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Abstract: This thesis reports on work undertaken in comparing the effects 

of the phenomenon of radiation reaction in classical and quantum theories of 

electrodynamics. Specifically, it is concerned with the prediction of the change 
in position of a particle due to the inclusion of the self-force in the theory. We 

calculate this position shift for the classical theory, treating radiation reaction 

as a perturbation in line with the reduction of order procedure. We calculate 
the contributions to the position shift in the h --+ 0 limit of quantum field 

theory to order e2 in the coupling, the order of the classical self-force. These 

calculations contain the emission and forward scattering one loop processes of 

quantum electrodynamics. The quantum calculations are completed for the 

case of a particle represented by a scalar field wave packet and then for a par- 
ticle represented by the Dirac spinor field. We additionally give an alternative 
derivation of the scalar results using the interpretation of radiation reaction 

via a Green's function decomposition, in order to explain and contrast the 

results achieved. 
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CHAPTER I 

Introduction 

In this chapter we introduce the work presented in this thesis. 

We introduce the background theory of relevance, the work to 

be presented and define the classical and quantum theoretical 

models to be used. 

1. Overview 

The concept that an accelerated particle radiates is one the of most widely 
known and used phenomena from the theory of classical elect ro dynamics. It 

is thus ironic that the theory of the process and the mechanism behind it 

is in fact one of the least understood and most debatable areas of classical 

theory. In truth, there is no real consensus over the correct interpretation of 

the theory, or even exactly which theory is the correct one to interpret. The 

problems stem from the attempt to describe the effect that the emission of 

such radiation would have on the particle itself - radiation reaction. That 

radiation is in fact produced by various systems involving the acceleration 

of charged particles is an observable experimental fact. The phenomenon is 

one of the most frequently employed in electromagnetism., for example in the 

production of radio waves from antennas. 1 The radiation itself carries away 

energy-momentum which must consequently affect the particle's motion via 

recoil in order to conserve the energy-momentum of the system. Thus radiation 

reaction alters the equations of motion of a charged particle. This is, of course. 

fundamental to our understanding as the equations of motion for a sYsteill 

are one of the most basic underpinnings of a theory. Nevertheless, the effect 

'Curiously, the plural antennae is used for biological appendages, whereas antennas is 

the use for equipment sending and receiving electromagnetic waves. 

I 



1. OVERVIEW 2 

is rarely considered (or even taught in undergraduate courses). The usual 

focus in classical theory is either the studv of the fields given the motion of 

a charged particle, or the motion of a charged particle given some external 
field(s). The problem of radiation reaction, on the other hand, is one of the 

effect on the motion of the particle of its own field, hence the frequently 

employed alternative name., self-force. The lack of attention to this effect is 

possibly due to a combination of factors including, 

" The effect of radiation reaction is very small for most purposes; suffi- 

ciently small to be ignored. 

" The unresolved and/or debatable problems alluded to above which 

prevent the presentation of a consistent theory on a concrete footing. 

" Classical electrodynamics is no longer considered to be the fundamen- 

tal theory, having been superseded by quantum electrodynamics. 

The focus of this project is a comparison of the effects of radiation reaction 

in both the classical and quantum electrodynamics' theories. In this way, we 

hope to gain further understanding of how radiation reaction is treated within 

these theories and how this treatment differs. The fundamental nature of the 

effects of adding radiation reaction to a model, as one must do to obtain a 

realistic model, means that a fuller understanding of the nature of radiation 

reaction is essential. Indeed, it is not only in the theory of electrodynamics 

that we are presented with this problem and much current research is, at the 

time of writing, focused on radiation reaction problems in classical gravity. 2 

ln the coming sections of this introductory chapter we present a description 

of the background theory of relevance to the study of radiation reaction and 

the origin of the work presented here. This work is based on the calculation 

of the 'position shift', the change in position due to radiation reaction, as a 

measure of the effect of radiation reaction and from section 6 we then explain 

the models to be used. detailing the choice of calculations to be performed. We 

2ýN-e shall return to this subject briefly later (Sec. 3.3). 
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introduce the classical model and the conventions and definitions for the quan- 

tum field theoretic models on which we shall base our investigations. The body 

of work that forms this thesis is then split into relevant chapters as follows: 

In Chapter 2, we introduce and calculate the semiclassical approximations 
for use in describing the quantum fields in our calculations and in Chapter 3 

we calculate the position shift in the classical theory of electrodynamics. In 

Chapter 4, we then proceed with the calculations using the quantum scalar 

electro dynamics, calculating the contributions to the position shift and com- 

paring the h ---ý 0 limit with the results from the classical theory. Chapter 5 

then gives an alternative derivation for some of the results for the scalar field 

by using the Green's function decomposition description of radiation reaction 
in order to gain further understanding and interpret the previously obtained 

results. Chapter 6 then repeats our calculations for the canonical quantum 

electrodynamics model based on the Dirac spinor field. The appendices in- 

clude definitions and calculations which are used and referred to within the 

main body of the text. 

2. Radiation from moving charges 

Before considerations are made of our theory of radiation reaction, it would 

be timely to remind ourselves of some of the basic theory concerning radiation 

from accelerated charges in flat spacetime. 3 We recall that in the absence 

of incoming fields, we may write the 4-vector electromagnetic potential A 

generated by the motion of a charged particle in terms of the retarded Green's 

function G- and the particle's 4-current J: 

d4 x'G-", (x - x')j*'(xl) , 
(1) 

with Gv= PG- 
v and where our metric signature is represented by gj', 

diag (+1. -1, -1, - 1). The units are chosen so that c = 1. where c is the 

3This explanation is intended as a reminder for those familiar with the theories quoted. 

For a more in depth discussion [21] is a good place to start. 
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FIGURE 1.1. The contours used by the Retarded and Advanced 

Green's functions avoiding the poles (X) in the ko integration. 

-1 

speed of light. We also let the electromagnetic field satisfy the Lorentz gauge 

condition (9,,, A' = 0. The current is given by 

iv (x) =e d-F 
dx'64 

(X 
_X 

(T» 
, d-F 

(2) 

where X (T) is the space-time trajectory of the particle. The point particle 

nature of the theory is represented by the delta function point distribution. 

This is technically the retarded potential, with the advanced potential being 

analogously generated from the advanced Green's function. We canonically 

choose the retarded solution due to our wish to look at propagation forward 

in time, which can be seen more explicitly below. 

For the electromagnetic field, the Green's functions are the fundamental 

solutions to the wave equation 

EIG(x, x') =- P(x - x'), (3) 

where the translation invariance means that the solutions depend only onx-x', 

hence G(x, x') =: G(x - j"). By utilizing the resultant algebraic equation for 

the Fourier transform, the solutions can be written in the integral form 

G(x -x') 
(14k eik-(x-x) 

(27r) 4 k2 
(4) 

The singuku-ities from the cone k2 =0 are dealt with via deforming the 
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contour of integration. The different Green's functions. resulting from the 

alternative boundary conditions applied to the wa\-e equation, generate the 

different contours. ' The retarded/ advanced Green*s functions are generated 

using the contours that travel above/below the poles of the ko integration viz 

G, -- (x - x') =-d4k 
ik-(x-x') 1 

(27r)4 (ko± ýj2- k2 ' 

where the limit E --+ 0+ is assumed (see Fig. 1.1). This gives 

Gý- (x - x') =1 0(±(t - ti»6«X - xl) 2). 

where 0 is the Heaviside step function. This expression shows clearly that the 

support for the retarded and advanced Green's functions lies on the future and 

past light cones respectively of the particle at X1 5, as is expected from causalitY 

reasoning. Fig. 1.2 shows these light cones for x' on a particle trajectory given 

by -y =X (T). The potential at x is generated by the point on the world 

line of the trajectory that intersects xýs past light cone, which is known as the 

retarded point. The proper time of the particle at this intersection is known as 

the retarded time, which we labelT- here. Likewise for the advanced potential, 

we have the intersection with x's future light cone, at the advanced time T+. 

This is represented by Fig. 1.3. 

Returning to our electromagnetic potential generated by the moving charged 

particle, we have 

A" (x) -ej &0 (xO 
_ 

Xo(_F)) 6 ((X 
_ 

X(, T))2) 
dX4 (7) 

27 d-F 

Labelling X(T±) = X± as the advanced/retarded points on the particle tra- 

jectory for x, and X± - dXld-F(T±) as the world- velo cities at those points, we 

can solve the integral and write 

e xiu 

47r J-ýV (X X_)v 
(8) 

4The difference between the choices must, in the end, correspond to a solution to the 

homogeneous equation. 
5That is, x lies on the future/past light cone of x' and consequently, , r' lies on the 

past/future light cone of x. 
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t 

FIGURE 1.2. Light cones of a point on a world line -y. 

x 

FIGURE 1.3. The intersection of the light cone of point x with 

the world line of the particle, at the retarded and advanced 

Points. 



2. RADIATION FROM NIOVING CHARGES 

These are commonly known as the Lienard-NN'iechert potentials and are the 

usual starting place in textbooks and electrodynamics courses for the aiial. ysis 

of the radiation of a moving charge. This expression is fully covariant and can 
6 be considered to be the relativistic generalisation of the Coulomb potential. 

The most common exposition of the potentials and radiation involve a non- 

covariant form written in terms of the quantity r= x-X-, which we name the 

radial vector and where due to the null separation of the points the magnitude 

can be given similarly by r= Irl = x' - X'. Hence, 

Ao e1 (9) 
47r (r -r- v-) 

Ae V- (10) 
47r(r-r. v-) 

where v- = dXldt(-F-). The magnetic and electric fields from this potential 

can then be given by 

rxE 
r 

e 
(r rv-) V2) +rx [(r 

- rv-) x 

47 (r - r. V_)3 

with ý, 
- 

(t) = dv- Idt. It is worth recalling from the definitions that all terms 

on the right hand side are evaluated at the retarded timeT-. The expressions in 

(11) and (12) can each be separated into two terms, representing the so called 

'velocity fields', which do not depend on the acceleration, and the 'acceleration 

fields', which do. Introducing the notation n= r/r, we rewrite the E field for 

example, and obtain 

e [(n-v-)(1 _ V2) 
E--2- 

47r n- v-)r 
nx [(n - v-) x 

(I -n- v-)r 
(13) 

The first term, the velocity field, can be seen to be an inverse square field, thus 

effectively a static Coulomb type field. The second term is the acceleration 

field, which we see has the inverse radial dependence one would expect from 

a radiation field. For this field we can also confirm that both E and B are 

transverse to the radial vector. That our interpretation of the velocity field as 

611, the frame in which X- = (I 
- 0,0,0) we obtain the Coulomb potential. 
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a Coulomb type field is valid can be confirmed by consideration of the situation 
in which the particle undergoes uniform motioii. hence when the acceleration 
field naturally vanishes. The remaining contribution should be the Lorentz 

transformation of the static Coulomb field. This can indeed be shown to be the 

case. Therefore, this transformation to or from the static frame jmplies that 

the velocity field should not affect the motion of the particle 7 nor consequently 

cause any modifications to the equations of motion. We thus arrived at the 

conclusion that the acceleration of a charged particle induces a radiation field, 

i. e. the emission of radiation from the particle. 
Having predicted that an accelerated charged particle will radiate, one is 

naturally inclined to ask 'how much radiation is expectedT Now the energy 
flux C across a sphere of finite size and centered on the particle is given in 

terms of the Poynting vector, viz 
dS 

dS - (E x B) 
dt 

fs 

j 
dQ(r x E)2. 

s 's 

The last line demonstrates that the energy flux is positive. 

(14) 

For the non- 

relativistic case, i. e. at small velocities, the electric acceleration field contri- 

bution is the standard dipole field 

e 
Ea 

-nx (n x 47rr 

The radiated power 8P in this limit is known as the Larmor formula: 

dE 2 e2 
-2 p== 

--v dt 347 

The relativistic generalization, written in terms of the energy- momentum 4- 

vector p of the particle, is given by 

p2e2( dpP dpt, 
347Tto dT dT 

(17) 

7 Indeed, one does not expect a static particle to move due to its own Coulomb field. 
8Given that we are now considering the situation at the particle itself, the time in 

question is in fact the retarded time. and the 'retarded' subscript is henceforth redundant. 



3. RADIATION REACTION 

3. Radiation Reaction 

So far we have looked only at those areas usually considered. namelY the 

effect of the interaction with external fields on a particle (the acceleration of 

our moving charge) and more chiefly above, the fields produced by such a 

moving charge and the consequent radiation. What -, N, e have yet to consider is 

of course the effect of this radiation on the motion of the charge. That is, what 

are the effects on the motion of the particle of its own fields? Put another way. 

what are the self-interaction effects? As previously mentioned, the radiation 

carries away energy-momentum and thus one expects the particle's energy- 

momentum to be affected and hence its motion. We have said that this classical 

radiative correction is frequently neglected, and one of the main reasons given 

was that the effect is very small. The approximation is justified provided that 

the energy concerned is small in comparison with the typical energies of the 

problem under consideration. Let us consider a period of interaction of time T 

and with typical resultant acceleration a. The energy of the emitted radiation 
Sr is, from above, of order 

2e2 
3 47r 

The change in the particle's energy Sp is by comparison of order 

Sp - ma 
2T2. 

The demand that Ep > E, leads to the relation for the interaction time period 
2 e2 
3 47rm 

(20) 

where we have defined the characteristic radiation time T, We note that 

-r, = 2r, /3 where r, is the classical electron radius and consequently, 7, is Of 

the order of the t, ime taken for light-signals to travel this distance. 9 For time 

scales in excess of this period, the corrections can be justifiablY ignored. It 

is evident that this set of larger time scales effectively contains all classical 

phenomena. Indeed, for lower scales. we would expect to have reached to 

9Recall our units c=1. 
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limit of validity of the classical theory and expect quantum effects to become 

important. 

3.1. Abraham-Lorentz-Dirac Force. Below we shall present a descrip- 

tion of the canonical classical theory of radiation reaction. the alteration to 

the equations of motion given by Abraham- Lorentz- Dirac force, and describe 

some of the associated pathologies. A classical point particle moving under 

the influence of some external (non-zero) potential, producing a force F,. t, is 

accelerated and the equations of motion given by 

d 2XM 

m- - F" d-F 2 ext i 

where x4 are the space-time coordinates of the particle at proper time 'T. A 

charged particle emits radiation when accelerated in such a potential and as 

stated above this will affect the motion of the particle and thus the equations 

of motion. We could consider the correction as the effect of the addition of an 

extra force FRon the right hand side of (21): 

M 
d'x" 

= Ft + F4 d7-2 ex R (22) 

We call this additional force the radiation reaction force. Considering for a 

moment the non-relativistic approximation, as described by the Larmor emis- 

sion power (16), we note that there are certain restrictions on FR. Given that 

when there is no acceleration, there should be no radiation, and thus no reac- 

tion to it, FR should vanish if -ýr = 0. In addition, the only parameter available 

to use is the characteristic time, hence it is likely to feature in the force. In 

fact, it is likely to feature at first order, given that the power radiated is of 

order e2, in common with 7-,, and that furthermore a sign change on the charge 

cannot alter the result. One approach is to demand that the work done over 

the period of interaction is the negative of the total energy radiated i. e. 
JT 

dt FR 'V- 

JT 
dt rn7 -e ý2. (23) 

Integrating the right hand side by parts. then given the assumption that either 

periodic motion or that -ý' -v=0 at the end points of the interaction period, 
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the surface term vanishes and the remainder leads to the conclusion 
2e" (24) FR mTv - -V, 347r 

where d2 v/dt2 =d3 x/dt3 This reasoning leads to what is commonly 

referred to as the Abraham-Lorentz equation of motion: 

m-ý = F,,, t + mT, -ýr , 
(25) 

(See [1] and [2]). The resultant equation of motion is different to that which 

one usually encounters in mechanics due to the presence of third-order dif- 

ferential terms. The inclusion of such a term would imply that a third initial 

condition would be needed in addition to the position and velocity. It is indeed 

this type of term that is the source of the debate over the physical correctness 

and interpretation of this theory. The problem remains when we remove our 

un-physical non-relativistic approximation. 
The fully relativistic generalization of the radiation reaction force was first 

obtained by Dirac, using the local conservation of energy and momentum [3]. 

The Abraham- Lorentz- Dirac force is the canonical model of radiation reaction 

in classical elect ro dynamics, commonly referred to as the Lorentz-Dirac force 

FL"D= 
2ac d3 Xý, 

+ 
dx4 d2 x' d 2X 

"1 (26) 
3 

[dT3 

dT 

(dT2 

dT2 

)I 

where we define oz, =_ 0/47r. Due to the orthogonality of the world-velocity 

and its proper time derivative 

dxý' d2A=0 
(27) 

d-r d-F 2 

the Lorentz-Dirac force is often alternatively written 
2a, dx4 dxv d3X, 

FR'= FLD =---3 (28) 
3 dT dT 

] 

d-F 

The non-relativistic (25) is the result in the special Lorentz frame which is 

momentarily co-moving with the particle. In both cases, we see the presence 

of a, third-derivative term, usually referred to as the Schott term. Not only 

is this type of differential equation fundamentally different to that which is 

expected in dynamical motion, it, also presents us with problematic un-phYsical 
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solutions. Using the non-relativistic case for simplicity, Nve rearrange as an 
inhomogeneous differential equation 

(i) - -r, 1"l) == Fext 
- (29) 

Now, in the homogenous case, Le. in the absence of any external force. the 

above equation presents us with two possible solutions 

(30) 
ü (0) 

et/Te 

The second solution is referred to as a 'runaway I solution. It would involve 

a particle effectively accelerating under its own radiation reaction and is not 

physically acceptable, let alone an observed phenomenon. Additionally. the 

reader may note that it breaks the boundary conditions imposed during the 

above derivation which caused the annihilation of the surface term. In or- 
der to restrict ourselves to physical solutions, we must add these boundary 

conditions and in particular demand that should F, oc then 
,t --ý 0 as t --* 

should also vanish. With the addition of these conditions, we may pro- 
duce an integro-differential form of the Lorentz-Dirac equation, free from the 

troublesome higher- derivative induced runaways: 

J Oc 

Mýr (t) = dt'e-t/Fext (t + Tet/) - (31) 

Unfortunately, this version of the equation is plagued by an alternative prob- 

lem: pre- acceleration. Consider the case in which the external force is 'switched 

on I at t=0i. e. 

0 if t<0 
Fext (32) 

0 if t>0 

The reader will note that (31) implies that the acceleration of the particle is 

not zero for t<0, but instead begins at a time of order -T, - 
Hence the particle 

accelerates bcforc the force is applied. This situation is represented in Fig. 1.4. 

We note that again, the timescale with which Nve find ourselves concerned is -r,. 
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to 

FIGURE 1.4. Pre- acceleration of a charged particle. 

13 

Given the previous discussion on the size of the radiative correction, we note 

that this timescale is beyond the expected validity of classical electro dynamics, 

and thus the pre- acceleration effect can be considered classically unobservable. 

Whilst the 'small' nature of the correction may be a good enough reason to 

ignore the problems, or indeed the entire phenomenon, for most practical pur- 

poses it is hardly satisfying from a fundamental theoretical perspective. If we 

wish to obtain a proper understanding of the dynamics then we must a) con- 

sider radiation reaction and b) attempt to understand and ultimately solve the 

problems with the current theory. One conclusion we can take from the cur- 

rent situation is that the Lorentz-Dirac theory is at most only approximately 

accurate. Fýrom our discussion, we note that it appears that this accuracy 

extends only as long as the radiative correction is small. In this regime, one 

can then treat radiation reaction as a perturbative correction to the motion 

of the particle. If one proceeds as such, then the problematic third derivative 

term, treated as a perturbation, can be considered as referring to the acceler- 
(rather than the perturbed self-interacting ation along the original tra *ectory 1 

trajectoi-Y) viz 

dO 
-dF,,, 

t (33) d7- dT 
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Substituting this relation back into (28). the equations of motion give a second 

order differential equation, 

md 

2Xp 
J, 2a, dxP dx, ] dF, ", ', t (34) d7-2 =Fepx t+ 3m d-r dT I dT * 

Consequently, the treatment of radiation reaction as a perturbation is akin 
to a reduction of order process on the differential equations of the motion. 
With the, dynamically standard, second order equation we are free from run- 

away and pre-acceleration solutions. In (34), we now have a pathology-free 

theory for radiation reaction in classical electrodynamics which we can pro- 

ceed to use, subject to the constraints mentioned. It is in fact this reduced 

order type of radiation reaction force that is most commonly utilized for cal- 

culations involving the self-int er action with electromagnetic and also other 
fields. The perturbative treatment of the radiative corrections is also famil- 

iar as the main calculation tool for quantum electrodynamics (QED). QED is 

most frequently dealt with using perturbation theory, leading to the ubiqui- 

tous Feynman diagrams representing the perturbation expansion terms. This 

similarity in treatment is one of the motivations for the focus of this work. 
The problems with the full theory imply a problem with the starting as- 

sumptions. Whilst classical mechanics is of course now known to be based on 

erroneous groundslo, due to the need for quantization, we can also query the 

legitimacy of the point particle model for example, just as extended models 

are proposed as alternatives in quantum theories. Over the years, a number 

of different alternative models have been proposed, usually by the addition 

of either further constraints or changes to the fundamental model. In [13]. 

Ford and O'Connell drop the point particle model. Using a particular electron 

100ne ought really to say 'inaccurate grounds' as, along with most modern developments 

in theory, whilst incorrect, calling the theory false masks the fact that it is remarkablv 

successful in most regimes and also that any new theory must reproduce the results of 

classical mechanics within their range of validity. 
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structure type" they show that the pathologies In the non-relativ, stic radiatlon 

reaction are due to the point-particle assumption. Under certain restrictions, 
they reproduce the reduced order equation from this direction. 

So far, we have merely stated the Lorentz-Dirac force as Dirac's relativistic 

generalization to the Abraham-Lorentz force. Dirac derived this equation using 

considerations of local energy-momentum [3]. More explicitly. enclosing the 

world line of the particle with a 'world-tube, Dirac calculated the enero-N-- 

momentum flux of the electromagnetic field. Incidently. the shape of the world- 
tube is irrelevant, provided that the end surfaces are the same. The generalised 

space-time formulations of Gauss' theorem can be utilized to show that the 

flux over a deformed tube is the same as the original. " By conservation of 

momentum, the change in the particles momentum can then be deduced as 

the balance. 13 Following such a line of reasoning will lead one to the Lorentz- 

Dirac equation. However, to achieve this result the reader will have to make 

a modification to the physical mass by subtracting the (infinite) contribution 
from the rate of change of the bound energy-momentum. Thus Dirac found 

that he had to renormalise the mass by subtracting the infinite contribution 

of the electro-static self-energy m,,,,, viz 

ma/' _ 
2ac (ä4 -a 

2Uji) (35) 

"Following Feynman, Ford and O'Connell use a form factor Q2/(q2 + dependent 

on a cut-off frequencY Q and where ,ý is the typical frequency of the external force. 
12 [18] demonstrates the equality in this context during the discussion of Dirac's deriva- 

tion. The derivation in this paper differs slightly from the original, but follows the same 

basic idea. 
"Technically, one of Dirac's postulates is that the change in the mechanical energ. N-- 

momentum of the particle is balanced bY that for the electromagnet ic field. 
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whereM MO + Mem -" Lorentz had also had to perform a similar manipula- 
tion for the Abraham-Lorentz force. This is another similarity with quantum 
field theory and in fact many students of theoretical physics are likely to come 

across the concept of renormalisation in quantum electrodynamics before the 

classical theory. This procedure naturally begs the question concerning the 

similarities and differences between the classical and quantum renormalisa- 
tions and thus provides a further motivation for the work presented here. 

The separation of the electrostatic contribution from the radiative contri- 
bution was noted in the discussion above on the Lienard-Wiechert potentials. 
Here we mentioned that the electrostatic, short-range contribution N"-as effec- 
tively the generalisation of the Coulomb force. Considering the Coulomb force 

at the (point) particle, one sees why this contribution is infinite. From this 

perspective, it is also clearer why one would wish this self-energy to be con- 

sidered part of the left-hand side of (35), as part of the mass, rather than on 

the right. 

3.2. Green's function decomposition. An alternative derivation of the 

radiation reaction force is motivated by the singular self-energy contribution. 

We wish to consider the interaction of the particle with its own field. Now, 

the particle's field can be generated from the retarded Green's function. The 

reader will recall that the action of the wave operator on the retarded Green's 

function is to produce a delta function 

El G- (x, x') = 6'(x - x') , 
(36) 

where the distribution is singular at x = x' i. e. at the particle itself. This 

Green's function was used to generate the electromagnetic Lienard-Wiechert 

potentials, which in turn were shown to have a singular contribution and a 

14The expression for the particle's energy-momentum is also not as straight forward 

mooll, but consideration must be given to the end surfaces of the world-ttibe. These 

complications are detailed in [18] and in more detail [41 and are not as important to the 

main discussion here. 
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regular, radiative contribution. This derivation is based on a similar decom- 

position to the retarded Green's function. 

The theory of electromagnetism, contained in Maxwell*s equations, is time- 

symmetric. The process of radiation reaction however is not a time-synimetric 

process; whilst the emission of radiation from a particle would transform on 

time reversal to the absorption, the self-energy contributions ought to be the 

same i. e. time symmetric. We note that in choosing the retarded potential. we 
broke the time-reversal symmetry of the theory, in order to accommodate our 
'time arrow' . 

Starting from the time-symmetric theory, the opposite choice, of 

the advanced Green's function, could technically have been made. We thus re- 
introduce the symmetry by taking the linear combination of Green's functions 

Gs =I [G- + G+] (37) 
2 

which is a solution to the inhomogeneous wave equation. Alternatively, we 
have the antisymmetric combination 

GR 
I 

[G- - 2 
(38) 

These two Green's functions form a decomposition of the retarded G-. 15 Now, 

as stated above) Gs solves the inhornogeneous wave equation 

ElGs = 64 
, (39) 

whilst GR solves the homogeneous equation 

EIGR 0- (40) 

The singular nature of the retarded potential is thus entirely contained within 

the field generated GS. With reference to the Lienard-Wiechert potentials, we 

would consequently hope to assign this contribution as the singular self-energy. 

Indeed. it can be shown that the singular field 

A" (x) = d4 x'G' , (. r. x') sv (41) 

1-'G- = 
GR+ Gýq - 
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does not affect the motion of the particle (see [19]). We thus consider this 

to indeed be the self-energy Coulomb-like time-symmetric contribution. 16 The 

remaining contribution GR, which generates a regular field and is not time- 

symmetric. we now postulate as the 'radiative' Green*s function solution which 
is responsible for radiation reaction. 17 

The action of the particle's (retarded) field on itself is therefore split into an 
infinite correction to the mass, generated by Gs, and the remainder G- - Gs = 
GRacts on the particle to produce the radiation reaction force. Explicitly, the 

radiative field ARis given by 

A' (x) =d4 x'G' (x, x') "' (xl) 
. 

(42) R1 Rv i 

The field tensor FR acting on the particle is then 

R 

vAll 
(43) 

and the force is given by the Lorentz force from this field tensor leading to 

the equations of motion which, with the external field already acting on the 

particle, are 
ext Rv 

ma F,, + eF u (44) 

Using this postulated source for the radiation reaction field, the above equation 

of motion gives the Lorentz-Dirac force [18]. 

3.3. Curved Space and Gravitational Radiation Reaction. Much 

recent work on classical radiation reaction has been concentrating on the mo- 

tion in curved space. Here we briefly mention some interesting extensions to 

curved space, and to the self- interaction of other fields. In these comments we 

follow Poisson's excellent review article [19] on Radiation reaction of point par- 

tic1cs M curved space, to which the reader is referred for a detailed pedagogic 

introduction. The main references for the curved space work in this subsection 

16The time syninietry means that there should be equal amounts of incoming and out- 

going radiation and thus should not affect the motion. 

note here that it is the behaviour at the particle's worldline of the fields generated 

by GR,, '; that is regular or singular. 
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use the metric signature (- + ++). thus for consistency with these works we 

shall temporarily adopt this signature for this (and only this) subsection. 18 

The extension of the Lorentz-Dirac equation to curved space was originallY 

given by DeWitt and Brehme in 1960 [30]. " The Green's function method 
for the derivation can be extended to the solutions to the wave equation in 

curved space. If, as is usually the case, the space-time is globally hyperbolic" 

then there exist unique advanced and retarded solutions to the waN, e equa- 

tion. However, these Green's functions have additional features compared to 

their Minkowski space cousins when considering the support. Recall that in 

flat space, the support of Green's functions was on the light cones. In curved 

space we have the possibility of interaction between the radiation and the 

curvature - scattering off the curvature - leading to the propagation of electro- 

magnetic waves at speeds up to and including the speed of light. With respect 

to the Green's functions, this means that the support is extended within the 

light cones as well as on them. For example, the retarded field, generated from 

the retarded Green's function, is now dependent on the entire history of the 

world-line of the particle, up to and including the retarded point. Similarly, 

the advanced field is dependent on the entire future of the world line, after 

and including the advanced point. As in the flat space calculations, we note 

that the retarded solution is singular on the world line of the particle. Fol- 

lowing the method previously utilized, we wish to remove this singularity", 

before applying the particle's field to the particle itself. Again, we could note 

that the retarded Green's function's singularity is contained entirely within 

18This temporary change should help the reader should they wish to consult the refer- 

eiices on this short aside for more information. For the main body of our work the signature 

is (+ - --) due to its ease of use in particle physics. 
19This paper actually contains a mistake, corrected by Hobbs in 1968 [31]. leading to 

the absence of a term contaiiiing the Ricci tensor in the final equations of motion. 
20That is, the space-time admits a Cauchy surface -a space-like 3-surface through 'ývhich 

every inextendible causal curve in the space-time manifold passes exactly once. 

2'Consequently renormalising the mass. 
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the symmetric (G- + G-)12. Proceeding to subtract this contribution a, be- 

fore, we obtain the equation of motion for a point particle in curved space 
undergoing electromagnetic radiation reaction. This method was followed I)Y 

DeWitt and Brehme 22 to obtain 

D& 
= F' Uiluv )(2 äv+ 

1 
R% w\ d7- ext 

+ Cec (ÖV 

3m 3 
T- 

+ 2e 2 
ul, 

f 

IDC 
17 ýI' Gvl�, (X (T), X (7l» u A/ d7-'. (45) 

The last term is often referred to as the tail term and contains the mentioned 
dependence on the past history of the world line of the particle. The integral 

is cut-off at T' = T_ - 0+ to avoid the singular behaviour of the retarded 

potential. In flat space, this equation collapses to the Lorentz-Dirac equation. 
Recalling that this equation is also based on the point particle description, we 

note the continued presence of the third derivative term and the need for a 

reduction of order process, or something else, in order to make the description 

physical. 

So far, the extra features of the Green's functions appear only to have 

manifested themselves in the presence of the tail term. A difficulty is faced, 

however, in the interpretation of the decomposition of the retarded solution. 

The combination 

G, ym =I (G- + G+) 
2 

(46) 

has the necessary properties that it is symmetric and solves the inhomogeneous 

wave equation, thus the field that it generates contains the singularity of the 

retarded field A_ If we again postulate that the remainder of the field A- is 

responsible for the self-force, then although it is indeed regular, this combina- 

tion has support within both future and past light cones. The appeal of this 

approach is that there is no support at space-like separation for the arguments 

22That is, they use the same singular Green's function. The details of their working are 

based on a definition of the 'direct' and -tail' contributions to the Green's function as those 

with support on and within the light cone respect i,, -el. N-. 
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which is in keeping with a field theory perspective. Howeývr. taking the effect 

on the world line itself, then 

G- - G, ym- 
I (G- - G+), 
2 (4fl 

is dependent on the entire past and future history of the world line, which is 

somewhat problematic from a causal perspective if we are to then interpret 

the resultant field as on radiative field acting on the particle. The key to 

solving this problem, identified by Detweiler and Whiting in 2003 [17]. is 
the recognition that although the symmetric combination G,, ym does indeed 

contain the singularity, it is not unique in this respect. This non-uniqueness 
is part of the reason that we stated in the flat space description that the use 

of G_ - Gsym as wholly responsible for the self-force was postulated. We are 
free to add any solution of the homogeneous wave equation to G, y,,, and the 

result will remain a solution of the inhomogeneous equation. This then is how 

we proceed. The additional homogeneous solution is defined precisely to solve 

the causal issues present in the choice of Gsym. We note additionally, that 

we must ensure that this solution is also symmetric, otherwise we shall affect 

the symmetric property of the resultant singular solution. We therefore define 

H(x, x') such that it is equal to the advanced Green's function G+ when x is 

in the chronological past of x' and, by symmetry, agrees with G_ when x is in 

the chronological future of x'. Subtracting this solution from G, yml we define 

the curved space singular Green's function as 

Gs =I (G- + G+ - H) 
2 

(48) 

This function has support at spatially separated points, and the resulting 

GR= G- - Gs, (49) 

is dependent on the history of the world line up to and including the advanced 

time 7-+. Whilst, it is soniewhat count erint uit iN, e to use a result with apparent 

dependence at spatial separation, we recall that the decomposition is used onIY 

in calculating the effect of the field on the particle itself, hence on the Nvorld 
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line (where the separation is zero). It should be stressed that this choice of 
Green's function decomposition does not actually affect the resulting equation 
for the radiation reaction force. It does however. put the interpretation of the 

Green's function decomposition on a more physically reasonable footing 

providing a physical field which can act on the particle. 
This treatment of the self-interaction, by identification and subtraction of 

the singular component of the field, can be extended to other forces as well. 
Recent work has included the calculation of the self-force for a scalar charge in 

curved space by Quinn in 2000 [34]. In this case, instead of interacting with 

a vector field, as is the case for electromagnetism, the particle is coupled to a 

spin-zero scalar field. The equations of motion for a particle with charge q are 

mam =q (gl" + u"u') 17, (D, 

where the scalar field (D emitted by the particle satisfies the wave equation 

(EI - eR) l> = -M(x) , 

where ý is a constant measuring coupling to the curvature 23 
, and where p(x) 

is the charge density given by 

M(x) =q d-F 64 (x, X), 

on the world line -y = X(T) and64(X, X) is the invariant generalisation of the 

(50) 

(51) 

(52) 

Dirac delta function 

64 ('V 
i XI) 

6(x - x') (53) 
-VI-g 

The combinat, ion of these equations adds an extra feature to the dynamics in 

curved space: If one derives the above equations of motion from a variational 

principle, then the inertial mass must be time-dependent. Specifically. 

(1111 
- -qul"V,, ýý 

dT 
(54) 

23 The constant ý here is arbitrary, however the most commonly picked values are the 

inininiall. -v coupled scidar field with ý=0 and the conformally invariant ý= 
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Subtracting the singular Green's function from the particle's field. and adding 
the self interaction to the equations of motion, Quinn found 24 

'mail = F' ext 

q2 + (61' + ul'u, ) 
[3m 

ýtv +6 R"',, uA + d-F'V'G- (X (7-), X (-F') 
47 

(55) 

dm__ 1q2 
(1 - 6e) R-q2u 

IT- 

d-F"7 G-(X(-F)., X (-F'». (56) d-F 12 47r 47r 
-00 

m 

The reader can note the similarities, and differences, between the scalar and 

vector self-force expressions. 
Having looked at scalar and vector (electromagnetic) fields, the next type 

of potential field of interest is that of gravitational radiation. The emission 

of gravitational radiation is one of the predictions of general relativity and 

one which is of current interest at the time of writing. A number of detectors 

have recently been built hoping to receive signals from the gravitational waves 

reaching earth. From our current perspective, we see the possibility of a point 

mass interacting with its own gravitational field. We approach this problem 

analogously to the scalar and vector cases, by considering a point mass and its 

potential field. As we are considering the gravitational field, the field of the 

mass will be the perturbation of the space-time that it induces. The idea of a 

point mass poses some difficulties within general relativity, not to mention the 

usual difficulties in the consideration of the non-linear equations of motion. 

However, provided we keep the perturbations produced by the mass small, 

which we would in any case wish to do given the previous discussions. then we 

can proceed. We thus consider the case of a small mass moving in a background 

space-time g,,, which here is analogous to the charged particle moving in the 

external potential. The unperturbed path is then a geodesic of g. We assume 

that g., is a solution to the vacuum Einstein equations. We then treat the 

2 'Quinn's results [34] were for the minimally coupled scalar field and Nvere extended by 

Poisson to arbitrary ý for his review [191. 
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mass as a perturbation h to this background metric and use the mass itself as 
the expansion parameter to produce the full perturbed space-time f1ju 

fýjv = gpv + h1jv + O(m 2) 
. (57) 

As the coupling to gravity, the mass is effectively the charge in this context. 
In the background space-time, the equations of motion are 

att =-I (gl" + ulu') (2h,, \;, - h, \,;, ) u, \uK (58) 
2 

using the '; ' notation for covariant differentiation. Now, the potential field 

which we use is not actually that of the perturbation, but rather the trace- 

reversed tensor -y defined, akin to the Einstein tensor from the Ricci, as 

7pv = htLv -I (g\h, \, ) gt,,, 2 
(59) 

where the reader will note the use of the background metric for contraction in 

keeping with the perturbation approximation. These trace-reversed potentials 

then satisfy the wave equation 

0-y"o + 2RA"r"', ýAl = -167rT"' (60) 

where P" is the stress-energy tensor of the point mass. Following calculations 

with these potentials, the original h fields can be obtained by trace-reversing 

again. These equations are the appropriate counterparts for the spin two gravi- 

ton to the scalar (spin zero) and vector (spin one) potential cases. Subtraction 

of the singular field from the perturbation leaves the regular, or radiative, field 

hR given by 

-4m 
(u(,, R, ),, \p + R,,,,, 

pu, \) 
OuP +h tail 

pvý, \ PVA 

with the tall term given by 

h tail 
= 4n? dT'V, \ -I gm, G\ A,,,,, 

)a 
"' a (62) pvA 

IOC 
2 
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The retarded Green's function here is that for the wave equation for -1, hence 

the trace-reversed presence here. The equations of motion are then 

I tail tail A 
am 2 

(g"' + Ou) (2hv. 
\K - h, \Kv) tj (63) 

with only the tail term remaining. These equations were found in 1997 bY 

Mino, Sasaki and Tanaka [32] and using different methods reproduced 1) 
,v 

Quinn and Wald [33]. Consequently they go by the name -MiSaTaQuWa 

equations'. The variety of methods used removes some of the difficulties in 

the analysis of a point mass. Given that the unperturbed path was the geo- 
desic of the background space-time, from a general relativity perspective, one 

would naturally ask about the geometric properties of the new path. From 

the analysis and interpretation of the regular Green's function by Detweiler 

and Whiting [17], we have already noted that the scalar and electromagnetic 

charges would move under the influence of the combination of the original ex- 
ternal field and the particle's radiative field. Thus extending to this case, [17] 

gives us the interpretation of the new path as the geodesic of the space-time 

with metric 

hR 9/tv + 
/IV I (64) 

which remains a solution to the vacuum Einstein equations. Work on gravi- 

tational radiation reaction uses the above equations, with attempts to calcu- 

late the tail terms, for such situations as small black holes and orbits in the 

Schwarzchild (black hole) metric. One of the aims of such work is to produce 

a description of the motion in such extreme circumstances and consequentI. N, 

accurately predict the gravitational radiation that the new detectors hope to 

detect. Should the process work, then we would ultimately obtain a new type 

of telescope for probing some of the more extreme gravitational events in the 

cosmos. 

The equations of inotion for gravitational radiation reaction appear ini- 

tiallv soinewhat different in form from those for the other fields. Some of t1iis, 

difference is because the above ignores some extra difficulties. Naniely, the 
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above equations are produced using the Lorentz gauge condition -'I", -0 and ;. Ll 
are not gauge invariant. Under coordinate transformation of the background 

coordinates using a smooth field of order m. xP x4 + ýP, the change in the 

particles acceleration is given by the '-gauge acceleration' 

(61' + Ou, ) 
D 2ýv 

+ RA, \ýKuP 
v( dT2 'pu 

(65) 

The consequences of this, such as the possible gauging away of the self-force 

accelerations, should indicate the need to add into consideration the full metric 

perturbation in order to obtain gauge-invariant observables. As we are onI. ", 

giving a brief overview of extensions to the radiation react, ion problem here, 

we shall not go into anymore detail but refer the interested reader to the 

literature quoted. From this aside, we now return to considerations of flat- 

space electromagnetic radiation reaction. 

4. Quantum Theory 

Classical electrodynamics is no longer considered to be the most funda- 

mental theory, but is currently superseded by quantum elect ro dynamics. or to 

use the more common acronym, QED. The classical theory is however very 

successful within limits and forms the basis on which we normally construct 

the quantum theory, as with many other classical theories. Classical Electro- 

magnetism, unifying two of the fundamental forces of nature, was one of the 

great success stories of 19th century science. It was in the study of radiation 

that the cracks began to appear. The ultraviolet catastrophe 25 is usually given 

as the example of this, whereby classical electromagnetism predicted that a 

black body at thermal equilibrium would emit radiation with infinite power. 

This is demonstrably false, with the problem occurring in the short wa%-elength 

(hence ultraviolet) region. The well-known solution was Nlax Planck's quan- 

tum hypothesis - that the radiation was emitted only in discrete 'quanta' of 

energy. which Einstein suggested be used to address the issue. Einstein also 

2,5The ultraviolet catastrophe is also known as the Rayleigh-Jeans catastrophe. 
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used the hypothesis to solve another classical problem relating to radiation: 

the photoelectric effect. The issue of electromagnetic radiation was thus one 

at the focus of the early work on quantum theory. Another example frequentlY 

presented as a way of showing the successes of early quantum theory is that 

concerning the structure of the atom and one which is related to our main 

consideration. After Rutherford's experiments providing the evidence for the 

positive nucleus model of the atOM16 , the orbit style view of the atom, in which 

the electrons circled the nucleus, like the Newtonian motion of the planets to 

the sun 27 
, was the classical model of the motion of the electrons. This model 

appears to be a fairly good analogy until one considers the oft-ignored radia- 

tion reaction and considers the motion of the particle itself. As the electron 
is continuously accelerated, although with the acceleration vector changing to 

always point to the nucleus, the theory predicts that it will emit radiation. 
This would mean that the system would lose energy and thus the prediction is 

that the electron would spiral into the nucleus, consequently rendering all clas- 

sical atoms inherently unstable (see Fig. 1.5). This is of course another effect 

which is (thankfully) demonstrably incorrect. The extension of the quantum 
hypothesis to the energy spectrum of the atom, thus allowing only certain 

stable energy levels, quickly gives very accurate predictions. After these be- 

ginnings, the full theory of quantum electrodynamics was gradually developed. 

This has in turn become one of the success stories of 20th century science, and 

one frequently stated to be the most accurate theoretical model of all time - 

so far at least - 
QED is usually studied using the techniques of perturbation theory, in 

which the interactions between the particle and electromagnetic fields are ex- 

panded as a series in terms of the coupling between them. In Feynman di- 

agrams, the first three terms of the perturbative expansion of the scattering 

amplitude are given in Fig. 1.6 and are the basic diagrams ustially considered 

261nstead of, say, the plum-pudding model. 

27U, sing circled in a more liberal sense to include elliptical motion. 
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FIGURE 1.5. An electron in a classical atom would radiate, los- 

ing energy, and spiral into the nucleus. It is thus unstable. 

28 

FIGURE 1.6. The first three types of Feynman diagrams for 

QED representing the perturbation expansion up to order e2. 

when learning about interactions in quantum field theory. 28 These diagrams 

are for the perturbation theory up to order e2, which the reader may recall is 

the order of the classical radiation reaction. We have a process corresponding 

to the emission of radiation (the first order interaction). The strength of this 

2, "'Along with the particle creation/ annihilation diagrams, 'which are really the same 

process as the emission diagram in Fig. 1.6. 
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contribution to the perturbation calculation will be dependent on the physi- 

cal situation i. e. the classical external forces accelerating the particle. 29 The 

one-loop contribution represents the most basic self-energy process, in quan- 
tum field theory. It is the self- interaction with a virtual photon emitted and 

absorbed by the particle itself which we shall also at times term the forward 

scattering. 30 This represents the contribution of the particle interacting with 
its own electromagnetic field. The contribution is infinite, as are a number 

of other self-interaction type processes in QED, hence the reason for the ne- 

cessity of renormalisation. At this level, renormalisation consists of removing 

the infinite self-energy contribution in order to obtain finite answers. There 

is more than one equivalent way in which to achieve this and we shall use the 

counter-term method in this work as it fits the calculation best. The methods 

are however all equivalent to redefining the mass. 31 

In the above paragraph, whilst we gave a brief overview of the basic per- 

turbation contributions, the aim was in fact to word the descriptions in terms 

similar to those that we have been using to describe classical radiation reac- 

tion. Some of the similarities in the way in which we deal with both theories 

should hopefully now be apparent. In both cases, we use a perturbation ex- 

pansion in terms of the coupling for many calculations. 32 In both cases we can 

split the processes up into emission and self-energy interactions. In addition, 

in both the classical and quantum theories it is necessary to subtract an infi- 

nite contribution corresponding to the self-energy via a renormalisation of the 

mass. There are of course also differences; otherwise we would not need to 

29By classical here we mean that such forces are treated non-perturbatively. Should an 

external force be added in perturbatively, then the contributions would have to be shown 

in the diagrams by additional boson lines. 
ý3"We recall that these diagrams are represent at ive of the contributing terms in the 

perturbation expansion rather. as is sometimes mistakenly thought, the actual physical 

process. 
3'For higher order perturbation terms, one would also need to renormalise the field etc. 
32HoNvever, the reasons for using the expansion are different. 
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replace classical electrodynamics with the quantum theor, ", in the first place. I 
These similarities and differences are then a further motivation for both the 

work contained here and the details of the models chosen. The above sections 

of the introduction should be kept in mind when we introduce and just, fy the 

model and calculations to be performed. 

5. Origins of the present work 

This work is based on the initial results and models given in [5]. In these 

papers, Higuchi looks at the process of radiation reaction in quantum me- 

chanics and the non-relativistic approximation in quantum field theory for 

comparison with the results of classical Abraham- Lorentz- Dirac theory. The 

papers look at the calculation of the change in position due to radiation re- 

action, which is labelled the position shift. 33 The comparison is then made 
between the predicted value of this quantity for the classical theory with the 

classical limit of the non-relativistic approximation of the first order interac- 

tions of quantum field theory for a charged scalar field. The results are that 

the predictions agree, thus supporting the idea of the Lorentz-Dirac theory as 

the appropriate classical limit for quantum theory. It is on this base that we 
build the work presented here. Our aim is to compare the classical and quan- 

tum theories of radiation reaction in order to gain a further understanding of 

the effect in both. Given the debates over the interpretation of the Lorentz- 

Dirac theory with the associated problems and possible solutions as detailed 

above, a comparison at the level of the classical limit of the more fundamental 

QED is also useful. The next sections detail the models used and calculations 

to be presented along with justifications for the choices made. The models 

are based on those in [5], but extended to a fully relativistic theory, to the 

spinor field, and also to considerations of the second order interaction at order 

e 2. The previous sections have detailed the background theories with which 
33As the model used later is based on that from [5], -, ve shall not go into detail now, but 

rather ask the reader to NA-ait until the next section where the extended model for this work 

is presented. 
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we are concerned; the following sections detail and introduce fullv the current 

research on which this work reports. 

6. The Model 

We wish to compare the effects of radiation reaction in the classical and 

quantum electrodynamics theories. Possibly the most fundamental effect of 

radiation reaction is to change the equations of motion. These equations are 
in turn simply differential equations to be solved for the position of the particle. 
Consequently, the observable effect due to the existence of radiation reaction, 
is a (possible) change in the measured position of the particle. We therefore 

choose to make this observable the measured effect which we shall investigate. 

TO be more precise, we wish to measure the change in position of the particle 

due to radiation reaction. This rather unwieldy description we give the name 

the position shift. 

We now require a model involving radiation reaction in which to make our 

measurement of the position shift. The reader will recall that the canonical 

set-up used in the perturbation theory of quantum field theory is the situation 

in which the fields are regarded to be free at future and past temporal infinity, 

with the perturbative interaction in between. The particle interpretation is 

in fact dependent on the states being non-interacting at temporal infinity 

(past and future). We have a situation in which a free particle enters from 

past infinity, interacts with the other fields (in our case, the electromagnetic 

field) and then leaves as a free particle to future infinity. At this point we 

remind the reader that, in the classical theory, the reduction of order procedure, 

as carried out on the Lorentz-Dirac equation., is equivalent to treating the 

Lorentz-Dirac force as a perturbation. The two theories we wish to compare are 

consequently both best represented by the above description of the quantum 

interaction model. We therefore choose the following: Let the particle travel 

in ýi potential -, N-hich is constant in the asymptotic regions and non-constant 

for some finite region in bet,, ýven- Only in the non-constant potential region 
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will the particle experience acceleration and thus radiation reaction. Having 

given some explanation for the choice of such a model, we now proceed to 
define precisely the model used for this work. 

Let the potential V be dependent on one of the spacetime indices. say x" 
The potential is chosen to be equal to Vo = const. for 

-ra :: ý Xa and equal to 1 
0 for Xa > Xa for some Xa > Xa. The acceleration is thus non-zero only in 221 

the region Xa < Xa < Xa 
. The choice of V=0 for the final region is made I--2 

for simplicity (if it were not, we could simply redefine the potential so that it 

was) . Let us define the three regions as 

A4- = fxlx' < Xi I 

IXIXa < Xa < Xa 
I-- 21 

M+ =: fxlx' > X'l - 
(66) 

With Xa = XO , i. e. a time dependent potential, it is clear that the particle will 

start in the region with VO, enter the region of acceleration and thenceforth 

finish in the region with V=0. For x' spatial, we require the initial and 
final momenta to be positive in the Xa direction to achieve the same set-up. 

The only assumption here is that there is no turning point in that coordinate, 

something which in fact we shall require later in any case. 34 

We wish to analyse the effect of the radiation reaction which takes place 

in the region of acceleration as measured by the position shift. It makes 

sense that the measurement takes place outside the region itself. We note 

that in the non-interacting region, representing the quantum field by a free 

field is an approximation which becomes more valid as we move further from 

the interaction. We thus state that, the position shift is measured far enough 

into the later asymptotic region so that the plane wave approximation for the 

quantum mode function is accurate. 'Now. the position shift NN-111 be measured 

I)v comparing the position of a non-radiation particle, a control particle. to 

34 Stricth, speaking we have only so far assumed the weaker condition that the number 

of turning points is not odd. 
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FIGURE 1.7. The potential V(x') and period of acceleration. 

33 

one undergoing radiation reaction. Again, for the sake of simplicity, we define 

the coordinate such that the control particle is at the origin at the time of the 

measurement. This has the added bonus that, the position shift is simply the 

position of the radiating particle at the point of measurement. The positions 

Xa are thus negative in this coordinate system. Fig. 1.7 represents the model 1,2 

graphically. The choice of VO >0 is made here simply for the purpose of the 

graphical representation. 
Now, whilst we wish to treat the radiation reaction effects as a perturba- 

tion, we have no particular need to treat the potential as such. In terms of the 

quantum theory, the potential is treated as a so called classical potential (i. e. 

non-perturbatively). The potential V is simply the source of the external force 

which causes the particle to interact with its own field. The latter interaction 

is the one treated perturbatively. 

7. Scalar Field 

In this section we set up the quantum field theory model of the charged 

scýilar field. NNe give the appropriate definitions of the field and the conventions 

and notation which Nve shall employ in the further discussion. The Lagrangian 

density C for the free complex scalar field is given bly 

( 111/h)2, -t, - Op,: tOPrý - ý- It, 1 
(67) 
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From this Lagrangian, the conserved current is given by 

t (68) 

+- -4 +- 

where (9,, =(9,, - (9,,. The colons represent the normal ordering process 

which orders creation operators on the left of annihilation operators to ensure 
that the vacuum expectation value of the current J, vanishes. The zeroth 

component of the conserved current is the charge densit'N' given bY 

P(X) at ýa h 
(69) 

which we shall have need of in order to calculate the expectation values of the 

free state. 

The equation of motion for a free charged scalar field ýý is the Klein-Gordon 

equation 

(h 2E] +m 2) 
ýo =07 (70) 

where 11 = aý'(9,, is the d'Alembertian operator and m is naturally the mass 

of the field. In the absence of coupling to another field, ýo is expanded via a 

Fourier decomposition to give 

ýo(x) =hdP [A(p)(Dp(x) + Bt(p)llt (x)] 
. 

(71) 
2po(27h)3 P 

In this expansion, 41)p(x) is the mode function i. e. a solution to the field 

equation for ýo(x) (70). Similarly, 4bp is a solution to the field equation for 

, j: 
J (x), which for the free field is again (70), thus Cpp (X) 

= Obp (X). 35 -XIodeling 

the field as a plane wave we substitute 

ip-x/h 4)p(x) = e- (72) 

At(p) and Bt(p) are the creation operators for the positive and negative 

charged particles, with A(p), B(p) the respective annihilation operators. The 

"The introduction for the iiotation (D -whilst seemingly superfluous here, shall be P t) I 

needed shortlY. 
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quantisation of the field is given by the commutation relations 

[A(p), Aý (p')] = [B(p), Bý (p')] = 2pO(27jj)363(P 
_ PI) 

with all other commutation relations set to zero. At this point Nve remind 
the reader of our conventions as set out above. The measure d3 p/po is a 
Lorentz invariant element of phase space due to the mass-shell conditio III)o 

P2+ M2. Our convention involves the constant multiplication to give the 

factors 2po(27h)' in both the measure's denominator and in the commutation 

relations. Note the presence of the h's both here and as an overall multiplier in 

the field in (71). Their presence is of course frequently omitted in discussions 

due to the use of natural units (h = 1). However, whilst very useful for most 

particle physics discussions, such a unit system is not conducive to the analysis 

and investigation of the classical, i. e. h --ý 0, limit which we shall later wish 

to Perform and hence their inclusion. 

The Poincare invariance of Minkowski space can be employed to define 

a unambiguous vacuum state 10) for the scalar field, given by the condition 
A(p)10) - B(p)10) = 0. The successive applications of the creation operators 

then build up the Fock space for scalar field with the appropriate particle 

interpretation. 

The free scalar field is used to model the particle in terms of an incoming 

and outgoing wave packet. We represent the initial state ji) by 

ý'p 
-f (p) At (p) 10) (74) 

,, 
(Y,, W) 3 

-ý/2po (27h)3 

where the function f (p) is sharply peaked about a given momentum P. For 

our later use, we require that f is sufficiently sharply peaked such that we can 

approximate If (p) I' by (27F h)' [6 (p - P) +0 (h 2)] 
. 

The normalisation of the 

operators At(p) is such that the condition (i ji) =I leads to 

dp if (P)II 
(27/i)3 (75) 

This shows that the function f (p) can heuristically be regarded as the one- 

particle wave function in the momentum represent at ion. 
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So far, we have dealt only with the free fields i. e. in the absence of the 

potential. Before considering the interaction between the scalar and electro- 

magnetic fields that will contribute to the radiation reaction process. we must 

include the external potential V in the presence of which the interaction of 

interest will take place. As previously stated., we shall treat this external 

potential non-perturbatively i. e. we shall not expand in orders of V. The 

inclusion is most easily achieved by substitution of the derivatives as follows: 

Oi, ýo ---+ Dý, ýo = 
(04 

+ hVtl) 
(76) 

where the V,, are the spacetime components of the potential V- In the presence 

of the potential, the Lagrangian density becomes 

(Djj(p)tDt'ýo - 
(m/h)2ýotýo. (77) 

The field equations can be similarly obtained to give 

(h 2 DIDj, + M2) ýo =0 (78) 

(h 2 Dt4Dt, + M2) ýot = 0. (79) 

In this case we note that the equations are no longer the same; D. t :ýD PA* 
Writing the field in the Fourier mode expansion as before 

ýc (x) =hdp [A(p)lDp(x) + Bt(p)gbt (x)] 
. 

(80) 1 
2po(27rh)3 

The mode functions (Dp(x) and jDp(x) are solutions to the non-free field equa- 

tions for ýo(x) in (78) and ýýt(x) in (79) respectively. The difference, arising 

from the i in D., is of course the charge difference between the particle and 

antiparticle modes. " When analyzing the field in A41 we shall use the semi- 

classical expansions for the mode functions, which are detailed in Chapter 

9 The commutation relations for the scalar field creation and annihilation 

operators are those detailed above in (73) for field in the 'free' regions. 

ýý(the potential has been added using minimal substitution, as the (perturbative) elec- 

tromagnetic field Nvill be, and thus has a charge coupling in a similar manner. 
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The next step in the construction of our model is to add the interaction 

between the scalar and electromagnetic fields, without which there will be no 

radiation reaction. NN, 'ith the inclusion of coupling to the electromagnetic field, 

we write the Lagrangian density as 

Fj,, Fl" 
1 )2 

4 

where A. is the electromagnetic potential and F,,, = ajA, - aA, is the 

electromagnetic field tensor. The last term in the Lagrangian densitY is the 

Lagrange multiplier representing the choice of the Lorentz gauge condition 

(9,, AO = 0. The choice of the prefactor of 1/2 on this term is known as the 

Feynman gauge and is made in order to simplify the photon propagator. 37 Nve 

proceed as per the scalar field to give the expansion of the electromagnetic 

potential in terms of the plane wave solutions viz 

A,, (x) =dk [a,, (k)e-ik. x + at (k)eik. x (82) 
2k(27)3 A 

We make use of the notation k= IkI. Due to the massless nature of the 

photons, with P'k. =0 and thus k= ko. we will use k and ko interchangeably 

depending on the emphasis required at the time. The quantisation is given by 

the commutation relations for the photon creation and annihilation operators 

[a, (k), at (k')] (27 )3 2hk63 (k - W) (83) 
v 

Notice that, the scalar field (; is expanded in terms of the momentum p whereas 

the electromagnetic field A, 
_, 

is expanded in terms of the wave number k. We 

adopt this convention because the vectors p and k are regarded as classical 

rather than p/h, the wave number of the scalar particle. and hk. the momen- 

tum of the electromagnetic field. 

We are now in a position to turn our attention to the interaction and 

evolution of the wave packet taking place during the acceleration period in 

The evolution of the state is modeled by perturbation theory. We are 

37 See for example [24] for further theoretical details. 
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interested in terms up to second order in the coupling, i. e. e2. and consequently 

need to consider the first two orders in the interaction. The evolution from an 
initial state ji), written in terms of the interaction Hamiltonian is to second 

order given by the maj) 

'1 d4XH, (X) 1 .)+( -2 
)2 1d4xd4 

14 ý-ý IZ) -- x'T[Iij(x)'HI(x')]1, *ý, (84) 
h 

where T is the time ordering operator. The interaction Hamiltonian densit. v 
is obtained from the interaction Lagrangian to give 

23 

ý-(, (x)=-A: tD"ýo-(D"V)týj]: +-EAiAi: -t-- (85) 
h h2 

where D,, =_ 0j, + ZV,, Ih as before. We have normal-ordered the scalar- 

field operators to drop the vacuum polarization diagram automatically. Note 

that the second term is different from what might be na: ively expected, viz 

_(C2/h2)A/_jA4 : ýotW :. This difference is due to the presence of interaction 

terms involving ýb or (ýt in the Lagrangian density. 38 

In addition to the standard one-loop QED process, for scalar QED we 

also have the contribution where the start and end of the loop are at the same 

point. In the Feynman diagrams, this is present by the vertex with two photon 

and two scalar propagators, sometimes known as a seagull vertex, and must be 

remembered if working from the Feynman rules. 39 The processes contributing 

to order 0 from the above interaction Hamiltonian are, in diagrammatic form 

given in Fig. 1.8. The last two diagrams in Fig. 1.8 jointly give the first 

non-trivial contribution to the one-particle irreducible Green's function with 

two external lines, also known as the self energy, which is divergent. 

We consequently now come to the renormalisation process to deal with the 

divergences. To the required order in h for the calculations that shall follow we 

shall onlY require the renormalisation of the mass. As we shall be dealing with 

38The derivation of the interaction Hamiltonian is detailed in appendix B. 
39For most of the later work, Nve shall be starting from the operators, and so this 

contribution will come out of the works on its own. We only use the Feynnian rules here for 

the free-field calculations of the mass counter-terms. 
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0--I- 

ocýý4 
FIGURE 1.8. The Feynman diagrams for scalar QED represent- 
ing the perturbation expansion up to order e'. 

the contributions from the interaction Hamiltonian terms to the position shift, 
the natural method of renormalisation will be using the mass counter-term. 
The contribution of the counter-term. which is of course infinite by definition. 

can then be added the our results. The counter-term takes the form of the 

addition to the Lagrangian of 

ö£ 
dm 2 

h2 
(86) 

where the h' is needed due to our field conventions for the scalar field. The 

mass counter-term is local, i. e. has no momentum dependence, and is designed 

to cancel the divergences from the one-loop diagrams for the free-field. 4' The 

calculation here is thus the standard quantum scalar field theory renormalisa- 

tion for which the reader is referred to the literature for a full introduction. 41 

This standard nature is emphasized due to the fact that in the presence of 

the potential, the general quantum field theory calculations are not standard 

free field QED, hence the Feynman rules are not used there. The propagator 

is modified to remove these divergent contributions via the subtraction of the 

self-energy 
1 

ý-4 
z (87) 

1)2 - 1112 p2- M2 - E(p) 

40For the scalar field calculations -we shall refer jointly to last tN,, -o diagrams in Fig. 1.8 

as the forward scattering or one loop process. 

'The author recommends, for example [24]. [25] and [261. 
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Fic; ('RE 1.9. The mass counter term contribution to the propagator. 

where m here is the bare mass. Rewritten as an expansion 

2- M2 
+22 

p E(p) p2 M2 p2 M2 pM 

2Z2 
1-'E(P)] 

2 p2- M21 p-m M2 

(88) 

it is easy to see that this operation then effectively adds a further Feynman 

diagram to the perturbation expansion, given in Fig. 1.9. This perturbation 

contribution can be read straight from the Feynman rules for the scalar field. 

Using our conventions we obtain, with K= hk for the photon momentum, 

_, E(p) =fdK- 
ie) [pt, + (pt, - Ko)] 

(27)4 
(h 

-ihgl" ic [p, + (p, - Kj] 
(p - 

K)2 
- M2+ ü K2 + i( h) 

+ 
(-je)2 ihöjü 

h K2 + 16 

-ze 
21d4K (2p - 

K)2 4 (89) 
(2-ff)4i - M2 + Ze] [K2+ ze] K2 + je [(p - 

K)2 

The function E is divergent and we need to regularise it, e. g. by dimensional 

regularisation. Then 6m' is chosen (as a function of the regularising parame- 

ter) to cancel the divergence and ensure that 

E(P)lp2=M2 (90) 

p 

as the regulator is removed, where inp is the physical mass. 

We have now introduced the conventions and definitions for the main com- 

ponents of our quantum theoretic model of the complex scalar field. 



8. SPINOR FIELD 

Spinor Field 

41 

In this section we give our definitions and conventions for the quantum 

model for a spinor field. The spinor field is the spin 1/2 field u satisfying the 

first order Dirac equation 

(ZO - 7p = 0. (91) 

In the above we have made use of the Feynman 'slash' notation i. e. for the 

covariant vector A,,, A := -ý"A.. The gamma matrices by virtue of the fact 

that ýb must also satisfy the Klein-Gordon equation, are subject to the relation 
J-yl, -y, J = 2gp,. In this work we shall make use of the Dirac representation 
for the -y-matrices (also known as the standard representation and detailed in 

Appendix C). The Dirac equation is the equation of motion for the field with 

Lagrangian 

=ihb-m, (92) 

where the barred spinors are defined in terms of -yo and the Hermitian con- 

jugate spinor by V) = V)t-ý'. From this Lagrangian, the canonical momentum 

is given by 7r(x) = iOý(x). Despite the more complicated nature of spinors 

when compared with a scalar field. 
) 

the fact that the equations of motion are 

first order leads to simpler expressions for most basic required quantities. The 

zeroth component of the current, the charge density, is given by 

10= P(x) =: e, (X)e(x) :., (93) 

with the usual normal ordering. 

The free spinor field is expanded in the following way 

(' (t, x) -dp 
In Z [b, (p) ib, (p) + dt (p) T� (p) ]- (94) 

(27-r h) 3 p() 
a 

oi 

The expansion includes the sum over o, the spin index. The spin 1/2 field will 

have its spin along a particular axis in one of two states. 'up' and 'down'. which 

shall be represented in the appropriate solution to (91). The different spin 
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states have their own creation and annihilation operators. These operators 

satisfy the miticommutation relations 

f b, (p), bot (p) 1=fd, (p). dý, 3 
(p') 1= Po (27rh)'6'(p 1) 6o 3 ,ß3mP 

b, (p), bo (p') bt, (p), bt3 (p') 0 
a3 

f d� (p), d, 3 (p') 1=f doz (p), dß (p') 1=0. (9-5) 

We recall that quantisation of the spinor field uses the anticommutation re- 
lations, as opposed the commutation relations, to ensure that the energy of 

the field is positive definite. This also means that when normal ordering one 

must be careful to take the appropriate minus signs when swapping the order 

of fields. Here we have used the multiple polm in the denominator of the 

measure and the anticommutation relations. 
From the scalar definitions, we recall that there was no need in the free 

field case to distinguish between solutions of the field equations for the field 

and its conjugate. However, the distinction was important when adding the 

potential. The same should be considered here. The conjugate of the Dirac 

equation gives the field equations for the barred- conj ugat e field 

OX) 
(ih 

+m) 0 (96) 

where the arrow indicates that a acts on those terms to the left (i. e. on the 

'I(x) field here). We consequently regard the mode function 4) as a solution 

for the Dirac equation for 0 and ýF- as a solution of the conjugate equation 

for The latter designation is merely for emphasis; the mode function T 

is still a solution to the Dirac equation. However, we wish to emphasize that 

the mode functions are not conjugate to each other. This is in keeping with 

the definitions of the scalar mode functions and again, for the free field the 

distinction is irrelevant. The functions 4%(p). T,,, (p) for the free field plane 

"'Note that ýV is the barred- co nj ugate of the mode function in the decomposition (94). 

-which must be a vector in the same vector space as 4D. 
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wave solution are given by 

=u,, (p)e-ip-xlh 

ip-xlh V(p) =V. (P)e (98) 

From the Dirac equation, the spinors satisfy the equations 

(p - M)U(P) =0 (99) 
(p + M)V(P) =0- (100) 

The spinors u, (p), v, (p) are given by 

uc, (P) =+ 
7n 

cr -p (101) 
r2 

m- 

so, 

'o, 

+m 
-2- 

(po+m 

0' -p 

-'O+m po +m (102) vo'(p) = 2m 
sc, 

For spin up/down along the x' axis, the vectors s, are the corresponding two 

eigenvectors of the spin matrix a'. To simplify the notation, we shall make 

use of an Einstein convention on the spin indices, for which we shall reserve 

the early- alphabet Greek letters ce,, 3, -y, 6. Thus b, 4)' =ý The 

mid-alphabet Greek letters p, v etc. will be reserved for the spacetime indices 

which satisfy the usual Einstein convention with space-time metric convention 
(+ -- -). Latin letters denote space indices only. 

We use the free field to model the wave packet in the non-interacting re- 

gions. Similarly to before, we represent the incoming wave packet as a distribu- 

tion heuristically regarded as the one-particle wave function in the momentum 

representation: 
d3P 

Vmf(p)bt(p)10), (103) 
(27h)3 0 

where f is shiii-ply peaked about the initial momentum in the region A4- and 

normalised via (111) -I 
dpf *(P)f (P) (104) 

(27, [1) 3 
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Having considered the field in the asymptotic regions. we must now con- 

sider the field in the interaction region A4, in the presence of the potential 
V. We proceed in the same way as previously by introducing the potential via 
the transformation of the derivative 

(am 
+h Vt, 

We again stress that we treat the potential non-perturbativel. y. The La- 

grangian is now 

L= ih, ýý, -t"Djju - niý, (,. (106) 

The relative minus sign on V in the conjugate of (105) ultimately represents the 

opposite charge of the antiparticle solutions. Let 0 

equations of motion are now 

and the conjugate gives 

(ih, 0 - m) ýb =0 

,t 
e 

(Zh 
» +M) = 0, 

(107) 

(108) 

where the arrow indicates the differentiation of term to the left. We note that 
leading to the second equation. The mode functions in the 

interacting region are now solutions of these two equations i. e. 

(ih» - m) db. (x) =0 (109) 

( <-- t (z. ) ih 0 +m) =0 

NN e add t lie electromagnetic field via minimal substitution as before. which 

in this case gives 

,0 --ý 0 le. Alh, (111) 

where once again the electromagnetic field has the expansion 

, y['D,. The appropriate 

dk [a. (k) e- 
ik. x + at (k)eýý`] (112) 

2A-(27)3 p 
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with the commutation relations 

[a,, (k), at (k')] (27r )3 2hk63 (k - k). 
v 

Most of what was said previously about the details of the ENI field applies 

equally here. The QED Lagrangian, in the presence of the classical potential 
V, is given by 

11 
(Ott Ap)2 

. 

(DI, 
-i6Aj, rnO-V) - -F,,,, FP' - h4 

The interaction Lagrangian can be given from (114) by 

Ic, 

Unlike the scalar case, the switch to the Hamiltonian formulation is straight- 
forward and we find that the interaction Hamiltonian is simply to negative of 

L, viz 

H, 
= e: ý*):, (116) 

where we have added the normal ordering. The interaction Hamiltonian is 

then substituted as appropriate in the evolution of the state. The evolution in 

(84) is a general statement of perturbation theory and thus relevant here: 

1 i) ----> 1 i) -i1 d'x'HI (x) 1 i) +(i 
)2 

d4xd4 x'T ['HI (x) li, (x) ]1 z) . 
(84) 

h 

We again look at the perturbation expansion contributions to order e'. As 

with the scalar case, we have null, emission and forward scattering processes. 

For the spinor fields, which is of course standard QED. the forward scattering 

does not contain the second circular loop process seen as the last process in Fig. 

1.8, as there is no seagull vertex. We instead simplY have the three diagrams 

described in the introduction and given in Fig. 1.6. which Nve repeat in this 

section (Fig. 1.10) to aid the reader. The remaining one loop diagram is still 

divergent and the contribut, ion is subtracted via renormalisation in much the 
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csrrr? L1 
FIGURE 1.10 The first three types of Feynman diagrams for 

QED representing the perturbation expansion up to order e2- 

same way as briefly described in the scalar field section. To order e' the mass 

counter term adds to the Lagrangian the additional term 

6rnýbo (117) 

The counterterm 6m is again local, i. e. has no momentum dependence. The 

spinor propagator, written in terms of the bare mass m, is modified to remove 

the divergences from the one-loop contribution via 

z 

0- M, 0 

'1 

-m 

rn 

(118) 
m- 

The self-energy E(p) is given here analogously to the situation described for 

the scalar field and can similarly be represented by an additional Feynman 

diagram contribution (see Fig. 1.9). 43 Using the Feynman rules for standard 

(spinor) QED applied to the one loop diagram, we obtain 

E(P) = -ie 

2fd4K_ 
gtiv 

, ýy pI ýy v (119) 
h (27r)4K2 +jE W- M+M 

The self-energy is again divergent and may proceed as in the scalar case to 

regularise it via dimensional regularisation. Similarly to the previous case. the 

13NVe are approaching these fields in a somewhat reverse order by giving the -standard' 

QED results second, due to the order they are used in this work. 
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counterterm 6m is then chosen, as a function of the regularising parameter, to 

cancel the divergence so that as the regulator is removed we have 

öm 
-E (p) lp=� ---> 0ý (im) 

where mp is the physical mass. 

This concludes our introduction to the model that we shall use for the 

quantum field theory description of the Dirac spinor field for QED. An ex- 
haustive or pedagogic introduction to quantum field theory would be out of 

place here and the reader unfamiliar with the canonical descriptions outlined 

above is referred the one of the many textbooks, or indeed courses, designed 

specifically for that purpose eg. [25], [26] or [24]. On the other hand, the 

above two sections should now provide a reader familiar with quantum field 

theory with an appropriate reference for the definitions and conventions that 

are used in the rest of this work. 



CHAPTER 2 

Semiclassical Approximation 

In this chapter we introduce and calculate the semiclassical 

approximations to be used to model the scalar and spinor 

quantum fields during their interaction with the classical po- 

tential. 

1. Semiclassical and WKB approximations 

In this section we have two purposes to keep in mind. Firstly, we need to 

solve the field equations to find expressions for the mode functions during the 

period of acceleration. Secondly, we aim to take the classical limit i. e. the 

limit in which h --ý 0. It is thus appropriate to use a semiclassical expansion, 

i. e. an expansion in terms of h, in order to obtain our mode function solutions. 

Due to the nature of the model, we shall not however be solving the equations 

exactly in terms of known quantities. This is a simple consequence of the 

fact that we do not wish to constrain the possible behaviour any more than 

is absolutelY necessary. So far little has been said of any possible constraints 

on the acceleration. Most of the constraints that will become apparent are in 

fact due to the semiclassical expansion detailed in this section. In order for 

the expansion to be valid, and indeed found by the following method, some 

restrýiints are necessarv. 

In order to set the scene before presenting the relevant calculations. let 

us briefly recall some of the basic theorY of semiclassical expansions in quan- 

tum theory. The expansion of the wave function in orders of h in quantum 
18 
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mechanics goes by the name of the WKB approximation. named after Wentzel- 

Kramers-Brillouin from their 1926 development of the method. ' Strictly speak- 
ing, the WKB approximation is the expansion up to order h of the solution to 

the Schr6dinger equation 

ih 
ae 

(X, t) =: 
h 

v2 + V(x) e(x. t). (121) 
(9t 

[_ 
2m 

1 

The complex solution ýb(x, t) to (121), rewritten in terms of some function S 

as e"(x, ')/' leads, with the assumption 0 zý 0, to 

OS I (VS)2 
_ 

ihV2S + V. (122) 
at 2m 2m 

The formal 'classical limit', h --+ 0, gives the Hamilton-Jacobi equation 
as 

-I (VS)2 + V. (123) 
at 2m 

In general, the semiclassical expansion is the expansion of S in terms of h viz 

S= So + hS, +h 
2S 

2 +... 
. (124) 

With the substitution of this expansion, the appropriate equation of motion 

can then be solved order by order. For the Schr6dinger equation we have, for 

So and SI, 

-aso -I 
(VSO)2 +V (125) 

at 2m 

_aSI _1 
[_Z-V2SO + 2VSo - VS11 (126) 

at 2m 

Note that the equation for So is again the Hamilton-Jacobi equation. As an ex- 

ample, consider the time-independent one dimensional Schr6dinger equation. 

For a wavefunction proportional to e-iEtlh. we note that S(x, t) = S(x) - Et. 

and so we ma, NYI separate out the e-iEtlh factor and consider the semiclassical 

'This is one of those cases where multiple names are sometimes used in attempts to 

credit the correct people. The NN'KB approximation is also known as the NVKBJ. The J 

is for Harold Jeffreys. who in 1923 developed the general method of approximating linear. 

second-order differential equations. including the later (1925) Schr6din? ýýi:!,, er equation. Early 

quantum mechanics texts also use NVBK, BWl*IL. WKBJ and BWK. J. 
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expansion as terms dependent on x only: S(x) = SO(x) + hS, (x) +.... The 

solution up to order h in this expansion is 

(X, t) = exp ±'1p (x') dx'] (127) 

.� 7p- -(x) 
[h 

where p(x) = V-2m(E --V(x)) is the classical momentum of the particle and 
2 C is a constant. This example shows explicitly the general restriction on the 

validity of this approximation, namely that it breaks down when the classical 

particle reaches a turning point, i. e. p(x) =0 above. 
This conclusion can also be reached by analysis of the validity of the ap- 

proximation itself. In order for us to be justified in taking the h expansion 

then the truncated series that we use must be a good approximation. From 

the notation above, we would require that hS, be much smaller than So. From 

the equation (122), we require that the h term be much smaller than the other 

h' terms. These general requirements give in our current context the condition 

I (VS)21 >> hIV2SI 
. (128) 

If we turn to our specific example of the t ime- independent Schr6dinger equa- 

tion, we obtain 
(x)' :h 

dp(x) 
(129) 

dx 

Substituting the definition of p(x) from above and rearranging, we find 

hdV(x)ldx 
< (130) 

2(E - V(x))p(x) 

As stated, we thus arrive at the same conclusion regarding the validity condi- 

t, ions i. e. that the approximation breaks down at the classical turning point 

E-V. ' One should however note that the approximation may still be valid 

beyond the classical turning point. This encapsulates the fact that in quan- 

tum mechanics the probability amplitude need not be zero in the classically 

2TIie steps of this calculation are nearly identical to those for scalar field which v%-e shall 

present fully later. As we present the Schr6dinger results as a motivational example we have 

omitted the details here. 

3Recall that p(x) =0 here too. 
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forbidden regions, hence providing for quantum phenomena such as quantuni 

tunnelling. The above condition, it should be recalled, is one for the approxl_ 

mation, rather than the quantum wavefunction itself. That the WKB approxi- 

mation does not break down in the classically forbidden, yet quant um- allowed, 

regions is an important point which demonstrates that the h ---+ 0 limit of the 

semiclassical expansion may still contain quantum phenomena and thus can 

not technically be assumed to be the classical limit, in the sense of producing 

the purely classical theory. This limit is nevertheless frequently referred to 

as the classical limit, and as we shall use this limit to compare the quantum 

theory effects with those of the classical theory, it shall be referred to as such 
here with the above caveat to be kept in mind. 

Having now reminded ourselves of the canonical semiclassical theory for 

quantum mechanics, we can now turn our attention to the approximations 

needed for the quantum model we have set out. We start by looking at the 

semiclassical approximation for the scalar field and then consider the same for 

the Dirac spinor field. 

2. Semiclassical Scalar solutions 

In this section we consider the scalar field solutions to the Klein-Gordon 

field equations in the presence of the potential. In the region of the accel- 

eration of the particle, the mode functions are these solutions to the field 

equations. We desire a semiclassical expansion of the mode functions. Firstly, 

let us consider the case of the time dependent (and space independent) poten- 

tial: V= (0. V(t)) with the gauge choice VO = 0. In this case we will have 

conservation of momentum. Firstly, , N-e separate he mode function as follows: 

I 
4bp Dc ehP"op(t) 
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The wave equation that is satisfied by (I)p is 

202+ V 
x(t))2 

+V [h (-ZhOx (-Zhay 
y 

(t)) 2 
t 

(-Zhaz z(t»2 + rý72] lDp =0. 

thus the equation that must be satisfied by Op(t) is 

52 

(132) 

2 
(qt2 + (px 

x(t))2 + (PV 
_VV -V [h 

V 
(t)) 2+ (pz 

Z(t))2 +, rn2] op(t) = 0. (133) 

We now wish to find the semiclassical expansion of this solution. In the scalar 
case, we shall need to take only the first two terms of an expansion in h in the 

exponential, which translates to order ho for the mode function, viz 

op exp 
i 

S(O)-S(l) 
hI- 

(134) 

We substitute this expression into the wave equation and then equate order 
by order. The first term, the t differential gives 

ii2(92 exp 
i 

S(O) - SM th 

h 2at exp 
i 

S(O) - SM 
i 

ats(o) - ats(l) 
I (-h ) [-h 11 

(at s (0) )2 + 2Zh(9tS(o)(9tS(l) - zhat2S(O) _ h2a2S(l) + h2 ( at S(l))2 
t OP M- 

(135) 

Thus the order ho terms give an equation for SM 

S(o)) 2= (px 
_ 

1', 
x2+ 

(Py VV at 
y(t))2 

+ (pz 
z(t))2 + rn2, (136) 

which we can solve to give 

t 
S(O) Ep (t') (it', (137) 

fo 

where 

Ep (t) (px -I, _I-(t 
))2 + (p 

_I-(t ))2 + 11? 2 
. .r2+ 

(py 
yzz (138) 
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This is the classical energy of the particle. 4 The order h' terms give e7l) 

2 Ot S (0) at S (1) = Ot2S(O), (139) 

which has the solution 
t at2 

, 
S(0) 1 

-dt' 
02 at, S «» 

1d (OtS«») 
2 at S (0) 
1 

In Ep (t) + const. (140) 
2 

Thus the t-dependent part of the wave function is given by 

OP Mce -if Epdtlh (141) 
. ýI_Ep 

t Po 
exp Ep(()d(dt'] (142) 

n Ep (t) h0 

where po = V-p2 -+m 2. The case of the potential dependent on one of the 

spatial coordinates can be given by considering one example. Here we choose 

az dependent potential V (z) = (Vt (z), V, (z), Vy (z), 0) with the gauge choice 

Vz = 0. Again, we separate out the constituent parts of the mode function, 

this time producing 

-ii(pot-P. X-Pyy) (DP =: OP (Z) e- 
i 

The wave equation that is satisfied by (I)p is 

, ))2 
t(Z))2 + (_Zliax (_ihat _V 

Y(Z))2 + (_ )2 + rn2] (Dp (-IhOy - V, IhOz 

and consequently that for Op(z) is 

(143) 

(144) 

y(-, 
»2 + )2 + 7�2] p(Z) 

(P() (Z) )2+2+ (py V 
x 

(-z-haz 

We have labelled the subscript as p to distinguish which momentum this energy is 

related too. It should be noted that Ep(t) is dependent on the vector p. 
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As with the previous case. we expand to order h' overall. viz 

Op (z) = exp 
i 

S(0)+S(l) (146) 

Proceeding to analyse the solution order by order we note that the z differential 

gives 

-h 
2(92 

exp 
i 

S(O) + SM 
z(h 

_h2 
az 

lexp (h 
S(O)+S(l) 

) [h 
azs(o) + azs(') 

(0;, S(o»2 + 21hOýS(»0, S(l) + zhaý, 2S(O) +h 
2a2S(l) 

+h2 (azS(l»2 
Z 

op(Z) - 
(147) 

Thus the order ho terms again produce an equation for S(') 

(az S(o)) 2= (po 
_V2 1 t(Z 

(px V 
X(Z))2 _ 

(PV V M2, V 
(Z)) 2 (148) 

which solves to give 

S (0) = 
10 

rbp (z') dz', (149) 

where 

Kp (Z) = 
ý(PO 

_V x-V 
(py 

-V M2. t(Z»2 _ 
(P 

x 
(Z» 2y (Z» 2 (150) 

The order h' terms give 

20, S(O)O, S(l) a: 22 S (0) (151) 
z 

which has the solution 

Z a2, S(O) 
SZ dz' 

10 
2 (9� S (0) 

1d (az S(o» 
()-S(o) 

In t;, (z) + const. 
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Thus the z-dependent part of the wave function is given by 

0, (Z) =Ce 
if rpdzlh 

0 
exp 

jz 
Kp (() d( (153) 

KP (Z) h0 

,2 ý[po - p,, 2 with pz =XPY The extension to potentials dependent on x 

or y is straightforward and by simple substitution. hence not repeated here. 

2.1. Antiparticle mode functions. We recall that the antiparticle mode 
functions CDp(x) are solutions to the wave equation 

(h2 Dtý'Dt + M2) ýot = 0. 
m 

(154) 

Transformation between the particle/ antiparticle solutions is thus accomplished 

by the transformation V -V. For the time-dependent potential, we thus 

have 

4)p(x) = Op(t), 'P'x/h (155) 

with 

OP M 
-po 

exp 
fot 

Ep-, (C) d (156) 
Ep-, (t) 

[h 
11 

where 
E P+ 

(t) = 
Vlp + V(t) 12 + M2. (157) 

Similarly for the potential dependent on the spatial coordinate z (for ex- 

ample) we have 

pot-Pxx-Pyy) (DP(x) (158) 

ývitli 

Qp (Z) =: (Z ) exp h Kp+ «)9] 
, 

(159) p- Z 

where 

V7(PO + V t (Z) (px+Iý, (Z)F(p7+V 
y y 
(_Z (160) 
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Semiclassical Spinor solutions 

3.1. Positive Energy Solution. In a time-dependent potential the mode 
function can be split into its space and time dependent parts: 

qý(X) = ýqt)eip-xlh, 

where we write the time-dependent component as 

lp 
exp 

is 
(162) 

h)' 

with the semiclassical expansion contained within the spinor terni: 
( 

ýo 
= 

V(O) 
+h 

IP(l) 
+h2v 

(2) 

+ (163) 
x 

(0) 

)(x 

(1) 

)(x 

(2) 

) 

This mode function must obey the Dirac equation with a time-dependent 

potential. Defining fi =p- V(t), we have 

ihat(D(x) - [a - (-ZhV - V(t)) +, 3m] 4D(x) = 0, 

ih(9týb(t) - [a - fi +, 3m] 0(t) 

Hence 

ih ex + ih exp h 
(X) (_ 

(164) 

iß + Oml 
(X) 

exp S) 0. (165) 

Substituting the h expansion (163) into this equation, we obtain at lowest 

order 

+ 

Defining E= V6'-ý. the eigenvalues of the matrix cr -P +3tii are ±E. In 

this section we are considering the two 'positive energy' mode functions (i. e. 
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those solutions corresponding to the +E eigenvalue). We obtain 
ft 

S=J E()de. 
0 

and 
u~ P 

�(o) . E+m 
At higher orders, we have 

, b(n) , 
(n+l) E-m -a-p 

( 

ý(n) 

)( 

-cr-P E+m 

)(X 

(n+1) 

) 

Multiplying both sides by 

E+m cr-fi 

a-P E-m 

we obtain 

Vn = 0.1,2.3, ... 

57 

(167) 

(168) 

(169) 

(170) 

(E+m 
o,. ]ß 

) «ý (n) ) 

=O, Vn=0,1,2,3,... 
o,. p E-m) ýi(n) ) 

Thus for the lowest order case we can combine (171) for n 
find a differential equation for ýo(O), viz 

(ý (0) = 17 *P e) 
E +Tn 

__ 
a-P da-P 

(P(O) E+mdt 
(E+m 

which leads to 

,ý (0) = 
]ý fi 

ýO (0) 
1 

(172) 
2E dt 

(E 

+Tn) 

where we use 0, . 
fio, .p 

f)2 
=E2_ 1112 

. This further becomes 

Mk ZO-P xp '(0) 1ý1 2E(E + m) 2E(E + 
(173) 

With regards to the first term we note that 

d- =+tll 
--Mk dt 

( 

2E 

)- 

'-)E(E + III 2E 
(174) 

(171) 

0 with (168) to 
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We then treat the second term as a time-dependent perturbation. The dif- 

ferential equation. due to the non-commutative nature of matrices, does not 

simply give the exponential solution, but rather the Taylor series expansion 

which can be rearranged to produce a time-ordered product. The result is 

known as an ordered (or path-ordered) exponential and we can thus write the 

spinor component as 

(0) t 
(]ß 

(7) x p~ 

CT exp -i 
d-F 

(E (-F) .+ 
m) 

s. (175) 
2E 2E( 

where s is a spin eigenstate at t=0, chosen normalised, Ca constant and T is 

the time-ordering operator. We note that the exponential notation is a short 
hand to represent the series expansion. 

Defining 
(]ß (T) xp (-F) )- 

U(t) :=T exp -i d-r - (176) 
10 

2E (-r) (E (-r) + m) 

)' 

we note that U(t) is a unitary operator acting on s that can be considered as 

the time-evolution of the spin polarization. We define 

A, (t) PMX 1ý M 
(177) 

(Ep (t) + m) 

Note that Ap(t) is Hermitian and traceless. There are two positive energy 

solutions. Thus s is one of the two spin (up or down) eigenstates. Define 

s(t) - U(t)s. The zeroth order term in the spinor expansion is thus (up to a 

multiplicative constant) 

v (0) sc, (t) (178) 
2i P 

E+m S, 

3.1.1. First order correction. We now look at the first order term in the 

spinor expansion i. e. the h correction term in the semiclassical expansion. We 

consequently return to the full-order positive spinor equation 

E-iii -o,. p 
+0 (179) 

-o,. p E+m 

)(\) 
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For ease of notation let 

59 

E: = 
0' p (180) 

E+mý 

where p and E are time-dependent. Thus the zeroth order spinor term is 

ýO(O) M so, M E+m E: 
(181) 

X (0) V/ 2E Es" M 

Recall that the spinors sc, (t) satisfy st(t)s, 3(t) = 6,3. Define the unitary matrix 
S(t) as follows: 

U(t) -EU(t) m 

S(t) 
+m 

2E 

( 

J: U(t) U(t) 

We note that 

m S'(t) ( S(t) 
E 

(182) 

(183) 

Using this matrix, we change the representation of the spinors and let 

()- 
S(t) 

(). 
(184) 

The positive energy spinor equation (179) can be written in this representation 

as 

0+ 
thS-'(t) 

d 
S(t) + Zh 

0 
(185) 

2EX- dt x0 

We need to compute the matrix S-'(t)S(t). Substituting the solution for 

(175) back into Eq. (172) gives the relation 

+m so (t) (E +M )3/2 -Etsa(t) (I + 
T1 

(186) -dt 2 E- S" (t) 2E ts, (t) 

from which Nve also obtain 

+ Esc, (t) 111)3/2 ES(I 
+ (E+ 

(187) 
2E 2E S'a N 
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Hence, if we define a2x2 matrix T(t) by 

E+m -- T(t) = -UT(t)EU(t). (188) 
2E 

then 

S-l(t) 
d 

S(t) 
0 -T(t) (189) 

dt T(t) 0 

Substituting the matrix into Eq. (185) we obtain the two equations 

T(t)ý, (190) 

ihX -ihT(t)(ý - 2Eý. (191) 

Alternatively, using the semiclassical expansion (163) we obtain 

T(t) ý (n) (n) 
-x , (192) 

2E 2E 
T (t) ý(n+1) (193) 

(0) 
- In this representation, the zeroth-order solutions are somewhat simpler: ý, - 

1 (0) 
-0 0 and ý3(, O) or ý02 Thus, 

0) 

t 
-M i(E +Tn) si(t)Esc, (t) 
xa 4E2 t 

( 

S2(t)FSQ(t) 

and 

Now 

Then we obtain 

t 
z(E + m)' sI 

(t) E2Sa (t 

a 8E3 t2 
Sce 

( 

S2 

dpp 
dt E+ m(E+m 

22E2 p2 

(E +111)2 (E +M)2 

where P' = PP, I*),,. Hence 

-q 
M 

( 
, ýJl) =I. 't' 2 

(194) 

(195) 

(196) 

(197) 

(198) 
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where g(t) is a real function defined by 

p(T)2 

tot 8E3 (T) 
dT, (199) 

with to being a constant. Changing back to the standard represent at lon. the 

first-order spinor correction is 

(1) (1) 
h hS(t) 

( 

xa 

(0) IPCE 
zhg(t) 

( 
(0 ) xa 

'h 
(E + 7n)3/2 

i (2E)5/2 
so, 

S, (t) 
(200) 

The semiclassical expansion for the positive energy spinor can now be writ- 

ten to order h as 

E+m (t) E +Tn -EESC, (t) hg(t)) 4) (X) C 
2ýT z 0, ih (2E)2 

( 

Esa (t) Esc, (t) 

ip-x/h 
x exp h 

fo 
E(ý)<) e (201) 

Recall that the energy E and the matrix E are time dependent. However. 

the p in the exponential is not. We can choose the constant, C to achieve the 

desired normalisation: C= Vpolm. Rearranging, we obtain 

E+rn E+m 
(1+'hg(t))u(o) h Z Cf (2E)2 2m 

where 

-EESC, 
(t) 

p(t)eip-xlh 
E so, (t) 

(202) 

+m +m sc, (t) (203) 
2rn 

cali be considered the zeroth order spinor (for V= constant it is the usual 

positive energy spinor), and 

0 
op(t) 

iýýexp 
E(ý)<) (204) 

0 VE0 
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is the time-dependent part of the '", 'KB semiclassical expansion for the scalar 

field. We also define 

m so E+Tn m -Ets, (1) ua (P) = thg(t) 
+ Tn 

- th 
+m (205) 

2m 

( 

Es, 

) 

(2E)2 2m 

( 

tso, 

) 

as the first order spinor. 

3.2. Negative Energy Solution. The Negatn-e energy solutions are in- 

terpreted as the antiparticle solutions and thus this time we look for solutions 

of the form 

(P (P 2 (P 7- ip. xlh IP (x) =- 

(X«» )+h (X(l) )+h (X 

(2) 

)+... 

- 

exp 
(+ 

h 
S) c 

(206) 

The mode function satisfies the conjugate Dirac equation, and as the potential 

is the minimal substitution electromagnetic potential the result is that the 

antiparticle has opposite charge. Relative to the momentum operators we 

rewrite V(t) ---> -V(t). Due to the sign change, we obtain 

ih (ý) (P (207) 

where this time we have 0+ =p+ V(t). The lowest order equation gives 

the eigenvector equation with eigenvalue E+ where E+ = 
Vf)2 + Tn2 in 

keeping with the positive energy solutions. The spinor equation is now 

ih 
E++m -o, -fi+ (208) 

(X)( 

-o, - fi+ E+ -m) 

(X) 

Comparing this equation with (179) for the positive energy solution we see 

thM under the transformation h --ý -h and ,ý +-ý k they are the same. Thus 

the negative energy solution can be written 

E+ + to E+ +0M 
+ I'h (2E+)2r2m, s", 

(t)c-, P. X/b 
, 

(209) 
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where 

Esc, (t) 
V(O) 

E+ +Tn (210) 
F2m 

Sop) 

can be considered the zeroth order antiparticle spinor. and 

(t) PO 
exp - E+ < 

P E+ h 
(i J0, 

is the time-dependent part of the WKB semiclassical expansion for the complex 

conjugate scalar field. Hence overall, the two solutions are related by h ---+ -b. 

ýo -ý xlv(t) --4 -V(t). 



CHAPTER 3 

Classical Position Shift 

In this chapter we measure the effects radiation reaction in 

the classical theory of electrodynamics via the calculation 

of the position shift. We analyse the special case of linear 

acceleration before deriving a more general description. 

1. Linear Acceleration 

The case of linear acceleration simplifies matters considerably. Let us ori- 

entate our coordinate system such that the direction of the linear acceleration 

is along the z-axis. For the most part, we can consider the system to be in 

1+1 dimensions (t, z). The reference frame can naturally be shifted so that 

the perpendicular velocities are zero. Before proceeding, we make a note of 

some simplifying notation in the spirit of Newton: We use dot notation to 

represent differentiation with respect to coordinate time t and dash notation 

to represent differentiation with respect to proper timeT. Thus 

dz I dz 
z=-Z dt dT 

(212) 

To enable the reader to easily follow the calculations and indeed for ease of 

reproducing them, we give a number of simple identities which are of use in this 

svstem. FirstlY, in 1+1 dimensions the relativistic gamma factor is defined, in 

our above notation, as 

V/ 

(213) 
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The following are equalities between the dot and dash representations 

3-- - zz 

t1l 4ýý 

z -/ý , 

Z 

Z /1/ 5z+ 4_Jý2ý. 

65 

(214) 

(2 1 

(216) 

(217) 

(218) 

Recall that the Lorentz-Dirac force is given by 

FL'D 
2ce, d'x" 

+ 
dxý' d2 x' d 2X 

V (26) 
3[ dT3 dT 

( 
dT2 dT2_ 

In this system the expression for the force can be much simplified. For the 

component one finds 

FL 
2a, I// I [(tfl)2 

_ 
(Z/1)2] 

3 
lz +zI 

2 oz, 5 -'- 7 2, ý +8ý: 2 

3 ýy z+ 4-y ý ylýl 
[7 ý2 ýy 

Y 

2a, [75 -*- -y 
7ý2 Yý 

3z+4 

= 
2a, [75 -*- 7ý2 

3z+ 
3-Y 

= 
2a, 

ýy 
_-y 

3+ 37 5ý2ý] 

3 

= 
2a, 

72 dt (, 
Y3ý) 

3 

The t component can similarlY be given as 

Ft 
2a, 2 dt LD 3 

(219) 

(220) 

Now, for linear acceleration in the potential V(--), the external force acting on 

the particle is given by 

Ft -ld-F I 
ext 

d- 

Z F-t = -1,1 (z) dtld, -F. ex 

Kt pl = 0. (221) ex ext 
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The Lorentz-Dirac force can be similarly written as 

FL' =FT, D LD dZ1d tt 

LD FLDdt/d zz Fz 

FL' =1 7'y (222) x D LD 

where, using the more compact form found above, we have 

FL, 
- 

2a, 
-Y 

d 
(223) 

3 dt 

1.1. Space-dependent Potential. In this section we explicitly calculate 
the position shift for linear acceleration due to the potential V(Z), where ý 

is the direction of the acceleration. We recall that the position shift is the 

change in position due to radiation reaction. We also recall, that we shall 

regard the radiation reaction force as a perturbation. What this means in 

practice is that all quantities, such as and z, in the equations involving 

the radiation reaction force are evaluated using the original unperturbed path 

given by ma/' = Fepxt- We shall find the position shift to first non-trivial order 

in FLD- 

Suppose that, in the absence of radiation reaction, the particle would be at 

z=0 at time t=0. This is the position of the unperturbed particle obeying 

mO = F` The position of the particle undergoing radiation reaction, and ext * 

thus obeying mO = Fe'x, + FL"D Js equal the position shift, which we label 6z. 

In the system with V(z), the calculation of 6z is facilitated by the observation 

that the change in the total energy, m dtld-F+ V(z), is equal to the work done 

by the Lorentz-Dirac force. We then find 

t + V'(-»öz 

oc, 
di ýji- 

j2 

:3:, 2 d (6, ý) 
, 

(224) 

where we have used 

Mý3; ý (225) 
(it (, (ý, ) 
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This last line is to zeroth-order in FLD as we explained above. Rearranging 

and integrating, we obtain the position shift: 

6ZLD 
- 

vo jo t 
FLD dz 

dt') I 
-dt (226) 

m 0c) 0c) dt' 3(t)[ý(t)]2 

where vo = ý(O) is the final velocity. The reader may note that the outer 
integration limit is t=0, as is the time of measurement for co, which is of 

course due to the fact that 6ZLD is the position shift at t= 
Now, the current set-up, in which the unperturbed particle is at the origin 

at the time of measurement, is naturally made for simplicity and we indeed 
have complete freedom to do so by appropriate definition of the coordinate 

system. However, it does encourage the question as to what the position shift 

would be if this were not the case, i. e. if z= zo =ý 0 at t=0 as opposed 

to z=0. We assume that zo is still in the final non-accelerated region and 

thus the final velocity is still vo. The result is that the time the particle spends 
between the end of the acceleration and the measurement at t=0 is lengthened 

by to = zo/vo. The effect is the same as shifting the entire trajectory earlier 

in time by to. Consequently, we may calculate the new position shift by using 

our original trajectory and taking the measurement at t= to instead of t=0. 

The extra contribution to the position shift is thus 

v() to (It 
FLD dz 

dt') 
1 

-dt (227) dZextra 
m c) -00 dt' `Y 

3(t)[i(t)]2 

which is easily obtained with reference to the earlier comments about the 

limits and the constant velocity. Within the new limits. tE [0, to]. we note 

that --(t) = co and-(t) =, yo V2) -1/2 are constant and FLD 
10 

interchange the order of integration to find 

0 to 
6, ý'ext ra 

1- 10 

-- 
-0 E, 111, M, 3112 
10 0 

I 

(It' FLD 
dz 

(it 32 
0 vo dt 

0. We can 

(228) 
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where E,,,, is the energy emitted as radiation given by 

E, m 
0 

FLD dz 
dt 

-ýc 
dt 

-00 

2a, jo (, ý3i)2 dt. (229) 
3 

This is the relativistic Larmor formula for one-dimensional motion. 
The current form of the position shift (226). whilst useful for the above 

comment, is somewhat more complicated than is necessary. After interchang- 

ing the order of integration to obtain 

ÖZLD ::: -- -V() 
10 

dt') FLD dz 
dt (230) 

m -�� 

( 

0, ýy 3(tl)[i(tl)]2 dt 

it can be simplified by noting that, for the space dependent potential, 

09Z VO tI 
dt' (231) 

m 3(t/) [ý(tj)]2 

(ap) 

t 

Jo 

where p is the final momentum of the particle. This equation can be demon- 

strated as follows. Since the energy is conserved, we have 

Vlp2 + Tn2 (MZI) 2+ 
Tn2 

+ V(Z), (232) 

and hence, 

M2 
-2] 

1/2 
(Vp2 

+ M2 - V(Z)) (233) 

By differentiating both sides with respect to p with t fixed, and noting that 

pl, VF2 + Tn2 = Vo (234) p 

VF2 + Tn2 V(ý) = Tn, ý. (235) p 

we obtain 
d( (9z 13 

co - Vý' 
('9Z 

t 
(236) 

(It ap) t til-, ap 

Bv substituting the formula V'(z) (see (225)) in (236) Nve find 

d co (237) 
111, % 3,:, 2 dt ap 

I 



1. LINEAR ACCELERATION' 69 

Then by integrating this formula. remembering that 0 at t=0 for all p, 

we arrive at (231). Consequently. the pos, tjon shift can be written in the more 

compact form 

6ZLD dt FLD (238) 
( 

ap 
t 

1.2. Time-dependent Potential. The case of linear acceleration due to 

a time-dependent potential can be analysed in a similar way to the previous 

exercise. We again define the coordinate system such that the acceleration is 

in the direction of the z-axis, but this time the potential is given by V(t). In 

the V(z) case, we use the energy conservation, whereas now we shall make use 

of the momentum conservation equation which reads 

d 
[m-yý + V(t)] = 

FLD 
dt 

(239) 

The lack of symmetry between the two situations (V(z) and V(t)) is worth 

noting. In both situations we are measuring the change in position at equal 

time, as opposed to the possible consideration of the change in time for the 

same position. Retaining the same measurement breaks some of the symmetry. 

Returning to the change in momentum, we note that in the time-dependent 

case, the potential at equal time is the same for the particle in the presence or 

absence of radiation reaction. The momentum conservation (239) thus leads 

to 

ö(M-yi) = M-ý 
3d (6 Z) = FLD(t) dt'. (240) 

dt oc 
Rearranging for 6z and interchanging the order of integration as per the pre- 

vious case, the position shift is given by 

LID 
-01 dt' 

) 
FLDdt. (241) 

_00 0 II? -y3 

In line with the spatially dependent potential case, this can be further simpli- 

fied. In fact. Nve find that for the t-dependent potential, 

t0 

it 
(242) 

OP 
)0 
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where we again recall that this is for the unperturbed particle. This is demon- 

strated as follows: The momentum conservation for this particle in the ý- 
direction reads 

dz 
+ V(t) = P. (243) dT 

Hence, with the condition z=0 at t=0, we find 

t M2 -1/2 
z= 

jo 
1+ý- 

V(t)]2 dt. (244) 

By differentiating this expression with respect to p and using p- V(t) = 

- 
V(t)]2 + M2 m dz/dTand [p =m dtIdT, we indeed obtain (242). 

Consequently, we note that the position shift can be written in the same 
form as (238) before, namely 

6ZLD 
0 

dt FLD (9Z (245) f- 

00 

(ap)t 
, 

2. Generalised Classical Position Shift 

The fact that both the t-dependent and z-dependent potentials for linear 

acceleration lead ultimately to the same expression for the classical position 

shift and in addition that this expression is fairly simple, leads one to suspect 

a more general argument for this formula. This is indeed the case as we now 

proceed to relate. 

We now look at the full three spatial dimensional system. The system is 

one where the total force acting on the particle is the sum of an external force 

F and an additional force -j. F, which we intend to treat as a perturbation: 

d 2Xi 
- dt 

d2= F'+ P- 
T dT 

(246) 

Homogeneous system. As 
.,,,, et, Nve have said nothing about what 

these forces are. Let us consider this system to be the result of a perturbation 

from a Hamiltonian systern i. e. that in the absence of the extra force. 
-'F 

the s, N-st('11, is described by a Hamiltonian H(x. p). where (x. p) are the 
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generalised coordinates and conjugate momenta. We shall refer to this sYstem 

as the homogeneous system. Hamilton's equations are given by 

OH 
XZ = 

C)p i1 
(247) 

0H 
pZ= -- axi 

Consider a perturbation to the solution (x, p) given by (x + Ax, p+ Ap). 

We shall refer to these perturbations to the path as the homogeneous pertur- 
bations. The expansion to second order of the Hamiltonian of the perturbed 

solution is given by 

H(x + Ax, p+ Ap) = H(x, p) + 
OH 

Axi + 
aH 

Api 
(9xi 

api 

l[ (9 
2H a2 H 1)2 H 

+ ý-Ax'Ax3 + 2-Ax'AY + -Ap'Al)J (249) 
2 axiOxi axi(9P] apiap, 

1- 

The equations for the homogeneous perturbations are given by 

Axi = /\ 
aH 
ap i 

02 H 
Ax, .+- 

02 H 
Api . (250) 

(9xj()Pi apiapi 

AP i _1\OH (9xi 
a2 H 02 H 

-Ax, - -Apl. (251) 
(9xi(9xi apiaxi 

Thus these can be seen to be generated by the equations 

OH 
Axi = oApi 

(252) 

A *Z 
= 

OH 
(253) P, 

(9/, \xi ' 

where the Hamiltonian R is given by the second order terms in the expansion 

in (249), viz 

I[ (92 H2 02 H 
-Yr' --ýp'+ 

02 H 
Al), 

I- 
(254) 

axiopi oplop) 2 0.1" 0. " 
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This can be rewritten in terms of the matrices Aij, Bij and Cij. where .4 and 
are symmetric, as follows 

fl =1 [AjjAp'Apý + 2BijAx', Apl + CijAx', Axi] (2,55) 
2 

Thus the equations (252) and (253) can be written 

OH 
Ax, = Bj, Ax3 + CijApJ 

Ap' = -AijAx' - BijApi (257) aAxi 

As a consequence we can deduce that the symplectic product of the perturba- 
tions is conserved. Given two solutions (, AX',, AP'), (, Ax',, Ap'), the symplectic 

product is given by 

(, Axz 
I'APIAX" Ap') = AX'Ap' - AXZAp,. (258) 

The time conservation is easily seen as follows: 

d (AxiApi -, AxiApi) 
dt 

AXiAp'+, AX', Api - AxiAP'- Ax'APi 

= (BjjAXý + CijAPi) Api + (-AijAxi - BijAp), AX' 

(BjiAxi + CiiAPJ), APi - (-AijAXi - BijAPi) Axý 

=, AXI, Ap'(Bji - Bji) +, Ax'AP'(-Bi + Bij) 

+'A piA p (Cij - Cji) +, Ax3AXI (-Aij + Aji) 

= 0, (259) 

where we have made use of the fact that Aij and Cij are symmetric. 

2.2. Inhomogeneous system. We now consider the sYstein for which Nve 

add the additional force, 'F 0. We shall refer to this systein as the inhomo- 

geneous systcin. Let (x, p) (xo(t). po(t)) be a solution to the homogeneous 

sYsteiii such that (xo(O), po(O)) = (0, p). This solution gives the classical tra- 

jectorY of a particle passing through the origin at t=0 with momentum p in 
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the absence of radiation reaction. We let (xO(t)+6x(t). po(t)+6p(t)) be a solu- 
tion to the inhomogeneous system to first order in. F. The (6x(t), 6p(t)). which 

we call the inhomogeneous perturbations, are the perturbations to the classical 
trajectory due to the addition of the radiation reaction force, treated as a per- 
turbation to first order. They have the property that ((6x(t). 6p(t)) - (0,0) 

as t --, -oc and will satisfy the equations 

d 
öx' = Bjidxj + Cijdpl . 

dt 
d 

6pi = _Aijöxj _ Bijdp, + (260) 
dt 

In order to solve these equations, we define a set of homogeneous pertur- 
bations (Ax(j) (t; s), Ap(j) (t; s)), with j=1,2,3 and sC (-oc 

, -Dc) , 
by the 

following initial conditions: 

Ax, (j) (S; S) 0 

A( (S; S) = 6j, P, j) 
(261) 

The solution (xO + Ax(j) (t; s), po + Ap(j) (t; s)) then represents the particle 

trajectory which coincides with xo(t) at time t=s, but which has excess 

momentum solely in the j-direction at this time. This trajectory is represented 

in Fig. 3.1. With these solutions now defined we note that the solutions of 

the coupled inhomogeneous equations can be given by 

6xi dsP (s), Ax(j) (t; s) 

6pý ds. Fj (s), Ap'(j) (t; s) (262) 

where the index j is summed over. The position shift due to the additional 

force T can therefore be written as 

dt, T'j (t) (263) 
- ýx (i) (0 - t) - 
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4 

I 

FIGURE 3.1. The world lines for the solutions (xo(t), po(t)). 

which passes through the origin, and (xO + Ax(j) (t; s), po + 
Ap (j) (t; s)) for some J. 

74 

With final momentum at time t=0 as p then, given the definition of the 

Ax'(, ) (t; s) solutions, we can write 
i) 

(t. 0) (9xi AX(j 1 -A i 
( 

api 
)t 

Api(i) (0; 0) x (i) (t; 0) . 
(264) 

Recall that the symplectic product of homogeneous perturbations is conserved. 

Thus, by equating the symplectic products of the two solutions (Ax(i) (t; s), Ap(i) (t; s)) 

and (Ax(j) (t; u), Ap(j) (t; u)) at the times t=s and t=u we have 

AX(i) (S; S) - 'AP(j) (S; U) - AX(j) (S; U) - Ap(j) (S; S) 

=Ax(j)(u; s)Ap(j)(u; u)-Ax(j)(u; u)Ap(j)(u; s). (265) 

This equation and the initial conditions that define these solutions imply 

(i) (u; 8) - x, (j) (s; u)= -A X'( (266) 

Of Pm-ticular interest to us, Nve obtain Ax', ) (0- t) = -. Ax)(j) (t; 0), which means 

that we can rewrite the position shift as 

t 
oxi 

cc ap i)t 
(2671) 

This is the sanic form of equation which we derived for the linear acceleration 

and the Lorentz-Dirac force to first order. In that case. Nve only have non-zero 
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terms for 3 with -Tz z and i=3. We have thus derived a more = -FL D 

general relation for the classical position shift. We have assumed that the 

position shift is due to an additional force taken as a perturbation. to first 

order, to a Hamiltonian system. 
The above conditions apply for the specific model we wish to consider for 

the Lorentz-Dirac force in three dimensional motion. Here Nve simply write 
FLD. Thus -FLI D '-::: 

i 

dt 
m- =+ 'T LiD d-F ' 

(268) 

It would be useful to repeat here for the 3D case the conversion from proper 

time variables to coordinate time variables as was done for the ID case at 

the beginning of the chapter. Using the dot notation for differentiation with 

respect to t, as before, we define v= 5c and a =: :ý and note that 

dt 
- (I -VI. V)1/2 

(269) 
d, T 

v-a3 
- V2)3/2 

V. a, (270) 

and also 

dx' dt dx' 
dT d7- dt 

d 2ý, J 

=_d dT2 'dt 

= -/, (4" Ili + -, Oi) 

-1, v- ac' +ý2 a' (272) 

(12 t4 

-=-, -, = -,, v-a. (273) 
(172 
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From these last two relations, Nve have 

d'., t, -"' d'x, 
= 

(, 
ý4V - a) 

2_(, 
ý4V - av + -, 

2 
a) . 

(ý4V 
- av +2 a) dT2 dT2 

ýy' (v - a)2 - -, ' (v - a)2V2 -2 _ý 
6 (v - a)2 4a2 

ýy' (v - a)2 7-2 - 
2, ý6 (v - a)2 __14a2 

ýy 
6 (v - a)' _ ý4 a'. (274) 

Now, the Lorentz-Dirac force is given by 

FL`D- 
2a, d'xý' 

+ 
dx4 d2 x' d2X, 

(26) 
3 

[dT3 

d-F 

(dT2 

dT2 

)] 

- 

Thus the spatial components can be written 

FL'D- 
2a, 

ýy 
d (d 2Xi ) 

+, ývj 
(d 2 

x' d 2XV 

(275) 
3[ dt dT2 dT2 dT2 

)l 

- 

Substituting the relations above, we have 

FL 
2a, 

_ý 
[d 

(-y'v - ad + Y2 a') +vi(, Y6 (v - a)2 
4a 2) (276) i D3 dt 

and consequently, 

2 ce, d (, 
y4V - av'+ -ý 

2 
a') +vi(, ý6 (V 

- a)2 -7 
4a 2) (277) -'7L D3 

[dt I- 

It will be sufficient, and more useful, for our purposes to leave this expression 
in its current form instead of rearranging or evaluating it further. 

Returning to the equations of motion (268), the external force on the 

charged particle F, which causes the initial acceleration in the first place, 

merely needs to be one derived from a Hamiltonian, which is the case for most 

exteriiA forces that , N-e would consider. For example, the most natural external 

force on a charged particle would be an electromagnet ic Lorentz force. The 

Lorentz force can be derived from the Hamiltonian 

H= ý(p 
- eA,,, t)'+ tl, 2+ eAext 

1 (278) 
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where A" is the external electromagnetic potential. In our previous notation, ext 

the potential is V/1 = eAP ext* 
Henceforth we refer to 

0 axý 
6* dt-FLDj 

C 
0C 

( 
ap i 

)t 

as the classical position shift (due to electromagnetic radiation reaction as 
described by the Lorentz-Dirac force to first order). This concludes our inves- 

tigation using the classical theory and provides us with the classical position 

shift, with which we can compare the results of investigations using quantum 
field theory. 



CHAPTER 4 

Scalar Quantum Position Shift 

In this chapter we derive the contributions to the position 

shift in the quantum scalar electrodynamics model. We cal- 

culate the contributions from the photon emission, forward 

scattering and renormalisation counterterm perturbation ef- 
fects and combine them to compare the position shift in the 

h0 limit with that from the classical theory. 

1. Initial control state 

The initial state is given by the incoming wave packet in (74) as 

dP 
-f(p)At(p)10), (280) 

with f (p) peaked about the initial momentum in the region A4 
_. 

Let the 

potential satisfy IVOI < 2m, thus precluding the possibility of scalar-particle 

pair creation. This would be a vacuum process and thus not of interest to 

us in examining the evolution of the particle under consideration. The 'free' 

part, icle that we wish to use as our control measurement does not interact with 

the electromagnetic field via radiation reaction. Having passed through the 

classical non-perturbative potential V in the region A41, the final state can 

be considered as analogous to the initial state, albeit with the wave packet 

peaked about the final momentum in the region A4+. Thus. we wish to find 

the position expectation value for the particle in the above state 11). Under 

the above restriction to the potential, if there is only one particle in the state. 

then the probability density coincides with the charge densitY p(r) given in 
78 
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(69). The position expectation value is then given by 

(x) =1 d'x x (, o (t, x') ý. (2, ý1) 

The expectation value of the charge, and thus probabilitY, density for the 

initial state JZ) is as follows 

ýZlp(t, X) IZ) = (z I- at h 
d33 p' dp 

(01 
7h)3 V2po(27rh)3 po (2 

f (p') A (p) 2: 
ýo t at ýj f (p) At (p) 10) 

h 
ih2d3P, d3 p" d3p/// d3p 
h V/-2i7() (2 7r h)32pö (27r h)32pö'(27rh)3 x72- p0 (2 7r h) 3 

x ýOlf*(p')A(p') [At(p")(Dpt�(x, t)A(pill )at4VP/// (x, t) 

-At(p")(9t4ýDt,, (x, t)A(p'll)(1) ii/ t)] f(p)At(p)10), (282) 
pp 

(XI 

where we have made use of the lack of the pair creation to remove the B(p) an- 

tiparticle creation/ annihilation operators. Proceeding, using the commutation 

relations set out in (73): 

(ýi*, lp(t, x) Iz) == ih 
1d3P, d3 p" d3pIll d3p 

"(27rh)3 '(27rh)32p0 N72-po(27rh)3 po (27r h)32p0 

13f xf *(p)f (p)2po(27h) 6(p - p/I 
3 2po 27rh 6p- p) 

[(bpl/ (XI t)Otgbp... (x, t) - Ot iv p' (x. t) - (D pfil (X 

=, i*h 
d3pI-I J 

V2-p'0(27h)3 

x 
[4)t, (X, t)a, 4bp (XI t) 

p 

d3pf* (P1) f (P) 

vf2-p- () (2 7r h) 3 

at(Dt, (X, t) - (DP (X, t)] (283) 

We are interested in making this measurement far into the post- acceleration 

region A4+, where we note that as previously described we maY write the 

mode functions as the plane-wavc (Dp(x) = e-'P`Iý'. Hence. in terms of the 

th-ne-dependence of the mode function Nve have (Dp(r) x c-'POI/4. Substitution 



1. INITIAL CONTROL STATE 80 

and a brief rearrangement yield 

(i1p(t, X)12)IM+ 
d 3p, d3p rý-o: 

+ 
PC) 

(D*, (X. t)(DP(X, t). (2, S-4) (27rh)3 (27r h) 3f 
(P') f (p) 

1p 

1 
(V 

PO Po 

0) 
Recall that for the sake of simplicity we have defined our coordinate sYsteni 

such that we shall be taking our measurements at time t=0. Using the 

plane wave mode function, the position expectation value in the direction 

x'(t) evaluated at t=0 is 

3p 
f* (pf) f (p) 

7p 
+ PO i (X 

11 
d3X 

1d P' d 
l' Ci(P-P, ). xlh 

(27rh)3 (27rh)3 Po 

(V 

PO 
Ä 

d3 3p 
f (PI)f (p) () +1 p' d0 PO 

(27rh)3 21 (27rh)3 

(V 

PO Po 0) 
d3 xh0p, e-'(P-P')'x/h. (285) 

Integration of pi by parts and integration over x produces 

3p/ 3 P-0 
+ 

P, ihf d dp 0 (Xi (0)) f (P, ) f (P) 2 (27h)3f (27h)3 
I 

Opi PO Po)- 
0 

(27rh)'6(p - p') 

ih d3p 
)3 

d3p, (27rh)36(pl p) 
21 (27rh (27rh)3 

pl FP-0 PO f (p) pi 0 f*(p f (p) 
1++ 2po Pi 3 api vý po) ( 

-ýv7p-o o 

( 

PO Po ýo70 PO 

d3pf (P) 
af 

(P) 
(27rh)3 09pi 

dpf* 
(P) api f (P) 

- 
(286) 

2 (27rh)3 

Due to the fact that the position expectation value is real. the last line takes the 

real part of the previous one, thus restoring some syninietry to the expression 

which was lost I)N- the choice of taking the derivative with respect to pi. as 

opposed to p, of the exponential earlier. We recall that we have chosen to use 



2. FINAL INTERACTING STATE 81 

the remaining freedom in the choice of coordinate system to arrange the wave 

packet f (p) such that the position expectation value (286) is equal to 0. viz 

h d'p (ilxi(O)li) ,2 
(27rh)3 

f* (P) 'Opi f (P) 
=0 Vi 

= 1,2.3. (287) 

This formula henceforth represents the control against which the position ex- 

pectation value of the realistic particle whose state has evolved through radi- 

ation reaction interactions can be compared. We now duly turn our attention 
to this evolution. 

2. Final interacting state 

The 'interacting' particle enters from A4- with the same initial state as 
before, namely JZ) with the wave packet peaked about, some initial momen- 

tum pj. During the accelerations caused by the potential V in the region 
Ali,, the particle, unlike the previous case, is coupled to and interacts with 

the electromagnetic field. This interaction results in the possible emission of 

electromagnetic radiation and in radiation reaction effects. Including such in- 

teractions to O(e') in A4j, the final out state in A4+ can be either a scalar 

particle, or a scalar particle and a photon. We designate these two situa- 

tions the zero-photon and one-photon sectors respectively. In the one-photon 

sector, the probability amplitude of the emission we, unsurprisingly, call the 

emission amplitude. The zero-photon sector includes the possibility that the 

particle does not interact with the electromagnetic field at all but also the 

one-loop process, the amplitude of iNvhich we refer to as the forward scattering 

amplitude. The Feynman diagrams representing the one loop and emission 

interactions are presented in Figs. 4.1 and 4.2. The two components of the 

final state (-an therefore be written (Up to O(e2) ) as 

If)for 
dp [I + I. F(p)] f (p)At(p) 10) 

(27-ih)3-ý, /2po 
d3pd3k Jf)eni A, (p. k) at (k) f (p) Aý (P) 10) (289) 

h, 
f 

(27rh, )3V2po 
f 

2k, o(2/T) 
3A 
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- 
)w- -- 

p p 

FIGURE 4.1. The one-loop diagram contributing to the forward- 

scattering amplitude: the dashed and wavy lines represent the 

scalar and photon propagators, respectively. 

p 

hk 

- 

p 

FIGURE 4.2. The one-photon emission diagram contributing to 

the emission amplitude: the dashed and wavy lines represent 
the scalar and photon propagators, respectively. 
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where F(p) is the forward scattering amplitude and Aý'(p, k) the emission 

amplitude. The reader is urged to note that the momentum of the final scalar 

particle differs between the two terms due to the energy-momentum carried 
by the photon. In the case of a time-dependent potential. Nve have conscr- 

vmion of momentum and thus P =: p-hk. If the potential is dependent on one 

of the spatial directions only, . 13 say, then P is determined by a combination of 

ý/p2 + tjj2 energy coiiservýitlon - -v/P- + tO + hk and t momentum 

conservation P, =P+bV (I = 1.2). 

hk 
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Comparing these final states with the form of the initial state. where the 

distribution f (p) was regarded as the one-particle wave function in the mo- 

mentum representation. let us define 

F(p) =- [I + I. F(p)] f (p) (290) 

G" (p, k) -= A" (p, k) f (p) 
. (291) 

One can then heuristically regard the function F(p) as the one-particle wave 
function in the zero-photon sector in the p- represent at ion and the function 

G4(p, k) as that in the one-photon sector with a photon with momentum hk 

in the P-representation. 

The full final state is simply the sum of the above If)": 
If) 

for +If )em. The 

actual calculation of the forward scattering and emission amplitudes will need 

to be completed using the mode functions of the field in the region A4, and will 
depend upon the circumstances there. We shall return to these calculations 

later using the semiclassical approximation for the mode functions. In the 

meantime we can obtain more general expressions for the position expectation 

value of the final state in terms of these two amplitudes. Later calculations of 

the amplitudes can then be substituted into the position formulae. We proceed 

in much the same way that we approached the position of the state 11). As 

there is no cross term between the two states (288) and (289), the final state 

density is the sum of the densities of the above states. 

2.1. Zero Photon sector. The final state density of the zero photon 

sector resulting from the forward scattering is given by 

for (f IP GO If) for :::: -- 
dpdp (01 [1 

- IT* (P') f. (p') At (p') 
0 (27h)3V-2p 0 (27rh)3V-27 

Ot [I + 1, F(p)] f (p). 4t(p)IO). (292) 
h 
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Comparison with the calculation pertaining to ýi) 1 shows that we have an 
identical situation after the substitution f (p) ) [I + zF(p)] f (p). As a con- 
sequence we can write the position expectation value of the state IAor at time 
t=0 as 

(X (0)) for QI - Z, -F*(p)] f *(p)) Opi ([I +,, '-F(p)] f (p)) (293) (27rh)3 

One could therefore regard this state as analogous to the initial -free' state 10. 

but with the wave packet distribution F(p) =- [I + I. F(p)] f (p). as opposed 
to f (p). We note, however, that although f (p) was arranged such t1lat the 

position expectation value passed through the origin, there is no reason to 

think the same would be true of F(p). We expand out (293) to order (, 2. )-: 7 

is of order e2 already and thus we ignore terms at second order in the forward 

scattering. 

ih d3p 
op (X i (0) ý for : -- 21 (27rh)3 

f* (P) 
,f 

(p) f1+ ZJ7(p) -2 F* (p) ý 

jr + ZJE**] + ýp 
f* (P) f (P) 

(27rh)3 

th d3P (f * (p) ap, f (p)) [I - 2QV. F(p)] 
2 (27Th)3 

-hdP 
If (P) 12 api Rj7. (294) (27h)3 

The reader will undoubtedly have noticed an expression similar to the position 

expectation value for Ii) present in the above. We shall obviously return to 

this. However, before doing so it will be advantageous to obtain a similar 

expression for the one photon sector, with which we now proceed. 

2.2. One photon sector. In common with the treatment of the forward 

, scattering, NN-(, define the position expectation value for the one photon sector 

'See the first lines of (282). 
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of the final state as 

d'p' d3pd3 k' d3k 
ern 

(f 1/9 (1) If) 
em 

, ýýpo 
h It (27rh) 3 

0 
(27rh)3ý, /-2po 2k'(27, - 

)32ko(27)3 
0 

(0 1A (P') a, (k) A' (p'., k') f* (p'), o (x) A" (p., k) f (p) at, (k). I t (P) 10) 
ý 

(29-5) 

with P' defined analogously to p. 2 Using the commutation relations for the 

electromagnetic field, which we recall are given by 

-gtl, (27 )3 2bA-6: 3(k - W) (83) 

we can write 

d3k 
ein =-h1 2ko(27r)3 

(OIC�(k)pC"t(k)10ý, (296) 

where 

C"t (k) -= 
if d3p 

- A" (p. k) f (p) At (P) (297) 
h -2p o(27 

h)3 

In this form it is easier to see the similarities once again present between 

the current calculation and that for the initial state. A complication is the 

difference between p and P, which we shall now address. 
2.2.1. Space-dependent potential. In the case of the potential dependent on 

one of the spatial coordinates 3- let us choose this coordinate to be x' - we note 

that formally we have the transformation d3 p == ((9p,, 1(9P,, ) d3p. ýNe denote 

the Jacobian J,, = ((9p, laP,, ) and stress that this is not a sum as a represents 

one specific coordinate. We may rewrite O't as 

C/it 
d3p PO 

(k) Al' (p. k) f (p) At (P) Ja 
- (298) 

h -2Po (2 7, h)3 PO 

2i e. using the same conservation relations albeit with primed variables instead. 
3The spa ce-dependent case is more complicated than the time dependent case. In this 

particular calculation it turns out to be more advantageous to perform the complicated 

version first. 
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Now, defining 

PO gl' (P, k) 
-= 

2 Al' (p, k) f (p) Ja 
- (299) 7 Po 

we can rewrite (296) as 

ein h 
2ko(27r) 3 

d3p/ 
-g*(P' k)A(P')p(x) (01 

1 

'r2-P, ' ( 27rh)3 ýl 

d3p 

\/2-Po (2 7r h)3 

(300) 

Comparison with (282) is now clear. The calculation for ji) may then be 

followed for the position expectation value of the state If)em to give 

_ih 
2d3k d3p 

(Xi)em 

2 2ko(27T)3 (27h)3 
(gý, (P, k) 0 p, gl' (P, k) (301) 

Returning to our original notation and using the symmetry of the derivat, ive 

operator we find 

d3k d3p (Xi)ein 

2f 2ko(27)3 (27h)3 

(A, * (p, k) f* (p) 0 p, A" (p, k) f (p) 
Poj, 

ý, 
2 (302) ) 

Po 
Converting the integration variable back from P to p and changing the Pj- 

derivative to a pi-derivative we produce 

d3kd3p 
2f 2ko(27r) 3 (27rh)3 

x 
(X (p, k) f* (p) "---* Al' (p, k) f (p) ) 

po Op i (303) 
11 

api -ja- 
po (9pi * 

Separating out the emission amplitude and wave packet distribution terms, 

the position expectation value for the emission state is given by two terms: 

d3p (-I'i(O))em 

21 (27h)3 
f* (P) api f (P) 

xf 
d3k A" * (p, k) A,,, (p, k) 

PO Ja 
opi 

N-(2-7r) 3 PO a P, 

dp If (P) 12 dk 
A"*(p. k)apA, (p. k). (304) 

(27rh, )3 ')A, (2, T) 
3 
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We have dropped the factor (Po/po) J,, (OpilOPi) from the second term for the 

following reasons: The emission amplitude Aý' and its pi-derivative are both4 

of order h', and thus so is the second term in the above expression a. s it is now 

written. To order ho, Po = po and (9pi laPi -I for all i-1.2,3 (including a). 
hence J,, =I to lowest order. Consequently we may replace these terms with 

unity at this order. However, one needs to keep these factors in the first term 

of (304), which is of order h-'. ' 

2.2.2. Time-dependent potential. Returning to the expression for the charge 
density/ probability density expectation value (296), we proceed with the sim- 

pler case of the time-dependent potential. The definition of CPt from (297) 

still holds, which we repeat as 

d3p 
CAt (k) =- A" (p, k) f (p) At (P) (297) 

h -V -2p 0 (2 -)Th)3 

The time-dependent potential is simpler because the conservation of momen- 

turn means that we can write P=p- hk. Consequently we have d'P = d'p. 

In connection with the previous workings we can write 

C"t (k) 
d3p 

_ gt (P, k) At (P), (305) 
VF2PO(27rh)3 

where this time the momentum distribution is given by 

PO 
g'(P, k) - -Aý'(p, k) (306) 
th Po 7 

4This is demonstrated in section 3 in the calculation of the emission amplitude using 

the semiclassical approximation (given in (344) or (359)). 

5This can be seen from the previous footnote, on the emission amplitude, and by com- 

parison Nvith the expression in (2,,,, 7). 
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The difference with respect to the previous case is the absence of the c)plaP,, 
factor. With reference to this we see that we have 

ih, d3k d3p +-+ ýXi)em 
-- 

(t (P, k) Op, g'(P, k 2J 2ko(27)3 ý27. h)3 9*P t 

d3kd30 ! ý- (A* (p, k) f* (p) Op, AP(p. k)f (p)) p 
2 2ko(27)3 (27h)3 P po Opi 

_i 
I d3p 

f*(P)Opif(p)f d3k0 01)' 
2 (27rh)3 )3 A"* (p, k) Au (p. k) 

P 
2k(27r po (9pi 

d3pd3k 
2j (27h)3 

If (P) 12 
j 

2k(27r)3 
A"* (p, k) Op, Aj, (p. k) (307) 

The previous arguments pertaining to the order of the two terms are fully 

applicable here too. We see that the only difference between the two is the 

removal of the ap,, 1(9P,, type factor when moving from V(x') to V(t). 

Considering (x'),,,, in (304) and (307), the ever observant reader will once 

again note the similarity between the first term and the position expectation 

value for 11). When this was noted for the forward scattering, we delayed 

consideration of the factor until after the corresponding emission calculation 
had been performed. We now return as promised to consider these two terms. 

2.3. Normalisation and unitarity. The final state If) for the interact- 

ing particle is the sum of the components If)em and IAor- Whilst we have 

already observed that there is no cross term, there is however a connection 

to be made using the normalisation condition for If). Recalling the definition 

and norma-lisation of Ii) and using the unitarity of time evolution. we find 

(fif) =1 (308) 
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In other words, the normalisation of the two components must also add to 

unity. For the forward scattering zero-photon sector. we have 

for (f If) for V2-p o (2 7 h)3 
-ý/ýpo(27Th)3 

(OIA(p')f (p') [I - i. F*(p')] [I + i. F(p)] f (p)Atlo) 

=j 
d 3p 

If (P) 12 [1 
- 2QV17(p)] + (D(e4). (309) 

(27rh)3 

The last term is added as a reminder that terms are taken to first order in e2- 
For the one-photon sector, the inner product produces the emission probabilitY 
Pen, ViZ 

em (f If) em :::::: 'Pem 

d3pd3pd3 k' d3k 
hh hh 

1 
(2 7r h) 3 ý, 

72-p(1) (27rh)3�/-2po 2k'(27r)32ko(27r) 3 
0 

(0 IA(P')a, (k'), 4'*(pl, k')f *(p), o(x), 4P(p., k)f (p)at (k)At(P)10ý 
11 

= -h 
dk 

ýO 1 Ci, (k) CI't (k) 10) 
, 

1 
2ko(27r)3 

(310) 

using the definition of O't (k) in (297). This equation then compares with 
(296) and we shall require similar manipulations of p and P. We have 

Peni 
If d3kd3p d3p, 

h 2k(27)3Vý2-p o (2 ýTh)3 Vý2p'o (27 h)3 

f*(p')A*4(p', k)f(p)A"(p, k)(OIA(P')At(P)JO). (311) 

In order to perform the p' integration in the case of the potential dependent 

on spatial direction x', we note that from the commutation relations Nve liave 

ý01A(P')At(P)JO) = 2Po(271j)363(p _ pl) 

2po (27r h)363(p - PI) 
PO OPa 

(312) 
PO Opa 

Thus the emission probability can be -written 

Pein =- 
If d 3p 

If (P) 12 
f. 

) 

d3k A* (p. k)A, (p. k) 
Po OPa 

(313) 
(2 T-, h) 3 

-ko(27)3 
P po (9p. * 
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Given that (313) and (309) must sum to unity for all f (p) 
- and recalling the 

normalisation 6 of f (p), we must have 

2 2,97 (p) 
d3k 

A* (p, k), 4, (p. k) 
Po c)pa 

h1 2ko(27r) 3 po (9pa 
(314) 

Via a similar argument presented in the derivation of (xl, ),,, in (304) and 
(307), we note that for the t-dependent potential. the appropriate expressions 

are 

'Pem = -I 
jd 3p 

If (P) 12f d3k 
A* (p, k) A4 (p, k) 

PO (315) 
h (27h)3 2ko(27r)3 A Po 

and 

2 QVF(p) =-13k A* (p, k) A" (p, k) 
PO 

(316) 
hJ 2ko(27)3 A Po * 

2.4. Position expectation value. Combining the position expectation 

values from the two components of the final state as given in (294) and (304) 

we have (using the subscript f to denote the full final state), 

h 
(!, i(o)ýf =: 

i1d 3p (f * (p) Op, f (p» [l - 2ýý, T(p)] 
(27rh)3 

-d 
3p 

If (P) 120 
iRy (27h)3 p 

d3pd3k- Ap* (p. k) Ap (p. k) 
PO ON aPi 

2 (27rh) 3f* 
(P) 

(9pi f (P) 
j 

2k(27r)3 PO apa api 

d 3p 
If (P) 12f d3k 

A"* (p, k) 9p, Ap (p, k) 
2 (27rh)3 2k(27)3 

(317) 

for which Nve are using the space-dependent potential expressions. The rehition 

in (314) can be used to eliminate the imaginary part of the forward scattering. 

6The expression for the normalisation (I 1 1) =1 in (75). 
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The result can be written in three terms: 

(X'(O))f 
= ý, j "P (f * (P) api f (p)) 2 (27Th)3 

d3p 
If (P) 12 if_d3k 

(27h)3 h (9p, RT -2 2k(27T) 3 
Am* (p, k) 9p, Am (p, k)] 

f. iq 

91 

j3 (f * (P) '(9Pi f (P)) 
2 (27Th 

xf 
d3k 

A"* (p, k) Aj, (p, k) 
PO (9Pa aPi 

(318) 2k(27T)3 PO apa 

(19pi 

Now our task is to interpret these terms. The first term can be recognized as 
the position expectation value of the non-interacting state JZý, which is written 
(x'(0))i. As this is our control particle, from the definition of the position shift, 

as the change in position due to radiation reaction effects, we conclude that 

the position shift is the sum of the second and third terms. The reader will 

recall that the function f (p) was defined to be sharply peaked about the final 

momentum. Calling this final momentum p for simplicity 7, we find that in the 

h --+ 0 limit, these two terms are given by 

6ii1 
d'k 

x� hOp, RJF -2 2k(27r)3 
(p. k) (p, k) (319) 

6xi 
(Xi (0) ýid3k Opi 

Q2 =h1 2k(27r)3 
A* (p, k), 44 (p, k) 

( 
api 

1)- (320) 

For 6xi we have again the fact that (9piliVi -I is of order h and consequently Q2 

in this h ---* 0 limit dropped the factor (POIPO) (aPal(9pa). Dropping this 

factor also means that we may continue xith the results applying to both time 

and space dependent potential cases. The quantum position shift 6xQ due to 

radiation reaction of the scalar field can thus be written 

h-Q1 + 6XI OxQ -- Q2, (321) 

, This is of course equivalent to the momentum being peaked about 0 say. followed by P 

a change of variables P -+ 
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Now, in the choice of coordinate system that we have chosen Nve have set 
(. i, "(0))j = 0, and thus 6Xý2= 0 at this order. We have nevertheless kept this 

contribution up to now in order to obtain a formula for the position expectation 

value without making this assumption which would be given, in terms of the 

above definitions, to order h by 

(X' (0) ýf=W (0) ýi+ öx 22 QI + ÖXQ2 
« (322) 

Indeed, we shall later show that, 6XQ2 gives the correct correction to the po- 

sition expectation value if we use our freedom of coordinate sý, steni to choose 

(Xi(0)ýi :ý 
Returning for now to our standard choice of coordinates. we find that the 

quantum position shift is given by 6x' = 6x' or Q Ql 

6xý hapi RT - 
if dk 

All* k) ap, Ap (p, k). (323) Q2 2k(27T)3 
(PI 

There are two contributions to this shift, coming naturally from the forward 

scattering and emission contributions to the final state. In order to analyse the 

quantum position shift and compare the result with the classical position shift 
6x, given in (279), we must calculate these contributions. For this purpose C 
firstly define 

6x, -hOp, R. F(p), (324) for 

61d3k 
, reni -A"*(p, k) ap, Aj, (p, k), (325) 

2 2k(27)3 

as the quantum position shift due to forward scattering and emission respec- 

tivelY. 

3. Emission Amplitude 

We now come to the ta, sk of calculating the emission amplitude. Recall 

Him the emission amplitude was originally defined by its presence in the one- 

photon sector of the final state which Nve repeat here (with the original equation 
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numbering) 

If) 
em 

d3p d3k 
A" (p 

ý 
k) at (k) f (p) At (P) 10) (2, S-'9) h (27rh)3-\, F2po 2ko(27)3 P 

Considering the form of the initial state, the above represents the following 

state evolution 

At(p)10) +ifdk A" (p, k) at (k) At (P) 10) (326) 
h 2k(27)3 A 

As it stands this is merely a definition for AIL. The full first order evolution of 
this state in time-dependent perturbation theory is 

4X7-ij At(P)loý ----> ---- (x)At(p)10) 
ý (327) 

where RI(x) is the interaction Hamiltonian density. Comparing these two 

evolution expressions, we can write the emission amplitude in terms of the 

interaction Hamiltonian density as 

Ap (p, k) =Ij 
d3p/ 

-I h 2po(27rh)3 
d', i, - (0 1 a. (k) A (p') li, (x) At (p) 10) 

. 
(328) 

The Hamiltonian density for scalar electrodynamicS8 can be obtained from the 

Lagrangian density by the standard method and was given in (85) and we 

repeat it here to aid the reader: ' 

.ee23 
It- -'A 

1: AiAi: (85) 
h h2 

As was noted when this expression was originally introduced, it is useful to 

observe the i=1,2,3 sum in the second term i. e. the absence of the AOAO- 

tYpe term. The first term is the contraction between the electromagnetic field 

8A note should be made at this point that we are using the normal ordering from the 

free-field. The appropriate subtraction to be made is technically the subtraction of the 

%-acuum in the V, 0 limit of the potential. However, it can be shown that to at least order 

h' the difference bet-, N-een tile methods is zero [9] and consequently we are justified in using 

the more familiar normal ordering here. 
ý'Nornial ordering on the . 4, A, type term would add an infinite constant term altering 

our definition of the mass counter-term and would not affect the final result. The full 

treatment of both the electromagnetic fields and scalar fields is technicallY that noted in the 

previous footnote and gives the same results as this treatment [9]. 
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and the current of the scalar field J"(x). It is this term with which Nve are 

presently interested as it is the current-EN1 field coupling that produces the 

photon emission process with which we may match the emission amplitude 

expression. Thus, we have 

, 44 (p, k) 

ic dpd 4X (0 1 a4 (k) A (p') I A,,: [j: J D' -- (D' t At (p) 10) hl 
I 

2pO (27r h)3 

(329) 

By using the expansion of the fields Al, and ýo, and the commutation relations 
for the annihilation and creation operators, we readily find 

A,, (p, k) 

-Zeh 2p' 

dp 
d4X eik. x ýDt, (x)D, (Dp(x) - [D,, ýDp, (x)]t (Dp(., t-) 

0(27rh)3 p 

(330) 

We may now proceed to substitute the appropriate expression for the mode 
function into the above and calculate AP. 

3.1. Time dependent potential. We begin by looking at the case of a 

time-dependent potential V'(t) (i = 1.2,3) with V'(t) = 0.10 The system is 

translationally invariant, in the spatial directions and hence we can let 

ýýp(x, t) = op(t) exp (ip - x/h) . 
(331) 

The amplitude in a spatial direction for the t-dependent potential is then 

A'(p, k) =-cdp- d4 3,0*, (t) op (t) [p' + p" -2 V' (t) ] e'ý (P - P') - hl 
2p()(27rh)3 0 

x et1( 

(It eikto* 
1) vi(t) 

p 
(t) 

Po 
(332) 

lolf V()(t) ý4 0, one is free to gauge away this com onent. Our choice here is for p 

witli (91J-14, = 
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with P=p- hk, where we have let P+ p' - 2V'(t) = 2ý' - V(t)] as the 

difference p' - P' is of order h. 11 However. it would be incorrect to equate 
Op(t) with Op(t), because these functions oscillate with periods of order h-1. 

as will be seen shortly. For the time component we have Dt = at and simply 

obtain 

zeh iAt X(p, k) =- dt [0* Otop - (Oto* ) op] e. (333) 
2po 

1 

To proceed further, we require the remaining undetermined factor op(t) of 

the mode function to be approximated for the field in the region A4, in a form 

suitable for taking the h --+ 0 limit. This is of course precisely , N, hat Nve have 

in the semiclassical approximation in (142). We repeat this result here to aid 

the reader: 

op (t) 
r=o 

exp -i 
Jot 

Ep (() d( (334) 
Ep (t) 

[hII 

where 

Ep (t) = ý, 
/ 1p-V (t) 12 + M2. (335) 

We note that the local momentum and energy of the point particle correspond- 

ing to the wave packet considered here are 

m 
dx 

=p- V(t), (336) 
d-r 

M 
dt 

= Ep (t) (337) 
dT 

Now, the product of two wave functions in the emission amplitude (332) can 

be written 

0 

Po Ii 
M OP (t) - exp [Ep(() - Ep (()I d( (338) OP 

Ep (t) h0 

"LiAter, when we consider the forward-scattering, the semiclassical approximation for 

the emission probability is justified (475). This in turn shows the validity of flic physically 

reasonable assumption that a typical photon emitted has energy of order h. 
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where we have replaced Po and Ep(t) in the pre-factor by po and Ep(t). re- 

spectively. due to the hý0 limit. 12 The integrand in the exponent can be 

evaluated to lowest order in h by using (336) and (337) as 

Ep - Ep 
OEp 

(pi _ pi) OP i 

dx' 
hk 

dt 
(339) 

where the repeated indices i are summed over. By substituting this approxi- 

mation in (338) we find 

OP Po 
pt dt 

dx' 
OP 

Ep dt 

- 
Po 

�-��, p (-zk - x) , Ep 
(340) 

where we have used the fact that the particle passes through the spacetime 

origin. By substituting this formula in (332) and noting (336) and (337) we 

obtain 

dx A'(p, k) = dt ik-x 

dt 
dx 

= -e << eiký (341) 

where we have defined t-n-x with n- k1k. We emphasize that x 

and ý here are functions of t evaluated on the world line of the corresponding 

classical particle passing through the spacetime origin. 

Let us now consider the time component A'(p. k) of the emission amplitude 

given by (333). Note that from the semiclassical expression (334) for op(t) Nve 

have, to lowest order in h, 

Ot op Ep (t) op (t) 
h 

(342) 

12 This is not contrary to our previous point regarding the order of the product as 

the oscillation period, which is of 0(h-1), is contained in the exponential. The pre-factor 

replacen-ients may thus be made analogouslY with those multiplicative factors in (332). 
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By substituting this formula in (333) we obtain 

A) (p, k) --e dt [Ep(t) + Ep(t)] 0* (t)op(t)eik" 
2po 

-e 
1 

dt e-ik-xeikt 

< 
dt 

eikC (343) 
< 

where we have let Ep(t) = Ep(t) and used (340). By combining this formula 

and (341) we obtain the following concise expression for the h ---+ 0 limit of the 

emission amplitude: 

dxý' iký A" (p, k) dý 
< C, . 

(344) 

3.2. Space-dependent potential. Let us now consider the case where 

the potential is dependent on one of the spatial coordinates, z say, although the 

following will apply to x and y equally by symmetry. The following calculations 

are very similar to the previous t-dependent potential case, albeit with subtle 
differences in the workings. We once again start from the equation (330) 

A, (p, k) 

- ich 
d3pd 4X 

eik. x 1ýPt, (x)D, 4)p(x) - (D,, (Dp, ( r)) t (D p 2po(27h)3 p 
(330) 

The potential is I "' (--), Nvith I" (--) = 0. The transla, tional invariance in the t, 

x and y directions means HiM the mode function can be decomposed bY 

-E (Pot -pxx-pyy) ýDp = op(ýý), -i (345) 
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Here let us use the notation I to represent the x, y directions. The amplitude 
for the x, y components is 

A =e 
dpd 4X 0* 

-L 1, 
(z) Op (-) ý-L + pl - 2VL 

1 
2p()(27rh)3 p 

i((pj_-p'_L). x_L)/h. -i(po-p')t i(kot-k. x) xe0e 

=C/dpf dz 0*, (z) Op (z) ý-L + p_L -2V, C- 
ikz z( 27,1j) 3 f 

2po(27h)3 p 

6(pO + hko - po)6'(pj_ + hk_L -pI) 

dz e -ik, z 0* (Z) 01) (Z) 
[P-L 

p PZ 
(346) 

where in the last two lines we firstly integrated over x, y, t then used the fact 

that dplpo = dpolp, before integrating out the delta functions. For the Iýist 

line, P is defined via the conservation of transverse momentum and energy 

represented by the delta functions, i. e. Pj- = p-. L - hkj_ and vT-2 
-+m2 

V "p-- 2+ m2 - hko. Consequently, following analogous reasoning set out in the 

t-dependent potential evaluation, we take PL +pj- - 2Vj- (z) =2 [pj- - VL (z)] as 

the difference is of order h. Once again, 0* must be treated carefully. P- 
For the t component the only difference to the above is the covariant derivative 

Dt gives an extra minus sign. This gives 

-iký -v At = -e dz e, 0*, (Z) op (Z) 
[Po t (347) 1 

PZ 

For the z component we have D, = (9, thus simply obtain 

d3p jd 4X AZ = -ieh 2po(27rh)3 P, (gzop - 
(OZOPI) OPI 

((Po 
v) i(kot-k. x) 

x e--k -PO)t-(PX-P, X)X-(Pv-p, )y 

__ 
ich d- [0 *, azop 

_ 
(azo*, ) op] -ikz 

. (348) 
2p- p 

where Nve have again changed the integration from p, to po. This expression 

similar to the case Ao for I -(t) in (333). 

We now need the semiclassical expression for the remainder of the mode 

VL(Z)l 

function substitution. This was found in (153) and as before, we reproduce it 
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here to aid the reading of this calculation. 
[1. Z 

OP (t) = exp - Kp «) 

p 
ýZ) 

h0 
P 

where 

p 
(Z) (po V 

t(t))2 _ 
(px V 

x(t))2 _ 
(py V 

I KIy (t)) 2 

99 

(349) 

(350) 

This time we note that (p-L - VL(z)), (po - Vt(z)) are the 1'. t components (-L= 

x, y) of the momentum of the corresponding classical particle and Kp is the - 
component, i. e. dx-'IdT, dtld-r and dz/d-Frespectively. The product expression 

is now written 

PPz 
Z up 

P2 

0* (Z) op (Z) 
- exp - (Kp«) - Kp «» d( (351) 

P K, P (Z 
ý Pr, 21p 

(Z) 

Again, to lowest order in h we can change P, to p, and Kp(z) to tip(z) as, the 

difference is of order h. The difference in theK terms to lowest order in h is 

KP - KP = h-p (p" - po + ", p - (P -, - - pý_) apo (9p 
dt 

-hko - 
dx-L 

- hk, 
dz d- 

Thus the product of O's can be written 

OP, G') op (Z) 
PZ 

exp 
KP h0 

PZ '(kot - - exp (z 
KP 

dz 
dt 

hko - 
dx_i_ 

hk 
d- dz 

- k-L -x 

This gives the i component of the emission amplitude to be 

Ai=e &ýe-" I zpz exp (i(kot - ki- - x-L)) -1pi 
-I i(--)] 

KP PZ 

of< 
d "" c'ký. 
dý 

(352) 

(353) 

(354) 

using ý=t-n-x, n= k/k as defined previously. Similarly, the t component 

gives 
iký At dý 

< 
(3.55) 
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Consider now the z component of the amplitude given previoiisl. ý- as 

Az ieh I dz [0*, Ozop 
_ 

(Ozo*, ) 
()P] e-ikzz (356) 2pz pp 

Note here that from equation for Op we have., for lowest order in b 

2 
Oz op (Z) =- Kp (Z) op (Z) 

, (357) 

thus the amplitude becomes 

Az =e1 dz (rp + rp, ) 0* ope- ik, z 
2pz p 

e1 dz e 
i(kot-kxx-kyy-kzz) 

dz iký <<e (358) 

Raising the indices gives 

dxý' iký AtL = -e dý 
<e. 

(359) 

This is the same expression as (344) which we obtained for the t-dependent 

potential. Given the symmetry between the spatial components we can thus 

use this amplitude to calculate the position shift for a potential dependent on 

a single space-time coordinate. In the expression for the amplitude xý" is the 

classical trajectory of a particle with final momentum p that passes through 

(t, x) = (0,0). This emission amplitude. 13 is identical with that for a classical 

point charge passing through (t, x) = (0,0) 

3.3. Cut-off. The expression for the emission amplitude (359) is currentlY 

ill-defined because the integrand does not tend to zero as ý -* ±Dc. To counter 

this pathology, Nve introduce a smooth cut-off function which has the 

proper les: 

9\ (ý) takes the value I whilst, the acceleration is non-zero. 

. 1iill (e) = 0. 

"which is already under the h, -* 0 limit. 
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Also, we take X(ý) to be a member of a family of such cut-off functions such 
that, we can take the limit X --,, 1. with the property 

o E, [X(ý)]'dý --> 

The cut-off version of the emission amplitude is thus written 

+C)c 
X (ý) eiký -e A" (p, k) =<< (360) 

and is now well-defined. We shall make use of both this expression for A" 

along with the result of integrating (360) by parts 

ic +00 d 2Xp dxP At'(p, k) 
kf 00 

dý 
[ 

<2 +<X, e 
iký (361) 

where we have used the condition that X(ý) =I if d 2Xp /<2 :ý 

3.4. Larmor Formula. The reader may recall that when calctilating the 

contributions to the position shift we included the term 6XQ2. defined in (320) 

öxi = 
(Xi (0) ýi d'k 

Ap* (p, k)Am (p, k) 
ap' 

-1 (320) Q2 2k(27r)3 

( 

api 

which was evaluated as zero due to the arrangement in the model that the 

control particle passes through the spacetime origin. It was also stated at the 

time that this contribution is in fact that which describes the additional shift 

produced should the control particle not be at spatial origin at t-0. NN'lillst 

the truth of this statement does not, due to the model, affect the results Nve 

wish to obtain, it is nonetheless worth briefly taking an aside to consider. In 

the chapter on the classical position shift, we considered the effect of such a 

change in the point of measurement NN-hilst analysing the linear acceleration 

due to a spa, ce-dependent potential. We refer the reader to the results (228) 

and (229), where Nve found that the extra contribution to the position shift 

Nvas given by 

6- -- _0 E, 11, , 
(22, S) extra M -1 31,2 

,00 
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where zo =ý 0 is the position of the particle at t=0 and vo is its final speed. 

This contribution is written in terms of the energy Em emitted as radiation 

E, m = 
2a, 0 

(-ý3V dt, 
3J oc, 

(229) 

which we noted is the relativistic Larmor formula for one-dimensional motion. 
Let us use the newly derived emission amplitude to calculate ýxQ,, for 

this case of linear acceleration. Choosing the direction -ý, as with the clýissdciil 

formulae above, we have i=3 and 

6ZQ2 zo I d'k 
Al" (p, k) A,, (p, k) 

dp 
_1 (362) 

h 2k(27T)3 

(dP 

where we use p=p,, and P=P, for simplicity. Firstly, we need to find an 

expression for dpIdP in terms of p and k to order h. The energy conservation 

equation po - PO = hk gives a one-to-one relation between p and P for a given 
p2 =: 2 k after letting the transverse momenta I P-L 

order h' here. We then write 

0= 
(p2 + rn2)1/2 p 

I= po - hk, 

and thus 

P2 = P2 - 2hkpo -m2+ O(h 2) 
0 

p2- 2likpo +0 It 2. 

Solving for P and expanding the resultant square root gives to order h 

(363) 

(364) 

Po m 2)1/2 
P=p- hk =p- 

(I+2 
hk (365) 

This leads us, to order h, to 

dP Ift .) 
dp +p2 

Po 
hk (366) 

and finAIN'. 

0, because these are of 

2 

-riA.. 
(367) 

(1p p2 Po 
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By using this formula in Eq. (362) we obtain 
M2 ZO 

6ZQ2 
2 

Sem (368) 
0 

where 

'Fem = _j 
d'k 

kA"*(p, k) A, (p, k). (369) 
2k(27r)3 

is the expectation value of the energy emitted as radiation. By comparing 
(368) with the classical expression (228)., it can be seen that the e(ItialitY 
6ZQ2 6Zextra will hold if we can show that 

Eem = 
2a, 0 

(, ý3i)2 dt 
3J cýo 

(370) 

which is or course identical to the relativistic generalization of the classical 

Larmor formula. For this purpose, we now use the emission amplitude. It 

is convenient to use the form (361) of the emission amplitude, which was 

produced by integration by parts. Substituting this expression into the expec- 

tation value (369) we obtain 

Eem = _e2 

f 
dQ 

J"O dk 
3 

J+"O <f 
+')0 

< 
0 167 

-00 -00 
d2 Xý' dx" d 2Xti 

+ 
dx, 

x We + -<' X'(ý')] <2 < X, e (371) 

where dQ is the solid angle in the k-space and now ý=t- -ý, cos 0. We may 

extend the integration range for k from [0, +oc) to +-)c) and divide by 

two. We can then integrate over k to produce the delta function and integrate 

out the variable ý' to find 

C2d2x,, d 2Xp 
x,, dx4 ýX, (ý)12 

'Fem 

j 

dQ 
J+O" 

<-+ 
ýXj' (372) 

72 
-00 

ý2 ý2 -'ý6- dd<< 

Noting that (dx,, 1<)(dxP1<) is bounded, the second term tends to zero in 

t he limit I due to the requirement 
+00 f 

00 

[\ /(ý)]2 < --+ 0. (373) 

Hence. Nve liave in this limit 

Sem 
0C+ DC 

(k dQ (3 4) 
47-, 

: )c 

f 

<2 <9 
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where a, = e2/47r as before. Now, one can readily show that 

d'xýL 
3 dt < d2 X" d2ý dxýL 

= <2 

) ( 
< 

[ 
dt dt2 dt2 dt (3 7,55) 

By substituting <Idt =1-i cos 0 we find 

d'z 
(376) dý2 (I COS 0) 3 

d 2t d 2Z 

COS 0 (3 7 7) <2 <2 

and hence 
d'x4 d 2X 

it 
- 

i2 sin 
20 

__ 
dt 

(378) <2 <2 COS 0)5 < 

By substituting this formula in (374) we obtain 

Sem ac 00 
< A2 

i2 sin 
20 dt 

47 
100 f 

(I -ý COS 0)5 < 

ac 00 
dt 

Ir 
dO 

2 
sin 

3o 

2f 00 

Jo 

-ý COS 0)5 

ac 00 
dt ý24 

-1 ý2)3 2 
100 

3(l 

2a, 0 
dt (, ý3 ý) 2 (379) 

3 
-, )c 

The limits for the last line were changed from (-oc, o(D) to (-oc., 0) by virtue 

of the fact that -, ' =0 for t>0. Consequently, we have 

6ZQ2 6Zextra 
i 

as required. 

(380) 

3.5. Position shift. NN,! e now use the emission amplitude expressions to 

find the emission contribution to the quantum position shift. Recall that this 

was given in (325) as 

d3k (p. k) 9p, At, (p. k) (3 2 5) em 29 k (2; -1 )3 
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In the product A"*(p. k)OpjAp(p. k). we shall use the expression (361) for A"* 

and (360) for A,, (and vice-versa for the conjugate). 14 This leads to 

2'k2A +0" +0" 
6xý -- dQ 

f <f < em 20 1673k2 
oc - cc 

xd 
2Xp 

+ 
dxý' 

x/ (ý, ) 
0( dx,, )X+ [d(ý1)2 

d(ý') api < 
(381) 

where dQ is in angular part of the k integration in spherical polar coordinates. 
Due to the symmetry in the integration, we make the swap back ý ý--+ ý' to the 

second term. However this will change the exponential, producing the same 

overall effect as the transformation k ---+ -k on the first term, viz 

e2 J" k2 dk 
6x' ---JdQ em 

0- 
3k2 20 167T 

J- 

00 
[d 2Xp dxý' f W) a 
d(ý')2 d(ý') 

I 
Opi 

+ oc 

< foo 
< 

dx 

(382) 

This expression makes it clearer that the second term is the conjugate of the 

first, as is known from (325). Making the substitution of integration variables 

k --ý -k. for the second term, we see that it is integrand is identical to the 

first, but the integration range is now (-oc, 0). We may thus rewrite 

2 DC k2 dk +00 +oc) 
6-'reiii 

21 
dQ 

1'00 
1 673k2 

f 

oc 
<I 

oc 
< 

x 
[d 2 

(383) 
(ýt)2 + api < d 

where the A- integration is over the full range (-Dc, Dc). We can now integrate 

over A- to produce the delta function 27r6(ý - ý') and consequently integrate 

14 Equation (360) was where -we introduced the cut-off in A" and (361) was the result 

of integrating, by parts. 
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out ý' to give 

C2 6Xem 
1672 

e2 

1672 

+, Y-- d'x4 
M 

oc 
<[ <2 

dQ <[ 
d'x4 0 
<2 a P, 

dx"' 
X(o < Opi 

106 

dx4 
+1 C) dx4 dx, d 

(X (Z», 
dZ 4 api 

(9 
dZ 

where, whilst combining terms we have recalled the property ý (&) =1 if 

d'xP1<2 zý 0. Noting that 

dx" dx, d-F 2 dxt' dx,, -- 
)2 

--= 
(d7 

(385) 
<< 

(<) 
dT dF < 

we find that the second term in (384) above is proportional to the integral 

dQ <d0( 
dT )2 

(X (386) 
< (9pi < 

We shall now show that this integral is in fact zero: Owing to the fiwt that 

(910pi is taken with ý fixed, the ý-derivative and the pi-derivative commute. 
Hence 

I=I dQ 
+00 

<ad 
(dT )2 

(X(ý))2. (387) 
foo 

09pi << 

This expression is simplified by the observation that the quantity inside the 

square brackets is nonzero only if the acceleration is nonzero, or correspond- 

ingly when )((ý) = 1. Relocating the pi differentiation outside the integration 

in I we have 

(9 A2 
J+oG 

<d 
d-F 2 

api 
_00 

<< 

(9 dQ 
d-F 2 

Opi 
L 

(<) 

Now, the quantity to be differentiated is 

7T 

(dt/dT)2 

T2 
7r dt d2 

A2 
(d 

27r dO sin 0--- Cos 0 
(1ý 0 

(d-F 
dT 

(d, ýI&)' 
- 4-, -,. 

(388) 

(389) 
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i. e. a constant, ergo the integral I=0 as stated. If one recalls the definition 

ac =e2 /47, then the emission contribution to the quantum position shift can 

now be written in a fairly compact form 

6xi -- 
ac A2 

f< d'x4 0( dx,, 
(390) em 4-x 

f<2 
ap, < 

We additionally note that this expression is now independent of the cut-off 
function. 

Whilst (390) is a fairly simple compact expression, it is still one in a some- 

what, different form to that of the similarly compact classical position shift as- 

given in (279), which is written in terms of t rather than NVe thus need to 

eliminate the variable ý using its definition ý=t-n-x. Before tackling 

the second derivative term, we may again interchange the order of the pi and 

ý derivatives and change integration variables from ý to t: 

6xi -- 
ac dQ 

j 
dt 

ý ýjm d( (9xA (391) em 47r 
f 

<2 dt api 
)ý- 

We remind the reader that in the above expression dQ is the solid angle in the 

wave-number space k of the emitted photon. We have additionally placed the 

subscript ý on the final partial derivative to emphasize that this variable is held 

fixed, which will be important when it is evaluated. Furthermore we remind 

the reader that the momentum pi is the final momentum in the measurement 

region A4+. Consequently we would write the velocity dxýIdt = ((9xP1at)P,. 

Proceeding with the evaluation of (391) via the elimination of ý, one 

(-an readily write d'x"I<' in terms of t-derivatives by using dl< = (I - 
1d dt as follows: 

2 d3+. P, (392) 
<2 

where I- id. 1'. Here and in the rest of this section, Latin indices, which 

Nve recall take the spiitial values I to 3. are summed over when repeated. The 

15Recall that Nve defined n=k /V 
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time and space components of (392) can separately be given as 

d't 
=3Y (393) <2 

d 2Xj 

<2 =3 (1 - nY) P+ n'. PP (394) 

Next we express ((9x4l(9pi)ý in (391) in the form involving t rather thaii ý ýis 
follows. Note first 

dx" = 
dxý' 

dt + 
('9x" ) 

dpi 
dt (9pi t 

(395) 

The zeroth component of this equation is in fact trivial because (Otl(9pi)t 

By substituting dt =<+ n'dx' in this equation with p=I we have 

dx' = 
dx' 

<+ 
dx' 

njdx i+ 
(axi) 

dpi (396) 
dt dt ap, t 

We can solve (396) for dx' by first observing that by contracting both sides of 
(396) with ni we can solve to find an expression for tj k dXk, ViZ 

11 A, Ox k) 
I nk dXk - 

'VI 
<+ dP (397) 

1- nivi I- ni vi 

( 

Opi 
t 

where c" = , r' = dx'ldt. By substituting this back into (396), we solve for d-, r' 

(1.1-i = 
III < -+ 

[6ik(l 
o'c') +n kVi] 

(9x 
k) 

dp (398) 
1- nj, t, j - nlut 

( 
ap, t 

Hence 
ox i)ý 

= 

[6ik(i nl, ýl )+nk, tli] Ox k) 

. (399) 
api - flitil 

( 

19pj t 

Witli ý fixed Nve have (It - W&r' = dý = 0. Thus, 

api 
Ot i( 01-i 

(400) 
opi 

t 
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By substituting the pairs (393). (394) and (399), (400) in the position shift 
(391) we find, after a straightforward albeit lengthy amount of rearranging, 

i ac k2k 
Vk _ 

Ik d( OxI ) 
xQ -47 dt [I2j 

-,, - ai - lo a- Ij ai (a - v) dt opi 

[ kjl Ox 
2j kj 2 

Opi 
(401) 1ý a al-21ý ai(a. v) -Ila 

I() 

where 

1() dQ 47rY2 (402) 
ý2 

Ii dQ n' 47r-y 4vi (403) 1 ý3 

Iij A2 n' 
.W= 

16776ViVj+47r746ij 
(404) 2 ý4 33 

k n2nin 
k4 

ij dQ 
. -- 87-y 8vi 

viv 
A, + -7-Y 

6v i6jk + 't, 
j6ik +v k6ij (405) 13 

ý5 3 

Evaluation of these solid-angle integrals is facilitated by noting that the last 

three integrals are proportional to partial derivatives of Io with respect to u', 

explicitly 

ini i. -Ia1,1 n=1,2,3. (406) 
(n + 1)! Ovi- 

Substitution of (402)-(405) in (401) yields 

2ac 
V)Vk +2 k] d (aXk 

dt (a -/a em dt api 

6 (a . V)2Vk + ýy 
4a2v k] 

Ox k 

(407) 
( 

OP i 

which, by using the fact that a(t) :ý0 only for t<0 and for a finite interval 

of time to integrate the first term by parts, becomes 

6.1.1 -- 
2oc j 

dt 
d [-, '(a - v) t, ' + -ý'ak eni 3 dt 

I 

V)21, 
k 

- -'a 
2 

t, 
k 

Ox k) 

. (408) 
OP it 
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Comparison with the expression for the Lorentz-Dirac force in (277) demon- 

strates that we have 

6x' =- 
jo 

dt j (409) em -FLD 

( OXj 

OP 

We recognize this as equal to the classical position shift (279). 

4. Forward Scattering 

The forward scattering contribution to the position shift was shown in 
(324) to be equal to 

6xi --':: - hOp, R. F (p) (324) for --' 

Considering this expression there are two points to bear in mind when calcu- 
lating the forward scattering amplitude. Firstly. we note that we onlY require 
the real part of the amplitude. Recall that the imaginary part was canceled 

via its relation to the emission probability. Secondly, we note that we have 

an additional h factor multiplying 'T(p). This is not contrarY to the fact that 

(324) is in the h -4 0 limit, as we shall shortly see that F is of order h -2 - 
We shall thus actually need the first two orders, h -2 and h-', in -T. 

With the 

extra h factor, these orders will contribute at orders h-' and h'. In taking the 

h ---+ 0 limit, one would wish the former to be zero or canceled. Additionally, 

should the latter be non-zero, then we would have an additional position shift 

contribution in the h -4 0 limit. As the emission position shift has already 
been shown to give the classical position shift expression. such an additional 

contribution would present a quantum correction to the classical theory. 

In this section we shall in fact show that the overall contribution from the 

forward sciatering towards the position shift is zero when we take the renor- 

malisation of the mass into account. This is in fact in keeping Nvith the classical 

description of radiation reaction, although with some subtle differences. and 

Nve shall return to this later. We proceed Nvith the calculation of the forward 

scattering amplitude and shall then continue to calculate the contribution to 
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the renormalised forward scattering made by the mass counterterm. The for- 

ward scattering amplitude was first introduced, and consequently given its 
definition, by its presence as part of the amplitude of the zero-photon sector 

of the final state, viz 

Aor dp [I + iT(p)] f (p)At (p) 10) 
(27h)3 v /2po 

If we equate this expression with the state evolution in time-dependent per- 

turbation theory, then to O(e 2) we have the following zero photon sectors: 

jd 4XH, At(P)IO i. F(p)At(p)j0) = -_ h zero-photon 

+1 
(_i)2 fd4 

xd 
4 
x'T [HI (x')HI (x) ] At (p) 10) 

2h 
zero-photon 

(410) 

where T[ 
... 

] represents the usual time ordering and zero - photon indicates 

that we require only the zero photon terms. We note that we need both the 

first and second orders in the interaction Hamiltonian for this order of e2. 
Recall that 'HI was given by 

23 

(85) 'Hi 
h2 

i=l 

We see here that the first term in (85) contributes at second order in R, for 

(410), whilst the second term in (85) contributes at first order in Hi. Operating 

on both sides of (410) with the bra-state (OIA(p'), which invokes the zero 

photon condition, and using the commutation relations for the resulting inner 

product, we may rearrange the result to produce the forward scattering: 

J'(P) =-If 
d3pt 

-d 4 
ý1, 

ýOjA(p')Hj(x)At(p) 10) 
h 2p(27h)3 0 

d3p/ 
_d4 ý(14XI +- (OIA(p)T[HI(x')'H, (. I-)]At(p)10). (411) 

2h2 2pO(27r Ji) 3 

The portion of the above expression at first order in H, we label T, and 

correspondingly name the remainder -F2.16 

1611, [7] this notation was the reverse of that given here. 
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4.1. F1. The calculation of this first order F, part is fairlY straight forNvard 

and we present it here. Substituting the interaction Hamiltonian into the 

definition of T"j., we have 

I e2 d3pI 4X 
3 

-d 
1: (OIA(p')Ai(x)Ai(x):,, ýý(x),, ý7(, r):. 4t(p)10) li li2 

f 
2p'0(2iTh)3 i=l 

dp 4X 

h3 
J 

2po(27rh)3 
d E(OlAiAiIO)(OIA(p'):,; t,, ý: At(p)10). (412) 

i=l 

Let us analyse the two inner products in turn, using the appropriate commuta- 

tion relations. For the first product, involving the electromagnetic field (which 

is not normal ordered) only the annihilation operator from the first field and 

the creation operator from the second field will give non-zero results. Thus 

dkd k' lo)e-i(k-k/). x ýOjAjAjJO) 
(27)32ko (27)32k' 

(0 1 ai (k) ajý (k') 
0 

dkd k' )363 -i(k-k'). x 

(27)32ko (27)32k' 
(-hgii2ko(27r (k - k')) e 

0 

3h 
dk (413) f 

(27)32ko ' 

where we recall that we are using the time-like sign convention (+ -- -). The 

second product, involving the scalar particle fields is 

(OIA(p / ):,,: ) t ý, -: At (p) 10) = 
d3p (2) 

-d3p 

(3) 

(27h)32p (2) 

1 

(27Th)32p (3) 
00 

(OIA(p)At(p (2»A(P(3) ) At (p) 10) (D (x) (D p(3) 
(x) 

- p 

The remaining operators from the normal ordered fields are annihilated bY 

the vacuum (after normal ordering). We also recall the overall prefactor of 

h in the expression for ,ý 
(see (71)) thus leading to the h' above. Using the 

commutation relations we have 

(0j-4(p'): Vt,,:: At(p)j0) = h2(D* , (ýl -) (D p 
(x) (415) 

p 
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and consequently, combining with (413), 

(p) =-3 e2 
dp-d 4X1)*, (x) (DP (x) dk 

2p' (27rh)3 P (27r) 32ko 0 

-3C 
2dpd 4X0*, (t)Op(t)e-i(P, -p). xlh 

dk 1 
2po(27rh)3 p (27r) 32ko 

_3e 

2 
dt I op (t) 12 d3k 

(416) 
2po 

Jf 
(2-F)32ko * 

The use of k in the integration hides the h dependence of this term. Changing 

the integration variable to the photon momentum K= hk, we use d'klk 

h-'d 3 KIK. 17 Thus 

jcý (P) =_3, 
' 

12f d3K 
7) 

2h2 PO 

j dt lop (t) 
(27)32K' 

(411 

4.2. F2. The portion of the forward scattering at second order in the 

Hamiltonian forms the bulk of the calculation and is more complicated than 

the above first order term. We start from 

T2(p) ::::::::: + 
d3p/ 

d'xd'x'(OIA(p')T[HI(x)HI(x)]At(p)10)- (418) 
2h2 2po(27rh)3 

That part of H, which is relevant 
18 is 

-Ap: 
zeAý, D" (419) 

hh 

where we have used the more compact notation Dý'=Dý' - DýO. The inner 

product in (418) can be separated into the electromagnetic and scalar field 

parts: 

(0 1A (p') T [UI (, v') U, (x) ] At (p) 1 Oý 

_e2 
+--> 

= -ýOJA(p')T A (x):, ýt(x) D"f ý(x'): A, (x):, ýt(x) Dv -(x) At(p)10) 
h2 

_e2 
- -(OIA(p')T 

t (x') DP - -t (x) D' , 
(x) 4t (p) 10) 

11,2 

11 

'; (x'): ýI, 

1- 

x (OIT [Aj� 10ý 
- 

(420) 

K= IKI analogously to k. 
'8Recall that we only require terms Up to O(C2). 
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The second inner product is simply the photon propagator. the expression for 

which is 

fflIT [A�, (x')A, (x)] 10ý 

h1d3k_ 
[O(t 

_ ti). -ik-(x-x') + o(t 
(27r) 32ko 

1- t), ik-(x-xl) 

The scalar field product is more complicated and the full notation becomes 

somewhat cumbersome; In full, with the expansions of the fields, we have 

(OIA(p')T 
[: 

WI(x) U' / ýo(2): : ýjI(x) D'�ýý(x): 
] 

At(p)10) 

h4d3p 
(2) 

(2) 
d3p (3) 

(3) 
d3p (4) 

(4) 
d3p (5) 

ý --5) 
(27rh)32po (27rh)32po (27rh)32po (27rh)32po 

T(OIA(p'): At2, b2*(x') + B24ý2(xl) D"l Ab 34)3(XI)+ Bt(b*(ý, i-') 33 

(A4t(b4* 
(x) + B4 -4 (x) D' A54)5 (X) + Bt(b* (X) : At (p) 10) (422) iv 55 

where the subscript gives the momentum of the operator or mode function. eg 
Aj =- A(p(j)). Considering only the operators momentarily, we have for each 

interaction Hamiltonian term 

: 
(Ait + Bi) (Aj + Bjt): = AitAj + AitBjt + BiAj + BjtBi. (423) 

Operating on this combination on the left by (01A(p'), the second and fourth 

terms are annihilated by the vacuum. Similarly, when operated on the right 

by At(p)10) the third and fourth are annihilated. Overall, in terms of just the 

operators, we then have 

(OIA(p')AtA3AtA5At(p)10) + (OIA(p')B2A3AtBtAt(p)10). 2445 

from which xvc obtain the delta, functions 

(27t- li) 92 3P(2) 
0 1) 

(4) 
p 

(,, ))63 
0 

(pl 
_ P(2))63(P(3) _ P(4))63(p _ P(5) 

+(27rh) 92 3P(2) 
0 p 

(3) 
0 p 

(4) 6: 3 
0 

(P/ 
- p 

(4))63(P(2) 
_ P(5))63(p _ P(3)), 

(424) 

(42-5) 
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and an additional term representing the vacuum pair creation and annihila- 

tion event which we can ignore. 19 Using the appropriate mode functions and 
integrating out the delta functions, what remains is the following 

h4d3q_ (27rh)32q0 

* (x) D "' T 
[iVp, 

(x') DI" 4)q (X1) 41)q 'Dp (X) + 4bq (x') DI" (Dp (x) 
p, 

(X) 
Jýý 'Vq (X) 

(426) 

where we have used q for the internal momentum (previously p (3) in one case 

and p(') in the other). 
We can now combine this result with that for the electromagnetic fields. 

-F2 
(P) 

ze 
d4 xd 

4 

JI/ 
dpdqdk 

2 2po(27h)3 (27h)32qo (27)32ko 
ik-(x-x') 

D' (Dq (x) DI' (Dp (x) + (D*, (x) DI' ýDq (X) 4bq(x') D' gb mqp, p 
(x') 

o(t - t')e-ilý(X-Xf) 

(D* D (Dq (X) 4b* (x') D'4 (Dp (x) + (D*, (x') D' 'Vq (X1) (Dq (x) D� (Dp (x) 

(427) 

where we have rearranged the last term in each curved bracket so that it 

inatches the first. The t,, x-o time ordered terms are then the saine under the 

19The same event was ignored for the initial state calculations in this chapter and 

explained in the first paragraph at the beginning of section I 
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(x, x') integration symmetry. We choose to combine them as follows: 

-7: 2 
(P) C 2h d4 xd 

4XI dpdqdk 
2p'(27rh)3 (27h)32qo (27)32ko 0 

O(t - tl)(D * (x) D (D. (x)I)* (x') D' IVP(XI)e-ik-(x-x') 
pq 

tA)* ik-(x-x') +o(t (x) DI' (Dq(X)(Dq(x') D' (bp(x')e (42,1S) 
pm1- 

These two terms represent the particle and antiparticle loops respectivel. y. We 

denote them as follows: 

-F2a 
(P) ý::::: M 2h d4 xd 

4XI dpdqdk 1 
(21Th)32po (27h)32qo (27r)32ko 

0 (t - t') (D*, (x) D (bq(X)(D* (x') D"' 4)p(x')e-'k-(ýr-x') (429) 
p bt q 

and 

Y2b(P) ie'h d4 xd 
4XI d3p/d 3q d3k i 

(27rh)32pO (27h)32qo (27)32ko 

0 (t ) (V , (x) DI' (Dq(X)(1ýq(x') D' (bp(x')e (430) 
pm- 

From the integrand of the particle loop F2, we have 

0*, (t)c-'P"xlr" D (t), iq. x/ho* (tt), -iq. x' /rD" op(t')e'P'x'/h -ik-(x-x') 
pp 

Oq 
q 

h2 W) OPI(t)OP(tl) qt gt, + (p +q- 2V(t)) - (p +q- 2V(t'))] Cdq(t)Oq 

xI C- 
i(p'-q-K). x/h e 

i(p-q-K). x'/h C- 
iK(t-t')Ih (431) 

h2 

where Nve have used the antisymmetry of and K- hk. Also Nve recall that 

for a spatial component j we have Dj - Oj - il'ilh. Integration over x and x' 

gives the delta functions (2 71 h) 6 63 (p 
-q- K)63(p/ _ p). Integrating out these 
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delta functions using the p' and k integrals 20 we obtain. with K= Ip - qj. 

2 dtdtd'. 9ý0(t 
_tl)e-iK(t-t')Ih 1''2a (P) ý: ý - 2po 

f 
(27rh)32qo2K 

(t)OP(tl) I- h qt(9t, + (p +q- 2V(t)) - (p +q- 2V(t'))] Oq (t) oq p2 
W) 

(432) 

where the time differentiations only apply to the 0 terms on that line. Simi- 

larly, from the integrand0f F2b, we have 

0* (t), -tq. x/h -i ik. (x-x) -'P D q. x '/ý' D" op(t')e'P-x'/h 
pAq 

Oq (tl) C 

h2 + (p -q- 2V(t)) - (p -q OP, M OP (t') t a- 2V(t'))] Oq (t) Oq (tf) 

xIc -i(p'+q+K). x/h e i(p+q+K). x'/h e 
iK(t-t')Ih (433) h2 

and consequently 

ze 2 dtdt'd 3/_ 
t)eiK(t-t')Ih 

-F2b 
(P) ý- 

1-- 0 (t 
2po 

f 
(27rh)32qo2K 

2 --> 
t 

"--> 1»] -* (t) - Op (t') [- h)9t, + (p -q- 2V (t» - (p -q- 2V (t Oq Oq (t) 
- 

(434) 

Using the symmetry of the q integration, we can take q ----> -q. Recalling that, 

from the semiclassical expansion, O-q 

I. C2 
Jj2b(P) 

2po 
dtdt'd 3q 

-O(t (27h)32qo2K 

Oqwe thus obtain 

t)CiK(t-t')Ih 

(t) op (t /) ji2 9t 9t, + (p +q- 2V(t)) - (p +q- 2V(t')) Q* (t) Qq (tl) 
- 

(435) 

To briefly summarize the current situation, the second part of the forward 

scMtering amplitude is given by the sum of the amplitudes representing the 

20Recall that d3k/ko = h-2d, 'K, 'K. 
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particle and antiparticle loops and can be written 

J72 (P) --"::: 
0j d'q 

-I dtdt 
2po 2qo(27rh)32K 

0 (t - tf) [0* (t) 0D1 (t, t'. p, q)Oq(t)Oq*(t/) e-iK(t-t')Ih pp 

+ O(tl - t) 10* D, (t, t, p, q)oq* (t) Oq (tl) iK(t-t')Ih 
p 

(t) OP (tl) 
qI 

where 

p, q) -h + [p +q- 2V(t)] - [p +q- 2V(t')] 

ills 

(436) 

(437) 

is the differential operator found in both loopS. 2 ' In order to proceed further, 

it is convenient to define the new time variables t and 77 as follows: 

t=f 
h? 7 t2 

t, + 
h? 7 
2 

The Jacobian is straightforward: dtdt' =h dfd7j. For the differential operator 

we note that 

[p +q- V(t)] - [p +q- V(t')] = [p +q_ V(0]2 + O(h 2). (438) 

Including the Heaviside functions in our current considerations. we find that 

the amplitude F2(p) can be rewritten as follows: 

ie2 d3qI fd[[G-(p, 
q, o+ G+(p, q, (439) 12(P) ý 2h2 Po 

f 
2qo(27)32K 

with 
0 

G- (p, q, d77 
[0* (t) Op (t') D2 (f, rl, p, q) Oq (t) Oq (t') iKq (440) 

00 p 00 
iK17 

G+ (p, q, 
0pq1 

where 

+-+ h22 -2 9 
D2 p. q) -= - (9, -a 17 + [p +q- 2V(01- + 0(h-) (442) 

4 

2'This was the main reason for the earlier manipulations of the q integration; to show 

that the operator can in fact be written the same in both loops. 
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The G_ term results from the particle loop contribution and the G+ term from 

the antiparticle loop. The reader will notice that in the definitions for G± we 

have yet to convert the O's to the new time variables. This task is the more 

complicated, involving the semiclassical expansion, and the evaluation of G± 

forms the bulk of our work in finding the forward scattering amplitude. Thus 

we have presented the above definitions first for aid of presentation. Apropos 

the mode function, the semiclassical expansion of the time-dependent factor 

Oq(t), can be written 

0 Oq (t) qo 
ýPq (t) exp Eq(() d( (443) 

Eq(t) 
[h 

0' 

1! 

where the higher order h corrections are contained within , -, q(t) and thus Nve 

require ýPq(t) --+ I as h --ý 0. Substitution into the field equation (133) for ()(t) 

gives the h expansion0f ýOq(t) as 

(Pq (t) =1+ ih(j (1) (t) +0 (h 2) 
. q 

(444) 

(1) The explicit formOf ýOq (t) will actually be unnecessary for our calculations, 

though it can easily be found. Note also that 

ro ýOq 2 0 (pq 
Oq (tl) exp -Z 

Eq(t + h() d( (445) Oq 
VEq (t) Eq (t') 2 

We note the following: Converting to (t, 71) variables we have ýOq(t)ýOq(t') 

I+ O(h') and V-Eq(t)Eq(t) = Eq(O + O(h'). We also note the lack of an 

order Ii term in (442) because 

[p +q- V(t)] - [p +q- V(t')] = [p +q_ V(0]2 + O(h 2). (446) 

With these relations in mind, it can readily be shown that the functions 

G± (p, q, t) are of t lie form 

± oc 

G±(p, q, 
fo 

d77 [f± (p, q, t) + O(Ij2)] 

+rj/2 

x exp d([±Ep(t+ho+Eq(t+ho+J(ý1 (447) 
77/2 
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where after performing the appropriate differentiations, the function f±(p. q. t) 

can be found as 

f_ [EP(t) ý- f± (p, q, t) =_ 
Eq(t)]2 + [p+q- 2V (t)]21 lop(t)12 I Oq (t) 12 

. (448) 

The points noted above conspire to produce the important fact that there are 

no terms of order h in the pre-factor of (447), inside the first square brackets. 

Having now removed the last trace of the original time variables, we inay clean 

up the notation by changing t and consider the evaluation of the above 
G± integrals. 

Let us first consider the integral G+ (p, q, t) - We change t lie integration 

variable from 71 to 0 defined by the following relation: 

[Ep(t) + Eq(t) +K [Ep(t + ho + Eq(t + ho + K] d(. (449) 

Expanding the integrand and integrating the right hand side, we obtain 

[Ep (t) + Eq (t) + K] 13 = [Ep (t) + Eq (t) + K] Tj + h2 71 
3.23 

[kP(t) 
+ kl(t)] 

O(h 4775 )- (450) 

From the above it is evident that Tj =0+0 (h'). Hence we solve this equation 

for 77 as a function of 3 for small h and find 

I Ep(t) + Eq(t)_1,2o2 
+ (9(jj404) 13, (451) 

24 Ep(t) + Eq(t) +K 

and 

d77 I-I 
Ep (t) + Eq(t) 

h 202 
+ O(h 434 dO (452) 

8 Ep(t) + Eq(t) +K 

We label the Jacobian ri expansion contained in the square brackets bY 

J(p, q, t, h3). The integral we are concerned with is then 

00 

G+ (p, q, t) = 
Jo 

d [f+ (p. q. t) +0 (h2 )] exp 1-i [Ep(t) + Eq(t) + K] 31 

(453) 
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The integration can be completed if we introduce a convergence factor hY 

replacing K with K-M. Accordingly, we obtain 

G+ (p, q, t) 
if+(pý q, t) 

+ (454) 
Eq(t) + Ep(t) +K 

The corresponding contribution to the forward- scat t ering amplitude can be 

seen with reference to (439) aS22 

-F2+ 
(P) 

-e2f dt 
fd 3q I f+ (p, q, t) 

+ O(ho). (455) 
2h2 Po 2qo(27r)3 2K Ep(t) + Eq(t) +K 

The amplitude -F2+(p) can readily be seen to be ultra-violet divergent. This 

will not however be a cause of difficulty, as we fully expect the results to be 

divergent. 

Next we analyse the contribution from G- (p, q, t), with which we find 

ourselves additional difficulties. One cannot proceed as above because of the 

infrared divergence in the q-integration as we shall see shortly. We start as in 

the previous case and define the variable ) in analogy with the variable 13 in 

(449) as follows 

, 7/2 
[-Ep(t) + Eq(t) + KI) 

-n/2 

[-Ep(t + ho + Eq(t + ho + K] d(. (456) 

With foresight knowledge of the new divergence as K ----> 0 23 we should check 

the validity of using the variable in such circumstances. For small K 

lp - qll, we have 

-Ep(t) + Eq(t) + K, -, K- v(t) - K, (457) 

where v(t) = [p - V(t)]IEp(t) is the velocity of the classical particle with final 

momentum p. 24 Hence, in the limit K --ý 0 one finds 

v(t + ho - n] d( (458) 
v(t) -n 77 12 

91) RecAl the change of notation t --+ t since that reference. 
23 Recall d3q = d3K. 

IS(, (, (339) for this result. 
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where n =- KIK. Thus. if we write A= j(p, q, t, O)d, ý. then the function 

J(p. q, t. h, 3) is finite as K0 and we can now safely use the -'ý 
definition 

(456). The expression corresponding to (453) can be given in the following 

form: 

(p, q, t) d13 (p, q, t) +E jjnýd fnd- (p, q, t) 
oc n, d 

x exp 
ýz [-Ep(t) + Eq(t) + K] 

(p, q, t) (-Z)d d! hn fnd- (p 
- q. 

-Ep(t) + Eq(t) +K 
ZLW 

n, d Ep (t) + Eq(t) + K]d+l ' (459) 

with n>2 and n>d>0. The higher order pre-factors fnd-(p, q. t), which 

are finite as K ----> 0, can not be removed in the h ----> 0 limit as for G+ due to 

the infrared divergence. This can be seen clearly if we substitute (459) into 

the amplitude expression (439): 

T 
ze dqI 

dt 2- (P) 
2h2po (27r)32qo 2K 

if- (p, q, t) +d!, 
fnd-(p, q, t) -)d hn 

]d+l 
-E p (t) + Eq(t) +Kn, d -E p (t) + Eq(t) +K 

(460) 

Here we see that the terms with d>I are infrared divergent in the q- 

integration because of the limit limK, o[-Ep(t) + Eq(t) + KI --ý 0 as can be 

seen from (457). 

We can approach this difficulty by separating the infrared divergent sec- 

tion of the integral via the addition of a cut-off in the q (or equivalently K) 

integral. N,, N, 7"e may then consider the situation above the cut-off and return 

to the problematic sub-cut-off area later. Let us thus cut-off the integral by 

requiring 

K> Ko - VA, (461) 

with Aa positive constant and where 
3<a<1. The reasoning for choosing 4 

these precise limits on the choice of a will become apparent in later stages of 

the calculations. Above the cut-off Ko, we find that the contributions of the 
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terms of F2- to the q integration have the small-K behaviour 

h'Kol -d = h'+(' -d)aAl-rl if d2 
(462) 

h' log(hA) if dI 

Since I-a>0, n>2 and n>d, from their appropriate definitions, we haN-e 

n+ (I - d)a >2-a, (463) 

for the h power in the d>2 case above. 25 We thus see that in the h --+ 0 

limit, the higher order fnd- terms will not contribute above the (. Ut_off. 26 In 

this arena we are thus left only with the leading order term containing f-, in 

a situation analogous to F2+. We give this leading order contribution, over 

the full range both above and below the cut-off, the label 172Cý, 

0C2fd3qI (p, q, t) 
'F2 - --Jdt (464) 

2h2 Po 2qO (27r) 32K (-Ep(t) + Eq(t) + K) 

For F2+, we effectivelY have F2+ = T20+ to order h-1 (which is the highest 

order we require). 
At this point we pause to take stock of the various contributions to the 

forward scattering. Firstly we have the leading order terms. We combine -Fl. 
J1-, O and TO and let 2+ 2- 

, T-' = F, + +, )T', - 
(465) 

What remains is the contribution of the higher order terms from T'2-, from 

below the cut-off. We shall attack this in a round-about Nvav. Labelling the 
full F2- term below the cut-off by T2ýý 

, and the leading order term in the same 
0 

range by Jl: ý2' 
, the desired contribution can be calculated as 

, T7<, ho 

25 11 + (I - d)a >n+ (I - o)a = n(l - a) +o> 2(l - o) -o=2-o. 

(466) 

2(ýTliis explains our choice of the upper limit on o. 
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Thus the forward scattering amplitude 
27 is given by 

124 

_F(p) - FO(P) + ): -<, ho(p). (467) 

With this aside complete, we now return to finish the calculation of these two 

terms. 

Firstly we turn to the higher order contributions T<, ho which we approach 

as described above. For these terms, we are interested in their behaviour at 

small-k. For the full-term 'T')ý 
, we consequently back-track somewhat to the 2- 

expression in (436), the appropriate part of which gives 
iC2 d3qIf 

dtdt'O(t - t') 
2po 

f 
2qo(2irh)32K 

p, q)Oq 
(t) Oq* (t (468) OP (t1) 

q p1 

The subscript < on the q integral indicates that, we integrate below the cut-off. 
We change the integration variable, firstly to the photon momentum K= p-q 

and then to the wave number k= K/h. Ergo d3 q/ (h 3 K) =d3 k/(hk) and write 

j< 
ie 2f 

dtdt' 
d'k I 

O(t - t') ýý (P) 
2hpo 

fk<r,,,, 

-,. \ 2qo(27)32k 
ik (t - t') E) p, q)Oq (t) 0* (469) OP (t1) 

q 

In the h -4 0 limit we note that the upper limit h'-'A of integration for A- 

becomes infinite. Now we have q=p- hk. Hence, we have q ---ý p for all k 

as h --+ 0 because h- h'-'A ---+ 0. Using these limits, and with reference to our 

previous calculations for F2-, the exponential factor can take the form 

tt 

exp i. d( [K + Eq(() - Ep(()] 1h 
t 

exp i. 
tl OEp (() 

k+I 
O'Ep (() 

k, . d( (470) 
t Op 2 api apJ 

In order to truncme the series in the exponent at the second term for all k in 

ck-I 21 
the integration range, one would require h(h ) ----> 0 as h ---+ 0 i. e. o 

27 non-renormalised so far, 
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This is naturally satisfied due to the earlier choice of a> j3. Thus for the 

q ----> p limit we write 

(P) z e2 d3kI 
2 dtdt' O(t - t') h2po \ 2po (27)32k 

Jk 

< rill, - i, 

x [-2Ep(t)2Ep(t') +4 (p - V(t)) - 
(p V(t/))] I ()p (t) 12 1 op (ti) 12 

tl 

exp ik(t' - t) -ip 
V(() 

- kd( (I + O(hk 2)) 

t Ep(() 

2 

hi 
dtdt' 

+ (1p 

exp Zk(t' 
L 

d'k 
O(t - t') 

k<hcl-l, \ (27r)32k 

V(t)) - (p - V(t')) 
Ep (t) Ep (t') 

I 

tl 
p V(() 

t 
Ep (() 

kd( + O(h4a-4) (471) 

where we have used I OP (t) 12 = po / Ep (t) + O(h2 ) and recall from (336) that 

the local momentum is mdx/dT= p-V. The extra 0(h"-') is the result 

of the combination of hk 2 from the higher order dependence with the k1h 

dependence multiplying the entire integrand. These non-leading terms do not 

contribute to the position shift provided the overall order is greater than h-', 

which is the case since 4a -4> -I because of our earlier requirement that 

a>3. We consequently drop this contribution from now on. Recalling that 

[p - V(t)]IEp(t) is the velocity of the corresponding classical particle. dxldt, 

we obtain at leading order 

_d 
3k 

dtdt'O(t - t1) 
dxý'dx, 

e 
i(k(t'-t) -k- (x(t) -x(t'))) 

h k<hIl- 1A 
(27r) 32k dt dt' 

I 

I. c2d3k +00 
< <0 dx4 dxl ik(ý'-ý) 

h k, < h", A (27)32k 
loo J- 

00 < <1 
(41-2) 

where in analogy wit ht he emission amplitude, we have defined ý -= tI-n-x (t 1) 

and ý' -= t, ) -n- x(t. )) Nvith n -= k/k. 

The Heaviside function can be rewritten in the form 

I=1 (47-3) 
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where 
28 

I if > 
(4 74) 

-1 if < 

The use of (473) in place of the step function in 1: -2< in (472) has the advantage 
that it splits the real and imaginary parts of the expression. The reader NN-111 

recall that only the real part of the forward scattering amplitude affects the 

position shift. Also worthy of recall is the equivalence demonstrated between 

the emission probability and the imaginary part of F(p) as given bY (314). 

Using the above, we find twice the imaginary part as 
2d3k +oc, +0" dxý' dx, 

-, ik 2QV. F' (p) -h 
fk<hcl-l, 

\ 
(2,7r) 32 k<f 00 

<< 
<1 e (475) 

In the limit hc'-'A ---> oc this expression coincides with the emission probabilit. y 

using our expression for the emission amplitude, as required by Unit arit, N . 
29 The 

real part can similarly be written 

, Fý (P) 

J, c2 kdkdQ f+ "0 
dý 

f+ 0'3 dx" 
X(O 

ýx 
2hfk<r,,,, 

-, A 2(27T )3 

-00 -00 
<< 

(476) 

Here we have again introduced the cut-off function X(ý) as defined in section 

3.3. In addition, we have used the antisymmetry of the sign function -6(ý - 
ý') =6 (ý'- ý) and expanded the d3k in spherical polar coordinates. Integration 

by parts with respect to ý' gives 

, ie2 kdkd9 < (P) 
lk 1 +'>O 

d, 
I+c>o 

d, ' 2 2(27r) 3 2h 

d dx� (477) 
9 

28The function E(x) is the sign function and sometimes written sgn(-r)- 
2ý)This demonstrates the semiclassical approximation for the emission probabilitY and 

thus validates the previous physicallY reasonable assumption that a tYpical photon energy 

en-litted has energY of order h,. 
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Alternatively, we can integrate by parts with respect to ý to obtain a sim- 
ilar result. Adding the two expressions and dividing by two we obtain the 

symmetrized version 

2 dkdQ 
< 

4h k. 

f- 

". ,, 

f 

00 k<r,,, i, \ 2(27)3 

dxý'X(ý, 
) dxm 

. (ý)] 

where we have used the result dE(x)ldx = 26(x) and we have taken the limit 

X(ý) ---* I for the first term. Consider for a moment the second term of (4-18): 

Due to the ý <----ý ý' symmetry of the factors inside the curly brackets, in the 

h --+ 0 limit we can extend the integration range of k from (O.,: )c) to (--)c, +-ýC) 

and divide by two once more. Consequently the k integration produces the 

delta function 6(ý' - ý). The second term of (478) is zero when ý= ý' and 

consequently we can say that the contribution from this term to R. F2' is of 

order higher than h-'. The first term thus remains which we can rewrite as 

C2 
dkdQdý 

dxl-' dx, 
2(27)3hfk < h", A<< 

e2 dkdQdt 
dx" dx, dt 

1673hJk<rVll-IA dt dt < 

-- 
e 

2A +00 
dt dQ -v2 

1673h2-ce 

10.1 

n-v 

to order h-'. We have integrated over k and noted that 

((I, i-l'Idt)(dx,, Idt) =I-v2- 

(479) 

I 
-n-v and 

NNc now turn our attention to the leading order term of F2- below the 

cut-off, which by expanding f- in (464) is given by 

'<0- dt F 2 2h2 Po 

d3qI 
2qo(27r)3 2K 

Ev ((t +Eq (f ))2 + (p +q- 2V(t) )2 
10p (t) 12 1 Oq (t) 12 

(- Ep (t) + Eq (t) + Iý: ) 
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Using the small-K approximation (457) and noting the following equations 

I OP M12= Po 
+ O(h 2 (481) Ep (t) 

p- V(t) 
-=V, (482) 

Ep (t) 

we find 

0e2d3q1 -4EP2+ 4 (p _ 
V(t))2 

2(27)3h2 
i 

dt 
fK 

< p,, AK 4E, 2(t)- K(I-n. v) 

e2 dt dKdQ 
I-v2 

167r3h2 

J JK<hcA 

(I -n-v) 
C2 A +oG 

dt dQ 
I_ V2 

(483) 1673h2-a 

100 fI-n-v* 

We recognize the same expression arrived at in this limit for F2' in (479). 

From the above results we thus conclude that F2ýý'O is equal to the leading 

, F<, ho term of F2ýý. Hence . T' - 'T-<'o is of order h-', but is purely imaginary ='22 

at this order. Due to the fact that only the real part of the forward scattering 

affects the position shift, the only remaining contributions are those grouped 

under T-' and it is these terms to which we now draw our attention. 
The leading order part of the forward scattering amplitude was earlier 

defined by F, + 'F' + -'72 where we 1 2+ have so far found that 

(P) =- 
3e 2 

12 d3K 
(41 

2h2 Po 
dt I op (t) 

(27r)32K 

-F-2 + 
(P) = 

f, 2 

dt 
d3qI f+ (p, q, t) 

+ O(ho) (45,5) 
2/121)() 2qo (27r) 3 2) K Ep (t) + Eq(t) +K 

23 
0e it 

dqI (p. q. t) 
. 
F, (464) 

2-(P) = 2h2 Po 2qo(27r)3 2K (-Ep(t) + Eq(t) + K) 
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Substituting in the expressions for f± the F2± terms are30 

ef dt 
dq1 

2h2 Po 2qo(27)3 2K 

(E p 
:: F Eq )2 + (p +q- 2V)2] 

I op (t) 12 1 Oq (t) 12 
(±Ep + Eq + K) 

129 

2d3q [_(E ý_E)2+ (p +q- 2V)2] 1 
dtlop(t) 12 pq 

2h2po (21r)32Eq(t) 2K (±Ep + Eq +K) 

(484) 

We slightly modify the expression for Tj, using the variable of integration 

q=p-K defined and used in the F2's, to bring it in line with the others in 

form. 

-171 
(P) 

-c2 dt I Op (t) 12 
f d'q I [-6Eq(t)] 

2h2 Po (27)32Eq(t) 2K 

Combining the terms of F'(p), we therefore write 

TO(P) 
e 

12 dq dt I op (t) 6Eq 
2h2 Po 

fJ 
(27r)32Eq 2K 

(485) 

(E + E)2 )2] (E 
_ 

)2 
+pq+ 

(p+q- 2V 
+p 

Eq + (p+q- 2V)2] 

(-Ep + Eq+ K) (Ep + Eq+ K) 

(486) 

We define the momenta iý =p- V(t) and 4=q- V(t), so that we have 

Ep = Vý-pý2+ýt772 and similarly for Eq. After these substitutions, we are free to 

change the integration variable from q to 4. This gives 

'To (P) e2 
dt I Op (t) 12 d'4 

-1 2[12 Po (27r)32Eq2K 

2 (f 

6Eq+ 
[(Ep + Eq) )+ 4)2] 

+[ 
(Ep 

(-Ep + Eq+ K) 
Eq )2 + 4)2] 

Ep + Eq +K) 

(487) 

"We have rernoved the (t) from the E's and V's for ease of presentation as there is no 

risk of confusion here. 



4. FORWARD SCATTERING 130 

This term is then our remaining contribution to the forward scattering am- 

plitude. It is real and of order h -2 , thus would contribute at order h-, to 

the position shift. It is also divergent. We shall now show that this divergent 

contribution is exactly canceled by the contribution from the di-,, -ergent iiiass, 

counterterm when we renormalise the mass. 

4.3. Renormalisation. We achieve renormalisation of the mass the 

counterterm addition to the Lagrangian 

6m 2 

h2 
(488) 

This in turn provides an additional contribution to the interaction Hamiltonian 

that is included in the forward scattering, viz 

6m 2, 

(489) 6'HI 
h2 

"o 

This term contributes at first order in H, 31 as in (411), thus 

6,17 (p) = -, 
d3p1 

-d'x 
dm 2ý01A 

(p'): ýj t (x), ý (x): At (p) 
h 2po(27rh)3 h2 

11 d3pf 

-d 
4X6M211>*, (X) (DP (X) 

h 2p0(27rh)3 p 

1 
dt10p(t) 126M2, (490) 

2hpo 

where we used (415) for the inner product. To compute the counterterm we 

first find the self-energy E(p). Using the Feynman rules for the standard 

covm-iant perturbation theory of scalar electrodynamics we obtain 

d4q (p +q )2 4 
(P) 

2- M2 +I h (27)4i [q ic] [(p - q)2 + [(p - q)2 + '6] 

(491) 

where Nve iise q=p-K. The convergence factors ic are added, along Nvith 

c>0 and the usual assumption that the limit c --ý 0 is to be taken at the end. 

3161,12 is of order c' as will be seen shortly. 
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We integrate over the qO component in order to compare with our previous 

results. In the denominators we have the terms 

2 
_, M2 +1 6] = [qo +w- Z6] [qo + Z6] (492) 

[(p 
- q)2 + ZE] = [qo -po +K - 16] [qo -po - K+ 1,6] , 

(493) 

where we define K =p- q with K= IKI, w= VFq2 
-+m2 

and 6>0 Nvith 

the limit 6 ----> 0 assumed. For contour integration, the poles in the upper half 

plane are clearly 

+ 
qo 

po - K+Z6 

Thus integrating, we obtain 

C2 3 fdq 
(p - h (27)3 

(po 
- W) 

2_ (p + q)2 

(-2w) ((Po + W)2 - 
K2) 

We note that 

(2po - 
K)2 

_ (p + q)2 

((po - 
K)2 

- W2) (-2K) 
4 

(-2K) 

(494) 

(495) 

I+I 

2w ((Po + W)2 - 
K2) 2K ((po -K 

)2 
- W2)) 

K_ + 
2w2K po-w-K PO+W- 2w2K po+w-K po+L,; +K 

--II+I -] 1 
(496) 

2w2K 
[ 
(po +w+ K) (-po +w+ K) 

and 

(po - ýý)' + 
(2po - 

K)2 

((Po + ýý)2 _K2) 2K ((po -K)2 
w2K+K 2"C 

_ P2 K-4 p2,, U 00 

2,, ýK (po + K) (-po + L,; + K) 

(po 2 (po + LLý) 
2 

2K 2LLý2K (po + Lu + K) (-po +, 4ý + K) 
(497) 
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Comparing these results with the expression (495) we can write the countert- 

erm 

d3qI 
(27)32w 2K 

6w 
(po + W)2 (p + q)2 

(-po ++ K) 

(po 
_ LJ)2 _ (p + q)2 

I 

(po +w+ K) I . 
(498) 

Clearly, we may change the variable of integration from q to 4 =q- V(t). 

We then have w ---+ 
Eq 

- N/4ýý -+Tmn'. The counterterm 6Tn2 is obtained by 

evaluating the self-energy E(p) on the mass-shell i. e. with po = Ep and with 

p=P. It does not matter which point on the mass-shell is invoked becaiise 

it is well known that the mass counterterm does not in fact explicitlY depend 

2222 -2 on p, but only on po Pm EP p Technically, the mass-shell 

involves the physical mass mp, however the counterterm 6m 2 is itself is of 

order O(c 2) and for overall calculations at that order we may usent. Therefore 

we may see that the inner integral in (487) is nothing but e-'6m 2, and thus 

independent of p, which shows that 6T = -To on comparison with (490) as 

stated. Consequently, the renormalised forward scattering amplitude does not 

contribute to the position shift. 



CHAPTER 5 

Quantum Green's Function Decomposition 

In this chapter we present an alternative derivation of some 

of the results for the position shift of the quantum scalar field 

based on the Green's function decomposition description of 

classical radiation reaction. 

In the previous chapter we established that the classical position shift was 

reproduced in the h -* 0 limit for the O(e') perturbation theory of quantum 

scalar electro dynamics. In fact, we showed that the position shift was entirelY 
due to the emission process. Whilst giving equality between the two results 

our previous working does not however make clear any reasoning as for why 

this should come about. Given that the position shifts are equal, we may wish 

to know if the treatment of radiation reaction is the same in both theories. 

We may similarly ask what connections and differences there are between 

the two approaches with regards to the position shift. These questions are 

the subject of this chapter which we present as a short aside to the body 

of the work. That is not, however, to say that it is unimportant. On the 

contrary, here we present the clues gleaned mathematically from the results 

as to the interpretation of the quantum position shift contributions and the 

interpretation of the connections between classical and quantum theory with 

which we may view the body of work presented so far. 

In order to attain these goals, we shall return to the earlier results for the 

scalar field and rework them to find expressions involving the Green's functions 

that were used in the classical derivation of the radiation reaction force. As 

such, we shall be using some of the model and results from the previous chapter 

and the appropriate descriptions and results shall be introduced again here 

when required. 
133 
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We use the model of a wave packet of the scalar particle passing through a 
time-dependent potential for a finite period in the past of the measuremeilts. 
Let the state of the wave packet of a scalar particle with momentum peaked 

about p be given by 1p). We recall that the final state for a particle undergoing 

radiation reaction is given to O(e 2) in our notation by 

[I + i. T(p)]lp) +idk A" (p, k) dt (k) I P) (499) 
hj (27r) 32 kA 

with k 
-= 

jjkjj and P=p- hk. We further recall that we found the position 

shift in the h --ý 0 limit to be given by 

6i if d3k 
x A4* (p, k) 9pi A4 (p, k) - hOpi Re. F(p) (500) Q2 2k(27)3 

We approach the quantum emission and forward scattering processes and re- 

sults in turn, starting with the former. 

1. Emission decomposition 

The emission contribution to the quantum position shift (500) is 

if d3k 
6xi =- -A"* (p, k) Opi Ap (p, k). em 2 2k(27r)3 

(501) 

We used the semiclassical approximation to find that the emission amplitude 

can be written in the h ---+ 0 limit as 
+00 dxý' 

A4(p, k) = -e << Ciký (360) 

where we have included the cut-off function X(ý) that takes the value I when 

the external force is nonzero and smoothly becomes zero for large Itl 1. NVO 

now note that, this expression for the emission amplitude coincides with that 

from a classical point charge to order h'. 

(p, k) =- d4,1, eik--x -p (502) 

with the current J ., U (x) given by 

c 
dxý, 

6' (x - xp (0) \ (t) (503) 
dt 

'This expression was arrived at for both the time and space-dependent potentials. 
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where Xp(t) is the path of the classical particle which passes through the origin 

with momentum p. The classical field emitted from the current (503) is 

All d4 x'G ' (504) 
- 

(x) =1-V, (x - x')], " 

where G- is the retarded Green's function. Now it is well known, and fairlY 

straightforward to show., that the retarded Green*s function can be written 

as [24] 

G-ýIv, (x - x') = igmv, O(t - t') 
dk 

-ik-(x-x') _e 
ik-(x-x') ]- (505) 

1 
2k(27r) 3[ 

These equations together imply that we can rewrite the classical (retarded) 

field in terms of the classical, and thus the quantum, emission amplitude i. e. 

(x) --Z1 [A" (p., k) -ik-x _ 
Aij*(p. k) ik. x] 

, (506) 
2k(27r)3 

for large enough t such that X(t) = 0. This gives us a fourier expansion of the 

classical field, written in terms of the quantum emission amplitude. We can 

consequently reverse this to rewrite the quantum emission amplitude in terms 

of the classical field. Firstly, we define the positive and negative frequency 

parts of the classical field as follows: 

dk tp -ik. x AWil - -Z -14 e1 (507) 
2k-(27r) 3 

A(-)m , +i 
dk 

4P* e ik. x 
. 

(508) 
2k(27r)3 

Note also that, they are complex conjugates; A(+)"* = A"". Inverting the 

fourier expansion of the field, we have the amplitude in terms of A(+)P 

2k 
fd 3XA(+), veik. x 

. (509) 

The position shift can thus be rewritten as follows 

I. d'k 
2A, 

fd3 
x'. 4(-)" -ik. x' 9pi 

(2kj(l: 
'x. 4(')cýk'x 

2 2k-(27)3 

d'k (f 
3X/ ýk'x' 

) 
ap 

(27r) 3d A( 

114ý - (- 1,01 (-1*) . 
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(the last factor is just the remaining 2k). 

d3k3 )tL, -ik. x' 3 /A(- a ap d -x dxx A(+) 2 (27T) 3A 

Ifd3kd3 
-ik-x' d3 2 (27T) 3 IA(-)'L at ap i x) xA(+) 

'k 

1fd 3XA(-)Ii '--*tý 
, A(+) (510) a ap t, - 

Now the position shift is real 6x* = 6x and also, due to the time derivative 

acting on the exponential in (507) and (508), we have 

33A, "--, (-) d xA(')" d xA(-) o9tapi A 
iLi 

Hence 

d 3XAp '--* d 3X A(+)" ýt 
4--ý 

i A(-) + A(-)" ýat- 
- A(') - o9t(9pi A-j, =1 (9 ap I (9pz AI 

3XA(-)p 't+-" 
, A(+) 2fd aap I, - (512) 

Thus 

6x' 
jd 3 

xA' gtgpi A-t,. (513) 
e, 4 

Furthermore 

'- +-4 +-+ +-+ 

A' at opý A-1, = A" at (apiA-,, ) - ((9piAt) at A-tL 

+, 
+-4 

(OpiA-i, ) (9t A" - (apiAl) qt A-,, 

-2 (apiA'-') at A-it, (514) 

Thus 

6. r' -- -1 
jd 3X (OpiA') 9t A-,,, (515) 

ell? 2 

We now liýive an expression for the quantum position shift in terms of the 

retarded classical field. 
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1.1. Green's function substitution. We can use the Green*s function 
decomposition of the classical field to rewrite the quantum position shift in 

terms of Green's functions instead of fields. Substituting the Green*s function 

expression for the fields in the position shift, we obtain 2 

6x' =-Ifd 
3Xa d4 x'G"' 

[f 
d4 x"G-, p,, 

'P em 2p 
[I 

-1 

-Ijd4 x'd 
4XIf jd 3 

xG"' at G-tp,, 
] 

j'P"apij, vl. 
(516) 

2 

We note that using the Kirchhoff representation, the regular Green's function 

can be written in terms of the retarded one, viz 

GR��ß, (x" - x') --1d3x G-4�, (x - x") 9t G-�3, (x - x'), (517) 21t=T 

for xo > max(xo, xo'). Substituting into (516) we obtain 

ÖXem d4 xd 
4X11 ap, jo" (x// ) GplIvl (Xii - X')iv, (x') 1 

=1d 
4X ap 

ij», (x)AR, (X) 
, (518) 

where we have changed the notation slightly and identified the regular field 

generated by GR- 

The partial derivative acts on the current j"(x). Let 3p(x) be the current 
following the path with final momentum p and let ]P+Ap be the current follow- 

ing the path with final momentum p +, Ap. This second path will be shifted 

from the original path, X, by AX. Explicitly these currents can be written 

i', ' (x) -e 
dxý'63(X 

_ X) (519) 
dt 

ill)'+ 
_ý p 

(x) =e 
dx4 

äl(x -x-, AX). (520) 
dt 

The derivative can then be written in limit form as 

W lim JP p (521) 
API-0 Ap 

2NN- (, have left off the arguments of the functions for brevity as they are obvious from 

the indices 



1. EMISSION DECOMPOSITION 138 

Now, defining the four-vector AX' = (0., AX). we write 

öxz 
= lim 

1 Id 4X [jil 
Ap 

(X) 
- jpg (X) ] ARM (X) 

- (522) ein Api, () Api p+ 

Substituting the explicit expressions for the currents, (519) and (520), we find 

the position shift as 

öx' =: lim ein 
1 1d 4X [, dx463(X 

_X_ AX) _ 
dxP63 

(X 
_ 

X)]ARM (ýI. ) 
Api--, o Api dt dt 

= lim e Idt «dXý' 
+ 

dAXý' ) 
ARM «X + AX) - 

dXý' 
ARp(-X, -) 

Api--, 0 , Ap dt dt dt 

lim e dt 
«dX4 

+ 
dAX4 [ARI, (X) + AX"7, AR�(X)] 

Api, 0 Api dt dt 

dX4 ARtt (X) 

dt 

= lim e Idt ( dXý' 
AX"7, ARM (X) + 

dAX9 ARp (X» 
, (523) 

Api, 0 , Ap dt dt 

where due to the limit (recall AX --+ 0 as Ap --+ 0) we need keep only the 

terms up to first order in AX. Integrating the second term of the integrand 

by parts 3 we obtain 

6x'm = lim ef dt 
(dX4 

Api-, O 'Api dt 

lim e dt 
( dXý' 

Api'o Api dt 

, AX'V, ARm(X) - IAX" 
d 

ARt, (X) 
dt 

, AX'V, ARp(X) - IAXt' 
dX" V,, ARI, (X) 
dt 

(524) 

Swapping the spacetime indices in the two sums in the second term, the posi- 

tion shift can be rewritten as 

ýxi ---:: lim e dt 
dX4 AX' [V, A - 

VjAR, (X)] 
eill ,, 

Rm(X) 

. ý-2iP1-0 dt Api 

dt FlR�, 
dX" OXc' 
dt api 

t 
0 

dtj'LDj 
i 
i)t 

- 
(525) 

)C ap 
3Recall that . 411,, vanishes at the position of the charge when there is no acceleration. 
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where we recall from the introduction that the radiative electromagnetic field 

tensor is defined in terms of the regular/radiative field analogously to the 

standard field tensor and that the Lorentz-Dirac force is given as the Lorentz- 

force generated by this field (see (43) and (44)). We recognise this result as 
the classical position shift given by (279). This calculation is analogous to 

the derivation of the Lorentz force from the standard Lagrangian for a point 

charge in an external electromagnetic field (see, e. g. Ref. [21]). We have made 
the upper bound of the t-integration to t=0 in the last line because FLDI =0 
for t>0. Thus, we have shown that the contribution from the emission of 

a photon to the position shift agrees with the classical counterpart using the 

Green's function method. 

2. Forward- Scattering decomposition 

We now turn to the forward-scattering contribution to the position shift 

given by 

6x'f., = -h(9piRe. F(p). (526) 

We have shown that this contribution vanishes in the end. More precisely. 

the leading order terms of the real part of the forward- scattering amplitude 

are exactly canceled by the contribution from the mass counter-term, i. e. it is 

eliminated to order h' by the mass renormalisation. Here we shall see that the 

field generated by the singular Green's function appears in the calculation of 

6X, fo, We recall that in the classical theory, this contribution to the field is, as 

the name implies, singular and is subsequently subtracted from the field in a 

process akin to the mass renormalisation. 

The forward- sc ýi tt ering amplitude comes from the one-loop diagram shown 

in Fig. 5.1 and the additional loop diagram from the seagull vertex. For the 

contribution from the intermediate particle state (as opposed to arifl-particle 

state), we divided the momentum integral for the virtual photon in this loop 

diagram into two parts: one with momentum hjjkjj less than VA and the other 

with momentum larger than PA. where n and A are constants. We chose o 
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hk 

---- 

p p 

FIGURE 5.1. The one-loop diagram contributing to the forward- 

scattering amplitude: the dashed and wavy lines represent, the 

scalar and photon propagators, respectively. 
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to satisfy 
3<a<1. However the condition a<I will suffice for our current 4 

purpose. Denoting the first part with the virtual-photon momentum below 

the cut-off by T" (p), we found that to lowest order in h 

k 
h. F' (p) ie 2f d'k 

dt 
1+"0 

dt' 
(27)32k 

JOG 

x O(t _ tf) 
dXp 

eik(t'-t) -ik- (Xp (t') -Xp (t)) 0 
dt dt' 

(527) 

In the classical limit h --ý 0, the k-integration will have no restriction because 

ha-'A --ý oc. As we did for the emission process. we can replace part of 

this expression with one containing Green's functions. Firstly, we note the 

presence of the classical currents and take advantage of the symmetry in the 

integrations to write 

h. F'(p) =- -1 
fd 4ý1, d4. rl hg,,,, 

dk0 (t 

hf (27r)32k 

d4.1 
2h 

d3k [O(t 
+ O(t, 

_ t), -ik, (x'-x) 

, 7)324- (2, 
(7) 28L) 

hk 
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Within this expression we recognize the form of the Feynman propagator, 

which can be given by 

x') =- ihgl"' 
d3k [O(t 

_ ti). -ik-(x-x') + o(ti 
_t 

1 
(27r) 32k 

1 

(529) 

We consequently find that in this limit 

h, 'F< (p) -- 
11d4 

xd 
4X1 j 

11 
(X)j 

v, (x) G"v'(3' - x'). (530) 
2h 

The contraction of the photon propagator with the external particle currents 

in the above expression is reminiscent of the one-loop diagram. However, it 

should be stressed that the above expression contracts this propagator with 

the classical currents and the validity is limited by the presence of both the 

h ---ý 0 limit and the low-energy photon sector. To further our manipulation 

of the Green's functions, let us write the Feynman propagator as the sum of 

the real and imaginary parts: 

G"" (x - x') =- hG"" (x - xf) - 
ih G(')l"' (x - x, ), (531) 

where we haý, e Hadamard's elementary form, given by 

hG(')"" (x - x') = (0 A" (x), Av' (X') 0) (532) 

with Aý'(J-) being the quantum electromagnetic potential. We thus spot the 

presence of the singular Green's function in our calculation. Before returning 

to this point, we briefly look at the imaginary part. Above the cut-off, there 

is no iiiiagiiiýiry contribution in the h --+ 0 limit. By unitaritY, Im 'P-(p) is 

required to equal half the emission probability. This has previouslY been sliown 

to be the case by direct computation. It can also easily be shown from the 

iibove expression (530) using (. ̀531). (532) and the s. yiiiiiietry of the integration 
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and anticommutator: 

IMY' (P) Ifd 4Xd4X1 
J,, (x) 01 _4V(x)Av'(x1)jo) -, (xlý 2h2 

I jd 4Xd4XI (X) 
1/' 

(X') C- 
ik. (x-x') 

2h2 

I_ d3 k 
A* (p. k) A" (p 

I 
k) (533) 2h 2k(27)3 P 

Returning now to the real part we have 

hRe. F' (p) = -I 
fd4 

xd 
4XI 

I-A (X)jv(y)G"v(x - Y). (534) 
2s 

Using the symmetry of G""(x - x'), we obtain s 

- hi9pi Re. F' (p) d 4X api I*" (x) As,, (x) (535) 

where A" (x) is the singular part of the self-field given by s 

A' (x) = d4 xG"' (x -x /) *" (X') 
. 

(536) sjsI 

Equation (535) is analogous to the expression for the emission contribution 
to the position shift (518), which was in terms of the regular field. If we add 
(535) to the emission contribution (518), then 

d4 x api -. (x) Atl (x), 6x,,,, - hOpi Re T' (p) =f1 (537) 

where the self-field, A" (., r), is given by (504). Thus, the one-photon emission 

process and the low-energy part of the forward-scattering process are incorpo- 

rated in the classical self-field A" (: r) if one sees this field from the viewpoint 

of quantum derivation of the self-force. The regular part, A" (x), of the self- R 
field in classical electrodynamics corresponds to the emission process in QED 

and the singular part, A"(x), to the low-energy forward- scattering process. s 
The remaining high-energy and intermediate anti-particle state contributions 

to the forward- scat t ering amplitude in QED have no classical counterpart. 
The forward-scattering contribution as a whole vanishes if one includes the 

quantum mass counter-term. as was shown in Chapter 4. 



CHAPTER 6 

Spinor Quantum Position Shift 

In this chapter we repeat our derivations and calculations 
for the quantum position shift using the canonical theory of 

quantum electrodynamics based on the model of the Dirac 

spinor field. We again combine the effects of the photon 

emission, forward scattering and mass renormalisation in the 

h --ý 0 limit in order to compare the result with the classical 

theory. 

In this chapter we shall replace the scalar quantum field model with the 

more realistic spinor field of quantum electrodynamics in order to calculate 

the quantum position shift. We shall thus start our quantum position shift 

calculations from scratch using the spinor field definitions and the spinor semi- 

classical expansions from Chapter I section 8 and Chapter 2 section 3 respec- 

t, ively. Much of the path that we shall tread here will be familiar from the 

scalar work and some of the expressions derived from this source will be the 

same as before. Naturally, the classical position shift is unchanged, but we 

note that, the classical theory does not include the concept of spin. Despite 

the similarities with our previous scalar work, there are however differences 

due to the construction of the fields, not least the addition of spin to consider 

in the interactions and evolutions. Whilst using the same approach as before. 

wc shall nonetheless tread carefully and repeat most of the calculations from 

the new spinor particle definitions. For the potential, we shall look ýit the 

time-dependent (and spatially independent) case V(t) throughout and thus 

take advýiiitage of the coi1sci-N-mion of momentum. 
143 
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1. Initial control state 
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We again start with the expressions describing the initial control state. 
but this time for a spinor particle. As per the introduction to the spinor field 

definitions in Chapter 1 section 8, we define the initial incoming wave packet 

of the spinor field with spin labeled by a as 

d3pm 
zý =1 (27rh)3 p() 

f (p) ba (p) 10) 
. 

(103) v0 

where we recall that f is sharply peaked about the initial momentum in the 

region A4- and normalised via (0) = 1, viz 

dp 
)3 f *(P)f (P) (104) 

(27-h 

The spinor initial state differs from the scalar state only in the presence of the 

spinor field creation operator, with spin index, and also the factor multiplying 

the basic Lorent z- invariant measure: 1/(2po) --+ m/po. which is due to the 

canonical convention chosen for these fields. The outgoing wave packet of our 

control particle, which we recall does not undergo radiation reaction in A4j, is 

given by the sýinie expression, albeit with f now sharply peaked about the final 

momentum P in the region A4+ and a now represents the spin of the outgoing 

state. As with the scalar field, we let the potential satisfy ýlol < 21o. thus 

precluding the possibilitY of particle pair creation. The associated vacuum 

effects can then be sAcly ignored and the charge density can be considered 

equivalent to the probability density for a one-particle state. The expectation 



1. INITIAL CONTROL STATE 145 

value of the density of the state ji), (p(x)) = (ij : c, fu : ýi) is given as follows 

(P(X)) 

= (01 j 
d3p, Fm 

f* (p') b, (p') 
(27rh)3 V 

po 

d3p // md3p /// m 

,Y 
bý (p")(D'3(p") 

I 
(27h)3 I// 

E b-ý (p (p (27rh)3 p00,3 PO 
-Y 

dpmf (p)ba(p) 10) (27Th)3 
0 

dpdpdpdpmm I)f (P) 

op() Popo 
(27/i)3 (27/i)3 (27h)3 (27Th)3 

*(P 

ýOlb, (p')být3(p")by(p ... )ba(p)10ý 

dpdpdpdpmm 
4b, 3t (P//) 4b-y (Plf/) 

0ý fl-/Iff*(P')f(P)E (27h)3 (27rh)3 (21Th)3 (27h) 3 
Výpo (ý Popo 0 0, -y 

)363(pi pll)6cOPO )363(pllf 
_ P)6ce, _ý xm (27h 

m 
(27h 

fdpdpmt (P, ) 41ý a (P) - 
(538) 

(27h) 3 (27r h) 3 
popi 

f (P, ) f (P), Ia 

0 

We wish to measure the position expectation value at time t=0. As this lies, 

by definition, far into the region A4+ we may use the mode functions for the 

free field i. e. 4b, (p) = tt, (p)e'P-11ý'. Hence 

4.1, 
Xi (iý: ý)t e: 

d 3,1,1 d'p d3p, Mf* 
(pf)f (P)ut (pl )UC, (P)e-i(P-P, ). X/hxi 

(27rh)3 (27rh) 3 
X//- pi po () 

d3p d3p, 
*(p /t (A uc, (p) )f (P)un 

(27rh)3 (27rh)3 
. %V7P()PO 

3ý1, (- r)a 
i 

-i(p-p, ). x 
pe 

IntegrAing bY Imi-ts. and integrating out the resultant delta function. Nve ob- 

tain 

(xi(o)) 
dpf (P) 

(P) 
f (P) 

tin (P) (539) 
(271-h)3 

VFP 0 
api 

( 

VI"P 0 
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This expression will in fact be the one we need to recall when comparing 

with the final interacting state. However, if we complete the pý differentiation. 

the resulting terms turn out to be of different orders in h. Although we are 

only dealing with the h --ý 0 limit, for completeness we shall differentiate 

and analyse these terms further: The term differentiated with respect to the 

momentum in the x' direction is 

(9pi f (P) f (P)pi f (P) 
, api 

V/P-o 
U0, (P) 

-V/P--O- 
U0, (P) - 2p 5/2 uc, (P) +, 

f- 
upi 11, (P) 

0 VPO 

thus giving the position expectation value as 

,ýJ 
d'p m 

(27rh)3 po 

If * (P) ali f (P) I Uck (P) Ua (P) f (P) F Pi2 
Uoz (P) Ulý (P) + 

2po 

From the definition of the free spinor in (101) 

uc, (p) PO +m so, 

2m c7'' P 
ý, c, 

' 

(po+M 

) 

(541) 

(101) 

we have the normalisation u, ý, (p)u, (p) = po/m. We now calculate the prodiict 

ti, t, (p)(9p, u, (p). The momentum derivatives of the two factors in the spinor 

are 

Opi Lo + in A (542) 
2m 2 V"2--m(po + m) Po 

a-pa- ni 0' -pA a, " 

( 
(543) 

ý12-m 
-(1)()+ 11? ) V2-Tn (po + n? ) 2 V/-2-rn (po + ttl)3/2 po 

(540) 

, (P) (9pi U, ý (P) f (P) I, ua 

where ni is the unit vector is the ith direction. 
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The general expression u. tOpjU, 
3 is thus given by 

ut ce 
(P) api UO (P) 

rn 
st 

A 
-so 2m ce V2m (po + m) 2po 
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+mt 0' -pa- ni a-p 
a0+ 

M) (po + M)3/2 2m po +m V2m (p 2po-v/-2m 

I Pi 
st SO + 

2 2mpo ' 

I Pi 
st SO+ 2 2mpo ' 

s, t,, (o, -pa- ni) so Pi St, (a - po, - P) SO ol 
2Tn(po +Tn) 22Tnpo (po + Tn)2 

s, t,, (pi + i(p x ni) - o, ) so 
2m(po + m) 

I Pi 
st SO +A- st so + 

2 2mpo 2Tn(po + Tn) 

Pi (p 2m 2) 
0-- 

st SO 
2 2Tnpo (po + M) 2 ce 

Pi st p28,3 
ct 

22Tnpo (po + 111)2 

zs, t, ni - (o, x p) so 
2m(po + m) 

Atzt 
2mpo saso + 

2m(po + m) 
s, ni - (a x p) s, 3, (544) 

where we have used cr -a or -b=a- bI + i(a x b) - o, and p-p= p2 _, 1112. We 0 
consequently obtain 

utceapi. uo 
A 6a, 3 +I st ni - (o, x p) s, 3. (545) 

2mpo 2m(po + m) ' 

As a short aside, we can look at an interpretation of the second term in 

(545). In the case where a=0, as we require, then stni - (o, x p) s, = ni -ýxp 

where ý is the unit vector in the direction of the spin (positive for spin up, 

negatiN-e for spin down). This term is an example of the effects of the addition 

of spin to the quantum model, in this case on the measurement of the position 

in the i direction. Now, the expression measures the component in the i 

direction of the vector ýxp, perpendicular to the spin and the momentum (and 

is zero when these coincide)' and could be described as providing a change. in 

the momentum and consequently the position, due to the interaction between 

the momentum and the spin. This type of effect can be seen by ýinalysiii-- the 

'The term is also zero in the direction of either the spin or the momentum. 
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Poincare algebra of the generators for a boost and a rotation. Note that the 

same algebra is obeyed by the spin and boost operators for a spinor. If Ki 

represents the generator of a boost in the i direction and Jj represents the 

generator of a rotation in the 3. direction then we have 

[Ki, Kj] -Z6ijkJk-, 

[Ji, Kj] ý 26ijkKk 

(546) 

(5471) 

where 6ijk is the Levi-Civita symbol. The first relation leads to the Thomas 

precession correction to the spin-orbit interaction. The second relation is re- 
lated to the current effect. This term is naturally not present for calculations 

using the scalar field. Our extra term is thus a mathematical consequence of 
the fact that the spin and boost operators do not commute. 

Returning to our main calculation, the position expectation value (at t= 

of the initial state can be given as 
31 (P) f (P) u", (P) 

th 
dpf* (P)ua 

(27h) 3 
ý, 

Fpo 
api 

VIP--o 

ih 
d3P ýTnf 

*(p)Op, f (p) 
' Po j 

(27rh)3 PO M 

2A PO +A+ 
'nj-ýxp 

+ mif (P)l 
m po 2mpo 2m(po + m) 

th 
d3pf* 

(P)apif (P) +If 
(P) 2 ini -ý xp (548) j 

(27r/i)3 2po(po + rn) 

Becýuise, after a (27h)' pre-multiple, f*(p)apf(p) is of order h-1. whereas 

If (p) 12 is O(h'), the second term in (548) is of order h and in the classical 

limit the spin-related effect given above does not contribute. In this limit we 

have 

hd3pf *(P)Oif (P) (. 5 4 9) f 
(27r h)3 

We recognize this expression as the same as that was reached for the scalar 

field in (286). Once again, as the position shift is real. Nve may write 

t=o = -ý, 
f "P 

f- (P) 19'i f (P) 
- 

(550) 
1) (27, - b)3 
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2. Final interacting state 
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For the final state of a particle undergoing radiation reaction, we again start 

with an incoming wave packet of the form I i). The interactions to order (2 for 

the spinor field are, as with the scalar field, composed of the photon emission 

sector and a one-loop forward scattering sector along of course with the null 
interaction. We shall use notation similar to the scalar field for the amplitudes 

of these processes. These amplitudes we shall of course later calculate (in 

sections 3 and 4 of this chapter) using the semiclassical spinor expansions for 

the interacting region A4j, whilst the measurement of the position shift t, akes 

place at t=0 inside M+. Let us start with the final state giving the definitions 

of the amplitudes: 

I+i. F(p) ] bt, (p) 10) +idk A(3)' (p k at (k) bot (p') 10) (551) 
oz hf 2k(27r)3 (00 1)t, 

where Y represents the forward scattering amplitude from the one loop self- 

interaction and A represents the amplitude from the one-photon emission. In 

the case of the forward scattering and non-interacting processes, the spin and 

momentum of the final states are the same. Note however, that for the one- 

photon emission this is no longer the case. The final momentum is labelled 

p' here and the final spin 0. The emission amplitude thus contains two spin 

indices. Nevertheless, to lowest order in h the spin does not change. In ad- 

dition, by momentum conservation, the final momentum is equal to p- hk 

which we shall label P. These relations will be proved later when we explicitly 

calculate the emission amplitude, but we shall utilize them now in order to 

simplify the following calculations and drop the spin indices on the emission 

aniplitude. Let us thus define the following parts of the final state 

d3 p+I. F(p)] f (p)bt (p) 10) (552) 1f) for (27rh)3 ý 
Po 0 

If)eiii 
dpdk 

A", (k. p) f (p) at (k) bt (P) 10) (553) 
h)3 (27)ý- a h (2ý-, '-)ko ý po A 
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As there will be no cross-term between these two states. the final state density 

is the sum of the densities of the above two state. We now proceed to cal- 

culate these densities and consequently obtain an expression for the position 

expectation value of the final state in terms of the two amplitudes. These 

calculations follow those from the scalar field very closely and the reader illaY 

wish to refer to them. 

2.1. Zero photon sector. The zero photon sector density is given by 

forY I: 00 : If)for 
- (554) 

The state If) f, is nearly identical to that used for the scalar case and again note 

that the calculation of the density is identical to that for the non-interacting 

state with the substitution f (p) ---* [I + zF(p)] f (p). The density is thus 

d3p d'p' [I i-17*(P, )] f *(P, ) [I + Z'17(p)l f (p)(p"(P, ), D, (P) 
(27h)3 (27h) 3 

ýFopi P0 
(555) 

The t=0 position expectation value of the If)f,, state is hence 

(Xi (0)) for = 
ih f d3p 

2 (27Th)3 

x 
([l 

- i. F* 
(p) 

ut (p» api ([' + 2, T- (P) 1f (P) u (P) )- 
ý%7P--o \7p- -o 

(556) 

Expanding out the terms to order e2 (i. e. ignoring the type terms) Nve 

have 

(xi (0)) for - 
ih f d'p (f* (P) 

- 
ut (P) 

opi 
f (P) 

- 
1'(p)-) [I - TaF] 

2 (27h)3 ... VIPO vfp 0 

hj 
d 3p 

If (P) 12(9 
pi 

Ry (P) 
(27h)3 

(., -) -5 

The expression obtained is analogous to the scalar case in that Nve find the 

appropriate form of the non-interacting position combined with [I - 2-3'Y] 
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which we shall deal with later. and a further term dependent on the real part 
of the forward scattering amplitude. 2 

2.2. One photon sector. The density and position expectation value 
for the one photon sector is more complicated due to the fact that the final 

state electron is now moving with momentum P rather than p. We dealt with 
this problem before with the scalar field, and as we are dealing with a time- 
dependent potential, we may make use of the conservation of momentum. 3 

The density is given by 

em(f 
VýtV) : If)em 

d3pd3 k' ýýA't 
(k, p') f (p) 

h (27h)3 (27r)32ko V po 

xid3pd3k 
[TA4(k, 

p)f(p) h (27h)3 (27r)32ko V po 

x (Ola, (k')b, (P') : OtVý : at(k)bt, (P)JO) 

I d'p'd'p d3k 
m(f. (p ') A* (p', k) V (P')) (f (p) A" (p, k) (D,, (P) 

h (27rh)6,1ýp-opl 
0(27)32ko 

(558) 

where P' = P' - hk' and we have used the anticommut, ation relat, ions for 

spinor field (95), as used for the initial control particle calculations, and the 

commutation relations for the electromagnetic field (83). Note that the mode 
functions present in this expression are those of the free field for the density 

) In fact. careful amilvsis of the calculation would show that the momentum derivative 

of the imaginary part of F is necessarily zero. 
3 The reader may recall that the time-dependent case is slightly more straight forward 

in this respect than that for the space-dependent case. 
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in the A4+ region. The position expectation value (at t- 0) is therefore 

d3 p'd 
3 pm d3k (f *(p')A*(pf, k)ut (P')) (f (p)A"(p. k)u, (P)) hf (27rh)6, 
ý, 
FpoýnF /I a 

0 
(27r )3 2ko 

xd 3XOPt (zhe-i(P-P'-X)/h 

3 
p/d 

3pd3k 

zf- rn (27rh)6 (27r) 32kc) 

(f * (P') 
A* (p', k)u,, 

" (f(P)A"(p, k)u,,, (P))(27h)363(p_p'). (PI) ) 
-api -, 

ý/P--o 
(559) 

Given the definitions of P and P', we have P(P - P') = 63(p - p'). The 

position shift due to emission is therefore given by the expression 

(Xi(0))em if dpdk 
2 (27rh)3 (27T)32ko 7n 

f (P) 
A* (p, k)ut (P)) p, 

f (P) 
A" (p, k)u, (P)) (560) 

p ce a 
V/P--o vlfp- _0 

This can be split into two parts: 

(T' (0) ) 
em 

I. f d'p d3km (A, *, (p, k) a p, A" (p, k) 2 
ul (P) ua (P) 

2 (27h)3po (27)32ko 
) if (P)l 

a 

i d3p 
Iýf* 

(p) 
Ut (P) P) 

ua (P) 
2 (27Th)3 ý /p-0 cl pi 

( fv(lrp-o 

X1 
d3k 

A* (p, k) A4 (p, k) (561) 
(27r) 32 ko " 

The first integral gives to lowest order 

d 3p 
If (P) 12 d3k (p, 

PO Opi 
2 (27h)3 (2 7r) 32ko 

(Ap k) ap, A" (p, k)) 
po api 

if d 3p 
If (P) 12 d3k-. (P. - (At, k) 9p, At, (p, k)) (562) 

(27h)3 (2-7T)3, )ko 

where in the List line Nve have made use of the fact that to order h'. PO = po 

and OpilOP, = I. 
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2.3. Unitarity. In the scalar calculation, we gained a further relation 
between the imaginary part of the forward scattering and the emission prob- 

ability using the normalisation of the final state, viz 

(f if) - I. (563) 

We can complete the same calculation again and find that we do in fact find 

the same relation. The final state is given by the SUM Of IAor and Wem, in 

(552) and (553) respectively. The left hand side of (563) above is thus, 

Y if) 
d3p d3pf* 

(p) [1-i. F* (p) 1+*. F (p') f (p') (0 1 b, (p) bt (p') 10) 
(27rh)3 (21rh)3 Po 

v 1 Po 
m v 

10 

+1d3pd3P, 
d3kd3 k' rm- 

V7M h2 

1 

(27rh)3 (27rh)3 (27r) 3 2ko (27r)32k' Vp 
00 Po 

xf* (p) A*" (k, p) f (p'), 4"' (k', p') (0 1 b, (P) a. (k) a, t (k') bC9 (P') 10) (564) 

We again make use of the conservation of momentum, with 

P063(p 
_ pl) = 

P063(p 
_ pf) 

PO 
(565) 

mm Po 

Hence to order e' (i. e. only up to first order in F) we have 

(f if) dP lf(P)12(l 
(27rh)3 

-1d3pd3k If (P) 12 A* (p, k)Aý'(p, k) 
PO (566) 

h (27h)3 (27)32ko p Po 

As this is equal to I (by (563)) and f (p) is normalised by (104), we obtain 

dP If (p)12 2a-'F(p) =-IdP 
If(P)I2 dk 

A* (p, k) A" (p, k) 
A 

(27h)3 hj (27rh)3 (27r)32kO PO 
(5671) 

as before. Consequentlly, using the delta function limit for If (p)1', 

TýT(p) 
If d3k 

A* (p. k)Aý'(pý k) 
PO 

(568) 
/I (27)32A-o P Po 

where Nve have relabeled the final peak momentum p 
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2.4. Position of the final state. If we add the contributions to the 
position expectation value from the forward scattering and emission sectons 

we obtain 

(x(O)) 

zh d3pf* (P) ul (P) ) 
ýopj (f (P)U(P). ) 

[I - Ta. F(p)] 2j (27Th)3"" 

( 

vp-o 
VlP--0 

-h 
d3 P If (P) 12 api Rj7 (P) 

(27h)3 

d 3p 
If (P) 12 d'k 

- 
(A, *, (p k) '(9pi At(p, k) 2 (27h)3 (27T)32ko 

if d3pd3kt (P) ) -pi (f (P) uo(p) Ap* (p, k) A" (p, k) 2 (27h)3 (27r)32ko m 
(f 

a 
vfp- 0 VlP--0 

(569) 

Using the unitarity condition (568) we remove the imaginary part of F to 

produce 

(x(O)) 

3 l(p)) a (f(p)uck(p) 

ih 
dpf *(P)ua j 

(27h)3"" 

( 

Irp--o api VP--0- 

hdp If (P) 12 a R. F (P) 
(27rh)3 p 

d 3p 
If (P) 12 d'k 

2 (27h)3 (27)32ko 
At, (p, k) Op, A" (p, k) 

+i 
d3p d3k 

rnA* (p, k)Aý'(p, k) 
2 (21rh)3 (27)32ko 

PO (f* (P) it, (P) ) 
api 

(f (P) uc, (P) (. f * (P) ul (P) )a 
pi 

(f(P)UO(P))] 

Po VIP--o -V/P-o V/P-o Irp- _0 
(570) 

To O(h') and using the sharply peaked property of f (p) Nve thus obtain 

ih f d'p 
2 (27-, rl)3 

f (P) f (P) 

dk 
- h0p, RF(p) - -' A* i-2 -k-n (p, k) (9p, At(p. k) (571) 

2 (27r) 
0 
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The first term is the position of the non-radiating particle which we recall is at 
the origin. There are thus two contributions to the position shift. the emission 

shift 6x' and forward scattering shift 6x' defined as follows: em for 

6xi if d'k 
em 2 (27T)32ko 

6Xifor 40piR '- "1: '(P) 

At*, (p, k) ap, Aý'(p, k) (572) 

(573) 

In this limit the expression for the position expectation value, in terms of the 

amplitudes, is the same as that obtained for the scalar field. It is now our task 

to evaluate these two expressions. 

3. Emission Amplitude 

The emission process, resulting from the first order interaction term, is 

given by 

bce (p) 10) 4X 'HI(x)b, (p)10ý. (574) 

The QED interaction Hamiltonian for the coupling of the spinor and electro- 

magnetic fields is the negative of the interaction Lagrangian. 4 Unlike the more 

complicated situation we had to deal with for the scalar field. we have just the 

one coupling term to consider. Substituting the concrete expression for RI, 

4As in the scalar case, -, ve note that Nve are using the free-field normal ordering operators 

in the interaction Hamiltonian (see footnote 8 at the beginning of the scalar Emission 

Amplitude calculation). Again, however, it can be shown that this is justified to order h, 2 

191. 
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and we obtain 

4XHI d (x) bt (p) 10) iQ 

jd4X 

:: bt,, 
h. 

(P) 10) 

1156 

ic d3kd3p/d3p /I 

hId 
4x 

(27)32ko (27h)3po/, m (27h)3po'/M 

x at (k) ik. xCp, 3 (p/), ýfl Vf (p/1) bt (p/) b, ý (p") bt (p) 10) It 0a 
ie 

d 4x dkdp-e ik. x 4b)3(p')-y"(D, (p)at(k)bt(p')10). (575) h (27r) 32ko (27h)3po/Tn A01 

where we have ignored the separate particle creation vacuum process which is 

not part of the evolution of the state. The emission amplitude is thus given 
by the expression 

(p, k) d4dp 4CD, (P, )-Y, 4pa(P)ei, X (576) (2ýTh)3 pI /M 
0 

We have indices on the amplitude to represent the initial and final spins. The 

fields involved in the interaction are the non-free fields from the region MI. 

The mode functions in the emission amplitude are therefore those for the non- 
free field. We proceed substituting the semiclassical expansion of these mode 
functions from (202). As we wish to take the h --ý 0 limit, we shall only need 

the 0(ho) terms in the expansion. 

k) 
dxdpI. 

X/h ip. x/h ik-xijo (p, 
- 

t) (P. 0 op*, (t)OP(t)e-'P ee (o) (27rh)3po/, M 
d4x d3p/ 

op*, (t) op (t) eikt fL O(P/, qýpUce(p, t)ei(p-p'-hk)/h. 
(27h)3po/m 

(577) 

The spatial integration gives the delta function corresponding to the consen-a- 

tion of nionienturn p= p'+hk. In our previous working, we stated that we had 

conservation of momenturn and defined the final momentum as P=p- hk. 

The above calculation demonstrates this conservation (with the substitution 
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p'=P). 

dt d3pW, 0 t) 
PO/M 

- ýPpopýp 

157 

x exp (Ep Ep, (()) do eikt63(p _p '- hk). 
n h0 

(578) 

The exponential can be written (using the delta function) as in the scalar case: 

(i ft 

0 
exp --0 (Ep Ep, (()) d( exp 

[ap 
Ep (() d( [p - pt] hh 

exp 
(-i dx 

d(I - [hk] 
h 

fn 
d( 

= exp (-ik - x) . 
(579) 

We now look at the spinor factor. The component with y' is to order h', using 

the zeroth order spinor given in (178), 

0 W, 0 -Y, Uý, (p, t) 
Ep, + m) (Ep + m) 

sot ut, (t) 1+a. PV) a- PM up (t)SC, (580) 
2m pI (Ep, + m) (Ep + m) 

] 

with Up(t) defined in (176). We can take p' to p in all the terms to lowest h 

order, including the unitary t matrix Up, (t) . 
This component thus simplifies to 

(pl, t), ýOuce (p, t) _ 
Ep 

60 + O(h) 
ma 

Similarly, 

(P', t) UC, (p, 

(581) 

V4(Ep, + _m)(Ep + m) 
Is 

3t P, (t) orý 
+ 

a' 0' - P(t) 
UP (t), sc, + O(h) 

2m 
upt, (t) 

[ 

Ep, +m Ep +m] 

(5(S2) 

As before, Nve change p' --4 p to the lowest order and note that 

0, - v(t) 0, ' 
E',,, In 

(T 
1 

(7 - P(t) 

Ep + in 
2 1), M 

Ep +m (5 S: I) 
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Overall, we thus obtain 

(p (p, t) 60 
a 

Consequently, the emission amplitude can be written to lowest order 

, ik. xdo 

p 

(p, k) dt 
ýE 

(a) 

(dt dx" 
e 

ik. x 62 

dt 
dxý, 

eiký 63 

9a1 (585) 

where we define ý :=t-k- x/ko. We see that as stated previously, the spin 
does not change in the lowest h order. Therefore 

(p, k) < 
dx%iký 

(586) 

This is the same expression as obtained for the lowest order emission ampli- 
tude for the scalar field (344) and is written in terms of the classical trajectory. 

We additionally note that the amplitude is equal to the classical amplitude. 
Consequently, using either of the methods from the scalar calculations (Chap- 

ter 4 section 3 and Chapter 5 section 1) we find that the position shift due to 

emission 6. r' is equal to the classical position shift 6x'. From Chapter 5 Nve eill C 

can rewrite the shift as follows: 

61ri =-dk (A* (p, k) (9p, A" (p. k)) 
em 2 (27)32ko ý' 

fd4,, 
(g , i pj'ý'(x)AR, 

(X) 

dt-1: 
Lj D 

X)-i 

00 
OP 

(5871) 

where ARp 0') is the regular field, constructed from the regular Green's func- 

tion 112(G- -G+), which acts on the classical particle to produce the radiation 

reaction force [18]. This was the same situation Nve had for the scalar field. 

wlierebY the position shift due to the emission could be equated with that due 

to the regular (or radiative) field and consequentIly the full classical position 
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shift. As with the previous case though, we still have another quantum con- 

tribution to the position shift from the forward scattering which Nve must take 

into account and calculate. 

4. Forward Scattering 

We now consider the forward scattering amplitude. As before. Nve calcu- 
late the amplitude using the semiclassical mode functions for the interacting 

region A41 and expect this result to also be divergent. To this we can add 

the amplitude due to the QED mass counterterm, thereby renormalising the 

forward scattering. It is well known that the counter term is also divergent. 

We shall see however, that the situation is not as straightforward as the scalar 

renormalisation. Before continuing with the amplitude calculation, we briefly 

recall that the position shift term is 

6x, for :: -: ' -hap, R. F(p) (573) 

containing a multiplying factor of h. Given that the forward scattering is of 

order h-', we are interested in the h-' and h-' terms of the real part of Y 

leading to position shift contributions at order h-' and h' respectively. For the 

the former contribution canceled upon renormalisation. whereas scalar field, 

the latter contribution was zero due to Y being imaginary at that order. With 

these comments and the previous method and calculation in mind, we proceed 

with the spinor amplitude. 

The rehitive simplicity of the interaction Hamiltonian for the spinor field 

when compared with the previous scalar case means that the forward scattering 

process is simply the one-loop process and is the zero-photon sector of the 

second order interaction term: 

=, bt (p)10ý 
h 

zero-photon 
(5ýS-(S) 
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with 'HI Operating on both sides with (Olb,, (p') Nve ha-ve 

(0 1 b, (p) i. T (p) bt, (p) 10 ý 

Id 4 
xd 

4X1 ýOlb�(p)T 
2 h2 

thus 

.231 ZemP44 

-d xd F(p) = -- 2ý 01T [A� (x') A, (x) 
2, 2 h2 PO 

1 

zh) 
ý27rh 

ý01b, (p')T O(x)-I'ýb(r) :] bý(p)10). (589) 

Here we have, as one would expect from a one-loop diagram, the photon prop- 

agator 

(0 1T [A. (x') A, (x) II 

hg, " 
j d'k [O(tl 

- t), -ik. (x'-x) + O(t - t')c, -""(x-x')] (590) 
2k(27)3 

and a time-ordered combination of the spinor fields which we shall denote 

T bt (p) 10) 
. 

(591) = (Olb, (p)T [ V) W -ý, V) (x 

Writing TS with the field expansions the term for each normal ordered product, 

in which we have only one space-time variable, is of the form 

d3pm d3p/ M 

(27h)3 po (27h)3 PO 

[bt, (p) 41" (p) + d, (p) ýD' (p) ] -y' b, 3 (p') 4b, 3(p') + dot(p)xP, 3(p') (5 9 2) 
ce 

I 

The creation and annihilation operators form the following combinations 

být, (p) b, 3 (p') + d�, (p) b, i (p) + bt� (p) d, 3 (p) + d, (p) dot (p') aa 

bt,, (p) b, 3 (p') + do (P) b, 3 (P) + bt,, (p) d, 3(p') - d3(p') d, (p) (5 9 3) 
aa3 

When operated on the left by (01b, (p") the third and fourth terms vanish and 

when operated on the right bY b, t(p")10). the second and fourth ternis drop 
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out. Hence, in terms of the operators only. the form of TS is 

(0 1 b, (p') bý3 by + dß by böt b, + b6t dt bt, (p) 10 ý (3)(66E)0 
(Olb, (p')b. tb-, bt, b, b, t�(p)10ý 

- (Olb�(p')btd, 3dtb bt, (p)10) + 1'. (594) ß6a6E -y ce 

where V is the process with a vacuum graph (creation of electron-positron pair 

and photon and subsequent annihilation separate from the original particle and 

an unaffected particle) which as before, we can ignore. In both the above calcu- 
lations, we have the familiar minus signs due to the anticommutation relations 

used for spinor fields. Reintroducing the mode functions is straightforward bY 

matching their spins indices to those on the creation/ annihilation operators in 

the expansion above: 

Ts (x, x') = 
i 

(27h)3p(2) (27h)3p(3) (27h)3p(4) (27h)3p(5) 
0000 

T 
[Cp, 3 (p (2), 

X) 7p (D-y (p (3), 
X) 4)6 (p (4), 

xE (p (5), 
x 

_ 
qjß (P (2), 

x) ýy 11 ID-Y (P (3), 
x) ib 6 (P ('), 

x') -, ' T' (P (') 
1x1) 

3p (2) 
Tn d3p (3) 

Tn d3p (4) 
md3p 

(5) 

b', (P') bt3 (P(2) ) by (P(3»b6t(P(4) )be (P(5) ) bt� (p) 10 ý 06 ei 

(Olb, (p/)bt(p (4) )do (P(2) )dt (P(5) ) b-ý (P(3) ) bt (p) 10) ], (5 9 5) 

which simplifies when we use the anticommutation relations, to produce 

d3 qm 
.. 

[(b, (pl, x)-y4(D-Y(q. x)e-, (q. x')-y'(D�(p, x') ( h) 3 Tl; 27r qo 

(596) 

where we have changed the remaining integration variable to q in both cases. 

The reader will recall that in the forward scattering (589). the product T,; is, 

integrated over x and. r' and contracted with the metric g,,,. As a consequence 

of the resulting syninietry. both orders of the time variables give the same result 

and therefore we take one and multiply by two. The forward scattering (not 
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forgetting the photon propagator term) can then be written 

Ze2M d3pd3kd 3qm 4 4XIO(t -ik (X-Xl) tf)e hpo 
j 

(27h)3 2k(27)3 (27h)3qo 
d xd 

[4), (P 1, x)-7"(b-'(q, x)iDY(q, 

(597) 

As with the one-loop part of the scalar field, we split this up into the -particle 
loop' and 'anti-particle loop', defined respectively by 5 

ze 2md3pd3kd3 
qm 4 4XIO(t 

_ t1) T-(P) = -- d xd hpo 
j 

(27rh)32k(27r)3 (27h)lqo 

(P', x) -/ý, Vy (q, x) 4), (q, x') -yj, (D, (P, x1 )e -ik-(x-x') 
1 (598) 

ic 2 Tn I d'p' d'k d3 qm (P) 
hpo (27h)32k(27 )3 (27h)3qo 

d4 xd 
4XIO(t 

_ t1) 

(Pf 
ý xf), yll 11ý, 3 (q, x') ýP (q, X)-YM(VI(P, X)e-'k. (x-x') 

1 
(599) 

where we have rearranged the spinor mode functions in the last line. 

1. Particle Loop. The -F- 
(p) half of the forward scattering amplitude 

is the result of the particle loop process. Using the semiclassical expansion, 

the spinor mode functions in F-(p), along with the k exponential, ' can be 

written 

x)e-ik-(x-x) 

= [u,,, (p', f) -yý'O (q, t) iiy (q, t') -yj, u,, (p, t') ] 

ipl. x/h iq. x/h iq-x'/h ip-x'/h - ik-(X-X') * (t1) OP e, (600) Oq (t) Oq 

where we have the time-dependent spinor expansions inside the square brackets 

aiid the scalar semiclassical terms and the exponentials outside. Completing 

the spatial integrals produces the delta functions 63(p - q- K) 63 (p, 
- q- K) 

5 The plus and minus designation will become clear later. It is however the same as that 

used in the scalar F2 cases. 

which is the free electromagnetic field mode function. 
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with K := hk. Using 63(p -q- K)6'(p - p) and integrating over p'. the 

particle loop contribution can be written 

ie 2d3k. d3 qm dtdt'0 (t - t') (27rh)363(P 
-q- . F-(p) 

1 
2k(27r) 3 (27r h) 3 qo hpo 

(t) Oq M Oq W) OP W) (601) 

where we have defined the semiclassical particle loop spinor combination 

= ü(p, t)u(q, t)ü(q, t')u(p. t'). (602) 

We shall at times refer to the spinors in between the -ý matrices as the inner 

spinors, and those on the outside as the outer spinors. Following our previous 

method, the next step is to change the time variables of integrat, loii in order 

to expand the difference in terms of h, i. e. 

t=h (603) 
2 

tl 
h 

=t+ -Tj , 
(604) 

2 

with O(t - t') = 0(-71) and 

dtdt' = hdtdTI. (605) 

The semiclassical scalar component and the action of this variable change is 

familiar from the scalar field calculations and we present a summary here. We 

have 

OP M =: vr 
-Po 

exp 
fo, 

Ep (t') dt (606) 
Ep (t) h 

The term ,: p(t), which in (443) represented the higher order expansion terins. 

is not used here as these terms are contained within the expansion of the 

spinors. The product can be written (mixing both variable sets) b. -, - 

Po rj/2 
Ep(t + ho d( (607) 01)(001PI) 

V"Ep (t) Ep (P) exp -1 
fq/2 



4. FORWARD SCATTERING 164 

Changing the variables in the prefactor to the exponential. the product is equal 
to JOP(Q2 + O(h 2), 

which leads us overall to produce 

op* (t)oq (t)oq* (ti)op(ti)eiK(t-t')lh 

1 op (412 10q(ý 12 exp 
71/2 

(- Ep (i + ho + Eq (t + ho + K) d(_ (608) 
r7/2 

We recall that we shall need to be careful when integrating over q due to the 

infrared divergence. As before we can use the variable ) to replace q and aid 

the integration, where 

[-Ep(t) + Eq(t) + K]) 
7/2 

[-Ep(t + ho + Eq(t+ ho + K] d(. (609) 
-, 7/2 

We have already studied and confirmed the validity of this transformation 

when dealing with the scalar field, and the same argument (-ým be repeated 
here briefly to aid recall. For low K= jjp-qjj 0, we have the same equation 

as before: 

-Ep(t) + Eq(t) +K;: z: ý K- v(t) -K1 (457) 

where v(t) = [p - V(t)IlEp(t) is the velocity of the classical particle with final 

momentum p and thus with n =- KIK, 

Ij2 

v(t) -n_ - 7/2 

[I - v(t + h() - n] d(. (610) 

Therefore, writing d7l - J(p, q, f, h))dý, the function J(p, q. t, h)) is finite as 

0 and we can use the variable iý to replace 77. The expansions of q and 

d7l are 

and 

kp (t) + kq (t) 

h 2)2 + O(h 43 4)- 
13. (611) 

24 (-Ep(t) + Eq(t) + K) 

dtj I-I 

(-kP(t) 
+ kq(t))_ 

h 2, ý2 + O(h4ýý4)- (1 (612) 
8 (-EP(t) + Eq(t) + K) 

Integration of ýý Nvill produce further powers of (-Ep(t) + EI(t) + K) in the de- 

nominat or. t hus producing an infrared divergences as liMK-0 [- El, (t) + Eq(t) + 
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K] --+ 0 as before. Before completing this integration, we must return to the 

spinor combination S- 

The particle loop spinor combination, we recall, was defined as 

ft,,, (p, t)-y4u, 3(q, t)ii'3(q. tl )-/Puc, (P. t') - (613) 

The spinors here are the time-dependent semiclassical expansion spinors de- 

rived previously Chapter 2, section 3. The relevant identities and /I expansions, 

including the change of time variables to (f, TI), to enable the calculation of S_ 

are detailed in the Appendix A, with a summary in section 6. We quote the 

necessary results as they are needed here. Building up the S_ combination 

from the inner spinors, we have 7 to 0(ji) 

(q, t) ü' (q, t') 

, y. 4+m+ hi h7j 
ýy 

5 
-y x q- 

ih 
+ 

hq 
yo,, y , q. 2m m(2Eq)2 2m2Eq (2Eq)2 2Eq. 2) 
(614) 

Here and later all energies and momenta without explicit time arguments are 

evaluated at t. Sandwiching the expression immediately above between the 

contracted gamma matrices, we find 

-y/l uo, (q, t) a (v (q, t') -yj, 2- -y -4+(h2 
m 2mEql 

5 

2mEq) -ý y, qxq (615) 

The particle loop combination can then be written 

(p, t) ý; " a3 (q, t) 1-13 (q, t') -ýMu, (p, tf ) 

Eq 
(p, t), ýOu (P. 2 [oo (p, t) ti, j 

(p, t')] 110 ce 

+h- 
ibil [, - -- 

til 

-y qxq (616) 11 " 
(P. 5 

2mEq2 2mE,, I (p, t') 

7Recall that 4=q- V(t) and similarly for 0. 
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Substituting into this expression the relevant spinor identities. we have 

=2 I- 
h+ ih77) x Eq Ep 

2mEp 2m Ep mm 

ph ih77ý 1ý xp 
++ _1ý_ +p 

Epý 

mm2;; 
ýE- 2m Ep (Ep + m) 

x Ep + p 

(hi h77 )4p-qx4ý-ý 

2mEq2 2mEq q-+ 
m(Ep + m) 

2- 
M2 _( 

h+ ih7j) x p- 
mEp m Ep 

h ih, ý xpp-q Ep p- 
2M2EP + 2M2 Ep (Ep + m) 

+x 
(P 

Ep + 

hi h7j 
xq+p-qx (617) 

2mEq2 2mEq 
4 

m(Ep + m) 

Changing the variables 8 and adding the scalar part of the expansion, we can 

write the contribution to the forward scattering as 

- 

ic 2m d'K d'qm 
-dfdqO(-? ])(27h)363(p q- K) (P) 

h2 Po 2K(27)3 (27rh)3qo 

7712 
X [S_ ]I op (o 12 1 Oq (0 12 

exp i (-Ep(t + h() + Eq(t + ho + K) d( 
-71/2 

(618) 

The factor S- is present in the integrand subject to the delta function 

6(p -q- K) and the integrals over d'K and d'q. Integrating out this delta 

function using the q integral, we can replace 4 by K. We also have 

q as both are in fact equal to -V. The energy Eqcan then be regarded as 

defined by Eq= V(P 
- 

-K)2+ m2. Within the resulting K integral, the only 

preferred direction about which to choose an axis is that given by 1ý. We maY 

thus replace K by K --+ (K . 0/02)0. Combining all of the above statements. 

we may produce the 'effective versioný9 of S- under the integrations via the 

8(t, tl) , (t, q) variables and also changing to K= hk, 

9The effective version under the delta function. 
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transformation 

4001-0 (619) 02 

)- 

This produces 

Seff 2 + 
h ihq X 

M2 M2 f) 2 TnEp m Ep 

ih7jý 
+ 

ý. pXýp2 
ýx 

(P Epý K- 

2m2EP 2m2) Ep(Ep + m) Ep + ro f) 2 

h ih77 ppx xp+ 
K 

2mEq2 2MEq m(Ep + m) p2 

2-+ p-p K ]p ( 

-h +z 
hq f) x p- 

M2 M2 02 mEp m Ep 

h+ ihn 
x -Tn) K 

p 2 Ep 2Tn 2) 2m Ep fj2 

h ih7l 
fix p 

(, 
_ 

K. fi) 
(620) 

2mEq2 2TnEq p2 

Hence 

seff 
pph 

2-+x 22p2+2 mm 2m Ep Eqý 

ih7l 
f) xI 2m Ep Eq -I) 

K-0 fi2 
,(h1+ ihq II 

fi2 2p+ 

IM 

2m EP2 Eq2 2m Ep Eq 

(621) 

We change variables to ý3 instead of q and rewrite the notation t as t. Writing 

seff 

- 
(t, 3) to indicate the new time variable and notation, we now find the 

forward scattering contribution as 
ic 2M2d3K 

dt d3J (p, q, t, h,,, 3) 0 (- 3) 10 p 
(t) 12 1 Oq (t) 12 

[12 Po (27)32Kqo 

x S" (t, , 
-3) exp 

[i (- Ep + Eq+ K) 3] (622) 

Within the integrand Nve liwvc terms of order h'. h and higher order terin" 

- 
3) and in J (p, q, t. b. 3). Here resulting from the h-expansion of il -3 in Seff (t. 
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we again note that the higher order terms in h (h' and above) can no longer be 

assumed to be zero in the classical limit due to the infrared divergence. Now. 

note that every occurrence of ý is of the form Therefore all higher order 
terms are of the form h, )d fnd where fnd is some function (for eacli choice of 

n and d) and n>1, n>d>0. To complete the integration over 3 we must 

use a Wick rotation i. e. replace K by K-M. We shall then use the integral 

0 
lim d 

e'xýecýdý _ 
d! (1 

(623) 
E-0 

1-00 

xd+I 

to integrate over ). Further noting that we can write I Oq (t) 12 
== qolEq+ O(h 2), 

the result can be written as 

Ze2M2 

h2 Po 

(-i) (foo + hflo) 
(-Ep + Eq+ K) 

dK dt I op (t) 12 

(27)32KEq 

hfil 
(-Ep + Eq+ K)ý 

hn fndd! i d-1 

n>2 
Ep (t) + Eq(t) +K 

n>d>O 

(624) 

where we have written the first three terms explicitly, outside of the summation 

sign E. From S'ff we can give these three terms as 

foo =2 
Eq Ep 

f- 
p-p 

I- 
K-P )I 

(625) 
M2M2 p2 

flo =pxp + 
I) 

- 
K-ji I- 1 (626) 

2111 E2 
p 

E2 
q 

p2 E2 
p 

E2 
q 

fil 
I 

=pxp - 
1 Kp I 

-+ 
1 

- (627) 
2, to Ep Eq p2 Ep Eq 

Here we (, ým see the infrared divergences in the higher order terills. The 

remaining terms of the summation, i. e. with ii > 2, h ave the same form 

as the higher order ternis dealt with in the scalar field calculations. Thus Nve 

introduce ýi cut-off and integrate above Ko - h"A with 3/4 <o<1 (for later 
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reasons) and Aa positive constant. The small-K contributions behave like 

hnK1 -d - jjn+(1-d) ce A 1-d 
0 

h log (ha) 

for d>2 

for the d=I term 
(628) 

Given the limits on n, d and oz, we again haven+ (1-d)a > 2- a. Considering 

the additional h-' multiplying the integral (after converting k to K) and the h 

multiplying the whole forward scattering, we find that these higher order ternis 

do not contribute in the h ----> 0 limit to the position shift. Above the cut-off this 

leaves the lowest order term and the first order correction to be considered. Wc 

must still analyse the contributions below the cut-off, however. Fortunately, 

this calculation is again analogous to what we previously encountered. Wc 

can in fact show that, the real contribution to F- below that cut-off comes 

entirely from the leading order term to order h-' '0, which in our current 

notation is the foo term in (624). The remaining contribution to F- at this 

order is again imaginary. We demonstrate this as previously, by calculating 

the low-K contribution of the full T'- and comparing it with the leading order 

contribution. We additionally recall that it is in the classical limits with which 

all our results are phrased. 

Firstly, below the cut-off T_ can be written 

. 
F< -- 

ic 21 

dtdt' 
lk d'k d 3q M2 

0 (t - t') (27r h)363(P 
-q- K) 

)3 (27rh)3 - h k< r�� 2k (27r qopo 
Ih 

-ýý'dy (q, t) u -, 
(q, t') u, (p, t') ] Op* (t) Oq (t) 0* (t') op (t') e- 

(629 

1OThat is order h-1 for F- which one recalls has a prefactor of I/h2 multiplying the 

integrand and is additionally multiplied by a further h when producing the position shift 

contribution. 
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For small k we have 

170 

00 
exp 

(i 
(K + Eq(() - Ep(()) d(lh 

I a2E 
=exp 

(ij 
p 

ot 

(k 
- 

'9EP(() k+ -hk'k] d( 
0 Op 2 Opi Opi 

0n 
exp Zkt - 

f' dx 
- kdo 

d( 
(630) 

where the series in the exponential has been truncated at the second term due 

to the condition oz > 3/4 (see the equivalent section of the scalar calculation,,;, 
(470)). Thus F' becomes for small k (with q -4 

. 
F< -- 

ie 21 

dtdt' 
lk d'k m2 

0 (t _ t, ) po PO 
h 2k(27r)3 p2 Ep (t) Ep (t') 0 

[ü, (p, t)-ylul(p, t)üy(p, t')-yu�(p, t')] exp (, k(t' - t) -k- (x' - x» . 

Let us denote the spinor combination in the square brackets above bY 

(631) 

fto, (P, t)-ý, 'U'I(P, t)ii, (P, t')-Y"U"(P, t I). (632) 

In line with (630), we consider only the lowest order terms, i. e. h' terms, 

for this spinor combination. At the end of the calculation. we shall note that 

higher order terms, of order h and above, do not contribute here. FirstlY, 

we have the factor ii,, (p, t)-y4uy (p, t). From the derivations for the equal time 

spinor identities in Appendix A", we write 

itc, (P)ýYou', (P) = 
Ep 

6"_ý + (633) 
m 

and 

p 

-6a-ý + O(h) 
- 

(634) 
M 

The component s of the other factor, ý,, (p, P) -14 a,, (p. t'), can t hen be obt ained 

by reversing the spin indices and using the notation p' =p- V(t'). E' 
P 

"The particle equal time spinor identities are in section 4.1 of Appendix A. 
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ý/2 +, M2. Combining the identities and summing over the index -,. Nve obtain 

EpEp' p- p/ 
-22+ Tn Tn 

(635) 

We note straight away that the order h' term here gives the same contri- 
bution as the scalar case: With P(t) = (Eq(t), 4(t)), we have 

RY<(P) 

-ie 

2j 

dtdt' 
d'k Tn 2_0 

(t 
_ t') 

p, (t) 

h 
fk, 

<hoL-,, \ 2k(27r) 3EP (t) Ep (p) m 

-ie 

2 

dtdt' 
d3k 

O(t - t1) 
dx" dxp ik- (x'- x) 

hi 

Jk 

< h", -,, \ 2k(27r) 3 dt dt' 
ie2 

<< 
d3k 

0(ý 
dx" dx,, 

h 

Jk, 

< hIll -, A 2k(27T- )3< <1 

and thus 

R, -F< (P) == -e 

2A 

dQdt- 
1-v2 

167T3h2-a 

fI-n-v 

A, (tl) 
c 

ik. (x'-x) 

(636) 

(637) 

We can thus see that any terms of order h from the spinor combination would 

produce a contribution to the position shift of order hcl and thus would not 

contribute here, in the h ---+ 0 limit, as stated before. 

We now show that the above expression can be arrived at from the leading 

order term of T_ in (624). Consequently, the higher order fnd terms (which 

we recall do not contribute above the cut-off) do not contribute to the real 

part of T- to order h-'. The leading order term, below the cut-off, we denote 

o 
117 :ýI. Fýroin (624) we can write 

j: ý, 0, , (p) =- 
e' d3K 

dt m' foo 
(638) 

h2 
K<ha, \ 

(27r)32I, ý EpEq (-Ep + Eq + K) 

In the K --4 0 limit, with q --+ p. we have 

foo 
Eý 

+pp (639) 
rl, 2 1112 
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thus 

e2d3K M2 
(p) =-- dt 2 

< ho�\ (2 7r) 32K Epl h2 

IKA 

2- 
P-PI 

. 
(640) (-Ep + Eq+K) 

[ 
1112 

In the small K limit we have 

Ep + Eq+ K, -, - K- v(t) - K, (641) 

where v(t) = PlEp = [p - V(t)] lEp is the velocity of a particle with final mo- 

mentum p. Thus splitting the K integral into spherical polars and integrating 

K gives 

-- nI\c dKdQK 2 

2(27r) 3h2 
IK 

< hclA 
K 

e 
2A 

dtdQ 
I- 

167T3h2-a 

f 
(I - in 

as required. 

dt 
I_ V2 

K (I - n-v) 
v2 

L- V) 
(642) 

4.2. Antiparticle Loop. The antiparticle loop contribution to the for- 

ward scattering is represented by 
-F+ in (599): 

(P) = 
ZC2 Md3pd3kd3 qTn d 4Xd4XIO(t 

_ t1) 
hpo 

f 
(27h)32k(27)3 (27h)3qo 

x (pl, xl) ýyl` 410 (q, x') ýD, 3 (q, x) -y" 4P, (p, X)e-ik. 
(x-x') (599) 

The spinor and electromagnetic mode functions can be expanded to give 

x')ýý'IP3(q, x/)T (q, 

(p', t') -/ t't,, 3 (q. t') I t3 (q, t) u, (p. t) 

-ip 1. xi - zq-xl zq. xip. x -ik-(x-x') cec (643) 
1) q 

71i)663 The spatial integrals produce the delta functions (2 1 (p+q+K)6'(p-p'). 

Integniting over p' we write the antiparticle loop contribution in analogy to 
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the particle loop as 

(p) Z e2 md3p1d3kd3 qm 4X(lIXio(t 
_ ti) 

hpo 
1 

(21rh)32k(27r) 3 (27rh)3q0 

( *(t 1) oq (t)op (t)e-ik(t-t) t') Oq 

where the antiparticle loop semiclassical spinor combination is defined as" 

S+ = ii,, (p', t')-y4v, 3(q, t)VO(q, t)-y,, u,, (p, t). (64 15 ) 

As we did for the particle loop, we use the spinor identities from the appendix 
to obtain an expression for S+. We shall also use the same time variable 
transformation 

t=h 71 (646) 
2 

t' =+h 71, (647) 
2 

and expand in terms of h. It is important to note the two differences between 

S+ and S- Firstly, and most obviously, is the presence of the antiparticle 
(negative energy) spinors as the inner spinors forming the loop part. Further 

to this we note that the order of the time variables is reversed. The time order 

reversal is, in terms of the (t-, 71) variables, simply the transformation 77 - -71. 
Consequently, from the inner spinors we obtain, to order h 

, -y , q+ -mh5 (q, (q, t) =: -y -4+x q+ 2m 4mEq2+ 4mEq+ 

) 

ih 
+- 

h7l O'ý q+, (648) 
4 Eq2,4 Eq, 

) 

where we recall the definitions q+ =q+ V(t) and E, 
+ 

-+rii2. Thus 

with the contracted gamma matrices, 

ýyjl i ,, 
(q, t) (, ' (q. t) 74 2-h -1 5 -ý x q+. 

M 2mEq2+ 2oiE,,, 

(649) 

12NN'(, also use analogous terminology to that for S- to refer to the inner and outer 

spinors. In this case, the inner spinors are the anti-particle spinors. 
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The antiparticle loop contribution is thus written 

17-1 

S+ - 

(p, t, ) (p, t) 
Eq+ q+ 

_t 7ou (p, t)] 
- 

(p, + -2 R [if. (P. t')-y U. (P. t)] 
mm 

hi hq [iia (A t) -y'-y -x q+ U, (p, t) 2mEq2+ 2mEq+ 

) 

Substituting in the outer spinor identities (being careful with the Tj signs), we 

have 

h ihq) 0xP Eq+ [Lp] 

S+ = -2 1-( 
2mEp 2m Ep m tO 

+ q+ h ihqý x pp 
x P- 

Epý 

mm 2mEp 2m) ýEp(Ep 
+ m) 

+ 
Ep + 

h ih77 f). 4+ xq+ý-f) +x q+ + 2mEq2+ 2mEq+ m(Ep + m) 

-2- 
q+. P+( h+ iliq x p- 

, 1112 Tn Ep n? Ep 

h ih7l x p- p- - q-+ + q+ -ýx 
Epp 

21,12EP 2M2 Ep(Ep +, m) Ep +m 

h ihTj f) - q+ x q+ f) 
+x q+ + (651) 

( 

2mEq2+ 2mEq+ m (Ep + m) 

The integrand of T+ is under both K and q integrals, but this time the delta 

function present is 6(p +q+ K). We thus change the variables of integration 

N'M 

q --ý -q (052) 

(653) 
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We then have the following relations: 

d3q -+ d3q 

q+ --ý -q 
Eq+ 

--4Eq 

d3Kd3K 

q+ -q 

K K., 

175 

(6.54) 

along with the new delta function P(p -q- K), which is now the same a. s 
for S-. Labelling S+ under this transformation by S+, we have 

=S -2- 
EqEp q. p+( h+ ihq f) xp 

+I M2 M2 mEp Tn Ep 

+( 
h ihil fi x pp Epo 

2Tn2Ep 2M2 Ep (Ep + m) 
x 

Ep + 

h ihi7 p- -qx 4xq+ (655) 
2mEq2 2mEq m(Ep + m) 

For scalar semiclassical terms, we noteO-q 
(t) 

- 
Oq (t) 

. Hence 

0*1 (ti) 0* (t1) Oq (t) Op (t) ' Op*, (ti) 0* (ti) Oq (t) Op (t) 
- (656) 

q 

For this scalar combination, we recall that 

0 

0 
it 

OP M po 
exp Ep (t') dt' (657) 

Ep (t) h0 

and so we can write 

*11 K(t-ti)Ih * (t ) Oq (t) Op (t) ei 0; 
1 
(t ) Oq 

, 7/2 
lop(012 10q(O 12 exp i (Ep(f + ho + Eq(f + ho + K) d( (658) 

1/2 

Again, we can change the variable to help with the integration over q and 

define 

(Ep (t) + Eq (t) + K) 3- 
77/2 

(Ep (t + ho + Eq (t + ho + K) d(. (659) 
-17/2 

As we recall from the scalar antiparticle loop, which used the same variable 

change ýA this point, there is no infrared divergence problem resulting from 

the ý integration. so the previous manipulations. including consideration of 
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the higher order terms, are not needed here. The equations for 77 and d77 were 
given in the scalar work as 

I Ep (t) + Eq(t) h2o2 + O(h 4o4) 3. (451) 24 Ep(t) + Eq(t) +K 

and 

d7l 
1 Ep (t) + Eq (t)_ 

jj202 + (9 (h404 dO. (452) 
8 Ep(t) + Eq(t) +K 

In this case we can ignore the higher order h' terms. 

Using the above, and changing notation t --ý t, we write F+ as 

ie 2m d'k d'qrn (P) 
Po 2k(27r)3 . (27rh)3qo dtdOO (-, 3) (27h) 363 (p 

q- K) 

X [S+, ] lop(012 1 Oq (0 12 exp [i (Ep + Eq+ K) 0] (660) 

As with the particle spinor combination, we produce an 'effective' version of 
S+' under the delta function. The previous argument relating to the preferred 

direction of the axis for the K integration is still valid and thus we use the 

transformation 

I- 
K 

(661) 
P2 
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along with q= p- - Proceeding as such, and recalling that Nve now have 77 -3 

we have 

S'eff = -2 - 
EqEp K fp) 

+(h 7U) pXp 
+ M2 m2 p2 mEp Tn Ep 

h ihO pX P- f) 2p Epp 

2m 2EP 2M2 Ep (Ep + Tn) 
p Ep + 

xK-ý 
p2 

+h 
ihý3 

p+p-px 
q+ý -pK- fi 

2mEq2 2mEq m(Ep + m) p2 

-2- 
EqEp P-P 

I- 
K-fi) 

+h 
ihO) f) x P- 

m2 M2 p2 mEp m Ep 

h 
_ihOýý -mK- 

fi) 
2Tn2 Ep 2Tn2 

pxp Ep fp 2 

+( 
h ihO K- f) 

2TnEq2 - 2TnEq 
ý-fixp- 1- (662) ,( 

fý2 

Hence 

S'eff (t, 3) 
Eq Ep pIph f) xp + -2 -m22+2+12 m 2m EPI Eql 

tho -I ý-Pxp-+ 
? M, Ep Eq 

K fi2 hI ihO II 
+ 

fj2 2+ 
lp p 

IM 

2m EP2 Eq2 2m Ep Eq 

(663) 

Returning to the expression for F+, we recall that I Oq (t) 12 
= qolEq+ O(h 2) 

and integrate out the delta function to produce 

iC2,112 
dt 

d'K 
_ d, 31 Op (o 120(_O) 

r, 2 Po 

J 

(27r)32KEq 

s'eff xI+ (t. 3)] exp [i (Ep + Eq+ K) (664) 

where Nve have changed the variable from k to K in the measure 
13 

and we (, an 

now consider the definition of Eq to be Eq 
=: 

ýFp 
- Ký + tjj2. Integrating 

13 thus acquiring an j1h2 prefactor. 
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over using the convergence factor, as in the particle loop case in (623). we 
find 

Orn 2 d'K h+ 
t 

(f6'O + f6l) I hf+ 
T+ (P 

h2 d+ 
-) 2 PO (2ff)32KEq (Ep + Eq + K) (Ep + Eq +A 

with 

f= 
-2 - 

EqEp K- 
(666) 0+0 

m2 M2 ý2 

f 1+ 
1- [( I)+K 

0= 1ý XP-+ 661 
2m E2 E2 fp 2 E2 E2 

PqPq 

K 
f+ f+ (668) xP 

I- (Ep 
Eq p2 Ep - Eq 11 2m 

As a recap, the contributions to the real part of the forward scattering 

are the leading and first order h terms from both the particle and antiparticle 
loops as given in (624) and (665). The higher order contributions from (624) 

do not contribute to the real part to order h-'. As with the scalar case, 

we now renormalise the mass and calculate the contribution from the mass 

counterterm towards the renormalised forward scattering. 

4.3. Mass renormalisation. The contribution to the forward scattering 

due to the renormalisation with the mass counterterm 6m is given by 

6, F ="Ij dt I op (t) 12 iia (p) 6Tnu,, (p) (669) 
hpo 

where the mass counter term itself is given by 

6m = E(P)10=MP ý 
(670) 

and we define 

601, = Fl,, (P)E(P)jp=,, tlo(p) - 
(671) 

The self energy E(p) (not to be confused with the term E(t) used for the 

spinors), is calculated for the fermions in the absence of the potential and 

represents the loop given by the fermion and photon. The outer spinors found 

in bc' however are the semiclassical spinors used in the presence of the classical 
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non- pert urbat ive potential. To obtain the mass counterterm the self-enero-Y is 

evaluated on the mass shell, i. e. with p= p(t) and P= mp. We recall that the 

counterterm is thus independent of the momentum. Hence 6ni is calculated 

using the standard QED without the external potential, but 6tof depends 

on V(t) through the time-dependent momenta of the spinors u,. Using the 

Feynman rules for the free field, we have 

dK 
ýyp 

I 
(2-F)4K2 +M0-, W - rn + 'E 

ze 
2d4K 

h (27r)4ýy (K2 + ZE) ((p - 
K)2 

- M2 + IC) 
IP 

ze 2d4K 
-2(p -+ 4m 

h (27)4 (K2 +j6) ((p - 
K)2 

- M2 + 16) 

(672) 

which is taken to be evaluated in the limit c --ý 0+. We shall complete the 

ko portion of the integration by complex contour integration. Let us define 

w= Vlp-K12 + M2 and rewrite the denominator as 

(Ko - IKI + Z6) (Ko + IKI - 26) (Ko - po +w- Z6) (Ko - po -w- Z6), 

with the limit 6 -* 0+. The poles in the upper half plane are 

Ko = -IKI + Z6; Ko = po -w+ 16. 

(673) 

(674) 

Enclosing these poles by the contour (anticlockwise) the residue theorem gives 

us 

E(P) 
I. C9 d3K -2(p -, W) + 4m 

h 
(27T i 

(27)4 (Ko - IKI + i6) ((Po _ 
KO)2 - W2 + 1'e) 

ix-o=-IKI+i6 

-2(p - Ik) + 4m 
12 + *6) (Ko p h'02- IK 10- 16) 

Ko=po-,,; +i6_ 
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Making the substitutions for KO, defining K= IKI. and taking the appropriate 
limits, we obtain 

e2jd3K 
E(P) =- h (27r)3 

4m - 2-/' (po + K) + 2-y (p - K) 4m - 2-/, ', -ý + 2-y - (p - K) 
)2 

+- 
(-2K) ((po +K Lj2) 

((Po 
_ L'ý)2 - 

K2) 

e23 
--f 4m + h (27r)3 )2 

- Lj2) (po 
_ W)2 2) 

_2K 
((po +K 2Lj K2) 

-2-yo 
po +K+ UY 

_2K 
((po +K )2 

- Lj2) 2w ((Po 
_ LJ)2 - 

K2) 

+2-y - (p - K) 
)2 

- W2) 
+ -((Po 

_2K 
((po +K 2w W)2 - 1ý'2) 

(676) 

At this point, we make a short aside to note the following 

12 

-- -- -I11 (677) 
(po + K) W2 2w 

(po-w+K 

po+w+K) 

(po 
I-II-1 (678) 

_ W)2 -K2 2K 
(po-w-K 

po-w+K) 

po +K-, (+ 
(679) 

((po + K)2 
- W2 2 po-w+K po+w+K 

Using these expansions, we can now write 

c2 (P) =--13m 
h (27)32Kc, 

-ý 
[2 [II] ýYow + 

po -w-K po +,, u +Km po-w-K po+w+Kl 

+ 
(p K) 11 (680) 

III 

[po-Lc-K-p, 

o+w+K]] - 

EvýiliiAing the self-energy on the mass shell using the particle (as opposed to 

ýuitiparticle) momentum ]ý =p- V(t), Nve have po Ep(t) and , -, ---ý Eq(t)- 

As with the scAar counterterm, the mass shell iises the physical mass riip. 

however given that the counterterm is again of order e'. for our calculations 
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we may use m and there is no difference in the result at this order. Thus, with 
some rearrangement, 

d'Km 2- K) -y 
hf (27)3 

[2 
2KEq Ep - Eq- Km 

2- 
Eq-10 (fi - K) 

(681) Ep + Eq+K 
[- 

mm 

Adding the semiclassical outer spinors, with the momentum ý. the (time- 

dependent) mass counter term is 

6mt 

uce 

u, ý 
c21d3 Km 
h (27r) 32KEq 

1 Eq 
[ü"(p)_Ygu"(p)] + 

(p - K) 
Ep - 

Eq 
-K 

[2[ü�, 
(p)u�(p)] -mm 

I (fi - K) 
(P) '[u,, (p)-ýou,, (p)] - _ý I (p), 2[ii, (p)u,, (p)] -L cl t0 Ep + Eq+ Km Tn 

11 

(682) 

Using the first order identities we have 

e2d3 Km 6mt -- - h (27T)32KEq 

121h ý-fixp Eq Ep 
2 Ep - Eq-K 2m Ep mm 

K) fi h0x pp~ Epo 
++xp 

III m 2mEp 

( 

Ep (Ep + m) Ep +m 

+1 -2 1h 
ý-Oxpf Eq Ep 

2 
p Ep + Eq+ K 2m Emm 

K) e-iý x pp Epfi_ 
+xp 

IN 

(M 

2mEp 

( 

Ep (Ep + 117) EI, + in 

»)- 1 

We again make use of the s. viiiiiietry present and choose the axis for integration 

along the direction ]ý thus transforming K --ý (K 0/02) p. Simplifying. Nve PP1n 
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obtain 

e2d3 Km ämt 
h1 (27r)32KEq 

fi2 
2 

Eq Ep h p- >(p- 
222 mm 2m Ep 

x Ep - 
Eq 

-K 

K-P f) 2h ý-pf xp-- 
f) 2 M2 2m EP2 

EqEp f)2 h ý-p xp K- f) ý2 h ý-Pxji 
-2 ++-+ 222 f) 2 rn2 mm 2m Ep 2m EP2 

Ep + Eq+K 

The mass counter term contribution to the forward scattering is therefore 

e2mf 
dt 

d'Km_lop(t)12 

Po li2 (27r)32KEq 

18. ) 

(684) 

p2 p2 h 
2 

EqEp h ý-]ýxP K-+ 
Tn2 Tn2 02 22 2m EP2 m 2m Ep 

1 

Ep - 
Eq 

-K 

ý2 

+ -2 
Eq Ep 

+hx 
f) 

+ 
K-p p- 

-4 
h 

222 fj2 M2 m nl 2m Ep 2m EP2 

I 

Ep + Eq + A: 
(685) 

This counter term contribution is to be added to the leading and first order 

loop contributions to the forward scattering from (624) and (665). These Owo 
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contributions can be written 

e2m d'KTn 2 

. F- dt 
(27)22 

lop MI 
poh2 

f 

'KEq 
[2 

-+hx P- + 2222 mm 2m Ep Eq 

K2h 
+ ý-Pxp- --- fp 2 Tn2 22 2m EPI Eqý (Ep - 

Eq- K) 
h1)+ K-fi (II 

2m 
P- 

p2 
+ 

(E E- K)2 Ep Eq Ep Eq 
pq 

(686) 

and 

T+ 
-e2m dt 

d'Km 
I op (t) 12 

poh2 (27)22KEq 

x 
[-2 EqEp P-P 

22+2+2 m III 2m Ep Eqý 

K-P fi2 h*I 
+ -+ p --- f) 2 Tn2 22 2m 

(Ep 
E (Ep + Eq+ K) 

iq ))II 

+hxI)+K-III 2m p 
[(Ep 

+ Eq p2 Ep - Eq (Ep + Eq+ K)2 

(68 70 

where we have reordered the terms and for F- brought the overall minus 

sign inside the integrand. Comparison between the mass counter term and 

the loops terms shows that the counter term cancels some, but not all of 

the loop contributions. Rom the derivation of the mass counter term it is 

notable that those terms coming from the time split are not present (as the 

self-energy is calculated at a particular time - note for the -free' field, i. e. 

without the potential, the momentum at different times is the same in the 

absence of a further interaction). Additionally, the first order corrections to 

the inner spinors of the loop are also not, present - the first order correction 

to the spinor is due to the presence of the time-dependent potential. Adding 

T_ + T+ +T+ F` we find the renornialised forward scattering contribution 



4. FORWARD SCATTERYNG 184 

is 

, FR (P) = 
e2 mj dtd'Km (t) 12 hpx 

poh2 (27r)32KEq 2m 

xIIII- 
K-P) 

Eq2 

(Ep 

+ Eq +K Ep - Eq-K) p2 
II-I)+(I+ 

(Ep 
- 

Eq- K)2 Ep Eq (Ep + Eq+ K) 2 Ep Eq 

+K-2p )2 
+I)+1 

)2 

(II 

p (Ep 
- 

Eq 
-K 

(Ep 

Eq (Ep + Eq +K 
-Ep - -E, 

(688) 

where we have dropped the tilde notation on the p due to the fact that all 

the energy-momenta in the integrand are now the time-dependent element,, 

of (Ep, p- V(t)). This contribution was not present in the scalar quantuin 

position shift. We can regard this term as a 'correction' term leading to an 

additional contribution to the position shift when compared with either the 

scalar case or the classical case. As such, the term is in need of interpretation. 

Before doing so, however, further calculation and simplification of j7R will be 

useful. 

4.3.1. Integration and stmplification. Let us define 
-TK as the K integrA 

part of the correction, viz 

), 7R (P) -em dt I Op (t) 12 hPX 
IýIK (689) 

poh2 

I 

2m 

with 
d3KK. p) IK 

2 (27r)321K1Eq Eq2 Ep + Eq+ IKI Ep - Eq- IKI 

111)+i(i+ 
(Ep - Eq- IK 1)2 

( 

Ep Eq (Ep + Eq+JK 1)2 Ep Eq 

K. p 11 
2 )2 Ep Eq (Ep + Eq+ IKI )2 Ei, Eq +p 

(Ep - Eq-IKI 

1 

(690) 

The reader mav notice that Nve have returned to the original not, ation JKý for 

the modulus of the 3-,, -(, (-tor. The reason for this is to prevent confusion in the 
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following calculation in which we shall need the 4-vector K. In order to help 

with the calculation IK, let us look at the result of the KO integration of the 
following two 4-dimensional integrals over K: 

IA d4K Ko 
(27)4i iE) ((K - p)2 - M2 +2 (K2 + 

d4K Ko 
(691) (27r)4i (K2 + ZE)2 ((K- p)2 - M2 +I 

with the limit 6 ---> 0+. To clarify the previous comment on the notation. we 

confirm that K' = K4K,, here and for the remainder of this section. 
Firstly, for 

-TA, we note that the denominator is 

12 + ZE) 22+2 (KO2-IK ((Ko 
- Ep) _I K_ P12 -m 

12 + -E) ((K 
_E 

)2 
-E2+ ZE) 

2 (KO2- IK 20pq 

(Ko + IKI - i6)(Ko - IKI + i6)(Ko - Ep - 
Eq +I -6)2(K 0_Ep+Eq_1 -6)2 

(692) 

with the limit 6 --ý 0+. The poles in the upper half plane are 

Ko = -IKI +Z6, 

Ko = Ep - Eq+ 16) (693) 

where the second pole is second order. The residue for the singularity at 

Ko = -I KI+ Z6, in the 6 --ý 0+ limit, is 
11 

(694) 
2 (Ep + Eq+ IKI)2(Ep 

- 
Eq + IKI )2 

and the residue at Ko = Ep - 
Eq + 16 is 

I EP3- 4Ep2Eq+ 5EpEq2- 2Eq3- IK 12EP 

(695) 
4 Eq3(Ep - Eq+ IKI )2(Ep 

- 
Eq 

- 
IKI)2 

The sum of the residues, after some rearranging, gives 

Ep + Eq 
+ 

Ep - Eq 

2 
_E)2E2 81K1 (Eq+ EI, + JKJ)2Eq (IKI + Eq pq 

+ 
Ep 

-+ 
Ep 

(696) 
(IKI + Eq - Ep)Eq3 (IKI + Eq + EJE, ', ll - 
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Consequently, the KO integration of IA gives 

IA d3K Ep + Eq Ep - 
Eq 

-. ý? (IKI + Eq 
- 

Ep)2E2 (27r)381KI (Eq + Ep + JKJ)2), ý2 + 

qq 

+ 
Ep 

+ 
Ep 

3 
(697) 

(IKI + Eq 
- Ep) Eq3 (IKI + Eq + Ep) Eý'] - 

Secondly, we analogously consider -TB. 
The denominator gives 

(KO + IKI - zö)2(KO _ IKI + zö) 
2 (KO 

- Ep - Eq + Z6)(KO - Ep + Eq - 1»6). 

(698) 

The poles in the upper half plane are again 

Ko = -IKI + Z6, 

Ko = Ep - 
Eq + i6l (699) 

where this time the first pole is second order. For this integrand, the residue 

at Ko = -I KI+ Z6, in the 6 ---ý 0+ limit, is 

I Ep + IKI 

2 IKI(Ep + Eq + IKI )2(Ep 
- 

Eq + IKI )2 

and the residue at Ko = Ep - 
Eq + Z6 is 

I Ep - 
Eq 

2 Eq(Ep - 
Eq+ IK 1)2(Ep 

- 
Eq 

- IKI )2 

The sum of the residues rearranges to produce 

)2 81KIEq (Ep + Eq+ IKI 

The KO integration of IB thus gives 

11 

(Ep 

IB 
=- 

1 
(2, T)381KIE� (EI, + Eq + JKJ)2 

Eq- IKI )2] * 

1 

1) 2 (Ep - Ej - IK 

(700) 

(701) 

(702) 

(703) 
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We now return to the correction integral. Expanding and rearranging IK 
leads to the following 

IK d3KI( Ep 
+ 

Ep 
_) (27r)3 21KI EpEq3 Ep + Eq+ IKI IKI+Eq - Ep 

+ 
Ep - 

Eq 

+ 
Ep + Eq 

)2 Eq2EP (Ep - 
Eq 

- IKI) (Ep + Eq+ IKI 
K. P[ I( Ep 

+ 
Ep 

_) p Ep Eq' Ep + Eq+ IKI IKI+Eq- Ep 

+ 
Ep + Eq 

+ 
Ep - 

Eq 

(Ep - 
Eq- IK 1)2Eq2EP (Ep + Eq+ IK 1)2Eq2EI) 

4d3KI( Ep 
+ 

Ep 
Ep (27)381KI Eq3 Ep + Eq+ IKI IKI+Eq - Ep) 

+- 
Ep - 

Eq 
+ 

Ep + Eq 

2 1)2 2 (Ep - 
Eq- lKj)ýEqý (Ep + Eq+ IK Eqý 

KpI Ep 
+ 

Ep 
_) p Eq3 Ep + Eq+ IKI IKI+Eq - Ep 

+ 
Ep - 

Eq 

+ 
Ep + Eq 

1)2E2 )2 2 (Ep - 
Eq- IK q 

(Ep + Eq+ IKI Eqý 

+ 
2Eq 2Eq 

(704) 
(Ep - 

Eq- IKI )2E2 (Ep + Eq+ IK 1)2E2 
qq 

Using the above results for 
-TA and -TB, we see that we can rewrite -TK 

in 

terms of the 4 dimensional integrals: 

IK 
4jd 4K Ko 

Ep (27)4 1, (K2 + ((K - p)2 - nj2 + 1 

+ 
4pi (14 K KoKi 

E p2 (27F)41' (K2 +- p)2 - tjj2 + p ((K 

+ (Spi A-()Ki 

iEp p2 (2,7)41 (K2 + 1'ý-)2 ((K- p) 2- tjj 2+ 
(705) 
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Let us now define the following 4-dimensional integrals (in Minkowski 

space): 

d4K 
(27r)4Z 

1(2) d4K 
ktv (27T)4Z 

_T(3) 
dK 

v 41, (27)41 

We then obtain 

K2 + 'E) - 
Kt, 

(706) ((K- p)2 - M2 + ? ';: -)2 

K2 + 

K4K, 
(707) 

7ý7)((K- p)2 - M2 +2 

K2 + 

KjK, 

- Tn2 + ZE) 2((K - p)2 

4+A 

_T(3) 
IK =- 0i (709) Ep 0p2 01 +2 , 

We now proceed to calculate these 4-dimensional integrals. We start by 

noting the following identities, which we shall use in the calculation: 
I, 

dy 
2y 

(710) 
ab2 0 y)a + yb)3 

00 Xp-I tt)r(p) 

-dx a"-'- for positive a (711) 
0 (x + ce) IF (V) 

We shall also make use of the following time-coordinate rotation from integra- 
tion in Minkowski K space to Euclidean KE space: 

K4 
-lKo, (712) 

K2 -(K 
2+ K22+ K32+ K42)=-K 2 (713) 1E 

d 4KE d3K dK4= -Zd 
4K (1-14) 

For D-dimensional Euclidean coordinates, the integration of a function which 

is only dependent, on the radial coordinate of the hyperspherical polar coordi- 

na, tes can be written 

d'xf (r) di, 
27 D12 

r D-If (r) d(r 2) 7D/2 (1,2)D12-If (715) 
F(D / 2) IF(D12) 

In 4 dimensions, this becomes 

27 2 
3f (,, ) = 1,2), (h. F (2) rfd( '721,2f 
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4.3-2. First integral. 

-TO) 
d'K Km 

(27r)4Z (K2+ i*-;: -) ((K - P) 2M2+I,;: - )2 

d4K 2yKt, 
(27r)4Z 

0 
dy 

y)(K2-+ ZE)+ y((K- p)2 - "12 + . ý:, )]3 

J'dy jd4K 

n 
(27)4Z 

y 
2yKm 

[K2 - yK2 + (I - y)iE+ yK2 + yp2 - 2yK -p- ytl? 2 + yl, ý-] 
3 

f'dy fd4K- 2yKm 
n 

(27T)4i [K2- 2yK. p+ y(p2 Tn2) + ZE] 
3 

dy 
fd4K 

-- 
2yKj, 

- 7 4' 2Z ]3 n 
(27r) z [K 

- 2yK -p+ 'E 

Let 

Kp = Ki, - ypt,. 

Then we have 

d4K=d 4K 
, 

and 

K2_y2p2=K2+y2p2- 2yK .p_ y2P2 

K2- 2yK -p. 

Thus we can change variables to produce 

dy2y 
d'K KI, + ypi, 

(27r)41' [r2 22+ 0, -yp 

Using p2=M2, changing notation from K --* K, we have 

189 

(717) 

(718) 

(719) 

(720) 

(721) 

-T(1) =1 dy2y 
fd4K Kj, + ypt, (722) (27r)4z [K2 - y21112 + ;., ]3 

0 

The term proportional to IA:,, in the numerator is odd and integrates to zero, 

Nve thus have 

-T(l) = dy2y 2 
pp 

f (11 Iý- 1 (723) 
0 

(2T, -)41' [Jý: 2 
- y2jj? 2 + c]3 I- 
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Rotating the time coordinate to produce 4-d Euclidean space. Nve find: 

I 
dy2y 2 

pp 
d4 KE I(I 

0 
(27r)4 [K 2+ y2M2]3 

-24) 
E 

where we have taken the limit E 0+ as the integral converges. Note the 

overall minus sign and consequent rearrangement of the denominator of the 
integrand. Using 4-dimensional hyperspherical polar coordinates, we have: 

It(") =-J dy2 y2pM 
" d(KE2) 72KE2 

(725) 
o1 

10 
(27T)4 [KE2 + y2M2]3 * 

Using (711), with p=2 and v=3, to perform the K2 integral, Nve obtain E 

J1 
dy2 y2ptj 

7F2 IF(I)F(2) 

0n 
(27T)4y2Tn2 F (3) 

7r 2 PA 
I 

dy y2 
(27r)4, rn2 0y2 

72 Pm 
(726) (27r)4Tn2 

4.3.3. Second Integral. The second integral follows the same method as the 

first: 

(2) d4K 
[IV (27T)4i (Kl+ ZE) 

dKf 
dy- (27r) 41 

n RI 

dy 
fdK 

7T)4' 0 (2 z [K2 

dy 
dK 

o 
(27T )4 z [K2 

KI, K, 
(K - p)2 - M2 + ZE)2 

2yKt, K, 

- y)(K2 + ZE) + y((K - p)2 M2 + 10]3 

2yKj, K, 

- 2yK -p+ y(p2 - M2) + 1, F]3 

2yKt, K, 

-2yK. p+zE] 3 

We again use the change of variables given by 

and 

Kp - Kj, - ypi,, 

d4K= (j4 KI 

(7271) 

( 71 2,,, 'ý ) 

K2_y2p2 =K2 - 2yK - p. (729) 
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to obtain 

_T(2) v dy2y 
01,0 

1 d'K (K,, + ? IP,, ) (h-,, + UD,, ) 

2ý- y2M2 + _]3 
(27r)4 ' [K2 

Z. 

191 

(730) 

We change the notation as r, ---+ K and expand the numerator. Those terms 

proportional to K,, or K, odd functions of K,, and K, and integrate to zero. 
The term proportional to K,, K, is an odd function when 1-t =ý v. which is the 

case that we require. Thus for the p= 0, v=i elements, we have 

_T, 
(2) dy2y 3EPpi dK 

(731) oi 
Jo 

(27)4Z [K2 -y 
2M2 +I*, -] 

3 

The K integral can be recognised as the same as that in I(') in (723), thus Nve A 
have 

_T(2) __ dy2y 3 Eppi 
7 IF (1) F (2) 

oi 
Jo 

(27)4y2Tn2 IF (3) 

7T 2EPp, 1 
dy y3 

(27r)4M2 

fo 

y2 

--1 
7F 2 Eppi 

(732) 
2 (27r)4rn2 * 

4.3.4. Third Integral. For the third integral we proceed using the same 

method as before, but note the change in the denominator (and thus the K 

integral) from the previous cases. We have 

_T(3) pV 

=i 

d4K KjK, 
(27)41 (K2 + ZE)2((K- p)2 - ra2 + ZE) 

d4K*1 
dy 

2yK,, K, 
(27)4Z 

0 [y(K2 +, 'F) + (I - y) ((K - 
d4K 

dy 
2yKjK, 

.p+ iE]3 (27)1 i0 [K2 -(I - y)2K 
This time we change variables using 

and 

= K, - (1 Y)PL, 

p)2 - M2 + 

(733) 

(734) 

tý; t2 
_ 

(I 
_ ! 1)2p2 = Jý, -2 

- (I - y)2K - I) - 
(735) 
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Thus we have 
d4 Kf 

(KI + Y)Pp) (K 

_T(3) 
MV+ Y)P, ) 

V : --": 
JO 

dy2y 
j 

(27r)4' 3 (736) W, z [K /2 y)2p2 + 1'ý: - 
I 

The current situation is analogous to the calculation for IT, 
(2) 

. After changing 

the notation as K/ --- * K, we can again remove the terms proportional to A-P 

and K,. Similarly, we again require only the tt = 0, vi terms, and thus can 

also remove the KoKi term. The remainder gives 
(3) d4K 

-TO, i= 
10 

dy2y(I _ Y)2E Ppi 

I 

(27r)4Z [K2 - 
(I 

- y)2M2 + I'd3 
(737) 

Rotating the Ko coordinate, we produce 

_T(3) dy2y(I _ Y)2EPi 
(1 4 KE I 

0i 
J0 

Pj (27)4Z [K 2+ (I 
- y)2tn2 

3 
E 

d(K )2 7T 2K2 

dy2y(I _ Y)2E P Pi 
E2E 

0E 0 
(27T) 4 [K y)2M2 

3 

J 
dy2y(I _ Y)2E P Pi 

F(I) 1'(2) 

nI 
(27r)4(l y)2M2 F (3) 

7T 2EPp, 
dyy (27)4rn2 

fo 

I 7F 2 Eppi (738) 
2(27)4M2 

4.3.5. Evaluation. Collecting together the results, we have 

-T, 
(, ) 
0 

7T 2EP 

( F2-7 )4Tn2 

_T, 
(2) 

oi - 
I12 Eppi 

2(27 )4, M2 

1'(3) - oi - 

1-72 Eppi (739) 
2 (27r)4M2 

We recall that 
4+P (2) (3) I+2 _To 

40) IK 
Ep 0p2 oi i 

Thus 
27r 2 

(741) IK 
(27, -)41112 
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The correction term for the forward scattering is then given by 

e2m2 Idtlop(t)12 h 
j7R (p) =- -4*P >< ýI 

Po h2 2m K 

-- 
c 

dt 1 op (t) 12e. p (742) 167r2poMh 

1 

With this simplified expression, we can now proceed to consider the interpre- 

t, ation of the correction. 

4.4. Vertex correction. The external potential is regarded as classical, 
but is coupled to the spinor field via the interaction term -, "I and this ver- 
tex has an associated one-loop correction. The one-loop process thus not 

only alters the propagator, but also the interaction with the external field. 

This correction is well known and responsible for the anomalous magnetic mo- 

ment. 14 Our external potential, although considered non-perturbatively, acts 
like a minimally substituted electromagnetic external field. As such, whilst 
the one-loop corrections to the vertices for the interaction between the elec- 
tromagnetic field and the spinor field in the emission and one-loop forward 

scattering diagrams are of higher order in 0 than those with which we are 

concerned and thus ignored, the external potential V is still coupled to the 

spinor field via the term -yPV,,. We stress that this effect is simply one that the 

current one-loop forward scattering process has on the external field coupling, 

and not an additional process which we are now adding. We shall show that 

the one-loop correction to the vertex is entirely responsible for the -correction' 

tel. 111 )TR which we have found. 

As we are simply interpreting F'. and not deriving the vertex correction 

from scratch, it will be sufficient to quote some of the relevant theory. The 

1 'The anomalous magnetic moment at the one-loop level for QED , vas first derived bY 

Schwinger [36]. It is currently the most accurately tested and confirmed prediction in the 

historY of phYsics. 
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renormalised vertex is given by'5 

R (pl, P) = -yp F, (q2) +1a q'F2(q2). (743) 
p 2m P"' 

where Fj are the form factors, the evaluation of which for our circumstances 
is given shortly; p, p' are the momenta before and after the vertex and q i,,,, the 

momentum transfer p' - p. We also have orP' For the coupling of 2 

the spinor field to the external potential, 
4 

VP (X) -- 
dq4 

Vil (q) -iq. x 
1 (744) (27r 

we have 
4 

01., VP(X) q 
I'q') VO (q) e-, q*, (745) 

1 
(27)4 

The interaction of the classical potential can be regarded as taking place is, 

the so-called quasi-static limit, q --* 0 and from the above, the momentum 

transfer is replaced by the derivative operator. Consequently, the coupling 
term V)-ýpo VP changes to 

2a2)1/rp h- 202)avVp. 0-ypo F, (- h--0 (Tp,, o F2(-h (746) 
2m 

We are only interested in the lowest h order (renormalised) vertex corrections 

and it can be shown 16 that in our limit we thus obtain 

h-a- 
(', -ýpýl, Fl(0)VP--eorp, ý)F2(0)0'VP=e-ypýbVP--c ý�ý, orpveOvVP. (747) 

2m 41rm 

We recall that a, =e2 /47r and consequently, the second term of (747) gives 

our correction term as a result of including the renormalised vertex: 
2 

1672M pvý, /" 
a' VP. ( 748) 

It is this correction term in which we are interested. As in the case of the 

niass counter term. Nve could regard this correction as an interaction in the 

"'See for example (7 - 54) on p340 of Itzykson and Zuber's Quantum Field Theory [24"i. 

The theorv discussed briefly here is given in more detail in [24] in p340-341 and p347 in 

particular. 
16This calculation is performed in the referenced pages in [241 in the previous footnote. 
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Lagrangian producing a Feynman diagram contribution. We can then calculate 
the contribution of this term towards the forward scattering. 17 

Now, our external potential has only space components and they are onlY 
dependent on time t. The term (748) can thus be rewritten as 

e2e2 
1672M 

V)O'kOO Vk OkOV Pk 
1672M 

I Using the definition aP' =2 IyP, ýy`], we find that this term is equal to 

- ze 
1672M p 

(749) 

(750) 

If we continue analogously to the calculation of the contribution of the counter 

term, then the contribution from this vertex correction term towards the for- 

ward scattering amplitude, Fvtx, can be written 

d3p, 7n Id 4Xýo I b, (p') ic 2pC, 

. Fvtx (P) 
h (27h)3 po 167r2M 

bý (p) 10) 

2 
ze dt I op (t) 12 [U 

a (P), -ýUt: t (P) p (751) 
167r 2hpo 

f 

All momenta in the integrand are the time dependent P= (Ep, p- V(t)) and 

so we drop the tilde notation-" The spinor combination in the integrand of 

17This interaction term is part of the forward-scattering already considered. We aim 
R 

here to show that it is this part which is solely responsible for T 
"ýThis change of notation, performed for the purpose of simplicitY and legibilit. y. Nvas 

also enacted in the main forward scattering calculation at a similar point and is thus also 

needed here for the purposes of comparison. 
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this equation can be straightforwardly calculated as follows: 

lua (P) -m, (P) I- 
1ý 

Ep +m 
st st 

a-p0 Uk so, 
.A 

2m ce 'Ep + m) -Ok 0- 
cr -p 

)( 

Ep +m 
1. 

st 
[Ok 

1 orj] Scepjýk 
2m 

nkj tnk 
= -c sa or s C, ý 

m 
nkj'ýnpj . ýk 

m 

752) (p x (I 

where E, kj is the usual Levi-Civita antisymmetric symbol. Substituting (752) 

in to (751) we find 

J, vt. 
(P) --e dt I op (t) 12 (p X (753) 

1672/iMpo 

f 

Comparison with (742) shows that 

-17, 
(P) = -Fvt. 

(P) 
- 

(754) 

We can consequently deduce that the correction to the forward scattering and 

thus the subsequent correction to the position shift are due to the renormalised 

one-loop vertex correction. Finally, we conclude that the quantum position 

shift for the spinor field in the h ---> 0 limit is given by 

0 
dt - 

ID 
Oxi 

+e2 OP dt I Op (t) 12 (p X (755) 
00 

FLJ 
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CHAPTER 7 

Summary and Conclusion 

In this chapter we summarize the work which has been pre- 

sented and discuss the results of our investigations. We also 
discuss possible avenues for future research on this topic. 

In this work we have investigated the effects of radiation reaction in clas- 

sical and quantum electrodynamics on the position of a particle. We defined 

the position shift to be the change in position due to the effects of radiation 

reaction and calculated this quantity for the theories with which we were in- 

terested. The equations of motion are a fundamental part of any theory, and 
the observation of dynamics is likewise fundamental to our ability to discern 

between rival theories and question our understanding. The reader may re- 

call from the introduction, that the phenomenon of radiation reaction alters 

the usual equations of motion and consequently an understanding of radiation 

reaction and its effects lies at the heart of accurately understanding dynam- 

ics. One could regard the predicted position, or predicted position expectation 

value in order to fully include quantum theories, as one of the most important 

predictions of a, theory. The change in this prediction after the addition of a 

new phenomenon, is consequently a sensible choice of measure to use in order 

to help understand our theoretical models. 

The classical theory of radiation reaction is not without its problems. 

both in implementation and especially in interpretation. As we previoiislY 

explained, most of these problems are related to the third order nature of the 

resulting equations of motion. It has been these difficulties. along with the re- 

cent renewed interest and progress on radiation reaction in curved space. that 

liýive motivýited this work. Our aim has been to look at the effects of radia- 

tion reaction in classical elect rod, viiýi inics and to compare the results Nvith the 
197 
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predictions of the so-called classical limit of the more fundamental quantum 
field theory. A knowledge of the similarities and differences between the two 

approaches to radiation reaction, and in turn the similarities and differences 

in the results of our investigations will hopefully aid a fuller understanding of 
how this phenomenon can be interpreted within our theoretical models. GiVen 

the debate about the classical theory and its interpretation, the natural ques- 
tion is whether the predictions of the quantum theory, in the classical limit. 

are the same as those of classical elect ro dynamics. This is one of the main 

questions that we sought to answer in this work. 
Our model consisted of a particle interacting with an external potential 

for some finite period of time in the past of our measurement. The position 

shift was defined as the change in position between a hypothetic control parti- 

cle which does not undergo radiation reaction, and a test particle which does 

include this effect. We refer the reader to the appropriate definitions of the 

models in the main chapters for the full description. The aim here is to re- 

call these descriptions to mind. In classical electro dynamics, we treated the 

Lorentz-Dirac force, the classical radiation reaction force, as a perturbation. 

This is in keeping with the reduction in order interpretations of the theory, 

with the treatment of interactions in the perturbative description of quantum 

field theory, and with the fact that the Lorentz-Dirac force is a physically small 

effect. We demonstrated in Chapter 3 that the classical position shift can be 

given by' 

6xi --0 dt i (axi) 
. 

(279) 
-00 

-FLD api 
t 

This is a fairl. v short and simple expression and suggests a more general rule 

in addition to the case of the Lorentz-Dirac force. This is indeed the case 

'The quantities and factors in the equations in this chapter are those defined in the 

main sections of this work. The equations numbers of the quoted results are the original 

equations numbers in the work. 
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and analysis of our working in Chapter 3 demonstrates that the above expre. s- 

sion can be used for the position shift of a general perturbative force 2 to a 
Hamiltonian system within our model's set-up. ' 

Before tackling the quantum theories, we calculated the semiclassical (, x- 

pansions for the scalar and spinor field in Chapter 2. This work wa, ", necessar\- 
in order to later investigate the h --> 0 limit of the quantum theories. The 

semiclassical expansions of the mode functions are dependent on the details of 
the acceleration due to the external potential and we calculated these expan- 

sions in the cases of the time-dependent (space- independent) potential. and 

only for the scalar field, in the case of the potential dependent on one of the 

spatial coordinates. These potentials were chosen due to the conditions for 

the validity of the semiclassical expansions. This chapter provided the ground 

work for our description of the quantum fields in the external potential. 
Our first investigation into the quantum effects of radiation reýwtion used 

the theory of quantum scalar elect ro dynamics. The use of the scahir field is a 

good starting point for studying the quantum effects and a useful toy model 
for elect ro dynamics, without the complications of spin which is also absent in 

the classical model. We started our investigation with the calculation of the 

position expectation value of a non-radiating scalar particle, given by 

(11. ih d'p -+ Timit) f* (p) 9p, f (p) =0 Vi = 1,2,3 (287) 
2 (271i) 3 

where we recall that f is heuristically to be regarded as the one-particle wave 

function. This then served as our control particle. We proceeded to calculate 

the position expectation value of a particle which has undergone radiation 

reaction during the period of acceleration and compared these two results'. 

To order e2, we found that there are two main processes contributing to the 

position shift. These are the emission and the forward scattering, which in 

For another force, TLD in (279) would of course need to be replaced by the equivalent 

expression for the new force. 
ý3NV(, again stress that our discussion here is -within the limitations of the model we 

defined in full in Chapter 1. 
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turn come from the one photon and zero photon final states respectively: 

6xi -i 
dk- 

A" * (p. k) Op, A,, (p, k) em 2 2k(27r)3 (325) 

6xi -h0p, kT(p), 
for (324) 

written in terms of the emission amplitude A and the forward scattering am- 

plitude F. The semiclassical expansions of the mode functions, described in 

Chapter 2 enabled us to calculate the amplitudes for these processes in the 
( classical' h -* 0 limit. For the emission amplitude we performed the calcu- 
lation in the case of a time-dependent (space-independent) external potential 

and also in the case of a potential dependent on only one of the spatial coor- 
dinates. These two cases gave the same result, namely 

A4 
+C)c dxý' 

x(ý) ei, " (360) 
f 

00 
9 

Calculation of the resulting position shift due to the emission process produced 

6xi --0 dt j (9xj (409) em 
-00 

'FLD 

( 

api 

In other words the position shift due to the emission process in the h --ý 0 

limit of quantum scalar electrodynamics is equal to the classical position shift. 
Any difference between the classical and quantum measurements would thus 

need to arise from the forward scattering effects. 

We thus proceeded to calculate the position shift due to forward scattering, 

for the case of the time-dependent potential. The forward scattering amplitude 

results from the one-loop interaction and we calculated the divergent contribu- 

tion from these effects. However, this divergence was then subsequentlY found 

to be cancelled by the contribution from the counter term due to the renor- 

malisation of the mass. These divergent expressions were both of order h-' 

and thus. from the formula shown above in (324), they would contribute at 

order h-' to the position shift. All remaining contributions from the forward 

scattering amplitude were shown to be imaginary at order h-' in F and thus 

at order ho in the position shift. The reader Nvill recall that only the real part 
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of the forward scattering amplitude is present in the position shift formula. As 

a result the position shift contribution due to forward scattering is; zero. We 

can consequently conclude that the quantum position shift for this model i, ý 

equal to the classical position shift. This would at first sight appear to imply 

that there are no differences in the treatment of radiation reaction between the 

classical and quantum theories, at least within the confines of the models and 

in the h --+ 0 limit. However, the theoretical paths along which we travelled 

for these calculations have significant differences. In order to further expand 

on the similarities and differences, we turned to an alternative. but equivalent. 

description of the radiation reaction effect based on the Green's functions of 

the electromagnetic field (Chapter 5). 

The key to the Green's function description of radiation reaction is the 

decomposition of the particle's retarded electromagnetic field into 'regular" and 

csingular' components. The retarded Green's function, G-, is decomposed into 

the regular and singular Green's functions, given respectively as 

GR =I [G- - G+] (38) 
2 

Gs =I [G- + G+] (37) 
2 

where G+ is the advanced Green's function. The singular field is regarded 

as a generalisation of the Coulomb field for a static particle and is similarly 

singular (hence the name) on the world line of the particle. The re gular Green'., s, 

function, which solves the homogeneous wave equation, has been shown to be 

entirelly responsible for the radiation reaction effect. 4 In Chapter 5 we showed 

that the emission contribution to the position shift can be rewritten as 

d 4XId4ý1,11 
19 , 

)'p,, (x) G"' " (x 
pR 

=f 
(518) 

See, for example, [18]. 
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i. e. in terms of the regular Green's function or regular field, AR. As we 
demonstrated that the quantum position shift was entirely due to the eiiiis- 
sion amplitude contribution, the appearance of AR sheds some light on the 

connection between the theories. The calculation leading to (518) started 
from the formula for the emission contribution to the position shift (325) and 
the emission amplitude obtained using the semiclassical expansion (360). We 
demonstrated in the scalar work that this amplitude result was obta, iiied for a 
potential dependent on only one of the space-time coordinates. The position 

shift result will, however, hold for any potential that can be shown to produce 
the amplitude (360). The limitations of the semiclassical expansion dictated 

the use of the potentials mentioned, but given the form of the amplitude and 
its relation to the amplitude for a classical field, one would exPect that the 

result may well be true for more general potentials. should an appropriate 

semiclassical method be applied. This possibility poses a question for future 

work. 
Some major differences between the classical and quantum approaches 

come from the analysis of the forward scattering contribution, which how- 

ever does still contain similarities. In the classical theor , the singular field is Y, 

regarded as an infinite correction to the mass, and thus removed in a process 

of renormalisation. Thus in fact, the classical theory involves a divergent self- 

energy 'forward scattering' effect, removed by mass renormalisation, a process 

not normally associated with classical theories. Many people would think onlY 

of quantum theories when hearing the word renormalisation, but in both the- 

ories the mass renormalisation can be considering as arising from an infinite 

self- interact, ion effect. So far we have talked of the similarities. However. the 

quantum self- int eraction as described by the one-loop process involves effects 

not present in the classical theory at all, such as contributions from the vir- 

tual antiparticles. In the calculation of the forward scattering in Chapter 4 

Nve decomposed the forward scattering into particle and antiparticle loop con- 

tributions. The particle loop Nvas further decomposed when Nve analYsed the 
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low photon energy portion of the loop. It is this effect which is analogous to 

that present in the classical theory - the high photon energy limit and the 

antiparticle loop processes do not have classical counterparts. As this descrip- 

tion hints, we found in Chapter 5 that the low photon energy particle loop 

contribution can be rewritten in terms of the singular field As to produce 

- höpi Re 
-F< 

(p) =1d 
4X ap 

ij"'(x)Asm(x), (5 3 15) 

which is an analogous expression to that for the emission contribution. Wc 

thus see that those elements of the quantum process with classical counterparts 

effectively give the same results as found in the classical theor. y. The total 

forward scattering contribution is zero after mass renormalisation and it is 

clear that the quantum mass renormalisation is not the same as the classical 

case, but naturally renormalises all the quantum contributions including the 

antiparticle loop. 

The results in Chapter 5 do not change those of the previous chapter. They 

are simply a rewriting of some parts of the calculation in terms of different 

quantities. The results do however give a clearer picture of the similarities and 

differences between the classical and quantum treatment of radiation reaction. 

Having succeeded in comparing the classical position shift with the scalar 

quantum position shift, we turned our attention to the more accurate quan- 

tum model of the spinor field. It is this field which is used in the standard 

theory of quantum electrodynamics and we thus repeated our investigation for 

the spinor QED. We investigated the case of the spinor wave packet having 

travelled through a time-dependent potential. The position expectation value 

of the control particle was found, to order h', to give the same expression as 

previously found in the case of the scalar field: 

t=o -ihj 
"ýp 

f (P) api f (P) 
- 

(550) 
9 (27h)3 

However. as an aside, Nve did note that spin effects, related to spin-orbit cou- 

pling, can be observed to have an effect at order h. Such spin effects would still 

not however alter our measured position shift due to their presence in both 
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the control and test particle calculations. The addition of the phenomenon of 
spin to the model is one major difference between the classical electrod. viianlic'., 
theory and spinor QED, although it should be noted that the spin is present 
in the Dirac equation for the spinor field and is not technicallY a result of the 

quantisation of that field. Proceeding, we found that as per the scalar field, 

the contributions to the position shift can be split into emission and forward 

scattering contributions. In fact, the formula for the position shift. writteii in 
terms of the amplitudes for these processes was calculated to give the same 
answer as the scalar field: 

if d'k 6xi -- Am* (p, k) ap, A" (p, k) (572) 
em 2 (27)32TO 

6xifor h9PiRY(P) 
- (573) 

Again, the effects of the spin, including any spin transport effects producing a 
difference between the initial and final spin states, did not come into play at 
lowest order. 

Despite the more complicated nature of the Dirac spinor field in comparison 

with the scalar field, the interaction Hamiltonian for the spinor field 

lii =e: :� (116) 

is simpler than the scalar case. We used the spinor interactions and semiclassi- 

cal spinor solutions to proceed to calculate the emission and forward scattering 

amplitudes. Many of the features of these calculations were analogous to those 

found in the previous scalar work. In fact, the result of the emission amplitude 

cýilciilation in the h --+ 0 limit ga\-e the same result as the emission amplitude 

for the scalar field, viz 

(p, k) =: -e 
dx4 f 
dý k(ý)eiý, c (756) 

Using either the direct calculation in Chapter 4 or the Green's function de- 

composition method in Chapter 5. we arrive at the result that the emis-, ion 

contribution to the quantum position shift for the spinor field is equal to the 
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classical position shift. ' So far the result of changing field has merely been to 

change the intermediate calculations. rather than the final result. The pattern 

of the calculation for the forward scattering amplitude for the spinor field wýls 
init, ially similar to that for the scalar case. For example, the particle and an- 
tiparticle loop contributions were calculated and for the case of the particle 
loop it was again necessary to check the h order of the infrared divergences 

and analyse the low-energy contribution. The renormalisation of the mass via 
the counterterm again removed the order h-1 contributions to the position 

shift. However, unlike the scalar case, we had to additionally consider order 
h terms in the semiclassical expansion. As the forward scattering amplitude 
is at, order h-' and thus its contribution to the position shift at order h-'. 

any order h effects in the expansion potentially contribute at order h' to the 

position shift and consequently remain when the classical limit is taken. After 

renormalisation, some of these terms in the amplitude were indeed still present 

and after some integration and simplification we were able to show that the 

ýcorrection' to the forward scattering amplitude is given by 

'TR 
(P) =_e dt I Op (t) 12 ý. PX i). (742) 

1672pornh 
J 

This result then gives an additional contribution to the position shift when 

compared with either the quantum scalar case or the classical result. The 

position shift for the spinor quantum position shift was given at the end of 

Chapter 6 by 

0 
dt ý Oxi 

+e2 Opi 
f 

dt I op (t) 12 (p X (755) 
00 

)7LJ 
D( opi 

)t 

1672 mpo 

The interpretation of this extra term was analysed in the last subsection of 

that chapter. We found that the correction was entirely the result of the 

renormalised vertex correction that is produced by the one-loop process. In 

other words it is the result of the correction to the coupling to the external field 

produced at the one-loop level. As Nve described in our discussion at the end of 

Throughout this summary, we imply the h-0 limit when talking about the quantum 

position Shift 1'('SUlt--;. 
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Chapter 6, the vertex correction is responsible for the well known anomalous 

magnetic moment. This correction is not simply a result of the addition of 
spin. The spin is present in the Dirac equation prior to quantisation and 
produces the prediction that the g-factor of the magnetic moment6 1,; equal to 
2. The anomalous magnetic moment is the correction to the g-factor due to 

quantisation, starting at the one-loop level. The effect to the position shift 
noted above is of similar origin. 

Given the correction produced by quantisation the natural question to ask 
is whether or not this effect can be measured. This is of course an interesting 

question, and indeed any measurements improving the accuracY of tests of ra- 
diation reaction would be beneficial to our understanding of the phenomenon. 
The smallness of the radiation reaction force was stated as one of the reasons 
that it was frequently ignored and it is also one which hampers accurate test- 

ing of the theories. It is also worth noting however, that the purpose of the 

work presented here was to study the classical limit of QED. This naturally 
leads us to consider further work and the possibility of analysing the effect at 
higher orders in h. Indeed Higuchi and Walker are currently investigating the 

h correction to the Larmor formula [37], which would have some influence on 

such an extension to this work. In addition, spin effects can be shown to be 

orders of magnitude larger than the self-force at low-energies (see for example 
[38]) and consequently they should be considered when predictions for possible 

experiments are made. Such investigations thus present a natural extension 
for future investigation and would aid the understanding of the current results 

by adding additional context. They would also require further investigation 

into the semiclassical expansion at higher orders, or an alternative method for 

such expansions to include other more general external potentials. 

Additional directions in which this work can be extended include the pos- 

sibility of investigating quantum radiation reaction in a curý-ed space setting. 

6 The magnetic moment due to the intrinsic angluar momentum from the spin s is- given 

by p= -g c s/(2m). 
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In the introduction in Chapter 1, we presented a brief summary of the theorY 

of radiation reaction in curved space and noted that this is an area of great 
current interest. Much of the interest is focused on the effects of gra"-itational 
radiation reaction. It would be of great interest to extend the current work 
to consider quantum electromagnetic radiation reaction in curved space. In 

curved space this could be linked to investigations of the radiation produced 
by the expansion of space-time (see for example [39]). Further work could 
then attempt to grapple with a quantum treatment of gravitational radiation 
and gravitational radiation reaction. Due to the fact that the self-force is 
fundamental to our full understanding of dynamics and even on a classical 
level involves many of the concepts which usually define the complications of 
quantum theories, such as self- interaction and renormalisation, it ma 'y pro- 

vide a useful avenue in which to obtain further knowledge of quantum fields 

in curved space and ultimately, signals towards the ever elusive theorY of 

quantum gravity. For the purposes of working in curved space. the Green',,,,, 

function decomposition approach may well be more suited to adaptation for 

curved space given the methods used in both classical radiation reaction in 

curved space 7 and also in the treatment of quantum fields in curved space. ' 

The main focus of future work is therefore to build on the work presented 
here, using it as a base upon which to generalise the results presented. The 

generalisations mentioned above and in the main text include extensions to 

higher orders in h, extensions to more general external potentials and exten- 

sions to curved space and radiation reaction in other fields. The work preseilted 
here has provided a solid base for future investigation and has given us new 

insight into the similarities and differences between the classical and quailtum 

treýitiiients of radiation reaction. The author hopes that the reader has found 

this report to be interesting. to answer the some of questions posed about 

7 See the earlier introduction and the much more detailed review by Poi', 'S()il in [19'. 

SS(, (,. for example, [35]. 
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radiation reaction, and perhaps to advance further questions in the reader's 

mind to be answered in future. 



APPENDIX A 

Semiclassical Spinor Identities 

In this appendix we derive a set of identities for combinations of the time- 

dependent semiclassical spinors, expanded up to O(h). These identities can 
then be used, for example, in the evaluation of the spinor combinations in the 

forward scattering loops. 

1. Summary of semiclassical expansions 

Firstly we quote the semiclassical spinors derived in the semiclassical chap- 
ter. For the particle spinors u, all energy-momenta are P= (Ep, 0) where 

V(t) Ep =ý 
ýp2+,; 

r; 
ýi, (757) 

and for the antiparticle spinors v, we have P+ = (Ep+, ]ý+) where 

P+ =p+ V(t) E= ý/f)2 + M2. p+ (758) 

With this in mind, when there is no ambiguity, Nve drop the momenta sub- 

scripts. We recall 

E +Tn (I + zhg) 
Us, 

-I .hE+m -EEUso (759) ua (p, t) = T2 -Ep 7 ýius,,, 2m Eus, 

) 

+ rn mt Ut -St UtE (p, 0= 
Eý 

I-i hg) SO ck 2m 

+E+ st uttE -st UtO (760) 
(2Ep )2 
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E+ 
(761) (p, 0 

(2Ep) 

209 



2. SUMMARY OF USEFUL IDENTITIES 

Vcjp, t)=rýýý+Tý[(I+zhg) tutE -stut) 
(s, 

L 

E+m ( 
cc T25 Ep7 

(5 tUt 
ct sl 

910 

(762) 

with the following (full) notation: 

Ap (t) - 
ax 

Ep +m 

Up (t) = T exp 
1- 

zt dT 
Ap(T) ]) 

0 2Ep(, T) 

Ep (t) = 
,p 

' Ep +m 

tp P(t) 
kp) ( ) 

Ep+m Ep+m 

9p 
t 

d-F 
p2 (, F) fo 

8 EPI (-F) 

(-iw) 

(764) 

( tG") ) 

(766) 

(767) 

(768) 

and similarly for fi+. We note that A, E and t are Hermitian. whilst U is 

unitary. 

Summary of useful identities 

The following are identities involving some of the terms above which are 

useful for the calculation of the spinor identities. For the purpose of the 

summary we use the time- dependent energy momentum (E, p). 

E2=: Em (769) 
E+ 

Y± + I. cr -pxp 
(E+ M)2 (E +Tn)l 

p (E M) cr p (771) 
(E +tll)2 (E +tll)2 

2mo, 
(E + tl? )2 
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Zu 
=p+ 

zu xp 
(7 1 3) E+m E+m' 

p io, xp 
E+m E+m' 

Eers 
2pu -pp2 01 

(E + M)2 (E+M)2 ' (775) 

p- pp -p2p 2ia -px j)p ip 
2 kp 

(E +Tn) 3 (E +M) 3 (E-+Tn)3 E+ 

3. Zeroth order spinor identities 

Below are the standard zeroth order spinor identities showing the normal- 
isation we have used for the spinors: 

(0) 
ý, 

(p) ua (p) = ,, (717) 

ü(O) (0) 
a 

(p)-Y, Uce (p) = 1 (778) 
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2m 

,ü (0) (0) 
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-1 1 (781) 
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-Y -p- (7ý; 4) 

2m 

4. Equal time spinor identities 

Here we present the identit, ies to O(h) for both the particle (-positive en- 

ergy') and antiparticle ('negative energy') semiclassical spinors in turn, evalu- 

ated with the same (time-dependent) momenta at equal time. The identities 

Nvill be useful in the calculation of the outer spinors in the combinations found 

in the forward scattering contributions. All momenta are given hY p at. say, 
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time t. Consequently for simplicity of notation we shall drop the explicit p 

subscripts and time arguments. Similarly we can treat s, (O = SjP(T) as the 

two-spinor for the direction of the spin at that time and, as all times are equal. 

drop the argument notation. 

4.1. Particle equal time spinors. The first set of identities are for the 

particle spinors. 

4.1.1. 

ita (P) ua (P) 
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4.1.2. 
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and hence we have 

A3 

(786) 

We note that there is no order h term remaining. 

4.1.3. 
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Multiplying the matrices, Nve have 
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which using the identities in section 2 becomes 
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4.1.4. Inner spZnors. The last identity for the 'particle' spinors Nve present 
here is used for the inner spinors at equal time. 
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ES, 

) 

x thg) 
(St 

-St + Zh 
E+ Tn 

St -St Ce Oz (2E)2 Ck C, 

E +Tn 

-zh St -St E (2E)2 

( 

tsce 

)(0a) 

E +Tn Sast -80st Et tE 
-, "C'St Ce C, + ih 

E+ -SCSQ a 
2m ES'St -Esast 1] (2E)2 

-Y]SCSt 
tE Y: S 0z's 

t 
Oz L( Ce a C, 

hE 
+Tn Y: tsas to, Etsas'tE 

(2E)2 tscest 
S C, S 

a 

E+m -E 
- ih 

E+ t+EtE 

2m Y: y]2 

) 

(2E)2 + Y±E Et - 
tE 

) 

E+p 
ih -2to, -px 2ma p* 

21o a-p -E + (2E)2 21o, -pxp 

Using the ganinia, matrices, Nve can rewrite this equation as 

+h Ib 
(P) 1-1 0 (P) + 17 -pXp-0p 

ii? (2E)2 ' (2E)2 I 
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4.2. Antiparticle equal time spinors. We now repeat these identitie, -, 
for the antiparticle spinors. 

4.2.1. 

VC, (P) VC, (P) 

E+m [(I 
+ Zhg) 

(st 
2m ,E ct, 

Es, E+m tso, 
x( (I - ihg) 

( 

sa 

+ Zh (2E)2 

( 

-Y]ýScv 

E+m 
st st i4 

Es, 
(2E)2 

( 

cv a( 
sc, 

) 

E+mst (E2 
_ 1) + ih 

E+m 
st 

(Eý 
- ýýE) S, 

1 
2m ce 2E2 cý 

E +, m 2m 
+ Zh 

E+m, t 21A 
sc, 2m E+m 2E2 'E+m 

Thus we obtain 

va (P) vcý (P) =-I- 2m E2 

4.2.2. 

0 
11. (P) -Y VC, (P) 

m+ ifig) 2m 01) 

lhg) 
Es, 

+ ih 
E+m ts, ( 

so 

) 

(2E)2 

( 

-Etsc, 

E+ in kýý 
(2Eý 

(790) 

E+m t (V2 ++ hE+m 
21n (2E)2 s 

E+ in 2E 
2m E+ 
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We therefore once again have 

_E VC, (P) -Y, vcý (P) 
m 

(791) 

with no order h term. 

4.2.3. 

vc, (p)-m, (P) 
E +Tn (I + ithy) st a StEo, 2m ct 

x (I Zhg) 
Es, 

+ ih 
E+ to ESC, 
(2E)2 so, 

) 

-th 
E+Tn 

st tEo, st ta) 
Es, 

(2E)2 Cý 
so, 

which gives 

E +Tn 
1ý0 (P) -Yvc, (P) =- [so (O'E + Ea) S, 2m 

+ih 
E+m 

st crt - 
ta + tEaE 

- EOEt scý (2E)2 a(I- 

Using the identities presented in section 2, we find 

E +Tn 2p 
*h 

E+mt [-41o, -px Iýp 
I'la (P) ýy I'o (P) :: = 2m 

[E 

+m+Z (2E)2 s0 (E + m)l 

21p 2+ 21 
x 

kp 

(E + 111)3 
p 

E+mE+ to 

and so 

= 
ý-p x Jýp kp 

(792) 
o 

(P) +xp- 
9111E 

( 

E(E + III) E+m 
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4.2.4. Inner spinors. 

VC, (P) V, 
E+m 

(1 - Zhg) 
Es, 

a 
2m 

( 

sc, 

) 

x (1 + ihg) st S -st 
1( 

ce cl 
) 

ih 
E+m iýSO, 

tE (2E)2 

( 

-EiýSa 

) 
(See 

*+m Es'st E 
-Ea 

0 
2m scst Y: 

* +Tn Esst E 
+ih (2E)2 Eý, 

oz 

'Scest 

Hence, 

VC, (P) V, 

th 
E+ Tn 
F2 -E-) 

-st C) 

-ss, st ()Z 

ct -so, s cl 

-ts, st ck 
Ets'st 

(I)- 

E+m 
Zh (2E)2 t sc, Isn /M 

917 

E+ rn 
1: 2 

_E 
ih 

E+m Et-tE t+EtE 

2m (2E)2 + 

E -m p 21cr -px 2mo, 
zh- 2m 

L(a-p -E-m 

) 

(2E)2 

( 

2ma -2za. pxp)_ 

leading to 

Tn h 
2111 ni (2E)2 "Y -pxp- (793) 

(2E)2 

5. Split time spinor identities 

The following identities are for when the time-dependent momentýi are 

cvýiluated at different t, inies. The identities are the expansion of the zeroth 
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order spinors under the transformation (t. t') ---ý (t-, 71) to order h. where 

h 
tt- -Tj , (794) 2 

tf 
h 

t+ -71. (795) 
2 

All momenta are p and thus we drop the subscripts. Un-primed terms are 

evaluated at t, primed terms evaluated at t' and barred terms evaluated at f- 

Using this transformation, we have the following: 

Ut(t)U(tl) I- ýiýl"P(OA(OU(o + 0(h') (796) 
2E 

P2 

=- + (797) 
E+m 

where the energy-momenta on the right hand side are evaluated 

5.1. Particle split time spinors. 

5.1.1. 

ý, t) ua 
(E +Tn) (E' + m) 

2m 
(stut 

I 

- st, UtE 
u OL 

Elu SO 

E+ in 
st ut (1 - ES, ) uls, 

2m 

_ 
E+ro tUt 2m 1. hi7A 

Ul 
217? 

(E+rn 
E+m) so 

St (II-tulscv - 
ihT1 

st utÄus" 
0 2m a 

h77 
t U- tt-t- -- 

0 so - 1ý0 sU A( 
2E 2m 

f) xp 
2n? E 

(798) 
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5.1.2. 

ce (P, t)-Y, uo, (P, t') = 

5.1.3. 

(P, t) -yu (0) 
oz 01 (A 

+ m) (EI + m) 
st ut 2m 

( 
ei st UtE ce 

E+_T 
S, ul (I + EE, ) U's, 

2m 
P+m 

st Ut 2P 
+ 

ihqA ) 
u1s, 2m ' 

(E 

+, m E+m 
E ihq tc 'I hq 

st s 7tAus", + ; tAu 
m 2E 2m 

rn 

(E m) (E+ m) 
2m 

(stutEa 
st Ut 

US, 

a Elulsce 

E+m 
st Ut (Zu + oE') U's, 

2m 

= 
E+m tUt h71 -- hq -))U, 

's', ' 2m 2 
E) u+U 2 

E +ni 
st Ut 20, +0,2- 

h77 (Zo, 
- us ul so, 2m ,2» 

. -119 

(799) 

.E+ 
In 

st Ut 
2p 

Ulsct _P+ 
In hTj t-t 21 Ej5 

saU -a xp-U. S0 

2m E+ III 2m 2E+ to E+ In 

ihil 
, 'Juta x p- - 

p (I i""Stutws, 
Us, 

it? 2E 2n? E+ 

ppx pp Ep 
+xp-p (800) 

2rn (E- + III) E+ to 

)) 



. ). SPLIT TIME SPINOR IDENTITIES 5 

nner spinors. 

(P, t) ü (P, t, ) 
Vý(E + m) (E' + m) Us,, (Stut, 

2m a oz 
-( 

Eus", 

) 

E+m Us,, st Ut' -Us, st Ut'Et 
2m Eus'stut, -Eus, stutE, ct 

+ Tn Uut, -UutE, 
2m Euut, -Euut, y" 

Expanding the elements in terms of h, starting with the unitary operMors we 
have 

U(O) 
E +Tn 

a 
(PI Ofi(o)cl (Pit') = 

I - YT 
+i 

hq A- AE 
2m 2P ýA 

k+m I h7] 0 

2m P 
L(-, 

_22 2 

z hq o ih77 IP x (P x P) 0 ol 
+- 

- 2E 

(0 

p2A 
+ 

(, e+M) 2 2E (E +M)2 0,0 

-ý-P+m h77- 0Ef: ) p-+ pp -p- pp 
2 

- 
2m 2 m. 2 E+m (E- +Tn) 

ibil 
+- (E+Tn) 

2m 

A0 
2E 

P2 

(0 

2E(E+m)2 

which finallY leads to 

-Y - j5 +5h rl o (0) (p, (O)C, (p, t) = -t -pxPI Iýt Ip (80 1) 
2m 2E2m ' 2E. 2 ' 

5.2. Antiparticle Split time spinors. 
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5.2.1. 

lü (0) /)= `) a (P, t)vce 

5.2.2. 

,ü (0) (P, t) -y'v 
(0) 

ce 0, (P, 

+ m) (EI + m) 
st utz 2m 

(a 

221 

-st Ut 
EVS, 

0)( US, 
) 

E+m 
st ut (Y: I: l - 1) U's, 

2m 
P+m 

st Ut 
2m 

+ 
ihTIA ) 

U, s" 2m 

( 

E+m P+ rn 

-St utuls, + 
ihq t- tA - 
2m s, U Us, 

-St 
ihq ih77 t- tA 

asa 
+ ýSolutAus, + sceu u 

2E 2m 

-1 + ihq . 15 x ]p 
2m P (802) 

(E + m)(E' + m) 
st UtE St Uf 

E'U'S,, 
2m 

(aa)( 

US, 

) 

E+T 
st ut (EE, + 1) u1s, 

2m 
P +-T t Ut 

2E zh77A U/ sa ý+ so, 
2m 

(E+m 
E+m) 

E (1 
_ 

ih", 
st CjtAUs,, 

) 
+ 

ih77 
st CltAU 

10 2E 2171 

(803) 
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5.2.3. 

(P, t) -y cy 

Thus 

(E + m)(E+ m) 
st Ut 

2m 
(a 

st, utEo, o, 
) EVS, ( 

U'S,, 
) 

E ±mst Ut (OY, +F 2m ' _, a) Usý, 

P± 
Tn't Ut + 

"T, 
+ U/ 

2m 22 

E±m 
st Ut aE + ý0, + OE + Et7) U 

2m 2 

E +, rnst Ut 
2j5 

U, S, ý, 2m P+m 

2i Ep E+m h7l 
"t 

ut 
+ rn 

ax Us, 
2m 2 oz P+m 

) 

hq 
stu tAusa ih7l 

stuta xp Us, 
m 2E 2m E +'m 

) 

ü (0) (P, t) -yv 
(0) 

Ck �, 
p ihq pX PIP 

m 2m E (P + m) 

5.2.4. Inner spinors. 

G, (P, t)V(")c, (pltl) 

Ep (804) 
E+m 

(E + m)(E'+ m) EUSO, 
St ut'El 

2m 

( 

Us, 

)(a 
= 

E+"i EUs, s. tUt/El -EUS. St ut, 

2to US'Sct, (Tt'El 
a -us, stut' 

V [T ( Tt I E/ 
E+ -L-. j 

2m ( 

-st ut, 
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Expanding the unitary matrices to order h, 

(0) Ve, 

E +Tn ih77 
2m + 

2E 

E+m : ý2 
h7l E: ý - 

2Tn 
L( 

+2 
0) 

p2A 0 
ihil P+rn)2 z'h? 7 ZIP x (p x P) 
2E 

(0 

-A) 
2E (E +111)2 

( 

0,0 

) 

rp -m h77 
0 

P]p 
pp -p- pp 2 

+ ýy -Y -p+ 2m 2m. 2 E+m (p + TO 

ihTl 0 
+ ý- (p + M) 

P+m 2P(JT + rn)2 
2m 

2E 

Therefore, we have 

223 

(0) -y -P +ni ih77 5 hrl 0 v :)x+ (805) (P, t)Ü(1»CI (P, t') - ly "Y p ýy ýy *p 2m 2E2m 2E. 2 

Summary of semiclassical spinor identities 

In this section, for ease of practical use. we collect together the spinor 

identities derived in the previous sections. All terms on the right hand side are 

evaluated at time t with energy- momenta (Ep. p) and J-)+ = (E,, 
+. 

0+) for 

the particle and antiparticle identities respect ivel. y. These results are quoted 

in the main body of this work. when needed for the evaluation of the spinor 

combinations found in the forward scattering loops. 
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h ý-]ýxp zhqý xp iic, (p, t) uc, (P. + O(h 2) (806) 2m EP2 2m Ep 

uo, (p, t) -you" (p, t') 
Ep 

+ O(h 2) (807) 
m 

fto, (p, 0 -yu. (p, t') 
fp hx p- p- 

+ýx P-- 
Epý 

m 2mEp Ep (Ep + m) Ep + 

ihTj x pp +ý x 
Epji 

+0(/l 2). 

2m 

( 

Ep(Ep + Tn) Ep + to 

)) 

(808) 

P+Tn h5 ill 
Ua (p, t) 0 (p, t') +- 17 -Y - 1ý xp---, () 

1-Y -p 2Tn Tn(2Ep)2 (2EI)) 2 
ih7l 

_, "y5-y . ]p Xp0 (809) 
2m2Ep _ 2Ep. 2 _y _Y. p+ O(h2). 

h f)+ x f)+ ihqý - P+ xP 2) )c, (p, t) v. (p, t, ) I_2++ O(h (810) 
2m Ep+ 2m Ep+ 

vo, (p, 0 -Y, Vý, (p, tI 
Ep 

++ (9 (h2) 
m 

va (p, 0 -yv", (p, t') = 
m 

+h 
ý-p x P-+P-+ +ýx f)+- 

E P+ P+ 
2mEp+ 

( 

Ep+ (Ep+ + m) Ep+ +m 

ih77 ý-ji+xp-+p-+ 
+ý x P+ 

Ep+ p+ O(h 2). 

2m 

( 

Ep+ (Ep+ + m) Ep+ +m 

)) 

(812) 
P+ - Tn h5 Ih 0 CO (p, 0 1', (p, t 2111 m(2Ep+)2ýy 

'y P+ X P+ 
(2Ep+)2 -ý' 'y * P+ 

ih7l hq 
-ID-Y - ý+ x P+ +0 -Y P+ +0 (h2). 

21112EI, 2Ep+. 2 
(813) 

The following identity is for equal momenta zeroth order spinors: 

-(0) . 7, 
(E + 
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Interaction Hamiltonian for the Scalar field 

In this appendix we calculate the interaction Hamiltonian for the complex 

scalar field. The result is in contrast with those cases. such as the spinor 
field, where the interaction Hamiltonian and Lagrangian are the negative of 

each other. For simplicity, let us use natural units (h = 1) here. Consider 

the classical Lagrangian density for a charged scalar field interacting Nvitli 

electromagnetic field and in the presence of a background potential V: 

rn2ý (815) 

where D,, ýp = (Dm + ieA,, ),, ýý and DQ, ý-, -= (0t, + ZV,, )v. This can be written 

(Do ýp) t Do ýo - (Di ýo) t Di ýo _ M2Vtýo +7e (ýo t Dj,, ýý - (Di ý, -) t- ýý)A i2Ai Ai ýot,, ý , 
(816) 

where the indices i are summed over i=1,2,3. The canonical conjugate 

momentum densities are 

aL 
Z Ao) t (E)o(p)t = ýt - (vo + e- 

- 
a£ 

-- 7r D+ i(vo + CA0) lpt 

Hence 

1 
:1= 7rlt-t - 1*(Výo + 

0 

225 
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Thus, the Hamiltonian density is 

7w (ý Týýt (ý - 

7r� (7rý, t -i (Vo + eAo), -) + 7rwt (7rt +i (Vo + eAo), ýt) li-, ýp 

+ M2(Ptýo _ e( (Dijt. 
'jýIi + e2ý_I'ýl, -t - 7ýo7rýot + (Diýo)tDiýo Zt Di 

7rcp7rý, t + (Diýj)tDi(p + M2ýot(, o 

+ i(ýot7rwt 
- ýo7r, )(Vo + eAo) - te(ýotDiýo - (Dijt . 'j + e2_li. Ii, ýt, ý 

(ýý I 
Hence we can decompose the Hamiltonian density into free and interactiii- 

parts H= Ho + H, with 

Ho = 7r 7Tý, t + (Djýo)tDjýo + M2ýot(, o + i( ýýt7r"t Vo (820) 

RI 
= ze((pt7vt - ýo7ý, )Ao - ze(ýotDj(, ý-, - (D,,, ý)t - + C2 

, ý)Aj A jA i 

Hamilton's equations with HO =f d'xRO read 
Wo 

= 7T vf 
67TIP ýot O(p 

t -6Ho 
2 'V 

6(pt = Dj-Djýý -mi o7rý, t 

and their conjugates. These equations can be rewritten as 

(DI-jD" +m 
2)ý 

1 -0 (822) 
11 - 

7rýot = Doýý 
ý 

(823) 

and their conjugates, as expected. 

In the interaction picture, ,, - obeys the Hamilton's equations with HO. so 

we can let 7r - (Do -) t and 7r,, t = Do,, ý- Then 
v It-, 

12 AiA. (824) 
I't, 

The naýfvc interaction Hamiltonian densitY is 

naive C2 Aý, 41',,: t 
I It, - 

(,, -, 2 5 

,, ýJ, I -t - Overall. the difference i, 
Hnaive = C2 A, ) A 



APPENDIX C 

Reference: Dirac representation matrices 

In this appendix we give the matrix representations of the Pauli, alpha, 
beta and gamma matrices frequently employed in mathematical discussions 

on spin and in the Dirac equation. We present the Pauli-Dirac or Standard 

representations here. These are the represent at ions used in the calculations in 

this work and thus they are repeated here as a reference for t lie reader. 

Pauli Matrices 

The three Pauli spin matrices are given by 

OFI =011 ý72 =0 
-Z 

Oý3 = (826) 

10 to 0 -1 
These matrices can easily be seen to have the following eigenvalues and eigen- 

vectors: 

Pauli Matrix 91 ý72 0'3 

Eigenvalue 1 -1 1 -1 1 

1 0 1 -1 -i Eigenvector 
( 

0 1 1 1 1 

2. Alpha, Beta, Gamma Matrices 

2.1. Alpha, Beta Matrices. The alpha and beta matrices. frequentlY 

used in the non-cova, riant form of the Dirac equation and its standrad deriva- 

tion from the assumption that the equation of motion is first order. are given 

iii the standard representation belo,, N,: 
227 
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12 0 

Cei 
0 

-12 

0 ai 

ai 

0 0 0 

1 0 0 

0 0 -1 
0 0 0 

0 0 0 
0 0 10 ce, 

0 1 00 

1 0 00 

0 0 0 
-Z 

0 0 Z 0 

a2 
0 0 

Z 0 0 

0 0 1 

0 0 0 
a3 

0 0 

0 -1 0 

928 

(, ý 2 7) 

(828) 

(829) 

(830) 

(831) 

2.2. Gamma Matrices. The gamma matri(, es. from the covariant form 

of the Dirac equation and the Feyninan slash notation. are given in terms of 

the alpha, and beta matrices by 

,,, 0-3. -,, 1 == 12 ) 



2. ALPHA., BETA, GANINIA MATRICES 

In the standard representation, these matrices are therefore 

1 0 0 0 

0 1 0 0 

0 0 
-1 

0 

\0 0 0 

0 0 0 

0 0 0 
0 0 0 

\-I 0 0 0 

0 00 -1 
0 0 0 

72 
0 z0 0 

\-Z 00 0 

0 01 0 

0 00 -1 
-1 00 0 

0 10 0 

Finally, the 75 matrix is defined by 

ý, 
5=-1_2 

�3 /- lý 111* 

Thus, we have in this representation 

0 0 1 0 

0 0 0 1 

1 0 0 0 

0 1 0 oj 

221) 

(33) 

(834) 

(835) 

(836) 

(837) 

(838) 

(839) 
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