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Abstract

In this thesis, certain systems of linear parabolic equations called vector advection equa-
tions will be considered. These equations are of great current scientific interest because they
appear in magnetohydrodynamics and also it models certain properties of three dimensional
Navier-Stokes equations which does not appear in the model of scalar advection.

The thesis consists of six chapters. The first chapter is a review of existing relevant
literature. The second chapter contains preliminary material necessary for further chapters.

In the third chapter 1t is shown that solution of vector advection equations is self-dual
In a certain sense described in the thesis. It is established that the so called regularity space
of vector transport operator changes with time reversal of velocity ©v. Also the classical
result of Serrin-Prodi-Ladyzhenkaya on the existence of strong solution of Navier-Stokes
equations 1s reproved.

In the fourth chapter the Feynman-Kac type formulas for the vector advection operator
have been proved. Another way to prove Feynman-Kac type formula can be found in
Busnello, Flandoli, Romito (2005). Our approach permits us to find other non classical
Feynman-Kac formulae for vector transport operator.

In the fifth chapter we study the asymptotic behaviour for certain class of parabolic
stochastic partial differential equations. First we prove a backward uniqueness result and
the existence of the spectral limit for abstract SPDEs and then show how it can be applied
for some linear and nonlinear SPDEs. Our results generalize the results proved in Ghidaglia
(1986) for non stochastic PDE.

In the last chapter we prove existence of a global solution for the random vortex filament
equation. This equation appear in fluid dynamics in the theory of three dimensional Euler
equations. Existence of a global solution for smooth 1nitial conditions has been shown 1n
a preprint work of Berselli, Gubinelli. We work 1n the framework of rough space theory,
see ¢.g. Gubinelli (2004) and assume that initial condition is a closed curve of Holder class
with exponent » > 3. In particular, this result covers the case of Brownian loop.
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Chapter 1

Introduction

The main subject of this thesis is investigation of certain properties of vector transport
equations and corresponding properties of Navier-Stokes equations. The motivation of this
research comes trom the need to understand the motion of fluid particles in turbulent fluid

Hows.

Theory of models describing turbulent fluid flows 1s a very active research field both in
mathematics and physics. It is believed that some physical properties of turbulence such as
anomalous scaling can be modelled by passive scalar advection equations, see [47], [31].
Mathematical study of the passive scalar equations has been started only recently in the
works of Le Jan, Raimond [51] and Lototsky, Rozovskii [S5]. [56]. In the case of irregular
velocity vector field which appears in turbulence the standard framework ot PDEs is not
sufficient to study the scalar advection equation. Le Jan and Raimond have introduced a
new concept of generalized solutions of the scalar advection model through the Wiener
chaos decomposition. They observed that this solution does not necessarily corresponds to
the flow of trajectories of the velocity vector field. They found that the solutions have two

regimes. see also work of Gawegdzki and Vergassola [41] for motivation and more informal

approach:
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o Coalescent flow of maps i.e. solution corresponds to the flow of particles that coa-

lesce at some moment of time.

o Diffusive regime i.e. solution correspond to branching of trajectories.

In connection with these works it is natural to ask whether similar properties hold for
solutions of the vector advection equations.

In this thesis I have considered vector advection equations and studied some of its prop-
erties. It turns out that these properties do not have analogues in the scalar advection case.
In particular, I show that these equations are self-dual in a certain sense. As a corollary, I
find estimates for the vorticity of solution of the Navier-Stokes equations (NSEs for brief)
which could be used to reprove the classical result of Ladyzhenskaya [49], Serrin [69] and
Prodi [64] about existence of the strong solution of NSEs. Also the self-duality property
allows me to establish the “optimal” space (in a sense described in Chapter 3) for the do-
main of the vector advection operator. Another interesting consequence of the self-duality
property 1s that existence of solutions 1imply their uniqueness and vice versa. I hope that in
the future I will be able to find more applications of my theory.

Another property of the vector advection equations studied in the thesis 1s a non clas-
sical form of the Feynman-Kac type formula. I prove such a formula tor both the two
dimensional vector advection equations and for the two dimensional NSEs. Thus we show
that there exist two different ’path integral” representations of the fluid flow.

The question of finding probabilistic representation of solution to NSEs have drawn
attention of many mathematicians. Different Feynman-Kac type representations of solution
of Navier-Stokes equations were considered in works by Busnello [17]. Busnello, Flandoli
and Romito [18], Constantin and Iyer [23] (see also work of Constantin [22] tor Euler

equations), Rapoport [66], Albeverio and Belopolskaya [2]. Le Jan and Sznitman [52], sce
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also the bibliographic survey in [18].

Constantin in [22] studied the Lagrangian formulation of the Euler equations. He re-
formulated the incompressible Euler equations through the inverse of the Lagrangian map
and proved the local existence of a solution to the resulting equation, which he called the
active vector formulation of Euler equations. He also noticed that the resulting equation is
a generalization of the Clebsch variables representation. He also discussed a blow up issue
in terms of different geometrical criteria connected with the behaviour of the gradient and
the inverse gradient of the Lagrangian map.

In the article [17] by Busnello, see also [ 18], the Lagrangian formulation of the two and
three dimensional Navier-Stokes equations in conjunction with probabilistic treatment of
the relationship between velocity and vorticity, 1.e. the Biot-Savar law 1n three dimensional
case, were used to prove global existence and uniqueness of solutions to the two dimen-
stonal NSEs and local existence and uniqueness to three dimensional NSEs. In both papers
the Bismut-Elworthy-Li integration by parts tormula, see [30] and reterences therein, 1s
used to give a probabilistic representation of velocity.

Constantin and Iyer in [23] suggested a different Lagrangian formulation of the NSEs.
They used the active vector formulation developed in Constantin [22] and they replaced the
Lagrangian trajectories by a stochastic flow. This interpretation of the Lagrangian formu-
lation allowed the authors to get results similar to those by Busnello, Flandoh and Romito.
Furthermore, they were able to get a similar representation for other hydrodynamic models.
including the viscous Burgers equation and LANS-alpha models.

Our starting point for the Feynman-Kac type representation of solution to the vector
advection equations is a generalization of the classical Kelvin Theorem about conservation

of circulation of velocity along with the flow of the inviscid fluid. I establish an analog ot
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the Kelvin Theorem for the vector advection equations which states that the circulation of

the velocity v along the flow (X}), 0 < s <t < T defined by the following stochastic

differential equation

dX?(z) u(t, X7 (z))dt + V2vdWV,

X, ()

L

1s a martingale. By taking the mathematical expectation I immediately get the Feynman-
Kac formula. The stochastic flow (X/?), 0 < s < t < T has been used by Busnello [17].
Constantin and Iyer [23], Albeverio and Belopolskaya [2]. The main difficulty in obtaining
new a’ priori estimates tor the solutions of the vector advection equations is the presence in
the Feynman-Kac formula of the gradient with respect to the initial data. Similar difficulty
appears 1n the study of the three dimensional Euler and Navier-Stokes equations, see works
by Flandoli, Constantin and others listed earlier. In connection with this problem i1t 1s
natural to ask whether there exists other non trivial flows for which generalization of the
Kelvin Theorem and the Feynman-Kac type representation holds true. In the thesis I answer

positively in the two dimensional case. I show that the flow generated by the following SDE

can be used:
dX(r) = V2o (X/(z))d1;,0<s<t<T
\rSS(I) = X
where ¢(z) ¢(z)
I . I
COS — Sin —=
O'l(I)—_'-— U) O(:; ,I€R2.

sin ﬂ} COS =

o is a stream function defined by v = V+0. As a consequence the standard Feynman-Kac

type formula (4.1.7) is simplified as in (4.2.6).
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In the three dimensional case the question of possibility to model flow in this way
remains open, see though Question 4.3.6 for the present state of the knowledge about the
problem.

The second topic investigated in the thesis is the asymptotic behaviour at time goes to
infinity of solutions to certain linear and nonlinear stochastic PDEs. 1 show the backward
uniqueness and the existence of the spectral limit for a quite general class of linear parabolic
SPDEs and, under certain regularity assumptions, for certain nonlinear SPDEs. In partic-
ular, my results are applicable to linear parabolic SPDEs with gradient noise and Navier-
Stokes equations with multiplicative noise. Similar questions for deterministic PDEs were
studied in the works of Foias, Saut [34] for Navier-Stokes equations and Ghidaglia [42] for
general deterministic parabolic PDEs. Moreover, Foias, Saut [34], [35] were able to show
existence and smoothness of corresponding spectral manifolds. It would be interesting to
extend these results for stochastic case.

In the last chapter of the thesis I prove existence of global solutions to the random
filament equation. This equation appears as an approximate model for time evolution of
an incompressible inviscid fluid under the assumption that the vorticity vanishes outside
some neighborhood of a certain time-dependent closed curve, see [32], [33], [8]. [68] and
the book {20]. Some numerical approximations, see [5], [75], imply that the regions of
“big” vorticity have a form of a “filament” and therefore, this model can be considered
as mathematical idealization of the motion of the fluid. Berselli and Gubinelli [7] have
shown global existence of solution in the case of initial condition belongs to the Sobolev
space /2. In this work I establish existence and uniqueness of a global solution for a
larger class of initial data, including Holder functions with exponent v € (3.1]. This is of

utmost importance because it includes. for instance, the Brownian loops. see (9].p.1849. |
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use framework of rough path theory, see [58], [43] and references therein. Local existence
In this class has been proved in [9]. A generalization of this result to manifold valued
loops along the lines suggested by Brzeznmiak and Léandre 1n [14] is one of open problems

discussed at the end of Chapter 6.



Chapter 2

Preliminary Material

In this chapter I shall present general settings of the thesis. I shall first briefly recall some
basic notation and standard theorems from vector analysis. Then I shall present some
abstract tools 1.e. Lebesgue integration theory, functional analysis and theory of evolu-
tion equations. In particular, I shall be concerned with embedding theorems, Gagliardo-
Nirenberg inequalities. existence and uniqueness theorems for abstract evolution equations.

[ will conclude the chapter with few results from stochastic analysis which will be used

throughout the thesis.

2.1 Basic notations

Here I will present some standard theorems of Analysis.

[ begin by introducing some standard notation of vector calculus. Suppose that a

(a'.a?.a%), b= (b'.b%,b%) € R3 then a x b is a cross product of two vectors defined by
(0 x b)' = a®b® — a®b®. (a x b)? = a'b® — a®b' . (a x b)° = a*b' —a’l’".

The cross product has following properties:
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(@ X b.c)gs = (a.b x ¢)z3.a,b.c € R’ (2.1.1)
|a X b|R3 < |a|R3|b|R3, a,b & R3. (212)
Operators curl : C>*(R3 R%) — C>(R°% R’) and div : ('><(R3.R3) — (><(R3) are

defined by identities
ou®  Ou® oul  Oud Ou®  Ou!

curlu=(—— —, — — —, —

6.’1)2 83.'33 | 6333 (9:1:1 ’ 8:1:1 0.rs )1

> O |
divu = ; oL,

We have following well known theorems (see for instance, [70], p.135):

Theorem 2.1.1 (The divergence or Green’s Theorem). Let S C R® be a C'-class closed

surface which is a boundary of a bounded domain D C R°. Choose the outward normal

vector field i to the surface. Then ifu: D — R° is of C! class,

/// divudr = /] u-ndo.
D S

where do is the surface measure.

Theorem 2.1.2 (Stokes’s Theorem). Let S C R® be a bounded and open two-sided surface
bounded by a closed non-intersecting curve I' C R® (simple closed curve), 1t be an outward

normal vector field to the surface S. Assume that D C R® is a domain such that S C D

and v : D — R° is of ("' class. Then

/u-d:z: = /(Curlu)-ﬁda.
r S

In particular, if curl u is equal to zero on D, then | . udr = 0.

2.2 Abstract Tools

Here [ present some standard results from functional analysis and integration theory.



CHAPTER 2. Preliminary Material J

2.2.1 Lebesgue integration theory

I will present here the classical theorems on Lebesgue Integration theory, see for instance
[37], and some fundamental inequalities. Let (X.F.u) be a measure space i.e. .\ is a
space, F 1s a o-algebra of subsets of X and p 1s a measure with domain F. The sets of F
are measurable sets.

Let f be a real-valued function defined on a measurable set .\y of .\'. We sav that f
1S @ measurable function if the inverse image of any open set in R 1s a measurable set.
We say that f is an extended real valued function if we allow it to have values of +c or
—nc. In this case we add in the definition of measurability the requirement that the sets
f~1(+00), f~1(—00) be measurable.

A function f is called a simple function if there is a finite number of mutually disjoint

measurable sets F, ..., E,, and real numbers o, ..., a,, such that

f= Z o xE, ().

where x g is an indicator function of set £ 1.e.

() l, r€FL
XE\L) =
; 0, r¢ F.

A simple function f = > a;xg, on a measure space (X.F.u) is said to be integrable
i=1

if u(E;) < oc for all the indices ¢ for which a; #+ 0. The integral of f 1s the number

i n,1((E;). We denote this sum also [ f(r)d p(r) or [ fdu
1=1

Definition 2.2.1. An extended real-valued, measurable function f, on a measure space

(\\'. F. ) is said to be integrable if there exists a sequence {fa}oo, of integrable simple

functions having the following properties:

(a) f\ | fi () = fm(0)|dpe — 0 as kom — .
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(b) i}LII;o fr(z) = f(x) a.e

Theorem 2.2.2 (Lebesgue Dominated Convergence Theorem (see [37], p.54)). Let { f,.} >,
be a sequence of integrable functions defined on X that almost everywhere converge to a

measurable function f. If there exists an integrable function g defined in X', such that al-

(z)| < g(z), then f is integrable, lim | |f,(r)— f(r)|dy =

I — OC

most everywhere for all n,

0, and

im [ fua)du - /f

n—00

Theorem 2.2.3 (Lebesgue monotone Convergence Theorem (see [37], p.58)). Let { f.}.2;

be a monotone increasing sequence of integrable functions and their integrals are bounded

from above i.e. there exists a constant K < oo such that for all n € N:

[ fa@ydn < &

Then, f, is convergent a.e. on X and if we denote f(x) = lim f,(r) (exists a.e. on \), f

n—oo

is integrable and

im [ fula)du - /f

Theorem 2.2.4 (Fatou’s lemma (see [37], p.58)). Let { f..}°, be a sequence of measurable

nonnegative functions which converges a.e. on X to | such that

/fn(.r)du <K neN
X

[ flr)dp <

Theorem 2.2.5 (Absolute continuity of Lebesgue Integral(see [37], p.53)). Let f be inte-

then f is integrable on X\ and

erable function on X. Then for anv € > 0 there exists 0 > 0 such that II flrydu| < ¢
, . /

provided A is a measurable set such that ;((A) <o.
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At the end of this section I present the following well known inequalities (see [37).

p.96):

Theorem 2.2.6 (Holder’s inequality). If1 < p,q < ~, ;l) + é = 1, u. v are measurable
functions defined on X such that Iy lu|Pdu < > and [y lvl%du < x, then [\ lueldu <

< and [y [uv| dp < (fy [ul? dp)/2( fy [o]7 ds) .

Theorem 2.2.7 (Minkowski’s inequality). If 1 < p < oo, u,v are measurable functions
defined on X such that [, |ulPdp < oo and [, |v|Pdu < ., then (¢ fu+ vPdp)t/r <

(Jx [ulP dp)t? + ([ |v]P dp)t/?.

Theorem 2.2.8 (Young inequality). Suppose p,q > 1, i + = =1, a.b > 0.Then ab

VA

1
q

aP b4
p+q'

2.2.2 Functional analysis results

The fixed point theory 1s concerned with the conditions which guarantee that a map F
X — X of atopological space X 1nto 1tself admits one or more fixed points. The Banach
fixed point theorem 1s the simplest yet the most important result in this respect. Now I

present the Banach Fixed Point Theorem, for more details I refer to Dugundji and Granas

[29] (p.10) and Theorem 3.8.2, p.119 1n Friedman [37].

Theorem 2.2.9 (Banach Fixed Point Theorem). Let (Y, d) be a complete metric space and

let ' : Y — Y be a contractive map, i.e. there exists Al < 1 such that for any r.y € },
d(F(r). F(y)) < Md(r.y). Then I’ has a unique fixed point ro € Y, i.c. there exists d

unique ro € Y such that F(rg) = xo.

Banach-Alaoglu Theorem together with compact embedding theorems, are the basic
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tools used in proofs of existence of solutions of PDE. Now I present Banach-Alaoglu The-

orem, for more details I refer to Friedman [37] (Theorem 4.12.2, p.169).

Theorem 2.2.10 (Banach-Alaoglu Theorem). Let X be a Banach space and let X\~ be its

dual. Then the closed unit ball of X™ is compact in the weak-* topology.

Remark 2.2.11. Friedman ([37]) have used different terminology. The notion of weak

topology he introduced is the same as the notion of weak-* topology in modern termi-

nology.

Next I present one abstract compact embedding theorem in Banach spaces, tor proot 1

refer to [72] (Theorem 2.1, p.184).

Theorem 2.2.12. Let Xy. X, X, be three Banach spaces such that

Xo C X C Xj. (2.2.1)

where injections are continuous and
X; is reflexive, 1 = 0, 1, (2.2.2)
the injection Xy C X is compact. (2.2.3)

Let T > 0, ag > 1, a1 > 1 be fixed finite numbers and

dv
Y = {ve L*0,T; Xo),v = pn e L°(0,T;X,)} (2.2.4)
be a Banach space equipped with the norm
HUHY — ||11HL00(0,T;-\F(1) + HF’HLQI(O,T;.\'I)v (2.2.5)

Then injection of Y into L*°(0.T: Xy) is compact.
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2.2.3 Approximation theorem

Here 1 will recall a concept of mollifier and present standard approximation theorem.

Let p: R™ — R be a C§° function defined by

p(x) = { b2l

ce -1, |z| <1,

where c is a constant such that [ p(z)dz = 1.
R

Definition 2.2.13. A function u : X — R, where X C R" is a Lebesgue measurable set,
is locally integrable if and only if u is measurable and for anv compact subset K C \

| lu(z)] dx < oo. We denote space of locally integrable functions on X by L} (.\)

Suppose that function v € L; (X). We call

loc

) = = [ o Dutw)dy
X

a mollifier of u. Properties of mollifier are summarized in the following theorem for which

we refer to Friedman [36] Theorem 6.2 (p.12) and Agmon [1] Theorem 1.5, 1.6, 1.7, 1.8

for more details.

Theorem 2.2.14. Let u : R® — R be a measurable function that vanishes outside a

measurable set X C R™.

I. If uis locally integrable in X, then J.(u) € C*°(R", R).

If in addition, the support of u is contained in a compact subset I\ of \ and if

e < dist(K,0N), then J.(u) € LP(X,R) and J.(u) € (5~ (X R);
2. Iffor1 < p < . u€ LP(X.R). then |J(u)|rr < |ulre:

3. Iffor 1 < p< . ué€ LP(X.R), then J.(u) — win LP(X . R) asc — 0\
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2.3 Functional spaces and embedding theorems

In this section I will recall some basic notations and properties of Sobolev spaces.

Let D C R", n € N be either R" or open bounded domain with smooth boundary

I' =0D. Assume thatd € N, v € R, v > 0. I will use following notation.

1. If v € N, then C¥(D,R?) is the space of v times continuously differentiable func-
tions from D to R%. By C¥(D,R%) we denote the set of all u € CV(D.R?) that are

bounded together with their derivatives up to (inclusive) order v.

2. If v ¢ N, then C”(D, R?) is the space of those functions u belonging to C!/(D.R9)
whose |v|-order partial derivatives are Holder continuous function with exponent

v — [v]. The subspace C¥(D,R?%) of C¥(D,R?%) consisting of those functions

satistfying

D°u D°u
Ul p = Z sup |D%u(x)| + Z supLM<x

al<fy] 77 amm e Ty
is a Banach space (with norm | - |, p).
3. ((D,RY) = 1 N C™(D,RY), C(D.RY) = L N CM(D.R%)

1. C(D,R%) = {f € C*(D,R?)|supp f — compact subset of D}
5. D(D.R%) = {f € C°(D,R%Y)|div f = 0}

6. Hg"p (D, R%)- completion of ('3 (D, R?) with respect to norm

Z Z / l\—“flpd dx) 1/p

l 1 [{’t|<lD

LY(D.RY)=H,"(D.R%):
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7. H*?(D,R%)- completion of C>*(D.R%) w.r.t. the same norm,

L?(D,R*)=H"?(D,R%);

8. In the case of d = 1 I will often omit second argument in notations of spaces above
and write for example C™(D) instead of C™(D.R). Similarly, in the case when

d = n I will use bold fonts, for instance, I will write H*?(D) instead of H*?(D.R")

and L?(D) instead of LP(D,R");

9. In the case of divergence free functions I will use the mat hbb font and subscript

w1 For example, I will denote H.?(D) = {f € H*?(D)|div f = 0} and similar

50l

notation will be used for other spaces.

In the following I will often consider the case of p = 2 and D = R"™. In this case there
exists another equivalent definition of Sobolev space H**(R"), s € R by fourier transform,

see Lions and Magenes [53], Temam [72] and Bensoussan [10].

Definition 2.3.1. I[fu € L*(R") () L'(R™), the Fourier transform i is defined by

1 .
w(€) = P /n e~ "%y (1) dz. (2.3.1)

One can show that |G| 2(gn) = WM r2(rn)- Therefore, the map u — 4 has a unique

extension to a bounded linear map F from L*(R") to L*(R™).

I set v = F(u) and

_ | .
= Fu = e Yuly) dy.
u = Fu (2772 An (y) dy

One can also show that the above extension is in fact onto and FF = FF = id. In
particular, F is a linear isomorphism of L*(R™). We have the following result, scc Lions

and Magenes [53] Theorem 1.1.2 for a proof.



CHAPTER 2. Preliminary Material 16

Theorem 2.3.2. Ifm € N, then
H™*(R™) = {u € L*(R™) : (1 + |€]))™*0u(€) € L*(R™)}. (2.3.2)

and the norm

lull gmz@wny = |(1 + £/ 2,

L2(R™) (2.3.3)
is equivalent to the standard norm | - |, o.

Taking into account Theorem 2.3.2 we can define H*%(R™), s € R as follows:

HA(R™) = {u € LR = | |(1+ 1€ UI d < >},

Now I will recall Sobolev embedding Theorem and version of Gagliardo-Nirenberg in-

equality (see Friedman [36], Theorem 1.9.3 (p.24) and Theorem 1.10.1 (p.27)):

Theorem 2.3.3 (Sobolev embedding Theorem). Suppose D C R" is open bounded set with

smooth boundary or R™. Then we have

1 1.1 &k
H**(D) Cc YD) if = > ->=—=>0,
p q p n
H*P(D) c C(D) ifkp > n,
H*?(D) c C¥(D) if0 < v < k — %

and the embeddings are continuous. In the second case every function f € H “P(D) has a

continuos version [ such that f = f almost everywhere in D.

Theorem 2.3.4 (Gagliardo-Nirenberg inequality). Let 1 < q.7 < 0o and j.m € N satisfy-

ing 0 < j < m. Then for any u € C§*(R"),
D7) owny < C|D™ )G e gy | U Lo lrey (2.3.4)
where L = L + a(2 — 2) 4+ (1 — a)éfor all £ < a < 1andC is a constant depending
P 1 T n

onlvonn.m. j.q.r.awith the following exception:

[fm—j—>1isa nonnegative integer, then inequality (2.3.4) holds only for ;}1 < g <l
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2.4 Theory of abstract parabolic equations

The definitions and results of this section are standard and I refer the reader to {53]. [72]
and [71].

Let V' and H be two separable Hilbert spaces, V' C H and embedding is continuous.
V dense in H; let | - |y and || - ||y denote the norms in H and V', (-, -)g scalar product in
H. Identifying H with its dual ' we have V C H = H' C V'. Duality relation between
V and V' Idenote < -,- >y y. I willcall triple V C H = H' C 1" a Gelfand Triple. In
the following when it 1s clear from the context which norm (or duality relation) [ am using
[ will often omit indexes i.e. write | - | instead of | - | (or < -.- > instead of < -.- >y ).

Possibility of identification H and H' follows from Riesz Theorem. Here I will present

more general Lax-Milgram Theorem (Lemma 2.2.1 in [71], p.26).

Theorem 2.4.1 (Lax-Milgram Theorem). Assume that B : H x H — R is a quadratic

form and there exist positive constants ¢ and C such that
(continuity) | B(u,v)| < Clul|v
(coercivity) | B(u.u)| > c|ul?

for all u,v € H. Under these conditions, if F € H' then there exists an element u € H

such that F(v) = B(u.v) forall v € H. Furthermore, u is uniquely determined by .

Now if we consider the case B(-.-) = (-.-)y we immediately get Riesz Theorem and

identification of H and H'.

Definition 2.4.2 (Coercive form). Let a : [0,T] x V" x 1" — R' be a continuous bilinear

form i.e. we suppose that

a(t.u )| < cllull|lv]).t €0, T) u.vel
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and

the functiont — a(t,u.v) is measurable for any fixed u.v € V7.

T'hen we say that the form a is coercive if there exists A € R, a > 0 such that
la(t,v,v)] + Av|* > alv||*.v e V. (2.4.1)
Since, for fixed t € |0,t], the form v — a(t,u.v) is continuous on V, we have:
a(t,u,v) =< A(t)u,v >, A)u e V'. (2.4.2)

Thus, we have operator

A€ L®(0,T], L(V, 1)) (2.4.3)

(defined by (2.4.2)) which corresponds to the coercive form a. Condition of coercivity
(2.4.1) of the form a can be reformulated in terms of operator A as follows:

there exists a > 0, A € R such that
< A()u,u >v-> aluld + AMulé,u el (2.4.4)
I will call operator satisfying conditions (2.4.3), (2.4.4) coercive.

We have following correspondence between properties of form and operator:

Theorem 2.4.3 (Theorem 2.2.3 in [71], p.29). Let a be coercive symmetric form satisfving
condition (2.4.1) with A\ = 0, then for eacht € [0.T] A(t) is positive definite and self-

adjoint, D(A(t)Y?) = 1", and
a(t.u.v) = (A 2u, A)Y?0), t € [0,T).u.v € V"

Remark 2.4.4 (remark 2.2.1 in [71]. p.29). For A > 0, replace a(u.v) by a(u.v) +~ A(u. )

and -1 by -1 + X\ then the conclusion of Theorem 2.4.3 still holds.
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For parabolic equations with coercive operators we have following existence and unique-

ness theorem:

Theorem 2.4.5 (Chapter 3, Theorem 4.1 and remark 4.3 in [53]. p.238). If 4 € L>([0.T].
L(V, V")) is coercive operator, uy € H, f € L*(0.T: V') then equation

-(-i—y--l-Au

dt J

u(0)

U

has unique solution uw € L*(0.T;V), v’ € L*(0,T;V"). Moreover, u satisfies an estimate

{ f
1
w2 () + a / u()fds < (14 2P (ugl}y + / FRAs) (245)
O O

and u € C(0,T; H).

The following lemma is of independent interest (see chapter 3, Lemma 1.2 1n [72].

p.260) and will be used in the proot of Theorem 2.4.5.

Lemma 2.4.6. If u € L?(0,T:V), v € L*(0.T;V’) then u is almost evervwhere equal to
a function continuous from [0, T| into H and we have following equality, which holds in

the scalar distribution sense on (0,T'):

Edﬂulz =2<u,u>. (2.4.6)

As a consequence we have:

Corollary 2.4.7. If f,g € L*(0,T:V"), f'.¢g' € L*(0, T:\") then

d
E(f, Qu =< fl.g>v+ < f,gd > (2.4.7)

In the case when our operator 1s time independent we have following important prop-

Crty:
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Theorem 2.4.8 (Theorem 3.6.1 of [71],p.76). Let A € L(V. V') be coercive operator(i.e.

it satisfies (2.4.4)). Then operator — A generates analytic semigroup in H and 1"

Theorem 2.4.9 (Theorem 3.2 p.22 of [54]). Suppose that A-closed unbounded operator in
H, such that

A + p is an isomorphism of D(A) — H forp=( +1in, ( > (o, n € R, such that

C
1+ |p|

Then for f € L*(0,T; H), there exists unique function u € L*(0,T: D(A)) satisfving

(A +p)~*] o H) < c — constant.

u' + Au = f.u(0) =ug € [D(A), H]

1
2

As a corollary we have following proposition:

Proposition 2.4.10. Let A € L(V, V') be coercive operator. Then for given f € L*(0.T: H),

1y € V there exists a unique solution v € L*(0,T; D(A)) N C(0,T:\") of the problem:

%-FVA’U,

f (2.4.8)

U(O) Up

and it satisfies u' € L*(0.T; H). Moreover, for a constant C' = C'(\, T.v) independent of

L) and f,

2 |
Iu,‘%Q(O,T;H) T V2|U|i2(0,T;D(A)) S C(lfI%Q(O,T;H) + [uoly); (2.49)

Proof of Proposition 2.4.10. It follows from Theorem 3.6.1 p.76 of [71] that — .1 generates

analytic semigroup in H. Therefore, existence and uniqueness of solution u follows from

Theorem 3.2 p.22 of [54]. It remains to show (2.4.9). Define \' = {u € L4(0,T:D(A))
W e L0, T-H)}, Q € LNV x LY(0.T:H)), Qu = (u(0). v’ + Au). Then Q is one-
to-one and onto operator and, according to open mapping theorem, there exists continuous

inverse operator Q ' € L(1" x L*(0.T: H)..\V') and (2.4.9) follows, O]
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Now I consider important example of Stokes operator:

Example 2.4.11. Suppose that D C R"- open bounded domain or R",

V:={ue(C;°(D,R"): V. u=0}
H := closure of V in L*(D.R™):

V .= closure of V in H,(D,R™).

and a : V x V — R! is defined by
T
a(u,v) = Z /Viujvivjd:c
Form a : V x V — R! is coercive, bilinear, continuous and symmetric. Therefore, from

Lax-Milgram theorem follows that for any f € V"’ there exists unique v € 1" such that
a(u,v) + A(u,v) =< fo >y y.YoeV (2.4.10)

Define A € £L(V,V’) by identities a(u,v) =< Au,v >y-+. Then operator A € L(1. 1)
1s self-adjoint and coercive by Theorem 2.4.3 and definition 2.4.2. We notice that this

operator 1s a Stokes operator, see section 2.6 below.

Remark 2.4.12. Notation of this example shall be used later (unless otherwise stated).

2.5 Helmholtz Decomposition

In this section I shall recall one characterization of space H, which appear in the study of
Navier-Stokes equations. I omit proof which can be found 1n Gald: [39]. Temam [72] or

references therein.

The proof of the following Theorem 2.5.1 can be found in Galdi [39]. Theorem II1.1.1m

p.107. This result states that the Hilbert space L2(D) can be decomposed into a sum of two
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orthogonal subspaces H and GG. The first of these spaces contains the set of all smooth

divergence free vectors of compact support in [ as a dense subset. The second subspace

contains the gradients of all single-valued functions defined in . And the decomposition

theorem 1mplies the existence of unique orthogonal (Leray or Helmholtz) projection P
from L2 into H. It follows that P : L.? — H is linear, bounded, idempotent (P? = P).

Range(P) = H and ker(P) = G.
Theorem 2.5.1. Let D C R" be an open bounded set with a sooth boundary. Then H and
G = {u € L*(D) : u= Vp, for somep € W,.*(D)}

are orthogonal subspaces of .*(D).

Moreover (D) = H & G.

2.6 Stokes operator

In this section we define Stokes operator and present some of its properties, see [21] for
details.

We assume that domain D has boundary of C* class.

Definition 2.6.1. The Stokes operator A : D(A) — H is defined by

D(4) =H25(D)NV. A:= —PA.

sol

We have the following proposition (theorems 4.3,4.4 ot [21]).

Proposition 2.6.2.(1) A is self-adjoint and positive definite operator.
(2) A is isomorphism from V" to 1.

(3) A has inverse operator A™' : H — H and A"" is a compact operator.
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(4) There exists orthonormal basis {e;}>2, of H and sequence {\, j}i<1 such that

Ae; = Aje;.7=1,... (2.6.1)
D<A <...<A <A <. (2.6.2)
7— 00

Due to the proposition 2.6.2 we can define D(A%) as follows:

Definition 2.6.4. Let o € R. Define
D(Aa) — {U - H:u= Zujej. Z )\?a“lljF < C)C}
j=1 j=1

and
o0 o0
v ¢ — o o — L.
A%y = E ASuje; for u = E Uj;€;.
1=1 71=1

Remark 2.6.5. We notice that D(.4%) is Hilbert space with scalar product

(U4, V) p(aay = ZUJUJ)\2Q

1=1

Remark 2.6.6. From definition of A%. o € R it immediately follows that A% : D(.A*T?) —

D(A?) is isomorphism for each p € R.

Lemma 2.6.7. We have for o > 3 that D(A%*) C D(A”) and the embedding is compact.

Proof of Lemma 2.6.7. We will identify u € D(A%) with sequence {u;}52, such that u =

Z ;¢ ;. We will also identify D(.A%) with the set of sequences {u; };2; with finite norm

j=1
OO

2 2

Z Ay ]
j=1
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Let B be a unit ball in D(A%). It is enough to show that any sequence u = {u*}~, C B

has finite = cover for each = > 0 i.e. for each € > 0 there exists finite set Q- ={q..... q '}

such that ||u — Qellpasy < €. Let us show first that each element of u can be uniformly

approximated in D(A”) by its finite dimensional projection. We have that lim \; = x.

j—x

Therefore, there exists d € N such that \2P~% < e/2. Then

d+1
[u® — ZU €J||D(A6 Z /\23"“ * <
7=d+1
2(—a) — 2(0—a
Nav1 N ARAE < DB < 22 (2.6.4)
j=d+1

Denote u, set of finite dimensional projections of elements of u. We have that the set u, is

d
bounded, countable and lies in finite dimensional space Xy = {u € H : u = 5 u,¢;} =
i=1
R%. Therefore, it is compact and there exist Q. C X, such that
[ug — Qel|prany < €/2 (2.6.5)

Thus, 1t follows from (2.6.4) and (2.6.5) that

lu — QEH%(AE»') < £

2.7 Interpolation theory and positive definite self-adjoint
operators

In this section we present some tacts from interpolation theory we will need 1n the thesis.
We will consider only the simplest set up, see [74], [6] and [61] for much deeper explana-

tion of the theory, and describe only real interpolation A -method.
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Suppose X, X; are two banach spaces continuously embedded in vector space .. We
say that X = (X, X;) is compatible pair in this case. We equip spaces .Xy; N .\'; and

Xo + X; with the norms

1
|l xonx, = (Jull%, + lull%,)?
and

: 1
ullxo+x, = inf  {([Jullx, + [lullk,)?}-

u=ug+ul
ug€Xo,u1 €X1

Define K -functional as follows
K(t,u,X)= inf  {(|ull), + t}ullk,)2}.t > 0,u € X+ X|.

Next we define weighted L ,-norm,

1

i dt
Fllea = | [ 105015 | 0<8<11<0<x,
0

Definition 2.7.1. We define

(XO)XI)Q,q — {U - X() + X1 ) HK(*,,U,X)H@H < C)C}

and put

HU’H(KFUH}(I)B,Q — HA( U~X)H9,Q'

Lemma 2.7.2 ([61],p.320)(i) Ifu € XoN.Xy, then u € (Xo. X1 )s,q and there exist constant

¢ = c¢(6.q) such that
[l v x00q < €@l lullk, < e@-@llullxonx,

(i) (No. N1)oq C Vo + -\
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() If X = (Xo,X1),Y = (Xo,Y) are compatible pairs and Y C X, is a continuous
embedding, then
(Xo, Xl)é?,q C (Xo._ }”r)gﬁq.

Proof. Parts i and ii are proved in Lemma B.4 [61],p.320. Part iii follows from definition

of interpolation pair. L]

We will need also following two theorems:

Theorem 2.7.3 (see [74], p.167). Assume X be a Hilbert space, A : X — X be a pOSItive

definite self-adjoint operator. Then
(D(A%), D(A®))ga = D(A*?+PU=0) o 3> 0.0 € (0.1) (2.7.1)

Theorem 2.7.4 (see [61], p.330). If sg,s1 € R and Q) is an open non-empty subset of
R™ then

(HSO’Q(Q), Hsl’z(Q))Q,Q — HS’Q(Q) or § = (1 — 9)80 + 95'1,9 € (0, 1)

2.8 Stochastic analysis

[ assume basic knowledge of stochastic analysis in Hilbert spaces, see [24]. and present
here certain definitions and results for completeness. In this thesis I will use only very
particular case, which can be easily deduced from finite dimensional results. The following
notation will be used throughout. Let (2. F7.P) be a probability space with increasing

richt-continuous filtration {F;}>¢o C F. Il}-standard R" valued wiener process, .\ be a

Hilbert space. £'(.\")-Banach space of trace-class operators with T'ro denote the tracc of

o € LY\, M*¥(0.T; .Y) denote the space of .\ -valued processes & such that
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1. & 1s F;-measurable for t € [0, T7).
T
2. E [ 1&]|5%ds < ~x.
0
Suppose alsothat V C H = H' C V'isa Gelfand triple. Then for any £ € M-(0.T: H™)

we can define stochastic integral M; = >, f &5 (s)duws as an H-valued random variable

given by equality

T T
(h, ) / £F(s)dw?) / s))dwsvh € H.
k0 0

M- is a continuous H -valued martingale on the segment [0, 7'| and one can prove following

[to formula (Theorem 1.2 p.135 from Pardoux [63]).

Theorem 2.8.1 (Ito formula). Suppose:
U < 1)\[2(0, 1" V)

Uy € H
v € M0, ;17

¢ € M=(0,T; H"). with:

L

w(t) = ug + / v(s)ds + Ek: j oF (s)dw”

0
Let v : H — R be a twice differentiable functional, which satisfies following assumptions:

(i) v, v and v" are locally bounded.
(ii) Y and y' are continuous on H

(i) YQ € LY (H), Tr(Q o ") is a continuous functional on H.
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(v) Ifu eV, ¥ (u) € V;u — ' (u) is continuous from V (with the strong topologyv) into

V' endowed with the weak topology.
(v) 3k s.t. H"’(;'f’f(’LL)HV < k(l + Hullv),‘v’u c V.
Then:

B(u(t)) = o (uo) + / <u /) > ds+ 3 / (0 (w), ¢F)dut+5 3 / (" ()0 o'
O 0 t
: (2.8.1)

2.8.1 Comparison theorems

Here I present Gronwall lemma and its analog for stochastic analysis i.e. Comparison

theorem for one dimensional diffusions (chapter vi, Theorem 1.1 in [44],p.352):

Theorem 2.8.2 (Comparison theorem). Suppose we have:

p :0,00) — R — strictly increasing function such that p(0) = 0, ;fopés)g = .
o € ('([0,00) x R,R) such that

o(t.z) —o(t,y) < p(lz —y|).t 20,0,y €R
by.by € C([0,00) x R,R) such that by(t. r) < ba(t,r),t > 0,1 € R
two (F,)-adapted processes xy(t.-), z2(t. ).
B(t, -)-one dimensional brownian motion such that B(0) = 0 a.s..
nwvo real (JF;)-adapted processes (i(t. -), 32(t. -).
Assume that the following conditions are satisfied with probability one:

: :
ri(t) — i(0) = /0(.9.‘1‘,(5))(18_..; + / F(s)ds. 1 = 1.2, (2.8.2)

0 O
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3(t) < by(t. z,(t)).t > 0. (2.8.3)
/BQ(t) > b?(tIQ(t))at > 0, (2.8.4)
.’L‘l(O) SIQ(O) (2.8.5)

T'nen, with probability one, we have

E ] A I

Furthermore, if the pathwise uniqueness of solutions holds for at least one of the following

SDESs

t t

X(t) — X(0) = /U(S,X(S))dBS + /bz—(s,X(s))ds.z' = 1.2

then the same conclusion holds under the weakened condition

bi(t,r) < b(t,r),t >0, €.

Lemma 2.8.3 (Gronwall inequality). Let 1" > 0 and ¢ > 0. Let u be a Borel measurable
bounded nonnegative function on |0, T|, and let v be a nonnegative integrable function on

0, T'). Assume that u - v is integrable on [0.T] and
t
u(t) < c+/ v(s)u(s)ds. te€(0,T]. (2.8.7)
0

Then
u(t) < cedort9)ds 4 0,T]. (2.8.8)



Chapter 3

Selfduality of vector transport equation

In this chapter I study the vector advection equations of the following form

%Ct; = —VAG +curl(v(t) x G).t € [0.7].
G(0,-) = Go.

Here we assume that H 1s the Hilbert space defined in Chapter 2, Example 2.4.11. More-
over, A 1s the Stokes operator defined also 1n that chapter in section 2.6. Function v &
L7(0.T:;1L*(R°)), where % + % = 1, r,s > 0, and the 1nitial data Gy € H are assumed to
be known. A precise definition of a solution 1s given below in definition 3.1.6. I will prove
that the solution of the above problem 1s self-dual in a sense described below. Self-duality
allows us to show certain properties of the vector transport operator. In particular, I will

show that the Lﬁ(]I-]I"‘:’2 H**) and E(Hl_k‘Q, H'~**) norms of the operator of vector transport

sol* "7 sol sol sol

operator 7, defined in formula (3.3.2), where H:Of 1s defined 1n section 2.3, are equal, see

|
912
sol

1 .
12, .

.H?2 ') is in certain sense optimal

Corollary 3.3.5. Moreover, I prove that the space L( z

for vector transport operator, see Corollary 3.3.7. This duality can be understood as gener-

alization of invariance of helicity for Navier-Stokes equations. see Corollary 3.3.8. I also

30
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reprove, see again Corollary 3.3.8, the classical result of Serrin [69], Prodi [64]. Ladyzhen-

skaya [49] on the existence of a strong solution to the Navier-Stokes equations if velocity

v satishes an additional assumption that
v € L(0.T; L*(R?)).

forsomer>2,s>35uchthat%+%:1.

3.1 General Setting

In this section I will introduce the equations I am interested 1in and I will state the existence

and uniqueness results. These results will be proved 1n the next section. 1 will use notation

introduced in Example 2.4.11.

3.1.1 Definition of Nonlinear term

Definition 3.1.1. Let us define a trilinear form b - C°(D) x D x D — R by
b(v. f.¢) =< P(v x curl f), ¢ >y v € CP(D). f € D.¢ € D. (3.1.1)

LLemma 3.1.2. Foranyé,e >0, v € C°(D). f € D.¢ € D there exists Cs > 0 such that

Y * Cs 2+ 2
b(v. £ 8 < ISR 161 + il (i) (312)
. 1 1 C's 2+ 8 _
|b((1* f (D)| < §||f||‘\r2 + §(€1+6/3|'OH% T €1+3/5Iv(t)|L3f6(D)|¢|§1)' (3.1.3)
1 - ’ Cs 2+3 2
b(v. f.9)|* < ‘®|2;1(51+6'X3|‘f“2D(.4) T 51+3/5|'1'|L3415(p]|f|\') (3.1.4)

To prove Lemma 3.1.2 I will need following result.
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Lemma 3.1.3. For any §,= > 0 there exists Cs > 0 such that
2 146/3 2 Cs 2+ 32 5 i o
Hf X g||L2(D) S € Hf”l + 51+3/6|9|L3+5(D)|f|H‘ f S 19 € H. (3-1-3)
_ 26 __ 3486 p _ 3 _
Proof of Lemma 3.1.3. Letp =3 — Tis0 4 = —-sz—-, 0 = T3 1hen % + % = 1 and

1f % 9”1%,2(1)) < /|f|2|g|2d:z: <
D

IfII%,2P(D)|g|I%2q(D) <

(11152 9 2y <

C 6
5 & 2+
et /3||f‘|%/ + 51+3/5|9\L3f5(1))‘f|%{~

where the first inequality follows from inequality (2.1.2), the second follows from Holder
inequality, the third follows from Gagliardo-Nirenberg inequality (Theorem 2.3.4) and

fourth inequality follows from Young inequality. L]

Proof of Lemma 3.1.2. We have for any (v, f,¢) € C°(D) x D x D that

b(v. f,9)]P =] < v(t) x ¢,curl f >y < (3.1.6)

Cs 2+ > _
ICurlfﬁ{I’U(f) X d)ﬁ{ < ||f”%’(51+50/3”¢”%’ T 51+3360 u(t) L3fgo(D)|o|%1) <
050 2+3%

)
TV IBR(E P + o (D) )

where equality (3.1.6) follows from (2.1.1), second inequality follows from Lemma 3.1.3.

Similarly.
|5(U f Qb)l —= | < "l.’(t) X ab,curlf VIV l < (3.1.7)
1 1
curl flfo(t) x olu < SIIfIR + 5lo(t) x off <
1 1 9 C& 2+36_ 2
:_'_;“erT)' + E(EH‘SOBHOHT' + 70 |V (Ol seso ) 101); (3.1.8)
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and

|B(U, f <}5)|2 = | < ’U(t) X curl f, ¢ >y |2 <

613 v(t) x curl f|f < |@l7 (€| flDa
Cs

2+ 2
+81+3/5 ‘U\L3+6(D) if‘l)

]

Fix 6o > 0. It follows from inequality (3.1.2) that for any &y > 0 trilinear form b is
continuous with respect to the L37% (D) x V x V topology. Therefore, for any §, > 0 there

exist continuous trilinear form b : L37% (D) x V x V — R such that

b('a "y ')I(*(?(D)X'DXD — B
Moreover,
b(v, f.¢) = —(v X ¢, curl f)g. (3.1.9)

Indeed, the form on the left hand side of equality (3.1.9) is equal to the form on the right
hand side of equality (3.1.9) for (v, f, ¢) € C5°(D) x D x D and both forms are continuous
in L37% (D) x V x V. Hence, for each (v, f) € L3t (D) x V" b(v, f.-) € V" and therefore

the following definition 1s well posed.

Definition 3.1.4. Let us define a bilinear operator B : L3+ (D) x V — V' by
< B(rUa f) (b PAURIE b(’U., fa ¢)'ﬁv S L3+6O(D)v f S Va Qb c V.
Corollary 3.1.5. There exists a constant (s, > 0 such that for any (v, f) € L**%(D) x 1,

Cs 2+ -
B(o NI < WFARETP + 7z @lis ) (3.1.10

Moreover, if (v. f) € L3t%(D) x D(A) then B(v. f) € H and

) 2 2+ 3
IB(F" f)lif S (El+s /3Hf“D(.-U T+ 143748, ‘p|L3féo(D)|f|%) (3]] ])
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Proof of Corollary 3.1.5. Proof immediately follows from Lemma 3.1.2. L]

3.1.2 Equations

Assume that Fy € H. f € L*(0,T;V"). I consider the following two problems:

OF
ot
oG

E:—VAG—curl(v(t)XG)—I-f,G'(O):FO (3.1.13)

Definition 3.1.6. I call element F (respectively G) of L*(0,T;V)NL>®(0, T: H) a solution

= —VvAF — B(v(t), F) + f. F(0) = F (3.1.12)

of equation (3.1.12)(resp. (3.1.13)) if F (resp. ) satisfies (3.1.12) (resp. (3.1.13)) in the

distribution sense.

In next two Propositions I state existence and regularity results for solutions of (3.1.12)

and (3.1.13).
Proposition 3.1.7. Suppose that (Fy, f) € H x L*(0.T;V") and

v E L2+%(O,T; L3+% (D)) for some &y > 0. (3.1.14)
Then

(i) there exists the unique solution F of problem (3.1.12) and

2

t
PR + v / |F(s)|[2ds < K / o(5) 255 ds. ) x
0 0

)
C
(1Fol}y + / F(s)ds). (3.1.15)
0,

Moreover, if the following stronger version of (3.1.14) is satisfied

v € L>(0, T:L>t%(D)) for some &, > 0. (3.1.16)

then I/ € L=(0.T:17).
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(ii) If in addition (Fy, f) € V x L*(0.T; H), condition (3.1.16) is satisfied, then F €
C'(10,T].V)N L*(0,T; D(A)).

(iii) If (F®(0). f*%) € V x L?(0,T; H), v'® satisfies (3.1.16), k = 1..... n then F'%) ¢
C(0, T],V),k=1,....n

Remark 3.1.8. I have used the class of functions L2+36_0(0, T;1L3%%(D)). 6y > 0 for the
parameter function v because it 1s possible to prove energy inequality (3.1.15) for solutions
of (3.1.12) if v € L% (0, T; L3+ (D)), 6o > 0. I would like to mention that the energy
inequality (3.1.15) does not automatically tollow from the type of equation (3.1.12) as in

the case of scalar advection. Indeed, in the case of scalar advection we have for [ €

L>=(0.T: L*(D)) N L?(0,T; Hy*(D)) following equation

%g. _ UAF + (WW)F. F(0) = Fy € L2(D) (3.1.17)

and formally speaking, under the following condition of incompressibility
divv =0

one can take scalar product of equation (3.1.17) with F' in L*(D), integrate the result

w.r.t. time and from incompressibility condition and integration by parts it tollows standard
a’priori estimate of F in space L*°(0.7; L*(D))NL*(0,T" H,*(D)). For vector advection

to get similar a’priori estimate we need some additional integrability condition on .

Remark 3.1.9. 1 notice that on the one hand, our class LQ’L%(O. T:1L3%%(D)) is a Serrin
regularity class (If r = 2+ ;5% s = 3+ 0p then ;) + % — 1) and therefore. any weak solution
of Navier-Stokes equations belonging to this class is strong solution. On the other hand, |
have been unable to prove that under assumption (3.1.14) solution F' of (3.1.12) satisfies

condition F’ € L*(0.T.1"). Problem which appears here is similar to the problem with



CHAPTER 3. Duality 36

weak solution u of Navier-Stokes equations, see [72], for which it is also not proved that

u' € L*(0,T: V).
For the second equation we have:

Proposition 3.1.10. Suppose (Fy, f) € Hx L*(0.T:V') and condition (3.1.14) is satisfied
T'hen

(i) there exists unique solution G of equation (3.1.13) such that G’ € L*(0.T:1") and we

have an estimate

t

t
GOP +v / 1G(s)|[2ds < K, / o()20/%ds. 1) x
O

0

l
C
(1Gol}y + ~ / F(s)[2ds). (3.1.18)
O

(ii) If (Fy, f) € V x L*(0,T: H), v satisfies (3.1.14) and v € L=(0.T.1"), then G €
C([0,T],V)N L*(0,T; D(A)).

(iii) If (G®(0), f*)) € V x L*(0,T; H), v'® satisfies (3.1.14) and v'*) € L*(0,T, V"),
h=1,....nthen G® € C([0.T],V),k=1,...,n.

Corollary 3.1.11. Assume that Fy € H,
f&) e 120, T; H).k € N.

Assume also that v\®) satisfies condition (3.1.14) for any k € N. Then solution of equation

(3.1.12) is in C>((0.T] x D).
Similarly for equation (3.1.13) we have
Corollary 3.1.12. Assume that Fy € H.

% e L*0.T:H).k € N
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and v'*) satisfies condition (3.1.16) for any k € N. Then solution of equation (3.1.13) is in

C™((0,T| x D).

3.2 Proof of propositions 3.1.7 and 3.1.10

Proof of Proposition 3.1.7.(1) 1 will divide proof 1n three steps a). b), ¢):

a) Let us consider special case when v € L®(0.T:L3+%(D)). We will use Theorem 2.4.5
with Gelfand triple V C H = H' C V'. Denote A(t) = vA+ B(v(t).-). We need to check
whether conditions (2.4.3) and (2.4.4) are satisfied. We have for f € |/

< ADVF, f >vv=valf. f)+ < B®). f). f >v1 . (3.2.1)

[Last term 1n the expression (3.2.1) can be estimated as tollows:

1 1
| < B(v(t), ). f >viv | < §||f||%/ T §(€1+5°/3||f|\%

Cg 24 2
+61+3(;50 IU(IL) Lajgo(D)lfﬁ{) (3.2.2)

where inequality (3.2.2) follows from estimate (3.1.3). Thus from estimate (3.2.2) and

continuity of form a tollows that,
Aoy < Cv+ Cofv(t)|Ls+so(py-
Coercivity condition also follows from estimate (3.1.3). We have tfor fel,tel0.T].

| < AW f f>vn | =valf. f)+ < B(e(t). f), f>vv | 2

1/ i (" C(s 2+i .
SR = 5 PN + 75l i)

Let us choose ¢ > 0 such that 5 — ©gl+%/3 > (. Then we get coercivity estimate (2.4.4)

Thus. by Theorem 2.4.5. first statement of the Proposition follows in our special case.
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b) To prove Proposition in the general case I will show the energy inequality for solutions
of equation (3.1.12) when v € L*®(0, T;L3*t%(D)). From step (a) we know that solution
F € L?(0,T;V) such that F’ € L?(0,T;V’) exists and unique. Then, from Lemma 2.4.6
and equality (3.1.9) follows that

1d

Ay = —|FIf+ < f,F vy = < B, F), F >y1y=

— —I/HFH%/—{- < f,F >V!,V +(CUI'1F,’U X F)H

Therefore, by applying the Young inequality, I infer that

t

FO) + 20 / F(s)[2ds — f (curl F(s), v(s) x F(s))gds = |[FO) +
9,

0
2

[ < 1), (@) vy ds < [FO)y +3 [1FG) s+ © [ 156) s
0 0

0

2
The term [(curl F(s),v(s) X F(s))nds can be estimated as follows:
0

t

14
[ (cort F(8),(5) x F(s)mds] < 5 [ |curl Fids +
0

0

t t
¢ f lv(s) x F(s)|3ds < §/|curlF|§{ds +
UV
0 0
L
C Cs
= [ onIRG) + i) R F())ds <
0
4 C t
C 5 5
< (44 Cerony [1P@)ds + oo [ (o) RIS F (o)
0 0

Let £ > 0 such that £ + Cgl+0/3 = ¥ then

POl +v [IFEIRds < IFOR+ 2 [15(:)ds
0 0
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t

Cs 2+6/6
bt [P (5 s
O

and, from Gronwall lemma follows that

C'(8p, u)f|v(s 2;‘?030'43
F(t)13 < (|F(0) / £(5)2ds)e .

Thus

F() +v/\|F s < Ky (| F(0)% + /|f ). ds)

C(s ,u)f\t'( V2T 0 g
(1+ / u(s)adds)e o TR (3.2.3)

(c) The general case. Let v € L2+%(0, T;1L3%% (D)) then by Theorem 2.2.14 there ex-
ists a sequence of functions {v,}%, such that v, € L>(0,T;L* (D)) and v, — v
In L2+%(0, T:1L3t%(D)). Let F, be a corresponding sequence of solutions of equation
(3.1.12) with v replaced by v,. Then from inequality (3.2.3) 1t follows that the sequence
{F,}>, lies in a bounded set of L>°(0.7; H) N L,(0,7T;:1"). Therefore, by the Banach-
Alaoglu Theorem there exists subsequence { F,} and F* € L*(0,T; H) such that for any

g€ L'(0.T;H)
T

/ (F, — F* q(s))pds — 0 (3.2.4)
0

Similarly, from the Banach-Alaoglu Theorem follows that one can find subsequence { F,~ }

of {F, } which converges to F** € L*(0,7:1") in weak topology of L*(0,T:17) i.e. for
any g € L-(0.7:17)

T
/ < Fy — F**.q(s) >y ds — 0. (3.2.5)
0
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In particular, (3.2.4) and (3.2.5) are satisfied for ¢ € L*(0.T: H). Therefore F* = F™~ €
L>(0,T,H)N Ly(0,T:;V). Put F = F*. Now it remains to show that F' satisfies equation
(3.1.12) in the weak sense. Let «: € C*°({0.T].R), v(1) = 0, h € 1". Then by part (a) of

the proof I have

- /(Fn(s)v h)Hw,(S)dS " / < B(Um Fn)? h ZVIV 'L"f-“(S)dS ™
) ] G(F. (). h)(s)ds = (Fy, h)sb(0) +

T
/ < f(s),h >y v(s)ds.. (3.2.6)
0

From (3.2.4), responsibly (3.2.5), immediately follows convergence of the first term. re-

sponsibly third term, on the left hand side of this equality. For the second term I have

T
|f < B(vn, F) — B(v, F),h >y v Y(s)ds| <
0

T
| / < B(v, —v. F,),h >y v ¥(s)ds| +
0

T
| / < B(v,F, — F),h >y ¥(s)ds| = I, + 11,.

0

Let £ > 0 be fixed. For any 5.3 > 0 I have by inequality (3.1.3)

T
[, < eq / | curl Fnlif’,ds+
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~——5HFn||L2(0TV) T ‘“—|h|v / = |2d3+

Clhly
£3&2 /'Un U|1L3+60(D W|2d3-

24

Taking into account that F;, is bounded in L, (0. T'; V') and v,, converges to v in L“" % (0. T"

L°>+%(D)) I can choose €2,63 and N = N(e) in such way that I, < £ n > N.

For 11, I have 1], = |f < F, — F curl(v X h) >+ ¥(s)ds|. From (3.1.5) follows
that v x h € L,(0,T; H) ::nd, therefore, curl(v x h) € Ly(0.7T: V') and convergence of
[ 1, to 0 tfollows from (3.2.5). Uniqueness of F' follows from energy inequality. Thus, first

statement of the Proposition 3.1.7 1s proved.

(11) To prove [11] I tollow an 1dea from [15], see also [11].

T
Lemma 3.2.1. Let g : [0,T] — R be measurable function such that | |g(s)|ds < . Then
0

T5i41
for any & > 0 there exists partition {T;}?_, of interval [0, T] such that | |g(s)|ds < o,
T;

1 =1,....1.

Proof. Immediately follows from absolute continuity of Lebesgue integral. (Theorem 5

p.301,[46]). []

Local existence of solution. Let X7 = {F : [0.T] — D(A)||F|%, = V*|F|{201.p(1) T
F'|22000.my < X} Define amap @7 : Xr — X7 by &7(z) = G, where G is a solution

of the problem

G' +vAG = f— B(v(t),2).G(0) = F (3.2.7)

Lemma 3.2.2. If v satisfies assumption (3.1.14), f € L*(0.T: H), Fy € V" then B(v(t),z) €

L0, 7 H) and map & is well defined.
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Proof. It 1s enough to prove that B(v(t),2) € L*(0.T: H). Then correctness of definition

of &7 will follow from Proposition 2.4.10. I have from inequality (3.1.11):

|B(t), )220y < Crle-60)lI2I a0z (o)

8

2 |
+Cs(€, dp) |Z|C(0,T;‘“’) 1 1L2+3'66 (0,T;L3+% (D))

and the result follows from Lemma 2.4.6. L]

Let us show that there exists such 77 < T that &, is contractive map. I have by

Proposition 2.4.10 and inequality (3.1.11)

||(I)t(z1) o (Dt(zQ)Hg(t < Cl”B(U, 1 — :2)||iz(0,t;H) S

Cs

2 = 222l <
13376171 T F21C(0.41) V1246760 (0,TiL3+50 (D)) S

Cs
01€1+50/3'21 — z2|2Xt + Cl €1+3/5 |21 — 22|§(t |U|L2+6/‘50(O,t;IL3+50(D)))

&

Now let us choose € > 0 that Cye'+%/% = 1/2 and denote K = (', 4. | have

[|De(21) — (I)t(z2)||§(t < (1/2+ K‘l’|L2+6/6o(o,t;L3+6o(D)))IZI — 3‘2|,,2x',. (3.2.8)

Choose t = T such that [¢| L2+6/80 (0. Ty L3+60 (DY) S @ = ﬁ then &1, 1s an atfine contraction

map and by Banach fixed point theorem there exists fixed point F' € X, of &p,. Then F

is a solution of equation (3.1.12) on interval {0, 77].

Global existence of solution. From Lemma 3.2.1 and assumption (3.1.14) it follows that
[ can find partition 0 = Ty < 1} < ... < Tx_y < Ty = T of interval |0. T} such that
02680 1 1, L3 H00(D)) < 1/3K,1=0..... h — 1. Therefore, I can use estimate (3.2.8)

and Banach fixed point theorem iteratively to define global solution.

(iii) To deduce [iii] I will use a method suggested by R.Temam in [73]. I will consider only

the case A = 1. General case follows by induction. Let us recall that
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A(t) = vA + B(v(t).-).

[ differentiate equation (3.1.12) w.r.t. ¢ (in weak sense) and get equation for F:

dF”
at

= —A(t)F'+ B(v'(t).F) + f

Now from assumptions of statement [11] follows that it is enough to prove that B(v'(t). F') €

L#(0,T; H) and use part [i]. I have from inequality (3.1.11)

[ 180/ @). Pt <

0

gl+oo/3 / |curl FIZdt + ——2

1+3/d0

T
/ ' (t)[F 3450 (py ) curl F[3dt < 81 F| 120 1:p(ay) +
0

C's 2+
€1+3[;50 ||F||C (0,T;V) / IU Lgfgo dt < >

Where F' € ('(0,T; V') by Lemma 2.4.6.
]

Proof of Proposition 3.1.10. The prootf 1s very similar to the proot of previous proposition.

a) Let us consider special case when v € L®(0, T:L3*t%(D)). I will use Theorem 2.4.5
with Gelfand triple 1" ¢ H = H' C 1”. Denote B(t) = vA + curl(v(f) x -). I need to

check whether conditions (2.4.3) and (2.4.4) are satisfied. I have for f € |

Bt)f. f > v=va(f. f)+ <curl(v(t) X f). f >y =

=va(f. f)+ <v(t) x f.curl f >y . (3.2.9)
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Now I can use estimate (3.2.2) and continuity of form a to get
1B(O)lcvyy < Cv+ CQ\U(t)hS*—éo(D)-

Coercivity estimate can be proved in the same way as in the proof of Proposition 3.1.7.

Therefore, by Theorem 2.4.5 first statement of the Proposition is proved for our special

Casc.

b) To prove Proposition in general case I will show energy inequality for solutions of

(3.1.13) whenv € L>(0, T;L3*%(D)). From step (a) I know that solution F' € L?(0.T:1")

such that F' € L*(0,T; V') exists and unique. Then, from Lemma 2.4.6 follows that

1 d
2dt|G|H — —I/||G||V+ < f G > 1 <V X G CurlG SNy =
— _VHGH%/_l_ < f:! G >V’,V +(CUI'IG.} 1! X G)H
Therefore,

{

G (1|5 + 21// 1G(s)|}ds — /(curlG(s).v(s) x G(s))yds = |G(0)|% +

0
t

\/ (]H

/ < £(5),G(s) 10y ds < |GOf + 2 / Gls)fpds + / F(s)]2
0 0

0

L

where inequality follows from Young inequality. Term [(curl G(s).v(s) x G(s))ns can
0

be estimated in the same way as in Proposition 3.1.7. Thus

t
GO + v / G(3)|[Bds < Ky(|GO)2 + / £(s)
0

2+6 .4
C(do, u)_ﬂv(s \ 3 (q“l}ds

t
1+ [ ) teds)e 3210
0
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c) General case. Now, let v, € L>®(0.T:L3*%(D)) is a sequence of functions such that
Vp — U € L2+3%(0..T;]L3+50(D)).n — ¢ in topology of L2+%(O.T:L:3*5*’(D)): G,
1s a corresponding sequence of solutions of (3.1.13). Then from (3.2.10) follows that se-
quence {G,}>%, lie in a bounded set of L>°(0,T; H) N L,(0,T: V). Using the same argu-
mentation as in Proposition 3.1.7 I can find subsequence {G,}25_, weakly converging to
G € L*°(0,T; H)N Ly(0, T; V) which satisfies (3.1.13) in a weak sense. Uniqueness of G

follows trom energy inequality. The only difference with previous Proposition is that I can

prove that G’ € L*(0,7,V"). I have

T
IG1Bx0m) = IBOGI Ry < [ WAG + curl(v(t) x G <
O

T

|G a0y, + / 0(t) x G()ydt < 12)|G| e +

0
T

24+6/6
(@GO} + Cale %P IGOR)d: <
0
2 2
CollGIso ) + CollGImran|tl avt v < X

Thus, first statement of the Proposition is proved. [1] and [11] are proved in the same way as

in Proposition 3.1.7:

(i) Local existence of solution. Let Xr = {F||F|%, = V|F|1:0 .04y T | F' 1200120 <

~ }. Define a map &1 : N7 — X1 by &7(z) = G, where G is a solution of the problem
G'+VvAG = f —curl(v(t) x 2),G(0) = Fy (3.2.11)

Lemma 3.2.3. If v satisfies assumption (3.1.14), v € L*(0.T:V"), f € L*(0.T: H), F, €
V" then curl(v(t) X 2) € L-(0.T: H) and map O is well defined

Proof. It is enough to prove that curl(r(t) x z) € L*(0,T: H).Then correctness of defini-
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tion of ¢, will follow from Proposition 2.4.10. I have:

|| curl(v(t) X Z)H%?(O,T;H) < Cf(HZVUH%,?(o,T;H) T HUVZ”%?(O,T;H)) <

Cleleorwtlzony, (212
and the result follows from Lemma 2.4.6. ]

Let us show that there exists such 77 < T that &7, is contractive map. I have by

Proposition 2.4.10 and Lemma 3.1.3

[@1(21) — De(22)[|%, < Crll curl(v(t) x (21 — 22)) L2000y <

Clz — Zzlzc‘(o,t;vﬂvﬁ?(o,t;m < Oz - Z2|2x,|’0|%,2(0,t;1')

Now let us choose ¢ = Tj such that |v|p2¢0+v) < 1/2 then @1, is an affine contraction map

and by Banach fixed point theorem there exists fixed point F' € Xp, of ®1,. Then F'i1s a

solution of equation (3.1.12) on interval |0, T3 |.

Global Existence of solution. From Lemma 3.2.1 and assumption (3.1.14) it follows that
I can find partition 0 = Ty < Ty < ... < Ty_y < Ty = T of interval |0, T'| such that
12000y < 1/2,0=0,....k — 1. Therefore, I can use estimate (3.2.8) and Banach

fixed point theorem iteratively to define global solution.

(i) I will consider only the case £ = 1. General case follows by induction. I differentiate

equation (3.1.12) w.r.t.  (in weak sense) and get equation for F:

dF’

- — AN F" + curl(F x '(t)) + f

Now from assumptions of statement [ii] it follows that it is enough to prove that curl(F" X

'(t)) € L*(0,T: H) and then use part [1]. By estimate (3.2.12) and Lemma 2.4.6 I get the

result.
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Proof of Corollaries 3.1.11 and 3.1.12. Here I follow remark 3.2. p.90 in [73].

I have a weak solution F of equation (3.1.12)(corr. (3.1.13))in L>(0. T HYNL*(0.7T:1")
by proposition 3.1.7(corr. 3.1.10).

Choose arbitrarily small t; > 0 such that F'(ty) € V. By proposition 3.1.7 (corr. 3.1.10)
I have that F € L*(tg, T; D(A)) N C(ty, T: V).

[ choose t; > ty, t; arbitrarily close to tg such that F'(¢;) € D(A) then (3.1.12) (corr.
(3.1.13)) shows that F'(¢;) € H. I conclude by proposition 3.1.7 (corr. 3.1.10) that [’ €
L>(t,, T H)N L*(t;, T: V).

I choose t, > t;, t, — t; arbitrarily small such that F'(¢,) € 1" and conclude that
F'e€ L*(ty, T; D(A)) N C(ty, T; V), etc.

Finally 1 get that Fk) ¢ C(|t;, T].V),k = 1,...,n for t; arbitrarily close from 0,

arbitrarily large. The regularity follows by Sobolev embedding theorem. ]

3.3 Duality

Here I state main theorem of the chapter and deduce some corollaries.

Theorem 3.3.1. Suppose that Fy € H, Go € H, v € L**% (0. T; L3+%(D)). Let F and G

be solutions of problems

-(—gf— = —vAF — B(v(t). F).t € [0,T)] (3.3.1)
F(0,) = Fo,

0G

= —vAG + curl ((T —t) x G).t € [0,T]. (3.3.2)
G(0,:) = Go.
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Then the following identity holds
(F(t),G(T —t))u = (F(0),G(T))u,t € [0,T]. (3.3.3)

Proof of Theorem 3.3.1. First step. Let us prove theorem in the case of smooth initial data
and smooth v. I can find F§ € C*(D)NH, G, € C*(D)N H, v* € CX([0,T] x D)N
L**% (0, T; L3*% (D)) such that FS — Fy, & — 0in H, GE — Go, € — 01in H and v —
v, € = 0in L>®(0,T;L3*+%(D)). It follows from Corollaries 3.1.11 and 3.1.12 that there
exists solutions F¢ € C(0,T; HYNC*((0,T] x D), G¢ € C(0,T; H)NC>((0,T] x D))

of equations
OF*¢
el —vAF® — P(v®(t) x curl F*)
FE0,) = FS
0G*
5 —vAG® + curl (v¥(T —t) x G)
G*(0,:) = Gp
Therefore, for t € (0,7} I have:
d £ £ d € £
_(F (t)aG (T _ t))IL2(D) =< —F (t)aG (T — t) >L2(D) —

dt dt
(Fe(b), .j_taew — )2y = Y(P(AFE(t)), G5(T — t))L2(p)

—(P(v(t) x curl F¥(t)), GS(T — t))L2(p) — V(F*(1), P(AG*(T —t)))L2(p)
—(F*(t), curl (v(t) x G5(T —t)))L2(p) = (2) — (22) — (132) — (2v)
It follows from the fact that div F® = divG® = 0, F¢|sp = G¢|sp = 0 and formula of

integration by parts that (F¢, V)12(p) = (G*, V)L2(p) = 0 forany ¢ € C>(D). Thus,

I have

(i) = (P(AFE(1), GX(T — t)hapy) = (AF<(t), G*(T — )LDy,



CHAPTER 3. Duality 49

(#3) = (P(v(t) x curl F*(t)), G*(T — t))L2(p) =

(v(t) x curl F*(t), G*(T — t))L2(p) (3.3.4)

and

(432) = (F*(t), P(AG*(T — t)))r2p) = (F*(t), AG* (T — t))L2(p)

Therefore, I get (i) — (¢7¢) = 0 by Green formula. From (2.1.1), (3.3.4) and formula

/ucurlvd:z: — /vcurlud:c = /(u X v, 0 )do

D D oD

follows that

(it) = (v(2) x curl F*(¢), G*(T — t))r2(p) =
—(curl F#(t) x v(t), G¥(T — t))L2(p) =

—(curl F*(t),v(t) x G°(T — t))L2(p) = —(iv).

Thus, I have £(F*(t), G5(T — t))r2(p) = 0,t € (0,T]. Also, from regularity of F¢, G
follows that (F(t), G¢(T — t))L2(py € C*((0,T]) N C([0,T]). As aresult I get (3.3.3).

Second step. Let us show that F.(t) — F'(t) in weak topology of H and G, — G in
C([0,T], H) topology. Then I have

((F(2),G(T —t)) = (F*(¢),G(T - t))| =
(F = F£(t),G(T —t)) + (F*(t),G - G*(T - t))| <

(F — F*(t),G(T = t))| + [F*(8)|n]|G — G*(T - t)|nw <

(F — F(t),G(T — t))| + |Fg|u sup |G —G*(t)|lg — 0,e =0

tel0,T)

ie. (F(t),G(T —t))y = lim(F*(t), G(T — t))n and the result follows from first step.

e—0

To show weak convergence of F.(t) to F'(t) I notice first that F converges to F' in weak
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topology of L*°(0, T'; H) by Banach-Alaoglu theorem (proof is exactly the same as proof of
convergence of F,, to F' in Proposition 3.1.7). Also, I have from Banach-Alaoglu theorem

that F**(¢) weakly converges to some ¥(t) € H. Let us show that ¥(¢) = F(t). I have

T

Of(FE(S) — F'(s),q(s))uds — 0 for any ¢ € LI(O,T; H). Put q(s) = 6\/21?,-6_”_3'2/21- c
T

L'0,T;H),£ € H,K(e,7) = [(F*(s),6)nA=e"*"*"/?"ds. I have
0

lim lim K (¢, 7) = (¥(t), £), lim lim K (¢, 7) = (F(t), £)

e—0 7—0 T—0£—0

and 0 < K(e,7) < |€|g|Fo|u. Therefore, I get F(t) = ¥(t). Thus, it remains to show that
G. — G in C(|0,T], H) topology. Denote R = G¢ — G. Then I have

63]: = —VAR + curl(v*(T - t) x R°) + curl((v° — v) x G)
R°(0,) = G§— Go.

I have from energy inequality (3.2.10) that

A P- 3
R |C(0,T;H) < C(jv |L2+365(0,T;L3+50(D))) X

(IG5 — Golyr + [ curl((v — v°) x G)|L20,1:v))

A

C(lv )(1G5 — Golg + |(v = v°) X GlL2015m)) <

E
|L2+ 3 (0,T;L3+%0 (D))

C(|U‘L2+3%

T
paseso)1G5 = Goll #7787 [ (G ds +
0
Cs,

2 €
7-1+3/5o ‘GIC(O,T;H) I'U o U|L2+3%(O,T;L3+‘50(D))) (335)

where I have used Lemma 3.1.3 in last inequality and 7— arbitrary positive number. Now,

from convergence v to v In L2+365(0, T;1L3+% (D)), G§ to Gy in H and (3.3.5) I have the

result.
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From now on I will consider case D = R3. I notice that in this case if F is a solution

of Problem 3.1.12 with parameters (Fy, f, v), then curl F' is a solution of Problem 3.1.13

(with parameters (curl Fy. curl f, v)).

Definition 3.3.2. Let 7/ : H — H be the vector transport operator defined by T+ (Fy) =

F(T), where F is the unique solution of equation (3.3.1).

Define also the operator of time reversal by S* (v)(t) = —v(T —t). Then from Theorem

3.3.1 I infer that

Corollary 3.3.3. Assume that Fy € V, Gy € H, v € L2+3§5(O, T:1L3%%(RR3)). Then I have

following duality relation:
(curl Fy, Tq‘?T(U)GO)H = (curl 73 Fy. Gy) . (3.3.6)

Remark 3.3.4. This Corollary can be used to define operator 7, on the functions from

Sobolev spaces with negative index.

Corollary 3.3.5. Assume that either v satisfies condition (3.1.14) or there exists unique
solution F € L>(0.T; H) of equation (3.3.1) with initial condition F;y € D(R°.R?) such
that duality relation (3.3.6) holds. Then

= |7 O] pgr-r2 gi-r2). k € [0,1]. (3.3.7)

sol ) sal

||Tt ||g H* 2 1

sol ' " sol )

Proof of Corollary 3.3.5. Indeed, by (3.3.6) I have

< Tlo.v >
le‘Hﬁ(Ha 2 gk o2y = sup I | =
soi’ 801 CJ,L‘ED(RB,RS) ||OHHk 2”1, ||H—k 2

sol

\ < curl Tf’cb. curl ! ¢ > ‘
Sup \- e
ove DEELED ”d)HHf:ﬁ "'Hﬂiﬁ"?
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T
| < curlo. TY‘? ® curl™ o >

sup _
6,ED(E* R3) [lollge2 || v |g=+-2

sol sol
T
<077 Vu>|
sup == ——— —

¢, €D(R3,R3) H@HH‘C—IJHU“Hluk.Q

sol sol

ST
177 | pggi—ra e

sol sol

L]

Definition 3.3.6. By X, I denote the class of all functions u : [0.T] x R® — R? such that

(1)
u€ L0, T, H).
(ii) There exists unique solution of equation (3.3.1) with parameters u and S*(uljpy). t €
0, 7).
(iii)
|7;u|£(Ha,2 go2y < 00, 1€ 0,7

sol’

Then the following result follows trom Corollary 3.3.5

Corollary 3.3.7. Assume that o € [0.1] then X, = X1_o C X 1. Space X 1 is invariant

with respect to scaling (Wu)(t,r) = Au(Mt, A r), A< 1, t€[0.T) r € R°.

Proof of Corollary 3.3.7. Property X, = .\ ,_, immediately follows from Corollary 3.3.5

and definition of .\',,. Let us show that .\, C XA 1. Letu € X... ThenVt € [0. 7] I have

T € C(HS HE). T € L(H ™" Hop ™).

sol * “*sol sol

Indeed. it follows by definition of ., that S'(u|jps) € X, and by Corollary 3.3.5 I have

that
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F
l’H

St(uljo,t])
Ic(HCl,z Ha,? .

sol *" " sol

|7;u|£(Hl—a,2 Hl—a.,Q) — |7;

sol T sol

Theretore, by interpolation theorem ([74]) I have that

z];u c E([HQ,Q Hl_aﬂ]l/g., [HQ,Q Hl—a,Q]l/Q),

sol * “sol sol * “*sol
1.e.

T e L(HZ? . H2)

sol - 30l

Third property follows from identity

T, U\(Fy) = UA(T*Fy)

1
212
sol °

and boundedness of scaling operators ¥ and ¥’ = ¥ 1 in H []

Consider family of spaces (H%?, X,), « € [0. 1|. Then Corollary 3.3.7 shows that the

sol ?

1
12 . . . . .
space (H?2',, X1) is optimal for definition of vector transport operator 7,* in the following

a
3ol 5

sense: The set v € X, for which I have

T* € L(H®! H*?), o € [0.1].

sol ' “"sol

1s the largest one for a = % Now I will get classical existence result of Serrin-Prodi- La-

dyzhenskaya ([69], [64], [49]) which 1n our context means that 5 U ; L i (0, T: L3+ (R3)) C
0>

.\1 —- J\().

Corollary 3.3.8. Assume that u is a weak solution of the Navier-Stokes equations without

6

force satisfying Serrin condition u € L*% (0. T: L3*%(R®)) for some 6y > 0. If Gy € H.

u(0) € V' then

(curl u(0). ﬂﬂjilﬁ(u)Go)H = (curl u(T),Go) n. (3.3.8)

A U
| curl w(D)||g < T N | curl w(0)]] 4 (3.3.9)

and u is a strong solution of Navier-Stokes equations i.e. u € L>(0.T:1").
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Proof of Corollary 3.3.8. By Proposition 3.1.7 there exist unique solution F € L-(0.7: 1 )N
L>(0,T: H) of equation (3.1.12) with initial condition Fy, = 1u(0) and v = u. I notice that
u 1s also solution of (3.1.12) by Navier-Stokes equations. Thus, F' = u and I have (3.3.8)

by Theorem 3.3.1. Therefore, I have
S* (u)
| curlu(®)||n < |77 |l cml| curlw(0)|| 4

and by boundedness of operator qu ") (Proposition 3.1.7) I get the result. ]

Remark 3.3.9. 1 notice that relation (3.3.8) 1s a generalization of helicity invariant

/(u, curl u)gsdz,

R3

see e.g. [60], of Euler equations for Navier-Stokes equations. Indeed, if I formally consider
transport operator 7. for the case v = 0 and put G(0) = u(T) in the right hand side

of (3.3.8) then, under assumption that Euler equations has a unique solution, I get that

’]7,‘?{[‘(“) u(T) = u(0).

In the next section we will consider some modification of Navier-Stokes equations for

1 .
5,2
sol

which space H?, is a natural space for the solution.

3.4 Modified Navier-Stokes equations

In this section I will prove existence of the unique global strong solution for certain modifi-

cation of the three dimensional Navier-Stokes equations. We consider the following system
of equations:

% +Fx A3F = —vAF+ M(s)+ Vp

div F — 0., FlaD = ()
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Here, as usual F' = F(t,x) is the unknown velocity field, Fj is the initial velocity field
(known data) and M 1is the external force. Moreover, A is the Stokes operator introduced
In section 2.6. Please note, that on the right handside we have the usual laplacian and
not the Stokes operator. These equations are a modification of NSEs in the sense that
the term curl F is replaced by A/?2F. The latter is in some sense a pseudodifferential
operator of order 1 and the former a differential operator of order 1. One can notice that
curl®* = (AY2)2 = A.Thus, our modification is in some sense a natural one.

As a result of our modification helicity balance for three dimensional N.-S. equations

will be transtformed 1nto additional a prior estimate for equation (3.4).

3.4.1 Nonlinearity and its properties

Definition 3.4.1. Let us define trilinear form [:DxDxD—R by

[(f,g9,h) = (f x A2g,h)y, f,g,h € D. (3.4.1)

We will collect properties ot | in the following lemma

Lemma 3.4.2. There exist constants C1(D),Cy(D) > 0 such that for any f,g,h € D we

hiave

L

I(f,9.f) = 0 (3.4.2)
[(f.g.42g) = 0 (3.4.3)
i(f.9.h) < Cilhlulflv]|A%glx (3.4.4)
1(f.g-W)] < Calglvlflvihl, L3, (3.4.5)

Proof of Lemma 3.4.2. Properties 3.4.2 and 3.4.3 immediately follows from the definition

of the vector product. Let us choose and fix f.g,h € D. All the constants below are

independent from t.g and h.
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Now we shall prove property (3.4.4). From the Schwarz and the Holder inequality we

infer that
1(f.9,h)| < |hlulf x A2gly < |hl|flusoy| A2 gl py. (3.4.6)

Moreover, we have that

V c H"* c L% D), (3.4.7)

and

D(A%) c H2? ¢ L3(D). (3.4.8)

Indeed, embeddings (3.4.7) and H2: C L3(D) follow from the Sobolev embedding theo-

Sol

rem 2.3.3. Thus it remains to show that D(Afli) C ]H[ From Theorem 2.7.3, definition of

sol

Stokes operator and part 111 of Lemma 2.7.2 we infer that

D(A%) = (H,D(A)): , = (H H:3(D)N V)1, C (H,H2(D)):

80l sol

Now by Theorem 2.7.4 we have that

(H H22(D)) C Hsol (D)

sol

Taking into account that (H. V)1, C H we get that D(A3) C Hsol (D)NH = 2

sol °

Therefore, it follows from (3.4.7) and (3.4.8) that there exist constants (', C'y > 0 such

that

| flLspy < Cs|flv

fluspy £ Cylf)

D(AZ)
Combining these inequalities with inequality (3.4.6) we get property 3.4.4.

Similarly. it follows from inequality (2.1.1), Holder inequality and the Sobolev embed-

ding theorem that
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[

From inequality (3.4.5) we infer that the form [ is continuous with respecttothe | x| X

V topology. Since D is dense in V' there exists continuous trilinear form/ : 1 ' x1 ' x1" — R

such that
l('a X ')|'D>(D><D — Z
Moreover, the norm of the extension [ is the same as of /. Hence, for each (f.g) € 1" x |’

[(f,qg.-) € V'and therefore the following definition is well posed.

Definition 3.4.3. Let us define a bilinear operator L - V" x V — V' by

< L(fa g)a(b >V’,V: l(faga (b),f,g c V,Cb S |

Corollary 3.4.4. There exists constant Cy > 0 such that for any (f,g.h) € 1" x 1" x 1",

< L(fﬁg)af >1",\*':0 (349)
| < L{f,g9),h >y | < Cl|f|v|g|v|h|D(A%)_ (3.4.10)
Furthermore, if f € V, g € D(A%) then
1
< L(f,g), A?g PAVIRTES 0. (3.4.11)
If in addition, (f.g.h) € 17 X D(A%) X H then
| < L(f.g).h >y | < |f|lf|9|DH§)|h|H- (3.4.12)
3.4.2 Existence and uniqueness theorem
I consider the following problem:
OF
-~ = —vAF + L(F.F) + /. (3.4.13)
F(0) = Fo. (3.4.14)
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Definition 3.4.5. Assume that F, € D(A%), external force M € L2(0.T: D(A™%)). Then
a function F € C'([0,T). D(A%))N L%(0, T: D(A%)) is a solution of equation (3.4.13) if F
satisfies (3.4.13) in the distribution sense and F satisfies (3.4.14).

Theorem 3.4.6. Suppose that Fy € D(A%), M € L2(0,T: D(A™%)). Then

(i) There exists a unique function F € C(|0,T]. D(A%))N L%(0,T; D(A%)), F' € L*(0.T:
D(A“?fli )) that is a solution of problem (3.4.13)-(3.4.14).

(ii) Furthermore, if Fy € V and the external force Nl € L*(0,T; H)then F € C([0.T].1)N

L%(0,T; D(A)).

Proof of Theorem 3.4.6. 1will use standard technique described, for instance in Temam{[72].

(1) Existence of solution. The proof of existence will consist of four steps a), b), ¢), d):

a) Galerkin approximation of solution. Recall that By proposition 2.6.2 A is self adjoint,
positive definite and there exist a sequence {e;}32, of eigenvectors of A, corresponding
to the eigenvalues {);}5°, (enumerated in increasing order). We have that for any ; € N

¢; € D(A) and {e;}32, forms orthonormal basis of H. For each n € N one can define an

approximate solution as tollows:

Fult) =) gin(t)ex (3.4.15)
A=1
and
(F' (1) cx) + v(AF (1) ex)m + [(Fou(t). Fu(t). ex) = (M (t). ex). (3.4.16)
te |0, T).k=1.....n
F,(0) = Fpy,. (3.4.17)

where Fp, is an orthogonal projection of F onto the space .\', spanned by {e;}7_, . We
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notice that system (3.4.16)-(3.4.17) is just projection of problem (3.4.13)-(3.4.14) to the
linear span of first n vectors of basis {e;}3Z,. Denote N/, = (M. ex). Then M, € L*(0.T),

k € N. Combining (3.4.15) with (3.4.16) and (3.4.17) we get nonlinear system of differen-

tial equations for functions gx,(t).t € [0,T],k =1,....n:

Gin(t) 4+ VALGkn(t) + Y Ui ej,ex)gin(t)gin(t) = Mi(t).  (3.418)
i,7=1
gkn(0) = (Fon,ex),t€[0.T].k=1.....n. (3.4.19)

The nonlinear system (3.4.18)-(3.4.19) has a maximal solution defined on some interval

0,T.,], see [19], where T,, < T such thatif T, < T, then lim |F,(t)|y = >. We shall

- t—1n

prove later that this 1s not the case and theretore 1,, = T

b) A priori estimates. Let F,(t),t € |0, T,,) be the maximal solution of the problem (3.4.18)-
(3.4.19) existence of which was established 1n part (a). First a prior1 estimate (called also

energy estimate) 1s the same as for Navier-Stokes equations. Multiplying equation (3.4.18)

s

by ¢;,, and adding these equations for &k = 1.. .., n and taking into account (3.4.9), we get
(F/(t). Fo(t) g + V| FL ()5 = (M(t), F,). t € [0.T3,). (3.4.20)

Let us fix t € |0,7,,). Integrating equality (3.4.20) from 0 to ¢ and using Young inequality

we have

¢ T
. . 1
F O +v [ R ds < [Fonlly + 5 [ V(5)lds
0 0O

T
. 1
< |Foli + = ] A (s)|?ds.t € [0,T,). (3.4.21)
0O

It readily follows from inequality (3.4.21) that the sequence {F,}>~, 1s bounded in
L~(0.7,; H) N L?(0.T,:1"). Furthermore, inequality (3.4.21) implies in particular. that

lim sup | F, (t)| < ~ provided T,, < T'. Hence, we infer that T,, = 1.

t .~ I'm
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Next we will deduce the second a’priori bound for the sequence F,,. This bound is
intrinsic property of our problem and it does not hold for the proper Navier-Stokes equa-

1
tions. We multiply (3.4.18) on A\? gx, and add these equations for k = 1,...,n. Taking

into account (3.4.11), we get
(F'(t), A2F,(t))g + v(AF,(t), A2E,(¢))g = (M(s), A2E,(t)),t € [0,T). (3.4.22)

Fix t € |0, T|. Integrating equality (3.4.22) from O to ¢ and using Young inequality we have
, T
2 2 2 1 2
FuOF, g3, + v [ IFa6) g ds < Funl? g+ 5 [IMGIR 4 ds
0

T
1
<IRPE , + ;/| (), ds,te0,T]. (3.423)
0

Hence sequence {F},}°2, is bounded in L*(0, T'; D(A%)) N L%(0,T; D(A%)).

Now we shall show the following corollary of the last two estimates. We deduce that the
sequence {F,}%, is bounded in L*(0,T’; V). We have by Lemma 2.7.2 and V' = D(A%)
(see Theorem 2.4.3) that

Fol3 < |Ful? 1. < |F

< 1| Fyl
D(A%)

D(A?I)I D(A%)’

Therefore

2 il —_— d
< |F"|L°°(0,T;D(A5))IF"|L2(0TD(A%)) - |F0"|D(A%) % flM(SHD(A_i) ”
0
Fo|?
1 Fo D(At)
_| OID(Ai) + -——-—————/|M(s D(A i)ds (3.4.24)
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We will need one more estimate. Let us show that {F’} is bounded in L*(0, T D(A™%)).

Define Py, : V' — X, as an extension of the usual orthogonal projection from H onto

X,. We notice that system of equations (3.4.16) can be rewritten as
Fsv; — —I/AFn — PXHL(Fn) + PXH-»\[-

Therefore, in order to show that { F” } is bounded in L2(0. T: D(.A~%)). it is enough to show
that sequences {AF,}>, and {L(F,)}>, are bounded in L2(0.T: D(A~%)). Bound-
edness of sequence {AF,}>°, in L2(0,T; D(A~%)) follows from the a'priori estimate
(3.4.23) and continuity of A as operator from D(A%) to D(A“ﬁ).

Next let us observe that in view of inequalities (3.4.10) and (3.4.24) we have that

T

2,ds < 17
LQ(O,T;D(A—%)) /lL(Fn) V as ~ C/ |Fnl‘# (1.5
0

O

IS

=

N
]

(A1)’ |A[|L2(01T;D(A_31‘)))'

Therefore, we infer that there exists a constant C = ('(v. |F0|D(4:1‘,), ‘Mlm(o _— h%)))

such that foralln € N

F! 2 < C(|F,|°

n — + lL(Fn)
L2(0, T;D(A™ 3))

1
L=(0,T; D( -4_3)))

A[|L2(O T:D(A~ TII)) S C (3426)

L2(0,T;D(A1))

_|._

¢) Topology of convergence of Galerkin approximation. From the part (b) we infer that the
sequence {F, }°<, is bounded in the Banach space L>°(0.T; H) N Ly(0.7:1"). Therefore.
by the Banach-Alaoglu Theorem there exists subsequence {F,}and F* € L>(0.7T.H)

such that F,, — F weakly-*. which means that forany ¢ € L'(0.T: H)

T
/ (F. = F*.q(s))nds — 0. (3.427)

0
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Similarly, from the Banach-Alaoglu Theorem it follows that one can find a subsequence
{Fnr} of {F,»} which converges to F** € L?(0, T: V) in the weak topology of L2(0.T:1")
i.e. forany q € L*(0,T; V")

T
/ < Fon— F** Q(S) >yry ds — 0. (3.4.28)
0

In particular, Note that (3.4.27) and (3.4.28) are satisfied for any ¢ € L*(0.T: H). There-
fore, [ < F*—Fx% q>=0forallqe L*0.T;H)andso F* = F** € L>(0.T: H) N
L*(0,T;V). Put F = F*.

Now we will show that there exists subsequence {F .} of {F,~} which converges

strongly in L?(0,T;V). It is enough to show that the sequence {F,} is precompact in

L<(0,T: V). We have following chain of continuous embeddings

D(A%) C V = D(Az) C V'

|00

Furthermore, embedding D(A%) C V is compact (see Lemma 2.6.7 and recall that V =

D(Az)). It follows from estimates (3.4.23) and (3.4.26) that the set {F,} is bounded in

Y = {¢[o € L*(0.T; D(A%)); ¢ € L*(0.T; 1)},

3

Now we are in the position to use Theorem 2.2.12 with the data Xy = D(A1). X =
1" Ny = 1”7.a¢p = a; = 2. We have by the Theorem 2.2.12 that the injection of } 1nto
L2(0.T:1") is compact and therefore, the sequence {F,} is precompact in L-(0.7:1).
Below we will assume without loss of generality that the sequence { F}, }.~, converges to
F in strong topology of L*(0.7:1") and satisfies (3.4.27). Notice that because f, — [

strongly in L-(0.T:17) also (3.4.28) is satisfied.

(d) Convergence of Galerkin approximation. The convergence result of step ¢) enable us to
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prove that F' 1s a solution of problem (3.4.13)-(3.4.14). Now I will proceed essentially as

1n the proof of part i) step ¢) of Proposition 3.1.7.

Let) € C™([0,T],R) such that 1/(1) = 0. Then by part (a) of the proof I have

T T
— /(Fn(s) h) ' (s)ds —I—/ < L(Fn.F,),h >y v v(s)ds +
0 0

T T
V/&(Fn(s), h)y(s)ds = (Fon, h) g (0) +/ < M(s),h >yvry- v(s)ds. (3.4.29)
0 0

for h = ¢;,7 = 1,...,n. Let us observe that from (3.4.27), resp. (3.4.28), it follows that

Ist term, resp. 3rd term, in (3.4.29) converge to

_ / (F(s). h) ! (s)ds.
0

resp.
T

V/&(F(s),h)w(s)ds.
0
For the second term we have tollowing inequality

T
| / < L(Fy. F,) — L(F, F),e; >y1y ¥(s)ds| <
0
T
| / < L(F, — F.E).h >0y v(s)ds| +
0

T
I/ < L(F.F,—F).h >y v(s)ds|=1,+ 11,
0

It follows from inequality (3.4.10) and convergence F,, — F in L*(0.7:1") that

n—x

.
I, <C /\Fn-F|\’|Fnh'lt’(h‘)lhh'ds < |Fu=Flr201)| Frlezorylhlvivi< —— 0.
0
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and similarly /1, — 0, n — ~c. Thus, we get

T T
— /(F(s),h)Hu’(s)ds + / < L(F.F). h>yy U(s)ds+
0 0
T
y / A(F(s). R)(s)ds = (Fo. h)pr(0). (3.4.30)
0
forh =eq,...,€e,,.... Since both sides of (3.4.30) are linear and continuous in | . we have

that (3.4.30) holds forany h € V.
As the result we have shown that F* € L*°(0.7;H) N L*(0.T:;1") is a solution of

equation (3.4.13) in distribution sense. Furthermore, 1t immediately follows from a’prion

b | G0

estimate (3.4.23) that F € L>(0,T; D(A%)) N L*(0,T; D(A%)). Moreover, it follows
from (3.4.26) that F’ € L*(0,T; D(A~%)) and, consequently, that F € C(0, T: D( A+ 1)) by
Lemma 2.4.6. Indeed, if we 1dentity D(A%) with its adjoint then we have Geltand triple
D(A1) € D(A7) = D(A1)* C D(A™%).

Uniqueness of solution. Assume that there exists two solutions [ and F; of equation

(3.4.13). Denote ' = F} — F,. Then we have the following equation for £

OF
ot
F(0)

—VvAF + L(Fy) — L(F5)

0

By part i of the proof we have that F € L*(0.T D(A%)) and F' € L?(0,T: D(A™%)).

Hence, by Lemma 2.4.6 we have that

| “(1%) )I*‘/‘F 1%)dS‘<|/\ F1 Fl A2 F)——I(FQ F) *12F(/Si—

{
| //(F. Fl.:l%F) + [(F3, F. AZF )Vds| = |/ (F. F}. Az F)ds| = 1. (3.4.31)

0
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where I have used property 3.4.11 in the last equality. Consequently, we have by inequality

(3.4.12) that

2
[< [ PRI, / F b Pl | Fil g 85 <
0
/|F S+ — / FI* L |Fi|* 3 .ds. (3.4.32)
D(AI) Y D(A7T) D(AT)
O
Combining estimates (3.4.31) and (3.4.32) we get that
{
2 )2 v 2 I
FOR 4+ [ )05 < / PR Bl gl (433

Since Fy € L2(0,T; D(A1)) it follows by Gronwall lemma that

F)f 4, <01 €0,T]

i.e. F; = Fyin C(0,T; D(A%)).

(ii) Letus prove that F' € L>°(0,T;V)NL*(0.T; D(A)). It is enough to show that Galerkin
approximation sequence { F},}°2, is bounded in L=(0,7; V) N L*(0.T; D(A)). I multiply

equation (3.4.16) on A;g;x foreachy = 1,.. ..  k and add these equations. We have

|F 2 + 2|AF, |5 + (F,, F,. AF,) = 0. (3.4.34)

Consequently,
| (D5 + 21// |AF,(s)|3ds < |Foult + / I(F,.F,. AF,)|ds. (3.4.35)

Sccond term of right part of (3.4.35) can be estimated as follows

T
/H(Fn‘ F,.AF,)|ds < /AF,;IH‘FH‘\'|Fn|D(A%)dS < 1// |AFH(H)|%I(]S

0
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T
(’
+— / IF V| Fal* 3 ds. (3.4.36)
v D(A1)
0

where first inequality follows from (3.4.12) and the second inequality follows from Young

inequality. Combining (3.4.35) and (3.4.36) we get

(A1)

t T
C
F, (D)5 + 1// |AF,(s)|5ds < |Foulv + - / |Fn|%,|Fn|i) 3 ds. (3.4.37)
0 0

Theretore, it follows by Gronwall inequality and a’priori estimate (3.4.23) that

T
%Olen‘zD(A%>ds < |F0\%,-€;%‘FO‘Z(A%) < X, (3.4.38)
i.e. sequence {F,}°°, is bounded in L*°(0,7;V). Moreover, combining (3.4.37) and
(3.4.38) we get boundedness of sequence { F,}%, in L>®(0.T;V)YNL*(0. T: D(4)). Thus,
Fe L>~0,T;V)NL0,T: D(A)). To show that F' € (’([0,T], V') we need to prove that
F’ € L*(0,T; H) and the result will follow from Lemma 2.4.6 and the fact that D(.4) C
"= V"7 C H is aGelfand triple. From system of equations (3.4.13), assumption on .}/ and
the fact that ' € L>(0.T:V) N L*(0,T; D(A))(proved above) we infer that it is enough
to show that L(F, F') € L*(0,T; H). By inequality (3.4.12) we have

I
: 2 2
|L(F. F)| 12010 S /‘FI%'|F|2D(A3/4)dS < |F17=0r) | FlL2 010134y < -
O



Chapter 4

Feynman-Kac Formula for vector

transport equation

The aim of this chapter 1s to prove the Feynman-Kac type formulae for solutions to the
vector advection equations, see Propositions 4.1.3 and 4.4.1. A different approach to this
problem can be found in works [18] and [23]. Our approach permits us to find other non-
classical Feynman-Kac formulae for the vector transport operator, see Propositions 4.2.1,
4.2.4 for the 2D case and Proposition 4.3.5 tor the 3D case. One can notice that Proposition

4.3.5 is. in certain sense, a generalization of Propositions 4.2.1 to 3D case. It would be

interesting to find the generalization ot Proposition 4.2.4 to 3D case, see discussion in

question 4.3.6.

4.1 Formulae of Feynman-Kkac Type.

In this section I will suggest a physical meaning to the operator ’T; () defined in Definition

3.3.2 and in the same time I will deduce a Feynman-Kac type formula for the solutions of

6/
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the vector advection equations. From now on I suppose that v € ('*(]0.7] x R") and
D = R". We also assume that (2, F, {F; }:>0, P) is a complete filtered probability space.
Let (W;);>0 be an R™-valued Wiener process defined on this space.

We begin with the following preliminary but basic result.

Proposition 4.1.1. Let o(t,) € C2%(R™ R* @ R™), a(t.-) € C,*(R*.R").t € [0.T].
Assume that T is a closed loop of C! class in R™. Let F € C**([0.T] x R*.R"), \' =
Xi(z,w) :[0,T] x R™ x 2 — R™-be defined by:

dX:(x) = a(t. Xi(x))dt + o(t, X;(x))dW;
Xo(z) =
Then

L
/ ZFktzda: /iFk(O T)dx +/ "’ Q—Iiﬁ-i-
k — - 3 k J ot

Xt(r) I Xs(T) k=1
OFF OFI 1<~ 0*FF N . .
d — Mal™ | dxrds + 4.1.1
Z"’ oz, oz T3 axiasz" d ) TRES (1.1
7=1 i,j=1 m=1
. OF? 9o t
1 / 1 007 / /
— — m dxd:
A [ (S s
0 x.(T) "=} )it m 0 X,(T')
e . aO'-ﬂ 8FA Y, -
J g ¢ r
Z FY(s,r) s d:rkd’w +/ / Z (Z . o ) drdll .
A‘,]Z] (F) k=1 =1

Proof of Proposition 4.1.1. 1 will denote division of contour I' as follows m = {z,}% H

where d(m) = max 2,41 — 2,|-diameter of division. Then I have:
j=0,... k—1
/ SRt = fim 3 P X)) (VA ) — X)) =
\o(r) *= kS
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t

d(Fk(Sa XS(ZJ'))) + f Fk(s- Xs(zj))d(X:(sz) — X:(:j))‘}”

0

+5 (X (2541) — XE(25). F*(-. X.(25)))) = (1) + (i2) + (i2d) + (iv)
where I have used formula X,;Y; = XyYo + fX dY. deX + = (X Y ):([44]). Below I

will consider 4 terms of equality (4.1.2) separately: ( f Z F*(0, x)dzxy

n

i) = Jim kzl / X (zp) = XEa (5, X)) = Jlim, 3

k k [ m
/ X ZJ+1) X ZJ E 5 ?: CL + '—2 E 5 Z 5 E g pO’ p

0 [,m=1 p=1
t
k k ~ aFk 2l
(5, Xo(23))ds + [ (XE(2541) = XE(z))(30 S0 (s, Xo(2))dul)
0 l,i=1 !

t
k OF* OFF ~ O0*FF &<,
// Zamza =% Mxmzapa P)(s, 1) drnds +
O

k=1 X, () lm— p=1
F*
Z/ / 8 l(s,r)d:ck(/wi)
k=1 0 X, [,1=1
ot
iy = Jim 3 [ PG5, X () (@} (5. XE(zy0)) = 0¥, XE(z))ds
e Ar=1 0

(0¥ XHep)) = oMo X)) =

— / F¥(s,1r)dza" sxds+Z//FkSldo($1)d
0

k=1
Nao() 0 X

n

| L k(L FR(. X (=, _ ] L)
() = hm kzl §<-\- (z541) = X(5) F2 (X (55)))e = 5 d(ﬁl-log_:l
vJ — o
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