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Abstract 

In this thesis, certain systems of linear parabolic equations called vector advection equa- 
tions will be considered. These equations are of great current scientific interest because they 
appear in magnetohydrodynamics and also it models certain properties of three dimensional 
Navier-Stokes equations which does not appear in the model of scalar advection. 

The thesis consists of six chapters. The first chapter is a review of existing relevant 
literature. The second chapter contains preliminary material necessary for further chapters. 

In the third chapter it is shown that solution of vector advection equations is self-dual 
in a certain sense described in the thesis. It is established that the so called regularity space 
of vector transport operator changes with time reversal of velocity 1'. Also the classical 
result of Serrin-Prodi-Ladyzhenkaya on the existence of strong solution of Navier-Stokes 
equations is reproved. 

In the fourth chapter the Feynman-Kac type formulas for the vector advection operator 
have been proved. Another way to prove Feynman-Kac type formula can be found in 
Busnello, Flandoli, Romito (2005). Our approach permits us to find other non classical 
Feynman-Kac formulae for vector transport operator. 

In the fifth chapter we study the asymptotic behaviour for certain class of parabolic 
stochastic partial differential equations. First we prove a backward uniqueness result and 
the existence of the spectral limit for abstract SPDEs and then show how it can be applied 
for some linear and nonlinear SPDEs. Our results generalize the results proved in Ghidaglia 
1986) for non stochastic PDE. 

In the last chapter we prove existence of a global solution for the random vortex filament 
equation. This equation appear in fluid dynamics in the theory of three dimensional Euler 

equations. Existence of a global solution for smooth initial conditions has been shown in 

a preprint work of Berselli, Gubinelli. We work in the framework of rough space theory, 
see e. g. Gubinelli (2004) and assume that initial condition is a closed curve of H61der cla. ".. " 
with exponent v>1. In particular, this result covers the case of Brownian loop. 3 
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Chapter I 

Introduction 

The main subject of this thesis is investigation of certain properties of vector transport 

equations and corresponding properties of Navier-Stokes equations. The motivation of this 

research comes from the need to understand the motion of fluid particles in turbulent fluid 

flows. 

Theory of models describing turbulent fluid flows is a very active research field both in 

mathematics and physics. It is believed that some physical properties of turbulence such as 

anomalous scaling can be modelled by passive scalar advection equations, see [47 J, [3 1 ]. 

Mathematical study of the passive scalar equations has been started only recently in the 

works of Le Jan, Raimond [5 1] and Lototsky, Rozovskii [55], [561. In the case of irregular 

velocity vector field which appears in turbulence the standard framework of PDEs is not 

sufficient to study the scalar advection equation. Le Jan and Raimond have introduced a 

new concept of generalized solutions of the scalar advection model through the Wiener 

chaos decomposition. They observed that this solution does not necessarily corresponds to 

the flow of trajectories of the velocity vector field. They found that the solutions have two 

regi mes, see also work of Gawqdzki and Vergassola [41 ] for motivation and more informal 11 

approach: 
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* Coalescent flow of maps i. e. solution corresponds to the flow of particles that coa- 

lesce at some moment of time. 

9 Diffusive regime i. e. solution correspond to branching of trajectories. 

In connection with these works it is natural to ask whether similar properties hold for 

solutions of the vector advection equations. 

In this thesis I have considered vector advection equations and studied some of its prop- 

erties. It turns out that these properties do not have analogues in the scalar advection case. 

In particular, I show that these equations are self-dual in a certain sense. As a corollary, I 

find estimates for the vorticity of solution of the Navier-Stokes equations (NSEs for brief) 

which could be used to reprove the classical result of Ladyzhenskaya [49], Serrin [69] and 

Prodi [64] about existence of the strong solution of NSEs. Also the self-duality property 

allows me to establish the "optimal" space (in a sense described in Chapter 3) for the do- 

main of the vector advection operator. Another interesting consequence of the self-duality 

property is that existence of solutions imply their uniqueness and vice versa. I hope that in 

the future I will be able to find more applications of my theory. 

Another property of the vector advection equations studied in the thesis is a non clas- 

sical form of the Feynman-Kac type formula. I prove such a formula for both the two 

dimensional vector advection equations and for the two dimensional NSEs. Thus we show 

that there exist two different "path integral" representations of the fluid flow. 

The question of finding probabilistic representation of solution to NSEs have drawn 

attention of many mathematicians. Different Feynman-Kac type representations of solution 

of Navier-Stokes equations were considered in works by Busnello [171, Busnello, Flandoli 

22] t'Or Euler and Romito [181, Constantin and Iyer [23] (see also work of Constantin [A. - 

equations), Rapoport [66], Albeverio and Belopolskaya [21, Le Jan and Sznitman 1521, , ce 
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also the bibliographic survey in [ 181. 

Constantin in [22] studied the Lagrangian formulation of the Euler equations. He re- 

formulated the incompressible Euler equations through the inverse of the Lagrangiaii map 

and proved the local existence of a solution to the resulting equation, which he called the 

active vector formulation of Euler equations. He also noticed that the resulting equation is 

a generalization of the Clebsch variables representation. He also discussed a blow up issue 

in terms of different geometrical criteria connected with the behaviour of the gradient and 

the inverse gradient of the Lagrangian map. 

In the article [ 17] by Busnello, see also [ 18], the Lagrangian formulation of the two and 

three dimensional Navier-Stokes equations in conjunction with probabilistic treatment of 

the relationship between velocity and vorticity, i. e. the Biot-Savar law in three dimensional 

case, were used to prove global existence and uniqueness of solutions to the two dimen- 

sional NSEs and local existence and uniqueness to three dimensional NSEs. In both papers 

the Bismut-Elworthy-Li integration by parts formula, see [30] and references therein, is 

used to give a probabilistic representation of velocity. 

Constantin and Iyer in [23] suggested a different Lagrangian formulation of the NSEs. 

They used the active vector formulation developed in Constantin [22] and they replaced the 

Lagrangian trajectories by a stochastic flow. This interpretation of the Lagrangian formu- 

lation allowed the authors to get results similar to those by Busnello, Flandoli and Romito. 

Furthermore, they were able to get a similar representation for other hydrodynamic models. 

including the viscous Burgers equation and LANS-alpha models. 

Our starting point for the Feynman-Kac type representation of solution to the vector 

advection equations is a generalization of the classical Kelvin Theorem about conservation 

of circulation of velocity along with the flow of the inviscid fluid. I establish an analog ot' 
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the Kelvin Theorem for the vector advection equations which states that the circulation of 

the velocity v along the flow (X; ), 0sT defined by the following stochastic t 
differential equation 

dX'(x) v(t, Xt(x))dt+v"2-v-dlt' tt 

8 

is a martingale. By taking the mathematical expectation I immediately get the Feynman- 

Kac formula. The stochastic flow (Xt), 0 :5s :ýt :ýT has been used by Busnello [ 171, 

Constantin and Iyer [23], Albeverio and Belopolskaya [2]. The main difficulty in obtaining 

new alpriori estimates for the solutions of the vector advection equations is the presence in 

the Feynman-Kac formula of the gradient with respect to the initial data. Similar difficulty 

appears in the study of the three dimensional Euler and Navier-Stokes equations, see works 

by Flandoli, Constantin and others listed earlier. In connection with this problem it is 

natural to ask whether there exists other non trivial flows for which generalization of the 

Kelvin Theorem and the Feynman-Kac type representation holds true. In the thesis I answer 

positively in the two dimensional case. I show that the flow generated by the following SIDE 

can be used: 

where 

dXt'(x) - v/2--vor, (-Yt'(x» di l', 0 :5s : ýý, t :5 t 

x: (r) =x 

cos o(') 
- sin 0(') 

2 
xR 

( 

sin Ov ) Cos V, 
) 

) 

0 is a stream function defined by v= V-Lo. As a consequence the standard Feynman-Kac 

type formula (4-1.7) is simplified as in (4.2.6). 
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In the three dimensional case the question of possibility to model flow in this wa,, 

remains open, see though Question 4.3.6 for the present state of the knowledge about the 

problem. 

The second topic investigated in the thesis is the asymptotic behaviour at time goes to 

infinity of solutions to certain linear and nonlinear stochastic PDEs. I show the backward 

uniqueness and the existence of the spectral limit for a quite general class of linear parabolic 

SPDEs and, under certain regularity assumptions, for certain nonlinear SPDEs. In partic- 

ular, my results are applicable to linear parabolic SPDEs with gradient noise and Navier- 

Stokes equations with multiplicative noise. Similar questions for deterministic PDEý, were 

studied in the works of Foias, Saut [34] for Navier-Stokes equations and Ghidaglia [421 for 

general deterministic parabolic PDEs. Moreover, Foias, Saut [34], [35] were able to show 

existence and smoothness of corresponding spectral manifolds. It would be interesting to 

extend these results for stochastic case. 

In the last chapter of the thesis I prove existence of global solutions to the random 

filament equation. This equation appears as an approximate model for time evolution of 

an incompressible inviscid fluid under the assumption that the vorticity vanishes outside 

some neighborhood of a certain time-dependent closed curve, see [32], [33], [8], [681 and 

the book [20]. Some numerical approximations, see [5], [75], imply that the regions of 

"big" vorticity have a form of a "filament" and therefore, this model can be considered 

as mathematical idealization of the motion of the fluid. Berselli and Gubinelli [71 have 

shown global existence of solution in the case of initial condition belongs to the Sobolev 
Z-- 

space 'ff 
1,2. In this work I establish existence and uniqueness of a global solution for a 

larger class of initial data, including H61der functions with exponent vG (ý', 1ý. This is of 3 

utmost importance because it includes, for instance, the Brownian loops, see [91, p. 1849.1 
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use framework of rough path theory, see [581, [43] and references therein. Local existence 

in this class has been proved in [9]. A generalization of this result to manifold valued 

loops along the lines suggested by Brzez'niak and Uandre in [141 is one of open problenis 

discussed at the end of Chapter 6. 



Chapter 2 

Preliminary Material 

In this chapter I shall present general settings of the thesis. I shall first briefly recall some 

basic notation and standard theorems from vector analysis. Then I shall present some 

abstract tools i. e. Lebesgue integration theory, functional analysis and theory of evolu- 

tion equations. In particular, I shall be concerned with embedding theorems, Gagliardo- 

Nirenberg inequalities, existence and uniqueness theorems for abstract evolution equations. 

I will conclude the chapter with few results from stochastic analysis which will be used 

throughout the thesis. 

2.1 Basic notations 

Here I will present some standard theorems of Analysis. 

I begin by introducing some standard notation of vector calculus. Suppose that o= 

0 
2,0 3) 

,b= 
(b', b2, b3)GR3 then axb is a cross product of two vectors defined by 

(o x b)l =a3b2_ (12 b 3, (a x b) 2= 
alb 

3-a3 bl. (a x b)3 = (12 bl - all)2. 

The cross product has following properties: 

7 
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(a x b. C)R3= (a. b xC),. ýý3 
, a, b. cER3 (2.1.1) 

3 ja x b1R3 < ja1R31bIR3 
a, beR 

. 

Operators curl : C"'- (R3, R') o C")- (R 3, R 3) and div : C" (R 3. R 3) 
-+ C' (R 3) are 

defined by identities 

Ou 3 
19U 

2 OU1 OU3 OU2 oul 
curl u=(- --- -- - OX2 OX3' OX3 Oxi, OXJ OX'-) 

3 

divu =E 
Ou, 

i=1 
Oxi * 

We have following well known theorems (see for instance, [70], p. 135): 

Theorem 2.1.1 (The divergence or Green's Theorem). Let SCR3 be a Cl-class closed 

suýface which is a boundary of a bounded domain DC IR'. Choose the outward normal 
T[D 3 is vectorfield n' to the surface. Then if u: D Im of C' class, 

JJJD 
div n dx = 

lis 
a- n' do,. 

where dor is the surface measure. 

Theorem 2.1.2 (Stokes's Theorem). Let SC R' be a bounded and open two-sidedsurface 

bounded by a closed non -intersecting curve IF C R' (simple closed curve), n' be an outward 

normal vectorfield to the surface S. Assume that DC R' is a domain such that SCD 

and'a :D -* R' is of C' class. Then 

jr 
u- dx = 

is (curl u) - n' do,. 

In particular, if curl u is equal to zero on D, then fr u d. r = 0. 

2.2 Abstract Tools 

Hcrc I present some standard results from functional analysis and integration theory. 
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2.2.1 Lebesgue integration theory 

9 

I will present here the classical theorems on Lebesgue Integration theory, see for instance 

[37], and some fundamental inequalities. Let (X. T p) be a measure space i. e. Xka 

space, F is a or-algebra of subsets of X and p is a measure with domain T. The sets of T 

are measurable sets. 

Let f be a real-valued function defined on a measurable set X0 of X. We say that 

is a measurable function if the inverse image of any open set in R is a measurable set. 

We say that f is an extended real valued function if we allow it to have values of +,, )c or 

In this case we add in the definition of measurability the requirement that the sets 

-'(+oo), f -'(-oc) be measurable. 

A function f is called a simple function if there is a finite number of mutually disjoint 

measurable sets El, ..., E, and real numbers eel, ..., ce, such that 

CeiX 

i=I 

whereXEis an indicator function of set E i. e. 

EW ---': 
xEE 

0, xE. 
M 

A simple function f O'iXE, on a measure space (X, T. p) is said to be integrable 

if p(Ei) < )c for all the indices Z for which ni :ý0. The integral of f is the number 
M 

i (Ei). We denote this sum also ff (x) dp (x) or ffd 

Definition 2.2.1. An extended real-valued, measurable fiinction f, on a measure space 

li) is said to be integrable if there exists a sequence ff"JOC, of integrable simple n= 

. 
11inctions having thefollowing properties: 

I. fk- (. r) -, fm (x) I di i-0asViii 
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lim fk(x) =f (x) a. e. kýr)G 

10 

Theorem 2.2.2 (Lebesgue Dominated Convergence Theorem (see [37], p. 54)). Let f f,, I" n=1 

be a sequence of integrable functions defined on X that almost everywhere converge to a 

measurable function f. If there exists an integrable function g defined in X, such that al- 

most everywherefor all n, Ifn(x) I :! ý, g(x), then f is integrable, lim fV If,, (. 7-) -f (x) Idil 
n-oc - 

0, and 

lim f, (x) dp f (x) dp. 
n--oo 

IX 

x 

Theorem 2.2.3 (Lebesgue monotone Convergence Theorem (see [37], p-58)). Let f f,, Jn'ý=l 

be a monotone increasing sequence of integrable functions and their integrals are bounded 

from above i. e. there exists a constant K< oc such thatfor all ii E N: 

i 
f,, (x)dp <K 

x 
Then, f, is convergent a. e. on X and if we denote f (x) = lim f,, (x) (exists a. e. on 

n-oo 

is integrable and 
liM 

( 
fn(x) dp f (x) dfi. 

n-oo )X 

Theorem 2.2.4 (Fatou's lemma (see [37], p. 58)). Let be a sequence of measurable n= 

nonnegative functions which converges a. e. on X to f such that 

< K. 

then f is integrable on X and 
i (. i-)dp < K. 

IV 
Theorem 2.2.5 (Absolute continuity of Lebesgue Integral(see [37], p. 53)). Let f be inte- 

grable. funch . on on Y. Then. for any E>0 there exists 6>0 such that (x)(1p I<E 

provided .4 is a measurable set such that p (A) < 6. 
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At the end of this section I present the following well known inequalities (see [37]. 

p-96): 

Theorem 2.2.6 (H61der's inequality). If I<p, q< ý)c, 1+1=1, u. v are ineasurable pq 
Jýnctions defined on X such that fx I uIP dp < oc and fx II lq dp < x, then fv IavI dii 

oc and fx Juvj dp < (fx JuIP dp)'IP(fx IVIq dp) l1q. 

Theorem 2.2.7 (Minkowski's inequality). If I<p :5 oc, u, v are measurable functions 
i -. -- depned on X such that fx lulPd/i < oc and fx lvlPdp < Dc, then (fv I ii + t, lPdll)'IP 

(fx IuIP dp)'IP + (fx IvIP dp)'IP. 

Theorem 2.2.8 (Young inequality). Suppose p, q>1,1 +1=1, a, b>0. Then ab < 
Pq 

af + bq 

pq 

2.2.2 Functional analysis results 

The fixed point theory is concerned with the conditions which guarantee that a map F: 

X --ý X of a topological space X into itself admits one or more fixed points. The Banach 

fixed point theorem is the simplest yet the most important result in this respect. Now I 

present the Banach Fixed Point Theorem, for more details I refer to Dugundji and Granas 

[29] (p. 10) and Theorem 3.8.2, p. 119 in Friedman [37]. 

Theorem 2.2.9 (Banach Fixed Point Theorem). Let (Y, d) be a complete metric space and 

let F: V -* Y be a contractive nwp, i. e. there exists Al <I such thatfOr any. i-, yEV, 

d(F(x), F(y)) < ýl 
Id(r. y). Then F has a unique fixed point xo E Y, i. e. there exists a 

unique x() GV such that F(., -O) = ro. 

Banach-Alaoglu Theorem together with compact embedding theorems, are the basic 
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tools used in proofs of existence of solutions of PDE. Now I present Banach-Alaoglu The- 

orem, for more details I refer to Friedman [37] (Theorem 4.12.2, p. 169). 

Theorem 2.2.10 (Banach-Alaoglu Theorem). Let X be a Banach space and let V* be its 

dual. Then the closed unit ball of X* is compact in the weak-* topology. 

Remark 2.2.11. Friedman ([37]) have used different terminology. The notion of weak 

topology he introduced is the same as the notion of weak-* topology in modem termi- 

nology. 

Next I present one abstract compact embedding theorem in Banach spaces, for proof I 

refer to [72] (Theorem 2.1, p. 184). 

Theorem 2.2.12. Let X0. X, X, be three Banach spaces such that 

x0 cXc X� 

where injections are continuous and 

Xi is reflexive, i=0,1. (2.2.2) 

the injection Xo CX is compact. (2.2.3) 

Let T>0, ao > 1, oI>I be fixedfinite numbers and 

Y=fvc Lc") (0, T; Xo), v1=: 
dv 

C L" (0, T-, Xj 1 (2.2.4) 
dt 

be a Banach space equipped with the norm 

I1 11 11 
v= 

llI'llLc'O(O, T; X()) +II I'll IL'i (0, T; Xl)- (2.2-5) 

Then injection Qf Y into L'O (0, T: Xo) is compact. 
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2.2.3 Approximation theorem 

Here I will recall a concept of mollifier and present standard approximation theorem. 

Let p: R' ---* R be a Co' function defined by 

0,1XI > I: 
P(X) = -- 1 ce 1XI < 

where c is a constant such that f p(x) dx 
Rn 

13 

Definition 2.2.13. A function u: X -* R, where XC R' is a Lebesgue measurable set, 

is locally integrable if and only if u is measurable andfor any compact subset KCX, 

fK Iu (x) I dx < oc. We denote space of locally integrable functions on X bY L, 'OC (X) 

Suppose that function u C: L' (X). We call 10C 

J, (u) =11 (x - Y)u(y)dy 
En E 

a mollifier of u. Properties of mollifier are summarized in the following theorem for which 

we refer to Friedman [36] Theorem 6.2 (p. 12) and Agmon [1] Theorem 1.5,1.6,1.7,1.8 

for more details. 

Theorem 2.2.14. Let u: Rn --4 R be a measurable function that vanishes outside a 

measurable set XcRn. 

1. If u, is locallY integrable in X, then J, (u) E COO(Rn 
, 
R). 

If in addition, the support of u is contained in a compact subset A- of X and if 

< (I i st (K, ON), then . 1, (u) C LP (-Y, R) and J, (a) E Cx (, V, R); 0 

2. Iffor I< 1) <nE LP(-Y, R), then 
IJ6(11)ILP 

-< 
UILP, 

ýffior t<<uG LP(-V, R), then J, (u) -u in LP(. Y, R) as 
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2.3 Functional spaces and embedding theorems 

In this section I will recall some basic notations and properties of Sobolev spaces. 

Let DcRn, ncN be either Rn or open bounded domain with smooth boundary 

F= OD. Assume that dcN, vER, v>0.1 will use following notation. 

Tmd 1. If vGN, then C'(D, IR ) is the space of v times continuously differentiable func- 

tions from D to Rd. By Cb(D, R d) we denote the set of all uE C" (D, R d) that are 

bounded together with their derivatives up to (inclusive) order v. 

2. If výN, then C'(D, R d) is the space of those functions a belonging to CH (D. R d) 

whose [v]-order partial derivatives are H61der continuous function with exponent 

v- [v]. The subspace C, /(D, R') of C'I(D, R') consisting of those functions ii 

satisfying 

JUIv, 
D -E sup ID'u(x)l + 

lal<fvl xED 

E sup 
I D'u (x) - Du (y) 

< : )c 
lal=tvl x ý4y 

1.1, 
-yI V-[V] 

is a Banach space (with norm I- Iv, D)- 

C-c (D, R d) 
-nC.. (D, R d), Cb' (D, R d) n Cb' (D, R d) 

M>o M>o 

YC', i d) I SUpp f (D, R') - If E C" (D, R- compact subset of D 

5. D(D. R d) 
= tf C CO"(D, R d) 1 divf = 01 

kp d) d) 
6. Hý, (D, R_ completion of Q'c (D, R with respect to norm 

IpRdd7')llp, 

Rd0d Lfj'(D. )-Hý, P(D. R )-, 
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7. H k, p (D, R')- completion of C' (D. R d) 
w. r. t. the same norm, 

LP (D., Rd )=H 0 P(DIR d); 

8. In the case of d= 11 will often omit second argument in notations of spaces above 

and write for example Cm (D) instead of Cm (D. R). Similarly, in the case when 

nI will use bold fonts, for instance, I will write H', P(D) instead of Hk, P(D, R') 

and LP(D) instead of LP(D, R'); 

9. In the case of divergence free functions I will use the mathbb font and subscript 

Sol. For example, I will denote H k, p (D) fEHk, p (D) I div f= 01 and similar Sol 

notation will be used for other spaces. 

In the following I will often consider the case of p=2 and D R'. In this case there 

exists another equivalent definition of Sobolev space Hs, 2 (R'), sR by fourier transform, 

see Lions and Magenes [53], Ternarn [72] and Bensoussan [10]. 

Definition 2.3.1. If uEL2 (RI) nL'(R'), the Fourier transform ýi is de ned by 

fl (0 =-I e-'(ý, x)u(j-) dx. (2, )n/2 

IR 

n 
(2.3.1) 

One can show that 1'ý I L2 (RII) -(2, -1)n-F2 
IUI L2 (Rn) . Therefore, the map u ý--4 fL has a unique 

extension to a bounded linear map T from L'(R n) to LI(R n). 

I set ýi = T(u) and 

, ý'f I 
,I (27, )n/2 

JR11, 
e'xyfL(y) dy. 

One can also show that the above extension is in fact onto and TY - f". F =A In 

particular, J17' is a linear isomorphism of L'(R'). We have the following result, scc Lions 

and Magenes [531 Theorem 1.1.2 for a proof. 
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Theorem 2.3.2. If MEN, then 

H m, 2 (R') = ju EL2 (R') : (I + 1ý 12)m/2f, (O G L2(Rn) I. 

and the nonn 
III U III H-, 2 (Rn) - I(I + 1ý12)m/2f, I 

L2 (Rn) 

is equivalent to the standard norm I* Im, 
2- 

Taking into account Theorem 2.3.2 we can define HI 2 (Rn), SGR as follows: 

H s, 2 (R') = fu CL2 (R'): 
IR 

n 

I(I + 1ý12)s/2, a(ý)12 

16 

(2.3.2) 

(2.3.3) 

Now I will recall Sobolev embedding Theorem and version of Gagliardo-Nirenberg in- 

equality (see Friedman [36], Theorem 1.9.3 (p. 24) and Theorem 1.10.1 (p. 27)): 

Theorem 2.3.3 (Sobolev embedding Theorem). Suppose DC R' is open bounded set with 

smooth boundary or R'. Then we have 

H k, p (D) C Lq (D) if 
I>I>Ik>0, 

pqpn 
H k, p (D) C C(D) if kp > n, 

Hk 
11 

, P(D) C C'(D) if 0<<k-- 
p 

and the embeddings are continuous. In the second case everyfunction fEHk, p (D) has a 

continuos version f such that f-f almost everywhere in D. 

Theorem 2.3.4 (Gagliardo-Nirenberg inequality). Let I<q, r< oc and J. mEN satisfy- 

ing 0<j<iii. Then for any uG Com (R"'), 

la 1 -a IDjUILP(Rr') :5 CID'uLr(Rn) I" I 
Lq(Rn) i (2.3.4) 

ivhere +a+ (I - o) 1 for all <a<1 and C is a constant depending 
P 71 rnqm-- 

onIv on n, in, j, q, r. a with thefollowing exception: 

If In -j -2 is a nonnegative integer, then inequality (2.3.4) holds onlyfor -L <o< 
rm- 
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2.4 Theory of abstract parabolic equations 

The definitions and results of this section are standard and I refer the reader to [531, [72] 

and [71 ]. 

Let V and H be two separable Hilbert spaces, VCH and embedding is continuous. 

V dense in H; let I 'lHand II-iIv denote the norms in H and V', (', *)Hscalar product in 

H. Identifying H with its dual H' we have VCH 2-ý- H' C V. Duality relation between 

V and VI denote < -, - >v,, v. I will call triple VCH r-'- HI c V" a Gelfand Triple. In 

the following when it is clear from the context which norm (or duality relation) I am using 

I will often omit indexes i. e. write I-I instead of I* JH(or < -, -> instead of < 

Possibility of identification H and H'follows from Riesz Theorem. Here I will present 

more general Lax-Milgram Theorem (Lemma 2.2.1 in [7 1 ], p. 26). 

Theorem 2.4.1 (Lax-Milgram Theorem). Assume that B: HxH --ý R is a quadratic 

. 
form and there exist positive constants c and C such that 

(continuity) IB(a, v)l < ClullvI 

(coercivitv) IB(a, u) I> CIU12 

fior all u, v E H. Under these conditions, if FE H' then there exists an element nEH 

such that F(r) =B (u, v) for all vEH. Furthennore, u i's uni . quely detennined by F. 

Now if we consider the case B(., -) = 
(*, 

*)Hwe immediately get Riesz Theorem and 

identification of H and H'. 

Definition 2.4.2 (Coercive form). Let a: [0, T] xVxV --+ R' be a continuous bilinear 

fionn i. e. we suppose that 

C [0, T], uý vC 1- la(t, 11,1, )l < clýIllý 
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and 

the function t --+ a (t, u. v) is measurable for any fixed a. vEI-. 

Then we say that the fonn a is coercive if there exists AGR, a>0 such that 

18 

la(t, v, v) I +Alvl' > allv I I', vE 

Since, forfixed tE [0, t], theform v --ý a(t, u, v) is continuous on V, we have: 

a(t, u, v) =< A(t)u, v >, A(t)u c V. (2.4.2) 

Thus, we have operator 

LOO QO, T], L (V, I ")) (2.4.3) 

(defined by (2.4.2)) which corresponds to the coercive fonn a. Condition of coercivii), 

(2.4.1) of theform a can be reformulated in terms of operator .4 asfollows: 

there exists oz > 0, AcR such that 

A(t)u, u >, -,,, -> aIU12, +A IU12 
,UEj,. (2.4.4) vH 

I will call operator satisfying conditions (2.4.3), (2.4.4) coercive. 

We have following correspondence between properties of form and operator: 

Theorem 2.4.3 (Theorem 2.2.3 in [71], p. 29). Let a be coercive symmetricfonn sati. ýfting 

condition (2.4.1) with A=0, then for each tE [0. T] A(t) is positive definite and self- 

adjoint, D(A (t)1ý2) = V, and 

o(t, u, r) = 
1/2V), tE [O, Tjý a, cEV. 

Remark 2.4.4 (remark 2.2.1 in [71], p. 29). For A>0, replace a(u. v) by o(u, t) - A(u, r) 

and A by A+A then the conclusion of Theorem 2.4.3 still holds. 
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For parabolic equations with coercive operators we have following existence and unique- 

ness theorem: 

Theorem 2.4.5 (Chapter 3, Theorem 4.1 and remark 4.3 in [53], p. 23 8). If .4 cz L -I- QO, T]. 

L(V, V)) is coercive operator, uO G H, fC L2 (0. T V') then equation 

du 
+ Au = dt 

U(O) = uo 

has unique solution uE L'(0. T; V), u' E L'(0, T; V'). Moreover, tj satisfies an estimate 
tt 

ul, (t) +a lu(s)1' ds < (I + 2At) e2At UO 12 1f 12 (2.4.5) HvH+ ý(-, 

I 

4o 
00 

and uE C(O, T; H). 

The following lemma is of independent interest (see chapter 3, Lemma 1.2 in [72], 

p. 260) and will be used in the proof of Theorem 2.4.5. 

Lemma 2.4.6. If a cz L2 (0, T; V), u' EL2 (0, T; V') then u is almost everYwhere equal to 

a. function continuous from [0, T] into H and we have following equality, which holds in 

the scalar distribution sense on (0, T): 

d 
Jul' =2< n', u > (2.4.6) 

dt 

As a consequence we have: 

Corollary 2.4.7. If f, gEL2 (0, T. V), f ', g' GL2 (0, T: I ") then 

d (fig)H -"ý f/ 
-9 

+ "ý f4 (2.4.7) 
(it 

In tile case when our operator is time independent we have following important prop- 

crty: 
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Theorem 2.4.8 (Theorem 3.6.1 of [711, p. 76). Let AE L(V. V) be coercive operator(i. e. 

it satisfies (2.4.4)). Then operator -A generates analytic semigroup in H and I" 

Theorem 2.4.9 (Theorem 3.2 p. 22 of [54]). Suppose that A-closed unbounded operator in 

H, such that 

A+p is an isomorphism of D (A) --+ H for p=(+ iq, (> (o, qGR, such that 

II(A+P)-111L(H, H) <c, c- constant. T -+I pI 

Thenfor fG L'(0, T; H), there exists uniquefunction uc L'(0, T. D(A)) sati. ýfting 

ul + Au =f, u(0) = uo c [D(A), H] 1 

As a corollary we have following proposition: 

Proposition 2.4.10. Let AEL (V, V') be coercive operator Thenfor given fEL2 (0. T, H), 

a() GV there exists a unique solution uEL2 (0, T; D (A)) nC(0, T; V) of the problem: 

du 
+ VAU =f (2.4.8) 

dt 

u (0) =: uo 

and it satisfies u! EL2 (0, T; H). Moreover, for a constant C= C(A, T. v) independent of 

tio and f, 

1 /12 2 
1112 < C(If 12 + IU012 (2.4.9) 

U L2(0, T; H) + "' I 
L2(0, T; D(A)) - L2(0, T; 71) v 

Proqf of Proposition 2.4.10. It follows from Theorem 3.6.1 p. 76 of [7 1] that -A generates 

analytic semigroup in X Therefore, existence and uniqueness of solution it follows from 

Theorem 3.2 p. 22 of [54]. It remains to show (2.4.9). Define X=f it EL2 (0, T: D(A)) : 

it' EL 2(0, T': H) 1, QEL (X, VxL2 (0, T. H)), Qu = (n(O), it' + Aii). Then Q is onc- 

to-one and onto operator and, according to open mapping theorem, there exists continuous 

inverse operator 0 -' E L(V xL2 (0, T: H). X) and (2.4.9) follows. 0 
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Now I consider important example of Stokes operator: 

KI-w- n 
. Example 2.4.11. Suppose that DC R'- open bounded domain or R, 

V: =- fuc Co' (D, R') : 17. u =z 01: 

closure of V in L2 (D. R 

closure of V in Hol (D, R 

and a: VxV --+ R' is defined by 

n 

(u, V) =EI '7iujVivjdx 
i, j=l D 

21 

Form d: VxV -* R' is coercive, bilinear, continuous and symmetric. Therefore, from 

Lax-Milgram theorem follows that for any fEV there exists unique ii CI- such that 

d(u, v) + A(u, v) -< f, v >,,,,, v, Vv cV (2.4.10) 

Define AE L(V, V') by identities d(u, v) =< Au, v Then operator Ac C(I -. I ") 

is self-adjoint and coercive by Theorem 2.4.3 and definition 2.4.2. We notice that this 

operator is a Stokes operator, see section 2.6 below. 

Remark 2.4.12. Notation of this example shall be used later (unless otherwise stated). 

2.5 Helmholtz Decomposition 

In this section I shall recall one characterization of space H, which appear in the study of 

Navier-Stokes equations. I omit proof which can be found in Galdi [39]. Temam [721 or 

references therein. 

The proof of the following Theorem 2.5.1 can be found in Galdi [39], Theorem 111.1.1 m 

p. 107. This result states that the Hilbert space L'(D) can be decomposed into a sum of mo 
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orthogonal subspaces H and G. The first of these spaces contains the set of all smooth 

divergence free vectors of compact support in D as a dense subset. The second subspace 

contains the gradients of all single-valued functions defined in D. And the decomposition 

theorem implies the existence of unique orthogonal (Leray or Helmholtz) projection P 

from L2 into H. It follows that P: L2 -* H is linear, bounded, idempotent (p2 = p). 

Range (P) =H and ker(P) = 

Theorem 2.5.1. Let Dc R' be an open bounded set with a sooth boundary. Then H and 

G= fu (E L2 (D) :u= Vp, for some pE W1,2 (D)l loc 

are orthogonal subspaces of L'(D). 

Moreover L'(D) =H G) G. 

2.6 Stokes operator 

In this section we define Stokes operator and present some of its properties, see [21] for 

details. 

We assume that domain D has boundary of C2 class. 

Definition 2.6.1. The Stokes operator .4: D(A) --ý H is defined by 

D(A) =: H 2,2 (D) n1'. A: = -PA. Sol 

We have the following proposition (theorems 4.3,4.4 of [21]). 

Proposition 2-6.2ý 1) A is seýf-adjoint and positive definite operator 

(2) A is isomorphism from I ý' to I ". 

(3) A has inverse operator A-' :H-H and .4 -' is a compact operator 
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(4) There exists orthononnal basis f ej I ýý, of H and sequence f Aj ljtl such that j= 

Aej == Aj ej. 3' =: 1, ... 

< A, < ... < \j :5 \j +, <... (2.6.2) 

and Ij ljoc=', CD (A). 

lim Ai (2.6.3) 
j-ýý 

Remark 2.6.3 (proposition 4.5 of [21]). If boundary of D is Of C1+2 class, then cj E 

H 1+2 (D). 
sol 

Due to the proposition 2.6.2 we can define D(A') as follows: 

Definition 2.6.4. Let a Cz R. Define 
00 00 

D(A') = ju c H: u= Eujej, EAj'juj I' < Dc I. 
j=l j=l 

and 
00 00 

it: = EAjtij(, 
j for a= Eujej. 

j=l j=l 
Remark 2.6.5. We notice that D(A') is Hilbert space with scalar product 

(Ui V)D(Acl) = 

00 
A2a ujvj 

j=l 

Remark 2.6.6. From definition of A', aGR it immediately follows that . 
4' : D(A'+P) - 

D(AP) is isomorphism for each pER. 

Lemma 2.6.7. We ha ve for o, > 13 that D (A') CD (A') and the embedding is compact. 

Proof of Lemma 2.6.7. We will identify uE D(A") with sequence I uj 1110 1 such that ti j= 

itjcj. We will also identify D(. 4') with the set of sequences f njj`ý'c 1 with finite norm j= 
j=1 

00 
A2a lUj 12. 

j=l 
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Let B be a unit ball in D(A'). It is enough to show that any sequence u == CB k= 

has finite cover for each -: - >0i. e. for each E>0 there exists finite set Qý q, ..... q, 

such that IU- QE II D(AO) < E. Let us show first that each element of u can be uniforrnly 

approximated in D(A13) by its finite dimensional projection. We have that lim Aj -- 7)c. j ýC 
Therefore, there exists dCN such that \2(0-ot) < E/2. Then d+l 

d 00 
I jUk Ujkej 112 

D 
A23IUkI2 < iD (A 0) = 

I: 
ii 

j=d+l 

Oo 
A A2alUkl2 < A2(3-ci) < d+ d+l 

/2. (2.6.4) 

j=d+l 

DenoteUdset of finite dimensional projections of elements of u. We have that the setUd is 

d 
bounded, countable and lies in finite dimensional spaceXd -f ii EH: u ý' ii, c, 
Tm d 
IR . Therefore, it is compact and there exist Q, C Xdsuch that 

I Qe 112 lUd 
- D(A-1) < E/2. 

Thus, it follows from (2.6.4) and (2.6.5) that 

11 U_ Q6112 D(A, 3) 

j=l 

(2.6.5) 

El 

2.7 Interpolation theory and positive definite self-adjoint 

operators 

In this section we present some facts from interpolation theory we will need in the thesi,,. 

We will consider only the simplest set up, see [74], [61 and [61] for much deeper explana- 

tion of the theory, and describe only real interpolation A--method. 
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Suppose X0, X, are two banach spaces continuously embedded in vector space . 
4. We 

say that X= (XO, Xj) is compatible pair in this case. We equip spacesx, n X, and 

X0 + X, with the norms 

+ 11U112 1 
,:::::: ( 11 U 112 llullxonx, . Xo X, 

) 

and 
I(IIU112 + IIUI12 .1 llullx,, +x, inf 2 

U=UO+Ul 
X0 

Xl) I- UOEXO, Ulcxl 

Define K-functional as follows 

i 
K(t, u, X) = inf t(IIUII' +t'Ilull' ) 21, t > 0, u c xo+xl. 

U=U()+UJ 
XO X 

uo(2x0, ulex, 

Next we define weighted Lq-norm, 

1 
CXD 

f 11 
0, q 

It-Of (t) lqdt 0<0< 11 1<0 
t 

Definition 2.7.1. We define 

(XO 
, 

XJO, 
q -:: -- 

tU G XO + Xl : 11 K(., U, X) 11 
0, q < ý>O ý 

and put 
I11"II 

(X 0, XI) 19, qI 
JK(*ý llý X) I 10, 

q- 

Lemma 2.7.2 ([61], p. 320)ýi) if uc -výnx, then uc 
(XO, XI)O, 

qand there exist constant 

(, (0, q) such that 

:! ý c(O, q)lltilll-ollullo, < c(O, q)lltlllxonxi. I(XO-V 
I )O, 

q 
NO x- 

(ii) (NO, 
-VI)O, q 

C 
-VO 

+ 
-VI 

OF YORK 
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(iii) If X= (Xo, Xi), Y= (Xo, Y) are compatible pairs and YCX, is a continuous 

embedding, then 

(xOi Xl)O, 
q C (XO- l')O, 

q- 

Proof. Parts i and ii are proved in Lemma BA [61], p. 320. Part iii follows from definition 

of interpolation pair. 

We will need also following two theorems: 

Theorem 2.7.3 (see [74], p. 167). Assume X be a Hilbert space, A: X --+ X be a positive 
i __Ic ae, nnite self-adjoint operator Then 

(D (A'), D(A0»0,2 = D(A'0+13('-0», ce,, ß > 0,0 c (0,1) 

Theorem 2.7.4 (see [61 ], p. 330). If so, sl ER and Q is an open non-empty subset of 
TED n 
im , then 

(H'o 32(9) 
, 
H'I 2(9»0,2 

ýHs, 
2 (ý2)for s =: (1 

- 
0) so + Osl, 0c (0,1). 

2.8 Stochastic analysis 

I assume basic knowledge of stochastic analysis in Hilbert spaces, see [24], and present 

here certain definitions and results for completeness. In this thesis I will use only very 

particular case, which can be easily deduced from finite dimensional results. The following 

notation will be used throughout. Let (Q-F. P) be a probability space with increasing 

rio, ht-continuous filtration f. Ftjt>O C T, Il't-standard R' valued wiener process, X be a I- - 
Hilbcrt space, C'(. Y)-Banach space of trace-class operators with Tro denote the tracc of 

() 1' (0, T; _V) denote the space of X -valued processes ct such that 
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1. ýt is Tt-measurable for tc [0, T]. 
T 

2. Ef kds< 

-)c. x 
0 

Suppose also that VCH H' cV is a Gelfand triple. Then for any _I 
J2 (0, T: H) 

T 

we can define stochastic integral Mt f ýk(Syjjl, k as an H-valued random variable k 
0 

given by equality 

TT 

(h, ý'(s)dWk 
f 

(h, ýk (s))dWk Vh E H. S)H s 

00 

AIt - is a continuous H-valued martingale on the segment [0, T] and one can prove following 
ltý 

Ito formula (Theorem 1.2 p. 135 from Pardoux [63]). 

Theorem 2.8.1 (Ito formula). Suppose: 

E 1112 (0, T, V) 

uo c 

v 1112 (0, T -1,1, ") 

Al'(0, T; H"), with: 
tt 

ok Wk U(t) = uo +i v(s)ds + 1: 1 (s) d 

0k0 
Let v: H --+ R be a twice differentiable functional, which satisfies following assumptions: 

(i) r, c' and are locallY bounded. 

(ii) (/, and ý, ' are continuous on H 

(iii) VQ c f, '(H), Tr(Q o C') is a continuous functional on H. 
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Uv) If UEV, ýY(u) E V; u ý 0'(u) is continuous from V (with the strong topology) into 

V endowed with the weak topology. 

Iks. t. II -t,,, l'(u) IIv<k (I +IIuII v), Vu Ei V. 

Then: 
tt 

(U), Ok) d tlk + (u M) (UO) +<v, V)'(u) > ds + 1'ýý 
0k00 

2.8.1 Comparison theorems 

Here I present Gronwall lemma and its analog for stochastic analysis i. e. Comparison 

theorem for one dimensional diffusions (chapter vi, Theorem 1.1 in [44], p. 352): 

Theorem 2.8.2 (Comparison theorem). Suppose we have: 

00 

p: [0, oc) -* R- strictly increasing function such that p(O) = 0, f d' 

0 P(S), 

EC QO, oo) x R, R) such that 

or(t, x) - o, (t, y) 1< p(Ix - yl), t>0,. i-, ycR. 

bi, b2 E CQO, 00) x R, R) such that bi (t, x) < b2 (t) 
-"), t ý-ý 0, rE 

two (. Ft) -adapted processes x, (t, . ), X2(t, *)- 

B(t, -)-one dimensional brownian motion such that B(O) =0a. s.. 

two real (. Ft) -adapted processes 01 (t, . ), 
32(t, ') 

Assume that thefollowing conditions are satisfied with probabilitv one: 
tt 

xi(o) = (T(, ý. x, (s)) (IB., +fýý, (s) i=1.2, (2.8.2) 

00 
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31 (t) (t. x, (t) )ýt ýý 0. (2.8.3) 

02(t) > b2(t-12(t)))t > 0, (2.8.4) 

1 
(0) X2 (0) 

- (2.8. ý) 

Then, with probability one, we have 

X (t),, t>0- (2.8.6) 

Furthermore, if the pathwise uniqueness of solutions holdsfor at least one of thefollowing 

SDEs 
tt 

X(t) - X(O) =f or (s, X(s))dB, +I bi (s, X (s)) ds, I=1.2 
00 

then the same conclusion holds under the weakened condition 

bi(tl. z-) < b2 (t 
7 -1, ') ,t>0, x Ei R. 

Lemma 2.8.3 (Gronwall inequality). Let T>0 and c>0. Let n be a Borel measurable 

bounded nonnegative function on [0, T], and let v be a nonnegative integrable function on 

[0, TI. Assume that u-v is integrable on [0, Tj and 

u(t) <c+ 
in 

u(s)u(s) ds, tG [0, T]. (2.8.7) 

Then 
t 

Il(t) < (, Cfo t-(s)ds. tC [0, T]. (2.8.8) 
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Selfduality of vector transport equation 

In this chapter I study the vector advection equations of the following form 

OG 
at vAG + curl (v(t) x G), tE [0, TI, 

G(O, .)= Go. 

Here we assume that H is the Hilbert space defined in Chapter 2, Example 2.4.11. More- 

over, A is the Stokes operator defined also in that chapter in section 2.6. Function rc 

Lr(0, T; L'(R 3)), 
where 

2+3=1, 
r, s>0, and the initial data Go cH are assumed to r8 

be known. A precise definition of a solution is given below in definition 3.1.6.1 will prove 

that the solution of the above problem is self-dual in a sense described below. Self-duality 

allows us to show certain properties of the vector transport operator. In particular, I will 
k, 2 k9 -k, 2 -k, 2 

show that the C(H . 
H,,,, -, ) and L(H, ',,, H, 1 ) norms of the operator of vector transport Sol VI ol 

operator defined in formula (3.3.2), where H k, 2 is defined in section 2.3, are equal, see Sol 
12 2) 

Corollary 3.3.5. Moreover, I prove that the spaceC(H 
21 

.H2' 
is in certain sense optimal Sol Sol 

tor vector transport operator, see Corollary 3.3.7. This duality can be understood as gener- 

alization of invariance of helicity for Navier-Stokes equations, see Corollary 3.3.8.1 also 

30 
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reprove, see again Corollary 3.3.8, the classical result of Serrin [69], Prodi [641. Ladyzhen- 

skaya [49] on the existence of a strong solution to the Navier-Stokes equations if velocity 

r, satisfies an additional assumption that 

Lr (0. T; L'(R 

for some r>2, s>3 such that 2+3 
rS 

3.1 General Setting 

In this section I will introduce the equations I am interested in and I will state the existence 

and uniqueness results. These results will be proved in the next section. I will use notation 

introduced in Example 2.4.11. 

3.1.1 Definition of Nonlinear term 

Definition 3.1.1. Let us define a trilinearfonn b: C00c'(D) xDxDR bY 

=< P(v x curl f), 0 >v,,,,,, vE Co'(D), fED, D. 

Lemma 3.1.2. For any 6, E>0, vE Co" (D), fED, 0ED there exists Q>0 such that 

Cb 
V, f, 0) 12 <1f 12,1 12, (e 1 +6/3 + L, (t) 12+ M-1 01 jý ý3/5 

1 
L3+b (D) 

< 
111f112 

+1 (E1+6/311()112, + 
Cb 

,V (t) 12 +ý 1012 1 b(v ýf, (�» 1-2 
gl+3/6 

L3+5(D) H 

0) 12 <1 12 (E 1 +61'311 f 11 2 
CY6 9+ ý 

, -I 
+ 1,1 '(s H D( ) ýý316 

I' 

To prove Lemma 3.1.2 1 will need following result, 
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Lemma 3.1.3. For any 6, 
--- >0 there exists C5 >0 such that 

2< 61+613 2, 
C6 

lg, 2+f6i 2 Ilf X glIL2 (D) - 
lif III, +E 

1+3/6 L3+6 (D) 
IfIH, fEV. gGH. 

Proof of Lemma 3.1.3. Let p -- 3- 26 
,q= 

3+J O= -! -. Then! +! = land 1+5 21 3+8 pq 

lif X g112 < If 121g12 dx < L2 (D) -j- 
D 

If 12 IgI2 
L2p(D) L2q (D) 

<- 

(I If 110 If 11-0)2 IgI2 
VH L2q (D) 

1+6/3llfll2 + 
C6 

lg, 2+! 6i If 12 Ev 
E1+316 L3+&(D) H, 

32 

(3.1.5) 

where the first inequality follows from inequality (2.1.2), the second follows from H61der 

inequality, the third follows from Gagliardo-Nirenberg inequality (Theorem 2.3.4) and 

fourth inequality follows from Young inequality. 

Proof of Lemma 3.1.2. We have for any (v, f, 0) G CO' (D) xDxD that 

b(v, f, 0) 12=I<v (t) x 0, curl f> VI, I- 
12 

0 
21 6 

f 12 IV(t) X 012 <I If 112ý 1+ýo/3 2 3" ý2 curl HH-I 
(E 11011V + 

E1+316o 
IV(t)IL3+450(D) 

H 

6 
I 2,1012, (,, l+ýo/3 + 

C60 2+. So 
V 11 ýý160 

iv 
L3+60 (D) 

El 

(3.1.6) 

where equality (3.1.6) follows from (2.1.1), second inequality follows from Lemma 3.1.3. 

Similarly, 

< 17 (t) x curl f>v,, t, < 

<2H curl fIH JV(t) X 01 H 
211f'' v+21V 

(t) X 612 < 

1 if 112, + , 1+6ol3l )l 12, + 1, (t) 12 
+ PO 10121), 

II : -1+316o L3+60(D) 1 
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and 

Jb(v, f. 0) 12 =I<v (t) x curl f>v,, 
,, 

12 

101' Iv(t) x curl f I' < 1012 (61-+-J/31f 12 
HH-H D(A) 

C6 2+6 2, ) 
, 1+3/ý 

IV IL3+6(D) If It' 

El 

Fix 60 > 0. It follows from inequality (3.1.2) that for any 60 >0 trilinear form b- is 

continuous with respect to the L 3+ýo (D) xVxV topology. Therefore, for any 60 >0 there 

exist continuous trilinear form b: LI+60 (D) xVxV --+ R such that 

(D)xDxE) 

Moreover, 

b(v, f, 0) =- (v x 0, curlf)H. (3.1.9) 

Indeed, the form on the left hand side of equality (3.1.9) is equal to the form on the right 

hand side of equality (3.1.9) for (v, f, 0) E CO' (D) xDxD and both forms are continuous 

in L 3+6o (D) xVxV. Hence, for each (r, f)GL 3+6o (D) xV b(v, f, -) eI" and therefore 

the following definition is well posed. 

Definition 3.1.4. Let us define a bilinear operator B: L 3+6o (D) xV --ý V by 

B(v, f)ý 0 >ý�, 1, = b(v, f, 0), vcL 
3+do (D), fcV, 0c 

Corollary 3.1.5. There exists a constant C5,, >0 such thatfor any (v, f)cL 3+6o (D) x V, 
6 C60 

IV(t)12+T <I If 112. (,,. 1+6ol3 +0 IB(t,. f)I2A-, 
-V- E1+3/ýo L3+60(D))- 

Moreover ýf (r. f) Cz L 3+6o (D) xD (A) then B (v. f)EH and 

IB(i,, f) 12 < (6 1 -, io, 131 If 11 2(ý+ GO 
11 

2+ §6 
If 12') 

H-D1 
IL3+60(D) 

I 
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Proof of Corollary 3.1.5. Proof immediately follows from Lemma 3.1-2.0 

3.1.2 Equations 

Assume that FO E H, f C- L2 (0, T; V'). I consider the following two problems: 

OF 
= -vAF - B(v(t), F) + f, F(O) = Fo (3.1.12) at 

OG 
= -vAG - curl (v(t) x G) + f, G(O) = Fo 

at 

Definition 3.1.6.1 call element F (respectively G) of L2 (0, T; V) n L' (0, T; H) a solution 

of equation (3.1.12)(resp. (3.1.13)) if F (resp. G) satisfies (3.1.12) (resp. (3.1.13)) in the 

distribution sense. 

In next two Propositions I state existence and regularity results for solutions of (3.1.12) 

and (3.1.13). 

Proposition 3.1.7. Suppose that (FO, f) EHx L'(0. T; V) and 
6 

3+Jo (D)) for some 60 > 0. vEL +ýýo-(O, T; L 

Then 

(i) there exists the unique solution F ofproblem (3.1.12) and 
tt 

)12 + 112 t, (S) 12+61 'ds, v) x IF(t 
H JIF(s) Vds < Kl( 

ifI 
L3+50 

00 

t 

E 012 +c If (S) 12 
HfI, ds). 

0 
Moreover, ýfthefollowing stronger version of (3.1.14) is satisfied 

vc L'(0, T, L 3+6o (D)) for some 60 >0- 

then F' EL2 (0, T. I ") 



CHAPTER 3. Duality 

(ii) If in addition (Fo, f)EVxL2 (0, T; H), condition (3.1.16) is satisfied, then F cz 

C([0, T]. v) nL 2(0 
, T; D (A». 

(iii) If (F (k) (0)., f (k)) EVx L2 (0, T; H), V (k) satisfies (3.1.16), k=I..... n then Fi k) C 

C([O, T], V), k=I 

6 

Remark 3.1.8.1 have used the class of functions L+ 30 (0, T; LI+60 (D)), 60 >0 for the 

parameter function v because it is possible to prove energy inequality (3.1.15) for solutions 
2+ 6 

3+6o 
of (3.1.12) if vGL Io (0, T; L (D)), 6o > 0.1 would like to mention that the energy 

inequality (3.1.15) does not automatically follow from the type of equation (3.1.12) as in 

the case of scalar advection. Indeed, in the case of scalar advection we have for FG 

LII(O, T; L2 (D)) nL 2 (0, T; H1,2 (D)) following equation 0 

OF 
at - vAF + (v7)F, F(O) - Fo G Lo(D) 

and formally speaking, under the following condition of incompressibility 

divv == 0 

one can take scalar product of equation (3.1.17) with F in L'(D), integrate the result 

w. r. t. time and from incompressibility condition and integration by parts it follows standard 

a'priori estimate of F in space L'(0, T; L'(D)) nL 2 (0, T, HO' 2 (D)). For vector advection 

to get similar a'priori estimate we need some additional integrability condition on c. 
6 

Remark 3.1.9.1 notice that on the one hand, our class L +3-o (0, T: L 3+6o (D)) is a Serrin 

regularity class (If r=2+(; ,s=3+ 
60 then 2+ý= 1) and therefore, any weak solution ý0- rS 

of Navier-Stokes equations belonging to this class is strong solution. On the other hand, I 

have been unable to prove that under assumption (3.1.14) solution F of (3.1.12) satisfies 

condition F' c L2(0, T, I "). Problem which appears here is similar to the problem with 
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weak solution -u of Navier-Stokes equations, see [721, for which it is also not proved that 
1 (0, T- V). 

For the second equation we have: 

Proposition 3.1.10. Suppose (FO, f)EHx L'(0, T: V') and condition (3.1.14) is satisfied. 

Then 

(i) there exists unique solution G of equation (3.1.13) such that G' C L'(0. T: I -') and ive 

have an estimate 
tt 

IG(t) 12 + 1', JIG(s)l 12 ds < Kl( IV(,, 4)12+616o &ý, v) x Hv-i L3+60 

00 

t 

(IG 12 +c If (S) 12 ds). 0HvIv 
0 

(ii) If (FO, f)EVxL2 (0, T; H), v satisfies (3.1.14) and vEL2 (0, T. I -), then G 

C([0, T], v) nL 2 (0, T-, D (A». 

(iii) If (G (k) (0), f (k) )EVxL2 (0, T; H), V(k) satisfies (3.1.14) and u(k) EL2 (0, T, V), 

A, == I o, then G(') c CQO, T], V), k= 11, .., n. 

Corollary 3.1.11. Assume that Fo E H, 

L2(O, T, H). kCN. 

Assume also that 1, (k) satisfies condition (3.1.14) for any kEN. Then solution of equation 

(3.1.12) is in C -`0 «0, x 

Similarly for equation (3.1.13) we have 

Corollary 3.1.12. Assume that FO Ei H, 

C ý') L2(0, T. H). kEN 
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and V(k) satisfies condition (3.1.16) for any kEN. Then solution o equation (3.1.13) is in 

(" ((0, Tj x D). 

3.2 Proof of propositions 3.1.7 and 3.1.10 

Proof of Proposition 3.1.7. (i) I will divide proof in three steps a), b), c): 

a) Let us consider special case when vE L' (0, T: L 3+6o (D)). We will use Theorem 2.4.5 

with Gelfand triple VCH L---- H' C V. Denote A(t) = vA + B(v(t), . ). We need to check 

whether conditions (2.4.3) and (2.4.4) are satisfied. We have for fG V` 

A(t)f, f >vt, v= ild(f, f)+ < B(v(t), f), f 

Last term in the expression (3.2.1) can be estimated as follows: 

(, 1+6oll I If 11 2 
1 1< B(v(t), f), f I<2 Ilf II'v +2V 

6 

+ 
C60 

v(t) 1" 30 
(D) 

If 12 (3.2.2) 
E1+3/ýo 

L3+60 H 

where inequality (3.2.2) follows from estimate (3.1.3). Thus from estimate (3.2.2) and 

continuity of form d follows that, 

JA(t)l Cl" + C211'(t)IL3+bC)(D)- 

Coercivity condition also follows from estimate (3.1.3). We have for fCV, t (E [0, T], 

I A(t)f, f >I-,,, - I= lvd(f, f)+ < B(u(t), f), fI 
6 

2 
C' 

(, l+bo/3 2, (t) 12+, So If 12 
2 

lif IIV 
-v 

liflill + 
E1+31S 

I 
L3+60 (D) H 

Let us choose ->0 such that "-CE 1+6o/3 > 0. Then we get coercivity estimate (2.4.4). 2 1, 

Thus, by Theorem 2.4-5, first statement of the Proposition follows in our special case. 
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b) To prove Proposition in the general case I will show the energy inequality for solutions 

of equation (3.1.12) when vE L' (0, T; L 3+5o(D)). From step (a) we know that solution 

E L'(0, T; V) such that FEL2 (0, T; V') exists and unique. Then, from Lemma 2.4.6 

and equality (3.1.9) follows that 

1d 
1F12 

= -vJ1F1 
12 +<f, F >v�v -< B(v, F), F >viv 2 dt Hv 

-vi IFI I' +<f, F >vl, v +(curl F, vx F)H- 
v 

Therefore, by applying the Young inequality, I infer that 
tt 

2 12 12 + IF(t) IH+ 2v 
II 

F(s) Vds (curl F(s), v(s) x F(s))Hds = 
IF(O) 

H 

00 
ttt 

<f (s), F(s) >vt, v ds < IF(O) 12 v IF(s) 12 ds +CI If (S) 12 ds. H+ 21 vvv 
000 

t 
The term f (curl F(s), v(s) x F(s))Hds can be estimated as follows: 

0 
tt 

(curl F (s), v (s) xF (s))Hdsl < -v 
fI 

curIF12 ds 
4H 

00 
tt 

CI Iv(s) x F(s) 12 ds <I curIF 
12 ds HH 4 

00 
t 

C J(, 
l+bo/3 IF(s) 12 + IV (S) 12+6/5o IF(s) 12 )ds 

vv 61+bo/3 
L3+60 H- 

0 
tt 

vC 1+bo/3 12 
C50 

IV(S)12+6/bo 12 ds (4 +v6)I IF(s) Vds + 
V61+6o13 

i 

L3+450 
IF(S) 

H 

00 

Let E>0 such that !ý+ ! gEl+bo/3 = ýý then 4v2 

tt 

12 12 12 +Cf If (8) 12 IF(t) 
H+ v JIF(s)l vds < IF(O)H - v, ds+ fv 

00 
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t 
C60 

1V(, ý; ) 12+6/6o IF (s) 12 ds 
VE1+6ol3 

I 

L3+60 H 

0 

and, from Gronwall lemma follows that 
tt2 

-ý- 6, 

12 2C If (S) 12 
C'(6o, v)f lv(s)! 

_, 
3-, -6( 

ds 
IF(t) 

H< (IF(O) IH + 
v, ds)e 0 

0 

Thus 
tt 

12 + 1', 112 12 +2 IF(t) 
H JIF(s) vds < K, (IF(O) H if (S)11,, ds) 

00 
t 24 (; "6()ds 

IV (S) 12+6/ý 
06010 f 1? '(") 1-, 

3+60 + 
L3+600 ds) e0 

0 

39 

(3.2.3) 

2+ 6 3+6o (c) The general case. Let vcL 6o (0, T; L (D)) then by Theorem 2.2.14 there ex- 

ists a sequence of functions Iv, such that v, C L' (0, T-, L 3+6o (D)) and v, n= 

2+ -6ý- in L0 (0, T; L 3+60 (D)). Let F, be a corresponding sequence of solutions of equation 

(3.1.12) with v replaced by v,. Then from inequality (3.2.3) it follows that the sequence 

f F, I ýý II ies in a bounded set of L' (0, T; H) nL2(0, T; V). Therefore, by the Banach- 

Alaoglu Theorem there exists subsequence f F,, I and F* c L' (0, T; H) such that for any 

L'((), T; H) 
T 

(F� - F*, q(s»Hds -ý 0 (3.2.4) 

0 
Similarly, from the Banach-Alaoglu Theorem follows that one can find subsequence f F,,,, I 

of IF,,, I which converges to F** EL2 (0, T, V) in weak topology of L2 (0, T V) i. e. for 

any qC L2((). T: I ") 
T 

i< 
F* q ds - 0. (3.2.5) 

0 
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In particular, (3.2.4) and (3.2.5) are satisfied for qc L'(0. T. H). Therefore F* = F- G 

L" (0, T; H) nL2(0, T; V). Put F= F*. Now it remains to show that F satisfies equation 

(3.1.12) in the weak sense. Let mG C' QO. T]. R), u (1) = 0, hcV. Then by part (a) of 

the proof I have 

TT 
I 

(F, (s), h)Hýbf(s)ds +i< B(Vnj F,, ), h>v,, t, ý, (s) ds 

00 

ä (F� (s), h) ýb (s) ds = (F0, h)Hý)(0) 

T 
if 

(s), h>u (s) ds.. (3.2.6) 

0 

From (3.2.4), responsibly (3.2.5), immediately follows convergence of the first term, re- 

sponsibly third term, on the left hand side of this equality. For the second term I have 

11 B(v, F�) - B(v, F), h >v�j� ý, (s)dsl 

T 
j< 

B(Vn- v, F, ),, h>v,, 1, V) (s) ds 

0 
T 

1 
B(v, F, - F), h >v�j- e(s)dsl = I� + II, 

Let e>0 be fixed. For anyE2, E3> 01 have by inequality (3.1.3) 

T 

n 
12 In < E3J I curl F Hds+ 

0 

T 
6 
n 

cc 
12+T 12. +01h, 12 )1 ý, 12 

': 21h I L3+60(D) H 
f, 3E2 
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T 

IF 12 1 C, 12 
n 

112 
C2 

1h ds+ 31 L2(0, T; V) + 
E3 

vi 

0 

T 
C26 ýh 16 Hf IVn- VI]L3+600 

(D) 
1, (' 12 ds. 

E3E2 
0 

41 

2+ Taking into account that F, is bounded in L2(0. T, V) and v, converges to r in L 6o (0. T: 

L 3+6o (D)) I can chooseE2, E3 and N- N(E) in such way that I, < ýý ii > N. 2 
T 

For II, I have II, -f<F, - F, curl(v x h) >I-,,, - ýb(s)dsj. From (3.1.5) follows 
0 

that vxhE L2(0, T; H) and, therefore, curl(v x h) E L2(0. T. V') and convergence of 

II, to 0 follows from (3.2.5). Uniqueness of F follows from energy inequality. Thus, first 

statement of the Proposition 3.1.7 is proved. 

(ii) To prove [ii] I follow an idea from [ 15], see also [II]. 
T 

Lemma 3.2.1. Let g: [0, T] --ý R be measurable function such that fIg (s) Ids < Dc. Then 
0 

Ti+I 

for any 6>0 there exists partition f Tj Ji'=1 of interval [0, Tj such that fIg (s) I ds < 6, 
Tz 

i=Iý---, 'I I. 

Proof. Immediately follows from absolute continuity of Lebesgue integral. (Theorem 5 

p. 301, [461). F-1 

Local existence of solution. Let XT- IF : [0, T] - D(A)II F 12 2 IF 12 + XT L2(07ýD(A)) 

IP 12 
2(0,7': H) 'ýý 7ýcj. Define a map 41) T L 

: XT 
---4 -Y Tby 41)T (Z) 

- - G, where G is a solution 

of the problem 

G'+ vAG =f- B(v(t),: --), G(O) = Fo (3.2.7) 

Lemma 3.2.2. If v satisfies assumption (3.1.14), fEL2 (0ý T: H), Fo c I'then B(r(t), 

L2(0, -I': H) and rnap(IýT is well defined. 
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Proof. It is enough to prove that B(v(t), z) E L'(0. T: H). Then correctness of definition 

Of ýDT will follow from Proposition 2.4.10.1 have from inequality (3.1.11): 

B (t), Z) 112 
2<C, (6.6 

0)IIZ 
112 

(D)) L (0, T; H) - L2(0, T; H2 
Sol 

+c2(Ei 60)IZ1C2(O, 
T; I, ')It'l 2+6 L 30 (0, T; L3+60(D)) 

and the result follows from Lemma 2.4.6. F-I 

Let us show that there exists such T, <T that (DT, is contractive map. I have by 

Proposition 2.4.10 and inequality (3.1.11) 

112 < C, 1 IB(v. zi- Z2)11 
2 

2(0, t; H) 
II(I)t(Z1) 

- 
lýt(Z2) 

Xt -L 

+6ol3 12 C1, F, IZ1 
- Z2 L2(0, t; D(A)) 

Cý 
17,12, < 

E1+31S 
1-1 

- ýý2 C (O, t; V) 
IVIL2+6160(0, 

T; L3+60(D)) 

C, E l+So/3 12 
c6 

Z21 
2 11- Z2 Xt + Cl 

ý7+-316 
1 Zl - Xt 

1V1 
L2+6/60 (0, t; L3+50 (D») 

Now let us choose E>0 that C, El+6ol3 = 1/2 and denote K= C', c. I have 

12 < 12 (I)t (Z2)1 
Xt - 

(1/2 + KI"IL2+6/S0(0, 
t; L3+b0(D)))I-j xt (3.2.8) 

Choose f T, such that IU 2+6/, 5o(O, T,; L3+bo(D)) <d then (DT, is an affine contraction IL 3K 

map and by Banach fixed point theorem there exists fixed point Fc XT, Of (DT,. Then F 

is a solution of equation (3.1.12) on interval [0, Tj]. 

Global existence of solution. From Lemma 3.2.1 and assumption (3.1.14) it follows that 

I can find partition 0= To < T, < ... < Tk-I < Tk 
=T of interval [0. T] such that 

I I'l 1.2 ý6 '60 ('11 i, 'I't 4 ; L3+60(D)) < 1/3K, i=0..... k-1. Therefore, I can use estimate (3.2.8) 

and Banach fixed point theorem iteratively to define global solution. 

To deduce Iiiij I will use a method suggested by R. Temam in [73]. 1 will consider onk, I 
the case A- = 1. General case follows by induction. Let us recall that 
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A(t) = vA + B(t, (t). . ). 

I differentiate equation (3.1.12) w. r. t. t (in weak sense) and get equation for P: 

dF1 
A (t) F' B (v'(t), F) f' 

dt 

43 

Now from assumptions of statement [ii] follows that it is enough to prove that B(c'(t). F) c 

L'(0, T; H) and use part [i]. I have from inequality (3.1.11) 

T 

IB (v'(t), F) 12 dt 
IH 

0 
T 

1+bo/3 12 dt + 
00 iII 

curl F1 V 
EI+316o 

0 
T 

I VI (t) 12 12 < 1+bo/3 
L3+g5o (D) 

I 
curl FHdt IFIL2(0, 

T; D(A)) + 

0 
T 

I (t) 12+ 36 C60 
IIFI 12 

(0, T; V) 
0 

(D) dt < Dc E1+316o 
cf 

IV 
L3+60 

0 

Where FG C(O, T; V) by Lemma 2.4.6. 

El 

Proqf qf Proposition 3.1.10. The proof is very similar to the proof of previous proposition. 

a) Let us consider special case when vc L'10(0, T: L 3+6o (D)). I will use Theorem 2.4.5 

with Gelfand triple VcH H' cI". Denote B(t) = vA + curl(v(t) x . ). I need to 

check whether conditions (2.4.3) and (2.4.4) are satisfied. I have for fEV 

B(t)f, f >v,, v= va(f, f)+ < curl(u(t) x f). f >v, j- 

= va(f, f)+ < r(t) x f, curl f >, -,, I- - (3.2.9) 
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Now I can use estimate (3.2.2) and continuity of form d to get 

IB(t)ll, c(v, v, ) :! ý C"*+ C21V(OIL3-ýo 
(D) - 

Coercivity estimate can be proved in the same way as in the proof of Proposition 3.1.7. 

Therefore, by Theorem 2.4.5 first statement of the Proposition is proved for our special 

case. 

b) To prove Proposition in general case I will show energy inequality for solutions of 

(3.1.13) when vC L' (0, T; L 3+6o (D)). From step (a) I know that solution FG L'(0, T: I -) 

such that FEL2 (0, T; V') exists and unique. Then, from Lemma 2.4.6 follows that 

Id 
IG 12 

= -vJIGI 
12 +<f, G >v,, v <VxG, curl G >pj, 2 dt Hv 

-vJIGI 
12 +<f, G >vt, v +(curl G, t, x G)H v 

Therefore, 

t 

)12 12 12 + JG(t 
H+ 2v 

i JG(s) vds (curl G (s). v (s) xG (s))Hds = 
JG(O) 

H 

00 
tt 

<f (s), G(s) >I ds < JG(O) 12 v 12 2" 
H+2f JG(s) t, ds + 

jjf(s)jj 
ds 

000 
t 

where inequality follows from Young inequality. Term f (curl G(s), v(s) x G(.,; ))H(I. ý can 
0 

be estimated in the same way as in Proposition 3.1.7. Thus 

tt 

G 12 JIG(, s)112vds: 5 Ki(IG(O)l2H + 2, 

, ds) H+v-H 
if (S) I 

00 

t 
C(60 

IV) 

If 
I V(S) 1 2-6 ý" ds 

(i + 12 -G 16 
Ods)c 0 :, 3-60 

L3+60 (3.2.10) 

0 
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c) General case. Now, let v, E L' A T. L3+Jo (D)) is a sequence of functions such that 
6 2+ 6 3+6o 3-6, ) Vn ---+ vGL 6o (0, T; L (D)). n, -x in topology of L' (0. T. L (D)). Gn 

is a corresponding sequence of solutions of (3.1.13). Then from (3.2.10) follows that se- 

quence f G, J; ý=, lie in a bounded set of L"(0, T; H) n L2(0, T: V). Using the same argu- n= 

mentation as in Proposition 3.1.7 1 can find subsequence f G,,, I', 
=, weakly converging to n 

L"(0, T; H) n L2(0, T; V) which satisfies (3.1.13) in a weak sense. Uniqueness of G 

follows from energy inequality. The only difference with previous Proposition is that I can 

prove that G' EL2 (0, T, V'). I have 

T 

12 12 <I JvAG + curl(v(t) 
12"(It < I JG'l L2(0, T, VI) = JIB(. )GI L2(0, T, VI) xG (t)) 

0 
T 

V21 12 12 V21 12 IGI L2(0, T, V) +1 Iv(t) x G(t) 
Hdt < IGI L2(O, T, I') + 

0 
T 

12, + C2,7l(t) 2+6ýbo 12 (C, 1G (t) 1,1L3+ 0 
IG(t) 

H)dt < b 

0 
12 + C2I1G1 12 

-(0, T, H)IVI 2+ý 
< DC 

r 
C3 IIGI L2 (0, T, V) LL0 (0, T; L3+60 (D» 

Thus, first statement of the Proposition is proved. [il and [ii] are proved in the same way as 

in Proposition 3.1.7: 

(i) Local existence of solution. Let XT- JFJJF 12 
= v'IFI' +IF 12 

2 (0, T; H) XT L2(0, T; D(A)) L 

Define a map ýDT : -'ýT --+ XT by 4DT(Z)= G, where G is a solution of the problem 

+ vAG =f- curl (v (t) x z), G (0) = Fo (3.2.11) 

Lemma 3.2.3. If r satisfies assumption (3.1.14), cEL2 (0, T: V), fEL2 (0. T. H), FO 

I'then curl(r(t) x --) cL2 (0, T: H) and map(I)Tis well defined. 

Proof It is enough to prove that curl(r(t) x z) E L'(0, T. H). Then correctness of defini- 
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tion0f (IýTwill follow from Proposition 2.4.10.1 have: 

22 curl(v(t) x z)ll'L, (O, T; H) :! ý C"(IIZVVIIL2(0, 
T, H) + llt'VZIIL2(0, 

T; H)) 

CIZIC(O, T; V) 
I I-'I L2(0, T; V) 

and the result follows from Lemma 2.4.6. 
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(3.2.12) 

F-1 

Let us show that there exists such T, <T that ýDT, is contractive map. I have by 

Proposition 2.4.10 and Lemma 3.1.3 

4 112 12 1)t(Z2) 
xt 

< C, 11 curl (v(t) X (ZI 
- Z2))I L2(O, t; H) 

12 IV12 2t IV12 CIZ1 
- Z2 C(o, t; V) L2(0, t; V) -< 

Cl-I 
- Z21X L2(0, t; l') 

Now let us choose t-T, such that IV I L2 (0, t; V) < 1/2 then 4DT, is an affine contraction map 

and by Banach fixed point theorem there exists fixed point FG XT, of iDT1. Then F is a 

solution of equation (3.1.12) on interval [0, Tj]. 

Global Existence of solution. From Lemma 3.2.1 and assumption (3.1.14) it follows that 

I can find partition 0= To < T, < ... < Tk-, < Tk 
=T of interval [0, T] such that 

< 1/2,1 .I=0, ..., k-1. Therefore, I can use estimate (3.2.8) and Banach 

fixed point theorem iteratively to define global solution. 

(ii) I will consider only the case k=1. General case follows by induction. I differentiate 

equation (3.1.12) w. r. t. t (in weak sense) and get equation for F: 

dF1 
dt -ý 4 (t) F' + curl (F x v'(t)) 

Now from assumptions of statement [ii] it follows that it is enough to prove that ctirl(F x 

ill(t)) c L2(0, T: H) and then use part [i]. By estimate (3.2.12) and Lemma 2.4.6 1 get the 

result. 
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0 

Proof of Corollaries 3.1.11 and 3.1.12. Here I follow remark 3.2. p. 90 in [73]. 

I have a weak solution F of equation (3.1.12)(corr. (3.1.13)) in L' (0 
ý T: H) nL'(0, T. I -) 

by proposition 3.1.7(corr. 3.1.10). 

Choose arbitrarily small to >0 such that F (to) e V. By proposition 3.1.7 (corr. 3.1.10) 

I have that FcL2 (to, T; D (A)) nC (to, T; V) - 
I choose tj > to, tj arbitrarily close to to such that F(tj) C D(A) then (3.1.12) (corr. 

(3.1.13)) shows that F(tj) c- H. I conclude by proposition 3.1.7 (corr. 3.1.10) that PE 

L"c (t 1, T; H) nL 2(t, 
, T: 

l 
V). 

I choose t2 > t1i t2 
- tj arbitrarily small such that F(t2) CV and conclude that 

FE L2 (t2, T; D (A)) nC(t2, T; V), etc. 

Finally I get that F (k) G Qtj, T], V), k=1, ..., n for tj arbitrarily close from 0,11 

arbitrarily large. The regularity follows by Sobolev embedding theorem. El 

3.3 Duality 

Here I state main theorem of the chapter and deduce some corollaries. 

v c: L 2+ -L 3+6o 
Theorem 3.3.1. Suppose that FO c H, Go c H, lo (0, T; L (D)). Let F and G 

be solutions of problems 

at 

F (0, .)= Fo, 

OG 
= -v. IG + curl (t, (T - t) x G). tG [0, T], (3.3.2) 

at 

G(O, -) = Go. 
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Then thefollowing identity holds 

(F (t), G (T -t))H (F(O), G(T))H it E [0, T]. (3.3.3) 

Proof of Theorem 3.3.1. First step. Let us prove theorem in the case of smooth initial data 

and smooth v. I can find F06 E Coo (D) n H, Go E Cm (15) n H, v' C Cb' QO, T] x D) n 
2+ 6r 

V- L 3+Jo (D)) such that Fol -* Fo, E -* 0 in H, G' -+ Go, E --+ 0 in H and v' -* 
L To- (0 

770 

v, e -* 0 in L"(0, T, L 3+5o (D)). It follows from Corollaries 3.1.11 and 3.1.12 that there 

exists solutions F' E C(O, T; H) n CI((O, T] x D), G' E C(O, T; H) n Coo ((0, T] x V)) 

of equations 

OF' 
at 

F'(0, -) 
aG' 
at 

G'(0, -) 

=- vAF' -P (v'(t) x curl F') 

- 

= -vAGE + curl (v'(T - t) x G') 

= G'o 

Therefore, for tG (0, T] I have: 

d (F6 (t) I G6 (T -0) L2 (D) 
d 

FE (t) 
I 
G6 (T - t) >L2 (D) 

dt dt 

(P(t), d G'(T -t))L2(D) v(P(AP(t)), G'(T - t))L2(D) 
dt 

- (P(v (t) x curl P(t)), G'(T -t))L2(D)- v(F'(t), P(AG'(T - t)))L2(D) 

- (P(t), curl (v (t) x G'(T- t)))L2(D) ýW- (ii) 
- 

(iii) 
- 

It follows from ffie fact that div F1 = div GE = 0, FE 18D= G16 JOD =0 and formula of 

integration by parts that (Fe, VV))L2(D) = (G', VV))L2(D) =0 for any 7P E C'(D). Thus, 

I have 

(P(AP(t)), G(T -t))L2(D)= (AP(t), G'(T - t))L2(D), 
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(ii) = (v (t) x curl P(t)), G'(T- t))L2(D) = 

49 

(v(t) x curl P(t), G'(T - t))L2(D) (3.3.4) 

and 

(iii) = (P(t), P(AG'(T -t)))L2(D) = (P(t), AG'(T - WL2 (D) 

Therefore, I get (i) - (iii) =0 by Green formula. From (2.1.1), (3.3.4) and formula 

iu 

curl vdx -iv curl udx =i (u x v, 'n)da 
DD OD 

follows that 

(ii) = (v(t) x curl P(t), G'(T- t))L2(D) 

-(curl P(t) xv (t), G'(T -t))L2(D) : _": 

-(curl F'(t), v(t) x G'(T- t))L2(D) ý_- - 
(iV) 

- 

Thus, I have A (FI (t), G16 (T - 0) L2(D) --..: 07 tE (0, T]. Also, from regularity of FI, GI dt 

follows that (F6(t), G6(T - WL2 (D) E C' ((0, T]) nC QO, T]). As a result I get (3.3.3). 

Second step. Let us show that F, (t) -* F(t) in weak topology of H and G. -* G in 

CQO, T], H) topology. Then I have 

I (F(t), G(T - t)) - (P(t), G6 (T - t)) I= 

I (F - P(t), G(T - t)) + (P(t), G- G(T - t)) I 

I (F - P(t), G (T - t)) I+I P(t) IHIG 
- G'(T -t)IH !5 

I(F - F(t), G(T - t))l + IFO'IH SUP IG - G'(t)IH --+ 
07 0 

tE[O, T) 

i. e. (F(t), G(T -t))H= lim, (FI (t), GE (T -t))H and the result follows from first step. 
C-*O 

To show weak convergence of F, (t) to F(t) I notice first that F, converges to F in weak 
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topology of LOO(O, T; H) by Banach-Alaoglu theorem (proof is exactly the same as proof of 

convergence of F,, to F in Proposition 3.1.7). Also, I have from Banach-Alaoglu theorem 

that FI(t) weakly converges 
T 
f (F` (s) -F (s) q (s))Hds 
0 
L'(0, T; H), H, K(E, T) 

o some T(t) E H. Let us show that T(t) = F(t). I have 

0 for any qE L'(0, T; H). Put q (s) yl =e- 
It-SI2/2r 

E 
v/2-IrT 

T 

=f(F6(s), ý)H 71, e- It-SI212rds. I have 
0 

V2- -ir T 

lim lim K(E, 7-) = (T(t), ý), lim lim K(E, -r) 
e--+O, r--+O r--+O e-+O 

and 0<K (6, r) <IýIHI FO I H. Therefore, I get F (t) =T (t). Thus, it remains to show that 

GE --+ G in QO, T], H) topology. Denote RI = GE - G. Then I have 

aRe 
-vAR+curl(v'(T-t)xR)+curl((v'-v)xG) at 

R'(0, G' - Go 0 

I have from energy inequality (3.2.10) that 

IR' 12 
2+k C(O, T; H) < COV'I 

L0 (0, T; L3+i5o(D)) 
)x 

G' - Go I' +I curl ((v - v') x G) 12 
2(0, T; V') 0HL 

)(IG'- Gol' + J(v - v') x Gl' COO 
2+ý- 0H L2(0, T; H) 

L0 (0, T; L3+60 (D)) 

T 

(IG' - Go 12 + rl+bo/3 JG(s) 12 ds COVI 
2+k; 0Hv 

L0 (0, T; L3+60 (D)) 

f 

0 

C&O 
-IG 

12 
(0, T; H) 

I V'5 -V1 2+ (3.3.5) 
Tl+3/&o 

CL0 
(0, T; L3+60 (D)) 

where I have used Lemma 3.1.3 in last inequality and -r- arbitrary positive number. Now, 
6 

from convergence vl to v in L +ro (0, T; L3+bo (D)), G166 to Go in H and (3.3.5) 1 have the 

result. 
El 
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From now on I will consider case D 

51 

Tp 3 
Im .I notice that in this case if F is a solution 

of Problem 3.1.12 with parameters Q f, v), then curl F is a solution of Problem 3.1.13 

(with parameters (curl FO. curl f, v)). 

Definition 3.3.2. Let 'Týý :H-H be the vector transport operator defined bY Tj' (Fo) 

F(T), where F is the unique solution of equation (3.3.1). 

Define also the operator of time reversal by S' (v) (t) =-u (T - t). Then from Theorem 

3.3.1 1 infer that 

2+ 3+6o 3)) Corollary 3.3.3. Assume that FO E V, Go E H, vEL Io (0, T. L (R 
. Then I have 

fiollowing duality relation: 

(curl Fo, 7T-s 
T' 

Go) H :::::: (curl Tý FO, GO)H- (3.3.6) 

Remark 3.3.4. This Corollary can be used to define operator Tj' on the functions from 

Sobolev spaces with negative index. 

Corollary 3.3.5. Assume that either v satisfies condition (3.1.14) or there exists unique 

solution FC L' (0, T; H) of equation (3.3.1) with initial condition FO ED (R3, R3) such 

that duality relation (3.3.6) holds. Then 

T 
TVI1, C(H1 -k, 2 H 1-k, 2 kG [0,1]. (3.3.7) T'J"' I 1, 

C(H k, 2 k, 2)II, 
Sol, 

HSol 
Sol Sol 

Proql'of CorollarY 3.3.5. Indeed, by (3.3.6) 1 have 

'IIL(H k(, 
) 

Hk2 
sup 

I< T7ý 6. t, >ý- 

oxcD(Rý3, W) IIOIIH k, 2 Ilt"IIH- k, 2 
Sol Sol 

slip 
< curl Tj'o, curl-' >I 

1101 IH k. 2 
IIk2 

Sol 

IIH- 
, 

Ol 
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sup 
0,7ýýc-'D(R3, W) 

ST 
< curl o., Eý () 

curl-' u> 

k, 2 
I IH 

-k. 2 
11016801 

. 90, 

H011H 
k-1ý2 

HU161 
- k. 2 

Sol Sol 

sup 
O, OEE)(R3, R3) 

ST(V) I -rý 
-k, 2 -k, 2 I 1, 

C(H1 Halo, 
Sol 
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F-I 

Definition 3.3.6. By X, I denote the class of allfunctions u: [0, T] x R' --ý R' such that 

(i) 

uc Ll>O (0, T; H). 

(ii) There exists unique solution of equation (3.3.1) with parameters u and S'(v I (0, t]), tc 

[0, T]. 

(iii) 
ITuIL(H" 2 Hc' 2< 00 [0, T] t Sol Sol 

Then the following result follows from Corollary 3.3.5 

Corollary 3.3.7. Assume that a EE [0,11 then X,,, = Xl-,,, c Xi. Space X1 is invariant 

with respect to scaling Ati(A 2t 
, Ax), A<1, tc [0, T], xER3. 

Proqf Qf Corollary 3.3.7. Property X, = Xj, immediately follows from Corollary 3.3.5 

and definition of V,,. Let us show that Y,, C Xi. Let uEX,,. Then Vt E [0, TI I have 
ij 

Eu a, 2, a, 2 - 11 e -ck, 2 

, H1 -o,, 2). C(H1 L(Hso, Hsol), 't 
Sol Sol 

Indeed, it follows by definition of X, that S'(u I [0j]) G X, and by Corollary 3.3.5 1 have 

that 
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T -cr, 2 -ck, 2) --:::: 

st (u I ý0, t) 
a, 2 2). tuI, C(H1 H1 

I Tt IL(H 
H' Sol Sol Sol I Sol 

Therefore, by interpolation theorem ([74]) 1 have that 

,2 -a, 2] 21 ck, 2 E' Ez- L QH' H1 [Hc, to,, H- t Sol I Sol 1/2 ý Sol 
11/2) 

i. e. 
-12 12 

Ttu E L(H 21 
,H2' Sol Sol 

Third property follows from identity 

Tt ýP, \ (U) T \(Fo) - T, \(TtuFo) 

2 
and boundedness of scaling operators xP, \ and xP-1 =Ti in H2 El Ax Sol 

Consider family of spaces (H', 2, Xct), aC [0,1]. Then Corollary 3.3.7 shows that the Sol 
2 Xj) space (H 2' is optimal for definition of vector transport operator Tt' in the following 

Sol 

sense: The setu, E X, for which I have 

Tt ucL (H ct, 2 Ha, 2E [0,1]. 
Sol) sol)'a 

is the largest one for n, = -1. Now I will get classical existence result of Serfin-Prodi- La- 2 

2+ 3» dyzhenskaya ([691, [64], [49]) which in our context means that UL ýo (0, T, V+Öll (R 
60 >O 

vi =-- - 
NO. 

Corollary 3.3.8. Assume that u is a weak solution of the Navier-Stokes equations without 
6 

force satisfying Serrin condition nEL 
2+ 3-o (0, T, L 3+6o 3)) 

or some 6o > 0. If Go E H, (R f 

u(O) c l' then 

(curl u(0), Tý"""(')Go)H= (curl u (T) 
1 

Go)H, (3.3.8) 

(3.3.9) 11 curl n (T) H 
(U) I 1, 

C(H, H) curl 11 (0) H 

and it is a strong solution of Navier-Stokes equations i. e. ii E L'(0, T, V). 
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Proof'of Corollary 3.3-8. By Proposition 3.1.7 there exist unique solution FEL2 (0. T: v)n 

L' (0, P H) of equation (3.1.12) with initial condition FO -a (0) and v=a. I notice that 

u is also solution of (3.1.12) by Navier-Stokes equations. Thus, F=u and I havc (3.3.8) 

by Theorem 3.3.1. Therefore, I have 

T 
II, ST (U) I Curl UMIIHr, I 1, 

C(H, H) 
II curl U (0) 

H 

ST(U) 

and by boundedness of operator Tý (Proposition 3.1.7) 1 get the result. El 

Remark 3.3.9.1 notice that relation (3.3.8) is a generalization of helicity invariant 

f 
(U) curl U)R3dx, 

R3 

see e. g. [60], of Euler equations for Navier-Stokes equations. Indeed, if I formally consider 

transport operator Tj for the case v=0 and put G(O) = u(T) in the right hand side 

of (3.3.8) then, under assumption that Euler equations has a unique solution, I get that 

u(O). 

In the next section we will consider some modification of Navier-Stokes equations for 
12 

which space 
H2 ' is a natural space for the solution. Sol 

3.4 Modified Navier-Stokes equations 

In this section I will prove existence of the unique global strong solution for certain modifi- 

cation of the three dimensional Navier-Stokes equations. We consider the following system 

of equations: 
(T +Fx . 

1'2'F 
= w 

div F 

F(O) 

-v, nT + -II(s) 
Vp 

0, FIOD ý0 

Fo. 
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Here, as usual F= F(t, x) is the unknown velocity field, FO is the initial velocity field 

(known data) and M is the external force. Moreover, .4 is the Stokes operator introduced 

in section 2.6. Please note, that on the right handside we have the usual laplacian and 

not the Stokes operator. These equations are a modification of NSEs in the sense that 

the term curl F is replaced by A11'F. The latter is in some sense a pseudodifferential 

operator of order I and the former a differential operator of order 1. One can notice that 

curl 
2= (A 1/2)2 

= A. Thus, our modification is in some sense a natural one. 

As a result of our modification helicity balance for three dimensional N. -S. equations 

will be transformed into additional a priori estimate for equation (3.4). 

3.4.1 Nonlinearity and its properties 

Definition 3.4.1. Let us define trilinearfonn 1: DxDxD --ý R by 

l(f, g, h) (f x Al2g, h)Hi f, g, hED. 

We will collect properties of 1 in the following lemma 

Lemma 3.4.2. There exist constants C, (D), C2(D) >0 such that for any f, g, hED we 

ha ve 

l(f, g, f) 0 (3.4.2) 

l(f, g, Alg) 0 (3.4.3) 

jl(fýg, h)j < ClIhIHIf 11' JA4 
91H (3.4.4) 

C2 Igll, lf I, -lh 1 
D(A: 11) (3.4.5) 

Proof'of Lonnia 3.4.2. Properties 3.4.2 and 3.4.3 immediately follows from the definition 

of the vector product. Let us choose and fix f, g, h, E D. All the constants below are 

independent from f,,, and li. 
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Now we shall prove property (3.4.4). From the Schwarz and the Hblder inequality we 

infer that 

11(fg, h)l < lhlHlfx A-ý91H < IhIHIf IL6(D) JA21 91 L3 (D) - (3.4.6) 

Moreover, we have that 

VC H' 2CL6 (D) 
ý (3.4.7) 

and 

C HI 
23 

D(A4 21 1) 
Sol cL (D). (3.4.8) 

2 
21 3 Indeed, embeddings (3.4.7) and H,,,, cL (D) follow from the Sobolev embedding theo- 

2 2 
rem 2.3.3. Thus it remains to show that D(A41) c H. 

01. 
From Theorem 2.7.3, definition of 

Stokes operator and part iii of Lemma 2.7.2 we infer that 

2,2 2,2 (D))1,2 D(A41) = (H, D (A))1,2 =(H, H801 (D) nV) 
-1,2 

C (H, Hsol n(H, 1 ') 1,2 
4444 

Now by Theorem 2.7.4 we have that 

2,2 12 
(H, H (D)) 

-i 
CH 21 (D). 

Sol 42 Sol 

1 2 -1 2 
Taking into account that (H, V) 

-1,2C 
H we get that D(A: i) C H2 ' (D) nH=H 21 

4 Sol Sol 

Therefore, it follows from (3.4.7) and (3.4.8) that there exist constants C: j, C4> 0 such 

that 
If IL6(D) C31f 11", If IL3(D) 

- 
"ý C4 1f 

Combining these inequalities with inequality (3.4.6) we get property 3.4.4. 

Similarly. it follows from inequality (2.1.1), H61der inequality and the Sobolev embed- 

ding theorem that 

2 g. fx h)HI < 1.4"glHlf x hIH 

j9jVjfjL('(D)II? IL3(D) !ý C'21911'lfll'lh II 
D(Alf) 
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El 

From inequality (3.4.5) we infer that the form i is continuous with respect to the I 'x I 'x 

V topology. Since D is dense in V there exists continuous trilinear form I: Vx Vx V-R 

such that 

1(-i 'i *)I E) x E) xD 
[- 

Moreover, the norm of the extension 1 is the same as of 1. Hence, for each (f g) EI-xV 

I (f, g, -) GV and therefore the following definition is well posed. 

Definition 3.4.3. Let us define a bilinear operator L: VxV -4 V by 

L(f, g), 0 >vi, v= l(f, gl 0), f, gCV, 0GV. 

Corollary 3.4.4. There exists constant C, >0 such thatfOr any (f, g, h) Ei I-xI-xV, 

L(f, g), f0 (3.4.9) 

I L(f, g), hI< Cilf lt,, Igll,, Ih 1 
D(A: 11) * (3.4.10) 

'l) then Furthermore, if fGV, gGD (A14 

L(f, g), Alg >VI, V= 

If in addition, (f 
. g, h) EVxD(. 424) 

xH then 

< L(f, g), h >I-,., - -3 )IhIH- (3.4.12) 1< lf 'ý'lg'D(AT 

3.4.2 Existence and uniqueness theorem 

I consider the following problem: 

OF 
- -v. IF + L(E F) + M, 

i)i 
F (0) - Fo - 
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Definition 3.4.5. Assume that FO G D(A'4 24 '), extemalforce -11 cL (0. T: D(-4-"')). Tlieii 

a function FE CQO 
I T]. D(A41)) nL 2 (0, T: D (A24)) is a solution of equation (3.4.13) if F 

satisfies (3.4.13) in the distribution sense and F satisfies (3.4.14). 

21 Theorem 3.4.6. Suppose that Fo E D(A4 4 1), HEL (0, T D(A- )). Then 

(i) There exists a uniquefunction FE CQO, T]. D(A4 42 1)) nL'(0, T; D(Al)), PcL (0, T: 

.1 D(A-4 ))that is a solution ofproblem (3.4.13)-(3.4.14). 

(ii) Furthennore, if Fo C- V and the externalforce Al EL2 (0, T; H) then FG CQO. TI, i -)n 

L2 (0, T; D (A». 

Proof of Theorem 3.4.6.1 will use standard technique described, for instance in Ternarn[72]. 

(i) Existence of solution. The proof of existence will consist of four steps a), b), c), d): 

a) Galerkin approximation of solution. Recall that By proposition 2.6.2 A is self adjoint, 

positive definite and there exist a sequence f ej jjt, of eigenvectors of A, corresponding 

to the eigenvalues I Aj jjOO , (enumerated in increasing order). We have that for any jEN 

c., c D(A) and f ej jjt, forms orthonormal basis of H. For each nGN one can define an 

approximate solution as follows: 

F� (t)= Z gkn (t) ek (3.4.15) 
k-=l 

and 

(F, ', (i). cj+v (A Fn (t). ek, ) H+1 
(Fn(t)ý Fii (t) 

ý e- k) 
(31 (t) 

ýe k), (3.4.16) 

[0, T], k-1 11. 

F� (0) - Fon. (3.4.17) 

where FO, is an orthogonal projection of FO onto the space X, spanned by JCjJn 
I. We i= 
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notice that system (3.4.16)-(3.4.17) is just projection of problem (3.4.13)-(3.4.14) to the 

linear span of first n vectors of basis f ejJj. 1. Denote Mk. = (M. ek). Then Mk- E L2(0. T), 

kEN. Combining (3.4.15) with (3.4.16) and (3.4.17) we get nonlinear system of differen- 

tial equations for functions 9kn(t), tE [0, T], k=1..... n: 
n 

+ V, \2 gkn kgkn 
(t) +Z1 (ei, ei i e-k)gin (t)gjn (t) : -- lIk (t) 

- 

i, j=l 
gkn(0) = (FOn, ek)it G [0. T]. k= 1-. , n. (3.4.19) 

The nonlinear system (3.4.18)-(3.4.19) has a maximal solution defined on some interval 

[0, T, ], see [ 19], where T, <T such that if T, < T, then lim I F, (t) IH 
--)c,. We shall t T. 

prove later that this is not the case and therefore T, = T. 

b) A priori estimates. Let F,, (t), tE [0, T, ) be the maximal solution of the problem (3.4.18)- 

(3.4.19) existence of which was established in part (a). First a priori estimate (called also 

energy estimate) is the same as for Navier-Stokes equations. Multiplying equation (3.4.18) 

by gA, and adding these equations for A, = 1, ..., n and taking into account (3.4.9), we get 

(IFn (t) 12 = (M (t), F + vIF Fn(t), 
n(t))H v n), 

tE [0, Tn) (3.4.20) 

Let us fix tE [0, T, ). Integrating equality (3.4.20) from 0 to t and using Young inequality 

we have 
T 

71 
(f) 12 +V 12 12 

j1 
jj(S)12 IF H IF,, (s) V ds < IFOn 

H+ - .1 11., ds Iv 

00 
T 

JFoj2H + -1 
fIAI 

(s) (Is. tE [0, T, ). (3.4.2 1 
v 

0 

It readily follows from inequality (3.4.21) that the sequence f Fj" 1 is bounded in n= 

L "(0, T,; H) nL 2(0 
, 
T, V). Furthermore, inequality (3.4.21) implies in particular, that 

lim sup I F,, (t) I< -)c provided T, < T. Hence, we infer that T, = T. 
t "I'm 
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Next we will deduce the second a'priori bound for the sequence F,, - This bound is 

intrinsic property of our problem and it does not hold for the proper Navier-Stokes equa- 
1 

tions. We multiply (3.4.18) on A2 gk,, and add these equations for k-1, n. Taking k 

into account (3.4.11), we get 

I (Fn'(t), A2 2 2F (t)) I Fn(t))H+v(AFn(t), A"Fn(t))Hý(M(s), A ntE [0, T]. (3.4.22) 

Fix tE [0, T]. Integrating equality (3.4.22) from 0 to t and using Young inequality we have 

tT 

12 
n 

(8) 12 On 
12 1M (8) 12 Fn (t) +vF 3) ds < IF, +v1 ds 1) T D(Az D(A-Z) D(AT D(A 

f 

00 
T 

:51 Fo 12 
D 

ds, t c: [0, T]. (3.4.23) 
D(AZ1) v 

IM(S)12 
(A-i) 

0 

Hence sequence f FJýý=, is bounded in L'(0, T; D(A4 24 
n= 1)) nL (0, T; D (Al)). 

Now we shall show the following corollary of the last two estimates. We deduce that the 
4 .1) sequence is bounded in L (0, T; V). We have by Lemma 2.7.2 and V= D(A2 n= 

(see Theorem 2.4.3) that 

n12 
< IF n 

12 F Fv- 
D(A 17) <1n1 

D(Alf) 
'Fn'D(Ai)* 

Therefore 
TT 

n 
14 

n 
14 

n 
12 

n 
12 

L4 (0, T; V) IF, vds <fIF D(Al) 
IF 

D(Al) 
ds 

00 

I Fo,,, 12 T 

Fn 12 
n 

12 On 
14 D(A IM(, S) 12 

L-(O, T; D(Aii 
F 

L2(0, T; D(Ai)) 
<vIR 

D(Al) 
+ 

V2 D(A-1 )ds 
0 

IFol' T 

1 014 
D(Al) IM(, 5)12 R+ 
V2 j)ds (3.4.24) 

D(Al) D(A- 
0 
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We will need one more estimate. Let us show that IF, ', l is bounded in L2 (0, T: D (A - ; )). 

Define Px,, :V -+ X, as an extension of the usual orthogonal projection from H onto 

X,,. We notice that system of equations (3.4.16) can be rewritten as 

FI 1= -11AF, - Px,, L(F, ) + Px,, -Il. n 

2 1)), it is enough to show Therefore, in order to show that f F, ', l is bounded in L (0, T. D(A-4 

2 that sequences f AFJýý=j and f L(F, )J; ý. j are bounded in L (0. T: D(A-4 )). Bound- n= n= 

edness of sequence fAFnjýý=j in L2 (0, T; D(A-14)) follows from the a'priori estimate 
'I) to D(A-4'). (3.4.23) and continuity of A as operator from D(Ai 

Next let us observe that in view of inequalities (3.4.10) and (3.4.24) we have that 

TT 

IL(F, ) 12 j IL(F, )l 2 
, ds <C IF, 14, 

ý (1,,; 
L2(0,7'; D(A-4)) 11 -iI 

00 

C(1'1''Fo'D(A: 11)'lilIlL2(0, T; D(A-: 11)))' (3.4.25) 

Therefore, we infer that there exists a constant C= C(v. IFo 1 -1 
) ID(., 

Al)l 
1-11IL2(0, 

T: [)(., I-- I )) 

such that for all n C- N 

2n 12 12 < C(IF +IL (F,, ) 
L2(0, T; D(A-'4)) - L2(0, T; D(.. Ii)) L2(0, T; D(, 4-1)) 

1 
llIlL2(0, T: D(, 4-11 )) 

< C. (3.4.26) 

c) Topology of convergence of Galerkin approximation. From the part (b) we infer that the 

V). Therefore, sequence f F, is bounded in the Banach space LOII(O. T; H) nL2(0. T, 

by the Banach-Alaoglu Theorem there exists subsequence f F,, I and F* CL ý'C (0, T., H) 

such that F, -F weakly-*, which means that for any qc L'(0. T, H) 

ýf 
(F�, - F*, q (�ý» Hds --+ 0. (3. -4.27) 
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Similarly, from the Banach-Alaoglu Theorem it follows that one can find a subsequence 

f F,,, I of IF,, I which converges to F** GL2 (0., T: V) in the weak topology of L2 (0, T: 1 -1) 

i. e. for any qGL2 (0, T; V') 

T 
1< 

F�, - F**, q(s) >v�v ds ---> 0. (3.4.28) 

0 

In particular, Note that (3.4.27) and (3.4.28) are satisfied for any qE L'(0, T: H). There- 

fore, fOT< F* -F * *,, q >= 0 for all qE L'(0, T; H) and so F* = F** E L-(0, T: H) n 
L2 (0, T; V). Put F= 

Now we will show that there exists subsequence f F,,,, I of f F,,, I which converges 

strongly in L'(0, T; V). It is enough to show that the sequence IF, I is precompact in 

L'(0, T; V). We have following chain of continuous embeddings 

D(A4 2f 1) CV= D(A") CV 

Furthermore, embedding D(A! 4 cV is compact (see Lemma 2.6.7 and recall that V 
1 D (A -f )). It follows from estimates (3.4.23) and (3.4.26) that the set I F, Iis bounded in 

(0 
ý T; D (A CL (0, T; 1 ̀) 1. 

3 

Now we are in the position to use Theorem 2.2.12 with the data Xo - D(. 41), X 

V, XII", o () =nI=2. We have by the Theorem 2.2.12 that the injection of Y into 

L2 (0, T, V) is compact and therefore, the sequence JFJ is precompact in L2 (0, TI -). 

Below we will assume without loss of generality that the sequence JFJý'c , converges to n= 

F in strong topology of L'(0, PI -) and satisfies (3.4.27). Notice that because F,, -F 

strongly in L2 (0, T; V) also (3.4.28) is satisfied. 

(d) Convergence of Galerkin approximation. The convergence result of step c) enable us to 
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prove that F is a solution of problem (3.4.13)-(3.4.14). Now I will proceed essentially as 

in the proof of part i) step c) of Proposition 3.1.7. 

Let t, ) C C" QO, T], R) such that ý/,, (1) = 0. Then by part (a) of the proof I have 

TT 

- (F, (s), h)Hei(s)ds +1< L(F, F, ), h >vl, v (1 (s)ds 

0 
TT 

d (F, (s), h) V) (s) ds = (F on) h)HV)(0) +<M (s), h> (s) ds, (3.4.2 9) 

0 

for h=c. j, j=1, ..., n. Let us observe that from (3.4.27), resp. (3.4.28), it follows that 

st term, resp. 3rd term, in (3.4.29) converge to 

T 

-f (F(s). h)HOI(s)ds, 

0 

resp. 
T 

(F (s), h) 7p (s) ds. 

0 
For the second term we have following inequality 

1 
L(Fri, F, ) - L(F, F), ej >I�jý e(s)dsl 

T 

11 L(F� - F, F, ), h >j-�j- u(s)dsl 

11 L(F, F, - F), li >j-�j- ýý, (s)dsl = I, + II, 

It follows from inequality (3.4.10) and convergence F,, --ý F in L2 (0, T: V) that 

1 (0, T; l') 
lFnIL2(0, 

T; 1') Ihli, IL'IL- ) 71 n1 
n--)c 

0 
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and similarly II,, , 0, n --+ )c. Thus, we get 
TT 

- 
j(F(s), 

h)Hý�'(s)ds +1< L(F. F). h >v�jý zý(s)ds 
00 

T 

(F (s), h) V) (s) ds = (Fo. h) H U(0) - (3.4.30) 

0 
for h= e-11 ... I ený -- -- Since both sides of (3.4.30) are linear and continuous in I -, we have 

that (3.4.30) holds for any hcV. 

As the result we have shown that FG L' (0, T; H) nL 2 (0. T; V) is a solution of 

equation (3.4.13) in distribution sense. Furthermore, it immediately follows from a'priori 

1)) nL' (0, T; D (A24)). Moreover, it follows estimate (3.4.23) that FE L'(0, T; D(A-4 

from (3.4.26) that Pc L'(0, T; D(A-41)) and, consequently, that FCC (0, T: D (A by 

Lemma 2.4.6. Indeed, if we identify D(A"41 )with its adjoint then we have Gelfand triple 

(A': 1 444 D ') C D(Al) D(A")* C D(A-). 

Uniqueness of solution. Assume that there exists two solutions F, and F) of equation 

(3.4.13). Denote F=F, - F2. Then we have the following equation for F 

OF 
- -vAF + L(F1) - L(F2) at 

F (0) =0 

)) and PG L'(0, T; D(. 4-1)). By part i of the proof we have that FCL2 (0, T, D(Al 4 

Hence, by Lemma 2.4.6 we have that 
tt 

12 12 2 F(t) + 2v 
i 

IF(s) 
D(A 

ds <If I(Fl, Fl, AIF) - I(F2, F-2 

,A" 
F) d, s 

00 

.11 
(F, Fl.. -1 

1 F) +1 (F2, F,. l «' F)dsl =11 l(F, Fl., 11 F)dsl = Iý 
0 
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where I have used property 3.4.11 in the last equality. Consequently, we have bv inequality 

(3.4.12) that 
tt 

I< IF 12,3)ds < IF IF 3) 3)ds 
it 

IF' 1 
D(A -4 -i 

'D(A: 
11) 

'D(AT IF' 1D 
(AT 

00 
t 

IF(s) 1' 
3 ds 

D(A-4) 
0 

t 

IF 12 
11F, 

12 
3 ds. 

D(AT) D(A-4) 
0 

(3.4.32) 

Combining estimates (3.4.3 1) and (3.4.32) we get that 
tt 

IF(t) 12 +v JF(s) 12 
3 ds <c IF 12 IF 1 

12 
3 

D (A -14 )f D(AT) vI D(A 14) D(A: T) 
00 

Since F, E L'(0, T; D (A I)) 
it follows by Gronwall lemma that 

F(t) 12 
1)<0, tc [0, T], 

D(AZ - 

i. e. F, = 
F2 in C(O, T; D(Al)). 

(3.4.33) 

(ii) Let us prove that F Ei L110 (0, T; v) nL 2 (0, T; D (A)). It is enough to show that Galerkin 

approximation sequence f F,, J; ý=, is bounded in L'(0, T; v) nL 2 (0, T; D(A)). I multiply n= 

equation (3.4.16) on Ajgjkfor each 3-k and add these equations. We have 

d IF n 
12, + 2vIAF, 12 + l(F,, F, AF, ) = 0. 

dt 

Consequently, 

1- 
11 

(t) ff 2v 
1 IAF� (, S)12 ds < 1Fo�, 12, + 11 (F, F, AF, ) 1 ds %H-11 

0 

Sccond term of right part of (3.4.35) can be estimated as follows 

.f 
11 F, A F�) 1 ds <ýA F'� 1H1F, 1 1,1 Fn 1 ds <v1,1 F, (s) l' ds 1 

D(A4) 

1 

00 

(3.4.34) 

(3.4.35) 
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T 

+C 
j 

IFl 2ýiFni2 
3 ds. (3.4.36) 

v D(A: I) 
0 

where first inequality follows from (3.4.12) and the second inequality follows from Young 

inequality. Combining (3.4.35) and (3.4.36) we get 

tT 

12 
n12 

12 + 2, iF F,, (t) V+ 1', 1 AF, (s) 12Hds! ý, IFOn 
V 

CJIF 
ds. (3.4.37) nil (ý4 

3 

1 

1/ D 
00 

Therefore, it follows by Gronwall inequality and a'priori estimate (3.4.23) that 

T 
Cf IF 12 ds 

12 e'0n32, C Ll 7IF012 1 
n 

(t) 12 D (Al < D(AT) < DC IF V <- IFOn 
V- IFoll 

1 (3.4.38) 

i. e. sequence JFJ"O 1 is bounded in L'(0, T; V). Moreover, combining (3.4-37) and n= 

(3.4.3 8) we get boundedness of sequence IF,, J'ný= 1 in L' (0, T; v-) nL 2 (0, T: D(A)). Thus, 

FL ") (0, T; v) nL 2 (0, T; D (A)). To show that FE CQO, T], V) we need to prove that 

PL2 (0, T; H) and the result will follow from Lemma 2.4.6 and the fact that D(A) C 

VII ýý V'11 

cH is a Gelfand triple. From system of equations (3.4.13), assumption on H and 

the fact that FE L'(0, Tv) nL'(0, T; D(A))(proved above) we infer that it is enough 

to show that L(F, F) E L'(0, T; H). By inequality (3.4.12) we have 

T 

1F12,1F12 
(ý1314)ds < 1F12 1F12 < ýDc. L(F, F) 

L2(0, T; H) 
<11DL- (0, T; l') L2(0, T; D(ý, I: 3/4 » 

0 

0 



Chapter 4 

Feynman-Kac Formula for vector 

transport equation 

The aim of this chapter is to prove the Feynman-Kac type formulae for solutions to the 

vector advection equations, see Propositions 4.1.3 and 4.4.1. A different approach to this 

problem can be found in works [18] and [231. Our approach permits us to find other non- 

classical Feynman-Kac formulae for the vector transport operator, see Propositions 4.2.1, 

4.2.4 for the 2D case and Proposition 4.3.5 for the 3D case. One can notice that Proposition 

4.3.5 is, in certain sense, a generalization of Propositions 4.2.1 to 3D case. It would be 

interesting to find the generalization of Proposition 4.2.4 to 3D case, see discussion in 

question 4.3.6. 

4.1 Formulae of Feynman-Kac Type. 

In this section I will suggest a physical meaning to the operator7ý- defined in Definition 

3.3.2 and in the same time I will deduce a Feynman-Kac type formula for the solutions of 

67 
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the vector advection equations. From now on I suppose that vE Coý'c QO, T] x R") and 

D= R'. We also assume that (Q, T, J. Ft I t>o, P) is a complete filtered probability space. 

Let (Wt)t>o be an Rm-valued Wiener process defined on this space. 

We begin with the following preliminary but basic result. 

Proposition 4.1.1. Let o, (t, E Cb2, ' (R nRn (9 R'), aE Cbl"(R n, Rn). tE [0, T] 

Assume that IF is a closed loop of C' class in R n. Let FG CI, 2 ([0. T] xRn. R n) 
, 'y = 

Xt, (x, w) : [0, T] x RI xQ --ý R'-be defined by: 

dXt (x) =a (t, Xt (x» dt + o, (t, Xt (x» d 11 

XO (x) = x. 

Then 
t 

n 
k(t 

n 
k(01 

,, n( OF k 
EF 

1. r)dX kF x)dXk +Z- 
at 

Xt(11) k=I F k=l 0 X, (F) k=l 

OF k OFJ .1n 02 Fkn im i: aJ'(-- )+ ZZ 01 olim dXkds + 
j=l 

Oxj OXk 2 
�j=, 

axiaxj 

n 1, Z OP lm. aojm 
dxkAs + + 21 

Z 
Ox, 

Z 
01 OXk 

11 

k=l 

( 

j, 1 o x, (r) 

t 
n Oor ji 

1 +, 
,n OP 

V dXkdw, ail Fi(s 
c9. ý, k- 

l: 
axi 

dxkAll 

kj =10 x' (r) k-I 

(i, 

1=1 

(4.1.1) 

Jýý Ik Proof of Proposition 4.1.1.1 will denote division of contour F as follows 7r =J jý--(), 

where d(r) max_ I 
--j+ 1- zj I -diameter of division. Then I have: 

j=O,..., k 1 

n 
k(t,.,. )(I. I, k = IiM k (t, yt (Zj)) yk Xk(, 

d(7r)--O tt 
X (F) k=1 k, j=l 

�j +1 -j+l _, 
ýCk (Zj Fk(O, zj) zj) + 

d(ir)-0 
k, j=l 0 
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t 
d(F k (S' X, (Zj))) +fFk (S. X, (zj))d( Xk(Zj+, ) 

_ 
Xk(ýj))+ 

s 
0 

+I (Xk(Zj+, ) 
_ Xk(Zj) 

,Fk(.. 
X. (Z 

j t) ++ ('11 -I .)+ 
2 

tt 

where I have used formula XtYt = XOYO +f XdY, f Y,, dX, +1 (X, Y)t([44]). Below 1 2 
00 

n 

will consider 4 terms of equality (4.1.2) separately: (i) fEP (0, x) dXk 

r k=1 

(iz) = lim 
n 1(Xk(zj+1) 

_ 
Xk (zj»d(F k (S, X, (Zj») m 

8 

oZ 
4 

d(7r) ---> d(7r)---+0 
k, j=l 0 k. j=i 

t 

(Xk( 
+J) 

9F kn ÖF kin 0'F kn 
lp rnp zj _ Xk(Zj»« 

88 -+Z a+-ZZ 01 01 ) 
1 

at axi 2 llm=l 
0X1OXn 

p=I 0 

t 

(Xk(zj+1) 
_ 

Xk 
n OF k 

olil(S, X, (zj»dit") (s 
, X, (zj» ds +18ý, (zj» (1: -äx-i- 8 

0 
1, i=l 

n 9F kn-, OF kn 02 Fkn 
at +Z axi al +2Z OxiOxm 

Z 'lp, 'mp ) (s 
1, i*) 

d-I'kds + 
k=l 0 X, (F) i=l 1 M=l P=l 

nnk OF 
o, "(s, x)dXk(711'. 

1) 

k=l 

11 

l'i= 11 0 xý, (F) 

t 
n 

lim Fk (S, X, (zj» «a A- (S, Xk (Z 
+ 1» - o'(s, X'(zj»)ds + 

d(ir)-0 

Z1 

A, j=i 0 
(01 kl('S, Xk(, Zj+1» _ orkl(Sý X'(zj»)du, 1) = 

t 

F'(s,. v)dxa'(s, x)ds +F 
k(SI 

x)d, 0, 
kl (S, 

jl-)dwl EI 1 Ei 1s 

A-=l 0 X' (1, ) 
k=l 0 X, (F) 

rIn 
hill EI (-, V A' ( : ýj+j) 

k (Zj) Fkt hill 
0E d(ir)-O 

k, j =12 

2d(7r) - k, j=l 
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ý( kl Xk (Zj+1» 
_ orkl (, 3. Xk 0F im (-s 

ý X, (zj» dir') t .f 
or (S 

ý8, (zj»)dw, l' Z 
Oxi 01 s 

00i, 'M=i 

nn OF k 

s(» 
(07kl ('S, Xk (Zj+ 

1» _ 0, 
kl ('S. Xk( ») dS lim 01 zj s zj 2d(7r)-0 

ZZ 

axi s 

k, j=l 0 i, 1=1 

n OF k 
Z 

Oxi 
k=l 0 X, (F) i, 1=1 

01" (s, x) dx 0, 
kl (S, X) d', ý. 

70 

where I have used boundedness of corresponding expressions on arbitrary closed contour 
FC R' to exchange integral and limit signs. El 

Corollary 4.1.2. Defineflow (Xt), 0<s<t<T by equality 

dX'(x) = v(t, Xt(x»dt + v/2-v-dWt 

8 

Let F be a solution of thefollowing linear equation 12 

OF 
AoF + P((v(T - t)17)F - 17Fr(T - t)) at 

F(0, -) = Fo 

n 

where Fo E C"' (R n), CO' ([0, T] xRn). Then 
-11t 

f F'(T -0 13'k. t 0C 
xT-, q k=1 

[T - ., ý. Tj is a local martingale w. r t. t. 

Proqf of Corollatýv 4.1.2. It follows immediately from Proposition 4.1.1. 

This fact is generalization of Kelvin Theorem see e. g. [591, p. 26. Indeed, in the case 

il =0 local martingale . 11t is a constant and X'(x) is a position of a particle at time t 

1 which coincides with equation 3.3.1 in the case n=3 
211,1,2 this chapter we saY that F is a solution of PDE if FcC,., and it satisfies PDE in the classical sense 
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starting from point x at time s. Now, I have following formula of Feynman-Kac type for 

solution of equation (4.1.4). 

Proposition 4.1.3. Assume that F: [0, Tj x Rn -* Rn is a solution of equation (4.1.4), flow 

(X'), 0<s<t<T is given by (4.1.3) and conditions o corollary (4.1.2) are satisfied. 

Assume also thatfor some, 3 >0 and any smooth closed loop r' 

EI Fk (T - t, x)dXkll+o < 00- 
1 

x -q (r) 
t 

Then 

F(s, x) = P(E(Fo(XTT-'(x»'7Xý-'(x») T 
T 

Proof of Proposition 4.1.3. Define 

mts Fk (T - t)dXk. 
xT 

t (F) 

The process (AIi), tG [T - s, T] is a local martingale by the Corollary 4.1.2. Therefore, 

by the uniform integrability condition (4.1.6) 1 infer that AI, ' is martingale. Then I can take 

mathematical expectation and get EMT' = EM,, ' and the result follows. F-I 

Remark 4.1.4. Condition (4.1.6) is satisfied if, for instance, Fc LIQO, T] x RI) and 
T 

IVVIL-(s)ds < oc. 
0 

Remark 4.1.5. Another method of proving formula (4.1.7) is presented in the article of [ 18], 

see also literature therein. Their approach based upon extension of standard Feynman-Kac 

formula for parabolic equation on more general system of linear parabolic equations with 

potential term (system 3.2, p. 306 of [ 181). Extension is carried on by means of the method 

of new variables introduced by Krylov [48]. Moreover, in [18] formula (4.1.7) is used 



CHAPTER 4. Feynman-Kac Formula 72 

to prove local existence and uniqueness result for Navier-Stokes equations. The idea of 

generalization of Kelvin Theorem is taken from [62], see also [23]. 

In connection with formula (4.1.7) 1 can pose the following question. Is the flow (. V, '), 

0<s<t<T given by (4.1.3) the only possible flow which give us a solution of equation 

(4.1.4) by means of formula (4.1.7)? The answer on this question is negative. In next two 

paragraphs I will consider separately examples for dimensions n=2 and o=3. 

4.2 The case n=2 

Proposition 4.2.1. Suppose that vE CO' QO, T] xR2R 
2), ýb, 0-1 E C" (R, R), o- 

0 (rot v), Fo E COOO (R 2 ). Let (Xt), 0 :ýs :5t :5T be the stochasticflow corresponding to 

dX'(. r) v(t, Xt(x))dt+vý2-v-o,, (X'(. i, ))dWt. tt 
2 X'(x) = x, xCR, 

where 

O'l W cos 0(x) - sin O(x) 
xR2 

sin Cos o(J-) 

(4.2.1) 

Assume that FE C', 2 QO, T] xRnIR n) is a solution of equation (4.1.4) such thatfor some 

,3>0 and an N, smooth closed loop F condition (4.1.6) is satisfied. Then formula (4.1.7) is 

satisfied. 

Proof of Proposition 4.2.1. Suppose that condition (4.1.6) is fulfilled. Then, it is enough to 

show that process (A fE [T - s, T] defined by formula (4.1.8) (with the flow (Xis), 0 :5 

,s<t<T generated by (4.2.1)) is a local martingale. We have, for tE [0, T] 

t 
njn( . )Fk 

1 Fk (T-t I') d. I'k F I'k +j- :EE 
Ot 

,. 

i 

A. I k=l kýl 

t- 
Sol ) 
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n 

vj (OF 
k 

j=l 19xj 

t 
n 

+v 
IfL 

T-s XT-s 
k=l 

OP n .2Fkni 

OXk 
+vE 

axioxj 011'al' dXkdT+ 

i, j=l M=l 

t 
OP 

axl 
dXkdT+ V2-v- 

j, l m 
19Xk 

Ts XT-s(r, 

t 
n 90" *1 

1fn OF k 

or'jl d E Fj(T - T, x)' 1 dXkdiv, + v"ý2-1-, / 
iEE- 

XVIII 

k, j=i 
19Xk 

T-sXT-s(r, ) 
k-I 

(i, 

l=l 
axi 

T 

Hence, because oj is an orthogonal matrix and F satisfies equation (4.1.4) 1 have that 

OF kn OF k OF3 n .2Fkn 
im 3, m 

+Evl(- - -) +vEE oll 0-1 at Oxj OXk 

i, j=l axiOxj M=l aFk n aFk aFJ . 
+ EVJ(- 

-)+ vAFk - 
aP 

at 
j=l 

Oxi aXk a. l'k 

Therefore, it is enough to show that 

Fi 
Ollm -, 

dXkd-F = 0. Z 
Oxi 

Z1 
OXk 

T-s 
ý\ýT- 

k, =l 

( 

j, 1 m 
T 

(r) 

Since a, is orthogonal matrix we have that 

lm GO = 6ij 

One can differentiate (4.2.2) w. r. t. Xkand get 

-7 m Oor lm 
or 

Ima01 

0-17m 
1 

i)-1'k a-Vk 
in 

Thus, as ii = 2, it means that it is enough to calculate 

73 

(4.2.2) 

(4.2.3) 

i) (T 
m Z 

01 1 
(9xk 

. 
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We have 

a 

ao, 2m 
Z 

01 Im 1- 

m 
OXk 

cos 0- (sin sin 0- (cos o) - OXk 
19Xk 

and, therefore, 

Oo 

0ý1-k 

n aoirn ZZ OP Z Ollm dXkdT 

T-s XT-, 9(p) 
k=l 

( 

j, 1 
Oxi 

m1 
OXk 

) 

t 
OF' 

- 
OF2 

) dOdT 
OX2 OX1 

T-s XT-s(r, ) T 

1 

1/, -1 (0) dödT = 0. 

T-s XIT-9(r, ) 

74 

F-1 

Remark 4.2.2. The construction of Proposition 4.2.1 can be easily generalized to the case 

,o=3 in the following way. Suppose 

dXt'(x) = v(t, Xt(x))dt+v'ý2-v-or, (Xt(x))dWt, 05s: 5t5T (4.2.4) 

X' (x) = x, x c s 

where 
Cos 0(. r) - sin 0(. r) 0 

o, j (. r) sin 0(., r) Cos O(x) 0xcR3 

001 

and i, i;, ((curl v) C' (R, R) (also similar construction can be made for other 

components of the curl r). Truly three dimensional rotations oj will be considered in next 

paragraph. 

Remark 4.2.3. In this example I notice that the law of the flow given by (4-2.1) and the law 

of canonical flow (4.1.3) are the same. Next example shows that it is possible to find a flow 

which have got a law of wiener process. 
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2 Proposition 4.2.4. Suppose that v is of Cý' class and div v -- 0. Define for each xER 

sE [0, Tj the stochastic flow Xt(x) 
.tE 

[s, T] corresponding to the solution of equation t 

dXt'(x) == V2-v(7-, (Xt(x))dll't, O:! ýs: ýt: 5T 

x, x ER' 8 

where 

cos "(') - sin "(') V I/ TED 2 

sin O(X) Cos O(X) 
v I/ 

0 defined by v 

(4.2.5) 

V-L O(such 0 exists because of div v= 0). Assume also that F: [0, T] 

R2 --* R2 is a solution of equation (4.1.4) (with FO c COOII(R2)) such that for some 13 > 

0 and any smooth closed loop F condition (4.1.6) is satisfied. Then formula (4.1.7) is 

satisfied. 

2 
Proof of Proposition 4.2.4. Similarly to Proposition 4.2.1 1 get that fE Fk(T - 

'V ' 
T-s(F) k=1 

t) tc [T - s, T] is a local martingale. Indeed, correction term in (4.1.1) due to rotation 

of Brownian Motion is equal to ff (aF1 _ OF 2 )dOds, see previous Proposition, and 
t 

49X2 axI T-s XT-s (F) 

if V'O this is exactly first order term of two dimensional equation (4.1.4). 1: 1 

Remark 4.2.5. Under assumptions of Proposition 4.2.4 formula (4.1.7) can be simplified as 

tollows 

F(s, x) = P(E(Fo(. z- + V2-v-(1V 
- IV 

-, 
))VXTT-'(x))) (4.2.6) TT 

where Xt. " (r)) is defined by (4.2.5). 

Remark 4.2.6. Proposition 4.2.4 and formula (4.1.1) show difference between passive scalar 

advection and vector advection equations. In case of scalar advection no gradient of flow 

appears in Feynman-Kac type formula and, correspondingly, solution of scalar advection 
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is completely defined by the law of flow itself. Since rotation of brownian motion cannot 

influence the law of the flow I cannot do the trick for scalar advection. 

Question 4.2.7. In connection to the Proposition 4.2.4 1 can pose following question: Prove 

directly (not through formula (4.1.1)) that the limit v, 0 in the formula (4.2.6) exists and 

converges to the solution of 2D Euler equations? 

4.3 The case n=3 

I will need following definitions. Let ^ be a linear isomorphism defined by 

Xl 

^: RD X2 h--+ 

ý 
x3 

0 -X3 X2 

X3 0 -X, 

-X2 Xl 0 

E -so 

It is called the hat-map isomorphism. Let also exp : so(3) --ý SO(3) be standard exponen- 

tial map. Define a map BCH: so(3) x so(3) --+ so(3) by 

exp(BCH(ft, ý)) = exp(fi) exp(ý), h, i) c so(3). 

I will now deduce exact type of "correction" which appear in formula (4.1.1). 

in) 3 Proposition 4.3.1. Define a: [0, T] xH --ý SO (3) by or (t. x) 

[0, TI, x GR3, (1 C C'([O, T] x R3, R3). Then 

O"M 

00, 

OXk 

where b- ýal lal' 

cos lal)b x 
Ob 

aXk sin lal 
Ob 

+ýOjaj 
19Xk 19Xk 

(4.3.1) 

pro()f qf Proposition 4.3.1.1 will use the following Baker-Campbell-Hausdorff formula in 

exp(Ti)), t E 

! 5o(3), scc e. g. 1451. p. 630. 
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Proposition 4.3.2. If u, vE R3 then 

BCH(U^ , ý) = afi + of) + -ý[U- I ý] 

where [fi, V^ ] denotes the commutator of fi and f;, and a, 3, and -y are real constants defined 
L-. 
VY 

sin-' (d) a, sin-' (d) b, sin-' (d) cl 
00 

where a,, bl, cl and d are defined as 

a, = sin 0 cos 2 (0/ 2) - sin 0 sin 2 (0/2) cos Z(u, v), 

b, = sin 0 cos 2 (0/2) - sin 0 sin 2 (0/2) cos Z(u, v), 

C, =1 sin(O) sin(o) -2 sin 
2 (0/2) sin 

2 (0/2) cos Z(u, v), 2 

d Val + bl + 2alb, cos Z(u, v)+ C2 2 /(U7 V). 111 sin 

In the above formulae 01u1,0 v 1, and Z (u, v) is the angle between the two vectors u 

and v. 

I have 

E U*MOU*m = exp(-a) 
a 

exp(&) = exp(-et) x 
m 

a-Ek (9 -1 k 

lim 
1 

(exp(ä(x + äek» - exp(ä(x») = 6-06 

lim 
1 (exp(-ä, ) exp(a(x + bek»- id) 

6--+Ob 

lim 
1 (exp(BCH(-ä, a(x + 6ek»)- id) == lim 

BCH(-ä, a(x + bek» 

6.06 6---+0 5 

lim a(5)(-ä(x» + O(d)ä(x + dek) + a(x + bek)1 

6-0 6 
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where in the last equality I have used Proposition 4.3.1 with u= -&(x), v= &(x + 6ek)- 

Therefore, 

a(x + bek) 
-a a(6) lim la(5) + ä(x) hm - ö-+O 6 ö-, 0 6 

lim -y (6) [ä (X), ä(x + bek) 
- ä(X) aä 

lim o(6) +ä lim 
O(ä) - a(6) 

OXk 

(a x 
Oa 

lim -Y(ö) (9Xk Ö-`O 

So, I need to calculate 

(i) = lim, 3(5), (ii) = lim J3(6) a(6) 
, (iii) = lim -y(Ö). 3--+0 b--+O 5 6---0 

From (4.3.2) follows that I need to calculate asymptotics of a, (6), b, (J), ci (J), d(J), J -* 0. 

I have 

jai (x + 6ek) = lal(x) +6a Jai + o(6), OXk 

Cos (Z (u, V)) - 
(-a(x), a(x + Jek)) 

1+5(62) 
lal(x)lal(x + Jek) 

a, = sin lal + coslai(x + Jek) 
) -sin lal (x + Jek) X 

2 
cos lal(x) 

+ 2 
+ cos(lal + 650- 

sin lal (- , 
lal) 

+ cos lal 
)x 

22 
a+ 

sin(lal + J5--ýJaj) 
Xk 

sin lal 
(l + cos lal - sin lal a JaIJ) + 

2 IOXk 

cos lal 
)(sin lal + cos lal a JaJ6) + 5(j2) 

2 (9Xk 

sin lal (x) -1 (l - cos lal) 49 JaIJ + 5(62) (4.3.2) 
2 (9Xk 
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Similarly, 

bi = sin lal(x + Jek)( + cos lal 
sin lal x 2 

(1- cos IaI (x + Jek) 
) (_ 1+ 5(j2)) 

2 

sin(lal +Ja lal)( + cos lal 
+ ý7X 

k2 

cos(lal +J2 
x 

lal) 
sin lal( 

2 
OXk )+ 

(sin lal + cos lal a JaIJ)(. + cos lal 
+ 

19Xk 2 

sin lal (cos lal -J sin lal 
a 

lal) + 5(j2) 
2 19Xk 

sin lal +1 (1 + cos lal) 
a 

JaIJ + 5(j2) (4.3.3) 2 OXk 

cl =1- cos lal + 5(6) (4.3.4) 

d= 5(J) (4.3.5) 

From (4.3.2), (4.3.3), (4.3.4) and (4.3.5) 1 get 

i -1(d) Cl coslal (iii) = lim 
J--+O d lal(x)lal(x + 6ek) JaJ2 

I, m 
in-' (d) bi sin lal 

5--+0 d lal(x + Jek) lal 

sin-l(d) 1 sin Jai + l(l + cos jaj)--2--jaj6 +5(62) 
lim 

- 
(- 2 09xk 

6--+0 d6 lal(x + 6ek) 

sin lal(x) - l(l - cos jaj)-ýLjaJ6 + 5(62) Jai - sin jai i9 2 

Jai 
OXk 

JaJ2 49Xk 
Jai 

Thus, I get 
a sin lal 0& lal - sin lal 0 

exp(-a) exp (&) =-- ýýx- IaI et + (4.3.6) 5xk lal I a12 
ýX-k +Xk 

cos lal -1 i9a (4.3.7) JaJ2 aXk 
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If I put b -IL ,,, and insert it in (4.3.7) 1 get (4.3.1). al 

Corollary 4.3.3. Let (Xt), 0<s<t<T be the stochastic flow corresponding to 

dXt'(x) = iý, (t, Xt(x))dt+, v'2-vorl(t, Xts(x))(111-t, 

Xs (x) = x, xeR 8 

where or, (t, x) = exp(h) (t, x), b- -I- C S(2). Then I have lal 

t nkn 
k(Sj 

jn( aF k 
F (T - t, x)dXk 

EF 
x)dXk +E- 

at xT-s(r, ) k=l r k=l T-sXT-s(f, ) 
k=l 

t 

n OF k OP k 
v'(jý- - -) + vzýS dxkdT 

x x.; 

Ej 
OXk 

j=l 

+v (curl F, (I - cos jal)b x 
Ob 

+ sin jal 
Ob 

+b 
01al 

) d-I'k dT 
OXk OXk OXk 

XT-s(r, ) 
T 

80 

El 

(4.3.8) 

t 

V2-v : (OF 
OF')Oil 

(I- 1'kd1V1. (4.3.9) 7- 

T-s XT-s 
k=1 

(i, 

1=1 Oxi OXk 

T' (F) 

Proof of Corollary 4.3.3. Immediately follows from Proposition 4.3.1 and identity 

aF' -- Z 

-(ýI) 23 ij 
axj 

(curl F, a). 

1: 1 

Remark 4.3.4. Vector b has physical meaning of an axis of rotation o, and 0=ýaI is an 

angle of rotation. 

Now, I will give three dimensional analog of two dimensional Proposition (4.2.1). 

Proposition 4.3.5. Let 0<,; <t<T be the stochasticflow corresponding to 

d. V; '(x) = (4.3.10) 



CHAPTER 4. Feynman-Kac Formula 81 

n where a, (t, x) = exp(&) (t. x), a= curl F. Assume also that F: [0. T, xR is a 

solution of equation (4.1.4) (with FO c CO"- (R')) such thatfor some 3>0 and any smooth 

closed loop F condition (4.1.6) is satisfied. Then theformula (4.1.7) holds true. 

Proof of Proposition 4.3.5.1 have b=,, I Fb1,1 
a curl FI and therefore I curl F1 

(curl F, 
Ob 

I curl F1 (b, 
Ob 

0. 
19Xk OXk 

Similarly, 

(curl F, bx 
Ob 

I curl FI(b, b x 
Ob 

0, 
19Xk 09-1'k 

and 

(curl F, b) 
01 curl FI- 101 curl Fl' 

OXk 2 OXk 

El 

Question 4.3.6. It would be interesting to generalize of Proposition 4.2.4 to the three di- 

mensional case. In view of Corollary 4.3.3 in order to find such generalization it is enough 

to prove that there exists a triple 

(L'>o ([0, T], C' (R', S2» 
,L' 

([0, T], C' (R 3, Sl», L"([0, T], C'(R 3. R») 

such that 

(cos (curl F, bx 
Ob 

)+ sin O(curl F, 
Ob 

)+ (curl F, b) 
ao 

aXk (9Xk 19Xk 

19Xk 

(v x curl F)' 
ii .k=1,2.3. 

where F is a solution of equation (4.1.4), v -corresponding parameter (here I suppose that 

1, notice that system (4.3.11) is time independent and. therefore it is enough to 

consider the system for cvery fixed time tc [0, T'ý. If v is two dimensional (i. e. rj = 0, 
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VI -) 'l, 2does not depend upon X3) and div v=0 than b= (0,0,1), o=oI/v, where o1isa 

stream function for v, t, 1=0 (see Proposition 4.2.4). In three dimensional case the problem 

is completely open. One of the possibilities to narrow the problem is to consider the case 

when F=a corresponding to the case of Navier-Stokes equations. 

Question 4.3.7. Here is another question connected with system (4.3.11). How variables 

b, 0, il, depend upon v? Can I tend v to 0 in representation (4.3.11)? In two dimensional 

case and under condition of incompressibility div v=0 representation (4.3.11) holds also 

in the limit of v-0. Indeed, stream function for v (which exists because div r= 0) in two 

dimensional case is independent of F and v. 

Remark 4.3.8.1 can reformulate system (4.3.11) in the following way. 

Let (o,,, 3) be the following parametrization of vector bE S2 

(cos a cos 0, cos a sin 0, sin a), aE S' '= (0,27],, 3 E S' '= (0,27r] 

and denote 

OZ (a 
11 Ce2 i a3) ý (a, 

ý-3,0), a,, ß. 0C S' '= (0,27r]. i 

Then system (4.3.11) can be written as follows: 

curl F) 
Oaj 

+ 
Oýb (v x curl F)' 

k= 1,13 (4.3.12) OXk (9Xk v 

where 

TI ((ý, 
ý, U) : -- (COS 03 - 1) (L4ý2 COS a2- 

, L71 sin 0 2)- sin a3 sin a, 

(C, 
Lý I COS (12 + CLý2sin(12) + c, ýýj COS a, sin 03, (4.3.13) 

(cos 
sin 2(1 

sin o, ) - a2) - -C3 COS2 (11) 

sin o: j cos al (L,;, sinCt 2+ -1ý2 2 (4.3.14) 

413 VI'- 
-ý:: 7 U-'I () I COS Ck2 + 14ý2 COS aI sin 02 + 

-1ý3 Sill (ý 1- (4-3.15) 
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Thus, roughly speaking, locally (in the region of point xo where curl F(x) curl F(xo)) 

our system (4.3.11) reduces to existence of change of coordinates cc :R3 -* Rý' such that 

Ti(a, curl F(x))dozi 
(v x curl F)'(x)d. rk + du 

v 

i. e. two forms T (y, curl F (x)) dyi and E (v x curl F) k (x)dx' are locally equal up to change 
k 

of coordinates and adding exact form. 

4.4 Another Feynman-Kac type formula 

Another application of Proposition 4.1.1 is Feynman-Kac type formula for solutions of 

equation: 
OF 
at =- vAOF + (v(T - V)F - (F - V)v(T - (4.4.1) 

F(O) = FO, t>0, x CRn, 

where AO is a Stokes operator, FO C H, v satisfies condition (3.1.14). For simplicity I 

t ormulate the result for n= 

Proposition 4.4.1. If (X, ), 0 : -ý s :ýt< oo is the flow corresponding to problem (4.1.3) 

vich that there exists ý3 > 0: 

El F'(T -t. X)(lX2(1X3 +F2 (T - t, x) dX 3 (1-1'1+ F3 (T - t, x)dx, dX31 I+'3 "-' 75C 

t 
(4.4.2) 

fior anY smooth suýface SC R' with smooth boundary IF and all 0<T-s<t<T. Then 

the solution (? f equation (4.4.1) with Fo C Q**ý-- (R'), rE Co' ([0, T] x Rn) satisfies 

av -I I'-s, 3 T 5,2 9XT-. s,: i 

E[Fo' (,, V T -- s (. '-)) (- "' 
vT a-VT 

T 
T Ox. ) 

0.1-3 OX: 
j 

ox., 

13 
()-V 

F S'l OX T3Ts. 1 

v2 I' 
, 

I' 
-F-8, ox 

I 
() 

("V 
/, 

(. I Ox. ) 
OX3 0.1., 
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3 
ax 7'-S, l 

+ T-s(X))(_ T Fý (XT 
ox T-s, 2 

T 
axT-s, l 

T 
a T-s, 2 Xý 

(4.4.3) -) aX2 19X3 19X3 aX2 

axT-8 '2 T-3 3x T-s, 2 Ox T-S,: 3 
F 2(SI 

X) = E[Fol(XTT-'(x» (T 
oxý ' C9 TT 

_) 0X3 ax, Ox, 19X3 

OXTT-S, 3 

+F2 (XT-s (X» 
T 

(9X 
T-s, 1 
T 

OXTT- s. 3 OXTT-SA 

0X3 Ox, Ox, 0X3 

T-s'l 
3(XTT-s(X»(OXT +E 

OXTT-s, 2 OXTT- S, l OXTT-. g, 2 

(4.4.4) 0X3 Oxi Ox, 0X3 

ax T-s 2 T-s 3 T- s' 2 T-.,;,: 3 

F3(.,;, X) =E [Fol (XTT-'(x» (T' 
OXý ' 09xý aXT 

Ox, 99X2 c). v, ) 
o., 1� 

axT-s, 3 axý-8,1 ax T-s, 3 ax T-sl T 
2(XT-s(ý, 

1. »(. TTT 
0T +E Oxi 19X2 0X2 0.1-1 

OXTT-s, l OXTT-s, 2 ax T-s, 1 OXTT-s, 2 
+F3(XT-s(., j)( T (4.4.5) 0T i). l. 0X2 19X2 Oxi 

Proqf of Proposition 4.4.1. Proof follows from Proposition 4.1.3. Indeed, if G is a solution 

of equation (4.1.4) then F= curl G is a solution of (4.4.1). For solution G of (4.1.4) 1 have 

got representation by formula (4.1.7) of Feynman-Kac type. Integrating it w. r. t. closed 

contour FI get 

Gk (1-1, 'k- E( Gk (x)dXk) (4.4.6) 0 
kk 

Now, result immediately follows from Stokes Theorem. El 

Remark 4.4.2. Feynman-Kac type formula (4.4.3)-(4.4.5) in the case of v-0 degenerates 

in equation for characteristics, see e. g. [37], of the following infinite dimensional PDE of 
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first order. Denote Ya set of smooth surfaces SC R' with smooth boundary F. Tý - set of 

vector fields on Y and 

F: YDS ý--+ 
1 

(F, n-)do, C R. 

Assume that vE C() QO, T] xR n) ,F is a solution of equation (4.4.1) with parameters 

7), v=0. Then P satisfy equation 
OF 
at = DfF (4.4.7) 

where Dj-, is directional derivative along with vector field, ý E TY given by 

U v(x) E TY, 

XES 

and equation for characteristics of (4.4.7)(i. e. solution of (4.4.7) is constant along with 

characteristics) is exactly our Feynman-Kac type formula. 



Chapter 5 

Backward Uniqueness of SPDEs 

The aim of this Chapter is to study the asymptotic behaviour for large times of solutions 

to a certain class of parabolic stochastic partial differential equations. In particular, I will 

prove the backward uniqueness result and the existence of the spectral limit for abstract 

SPDEs and then show how these results can be applied to some concrete linear and nonlin- 

ear SPDEs. For example, I will consider linear parabolic SPDEs with gradient noise and 

stochastic NSEs with multiplicative noise. My results generalize the results proved in [42] 

for deterministic PDEs. 

5.1 Backward Uniqueness and existence of Spectral Limit 

for abstract parabolic SPDE 

Let us recall some notation from previous sections. Assume that (Q, F, 11", 1, >o. P) is a 

filtered complete probability space, (wt), >o is an Rn -valued Wiener process and IcH= 

HI cI" is a Gelfand triple. We assume that A(t), tE [0, Dc) is a linear bounded operator 

86 
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from V to V and Bk (t), k=1, ---, n, tE [0, oc) is linear bounded operator from I- to H 

and from H to V 

Definition 5.1.1.1 call progressively measurable stochastic process ut. t>0 with values 

in Ha solution of equation 

du + (Afflu + F(u»dt 

u(0) = uo cH 

Z Bk (t) udw 
k= oý 

k=I 

if there exists such ff C Q, P(Q') =1 thatfor any tG [0, T], wG Q' 

nt 

u (t, w) = UO -1 (Au (s, w) +F (u» ds - 
1: 1 

B'u (s, w) dw, 
k=I 0 

andu C M2 (0, T; v) nL 2(9, C([0, T], H». 

(5.1.1) 

(5.1.2) 

Theorem 5.1.2. Suppose that the families of operators A(t) and Bk (t), k = 1. 
..., ii, t EE 

[0, Tj satisfy thefollowing additional assumptions. 

There exists A' E L'(0, T;, C(V, V')) such thatfor all 0 C- V, ýb EV 

dt 

There exists o>0 and A C- R such thatfor all uEV 
n 

2< . 
4(. )u, u> +Alul' >oI Jul I' +E JBk (. )U12. 

k=1 

There exists 0EL2 (0, T) such thatfor all uEIý 
71 

1< 0(, )IU12 < u, Bk(')U >H 

k=l 

There exists K, CL .) (0, T), K. ) C- L'(O, T) such that 

B*[. 1, Bkl < Klid+ K2,4 
- k 

k=l 

(5.1.3) 

(5.1.4) 

(5.1.5) 

(5.1.6) 
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There exists L I, L2> 0 such thatfor all xG D(A) 

1: IlBk(')XIIV< L, IA(*)XIH + L21XIH- 

k 

There exists J, -ý >0 such thatfor all xEV 

< OIIXI12 + ^ýIX12 < A(. )x, xH H* 

88 

(5.1.7) 

(5.1.8) 

Assume that uO c H, u is a solution of (5.1.1), 360 >0 such that u EE _112+6() (0, T: D(-! )), 

F satisfies inequality 

F(u)(t)1 < n(t)Ilulli, -fora. a. t c: [0, T], 
T 

4 r, (6(» ýn2 (s)ds 
3r, (6o) >2+ 60 : 

Ee 0< Dc. 

Then from u (T) = 0, Pa. s- (as an element of H) follows that u (t) = 0, tG [0, T] Pa -s .. 

Remark 5.1.3. From Theorem 1.4, p. 140 from [63] follows that there exists unique solution 

n of equation (5.1.1). 

Remark 5.1.4. Assumption 5.1.10 is satisfied if, for instance, nE L'(0, T). 

Proof of Theorem 5.1.2.1 will argue by contradiction. Suppose that there exists an 

event RCQ, c>0, to E [0, T) such that P(R) >0 and IU (to, ýý) IH>c>0, wGR. 

Note that RC Tt, Therefore, I can without any loss of generality suppose that P(R) -- 

1. Otherwise, I could consider everywhere below instead of measure P the conditional 

measure p(l,? ) \ ? (-)P and denote it by the letter P. 

We h ave ii(., Aý) EC Qto, Tj ý H), P o-, ý. - Consequently, we have alternative: 

[iIIii (f) 1 11 OVt E (to. T] P-a..,;. 

[iij If I denote T(. L)) --::: illftft C (to, T], 1 11 (t) IH= 01 then to < -r <T is correctly defined. 
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In the first case we have a contradiction. Let u. ý consider the second case. To prove the 

Theorem it is enough to show that there exist probability measure Q equivalent to P such 

that for any tc (tOjT] tIU(t)12 
>c>0 (where t is a mathematical expectation w. r. t. H- 

measure (Q). Indeed, by taking the limit as t -r we get contradiction because U(T) 0. 

tt 
<u, Bk f (<a, Bý-u>)2( Define d(Q' = AJýdP where MtE exp(-2 f dw' -2(; U12 +E)2 

k0 
IUI! 

H+E 80k 

stochastic exponent. We have EMt' I because of assumption (5.1.5) and 

< u, BkU >k 
dMt' = -2Mt 

1: 
- JU12 +E 

dw, 
kH 

I denote t' mathematical expectation w. r. t. measure (Q'. Let 

We have 

dV)' (t) -- -I 
(log (IU12 + e)dMt' + AFd log (IU12 + E) 

2HH 
d <AIý71 log (IUI'H +0 >t) 

Also we have following equality: 

I 
(S) 12 + E)) -d 2 

109 (1 uH 

n 
(A -1E B*Bk)U+ F(u), u 2k 

k=l 
(1111H +6)2 

1E 
eE (t) - 

Mte 109 (1 U(t) 1H+ E), tG [0, T]. 

n 
1: < u, Bk'll 

k=l 
+ )(C)f/C -I- (JU12 + 6)2 H 

n IL, BkU > dulk 
+< 

JU12 +F 
k=l H 

It follows from the Ito formula (Theorem 2.8.1) and 

F'(. z-)hl = 
2 <. r. h1 > 

,. r, 
hE 

F"(x)(1i. 112) 

+£ 

Ix 12 
-+ (< 112. hl 

H 

< i-lh2>< r. h, >hhH. 
1 1,12 +E 
-H 
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Indeed, a function F defined by F(x) = log(IX12 + e), xEH is of COO class, has lo- H 

cally bounded continuous derivatives, its derivative has got no more than linear growth and 

assumptions (iii) and (iv) of Theorem 2.8.1 are satisfied. Denote 

AF 4 

Therefore, we get 

n 
E B*Bk)U+ F(u), u 2k 
k=l 

JU12 +E H 

n 

<(A-! EB*Bk)U7 U 2 -, k 
k=l 

JU12 +6 H 

do'(s) = Me (TýFds 
8c 

nk 
E<u, 

BkU> dw, 

k=l 
IUI'H +6 

n 

E <u, BkU >2 
k=l 

(JU12 + E)2 H 

n 

E <u, BkU >2 
k=l 

(JU12 
H+ E)2 

nk 
2 

i5) E<u, 
BkU> dw.. 

+ 109 (IUIH + 
JU12 +E 

k=l H 

Now from assumption (5.1.5) and (5.1.11) we get 

n 
1: <u, BkU >2 
k=l ds). (5.1.11) (JU12 + E)2 H 

t 

EM, 60loglu(to)l' EMt'log lu(t)l' < C, + C2 EM,, 'ýF (s)ds. 
2H2H-iE 

to 

T 

Therefore, if I prove that EMt`Tk, (s)' < C(s) such that Kf IC(s)Ids < oo we will 
to 

have that 
2 E'log(ju(t)IH+6) ý! E'log(IU(tO)12H+6) -2Kj E [to, Tj 

and 

fEe log (IU(to)12 +e)-2K 
E'( IU(t 

H+ 6) ý Ü, 'e"9 
(IU(t)12 +, ) 

> et' 
log (1 U (t) 12 +, ) 

>e )12 H-H-H 

t 

Taking the limit e --+ 0 we get the Theorem. It remains to find an estimate for f fEcýF (s)ds. 
c to 
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We have an estimate 

91 

tttt 

Wds < (s) ds + tE n(s) IUIHIIUIIV 
ds < tEý, (s)ds 

IIi 
IUI'H +61 

to to to to 

JU12 JIU112 
tt2 

+n2 (s)ds) 1/2tE Hv 
-1 sN 

1/2 < t: ý, (s)ds + Ct'( 
llullv 

ds) 1/2 
(JU12 + E)2""' JU12 

iHffH+ 

to to to to 
tt 

<I t'Tk, (s) ds + C(I t'ý, (s) ds) 1/2 

to to 

Therefore, it is enough to estimate term EIA, (s). We have an assumption (5.1.5) and hence 

without loss of generality we can put 

n 

<(A-! E B*Bk)u, u> 2k 
k=l 

JU12 +E H 

Thus, <Au uý'. Let now JeiJi>1 be an orthonormal basis in H, PN be a projection 

on first N elements of the basis, QN = id -PN. DefineAN= PkAPN, ýN 
- . 

<A4u, u> 
6 IU11H+C 

F(x) =. Then 

F'(x) h, ý2< 
ANX, hl >2< ANXiX >< x, h, >1 

1X12 + (IXI2 + 6)2 HH 

F" (x) (hi, h2) 
=2< 

ÄNhi, h2 > 

-4< 
ANX, hl >< x, h2 > 

1X12 +E (IXI2 + E)2 HH 

4< 
ÄNX, h2>< x, h, > 

-2 
< ANXj X>< h2, h, 

(IXI2 )2 (IXI2 + e)2 H+6H 

+8< 
ÄNX) 

X>< x, hi >< x, h2 > 

(IXI2 + e)3 H 

By the Ito formula we have 

dýN < ANu, u > ds +2< 
ANU, du> 2<ANU, U>< u, du 

ý112 +, F JU12 +6 (JU12 + E)2 HHH 
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n< ANBkU7BkU> 4<ANU, BkU>< u, BkU 
JU12 +E (JU12 + E)2 k=l 

(HH 

12 < 
-, 
4NUi 

U> JBkU 
H 

(JU12 + S)2 H 

4< ANUiU >< u, BkU >2 
ds (JU12 + 6)3 H 

nk 
From identity du + (Au + F(u))dt +E Bkudwt =0 follows that 

k=1 

2< ANU, Au + F(u) 2< ANUi U >< u, Au + F(u) 
tA,. L L lull +E 

H 
n <A' u u> E< 

ANB BkU > 
+N) ds +0 ds - JU12 +6 JU12 +6 H k=1 H 

(I UI+ 0' ds 

n 
< ANU, U > JBkUj2H 

ds (JU12 + E)2 
k=l H 

n 2< ANU7 
U>< u, BkU 

(JU12 + E)2 
k=l H 

Therefore, we get 

92 

n2< ANUI BkU > E 
JU12 +6 

k=1 H 

(dWk + 2< U' BkU > 
ds) (5.1.12) lull +E H 

2 <ANU, Au + F(u) >2< 
ANU) 

U >< u, Au + F(u) 
-it 7týrc; CNN 

- xxci J- I akivit ivi, k- JU12 +6 
Uzi 

H 
n <A' u, u > 1] < ANBku, Bku 

+N -ds + 
JU12 JU12 +E H+ k=l H 

(I Ul + 0' ds 

ds -n< 
ANUiU > JBkUj2H 

ds E 
(JU12 + 6)2 

k=l H 

n2< ANUI BkU > 
dw k) (5.1.13) -E JU12 +6 

k=l H 

We can rewrite (5.1.13) as 

d McTýN) Me 
te 

12) ANU7U >(2 < Au, u >-E jBkU 

k=l 
(JU12 + E)2 H 

< Aýu u>2< ANU, Au >n< ANBku, BkU > NIýE ds JU12 +E JU12 +E JU12 +6 
HH k=l H 
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2< ANU, U><F(u), u> 2<ANU, F(u) > )ds (JU12 + 6)2 JU12 +6 HH 

n 2< ANu, BkU > 
dw k 

2s 
's 

k=l 
IUIH +6 

, 
2<ANU, U><Auu> 2< ANU, AU 

MS, (JU12 + E)2 ju12 +E HH 

+ 
2< ANUi U>< F(u), u 

(JU12 + E)2 H 

n 

k=l 

JU12 +6 H 

< A' u, u 
-N JU12 

H+ 

ANBkU, BkU >n2< ANUjBkU 

lull +E 
ds - M, ' E 

JU12 +6 H k=1 H 

Drift term can be written as: 

M'(2 ý N< Au, u > 
-2 

< ANU, Au >+ 
JU12 +E JU12 +6 HH 

N< F(u), u >< ANu, F(u) > 2A6 JU12 +E2 JU12 +E+ HH 

< CNU)U >< -ýN _ 
ýNU Au > 

JU12 +6 
ME(-2- JU12 

FE 

HH+ 
TkNU 

< AN -6, F(u) >+< CNUiU >W+ (ii) + (iii) 
JU12 +6 JU12 +6 HH 

n 

where CN= E B*[AN, Bkl + 
ýA' We have kN 

k=l 

dw k 
8 

- 
ýNU12 

_ 
XNUJ AN)U > 

M(-2 
JAN 

c2< 
AN 

c (A - JU12 +6 JU12 +E HH 
- NU ýNU 

>-_ 
ýNU12 -N2 

< AN- Ae )c me(-2 
JAN- 

e__ 2 e(A, ) 
JU12 +E JU12 +6 JU12 +E 

HHNH 

2< 
AN-A. u, (A-AN)U > 

JU12 +6 H 

2< ANU, F(u) 

93 

(5.1.14) 

(5.1.15) 
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Therefore, we have 

tt 

m -N JAN- AýuJ2 
Me 'A 'E ds + 2E OýN(to) t c(t)+2 

Ms 
JU12 +E JU12 + Eds t( 

If MS 

to to 

M, < AN- A NUI (A - 
AN)U > <A -A 

NU 
, F(u) > 21 e ds -2 16 Nc 

-ds + JU12 +6 JU12 +6 

i 
MS 

to to 
ttn 

< CNU)U >2< ANUI BkU > 
dw k 

2-2 
Ma 

JUI 
H+6 

ds -I ms JUI 
H +6 

to to k=l 

94 

= (i) (ii) + (iii) + (iv) + (v) (5.1.16) 

Now we can estimate (ii) by Young inequality: 

Nt AN- A. u, (A - 
AN)U f 

A/re 
JAN 

IVIS JU12 +6s JU12 +6 
HH 

to to 

ds 

c I(A - 
AN)U12 

61 
M: JU12 +6 

ds, el 
H 

to 

and similarly (iii). As the result, we get 

t_ ýCNU12 t 
(A N)2 

ýN(t) +E -ýN ds + 2E t-C E< MtE ýN (to) 
+ 

MS 
oE 

MtlE 
E 

ms 

1 

JU12 JU12 +6- 
to to 

t 
12 Cf I(A-A )u 

+- MS16 
JU12 

N) ds +CM. ' JU12 +6 
ds 

61 
to 

H+ 62 
to 

H 

t< 
CNUiU >n2< ANUjBkU >k 

+ M185: 
I U12 +E 

ds -fM. ý` 
1: 

JU12 +6 
dw, (5.1.17) 1H 

k=l H 
to to 

Let us estimate the term (iv). We have by definition of CN and C the following chain of 

inequalities: 

NU12 
E 

IX12 
< CNXi X>I<I< CX, X>I+ 1-ýIN () 1, 

C(VV') V 
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< (-, 4N- A)BkX, BkX >1+1 < (AN- A)x, 1: B*BkX > k 
kk 

K (. )IX12 + (K2(. ) + IA/(. ) lc(vv, )) I< Ax, x> 1H 

+1 E< 
-ýQNBkX) 

QNBkX> MON 
-'ý)XIIXID(A) 

k 

K (. )IX12 + (K2 +I A/ (-) lc(vv, )) I< Ax 
,x> 

H 
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12 +I(AN- A)xj IXID(A) +EI IQNBkXl V. 
k 

where assumption (5.1.6) has been used in second inequality and assumption (5.1.8) in last 

inequality. Therefore 

ttt 

Me< 
CNUiU > 

ds < K, (s) M, ds + (K2(s) +I At (s) jC(VV, 
))MSETýN (s)ds+ JU12 c 

fH+fI 

to to to 

V ttt 12 
I(AN -A)u 

12 
EI IQNBkUl 

MSC 
JU12 +6 

ds) 1/2( MSIE 
I U12 + eds) 

1/2 + Mse k 
JU12 +, F 

ds (5.1.18) 
HiHfH 

to to to 

ttE IIQNBkuII2 

re I(AN-A) 2 

ds, K4(E, N) =f Me kv ds, K5(6) I will denote K3 (E, N, w) f A, a JU12 +6 
to to H 

t 

f M,, E Au 2 

ds, K6 (s) =I A'(s) lc(vv, ). Combining (5.1.17), (5.1.18) with (5.1.9) we get 2 
to 

IUIH+e 

t_ TkýUJ2 t TkN)2 

Me ýN (t) 
AN 

ds + 2e tc+f 
M61 

JU12 +E 
Ms 

JU12 +E s HH 
to to 

t 

-MNc 

to A, (to) +fK1 (s) M,, d s+ 
61 

K3(6, N) + (K3(E, N)K5 + K4(E, N) 

to 
c 

2(, S) +K2(, S) +K6(S))McýN 
n2< ANU, BkU >k 

+ (n (s)ds - M., ' E 
JU12 +E 

dw, 
OF2 

11 

k=l H 
to to 

(5.1.19) 
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Now we notice that expression 
I(A-AN)Ul 2, 

can be bounded from above by LAý2u. Then we JU12 +6 2c H 

have 

t 

EK3(e, N) 
I(A - 

AN)UJ2 
ds JU12 +6 

iH 

to 

60 2 
60 2+SO IÄU12 ) 2+bo < C)o (E«Mt)'+ (E 1 +'Ods 

to 

where last inequality follows from the fact that uE M2+6o (0, T; D (A)). Similarly, we have 

tK&, N) < oo uniformly w. r. t. N and EK5(E) < oo. Therefore, we can find Q' c Q, 

P(Q') =1 such that Vw E Q', NEN K3(6, N) < oo, K4(E, N) < oo, K5(, c) < 009 

uEL2 (0, T; D (A)). Moreover, we notice that K3 (E, N), K4 (e, N), Tk N are monotone w. r. t. E 
N. Tending N to oo in (5.1.19) and noticing that lim K3 (. F, N) = 0, lim K4 (e, N) = 0, 

N--+oo N-oo 
IiM TIN (t) we get N--+oo C 

tt 
I(A - A, )ul' 

Mt'6A, (t) + '6 ds + 2e ds Ms 
JU12 +6 JU12 +6 

fI 
MS 

to to 
tt 

Mt' K, (s) M, ds +cj (n 2(. 9) +K (S) + K6(s))M,, 'ýe(s)ds 
oA, 

(to) +f 
62 

2 

to to 
tn 

Z2< Au, BkU ms 
1U12 + 

to k=l H 

>dWk 
(5.1.20) 

Let us denote Xt-solution of equation 
tt 

Xt' = Mt'o A, (to) + K, (s) M,, ds +cf (n 2(, S) + K2(s) + K6(s))X. 6ds 1 
62 

to to 

tn 

-fs, 
1: 2 <IuAul BkU 

m 
12 +6 

>dwk (5.1.21) 
to k=l H 
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Then, we have that 

97 

t 

I(A - 
ý)UJ2 

Mt'A, (t) + ýl ISE --d, s < X' (5.1. -12) JU12 t 

fH+ 

to 

Indeed, it is enough to subtract from inequality (5.1.20) identity (5.1.21) and use Gronwall 

lemma. Now, we can calculate XtI: 

t 

xe 
f (n2 (s) + K2 (s) + K6 (s)) ds 

t- M' A, (to) e'o to 
tt f (n2(-r)+K2(-r)+K6(, T))d-r 

n2< Au, BkU >k 
(Ki (s) Mý, ` ds 115 E- 

JU12 + 6-dl"s) 
(5.1.23) 

to k=l H 

Denote 
tt f (n2 (r) + K2 (7-) + K6 (7-)) dr 

JVI En2< Au, Bkll >k 

te-, 
E 

JU12 +, 5 
dw, . s 

to k=l H 

We have that 
t 

f (n2(s)+K2(s)+K6(s))ds 

Xt5 - lIi', A, (to)e'o 
tt 

a2 
-)+K2(, r)+K6(-r))d-r 

t ef(n 

(7 

Kj('P1, `ds - L. (5.1.24) 

to 

By definition L' is a local martingale. I will show that in our assumptions it is martingale. t 
It is enough to show that there exists 6>0 

EI L'1"6 < t 

Let pi, qi, i=1,2.3 be real numbers such that I+I=1, pi > 1,1,2.3. By 
Pi qi 

successive application of HbIder inequality we have: 

tt2n 
(1+6)f(n +K2+K6)d-r 1+6 j-4uj'+6jBk'll 11 +6 

ds tIPE 1112 1+6 EIL' 1+6 < CE 
I(, 

k=l 
(I 

H 
to 
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tt 
(1+45)ql f (n2+K 2 +K 6 )dr 

to C(Ee ql 

to 

'n lAul(1+6)p, lBkU 1(1+6)Pl 

2 (, +, 5) - 
ds 

Pi 
k=l H 

tt 
(1+6)ql f (n2+K 2 +K 6 )dr 1 

C(e)(Ee to ql (E f (Mse)(1+6)plq2 ds)q2 
to 

tt 

(1+6)ql f (n2 + K2 + K6) d-r 
x ElAul 

(1+6)PlP2 jBkUj (1+6)PlP2 
ds < C(E)(Ee to ql 

t0k 

tt 

(Me)(1+6)plq2 -L (1+6)PlP2 -q (E 18 
ds)q2 (f ElAul q3ds) 

L3 

to to 

t 

x(JEE lBkUl (l+6)P1P2P3 ds)P3 = 

to k 
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26 k Choose J> 07 P1 7 P2 i P3 >1 in the following way: (1 + J)P1P2 ý1 +'Yq P3 T -) 7ý +6 1 +-Y 4+60 

Then, we have (1 + J)PlP2P3 = 2, (1 + J)PlP2q3 =2+ JO, (1 + J)ql = n(Jo) >2+ 34 and 60 

we get that S< oo by regularity assumption on u. Thus LI is martingale, ELf =0 and it tt 
follow from (5.1.24), (5.1.22) and H61der inequality 

t 

r. (8o) f n(s)ds 
EMt'A, (t) :5 EXt' :5 C(to) (EA, (to) 116o + 11 K, 11 L2 (0, T) (t - to»Ee to (5.1.25) 

From Fatou lemma follows that Eý (t) < sup E'ý, (t). Therefore, we get our estimate from 
6>0 

(5.1.25). 

Remark 5.1.5.1 notice that in the case of antisymmetric Bk, k=1, ---, n instead of as- 

sumption that uE M2+bo (0, T; D(A))(where 60 > 0) can be used weaker assumption that 

UE M2 (0, T; D(A)). 
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Corollary 5.1.6. Under assumptions of Theorem 5.1.2 either u(t) = 0, tE [0, T, P-a. s. or 

u (t) > 0, tE [0, T] P-a. s.. 

I will use in the following Theorem the same notation as in Theorem 5.1.2. 

Theorem 5.1.7. Suppose that u-solution of equation (5.1.1), u is not identically 0 P-a. s., 

assumptions (5.1.8), (5.1.7), (5.1.4) of Theorem 5.1.2 are satisfied, A does not depend upon 

time, assumption (5.1.6) satisfied with parameters K, = 0, K2 EL2 (TO, ý)c), andfollowing 

assumptions are satisfied 

For all T> To 

IP(u GL2 (To, T; D (A))) = 1, (5.1.26) 

There exist Q' C Q, P(Q') -1 such thatfor a. a. tE [To, oo), jG Q' 

F(u)(t)l < n(t)jjujjv, n(-, w) EL2 (To, oc), (5.1.27) 

There exists 0G L'(To, oo) such that 

n 
< 0(. )IU12 <u, Bk(*)U > H, 

k=l 

There exists Cl C L'(To, oo). k=1, ..., n such that 

ck < Au, Bk(')U <1(. )1 <A (5.1.29) 

Then there exists . 
ý" :Q -+ or(-! ) such that 

iiin A(t) = A'. P - a. s. 
t -, -)c 

Ptmýf qf Theorem 5.1.7. Without loss of generality we will suppose that To -- 0 below. 

I will prove first existence of the limit lim ý(t). By the same arguments as in the Theorem 
t 00 
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5.1.2 we have inequality (5.1.19) i. e. 
t- ýýUJ2 t- 

N)2 N+ 
mse 

JAN 

Ms, 
(A Mt'A, (t) JU12 +6 

ds + 26 JU12 +, 5 HiH 
to to 

t 

Me 
0 

ýN (to) +c 1/2 tf K, (s) Msds +- K3(E, N) + (K3(6, N) K5(E)) + K4(6, N) 
f 

61 
to 

100 

ttn 

-fM, 
2(, 

q) +K2(, q))MqeýN e2< 
ANU, BkU > 

Wk 
c J(n 

6 
(s)ds 

9E JU12 ds (5.1.30) 62 
to to k=l H+E 

for any t, to ý! 0. Now one can notice that expression 
I(A-AN)Ul 2 

can be bounded from JU12 +E H 

above by ILE 
. Then we have 2E 

K3(, F, N) 
I(A - 

AN)UJ2 
ds <c sup M., ' 

t 
i(A - 

AN)U12 ds < oo, P-a. s. 
f 

MSE 
IU12H +E6 S<t 

I 

to 0 

Indeed, we have 

P(sup M,, ' > A) < 
S<t A 

by Doob inequality and, therefore, sup M,, ' < oo, P-a. s.. Moreover, 
S<t 

tt 

f I(A - 
AN)ul'ds 

-< 
21 lAul'ds < oo, P-a. s. 

00 
by assumption (5.1.26). Similarly, K4(E, N) < 00 uniformly w. r. t. N, K5(E) < oo P-a. s.. 

Thus, we can find Q' c Q, P(Q') =1 such that Vw E Q17 NEN K3(e, N) < oo, 

K4 (6, N) < oo, K5 (E) < oo, uE L'(0, T; D (A)), VT > 0. Moreover, one can notice that 

K3 (E, N), K4 (e, N), Tý N 
are monotone w. r. t. N. Tending N to oo in (5.1.19) and noticing C 

that lim K3 (e, N) = 0, lim K4 (e 
7 
N) = 0, A, lim. A. (t) we get 

N-oo N--. *oo N--+oo 

tt 

Mt6A, (t) + '6 
I(A - A, )ul2 

ds + 2E 6 ds < Ma 
JU12 +6a JU12 +E 

iHiMH 

to to 
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tt 

Mt'o A, (to) + K, (s) M, ds +cf (n 2(S) 
+ K2(s))M, 'ý, (s)ds 

1 
62 

to to 

t 
n 2< Au, B 0> 

dWk ms JU12 +6S, 
to k=l H 

Consequently, it follows (in the same way as in the Theorem 5.1.2) (5.1.22) i. e. we have 

Mt'A, (t) 
tt 

f (A - 
A, )U12 f (n2(S)+K 2 (3))dS 

MSE 
IU12+E 

ds < Mto A, (to) eo -L to, 
H 

to 

(5.1.32) 

where 
tt 

=1 

f(n2(, r)+K 2 (, r»dr 
fe 

n2< Au, Bku > dwk Le 
, e- ma 

s. to tE 1U12 +E 
to k=l H 

t 

-f (n2 (-r) + K2 (r)) dr 
Multiplying (5.1.32) one o and denoting 

(5.1.33) 

ttt 

-f (n2(T)+K2(or))dr f (n2 (, r) +K 2 (, r))dr I (A - 
A, )U12 

st' =e0 Mt' A, (t), Nt' eo M816 JU12 ds. 
H+ 

to 

We have 
n f (n2(-r)+K2(, r»d7-M. 

�E2<Au, BkU> k dw, St` + Nt' St% -21e0 
k=l H 

1U12 +6 
to 

to 
< Au, BkU > 

dw k (5.1.34) 21S. 'ýE Z9 

to k=l 
1< Äul 

u>1 

Putting c=0 in inequality (5.1.34) we get 
t 

St + Nt :5 Sto -2( Sý, 1: < Au, Bku > dWk 

<Au, u>l to k=l 
1 

where St = StO, Nt = NtO. By comparison Theorem for one dimensional diff-usions (Theo- 

rem 2.8.2) we have 
tntn 

-2f E <Au, Bku> dw. k-2 fE 
. 
1<Äu, Bku>, 2d8 

,0 1<Au, u>l 
St + Nt :5 Sto e 

to ý, 
1<Au, u>lz 

(5.1.35) 
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Denote 
tntn 

-2 
fF "I" Bku> d?, L, k-2 f I<Au, Bku>12 

Au. u> I<Au, u>12 , I)to, t -e to k=l <ý to k=l 

-exponential martingale in the formula (5.1.35). We have from assumption (5.1.29) and 

martingale convergence Theorem ([65], p. 8) that Edto, t = 1. Indeed, 

C(J) f ICk(S)12 ds 
D91'6 < IEe, 10 to't - 

Hence, by martingale convergence Theorem there exists lim dt,,, t t C)o 
and lim t9t,,, =I P-a. s.. Thus, 

to--4c)o 

lim sup St < st" ? 9t,,,. 
t-*oo 

and, therefore, 

lim sup St < lim inf St,,, dt,,,,,, = lim inf St,, P - a. s. 
t--+C)o to-00 to-+oo 

i. e. there exists t 
f (n2(-r)+K2(7-))dr 

lim St = lim co MtA(t)P - a. s.. t---*Oo t-oo 

Moreover, it follows from assumption (5.1.27) that there exists 

dto, c <x P-a. s.. 

(5.1.36) 

t 00 

- f(n 2 (7-) + K2 (-r)) d-r -f (n2(7-)+K2(-r))d-r 
hill c0-e0 OP - a. s.. (5.1.37) 

oo 

Furthermore, from assumption (5.1.28) follows that . 11t is uniformly integrable exponential 

martingale and, as a result, we have that there exists 

lim Mt = Al,,, 7ý OP - a. s.. (5.1.38) 
t 00 

Combining (5.1.36), (5.1.37) and (5.1.38) we get existence of 

Iiiii A(t) = A'. P-a. s.. (5.1.39) 
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It remains to show thatA' E or (A). We infer from (5.1.35) that 

lim Nt :! ý ýS't,, 'dt . ..... < c)c -P-a. s.. (5.1.40) 
t 

i. e. 
tt f (n2 (-r) + K2 (r)) d7- I(A - A)u 12 

lim Co Ms ds < oc, P-a. s.. t' ý-C JU12 

jH 

to 

Therefore, 
00 

M, I (A -ý (s)) u I'ds < Dc, P-a. s.. (5.1.42) 
j 

JUJH 

to 

Denote V) - It follows from (5.1.42) that there exists sequence tj --4 X, --)C, such 1U1H 

that (A - ý(tj))O(tj) ---+ 0 in H. Therefore, hj= (A -0 as j -7)c. If A 

or (A) then (A - ýc) -' cL (V, V). Since hj -* 0 in 1, "I have, ý) (tj) = (Al - ý'c) -'h, 0 

in H. This is contradiction with the fact that IV)(t)IH -L 

5.2 Applications 

Now I will show how to apply Theorems 5.1.2 and 5.1.7 to certain linear and nonlinear 

SPDEs. 

5.2.1 Backward Uniqueness. 

Linear SPDEs. 

I will consider following equation: 

n 

du + (Aii + F(u»dt +Z Bkudivt f dt + gkAluf 
k=I k=l 

fC 
ý112 (0ý T; 1 J, gC ýýJ2(O, T: D(A» 
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where operators A, Bk, Fk-I..... n satisfy the same assumptions as in the Theorem 

5.1-2.1 will suppose that n (from assumption (5.1.9)) is nonrandorn and nC L2(0, T). 

Then, I notice that assumption (5.1.9) is satisfied. Applying Theorem 5.1.2 1 have the 

following result: 

Theorem 5.2.1. Let ul, U2be two solutions of (5.2.1), such that there exists 60 >0 

C . 
M2+6o UliU2 (0, T. D (A)). (5-2 

Then if uI (T)- U2(T), P-a. s., u, (t) U2 (t) 7tE [0, T] P-a. s.. 

Proof. Denote s UI - U2. Applying Theorem 5.1.2 to sI immediately get the result. 0 

01 Example 5.2.2. Assume bk 
i C) O'k E Ct, ' QO, T] x RI), k=In and following inequal- 

X 
ities are satisfied: 

SUP 
EI VO'k(t . )12 EL2 (0, T), 

xERn k 

sup E lbk(t, 
-)I + JC(t, 

-)I CL2 (0 T). 
xGRn k 

Then equation 

+E bk(t, *) 

OU 

+ c(t, -)u + f)dt + 
OU k 

k 
OX kE 

(Ok (t, + 9k) o dw, 

k 

(where stochastic integral is in Stratonovich sense) satisfies conditions of the Theorem 

5.2.1. Indeed, we have in this case that 

zý,, F =: - 
1: bk(L ') 

a- 

c(t, . ), 
Bk = O'k (t ý -) 

a 

k 09Xk 09Xk' 

L (R n), I- =HOI, 
2 (R 

We need to check only assumption (5.1-6). Other conditions are trivial. We have 

19, u ozý a (Ok 19U 
QA, Bk] u. 13kll)H Uk 

0.1'k 
(Ok 

0Xk 
kk Rn 
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Ef IVOrk 121 
OU 

12 
.) 

121Uý2 d. x < SUP 
E IVO'k(t- 

k Rn 
19Xk XERn k 

Existence of regular solutions have been established in [63]. 

Remark 5.2.3. Instead of Laplacian one can consider operator A(t) -E a'j (t) 02 where 
ij ax, oxj 

matrix a- (a'j) : [0, T] R' is uniformly (w. r. t. t) positively definite. 

Spde with quadratic nonlinearity 

In this case we can also apply Theorem 5.1.2. Though, assumptions on regularity of solu- 

tions will be very strong (assumption (5.2.6) below). 

gýAJ1, ký (5.2.3) du + (Au + B(u, u) + R(u»dt +Z Bkudwt =f dt +Ef 
k=l k=l 

u(0) = uo c H, fcL2 (0, T; H), gC 1112 (0, Tý H) 

where operators A, Bk, k=1, --., n satisfy the same assumptions as in the Theorem 5.1.2, 

B EiC(V x V, VI), R cC(V, H) and 

B(u, v)j + IB(v, u)l < Kllulll, -IAvl. Vu c Vv C D(A). (5.2.4) 

Applying Theorem 5.1.2 1 have the following result: 

Theorem 5.2.4. Let ul, U2be two solutions of (5.2.3), such that there exists 6o >0 

C Ul, U2 : 
112+6o (0ý T: D(A)), (5.2.5) 

t 

4 (60) f luil, (s)ds 
It-; (60) >2+- such that EeK to D(. A) 

< 2. (5.2.6) 
60 

Then if u, (T) - 112 
( l'), P-a. s., u, (t) :: -- U2 (t), tG [0 

ý 
T] IP-a. s.. 

Proof of Theorem 5.2.4.1 denote s =-Ill - 112- Then we have 
n 

+ (. 1,4 + B(a I _s) + B(s. u. )) + R(s))dt + BksdILI k=0. (5.2.7) Et 
k=l 
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From (5.2.4) follows that 

IB(ul, s) + B(s, U2)+ R(s)l < [11RI 1, 
C(VH)+ K(JAul I+ JAI12I)III, 'ý111' 

-< 

C[IIRI 1, 
C(VH)+ K(J. 4u, I+ JAU2 1)] jlý 

106 

and according to (5.2.5), (5.2.6) 11 RI1, C(VH) +K( lAu, I+ JAU2 1) satisfy assumption (5.1.9- 

1.10) and Theorem 5.1.2 applies to s. 

Remark 5.2.5. It would be interesting to understand if it is possible to find weaker assump- 

tions under which Theorem 5.1.2 is still valid. One possible option is to try to follow the 

line of proof of Theorem 5.1.7(Do everything P-a. s.! ) 

In the framework above fall Navier-Stokes equations with multiplicative noise. 

5.2.2 Existence of spectral limit. 

Suppose that u is a solution of equation 

du + (A(. )u + B(u, u) + R(u»dt +Z Bk = 0, 

k=l (5.2.8) 

a(0) = uo C- H, 

where operators . 4(. ), Bk(-), k=1...... n satisfy the same assumptions as in the Theorem 

5.1.7, Bc L(V x V, VI), RG L(I " H) and 

JB(u, r)l + IB(71, u)l < Kjjajjj-ý. 4t, j, Vu G V, vE D") 

Applying Theorem 5.1.7 1 have the following result: 

Theorem 5.2.6. Let u be solution of (5.2.8), such that 

(5.2.9) 

3To > OP(a C- L2 (To. 
---)c: 

D(. 4))) = 1, (5.2.10) 
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Then there exists ýV: * :Q ---+ or (A) such that 

lim A(t) - A'-P - a. s. t 00 
Remark 5.2.7. In the case of B=0 instead of condition (5.2.10) 1 can put weaker condition 

I ]To > OP(u GL2 (TO, T; D (A))) == 1, VT > To 

Example 5.2-8.2D Stokes equations with multiplicative noise: 

du + (vAu + B(u»dt + o, (t)u o dwt = 0. 

u(0) = uo C H, u cL2 (0, T; v) nL' (0, T; H), where 

H=fuGL 2 (D, R n) 1 divu = 0, (u - 'n)II, -- 01, 

V=H1,2 (D, R2) nH, o, CL2 (0, C)C), 0 

(5.2.11) 

(5.2.12) 

A= -PL-Stokes operator (P-projection on divergence free fields), B(u. w) = P((iiV) u), 

, wj -one dimensional wiener process. It is enough to check condition (5.2.10). 1 have 
tttt fa (s) dw, fa(s)dw, --! fO, 2(s)ds jfO, 2(s)ds 

- CO 
20C20 2(0,, 

_: )C) folloWS Nt =co and from condition o, CL 

that tt 
f o, (s)dwý, --il 

f 0,2 (s)ds 
lIt = e0 0 

is uniformly integrable martingale. Indeed, I have 
ttt 
f 0,2(s)ds 2f o, (s)dw,, -2f 0,2(s)ds 

l20 i=eo Ee- o (5.2.13) 
t f a2(s)ds II or 112 

eo eL2 (0,00) < (5.2.14) 

and uniform integrability follows, for instance, from Theorem 3.1, chapter 3 of [67], p. 68. 

Hence there exists limit M, = lim. Mt and by Burkholder-Davis-Gundy inequality([67]) 
t oc 

I get that 

(supil <I+ CE <II 
ý, ý<-)c 
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Therefore, there exists set Q' C Q, P(Q') =I such that for any ,; C 

sup Nt 
S<oo 

Fix wG Q'. Let us consider following equation 

dv + (vAv + Nt (w) B (v» dt = 0, v (0) = uo, vC L' (0. T; H) n L'(O, T, 1 -) 

Then I notice that u given by the formula 

t 
f o, (s)dw., 

veo 

108 

(5.2.15) 

(5.2.16) 

satisfies equation (5.2.12). Thus it is enough to prove that v(w) EL 2(0, Dc -, D (. 4)). Then 

I will have from condition (5.2.15) that u=N. (w)v(w) cL 2(0, oc, D (-A)), ,: GY and 

the result follows. Equation (5.2.16) for fixed w C- Q' is a system of deterministic Navier- 

Stokes equations and, therefore existence of solution vc LI(O, T; H) nL'(0. T; I ')VT 

0 will follow from Theorem 3.1 p. 282 in [72]. Let us show that if v(O) = u(O) EV then 

vE L'(0. oc; D(A)). Firstly, taking scalar product of (5.2.16) with vI get energy estimate: 

IV12 + 2v IV12 2 
L-(O, T; H) L2 (0, T; V) '5 1 UO IH 

Since the estimate is independent of TI get v Ei L'(0, oc; H) nL'(0, ý)c,, V). Secondly, 

taking scalar product of (5.2.16) with Av I have 

Id21,12 
+ Vt(. ) 

2 dt 
Jýcjjj, + vIA < B(c), At, >= 0 (5.2.17) 

Integrating w. r. t. time and using Young inequality I get L- 

,, (t) 112. + 1(.,; ) 12 IV(0)112, +V 12 (1,, ý ý_ 
k2 

, )121(/., 21l ds <1 1-4 r (s) JB( (5.2.18) 

000 
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For B(. ) I have following estimate (Lemma 3.8 p. 313 of [72]) 

IB(u)l < CJIUI1121 JullvlAul 112VV E vnH 2 (D). (5.2.19) 

Inserting this estimate into (5.2.18) 1 have 

tt 

IIV(t)112 + 12 1 IV(O) 112 k 
vf jAv(s) ds < V+ 

flAvllvlllvll 2 ds vv 
00 

tt 
k2k2 IIV(0)112 +2 IV1211 I 

vv (V 
j 

2k2 
ds +C1 1', ds) 

21/2 

11 

00 
tt 

2 "' fI Av(s) 12 ds +ckj IV1211VI14, ds llv(O)Ilv +-3 
2 

00 

where second inequality follows from Young inequality. Thus I have 

1, (t) 112 (0) 112 kIV 121 (5.2.20) +- Av(s)I'ds <+ C- 
IV 114 ds. 

2v V3 

iI 

00 

Therefore, from Gronwall lemma follows that 
tc0t 

1/7 
f IV1211VI12 ds 

2,12 e0v llv(t)llt + jAv(s) ds < llv(0)111 
2 

0 
112 V1 IL 

00 (0, oo; H) L2 V) < C>o 

and I have that rE LI(O, oc,. D(A)). 



Chapter 6 

Global evolution of random vortex 

filament equation 

In this chapter we prove existence of global solution for random vortex filament equation. 

We consider following equation 

d-y 
_ u"(t) (, y (t», tC [0, T] dt 

-y (0) = -yo - (6.0.2) 

Here -y : [0, T] --4 D,, v CC is some trajectory in the subset D,, v of C of continuous closed 

curves in R', u", YC Dýv CC is a vector field given by 

VO(x - y) x dy. (6.0.3) 

where (5 : R' -* R is a smooth function which satisfies certain assumptions (see Hypothesis 

6.2.1). Exact meaning of the line integral above and set D, y we consider will be explained 

below. This equation appear in fluid dynamics in the theory of three dimensional Euler 

equations. Result of Beale, Kato, and Majda [4] suggest that possible singularity of Euler 

110 
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equations appear when vorticity field of fluid blows up. Some numerical simulations of 

3D turbulent fluids show that regions where vorticity is big have a form of "filament-),. see. 

for instance [5], [75]. As a consequence, see [8] and [68], problem (6.0.1)-(6.0.3) can 

be deduced from the assumption that vorticity of the liquid is concentrated around some 

curve. We will work in the framework of rough space theory developed by I J. Lyons and 

co-authours, see [57], [58] and references therein, and assume that initial condition is a 

closed curve of H61der class with exponent v C- (, 11. 3 

6.1 Definition and Properties of Rough Path integrals 

In this section we define rough path integral and state some of its properties. We mainly 

follow [43] and [9]. 

Definition 6.1.1. Assume Vj, V2are two Banach spaces and tc R+. Define 

)21 1 C((V 
If(al b)lv2 

1)2, 
V '2 E 2)1 such thatIf 10, ((1 1)2, V2) SUP < 

a54b, a, bC-Vl la - bjtýl 

We will often use space 0'((S')', R') and denote it by 0. The space C-' endowed with 

the norm I-1, -., is a Banach space. 

Definition 6.1.2. Let us fix XG C'(S', R 3). We say that path YE C(S'ý R 3) is weakly 

controlled by X if there existfunctions ZE C'(S', L(R 3, R 3) ) and RG 02t, ((SI)2 
,R 

3) 

such that 

1, (ý) _I- (11) - (77) (x (ý) -X(, q)) + R(ý, 77). ý- 17 C 

Let D, v be the set of pairs (Y. Z), where YE C(S', RI) is a path weakly controlled by 

X, and ZE CI(S', L(R 3, R3 )) is such that RE C2z,, ((Sl)2 
,R 

3), 
where R is defined by 
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representation (6.1.1). We notice that this is vector space. Define the semi-norm in D., V as 
follows 

II(Y Z)IIE), 
= IZIc., + JJRJ 102v 

- 

where 

R(ý, 71) - Y(ý) - Y(77) - Z(77)(X(ý) - X(77)). ý, 77 E S' 

Furthermore, define the following norm 

II (r Z) I IVX I lyl IDx + IYIC(Sl, 
R3). 

(6.1.2) 

(6.1.3 

(6.1.4) 

Then, one can prove that (Dx, II-II 
D*x) is a Banach space. From now on we will denote 

elements of DX by (Y, Y') and the corresponding R will be denoted by R'-. We will 

often omit to specify Y' when it is clear from the context and write 111ý'JJ-Dx instead of 

ll(y, yf)IIDX. 

Definition 6.1.3. Let 11 : Dx :3 (Y, Z) ý-* Yc C(SI, R3) be the natural projection. 

We will need following properties of Dx, see [43]. 

Lemma 6.1.4. fl (Dx) c Cl-(SI, RI) 

Proof of Lemma 6.1.4. Immediately follows from inequality 

IIYIIC. l 
+ IIXIIC-). (6.1.5) 

F-1 

Lemma 6.1.5. Let oG C2 (R', R') and (Y. Z) E Dx. Then 

(I I'l II ") :- (o (I -). o'(Y) Z) E D., v 
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and the remainder has the following representation 

Rw = Oý(Y(ý))R(ý, 77) + (Y(, q) - Y(ý)) 

1 
I [VO(Y(ý) + r(Y(, q) - Y(ý))) - VO(Y(ý))]dr, ý, R E S' 

0 

where R is the remainder for Y w. rt. X given by (6.1.3). Furthermore, there exists a 

constant K>1 such that 

I lo(Y) I 1, D,, < KI IVOI Ici I JYJ Iv, (1 +I JYJ Iv,, ) (1 + IIXIIC")2. 

Moreover, if (k, 2) E Dg and 

Rl W, ): = (OM7 ol(N) 

then 

IWI - 
fV'flc,, + IRW - 

RWI02v + JW 
- 

WICI 

QX -, 
kic. + JY' - 

f7llc., + IRY - Rlýjrý2,, + JY - 
flc-, ) 

with 

Dx +I IkI 1, 
C)2. 

KIIOIIC3(1 + IIXIIC" + likllCt, )31(1 + Ilyll, D 

In the case X= f( we have 

110(y) - O(k) I I-D,,: 5 KI IVOIIC211YIIDX 

+I lyll. DX + jjfljDX)2(j + IIXIICL, )41ly _ 
kllDX. (6.1.11) 
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Proof of Lemma 6.1.5. See [43], Proposition 4 for all statements of the Lemma, except 
(6.1.7) (which is actually also proven, though not stated explicitly). Let us show (6.1.7). 
Denote y (r) -Y (ý) +r (y (77) -y (ý)). rG [0,1 ]. Then 

0 (y (1)) -0 0'(y(r))y'(r)dr 

1 

E(yk(, ý) yk(ý)) 
00 

(y(r))dr 
kJ 

OXk OXk 
0k 

1 

E(yk(77) yk(ý)) 
00 

, (y(r)) 
k 19Xk 09Xk 

- 
Y, 

00 
(y (ý)) (yl) kl (Xl Xl +E 

00 
(Y(ý))(Rl' )k 

k, l 
OXk 

k 19Xk 

1 

(yk yk 
00 

(y(r)) - 
(go (Y dr, 

k 19Xk OXk 

and the result follows. 

(6.1.12) 

El 

Now we define integral of path I- weakly controlled by X w. r. t. another path Z, weakly 

controlled by X. We will need one more definition. 

Definition 6.1.6. Let v>5. We sav that couple X= (X. X2), XG C' (S'. R 3), X2 
3 

1233 ), L (R' 
,R 

)) is a v- rough path if the following condition is satisfied: 

X2 
i I_ X2 (11, P) (-V X (p)), ý, 11. p 
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Remark 6.1.7. If v>I and X is a v-rough path, then X is identically pair of constants 
(X (0), 0). Indeed, in this case X is H61der function with exponent more than I i. e. constant 

(0). Hence, X' = 

Remark 6.1.8. If vG (1,1] then X2, the second component of a v-rough path X= ("V. X2). 
2 

is uniquely determined by its first component. Indeed, 

77 

X2, ij 
J(Xi 

') X dXp 3 S', j=1,2,3 

where the integral is understood in the sense of Young, see [76]. One can show that X' 

defined by formula (6.1.14) satisfies conditions of Definition 6.1.6. Let us show uniqueness 

of X'. Assume that there exists another X, which satisfies definition 6.1.6. Put G(ý) = 
X2 (ý, 0) _ 

X2 (ý, 0). Then by condition 6.1.13 1 

X2 P) _ 
X2 (ý, P) = G(ý) - G(p), 1 

and, since X' G C", G is a H61der function of order more than I i. e. 0. Therefore, 

X2 = X2. 
I 

Note that by identity (6.1.13) it follows that X2(ý, ý) = O'ý E SI 

Assumption 6.1.9. We say that our v-rough path (X, X') is an approximable v-rough path 

ifthere exist a sequence (X, X') such that n 

Coc (S1, R 3) 
1 

x2 1.2.3. 
n 

and 

-vn -- 
VICý, + 1X2 

_ 
X2 JÜ2L, 

-+ 
09 12 - -, (_ - 
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Example 6.1.10. Let f Bt Ite[0,11 be standard three dimensional brownian bridge such that 

BO - B, = xO and let BI, 'j be the area process 

77 

132, ij ') dBpj, j=1.2.3 
J(Bp 

- Bn 77 p 

where integral can be understood either in Stratonovich or in Ito sense. Then, this couple 

(B, B') is a 1/-rough path (see [9], p. 1849). Moreover, it is approximable v-rough path. 

Indeed, it follows from Theorem 3.1 in [381 that we can approximate X with piecewise 

linear dyadic X,, in the sense of assumption 6.1.9a. s.. 

From now on we suppose that approximable v-rough path X= (X, X') and corre- 

sponding Banach space Dx are fixed. 

Lemma 6.1.11. Let, 7r = Jýo =ý<ý, <... < ýn = 771 be a finite partition of and 

d (7) - sup +1- ýj I is a mesh of 7. If Y, ZE Dx then the limit 
i 

n-1 
+ y/ (ei) Zi (ei) X2 (ei+ 1ý lini E[Y(ei)(Z(ei+1) 

- Z(ei» ei)] 
d(7r)-0 

i=O 

exists and is denoted by definition by 

17 

YdZ. 

Proof'of Lemma 6.1.11. See [43], Theorem 1. 1: 1 

Remark 6.1.12. In the case of v>1 line integral defined in the Lemma 6.1.11 is reduced 2 

to the Young definition of line integral f YdZ. Indeed, it is enough to notice that second 

term in formula (6.1.16) is of the order 0(1,1,, 
-+-, - 

ý, 12v) 
, 2v > 1. Obviously, line integral 

does not depend upon I -', Z' in this case. 
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Lenuna 6.1.13. Assume Y, WE Vx, kIWE Dg. Define Q, ý: (Sl)2 --ý R by identities 
77 

YdW - Y(ý)(W(71) - 
W(O) 

- 
YI(0WV)X2(nj ý) 

1 171 E S', 

E S1. 

then Q, QE 03v. Moreover, there exists constant C= C(v) >0 such thatfOr all Y, WG 

Dx 

IIQI103v !ý C(l + IIXIICv + lIX21 102v) I JY I 1, DX IIWI1, DX. 

Furthermore, 

I IQ - Qj 103v !ý C(l +I IXI ICI'+ I IX 2 11 
(ý2v 

, 
)Ey + Ex). (6.1.20) «llyll'D� + 11ýrllDi, )EW + (IIWII'D� + 1117VIIDýe 

where 

ey = JY' - YlIc. + IRY - 
Ryj(ý2v + ly 

- 
YICII 

i5w = IW'- fV-'lc. + IRW - 
RýVj(ý2v + JW 

- 
WICI) 

i) 
(IX 

EX = ýc)(jjWjj'Dx 
+ IIWII' f(IC" + IX2 

_: 
j2 102v)- (Ilyli'Dx + jjýJJV 

Proof of Lemma 6.1.13. See [43], Theorem 1. For formula (6.1.20) see [43], p. 104, for- 

mula (27). 
0 

By Lemmas 6.1.11 and 6.1.5 for any AE C2 (R 3, L(R 3, R3))l yE Dx we can define 

rough path integral V' : R3 --+ R as follows 

vy(x): = 
I 

A(x - Y)dY, xER3 

si 

We have following bounds on its regularity: 
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Lemma 6.1.14. Let Yc DX, ý' E Djý, then there exists C, = Cl (V) 
- 

C) = C2 (ýý) such 

thatfor any integer n>0, 

lIVnVYI JLý-- < 4C, C231 IVn+ 'Allci I jyj 12 
x 

(I +I jyj IDx) 
v 

and 

IVnVY 
_ VnVlýj I 

Lclo <- C (V) I Al Cn+3 
4 (1 + Cl llyll'Dx + jjý-Jjr) 

C)3 

(IX 
_ 

f(IC" +I X2 
_ 

: k2 102v + ly'- ý"Jc, 

+ IRY - Rý' 102L/ + 11' 

where 
I+ IXIC, +I -ýJC" + IX2 + pt2 x 

102v 
Z, 

102v 
- 

In the case of X=k inequality can be written as 

(6.1.22) 

Vjc, )ý (6.1.23) 

jjVnVY'_VnVý' JIL- < 16C, C231 I Vn+'Al IC21 JY I JE)X (1 +1 ly I IE)X)21 ly _ Yý I ýx. (6.1.24) 

Proof of Lemma 6.1.14. Inequalities (6.1.22) and (6.1.24) were proved in [9], Lemma 7. 

Now we will show (6.1.23). It is enough to consider the case of n=0. By formulas 

(6.1.19) and (6.1.18) we have 

V" - -- A(x - Y(0»(Y(I) - Y(0» - A(x -- 
ý'(O» 

- 1, ))1(0)1"(O)xl(o, 1) _ (ý4(ý,, _ 1) +Q X(Ol 1) - 
QX(O. 1) 

where Q' and (ý-` (given by formulas (6.1.19) and (6.1.18)) satisfy inequality (6.1.20) and 

we have identified S' with (0,1]. Therefore, Y(l) - I'(0), ý'(I) = Y(O). Hence, we have 

i -i' - vý ,1 
L- :5 Sill) 1_ 1) - 

(A (X 
- Yj, (0) ý' (0) X2 (0.1)1 

+supjQ'(0,1)-Q'(0.1)j. (6.1.25) 
x 
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For the first term on the r. h. s. we have 

I(A(x _ y))/(O)y/(O)X2(ol 1) _ (A(x _ 
k))1(O)kl(o)jt2(oj 1)1 

:! ý I (dA(x - Y(O))Y'(O)Y'(0) - dA(x - k(0))k'(O)fl'(0))X2(0,1)j 

IdA(x - 
ý, (0)) k, (0) k, (0) (X2 (0,1) 

_ 
: k2 (01 1))l 

1 X2 1, 
ý2, IdA(x - Y(O))Y'(O)Y'(0) - dA(x - Y(O))Y'(O)Y'(O) 

ly/ 12 
. 

JX2 _ : k2 
I 

JAIC2 
L 

102t/ 

1 X2 102v ly/12. JAIC21YI - 
klIL- + IX2 j(ý2vIAlci (lylIL- + JklIL-) lyl L 

ly/12. IX2 _ 
jt2 JAIC2 

L 2,102m (6.1.26) 

By (6.1.20) we can estimate second term as follows 

JQX -ýXIÜ3v: ýý, C«IIA(X-Y)IIV� +IIA(X-«ý')11'DI, )e: Y+(llyll'D, +IIýllVfc)EA+EX)- 

(6.1.27) 

where 

ey= IY-7 I k1c., + IY'- + IRY - Rý' 

EA " IA(x - Y) - A(x - f7)lc., + IA(x - Y)'- A(x - k)'Ic,, + IR A(x-Y) 
-R 

A(x-Y) 102v 

Vx +1 jý71 IV 
c)(IX 

_- _eýlCv 
+ 1X2 

_: 
k2 JÜ2v)- 

EX= (IIA(x-Y)llv, +IIA(X-ý)liv )(IIYII 
JZ 

By formula (6.1-9) we can estimate6Aas follows 

JEAJ !ý 
KIAIC3(1 + IXIC" + lf(IC")3(l + JyjDx + JýrjDfc )2 X 

(IX - Xjc,, + ly - Ylc,, + JY' - YlIct, + IRY - 
RY102m) (6.1.28) 

By inequality (6-1-8) we infer that 

I IA(x - Y) I Iv, :5 KIAIC21YIDx(l + lylDx)(1 + IXIC, )27 (6.1.29) 
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and similarly, 

I klC, )2 IIA(x - ! ý)JJEk < KJAI C2 
I ý'j 

Dk (I +I fl 
Dk) (1 + 

Therefore, combining (6.1.27) with (6.1.28), (6.1.29) and (6.1.30) we get 

120 

(6.1.30) 

QX QX1 03v < C(v)jAI Cn+3 
(I + 1XIC, + 1., VICL, )4 (l + llyllDx + )3 

(IX k lC, + JX2 
_ 

k2 "Ic, + IRY 1)02v+ IY'- - R" -IC I 
02v + ly I 

-, 
). 

Hence, the result follows from (6.1.26) and (6.1.3 1). El 

We will denote for any YE Dx, ý7 c Dj 

ly - 
YID IX 

- 
XIC, +IX2-X2 102L, + JY'- ý"Jc, + IRY - Yý10,,, + JY - I-- Ic-- 

6.2 Random Filaments evolution problem 

Let'DX, T= CQO, T], Dx) be a vector space with the usual supremum norm 

sup IF(t)l* IDX, 
T Dx 

tE[O, T] 

Obviously DX, T is a Banach space. Assume also that the function 0 appeared in the formula 

(6.0.3) satisfies following hypothesis. 

Hypothesis 6.2.1ýi) 0: R3 ---ý R is even function. 

(ii) the Fourier transform of 0 is real and non-negative function: 

o(A, ) > 0, A, G IR, 

(iii) 
12)2 ; (1 + Ik o(k)dk < 

R3 
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Example 6.2.2. The function >0 is smooth and satisfies hypothesis 

6.2.1, see p. 6 of [7 

Then the following local existence and uniqueness Theorem for problem (6.0.1)-(6.0.3) 

has been proved in [9], see Theorem 3, p. 1842. 

Theorem 6.2.3. Assume C'(R'ý R), vG (1,1), X- (X. X') is a v-rough path, 3 

, 

10 1 
C5 

ý X) >0 such that the problem (6.0.1 -ýO G DX. Then there exists a time To = TO (v. 

(6.0.3) has unique solution in DX, T,,. 

Our aim is to prove global existence of solution of the problem (6.0.1)-(6.0.3) under 

assumptions of Theorem 6.2.3 and additional hypothesis 6.2.1 i. e. we shall prove 

Theorem 6.2.4. Assume T>0, ýyo E Dx, 0G C'(R', R), 0 satisfies hypothesis 6.2.1, X 

is an approximable v-rough path, vG (1,1). Then the problem (6.0.1)-(6.0.3) has unique 3 

solution in DX, T- 

We will need the following clefinition. 

Definition 6.2.5. Let 0c C" (R', R), -y E Dx. Put 

x b) 

si 

where 

V)" Gr) =I 
si 

R. \: () is called the energy of path ý. 

(6.2.2) 

Remark 6.2.6. Definition (6.22.22)- (6.2.5) is well posed. Indeed, by Lemma 6.1.14 

C2 33 (R 
.R) and, therefore, it follows by Lemma 6.1.5 that E D., v 
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Remark 6.2.7. Assume that v> ý' and C'(S'. R 3) 

. Then by Remark 6.1.12 the line 2 

integrals in the definition of energy are understood in the sense of Young and 

_If10 (ý (ý) _ ý(, q)) (dý 
dý 

RX 
2< d7l 

(77))<d77. (6.2.3) 

si si 

Lemma 6.2.8. Assume 0G C'(RI, R). Then there exists constant C= C(v. X) such that 

for all -y E Dx 

RX('Y)l < ClOIC4 Iý 14 )2 
Dx +I Dx (6.2.4) 

Moreover, the map 'Hx : Dx ---> R is locally Lipshitz i. e. for anY R>0 there exists 

C= C(R) such thatfor any -y, ýe Dx, JýyjDx < R, JýjDx <R we have 

I'Hx(-y) -Hx(ý)j < C(R)17 - 
ýJE)x (6.2.5) 

Furthermore, for any R>0 there exists C= C(R) such thatfor any -ý G Dx, ', ' C D'ý, 

< R, jffDýc < R, 

CX, 
X 

-lCv + IX2 + lk2 1XIC11 +I 102v 102L/ 
<R 

we have 

(IX- k1c 
_: 

k2 I 
(ý2v 

+ 1'-Y 102v)- 
< C(R) L, +IX2 -ýJcv + lyf -ýljc,, +I R- Rý 

Proof of Lemma 6.2.8. First we will show inequality (6.2.4). By representation (6.1.17) 

we have 

ýix ffl -- (J, (ý, (0» (l-y(1) - z�'(0») 
di, ]- 

il 
t(O)X2(1,0) + Q(o, 1) =I+ II + III, -, C D, ýC. 1 

-ý (ý (0» ý, (0) 
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Since, T(1) = Y(O) we infer that I=0. Concerning the second term by Lemma 6.1.14 we 7 ly 

have the following estimate 

Ily2l 1, Y/ 12 
0. 

< A 
102v IIII 

L- L- 

C(V, X) 101C3 1, yl4 (1 + j,. YIDX). DX 

For third term we infer from inequality (6.1.19) 

C (Vi X) Vx 

Then by Lemmas 6.1.5 and 6.1.14 we have 

DX :5 QVI X) lo'YIC2 11, IIVX (1 + llylDX) 

1 -13 (1 + 1-1, C(VIX)JOIC4 YE)X ly DX)2 

Combining (6.2.6), (6.2.7) and (6.2.8) we get inequality (6.2.4). 

Now we will prove inequality (6.2.6). By formula (6.1.18) we have 

'Hx (-y) 
- 

7if( M=1 [(VO-y(, 
Y(0»71(0), yl(0) _ 

(6.2.6) 

(6.2.7) 

(6.2.8) 

11_: k2(170»+Q(071)_Q(011) =I+II+Ijj (M (0)(X (11 0) 1 

The first term in (6.2.9) can be represented as follows 

I= i(0), yt(o) _ 
Voi(ý(0»ýl(O)ii(0»X2(1,0) 

Rvvrmo)) - v0m0)))-Yl(O)-Yl(o) 

(6.2.9) 

(0) - ý(0»-f (0) 
Vei(ý(0»ý(0)(, y1(0)_ý(0»]X2(110) ==A+ B+C (6.2.10) 
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The first term in (6.2.10) can be estimated as follows 

IAI = j(Ve'Y(-y(0» 

II X21 JY12 (IVO-y(7(o)) Vo-y(ý(O))j + I 
(ý2v VX 

DX C)31,7 
<I IX21 1(ý2v 1,. Y12 (10 7 IC217(0) ý(O) I+ CX4IOIC4(1 + 1'ýJVX + IýjVf ýJD 

43 

C) 
(6.2.11) KCIIOIC4(l + I'YI-DX + JýJE). 

ý 
I"Y 

- 
ýjDi 

where second inequality follows from inequality (6.1.23) and third one from inequality 

(6.1.22). For second term we have by inequality (6.1.22) 

1 :5 ClIX21 1ý12 BI J(ý2vj"YjVXjOjC3 
VX(1+1ýJVJ7-ýJD! ý 

c 
)3 1, ý CCX(l + 1-ylDx + JýJD. 

ý -ýI D- (6.2.12) 

Similarly, we have for third term 

ICI: 5 C(ViX7 1'-YlVxi JýJ*Dx)17 
-ýJD- (6.2.13) 

Term II in (6.2.9) can be estimated as follows 

3+ JýJD ýJOJC3(1 + I'YI'DX (6.2.14) LOO I 
2T)x 

D Cý 
;ý)3 

Jy 
- ýJD- 

Thus it remains to estimate third term of equality (6.2.9). We have by inequality (6.1.20) 

IQ(07 1) - ý(Oj 1) 1 :51 IQ - QI 1(ý&/ !ý+ IVP(7)I7)x)I7 - ýID 

+ V)'Y(7)ID 

+ jVy(, Y)jDX)(jýjD + IýID., 
t)(IX _ 

XIC + IX2 
fc t, 2, _ 

jt2 I 
(ý2v (6.2.15) 

Term I VO (ý) 1, D,, is bounded by the constant C= Qv, X, 1ý1 -D,, ) by inequality (6.1.22). 

Therefore, to prove estimate (6.2.5) it is enough to show that there exists constant C= 
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C(v, X, R) such that for -,, ý Ei Dx with 1-ý I 
-Dx, 

[ý,, I'Dx< 

Q'ýz (6.2.16) 

By triangle inequality we have 

O'Y('-Y)ID < 10M 
- 

0('7Y)ID +I+ 11- (6.2.17) 

The first term can be estimated using inequality (6.1.9) as follows 

Il < KCx3jV)ýjC3(l + JýjDg + IýYIDX)21ý 
_ -d D- 

By inequality (6.1.22) we have 

2 JC3 < CjOjC5j%X(I + JýJ-DX) (6.2.19) 

Combining (6.2.18) and (6.2.19) we get necessary estimate for I. It remains to find an 

estimate for term 11. By inequalities (6.1.8) and (6.1.24) we have 

(I + jXjv)jlliý(ýY) 

(I + 1ý11DX)(j + IXIv)3 < 

+ Iq 
Dý Kjojc5C, ý(l + 1-yIE), 

, 
)51ý 

- -i JD- (6.2.20) 

Hence the inequality (6.2.6) follows. Inequality (6.2.5) is a consequence of inequality 

(6.2.6). E 

Corollary 6.2.9. Under assumptions of Lemma 6.2.8 and assumption 6.1.9 energy 'H., v 

Dx R is a con tin uous function on DX. Furthermore, for anY -1, C- D, v 

<Hx (-" )< Dc. 
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Proof of Corollary 6.2.9. We only need to show that Rx (-,, ) > 0, for any -, e D-v. Other 

statements of the Corollary easily follow from Lemma 6.2-8. Let qn cCx (S' 
-L 

R')) 

andXnE C" (S', R 3) be such that 

lim q, w. r. t. the topology of C' (S L (R 3R 3)), 

n -'X, 

X= lim X, w. r. t. the topology of C'(S'. R 
n--+oc 

and 
X2(ýJ, rl) = IiM X2 w. r. t. the topology of 0 2v((SI)2 

,R 
3) 

n n-oc 

where 
X2 (Xp - Xý)dXp, S' 

n 

Existence of such X, follows from Assumption 6.1.9. Existence of q,, follows from density 

of C' (S', L (R 3R 3)) in C"'(S', L(R 3, R 3) ). Define 
Z 

-Y,. ý (ý) = -/ (0) +1 dX,. ýGS1. 

Then -y, G Dx, c C"o (S', RI) and 

liM 1, Yn - 7Y 1D 
n-oo 

Therefore, by inequality (6.2.6) it is enough to show that 'Hx is nonnegative for -,, 

R') and the result follows from Lemma I of [7]. El 

Now we are going to show that energy is a local integral of motion for problem (6.0.1)- 

(6.0.3). 

Lemma 6.2.10. Let -,,, C- Dx, T,, be a local solution of problem (6.0.1)-(6.0.3) (such a solu- 

tion exists bi, Theorem 6.2.3). Then 

dH. \: (ý (, ý)) 
= 0, ., 4 [0, To) - 
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Proof of Lemma 6.2.10. Let -,, (0) - -ýO c Dx. We can construct (in the same way as in the 

Corollary 6.2-9) sequence 1-yon I ""- 1c C")c (SI. RI) such that n= 

1 -yo ýYO 1D -ý 01n -ý DC - 

Denote -y' G Q0, cc). H'(S', R')) the global solution of problem (6.0.1)-(6.0.3) with 

initial condition ^ýO. Existence of such solution proved in Theorem 2 of [7]. Then according 

to [9] (Theorem 4, p. 1846) we have 

SUP 1, -Yn (t) (t) ID 

tE [0, To] 

Therefore, by continuity of energy functional 'Hx we have 

7-(x (-y (s» = im Ux� (-y, (s», sG 10, To] - (6.2.21) 
n-oo 

Furthermore, by Lemma 2 of [7], we have 

7ix" (-y, (s» = ýix, 
' 
(-yo )ýsG [0, TO]. (6.2.22) 

As a result, combining (6.2.21) and (6.2.22) we get statement of the Lemma. EJ 

Let us recall definition of along with v-rough path Y 

I 
170(x - y) x dy, YG Dx. (6.2.23) 

y 
Now we show that if energy functional of Y is bounded then associated velocity is a smooth 

function. We have 

Lemma 6.2.11 (See Lemma 3 in [7]). For any nEZ. n>0, we havefollowing bound 

- 1/2 

-12(1+n),, 1/2 24) Ik (6.2.2 
(2 -, 7) ý3 ") 

'i Lk' 

- 2ý1+n) (ý-) d--13 3). 
provided that the integral fIA. 0 A- isfinite and oc C" (R 

,R R3 
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Proof'of Lemma 6.2.11. For smooth -y Lemma has been proved in [7] Lemma 3. In general 

case, when -ý E 'Dx, it is enough to notice that both sides of inequality (6-2.24) are locally 

Lipshitz and therefore, continuous w. r. t. distance d(Y, Y) :ý ly - YID, I' E DX Cz D. ý- 

Indeed, continuity of RX has been proven in Lemma 6.2.8 and continuity Of IýV 71 11'ý IIL -- 

follows from Lemma 6.1.14. 

Now we are ready to prove Theorem 6.2.4. 

0 

Proof of Theorem 6.2.4. According to Theorem 6.2.3 there exists unique local solution of 

problem (6.0.1)-(6.0.3). Then, we can find T* >0 such that there exists unique maxii-nal 

local solution -y : [0, T*) --+ Dx and 

lim DX :: -,::: c)(), 
tTT* 

(6.2.25) 

see e. g. [ 19]. Notice that we will have 

dHx(-y(s)) 
ds 

01 sG [0, T*). (6.2.26) 

Indeed, by Theorem 6.2.3 for any to Cz [0, T*) there exists unique local solution ý, of 

problem (6.0.1), (6.0.3) with initial condition -y(to) on segment [to, to + Eto] for some Eto 

0. Therefore, -, =ý on the segment [to, to + Etj 
. Hence, 

dHx(-y(s)) 
- 01 sC [to, to + Eto], to E [0, T*), 

ds 

and identity (6.2.26) follows. We need to show that T* = cc. Therefore, it is enough to 

prove 

SUP Dx `ý ý)c - 
tE[O, T'l) 

Indeed, by contradiction with (6.2.25), the result will follow. In the rest of the proof we 

show such estimate. We recall that 

-ýo + (6.2.27) 
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Firstly we have 

t 

L "YO IL+f luy(s)IL. ds < 

0 

1"YOIL- +CI 'hx (-y (s)) ds <I "YO I L- + Chx (-yo) tItE [0, T*) - (6.2.28) 
0 

It follows from (6.2.27) that 
t 

70 +f Vu"(') (-y(s))-y'(s)ds, tE [0, T*). (6.2.29) 

0 
Therefore, by Lemmas 6.2.10 and 6.2.11 

t 

l"YI(t)1L- 5 hälL- +11 VUf L- 171 (S) 1 L. ds < 

0 
t 

hälL- + C7i1I2(, Y(S» 171 (S) 1 L. ds 
1x 

0 
t 

C, H 1X1 2 1-YOILoc> +1 yo )1 Iff (S) 1 L. ds, te [0, T* ). (6.2.30) 

Then by Gronwall inequality we infer our second estimate 

1/2 
171 (t) 1 L- <- 17b 1 L- ec7'x (-YO)t 

,tG 
[0, T*). (6.2.31) 

We will need one auxiliary estimate. We have 
t 

1^/Olc- +I 

0 
tt 

i 
CRX y(s)) 17 (s) I c., ds 1701c- +f IVU^f(9)ILOOI^I(s)lc., ds < 1-yolc,, + 

1/2(, 

00 
1/2 

= 1-YO1C- +1 CUX (-fo) 1-y(s) Ic., ds, tE [0, T*). (6.2.32) 
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Thus, by Gronwall inequality we get 

1/2 
1 -y (t) 1 c. :51 -yo 1 c-, ec"x (-tO)t 

,tc 
[0, T*). 

Now we can estimate C' norm of 7'. We have 

t 

MI C- :! ý 170 1 C- + 

t 

I-Yolc- +f (jV0(S)jL-j7f(S)jCv + IYI(S)IL-lVu7(')(-y(s))Icv)ds < 

0 
t 

"Yo I C, +f (IVU'Y('g)IL-171(8)lCv + J'YI(S)jL-jV20('q)jL-j7 (s) I c., ) ds 

0 
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(6.2.33) 

(C, H1/2(, yo )(1, yi(S)ICý, IIL "0)'» ds, t Ei [0, T*), (6.2.34) 1-Yälc- +1x+1, yo -1-yolc. ec"x( 

0 

where last inequality follows from Lemmas 6.2.10 and 6.2.11. Then by Gronwall inequality 

we get third estimate 

1 -Y'(t) 1 C- <- (1 -Yo 1 Cv + 170 1 L- 1�yo 1 c� ) ec7ix (-yo)t 
5tC 

[0, T*). (6.2.35) 

It remains to find an estimate for I HY(t) 12v 
- We have 

t 

R^l' +i R"'(. )("('))ds, tE [0, T*). (6.2.36) 

0 

By (6.1.7) we have 

Vu'y(') (Y(s, 0) My(") (C 77) +E (-t'(s, q) - 'Y'(s, 0) 

k 

1 
. qu-Y(S) qu-Y(S) 

dr, sE [0, T*). (6.2.37) (-y(s, + r(-y(s, ri) - y(s, (-Y(s, 
Xx1, 

1[k 
OXk 

0 
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Therefore, 

I RU-1 ( ') (-t GO) [0. T* ) 
102v 

'-5 
102L/ +21 -" (S) 1 C- "ý 

Thus, by inequalities (6.2.38) and (6.2.33) 

I 'I, I 

(6.2.3 8) 

t 

R-10 I (ý2v 
+I L-1 R^'(') 102L, + (S) I Ic. I V, 11 

2 
0 

t 

9)IL-IR^Y(') 102v +I Cj'eCH112( 
I R-10 102v +i OVO(' 'yo x _, ())t I V2 I, - , 

(s) IL 
-)ds 

0 
1/2 

R-"' 102v +C (I ýYO I Cl,, RX ("yo)) e CRX (-Yo)t c7i 1/2(, 
yo ) IR"(') 1Ü21, (bý 

ýt 
Ei [0, T*ffi. 2.39) 

1x 

0 

where in last inequality we used Lemmas 6.2.10 and 6.2.11. As the result, by Gronwall 

Lemma we get 
/2 

x 
(-yo)t»e("H"� 1 R'y (') JÜ2v 

< (1 R'10 IÜ2j, + x'('YO tý tC [0. T*), (6.2.40) 

and combining estimates (6.2.28), (6.2.31), (6.2.35), and (6.2.40) we prove following a'priori 

estimate 

1, -y(t)Ipx A'(1 + ýY-y(, yo»(1 + lýyolDx)I-yolD, echx('-YO)t, t C- [0, T*), (6.2.41) 

and the result follows. El 

6.3 Future directions of research 

It would be interesting to consider problem (6.0.1)-(6.0.3) with added white noise i. e. to 

consider problem 

(1-1, (t) u -1 (') (, ý (t)) dt + v1-2-v-d wt. v>0, tG [0, T'i (6.3.1) 

-, 1 (0) -yo E D., v . (6.3.2) 
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where vector field of velocity uy is given by (6.0.2) and tv, is D, v-valued Wiener pro- 

cess. This model would correspond to Navier-Stokes equations rather than Euler equations. 

There are two possible mathematical frameworks for the model. 

First one is to make change of variables 

a (t) = -y (t) - -t, 72--vwt 
.tC 

[0, T]. 

Then we can fix fwtlt>o and system (6.3.1)-(6.3.2) is reformulated as follows 

dee a(t)+-v72-vwt + 
dt u N72rvwt), v>0, tC [0, T] (6.3.3) 

a(0) -YO c Dx. (6.3.4) 

Now the problem (6.3.3)-(6.3.4) is ordinary differential equation (ODE) with random coef- 

ficients in Dx and it can be studied by methods of the theory of random dynamical systems, 

see [3] and [28]. This approach works only in the case of additive noise. 

Second approach is to consider problem (6.3.1)-(6.3.2) as SDE in Banach space D, \ý. 

Then, we can consider more general system with multiplicative noise: 

d-y (t) = u' (t) (-Y (t) ) dt + vr2-v G (ý )duýt, v>0, tc[0, T] (6.3.5) 

-Y(0) =: -YO c DX. (6.3.6) 

The problem which appear here is to define Stochastic integral in the Banach space D, v. 

Stochastic calculus in M-type 2 Banach spaces developed in works [25]-[27], [12]ý [131 

does not work in this situation. It seems that it is necessary to try to alter definition of Dx 

to be able to apply the theory. 

Other possible direction of research is the theory of connections on infinite dimensional 

manifolds, see [40], [161. [501. In [14] the authours claimed, see p. 251 therein, that it is 

possible to define the topological space of Gawqdzki's 1401 line bundle over the , ct of rough 
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loops in the sense of Lyons [57]. Since the trajectories of the Brownian loop are almost 

surely rough paths, this allows us to define the topological space of Gawqdzki's line bundle 

over the Brownian bridge, because it is possible to define the integral of a one-form o\'er 

a rough path. It would be interesting to write down a complete proof of this claini. The 

theory presented in this chapter could be seen as a first step in realizing such a programme. 
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