Fixed-Priority Scheduling Algorithms
with
Multiple Objectives
In
Hard Real-Time Systems

Armando Aguilar-Soto

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science.

The University of York
Department of Computer Science

2006

Para Mama, Papa, Paty, Tere, Gabriel ...

... Y todas las personas que amo!

Abstract

In the context of Fixed-Priority Scheduling in Real-Time Systems, we investigate schedul-
ing mechanisms for supporting systems where, in addition to timing constraints, their per-
formance with respect to additional QoS requirements must be improved. This type of
situation may occur when the worst-case resource requirements of all or some running
tasks cannot be simultaneously met due to task contention.

Solutions to these problems have been proposed in the context of both fixed-priority
and dynamic-priority scheduling. In fixed-priority scheduling, the typical approach is to
artificially modify the attributes or structure of tasks, and/or usually require non-standard
run-time support. In dynamic-priority scheduling approaches, utility functions are em-
ployed to make scheduling decisions with the objective of maximising the utility. The
main difficulties with these approaches are the 1nability to formulate and model appropri-
ately utility functions for each task, and the nability to guarantee hard deadlines without
executing computationally costly algorithms.

In this thesis we propose a different approach. Firstly, we introduce the concept of
relative importance among tasks as a new metric for expressing QoS requirements. The
meaning of this importance relationship 1s to express that in a schedule 1t 1s desirable to
run a task in preference to other ones. This model 1s more intuitive and less restrictive
than traditional utility-based approaches. Secondly, we formulate a scheduling problem
in terms of finding a feasible assignment of fixed priorities that maximises the new QoS
metric, and propose the DI and DI+ algorithms that find optimal solutions.

By extensive simulation, we show that the new QoS metric combined with the DI algo-
rithm outperforms the rate monotonic priority algorithm in several practical problems such
as minimising jitter, minimising the number of preemptions or minimising the latency. In

addition, our approach outperforms EDF 1n several scenarios.

Acknowledgements

¢ The most gratitude to Dr Guillem Bernat for supervising my research and for his

invaluable support, friendship and encouragement.
e Special thanks to Professor Andy Wellings for his valuable opinion and suggestions.

e Kind appreciation to Professor Alan Burns for his support, and all members of the

Real-Time Systems Group at the University of York for their friendship and feed-
back.

e Thanks to my sponsorship, the National Council of Science and Technology of Mex-
1co (CONACYT).

1l

1]

Author Declaration

e The research presented in this thesis was undertaken from October 2002 to Septem-

ber 2006. Unless otherwise is indicated, all ideas and text are the author’s own.

o Chapter 5 and parts of chapter 4 and 7 were published in the paper: A. Aguilar-Soto
and G. Bemat, Bicriteria Fixed-Priority Scheduling in Hard Real-Time Systems:

Deadline and Importance, 4th International Conference on Real-Time and Networks
Systems RTNS 2006.

Contents

Abstract 1
1 Introduction 1
1.1 Real-Time Systems e e 2
1.2 Motivation: Problems with Deadlinesand QoS 3
1.2.1 Example: Problem with Deadlines and Output Jitter 4

1.2.2 Discussion e e e e e e 8

1.3 Thesis Aims e e e 10
1.3.1 Contributionso 11

1.3.2 Research Approach 11

1.3.3 Thesis Organisation 13

2 A Review On Preemptive Fixed Priority Scheduling 16
2.1 Real-time Systems 16
2.1.1 ProcessModel 17

2.2 Scheduling Tasks L. 21
2.2.1 Table-Driven Scheduling 22

2.2.2 Priority-Driven Scheduling 22

2.2.3 DISCUSSION e e e e e e e e 24

2.3 Fixed-Priority Scheduling 25
2.3.1 Rate-Monotonic Analysis 26

2.3.2 Deadline-Monotonic Analysis 27

2.3.3 DependentTasks oL, 29

234 Releaseittero 32

2.3.5 ArbitraryDeadlines 33

2.3.6 Apenodic Tasks, 35

1V

EZ‘ONTEI_\I TS o v
237 Weakly-Hard Tasks 36

24 Summary e e e e 39
3 A Review On Scheduling with QoS 40
3.1 Introduction 40
3.2 From Requirements to Scheduling Problems 4]
3.2.1 Requirements 41

322 Design e 43

3.2.3 The Scheduling Problem 45

324 Summary e 47

3.3 TypesotUtility 477
3.3.1 Levelsof Abstraction 48

3.32 LevelsofPerspective 49

333 Summary 51

3.4 Dynamic-Priority Scheduling withQoS 51
34.1 Discussion 54

3.5 Fixed-Priority Scheduling with QoS 54
3.5.1 Dascussion, 56
Importance S8
4.1 Introduction 58
4.2 ProcessModel 59
43 TasksOrderings 60
4.4 Relative Importance Statements 61
4.5 Detiming Importance 63
4.5.1 TaskImportance 63

4.5.2 IndexofImportance Z;., 64

4.5.3 Tasks Equally Important 66

4.6 Scheduling Problems 67
4.6.1 Problem: Deadlines and Importance 68

4.6.2 Problem: Deadlines and Preemptions 68

4.6.3 Problem: Deadlines and Absolute Output Jitter 69

4.6.4 Problem: Deadlines and Relative Output Jitter 70

4.6.5 Problem: Deadlines and Maximum Latency 70

CONTENTS Vi
4.6.6 Problem: Deadlines and Relative Maximum Latency 71

4.6.7 Problem: Deadlines and Average Response-Time 72

4.7 Representing Bicriteria Problems o000 L. 73
4.7.1 DeadlinesMetric 74

4.8 Using Importance in Scheduling Problems 75
4.8.1 ImportanceatTask Level 75

4.8.2 Importance at ApplicationLevel 31

4.8.3 Summary 86

S KPS with Deadlines and Importance: The DI Algorithm 88
5.1 Introduction, 88
5.2 ProcessModel 89
5.3 Problem Description 89
5.4 Solving the Deadlines and Importance Problem 92
5.4.1 Organizing the Search Space 92

54.2 TheAlgonthmDI 94

543 AnExample 99

D44 Summary 99

6 FPS with Deadlines and Conditional Importance: The DI+ Algorithm 100
6.1 Introduction 100
6.2 Conditional Relative Importance 101
6.2.1 Task Conditional Importance 102

6.2.2 Index of Conditional Importance Z7 103

6.2.3 Problem: Deadlines and Conditional Importance 104

6.3 Conditional Importance in Scheduling Problems 104
6.3.1 A-constraints 104

6.3.2 Precedence Relationships 105

633 Example 106

6.4 The DI+ Algonthm 107
6.4.1 ModificationstoDI 108

642 Example 111

6.5 Extending the DI+ Algorithm 113
6.5.1 AnExample 114

CONTENTS vil
6.6 Summary [16
7 Evaluation 117
7.1 Introduction 117
/.2 Experimental Setup 118
7.2.1 TaskSets 119

7.2.2 WindowotTime, 119

7.2.3 NumberotTaskSets 120

7.2.4 Characterizing the Feasibility of the Task Sets Generated 125

7.3 Finding Heuristics for Assigning Importance 126
7.3.1 Total Number of Preemptions 128

7.32 Outputitter 129

733 Latency 130

71.3.4 Maxmmum Relative Average Response-Time 130

7.4 Evaluating the DI Algorithm with Heuristics 131
7.4.1 Problem: Deadlines and Total Number of Preemptions 139

7.4.2 Problem: Deadlines and Absolute Output Jitter 143

7.4.3 Problem: Deadlines and Relative Output Jitter. 147

7.4.4 Problem: Deadlines and Maximum Latency 151

7.4.5 Problem: Deadlines and Relative Maximum Latency 155

1.4.6 Problem: Deadlines and Average Response-Time 159

7477 Summary ... 163

1.5 DI Algorithm vs Swapping Algorithm 164
7.5.1 Maximising the Importance Metric 165

71.5.2 Maximising/Minimisinga QoS Metric 166

1.6 DI+ Algorithm: QoS and Priority Constraints 168
8 Conclusions and Further Work 172
3.1 Rewview of Contnbutions 172
8.1.1 Importance 173

8.1.2 Dland DI+ Algonthms 174

8.1.3 Solutions to Multicriteria Problems 175

8.2 Suggestions for FurtherWork 177

8.3

Final Remark

lllllllllllllllllllllllllllllll

CONTENTS

Appendix A. Notation

Appendix B. Bibliography

viii

179

181

List of Figures

1.1
1.2

3.1
3.2
3.3

4.1

4.2

4.3

4.4

4.5

Precedence relationships L. 5
Jitter of the subset Sy = {z,y, z} for the 8! priority assignments. 7
Attribute Taxonomy for Performance 44
From Requirements to Tasks 45
Utility functions 52

A Bicriteria Solution Space for a task set under criteria Z1 and Z2. Pareto-
optimal solutions are indicated by Greek small letters. The solution s 1s not
pareto-optimal because it 1s strictly dominated by at least another solution;

e.g Zl(w) < Z1(s)and Z2(w) < Z2(S8).o 73
Plotting all priority orderings of task set S5. S’ is infeasible (Zp(S') =
229/80 = 2.86). S is feasible but has low importance index (Z;(SP) =

119). The Z;-optimal solutionis 5* = (beadc) located in (Zp(S*), Z;(S*)) =
(0.88,43) e 78
Total Number of Preemptions and Relative Output Jitter of subset {a, b} C

S5 computed during its hyperperiod for all 5! priority orderings. The
?-optimal and 7™ -optimal solutions are indicated. 80
Total Number of Preemptions computed during the hyperperiod for all 5!
priority orderings of Ss. The ?-optimal solution 1s indicated. The results

of some simple rules for assigning priorities are also illustrated as well as

the result of simulating Ssunder EDF 82
All priority assignments of set S5 ordered lexicographically starting from

the ordering (a bcde) (i.e. the LC rule). Lines illustrate that following the
lexicographic order the first feasible ordering found is the optimal S*. . . 84

1X

LIST OF FIGURES X

4.6 All priority assignments of set Sy ordered lexicographically starting from

5.1

5.2

.3

5.4

6.1
6.2

7.1

7.2

7.3

7.4

7.5

the ordering (cbdae) labelled as (54321) (i.e. the C/T rule). S* =
(cebda) = (51432) and the P-optimal is (bedac) = (41325) 86

Plotting all priority orderings of Ss. S’ is not feasible. S? is feasible but

has low importance metric. S is the Swapping algorithm. The optimal
bicriteria S* is (beadc) 90
Task set S5 and priority orderings S (DMPA), S’ (Importance), S** (swap-

ping algorithm with S’ as input), and the optimal S*. The lexicographic
orderis S’ = S* =S4 =~ SP L. 90
Simuilar to Figure 5.1 but the priority orderings are connected according to

their lexicographic order. Circles enclose groups of either feasible or near
feasible orderings distributed around the indices 23, 47, 71, 95 and 119.

The orderings corresponding to these indices have a similar pattern: a task

plus a suthx ordered by DMPA. 92
DI applied to S5 showing the sequence of operations. 98
Precedence relationships oL, 106

5! Priority orderings of set Sy ordered lexicographically. There are 32
weakly-hard feasible prionity orderingso L. 115

Variation on number of preemptions, absolute and relative output jitter
with respect to the time window simulated 121
Variation on maximum latency, relative maximum latency, and relative
average response time with respect to the time window simulated 122
Varniation of results of different metrics with respect to the number of task
sets simulated. When more than 100 task sets are simulated, low variation
isobserved e e e e 123
Number of feasible priority assignments. Under RMPA all tasks sets are
feasible. The heuristics get worse as the utilisation increase 124
Total Number of Preemptions under different prionty assignments. Only
RMPA and EDF guarantee deadlines. The best heunistic 1s LC. Note that
in (c) RMPA is close to the worst possible value (1.e. MAX) 132

LIST OF FIGURES | xi

7.6

1.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

Total Number of Preemptions Normalized under different priority assign-
ments. Only RMPA and EDF guarantee deadlines. The best heuristic 1s
LC. Note that in (c) RMPA is close to the worst possible value 133
Absolute Output Jitter under different heuristics. The best ones are T/C
and 1/C 134
Relative Output Jitter under different heuristics. Assigning priorities by
shorter deadlines is by far the bestoption. 135
Maximum Latency under different priority assignments. It seems that LT,
T/C and LC are the best heuristics 136
Relative Maximum Latency under different priority assignments. In gen-
eral, among the heuristic, thebestis 1/C. 137
Maximum Relative Average Response-Time under different priority as-
signments. Among the heuristics, the best onesare 7'/C and 1/C. 138
PLOTS A TYPE. Guaranteeing Deadlines and Minimizing the Total Num-
ber of Preemptions. FP,, computed by exhaustive search is the best. In
general, DI(LC) 1s the best tractable solution excepting when U > 0.8 and
the metric includes all tasks. In this case EDFisbetter 140
PLOTS B TYPE. Guaranteeing Deadlines and Minimizing the Total Num-
ber of Preemptions for different tasksets 141
PLOTS C TYPE. Comparing DI(LC) against EDF for the Deadlines and
Total Number of Preemptions problem. While on average one outcome is
better than the other one, 1t 1s not necessarily true for a number of solutions 142
PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Absolute
Output Jitter. DI(1/C) and D(T/C) produce good results. 144
PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Absolute
Output Jitter e e e 145
PLOTS C TYPE.Comparing DI(1/C) against EDF for the Deadlines and
Absolute Output Jitter problem. While on average one outcome is better
than the other one, it 1s not necessarily true for a number of solutions . . 146
PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Relative
Output Jitter. Assigning priorities by shorter period 1s the best solution in
FPS . . . e 148

LIST OF FIGURES

xii

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

1.27

7.28

7.29

7.30

7.31

PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Relative
Output Jitter
PLOTS C TYPE. RMPA against EDF for the Deadlines and Relative Out-

lllllllllllllllllllllllllllll

put Jitter problem. While on average one outcome is better than the other
one, 1t 18 not necessarily true for a number of solutions
PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Maximum
Latency under different priority assignments. Our best solution is DI(LC)
PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Maximum
Latency
PLOTS C TYPE. Comparing DI(LC) against EDF for the Deadlines and
the Maximum Latency problem. While on average one outcome is better
than the other one, it is not necessarily true for a number of solutions

PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Relative
Maximum Latency. In all cases, both DI(1/C) and DI(T/C) outperform
EDF. Note that DI(1/C) i1s a near-optimal solution.
PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Relative
Maxmmum Latency
PLOTS C TYPE. Comparing DI(1/C) against EDF for the Deadlines and
the Relative Maximum Latency problem. Observe the excellent perfor-
mance of DI(1/C)
PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Maximum
Relative Average Response-Time. In all cases, both DI(1/C) and DI(T/C)

are near-optimal solutions and outperform EDF

PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Maximum
Relative Average Response-Time
PLOTS C TYPE. Comparing DI('T/C) against EDF for the Deadlines and
the Maximum Relative Average Response-Time problem. Observe the
excellent performance of D(T/C)
For high utilisations, the number of feasible tasks sets decreases and there-
fore, the distance between S” and S* gets smaller. The distance between

SA and S* increases slightly.

.....................
]

The solutions S” and S*' move dramatically away from S* conforming

the number of tasks increases.

154

LIST OF FIGURES

xiiil

7.32 Comparing DI(LC) against A(LC) results for the problem of minimising

7.33

7.34

the total number of preemptions
Guaranteeing Deadlines and Priority Constraints {P; > Py, Ps > Fs}
for different QoS metrics. Note that constraining the freedom for assign-
ing priorities reduces the chance for improving the QoS metric. The DI
solution does not meet the priority constraints
Guaranteeing Deadlines and Priority Constraints {P; > P, Bs > Fs}
for different QoS metrics. Note that constraining the freedom for assign-
ing priorities reduces the chance for improving the QoS metric. The DI

solution does not meet the priority constraints

List of Tables

1.1

1.2

4.1

4.2

4.3

4.4

J.1

6.1
6.2

6.3

Task set Sg ordered in non-increasing order of deadlines. It 1s feasible
under DMPA. The relative output jitter (ROJ) 1s shown. Note that the
subset of interest {x , y , 2z} suffers jitter. The utilisation factor is 0.69.

Two alternative feasible solutions for task set Sg. Both minimise ROJ but

only the second one meets the precedence constraints

When in {a, b, c} all tasks have different importance, there are 6 different

indices of importance; when a and b have the same importance, there are

only 3 differentindexes L

Task set S5 with importance values /. a 1s the highest importance task and

e 1S the lowest one. Note that 1s 1s feasible under DMPA.

Relative output jitter (77¢) and total number of preemptions (2) for tasks a

and b obtained by the simulating of the orderings S, ST and S* (smallest

figuresarebetter)

Simple rules for assigning priorities. For example, under the rule 1/C,
priorities assigned to tasks are inversely proportional to the length of C.

Its contrary 1s LC, where priorities assigned to tasks are proportional to

thelengthof C

Executing the swapping algorithm with input S = (abcde). The result

is the ordering S = (eabdc)

Task set Sg with their precedence constraints. It i1s ordered by DMPA..
DI algorithm with input S; labelled by importance (87654321). The

DI+ algorithm with input S/ labelled by importance (87654321) with
constraints A = {FPs > 3. Py > P3, Py > Ps, Py > P;}

Xiv

LIST OF TABLES Xy

6.4 Task set Sy with Weakly-Hard Constraints 114

7.1 Simple rules for assigning prioritieso 126
7.2 Classification according to the performance. 1 is the best and 4 the worst
scheduling solution. oo 164
7.3 Comparing solutions obtained with DI and swapping algorithms for dif-
ferent utilisation with heuristics LC and T/C. Note how similar the results
are. From 1000 priority orderings, the column “Identical” shows the num-

berofidentical ones. e 167

Chapter 1

Introduction

Scheduling on computing systems has been studied for around fifty years. The first tech-
niques were adopted from results developed in the operational research area and since then
it has evolved almost independently. While operational research scheduling 1s concerned
with the utilisation of people, equipment and raw materials, computing systems schedul-

ing 1s concerned with the utilisation of processors, programs, memory, I/O devices, and so

OI1.

Scheduling can be defined as “a plan for performing work or achieving an objective,
specifying the order and allotted time for each part” [1]. Another definition is termed
by Pinedo [2], who states that “scheduling deals with the allocation of scarce resources
to tasks over time. It is a decision-making process with the goal of optimising one or
more objectives”’. The scarce resources can be CPU’s, /O devices or energy sources.
The tasks can be application programs, execution threads or messages travelling through
a network. Each task can have different properties that distinguish it among others such as
processing times, release dates and deadlines. Examples of objectives are the minimisation

of deadlines missed, maximisation of resources, or minimisation of energy consumption.

Three main parts are 1dentthied: resources, tasks and objectives. These three elements

together dcfine a scheduling problem and the research domain dealing with these problems

1S scheduling theory.

Theoretically, computer systems can executc a number of different algorithms pro-

vided that sufficient time and storage space are available. Computing programs spend

1.1 Real-Time Systems 2

time performing the calculations, and memory to store the program and related data. In
this context, a program is realizable if the program can both be fitted in memory and give
valid results within reasonable time. The memory issue does not permit ambiguities, the
program and all related data must reside in memory (primary and/or secondary). Con-
trarily, the time 1ssue can be interpreted in several ways depending on the circumstances.
Precisely, the time issue has split up computer systems in two well defined areas: general-
purpose computing systems, where average time performance is sufficient and real-time

systems where specific timing constraints must be fulfilled.

Thus, on conventional computing systems the results are satisfactory whether they are
obtained in a unspecified but finite time. On the other hand, in real-time systems time 1s

essential; the results are valid only if they are always produced within specific time delays.

1.1 Real-Time Systems

A Real-Time System is a computing system that must react within precise timing con-
Straints to events in its environment [3]. Timing constraints are expressed as a function
of committed completion times called deadlines. Real-time systems can be categorized
according to the criticality of their deadlines. In a hard real-time system, it is compulsory
that responses occur within specific deadlines [3]. In a soft real-time systems, the tim-
ing constraints can be satisfied acceptably well with acceptable predictability depending
on application specific requirements [4]. More recently, there have been defined systems
where it is tolerable to miss some deadlines, 1f 1t happens i1n a predictable way. For in-
stance, some systems allow that a task misses any » in m deadlines in a time interval.
These are called weakly-hard real-time systems and they are characterized by the distribu-
tion of their met and missed deadlines during a window of time[5]. Thus, real time systems

can be classified according to their timing constraints as hard, weakly-hard or soft.

As in any other engineering discipline, a Real-Times System has a life cycle model di-
vided in different phases such as requirements, design, implementation, testing, operations

and maintenance.

During the specification of requirements, several Quality of Service (QoS) require-

1.2 Motivation: Problems with Deadlines and QoS _ 3

ments (e.g. safety, reliability, performance) are defined. These requirements form a mul-
tidimensional set of interrelated requisites that must be conveyed throughout all stages of
the development cycle. Normally, conflicts among requirements exist and then tradeotts
have to be defined to help the designers with their decisions. Assigning importances to
the requirements is a mechanism to specify such tradeoffs. In effect, not all requirements
are equally important; some may be essential while others may be desirable, and theretfore

each requirement should be rated according to importance to make these differences clear

and explicit [6].

During the design phase a real-time system can be structured as a set of concurrent
tasks with deadlines to meet. The tasks share some scarce computer resources that must
be allocated optimally by a scheduling algorithm in order to obtain the greater benefit
possible. A single task provides some benefit to the system when it achieves all or part of

one or more QoS requirements. Thus, the scheduling problem consists of how to meet the

deadlines while maximising the QoS.

1.2 Motivation: Problems with Deadlines and QoS

Scheduling problems where simultaneously timing and QoS requirements have to be ful-
filled have been widely studied in the context of non-critical systems [7] [8] [9]. Most
approaches rely on on-line scheduling algorithms that try to maximise an overall system
value metric. Unfortunately, the applicability of such results 1s not possible in commercial

systems due to the lack of support for on-line scheduling facilities.

On the other hand, almost all commercial real-time kernels (e.g. QNX, PDOS, Vx-
Works), real-time operating systems (e.g. RT-Linux, RT-Mach), run-time environments
for languages (e.g. Ada95, Real-Time Specification for Java) and industry standards
(c.g. POSIX, OSEK) provide support for fixed-priority scheduling only. Fixed-Priority
Scheduling (FPS) is a framework formed by policies for assigning static priorities, feasi-
bility tests to decide if a priority assignment can fulfil the timing constraints, and run-time
support algorithms to execute the tasks according to their priorities such that at all times the
task with the highest priority is always executing. FPS is considered an industry standard

providing good performance, predictability and flexibility. Many government agencies

1.2 Motivation: Problems with Deadlines and QoS 4

and system integrators recommend it as the method of choice [10] [11].

In this thesis we argue that fixed-priority scheduling is a robust and proven technology
and that significant improvements in quality of additional performance and QoS metrics

can be achieved by adequate priority assignment of tasks.

When all deadlines have to be guaranteed, the only priority assignment that is usually
considered 1s the Deadline Monotonic Priority Assignment (DMPA) (equivalent to Rate
Monotonic Priority Assignment when deadline is equal to period). However, among all the
possible feasible priority assignments there may be other feasible assignments that may be
better according to other QoS metrics. When there are at least two different optimality

criteria, it 1s said that 1t is a multicriteria problem [12].

In this thesis we focus on multicriteria scheduling problems where all tasks need to
meet all their deadlines, and where tasks have additional QoS requirements that result in
different perception of the quality of a system when tasks do complete by their deadline,
without modifying both the base scheduling mechanism and the task characteristics. In
contrast some research in the literature concentrates on increasing some QoS measure by

modifying the two above system properties. The next section clarifies this i1dea.

1.2.1 Example: Problem with Deadlines and Output Jitter

Consider the problem of a system where the QoS relies only on a subset of the tasks which
are sensitive to output jitter. The output jitter 1s the variation in the inter-completion
times of successive instances of the same task [13]. It 1s known that in standard real-
time scheduling approaches the presence of output jitter causes degradation in control
performance and may lead to instability. In multitasking systems, scheduling algorithms
introduce some forms of jitter such as sample jitter (1.e. varations in their release time),
output jitter, or a combination of both [14]. Let us concentrate on the output jitter problem

such that in the rest of the example, jitter, means output jitter.

In FPS, any particular task suffers jitter due to the variation in the interference pro-
duced from high priority tasks. Thus, it may be the case that under a particular priority

assignment algorithm such as DMPA, some of the tasks that are sensitive to jitter are as-

1.2 Motivation: Problems wi_th _Deagilines and QPS L ~

task | C | T=D | R | Description ROJ

a2 [2] 10 [2 [Alam [o |
x | 1] 16 | 3 | Pilotinstruction | 0.125
y |2 | 16 | 5 | Flaying gears 1 0.125
b [1] 16 | 6 | Cabintemp & press. | 0.125
Z 3| 32 | 9 | Temp. sensor 0.0625
C 2 | 32 | 13 | Pressure sensor | 0.0625
d | 1] 32 | 14 | Speed control 1 0.0625 |
e | 3| 56 |23 | Human interface 0.357

Table 1.1: Task set Sg ordered in non-increasing order of deadlines. It is feasible under

DMPA. The relative output jitter (ROJ) is shown. Note that the subset of interest {z , ¥ ,
z } suffers jitter. The utilisation factor is 0.69.

vi b

Pressure abin tem
Sensor \ q « pressur

Speed Pilot,

o / control 1nstructio y
Temp. Flgm
sensor a e gear

Alarm ‘Human
Iinteriace

Figure 1.1: Precedence relationships

signed lower priorities and therefore suffer from jitter. Moreover, the interference ot high

priority tasks can be related to other QoS issues 1n tasks with low priorities.

Jitter problems are dealt with by techniques such as designing special purpose task
models, using jitter compensation schemes in feedback controllers, optimising the selec-
tion of task attributes (e.g. deadlines, oftsets), or a mixture of them [15] [14] [16]. Those
techniques are powerful as they can be used to eftectively reduce jitter. However, it is our

thesis that there exist priority assignments that are both feasible and are able to reduce

jitter.

Consider the task set Sg of Table 1.1. This task set 1s taken from [16] and corresponds
to an aircraft control system. All tasks have to complete by their deadlines and the tasks
In subset Sé’ = {x,y, z} have jitter requirements. In addition, the tasks have precedence
relationships 2 — d, ¢ — d, r — b and r — y, where, for instance, 2 — d means that 2

must finish before .

Note that the task set is feasible under DMPA and fulfills the precedence constraints but

1.2 Motivation: Problems $_vith Deadlines and QoS 6

its QoS with respect to the output jitter could be improved. This example 1s solved in [16]
by introducing offsets (using a technique with exponential complexity), re-assigning dead-
lines to maintain the schedulability under DMPA and finally, testing feasibility by simu-
lation. Instead of modifying the task characteristics, a simple but alternative approach
consists of performing an exhaustive search on the 8! possible priority assignments 100k-
ing for a one that fulfills timing and precedence requirements, and minimises the jitter.
The hyperperiod of Sg 1s small (1120 time units) and therefore, the 8! priority assignments

can be simulated and the jitter for the subset S; computed and stored.

The results of such simulation are plotted in Figure 1.2. The simulation uses the worst-
case computation time C all the time. For each fixed-priority assignment, (1) a feasibility

test 1s performed and (2) a simulation to measure the jitter is executed:

1. A priority assignment 1s feasible if 1t passes the response time test, which consists
of computing the response time R; of each task and comparing it with the respective

deadline D; such that if R; < D;, V7, the priority assignment 1s feasible [3].

2. The relative output jitter (ROJ) of a particular task j 1s the vanation in the inter-

completion times of the successive instances of the same task divided by its pe-
riod [13].

A point (z,y) on the graph corresponds to a different priority assignment as follows:

e x = max{R;/D;} Vj € Sg. This metric indicates whether the priority assign-
ment guarantees or does not guarantee the deadlines of all tasks (see section 4.7.1
(page 74)). If x < 1 the priority assignment is feasible; otherwise 1t 1s infeasible.
When z = 1 or very close to 1, it indicates at least one task finishes very close to
its deadline. We use this metric because it is more expressive than a simple yes/no

anlSWcCT.

e y = max{ROJ;} Vj € S3: This metric indicates how much jitter this priority
assignment produces. It 1s the maximum Relative Output Jitter of any task in the

subset Sy under a particular priority assignment (see definition 4.6.5, page 70).

1.2 Motivation: Problems_ with Deac!line_s and QoS | 7

1 - - | ' =3 —— T o . 2
90 ®
Feasible Unfeasible
0.8 2.0 -
d ® © O O
O 1) O © O
D
= 00 O O ® O
:3 0‘6 BN =
= O ©) ® © O
o
- -
O © :
o U
o ©O 0O ¢ © O O ® 0
& O 00 O OO0 O O O O O 0 0
0 O 00 oo ® O 0
, O 00 00 00 o O) o, ©O O O ©, ©
O O O 00 O 6 O 0, O & O © ©, 0
O O 00 O 0 0
0.2 0] © © 00 O 00 00 O) O O O ©O O O
@) 00 O ¢ ©) O
O O O 00 00 OO0 O o O O O O 0O 0O
| gr 0 6 0 © O ®
O O 00 OO0 00 S OO0 O @ 81 O O O O O O
0 DMPA | do 2& o / o é&—o0—o 4 o
0.4 0.6 0.8 1 1. 1.4 1.6
max{R./D;}

Figure 1.2: Jitter of the subset Sy = {z,y, 2} for the 8! priority assignments.

For instance, the task set in Table 1.1 is ordered by DMPA. Applying both above

metrics gives:

DMPA iax{R;/D;} = max{R,;/D;}, Vj € Sg
= (0.4375
and
DMPAro; = max{ROJ.}, Vk € SBJ
=1k125

Thus, the priority assignment given by DMPA is located at (0.4375,0.125) in Fig-

ure 1.2.

Though there are 8! = 40320 points in Figure 1.2, most of them are overlapped indi-
cating that a number of priority assignments produce the same jitter result and the same
maximum response time. Observe that in the bottom end of the graph, on the feasible
side, there are six points. They correspond to feasible priority assignments with zero out-

put jitter. For example, Table 1.2 shows two assignments with zero output jitter but only

solution S2 fulfills the precedence constraints.

1.2 Motivation: Problems with Deadlines and Q(_)S _

SI | R | ROJ S2| R | ROJ
x |1 |0 x| 1 0
'y [3 [0 y |3 |0 |
z 16 |0 z |6 |0 N
b |7 |0.187 b |7 |0.187
d[8 [0 a |9 |0.218
a [10108 | | ¢ [13]02
c | 14 | 0.0625 d [14] 0.0625
e | 23 | 0.357 e | 23 | 0.357

Table 1.2: Two alternative feasible solutions for task set Sg. Both minimise ROJ but only
the second one meets the precedence constraints

Summary

This example shows that scheduling problems with hard deadlines and QoS requirements
expressed as quantitative metrics can be solved not only using complicated algorithms but
also with pure fixed-priority assignment approaches. Unfortunately, current analysis for
FPS lacks mechanisms for finding such priority assignments and, naturally, enumerating
all assignments 1s 1n the general case impracticable. Consequently, finding algorithms that

convert this intractable problem into a tractable one is a challenge.

In this thesis we present a general mechanism that solves problems like that illustrated
above 1n pseudo-polynomial time (instead of trying all /V! different priority orderings).
This makes such problems tractable even for large task sets. Even though we use the
example of output jitter, the approach presented here 1s generic and can be applied to a

wide variety of scheduling problems 1n fixed-priority systems.

1.2.2 Discussion

Though quantitative metrics can be defined to express several QoS requirements, it seems
clear that not all system requirements can be expressed quantitatively. In fact, there exist
qualitative requirements that depend on particular desires of users or system designers that

are difficult to formulate and model appropriately.

For example, assume that the system described above 1s developed with the priority

assignment of Table 1.1, and only during the testing phase it i1s discovered that improve-

1.2 Motivation: Problems with Deadlines and QoS 9

ments in quality are required. A first improvement consists in the reduction of output jitter
and therefore, the priority assignment S2 (see Table 1.2) is optimal in that sense. However,

for any decision maker, S2 could not be the best solution, for instance:

1. users could not be satisfied with the responsiveness of the human interface; different

levels of satisfaction may be perceived by different users.

2. a system designer may note that the worst-case response time of the Alarm task is
very close to i1ts deadline and, in an overload situation, its deadline could be missed:;

thus, he may prefer a higher priority for task a.

Thus, the first 1ssue 1s how to express appropriately such qualitative QoS requirements

and afterwards, the next issue i1s how to solve the scheduling problem.

Expressing QoS

Traditional scheduling theory 1n real-time systems use utility functions to describe the
satisfaction obtained when completing some computations. This satisfaction may be qual-
itative and/or quantitative. A limitation 1s that an appropriated utility function has to be
formulated for each task. Clearly, it cannot be determined easily. In fact, there does not
exists a methodology for their design [8] and the assignment of utility functions to tasks
1s usually imprecise. These disadvantages have been noted 1n other areas. For example,
instead of utility functions, pure ordinal relationships that specity which of any two bun-
dles of commodities individuals prefer are utilised in economics. The relationship reflects
the extent to which a thing is preferred to others. Ordinal preference relationships is a

concept that may be introduced in real-time systems for expressing (oS requirements.

Scheduling with QoS

Assuming that QoS may be expressed appropriately, a scheduling problem may be for-
mulated and its solution may be proposed. Naturally, less expensive solutions are the
preferred ones. For example, with regard to the two above observations to the solution S2

proposed, increasing computing resources or performing some optimisations to the code

1.3 Thesis Aims 10

could be costly solutions. On the other hand, an inexpensive alternative consists in ma-
nipulating the priorities for raising “‘as higher as possible” the priorities of tasks without
modifying the improvements already obtained. How to achieve such priority assignment
1s the main 1dea of our research: In fixed-priority scheduling there exist feasible priority
assignments that meet additional QoS requirements. The problem consists on how to find

such priority assignments without performing exhaustive search.

1.3 Thesis Aims

The following statement synthesizes the thesis proposal:

In the context of fixed priority scheduling of real-time systems, multicriteria problems
can be solved combining novel and established techniques based on assignment of pri-
orities. Optimal or near-optimal solutions can be proposed and evaluated. A solution
consists of a feasible priority assignment that maximises/minimises a novel QoS metric
based on simple ordinal importance relationships. The solution proposed is generic and

can be applied to a wide variety of scheduling problems in hard real-time systems.

We 1nvestigate the problem of finding priority orderings that simultaneously satisfy
QoS and timing (deadline) requirements. The problem of finding an assignment of pri-
orities that maximises a set of QoS constraints and satisfies all deadlines 1s know to be
NP-Hard. We argue that the intrinsic complexity of the problem stems from the value sys-
tem usually utilised to face the problem, and 1n particular due to the scale of measurement
and the intrinsic comparison of value between tasks. Nevertheless, the assignment of val-
ues to tasks is usually imprecise and complex utility-based scheduling algorithms based on
these values are therefore based on imprecise input data. Instead, we proposc a weaker no-
tion of QoS, a simple importance relationship between tasks rather than an absolute value
attached to each task. The meaning of this importance relationship 1s to express that in a
schedule it is desirable to run a task in preference to another one. This simplified model
captures even complex QoS metrics between tasks. Thus, the aim 1s to develop algorithms
based on the concept of importance to express QoS requirements, such that combined with
well-established feasibility test and other techniques, scheduling problems with deadlines

and QoS requirements can be solved.

1.3 Thesis Aims 11

1.3.1 Contributions

In this thesis we present a general mechanism that allows solutions to several scheduling

problems based on the simple assignment of fixed-priorities to tasks in pseudo-polynomial

time. The main contributions are:

e The development of a metric for expressing QoS requirements based on the concept

of relative importance among tasks.

e The development of algorithms that find optimal solutions for problems with hard

deadlines and the metric of relative importance.

e A set of heuristics based on simple rules for assigning importance to tasks. These
heuristics combined with our algorithms, provide solutions to problems with hard

deadlines and QoS requirements such as jitter, preemptions and latency.

1.3.2 Research Approach

Relative importance among tasks i1s a preference for executing a task with regard to the
other tasks in the system. By associating different importance to tasks, importance order-
ings can be defined. For instance, the ordering where the first task has the highest value of
importance, the second task has the second highest importance, the third one has the third

highest importance and so on, 1s the highest importance ordering.

We observe that such orderings can be arranged lexicographically and indexed by im-
portance. The lexicographic index permits to define a QoS metric as the lexicographic
distance between any ordering and the highest importance one. This importance metric
expresses a distance from a level of quality to the maximum one. Thus, minimising this
distance maximises the QoS. Based on these concepts, a scheduling problem is formulated

as finding a feasible priority ordering that maximises the metric of importance.

In order to solve the above scheduling problem, we present the DI (Deadline and Im-
portance) algorithm that finds in a polynomial number of steps, an optimal priority order-
ing that meets hard deadlines (D) < T') and that satisfies the importance metric. Optimality

in this context mcans that there i1s no other feasible schedule with higher importance. The

1.3 T!lesis _Aims 12

DI algorithm 1s posteniorly extended in the DI+ algorithm which provides support for
precedence constraints, arbitrary deadlines (D < T or D > T') and weakly-hard timing

constraints. The correctness of the algorithm is proved.

The DI and DI+ algorithms find an optimal solution in O((\N? + N)/2) steps (in the
worst-case) where /V 1s the number of tasks. This makes the problem tractable even for
large task sets. However, the complexity of the solution depends on the complexity of the
feasibility test due to performing a feasibility test at each step. For instance, the complexity

of DI 1s pseudo-polynomial when the feasibility test is the response time analysis [3].

We also observe that the concept of importance is semi-abstract but representable by a
specific metric (1.e. the importance metric); consequently, it could be used to solve other
problems if analogies with the relative importance concept are found. In this context, we
propose that if a particular problem with QoS metric Zg,s can be related with a problem
with Importance metric Z, then solving the problem with Z; also will solve the problem

with ZQOS'

In order to demostrate the validity of the above statement a case study is presented in

chapter 7. It 1s separated in two parts:

e In the first one, we simulate different simple priority assignments to observe how
good or bad they are with respect to difterent QoS metrics. Examples of priority
orderings tested are shortest deadline first, largest deadline first, shortest worst-case
computation time first; examples of metrics are minimising the output jitter, min-
imising the number of preemptions, and minimising the latency. The results of the
experiments show that some of these assignments of priorities are particularly good

with respect to the QoS metrics but, naturally, they do not guarantee the deadlines.

e Those priority assignments that are good with regard to a particular metric are used
as assignments of importance and then, by applying the DI algorithm, we find good
or near-optimal solutions for such QoS and deadline problems. The case study
also compares the solutions found with the corresponding Earliest Deadline First
scheduling solutions. Remarkably, it 1s shown that contrary to previously published
results[17], the fixed-priority scheduling solutions obtained outperform EDF in a

number of scenarios.

1.3 Thesis Aims 13

This thesis provides algorithms that produce fixed-priority orderings of superior qual-
ity than those obtained by current FPS theory. The QoS is improved without modifying
the installed base of fixed-priority systems.

1.3.3 Thesis Organisation

The remainder of this thesis 1s organized as follows:

Chapter 2. A Review On Preemptive Fixed Priority Scheduling

This chapter reviews the main concepts on preemptive fixed-priority scheduling for unipro-
cessor real-time systems utilised in our research. In fixed-priority scheduling the priority
assignment and the feasibility analysis are the two main areas of research. With respect
to priority assignments, our review covers from Rate Monotonic Priority Assignment (to
solve problems with deadlines equal to periods) to swapping algorithms (to solve problems
with arbitrary deadlines or weakly-hard constraints). With respect to feasibility analysis,

it covers from the utilisation-based test to the weakly-hard analysis.

Chapter 3. A Review On Scheduling with QoS

In real-time systems the concept of importance among tasks 1s usually defined in terms of
utility functions. In this chapter, we briefly make a review of some scheduling mechanisms
for improving the QoS measured 1n terms of utility. It starts with a concise review of how
the system requirements are mapped from the specification to the design. Afterwards, a
summary of how the utility 1s perceived 1n a system at different levels of abstraction is

presented. Finally, a review of scheduling approaches for improving QoS 1s presented.

Chapter 4. Importance

In this chapter we propose a model for expressing QoS requirements in real-time systems
based on the concept of relative importance among tasks. We define importance in terms

of predilection for executing tasks in preference to other tasks in a system as well as

]_.3 Thesis éims 14

predilection for executing tasks in specific orders. The concept is based on preferential
statements of the form “a 1s more important than 3”. We define a QoS metric using this
concept and propose its use in the context of fixed-priority scheduling. In addition, we
define some scheduling problems 1n terms of fixed-priorities; solutions to these problems

are proposed in the following chapters applying our model of importance.

Chapter 5. Fixed-Priority Scheduling with Deadlines and Importance:
The DI Algorithm

In this chapter we present the DI algorithm that solves the scheduling problem where hard
deadlines and importance criterion have to be optimised. The problem 1s formulated as
finding an optimal priority ordering that maximises the importance criterion. Optimality
in this context means that there 1s no other feasible schedule with higher importance. The
DI algorithm finds such optimal priority assignment in O((N* + N)/2) where N is the

number of tasks.

Chapter 6. Fixed-Priority Scheduling with Deadlines and Conditional Importance:
The DI+ Algorithm

In this chapter the concept of conditional relative importance 1s added to our model of
importance. Conditional relative importance statements express preterences for executing
a task with regard to other ones in the system subject to conditional clauses. This concept
allows implementing priority relationships constraints such as precedence constraints and
allows including importance as a hard requirement. We formulate the scheduling problem
with deadlines and conditional importance and introduce the DI+ algorithm for solving
it. DI+ is DI with some modifications such that the feasibility test can be substituted by
other tests. In particular, by including feasibility tests for tasks with arbitrary deadlines or
weakly-hard constraints and including the swapping algorithm for finding feasible priority

orderings, DI+ is enabled to cope with such problems.

1.3 Thesis Aims 15

Chapter 7. Evaluation

In this chapter we evaluate different heuristics for assigning importance such that when
used with the DI algorithm, solutions to multicriteria problems are presented. In order to
improve the quality of a system, we assume that each task 1s characterized not only by
a deadline but also by an importance value which 1s correlated with a quantitative QoS
metric. A heuristic assigns importance to tasks pursuing to minimise (or maximise) a
QoS metric and then the DI algorithm finds a feasible solution. The performance of this
approach 1s then evaluated. The best combination DI algorithm with heuristic 1s proposed
as a fixed-priority solution for improving the quality of the system. Metrics considered are

for the total number of preemptions, output jitter, latency and average response time.

Chapter 8. Conclusions and Future Work

The final comments about the research results are given in this chapter. In addition, some

directions for further research are also presented.

Chapter 2

A Review On Preemptive Fixed Priority
Scheduling

This chapter 1s an introduction to the concepts in preemptive fixed-priority scheduling for
uniprocessor real-time systems utilised in our research. It 1s not our intention to cover
all topics but only those required to understand the subsequent chapters. It includes Rate
Monotonic scheduling, Deadline Monotonic scheduling and scheduling in weakly-hard

systems.

2.1 Real-time Systems

A real-time system performs some activities and responds within timing constraints to
events in its environment. Timing constraints are expressed in terms of committed com-
pletion times called deadlines. We use the terms deadline and timing constraint inter-
changeably. Usually, real-time systems can be classified according to the semantics of the
deadlines. A hard real-time system has critical deadlines that must be met; otherwise a
catastrophic system failure can occur. A soft real-time system has non-critical deadlines
and hence missing some deadlines occasionally 1s not catastrophic but it 1s an undesirable
effect [3]. In a weakly-hard real-time system [5] some deadlines can be missed but their
number and/or frequency must be bounded and well determined. Naturally, a system can

have a mixture of tasks with critical or non-critical deadlines.

An embedded system 1s a special-purpose computer system built into a larger sys-

16

2.1 Real-time Systems 17

tem, which does not interact directly with humans in a regular manner. For instance, a
car controller system only receives inputs from sensors and sends outputs to actuators.
Real-time systems are typically embedded. In addition, it is said that a real-time system
1S synchronous when their activities are coordinated by a clock that keeps track of time.
An asynchronous system interacts with the world at any time. Clearly, a mixture of syn-

chronous and asynchronous activities can coexist [3].

A real-time system 1s usually designed as a set of activities to be executed concurrently
and continuously on a single or multiple processors. Each of these activities models a part
of the system that interacts with each other and with the environment. These activities are
usually called the process model. In our context, it will assumed that the process model

corresponds to a single processor system only.

2.1.1

Process Model

A process model 1s represented as a task set S = {a,b,c,...} with cardinality N. For
scheduling purposes, a task set can be ordered totally in different ways. Such an ordering
1s usually a totally ordered task set. An activity or task is either a computer process or a
single thread of control that 1s executed by a single processor. Each task has a number of

distinctive teatures many of which are described next; the subscript j usually refers to a

task.

A task becomes ready for execution at 1its release time (r) , executes its first compu-
tation at beginning time (b) , and concludes at its completion time (c) . The difference
between its completion time and its release time 1s called the response-time. The amount
of processor time required to complete, 1t 1t executes alone, 1s called the task execution
time. The execution time 1s not always the same, 1t varies depending on different circum-
stances but the worst-case execution time (C') must be calculated for deterministic systems.
On the system life-time, a task has an initial release time (ry) at time zero and afterwards it
1s released (or invoked) for execution a number of times along the time axis. Each release
is called an instance and is separated from the previous ones by a time interval; this time
intcrval can be random, quasi-random but with a minimal separation known, or constant.

For instance, when the time interval is a constant 7', 1t 1s said that the task is periodic with

2.1 Real-time Systems _ 18

period 7" invoked at times k7" with invocations k£ = 0, 1, 2, The longest response-time
of all instances of a task is called the worst-case response-time (R) . In addition, some-
times it is useful to specify a task release in terms of an 1nitial time plus a constant O called

offset such that the task 1s invoked at times k7" + O.

At each release, 1t 1s expected that a task completes before its deadline (D) . A hard
deadline 1s one that 1s critical for the system functionality and therefore a task missing one
is considered a system failure. A soft deadline is non-critical for the system functionality
and theretore a task missing one occasionally 1s tolerated depending on different circum-
stances. For instance, a task with a soft deadline may typically produce useful results even
if 1t finishes late; however, there are tasks where their results are useless when a deadline
1s missed; these soft deadlines are called firm deadlines. More general soft deadlines can
be expressed as a value-function where a task has a value when 1t completes before its
deadline and such value changes (usually the value decreases) as its lateness increases.

Commonly, tasks with soft deadlines are expected to complete as early as possible.

In addition, some tasks can tolerate missing deadlines not in occasional terms but 1n
a predictable way. This kind of timing constraints i1s called weakly-hard. In effect, a
weakly-hard constraint 1s an exact description (in a window of time) of a required pattern
of missed/met deadlines that a task must fulfil in the worst-case. For instance, i1t 1s said
that a task “meets any m in k deadlines™ 1f in any window of £ consecutive instances of the

task, there are at least m instances that meet their deadline [18].

In this context, tasks can be classified orthogonally according to their release and tim-

ing constraints as follows:

Task Categorization
| Arrival Hard Deadline | Soft Deadline Weakly-Hard Constraint |
| Periodic " hard periodic task | soft periodic task | wh periodic task |
Minimal known | sporadic task aperiodic task | wh aperiodic task
Random | N/A aperiodic task | wh aperiodic task

A periodic task has a period T" and can have a hard, soft, or weakly-hard constraint; an
aperiodic task does not have a period and can have a soft or weakly-hard constraint; in the
literature, hard aperiodic tasks are not defined because there is no way of guaranteeing such

hard deadlines; sporadic tasks have a minimal inter-arrival time (also denoted by 7") and a

2:1 Real-tin!_e §Xstems !9

hard deadline. Note that adding columns for a wider classification of deadlines increases
the above categorization. In general, several classifications can be defined depending on

the semantics of task releases and deadlines, but this is the usual one.

Finally, tasks can be interrupted or even not released depending on the application. A
task 1s rescindable if it can be revoked or not released at any time; when a task has to be

executed until completion it is called a non-rescindable task.

Preemptions

When executing, a computer task can be suspended at any time, at specific points or not
allowed to suspend at all. A task that can be suspended at any time and resumed from
the point of suspension without affecting its behavior is called a preemptive task. A task
1S non-preemptive when it 1s not allowed to suspend it. A task is self-preemptive when
1t 1s organized in non-preemptive blocks such that at the end of each of these blocks the
task ofters a de-scheduling request to the system,; if a high priority task is ready it start
Its execution, otherwise the next block of the current task is executed [19]. The process
of saving and restoring sufficient information of a task such that it can be resumed after

being interrupted 1s called a context switching.

Release Jitter

Normally, 1t 1s assumed that a task 1s released as soon as it arrives (1.e. when it is able to
run). However, it may occur that the task 1s subject to a bounded delay between 1ts arrival
and release, and then it 1s said to exhibit release jitter. Release jitter J 1s the worst-case

delay between the arrival time and the release time of a task [19].

Release jitter takes place due to system implementation techniques as, for example, a
tick-driven scheduler. A tick-driven scheduler periodically polls task arrivals at fixed time
ticks; at these times the scheduler performs its scheduling decisions. It could be the case
that a task arrives just a tick later from the last poll checking such that the task arrival
will be noted at the next scheduler period when the task will be released (i.e. put on the

run queue). For a periodic task, release jitter can be avoided by choosing its period to be

2.1 Real-time Systems 20

multiple of the period of the scheduler. For a sporadic task, 1t cannot be avoided as 1ts
release time cannot be exactly determined; its release jitter 1s determined by the polling

period of the process that awakes 1t or the polling period ot the scheduler [3].

Dependency Relationships

[t 1s said that two tasks are independent when the results of their computations do not
depend on each other; otherwise, they are dependent; for instance, dependent tasks require

communicating data or synchronizing their computations.

Some dependent tasks interact accessing mutually exclusive resources for both com-
munication and synchronization purposes. Tasks that share common resources have to
use synchronization primitives such as semaphores, monitors or protected objects to gain
exclusive access to the resources [3]. Thus, a task will experience blocking when 1t 1s
stopped in a semaphore waiting for the release of the resource. In real-time systems, the

worst-case blocking time must be determined.

Other aspect of dependent tasks 1s when a task cannot start until another task has
completed. In this case it is said that a precedence relationship exists. Data 1s often passed
between these tasks but they never execute together and theretore, mutual exclusion over

this data does not need be enforced.

Value

Sometimes the notion of value is attached to a task. The value V' 1s a scalar that expresses
the weight or the intrinsic benefit obtained by running a task [20]; in other words, value
is an artifact that expresses a measure of quality and conveys how valuable 1s the task for
the system. Note that value is not a value-function as defined 1n the literature [4] as a

value-function combines urgency (deadlines) and benefit (value) 1n a single expression.

2.2 Scheduling Tasks 21

Other Properties

In the above description, a task executes at each release a single stream of computations
with a processing time, inter-arrival time, deadline and so on. However, in some ap-
plications tasks can have multiple deadlines in the same release, or can have different

computation times, or periods from release to release [19].

Furthermore, in more complex schemes (as described in [21]), a task z can be broken
down into a series of operations or optional sub-tasks, where each one can have a process-
ing time, inter-arrival time, deadline and so on. A mono-operation task consists on one
operation and a multi-operation task consists on several operations z, with k = 1,2,

The operations can be

e mutually inclusive: z = (z; and x5 and z3 . . .),
e mutually exclusive: x = (z; or 3 or z3.. .),

e or a mixture of both, for instance: x = (z;and (x5 or z3)and ...).

For instance, in many real-time systems the set of functions that a system 1s required
to provide may change over time. Mode change protocols allow currently running tasks
to be deleted or changed, or new tasks to be added [22] [23]. Mode change protocols use
tasks with mutually exclusive operations. Other example 1s the mandatory/optional task
model [24] where mandatory operations have critical deadlines and optional operations

can be rescindable. These are mutually inclusive operations.

2.2 Scheduling Tasks

Real-time systems must guarantee in some degree that the timing constraints of all tasks
are met. The scheduling algorithm is a fundamental tool for guaranteeing such constraints.
In real-time systems scheduling algorithms are executed oft-line, on-line or a combination
of both. In general, scheduling algorithms can be categorized as table-driven approaches

or priority-driven approaches.

2.2 Scheduling Tasks 22

Table-driven approaches create a schedule off-line, which is stored 1n a static table to
be posteriorly executed. Priority-driven approaches create a schedule assigning priorities
such that at run-time a dispatching mechanism executes the tasks according to their prior-
ities. Priority-driven is divided in two major schemes named fixed-priority and dynamic-
priority. In fixed-priority the execution’s order is based on off-line priority assignments,

and 1n dynamic-priority the execution’s order is based on on-line priority assignments (see

Liu {24], Burns and Wellings [3] and Buttazo [25]).

2.2.1 Table-Driven Scheduling

In the table-driven approach, all tasks characteristics must be known a priori because the
scheduling decisions are taken off-line. In effect, prior knowledge of all data allows com-
puting one or more possible schedules, which can be stored in a table. At run-time, an
initialisation phase allocates all the resources required by the tasks and the first task in
the table 1s selected for execution. When 1t finishes the rest of the tasks in the table
are executed sequentially and this sequence 1s repeated continuously. Some variations
of this paradigm allows identifying free time slots that are used for implementing some
mechanism to dispatch aperiodic tasks. Table-driven scheduling allows “complex and so-
phisticated algorithms because the schedule 1s computed oft-line” [24]. Thus, different
scheduling solutions can be tried and more than one objective can be pursued. For ex-
ample, if more than one feasible plan is found, different heunistics can be applied looking
to minimize other criteria such as minimizing the average response time. Examples of

table-driven approaches are the clock-driven [24] and the cyclic executive [3].

Although table-driven scheduling 1s a highly predictable approach that solves many
kinds of problems, it is mainly used for small, simple systems which do not need dynamic
capabilities [26]; moreover, it is very complex to maintain and 1t 1s inflexible since any

change to the tasks may require rebuilding the table [3].

2.2.2 Priority-Driven Scheduling

In the context of scheduling, a priority establishes an order of importance or urgency

with respect to the timing constraints. In the priority-driven scheduling approach, the task

2.2 Scheduling Tasks . 2.3

execution order is based on priorities assigned to tasks such that at all times the task with

the highest priority 1s always executing. This paradigm has three main components:

I. A priority assignment algorithm. An algorithm which creates a plan by assigning

priorities to tasks.

2. A feasibility test. An algorithm which checks conditions that are necessary and/or
sufficient for a task set to be scheduled.

3. A run-time dispatching algorithm. An algorithm which executes the plan by dis-
patching the tasks in priority order.

Thus, the priority assignment establishes the order at which the tasks will be executed,
and the feasibility test checks whether the timing constraints will be fulfilled; finally the
dispatching algorithm schedules the tasks.

A task set ordered according to their priorities forms a priority ordering. We will use
the terms priority assignment and priority ordering interchangeably. For a given task set,
a priority ordering 1s feasible 1f the timing constraints of all tasks are met. A task set is
schedulable by a specific scheduling algorithm if such algorithm produces a feasible prior-
ity ordering. When all task sets for which a feasible priority ordering exists are schedulable

by an scheduling algorithm, 1t 1s said that such an algorithm is optimal [25].

The priority-driven approach 1s divided into fixed-priority and dynamic-priority schedul-
ing. In fixed-priority scheduling static priorities are assigned and they do not change over

time. In dynamic-priority scheduling priorities might change from invocation to invoca-

tion.

Fixed-priority scheduling. In the fixed-priority scheduling approach, the execution
order of the tasks is based on off-line static assignment of priorities. The Rate Monotonic
Priority Assignment (RMPA) algorithm [27] 1s the best known algorithm for assigning
fixed-priorities. In RMPA, the priorities are assigned according to the rule “tasks with
shorter periods have higher priorities”. RMPA 1s optimal when tasks deadlines are equal
to their respective periods (i.e. 7' = D). In the Deadline Monotonic Priority Assignment

(DMPA) algorithm [28], the priorities are assigned according to the rule “tasks with shorter

2.2 Scheduling Tasks 24

deadlines have higher priorities”. DMPA 1is optimal when tasks deadlines do not exceed
their respective periods (1.e. D < 7). DMPA subsumes RMPA. Optimality implies that
1f a feasible priority ordering over a task set exists, then DMPA is also feasible. On some
process models where DMPA 1s not optimal, more complex algorithms for finding feasible
priority assignments are utilised such that the one presented by Audsley in [29]. This Swap

algorithm starts with an infeasible priority assignment and performs swaps of priorities

until a feasible one 1s found.

Dynamic-priority scheduling. In the dynamic-priority scheduling approach, thc exe-
cution order of the tasks 1s based on dynamic assignment of priorities, such that at run-time
the task with the highest priority is always executing. The Earliest Deadline First (EDF)
algorithm [27] forms the base for all dynamic-priority scheduling in real-time systems. In
EDF, the priorities are assigned on-line according to the rule “the ready task with the near-
est deadline has the highest priority”. EDF is an optimal dynamic preemptive algorithm
on single processor systems that can theoretically utilise all the processor capacity; for
the simple process model defined 1n [27], all deadlines (with D = T') will be met under
EDF if 5" . (C;/T;) < 1. In addition, other dynamic-priority algorithms are also found
in the literature such as the Least Laxity First algorithm (LLF) where “the task with the
smallest laxity has the higher priority” [30]; the Value-Density algorithm where the prior-

itics are assigned according to the ratio Vg) (1.e. value at time ¢ divided by computation
time) [31]. In the Maximum Urgency First algorithm (MUF) the task with the maximum
urgency has the higher priority; in this approach, urgency 1s defined as a tuple consisting of
two fixed priorities and a dynamic priority; one of the fixed priorities has precedence over
the dynamic priority and the dynamic one has precedence over the other fixed priority; at

run-time, the algorithm described in [32] computes the maximum urgency as a function of

the three priorities.

2.2.3 Discussion

Depending upon the application, scheduling schemes exhibit different advantages and dis-
advantages which are debated in the commumty (see Locke [33], Xu and Parnas [10],
Buttazzo [17]). In terms of predictability and flexibility, fixed-priority driven scheduling
1s localized in the middle between table driven (the most predictablc) and dynamic-priority

2.3 Fixed-Priority Scheduling t 235

driven (the most flexible) schemes. This particularity is appreciated by many government
agencies and system integrators who recommend it as the method of choice [10]. As
a consequence, the majority of commercial real time operating systems and languages
and standards support fixed-priorities only. The main focus of this thesis is fixed-priority

scheduling in real-time systems which is now presented on detail.

2.3 Fixed-Priority Scheduling

Liu and Layland proved in [27] a set of fundamental results known as the rate mono-
tonic analysis that form the base of the fixed-priority scheduling theory. Rate Monotonic
imposes some restrictions to the task model that have been posteriorly relaxed for al-
lowing tasks to have deadlines less than their periods [34], deadlines greater than their
periods [35], arbitrary offsets [36], precedence constraints [19], variations in computation
time and period [19], shared resources [37], etc. The literature in this area is large and
for such reason, only the fundamental concepts will be reviewed starting from the basic

rate-monotonic analysis.

Basic task model. A task set S consists on /N independent preemptive tasks to be

scheduled 1n a single processor system where:

e Each task consists of an infinite number of invocation requests, each one separated

by a minimum time 7'. For a periodic task it defines its period and for a sporadic

task 1t defines its minimal inter-arrival time.

e Tasks have deadlines D relative to the actual release such that if the task is invoked

at time ¢, 1t should have fimished by ¢ + D).

e The worst-case computation time (' 1s known for each task (with C' < D) and during

this time the task does not suspend 1tselt.
e All tasks share a common release ry.

e Tasks have a priority P where P,,,. 1s the highest and 1 is the lowest priority one;

without loss of generality we assume that two tasks do not share the same priority.

UNIVERS
| OF YORK
BHARY

2.3 Fixed-Priority Scheduling 26

e All tasks are non-rescindable; e.g. they cannot be aborted or skipped.

All periodic tasks are assumed to be released together at time zero. The tasks will be
released together again at their hyperperiod. The hyperperiod is the least common multiple

of the periods of the tasks and it is denoted by H such that H = lem{7;} V j € S.

2.3.1 Rate-Monotonic Analysis

The Rate-Monotonic analysis applies to a set S of N periodic tasks with the above basic
task model and where all tasks have a deadline equal to their period (D = 7). Liu and
Layland proved in [27] the following results.

Theorem 2.3.1. The longest response time of a task occurs when it is invoked simultane-

ously with all higher priority tasks.

The time when all tasks are invoked simultaneously is called a critical instant. A

critical instant occurs when all tasks are released at time zero.

Theorem 2.3.2. A fixed-priority assignment is feasible provided that the task deadlines at

the critical instant are met.

Thus, for a fixed-priority assignment to be feasible, only the first deadline of each task

must be met when all tasks are scheduled at time zero.

Liu and Layland proposed the Rate-Monotonic Prionity Assignment (RMPA) algo-
rithm, which consists on assigning fixed-priorities assigned inversely proportional to the
tasks periods. The RMPA algorithm 1s optimal among all static priority assignment algo-
rithms. In addition, the Utilisation-Bound test for checking the feasibility of the assign-

ment 1s also introduced 1n [27].

Definition 2.3.3 (Rate-Monotonic Priority Assignment). A4 task set S is in rate-monotonic
priority ordering if
P,>FB&eIl,<T;

for any two tasks a,bin 5.

2.3 F_ixed-Priority S_cheduling 27

Theorem 2.3.4 (Utilisation-Bound test). For a set S of N tasks, the Rate Monotonic Pri-

ority Assignment yields a feasible priority ordering if
U < N(2VN —1)

where U = Zj.vzl C;/Tj; is known as the utilisation factor of the task set

The bound converges to [27]:

lim (N(2/N — 1)) = In2 ~ 0.69314

N—00

However, experimental results with randomly generated task sets show that this bound can
be as higher as 0.85 [3]. The utilisation-bound tests is sufficient (i.e. any task set passing

the test will be schedulable) but not necessary (i.e. failing the test does not imply it is
unschedulable).

The feasibility analysis of the RMPA algorithm can also be performed using a suf-
ficient but not necessary test called the Hyperbolic bound [38]. This test has the same
complexity as the above test but it is less pessimistic allowing to accept task sets that

would be rejected using the Utilisation-bound approach.

Theorem 2.3.5 (Hyperbolic-Bound test). For a set S of N tasks, the Rate Monotonic

Priority Assignment yields a feasible priority ordering if
N

[1w;+1) <2

j=1

where U; = C; /T is the utilisation factor of task j.

With the Rate-Monotonic analysis, Liu and Layland founded the basis of fixed-priority
scheduling 1n real-time systems by proving that giving higher priorities to tasks with
shorter periods, scheduling problems with deadlines can be solved optimally. Over the
years, the assumptions of strict periodic tasks and D = 1" were relaxed causing the next

milestone in the area: the Deadline-Monotonic approach [34].

2.3.2 Deadline-Monotonic Analysis

The Deadline-Monotonic Analysis extends the basic task model allowing tasks with dead-

lines less than or equal to the periods, and sporadic tasks. The approach consists of the

3_.3 Fixeil-.Priority Scheduling 28

Deadline-Monotonic Priority Assignment (DMPA) for assigning fixed-priorities and the
Response-Time test for checking the feasibility of the assignment. The Response-Time
test 1s based on the exact analysis for finding the worst-case response time of a task when
1t 18 released at its critical instant assuming that D < T'. This assumption permits to incor-

porate sporadic tasks without alteration to the task model [34]. The next results are proved
in [28], [34], [39], [35].

Leung and Whitehead [28] proved that the RMPA is no longer optimal when D < T.
However, assigning higher priorities to tasks with shorter deadlines is still optimal among

fixed-priority algorithms. This assignment policy is known as the Deadline-Monotonic
Priority Assignment (DMPA) algorithm.

Definition 2.3.6 (Deadline-Monotonic Priority Assignment). A4 task set S is in deadline-

monotonic priority ordering if
F,>P < D, < Dy

for any two tasks a,b in S.

The Response-Time test (or completion-time test) is a sufficient and necessary (i.c.

the set 1s unschedulable if 1t fails the test) schedulability test based on the response-time
equation defined [34], [39]:

Definition 2.3.7 (Response-Time equation). The Response-Time equation computes the

worst-case response time R; of any task j when it is released at its critical instant.

W = C.

J

J
n W 23.1
VVj +1 __ Cj + Z { 7 —I Cz ()

— | 1
1€hp(j)

where ¢ € hp(7) is the set of higher priority processes than ;. This recurrence equation
finishes when either W b= W or W;‘“ > D;. It Wf” = W, then the response

time R; 1s W', otherwise, the response time of task j will be greater that its deadline. The

convergence of the response-time equation 1s guaranteed [35]1f U < 1.

Theorem 2.3.8 (Response-Time test). Given a task set S5 where D; < 1 Vj, a fixed-
priority ordering is feasible if and only if R; < D, for all j.

2.3 Fixed-Priority Scheduling 29

In the Response-Time test note that:

e It 1s independent of the prionty assignment; i.e. it can be used to determine the

feasibility ot any fixed-priority assignment.
e The condition K; < D; must be verified for each task.

o The test has pseudo-polynomial complexity because the response-time equation is
pseudo-polynomial; 1.e. the number of steps to compute the response time depends
not only on the number of tasks but also on the values of C, T and D, and hence the

number of steps cannot be determined in advance.

Motivated by the necessity of fulfilling more realistic system requirements, the analy-
s1s based on fixed-priorities has been extended to include dependent tasks, release jitter,

arbitrary deadlines, aperiodic tasks and more. Some of those extensions are reviewed next.

2.3.3 Dependent Tasks

Two tasks are dependent if the activities conducted by one depend on the initiation or
termination of activities conducted by the other task. Dependent tasks could involve inter-

task communication or synchronization, or precedence constraints.

Tasks Synchronisation

In practice, tasks interact as for example when accessing mutually exclusive resources
(e.g. shared protected data). Task synchronization primitives can be used to control ac-
cess to such critical resources. However, when applying synchronisation primitives (e.g.
semaphores) deadlocks or priority inversion phenomenons can occur [3]. Deadlock is a
situation wherein two or more tasks competing for a resource are waiting for the other to
finish but 1t never does, and then they wait forever. Priority inversion is produced when a
higher prionty task 1s prevented from executing by a lower priority one. Priority inversion
leads to unbounded blocking times and therefore deadlines cannot be guaranteed. These

problecms can be controlled by the set of priority inheritance protocols [37].

23F ixed-Priority Scheduling 30

Priority Inheritance Protocol. Under the Priority Inheritance Protocol, when a high
priority task is blocked by a lower priority one, the lower priority task inherits the priority
of the higher priority one, thus preventing middle priority tasks from executing. However,
this protocol suffers from several problems such as tasks having transitive blocking and

the protocol does not prevent deadlocks [37].

Priority Ceiling Protocol. In the Priority Ceiling Protocol (PCP), each resource is
assigned a priority ceiling, which is a priority equal to the highest priority of any task
which may lock the resource [37]. At run-time, there exists a system ceiling that is the
highest priority ceiling of any currently locked semaphore. In addition to its static priority,
a task has also a dynamic priority that is the maximum of its static priority and the one that
it inherits due to blocking of higher priority tasks. Thus, during the protocol operation,
a given task can only lock the resource when its dynamic priority is strictly higher than
the system ceiling. If so, its priority is temporarily raised to the system ceiling such that
no task that may lock the resource is able to get scheduled. Let B, be the duration of
the longest critical section executed by a task of lower priority than a task a, guarded by
a semaphore whose priority ceiling 1s greater than or equal to the priority of a. Sha et

al. [37] proved that:

1. Task a can be blocked by a lower priority task for at most B, time units.
2. The priority ceiling protocol is deadlock free.

3. Transitive blocking 1s prevented.

In addition, the protocol provides mutual exclusion access to the resource. The main

problem of PCP i1s its implementation cost and run-time overhead.

Immediate Priority Ceiling Protocol. In the Immediate Priority Ceiling Protocol
(IPCP), when a task access a resource, IPCP raises immediately its priority up to ceiling
of the resource and lowers its priority only when the task leaves the resource [37]. IPCP
also prevents deadlocks, transitive blocking and provides mutual exclusion access to the
resource. [PCP 1s easier to implement and has lower run-time overhead than the PCP.

[PCP 1s the currently policy in programming languages as Real-Time Java and Ada, and
in standards as POSIX [3].

2.3 Fixed-Priority Scheduling 31

Response-Time Equation with Blocking. Let K be the number of critical sections
(resources) under PCP or IPCP, the maximum time B; a task 7 can be blocked 1s equal to
the execution time C'(k) of the longest critical section k in any of the lower priority tasks

that are accessed by higher priornty tasks [3]:
K .
Bj = max{Y(k,j)C(k)}

where

o T(k,j) = 1: if k is used by at least one task with a priority lower than P;, and at

least one task with a priority greater or equal to P;.

e T(k,j) = 0: otherwise.

In order to take into account task synchronisation, the response time equation 2.3.1 is

updated as follows [3]:

Wn
Wit = O Bt Y [j 1 C (2.3.2)

Note that maximum blocking will not occur in some scenarios. For example, when a
set of periodic tasks with the same period are released at the same time, then no preemption
will take place and hence blocking will not occur. Consequently, the feasibility test with

the response-time computed with equation 2.3.2 1s pessimistic [3].

Precedence Constraints

Another kind of dependence between tasks 1s when a task b depends on some results of a
task a (e.g. task b cannot start until task a has completed). It this case it 1s said that “q

precedes b and we denote 1t as a — b.

Precedence relationships are important hard constraints in many systems where tasks

involved in an activity are dependent on other ones. Simple precedence relationships can

2.3 Pjixe_d-Priori_tX_ Scheduling 32

be implemented for tasks with the same period by modifying tasks priorities. In effect, in
priority scheduling, in order to ensure precedence of a over b (with 7, = T}) is necessary

to consider their task release time r, and r, such that [16]:

1. 1t r, < 1, then P, must be greater than P, or

2. 1t r, < 7y then F, 1s must be equal to or greater than P,.

In [19], a simple transformation technique for assigning priorities to tasks with prece-
dence requirements is explained. The technique applies to tasks that share the same period
and consists of modifying their deadlines such that the priorities are enforced to the order

required when DMPA is utilised.

2.3.4 Release Jitter

Release jitter J 1s the worst-case delay between the arrival time and the release time of
a task [19]. In the above analysis, it is assumed that all tasks are periodic with periods
which are exact multiples of the scheduler period. Thus, they can be released as soon as
they arrive and hence, they do not sufier release jitter. However, there are situations where
tasks could suffer release jitter. For example: (1) periodic tasks non-synchronized with
the scheduler period and (11) sporadic tasks which are not released as soon as the event on

which they are waiting has occurred (see [3]).

To take into account task release jitter, the response-time equation 2.3.2 is updated as

follows [3]:

W =t B+ Y (-] C (2.3.3)
:) 1

where J, is the release jitter of higher priority tasks than j. Finally, the response-time

is calculates as R; = W' 4 J;.

2.3 Fixed-Priority Scheduling 33

2.3.5 Arbitrary Deadlines

Arbitrary deadlines refers to tasks with D) < T or D > T 1.e. deadlines can be greater
than their periods. When D > T, the critical instant assumption of a task meeting its first
deadline will meet all the successive deadlines does not hold. Consequently, neither the
DMPA nor RMPA are optimal anymore even if a feasible priority exist. In this case, the
extended response-time equation provides an exact analysis for computing the worst-casc
response time. In addition, a feasible priority ordering can be determined by a priority

swapping algorithm [3].

Extended Response-Time Equation

In order to compute the worst-case response time of a task 7 when D; > T}, a number
of releases must be considered. In this case, there are potentially overlapping releases of
different instances of 7 and then the analysis given in [35] must be utilised. Assuming
that an overlapping release will be delayed until any previous one has completed, for any
potentially overlapping release a separate window W (q) is defined, where ¢ = 0,1, 2, . ..

identifies a particular window of time. Thus, the response time equation 2.3.3 is extended

as follows [3]:

(2.3.4)

For each g, a stable value that stops the loop can be found (1.e. W;‘“ (q) = W(q))

and then the response time for each q 1s given by

Ri(q) = W' (q) — qT; + J;

Thus, different releases are calculated until a ¢ 1s found such that R;(q) < 7;. Finally,

thc worst-case response time is the maximum value of all R;(q) computed:

R; =max{R;(q) forg=0,1.2,...}

2.3 Fixed-Priority Scheduling _ 34

Algorithm 1 Swapping Algorithm
Require: « is a priority ordering
1: ok := false
2: for) . =N —1to0Odo
3: for next .= jto0do

4: Swap(a,j,next)
5: if F'(«, 7) = true then
6: ok = true
7: exit inner loop
8: end if
9: end for
10: if not ok then
11: exit loop {infeasible}
12: endif
13: end for

Ensure: ok is true

Assignment of Priorities

When tasks have arbitrary deadlines, DMPA 1s not optimal [3]. In this case the the Swap-

ping algorithm may be used. This algorithm 1s based on the following theorem proved
in {29]:

Theorem 2.3.9. If a task j is feasible at the lowest priority level, then if a feasible priority
ordering exists for the complete task set, an ordering exists with j assigned at this lowest

priority level.

The Swapping algorithm receives as input an infeasible priority assignment and finds
a feasible one (if such priority assignment exists) by swapping pairs of task priorities.
Assuming a priority ordering o where index «|0] corresponds to the highest priority task
and a|N — 1] to the lowest priority one, the swapping algonthm (see algorithm 1) tries
to accommodate feasible tasks starting from the V — 1 to the O position. The function
F(«a,) returns true when a task at 7t" position is feasible. Note that this function may
be implemented using any of the above recurrent response-time equations. When a task
in the N — 1 position is found feasible it is fixed in that position, and then the algorithm
trics to accommodate another task in the NV — 2 position and so on, until 1t accommodates
successfully all tasks. However, when a task in a 7t" position is infeasible, it is swapped

with the (j — 1) task, and if it is also infeasible with the (j — 2)*" and so on; when

2.3 Fixed-Priority Scheduling 33

no task can be fitted then there does not exist a feasible ordering and the algorithm ends

unsuccessfully.

When the feasibility test F'(a, j) is exact (i.e. necessary and sufficient), the priority or-
dering 1s optimal. Otherwise the priority ordering is as good as the quality of the test [19].

2.3.6 Aperiodic Tasks

Apernodic tasks have random release times and therefore a deterministic worst-case ana-
lysis cannot be done; consequently, only aperiodic tasks with soft deadlines can be han-
dled. In FPS, scheduling problems where in addition to hard tasks, soft aperiodic tasks
have to be included 1n the plan, incorporate at least two objectives: (1) to guarantee that
all hard deadlines and (2) to minimize the response time of the aperiodic tasks. Thus,
the problem 1s how to schedule aperiodic tasks without causing that hard ones to miss
their deadlines. Server algorithms such as the Sporadic Server [40], Extended Priority
Exchange Server [41] or slack stealing algonthms such as Dual Priority Scheduling [42]
accomplish these two objectives. Of special interest 1s the Sporadic Server because for
FPS analysis purposes, 1t can be treated as a single periodic task, and consequently it can

be incorporated into the FPS analysis.

Conceptually, a server is a periodic task with a capacity (execution time) and a re-
plenish time (period). The capacity 1s set to the maximum possible such that the task set
and the server remain schedulable. When the server 1s executed (released), its capacity 1s
utilised to service aperiodic tasks. These tasks are stored in a queue and if it is nonempty
when the server is released, the tasks are executed. At the beginning of specific times
(e.g each period), the capacity is replenished (a computation time 1s assigned). When the
server executes a task, 1t consumes its capacity and 1t becomes exhausted when the capac-
ity is zero. The server is suspended when either 1ts capacity 1s exhausted or the queue is
empty. The simplest server is the Polling Server which works as above and has a main
drawback: if the server is released when the queue 1s empty, the server will be suspended
and its capacity will be lost. Therefore, the bandwidth-preserving servers algorithms have

been developed to preserve its capacity when they are released [24].

The Sporadic Server 1s a the bandwidth-preserving server. When the queue becomes

2.3 Fixed-Priority Scheduling _ 36

empty, the sporadic server preserves 1ts capacity deferring its assigned time slot. If a
task arrives and the server has capacity, the task will be executed. The sporadic server
replenishes just the capacity consumed at sporadic times (variable times). In contrast,
other servers such as the Deferrable Server replenishes its whole capacity at the start of

each period (fixed times) [24].

2.3.7 Weakly-Hard Tasks

A weakly-hard real-time system is a system that tolerates occasional losses of deadlines
if the distribution of its met and lost deadlines is precisely bounded within a window of
time [5/. Thus, while in the above analysis task timing constraints are represented by a
single deadline, in weakly-hard systems timing task constraints have to be expressed by
more complex artifacts. It implies the development of new priority assignment algorithms

and feasibility tests.

A weakly-hard constraint 1s an exact description in a window of time of a required
pattern of miss/met deadlines that in the worst-case a task must fulfil. Given a task system,
a pattern of miss/met deadlines of any task in a window of time can be computed either
by simulation or analytically. This pattern can be represented by a binary sequence called

p-pattern [18], where for each task release: 1 represents a deadline met and O represents

a deadline missed.

u-pattern

Definition 2.3.10 (u-pattern [18]). A p-patternis the worst-case pattern of met and lost
deadlines of a task 7 and is defined as

| 1 ifR;(k) < D;
1 (k) = { 0 otherwise

where k is the k' activation of ;.

Thus, a u-patternis a sequence of 1/0 indicating that at any particular release a task
cither met or lost 1ts deadline. For instance, the u-patternof a task that never miss a

deadline 1s a scquence of Is; a task that miss just one deadline and it occurs only at critical

23F izied-_P_rio_rity Scheduling 37

L

instant has a pu-patternp = 01111...1 of length L, where the length is the number of

activations during its hyperperiod.

Computing the p-patternof a task requires computing the worst-case response time
R;(k) at each invocation k, within the first hyperperiod at its priority level. This can be

done by either simulation or analysis.

In [18], several algorithms to compute analytically a u-pattern are described. First,
the worst-case finalization time F;(k) , at invocation k, within the first hyperperiod is

computed. F;(k) is the sum of three factors:

1. the computation time of the first k£ invocations
2. the time that higher priority tasks have been computing before F; (k)

3. the time the processor has not been used by higher priority tasks

The algorithms for computing F;(k) are rather complex and can be consulted in [18].

Once that F;(k) is computed, the worst-case response time is
R;(k) = Fj(k) — r;(k)

where r;(k) is the k*" release. Finally, for each release k its worst-case response time can

be calculated and the p-pattern is obtained applying definition 2.3.10.

Weakly-Hard Constraints

In some systems the effect of missed deadlines can be difterent depending on whether they

are missed consecutively or non-consecutively; thus, the tolerance to missed deadlines is

established within a window of m consecutive invocations of a task. In this context, four

types of weakly-hard constraints are defined in [5].

Definition 2.3.11 (Weakly-Hard Constraints). Let m (m > 1) be any window of consecu-

tive invocations of a task, and n (0 < n <) the number of invocations in such window:

o (n.m): atask meets any n inm deadlines if there are at least n invocations in any

order that meet the deadline.

2.3 Fixed-Priority Scheduling 38

o (n,m). a task meets row n in m deadlines if there are at least n consecutive invo-

cations that meet the deadline.

o (n,m): a task misses any n in m deadlines if no more than n deadlines are missed

o (m,m): atask misses row n in m deadlines if it is never the case that n consecutive

invocations miss their deadline.

The first two weakly-hard constraints express task sensitivity to the consecutiveness
of deadlines met, and the last two to the consecutiveness of deadlines missed. Note that a
task that must met all their deadlines (i.e. a hard task) is a particular case of a weakly-hard

task. This task 1s called a strong weakly-hard task and it has a p-pattern of 1s.

Feasibility Test

A weakly-hard real-time system is schedulable if it can be guaranteed that at run-time
all weakly-hard temporal constraints are always satisfied. Given a task set ordered by

priorities, the feasibility analysis requires:

1. Computing the worst-case u-pattern of each task at its corresponding priority level.

2. Checking if the u-pattern satisfies the weakly-hard constraint.

Naturally, a task set can have tasks with either hard deadlines or weakly-hard con-
straints. All tasks must be tested with the response-time equation but only the infeasible
ones with weakly-hard constraints require the two above steps. A function W (a, k) that
returns true when the 7" task in the priority ordering o meets the weakly-hard constraints
is described in [18]. Function W (a, k) starts checking the strict feasibility of the j* task
according to the FPS feasibility test;

o if feasible, it will not miss any deadline and therefore it is also weakly-hard feasible:

e if infeasible and with a strict hard deadline, 1t 1s infeasible;

2.4 Summary 39

e otherwise, the task miss some deadlines but it has a weakly-hard constraint and then
the p-pattern of task 7 1s computed and it is checked against its constraint. True is

returned 1f the y-pattern fulfills the weakly-hard constraint.

Priority Assignment

Neither DMPA nor RMPA priority assignment algorithms are optimal for task sets with
weakly-hard constraints. Fortunately, the Swapping algorithm (see page 34) may be used

to find a feasible priority assignment by substituting the boolean function F'(a, j) with
Wi, j) [5]

2.4 Summary

On Fixed Priority Scheduling (FPS), the assignment of priorities and the feasibility analy-
s1s are the two main areas of work. The former establishes the order in which the tasks will
be executed and the latter checks whether the time constraints will be fulfilled. RMPA,
DMPA and the Swapping algorithm are the most known priority assignment algorithms.
On the other hand, the utilisation-based test and the response-time analysis test (with all
Its variations for computing the worst-case response time) are the most known feasibility
tests. In addition, complex feasibility tests for weakly-hard constraints exist. All these al-
gorithms allow solving problems with complex task models when only timing constraints
are involved. However, when the objective includes other quality requirements, FPS ex-

hibits some weaknesses that are discussed in the next chapter.

Chapter 3

A Review On Scheduling with QoS

3.1 Introduction

In real-time systems researchers have been investigating scheduling mechanisms for sup-
porting systems where, 1n addition to timing constraints, their performance with respect to
additional QoS requirements must be improved. This type of situation can occur when the
worst-case resource requirements of all or some running tasks cannot be simultaneously

met.

In some scenarios, systems are split up into tasks that are designed and tested sepa-
rately. When the system is integrated, it may be the case that the resource requirements
of tasks cannot be simultaneously met due to task contention. In this case, the schedul-
ing mechanism must allocate greater resources to more 1important tasks. This allocation
can be off-line or on-line. In other scenarios, worst-case resource requirements cannot be

determined in advance and then, it 1s the responsibility of the scheduler to allocate the

resources to the most important tasks at run-time.

Thus, allocating greater resources to important tasks 1s essential to improve the QoS of
a system. In real-time systems, the concept of importance among tasks 1s usually defined
in terms of utility functions. In this chapter, we briefly make a review of some scheduling
mechanisms for improving the QoS measured in terms of utility. In addition, a concise
review of how the system requirements are mapped from the specification to the design

1s also presented. It conveys the idea that scheduling problems in real-time systems are

40

3.2 From Requirements to Scheduling Problems 41

inherently multicriteria and include both timeliness and QoS requirements.

3.2 From Requirements to Scheduling Problems

Real-time systems are not different from other computer applications; they have a life cy-
cle divided 1n different phases starting from the requirements specification to maintenance.
During the specification of requirements QoS requirements are defined. During the design
phase, the system 1s structured as a set of activities that achieve one or more requirements
and then a scheduling problem is formulated; further, the scheduling problem must be

solved.

3.2.1 Requirements

The requirements specification phase 1s the period of time during which the requirements
for the software product are defined and documented [43]. Requirements are usually se-
parated into Functional and Non-Functional. Functional requirements describe “what”
the system should do (e.g. a car air bag must protect the driver in the case of a colli-
sion), while any other requirement 1s considered non-functional as, for example, “how
well” a functional requirement shall be accomplished (e.g. the car air bag must be always
triggered within 30 milliseconds after the crash sensor detects a collision at high speed).

In general, any requirement not considered functional 1s dichotomously considered non-

functional [44].

The IEEE Standard Glossary of Software Engineering Terminology [43] distinguishes
on the one hand, functional requirements, and on the other hand design, implementation,
interface and performance requirements. According to Gilb [45], functional requirements
are of less use when designing because “it 1s usually fairly self-evident what functional-
ity is required. It is actually the other categories that determine the choice of design”.

Therefore, non-functional requirecments are determinant during the design phase and con-

sequently, in the definition of the scheduling problem.

3.2 From Requirements to Scheduling Problems 42

Non-Functional Requirements

Several classifications of requirements can be found in the literature. The IEEE standard
330-1998 on Software Requirements Specification [6] sub-classifies non-functional (NF)
requirements into external interface, performance, attributes and design constraints, where
attributes are qualities such as reliability, availability, portability, maintainability, etc. It
1s noted that requirements can have different levels of importance or stability because
typically not all requirements are equally important. “Some requirements may be essential,
especially for life-critical applications, while others may be desirable” [6]. Naturally, it
implies the existence of preferences to achieve more important requirements first with

respect to the least important ones.

In [44], 1t 1s noted that some requirements can be objective or subjective. When mea-
surable, the requirements can be expressed in a quantitative form that is precise, unam-
biguous and verifiable. Nevertheless, sometimes it is also wanted to state the requirements
In a qualitative form, as for example when stating achievement goals (“the system shall
achieve good performance”). Such goals can be verified only after deployment, or with
the help of prototypes such that stakeholders can subjectively judge whether or not the re-
quirement 1s fulfilled. Alternatively, they can be “verified indirectly by decomposing it or

by deriving metrics that (hopefully) are highly correlated with the given requirement” [44].

In general, NF requirements have some fundamental principles [45], [46], [44]:

e They are either quantitative or qualitative, and testable for presence in their imple-

mentation. If a requirement 1s quantitative, it 1s quantifiable 1n at least one scale of

measurc.

e Some are binary (hard) and some are specified in a scale of measure (soft).
e They reflect objective and/or subjective importances.

e They can be in conflict with others for shared resources and therefore, priorities

must be assigned to resolve the conflicts.

e They change as the necessities, values and priorities change during the life cycle.

3.2 From Requirements to Scheduling Problems 43

In hard real-time systems, some quality requirements such as reliability and safety have
higher importance with respect to other requirements. Indeed, they must be considered as
hard, and they must be specified in a quantitative form to be precise, unambiguous and ver-
ifiable. Other quality requirements (e.g. portability and maintainability) and performance
requirements (e.g. throughput) can be considered secondary. These requirements could be
hard or soft, and could be expressed quantitatively or qualitatively. For example, consider
a requirement enunciated as a goal: “the system shall achieve good performance™. It 1s a
soft requirement expressed 1n a qualitative form. It can be verified only after deployment,

or with the help of prototypes to judge whether or not the requirement 1s fulfilled {47].

Note that hard or soft requirements are not necessarily related directly to the concepts
of hard or soft real-time systems. For example, consider a requirement enunciated as: “the
system has to execute in the X, Y and Z hardware configurations™ (e.g. a piece of software
for a mobile phone). It 1s a mandatory portability requirement which 1s satisfied or not

satisfied (1.¢. hard) for a soft real-time system.

On summary, NF requirements form a multidimensional set of interrelated necessities
that vary with time. NF requirements must be conveyed throughout all stages of the life
cycle development; first to the design phase, after to the implementation and so on. At
some point of the design, the system 1s structured as concurrent tasks that posteriorly
will be scheduled. Thus, the formulation of the scheduling problem depends on how the

requirements are mapped to the design.

3.2.2 Design

Design refers to the process of defining the architecture, components and other character-

istics of a system intended to satisfy the requirements [43]. Design can be divided in two

stages:

o Architectural design. In this stage, the system 1s structured 1nto 1ts constituent com-
ponents. Choices are made about hardware and software. A systematic breakdown

of thc system into smaller parts is performed and each part 1s described using a

method of documentation [3].

3.2 From Requirements to Scheduling Problems 44

/ bute Taxonomy for Performari

Stimuli chitecture Parameters Responses
— Mode —e Resource —e Throughput
— normal — Cpu’s — avg/worst-case
— overload — mMEemory — criticality
— RTOS
—e Source | —e Latency
— clock interrupt —e Consumption — jitter
— 1nternal event — Cpu time — avg/worst case
— external event — devices — criticality
—e Frequency —e Scheduling pollcy —e Precedence
— periodic — oft-line — partial/total order
— aperiodic — on-line — criticality
— premption policy

Figure 3.1: Attribute Taxonomy for Performance

e Detailed design. This stage incorporates some crucial objectives such as structuring
the system 1n concurrent tasks, supporting the development of reusable components
through information hiding, and analysing the performance of the design to deter-

mine 1ts real-time properties [3]. In this stage the scheduling problem 1s defined.

Naturally, the architecture and detailed design are not sequential activities but they can
be considered as coroutines. NF requirements are inputs for the architectural design. The
architectural design makes decisions that must satisty the NF requirements, while it deals
with sensitive points (i.e. decisions that affect one of the requirements, if changed) and

tradeoff points (i.e. decisions that affect more than one requirement, if changed) [48].

In order to elicit architectural information relevant to NF requirements, taxonomies of
the requirements can be depicted. Figure 3.1 shows a modified version of a taxonomy

presented in [48]. A performance requirement is broken down into their attributes. Three

categories of attributes are identified:

e Stimuli are the events that cause the architecture to respond or change.
e Architectural parameters are components that will atfect a response.

e Responses are quantities measurable or observable related with the requirement.

3.2 From Requirements to Scheduling Problems 45

Requirments ‘—D gn—|

Architecture Detail
Definition: Attrlbutes - Tasks
Rl — > AtrR————3Ta
: f : ~ 5 Tb
R2 — > Attr.R2<€ —> e
: f f : } yd
Rn ~———>- Attr.K T2

iii

Figure 3.2: From Requirements to Tasks

Taxonomies are helpful to understand how the requirements can be mapped to the
tasks and other components during the detailed design stage. For instance, one aspect of
the response such as the latency (1.¢. the length of time a task takes to respond to an event)
1s a function of the stimul1 (e.g. external events) and the architectural parameters (e.g.

cpu’s, Cpu time consumption).

Outcomes of the architectural design form the inputs for the detailed design. During
this phase, the system i1s structured as a set of concurrent tasks. Clearly, a single require-
ment can be mapped into one or more tasks (see Figure 3.2). A task 1s modelled according
to the architecture defined such that it achieves all or part of one or more requirements
when it completes; this achievement constitutes the benefit or utility that the task will give
to the system. Naturally, it i1s desirable that the benefit can be detected quantitatively but,
as it was argued in 3.2.1, some requirements are expressed qualitatively such that they can

only be verified after deployment or indirectly by correlated metrics.

3.2.3 The Scheduling Problem

Understandably, the tasks will provide the maximum benefit 1f sufficient resources exist.
However, these resources are normally scarce and the tasks must compete for them, re-
sulting in a scheduling problem. Problems where the optimality is expressed by a single

critcrion are called single criterion problems. In a multicriteria scheduling problem the

optimality is expressed using two or more criteria.

Evidently, solving scheduling problems with multiple critena is not simple. Some of

3.2 From Requirements to Scheduling Problems 46

the difficulties refer to the complexity involved in their solution and in the meaning of
optimality. The theory shows that a scheduling problem for an arbitrary set of periodic
tasks 1s NP-hard. Thus, adding a second criterion increases its complexity and hence, it
also 1s a NP-hard problem. On the other hand, maximising one criterion could decrease
the value of the other criteria in the problem. Scheduling solutions to problems where it

1s not possible to increase the value of one objective without decreasing the value of the

other are called Pareto-Optimal solutions [2].

It 1s accepted [12] that when solving multicriteria problems, no simple algorithm can
be applied and instead, the use of a combination of approaches such as procedures based
on dispatching rules, branch and bound techniques, and local search techniques must be
implemented. With respect to optimality, if tradeoffs between criteria can be established,

optimal solutions can be defined. Otherwise, the concept of pareto-optimality has to be

applied.

In the scheduling literature, NF requirements are usually referred as QoS requirements.
In a problem where timing and QoS requirements must be satisfied, the scheduling mecha-
nism must optimize the QoS requirements without violating the timing constraints. During
the design, QoS requirements are mapped to the task set that constitute the system. This
mapping will be uniform if all task are responsible for achieving all QoS requirements.
Clearly 1t 1s not always true. Instead, individual tasks or subsets of tasks could be respon-
sible for achieving specific goals. In this context, QoS requirements can be considered as

local or global with respect to tasks. Consider the following examples:

Local QoS: Consider a control system composed by several tasks where a specific one
may implement the control algorithm. Control algorithms are sensitive to output
jitter (1.e. the variation in the inter-completion times of successive instances of
the same task). Its large variation could degrade the control performance or even
cause nstability of the system affecting other QoS requirements such as efficiency,
reliability and even safety. Clearly, the scheduling algorithm must allocate more

resources to this highly important task.

Global QoS: Consider a preemptive priority-based system with maximum requirements

of pcrtormance. A timely but slow or inefficient system cannot be considered viable.

3.3 Types of Utility r 47

Worst-case and best-case performance are reciprocally related to the worst-case and
best-case execution times [49]. The system influence the task execution time due
to the context switching. Context switching wastes processor time and disrupt task
execution affecting some pertormance attributes such as latency (i.e. the length of
time 1t takes to respond to an event) and throughput (1.e. the number of events
responses that have been completed over a given observation interval). Therefore,
a system with lower number of preemptions 1s more efficient than one with higher

number of preemptions.

3.2.4 Summary

The past sections have shown that NF requirements are a multidimensional set of interre-
lated requisites that must be fulfilled throughout all stages of the cycle development. Since
conflicts among requirements exist, tradeoffs must be allowed to help the designers with
their decisions. Assigning importances to the requirements 1s a mechanism to specity such

tradeoffs. NF requirements are usually referred as QoS requirements.

During the design phase, a system can be structured as a set of concurrent tasks where
a single task provides some benefit to the system when 1t achieves all or part of one or
more requirements. In real-time systems, the benefit 1s mainly measured with respect to
the timing requirements. However, it 1s clear that there exist a number of additional QoS

requirements that must be also fulfilled. Moreover, QoS requirements can be local or

global with respect to tasks achievements.

Thus, while timeliness is defined as a function of deadlines, how to measure QoS is
still a matter of discussion and research. In real-time systems QoS is usually expressed in

terms of utility (or benefit or value). Different types of utility exist depending on how it is

defined and used.

3.3 Types of Utility

[n real-time systems the concept of utility captures the importance of different tasks being

executed. This utility can be perceived in different ways depending on how the utility is

3.3 Types of Utility 48

defined or employed. In this sense, types of utility can be identified in terms of [50]:

e the level of abstraction; (e.g. utility as a function of time or resources).

o the perspective from which the utility is perceived (e.g. task or user perspective).

3.3.1 Levels of Abstraction

Utility can refer to one of several different levels of abstraction, ranging from a low-level
view of the system in terms of tasks characteristics (e.g. deadlines) to a high-level view
of the system in terms of applications, user goals and resource allocations. The level of
abstraction influences how utility is defined. For instance, utility can be expressed as a
function of task completion time (task-level abstraction), as a function of resource alloca-
tion (resource-level abstraction), or as a function of the quality of the system observed by

the user (output-level abstraction) [50].

Task-Level Abstraction

At the task-level abstraction, utility 1s described by time-utility functions [31]. These func-
tions express the utility obtained by tasks when they complete at a particular distance from
their deadlines. In addition, utility can also be described by weakly-hard constraints [5].

These constraints express the task utility in terms of a level of tolerance for missing some

deadlines 1n specific patterns.

Resource-Level Abstraction

At the resource-level abstraction, utility is described by complex models where several
resources (e.g. processors, devices) have associated utility-functions. The utility can vary
with respect to time (i.e. utility increases/decreases with the time), or with respect to

the resources available (i.e. utility increases/decreases with the availability of resources).

Models described in [51] [52] [53] use this concept.

3.3 Types of Utility 49

Output-Level Abstraction

At the output-level abstraction, utility 1s described as a function of the output quality of
the system as observed by the user and/or the environment [50]. QoS metrics are defined
to indicate at which level of quality an application is executing. In addition, the imple-
mentation of different algorithms in an application may produce different output quality.
Thus, at the output-level abstraction, utility may not necessarily be a function of a QoS

metric but 1t may be a function of the system implementation.

For mnstance, in [13] two EDF-based scheduling algorithms for minimising jitter are
proposed. One has pseudo-polynomial complexity and provides better results than the
other one which has polynomial complexity. If high processing resources are available
to the application, the pseudo-polynomial algorithm can be used to obtain high output
quality; 1f medium processing resources are available the polynomial algorithm can be

used; otherwise EDF 1s a good option.

3.3.2 Levels of Perspective

Utility can refer to one of several difterent levels of perspective from which the utility is
perceived by tasks, applications or users [50]. The level of perspective influences how the
utility i1s employed. For instance, utility can be used as a priority for executing tasks (task
perspective), as a policy for assigning resources to applications (application perspective),

or as a measure of the necessities of users of a system (user perspective).

Task Perspective

Task perspective reflects the necessities of each task in an application. From this per-
spective, each task is greedy with respect to processor and other resources; the utility for
completing all or part of its computation 1s measured individually. For instance, utility can
be used to determine which task executes at any given time or which task can be admit-
ted or discarded to maximise the utility. Value-based scheduling theory is based on this

concept. In section 3.4, we describe this approach in more detail.

3.3 Types of Utility 50

Application Perspective

Application perspective reflects the necessities of applications in a system where each ap-
plication may be constituted by one or more tasks. From this perspective, applications arc
greedy with respect to system resources; the utility is a function of the amount of resources
allocated to each application. In some real-time systems the utility is relatively fixed as
long as the timing deadlines are met, while in other systems the utility may increase or de-
crease according to the available resources. Changes in tasks may or may not modify the

utility perceived by the application. When dealing with applications, utility of individual

tasks could not be considered.

For instance, in [53] a complex approach for maximising overall system utility and
satistying multi-resource constraints in the context of a phased-array radar system 1s de-
scribed. The 1dea i1s to maintain at run-time a complex model of QoS requirements that
includes utility-functions, weights and other data such that an algorithm can allocate re-
sources to tasks. The approach determines the resource settings of the tasks and attempts
to maximize the global utility. Afterwards, an admission control algorithm runs a schedu-
lability test. If the task set 1s not schedulable, the resources available to tasks are reduced
and the admission control algorithm 1s executed again. This iterative process runs until a

feasible task set 1s found.

User Perspective

The user perspective reflects the needs of users of the system. From this perspective,
utility 1s the degree of user satisfaction obtained when one or more applications are run-

ning. Naturally, different users have different perception levels and the perception can be

quantitative or qualitative.

When quantitative, the utility percetved can be verified by QoS metrics. Typical QoS
metrics that alter the user perception are latency, throughput, and jitter [54]. Other system
properties that also have influence on the quality perceived include preemptions, fault
tolerance, and energy consumption. When qualitative, the utility may be verified indirectly

by deriving metrics that are correlated with a particular requirement.

3.4 Dynamic-Priority Scheduling with QoS 51

3.3.3 Summary

The concept of utility varies depending of the level of abstraction and the perspective from
which it is perceitved. Naturally, a system includes both types of utility in some degree.
Utility captures the importance of different activities such that when the resources are
scarce a scheduling algorithm can allocate greater resources to important tasks with the
objective of tulfill a set of QoS requirements. In general, this scheduling problem is NP-
Hard. In the literature a number of scheduling algorithms based on dynamic-priority and
hixed-priority paradigms with different tradeoffs between timeliness and QoS are found.

The next section reviews some of them.

3.4 Dynamic-Priority Scheduling with QoS

When dynamic-priority scheduling algorithms include QoS requirements, such that algo-
rithms trade-off timeliness against QoS at run-time. When deadlines must be guaranteed,
most of the algornithms are too complex to be implemented in real applications. Thus,
these algorithms are more oriented to soft real-time systems although their complexity is

still very high. In general, most of soft real-time systems use time-utility functions to

express the QoS.

Time-utility functions describe the utility obtained when a task completes; the utility
can remain static or can vary with the time [7]. Time-utility functions can be interpreted
as quality functions, reward tunctions, or penalty functions; such a function may either
be maximised or minimised depending on its definition. Metrics such as the utility ac-
crued (or value accrued) during a window of time are usually utilised. Thus, a scheduling
problem 1s formulated in terms of meeting the timing requirements and maximising the
utility [SS]. Including timeliness and utility into the scheduling decisions is sought by the

value-based or reward-based schemes.

Under value-based schemes, a task has a function 1'(¢) that defines the value to the sys-
tem for completing the task at time ¢ (see Figure 3.3). Value-based schemes are founded
in two approaches: the Value-Density Scheduling algorithm where the utility is used as

a priority and the Best-Eftort algorithm where the utility is used as<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>