection must take
a holistic approach.

Information Data Data Information

0

Systems Store

User

Figure 2.1: Information Life Span

A thorough technical analysis of information security and security goals is presented in
[46]. The security of an information system can also be achieved through non-technical
means, such as organisational, personnel, physical, and administrative controls.

The rest of this section considers, firstly, broad issues in security; and secondly, security
as a process. This illustrates the interplay of factors involved in information systems
security.

2.1.1 Security is a broad issue

Security is a broad concern, not a pure technical problem. At a high level of abstraction,
information security contains three elements: policy, people, and technology, as shown
in figure 2.2. Each element depends, in some manner, on the others.

Figure 2.2: Three Elements of Security

16

2.1 Information Security

Policy

Policy is the definition of what it means for the information system to be secure. It
captures the security qualities required by an organisation, as well as wider issues such
as legal requirements. Typically, policy comprises a set of security statements, relevant
standards, and control documentation. This is basically the written security environment
- the bible that software developers and operators refer to for direction and guidance.

Security policy is "a wide ranging document which is about managing the business
as a whole, managing it securely and protecting a company's key asset - its informa-
tion" [50]. It is a set of rules and practices that specify or regulate how a system or
organisation provides security services to protect sensitive and critical resources. In in-
formation systems development, security boils down to devising and enforcing policies
that describe rules for access resources.

In many information-oriented organisations, there is no explicit security policy, rather
an implicit policy that is assumed to be fairly obvious and widely shared. Without a
well-defined policy, it can be difficult to identify whether events have the potential to
cause a security breach.

People

The people element comprises the various human roles and their responsibilities. Within
the development team, for instance, key roles include senior project manager, security
administrators, and system architects. Once a system is delivered, security-related roles
include system administrators, end users and auditors.

Technology

Technology is a wide-ranging element of security, and includes the tools, methods, and
mechanisms put in place in building the software. Technical issues include the method
of delivering security, architectural issues, and technical mechanisms of implementing
security (e. g., protocols, access control mechanism).

Issues arising from the architectural complexity of systems can be simplified by a lay-
ered approach. For information security, four architectural layers are used in this the-
sisi:

1. Sensitive Data Layer (SDL) contains a variety of sensitive data.

'These (or very similar) layers are common in the literature

17

2 Security and Security Practices

2. Application Layer (AL) contains the application, the supporting software and
middleware, and the underlying operating system.

3. Infrastructure Layer (IL) includes the hardware and networking that support
the AL.

4. Social Environment Layer (SEL) is the social environment of the information
system.

In this layered security architecture, technical issues are primarily in layers SDL, AL,

and IL. SEL concerns human issues. Policies may relate to any or all of the four layers,

and is the first thing considered in development of security for each layer. A holistic

approach must consider every component in the layered architecture, and the ways in

which security is built up. The layering on and overlapping of security measures is the
principle of defence in depth. The overall security is a chain whose strength is no greater
than its weakest link.

in terms of security mechanisms, three categories can be distinguished:

Logical controls are part of the software designed to monitor and control access
to information and systems. Measures such as authentication mechanisms are
typical protections applied to components from SDL and AL, whilst examples
of software protection of components in the IL include network firewalls and in-
trusion detection systems. The IL protection may be outside the control of the
information system and its developers.

Physical controls can be used to monitor and control the environment of the
work place and access to and from computing facilities. Examples include locked
doors, alarms, CCTV, and security guards. Physical separation of the network or
the work place into functional areas may also be used.
Administrative controls seek to enforce policies, for instance using approved
written policies, procedures, standards and guidelines. Administrative controls
form the framework for running the business and managing people. They inform
people how day-to-day operations are to be conducted. Administrative controls
might encompass corporate security policy, password policy, hiring policy, and
disciplinary policy.

Just as policies are the key to the development of human and technical security, the
administrative controls form the basis for the selection and implementation of logical
and physical controls.

Figure 2.3 shows how policy, people and technology are interrelated with the archi-
tectural layers and the control concepts. Controls are identified as policies - policies
cover all four layers - and are used to determine what control mechanisms are appro-
Priate. Logical control applies to the SDL, AL, and those parts of the infrastructure that
concern software. Physical controls apply to physical aspects of the infrastructure and
to parts of the SEL. Administrative control operates on people, and'is thus confined to
the SEL.

18

2.1 Information Security

Policy Technology

Sen itive
D, it'a

Appli ation

rj ------------ Logical Co roji

Infrast ucture
Physiý

ZkControl

Social En Aronment

AALm ýinistrative Control

People

Sen em
D,

Sený

)/Appliý I ------ Logical Co roji

sitive -
ita

uation

Infrast
Ph si

ZkControl ucture
y ý -----

Social En
MLministrative Control ýinistrative

Aronment

Figure 2.3: Overview of Security

Policies are presented in different forms according to whether they relate to the whole
abstract system or to a particular layer or layers of the architecture. For example, only
database operators can an access the data in X is an access control policy on the SDL,
whereas Room 101 isforbidden areafor all staff except chief security conintander is a
policy on the SEL.

2.1.2 Security is a process

The previous section considers abstract security concepts such as policies, architecture
and controls. Information security cannot rely solely on the provision of security mech-
anisms; it also depends on the quality of engineering; for example a robust design can
reduce the potential for software attacks on the implemented system. Sound software
engineering is a prerequisite for software security, and development of secure software
draws on development artefacts devised for critical systems engineering. In this section,
the development of secure software is addressed.

Security can be thought of as a system quality that is delivered through the SDLC. It is
useful to distinguish qualities of the entire system (operational or run-tilne [511 quali-
ties) and developinental qualities (also called developinent-thne qualities [5 1]and build-
thne requirenients [52]), of development artifacts (e. g. architecture, design and code).

19

2 Security and Security Practices

operational qualities are relative to customer goals, whereas developmental qualities
relate to the goals of developer (the person or organisation that develops an information

system).

Operational Qualities, such as usability, reliability, quality of service, safety, se-
curity and scalability, relate to how well an operational system meets its functional
requirements - where hoiv ivell is judged using externally-observable or mea-
surable properties of the system behaviour. For example, the customer may assess
security in relation to the customer's values or concerns, or may use standard in-
ternational security evaluation criteria.
Developinental Qualities, such as maintainability and reusability, reflect the de-
veloper's vested interest in the development process and its artefacts (such as
architecture, design, and code). Developmental qualities of artefacts influence
the effort and cost associated with the current development as well as support for
future changes and users.

In relation to secure software, acceptable operational security is predicated on develop-
mental quality. An important principle is to address security issues early in the software
development life-cycle (SDLQ - knowing and understanding common threats, design-
ing for security, and subjecting all software artefacts to thorough objective risk analyses
and testing. It is accepted that considering security early is less expensive and more
effective that treating security as an add-on to an operational system.

This thesis focuses on security at the development stages of a SDLC, and thus is pri-
marily concerned with developmental qualities that are necessary to achieve operational
quality.

The ultimate goal of security development is secure software, but this aspect of secu-
rity is an operational quality that is judged by a third party. Knowing how security
might be assessed will influence the way that software is developed. The international
community has set up security standards (see section 2.2.2, below) that improve the
judgement and comparability of the security quality of information systems. The stan-
dards help developers to address the question what is the most effective way to protect
information system? In the developmental context, however, security is only one de-
sired quality: functionality, time-to-market, cost, flexibility, re-usability, and ease of use
are also important. The security concern may directly clash with other project quality
goals. Balancing quality goals in a software project is nontrivial. Risk assessment can
help balance security and other goals, and may be the only rational decision tool that
allows the security quality to be judged in context [53].

Figure 2.4 shows the author's life cycle view of security, and shows the interrelation-
ships of some of the concepts considered in this section. In the centre is a simple stan-
dard SDLC, from initiation to decommissioning. The development stage, and associated
scope of developmental qualities, relate to the first three components of the SDLC; the
operation stage and operational qualities relate to the post-implementation SDLC. Inter-

20

2.2 Security Improvement Artefacts

national evaluation standards are typically focused at the start of development and the
end of implementation (before operation), whilst risk assessment should be an ongoing
process throughout the SDLC.

developmental qualities

development stage

operational qualities

operation stage

Initiatio Acquisition Implementatio Operation /
Decommissioning e Development Maintenanc

)) I

international Security
Evaluation Criteria

International Security
Evaluation Criteria

Risk Assessment >

Figure 2.41: System Qualities, Artefacts, and the Software Development Life Cycle

The discussion identifies a number of security artefacts, or security improvement arte-
facts. In this thesis, security artefact refers to any approach, method, or technique that
helps to improve information security. Because of the importance of security criteria,
applying these criteria is a security artefact. Risk assessment is also an important arte-
fact, not only because of its maturity, but also because of its value - it provides decision
criteria for security in the business and social context. These and other security artefacts
are covered further in the next section.

2.2 Security Improvement Artefacts

In the previous section, the development of security is seen as a progressive process.
Software security engineering can and should borrow from other disciplines in computer
science and software engineering when developing and evolving best practice.

McGraw [541 identifies the following influences in the development of security engi-
neering best practice:

" Security requirements engineering;

" Design for security;

" Risk assessment, security testing, and use of international security criteria;

" Guiding principles for security;

" Auditing software for implementation risks, architectural risks, automated tools,
and technology developments (code reviewing, information flow and so on), and

" Common security checklists.

21

2 Security and Security Practices

An alternative view (of the author) is shown in Figure 2.5, which presents the secure
development process (in slightly more detail than in figure 2.4) and a range of associ-
ated security improvement artefacts. The list of artefacts is not complete, but these are
perhaps the most commonly used in the development of information systems.

International
Security External
Standards Review Static Penetration

Analysis Testing
Architectural (tools)

Security
Risk Routine

Abuse Analysis Risk-based Checks Cases Security Test Risk
Management

Requirements Design Test Coding Test Maintain
plan

Figure 2.5: Security Artefacts and their relation to the SIDLC

These security artefacts represent relatively independent activities. A more coherent ap-
proach to a secure SDLC is provided by systematic security methods. In the remainder
of this section, existing systematic security development are reviewed briefly. Next, the
two artefacts identified in the previous section, security evaluation standards and risk as-
sessment approaches, are discussed. Finally, a range of other security artefacts is briefly
considered.

2.2.1 Security Development Methods

Table 2.1 presents Baskerville's [I] succinct summary of methodical software develop-
ment. Three generations are identified. The first is a mechanistic use of check-lists; the
second provides heavyweight but relatively prescriptive engineering methods, whilst the
last generation focuses on logical abstraction and analysis. The second and third gen-
erations saw the introduction of influential plan-driven methods, where the developer
follows a specified life cycle, applying specified methods and techniques to achieve the
goals of each stage (as in the SSADM life cycle on the left side of Figure 2.6, below).

The final column of Table 2.1 notes some features of security development in each
generation. Risk analysis has played a large role in security development since the
check-list methods of the 1970s. Security considerations have already been integrated
into these software engineering methods, through an evolution of existing information
sYstems security development and management methods.

At the time of Baskerville's 1993 summary [I], software engineering process was dom-

22

2.2 Security Improvement Artefacts

Generations Primary Features System Development Security Development
Methods and Typical Methods and Iýpical
Tools Tools

Ist Genera- Map of limited so- Vendor's technical pro- Security checklists and
tion: Checklist lutions on to the cedures and literature risk analysis
Methods (1972-) information prob-

lem
2nd Generation: A partitioned solu- Top-down engineering, CRAMM, control point
Mechanistic tion that matches rapid prototyping, sys- and exposure analysis
Engineering functional require- tem and logic flowcharts matrices.
Methods (1981-)

-
ments

dGeneration: -Yr Highly abstracted Structured analysis, data Design of control logic,
Logical Transfor- design expressing modelling, information etc.
mational Methods problem and solu- engineering, software
(1988-) tion spaces systems, data flow

and entity relationship
diagrams

Table 2.1: Summary of Baskerville's Generations of Methods [11

inated by plan-driven methods.

A typical example of the third-generation security development method is represented
by the SSADM2_CRAMM3 Interface. SSADM and CRAMM started as second-generation
methods, but evolved into logical transformation approaches that could be integrated
to address operational qualities of information systems as well as functional require-
ments. In Figure 2.6, the left side is the SDLC of SSADMv4, the preferred approach
to large-scale infon-nation systems development in the UK in 1990s. The right side of
the diagram shows how the CRAMM method is integrated and interacted with SSADM,
adding security risk assessment. There are two review (inspection) loops alongside the
software development process. The first loop occurs at the early stage of SDLC. During
the review, the inspector will take initial requirements and business options, and his re-
views will be considered in the stage of technical analysis and design. The second loop
is when the system is designed. The inspector will review the technical design and set
countermeasures which will be considered in both conceptual and physical design stage.
Since the third-generation of security development method, software practitioners have
emphasised the importance of security analysis at the stage of design.

Observation

Baskerville provided not only a taxonomy to classify methods developed to date, but
also foresaw the subsequent emergence of methods that embraced increased level of

2 Structured Systems Analysis and Design Method
3CCTWs Risk Analysis and Management Methodology

23

2 Security and Security Practices

Review

Initial View

C
Review

Business Options

Countermeasures

Technical Decisions

NK Countermeasures

C ReviewD

Countermeasures

Further Review

Figure 2.6: Overview of SSADM-CRAMM Interface [1]

abstraction. In this sense, agile security approaches are closely related to Baskerville's
third generation, because the major practices in these approaches are concerned with
designing an abstract model and modelling essential security attributes.

Plan-driven development methods cannot be easily adapted to be agile, because they
are inflexibly-based, on a sequential, staged development akin to Royce's waterfall life
cycle. However, plan-driven methods show how security is traditionally integrated into
the SDLC, which is also required in agile security approaches.

2.2.2 International Security Evaluation Criteria

The mechanistic approach of the plan-driven methods considered in the previous section
gives a verifiable development process for operational qualities such as security - in

24

Feasibility
Study

2.2 Security Improvement Artefacts

the sense that it can be shown that the development process has been correctly followed.
However, these methods rely on review rather than more systematic testing and evalua-
tion. Security evaluation criteria add to a verifiable plan-driven process the capability to
identify the required level of security assurance and verify that the development process
has met the security requirements.

Security evaluation criteria focus on security at the technology level, and derive from the

need for evaluation of information system security in military and intelligence organisa-
tions. Various evaluation criteria and security guideline documents have been developed
by governments and international organisation, in co-operation with industry. Figure 2.7

gives a chronological view of European and North American criteria.

Canadian CTCPEC 3.0
Initiatives

k--ý

NIST
LI FederW

mn-n defia TCSEG Common
Critenia --4

ECC
23

Project

Europea
National &
Regional

k.
=ITSEC

1.2

Initiatives

ISO Initiatives IP ISO Standard

ý-l -4 1- 1 -4 1-ý + i- H+H -+Po- 1985 1990 1995 1998 2005

Figure 2.7: History of Security Evaluation Criteria

The following will review three of the most important evaluation standards: Trusted
Computer System Evaluation Criteria (TCSEC, 1983-) [8], Information Technology Se-
curity Evaluation Criteria (ITSEC, 1990-) [101, and Common Criteria for Information
Technology Security Evaluation (Common Criteria or CC, 1999-) [9,55].

Trusted Computer System Evaluation Criteria (TCSEC)

TCSEC sets basic requirements for assessing the effectiveness of the computer security
controls built into an information system. TCSEC was devised for the U. S. Depart-
ment of Defense (DoD), for evaluation of information systems being considered for the
processing, storage and retrieval of sensitive or classified information.

UNKW it,
.Lu YOW 25

2 Security and Security Practices

TCSEC, or the Orange Book, is the centrepiece of the DoD Rainbow Series. It was
issued by the National Computer Security Center (NCSQ (an arm of the National Se-
curity Agency) in 1983, and updated in 1985, before being replaced by the Common
Criteria (below).

TCSEC defines four fundamental objectives (requirements): Policy, Accountability, As-
surance, and Documentation. TCSEC also defines four security levels or divisions: D,
C, B and A. Division A is the highest security level; division D represents the situation
where there are no security controls. Each division represents a significant difference
in the trust that an individual or organization could place on the evaluated system. Di-
visions are broken into classes: C 1, C2, B 1, B2, B3 and Al. Each division and class
expands or modifies the requirements of the immediately prior division or class. Table
2.2 summarises the TCSEC requirements of security classes C, B and A.

In Table 2.2, requirements are listed under the four objectives (Policy, Accountability,
Assurance, and Documentation). The cells, read right to left, show the increasingly-
stringent requirements of each class, using the following notation:

-/ indicates that the requirement does not apply to a class.

+ indicates that a class requires something more than the next lower class, that
there is something new under this requirement.
A indicates that something is changed in this class. Something is different.

- indicates that there is nothing extra under this requirement in this class, relative
to the next lower class. The requirements are as same as the next lower class.

Applying TCSEC is reasonably easy because it explicitly sets out the requirements for
each security class.

Information Technology Security Evaluation Criteria (ITSEC)

ITSEC can be thought of as the European counterpart to TCSEC. It is based on earlier
security criteria from France, Germany, the Netherlands and the United Kingdom. The
first version of ITSEC, published in 1990, was subject to extensive international review,
and replaced in 1991 by ITSECvl. 2. The CEC (Commission of the European Commu-
nities) promoted it for operational use in evaluation and certification schemes.

ITSEC [10] is a structured set of criteria for evaluating computer security within prod-
ucts and systems. The product or system being evaluated, called the target of evaluation
(TOE), is subjected to a detailed examination of its security features, after which it is
subjected to functional and penetration testing.

Unlike TCSEC, ITSEC assurance levels do not require evaluated targets to contain spe-
Cific technical features. For example, an ITSEC TOE might provide authentication or

26

2.2 Security Improvement Artefacts

Al B3 B2 B1 C2 CI

Discretionary Access Control - A+ A+ +
Object Reuse - -
Mandatory Access Control - - A +

P. Labels - - A +

Device Labels - - +

Label Integrity - +
Exportation of Labeled information - +
Exportation of Multilevel devices - +
Exportation of single-level devices - +
Labeling Human-readable output

-
- +

FSu bject Sensitivity Labels +

Identification and Authentication A +
Audit + + A+ +
Trusted Path - A +

Identification and Authentication - + + + + +
0 . Z: System Integrity - +

Covert Channel Analysis + A + 0
Trusted Facility Management + +
Trusted Recovery +

.R
Security Testing A+ A+ A+ +

4 Design Specification and Verification A+ + A+ +
Configuration Management A+ +

Trusted Distribution

Security Features User's Guide

Trusted Facility Manual + + + + +
Test Documentation + + +

0
Design Documentation A+ + A+ + +

Table 2.2: Security Requirements in TCSEC (derived from [8,9])

27

Security and Security Practices

integrity features without providing confidentiality or availability. A TOE's security
features are documented in a Security Target document, whose contents must be evalu-
ated and approved before the target itself is evaluated. Each ITSEC evaluation is based

exclusively on verifying the security features identified in the Security Target.

The Security Target document describes the security functionality offered by the TOE,

along with a description of the environment that the TOE is intended to operate in. In

the case of a system, the Security Target contains a System Security Policy (rules of
operation tailored to a specific operating environment).

ITSEC separates functionality and assurance. There are six assurance evaluation lev-

els, EI to E6. (EO can describe a system with no security assurance.) The higher the
level, the more detail and rigour are required in the deliverable. Functionality is as-
sessed separately, under levels F-CI to F-B3 that correspond to the TCSEC levels, and
five additional levels that relate to different classes of system (e. g. high integrity; high

availability).

Evaluation takes place under headings such as effectiveness and correctness, where each
evaluation produces a deliverable that demonstrates the level attained by the TOE. Eval-

uation comprises the same requirements for any of the six evaluation levels.
,

The effectiveness evaluation assesses the TOE directly. Suitability Analysis demon-
strates that the security functionality of the TOE is capable of satisfying the security
claims. The Binding Analysis demonstrates that the security functions of the TOE are
combine to satisfy the security claims of the TOE. The Ease of Use Analysis demon-
strates that it is not possible to operate the TOE in an insecure manner whilst believ-
ing it to be operating securely. The Construction Vulnerabilities Analysis investigates
vulnerabilities in constructing the TOE, and the Operational Vulnerabilities Analysis
investigates vulnerabilities in operating the TOE.

The correctness evaluation relates to the process of development. Requireinents relates
to the first phase of development, here the production of a Security Target document.
The Architectural Design is a top-level design document identifying the basic structure
of the TOE, its external interfaces and its major hardware and software components. In
particular, it must describe the separation between security-enforcing and other com-
ponents. The Detailed Design is a refinement of the Architectural Design, to the level
of detail that can be used as a basis for implementation, and must identify all security
enforcing components. The Iniplenzentation deliverable tests that the security claims
refined in the Detailed Design are implemented correctly. It also includes full source
code and hardware drawings of the TOE.

Additional correctness deliverable include the Development Environment deliverable
(including Configuration Control, Programming Languages and Compilers and Devel-
opers Security).

Whilst ITSEC assurance evaluation is rather different to the requirements of TCSEC

28

2.2 Security Improvement Arlefacts

classes, it is possible to map between classes and levels, as in Table 2.3. No mapping is
possible for the five additional ITSEC levels that relate to class of system.

ITSEC Criteria TCSEC Class
EO D

F-Cl, El <-> cl
F-C2, E2 <-> C2
F-B 1, E3 <-> BI
F-B2, E4 <-> B2
F-B3, E5 <-> B3
F-B3, E6 <-> Al

Table 2.3: Relationship of ITSEC (functional and assurance levels) to TCSEC [10]

ITSEC is more thorough than TCSEC, considering functionality as well as security
assurance, development process as well as product. However, this considerably adds to
the complexity of the evaluation process.

Like TCSEC, ITSEC has been largely replaced by the Common Criteria, which provides
similarly defined evaluation levels and implements the target of evaluation concept and
the Security Target document.

Common Criteria for Information Technology Security Evaluation (Common
Criteria or CC)

The Common Criteria represent international standards for computer security. (CCv2.1
[9] is ISO/IEC 15408; CCv2.5 [55] is ISO/IEC 18405). Unlike TCSEC, but more like
ITSEC, the Common Criteria describe a framework in which computer system users
can specify their security requirements; enable vendors to implement, and make claims
about, the security attributes of their products; and allow testing laboratories to evaluate
products to determine whether they actually meet the claims. In other words, the Com-
mon Criteria provides assurance that the process of specification, implementation and
evaluation of a computer security product has been conducted in a rigorous and standard
manner.

Like ITSEC, evaluation of CC requires the Security Target document, which is the key
to any evaluation.

A security target is the basis for agreement between all parties as to what security the
product offers. The Security Target document contains:

A description of the security functionality offered by the product, along with a
description of the environment that the product is intended to operate in.

29

2 Security and Security Practices

A set of security requirements: a security target permits the expression of security
requirements for a specific product that are shown by evaluation to be useful and
effective in meeting the identified objectives.

The product summary specification, together with the security requirements and
objectives, and the rationale for each.

The security requirements can be stated explicitly, or directly by reference to CC func-

tional or assurance components, or less directly by reference to a Protection Profile. A

protection profile could be developed by user communities, IT product developers, or
other parties interested in defining such a common set of requirements. A protection
profile gives consumers a means of referring to a specific set of security needs and fa-

cilitates future evaluation against those needs. A protection profile is intended to be

reusable and to define product requirements that are known to be useful and effective in

meeting the identified objectives, both for functions and assurance.

Common Criteria defines eight levels at which information system security can be eval-
uated and compared. The levels represent different sets of functional security require-
ments and hierarchical levels of assurance. The primary goal of using these criteria
is to demonstrate that the system fulfils certain requirements regarding its protection
mechanisms and that the correctness of the implementation meets a certain Evaluation
Assurance Level (EAL).

The seven EALs define the rigour that must be applied in the development and presen-
tation of the product. In addition, EALO indicates failure of evaluation.

" EALI - functionally tested

" EAL2 - structurally tested

" EAL3 - methodically tested and checked

" EAL4 - methodically designed, tested, and reviewed

" EAL5 - semi-formally designed and tested

" EAL6 - serni-formally verified design and tested

" EAL7 - formally verified design and tested

As for other security evaluation criteria, the Common Criteria set requirements for the
documentation, in categories such as configuration management, delivery and operation,
development (functional specification, design, and source code), guidance documents
(user manuals), life cycle support, tests, and vulnerability assessment.

Unlike ITSEC, Common Criteria does not specify any particular process or sequence of
system development. Instead "the developinent is a refinenient process of the security
requirenzents into a TOE stanniary specification expressed in the security target. Each
lower level of refinenient represents a design deconiposition with additional design de-
tail. Thefinal representation is the TOE iniplenzentation itseýf " [9].

30

2.2 Security Improvement Artefacts

In addition, there should be sufficient design representations presented at a sufficient
level of granularity to demonstrate where required [9]:

a) "that each refinement level is a complete instantiation of the higher levels (i. e. all
TOE securityfiinctions, properties, and behaviour defined at the higher level of
abstraction must be demonstrably present in the lower level); "

b) "that each refinement level is an accurate instantiation of the higher levels (i. e. there
should be no TOE securityfitnctions, properties, and behaviour defined at the
lower level of abstraction that are not required by the higher level). "

Observations

The international security criteria, like the development methods considered in section
2.2.1, show an increasing maturity over the last 20 years! However, they are also in-
creasing in size and the difficulty of application.

Security criteria are not only a means of evaluating a system, but also of assistance in
describing the target or attained security of a system in a standardised way.

In summary, these security criteria have several common features:

System life cycle. In the criteria, the way the TOE is developed is as important
as the way it is operated. The criteria thus define two major stages of an SDLC,
construction and operation. In particular, ITSEC explicitly refines the construc-
tion stage in various phases: requirement, architecture design, detailed design and
implementation.

Environment. All the criteria take the development environment and the operation
environment into account. The requirements of the environment are stated for
each security level, and environmental issues (such as security policies or rules
of operation tailored to a specific operating environment) must be documented in
the security target document.

Documentation. The criteria require a suite of documents, including evalua-
tion documents, design documents, testing documents and operation documents.
Among these documents, the Security Target document is key to any evaluation.
Other documents provide support and evidence for security evaluation.

These common features are significant for the security development, and will influence
how agile and security software development are integrated. Each element is now con-
sidered further.

Systeml-ifeCycle All the criteria regard the system life cycle (or, equivalently, SDLQ
to be linear and sequential, assuming a top-down development approach. In [18], NIST

31

2 Security and Security Practices

specifies five basic phases of this model:

" Initiation. The need for a system is expressed and the purpose and scope of the IT
system is documented.

" Development/Acquisition. The system is designed, purchased, programmed, de-
veloped, or otherwise constructed.

" Implementation. The system security features should be configured, enabled,
tested, and verified.

" Operation/maintenance. The system is executed. Typically, the system is being
modified on an ongoing basis through the addition of hardware and software and
by changes to organisational processes, policies, and procedures.

" Disposal. This phase may involve the disposition of information, hardware, and
software. Activities may including moving, archiving, discarding, or destroying
information, hardware, or software.

This linear development model, another variant of the Waterfall model, is similar to that
which underpins the development methods considered in section 2.2.1. The recognition
in ITSEC that security development divides into construction and operation is analo-
gous to the stages of development and operation identified in considering qualities of
the security development process in section 2.1.2. However, as with the plan-driven
development methods, it is not immediately obvious whether the security assurance re-
quirements of a linear process model are compatible with agile development.

Environment The environment includes the development and operation environment.
This is important to security, as system security may be classified differently for use in
different environment. The potential environment, including development and opera-
tion, of system should be considered when the development process starts.

The demands of specifying an operational environment promotes advanced preparation
of an overview (or plan), and it is easy to understand the importance of architecture
design (explicitly required in ITSEQ. Again, this maps closely the approach of the
plan-driven methods, but poses problems of compatible with agile development.

Documentation The evaluation process is a documentation-oriented process, and re-
quires the development process to produce appropriate documents. From the criteria,
the higher security level the system, the more documents are required.

'Me demands of documentation go well with plan-driven methods such as SSADM/CRAMM,
which were devised to furnish managers with evidence of project progress. However,
extensive documentation makes iterative development difficult - because of the con-
stant updating of documentation that is entailed. It is also contrary to the lightweight
approach of agile development.

32

2.2 Security Improvement Artefacts

2.2.3 Risk Assessment

The previous section considered existing evaluation criteria. However, a key element in
security development is finding the appropriate level of compromise between the costs
and benefits of security. Risk management is a traditional approach to such analysis.

Risk nianagenzent has been de rigeur in many mature engineering disciplines for at least
a century [31]. In addition to construction and other engineering, it has been applied
widely in planning financial strategy.

In software engineering, risk management can be seen as "the process of managing
risks to agency operations (including mission, fitnctions, inzage, or reputation), agency
assets, or individuals resultingfroin the operation of an infonnation systent. It includes
risk assessment; cost-benefit analysis; the selection, implementation, and assessment
of security controls, and thefonnal authorisation to operate the systenz. " [56] The risk
management process considers effectiveness, efficiency, and constraints due to laws,
directives, policies, or regulations. Risk Assessinent refers to "the process of identifying
risks to agency operations (including inission, fiaictions, inzage, or reputation), agency
assets, or individuals by detennining the probability of occurrence, the resulting inipact,
and additional security controls that would mitigate this inipact. " [56]. Risk assessment
also incorporates threat and vulnerability analyses. The value of risk assessment is
that it provides decision criteria for security requirements in their business and social
context.

Many documents, such as [18,57], suggest that risk assessment is an essential activity
for infonnation systems security. Security in a software system should be commensurate
with risk. However, the process of determining which security controls are appropriate
and cost effective is often a complex and subjective matter. An objective of security risk
assessment is to put this process onto a more objective basis. Risk assessment is widely
regarded as the only viable method of providing a cost-benefit justification for security
controls, and is the basis of many standards for information security management [32,
38,39]. It is even regarded as a rational approach to broader security choices in society
[581.

Security risk assessment is a family of security analysis methods, of which some are
commercially-oriented (e. g, STRIDE [2,57,59], CRAMM [60], ACSM/SAR [61] and
Cigital Framework [54]), and some are standards-based (e. g, ASSET [62], OCTAVE
[39], and COBIT [63]).

Whilst some risk analysis methods attempt to calculate a nominal value for an informa-
tion asset and deten-nine risk as a function of loss and event probability, others rely on
checklists of threats and vulnerabilities to determine a basic risk measurement (details
in [I]). Whilst the methods have different features, they almost all share common prac-
tices, and have a common set of concepts that should be considered in any risk analysis
method. These are given explicit definitions:

33

2 Security and Security Practices

" Asset: the object of protection efforts, variously defined as a system component,
data, or even a complete system.

" Impact: the magnitude of the loss that can be expected to result if a threat is re-
alised. This can be monetary or tied to reputation; it may result from a breach of
a law, regulation, or contract. Without quantification of impact, technical vulner-
ability is hard to deal with, especially when it comes to mitigation activities.

" Probability: the likelihood that a given event will be triggered. Whilst probability
may be quantified, the calculation of probability is often extremely rough, and
more suited to gross measures such as high (H), medium (M), and low (Q.

" Risk: the level of impact on operations (including mission, functions, image, or
reputation), assets, or individuals resulting from the operation of an information
system given the potential impact of a threat and the likelihood of that threat
occuriing.

" Threat: any circumstance or event with the potential to adversely impact oper-
ations (including mission, functions, image, or reputation), assets, or individuals
through an information system via unauthorized access, destruction, disclosure,
modification of information, and/or denial of service.

" Vulnerability: for a threat to be effective, it must act against a vulnerability in the
system. In general, a vulnerability is a defect or weakness in system security pro-
cedures, design, implementation, or internal controls that can result in a security
breach or a violation of security policy [64]. In software, vulnerabilities come
in two basic flavours: flaws are design-level problems leading to security risk,
and bugs are implementation-level problems leading to security risk. Automated
source code analysis tools tend to focus on bugs. Human expertise is normally
required to uncover flaws.

" Countermeasures and Safeguards: the management, operational, and technical
controls prescribed for an information system to adequately protect the confiden-
tiality, integrity, and availability of the system and its information. For every risk,
controls can be applied to prevent, reduce or (at a minimum) detect the risk when
it triggers.

It is commonly accepted that there are common activities in risk analysis, though these
come under different labels in different approaches [2,65,18,32]. The major activities
can be characterised as follows.

Applications are built from individual features and every feature potentially can
be attacked, so it is important to learn as much as possible about the target of
analysis - its components and how they are connected:

- Read and understand the requirements specification documents, architec-
ture, and other design materials.

- Discuss and brainstorm about the target.

- Determine the system boundary and data sensitivity/criticality.

- Use the software (if it exists in executable form).

34

2.2 Security Improvement Artefacts

- Study the code and other software artifacts (including using code analysis
tools).

- Identify threats and agree on relevant sources of attack.
Analysis of application structure is not done only to determine how everything
works, but also to investigate the components and assets, and how data flows be-
tween the components. The components or assets are threat targets, and they are
also the objectives of security protection. Discussion of security issues surround-
ing the application is instructive:

- Argue about how the product works and determine areas of disagreement or
ambiguity.

- Identify possible vulnerabilities, making use of tools, lists of common vul-
nerabilities, etc.

- Map out possible ways that vulnerabilities can be exploited and begin to
discuss possible fixes.

- Gain understanding of current and planned sec urity controls.

" When the threat targets are known, it is natural to examine how likely the vulner-
abilities are targeted. Determine the probability that an attack can compromise
security:

- Map out attack scenarios for exploitation of vulnerabilities.

- Balance controls against threat capacity to determine likelihood.

" When planning the security protection, it is necessary to assess the likely impact
if the attack to a threat target succeeds. Perform impact analysis:

- Determine impacts on assets and business goals.

- Consider impacts on the security posture.

" Once analysis is complete, the developers need to determine the most important
threats, and work on first determining the risk that a threat poses. The method
used to calculate risk is not important so long as it is realistic and consistent. A
simple way to calculate risk is to multiply the potential impact of an attack by the
likelihood of the vulnerability occurring, risk = probability x impact.

" Develop a mitigation strategy. A higher-ranking risk means the threat poses a
greater overall risk to the system. According to the risk ranking, a plan is devel-
oped to mitigate the risks, and countermeasures recommended.

" At the end of risk assessment process, a document about threats, risks and the
mitigation plan is always produced:

- Carefully describe the major and minor risks, with attention to impact.

- Provide basic information regarding where to target (limýited) mitigation re-
sources.

Risk assessment can be applied in every phase of SDLC. For instance, Table 2.4 sum-
marises security considerations (introduced in [18]) and guidance for integration of risk
management with SDLC (from [32]).

35

Security and Security Practices

SDLC Phases

Security Consideration Support from RM Activities

initiation

Security Categorisation
Preliminary Risk Assessment

Identification of risks is used to
support the development, includ-
ing security requirements, and
a security concept of operations
(strategy)

Development

Risk Assessment
Security Functional Requirement Analysis
Security Assurance Requirements Analysis
Cost Considerations and Reporting
Security Planning
Security Control Development
Developmental Security Test and Evaluation
Other Planning Components

The risks identified during this
phase can be used to support the
security analyses of the system
that may lead to architecture and
design trade-offs during system
development

Implementation

Inspection and Acceptance
System Integration
Security Certification
Security Accreditation

The risk management process sup-
ports the assessment of the sys-
tem implementation against its re-
quirements and within its mod-
eled operational environment. De-
cisions regarding risks identified
must be made prior to system op-
eration

Operation/Maintenance

Configuration Management and Control
Continuous Monitoring

Risk Management activities are
performed for periodic system re-
authorisation (or re-accreditation)
or whenever major changes are
made to the system in its op-
erational production environment
(e. g. new system interfaces)

Continued on next page

36

2.2 Security Improvement Arlefacts

Continued from previous page
Decommissioning

Infon-nation Preservation
Media Sanitation
Hardware and Software Disposal

Risk management activities are Z'
performed for system components
that will be disposed of or replaced
to ensure that the hardware and
software are properly disposed of,
that residual data is appropriately
handled, and that system migra-
tion is conducted in a secure and
systematic manner

Table 2.4: Security in the SDLC (derived from [18,321)

Observations

Risk assessment is generally a favoured security engineering technique, to be applied
to a whole system (because security is a systemwide issue). However, some research
suggests that a risk analysis process can and should be applied in the early stages of the
development. For example, [181 recommends that risk assessment is considered when
designing a system, and also that a preliminary risk assessment can be performed when
analysing requirements; [661 also states that risk assessment at the requirements stage
can help to improve the quality of requirements.

The interdependency between vulnerability and architecture shows that the architecture
of a system or an application is important to the security development. Performance of
risk analysis on the architecture is at the heart of the security development, whether a
project is applying an agile method or a traditional development method. For instance,
Figure 2.8 is a fragment of a typical sequence of phases in software development, with
the addition of pointers to the development of the security requirements. This suggests
that developers should address security concerns in parallel with the analysis of the
functional requirements and architecture design - first consult the security policies
and security guidelines, then produce the architectural design and the overall model
(including a security architecture). Furthermore, architectural risk analysis can help
develop the specification of security requirements.

Architectural risk assessment should be repeated when the design of a system is mod-
ified. When performing architectural risk analysis, the object of the analysis task is
not the whole system (software, hardware, network, and environment), but the design
models.

37

Security and Security Practices

Functional requirements analysis

Functional requirements
Security policies

Architectural design
Security requirement guidelines

System architecture
Overall model

Architectural risk analys

Security requirements

Figure 2.8: Security Analysis and Security Requirements

Risk assessment usually requires the customer's contributions for ranking risks. Be-
sides changes in functionality, the analysis also has to be repeated when new threats,
vulnerabilities, and attacks are made public. The adaptive nature of risk analysis does
not depend on the process or methodology in which it is carried out. It always depends
on the design and modelling process performed before the risk analysis.

2.2.4 Other security artifacts

This chapter has concentrated on existing methods of developing and evaluating secure
information systems, and of analysing and managing risk in such systems. This thesis
concentrates on development and assurance of security. However, there are many other
security artifacts and activities, that are outside the scope of the thesis, but can con-
tribute to security development. Two groups of artifacts, architectural modelling and
best practice guidelines, are discussed briefly in this section.

Architectural Modelling

IFrorn a software engineering point of view, the goal of analysis is to determine the func-
tionality of a system according to the identified requirements. From a security point of
'ýiew, analysis also serves to identify threats, attacks, and vulnerabilities. Furthermore,

38

2.2 Security Improvement Artefacts

expected risks have to be identified, and priorities have to be assigned to them. There
are several security engineering approaches for modelling threats, attacks, and vulner-
abilities, such as goal trees for security risk assessment. Furthermore, semi-formal and
formal modelling approaches have been adapted to security analysis.

Goal Trees Various techniques with symbolic tree representations have been devel-
oped in software engineering (e. g. KAOS [67,68]). Each node represents a specific
goal that has to be reached. The overall goal is then decomposed into sub-goals. There
are a variety of ways to achieve the high level goal. Goal trees, such as threat tree [39,69]
and attack tree [70], are based on ANDIOR trees, and admit basic quantification: values
such as the cost of a particular attack can be assigned to the nodes and propagated up to
the root. Another application of goal trees is to identify which attack would be the most
likely. Furthermore, goal trees facilitate "what if" experiments, e. g. what would happen
if you have more or less budget than expected.

Semi-formal Modelling Techniques Semi-formal modelling techniques (those in-
volving diagrams with defined syntax but limited formal semantics) can be used to
specify security concerns. Approaches including data, function, and aspect oriented
modelling techniques. They are characterised by different graphical elements but also
linguistic elements. For instance, graphic modelling techniques include Entity Relation-
ship Method (ER) [7 1], and Unified Modelling Language (UML) [72,73]. UML can be
made more precise by adding constraints in the Object Constraint Language (OCL) as
part of the model.

UMLsec [74,75] and secureUML [76,77] are two approaches that extend the secu-
rity potential of UML models. UML already provides the capability to describe some
kinds of security concerns informally: class diagrams offer the possibility to describe
a security role, its characteristics and relations between roles; State-charts can be used
to describe the behaviour of elements or roles; Activity, Sequence, and Collaboration
diagrams are used to describe the cooperation of the different elements of the system.
Based on this, UMLsec and secureUML define UML profiles to express particular se-
curity concerns, such as an access control model.

At the requirements stage, approaches based on use cases, such as Abuse case modelling
[781, can promote a better understanding of system security among stakeholders. A
typical abuse case includes a description of each instance of potential abuse and the
range of privileges that might be abused and the impact that will result.

Formal Methods Security is a popular topic in the formal methods community. For-
mal specification, analysis, and proof of properties have been applied to security proto-
cols of authentication, fair exchange, electronic commerce, and electronic actions, for
example [79,80]. Experience shows that formal methods are powerful tools to verify the

39

2 Security and Security Practices

requirements, but that not all requirements can be specified formally [811. During the
process of development, formal methods can provide additional assurance of the trust-
worthiness of a system. The benefits which a formal method can provide were listed
in [82]. However, formal models may give a misleading impression of security, omit-
ting environmental aspects including operational context; furthermore, security proper-
ties are not usually preserved by formal refinement, and must be reproved at each stage
of a formal development.

Best Practices and Guidelines

Various organisations publish general guidelines that can be used when reviewing the ar-
chitecture and design from a security perspective (for instance [2,65,57,83]). There are
also guidelines for programming secure systems (such as [84,85]). Some organisations
offer security services and advice about improving the security based on a substantial
experience, such as the CERT Coordination Centre (CERT/CC) and National Institute
of Standards and Technology (NIST). There are many best practices and guidelines, and
it is important to find the guidelines that suit a particular project. Once the best prac-
tice guidelines have been selected, the steps are generally straightforward. Typically, a
developer becomes increasingly familiar with a particular approach by using the same
guidelines several times. Problems occur, however, when the developer leaves the typ-
ical narrow focus of such security. improvement documents or moves developing to a
different type of system or in a different environment. By nature, the more concrete
documents are more time-dependent and should be updated on a regular basis.

2.3 Conclusions

Information security is about protecting information and the information system from
unauthorised access, disclosure, modification, and destruction. Two characteristics make
security itself complicated: security is a system property; and security is a process.

In this chapter, two important security artefacts (international security evaluation criteria
and risk assessment) were reviewed. International security evaluation criteria are very
important because they make the security of information system evaluable and compara-
ble in a standardised way. The common characteristics of the three best-known security
criteria were summarised in this chapter. In these three criteria, SDLC is regarded as a
linear model; environment is a very important factor which is considered in early stage
of SDLC; and documentation is an essential requirement of security evaluation. Fur-
thermore from these security evaluation criteria, the importance of system architecture
is emphasised. The architecture is important because it encapsulates a set of significant
decisions about the organisation of a software system, including [86]:

40

2.3 Conclusions

" Selection of the structural elements and their interfaces that make up a system,

" Behaviour as specified in collaborations among these elements,

" Composition of the structural and behavioural elements into larger subsystems,

" An architectural style that guides this organisation.

Risk assessment is a tool to balance security goals against other software project qual-
ity goals. Risk assessment is also a family of mature engineering methods. Security
development is an exercise in risk management, consisting of identifying risks early,
understanding the implications in light of experience, creating an architecture that ad-
dresses the risks, and rigorously testing the system for security.

Besides security criteria and risk assessment, there are many other security artefacts
which are also useful and productive, and they are briefly discussed in this chapter.

The purpose of reviewing information security and security development is to estab-
lish a list which can help to select a candidate process from existing Agile methods.
Baskerville's classification [1] concluded that security development methods should be
integrated into more general software engineering methods. The agile security approach
proposed in this thesis will be a third-generation method; Le, a logic transfon-nation
method. Figure 2.9 shows a framework for a security development process, derived by
abstracting from method-specific features of the SDLC of the third-generation SSADM-
CRAMM interface.

Based on the analysis in this chapter, at least two criteria for an agile approach to secu-
rity development can be concluded:

the method should have a clear (explicit) development process, ideally comprising
simple milestones so that the security review loops can be easily integrated (as in
Figure 2.9).

an architecture is essential, not only for the documentation requirement of secu-
rity evaluation, but also for risk assessment. Therefore, it is better that a general
blueprint of system can be produced at the early stage of SDLC so that the archi-
tecture can be captured.

In exploring an agile approach to security development, this thesis will focus on a par-
ticular kind of information system, namely Web applications. The next chapter provides
a review of relevant material from this domain.

41

2 Security and Security Practices

Initiation

High-level
Development

Low-level
Development

Operation

Business Options

Review

NE Countermeasures

Technical Decisions

c

Countermeasures
0(

Figure 2.9: A Framework of Security Development Process

42

3 Web Application

Web systems are a special kind of infonnation system; they share a common three-tier
architecture. A Web application is the kenzel of a Web system. Based on knowledge
of security engineering, the security issues of Web applications are reviewed in this
chapter The later sections of this chapter also explain why an Agile method is a suitable
choicefor building Web applications.

3.1 Introduction

With the advance of the Internet, the Web is playing an increasingly important role in
today's society. Modem organisations rely heavily on Web systems to facilitate their
business processes, reduce costs of the process life-cycle, and manage resources of the
organisation. On one hand, the systems running in an organisation need to be integrated
for consolidated decision making, more accurate system information, and better perfor-
mance and monitoring. On the other hand, integration ivithin the organisation is not
enough; systems are becoming service oriented. Relatively, perhaps the greatest advan-
tage of Web systems is that they enable the integration of applications across organi-
sation boundaries, providing fast and seamless collaboration with partners, customers,
and suppliers. Web systems represent the engine allowing distributed organisations to
communicate, to share information with other companies, customers and providers, and
to manage production and distribution.

Computer scientists from both industry and academia have already been showing great
interest in Web engineering. Publications include example general discussion [87,88,
89], engineering development methods [90,91,92,93,94,95,96,97,98,99,100], reverse
engineering [101,102,103,104], and testing [105,106]. Last but not least, there is
also substantial published literature about security in Web engineering, for example
[83,107,108,109,110,111,112] and some articles at [113,114].

Compared with information systems for client/server computing, the key reason for the
success of Web systems in the business world is that Web systems are more open, flexi-
ble and adaptive [89]. Traditional information systems have an architecture of two tiers,
but Web systems are typically constructed in a three-tiered architecture (an example is
shown in Figure 3.1).

43

3 Web Application

ED
Presentabon Tier

HTTP

HTTPS

1*

M Ja
Sez
Pages

(D
0

(H)

Application Tier Data Tier

(D

<*

(D
Figure 3.11: Typical Architecture of a Web application

Most commonly, a Web browser, e. g, Mozilla Firefox or Microsoft Internet Explorer,

and a Web server, e. g, Apache, lie in the first tier, the presentation tier; an engine
using some dynamic Web content technology, e. g, Enterprise Java Bean (EJB) and Java
ServIets, is in the middle, the application tier; and normally a database management
system (DBMS) with databases is in the third, the data tier.

The architecture is also vitally important for security: security requires the strategy of
Defence in Depth. Defence in Depth is all about building a number of layers around
the information that work together to provide a strong and (hopefully) impenetrable

protection. The architecture plays an important role to allocate these layers.

3.2 Security of Web Systems

Security is a process: it does not make any sense to study the security of a Web appli-
cation without mentioning the security of the entire Web system. This section discusses
the general security issues associated a Web system.

Stories of security breaches often appear in daily newspapers, for example,

"The banking industry has warned customers with their on-line accounts to guard
against a new wave of cyberfraud. Industry body APACS said some 2,000 British
on-line account holders had been taken ill by scams ill the past year, losing. &. 5nt
between them. Many ivere duped into revealing their account passivords by phony
e-mails purporting to comefrom their bank. Others had their computers infected
with programs which allowfraudsters to record their log-ill details - BBC
News, I October 2004

44

3.2 Security of Web Systems

According to an APACS [115] report on 8 November 2005, the latest card fraud
figures show Internet fraud accounts for a quarter of all losses. The figure of In-
ternet fraud was E55.1 m during the period of January to June 2004; and it became
E58. Om from January to June 2005, increasing 5%.

A survey in the Secure Software Forum [116] over 2005 stated that only 36% of
interviewed enterprises have implemented a programme to educate development
teams about secure coding practices, and 30% integrated a security assurance
programme into their development process. It was concluded by the panel of cor-
porate security executives, academics and professional software developers at the
RSA Conference 2006 [26] that most businesses are not doing enough to ensure
stakeholders security, and need to do better.

The security considerations for a Web system are shown in Figure 3.2. This diagram
demonstrates that Web security is about information security of the entire system, re-
lating to the network, hosts and system executing on the hosts. This includes Web
applications and other software such as operating systems and database management
systems. The application level security is at the top of Web security concerns. The
security policies and procedures cross all layers of Web security.

Application Security

Host Security

Web Server
Application Database

Server Server

Network Infrastructure Security

Router Firewall SWitch

Non-computation Security
physical, organisational security etc.

Figure 3.2: Security Considerations of Web Systems

-0

CL

'a
C:
cri
U)

0
CL

(D
U)

The security of Web systems includes all concerns from network layer to application
layer. All these concerns of Web systems are highly interdependent because of the inde-
pendence of these layers. For the security of Web applications, the flaws and vulnerabil-
ities from other layers of Web system continually impact the risks of Web applications.

45

Web Application

For example, a security vulnerability of the network may cause an application to be
insecure, so that users may bypass the application to have access to protected informa-

tion.

To build a Web system that is secure against various attacks from hostile users, a holistic

approach to security is required. It should be a layered and systematic approach, as
illustrated in Figure 3-3.

Secure the Network

Secure the Host

Secure the Application

Web application

Presentation Data Access Business
Logic Logic Logic

Administration Logic

Other Software

Runtime Services and Components

Platform Services and Components

Operation System

Figure 3.3: Holistic Approach to Web System Security

Figure 3.3 is an instance of Defence in Depth principle. Meanwhile, it also gives some
details of Web application and other supporting software. There are four parts in the
architecture of a Web application: presentation logic, data access, business logic, and
administration.

There is a huge amount of literature about the security of Web systems, e. g, [83,107,108,
109,110,111,112] and an on-line library at [113,1141. One of the leading contributions
is Guidelines on Securing Public Web Servers [831, which is a comprehensive handbook
about Web server security. Inevitably, the security of Web applications has extensive

46

3.3 Security of Web Applications

coverage in all these documents.

Web application security may not be the weakest link in Web security, but improvements
can be made. The security of a Web system is overall an engineering issue: assessing it
needs contributions from all participants, from developers to managers; and it leans on
every individual hardware and software component in the system (illustrated in Figure
3.3).

3.3 Security of Web Applications

Considering Figure 3.3 again, from bottom to top, there is network security, host secu-
rity, and the security of supporting software. The security of a Web application is built
on all of them. At the layer of supporting software, there are also three groups of soft-
ware components and services: basic run-time services and components (e. g, printing,
indexing), platform services and components (e. g, DBMS services), and the operating
system (e. g, Windows system, Linux). This supporting software is also crucial to the
security of Web applications. Such a systematic architecture of Web applications is
both an advantage and a disadvantage; a systematic architecture makes it easier to es-
tablish security; but if the architecture is inadequate, a good overall security cannot be
expected.

There are several comprehensive references about building secure Web applications.
The Open Web Application Security Project (OWASP) and OASIS are two of the most
active non-profit organisations. OWASP published a list of Top-Ten vulnerabilities of
Web applications [117] and general guidance for building secure web applications [65];
OASIS Proposed the Application Vulnerability Description Language (AVDL) [118] -
a unified language to describe vulnerabilities. Meanwhile, other organisations have also
made a contribution, such as technical reports from Microsoft [2,57] which focus on
developing secure Web applications using NET framework; a report of security threats
classification from Web Application Security Consortium (WASC) [119] which sum-
marises the most common security threats of Web application; and a white paper from
Defence Advanced Research Projects Agency (DARPA) [120] which provides security
patterns of Web applications.

When a user executes a Web application, a trust relation is established between two
parties both technologically and psychologically. Ideally, security should be about Pro-
tecting both ends of the connection. But what is considered in this thesis is the protection
of Web applications. The research in this thesis thus complements these references.

In Chapter 2, where I reviewed information security, the importance of the software ar-
chitecture has been already addressed. The three-tier architecture is general and typical
for Web systems; for a Web application, there are also some choices. The loose pro-
cedural architecture and model-view-controller architecture are two typical, and most

47

3 Web Application

widely used, architectures for Web applications. Now, these are discussed.

3.3.1 Typical Architecture of Web Applications

The three-tier architecture is widely adopted for building a modem Web system; largely,
the Web application is located at the application tier. There are two popular choices
of application architecture: loose procedural architecture and Model-View-Controller
(MVC) architecture.

Loose Procedural Architecture

Web applications are made up of many loosely coupled components (i. e. Web pages
and script files). In a loose procedural architecture, each component usually fulfils a
complete function including interacting with users and performing a piece of business
logic. The links among these components are always the URL links, presenting the logic
of the business procedure. This is a logical way to develop the application following the
process of functionality decomposition. This architecture is very common when the
business logic of the application is simple.

Loose procedural architecture is popular because of its simplicity. But it is difficult to
deliver some operational qualities, such as security and scalability, if these qualities are
not considered before the programming starts. The main reason for this is that the ar-
chitecture is not a layered architecture so it will be difficult to correct problems spread
across all parts of the system, like security. Flaws in design or bugs in implementa-
tion may cost a lot to rectify. So it requires the developers to have substantial security
knowledge to avoid errors.

Model-View-Controller Architecture

When the business logic of Web applications becomes complex, it is more difficult to
implement and maintain. Using a scalable application architecture becomes beneficial.
The Model-View-Control architecture is one such approach. It divides functionality
among the objects involved in maintaining and presenting data to minimise the degree
of coupling between the objects. The MVC architecture, which has its roots in Smalltalk
[121], has been proposed for ME applications, and is well explained in most Java
programming textbooks, for example [122]. Other languages, such as ASRNET, can
be considered a partial implementation of this approach. For PHP, the WACT projectl
aims to implement the MVC paradigm in a PHP friendly fashion.

1 http: /twact. sourceforge. net

48

3.3 Security of Web Applications

The MVC architecture divides applications into three layers - model, view, and con-
troller - and decouples their respective responsibilities. Each layer handles specific tasks
and has specific responsibilities to the other layers. Figure 3.4 shows the typical archi-
tecture of Java Web application.

presentation tier application tier data tier

Controller

View user Data Store

_F I Model I

Figure 3.4: MVC Architecture of Web Applications

Model A model represents business data and business logic or operations that govern
access and modification of this business data. Often the model serves as a soft-
ware approximation to real-world functionality. The model notifies views when
it changes and provides the ability for the view to query the model about its state.
It also provides the ability for the controller to access application functionality
encapsulated by the model.

Models encapsulate functionality, such as an account or user. A good model
should be transparent to the controller, and provide a method to deal with high-
level business processes rather than a thin connector to the data store. The idea is
to encapsulate the actual "dirty" work into the model code, rather than exposing
primitives. If the controller and model are on different machines, the performance
difference between different design approaches will be staggering, so it is impor-
tant for the model to be useful at a high level. The model is responsible for check-
ing data against business rules, and any residual risks unique to the data store in
use. For example, if a model stores data in a flat file, the code needs to check for
OS (Operating System) injection commands if the flat files are named by the user.
If the model stores data in an interpreted language, such as SQL, then the model
is responsible for preventing SQL (Structured Query Language) injection. If it
uses a message queue interface to a mainframe, the message queue data forinat
(typically XML (eXtensible Markup Language)) needs to be well fon-ned and
compliant with a DTD (Document Type Definition). The contract between the
controller and the model needs to be carefully considered to ensure that data is
strongly typed, with reasonable structure (syntax), and appropriate length, whilst
allowing flexibility to allow for internationalisation and future needs.

View A view renders the contents of a model. It accesses data from the model and
specifies how that data should be presented. It updates the data presentation when
the model changes. A view also forwards user input to a controller.

49

3 Web Application

The code aims to produce the (HTML, XML, etc) output for the user with little to
no application logic. As many applications will be internationalised (i. e, contain
no localised strings or culture information in the presentation tier), they must call
into the model (application logic) to obtain the data required to render useful in-
formation to the user in their prefer-red language and culture (such as time format,
units, etc). All the user's input is directed back to controllers in the application
tier.

Controller A controller defines application behaviour. It dispatches user requests and
selects views for presentation. It interprets user inputs and maps them into actions
to be performed by the model. In a stand-alone GUI client, user inputs include
button clicks and menu selections. In a Web application, they are HTTP GET and
POST requests to the Web tier. A controller selects the next view to display based
on the user interactions and the outcome of the model operations. An application
typically has one controller for each set of related functionality. Some applica-
tions use a separate controller for each client type, because view interaction and
selection often vary between client types.

The controller takes inputs from the objects of view and dispatches them through
various work-flows that call on the objects of the application model to retrieve,
process, or store the data. A well written controller always validates inputs from
clients before passing them to the nzodel, and also ensure that the outputs from
the model are safe for the view.

From a security point of view, MVC architecture is a better choice than loose procedural
architecture because it is layered architecture which more easily supports a style where
security problems of a Web application can be decomposed and mapped into layers. As
a result, it can reduce the requirement of security awareness on the developers and the
difficulty of maintaining the application.

Selection of Application Architecture

There is no hard rule on selection of application architectures; the selection is purely
based on the project because each architecture has its own advantages and drawbacks.
In real projects, the developer chooses a suitable architecture. For very simple Web
applications, a loose procedural architecture is the preferred choice because any per-
ceived performance benefit from moving to a more scalable architecture will never be
recovered during the development. For example, it perhaps takes an additional several
weeks to refactor the scripts into an MVC architecture, but the end users will likely not
notice the improvements in scalability. But the MVC approach typically results in a
clean separation of presentation from content, leading to clear delineation of the roles
and responsibilities of the developers and page designers on your programming team. In
fact, the more complex the Web application, the greater the benefits of using the MVC
architecture should be. The MVC architecture has been gradually adopted as a standard
architecture of many JAVA enterprise applications [122].

50

3.3 Security of Web Applications

Once an architecture is selected, identifying and addressing the security vulnerabilities
in this architecture are next things to do in the developer's to-do list.

3.3.2 Web Application and Risk Analysis

It is very difficult to design and build a secure application without security awareness.
Therefore, the security development process is concerned with risk analysis and imple-
menting effective countermeasures to mitigate risks. Chapter 2 showed that risk assess-
ment can be performed at any stage of development process. Performing risk assess-
ment at a higher level (Le, conceptuaVarchitectural level) is an increasingly important
and mature discipline for building security critical information systems (see [2,18]).

The general process of architectural risk analysis is to analyse the application's archi-
tecture; identify potentially vulnerabilities that may allow a user, perhaps mistakenly, or
an attacker with malicious intent, to compromise the application's security; and evalu-
ate the risk of security breach; finally suggest the implementation of countermeasures.
Figure 3.5 shows a simplified architectural risk assessment process.

Identify Security Objectives
I

Application Overview

Identify Vulnerabilities

I

Dei cation

IdentifyThreats

Figure 3.5: Iterative Risk Analysis Process [2]

The basic idea behind this process is quite straightforward: the developers have to un-
derstand the security objectives of the application firstly; then they study the application
from a point of view of security, such as the security environment and architecture of
the application; thirdly, they decompose the problem domain of the application in order
to simplify the security problems; finally, they identify the vulnerabilities and thereby
security risks of the application and analyse them; at the end they will review the ap-
plication in order to ensure all vulnerabilities and risks are identified and analysed. The
details of inputs and outputs of threat modelling is listed in Table 3.1.

Table 3.1 also demonstrates that security is embedded in the development of function-
ality: there is no definite line to distinguish the development activities of security and

51

3 Web Application

Input ' Output

I Identify Security Objectives

" Business requirements Security objectives

" Security policies

" Security goals

II Create an Application Overview

" Application infrastructure * Brief diagram with end-to-end deployment
scenario

" Use cases

" Functional specifications
- Key use scenarios

- System roles

- Security mechanisms

III Decompose Application

" Deployment diagrams

" Use cases

" Functional specifications

" Interaction diagrams

- Trust boundaries

- Navigation routes

- Data flows

IV Identify Threats

- Common threats 9 Threats list

V Identify Vulnerabilities

- Common vulnerabilities * Vulnerabilities list

Table 3.1: Risk Modelling Activities

aexcept the outputs of previous step

52

3.3 Security of Web Applications

functionality; they are largely overlapped. Security development thus cannot be a stand-
alone process parallel with or following functionality development, the two are inter-
leaved. Analysis for security purposes generally require a system description in some
form, including functional descriptions. For example, to identify a threat, the developers
need the use cases, application architecture, and other design artifacts to conclusively
identify threats.

3.3.3 Common Vulnerabilities of Web Applications

Figure 3.5 shows that identifying vulnerabilities is an important link in the process of
risk analysis. A vulnerability is a weakness or defect of security protections. Therefore,
how to treat the vulnerabilities becomes very important. Attackers do not create vulner-
abilities, but exploit them. The best solution to deal with vulnerabilities is to reduce the
vulnerabilities in the first place when the application is developed. This requires that the
developers have been educated about possible vulnerabilities.

The vulnerabilities of an application are various because they are interdependent on the
business logic and architecture of the application. Although there are two simple styles
of the architecture of a Web application, MVC is one of popular choices. Web appli-
cations with MVC architecture have many similar security vulnerabilities. Therefore it
is valuable to summarise a list of common vulnerabilities of Web applications. Such a
list can help developers to specify the security requirements; to design and implement
the application with security awareness; to plan security tests; and even to maintain the
application.

Security of Web applications has been studied for a long time. There are many contribu-
tions from industry and academia about the threats, vulnerabilities and attacks of Web
applications, including [2,65,57,109,117,119]. Those documents are comprehensive,
but very large: it is difficult to know where to start in terms of considering these con-
cerns in an agile development. Based on an analysis of these documents, a compact list
of common vulnerabilities is concentrated from those documents, and listed in Table
3.2.

Category Common Guidelines

Do not trust input. Consider centralised input validation; not
Input/Data rely on client-side validation. Be careful with typical issues.
Validation Constrain, reject, and sanitise input. Validate for type, length,

format and range.
Use strong passwords. Support password expiration periods

Authentication and account disablement. Do not store credentials. Encrypt
communication channels to protect authentication tokens.

Continued on next page C,

53

3 Web Application

Continued from previous page
Use least privileged accounts. Consider authorisation granu-

Authorisation larity. Enforce separation of privileges. Restrict user access to
system-level resources.
Authenticate users have a robust and cryptographically secure

Session association with their session. Prevent common Web attacks,
Management such as reply, request forging and man-in-the-middle attacks.

Enforce authorisation checks.
Avoid storing secrets. Encrypt sensitive data over the network.

Sensitive Data Secure the communication channel. Provide strong access
controls for sensitive data stores.

Exception Use structured exception handling. Do not reveal sensitive
Management application implementation details. Consider a centralised ex-

ception management framework.

Do not record any sensitive data such as password. Identify
Auditing malicious behaviour. Know what good traffic looks like. Au-

dit through all of the application tiers. Secure access to log
files. Back up and regularly analyse log files. Cý

General Logic Remove unwanted functional behaviour. Examine all possible
Error data flows and block unnecessary routes. Use strong authori-

sation. Consider authorisation granularity.

Table 3.2: Common Vulnerabilities and Guidelines (derived from [2,65]

[2] is about protection by Microsoft products and [65] is more general for all types of
Web system.

The purpose of such a list is to have materials to educate developers and to help the se-
curity development. Listing the vulnerabilities is not enough. The development process,
especially the design process, is full of decision making. Developers need to identify
what the problems are and how to handle them. In the thesis, the design problems are
categorised into two classes: architecture (i. e. what protection is the fundamental or
architectural?) and inechanism (i. e. what protection is the choice of implementation?).
The problems in the architecture class should always have priority when designing. The
analysis is shown in Table 3.3.

3.4 Development of Web Applications

Developing Web applications has its roots in many disciplines, such as the develop-
Tnent of infon-nation systems and hypermedia applications. From different perspectives,

54

3.4 Development of Web Applications

Problem Problem Class

Input/Data Validation It is always a Mechanism problem, so that security protec-
tions are implemented wherever there are user inputs.

Authentication It is an Architecture problem. Authentication is always a
separate function of the system.

Authorisation It is always a Mechanism problem. The components of
Control often provide some parts of authorisation function.

Session Management It is a Mechanism problem. In a Web system, a session is
always managed by the server.

Sensitive Data It is a complicated problem. Sometimes, it needs a separate
function to protect the sensitive data, for example using an
extra Java bean to cover the sensitive data. But mostly, it
is a Mechanism problem so that the protection is imple-
mented in the existing components, such as encryption.

Exception Handling It is always a Mechanism problem. The protection is im-
plemented in the part of Controller and Model, especially
the database exceptions.

Auditing It is an Architecture problem. It needs extra components to
implement this function.

Logic Errors It is a Mechanism problem. And it always needs inspection
and testing.

Table 3.3. - Analysis of Common Vulnerabilities

methods for developing Web applications have been proposed in the last ten years, for
example MIDAS [91,92] (a methodological framework for developing Web applica-
tion), OOHDM [93,94] (an Object-Oriented design method for hypermedia applica-
tions), 00-H [95,96] (an Object-Oriented modelling technique for Web application),
UWE [97,98] (a UML-based, model driven approach), W2000 [99] (a complete nota-
tion for modelling complex Web applications), WebML [100] (a UML-based modelling
language of Web application). Despite the different techniques and languages used
when developing Web applications, some similarities can be observed:

" All methods identify the necessity of a brand new model -a navigation model -
to tackle the navigation route of Web applications. Inside this model, all methods
distinguish between information and access structures.

" All methods clearly separate content, navigation and presentation space by means
of different models.

" All methods aim at defining a precise and systematic, even in some steps auto-
mated, process for the development of Web applications. The fundamental devel-
opment process is based on the Waterfall model.

" In the end, all methods are based on UML or UML-like diagrams. [123,124]
summarise the UML syntax used in these methods.

55

3 Web Application

The business logic always impacts on application security. Implementing business logic
is the main part of developing an information system. When building a traditional clien-
t/server information system, the application is developed first, and the data are fed into
the system separately. For Web system, the application and the data must be delivered
together. In [123,125], the characteristics of a project that is building Web applications
are summarised:

" Focus on understanding requirement changes of customers;

" Short development life-cycle time, typically 3 month or less;

" Delivery of bespoke solutions integrating software and data;

" Multidisciplinary development teams;

" More rigorous requirements analysis, including a clear analysis of business needs;

" Better testing and evaluation of Web deliverables;

" More focus on the issues associated with the evolution of Web technologies.

Agile methods claim that they embrace changes, have short development iterations, and
construct multiple roles in the development team. Web application development needs
are well suited to agile approaches and indeed many Web applications are developed
using them. So far, the best-known processes within the Agile Alliance are probably

" Adaptive Software Development [1261

" Crystal Methodologies [1271

" Extreme Programming (XP) [128]

" Feature Driven Development (FDD) [129]

" Scrum [130]

These Agile methods tend to focus on specific a kind of software development activities,
and encourage small teams of highly skilled developers to start with the initial agile or
lightweight process and expand it to suit their organisation and project. Agile methods
are people oriented and encourage and embrace changes, allowing nearly the full project
development time to define the problems and proposed solutions in their entirety.

3.4.1 Agile Attempts for Building Web Applications

So far, there is little research that attempts to link agile methods with the development of
Web applications. The AWE process [125] is a lightweight approach aimed at tackling
the problems associated with the development of Web applications. The AWE pro-
cess [125] is not based on any established Agile methods. It comprises seven stages:
Business Analysis, Requirement Analysis, Design, Implement, Test, Evaluate, and De-
ployinent. The whole process looks similar to Waterfall model in a circle or spiral model.

56

3.5 Conclusions

But it considers some agile principles, such as good communication. Strictly speaking,
AWE process [125] is a good attempt to apply the ideas of Agile Manifesto [25] in the
development process of Web applications. But security has not been considered in either
attempt. The reality is that Agile methods always consider how to satisfy functional re-
quirements in an iterative and incremental way; security is not the priority in any Agile
method.

3.5 Conclusions

Security of Web applications was reviewed in this chapter. Security considerations of
Web applications can be summarised as a check-list, Table 3.2. Graphically, Figure 3.6
maps the considerations into a MVC architecture. For example, the components of View
should validate inputs to prevent the vulnerability of Input/Data Validation;
protect sensitive data to improve the vulnerability of Sensitive Data; and maill-
tain session's integrity to improve the vulnerability of Session Management.

validate inputs [inputIdata validation]
protect sensitive data [sensitive data]
audit acitivities [auditing]
prevent unwanted behavlours [general logic error]
handle exceptions properly [exception management]
authenticate user [authentication]
authorise user [authorisation]

presentation tier

User k >. View

validate inputs [input/data validation]
protect sensitive data [sensitive data]

application tier data tier

Controller 1
11

Model

maintain session's integrity [session management]

v-- protect sensitive data [sensitive data]
prevent unwanted behaviours [general logic error]
handle exceptions properly [exception management]

Figure 3.6: Web Application Security Check-list

The following can be concluded:

57

3 Web Application

An Agile methodology is a suitable and justifiable choice to develop a Web appli-
cation.

2. A Web system is best served by a layered architecture, shown in Figure 3.2; secu-
rity of the Web application is the top layer.

3. The vulnerabilities of an application are interdependent on the application's busi-
ness logic and architecture. Common vulnerabilities of a Web application are
mapped into MVC architecture, shown in Table 3.3 and Figure 3.6.

Furthermore, implementing business logic is the main theme not only for developing a
Web application, but also for building an information system. The next chapter will talk
about Agile methods.

58

4 Agile Software Development

The previous chapter argued that Agile methods are an appropriate and justifiable
choice to develop Web applications. This chapter reviews several mature Agile methods,
andfocuses on selecting a suitable agile method with which to integrate security. The
selected method is reviewed briefly in this chapter

4.1 Agile Software Development

The modem definition of agile software development evolved in the mid 1990s as part
of a reaction against "heavyweight" engineering methods, as typified by a heavily reg-
ulated, regimented, micro-managed use of the waterfall model of development. The
processes originating from this use of the waterfall model were seen as bureaucratic,
slow, demeaning, and inconsistent with the ways that software engineers actually per-
form effective work.

In 2001, seventeen prominent figures created the Agile Manifesto [25], widely regarded
as the canonical definition of agile development, and accompanying agile principles.

Some of the principles behind the Agile Manifesto [251 are:

" Customer satisfaction by rapid, continuous delivery of useful software

" Working software is delivered frequently (weeks rather than months)

" Working software is the principal measure of progress

" Even late changes in requirements are welcomed

" Close, daily cooperation between business people and developers

" Face-to-face conversation is the best form of communication

" Projects are built around motivated individuals, who should be trusted

" Continuous attention to technical excellence and good design

" Simplicity

" Self-organising teams

" Regular adaptation to changing circumstances

59

4 Agile Software Development

The publication of the manifesto spawned a movement in the software industry known
as agile software development.

For many people the appeal of agile software development is a reaction to the bureau-
cracy of the traditional software development methods. These new approaches attempt
a compromise between no process and too much process, attempting to provide just
enough process to gain a reasonable payoff.

Compared with plan-driven software development, the values of Agile methods are
[251:

" Individuals and interactions

" Working software

" Customer collaboration

" Responding to change

The result of all of this is that agile software development have some significant changes
in emphasis from traditional methods. The most immediate difference is that they are
less document-oriented, usually emphasizing a smaller amount of documentation for a
given task. In many ways they are code-oriented: following a route that says that the
key part of documentation is source code.

In short, Fowler summarised in [13 1] the following views:

Agile methods are adaptive rather than predictive. Engineering methods tend to
try to plan out a large part of the software process in great detail for a long span of
time, this works well until things change. So their nature is to resist change. The
agile methods, however, welcome change. They try to be processes that adapt and
thrive on change, even to the point of changing themselves.
Agile methods are people-oriented rather than process-oriented. The goal of en-
gineering methods is to define a process that will work well whoever happens to
be using it. Agile methods assert that no process will ever make up the skill of the
development team, so the role of a process is to support the development team in
their work.

4.2 Agile Methods

Agile methods are a family of development processes, not a single approach to software
development; they include eXtreme Programming (XP) [128,132,133], Feature Driven
Development (FDD) [129,3], Adaptive Software Development [126], Crystal Method-
ologies [127], Scrurn [130], and others. Agile methods are surveyed in [131,11,134].
Table 4.1 summarises the features of these Agile methods.

60

4.3 Selection of Agile Methods

Method Key Points Special Features Identified Shortcomings
ASD Adaptive culture, col- Organisations are seen more about concepts and

laboration, mission- as adaptive systems. culture than software prac-
driven component Creating an emergent tice.
based iterative devel- order out of a web
opment of interconnected indi-

viduals.
Crystal Family of methods. Method design prin- Too early to estimate: only

Each has the same ciples. Ability to two of suggested methods
underlying core values select the most suit- exists.
and principles. Tech- able method based on
niques, roles, tools and project size and criti-
standards vary. cality.

XP Customer on-site, test Refactoring - the While individual practices
driven development, ongoing redesign of are suitable for man y sit-
small teams, daily the system to improve uations, overall view and
builds. its performance and management practices are

responsiveness to given less attention.
change.

FDD Five-step process, Method simplicity, de- FDD focuses only on de-
Object-oriented com- sign and implemen- sign and implementation.

ponent (i. e. feature) tation the system by Needs other supporting ap-
based development. features, object mod- proaches.
Very short iterations: elling.
from hours to 2 weeks.

Scrurn Independent, small, Enforce a paradigm While Serum details in spe-
self-organising devel- shift from the "defined cific how to manage the
opment teams, 30-day and repeatable" to the 30-day release cycle, the
release cycles. "new product develop- integration and acceptance

ment view of Scrum. " tests are not detailed.

Table 4.1: General Features of Agile Methods [111

4.3 Selection of Agile Methods

As discussed in previous chapters, security is a key concern for Web systems and Web
applications are ideal for development by an Agile process. It will be useful for build-
ing Web applications if there is an integration of security and agile development pro-
posed.

The Agile method for the security integration will be selected from the most mature
Agile methods, discussed in previous sections. In Chapter 2, the criteria of selecting
Agile method is proposed:

- the method should have a clear (explicit) development process and it is better that

61

4 Agile Software Development

the process have some simple milestones so that security review loops can be
easily integrated (see Figure 2.9).

An architecture is essential for not only the documentation requirement of security
evaluation but also the requirement of risk assessment. Therefore, it is better that
a general blueprint of system can be produced at the early stage of SDLC so that
the architecture can be drawn.

Arnong the existing Agile methods, Feature Driven DeveloPment (FDD) seems to be
the best choice because:

Compared with other Agile methods, such as XP, FDD has a simple process. It
will be easier to compare and integrate with security development process.

FDD is a model-driven process. The feature is a fundamental element of FDD.
FDD is a model-driven process because the features are always modelled during
the development. Risk assessment is also a model-driven process so there is a
high probability that risk assessment can be integrated into FDD smoothly if their
models can be merged. Other Agile methods, such as XP, are not model-driven
methods.

FDD emphasises overall modelling at the beginning of development which suits
the requirements of security development. Other Agile methods do not have such
a stage to design an architecture of the system.

In next section, FDD will be briefly reviewed.

4.4 Feature Driven Development

Feature Driven Development (FDD) was first introduced in 1999, as a tailored com-
plement to the "Object Modelling in Colour" technique [135]. A revised version of
the methodology was published in 2002 [3]. This version was completely decoupled
from "Modelling in Colour", and was general enough to be considered an independent
methodology.

Like other agile processes such as XP, FDD focuses on short iterations that deliver tan-
gible units of functionality. But FDD is different in that it is model-driven; models (e. g.,
written in standardised languages such as UML) are created to help identify units of
functionality, understand the context in which units are used, and to help derive code.

When contrasted with other agile processes, particularly XP, FDD has a straightforward
process, which contains five sub-processes (shown in Figure 4.1). The first three sub-
processes are concerned with requirements analysis and development planning. They
are performed sequentially at the beginning of the project. The remaining two are design

62

4.4 Feature Driven Development

a IL

Li A

(ni ape A categorized A development
than content) list of features plan

A design package
(sequences)

Completed
client-valued
function An object model 4 (more content

+ informal features list than shape)
+notes on shem atives

Figure 4.11: FIDID process and its deliverable [3]

and implementation activities, done in a series of short iterations. Briefly, these five sub-
processes are (details in [31):

Develop an Overall Model (DOM), an initial project-wide activity with domain
and development members under the guidance of an experienced modeller in the
role of Chief Architect. During this phase, the problem domain is modelled; this
is called the Object Model. This model mainly consists of full featured class
diagrams and interaction diagrams (if needed) for capturing important behavioural
patterns of interactions in problem domain.

Build a Features List (BFL), an initial project-wide activity to identify all the
features to support the requirements. It is done by first identifying the areas of
functionality in the system, and the activities performed in each area. Features
are then identified as steps in the activities.

Plan by Feature (PBF), an initial project-wide activity to produce the development
plan. It focuses on scheduling the features for development, assigning the feature
sets (activities).

Design by Feature (DBF), a per-feature activity to produce the feature design
package. It focuses on determining how the features in the work package should
be realised at run-time by interactions among objects. In general, interaction dia-
grams are drawn for each of the features, resulting in additions and modifications
being made to the object model, and refined class and method descriptions being
produced.

Build by Feature (BBF), a per-feature activity to produce a completed client-value
function (feature). It focuses on programming and unit testing the necessary items
of the features in the work package. The implemented items that pass the tests are
then promoted to the main build.

63

4 Agile Software Development

There are lots of arguments about the agility of FDD process. The Agile Manifesto [25]
says that the values of an agile software development are:

" Individuals and interactions

" Working software

" Customer collaboration

" Responding to change

The most focused argument against FDD comes from the second and fourth bullet. The
second points out that the value of an agile software development is working software,
rather than a set of comprehensive documentation; the fourth bullet says that respond-
ing to change is more valuable than strictly following a plan. FDD considers good
documentation and planning a required part of any project. However, agility requires
maturity to understand the balance between these values in the manifesto and what it
really means to a real project. In practice, it is very difficult to draw a dividing line
between "too much" and "too little" of documentation and planning. That is the key
reason that during agile software development, applying agile practices is still an art.

Compared with XP, there is a view that FDD is less agile than XP because it employs
many of the traditional practices that XP practitioners are probably not accustomed
to see, including conducting up-front planning, design and documentation and relying
very heavily upon domain modelling. There are several comprehensive comparisons
between FDD and XP, such as [136,137]. As to what constitutes as an Agile method,
the widely accepted view is that the Manifesto for Agile Software Development [251
is the only criterion. Software engineers may have their own opinions based on their
understanding of the Agile Manifesto. In the author's eyes, FDD is agile because it
fully presents the values of agile software development.

In FDD, the most significant characteristic is thefeature which is the basic unit of work.
A feature is a small, client-valued function expressed in the form:

action >< result > [of Itolforifrom] < object > [3].

This expression can be restated as: an action causes a result to an object. The section in
the brackets is optional to make the feature easier to read. An example of a feature is:
Search the matched properties for a customer. Here search is the < action >, matched
properties is the < result >, and customer is the object participating in this feature.

In a project, Features can be combined into Feature Sets, and Feature Sets can be aggre-
gated into Subject Areas. Requirements are usually gathered in a top down approach,
defining all the Subject Areas for the system, breaking these down into Feature Sets,
and eventually down into Features, from which tasks can actually be defined and esti-
mated. Feature Sets typically reflect business activities, and Subject Areas commonly
correspond to general business practices.

64

4.5 FDD and Architecture

Feature capturing and planning is the main emphasis of FDD. Again, it is essential to
understand that everything in the development is absolutely planned, built, managed,
and tracked on a per-feature basis. Other units such as feature sets and subject areas
are available for higher level planning and reporting, but the key universal unit is the
feature.

FDD also uses several unique and specific mechanisms to report project activity and
progress [139]. The least unique of these is the feature list and the task list. Many Agile
methodologies use some sort of list to track requirements and work done on require-
ments. In FDD, these lists all correspond to a specific feature.

Capturing exactly where a feature is in its development cycle is done using a table that
tracks six specific milestones:

1. Domain Walk-though

2. Design

3. Design Inspection

4. Code

5. Code Inspection

6. Promote to Build

These milestones are tracked by the date each is completed and by the Chief Program-
mer responsible for that specific feature.

Feature milestones are summarised in a table showing feature sets. This allows project
stakeholders and managers to see how the project is progressing. Things can be sum-
marised into subject areas as well if there is value in doing so. Completed features are
also tracked across the entire project using a line graph. This graph shows the cumula-
tive total by day or week of all features that have been completed.

The final group of reports is the Feature Set Progress Report, which is very unique to
FDD. This report is colour coded and shows each Feature Set in the project, what percent
complete it is, how many features are in each area, the name of the Chief Programmer
for each Feature Set, and the month and year when each is targeted to be completed.

4.5 FDD and Architecture

Many Agile method practitioners, like Kent Beck (founder of eXtreme Programming
(XP)), put energy into avoiding (but not excluding) any up-front architectural design
[131]. FDD encourages developers to consider the architecture of system in advance.
In fact, FIDD suggests partitioning an application into layers that include (some of) a

65

4 Agile Software Development

User Interface layer (Ul), a Problem Domain (PD) ("business logic" layer), a System
Interface (SI) layer and a Data Management (DM) layer. The models from each of the
layers build up the overall model of the system which is the basis offeatitre analysis.

The UI layer is all about presentation. As it is typical in the Model-View-Control ar-
chitecture of Web applications, UI layer is decoupled, and most importantly there is a
one-way dependency from the UI layer to the PD layer and not the other way around.

The SI layer deals with interfaces to external systems. FDD uses a similar approach to
the UI layer to decouple these, which achieves a dependency from the SI back onto the
PD and not the other way around.

The DM layer deals with persistence. In many modern Web applications, the DM layer
is sliding away from the centre of the development: the developers care only about
the structure of their data store, and leave other issues, such as connection mechanism,
performance tuning, and backup/restore, to mature conu-nercial products and tools. It is
more often a "buy-not-build" solution.

The real core of the development is always the PD layer, where the domain - the
functionality of system - is modelled.

This four-layer architecture is proposed for general information system. Considering the
Web application and its MVC architecture, the four-layer architecture is still reasonable.
The View layer is equivalent to UI; and the Model and Controller is made up of PD.

4.6 Agility, FDD and Security

Several researchers have contrasted general Agile methodology [27,28,29,30] or XP
development [139,140] with traditional security engineering processes, and while these
reviews are generally favourable to XP, they also highlight the gap between the docu-
mentation requirements of traditional engineering and the lightweight approach of agile
methods.

Beznosov presents a conceptual analysis of the suitability of Extreme Programming
for building secure systems, and also introduced the notion of "good enough security"
without giving any description of how good the security will be [140]. The objective
of the Planning Game, one of the XP Practices, is defined so as to plan small releases
in short iterations while delivering 'good enough' security through tested functionality
units. [140] also gives extended definitions of other practices such as testing, continu-
ous integration, simple design and refactoring which are adapted to so-called 'Extreme
Security Engineering'.

Chivers et al [27] proposes that agile security can be achieved by using an Incremental

66

4.7 Conclusion

Security Architecture (ISA). Moreover, [27] states that "instead of following traditional
techniques, [an agile process] must have its own, agile, security practices". Aydal [139]
presented an interesting attempt to use Refactoring and a modified version of the Plan-
ning Game to iteratively and incrementally retrofit security mechanisms to a complete
system, within the context of an Extreme Programming development.

None of the work discussed above has focused strictly on the domain of web appli-
cations and FDD, though [139] explores refactoring patterns for producing Web ser-
vices.

4.7 Conclusion

There are several established Agile methods; how and when to apply these methods
depends on the nature of a real Project. Among them, FDD is an agile software devel-
opment because it supports the values from Agile Manifesto [25] which is believed to
be the only criterion to evaluate a development method in terms of its agility.

FDD has the more traditional progression of a systems engineering life-cycle model
(Le, it uses distinct Phases in its iterations while still being highly iterative and collab-
orative.). FDD does emphasise up-front planning, design and documentation and relies
very heavily upon domain modelling.

Up-front planning and architectural description may not be common features in an agile
process, but they are necessary in security development. That is the major reason why
FDD is selected because the security development needs software architecture.

So far, this part of the thesis demonstrates that FDD and risk assessment are suitable
choices to be integrated together. The next chapter will explain the practical problems
that arise when integrating these two methods.

67

68

Part 11

Integration of Agile and Security
Development

69

Security in Agile Development

The previous chapters have reviewed background knowledge of security engineering,
Web applications, and agile software development. In Chapter 4, FDD was selected
as a suitable methodfor the study of integrating security and agile development. This
chapter will discuss the challenges and solution of the integration.

5.1 Difference of Agile and Security Development

Integration means combining two different things into an integral whole. The previous
chapters, especially Chapter 2 and Chapter 4, reviewed definitions of security develop-
ment and agile development. To integrate agile and security development, the first thing
is to understand how and why they are different.

First and foremost, their philosophies are different. Security development aims to build
a secure system. In the development, a target for evaluation is always set before the
project starts; the system and its development process are evaluated when the project
ends. In other words, the developers know what to do to achieve security before they
think about how to do it, so they plan carefully. Agile development aims to make the
development process more manageable, especially when changes to requirements occur.
In an agile project, the developers use a few practices in order to manage change, but
actually they cannot predict what the change will be, so they cannot plan it easily, if at
all.

A technical indication of this difference is in their respective development processes.
Security development is based on a plan-driven process. In the development process,
security evaluation criteria and risk assessment play an important role. Figure 5.1 shows
the process again.

By contrast, plain FDD [3]1 has an iterative development process. In order to compare
with security development process, Figure 5.2 shows the process of plain FDD, drawn
in the same style as Figure 5.1.

'In order to distinguish the security integration of FDD, the original FDD [3] is labeled as plain FDD in
this chapter.

71

5 Security in Agile Development

Business Options

CReview D

Countermeasures

Technical Decisions

Countermeasures
4*

Figure 5.11: Framework for the Security Development Process

Overall Modelling

High-level
Planning

Iterative
Development

I

Figure 5.2: Framework for the Plain FIDD Process

72

5.1 Difference of Agile and Security Development

From these figures, similarities can be found. Both processes have two stages: high-
level development and low-level development; during the high-level development, the
process is generally sequential. Although they are similar, the two processes are differ-
ent in content: different materials and activities of development are emphasised. Most
importantly, the differences are in architecture and documentation.

Changes, especially late in development, typically lead to substantial costs if a tradi-
tional software development methodology (Le, plan-driven methodology) is adopted in
the project; the effort put into developing security artefacts within these methodologies
can be lost during a change process. To manage the problems caused by changes, a
plan-driven methodology emphasises the thoroughness of up-front design and the im-
portance of the architecture, especially for a critical system. The nature of software
systems leads many developers and analysts to assume that a code-level description of
software is sufficient for spotting design problems 2. Although this might occasionally
be true, it does not generally hold. Security development requires an essential under-
standing of system architecture. This attitude to the architecture is the first obvious
difference between agile development and security development.

In general, some Agile method practitioners emphasise avoiding any up-front architec-
tural design. But "(architectural) design is not dead" [141]. The role of architecture
depends on the project at hand. For example, if the business logic of a software system
is very complex, it may be better to have an overall domain model - which is an ar-
chitecture - to capture early on how to layer the application. Whether the architecture
is needed at the beginning of development is not a big problem of plain FDD because
plain FDD has already outlined the importance of an overall model, which provides an
overall framework in which to add features. The overall model more or less serves the
same purpose as architecture does.

In security development, it is necessary to establish an initial architecture to capture
early on how to satisfy security requirements and place security mechanisms, as well as
to provide a basis for security risk assessment. A central activity of risk assessment at an
architectural level is to build up a consistent view of the target system at a reasonably
high level. The most appropriate level for this description is typically an overall object
view of boxes and arrows describing the interaction of various critical design compo-
nents. Without such a "white-board" level of description, the risk assessment is likely
to miss important risks related to flaws. For some small system projects, a security
architecture can be produced in an incremental way [27].

Another obvious difference between agile and security development is the importance
placed on documentation. The gap between agile and security development is well un-
derstood [140,142]. For critical systems, security is non-nally evaluated by inspections
which is a document-based process against security evaluation criteria; three of them
were literately reviewed in Chapter 2. The requirements of documentation are clearly
defined in security evaluation criteria. A set of documents is the evidence used for se-

2Xp, S claim that "the code is the design" represents one radical extreme to this approach [1331.

73

5 Security in Agile Development

curity evaluation; they are the fon-nal means of communication between developers and
evaluators.

Communication is explicitly highlighted in almost every agile development process. But
communication in agile development is people-oriented, instead of document-oriented:
agile development encourages more communications in many informal ways, such as
talking in person. Agile development always emphasises a smaller amount of documen-
tation for a given task.

There has to be a compromise about documentation in a real project. Security evalua-
tion criteria are rigorous: without certain documents, the system cannot be evaluated.
It seems that there is nothing to do to reduce the amount of documentation required
by security development. However, some documents, such as design documents, are
interim products of the development process. Applying selected agile practices may
improve their quality; for example, design inspection from plain FDD can verify the de-
sign documents. The agile documentation in the developing process of critical systems
is a different story; it is beyond the scope of this thesis. [W] summarises important
characteristics of agile process and the documents produced, but it does not discuss the
case of critical systems.

5.2 An Integration of an Agile Process and Security

Agile development (and in particular plain FDD) is different from security develop-
ment. Considering the integration of these two types of development, there are two
possible approaches: including applicable security artefacts in the process of plain FDD
or including applicable agile practices in the process of security development. These
two approaches have different starting points: the first one is based on extending the
process of plain FDD; and the other is based on extending the process of security devel-
opment. This research takes the first approach because agile approaches have already
been adopted in non-critical software projects, especially Web applications.

The aim in integrating security concerns with plain FDD is to propose a solution which
can balance agility and security assurance for Web applications. Plain FDD is an Agile
method, but it does not consider the security development. In my view, a better solution
is to consider security (i. e. designed, and implemented) systematically during the devel-
opment, rather than in an ad-hoc way. Also by extending plain FDD, the process is also
classified as an agile process, because it keeps the common features of agile software
development.

Consequently, the integrated process proposed in this thesis is evaluated on the follow-
ing criteria:

- Quality of the delivered application. The quality, here in the research, focuses on

74

5.2 An Integration of an Agile Process and Security

security. Formally, the way to evaluate the security of a software system is by
security evaluation criteria. Critical systems are not the natural "home ground"
of agile software development [7]. Hence, the delivery of an agile development
is not proposed to achieve the highest level of security evaluation criteria. But
it does not mean that the deliverable of an Agile method cannot be acceptably
secure. There are some industry security guides, like [65], which is a handbook
for a particular type of information system. The developer can reference guidance
when they specify security requirements. Once the system is built, the system
can be validated against these requirements. Whether the system is evaluated
against established security criteria or against bespoke security requirements, the
target degree of security is decided by the customer. In the research, the security
requirements of the system are established by using the check-list in Chapter 3
which is based on [65].

Agility of the development process. In Oxford English Dictionary (OED), agility
means "the quality of being agile; readiness for motion; nimbleness, activity,
dexterity in motion. " In practice, Agility requires that the software development
should be [11,131,133,144,145]:

1. incremental (small software releases, with rapid cycles),
2. cooperative (customers and developers working constantly together with

close communication),
3. straightforward (the method itself is easy to learn and to modify, well docu-

mented),
4. adaptive (able to make last minute changes)

The proposed solution will be discussed against these concrete requirements.

First of all, the problems of actually carrying out the integration are identified and dis-
cussed in the following sections.

5.2.1 Overall Process

Chapter 4 argued why FDD is a suitable Agile method for integration with security de-
velopment. Conceptually, for the integration, several security concepts should be added
to plain FDD. Figure 5.3 gives an overview of the concepts in secure FDD (sFDD).
The red labelled3 components are additions to plain FDD. Now, the additions will be
discussed and justified.

First of all, plain FDD does not explicitly address the issues of collecting and man-
aging requirements. It assumes that documented requirements exist. For sFDD, it is
reasonable to assume that the security requirements based on particular security eval-
uation criteria have been agreed between the customers and developers. The security
requirements always include the required security functions and assurances.

3'ne original figure is coloured. In black-and-white, red elements appear in boldface.

75

5 Security in Agile Development

Rlsk
Assessment

Design II

A=d%
Build a* Plan by* Design by Build by

Feature Fe Develop an

=Features

List -ý_ýCature Feature
Overall model I

sectirtty InspecOon

Figure 5.3: Process of Secure FDD (sFDD)

The key element introduced in sFDD is a security architecture. The overall model
(which is part of plain FDD) structures the functional features; then the security archi-
tecture locates the security function features.

As in plain FDD, sFDD also has a plan in which the features are prioritised and the
development iterations are managed. Within each development iteration, the features
are implemented, and the security is ensured. The security assurances are gained by
testing or inspection.

5.2.2 Overall Models

The models in plain FDD are always used to refer to business logic. Plain FDD [3]
suggests that the results of Develop an Overall Model are a set of object models, includ-
ing

" Class diagram focusing on the structure of the application.

" Methods and attributes identified are placed in the classes, to partially capture
behaviours.

" Sequence diagram(s), if any, to refine behavioural specifications.

" Notes on models.

For a Web application, the overall model should cover the aspects of all three layers:
View, Controller, and Model. Table 5.1 lists the logic each layer should implement and
the models they produce.

When developing a Web application, the design of its graphic interface (the presenta-
tion) always takes a lot of time and effort, but it is not the focus of this research. Instead
the author focused on the design of access control and business logic because of their
impact on security.

76

5.2 An Integration of an Agile Process and Security

Architecture Implemented Logic Model

View presentation logic GUI design

Controller access control logic navigation & functional design

Model business logic functional design

Table 5.1: Overall Model of Web Application

5.2.3 Initial security requirements

The stage of collection and analysis of security requirements is not covered in sFDD,
but it is important to security development. Requirements engineering is an important
and mature domain in software engineering [146,147,1481. A security requirement
is a manifestation of a high-level organisational policy into the detailed requirements
for a specific system [149]. Although some security concerns are addressed during the
requirements engineering stage, many security requirements come to light only after
functional requirements have been determined. The literature on general security re-
quirement engineering has many examples of how to specify the security requirements,
e. g, [66,78,150,151,152,153,154,155,156].

International security evaluation criteria can help the specification of security require-
ments. In Chapter 2 three important criteria are reviewed. The security requirements of
a information system may consist of two parts: security functions and security assur-
ance. In the security criteria, these requirements are explicitly clarified.

On the other hand, certain industry handbooks, such as [65], can provide guidance to
document the initial security requirements. Based on these handbooks, Chapter 3 sum-
marised the common vulnerabilities of Web applications in Table 3.2. This list of com-
mon vulnerabilities (or the goal of the protection against these vulnerabilities) provides
thoughts of what security functions are needed in a Web applications, especially Table
3.3 map these vulnerabilities into MVC architecture.

In a real project, the security requirements are decided by the customer, sometimes with
the help of security evaluation criteria or an industry handbook. Security assurance
in security evaluation criteria includes operational assurance and developmental assur-
ance4. Neither plain FDD nor secure FDD covers the operation phase of SDLC; only
developmental assurance is addressed in sFDD. The basic developmental assurances are
security testing and design specification and verification according to security evalua-
tion criteria, for example TCSEC [8]5. Risk assessment which is discussed in Chapter 2
cannot totally replace security testing, but at least it can give more confidence about se-
curity, especially of the design. Plain FDD introduces two inspections in development
iterations to improve the quality of design and code. They are design inspection and

4 life-cycle assurance of TCSEC [8].
5see Table 2.2

77

5 Security in Agile Development

code inspection. Risk assessment and security inspection are also used to examine the
flaws and errors in the design and implementation. To highlight the security artifacts,
these two security activities are identified as two separate steps in sFDD (see Figure
5.3).

5.2.4 Security Architecture

A security architecture is a plan and set of principles that describe the security functions
that a system is required to provide to meet the needs of its users [64]. The security
requirements provide the list of security functions required by the system. Considering
how to structure these security functions, the overall model (or models) is the major
resource of consideration. The most important is to build up a consistent view of the
target system, from both security and business perspective. Besides this, the following
elements have also to be considered in the architecture:

" threats present in each layer.

" kinds of vulnerabilities that might exist in each layer.

" business impact of such technical risks.

" probability of such a risk being realised; and

" any feasible countermeasures that could be implemented at each layer.

The first two bullets are about threats and vulnerabilities, and threats and vulnerabilities
of Web applications were discussed in Chapter 3, Table 3.3. The other bullets are about
risks and their recommendations, which are the product of risk assessment.

5.3 Conclusion

This chapter gave an analysis of the problems encountered when integrating security
with plain FDD. In short, the architecture and documentation are two major issues of
security integration. This chapter explains that the architecture and documentation are
necessary for the security development, but how much architecture and documentation
depends on the project: too much architecture and documentation will make the devel-
opment a plan-driven process.

The overall model (which is an unique feature of FDD compared with other Agile meth-
ods) provides a foundation for security development and development planning.

Security requirement is an extra factor which is required by the security integration be-
cause plain FDD does not cover the stage of requirement elicitation and specification.

78

5.3 Conclusion

Both international security evaluation criteria and industry handbooks can help specify-
ing the security of a software system.

The overview of sFDD presented in this chapter is insufficient to guide software en-
gineers. A concrete (step-by-step) description of the process is presented in the next
chapter. It will explain the details of activities in the sFDD method: then, at the end of
this part, a case study is used to demonstrate how the process is applied.

79

80

6 Secure FDD in Detail

The previous chapter described the problems associated with security integration. A
general overview of secure FDD was presented, which included separate stepsfor se-
curity and agile development activities. This chapter will give the technical details of
the secure FDD process.

6.1 Overall Process

A general SDLC for information systems consists of the following phases [157,18]:
Initiation, Development, Operation and Maintenance, and Disposition. Plain FDD
focuses on the phases of how the system is built, Le, Development; it does not consider
the activities in other phases of a SDLC. The entire process of plain FDD consists of
two large stages: development at a high level (Le, architecture level) and development
at a low level (Le, feature level). At the beginning of plain FDD, the first stage of
development is a linear process, of which a list of features and a plan is the product;
the second stage of development is an iterative process, which is based on the plan and
builds the system feature by feature.

Inheriting this structure from plain FDD, secure FDD also consists of two stages, but
introduces security activities. In order to emphasise these security activities, they are
highlighted in separate steps. In the first development stage, sFDD addresses the im-
portance of security architecture; and in the second development stage, there are two
steps of security assessment added. These two steps are different: working on different
material and perhaps applying different detailed techniques.

Figure 6.1 shows the process of sFDD. The * mark indicates the new security activities
in the step. The process of sFDD has two stages: linear development and iterative
development. During each stage, there are also some steps. There are four steps, Design
an overall model, Design security architecture, Build a features list, and Plan by
feature, in the linear development stage; and there are four steps, Design by feature,
Risk assessment, Build by feature, and Security inspection, in the iterative stage.

The stages and their steps in Figure 6.1 are briefly described in the following.

81

6 Secure FDD in Detail

Risk
Awes&-MM

Design IL

m Build a* Plan by* Design by
Develop an

1-i
Features List Feature Feature

Overall Model

Figure 6.1: Secure FDD Process

6.1.1 Linear Development

Build by
Feature

I

The first development stage of sFDD is a linear process. It focuses on establishing the
overall framework of the system, and a plan for progressing the development. This stage
consists of the following steps.

Development an overall model

This is a step in plain FDD. Its objective is to develop an outline blueprint of the system,
rather than a comprehensive analysis in depth. In this step, the developers begin to
consider some security issues related to the security requirements - for example, the
way in which security is evaluated, the development and operation environment.

In plain FDD, the outcomes of this step are the object models which identify the re-
lationships among the pieces of the system's functionality. In addition, developers of
security have to make some decisions about the security development at the end of this
step. Some of these decisions will have to be documented. The nature and form of
documentation depends on the nature of the project.

Design security architecture

This is a new step in sFDD. In the previous step, a high-level walk-through of the scope
of the system and its context was performed. A Web application is only one link in
a chain of Web system (see the discussion in Chapter 3). To protect the application,
security mechanisms should be considered in advance. For instance, a Web system is
always deployed in a three-layer architecture -presentation, application and data store
layer. But to protect the application, the most commonly used security mechanisms are
generally provided by other components in the system. For example, a Web server

82

6.1 Overall Process

can provide the typical mechanism of authentication and access control; a commercial
DBMS can often provide some security mechanisms, such as access control.

This step aims to identify the essential security mechanisms to protect the application;
determine which of them are provided by related components in the system; then docu-
ment security mechanisms around the business functions of the application in a model
of the security architecture.

Build a features list

This is a step in plain FDD. The developers are organised into a team to functionally
decompose the problem domain (Le, business logic) into features. A feature is a piece
of a customer-valued functionality. Features are granular in accordance with the rule
that a feature will take no more than two weeks to complete. The estimation of feature
development relies on the experience of developers, especially when security is consid-
ered. Therefore, security professionals are one of the major participants of the feature
list team.

Plan by feature

Once the features are identified and categorised, the managers of the project (including
the project manager, development manager, and other chief members in the team) begin
to plan the order in which the features are to be implemented. The priority of features
is based on dependencies, and the complexity of the features.

The security mechanisms attached to the features are also an important factor which
may affect the order of feature development. For example, the strength and coverage of
security mechanisms are always considered when planning the development of features.
A typical example is that a Web application always consists of two parts: some pages
are public to every users; but some of them are only for members. The public pages
should be developed first. The "private" functions of the application would be built only
after the mechanism of access control is set up.

Summary

The linear development stage consists of four steps. At this stage, sFDD does appear
similar to security development based on a plan-driven approach: it employs up-front
analysis at the first stage. But this up-front analysis stops at the feature level. The
objective of up-front analysis is to identify and prioritize the features, rather than every
detail of functions to be implemented in the application. This is the key difference of
sFDD compared with traditional security development.

83

6 Secure FDD in Detail

By introducing these security development activities into plain FDD, the developers'
focus can always be drawn to security issues alongside the process of functionality
development. In addition, the security architecture can also be reviewed during the
iterative development - if a feature in the features list is changed later, it is easy to
go back to the security architecture and check whether the change does not harrn the
overall security "plan". (If it does, changes of architecture will be needed.)

6.1.2 Iterative Development

Iterative development is a low-level (Le, feature-level) development stage; it aims to
produce the feature package. The entire application is delivered by multiple iterations.
During an iteration, the development consists of the following steps.

Design by feature

Design by feature is a per-feature activity to produce the design of each feature. In
this step, the selected features are specified and designed in detail. Security functions
(e. g, authentication) have been identified in the previous stage and are treated as same
as functional features in this step.

Risk assessment

Features are granular functions expressed in "client-valite tenns" [3] using a template:
< action >< result >< object >, for example, displays a list of a database query's
results to the user. Hence, performing risk assessment on the design of a feature is not
difficult - the scope of risk assessment is a feature; the threats are always the actions to
the objects. The objective of this high-level risk assessment is to ensure that the known
security vulnerabilities are addressed in the design.

Although the mitigation plan of security risk is listed at the end of risk assessment, good
communication which involves customers, developers and security experts, is required
because security decisions have to be made. The security experts explain the vulnera-
bility to the customers, and the customers decide the impact; then security experts and
developers leave mitigation methods to customers; finally customers decide how to treat
risks with the help of developers and security experts.

After risk assessment, the original design of a feature may be altered. The new design
will be checked against the security architecture and implemented in next step.

84

6.1 Overall Process

Build by feature

Once the design of a feature is assessed by security experts, the feature is built in this
step. This does not introduces new obligations for security development, except for
referencing security programming guidelines for a particular programming language,
such as [85].

Security inspection

Unlike Risk assessment, the code is inspected in this step. The development activity
in this step is security testing. Plain FDD does not cover the whole process of software
testing [I I]. In this step, the developers check the code to ensure that they avoid the
common security errors associated with the programming. language. If security errors
are reviewed by this process, the developers will have to fix them. (or at least accept the
risk of not doing so).

Summary

The iterative development stage is one of the key features where the integrated approach
is different with plan-driven security development. Features, including security func-
tions, are designed and built in an iteration. In addition to plain FDD, there are two
security checks: risk assessment focuses on the design; and security inspection reviews
the implementation.

The following sections describe the details of these steps and the activities in the steps.
In order to avoid the repetition of detailed description of activities which have already
been explained in plain FDD textbook [3], the following focuses on the newly added
activities in secure FDD. But for the reason of the familiarity to plain FDD users, the
steps of secure FDD are introduced using the same structure as in the textbook [3]. The
description consists of four parts:

" Description -A description of a step in the method.

" Entry Criteria -A list of requirements for starting and completing the tasks of
the step.

" Tasks - Descriptions of the tasks in the step. Each task is boxed and noted
whether it is required or optional. The tasks which are already listed in plain
FDD [3] are not included.

" Exit Criteria -A list of results when completing the tasks of the step.

85

6 Secure FDD in Detail

6.2 Secure FDD in Details: Linear Development

The following explains the details of each step in sFDD. But first, let's look at the stage
of linear development, which encompasses Design an overall model, Design security
architecture, Build a features list, and Plan by feature (see Figure 6.1).

6.2.1 Develop an Overall Model

Description

Plain FDD [3] does not explicitly address the issue of collecting and managing require-
ments. It assumes that documented requirements such as use cases or a functional speci-
fication exists. The development process of the overall model is the process of "donlain
walk-through", Le, that the scope, contents and requirements of the overall problem
domain are determined, and divided into different areas; then object models for each of
the domain areas are built.

But to develop a secure system, there are additional things to do before the develop-
ment. For example, the customers and project managers need to consider the evaluation
of security, the management of the security environment including the development en-
vironment and the operation environment. These key security decisions are made in this
step.

First of all, the goal of this step is to give an overall blueprint of the project. The
modelling activity at this step involves the following.

" The domain expert provides user stories and answers questions related to func-
tional requirements,

" The chief architect builds a class diagram in UML to describe the fundamental
architecture,

" The development team discusses the overall model,

" The chief architect refines the overall object model.

The development starts with a series of modelling activities where UML is heavily
utilised. Plain FDD initially used coloured UML [135]. Coloured UML [135] is regular
UML with colour-encoded classes. All the classes are divided into four different types;
each type has its own colour. The auxiliary classes and interfaces are colourless.

Yellow. A role being played, usually by a person or an organisation. For example,
the user of the estate agency site may play different roles: it can be a buyer, a
seller or system administrator.

86

6.2 Secure FDD in Details: Linear Development

Blue. A catalogue-like description. For example, the estate agency site may have
descriptions of the properties it sells, such as flat, house etc. The description gives
all the characteristics of the property, but it is not the property itself.

Green. A party, place or thing. In the case study, the actual property would be
modelled using green. The green class usually has some identifying attributes,
such as serial number, identification number etc.

Pink. A moment in time or an interval of time usually associated with some
business process. For example, the result of user's query may be shown a pink
class, since it is generated dynamic, which is tracked by the estate agency system.

The advantage of using coloured UML is that it allows rapid understanding of the prob-
lem domain's dynamics. The chain of pink classes represents the main flow of business.
The blue descriptions and the green objects usually surround the pink chain. The yellow
roles are non-nallY added to the design at the beginning. They are often removed later if
a person is playing only one role.

A good understanding of the target system is also the basis of security development.
During the process of drawing overall models, the team begins to consider security
issues. The key issues which have to be decided in advance are:

77ze evaluation ofsecurity. The evaluation of functionality relies on testing, which
is an integrated phase of SDLC. The evaluation of security is always done in an
extra phase. For highly critical systems, security is often evaluated against inter-
national security evaluation criteria; but the security of many commercial systems
is assessed based on customer requirements. The evaluation of the target system
has to be decided in advance because it will affect the following development ac-
tivities. For example, if evaluating security against security criteria, the security
functions requested by these criteria have to be considered in the phase of detailed
design.

The managenzent of development and operation for security purposes. Discipline
and management during the development and operation of the target system are
very important factors for its security. The management of security development
and operation is a broad field related to asset management, physical security and
human resource safety functions. It entails the identification of an organisation's
information assets and the development, documentation and implementation of
policies, standards, procedures and guidelines. Some activities of security man-
agement, such as security role assignment, organisation of security team, overlap
with the activities of project management. There are also a series of references
about security management, for example white-papers [158,159].

Decisions on these two issues are crucial to the entire development process. A clear
decision on security evaluation and a good plan of security management will build a
sound foundation for the ongoing project.

87

6 Secure FDD in Detail

Entry Criteria

In this step, the requirements, including functionality and security, are specified and
documented. Unlike plain FDD, initial security requirements have to be identified be-
fore the development starts.

Tasks

In the step, Develop an Overall Model, there are two overall tasks:

Develop overall models
The activities of how to build up overall models have already been introduced
in plain FDD [3]. By utilising modelling technique (Le, coloured UML), overall
models help developers understand the context of services in the system.

Consider issues of security management and evahtation
The managers and developers have to make some security decisions. The big de-
cisions include the management of security development, the method of security
evaluation, and administration of security operation. Among them, security eval-
uation will directly and significantly affect the following development activities.

Exit Criteria

Several documents containing overall models are required in plain FDD [3]. The addi-
tional documents in sFDD are about security decisions:

Doctinzentsfor security nzanagenzent. These documents are usually informal for
a small project, but they should contain enough material to demonstrate that these
management issues are carefully considered.

Agreement of security evaluation. Neither customers nor developers can individ-
ually decide how to do the security evaluation; it needs good communication and
negotiation. At the end, the method of security evaluation and the degree of secu-
ritY should come to an agreement. This agreement will dominate the philosophy
of the entire security development.

88

6.2 Secure FDD in Details: Linear Development

6.2.2 Design a security architecture

Description

A security architecture is a plan that describes the security functions required to meet
the needs of security protection. Security functions should provide protection against
possible threats to the system. Ideas for security functions come from security require-
ments and technical guidance, including security evaluation criteria (e. g, [8]) and in-
dustry guidances (e. g, [83,65]). Because of defense-in-depth, the degree of protection
which security functions provide depends on the desired degree of security which is a
decision of security evaluation made in previous step.

A security architecture is a key characteristic of sFDD. The activities of developing a
security architecture involves the following:

"a security team selects essential security functions with the knowledge of security
evaluation;

" the experts review the overall object models and the selected security functions,
and produce a system architecture that clearly describes the functions and their
relationships;

" the developers discuss the revised models (Le, overall models and security archi-
tecture) with the security team in order to have a good understanding.

" final models are refined and shown to customers. It is necessary that the customers
have an awareness of the security architecture especially when extra effort outside
of the system is needed. For example, network security may not be an issue in
the security architecture of a Web application, but it is important to inform the
customers that there are several issues not in the architecture but which may affect
system security.

This step is to refine the security functions and map them to the architecture of the
system. Doing so requires solid security knowledge and rich engineering experience.

Entry Criteria

To fulfil the tasks in this step, a set of documents are needed, including the overall mod-
els, initial security requirements, and plans for security evaluation and management.

Tasks

The tasks in this step are as follows:

89

6 Secure FDD in Detail

Design security architecture
The developers propose an initial architecture of the system based on the overall
model. Considering the security requirements, the security team selects available
security functions and designs a security architecture which includes the security
functions. This initial security architecture needs to be refined and detailed along
with the object models that are evolving.

Exit Criteria

The product of this step is a security architecture.

Security architecture. Secure FDD considers security as a system property, and
a security architecture is an essential document. In this document, security func-
tions are selected and described. The most important is that the security architec-
ture outlines the dependency among security functions and business functions.

6.2.3 Build a Features List

Description

In plain FDD, a feature is purely a small piece of business logic. But with security
considerations, a feature (security feature) may be different: a security feature may be a
business feature with (or without) some security constraint; or a component of a larger
security function.

Object models and security architectures give a good basis for building a security fea-
tures list. The real process of building the list is top-down and straightforward: a feature
team is formed to functionally decompose the entire system in the security architecture
into subject areas; then analyse the business activities within subject areas; and fi-
nally analyse the steps within each business activity. Each step is a security feature,
and it is also a step in the overall development process.

Unlike features produced in plain FDD, a security feature may be bigger because the
team of security development has to consider: 1) what are the protections provided by
the feature? 2) what are the consequences from its use? The first question aims to
generate ideas about how to authorise and enforce the action presented in the feature;
the second question generates ideas about the side-effects of the feature and how to
deal with them. These questions often make the dependencies among security features
complicated; the feature team has to prioritise them after they are identified.

90

6.2 Secure FDD in Details: Linear Development

Entry Criteria

The security functions in the security architecture are identified. For example, to build a
Web application for an estate agency there are security functions, namely authentication
and logging, which are provided by a Web server.

Tasks

In secure FDD, the objective of this step is to create a features list. The list includes
not only the features from functional development, but also the security functions. The
tasks are:

Build afeatures list
This is an iterative task involving the security team and functionality feature team.
The teams identify the set of features using knowledge obtained from the previous
step. In general, features and the assets on which each feature operates are located
in the layers of the application architecture (Le, Ul, PD, DM, and SI). According
to this mapping, the dependency relationships among features are classified into
within layer and crossing layer. The operation of most features only depends
on the other features on the same layer. But some of them rely on the features
located in a lower layer. For instance, feature retrieve a query result in PM layer
may depend on some features in DM layer. Meanwhile analysing the effects and
side-effects of security functions, new features may be introduced, beyond those
for the original requirements.

Docunient thefeatures
The documentation of features aims to make a reference for planning and future
development. In practice, the development of these features is on the basis of
business activities. All features of a business activity are documented in one sheet.
On that sheet, the business activities are described firstly; then all features in that
business activities are described.

Review the security architecture
When analysing features from a security point of view, new features may need to
be introduced. These new features are always added to mitigate the side-effect of
"old" features. For example, to turn on the authentication function of Web server
may affect user's access to existing pages. There will need to be a new feature to
tune the existing build of the application. To review the security architecture is to
check whether the new features fit well into the security. If there is a conflict, it is
easier to correct the problem at a higher level and at an early stage.

91

6 Secure FDD in Detail

Exit Criteria

The product of this step is a features list, which is always longer than the one that
resulted in plain FDD because new features will likely have been added for security
purpose.

6.2.4 Plan By Feature

Description

This is the last step in linear development. Once security features are identified, a plan-
ning team comprising the customers, managers of the project and development, and
chief programmers is formed to consider the sequence of the development, based on
dependency and complexity of features. Then jobs are allocated to development teams.
This is similar to the previous step, Build a features list, in timing. Sometimes, these
two steps are carried out as one; there need be no significant milestone between these
two.

The process of planning is to simplify, weight and sequence features for development.
Each entry (work package) in the plan will be a task of a development iteration. The
iterations are usually short, "fronz a couple of weeks to a couple of months, with a
preference to the shorter timescale" [25]. The real difficulty in this step is to balance
the priority of business function and security function. A security feature may be a
pure business function; or a security function which provides (a part of) protection to
the entire application; or a combination of both. One thing to be addressed here is that
the customers should be aware of and be willing to accept an insecure release from
early iterations. That is mainly because security is a system-wide issue. The security
protections are implemented (or employed) iteratively according to the plan and the
security architecture produced in the previous step is a framework to ensure that this
plan is completed eventually.

In practice, a work package contains the work of building one or two business activities,
depending on the estimation of their implementation. In order to gain more control and
security of the development process, each security feature within the business activity
is assigned to a owner.

Entry Criteria

The entry criterion is a comprehensive features list.

92

6.3 Secure FDD in Details: Iterative Development

Tasks

The objective of this step is to produce a plan of development. The tasks of this step
are:

Detennine the development sequence
The planning team shall assign a date for completion of each feature. The comple-
tion date and the development sequence is based on the dependencies, complexity,
and workload of features.

Assign ownership
The owner of a security feature can be an individual or a team; ownership should
depend on the complexity of the feature. Plain FDD [3] explains the duties of
the owner of a business feature, which is to ensure the quality of a feature from
design to code. In addition, the owner of a security feature is also responsible for

verifying the effects and side-effects of security.

Meanwhile, the jobs of developing features are assigned to development teams.
The leader of each team is responsible for performing a security inspection after
a new release is built for the system at the end of each iteration.

Exit Criteria

The product of this step is a development plan. In this plan, the following should be
explicitly stated or determined:

" Work Package, a series of development activities.

" Business Activity, the business activity to be built in this iteration.

" Oivner of Security Feature, the owner of every features to be developed.

" Leader of Development Team, the leader who is in charge of the development in
this iteration.

" Completion Unze, an estimation of completion date.

" Note, a blank column at the stage of planning; but contains informations about
actual progress (e. g, on time/delay; the brief reason of delay and real completion
date, if delayed.).

6.3 Secure FDD in Details: Iterative Development

At the end of planning, a sequence of development iterations is determined. In each
iteration, there are four steps: Design by feature, Risk assessment, Build by feature,

93

6 Secure FDD in Detail

and Security inspection. Among these, Risk assessment and Security inspection are
newly added in sFDD.

At the beginning of an iteration, the development team prepares related information for
a selected business activity, then follows a design-cycle to develop features one by one.
There are eight milestones to manage the development progress. Among these, six are
defined by plain FDD [3]; and two are introduced in secure FDD.

These milestones are:

Donzain ivalk-through. The experts give an overview of the domain area for the
feature to be designed. They should consider all related but not all implemented
information for the iteration.

" Design. The developers develop diagrams for the features to be designed. In
addition, all alternative designs, design decisions, requirements clarifications and
notes are also recorded and documented in the design package.

" Design inspection. Design inspection aims to remove errors from the design. It is
inspected by the project team members. The inspection often leads to revising the
design. On acceptance a to-do list is generated per affected feature, and the items
in that list are assigned to feature team members.

" Risk assessment. Once the design is thought to be error-free, the security team
members perform a security risk assessment process and examine the design. This
security assessment works on a high level model (Le, conceptual level) to identify
possible security risks and judge the acceptability of each risk in the design.

" Coding. The developers implement the design to satisfy the requirements of the
iteration.

" Code inspection. A successful code inspection (which also includes a successful
completion of unit test) is the verification of the output of this process. The coding
work is done individually; however the code is inspected by the other members in
the team. Ideally, the code is as good as that written by the best developer. The
unit test aims to ensure all requirements of the iteration are satisfied.

" Promote to build. Features are only promoted to the build after a successful code
inspection. This is the integration point for the entire iteration.

" Security inspection. This milestone is added in sFDD. After features are inte-
grated into the build, members of the security team should check the entire sys-
tem against the security requirements to determine whether unacceptable risks
have arisen due to integration of features.

These milestones of the development progress are evaluated by the leader of the devel-
opment team. These milestones also indicate the major tasks of these steps. Table 6.1
summarises the steps of sFDD and their milestones.

Compared with plain FDD, there are not many changes to the "old" steps - design
by feature and build by feature, but security features may be considered differently

94

6.3 Secure FDD in Details: Iterative Development

Secure FDD step Milestones
Domain walk-through

Design by feature Design
Design inspection

Risk assessment Risk assessment
Coding

Build by feature Code inspection
Promote to build

Security inspection Security inspection

Table 6.1: Secure FIDD Steps and Their Milestones

with business features (when considered). Risk assessment and security inspection
are brand new steps in sFDD, and they will be explained in detail in the following.

6.3.1 Design by Feature

Description

This is a per-iteration activity to deliver the design of a package of features. A number
of features are scheduled for development by assigning them to a development team. If
there are multiple development teams, they may work in parallel.

Entry Criteria

The planning process has completed. All development iterations have been sched-
uled.

Tasks

The major tasks of this steps are:

Domain ivalk-through
The domain expert gives an overview of the domain area for the feature to be de-

signed. This should also include domain information that is related to the feature
but not necessarily a part of its implementation. This may be an optional task
based on the complexity of the feature and its iterations.

95

6 Secure FDD in Detail

Design
The feature is designed. The design results should be documented and checked
into a version control system if possible. Alternative design, design decisions,
requirements clarification and notes should also be documented, if there are any.
Design inspection
A design inspection is held to examine if there are any flaws in the design. The
design may be altered, so there may be a mini-loop inside of this step in order to
ensure that the deliverable of this step is verified.

Exit Criteria

The result of this step is a successfully inspected design package. There is no new type
of document delivered in this process compared with plain FDD. The design package
comprises:

"A covering memo, or paper, that integrates and describes the design package such
that it stands on its own for reviewers.

" The referenced requirements (if any) in the form of documents and all related
confirmation memos and supporting documentation.

" Design diagrams.

" Design alternatives (if any).

" Modification of design (if any).

The next thing is to carry on the risk assessment of the design package.

6.3.2 Risk Assessment

Description

Risk assessment is not only a process of identifying risks and their characteristics, but
also a determination of the exposure to risks. Chapter 2 listed some security risk assess-
ment methods. Secure FDD does not mandate any particular form of risk assessment
method. But in general, risk assessment is performed in an iterative, incremental, time-
boxed, and ongoing manner.

Entry Criteria

The features are designed and inspected against relative requirements.

96

6.3 Secure FDD in Details: Iterative Development

Tasks

Any risk assessment method can be used in sFDD as long as it refers to the recommen-
dations of NIST [32]. The tasks of risk assessment include:

Understand thefeature contents
The contents include system boundary, business functions, assets at risk, business
processes at risk, threats to these assets and business processes.

Identify the attacks, evaluate the inipacts, and analyse the risks
This is the body of risk assessment. It comprises the following sub-activities:

- List the potential vulnerabilities.

- Analyse the vulnerabilities of the assets and business Processes to these
threats.

- Estimate the risks' probabilities of occurrence.

- Estimate the potential impact of each risk to the success of the endeavor.

- Estimate the importance and priority of each risk.

- Categorise the risks.

This step involves substantial estimation efforts; overall, the job of risk assessment
needs experienced people who know security risk assessment and understand the
design well.

Recoininend specific actions and techniques to each significant risk
Risk assessment is not only to identify the risk, but also to provide choices which
can mitigate the risks to customers and developers. Customers have to be involved
because they have to judge the degree to which risks can be accepted.

Evaluate the recommendation of risk assessment
The recommendations from risk assessment may introduce new features to be
built. Before these new features are introduced into the development iterations,
these new features have to be evaluated and inspected to ensure that they are right
for purpose and correct (Le, no more risk) security functions

Assign responsibilities and resources to perforin risk avoidance and document the
risks
Once the mitigation decision is made, the reaction of rrýitigation is planned. De-
velopers may redo the jobs of design by feature to integrate the new feature

suggested by risk assessment.

Exit Criteria

This step works on the design package and refines it. In addition, the results of risk
assessment include a report about the security risks and their mitigation. Once the miti-
gation is integrated into the design, the developers can begin to write code.

97

6 Secure FDD in Detail

6.3.3 Build by Feature

Description

This step aims to implement the design of feature package. Starting with the design
package, the development team writes the necessary codes to support the design for
features. Then the code developed is unit tested and inspected - the order of which is
determined by the team leader. After a successful code inspection, the code is promoted
to the system.

Entry Criteria

The design process and risk assessment have been completed. That is, the design pack-
age has successfully been inspected and assessed for business and security reasons.

Tasks

The major tasks of this step are:

Coding
The developers implement the code to satisfy the requirements of the design for
features.

Code Inspection
A code inspection is held before or after the unit test; the decision is made by the
team leader depends on the complexity of features. There are many references,
such as [85], to be used as guidance for coding and code inspection.

Unit Test
The team tests the code to ensure all requirements of features are satisfied.
Promote to the Build
Because the features are designed and implemented individually, the features of
one iteration are integrated into the build.

Exit Criteria

The results of the process are:

Classes and methods that have been successfully inspected.

Classes that have been promoted to the system.

98

6.3 Secure FDD in Details: Iterative Development

6.3.4 Security Inspection

Description

Security is an emergent property. The security architecture is a plan of security im-
plementation, but its existence cannot guarantee that there is no conflict when security
features are built into the system. A security inspection is used to ensure that the new
features which are promoted to the system will not bring new risks to the system. In con-
trast to other steps in iterative development, a security inspection works on the entire
existing system, rather than features just developed.

Entry Criteria

The process of implementation has finished. That is, the features are implemented and
promoted to the system.

Tasks

The major task of this step is:

Security Inspection
Once code is successfully inspected and tested, it is promoted to the existing sys-
tem. A security team may apply methods to examine the entire system, including
existing application, hardware, and network etc. There are many reference texts
about security of a Web system, such as [65,83,113]. In addition, a complete risk
assessment can also be perfonned to fulfil the task.

Exit Criteria

This is the last step in a development iteration. The result of this process is a reasonably
secure system. At the end of a development iteration, the system may not fully satisfy
the relative security requirements because security protections may be implemented in
successive iterations.

99

6 Secure FDD in Detail

6.4 Summary of Secure FDD

The analysis of plain FDD can be found in [3,111. Plain FDD has many values: it
is simple; focuses on development; produces an overall model and model of feature.
Secure FDD inherits all these values, and introduces security architecture, and security
assessment in the development iterations. The following will explain the similarity and
differences between pFDD and sFDD.

6.4.1 Similarity

Secure FDD has many similarities with plain FDD.

" Secure FDD is a simple method with a few steps; supports feature based develop-
ment; it has very short iterations.

" Second, secure FDD is a general process model. It does not define the detailed
practices used in the method. Like plain FDD, it does not define how to model
the problem domain, carry out risk assessment, and inspect the design and code.
It provides a flexibility to suit the method to different kind of projects.

" Third, secure FDD encourages the involvement of customers, especially when
evaluating the risks. Good communication between different part of development
team (i. e, between security-related staff and non-security staff) is important.

6.4.2 Differences

The major difference between secure and plain FDD is the addition of security devel-
opment activities into the process. The other differences are side effects of considering
security:

" Secure FDD considers implementation earlier than plain FDD. The information
needed for implementation includes platform architecture, implementation lan-
guage, deployment plan.

" The milestone and efforts of iterative development are different because of the
extra work involved with security inspections.

" Plain FDD does not cover system testing and deployment; but secure FDD con-
siders the deployment and final risk management. Secure FDD always has more
iterations if there are new risks found during risk management.

Since there are some differences between plain FDD and secure FDD, a new question
emerges, namely whether secure FDD is still an Agile method. The next section will
address this question.

100

6.5 Conclusion

6.5 Conclusion

Plain FDD is an Agile method, but it has been argued by some agilists as being "less
Agile" [160] due to the fact that FDD uses many traditional software development prac-
tices (e. g, up-front design). In particular, FDD involves planning and up-front modelling
and design. For addressing security concerns, the planning and modelling included with
FDD provides a solid basis to assist security development. Indeed, up-front modelling
and design are normally necessary for security development. The key element in FDD
is the domain object model. When developers learn of requirements they start forming
a mental blueprint of the system, making assumptions and estimating on that basis. De-
veloping an overall domain object model forces those assumptions out into the open,
so that misunderstandings are resolved and a more complete, common understanding
is formed. From a security perspective, a security architecture is the key element. In
secure FDD, the security architecture is embedded in the object models and is also con-
sidered in the planning sub-process. FDD is described as a "right first time" approach
to agility [160]. Hence secure FDD is a "rightfirst" step towards agile security engi-
neering, by integrating security risk assessment with the FDD process.

Plan-driven SIDLC Plain FIDD Secure FIDD

Initiation I

Modelling Modelling
Development

-1
11

(architecture)

Inplernentation Planning Planning

ItIDMOV& Operaýý7771 Iterauve Cievelopment
I Development

Dispos
Iterative Development Stage
Unear Development Stage

Figure 6.2: Plan-driven SDLC, Plain FIDD and Secure FIDD

Figure 6.2 highlights the differences between the process of plan-driven SDLC, plain
FDD and secure FDD. In the diagram, stages have been separated by shading into two
types:

Iterative Development Stage. This kind of stage contains features and includes a
plan to state how the development is iteratively completed.
Linear Development Stage. This kind of stage does not have features, but op-
tionally it may have tasks. The tasks in this kind of stage are always done only
once.

The details of sFDD were presented in this chapter. Next, a small case study is used to

101

6 Secure FDD in Detail

demonstrate the adoption of sFDD. To support the case study, it will be helpful to make
use of suitable tools, which can help reduce the costs of management of the process and
its artifacts. There is a tool - Project Management Application of FDD (FDDPMA)

- for the management of software projects based on plain FDD method. In the next
chapter, this tool and the role it can play in sFDD are explained. However, the majority
of the next chapter focuses on the development of case study.

102

7 Case Study

The previous chapters in this part of the thesis presented the problems of security inte-
gration and described the approach taken to combine security and agile development.
In this chapter, a case study will be introduced to demonstrate how sFDD could be ap-
plied in a real project, and an evaluation of sFDD is provided based on the experience
of case study.

7.1 Introduction

Due to its characteristics (discussed in Chapter 3), a Web application is a good domain
to evaluate an Agile method. This chapter focuses on the development of a Web ap-
plication; more precisely, its business logic and security features. Effort on the graphic
design (Le, user interface of Web application) is omitted in the description of the case
study- This chapter demonstrates how sFDD is followed in a case study and evalu-
ates the method based on experience from the case study. This chapter is structured as
follows:

Overview. This section will briefly describe the requirements of the case study,
including functional requirements and security requirements. Criteria to ensure
project success are also included.

Implementation. This section is about how to develop the system following sFDD,
including the preparation and development process. In order to evaluate sFDD's
agility, the second part introduces a new requirement to the case study.
Evaluation. This section presents an overall evaluation of the case study, focusing
on two parts: security enhancement and agility. As well, it explains the limitations
of the case study.

7.2 Overview

Secure FDD does not intend to deliver security-critical information systems (Le, higher
security level systems evaluated by security criteria); nor does any current Agile method.

103

7 Case Study

The case study is designed to show security enhancement as well as the ability to achieve
incremental and iterative development.

The case study is simple. An estate agency (HouseHunter) wants a Web application to
allow its properties to be searchable by potential buyers; then a buyer can put offers on
the property he/she is interested in. The working scenario is that a user browses the
Web site, fills in the search criteria, then submits a query. When the results of the user's
query come back, the user is authenticated and can place an offer on a property. In terrns
of security, the offer function is strictly limited to authenticated and authorised users.
Therefore, there are several failure scenarios that have to be considered. One typical
failure scenarios is the redirection of any unauthenticated access to the index page.

7.2.1 Initial Requirement Analysis

Neither plain FDD [3] nor secure FDD explicitly addresses the issue of requirements
gathering, they assume that documented requirements already exist. The documentation
of requirements occurs before the development starts. But in order to demonstrate the
integrity of the development process, the analysis of requirements is in the description
of the case study.

Functional Requirements

Secure FDD does not explicitly favour any modelling language and technique for re-
quirement analysis, but a general Object-Oriented (00) modelling technique is applied
in this project because it is suitable and familiar.

The business logic of the target application is simple. It is straightforward to identify
the three use cases of the application (shown in Figure 7.11).

Searching Buying

depends

ic 0

EAuthentiidceaUon'

Figure 7.1: Use Cases of the Application

'Figure 7.1 is a simplified UML use case diagram.

104

7.2 Overview

Figure 7.1 also indicates that the use case Buying depends on the use case Authentica-
tion. This dependency relationship helps the design of the system architecture, as well
as the planning of the development process.

The use cases of the application are briefly described in the following. The details of
these use cases (with security considerations) are listed in Appendix A.

Searching, which allows a user to input search criteria that are used in the process
of querying for properties; and displays the results to the user.

- Authentication, which verifies that the user is registered.

Buying, which permits an authenticated user to submit an offer on a property.

7.2.2 Initial Security Requirements

The hypothesis of this thesis declared that the integrated approach is proposed to deliver
a user-accepted secure enough Web system. The role of customer is emphasised in the
sFDD process because the involvement of the customer (e. g, at requirement eliciting
and risk assessment step of sFDD) is one of the agile software development principles
[251.

Secure FDD is not intended to build a security-critical system which is evaluated against
security evaluation criteria, such as the Orange Book [8]. In the case study, the initial
security requirement is elicited via a checklist approach. In Chapter 3, Table 3.2 and
Table 3.3 listed the common vulnerabilities of a Web application. The preparation of
security requirements is based on this list. Some entries on the list may not be applicable
to every use case. The following are the initial security requirements of each use case
of Figure 7.1.

Searching

Input Validation. Inputs must be validated before processing. Input is a potential
source of vulnerability (see Table 3.2).

Sensitive Data. Because there is a great deal of information about properties
stored in the database, allowing a user to search the entire database increases risk.
So an initial security requirement is that there is protection of sensitive data so
that only necessary data is public to each user of the searching service.

Exception Managenzent. Exception management is a fundamental requirement in
any system. Poor handling of exceptions can lead to the loss of integrity or leakage
of structural inforination of database in this use case. So there is a requirement
that the service should catch all exceptions, especially those generated by database

105

7 Case Study

operations, and in the process it should not display any sensitive information to
the user.

General Logic Error. Any unwanted functions may be explored to attack the
system. So it is required that the design and implementation of service functions
should be inspected for logic errors; for example, that there is no insecure data
flow.

Authentication

" Input Validation. The amount of input to this use case is much less than to the use
case of Searching, but the operations of this use case target on one of the most
critical database tables in the application. The success of any SQL attack in this
use case may cause serious impact to the secure and correct operation of the entire
application. The input should be validated in this use case.

" Authentication. Authentication is a functional requirement of this use case too.
This use case also provides the authentication function to the entire application.

" Session Management. Once a user is authenticated, the credentials of the user
are stored and transmitted in sessions. Therefore, management of the session
becomes important.

" Sensitive Data. Any information about the credentials of users is sensitive data.
Therefore secure management of sensitive data is also important in this use case.

" Auditing. A good user access control involves the auditing of every user's activi-
ties. Authentication is the first activity recorded in the log.

" Exception Management. Like the analysis in use case Searching, the exceptions
of this use case may leak information of database structure. So it is necessary to
have good management of exception for this use case.

" General Logic Error. Like other use cases, general logic errors have to be detected
and mitigated for this service.

Buying

" Input Validation. The database operation of this use case has write permission.
Any attack may alter or destroy the database. Hence input validation is also very
important for this service.

" Sensitive Data. Offers on properties are sensitive data. Only individuals who are
authenticated and authorised should have access rights to such data.

" Auditing. Because it is a modification operation of database, auditing is very
important for security protection and database backup. So there is a requirement
for auditing for this use case.

106

7.3 Preparation of the Case Study

Exception Management. Like other use cases, there is a requirement for this use
case to have good management of exceptions.
General Logic Error. Like other use cases, the use case buying should be free of
functional logic errors.

By analysing these initial security requirements, it was determined that these security
requirements can be layered into two levels depending on how they are treated in the
architecture: some requirements are common for the entire application, such as excep-
tion management and general logic error; some are particular for one use case, such as
authentication and auditing.

The general security requirements for the entire application are more ambiguous than
the others. This is because these requirements rely on the design of functionality more
heavily than others, and the design of functionality is not clear at this moment. During
the process of sFDD, these security requirements will therefore be refined in the design
and implementation phases.

7.3 Preparation of the Case St! udy

Once the initial requirements are collected, the sFDD process can start. Like any other
software project, there is preparation before the start of project. The preparation in-
cludes selection of relevant tools and preparation of the development environment.

7.3.1 Tool Support

In the case study, there are two tools used: Project Management Application for FDD
(FDDPMA) and WebScarab. FDDPMA helps to manage the progress of the develop-
ment. WebScarab 2 is a tool to analyse applications that communicate using the HTFP
and HTTPS protocols. In particular, it can be used to help to test the security of the
system. These are briefly described next.

Project management with FDDPMA

Project management with tool support is helpful because the tool automates repetitive
tasks, prevents mistakes, and it is essential for large projects. The Project Management
Application for FDD (FDDPMA) [4,161] was developed for plain FDD, as a project at
Harvard University. It was subsequently released on sourceforge. net3.

2see httpJAvww. owasp. org/index. php/Category: OWASP-WebScarab-Project
3httpJ/sourceforge. net/projects/fddpma

107

7 Case Study

FDDPMA is a Java Web application that manages software development. It facilitates
iterative development by reducing FDD management overhead, producing graphical
progress reports, and providing a place where all the FDD related documentation can be
collected.

FDDPMA consists of a number of components and services, shown in Figure 7.2. The
boxes without background denote components. Each component is a relatively inde-
pendent part of application which usually has its own user interface and implements
business logic. The boxes with gray background 4 are services which do not have a user
interface but provide some useful functions to other components. Figure 7.2 also shows
the relationships between components and services. The line points from the consumer
to provider of a service.

Email Service

Authentication Reporting
component and
service component

Document IV
management Feature Tracking PDF Generation
component and component

tH

Service
service

Logging Service

Figure 7.2: FDDPMA Components and Services [4]

To run FDDPMA requires Apache Tomcat5 and the MySQL database management sys-
tem.

Initially, FDDPMA can be applied to four kinds of roles in the development team:

A project manager, who logs into FDDPMA to view the software progress reports.
A chief programmer, who uses FDDPMA to initiate the project with a list of
features, groups them into work packages, and manages development iterations.

4 The original figure is coloured, and the background is in yellow.
5http: //tomcat. apache. org/

108

7.3 Preparation of the Case Study

Developers, who can access FDDPMA to obtain the information published for
work packages and to participate in forum discussions.

A customer, who logs into FDDPMA to answer problem domain questions in the
forums, report bugs, and watch progress reports.

In the case study of this thesis these four roles are taken by the author due to the nature
of the research. Therefore there is an obvious limitation that the communication among
roles and the management of team cannot be accurately and adequately assessed by the
case study; other issues, such as the agility of development process, are evaluated.

FDDPMA is designed for projects of plain FDD, but it is sufficiently flexible to be
customised for projects of secure FDD. In this case study, I aim to use the tool to help
the management of the project. The following changes to FDDPMA have been made:

1. Create a neiv project type. FDDPMA is designed to support plain FDD. To be
adopted in the project of sFDD, a new project type has to be made which contains
three stages6, shown in Figure 7.3. Each stage of an sFDD project consists of
sFDD steps: Modelling consists of Develop an overall model, Design security
architecture, and Build a features list; Planning consists of Plan byfeature; and
Iterative development consists of Design byfeatitre, Risk assessinent, Build by
feature, and Security inspection.

Modelling
(architecture)

Planning

Iterative
Development

(Risk Assessment)
Figure 7.3: Development Stages of Case Study

2. Create a secure FDD project and assign the roles of development team. The case
study is a sFDD project involving only one person, so all roles are assigned to the
author.

In the case study, the too] helps to keep a record of information about development
progress, deadlines and class ownerships. Figure 7.4 is a screen shot illustrating how
the project is managed by the tool.

6The extra explanation added in brackets in Figure 7.3 is to distinguish from the stages of plain FDD in

original FDDPMA.

109

7 Case Study

modelling (oyerall model and planning
I deyelopment

securit arch tecture
Planned Starl tual

ctual Start fanned Irc ý P Fa n-n-e- d ---- l Actual
a tart t rt Start I Start

E t t A (4 ' 100% 1
-

0%
s a e gency 4_ý . 1 V6/2006

96
/-2006

k/2006
W/2006 1 07/2 06 W/2006

Figure 7.4: Screen Shot of Project Management

Figure 7.4 shows that there are three stages on the project Estate Agency which cur-
rently finished 44%. It also displays the progress and the planned and actual start data
of each stage.

Security Testing with WebScarab

WebScarab is an OWASP project -a powerful, free, open-source tool for reviewing
web applications for security vulnerabilities. It is a framework for analysing applica-
tions that communicate using the HTTP and HTTPS protocols. It is written in Java,
and is thus portable to many platfon-ns. WebScarab has several modes of operation,
implemented by a number of plug-ins. In its most common usage, WebScarab operates
as an intercepting proxy, allowing the operator to review and modify requests created
by the browser before they are sent to the server, and to review and modify responses
returned from the server before they are received by the browser. WebScarab is able to
intercept both HTTP and HTTPS communication. The developer can also review the
conversations (requests and responses) that have passed through WebScarab.

In the case study, WebScarab is used as a tool to help the testing of the application during
the step Security Inspection. It has been used in its simple mode, a Web proxy. When
testing the application, the Web pages are browsed via WebScarab. WebScarab hijacks
the requests and responses, analyses whether there are any comments and scripts in the
page, and detect whether there is some attacks, such as any possible SQL injections,
Cross-site Scripting (XSS), and Carriage Return Line Feed (CRLF) injections. The
vulnerabilities opened to these attacks are all in the OWASP top-ten list [117]. The
results of all analysis will be shown in the interface of WebScarab, e. g, Figure 7.9.
With the help of WebScarab, the developer can ensure that common vulnerabilities (i. e,
vulnerabilities listed in OWASP top-ten list [117]) are considered so that the application
is acceptably secure.

7.3.2 Environment and programming language

Last but not least, the application is built on a platform which includes many other
components, including network and hardware, supporting software, and programming

110

7.4 Development Process

language.

Network and hardware

The case study is built in an environment of a closed local network, which consists of
four network connected computers. One computer is used to host a Web server and
the application; another is used as a database server; the others are temporarily used to
simulate the connections of Internet users.

Software

The Web application is the kernel of a Web system. Around the application, there are
several supporting software applications or systems; for example the operating system,
Web server engine, and database management system.

In the case study, the operating system is Slackware LinUX7; the Web server engine is
Apache Tomcat 5.5.98; and the database management system (DBMS) is MySQL 59.
These software are chosen because they are mature, powerful, and well documented.

Programming language

Java is the programming language selected in the case study project because of author's
familiarity. [162] is a key reference on guidance for Java security programming.

7.4 Development Process

Once the preparation has been done, the secure FDD project is ready to start. The
following will describe the process of how the case study was carried out.

7.4.1 Develop an Overall Model

The case study aims to build a Web application. Web browsers will render its user
interfaces. Design details of user interfaces are omitted. Most user interfaces are de-

7www. slackware. com
8tomcat. apache. org/
9www. mysql. com/

ill

7 Case Study

signed with pen and paper; such a low-tech approach often has benefits over high-tech
modelling tools, as everyone can participate and make changes.

By applying object-oriented modelling techniques and coloured UML, the system can
be modelled as shown in Figure 7.5.

<<party>>
Outtwmficaw as <<moment- -thing>>

User Buyer Offer

submit$

-moment-
Q ry -descHption>> links -moment>> uery House Offer_Temp

<<moment>> -thing-
Result Property

Figure 7.5: Overall UML Class Diagram

Figure 7.5 is a coloured UML class diagram which shows the overall class diagram of
the application. The class diagram 7.5 shows how the User has access to the Property
and Offer which are the assets of the application. Instances of Query and Result are
generated dynamically; and an object of House contains a list of properties which sat-
isfies the criteria of the query. When an instance of User wants to add an offer, the user
has to be authenticated, and become a buyer till the end of this session; then the buyer
selects a property from the list of House and create a temporary offer which will be
transferred finally to the database by some database operations.

This class diagram is simplified; the attributes and functions of classes are not identified.
The key points of this class diagram are to show the business logic and the scale of the
application.

7.4.2 Design Security Architecture

The process of designing the system architecture, and later, feature identification, is one
of decomposition and refinement of the application. During requirements analysis, the
application has already been decomposed to the use case level; the three use cases are the
major functions of the application. In sFDD, the majority of development is on a feature
basis. Initially, the three functions are simple enough to be developed within weeks.
Therefore, there are three blocks: Searching, Authentication, and Buying, which are
the major functions of the application as well. Besides those, there are also several

112

7.4 Development Process

security mechanisms provided by supporting software, such as the DBMS. Figure 7.6 is
the security architecture of the application.

Application

I Searching I Authentication

Buying

Authentication Audit ng
Realm

III-

Database Security P Session II Oagement

- Supportive relation

Figure 7.6: Overall Security Architecture

In the architecture, the Searching, Authentication, and Buying are three packages of
the application. Among them, Buying relies on the functionality of Searching and
Authentication. By analysing the initial security requirements, security protections of
input validation have to be implemented in all three services, and these protections are
designed and implemented in later steps. In addition, there are some extra security
protections which are required by the initial security requirements, such as auditing,
session management etc. These extra security protections are also considered in the
security architecture.

In the case study, the following security protections are planned in the architecture.

Authentication Realm. The Web server provides functionality to deal with the
question of whether a particular request for a resource will result in that resource
actually be returned. Apache Tomcat provide three types of authentication meth-
ods: basic authentication, digest authentication and database authentication [163].
The functionality of Authentication depends on one or more of these meth-
ods. Initially, the case study will implement the basic authentication. Once it
is found that the basic authentication is strong enough, or the operation environ-
ment changes, it can be refactored in later iterations.

Auditing. The extra auditing service from Apache provides the function which
is required by Buying and Authentication (see initial security requirements in
the previous section). It will keep records of user activities, such as database
transactions, user authentication, and operations of offers.
Database Security. Different from Authentication Realm and Auditing, the service
of Database Security provides security functions to all the application (Le, three

113

7 Case Study

function packages). The DBMS (Le, MySQQ used in this case study provides
several security protections, such as role based access control. Database Security
helps to fulfil the security requirements of input validation too.

Session Management. Same as Database Security, the service of HTTP Session
Management provides services to all three function packages. It is provided by
Apache as well. It will be used to mitigate the security concerns about HTFP
sessions in the case study.

The introduction of these extra security services will help to fulfil some of the initial
security requirements. Table 7.1 summarises the initial security concerns and the con-
tributions of these security services.

Security Requirement Security Service Contribution

Input Validation Database Security (partially for SQL injection)

Authentication Authentication Realm

Authorisation Authentication Realm

Sensitive Data Database Secufity

Auditing Auditing

Session Management Session Management 0
Exception n/a

General Logic n/a

Table 7.1: Contributions of Security Service

Table 7.1 also shows that the requirements of Exception Management and General Logic
Error have to be implemented during the detailed development. The extra security ser-
vices cannot yet fulfil the requirements of these two.

In addition to producing the security architecture, there are also some significant secu-
rity decisions to be made at this stage of development. In the case study, the develop-
ment and operation of the application are carried out in the control of the developer,
and are in a secure environment. The biggest decision for the case study is how to
evaluate the software security of the application. In the case study, the elicitation of
security requirements is based on a checklist which is the summary of several indus-
try guidance, including [65,2,83]. Therefore, the evaluation of the application security
should be based on the satisfaction of the requirements. However, the security fea-
tures implemented in the application are also compared with the entry level of security
evaluation criteria, TCSEC [8]. The purpose of this comparison is to demonstrate the
security enhancement of sFDD development process; it is also an indirect evaluation of
the checklist-based requirement approach with security evaluation criteria.

114

7.4 Development Process

7.4.3 Build a Features List

Based on the use cases, the decomposition of the application continues. In the case
study, the three use cases (Searching, Authentication, and Buying) are the business
activities of the application. There are several features within these business activities.

Searching

There are two features in this business activity:

Prepare the query clause. This feature takes a user's inputs, generates the query
clause, connects to the database and submits the query to the database. In terms
of security considerations, this feature has "read" permission to the database, and
it should only be allowed to read the right data from database.

Fonnat the result. This feature fetches the results of the query, and generates a
list back to the user. There are two possible types of results: a successful result
of the query; or an exception thrown by database operations. With the security
considerations, the exception should be handled well. Normally, it needs cover
stories for some exceptions.

Authentication

The security architecture clearly indicates that the implementation of Authentication
relies on the security feature Authentication Realm, therefore Authentication Realm
has to be set up before the development of Authentication. In this business activity,
there are two features:

Tune Authentication Realm. This feature does not need any design work. The
developer has to configure Apache, and set up the basic authentication mecha-
nism.

Authenticate the user. This feature completes the function of user authentication,
including taking the user's ID and the password, checking the userID/password in
the database, store and transfer authentication token in the HTTP session. In terms
of the security considerations, the developer may consider the same mechanism
of input validation and exception management as in the previous business activity.
In addition, the developer also considers the mechanism of session management,
including the format, the expiration, and the assessment of authentication token.

115

7 Case Study

Buying

This business activity depends on the previous activities, but in and of itself is quite
simple. There is only one feature in this business activity.

Submit an offer. This feature completes the function of submitting an offer to
database and feeding back the result of the database operations. In terms of the
security considerations, security protections should be implemented to ensure the
integrity of data.

7.4.4 Plan by Feature

The steps of Build a Features List and Plan by Feature are closely related. When the
features are identified, a plan of their development is naturally made on the list of fea-
tures. In practice, the feature is a relative concept: it can be decomposed to different
levels of detail. The only judgement on a feature is how soon it can be built. A devel-
opment iteration is about one or two weeks. In the case study, the detailed development
iterations are based on the business activities.

Before the three development iterations start, there are several security features in the
security architecture that have to be established because they are fundamental services
to all others. The configuration of these security features need to be planned in the
timetable as well. The plan of development is listed in Table 7.2.

The workload of the development can now be estimated. In the case study, the develop-
ment of each feature is less than a week. Therefore, each development iteration is going
to deliver the package of a business activity. The first iteration is to prepare the extra
security features which do not contain any design work, so their details are omitted in
this thesis. Now it is time to present the individual development iterations.

7.4.5 Development Iteration 1: Searching

The first iteration is to build the business activity Searching. In the features list, there
are two features to be developed in this iteration. The detailed process of feature devel-
opment has four steps: design byfeatitre, risk assessinent, build byfeature, and security
inspection. The following documents the progress of features development in details.

116

7.4 Development Process

Z
-Z:; -15

rn

-0

uý

-0

u2

-ö

rn

-0

rn

-5

u2

-0

-a <
=

(D (D (D

%W

cu

:E Gn

a)
to
ri

u

E r_

9)
U
ri

r'. u

E =

(D
U
cu

r'. 0.)

E r_

cj u

<
E
hi

cu

(D
to

rZ
(L)

Ei r1.

rn (1)

cn
CE

C. 1

zi

<
rý

ci

1-, -r. -c: -Z: =3 - :i
g2.
U '. :3 > - :1

>

- z3

rA Z:

1.

*IZ2
C'3

U.

Z:

&.

rZ

u

.= -

:i

-

:i

to

:i

rj

Ln

AD
u2

fi

zi
C.)

cn *-

w

rn

-

-

, eli
ý:

M r- r- r- r-
e

"0

)-(

ý

-ý cli
.

M, 't
.

in %M r- 2 00

C:

IL

cu

Z5

-j
to S)

.2 cz
LT

14

. 13
P-

117

7 Case Study

Design by feature

This iteration is to develop the function of business activity Searching. Figure 7.7 is a
simplified design of Searching, which is a part of an overall model (Figure 7.5).

<<party>>

User

subnýts

-mornent-
Que -description-

II

House

generates R. t. -" 'N, represents

-moment- -thing-
Result

II
Property

Figure 7.7: Design of Searching

Figure 7.7 does not contain details of two features: Prepare the query and Fonnat the
results. The detailed design of these two features is performed in this step. In the design
of Searching (Figure 7.7), there are two temporary classes: Query and House, which
are the key element of detailed feature design.

Class Query. It is the product of feature Prepare the query and stores the details
of the query clause. It has the following contributions:

- Postcode, the post code used for property search. It is a String attribute. A
value has to be assigned by the user when an object of Query is created.

- Bedrooms, the minimum number of bedrooms. It is an Integer attribute. Its
value setting is optional; the default value is 1.

- MinPrice, the lower band of searchable price range. It is an Integer attribute.
Its value setting is optional; and the default value is 0.

- MaxPrice, the higher band of searchable price range. It is an Integer at-
tribute. Its value setting is also optional; the default is 0.

Class House. It is the class of the result of a database query operation. It has the
following attributes:

Address, the address of a property.
Postcode, the postcode of a property.

- Price, the asking price of a property.

- Bedrooms, the number of bedrooms.

- Description, a brief description of a property.

118

7.4 Development Process

The class House is generated in a JavaBean (see the discussion of MVC architecture in
Chapter 3, Section 3.3) because it can be reusable. The class Result is a copy of House
on the client side.

The Figure 7.7 shows the business logic of Searching. The risk assessment will examine
the design, and try to identify any unwanted flows.

Risk assessment

The first and most important task of risk assessment is to understand the target ap-
plication. The overall object model and the security architecture provide the general
blueprint of the entire application. During the design step of this iteration, the developer
has a good understanding of the application delivered after this iteration. Considering
security, the previous requirements analysis is also based on business activities. The risk
assessment is hold to identify the vulnerabilities of the application so far, which may be
caused by design flaws (general logic errors) and insufficient coverage of security pro-
tections.

In the desired process of Searching (Figure 7.7), objects of class Property are the assets
which should be protected against arbitrary access and modification. The result of risk
assessment is documented in Table 7.3.

Evaluate suggestions and re-design

In Table 7.3, there are two recommendations. The first suggestion is very commonly
used in a database application which relies on a database management system. The
second suggestion needs extra work when coding to make sure the input is validated.
These two suggestions are proved by experience to be effective solutions for such kinds
of security risk.

By adopting the suggestions of risk assessment, the design work is revised. An extra
class, Validated_Query, is added in order to ensure the SQL statement generated in the
application is correct. Figure 7.8 is the revised design diagram.

The revised design has to be inspected again in order to ensure that there are no new
vulnerabilities introduced. Once the working package of this iteration is designed and
inspected, the developer begins to implement it.

119

7 Case Study

Iteration: Searching

Risk Assessment Description

Threat
Attacker uses SQL injection to access or modify the data

stored in the database.

The vulnerability is present when user input is either

Vulnerability
incorrectly filtered for string literal escape characters
embedded in SQL statements or user input is not
strongly typed and thereby unexpectedly executed.

The worst consequence of this kind attack may cause the

Risk Evaluation
loss of confidentiality and integrity of data stored in the
database, or even destroy the entire database. Therefore, it

may have a serious impact. The risk is not acceptable at all.

There are two suggested mitigation plans:
1) creating a filter between the application and the data by

using database techniques, such as view. It will limit the
Mitigation access to the application to the database (see [14,15]);

2) securing the application by enforcing input validation.
It will ensure the SQL statements sent to the database

are correct.

Table 7.3: Risk Assessment of Searching

Added by security reason

<<party>> <<moment>>

User Validated_Query

submift varffied

<<moment>>
<<descrIption- generates

House

Data
'ýýrepresents

r(p
<<moment>> ; <thing-

Result Propeý

Figure 7.8: Revised Design of Searching

120

7.4 Development Process

Build by feature

The full source code of the implementation is not listed in this section. In order to
demonstrate the implementation of risk assessment suggestions, only parts of the im-
plementation are shown here.

Validated Query It has been shown in practice that an easy and efficient way to protect
against SQL injection attack is to check the type of all parameters in an SQL sentence.
In the case study, the parameters are transmitted via HTTP so they are of type String,
which is dangerous. When reading the parameters into a JavaBean, these parameters are
converted and validated.

View View is a database technique which is supported by MySQL. The following is
the source code for generating a view in a general query for a property.

Program 1 SQL Script of GeneralQuery

CREATE VIEW GeneralQuery (Price, Bedrooms, Address,
Description, Agent)

AS
SELECT price, bedrooms, address, description, agent

FROM property

The GeneralQuery only selects five data columns from the database and this information
is not sensitive. Therefore, the Internet user can have access to the View. Another
advantage of Views is that they are not writable. Hence, the use of Views can also help
the protection against SQL injection attacks. (Le, the user cannot modify any data in the
database.)

Security inspection

Having implemented type checking and the database view, the code is ready to be de-
ployed. The security expert will inspect the system in order to find any remaining un-
acceptable risks, and may look at evidence provided in the build-by-feature step. At the
end of this iteration, the security expert tests all Web pages in a browser.

By using WebScarab to test the Web site (i. e, localhost: 8880), it can be concluded that
there are no injection attacks. Figure 7.9 is a part of the screen shot because the whole
scan result is too long.

121

7 Case Study

ID ý.
Path Parameters I I

...
Possible Injection EossiM XSS I CRLF

ICOmments i Scripts
36 d-, efstyle_g 1: 1 El 1 11 ... El I El
35 1 I/Ad%dsign. jsp El El ... 1: 1 E T4 IIDSSIQuery ? Entifleme,:

V

El - li El
33 1 VAdvfsession... El El Ej Ij Ll
32 1 VDSS/Query ? Entitleme 11 El 1: 1 1: 1 IJ
31 1 VDSS/Guery ? Entitleme Ll 1: 1 E 1 El
30 1

.,.
IfAdvrimagesf

.. El 0 - 1: 1 El El
29 fD_SS/Guery ? Enlitleme I li El El El
28

....
Advfimagesf

..
I El El n ... El M

]

27 fAdvrimagesf I E-i ... El 11
26 fAdvTimagesf I Li ID El 1
25 Advrimagesf... El El I 1 1: 1 1
24 fAdvTimagesf

... El El
23

... I ...
VAdvrimagesf

.. El El
22 dvrimagesf

..
M I El I I ... El El

21 'd-Aimages/
.. El El I El I I ... El El

20 1 VAdvrimages/
1

11 El 1 1 :1 1 1 ... El El
19 dvrimagesf

...
0 El I El I 1 11 11

18 "Mimagesf
.. 1: 1 El 1 1 -1 1 1 :1

17 VAd-AmagesL 1: 1 0 1 E-1
16 dAousei El El El El
15 ýAd4magesl El El El D El 1
14 .

.. ...
ý LAdviimages El

1

El El E]
i3 LAdvrimagesL..

...
1-1 D I El E1

Figure 7.9: Screen Shot of WebScarab Scan

7.4.6 Development Iteration If: Authentication

When the previous iteration is completed, the Internet user can browse the site and
search for properties. There is a URL link which leads the user to the authentication
part of the application, which will be developed in this iteration.

Design by feature

Authentication is a functional requirement as well as a security requirement. This itera-
tion is to provide an authentication function to verify the user's inputs of their username
and password; then the application validates the pair and generates a token if the pair
is matched according to records in the database. The desired logic of authentication is
shown in Figure 7.10.

The key issue in the detailed design of Authentication is about generating and storing
an authentication token. In this iteration, the authentication is also implemented as a
JavaBean because it may be reused. The token has a time stamp and stored in the
session.

122

7.4 Development Process

<<party>> -moment- II

Auth_Check

Iransfef73
submits

generates

-mornent- -mornent- -thing-
UserID/Pwd

II
Auth_Token

II
Buyer

Figure 7.10: Design of Authentication

Risk assessment

Authentication is also a security requirement so it is important to make sure there is no
flaw in the design first; then assess the design to look for any risks to mitigate. It is easy
to identify that itserffiftssword and Authentication Token are sensitive data. There is
also a potential SQL Injection attack because of the query to the database. The results
of risk assessment are documented in Tables 7.4,7.5, and 7.6.

Iteration: Authentication

Risk Assessment Description

Threat
Attacker uses SQL injection to access or modify the data

stored in the user database.

The vulnerability is present when user input is either

Vulnerability
incorrectly filtered for string literal escape characters
embedded in SQL statements or user input is validated
and thereby unexpectedly executed.

The worst consequence of this kind attack may cause the

Risk Evaluation
loss of confidentiality and integrity of user's information

stored in the database. Therefore, it may lead to serious
impacts. This risk is not acceptable at all.

The suggested mitigation plan is to create an filter between

Mitigation application and data in the database by using database
techniques, such as view. It will limit the access of the
application to the database.

Table 7.4: Risk Assessment I of Authentication

123

7 Case Study

Iteration: Authentication

Risk Assessment Description

Threat
Attacker steals userID and password when they are
transmitted through a HTTP connection.

Vulnerability
The vulnerability is that the text transmitted through HTTP

connection can be hijacked and may not be encrypted.

The worst consequence of this vulnerability may cause the

Risk Evaluation
loss of authentication. Thus it may lead to serious impacts.
The risk is high, but acceptable because the network
infrastructure of case study is secure.

There are two recommendations to improve the security:

Mitigation
1) using strong authentication method such as
digest authentication.
2) securing the HTTP connection by using SSL.

Table 7.5: Risk Assessment 11 of Authentication

Iteration: Authentication

Risk Assessment Description

Threat Attacker may steal an authentication token so that the
authentication can be bypassed.

The vulnerability is that the authentication token is stored in
Vulnerability the client side, such as cookies, and there is no protection

of this token against its manipulation.

The worst consequence of this kind attack may cause an
Risk Evaluation invalid authentication. Therefore, it may lead to serious

impacts. The risk is not acceptable at all.

The suggestion of mitigation for the vulnerability is to
Mitigation assign a timestamp to each authentication token and

automatically check it.

Table 7.6: Risk Assessment III of Authentication

124

7.4 Development Process

Evaluate suggestions and re-clesign

The first potential security risk in the product of this iteration is from SQL injection at-
tacks. During the development of previous iterations, the developer has already gained
the experience how to deal with it. The second risk is username/pas sword hijack. It
is impossible to prevent a user losing their password. Technically, the application can
adopt some mechanisms to make it difficult for an attacker to guess or steal the pass-
word. In the case study, this risk is acceptable because the operating environment is
secure. The third is about authentication bypass. Normally, the session is destroyed
when the initial browser is closed. But in most time, users may forget to close the
browser when they leave the Web site so that the session is still alive, and the authenti-
cation token is still valid too. Therefore, it is important to add an attribute to the token
in order to keep a record of when it is expired.

In the new design, a new class Expiration is attached to the authentication token (shown
in Figure 7.11).

-party>> <<moment>>
User

II

Auth_Check

subiTift
transf: ýý generates I

<<moment>> <<moment>> <<thing>>
User[D/Pwd Auth

-
Token Buyer

vamat"

<<moment>>
Expiration

Figure 7.11: Revised Design of Authentication

Once it is successfully inspected, the new design will be implemented.

Build by feature

The entire implementation of this iteration will not be presented in this section. Since
the authentication token is the key security object, this section will explain how the
authentication token is implemented.

The authentication token is implemented as a name/value pair and is assigned to an
attribute of the session because it is a simple implementation. Keeping things simple
is in the spirit of an agile process. The name of the authentication token is a String
"authentication"; and the value is a time stamp which is assigned when the attribute is
created.

125

7 Case Study

In the servlet which is the controller in the MVC architecture (see Chapter 3), there is a
piece of code to check the expiration of the authentication token.

Program 2 Validation of Authentication Token

Calendar token = (Calendar) session. getAttribute(
"authentication");

Calendar rightNow Calendar. getInstanceo;
if(token == null

response. sendRedirect("login. jsp");
else (

token. set(Calendar. MINUTE, token. get(
Calendar. MINUTE)+20);

if (rightNow. compareTo(token) >0
response. sendRedirect(I'login. jsp");

In the code, the default expiration time is 20 minutes which is commonly used in most
Web applications.

Security inspection

When the iteration has been completed, the user can browse the Web site, search the
properties, and follow the link to authenticate themselves. The security expert reviews
all the Web pages. For example, to examine the expiration mechanism of the authentica-
tion token, the expert searches the properties, and signs in the system successfully. The
application will redirect to the page of search results. Next, the security expert waits
for 20 minutes, then click the link of any property listed in the result page. The system
redirects to the login page again which shows that the expiration of the authentication
token works.

In addition, the application is scanned by WebScarab. So far, the application is injection-
free. Figure 7.12 is part of a screen shot.

7.4.7 Development Iteration III: Buying

The final planned iteration focuses on the business activity Buying.

126

7.4 Development Process

ID Path Parameters Possible Injection XSS CRLF
... ...

Co ments l Scripts
ý-7 7

... IDSSfQuery ? Enttleme El El 1: 1 1 El
Li Li Ll i I Li

75 1 JIDSSfQuery ? Entitleme... 11 El El El i I El
74 iDSSfQuery ? Entitleme El

- -
L ai I

-
11
- -

El
- 73 fAdvfservietis 11 El El Ell

72 1 ... IDSS/Query ? Entitleme I I El I 1 1 1 El
71 1

... DSS/Query ? Entitleme j... I ... El Ll 11 1 1 El
70 liDSSfQuery ? Enbtleme

... ...
11 El El I El El

69 IfDSS/Query ? Entitleme
... El El 1: 1 El El

68 IfDSSiQuery ? Entitleme 1: 1 El Ii El El
67 I MSSIQuery ? Entitleme

... ... El li I El El
66 I fDSSIQueiy ? Entitleme

...
I u El 1: 1 1 1 El El

65 fDSS/Query D' 'ry ? Entitleme
... El El 11 1 ED El

64 IDSS/Query 01' 0 ue ou f :: S ery -? r-ntitlpmp I El El I El
63

$

fAc fAddservieffs tvf s ervieffs I El 0 1 1: 1 El
62 irS irss: 2: 0 xm I

Ms2g.
xmi

- - - - 61
fsz /safebrowsin... ?c li e nF-n i a v.. El El El I I

60 I fActvf l ... I El
59 l iDSSfOuery ? Entitleme I I

...
11

- -
i I I El

58
I IDSSfOuery ? Entitleme ... I

I Ef 11 i I 1 1: 1 El
57 fAdvfimagesf
56 fA fAd vrigesf c I

...
I
... I El n El I 1 11 El

55 fA

M

cdNv, A rli mages f

ý

L4 El
.
54 /A

L

, c / Advflmagesf... I El

Figure 7.12: Screen Shot of WebScarab Scan

Design by feature

The previous two iterations successfully built parts of the application. This iteration is
to provide a function allowing authenticated users to submit offers on properties. There-
fore, all accesses to this part of the application should be protected. In the previous it-

eration, the authentication and the expiration checking mechanisms were implemented.
Based on that work, the desired flow of this business activity is shown in Figure 7.13.

In Figure 7.13, the class House and Property have already been developed during the
iteration of Searching. The design job of this iteration focuses on class Offer. It has
several attributes:

- User, the username. It references an entry of User table in the database.

- Offer, the offer which the user submits. It is an integer.

OfferTime, the date and time when the offer is submitted. The data type of this
attribute is String.

Response, the response of the offer. It is a Boolean value which indicate whether
the offer is accepted or not.

127

7 Case Study

Risk assessment

This feature is only accessible for authenticated users, so the functions of this feature
should be checked by an access control mechanism every time the function is called.
The boundary and user group for this part of the application is smaller than others. The
results of risks assessment are shown in Tables 7.7 and 7.8.

Itcration: Buying

Risk Assessment Description

Threat
Attacker uses SQL injection to modify the data stored in
the database.

The vulnerability is present when user input is either

Vulnerability
incorrectly filtered for string literal escape characters
embedded in SQL statements or user inputs are not
validated and thereby unexpectedly executed.

The worst consequence of this kind attack may cause the

Risk Evaluation
loss of confidentiality and integrity of information stored
in the database. Therefore, it may lead to serious impacts.
The risk is not acceptable at all.

The recommended mitigation is to create a temporary table
to store the initial data submitted by users, then the data in
the temporary table are updated later to the main table by
the database administrator or automated database programs.

Mitigation The contents of the temporary table can be subject to further

checks before they are uploaded to the permanent table.
This will protect the integrity of data because the database

administrator or automated programs are more trustable
than ordinary users.

Table 7.7: Risk Assessment I of Buying

Evaluate suggestions and re-clesign

The risk assessment suggests the application adopts database security mechanisms to
protect the integrity and confidentiality of data because the database solution for such
security problems is mature and reliable.

In this iteration, the application will write data into the database. So using a view is not
sufficient enough to mitigate the risks, but it is still a good choice to limit a user's access.

128

7.4 Development Process

<<moment>>
Buyer

Interests ", makes

<<description>> links <<thing>>
House I Offer

represents

<<thing>>
Property

Figure 7.13: Design of Buying

Iteration: Buying

Risk Assessment Description

Threat
Attacker may have chance to view other data stored in
the database.

The vulnerability is present when the application submits
Vulnerability an SQL query to the database. If the query is not validated,

it will leak some data to the user.

The worst consequence of this kind attack may cause the

Risk Evaluation
loss of confidentiality and integrity of information stored
in the database. Thus it may lead to serious impact.
The risk is not acceptable at all.

'Me suggested mitigation plans is to create a view or
Mitigation temporary table to store the information which are bound

to a buyer.

Table 7.8: Risk Assessment 11 of Buying

129

7 Case Study

<<moment>> <<thing>>
BII Offer

interests -*-ý makes I
recorded as

<<description>> links <<moment>>
House Offer Ternp

represents

<<thing>>
Property

Figure 7.14: Revised Design of Buying

To mitigate the risk in Table 7.7 and protect the data integrity, creating a temporary table
in the database is a cost-effective way.

The class Offer_Temp has same attributes as the class Offer. The new design is shown
in Figure 7.14.

Build by feature

The followings shows the code that insert an entry into table offer-temp.

The code also demonstrates how the application utilises the Java exception mecha-
nism to manage exceptions. The exception is commonly thrown by programs when
the "write" operation is executed, such as insert and update. When an exception is
caught, some information are printed in order to debug the program, but when it is re-
leased, a less informative set of data will be given. The database connection has already
been tested in previous iterations, so it is not re-tested problem in this iteration.

Security inspection

The case study has been incrementally built and deployed. When this iteration is com-
pleted, the entire application has been built. The task of security inspection at this time
is the entire system. The security expert tests all Web pages and links to ensure there is
no obvious security problem.

130

7.4 Development Process

Program 3 Program of Database Insertion

try

int update-count =
stmt. executeUpdate(IIINSERT INTO offer_temp

(user, offer, offertime) 11
" "VALUES("' + User. toString +
" offer + ". ill'
" rightNow. toString +

stmt. closeo;

catch(Exception e
//debug info

e. printStackTraceo;

finally
try con. closeo;
catch(SQLException e

//debug info

e. printStackTraceo;

Figure 7.15 is a screen shot of the latest WebScarab scan. The application is examined
by WebScarab to determine if there are possible injection attacks.

7.4.8 Evaluation of First Release

The evaluation of the first release is based on satisfaction of security requirements,
which are summarised before the development starts. The following will describe how
these security requirements are satisfied by the implementation of security features.

Input validation

The requirement of input validation is that all inputs of the application are validated.
The inputs from Internet users are criteria for search, username and password, and the
price of a user's offer. The validation mechanisms for these inputs are implemented
in relevant work packages. Some are implemented in client-side, for example using

131

7 Case Study

ID
109
- -

Path
ýDSSIQuery

Parametýrs
? Entitleme

Possible Injection XSS IC
1

RLF
171 ... 1

Cc ments i Scri0s
El

i 07
...

I I 1, JDMOuerf ? Entfleme I u Ll I El El i06 I VDSSfQuery ? Entfleme... 1: 1 El 1 1: 1 - - E-j El
105 1 VDSS/Queq ? Enttleme El I El El El T04 7

-
1 1 VDSSfOuerf ? Enbtleme... 1 ED 1-i El

103 1 1 VDSS/Querf ? EnUtleme... - ...
I Q

-
El - Ef- 11

102 1 1 WSSfQuerf ? EnHeme El ID 1
f

1 13 U,
101 ' dvloffer. jsp ? house=10
100

MSSIQuerf
? EnbUeme I D El

99 1 1 VDSSIQuerf ? EntiUeme 1 Q I F!
--

E)
98 ýDSSIQuery ? Enbteme ID 1 11 1 iI Q

-S
ý
- 97 ýDSSfQuery ? Entiteme... 1 11 El I I I ui M

96
-

WSSfOuery ? EntiVeme I E] El I 1 1 171 1-1 ý 57 - SSfQuerf ? EnbNeme Ll I El D I I I
94 1

...
WSSIQuery ? EnbUeme El i Li Li

93
-

ýDSSfQuery ? Entteme El El El El ý2
- -

ý. A. VSUbMjt ? house=l O.
A ., El El i l FDMQuery ? Entgeme L-i 11 El LI- El

ýo J
.-

VDSSfQuery ? EntjUemý 1: 1 1 1 E] E-1 n-
89 1

...
VDSSIQuery ? EnbUeme... El Ll El I FA 1 :1

88 1
...

VDS Query ? EntUeme I El 1 :1 1 E-i El
87 VDGS Query ? EnbVeme El Il i L-1 D El
6 886 6 VDSSIQuerf ? EntUeme El I p EJ UI Ll 1

85 8 85 1 VDSSIQue! y ? EntUeme Li I L Li I I F-I I Ll 1

Figure 7.15: Screen Shot of WebScarab Scan

HTML input lists, such as the inputs of bedroom number, price range, so that user
can only select pre-defined (and valid) values (see Figure 7.16). Another example of
client-side input validation is the validation of textual values by using Java script to
checks the invalid characters in a textual string. Some input validation mechanisms
are implemented server-side too. For example, the program uses several pre-defined
SQL query templates which can reduce the risk that the system is attacked by SQL
injections.

In addition, there is another injection attack, the HTTP injection attack (which is that
the Internet user types a URL address in the Internet browser directly or generates a fake
HTTP request which will bypass the application function and the validation mechanism
on the client side). In the case study, the application only responds to the HTTP requests
by "POST" to method because HTTP injection attack via POST method is much harder
to carry out than the attack via GET method. And the application checks some hidden
value from client to protect the system against HTTP POST injection attack.

At end of development, the application is scanned by WebScarab which shows that there
is no possible injection attack in the application.

101n HTML, the developers can specify two different submission methods for a form: "GET" and
ITOST'. The major difference is: the former means that form data is to be encoded (by a browser)
into a URL (visible to users) while the latter means that the form data is to appear within a message
body (invisible to users).

132

7.4 Development Process

ID
log

Path
SSJQuerf

Paramet6rs
? Entileme...

Possible Injection

11
XSS

34
Cl LF Com ments L_

El
Sc

1
rip-Lý'-
:1

107 J pSSfQuery ? Enbtleme... El 1
El rl

106 1 VDSSfQuery ? Enttleme... El I El
105 1 1 VDSSIQueri ? Entitleme El El I li
104 1 1 ýDssfouerf ? Entitleme 1: 1 [: 1

-
Q

- - -
F-I 1 1: 1

103 1 1 MSIQueri ? Enfitleme... El
102 1 1 VDSSfQuerf ? Entilleme Q 1: 1 1 1 El E 1101

J -.. II
VAdvfof'er. jsp ? house=10-.. I ...

I I L-1 0 El E] El
1100 1 -11

VDSSIQuerf ? Enbtleme 1
-1 1 u I

r

El El EJ
99 1 11 VDSSIQuerf ? Entitleme El El I 0 Ll El
98 A)SSIQuerf ? Entilleme. L ... L El [I El 11 1 171
97 YDSSfauerf ? Entilleme -

fDSSfouerf ? Entilleme
M- 6-SSfCuerf ? Entlieme... I ... I El El

4
11d

94 MSSIQuerf ? Enttleme El El El]
93 11 SDSSJQuery ? Enbtlerný El El

ý
El

.1.
F lAdyfsubmiLj ? house=10... ...

Ll C T I

A)SSIQuery ? Entitleme u
90 fDSSIGuery I 11- ýJ . ? Ert El

L 89 SDSSIGuery ? En tleme
-

El
88 IDSSIQuery ? Entitleme
F7-

- A)SSIQuery ? Entitleme 0 El F F
JDSSIQue ? Entitleme

I
D 1: 1

=1
j.... OSSJOuety ? Enbtleme... i Li

--
U

-
El

Figure 7.16: Screen Shot of Search Inputs

Authentication

The requirement of authentication is that the authentication mechanism should be strong
enough so that the user cannot bypass or break it easily. The case study adopts the most
common authentication mechanism - passwords. The authentication mechanism is

also integrated with Apache Tomcat which will increase the strength of the authentica-
tion mechanism. In addition, the application also successfully implements the expiration
of the authentication token (see Iteration II). The usability and security are balanced by

only requiring password authentication on sensitive user operations (Le, the user can
search the properties without logging on).

Sensitive data

The confidentiality and integrity of sensitive data should be protected. In the case study,
the sensitive data are client information and offers on properties. These data are stored
in the database. The confidentiality of sensitive data of properties are protected by

adopting database views. And the integrity of these data are protected by using a tem-

porary table in the database. In addition, some mechanisms, such as implementation

of session and exception management, are also helpful to protect sensitive data. The

successful implementations of security protections ensure the satisfaction of security
requirements.

133

7 Case Study

Session management

A session is a special object in a Web application. It is a common means to transmit
some data between clients and the server so that there are some sensitive data stored in
the session. The protection of sessions is supported by the Apache Tomcat application
server. In the case study, the application is designed and implemented to manage the
contents of a session, including authentication tokens, token expiration, and navigation
information.

Audit

In the case study, the user's authentication and offer's submission are recorded in a log.
The auditing function is provided by the database.

Exception management

It is required that the exceptions of the application are managed well so that the confi-
dentiality and integrity of data are not threatened. In the case study, there are two kinds
of exceptions: database operation exception, such as exception of database connection,
insertion; and HTTP exception, such as wrong URL address. These database exceptions
are caught by the application; and there is a separate page to display the error messages
to the Internet user. These implementations ensure that the user cannot get any sensitive
data from exception messages.

General logic error

The application is generally tested by the author. The author browses pages, clicks
links, and types in arbitrary text in the input boxes. No logic errors were found in the
application. The design and code inspection are performed to ensure the design and
implementation are right. The security review also helps to correct the problems of
general logic error.

In summary, the security protections designed and implemented in the application sat-
isfies the security requirements. The application which is the product of sFDD is suffi-
ciently secure to satisfy the requirements.

134

7.5 A New Requirement

7.5 A New Requirement

In order to help to evaluate the agility of sFDD, a new requirement is now introduced,
after the application has been built. Tolerance to and acceptance of new requirements
is considered as an important part of agile development. The application now requires
to be able to share the users' information with other estate agencies. This means that
there is a third-party system to deal with users' profiles and authentication. In the case
study, a new authentication function is handled in a Web service and the existing appli-
cation communicates with the Web service via SOAP messages". In the new system,
the authentication is done by a Web service. It makes the authentication service more
independent, service-oriented which is a trend of new Web application.

7.5.1 Response to Change

Introducing a new functional requirement may affect existing functionality as well as
satisfaction of security requirements. When introducing a new functional requirement,
the following shall be checked:

Whether there is any fundamental change of security requirements and the ex-
isting security architecture. The Security architecture is built on the security re-
quirements and an overall model of functionality. The change can be fundamental
or substantial to the security architecture. If the change is fundamental to the se-
curity architecture, for example, if the access control requirement changes from
discretionary access control (DAQ to mandatory access control (MAC), the se-
curity architecture may be rebuilt; therefore, the development process may restart
from the very beginning, and re-design security architecture.

After the check, the developer has to estimate the workload for the new change, and
assign a new iteration to implement the change. In the case study, the new requirement
does not change the business logic but introduces a new Web service replacing an ex-
isting function block. In this case, the developer rebuilds the authentication service
and then integrates it into the existing system. The development process of the new
authentication service is the same as following the steps of sFDD.

From a Web application to a Web service, the business logic behind the functionality
is not changed, but the interface changes. Considering security, a Web service is self-
contained. That means it handles the internal security for its own, such as access control.
The application who calls the Web service only has to focus on the interface. The
development process for the new authentication service is straightforward. The case
study focuses on how to evaluate the change, and what to plan for the new development
iteration, as these are new features of sFDD.

"Introduction of SOAP at httpJ/en. wikipedia. orgAvikVSOAP

135

7 Case Study

7.5.2 New Feature

Considering the new requirement, the existing features of the application, Searching and
Buying, have not been affected much. The feature Authentication is now replaced by a
Web service. The new architecture of the system is similar, as shown in Figure 7.17.

Application

Searching 1> Buying ! 14 11 Authentication

Database Secudty Authentication FFP Sesslop Auditin
Realm arnagemen

> Supportive relation

Figure 7.17: New Architecture

Compared with the old architecture (Figure 7.6), the difference in the new architec-
ture is that the system boundary is smaller. Meanwhile, some supporting relations are
changed too. In the new architecture, there is no fundamental conflict with the existing
application when introducing this requirement because the change from a function of
Web application to a Web service is not a fundamental change to the architecture. The
supporting relationships are still existing, unchanged.

Analysis of new feature

An analysis of the change is also very helpful when considering an updated plan for
new development. In the old architecture, the supportive relations within the appli-
cation boundary can be mapped to URL links. But Figure 7.17 highlights a changed
relation, from the new authentication Web service to the Buying feature. One signifi-
cant characteristic of Web service is loose coupling. It is very easy to integrate a Web
service to an existing application in Web environment. In the case study, the job took a
week.

Design of new feature

The Web service for authentication has defined an interface: it takes a username and
password as parameters and returns a text string which is the authentication token. If
the authentication fails, the returned string is null.

136

7.5 A New Requirement

In the case study, the Web application invokes the function of the authentication Web
service. So there is still a block in the design which provides functions to handle the
communication with authentication Web service and the application. The new design
looks similar to the original design at a high level of abstraction.

Risk assessment of new feature

Now that authentication is provided by an external service, communications must be
secured. This inevitably means that communications must be encrypted (and so there is
a need for encryption functionality). For illustrative reasons (see below) the author has
chosen the Data Encryption Standard (DES), but any almost any reputable block cipher
would suffice. Since communications must be encrypted issues regarding key manage-
ment arise. Keys must have and maintain appropriate confidentiality and integrity. The
author must ensure that keys are appropriately distributed - only the application and
the web service are supplied with the shared key - requiring the choice of some dis-
tribution protocol. (Depending on the affiliations of the two parties this could even be
largely manual, though many on-line protocols exist too.)

The key must be stored appropriately at the two hosts. This raises issues regarding
how accessible the key is. Is it stored in a tamperproof environment? Is direct acccess
appropriately policed? Similarly, actual use of the key must not provide avenues for
compromise. Are there possibilities of using covert timing channels to break the key?
Can the key be overused so that the sheer volume of examples of encryption allows
cryptanalysis? (This introduces the need for periodic key change, which must be po-
liced.) Is the actual cryptosystern. likely to be broken soon? The choice of DES here is
deliberately instructive.

In fact DES is declining in popularity with the emergence of the Advanced Encryption
Standard (AES). DES is beginning to come within brute force range. Several success-
ful challenge attacks have been carried out on DES, mostly using massive distributed
computational resources or else special purpose hardware. With the emergence of very
cheap and widely available programmable hardware, it is likely that DES would need to
be replaced. This illustrates that the system must be periodically reassessed with respect
to security. It will become just too susceptible to easy attack.

The author will not pursue this avenue further. The author simply notes that the dis-
tribution of the authentication service has non-trivial knock-on effects and that a thor-
ough analysis of any particular key distribution and management scheme would be re-
quired.

137

7 Case Study

Implementation of new feature

The implementation of encryption is a Java class. The implementation is listed in fol-
lowings:

public class DesEncrypter
Cipher ecipher;
Cipher dcipher;

DesEncrypter(SecretKey key)
try I

ecipher = Cipher. getInstance ("DES");
dcipher = Cipher. getInstance ("DES");
ecipher. init (Cipher. ENCRYPT_MODE, key);
dcipher. init (Cipher. DECRYPT_MODE, key);

) catch (javax. crypto. NoSuchPaddingException e) I
) catch (java. security NoSuchAlgorithmException e)
) catch (java. security. InvalidKeyException e)

public String encrypt(String str)
try I

H Encode the string into bytes using utf -8
bytefl utf8 = str. getBytes("UTF8");

H Encrypt
byte[] enc = ecipher. doFinal(utf8);

H Encode bytes to base64 to get a string
return new sun. misc. BASE64Encodero. encode(enc);

catch (javax. crypto. BadPaddingExceptione) j
catch (IllegalBlockSizeException e) f
catch (UnsupportedEncodingException e)
catch (java. io. IOException e)

return null;

public String decrypt(String str)
try (

H Decode base64 to get bytes
byte[] dec =new sun. misc. BASE64Decodero. decodeBuffer(str);

H Decrypt
byte[] utf8 = dcipher. doFinal(dec);

H Decode using, utf -8 C,

138

7.6 Evaluation of Case Study Against Security Criteria

return new String (utf8, "UTFS");
catch (javax. crypto. BadPaddingExceptione)
catch (IllegalBlockSizeException e) (
catch (UnsupportedEncodingExceptione)
catch (java. io. IOExceptione) J

return null;

When the implementation completes, the source codes are inspected and promoted to
build on the existing system.

7.6 Evaluation of Case Study Against Security Criteria

It has been mentioned several times that secure FDD is not designed to develop any
high integrity system. Thus, the developer may not take any security evaluation criteria
into account when analysing security requirements. But it interests the author what the
result is if a Web application developed in sFDD project is evaluated against any security
criteria (for example, TCSEQ and what the extra security requirements are in order to
achieve a security class (for example, class C in TCSEQ. The purpose of evaluating
the case study against an international security evaluation criteria is to give the user of
sFDD a flavour of to what degree of security a Web application can be developed by
following the process of sFDD.

7.6.1 Security Evaluation

Security evaluation aims to not only evaluate the security level of the application, but
also to evaluate the development process of the application. Normally, security evalu-
ation of a system is to classify the system's security level using security criteria. The
case study in this thesis is a small size Web application, operated in a closed network
environment. The security development for case study is fully based on understanding
of industry guidance [2,65]. The security requirements are also from these industry
guidance.

Because there is no plan to evaluate the application against security criteria, the devel-
oper has no idea which security level the application can achieve. In Orange book [8],
Division C, Discretionary Protection, is the entry level of a secure system. The follow-
ing paragraphs give a brief introduction of Division C in Orange book [8].

139

7 Case Study

Brief introduction of Level C

In the Orange Book [8], the security categories range from D (Minimal Protection) to A
(Verified Protection). Division C is an entry level of security. There are two classes in
this division: Class CI -Discretionary Security Protection and Class C2 - Controlled
Access Protection.

C1 -Discretionary Security Protection In the Orange book, class CI defines follow-
ing requirements:

" Discretionary Access Control. The evaluation target shall define and control as-
sess control between named users and name objects in the system. The enforce-
ment mechanism shall allow users to specify and control sharing of those objects
by named individuals or defined group or both.

" Identification and Authentication. The evaluation target shall require users to
identify themselves to it before beginning to perform any other actions that the
system is expected to mediate. Furthermore, the system shall use a protected
mechanism to authenticate the user's identity. The system shall protect authenti-
cation data so that it cannot be accessed by any unauthorised user.

" System Architecture. The system shall maintain a domain for its own execution
protects it from external interference or tampering. Resources controlled by the
system may be a defined subset of the subjects and objects in an environment.

" System Integrity. Hardware and/or software features shall be provided that can
be used to periodically validate the correct operation of the on-site hardware and
firmware elements of the system.

" Security Testing. The security mechanisms of the entire system shall be tested
and found to work as claimed in the system documentation. Testing shall be done
to assure that there are no obvious ways for an unauthorised user to bypass or
otherwise defeat the security protection mechanisms of the system.

" Security Features User's Guide. A single summary, chapter, or manual in user
documentation shall describe the protection mechanisms provided by the system,
guidelines on their use, and how they interact with one another.

" Trusted Facility Manual. A manual addressed to the administrator of the entire
System shall present cautions about functions and privileges that should be con-
trolled when running a secure facility.

" Test Document. The system developer shall provide to the evaluators a document
that describes the test plan, test procedures that show how the the security mech-
anisms were tested, and results of the security mechanisms' functional testing.

" Design Documentation. Documentation shall be available that provides a descrip-
tion of the manufacturer's philosophy of protection and an explanation of how
this philosophy is translated into the system. If the system is composed of distinct
modules, the interfaces between these modules shall be described.

140

7.6 Evaluation of Case Study Against Security Criteria

C2 - Controlled Access Protection System assigned class C2 enforce a more finely
grained discretionary access control than CI system. The following are minimal re-
quirements:

Discretionary Access Control. The requirements of class CI is the basic require-
ments of class C2. In addition, the target system shall provide controls to limit
propagation of access rights. The discretionary access control mechanism shall,
either by explicit user action or by default, provide that objects are protected from
unauthorised access. These access controls shall be capable of including or ex-
cluding access to the granularity of a single user. Access permission to an object
by users not already possessing access permission shall only be assigned by au-
thorised users.
Object Reuse. All authorisations to the information contained within a storage
object shall be revoked prior to initial assignment, allocation or reallocation to
a subject from the pool of unused storage objects. No information, including
encrypted representations of information, produced -by a prior subject's actions
is to be available to any subject that obtains access to an object that has been
released back to the system.
Identification and Authentication. In addition to the requirements of class C 1, the
target system shall be able to enforce individual accountability by providing the
capability to uniquely identify each individual user. The target shall also provide
the capability of associating this identity with all auditable actions taken by that
individual.

Audit. The evaluation target shall be able to create, maintain, and protect from
modification or unauthorised access or destruction an audit trail of accesses to
the objects it protects. The audit data shall be protected by the system so that
read access to it is limited to those who are authorised for audit data. The system
shall be able to record the following types of events: use of identification and au-
thentication mechanisms, introduction or objects into a user's address space (e. g.,
file open, program initiation), deletion of objects, and actions taken by computer
operators and system administrators and/or system security officers, and other se-
curity relevant events. For each recorded event, the audit record shall identify:
date and time of the event, user, type of event, and success or failure of the event.
For identification/authentication events the origin of request (e. g., terminal ID)
shall be included in the audit record. For events that introduce an object into a
user's address space and for object deletion events the audit record shall include
the name of the object. The system administrator shall be able to selectively audit
the actions of any one or more users based on individual identity.

" System Architecture. In addition to the requirements of class C I, the system shall
isolate the resources to be protected so that they are subject to the access control
and auditing requirements.

" System Integrity. It is same as in class CL

" Security Testing. In addition to the requirements of class Cl, testing shall also
include a search for obvious flaws that would allow violation of resource isolation,

141

7 Case Study

or that would permit unauthorised access to the audit or authentication data.

" Security Feature User's Guide. It is same as class CL

" Trusted Facility Manual. In addition to the requirements of class Cl, the proce-
dures for examining and maintaining the audit files as well as the detailed audit
record structure for each type of audit event shall be given.

" Test Documentation. Same as in class Cl.

" Design Documentation. Same as class Cl.

In summary, the security requirements of the classes in Division C are compared in
Table 7.9.

In Table 7.9, three types of criteria may be present for each requirement. Each will be
preceded by the word: NEW, CHG, or ADD to indicate the following:

- NEW: New criteria appears since this class and higher classes.

- CHG: The criteria have appeared in a lower class but are changed for this class.

ADD: The criteria have not been required for any lower class, and are added in
this class to the previously stated criteria for this requirement.

Meanwhile, two abbreviations are used as follows:

- NR: (No Requirement) This requirement is not included in this class.

NAR: (No Additional Requirements) This requirement does not change from the
previous class.

Table 7.9 clearly shows that the security requirement changes from class CI to class
C2 are that: object reuse and audit are new in class C2; there are something addi-
tional about identification and authentication, security architecture, security testing, and
trusted facility manual; there are something added and changed about access control but
the fundamental mechanism is still discretionary access control. Next, there will be an
evaluation of the case study against these two classes.

Security Evaluation

'Ile security evaluation for the estate agent case study is straightforward, focusing on
examining whether these security requirements are satisfied in the application. The
evaluation is an attempt to give the users of sFDD method a flavour of how to accomplish
this.

142

7.6 Evaluation of Case Study Against Security Criteria

z z z z z z z z z
Z

En

Z

0

C-)

0)

0

as

ý a3

ýs

C-)

-ý

=

>1

-r., Eý

Z

:3

cn

r4
ýD

ý,

=

r.

Cýs

rn

E
=

,

0

-;;

.2
2: 1
.

CA

cz

CD

E
2

c

0

E

cr

9

143

7 Case Study

C1 - Discretionary Security Protection The first step is to check the application
against class Cl.

" Discretionary Access Control
Access control is in the list of initial security requirements (Le, some Web pages
are only accessible to authenticated user). The information for these users are
stored in a database table which only an administrator can modify. The Internet

user cannot browse or edit any information on it. This access control mechanism
is stronger than discretionary access control because only an administrator has

rights to specify and control the access list.

" Identification and Authentication
The application developed in the case study does implement a basic authentication
mechanism (Le, a pair of username and password). The user's information is
stored in the database which can only be accessed by the administrator.

" System Architecture
The application does have an architecture which is produced at the early stage
of the development process. However the architecture is not as detailed as that
required by class CI because it requires that the objects (Le, resources) should be
defined, but the architecture of the application only defines the modules, rather
than detailed assets.

" System Integrity
In the case study, the problems encountered in development are key concerns. The
periodical integrity check is done during the operation. So this requirement is not
applicable.

" Security Testing
Testing is not fully covered in sFDD. But by doing security inspection at the end
of each iteration, the developer at least is sure that there are no obvious way for
an unauthorised user to bypass the authentication or defeat the security protection
mechanisms (e. g, database security mechanisms).

" Documentation
Class C1 requires four types of documents: security features user's guide, trusted
facility menu, test document, and design document. In the case study, the related
software (or systems), such as Apache Tomcat, MySQL, are all documented very
well. The documentation of security features used in the application can be found
in these documents. In sFDD, there is no requirement of testing documentation.
But there are several design documents which specify the system with detail.

In summary, the application satisfies most of these requirements. It fails the require-
ments of periodical integrity check because this is out of the scope for the method.
About the documentation, there is no extra requirements for sFDD because sFDD also
requires design documents, and others are provided by other organisations.

144

7.6 Evaluation of Case Study Against Security Criteria

C2 - Controlled Access Protection

Discretionary Access Control
In the application, there are only two kinds of users: Internet user who does not
sign in the system so can only have access to the function of searching; and au-
thenticated user who have already signed in the system and can have an access to
all functions of the application. Therefore the access permission management is

not complex, and only controlled by administrator.

" Object Reuse
All objects during the operation of the application, including authentication to-
kens, database query, cannot be reused at all. The only object reused is the
database connection for the sake of performance. But the access control of database
is based on role based access control mechanism which is separated in the ap-
plication (i. e, there are two roles created for the database connection from the
application).

" Identification and Authentication
The entire system (especially, the database) provides a function to enforce indi-
vidual accountability and record all auditable actions by that individual.

" Audit
The audit is the initial requirements for some iterations of the application. The
system has implemented the function to record all auditable operations of the
system.

" System Architecture
Like the discussion in Class Cl, the application has an architecture but is less
detailed than what is required in the criteria.

" System Integrity
Like the discussion in Class Cl, the requirements are not applicable because the
development of the application, rather than the whole life-cycle, is considered in
the case study.

" Security Testing
The testing of the application is incomplete because sFDD does not fully cover
the stage of testing.
Documentation
Like the discussion in Class Cl, the development does not provide as much as
documents required by the security evaluation criteria. Some of required docu-
ments can be found in the documents provided by supported software, such as
Apache Tomcat, MySQL, and Java language reference.

In summary, the application and its development satisfies a few requirements of class
C2. The application partially satisfies the two "new" requirements of class C2: object
reuse and audit. They are not fully satisfied because of the trade-off of performance and
the nature of the application. Another obvious unsatisfied element is security testing.
Security testing delivers important evidence of security assurance. Secure FDD address

145

7 Case Study

security inspection during the development stage, but more rigours testing is needed if
evaluated against class C2.

Conclusion of security evaluation

The application developed in the case study has met most requirements of class C I; and
a few requirements of class C2, for example, access control. Assessing the reasons of
why some requirements are not satisfied, the following are addressed:

The development method (Le, sFDD) does not cover the full life-cycle of an in-
formation system. Security is a property crossing all stages: from initialisation
to final disposal. Some requirements are not met because of the lack of life-cYcle
coverage, e. g, a system integrity check.

Agile methods encourage a style of development with less up-front design and
less documentation. But a security development process requires a comprehen-
sive plan (Le, detailed architecture). Some requirements are not met because of
the lack of details in the architecture, e. g, system architecture. If it is important
to meet these requirements, more detail should be added (at the cost of loss of
agility).

It is very important to address in the security evaluation that the development of the case
study does not take security evaluation criteria into account at the start of the project (Le,
security requirements). Its security requirements and security considerations come from
industry guidance [65]. It has already been illustrated that all initial security require-
ments have been met in the application. The evaluation against Orange Book [8] is more
formal and structured than the checklist approach of security requirement eliciting.

7.6.2 Agility Evaluation

Secure FDD needs to be evaluated against agile development principles because it is
important to know whether secure FDD still has the agility benefits of plain FDD. Un-
like security evaluation, an agility evaluation is purely about the development process.
The development of the case study follows the steps of secure FDD. So far, there is not
a widely accepted set of metrics to evaluate the agility of a software process. In study-
ing the literature on agile software development [11,131,133,144,145], the common
characteristics of an Agile method are that it is :

incremental (small software releases, with rapid cycles),

2. cooperative (customers and developers working constantly together with close
communication),

146

7.7 Conclusion

3. straightforward (the method itself is easy to learn, to modify, and well docu-
mented),

4. adaptive (able to make last minute changes)

Except for the second bullet (cooperative), the case study has demonstrated that the
sFDD process is an incremental, straightforward, and adaptive method. The thesis has
not demonstrated that it is cooperative, but nor has it shown in any way that it is not.
The results have already shown that sFDD also has other agile characteristics, namely
responsiveness to change, and balancing flexibility and structure, as now discussed.

Balancing flexibility and structure

Building an overall architecture and planning in advance are the best ways to balance
flexibility and structure. In the case study, the system is built within a pre-defined ar-
chitecture so that iterations of development are planned. The case study demonstrates
that the overall architecture provides such a flexibility for analysing and planning new
development activities.

Conclusion of agility evaluation

The development of the case study demonstrated some advantages of the agility of
sFDD. In another words, secure FDD is an incremental and adaptive way to build a
system, and the method itself is straightforward.

Qualitative evaluation, not quantitative evaluation

Qualitative evaluation is a good starting point to evaluate a agile development process,
but quantitative research can provide much stronger evidences. In the case study, the
quantitative measurements (Le, software metrics) are not considered in the research.
Therefore, practical figures cannot easily be collected and analysed.

7.7 Conclusion

This chapter described the development process of the case study, a Web application for
an estate agency. The development followed the steps of secure FDD. By focusing on
the design and risk assessment during the development, this chapter gives a flavour of
how to apply secure FDD.

147

7 Case Study

Secure FDD has three distinct characteristics: 1) it has an explicit and straightforward
process; 2) it builds overall models in advance; 3) and it considers the security consid-
erations (e. g, security architecture, requirements) up-front. The case study showed how
these characteristics benefit security development.

The case study is a non-critical system. With making use of technology that has been
shown in the case study, such as WebScarab and Java security features, the application
built in the case study was checked against the list based on the OWASP Guide [65].
But in order to give more discussion of the security, the application was evaluated more
formally than the check-list approach, against TCSEC [8]. The attempt of this security
evaluation suggests that the application which is built following sFDD process may
achieve class C1 of the TCSEC [8]. But that may not be conclusive because security
evaluation criteria are not considered at the beginning of the project. To evaluate the
system security against these security criteria properly, a fon-nal process which is defined
in these criteria has to be followed. The agility evaluation shows that the development
process remains incremental and adaptive.

Several things have to be concluded. Firstly, features are important elements in secure
FDD. The size of a feature depends on many factors, including the complexity of the
application, the experience of developers, etc. Secondly, during the development pro-
cess, especially iterative development, risk assessment plays an important role to refine
the security requirement and ensure the design and implementation. Last but not least,
the overall architecture is also important in secure FDD, not only to specify the security
requirements but also to plan the iterative development. It is the key to whole project's
success.

Agile software development and security are both broad domains. To study the inte-
gration of them is a challenge. The next chapter will discuss the limitations of the
research and the case study in order to give the readers a comprehensive overview of
this research.

148

8 Limitations of the Case Study and
Research

The previous chapters described the approach taken to combine security and agile de-
velopment and demonstrated the development process with a case study. In this chapter,
the limitations of the case study and the research will be discussed in order to give the
readers a comprehensive view of the research.

8.1 Domain of Agile Software Development

The research is about the integration of agile and security software development. Se-
curity engineering is mature compared with agile development. But what really is new
about agile development? There is a myth that agile development is novel because it
is iterative. Actually, iterative development was considered important to development
at least 30 years ago, for example as discussed by Boehm [164] in 1988. Then what is
agile development about?

Firstly, agile development is more of a philosophy than a method. It is a set of principles
that exists in the mind of developers and guides their development activities.

Secondly, agile development is not only about technical ideas, such as feature driven,
test driven, user stories, refactoring and so on. None of these ideas would have created
a revolution on their own. Agile development consists of a range of very practical
development activities. These practices may have been existed separately for many
years, but it is the agile approach that selects them and makes them work together in a
new spirit.

Last but not least, agile software is about communication, people, and a team, about how
to manage people, how to make decisions. These issues belonging to social engineering.
The mental principle, techniques, and the social engineering are the three elements of
agile software development; without any one of them, an approach will not be agile.
Therefore, agile software development is a broad domain.

In Chapter 2, the review shows that security engineering is also a broad domain. It also
consists of policy, techniques, and, again, issues from social engineering. Integrating

149

8 Limitations of the Case Study and Research

two such broad domains, there is a large area of intersection, but also areas of incom-
patibility to overcome. The research presented in this thesis covers only part of the
whole picture. There are a lot of issues that the research does not touch, for example the
issues of social engineering are not considered to any extent in the research.

The following sections discuss several limitations which directly effect the outcomes of
the research.

8.2 Limitations Related to Size of a System

The size of a system to be developed is one of critical factors in the selection of a de-
velopment method. There is no direct evidence to show how agile methods are applied
in various sizes of system, but Ambler [5] gives some figures about applying agile tech-
niques on projects with various sizes of development team. An assumption is made that
a large-scale systems development needs a larger development team. For example, the
chart in Figure 8.1 shows how the proportion of successful agile development projects
reduces as team size increases.

Success rate (succeeded/attempted) %

93.8%
81.8%
(135/165)

(135/144) 81.1%
(73/90) 73.2%

(3
rO/41)

54.5% 50% -1 (6/11) (3/6) 40%
F-1 r----l (2/5)

Team size
(people)

1-5 6-10 11-20 21-50 51-100 101-200 201+

Figure 8.1: Success of Agile Practices on Various Projects (figures from [5])

From the chart, there are two interesting observations. First, the majority of organisa-
tions surveyed were applying agile techniques with a team of 10 or fewer people, with
relatively few larger (>50 people) projects. Second, the organisations surveyed reported
greater success with small teams (smaller projects) than larger ones. A partial explana-
tion of this trend is that, the bigger the team, the harder it is to succeed, regardless of the
development method. The effect may be exacerbated for agile developments - much of
the agile literature focuses on collaboration and communication.

Agile software development, in general software engineering, is an art of practice. The
figures in figure 8.1 suggests that organisations enthusiastically apply agile techniques
on smaller projects. There are fewer agile attempts at larger projects. This reflects the

150

8.2 Limitations Related to Size of a System

reality of the agile development approach: its application to large-scale systems is an
ongoing topic of research, and the findings from research and practice on larger-scale
projects are far from conclusive.

The state of the art of agile research and practice limits the research, and especially the
case study, presented in this thesis:

1. The object of the research is small applications and the case study is small too.

2. The changes introduced in the case study are small.

The rest of this section considers these limitations.

8.2.1 Small Case Study

The research focuses on a small project because, as an agile approach, the scope of
use of plain FDD is limited. In relation to security, however, small systems should be
treated the same way as big systems of equivalent criticality; small systems also need
good defence in depth. Thus, the size of the case study system is not a problem for the
security aspect of the research.

The case study is about developing a Web application of an online estate agency origi-
nally comprising three features. The case study illustrates the use of the sFDD approach
in developing a Web application; it shows how sFDD exploits best practice, namely do-
main object modelling, security architecture modelling, developing by features, inspec-
tions, security risk analysis, regular integration, and visibility of progress and result.

Many problems of larger-scale systems development are not present in the case study,
although some of them have been briefly (preliminarily) investigated. For example, a
system with a complex security architecture is difficult to decompose into features.

As reviewed in Chapters 2 and 3, a secure system should have a layered architecture
of security protections. Application security is a challenge if undertaken without any
considerations of other layers such as the operating system. This means that decompos-
ing a system in sFDD is not as easy as in plain FDD. Furthen-nore, sometimes an sFDD
development iteration may involve some tasks other than software development, for ex-
ample implementing network security mechanisms. This means that a single sFDD fea-
ture may consist of several sub-features, and need to be built in several iterations. For
example, implementing a database security mechanism may involve many functional
features, and thus require d number of iterations.

Another issue that is at least partly related to the size of the case study is the quality of
security architecture modelling. Security architecture is important in sFDD because it
outlines the dependencies of security mechanisms and decides development priorities.

151

8 Limitations of the Case Study and Research

sFDD includes an inspection of the architecture design. In a small project, such as the
case study, the inspection is relatively straightforward because the security architecture
and security requirements are not very complex. In a larger or more complicated project,
systematic methods would be needed to verify the model against the requirements, and
to guide the inspections. Such guidance is difficult to give, as the verification needs
and inspection will take different forrns in different projects. The issue of inspection
approaches is not addressed in plain FDD, either.

8.2.2 Small Changes

All agile methods claim that they embrace change, but none of them give a clear de-
scription of their ability in this area, and none consider the effectiveness of change
management - for example what kind and scale of changes can be handled within the
agile processes.

Actually, the study of software change and change impact analysis started much ear-
lier than the emergence of agile software development. Software changes can be large
or small, simple or complex, important or trivial - all of which influence the effort
needed to implement the changes. There are many papers about software changes and
their consequences, such as [165,166,167,168,169,1701. In such papers, changes are
classified in various ways, such as the type of change activity, the kinds of items be-
ing changed, or the motivation for the change. For example, Weiss [171] reported in
1985 that the most frequent type of software change is the unplanned design modifi-
cation; such modifications are usually made to optimise the program, to improve the
services the program offers to its users, or to clarify and improve the maintainability of
the software products.

The items subject to change may be requirements, designs or programs. For example,
typical requirements changes include changes to accommodate customer needs or wants
(demand for enhanced functionality), changes in operational environment, changes due
to obsolete or clarified requirements, and changes due to lessons learned from software
prototypes.

In relation to the motivation for change, Bonner [172] listed reasons for design changes
as: requirements changes, design trade-offs and elaboration, interface changes, scope
and visibility issues, performance, timing, sizing issues, and feedback from prototypes.
Bonner also summarised typical reasons for program changes, including bug fixes, al-
gorithm coding adjustments, arithmetic precision modifications, data structure mod-
ifications, initialisation modifications, control and sequence changes, and parameter
changes.

There are two major technical approaches to software impact analysis: dependency
analysis (such as [173,174,175]) and traceability analysis (such as [176,177]). These
complementary areas approach impact analysis from quite different perspectives and

152

8.2 Limitations Related to Size of a System

have their respective advantages in enhancing the potential for identifying software
change impact.

In the case study, there was no classification and analysis of the impact of the changes
introduced - no requirement of software impact analysis is included in either sFDD and
plain FDD. In general, software impact analysis is not mentioned in any agile literature.
This is a failing of agile approaches, and could be remedied by consulting the wide
ranging research on software change.

The change introduced in the case study is small at the highest level, but was shown to
have significant knock-on effects. The change in any system from local to distributed
service provision necessarily introduces significant changes in security functionality.
However the impact is fairly easily assessed. The change clearly leads to the introduc-
tion of encryption and the services needed to support it appropriately.

A framework of change analysis for sFDD is shown in Figure 8.2.

Change Analysis

Dependency analysis
of security protections
in new architecture

ependency changed'ýý. no

Minor changes in the plan
yes

I Major changes in the plan I
Consequentially
iterative development

Consequentially
iterative development

Figure 8.2: Framework of Change Analysis

The analysis process when there is a new requirement is straightforward: the developer
considers a new architecture; then analyses the dependency of security protections in
the new architecture; then compares the new and old architecture. If the dependency
relationships are not changed, there will be a minor change in the plan and following

153

8 Limitations of the Case Study and Research

development. But if there are significant changes in the dependency relationships, there
will be a major change in the plan and the development process will be revised.

8.3 Limitations Related to Team Work

Developing a software system is usually team work. The plain FDD [3] defines 15 roles
in the development team, including project manager, chief architect, development man-
ager, chief programmer, class owner, domain expert, domain manager, release manager,
language guru, code programmer, tool builder, system administrator, tester, deployer,
technical writer. In sFDD, roles are added for security aspects, such as security ex-
pert, security tester, and security manager. Therefore, there are at least 18 roles in the
development team, excluding the on-site customer.

Among the sFDD roles, more than one can be taken by each team member. For example,
the chief programmer can be a class owner and language guru. However some of the
roles really need to be taken by different people. For example, the tester and code
programmer should be different people for the reason of the quality of development
and testing. Ideally, security roles should not be shared, to maximise the oversight of
security in the team.

In this research, the author was the only person working on the case study, and thus
had to take all the team roles. This has a significant potential impact on the quality
of the application developed in the case study, and weakens the evaluation of the case
study. To attempt to mitigate the impact of this limitation, a trial security evaluation of
the application against TCSEC is given in Chapter 7. The aim of such a retrospective
evaluation (TCSEC guidelines were was not considered at the beginning of the case-
study development) is to use a set of accepted criteria to evaluate the quality of the
software product, and to identify missing requirements of sFDD.

8.4 Challenges From Other Layers

In Chapter 2 it is shown that security is an emergent properties in all layers in the system
architecture. Chapter 4 identified that plain FDD encourages developers to consider the
architecture of the system in advance. In fact, plain FDD suggests partitioning an appli-
cation into layers that include (some of) a User Interface layer (UI), a Problem Domain
(PD) ("business logic" layer), a System Interface (SI) layer and a Data Management
(DM) layer.

The research and the case study focus on the security development of the business logic,
which is in the PD layer. To build a secure system, it is not enough to consider only the

154

8.5 Lack of Coverage of Software Development Life Cycle

security of a particular layer. Issues from other layers impact on the security of the
PD layer. For example, it is well-known that flaws or bad designs in the UI can cause
security problems for application logic.

During the research and the development of case study, the challenges from other layers,
such as Ul, DM, are considered. They have not been emphasised in writing up the case
study because the focus of the research and the case study is the security of application,
and this is complicated enough.

8.5 Lack of Coverage of Software Development Life
Cycle

One identified shortcoming of plain FDD is that plain FDD focus on design and imple-
mentation; other approaches are needed to cover the full span of the SDLC. Figure 2.5 in
Chapter 2 relates common security artefacts to a SDLC. In sFDD, the goal is to integrate
one of them (architectural risk analysis, from the design part of the SDLC) into plain
FDD, in order to balance the security of the resultant software system and the agility
of the development process. This does not mean that other security artefacts could not
be integrated into an agile process, although artefacts such as security requirements and
penetration testing are outside of the scope of plain FDD.

Building a secure system is a project of system engineering. Only applying the sFDD
approach is not enough; it has to be used in the context of other supporting approaches
to cover the entire SDLC.

8.6 Conclusion

This chapter discussed some of the limitations of the research and the case study. Agile
software development and security are both wide research areas; they both raise issues
for information technology and social engineering. The research and the case study
only consider the information technology side of their integration. There are further
limitations, due to the broad domain of agile and security development; and the nature
of the research and limitation of agile process itself.

The next chapter presents an overall evaluation of the research presented in this thesis,
and provides indications for some interesting directions of future work.

155

156

Part III

Conclusion and Future Work

157

9 Evaluation of Research

The major contribution of this thesis is a development process that integrates security
and agile softivare development. The evaluation of itfocuses on the quality of this new
proposed process.

9.1 Framework of Research

As explained in Chapter 1, the research presented in this thesis was carried out following
three steps:

1. Find a suitable Agile method and set of security practices,

2. Study how to integrate them,

3. Demonstrate they work well.

The hypothesis of this thesis is that:

It is possible to develop an acceptably secure Web application by adopting sFDD
which is an agile method.

The previous chapters have already explained the process of the research and given an
example of how a Web application is developed using secure FDD. The major con-
tribution of this research is secure FDD, which is an integration of security and agile
development. The proposal for sFDD is based on a thorough analysis of the security
development and agile development. Secure FDD has three distinct characteristics: 1) it
has an explicit and straightforward process; 2) it builds overall models in advance; 3) it

considers the security concerns (e. g, security architecture, requirements) up front. The

case study supports the hypothesis: a Web application has been built using sFDD, and
has been shown to be secure enough (i. e, it satisfies all security requirements).

The key part of evaluation concerns an assessment of the quality of sFDD process. It

will come from two angles: agility and quality of the process.

159

9 Evaluation of Research

9.2 Discussion of Agility

The Manifesto for Agile Software Development [251 defines the fundamental principles
that an Agile method should support. It is the only accepted criteria to answer the
questions of what is an Agile method and what is not. The principles are defined to
satisfy value priorities. The values of agile software development are:

" Individuals and interactions, against heavyweight processes or tools

" Working software, against coniprehensive doctinzentation

" Customer collaboration, against closed-house developnient

" Responding to change, against strictlyfollowing a plan

The Manifesto for Agile Software Development says that there is more value in the
items on the left (in bold); the author has added comparisons on the right (in italic).

The following paragraphs assesses that the secure FDD method against the above four
values. This aims to show that sFDD embodies the values in the Manifesto, and is thus
an agile process.

- Individuals and interactions, against heavyweight processes or tools

The development of a software system involves team work. Although the roles
involved in a project of secure FDD were not demonstrated in detail, the roles
in a plain FDD project are applicable to secure FDD. Cooperativeness and good
communication are also encouraged in the development process. Secure FDD em-
phasises software architecture, but the architecture also focuses on the shape, not
the content of the system. Therefore, secure FDD is not a heavyweight process.
A tool, like FDDPMA, can be used in the project, but secure FDD does not rely
on automated tools. Secure FDD includes iterations and feedback in the process
(see Figure 6.1).

- Working software, against comprehensive documentation

Secure FDD does have up-front designing and modelling, but it also aims to de-
liver working releases quickly, normally every one to two weeks. A reasonable
amount of documentation is required in the process. Some documents, such as
overall models, architecture, timetables and risk assessment reports, are necessary
to keep the project monitored and running smoothly, and for satisfying security
requirements.

- Customer collaboration, against closed-house developitzent

The development of a secure FDD project is not a closed-house development pro-
cess. It encourages collaborations and interactions with customers, for example

160

9.3 Overall Quality of sFDD Process

security decision making and risk assessment judging. Again the importance of
customer involvement was not demonstrated in detail, but the basis of secure FDD
(Le, plain FDD) does directly address this issue, and nothing introduced in sFDD
changes this.

- Responding to change, against strictlyfollowing a plan

Secure FDD has up-front planning. However, the Agile Manifesto [25] does not
forbid an initial plan; it suggests that responding to change is more valuable than
strictly following a plan. Secure FDD considers the plan a required part of any
project. However, strictly following the plan without being able to adapt and
respond to change is a pattern for failure, and is certainly not part of sFDD. As
a result, secure FDD accepts changes of the plan. Any changes of the plan are
treated as new features to be built.

In short, the secure FDD method embodies all the values that an Agile method should,
according to the Agile Manifesto [25]. In conclusion, secure FDD can be categorised as
an Agile method.

9.3 Overall Quality of sFDD Process

[42] introduces seven requirements for a software development process, which are
effectiveness, maintainability, predictability, repeatability, quality, improvement,
and tracking. These seven factors are used to evaluate the overall quality of the sFDD
process.

" Effectiveness Effectiveness for a process means that the process helps to produce
the right product. The requirements of effectiveness for sFDD is 1) the sFDD
process helps to develop a working application (Le, the application satisfies all
the functional requirements); and 2) the sFDD process helps to develop a secure
application (Le, the application satisfies all security requirements). In the case
study, a Web application is built using sFDD process. The case study has al-
ready demonstrated that the product of the sFDD process is a working and secure
application. Therefore, the sFDD process is effective.

" Predictability Predictability for a process means the business value of the pro-
cess is predictable. A development plan is produced at the end of first stage of
sFDD process. In the plan, the deliverable of each development iteration has been
described clearly. So the product of each iteration is predictable.

" Maintainability Maintainability refers to how a process adapts to post-deployment
changes. The case study concretely demonstrates how sFDD process adapts to a
post-development change. However, the sFDD process only covers a short part
of the life-span of an information system. As such, maintainability is not easily
assessed for sFDD (nor FDD either).

161

9 Evaluation of Research

Repeatability Repeatability depends on the scope of sFDD adoption. In prac-
tice, sFDD is suitable for a project which is going to deliver small and non-high-
integrity application like the application developed in the case study. In this con-
text, and because of the precisely determined steps and tasks of sFDD, I argue
that sFDD is repeatable.
Quality Secure FDD does not fully cover the stage of software testing. But
I claim it improves security by considering it in advance. The case study has
demonstrated that it is feasible to integrate several security artefacts with an agile
software development process. Secure FDD is thus a systematic approach to agile
software development which emphasises the requirements of security. As such, I
consider it a high quality process in this domain.

Improvement A good software development approach should not be a rigid pro-
cess. It should have possibility for improvement, especially when advanced prin-
ciples or techniques emerge. Secure FDD has several steps of development which
define the contents (e. g, tasks) of the development work), rather than concrete
techniques to be adopted. For example, sFDD does not- define which technique
should be used in the step of security risk assessment. The developers can de-
cide on any particular technique. This leaves space for future improvement of the
process.
Tracking A good process is a traceable process; it is an essential requirement
of project management. The research of this thesis did not produce any tool for
secure FDD to support project management. Instead it customised a tool for plain
FDD. In sFDD, there are several milestones for project management. By using a
tool, the case study demonstrates that the process of sFDD is indeed traceable.

Overall sFDD is a quality software process because it meets many of key requirements.
But this does not means sFDD is perfect. There are several drawbacks of sFDD.

The software development life-cycle is not fully covered. It has been suggested
that security development should cover all phases of SDLC [18]. Plain FDD does
not cover the entire SDLC. Secure FDD is an integration based on plain FDD
so it cannot cover all phases of SDLC. But within the stages of SDLC that plain
FDD covers, sFDD introduces essential security activities to emphasise the impor-
tance of security, while attempting to not lose the values of an agile development
method.
No quantitative measurement. There is no quantitative measurement of how much
effort should be put in the front parts of the development process. Security de-
velopment (especially the approach of security evaluation criteria) needs compre-
hensive up-front analysis, but too much up-front analysis makes the process less
agile. Secure FDD thus aims to be in the middle of security development for crit-
ical systems (e. g, systems have to be evaluated against higher levels of security
evaluation criteria) and agile software development (e. g, extreme programming),
but there is yet no quantitative measurement to clarify how much up-front analysis
is needed.

162

10 Conclusions and Future Work

This chapter conchides how the workproposed in this thesis supports the thesis proposi-
tion, summarises the overall conclusions of the research and addresses some directions
forfitrther research.

10.1 Overall Conclusions

Overall, the objective of the research was to analyse the feasibility of adapting an Agile
software development method in order to improve Web application security. The work
presented here provides substantiation for this objective.

The novel contributions of this research are:

Analysis of conflicts between established risk assessment methods and Agile
methodologies;

Development of an Agile method for the purpose of building secure (Web) appli-
cations; more precisely an integration of standard FDD which explicitly considers
the security of the software system while maintaining the agility of the develop-
ment process producing the software system; and

Demonstration of the use of this adapted FDD method, and an overall evaluation
of the agility and quality of the method.

In the research, risk assessment is integrated into standard FDD sub-processes. It is
demonstrated that secure FDD is an Agile method because it embodies all the values of
an Agile method. By performing a risk assessment process before and during the de-
velopment iterations, the method can help to improve the security of the target software
system. There are therefore good reasons to believe that integrating security develop-
ment with an FDD process is a "rightfirst" step towards agile security engineering.

163

10 Conclusions and Future Work

10.2 Future Work

There are several potential courses for furthering or complementing the research re-
ported in this dissertation, some of which are listed below:

Automating the risk assessment process and achieving security to standard levels.
At the moment, the risk assessment process has to be done manually so far in
the method. Although the risk assessment is a model-driven process, it would be
helpful if there was a tool to help. In addition, security has been standardised
in several levels in most international security standards. Fully addressing these
standards in sFDD would be useful.
Targeting other Agile methodologies (e. g, XP). FDD was the focus of this re-
search because of its characteristics, particular up-front architecture. There are
many other established Agile methods, and the development method is selected
based on the nature of the project, such as the size of project, the familiarity of
developers etc. It would be useful to study the security artefacts in the develop-
ment process of other Agile methods, such as XP. Some preliminary work on this
in the domain of safety engineering has been carried out [178].

Applying the methodology to case studies of larger scope. The systems used for
the verification and validation of the methodology were intentionally selected to
be small in scope, as the focus has mostly been on the practicability of the ap-
proach. In order to test the scalability of the methodology, larger systems should
be considered for testing.

164

Part IV

Appendix

165

A Description of Use Case

Use Case Searching properties
Brief description This use case allows an Internet user to

browse properties.
Actor Internet User
Pre-condition User open an Internet browser, and point to

the Agency's home page. This page displays
several items that allow the user to select the
criteria of query.

Main Flow The use case begins when the User browses
the agency's Web site. The system waits the
user to select some options from the list, in-
cluding post code, how many bedrooms, the
range of the property price. Then the user
submits the criteria. The application will var-
ify the parameters and prepare the execution
of SQL query. When the query is executed
without any exceptions, the application send
the results back in a list.

Exceptions There are two kinds of possible exceptions:
HTTP exceptions and database exceptions.
The major HTTP exception will be the ex-
ception if the contents of HTML page are not
correct. That may be because the results of
database operations are not parsed correctly.
The database exceptions are occured when
there is something wrong in SQL sentenses
or database.

Security The inputs of Internet users are validated.
Requirements The Internet users can only have an access

of some information of properties, including
the description, address, asking price, and the
number of bedrooms.

Table A. 1: Use case: Searching properties

167

A Description of Use Case

Use Case User Authentication
Brief description This use case requests user's username and

password, then authenticates user.
Actor Internet User
Pre-condition User's browser points to SignIn page.
Main Flow This use case begins when a user types in his

usemame and password, then submits these
to the server. The application checks the user-
name and password: if they are matched with
the record in the database, the application
sends back a authentication token to user; and
the application redirects the user's request to
previous page.

Exceptions There are two kinds of exceptions:

if the usemame/password is not
matched, an error message is returned
to the user.

if there is any exception thrown during
the database operation, the application
will catch it and display the cover-up
page.

Security The inputs of Internet users (Le, usemame
Requirements and password) are exan-tined that there is no

special characters in the text field. The au-
thentication token is encrypted and well man-
aged in sessions. The operation is audited.

Table A. 2: Use case: User Authentication

168

Use Case Submitting Offer
Brief description This use case allows user to submit an offer

to the server; then the offer will be recorded
in the database.

Actor Internet User
Pre-condition The user is identified and authorised to have

an access to this use case.
Main Flow The application receives the request of an

offer; then the application connects the
database and inserts a record in the database.

Exceptions The major exceptions are from database
operations, including database connection,
database insertion.

Security The inputs of users (Le, the offer price)
Requirements is type checked; and the integrity of the of-

fer is checked (in a reasonable range). The
operation is audited.

Table A. 3: Use case: Send message

169

170

Bibliography

[1] R. Baskerville, "Information systems security design methods: implications for
information systems development, " ACM Computing Surveys, vol. 25, no. 4,
pp. 375-414,1993.

[2] J. Meier, A. Mackman, S. Vasireddy, M. Dunner, R. Escamilla, and A. Murukan,
"Improve web application security: Threats and countermeasures, " tech. rep.,
Micorsoft, 2003.

[3] S. R. Palmer and J. M. Felsing, A practical guide tofeature-driven development.
Prentice Hall, 2002.

[4] S. Khramtchenko, "A project management application for feature driven devel-
opment, " Master's thesis, Harvard Univeristy, June 2005.

[5] S. W. Ambler, "Survey says ... agile has crossed the chasm. " http: //www. ddj. com/
artichitect/200001986, July 2007.

[6] L. Barnett, "Agile survey results: Solid experience and real results. "
http: //www. agilejournal. com/articies/from-the- editor/agile-survey- results%
3 a- sol id- experience-and- real- resu Its. html, September 2006.

[7] G. Booch, A. Cockburn, and A. Pyster, Balancing Agility and Discipline: A
Guidefor the Perplexed. Addison-Wesley, 2004.

[8] "Trusted computer systems evaluation criteria (orange book). " DoD 5200.28-
STD, Washington D. C., Department of Defence, December 1985.

[9] "Common criteria for information technology security evaluation, version 2.1. "
ISO/IEC 15408,1999.

[10] "Information technology security evaluation criteria. " Department of Trade and
Industry, London, June 1991.

[11] P. Abrahamsson, 0. Salo, J. Ronkainen, and J. Warsta, "Agile software develop-
ment methods: Review and analysis, " Tech. Rep. ESPOO 2002, VTT Publication
478, Technical Research Centre of Finland, 2002.

[12] X. Ge, R. F. Paige, F. A. Polack, H. Chivers, and P. J. Brooke, "Agile development
of secure web applications: ' in Proceedings of the 6th international conference
on Web engineering ICWE'06, (New York, NY, USA), pp. 305-312, ACM, 2006.

[13] X. Ge, H. Chivers, F. Polack, and R. Paige, "Adapting security risk analysis to
the design of database-centric web-based information system, " in 18th Interna-
tional Conference of Softivare and Systenz Engineering and Their Applications
(ICSSEA), (CNAM, Paris), November 2005.

171

Bibliography

[14] X. Ge, F. Polack, and R. Laleau, "Secure databases: an analysis of Clark-Wilson
model in a database environment, " in Advanced Infonnation Systems Engineer-
ing. The 16th International Conference on Advanced Infonnation Systems Engi-
neering (CAiSE04) (A. Persson and J. Stima, eds.), pp. 234-247, LNCS 3084,
Springer-Verlag, 2004.

[15] X. Ge, R Polack, and R. Laleau, "Secure database development and the Clark-
Wilson security model, " in Atelier SST04 Securite des Systeines d'Infonnation,
INFORSID 2004, (Biarritz, France.), 2004.

[16] A. Apvrille and M. Pourzandi, "Secure software development by example, " IEEE
Security & Privacy, vol. 3, pp. 10-17, July/August 2005.

[17] "Information resources management. " The Department of Justice USA, Sys-
tems Development Life Cycle Guidance Document http: //www. usdoj. gov/jmd/irm/
lifecycle/table. htm, January 2003.

[18] T. Grance, J. Hash, and M. Stevens, "Security considerations in the information
system development life cycle, " tech. rep., National Institute of Standards and
Technology (NIST), Special Publication 800-64, October 2003. (revision I re-
leased June 2004).

[19] R. J. Anderson, Security Engineering: a guide to building dependable distributed
systems. Wiley, 2001.

[20] G. B. W. Eric A. Fisch, Secure Computers and Networks: Analysis, Design, and
Implementation. CRC Press, 2000.

[21] C. P. Pfleeger and S. L. Pfleeger, Security in Computing. Prentice Hall, 3rd ed.,
2003.

[22] M. T. Siponen, An Analysis of the Recent IS Security Development Approaches:
Descriptive and Prescriptive Implications, ch. 8, pp. 10 1- 124. Idea Group Pub-
lishing, 2001.

[23] S. Ramadorai, "Towards the internet era, " The Economic Times, November 3
2000.

[24] S. Goldman, R. Nagel, , and K. Preiss, Agile Competitors and Virtual Organiza-
tions. Wiley, October 1994.

125] "Agile manifesto. " http: //agilemanifesto. org, May 2007.

(26] "RSA conference 2006. " http: //2006. rsaconference. com/us/, February 2006.

[27] H. Chivers, R. R Paige, and X. Ge, "Agile security using an incremental security
architecture, " in Proceeding of the Sixth International Conference on eXtreme
Programming and Agile Processes in Sofnvare Engineering (XP2005), Spring-
Verlag LNCS 3556, (Sheffield, UK), pp. 57-65,2005.

[28] R. Baskerville, "Agile security for information warefare: a call for research, "
in Proceedings of the European Conference on Infonnation System, ECIS2004,
(Turku, Finland), June 2004.

[29] R. Paige, J. Cakic, X. Ge, and H. Chivers, "Towards agile reengineering of de-

pendable grid applications, " in Proceeding of l7th International Conference of

172

Bibliography

Software and System Engineering and Their Applications (ICSSEA), (CNAM,
Paris), November 2004.

[30] M. Siponen, R. Baskerville, and T. Kuivalainen, "Integrating security into ag-
ile development methodst" in 38th Hawaii Intemetional Conference oil System
Sciences, 2005.

[31] B. W. Boehm and T. DeMarco, "Software risk management, " IEEE Software,
vol. 14, pp. 17-19, May-June 1997.

[32] G. Stoneburner, A. Goguen, and A. Feringa, "Risk management guide for in-
formation technology systems, " tech. rep., National Institute of Standards and
Technology (NIST), Special Publication 800-30, July 2002.

[33] R. L. Murphy, C. J. Alberts, R. C. Williams, R. P. Higuera, A. J. Dorofee, and
J. A. Walker, Continuous Risk Managenient Guidebook. Software Engineering
Institute (SEI), 1996.

[34] R. C. Williams, J. A. Walker, and A. J. Dorofee, "Putting risk management into
practice, " IEEE Software, vol. 14, pp. 75-82, May/June 1997.

[35] A. Gernmer, "Risk management: Moving beyond process, " IEEE Computer,
vol. 30, pp. 33-43, May 1997.

[36] E. H. Conrow and R S. Shishido, "Implementing risk management on software
intensive projects, " IEEE Software, vol. 14, pp. 83-89, May/June 1997.

[37] "An introduction to computer security: The NIST handbook. " http: //csrc. nist. gov/
publications/nistpubs/800-12/handbook. pdf, October 1995.

[38] "Information security mangement part 2: Specification for information security
management systems, " tech. rep., British Standards Institution BS 7799-2: 1999,
1999.

[39] "Operationally critical threat, asset, and vulnerability evaluation (OCTAVE), "
tech. rep., Software Engineering Institute, CERT Coordination Centre, http: //www.
cert. org/octave/, 2003.

[40] "Information security mangement part 1: Code of practice for information se-
curity management systems, " tech. rep., British Standards Institution BS 7799-
1: 1999,1999.

[41] J. A. McCall, P. K. Richards, and G. F. Walters, "Factors in software quality, "
tech. rep., National Technical Information Service NTIS ADA049-014(Volume
1), 0 1 5(Volume II), 055(Volume 111), 1977.

[42] S. Tyrrell, "The many dimensions of the software process. " http: //www. acm. org/
crossroads/xrds6-4/software. html#MCCALL, 2000.

[43] J. Eckstein, Agile Software Development in the Large - Diving into the Deap.
Dorset House Publishing, 2004.

[44] T. Kahkonen, "Agile methods for large organizations - building communities
of practice, " in Proceedings of the Agile Development Conference (ADC'04),
(Washington, DC, USA), pp. 2-11, IEEE Computer Society, 2004.

173

Bibliography

[451 D. J. Reifer, F. Maurer, and H. Erdogmus, "Scaling agile methods, " IEEE Soft-
ivare, vol. 20, pp. 12-14, July/August 2003.

[46] G. Stoneburner, "Underlying technical models for information technology secu-
rity, " tech. rep., National Institute of Standards and Technology (NIST), Special
Publication 800-33, December 2001.

[47] J. Viega and G. McGraw, Building Secure Sofnvare. Addison-Wesley, 2002.

[48] S. R. W. Terry Mayfield, J. Eric Roskos and J. M. Boone, "Integrity in automated
information system. " National Computer Security Center NCSC C TECHNICAL
REPORT 79-91 Library No. S-237.254, September 1991.

[49] C. P. Pfleeger, Security in Computing. Prentice Hall, 2nd ed., 1997.

[50] D. Woodward, "Smart security, " The British Journal of Adininistrative Manage-
nient, vol. 18, pp. 22-23,2000.

[51] R. Malan and D. Bredemeyer, "Defining non-functional requirements, " tech. rep.,
Brederneyer Consulting, Whitepaper 8/3/01,2001.

[52] D. Bennett, Designing Hard SofAvare: the Essential Tasks. Prentice-Hall, 1997.

[53] H. Chivers, "Security and systems engineering, " Tech. Rep. YCS378, University
of York, June 2004.

[541 G. McGraw, Softivare Security: Building Security In. Addison-Wesley Software
Security Series, Addison Wesley Professional., January 2006.

[55] "Common criteria for information technology security evaluation, version 2.5. "
ISO/IEC 18405,2005.

[56] R. Kissel, "NIST glossary of key information security terms. " http: //csrc. nist. gov/
publications/nistir/NISTIR-7298 Glossary-Key-Infor Security erms. pdf, April J
2006.

[571 J. Meier, A. Mackman, S. Vasireddy, M. Dunner, R. Escamilla, and A. Murukan,
"Security engineering explained, " tech. rep., Micorsoft, 2005.

[58] B. Schenier, Beyond Fear. Thinking Sensibly About Security in all Uncertain
World. Copernicus Books, 2003.

[59] M. Howard and D. LeBlanc, Writing Secure Code. Microsoft Press, December
2002.

[60] "CRAMM. " http: //www. cramm. com/.
[61] M. Graff and K. van Wyk, Secure Coding, Principals, and Practices. O'Reilly,

2002.

[62] "Automated security self-evaluation tool. " The National Institute on Standards
and Technology (NIST), http: //csrc. nist. gov/asset/, 12 2004.

[63] "Control objectives for information and related technology (COBIT) 4. L" Infor-
mation Systems Audit and Control Association (ISACA), hftp: //www. isaca. org/
cobiY, April 2007.

[64] R. Shirey, "Internet security glossary. " http: //www. faqs. org/rfcs/ýfc2828. html,
May 2000.

174

Bibliography

[65] "A guide to building secure web applications and web services. " The Open
Web Application Security Project (OWASP) http: //prdownloads. sourceforge. net/
owasp/OWAS PGuicle2.0. l. pdf ? download, July 2005.

[66] J. D. Moffett and B. A. Nuseibeth, "A framework for security requirements engi-
neering, " Tech. Rep. YCS2003-368, Computer Science Department, University
of York, Augest 2003.

[67] A. Dardenne, A. van Larnsweerde, and S. Fickas, "Goal-directed requirements
acquisition, " Science of Computer Programming, vol. 20, pp. 3-50,1993.

[68] R. Darimont, E. Delor, PhilippeMassonet, and A. van Larnsweerde,
"GRAIL/KAOS: a requirements engineering environment, " in ICSE19, pp. 612-
613, ACMP, May 1997.

[69] E. Amoroso, Fundamentals of Computer Security Technology. Prentice & Hall,
1994.

[70] B. Schneier, Secrets and Lies: Digital Security in a Netivorked World. John Wiley
& Sons, 2000.

[71] P. P. Chen, "The entity-relationship model - toward a unified view of data, " ACM
Transactions on Database Systems, vol. 1, pp. 9-36, March 1976.

[72] G. Booch, J. Rumbaugh, and 1. Jacobson, The Unified Modeling Language User
Guide. ADDISON-WESLEY, 1998.

[73] P. Stevens, Using VML soft-ware engineering with objects and components.
Addison-Wesley, updated edition ed., 2000.

[74] J. Jiirjens, "UMLsec: Extending UML for secure systems development
," in Pro-

ceeding of 5th International Conference of Unified Modeling Language: Model
Engineering, Languages, Concepts, and Tools. UML 2002 Q. -M. J&6quel,
H. Hussmann, and S. Cook, eds.), vol. 2460 of LNCS, (Dresden, Germany),
pp. 412-425, Springer Verlag, September/October 2002.

[751 J. JOrJens, "Towards development of secure systems using UML, " in Proceeding
of 4th International Conference of Fundamental Approaches to Softivare Engi-
neering FASE 2001 (Held as Part of the Joint European Conferences on Theory
and Practice of SofAvare, ETAPS 2001) (H. HuBmann, ed.), vol. 2029 of Lecture
Notes in Computer Science, (Genova, Italy), Springer Verlag, April 2001.

[76] T. Lodderstedt, D. Basin, and J. Doser, "SecureUML: A UML-based modeling
language for model-driven security, " in Proceeding of 5th International Con-
ference of Unified Modeling Language: Model Engineering, Languages, Con-
cepts, and Tools. VML 2002 (J. -M. J&6quel, H. Hussmann, and S. Cook, eds.),
vol. 2460 of LNCS, (Dresden, Germany), pp. 426-441, Springer Verlag, Septem-
ber/October 2002.

[77] D. A. Basin, J. Doser, and T. Lodderstedt, "Model driven security for process-
oriented systems.. " in 8th ACM Symposium on Access Control Models and Tech-
nologies SACMAT 2003, (Villa Gallia, Como, Italy), pp. 100-109, June 2003.

[78] J. McDermott and C. Fox, "Using abuse case models for security requirements
analysis, " in Proceedings of the 15th Annual Computer Security Applications

175

Bibliography

Conference (ACSAC '99), (Phoenix, Arizona), p. 55, IEEE Computer Society,
1999.

[79] C. E. Landwehr, "Formal models for computer security, " ACM Coniput. Surv.,
vol. 13, pp. 247-278, September 1981.

[80] S. Stepney and S. P. Lord, "Formal specification of an access control system, "
Softivare-Practice and Experience, vol. 17, no. 9, pp. 575-593,1987.

[81] M. H. Cheheyl, M. Gasser, G. A. Huff, and J. K. Millen, "Verifying security, "
ACM Computing Surveys, vol. 13, no. 3, pp. 247-278,1981.

[82] J. M. Wing, "A symbiotic relationship between formal methods and security, "
in Workshops on Computer Security, Fault Tolerance, and Sofnvare Assurance:
From Needs to Solution, 1998.

[83] M. Tracy, W. Jansen, and M. McLamon, "Guidelines on securing public web
servers, " tech. rep., National Institute of Standards and Technology (NIST), Spe-
cial Publication 800-44, September 2002.

[84] "Secure programming guidelines. " http: //archive. ncsa. uinc. edu/General/Grid/
AC ES/secu rity/prog ramming/, January 2003.

[85] "Security code guidelines. " http: //java. sun. com/security/seccodeguide. html,
February 2000.

[86] G. Booch, "The architecture of web applications. " http. *//www. ibm. com/
developerworksAbm/library/it-booch_web/, June 2001.

[87] G. Costagliola, R Ferrucci, and R. Francese, "Web engineering: Models and
methodologies for the design of hypen-nedia applications Handbook ofSofnvare
Engineering and Knowledge Engineering, vol. 2, pp. 18 - 199,2002.

[88] J. Conallen, Building Web Applications with UML. Addison-Wesley Professional,
2nd ed., 2002.

[89] A. Ginige and S. Murugesan, "Web engineering: An introduction, " IEEE Multi-
media, Special Issue on Web Engineering, vol. 8, no. 1, pp. 14-18,200 1.

[90] M. Bieber and T. Isakowitz, "Design hypermedia applications, " Communications
of the A CM, vol. 3 8, no. 8, pp. 26-29,1995.

[91] E. Marcos, P. Cdceres, B. Vela, and J. Cavero, "MIDAS/DB: a methodological
framework for web database design, " in Proceedings of International Workshop
on Data Semantics in Web Infornzation Systems (DASWIS2001), vol. 2465 of
LNCS, (Yokohama, Japan), Springer, November 2001.

[92] P. Cdceres, E. Marcos, and B. Vela, "A MDA-based approach for web information
system development, " in Proceedings of workshop in Softivare Model Engineer-
ing (WiSME) in UML'2003, (San Francisco, USA), httpl/www. metamodel. com/
wisme-2003, October 2003.

[93] G. R. Lifia, H. Schmid, and F. Lyardet, "Engineering business processes in web
applications: Modeling and navigation issues.. " in Proceedings of 3rd Inter-
national Workshop on Web-Oriented Sofnvare Technologies IMVOST'03, July
2003.

176

Bibliography

[941 F. Garzotto, P. Paolini, and D. Schwabe, "HDM - model-based approach to
hypertext application design, " ACM Transactions of. /n/brination Systeln., vol. 11,
no. l, pp. 1-26,1993.

[95] J. G6mez, C. Cachero, and 0. Pastor, "Conceptual modeling of device-
independent web applications., " IEEE MultiMedia, vol. 8, no. 2, pp. 26-39,2001.

[96] J. G6mez and C. Cachero, "OO-H method: extending UML to model web inter-
faces, " Infonnation inodelingfor internet applications, pp. 144-173,2003.

[97] R. Hennicker and N. Koch, "A UML-based methodology for hypermedia de-
sign, " in Proceedings of 3rd International Conference on the Unified Modeling
Language (UML2000), vol. 1939 of LNCS, (York, UK), pp. 410-424, Springer,
October 2000.

[98] N. Koch and A. Kraus, "Towards a common metamodell for the development of
web appliactions, " in Proceedings of International Conference of Web Engineer-
ing (ICWE03), vol. 2722 of LNCS, (Oviedo, Spain), pp. 497-506, Springer, July
2003.

[991 L. Baresi, F. Garzotto, and P. Paolini, "Extending UML for modeling web ap-
plications, " in Proceedings of 34th Annual Hawaii International Conference oil
System Sciences (HICSS-34), vol. 3, (Maui, Hawaii, USA), January 200 1.

[100] S. Ceri, P, Fratemali, and A. Bongio, "Web modeling language (WebML): a mod-
eling language for designing web sites, " in Proceeding of 9th International World
Wide Web Conference, vol. 33, pp. 137-157, Computer Networks, 2000.

[101] F. Ricca and P. Tonella, "Understanding and restructuring web sites with reweb, "
IEEE MultiMedia, vol. 8, no. 2, pp. 40-51,200 1.

[102] G. A. D. Lucca, A. R. Fasolino, and P. Tramontana, "Reverse engineering web ap-
plications: the ware approach, " Software Maintenance and Evolution: Research
and Practice, vol. 16, no. 1-2, pp. 71-101,2004.

[1031 N. Anquetil and T. C. Lethbridge, "Experiments with clustering as a software
remodularization method, " in Proceeding of 6th Working Conference oil Reverse
Engineering, (Atlanta, Georgia, USA), pp. 235-255, IEEE Computer Society,
October 1999.

[104] C. Boldyreff and R. Kewish, "Reverse engineering to achieve maintainable
WWW sites, " in Proceedings of 8th Working Conference on Reverse Engineer-
ing (WCRE'01), (Washington, DC, USA), pp. 249-257, IEEE Computer Society,
2001.

[105] H. Q. Nguyen, Testing Applications on the Web: Test Planningfor Internet-Based
Systeins. Wiley, October 2000.

[106] R Ricca and P. Tonella, "Analysis and testing of web applications, " in Pro-
ceedings of 23rd International Conference on Software Engineering (ICSE '01),
(Washington, DC, USA), pp. 25-34, IEEE Computer Society, 2001.

107] S. McClure, S. Shah, and S. Shah, Web Hacking: Attacks and Defense. Addison-
Wesley, August 2002.

177

Bibliography

[108] E. Birkholz and S. McClure, Special Ops: Host and Network Security for Mi-
crosoft, UNIX, and Oracle. Syngress Publishing, February 2003.

[109] L. D. Stein, Web Security: A Step-by-Step Reference Guide. Addison-Wesley,
December 1997.

[110] S. Garfinkel, Web Security, Privacy and Commerce. O'Reilly Media, 2nd ed.,
January 2002.

[111] S. Siddharth and P. Doshi, "Five common web application vulnerabilities. " http:
//www. securityfocus. com/infocus/1864, April 2006.

[112] K. Raina, "Trends in web application security. " http: //www. securityfocus. com/
infocus/1809, October 2004.

[113] "Sans infosec reading room - web servers. " http: //www. sans. org/reading_room/
whitepapers/webservers/.

[114] "Security focus. " http: //www. securityfocus. com/.
[115] "UK payments association. " http: //www. apaGs. org. uk/.
[116] "Secure software forum. " http: //www. securesoftwareforum. com/.
[117] "The top most critical web application security vulnerabilities. " The Open Web

Application Security Project (OWASP) http: //sourceforge. neYproject/showfiles.
php? group_id=64424\&package-id=70827, January 2004.

[118] "Application vulnerability description language (AVDL) vl. O. " OASIS Applica-
tion Vulnerability Description Language (AVDL) TC, February 2004.

[119] "Threat classification. " Web Application Security Consortium (WASC) http:
//www. webappsec. org, 2004.

[120] D. M. Kienzle and M. C. Elder, "Final technical report: Security patterns for
web application development, " tech. rep., Defense Advanced research Projects
Agency (DARPA), 2001.

[121] S. Burbeck, "Applications programming in smalltalk-80: How to use
model-view-controller (MVC). " http: //st-www. cs. uiuc. edu/users/smarch/st-docs/
mvc. htmi, 1992.

[1221 B. McLaughlin, Building Java Enterprise Applications, Vol. 1: Architecture.
O'Reilly Media, 2002.

[123] L. Constantine and L. Lockwood, Sofnvarefor Use. Addison-Wesley, January
2000.

[124] N. Koch, H. Baumeister, R. Hennicker, and L. Mandel, "Extending UML for
modeling navigation and presentation in web applications, " in Proceedings of
3rd Inteniational Conference on the Unified Modeling Language (UML2000),
vol. 1939 of LNCS, (York, UK), October 2000.

[125] A. McDonald and R. Welland, "Agile web engineering (AWE) process, " tech.
rep., Department of Computer Science, University of Glasgow, UK, December
2001.

[1261 httpl/www. adaptivesd. com/, April 2005.

178

Bibliography

[1271 http: //alistair. cockburn. us/crystal/Crystal. htmi, March 2007.

[128] http: //extremeprogramming. org/, July 2006.

[129] http: //featuredrivendevelopment. com/, May 2007.

[130] http: //www. controichaos. com/, May 2007.

[131] M. Fowler, "The new methodology. " http: //martinfowler. com/articies/
newMethodology. html, December 2005.

[1321 K. Beck, "Embracing change with extreme programming, " IEEE Computer,
vol. 33, no. 10, pp. 70-77,1999.

[133] K. Beck and C. Andres, Extreme Progranuning Explaine& Embrace Change.
Addison-Wesley, 2nd ed., November 2004.

[134] R. Rarnsin, The Engineering of an Object- Oriented Software Development
Metliodology. PhD thesis, Computer Science Department, University of York,
April 2006.

[135) P. Coad, E. Lefebvre, and J. D. Luca, Java Modeling In Color With UML: Enter-
prise Components and Process. Prentice Hall, June 1999.

[136] S. Khramtchenko, "Comparing extreme programming and feature
driven development in academic and regulated environments. " http:
//www. featuredrivendevelopment. com/files/FDD-vs-XRpdf.

[137] S. R. Palmer, "Feature-driven development and extreme programming. - httpJ/
www. informit. com/articles/printerfriendly. asp? p=26055\&r1=1, March 2002.

[138] J. D. Luca, "FDD implementations. " http: //www. nebulon. com/articles/fdd/
fdd implementations. html, May 2007.

[139] E. G. Aydal, R. F. Paige, H. Chivers, and P. J. Brooke, "Security planning and
refactoring in extreme programming, " in Proceeding of the 7th Intenzational
Conference on eXtrenze Progrannizing andAgile Processes in Software Engineer-
ing (XP2006), Spring-Verlag LNCS 4044, (Oulu, Finland), pp. 154-163, June
2006.

[140] K. Beznosov, "Extreme security engineering: On employing XP practices to
achieve 'good enough security' without defining it, " in Proceedings of First ACM
Workshop on Business Driven Security Engineering BizSec, (Fairfax, VA), Octo-
ber 2003.

[141] M. Fowler, "Is design dead?. " hftp: //www. martinfowler. com/articies/design Dead.
htmi, May 2004.

[142] J. Wdyrynen, M. Bod6n, and G. Bostr6m, "Security engineering and extreme
programming: An impossible marriage?, " in Extreme Programming and Agile
Methods - XPIAgile Universe 2004 (XP2004) (C. Zannier, H. Erdogmus, and
L. Lindstrom, eds.), vol. 3134 of LNCS, pp. 117-128, Springer, August 2004.

[143] S. W. Ambler, "Agile/lean documentation: Strategies for agile software de-
velopment. " http: //www. agilemodeling. com/essays/agileDocumentation. htm, De-
cember 2007.

179

Bibliography

[1441 R. C. Mar-tin, Agile Software Development, Principles, Pattenis, and Practices.
Prentice Hall, I ed., October 2002.

[145] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, "New directions on
agile methods: A comparative analysis, " in the 25th Interizational Conference oil
Software Engineering ICSE 2003, (Portland, Oregon, USA), pp. 244-254, May
2003.

[146] IEEE, "IEEE recommended practice for software requirements specifications, "
in Software Requirements Engineering (R. Thayer and M. Dorfman, eds.), ch. 5,
IEEE Computer Society Press, 1993.

[147] G. Kotonya and I. Sommerville, "Requirements engineering with viewpoints, "
Software Engineering Jounial, vol. 11, pp. 5-18, January 1996.

[148] A. van Lamsweerde, "Requirements engineering in the year 00: A research per-
spective, " in Proceedings of 22nd Inteniational Conference on Software Engi-
neering (ICSE2000)., (Limerick), ACM Press, June 2000.

[149] P. T. Devanbu and S. G. Stubblebine, "Software engineering for security: a
roadmap, " in Proceedings of the Conference on The Future of Software Engi-
neering XSE '00, (Limerick, Ireland), pp. 227-239, ACM Press, 2000.

[1501 D. G. Firesmith, "Engineering security requirements, " Jounial of Object Tech-
nology, vol. 2, pp. 53-68, January/February 2003.

[151] R. Crook, D. Ince, L. Lin, and B. Nuseibeh, "Security requirements engineer-
ing: When anti-requirements hit the fan, " in Proceedings of IEEE Inteniational
Requirements Engineering Conference (RE'02), 2002.

[152] J. Rushby, "Security requirements specifications: How and what?, " in Symposium
on Requirements Engineering for Inforination Security (SREIS), (Indianapolis),
March 2001.

[153] G. Wimmel and A. WiBpeintner, "Extended description techniques for security
engineering, " in Proceedings of IFIP TC11 16th Intentational Conference oil
Infonnation Security (IFIPISec'01) (M. Dupuy and P. Paradinas, eds.), (Paris,
France), pp. 470-485, Kluwer Academic Publishers, June 2001.

[154] J. D. Moffett, "Requirements and policies, " in Policy Workshop, (Bristol, UK),
HP-Laboratories, 1999.

[155] L. Chung, "Dealing with security requirements during the development of infor-
mation systems, " in Proceedings of 5th Inteniational Conference Advanced In-
fonization Systems Engineering, CAiSE 93 (C. Rolland, F. Bodart, and C. Cauvet,
eds.), pp. 234-251,1993.

[156] P. -J. Fontaine, "Goal-oriented elaboration of security requirements, " MSc. thesis,
Department of Computing Science, University of Louvain, June 2001.

[157] 1. Sommerville, Software Engineering. Addison-Wesley, 6th ed., 2001.

[158] R. A. Caralli and W. R. Wilson, "The challenges of security management. " CERT
http: //www. cert. org/archive/pdf/ESMchallenges. pdf, 2004.

180

Bibliography

[1591 R. A. Caralli, "Managing for enterprise security, " tech. rep., CERT, Software
Engineering Institute (SEI), CMU/SEI/2004-TN-046, December 2004.

[160] D. J. Anderson, Agile Management For Software Engineering: Applying the The-
ory of Constraintsfor Business Results. Coad Series, Prentice Hall PTR., 2003.

[161] S. Khramtchenko, "FDDPMA user guide. " http: //fddpma. sourceforge. net/help/
fddpma_userAuide. pdf, June 2005.

[162] P. Kumar, J2EE Security: for Servlets, EJBs, and Web Services. Prentice Hall
PTR, April 2004.

[163] "Authentication, authorization, and access control. " Apache HTTP Server Ver-
sion 1.3 Document http: //hftpd. apache. org/docs/1.3/howto/auth. htmi, January
2004.

[1641 B. Boehm, "A spiral model of software development and enhancement, " IEEE
Computer, vol. 21(5), pp. 61-72,1988.

[165] M. Lehman, "Programs, life cycles, and laws of software evolution, " in IEEE
special issue on software engineering, pp. 1060-1076, September 1980.

[166] M. Lehman, "Software engineering: the software processes and their support, "
IEEE Software Engineering, special issue on software environment andfactories,
pp. 243-258, September 1991.

[167] M. Lehman, Encyclopedia of SofAvare Engineering, ch. Software Evolution,
pp. 1202-1208.1994.

[168] B. Boehm, "Improving software productivity, " IEEE Computer, vol. September,
pp. 43-57,1987.

[169] E. Swanson and C. Beath, Maintaining Infonnation Systems Organizations. John
Wiley and Sons, 1987.

[170] J. Collofello and J. Buck, "Software quality assurance for maintenance, " IEEE
Software, pp. 46-51,1987.

[171] D. Weiss and V. Basili, "Evaluating software development by analysis of
changes, " IEEE Transactions of Software Engineering, pp. 157-168, Feberary
1985.

[172] S. A. B ohner, A Graph Traceability Approach to Software Change Impact Anal-
ysis. PhD thesis, George Mason Unversity, Fairfax, VA, USA, 1995.

[1731 J. Ferrante, K. Ottenstein, and J. Warren, "The program dependence graph and its
use in optimization, " ACM Transaction of Programming Languages and Systems,
pp. 319-349, July 1987.

[1741 J. Loyall and S. Mathisen, "Using dependence analysis to support software main-
tenance' " in Proceeding of Conference of Software Maintenance, (Los Alamtos,
Califonia), pp. 282-291,1993.

[1751 A. Podgurski and L. Clark, "A formal model of program dependencies and its im-
plications for software testing, debugging, and maintenance, " IEEE Transaction
of Software Engineering, pp. 965-979, September 1990.

181

Bibliography

[1761 T. Smith, "System development and requirements management, " tech. rep., Para-
max Systems Corporation (now Loral Corporation), Reston, VA, January 1992.

f 177] B. Nejmeh and T. Dickey, "Traceability technology at the software productivity
consortium, " Tech. Rep. SPC-1.0-881130-40-00-N, Software Productivity Con-
sortium, Herndon, VA, November 1988.

[1781 R. F. Paige, R. Charalambous, X. Ge, and P. J. Brooke, "Towards agile engineer-
ing of high-integrity systems, " in Proceeding of the 27th Intemational Confer-
ence on Computer Safety, Reliability and Security (SAFECOMP 2008), (New-
castle upon Tyne, UK), September 2008.

182

