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Abstract

Reinforcement learning (RL) methods are a family of techniques which allow an
agent to improve its performance of a given task by learning from direct interaction
with the environment it is situated in. Key to this approach is the notion of a reward
signal, a numerical value observed by the agent which gives immediate feedback
on the quality of its action choices. Using this signal, the agent can learn a policy
which maximizes the total reward accumulated over time.

While many RL algorithms have theoretical convergence guarantees, achiev-
ing fast convergence to the optimum can be problematic in practice. There are
particular problems with large-scale domains. AS'J the learning environment be-
comes more complex and difficult to describe, the time required for an RL agent
to learn an optimal policy grows very rapidly. This effect is known as the curse of
dimensionality.

In this thesis, two different approaches to scaling-up RL are investigated. The
first approach exploits parallel hardware to generate high-quality policies for sim-
ulated RL environments. An agent learns from simulated experience on each node
of a parallel cluster. The agents periodically exchange weights from their approxi-
mate value functions. This allows a group of agents to converge more quickly than
a single learner without compromising the final quality of the learned policy.

The second approach is a hybrid method combining symbolic planning and RL.
A high-level knowledge base is used to generate a symbolic plan which provides
structure for the learned policy. Abstract symbolic operators are implemented in
terms of low-level actions using RL. This approach is shown to scale to much larger

RL problems than is feasible with either standard or hierarchical RL algorithms.
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Chapter 1

Introduction

This thesis focuses on techniques for reinforcement learning (RL). RL methods
allow agents to learn to choose actions effectively by observing the value of a reward
signal. The reward signal gives an agent immediate feedback about the quality of
cach of its action choices. RL methods have been applied successfully in a wide
variety of domains, but remain infeasible in many others. This is because when an
agent’s environment has a large number of possible configurations, standard RL
algorithins are not able to find good action seclection policies within a reasonable
time.

In this work, two different sets of techniques are investigated which can be used
to extend the applicability of RL to more difficult learning environments. The first
set of techniques allows parallel hardware to be exploited so that a high quality
nolicy for action selection can be learned much faster than would be possible on a
sequential computer. The second set of techniques uses symbolic planning in com-
bination with RL to provide a high level structure which constrains and accelerates
the learning process. A wide-ranging empirical study is used to demonstrate the
advantages of these techniques over standard RL methods.

This chapter begins with a high-level overview of reinforcement learning, fol-
lowed by a description of the problems faced by RL in large-scale learning envi-
ronments. The two principal topics of the thesis are then discussed: the use of
parallelism in RL, and the combination of symbolic planning and RL. The intro-

duction ends with a summary of the contributions of the thesis and an overview of

the content of the remaining chapters.

1.1 Reinforcement Learning

One of the primary goals of Artificial Intelligence (AI) is the creation of intelli-

gent agents (Russell and Norvig, 2003), which have the ability to sense external
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stimuli, perceive the state of an environment, reason using knowledge about the
environment, learn from past experience in the environment, and act to affect the
environment according to internal goals. While each of these five abilities are con-
sidered to some degree in this work, the focus of the thesis is on learning in agents.
There are many advantages of giving an agent the ability to learn from experi-
ence. If the dynamics of an environment are known to change over time, an agent
can gradually modify its action choices to maintain a good level of performance.
Adaptivity also adds some degree of robustness to an agent. If a situation arises
that the agent’s designer did not foresee, it may still be possible for the agent to
learn an acceptable behaviour for this unforeseen situation. In multi-agent systems
(Alonso ct al., 2003), adaptivity can allow an agent to learn how to behave in a
particular group or configuration. This is particularly important in open multi-
agent systemns, where new, unfamiliar agents may arrive at any time, and the agent
must learn quickly to perform well in their presence.

A reinforcement learning (RL) problem (Sutton and Barto, 1998) is most easily
characterized using the idea of an agent situated in an environment. The state of
the environment can be observed by the agent!. At each time step in a discrete
scrics, the agent must sclect an action to perform. After the action is performed,
the environment enters a new state. In addition, the agent receives a reward or
reinforcement for performing the action in that state. The reward indicates to the
agent whether the choice of the action was good or bad, and as a scalar quantity
it also indicates exactly how good or bad it was.

An important aspect of RL is reasoning about future rewards. It may be pos-
sible to achieve an extremely large reward in the future if the correct sequence of
low-reward actions is followed. If this is the case, it is worth learning to follow this
particular sequence, since the total reward accumulated over time will be greater.
This leads to what is known as the temporal credit assignment problem. If after a
long series of actions a large reward is received, it can be difficult to identify which
of the actions in the sequence were instrumental in achieving the reward and which
of the actions were not required at all.

Q-learning (Watkins, 1989), for example, is a popular RL algorithm which
effectively solves the temporal credit assignment problem. If the sets of states and
actions are finite, then under certain conditions Q-learning is guaranteed in theory
to converge to an optimal? policy for choosing actions. Q-learning also performs
well in practice if the sets of states and actions are not too large. Good performance

with Q-learning can even be achieved in some cases where the environment is non-

1Sometimes only part of the state may be directly observed, with other parts remaining hidden.
?Various criteria for optimality are given in Chapter 2.
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stationary (where the dynamics are changing over time) or non-Markovian (when

there is some hidden state that cannot be directly observed).

1.2 The Curse of Dimensionality

Scaling-up reinforcement learning to more challenging learning environments is dif-
ficult because of the effect known as the curse of dimensionality, or alternatively
as the state space explosion. Standard RL algorithms make the assumption that
the learning environment can only be in one of a finite number of possible config-
urations. However, in most cases the state of the environment is naturally broken
down into a set of state variables, each of which can be assigned a finite number
of values. Complex learning environments tend to have many state variables, with
cach state variable having a wide range of possible values. As more complex envi-
roniments are considered, the size of the overall state space increases rapidly. This
in turn produces a rapid growth in the time required to learn a near-optimal policy
with RL. Beyond a certain level of environmental complexity, RL algorithms which
cnumerate every possible state of the environment are simply not feasible.

Further complications arise in domains with continuous state variables (e.g. a
robot situated in a three dimensional Euclidean space). While it is obviously pos-
sible to discretize these variables, even a coarse discretization of a few continuous
state variables will create a large number of states. It would be preferable to use
an algorithin which could deal directly with these continuous quantities.

In recent years there have been many techniques developed which allow mod-
ified RL algorithmns to learn in some of these more complex domains. As part
of this thesis, 1 present a comprehensive survey of these techniques in Chapter 3.
Probably the most important addition to the standard RL algorithms is the use
of generalization. Generalization is possible when states of the environment which
have similar (but not identical) state features have a similar long term value. If
this is the case, the exact table-based data structure used by algorithms such as
Q-learning can be replaced with a function approzrimation. Since experience in one
state will now affect the estimated values of lots of similar states, good policies may
be achieved much more quickly. A good set of features for the approximator must
usually be selected by hand, as is the case for most machine learning methods.

In this thesis, I examine two approaches to scaling-up reinforcement learning
which have received relatively little attention: the use of parallel computing to
reduce the time required to obtain a high-quality policy, and the use of symbolic

planning techniques in combination with reinforcement learning.
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1.3 Parallelization and RL

While there has been considerable progress in pushing forward the frontier of what
is achicvable with reinforcement learning, there remain many interesting problems
which are of borderline feasibility. Standard RL algorithms may take several hours
or even days of computation time to converge to a high quality policy for these
problems. Given the computational effort required, it is reasonable to ask the
question “can parallel computing hardware be used to obtain a high quality policy
more quickly than is currently possible on a uniprocessor computer?”

Despite the significant computational requirements of RL algorithms, there
has been very little research undertaken on parallel approaches to RL problems.
This is somewhat surprising, considering that parallel approaches to the closely
related problem of planning in Markov decision processes (MDPs) have been fairly
well explored (Archibald, 1992; Wingate and Seppi, 2004). The lack of attention
may be related to the fact that the essentially sequential interaction between a
reinforcement learner and its environment does not yield directly to a natural
parallelization.

The reason that parallelisin has relevance for RL arises from the predominant
use of simulated learning environments for the purpose of training RL agents. If
an environment is simulated, it is relatively easy to situate a number of identical
instances of the simulation on different nodes of a parallel computer. If a set of
agents can interact with these instances in parallel, then by sharing intermediate
results it is likely that the set of agents can converge towards a high-quality policy
more quickly than a single agent learning in isolation.

The assumption of a siinulated environment does exclude interesting cases such
as an embodied agent situated in a real-life environment, or a software agent learn-
ing whilst deployed in an unpredictable open multi-agent system. In practice,
however, generating experience in these non-simulated environments is usually ex-
pensive, and finding a high-quality policy for a large-scale RL problem will usually
involve some degree of environmental simulation. A parallelization technique which
requires a simulated environment will therefore be relevant for a wide range of ex-

isting problem domains.

Hence the first hypothesis to be investigated as part of this work is as follows:

Hypothesis 1

It is possible to exploit parallel hardware in reinforcement learning

to achieve a speedup without sacrificing policy quality.

In this thesis, a scries of increasingly eflicient methods for parallel reinforcement

learning are presented. Iach of these methods uses a set of agents, where each
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agent resides on one node of a distributed-memory parallel computer. Each agent
interacts with a local instance of the simulated environment. The agents individ-
ually use standard RL techniques, including the use of generalization. Each agent
learns an approximate value function which is represented using linear function
approzimation. Ensuring that the parallel method is effective in combination with
generalization ensures that the method will have practical use for the most difficult
RL probleins, which are likely to be infeasible without some degree of generaliza-
tion.

In the parallel method described in this work, the agents exchange information
about their policies (in the form of approzimator weight values) over the intercon-
nection network of the parallel computing system. By using other agents’ weight
values to modify the local approximator weights, agents as a group are able to con-
verge more quickly towards a high-quality policy. The agents are able to achieve
this without cach agent being restricted to a small area of the problem state space.
All of the agents are able to explore the environment in an unrestricted manner.

The first parallel method presented in this thesis involves every agent broad-
casting its entire sct of weights periodically. The impact of the communication
costs of this method means that a parallel speedup can only be achieved for a
limited number of problemn domains. Subsequent methods improve on the perfor-
matnce of the first method, by prioritizing the communication of weights which have
recently undergone rapid change, and also with the effective use of asynchronous
message passing.

This thesis includes a wide-ranging empirical evaluation of these methods using
a cluster of Linux workstations. I'ive different example RL problems (some of which

are well-known benchmark problems for RL algorithms) are used to illustrate the

size of the speed-ups that can be achieved.

1.4 Symbolic Planning and RL

Symbolic planning (also known as classical planning), like reinforcement learning, is
a mechanism for reasoning about useful sequences of actions. Unlike RL, symbolic
planning is typically applied to deterministic domains where the only objective is
to reach one of a sct of goal states using the shortest number of actions. In addition,
the outcomes of actions are known a priori, and do not have to be learned through
trial and crror.

Symbolic planning methods use a relational representation of state, which is
generally based on a variant of first-order logic. Popular representations for sym-

bolic planning include the STRIPS representation (Fikes and Nilsson, 1971) and
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the situation calculus (McCarthy, 1963). Relational representations of value func-
tions and policies have become increasingly popular for RL (van Otterlo, 2005) in
domains involving objects and inter-object relationships.

In contrast to most other work in this area, this thesis is not concerned with
relational versions of existing RL algorithms. Instead, one of the goals of the thesis
is to investigate synergistic combinations of symbolic planning and RL in a hybrid
approach. In the approach considered here, a symbolic plan forms the high level
structure of a solution to the learning problem, with RL being used to fill in the
low-level details of the solution. This approach is called PLANQ-learning within

this thesis, and the second hypothesis to be investigated as part of this work is as

follows:

Hypothesis 2
A hybrid planning-learning system based on a high-level STRIPS-

based planner and low-level reinforcement learning will exhibit better

scaling properties than both standard and hierarchical RL algorithms

for goal-oriented learning problems.

To evaluate how well PLANQ-learning scales up to larger problem instances, a fam-
ily of grid-world based learning problems is defined in this thesis. Progressively
more difficult problems (with larger state spaces) can be created by increasing the
value of a parameter which controls the size of the problem. This allows the perfor-
mance of a learning algorithin to be assessed as a quantitative measure of problem
scale is increased. In this work, it is shown that PLANQ-learning scales well to
some extremely large problems in this family, where alternative approaches such

as standard Q-learning and hierarchical reinforcement learning perform poorly.

1.5 Contributions

The work in this thesis focuses on the use of parallelization and symbolic planning
as a source of techniques to scale-up reinforcement learning to large scale problems.

The principal contributions of the thesis are as follows:

1. A novel approach to parallel RL, where a group of agents learning in par-
allel can quickly find a high-quality solution to a single-agent RL problem
by periodically exchanging approximator weights over an interconnection net-
work. In contrast to previous approaches, each agent may explore the entire

state-space of the problem, not being restricted to a sub-region of this space.

2. Three novel methods for parallel RL which are based on the above approach.

The visit-count merge method involves calculating a weighted average of the
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agents’ value function approximations to produce a merged value function.
The selective merge method is based on broadcasting each agent’s largest re-
cent changes to its value function approximation. The asynchronous selective
merge method achieves an extra boost in performance by removing the need

for synchronization between the agents.

3. A wide-ranging empirical evaluation of the three parallel RL methods. The
evaluation is based on the parallel speedups which can be achieved using
different numbers of nodes in a cluster of Linux workstations. Five different
learning problems are used in the evaluation. These learning problems vary
in difficulty but also exhibit a range of characteristics, such as the level of
stochasticity in the action effects, whether they are continuing or episodic

problems, and whether they are goal-oriented problems.

4. The PLANQ-lcarning method, a novel combination of high-level STRIPS
planning and low-level reinforcement learning. Empirical evidence is pre-
sented in the thesis to show that PLANQ-learning scales significantly better
than both standard RL methods and hierarchical RL methods in learning

problems where the high level solution structure can be modelled with a
STRIPS knowledge base.

1.6 Thesis Structure

The remaining content of this thesis is structured as follows:

Chapter 2 presents an overview of basic reinforcement learning techniques.
The key concepts of agent, environment, state, action and reward are described.
The formalization of RL problemns as Markov decision processes (MDPs) is dis-
cussed, and details are provided of some of the standard RL algorithms, namely
Q-learning, SARSA, TD-learning and policy search. Terminology useful for de-
scribing the characteristics of particular RL algorithms is introduced. Readers
already familiar with reinforcement learning techniques may prefer to skip this
sectioln.

Chapter 3 contains an extensive survey of existing methods for scaling-up
reinforcement learning to larger, more diflicult problems. The existing body of re-
search is divided into the following five broad categories: efficient exploration, value
function approxiination, hicrarchical reinforcement learning, symbolic representa-
tions, and parallel reinforcement learning. For each of these categories, common
threads of existing research are grouped together, and within each category I will

assess the potential of these techniques for reducing the impact of the curse of
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dimensionality.

Chapter 4 begins with a motivation for the use of parallel hardware to per-
form RL, and goes on to state the assumptions underlying the work on parallel RL
presented in the thesis. The basic operation of a parallel approach where a group of
parallel agents merge their value function approximations is then presented. The
criteria used to evaluate the parallel methods in the thesis are given, including a de-
scription of each of the single-agent learning domains which will be used to produce
benchmark results. A number of different mechanisms to merge the approximator
weights are proposed, and are first evaluated using a simulation of parallel agents.
The most successful of these mechanisms, the visit-count merge method, is also
evaluated in a more realistic setting, using a cluster of Linux workstations. As
part of the evaluation, results are presented that show how communication be-
tween the agents is a vital component of the proposed parallel approach. The
effect on performance of the choice of how often the agents exchange information
is also examined.

Chapter 5 introduces a new approach to the use of communication in the par-
allel mmethod. Rather than exchanging the absolute values of approximator weights
over the network, agents instead broadcast the recent changes observed in their
local weight value. In addition, agents no longer communicate information about
all their weights, only the ones which have undergone the greatest recent change.
This approach is known here as the selective merge method. Since each agent now
only communicates partial information about how its weights have changed, a new
mechanism is required for combining information received from other members of
the group. This mechanismn is known as a combination function. Several candi-
dates for the combination function are proposed, and each is evaluated using the
cluster of workstations. While different combination functions produce the best
performance in different learning problems, the overall performance using any of
the combination functions is much better than that achieved with the visit-count
merge method in Chapter 4.

Chapter 6 presents a method which builds on the selective merge method
defined in Chapter 5, and increases the parallel speedup that can be achieved
by climinating the synchronization penalty involved in the selective merge. The
methods proposed in Chapters 4 and 5 have a distinct communication phase, where
cach agent broadcasts information to the other agents and waits to receive all the
information before updating its local value function. The asynchronous selective
merge method on the other hand has no distinct phase of communication. Instead,
cach agent can decide independently when to inform other agents of changes to

its value function, and incoming messages can be used to update the local value
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function as soon as they arrive. Since updates to the value function approximator
must now be derived from individual incoming messages, a different mechanism is
required for asynchronous updates. Several update functions are proposed for this
mechanism, and their performance is evaluated using the cluster of workstations.
One of these update functions is shown to produce the best aggregate performance
over all the example domains, producing large improvements in performance over
the previous synchronous methods.

With Chapter 7 we leave the topic of parallelism, and begin an investigation of
how symbolic planning can be combined with reinforcement learning to producing
a hybrid method which exhibits good scaling properties. The PLANQ-learning
method is defined, which combines high-level STRIPS planning with low-level Q-
learning. A family of grid-world evaluation domains is presented, which can be
scaled up quantitatively to more difficult problems by modifying one of the domain
parameters. An initial comparison of this method with the standard Q-learning
algorithin shows that PLANQ performs significantly better in smaller domains,
but that this advantage decreases as larger domains are considered. An analysis
shows that this effect is due to the lack of a state-abstraction mechanism. This
mechanism is added to PLANQ, which is then compared with the hierarchical
HSMQ-learning algorithin, which can exploit the same state abstraction. The
results of the evaluation show that PLANQ always requires fewer environmental
time steps than HSMQ to converge to a high-quality policy, and in addition that
less total computation time is required by PLANQ once the learning domain exceeds
a certain size. PLANQ is shown to remain feasible for much larger learning domains
than HSMQ.

In Chapter 8 the overall conclusions of this thesis are drawn. Both the suc-
cesses and shortcomings of the techniques presented in this work are examined.
The potential for future research to extend this work is also assessed, with some

of the important remaining questions being sketched in some detail.
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Chapter 2

Background: Reinforcement

Learning

This chapter provides a basic introduction to reinforcement learning (RL). As well
as introducing standard RL concepts, the chapter also presents the formal basis
of RL using the Markov decision process (MDP). Algorithms for planning and
learning in MDPs are presented, as well as the terminology required to describe
different aspects of these algorithms. Finally, the concept of partial observability
in RL is described.

A rcader who is already familiar with these concepts may wish to skim through
this material and proceed on to Chapter 3, which presents an extensive review
of existing methods for scaling-up RL to large-scale problems. Alternatively, for a

more comprehensive introduction to basic RL techniques, the reader should refer to
either Sutton and Barto (1998), Kaelbling et al. (1996) or Bertsekas and Tsitsiklis

(1996).

2.1 Basic Concepts

The concept of a reinforcement learning problem is easiest to describe by consid-
ering an agent situated in some environment, as shown in Figure 2.1. The agent
can sense information about the state of the environment. The agent can also
aflect the environment by taking one of a set of actions available to it. After each
action is taken, the agent receives a feedback signal from the environment called
the reward, which determines how well the agent is performing the target task in
the environment. The goal in a reinforcement learning problem is to learn which
action to take in cach state to mazimize some measure of optimality based on the
rewards received over time.

Formulating a learning problem in this way has a number of advantages. In
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Figure 2.1: The basic components of a reinforcement learning problem.

contrast to a supermsed learning method, it is not necessary to have a set of
training examples annotated with the correct action for the agent. Initially the
agent (and even the designer) can be completely ignorant of the best action for
any state, It is also unnecessary to have an existing model of how actions affect
the environment. As long as the reward function characterizes which situations
are the most desirable for a given task, and the sets of possible states and actions
are known. a reinforcement learning algorithm can find the optimal action choice
for each state.

Reinforcement learning i1s a natural choice for agent-based problems in areas
like autonomous robotics (Stone, 1998) and virtual environments (Guestrin et al.,
2003). However, reinforcement learning can also be very useful in domains not typ-
ically characterised as agent problems, such as low-level motor control (Kirchner,
1998). dynamic channel allocation (Singh and Bertsekas, 1996), and search-control

for scheduling problems (Zhang and Dietterich, 1995).

2.2 The Markov Decision Process

A given reinforcement learning problem can be formalized as a Markov Decision
Process (Bellman, 1957) or MDP. An example of an MDP is shown in Figure 2.2.
An MDP is described by a tuple < S, A, T, R > where:

e S is the set of possible states.
e A is the set of available actions.

o I'(s.a,s') — [0,1] is the transition function defining the probability distri-
bution p(s’|s, a), the probability that taking action a in state s will result in

a transition to state s’.
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Figure 2.2: A Markov Decision Process with five states, two actions (a and b), and

a single stochastic transition. Reward is assumed to be zero if not marked for a

transition.

o NI(s,a,s’) — R is the reward function defining the expected reward! received

when such a transition is made.

A particular strategy for choosing actions in an MDP is known as a policy, and
is specified formally as a function #(s,a) — [0, 1], which defines the probability
p(als) of selecting cach action in a given state. Writing m; for the policy at time ¢,
if the policy changes over time (m, # m,) then the series {mg, 71, 72, ...} is said to
be a non-stationary policy. A stationary policy 7 has the property that Vt.m = 7.
A deterministic policy, usually written as 7(s), maps each state with probability
1 to a single action.

To compare different policies, it is necessary to define an optimality criterion,
a measure of the quality of a particular policy. A number of different optimality
criterin have been defined, of which the most common are given below. Here 7y
is the reward received after taking an action on time step t. The notation E,{}
indicates the ezpectation of the expression in the braces given that policy = will

be used to select actions. For the third criterion we also require a discount factor
v € [0,1).

o Total Return over a Iinite Horizon

N-1
optimality(w) = E; { E rt}

o Average Return over an Infinite Horizon

N-1
optimality(n) = E; { lim S Z rt}

'Each transition can potentially have its own random distribution of rewards, so to fully specify
the MDP, we should also specify these distributions. For defining optimality criteria and most

algorithms, modelling the expected value for each transition is sufficient.
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e Total Discounted Return over an Infinite Horizon

oQ
optimality(w) = Ex {Z 'yt'rt}
t=0

Of these, the total discounted return over an infinite horizon is the most common
and well-understood optimality criterion, and this is the one that will be used from
this point forward. For further information on average reward and finite horizon
MDPs the reader is referred to Bertsekas (2001).

Here we define a value function V™(s) as the expected total discounted return
when starting in state s and using policy 7 to choose actions (assuming some fixed
value of 7). Intuitively, V7™(s) represents the utility of a particular state of the
MDP under policy w. The discount factor « is used to determine the relative
worth of future rewards in comparison to rewards available immediately in the
current state. The value of 7 is chosen to be less than 1 to give V™(s) a finite
value for each state. The values of V™ (s) at different states can be related using

the transition and reward functions as follows:

V7i(s) = Z ZW(Sa a).T(s,a,s'). [R(S? a,s’) + 7Vﬂ(s’)]

a

This formula, which forms the foundations of most of the algorithms for plan-

ning and learning in MDPs, relates the value of a state to the ezpected immediate

reward in that state and the value of the successor state(s).
An optimal policy =* is a policy which, according to our optimality criterion,
performs better in the MDP than any other policy 7. More formally, the policy

w* satisfies:

VrVs. (V‘”"(s) > V™ (s))

Wiiile the goal of MDP planning and learning is usually to find 7*, MDP solu-
tion methods are often based on a calculation of the value function for the optimal

policy V™', also denoted by V*. Once V* has been calculated, the parameters of

the MDP can be used to calculate an optimal deterministic policy #*:

7 (s) = arg mngT(s, a,s') [R(s,a,s") + 4V*(s')] (2.1)

2.3 Planning in MDPs

If all the parameters of the MDP (S,A,T and R) are known, dynamic programming

methods (Bellman, 1957) can be used to determine the optimal policy and value
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function. An important algorithm for dynamic programming is value iteration, a
method for calculating V*. The algorithm represents (with a table of real numbers)

a current estimate of V*(s) for each state s. We will write this estimate as V().
Before the algorithm begins the values in the table may be initialized arbitrarily.
The algorithm is based on re-estimating each V(s) based on the current value
estimates for the successor states of s. Each re-estimating update to the table of

values is known as a Bellman backup, and is defined as:

V(s) « méxeT(s, a,s') |R(s,a,s’) + vV (s')]

It can be shown that by repeatedly iterating over the set of states and perform-
ing the Bellman backup for each state in the table of values, each V(s) value will
eventually converge to V*(s).

Policy iteration is another important dynamic programming algorithm, which
consists of alternate periods of estimation and mazimization. Given a deterministic
starting policy mp, another form of value iteration is used to estimate the value

function V™ for that policy. We use the following update rule:
V(s) — D _T(s,mo(s), ') [R(s,mo(s), ) + 7V (5]
Sl’

By iterating over the set of states, each V(s) value will converge to V™ (s)
using this update rule. Once the value function is sufficiently well estimated, a
new improved policy 7 is constructed by mazimizing based on V™. We make

greedy choices at cach state based on the values of successor states, using the

following formula:

m1(s) = arg mélx Z T'(s,a, 3,) [R(S: a, 3’) + AV (3’)]

Now we can go on to calculate V™ in the next estimation phase, and make
greedy choices in this new value function to find wg. These alternating phases of
estimation and maximization are repeated until two subsequent policies 7, and

mn41 are unchanged, at which point the algorithm has converged.

2.4 Learning in MDPs

Reinforcement learning algorithms operate under different assumptions than algo-
rithms for MDP planning. The only parameters of the MDP known at the start of
learning are the state and action sets S and A. The transition and reward functions

T and R must be estimated during learning by interaction with the environment.
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Despite these differences, MDP planning and RL are closely related, and most RL
algorithms are based on either a value iteration or a policy iteration approach.

To determine the optimal policy 7n* for a reinforcement learning problem, it
is insufficient to learn V¥, since Equation 2.1 cannot be applied if T" and R are

unknown. One way to calculate both V* and #* is to learn the related function
Q* (s, a), defined as:

Q(s,0) = ZT(S"I’ ) [R(S!aa s') + TINGX Q*(s, a')]

While V*(s) is the optimal value function defined over states, Q*(s, a) is the
optimal value function defined over state-action pairs. From Q*(s, a) we can readily

calculate both V* and #n* as follows:

V*(S) = m{?'x Q" (33 a)

T (s) = arg max Q" (s, a)

Q-learning

The Q-learning algorithm (Watkins, 1989) is a method for learning the Q* function,
and is probably the most well known reinforcement learning algorithm. It is popu-
lar both for its simplicity of implementation and its strong theoretical convergence
results, and it exhibits good learning performance in practice.

Q-learning is similar to the value iteration dynamic programming method, in
that a table of real numbers is used to store the current estimate Q(s,a) of Q*
for each s and a, and that re-estimation is made on the basis of the estimates of
successor states. Each value in the table is initialized arbitrarily, usually by setting
it to zero or assigning it a small random value. An ezxperience tuple < s,a,r,s’ >
is a small excerpt from the trace of an agent’s interaction with the environment.
The full trace has the form {sg, ag, 7o, 1,@1,71, S2,...}. As experience tuples are

generated through interaction with the environment, the value function is updated

using the following rule:

Q(s,a) «— (1= )Q(s,a) + o(r + ymax Q(s', a’))

The learning rate a € [0, 1] determines the extent to which the existing Q(s, a)
estimate contributes to the new estimate. The purpose of the learning rate is to
allow each Q(s,a) estimate to slowly converge to the ezpected future rewards in

the face of stochastic MDP transitions (or a stochastic reward function). In theory,
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this algorithm is guaranteed to converge to the optimal value function Q* as long
as cach state-action pair is visited an infinite number of times in the limit and the

value of «a is decayed in the correct way (Watkins and Dayan, 1992). To achieve
good results in practice, a careful choice of exploration strategy is required.

An exploration strategy is a mechanism for making a trade-off between ezplo-
ration and exploitation. Exploration introduces randomness into the action choice,
in order to explore the state space for rewards which have not yet been encoun-
tered. In contrast, exploitation is the choosing of actions which lead to the best
rewards discovered so far. Usually a strategy will start off taking mainly explo-
rative actions, introducing a greater proportion of exploitative actions as learning
proceeds. A good choice of exploration strategy is a prerequisite for timely con-

vergence in practice. Exploration strategies are discussed in more detail in Section

3.3.

SARSA

The SARSA algorithm (Rummery and Niranjan, 1994) is closely related to Q-
learning. It uses the same data structure (a table of state-action values) and has a
very similar update rule. However, while Q-learning converges to the optimal value
function Q*(s,a), the SARSA algorithm converges to the value function Q™ (s, a).
Assume for the moment that 7 is stationary, i.e. the action choice in each state is
fized, and is not affected by the current value estimates or any exploration policy.
The value of @™(s,a) in this context is the expected return if we start in state s,
execute action a, then use policy 7 to choose all subsequent actions.

The algorithm gets its name® from the letters used in the experience tuples
generated during learning. If the agent takes action a in state s, receives reward r,
and then proceeds in the next time step to take action a’ in state s’, the experience

tuple < s,a,r,s’,a’ > is generated. The rule to update the value function based

on this tuple is:

Q(s,a) — (1 — a)Q(s,a) + a(r +vQ(s',a’))

The update rule differs from Q-learning in the way that the successor state
value is estimated. In Q-learning the mazimum value out of all the actions in
the successor state is used as the estimate. In SARSA the value of the action

actually chosen by the learning agent at the next time step is used instead. A

Rummery and Niranjan (1994) actually called this algorithm Modified Q-learning (MQ-L),
but the alternative SARSA designation popularized by Sutton (1996) is the one which seems to

have stuck.
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slight modification to the proof of Jaakkola et al. (1994) can be used to establish
the theoretical convergence of SARSA to the value function Q7.

In addition, the SARSA algorithm can also be used to learn the optimal value
function Q*. This is achieved by relaxing the restriction that = has to be stationary.
If the learner can take exploratory actions, but gradually tends towards greedy
choices in the estimated value function, then the estimates will converge towards
Q* instead of Q7. Singh et al. (2000) provide a theoretical proof that SARSA
will converge to Q* when an appropriate exploration strategy is employed. This
approach also works well in practice, and we shall see later that it is preferable to

the Q-learning algorithin in some specific situations.

TD())

The reinforcement learning algorithms discussed so far, Q-Learning and SARSA,
both update the value of state-action pairs based upon the estimated value of
the state one time step later. An alternative to this approach is to also use the
estimated values of states encountered two or more time steps later to re-estimate
the original state’s value. This is the intuitive idea behind the TD(A) algorithm
(Sutton, 1988).

TD()) learns the state value function V™ for the control policy 7 used by the
agent to select actions. Because TD(A) does not learn individual action values, it is
most useful when we are only concerned with evaluating the quality of an existing
policy, or if there is some external model of transition behaviour.

A parameter A (where 0 < A <1) is used to determine the degree to which the
value of a state encountered n time steps later contributes to the value of the state
being updated. The value of the state n steps later contributes a factor of A"~?
less than the immediate successor state.

TD(A) is usually implemented using an eligibility trace. The eligibility trace for
a state s is a value eg; which determines the extent to which s should be updated

using the value of the current state s;. At every time step each of the es values is

updated as follows®:

YA€q if s # g
eg —
~yhes +1 if s = s;

Once the eligibility trace values have been updated, the current estimate of

each state value can also be updated:

3An eligibility trace updated in this way is known as an accumulating trace. An alternative

approach is the replacing trace which sets the eligibility of the current state to 1 instead of

incrementing it by 1.
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0t — Te41 + YV (St41) — V(st)

V(s) « V(s) + aesd;

The best value for A varies depending on the problem being solved. TD())
with a good choice of A generally converges after fewer steps in the environment
than TD(0) (which only uses the value of the immediate successor state in each
update). This improvement in convergence speed has resulted in eligibility traces
being more widely applied in reinforcement learning algorithms. For instance,
SARSA and Q-learning have been extended with eligibility traces to produce the
SARSA()) algorithm (Rummery, 1995) and two different Q()) variants developed
by Watkins (1989) and Peng and Williams (1996) respectively.

A theoretical proof of convergence of the TD(\) algorithm is given in Jaakkola
et al. (1994).

Policy Search

It is worth noting that not all algorithms for solving RL problems necessarily in-
volve the manipulation of value function data structures. A number of researchers,
notably in the area of autonomous robotics, have found that in some situations
it is better to avoid value functions all together, retain only some form of policy
representation, and search in a space of policies. In these methods, the policy is
usually specified as a parameterized function (s, 8), making the goal of the search
to find a good set of parameters §. The major advantage of this approach is that an
agent designer’s prior knowledge about what kind of structure good policies should
have can be embedded into the parameterized function =, leaving the fine-tuning
of the parameter vector 0 to the agent itself. This is a much easier task than trying
to lcarn a non-structured value function for a complex structured task.

Each policy that is considered as part of the search must be evaluated to de-
termine its quality compared to other policies that have been considered. The
efficient use of sampled experience to compare the quality of policies is one of the
topics studied by Peshkin (2001). Typically the search strategy is to determine the
eradient in the policy quality with respect to the parameters 0 and adjust the pa-
rameters in the direction of the gradient’s steepest ascent (Williams, 1992; Baxter
and Bartlett, 2000). Alternative search strategies include exhaustive enumeration
over a finite horizon (Pynadath and Tambe, 2002) and global search methods such

as genetic algorithms and simulated annealing (Rosenstein and Barto, 2001).
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2.5 Properties of Reinforcement Learning Algorithms

There are many other RL algorithms which will not be covered in detail here.
However, it will be useful for the discussion in subsequent sections to define a

number of features which can be used to classify different RL algorithms.

Online vs. OfHine

If an algorithm is intended to interact directly with the environment and learn
new information after each action is taken, it is termed an online algorithm. If
instead the algorithm is designed to learn from an erecution trace which records
the states, actions and rewards which occurred during an episode interacting with

the environment, it is termed an offiine algorithm.

On-policy vs. Off-policy

Algorithms which learn a state-action value function from the experiences gener-
ated by an agent following a control policy w can be classed as one of two types.
An on-policy algorithm learns the value function @)%, i.e. the value function for
the policy being followed by the agent. SARSA is an example of an on-policy
algorithm.

An off-policy algorithm learns the optimal value function )* no matter which
control policy 7 is followed®. The control policy ™ may be completely unrelated to
the optimal policy 7*. Q-learning is an example of an off-policy algorithm.

On-policy algorithms can also be used to learn Q*, but only if the agent grad-
ually adapts its control policy towards greedy choices in the estimated value func-
tion. Off-policy algorithms allow a more flexible choice of control policy, but can

be problematic in combination with function approximation (see Section 3.4).

Model-based vs. Model-free

A model-based reinforcement learning algorithm is one which builds an explicit
model of an MDP which describes the learning agent’s environment. The parame-
ters of this model are estimated based on the experiences acquired by interacting
with the environment. This MDP model can then be used either to simulate ex-
periences for the learning algorithm, or to perform Bellman backup operations in
the current (estimated) value function. In both cases, convergence to the optimal

value function can be obtained after fewer experiences in the environment, at the

4 As long as there is sufficient exploration of the state space. Policy m must visit every state-

action pair infinitely often as time goes to infinity.
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expense of more computation time per step in the environment. Prioritized sweep-
ing (Moore and Atkeson, 1993) is a good example of a model-based algorithm.

An algorithm such as Q-learning which builds no MDP model, and learns based

on value function updates from experience tuples only, is known as a model-free

algorithm.

Complexity Measures

The efficiency of RL algorithms in terms of various resources can be compared

using the following complexity measures:

Memory Complexity The amount of memory required for data structures to

learn and store a near-optimal policy.

Sample Complexity The number of experience tuples obtained from interaction

with the environment required to learn a near-optimal policy.

Computational Complexity The computation time expended to process a sin-

gle experience tuple after interacting with the environment.

Selecting a reinforcement learning algorithm for a particular domain often involves
a trade-off between sample complexity and computational complexity. In domains
where experiences in the environment are time-consuming or expensive, such as in
autonomous robotics, minimizing sample complexity will be the primary concern.
In other domains where simulated environments can be used to generate fast, cheap
experience, a simpler method with a worse sample complexity may be preferred if

this reduces the required learning time.

2.6 Partial Observability

An implicit assumption underlying the discussion so far is that the learning agent
can detect with 100% accuracy the complete current state of the environment,
and use this state to make the optimal action choice. In most real-world domains
this assumption does not hold, and the true state of the environment is always
uncertain. Autonomous mobile robotics is a good example of such a domain.
Robotic sensors tend to be noisy, reporting imperfect information about the world.
Robots are also situated at some location of the world, which means that the robot
may only be able to observe events which take place at the same location. Events
which occur at other locations may remain unknown for some time.

To formalise the notion of a problem which is only partially observable, we can

extend the definition of an MDP (see Section 2.2) to define a partially-observable

37



Markov Decision Process, or POMDP. An example of a POMDP is shown in Figure
2.3. A POMDP is described by a tuple < S, A,T,R,Q,0 >, where S, A, T and

R have the same definitions as in the MDP. The first additional parameter Q is
a finite set of observations which represent the possible experiences the agent can
have at each time step. The second parameter is a function O(s',a,0) — [0,1]
which defines the probability of making observation o € Q after taking action a
and ending up in state s’. Note that one and only one member of § is observed

on each time step.

Figure 2.3: POMDP with four states, two actions, seven observations, and a single

stochastic transition. Reward is assumed to be zero if not marked for a transition.

If all the parameters of the POMDP are known, and |S|,|A| and [2| are all fairly
small, then an ezact solution of the POMDP can be found. A POMDP induces
an MDP over belief states. Each element b; of the current belief state b represents
the probability that the current state is s;. The state space of the induced MDP
is the continuous space of beliefs B. In addition, the optimal ¢-step value function
Vt(a) (the value of a belief state given that we can only take ¢ further actions)
has a piecewise-linear form. This means we can represent each V; as a finite set
of vectors. With this representation we can use value-iteration to calculate V; for
increasing values of ¢, gradually approaching the infinite horizon value function V*.
Some examples of exact POMDP algorithms are the witness algorithm (Kaelbling
et al., 1998), Incremental Pruning (Cassandra et al., 1997) and the linear support
algorithm (Cheng, 1988).

The complexity of exact POMDP algorithms is such that they are only appro-
priate for solving quite small problems. Pineau et al. (2003) present an approach
similar to the exact methods, but limit the number of vectors that can be used
to represent the intermediate value functions, resulting in a close approximation
to the optimum for medium-sized POMDPs. For POMDPs with a large number

of states, explicitly representing the belief state b and performing a full Bayesian
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update each time step is infeasible, so some researchers have investigated approxi-
mate belief state representations, such as the approach by Roy and Gordon (2002)
based on principal component analysis.

There are also a variety of approaches which avoid value iteration over belief
states. Simmons and Koenig (1995) solve an POMDP problem as if the underlying
states were fully observable, and use the resulting MDP solution as a heuristic to
guide action choice in the POMDP . Policy search can also be used to exhaustively
evaluate policies over a finite horizon (Pynadath and Tambe, 2002).

Empirical studies of POMDP planning have shown it to be much harder than
MDP planning, a view which is supported by complexity results for the two plan-
ning problems (Madani, 2000). Learning in POMDP environments is possibly even
more difficult, since a typical partially observable RL setting would involve experi-
ence tuples of the form < a¢, 04, ¢ >, with the agent having no prior knowledge of
T, R, or O, and often not knowing the number of underlying states |S|. Estimat-
ing these unknown parameters is similar to the task of learning a Hidden Markov
Model from observed data, but researchers who have modified the Baum-Welch
algorithm (Rabiner, 1989) to learn POMDP models have found that this approach
is computationally expensive (Chrisman, 1992; McCallum, 1996). An alternative
approach is to learn a predictive model (Chrisman, 1992) to estimate the number
and properties of the hidden states. This model may be based on a memory which
stores the most recent actions and observations (Lin and Mitchell, 1992; McCal-
lum, 1996), or use a more complex representation such as that of TD Networks
(Tanner and Sutton, 2005) or predictive state representations (Wolfe et al., 2005).
The predictive model can etther be used to build an explicit POMDP model for
planning, or combined with a model-free learning algorithm, using the predictive
model only to identify the current hidden state.

In some circumstances it is possible to learn in a POMDP environment in a
completely model-free fashion, with no attempt to identify the hidden state. For
example, the HQ-learning algorithm (Wiering and Schmidhuber, 1997) is a hier-
archical model-free approach to learning in goal-oriented POMDPs. HQ-learning
is applicable when the task of reaching the goal is a linear sequence of sub-tasks,
where each sub-task can be solved with a reactive policy mapping observations to
actions®. HQ-learning relies on an implicit memory of past observations, since the
active sub-task is an indicator of progress along the sequence. There are other
model-free approaches (Littman, 1994; Cliff and Ross, 1994) which use explicit
memory bits to record some part of the observation history. These approaches

have a key advantage over a finite history window in that an agent can remember

®HQ-learning is described in more detail on page 71.
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the important parts of the observation history compactly, even if the observations

happened an arbitrarily long time in the past.

Partial-observability adds a further dimension of difficulty to many real-life
problems. While much progress has been made in POMDP planning, state of the
art algorithms remain computationally expensive, and representations for learning
in POMDP environments are still evolving. Given the difficulty of planning and
learning in POMDPs, modelling a large RL problem as a POMDP is impractical.
It is likely in future that hierarchical environment models will limit the use of
POMDP techniques to small sub-problems (see section 3.5 for a survey of existing
hierarchical RL methods). Partial observability is a minor topic in this thesis,

which will mostly be concerned with fully observable problems that can be modelled
as MDPs.
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Chapter 3

Background: Scaling-Up RL

In this chapter, the focus of attention is shifted to the problem of reinforcement
learning in large-scale domains. The state-space explosion is presented as the pri-
mary challenge to overcome in order to scale-up RL. A wide range of techniques
have been proposed for this purpose. A categorization of these techniques is de-
fined in Section 3.2. kach category denotes a family of techniques which can be
used to modify standard RL algorithms to allow them to be applied to a wider
range of problems. This categorization is used to structure a comprehensive survey
of existing techniques for scaling-up RL. At the end of the chapter, some broad

conclusions are drawn from the complete survey.

3.1 The State Space Explosion

Reinforcement learning has been applied successfully in a variety of domains. It
is an attractive approach when, for example, it is easier to define a good reward
function than a full model of the environment, or when an environment is easily
simulated but the principles behind an optimal policy for that environment are
poorly understood. However, there remain many RL problems with no known
optimal policy that are infeasible to solve with standard algorithms. Once the
space of state-action pairs grows beyond a certain size, the time for standard
algorithms to converge becomes too great, and in some situations there may not
even be enough memory to store the entire table of state-action values. Standard
algorithms are also based on a finite space of state-action pairs. There are many
interesting learning problems where the state-action space is infinite, and usually
in such cases the space 1s also continuous.

The key problem which arises when reinforcement learning is applied to large-
scale problems is referred to as the state space explosion. It was also described

by Bellman (1957) as the curse of dimensionality. The “flat” state space S used
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by a traditional reinforcement learner can usually be expressed as the Cartesian
product of n simpler state variables, X; X X5 X --- X X,. Even if these were only
binary state variables, |S| would be equal to 2". As we scale-up to larger problems
by increasing the number of state variables, the size of the state space S grows
exponentially. Since the time required to learn an optimal policy grows at least as
fast as the size of the state space for existing table-based RL algorithms (Strehl
et al., 2006), the learning time will also grow exponentially as n is increased.

It is clear that in the fully general case of an arbitrary MDP with 2" states
(still assuming binary state variables), there is an inescapable limit on how large
we can allow n to grow and still be able to find the optimal policy in a feasible
time. Thankfully, real-life learning problems rarely exhibit the full generality of an
unconstrained MDP. In a particular region of the state space, there may be only
a few state variables which are relevant to the action choice. Alternatively, there
may be a large group of states with similar state features which can be considered

interchangeable in terms of state value and optimal action choice.

3.2 Categorization of Scaling-Up Techniques

In recent years, a wide range of techniques have been proposed to tackle the prob-
lem of scaling-up RL methods to solve larger and more difficult learning problems.
To structure the survey of these existing techniques, they will be classified into the

following five categories:

Exploration Strategy Since an RL agent begins with no knowledge of its envi-
ronment, the agent must take explorative actions to discover the effects of
cach action and the states which contain large rewards. Once an environ-
ment has been well-explored, the agent normally tends towards ezxploitative
actions which lead to the best rewards. To speed up the learning process,
some researchers have focused on reducing the number of explorative actions
required to learn the behaviour of the environment, meaning that the agent

can move more quickly to exploit the rewards.

Value Function Approximation Many RL algorithms are based on a value
function data structure. In its simplest form, a value function is a table of
numbers which stores for each state an estimate of expected future reward.
For large state spaces, representing an exact value function not only uses
a lot of memory, but also causes many algorithms to converge more slowly.
Replacing the exact table with an approximation means that the learning

agent requires less memory and is better able to generalize from experience.
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Hierarchical Reinforcement Learning In order to speed up learning, hierar-
chical RL methods employ a divide and conquer approach. An RL problem
is decomposed into smaller sub-problems, and the results are combined to
generate the overall policy. The problem decomposition can be carried out
by creating an abstraction hierarchy of actions (temporal abstraction) and/or

of states (state abstraction).

Symbolic Representations for Reinforcement Learning A symbolic repre-
sentation of states and actions is often more compact than the extensional
representation (which explicitly enumerates each state) used by standard RL
algorithms. Symbolic representations also support mechanisms for reason-

ing using acquired knowledge, which can be used to accelerate the learning

process.

Parallel Reinforcement Learning A number of agents learning in parallel can
be used to find optimal policies for single-agent learning problems more
quickly than a single agent learning in isolation. These methods can exploit
the computing power of systems such as multiprocessor computers, clusters
of computers and grid computing systems. The agents combine their results

through a communication medium such as a shared memory or a network

which supports message passing.

In the following five sections I will survey existing work in each of these categories to
determine in cach case the advantages and disadvantages of the general approach,
the types of problem which will benefit most from the techniques in each category,

and the limitations which are evident in each case.

3.3 Exploration Strategy

A key property of the standard reinforcement learning setting is that the agent ini-
tially has no information about the way the environment behaves. The dynamics of
the environment (i.e. the transition and reward functions) can only be determined
by performing actions in the environment and observing the results.

The goal in reinforcement learning is to find the optimal policy. But because the
environment is initially unknown, there emerges a fundamental trade-off between
choosing actions to gather information about the environment and choosing the
actions which have (so far) proved to lead to the greatest rewards. This is usually

described as a trade-off between exploration and exploitation.

Exploration Actions are chosen with the goal of discovering new information

about the reward and transition behaviour of the environment.
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Exploitation Actions are chosen which are likely to lead to the greatest rewards

which have been discovered so far during learning.

Theoretical results in RL are usually based the notion of asymptotic optimality.
An RL algorithm is asymptotically optimal if over an infinite learning time the
algorithm is guaranteed to reach a point when all subsequent action choices are
optimal. Applying RL algorithms in practice, however, requires that the learning
time be both finite and feasibly short. In practice it cannot generally be guaranteed
that an optimal policy will be learned. The best we can do is establish a high
probability that a policy close to optimal will be learned in the available time.

Sometimes an RL task is formulated as entirely separate phases of exploration
and exploitation. The initial exploration phase could simply be used to build
as accurate a model of the environment as possible. This is known as system
identification, an approach which essentially ignores the reward function during
learning. Dynamic programming can then be used to determine a policy for the
exploitation phase based on the learned model.

However, not all information about the environment is of equal value to the
agent. During the exploitation phase the agent’s goal is to accumulate rewards.
Information about how large rewards can be obtained is more valuable to the
agent than any other information about the environment. The specific problem
of exploration for future exploitation was identified and investigated by Wyatt
(1997). Note that during a separate exploration phase the accumulated reward
is unimportant—the goal is simply to learn as much as possible about where the
rewards are.

Separate exploration and exploitation phases are rare however, and usually
some form of exploration strategy is used to choose actions. An exploration strategy
encapsulates both exploration and exploitation in a single algorithm for action
selection. It provides a trade-off between early exploration (to learn about the
environment) and later exploration (to maximize reward). Exploration strategies
which are partially exploitative are very effective in practice, regardless of whether
the reward accumulated during learning is considered important®. This is because
they tend to focus the exploration effort around paths in the MDP which lead to
large rewards, as shown in Figure 3.1. This means that a suboptimal path leading
to a reward can be quickly refined to the path which achieves that particular reward
most quickly. However, random exploration away from such paths is still required

to find larger rewards which have not yet been encountered.

I7he difference in accumulated reward between the agent during learning and the optimal

policy is known as the regret.
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State space State space ® Current state
o Large reward

—Best path so far

Focus of exploration

Uniformly random strategy Mostly greedy strategy
with some randomness

Figure 3.1: Exploration policies which are also partially exploitative focus the

exploration effort around paths which are already known to lead to large rewards.

The choice of exploration strategy is critical to achieving timely convergence
to the optimal policy. If there is insufficient exploration, the algorithm is likely to
converge to a sub-optimal policy. If exploitation is delayed too long, the exploration

effort will be spread too thinly over the state space and convergence will be slow.

3.3.1 Common Exploration Strategies

The two most commonly used exploration strategies both provide a mechanism to
balance exploration between the two extremes of the greedy policy (which always
picks the action with the largest Q(s,a) value) and the uniform random policy

(which assigns the same probability of selection to every action in a state).

e-greedy Strategy

The e-greedy or semi-uniform random exploration strategy (Watkins, 1989) is a
simple mechanism for trading oft the exploration of the uniform random policy
against the exploitation of the greedy policy. There is a small probability € at each
time step of picking an action at random, otherwise the greedy policy is followed.
With a good choice of the value for €, the policy will quickly converge to one which

selects the optimal action with probability (1 — €).

Boltzmann Strategy

The Boltzmann or softmar exploration strategy (Luce, 1959) is a slightly more
sophisticated strategy. It is based on the Boltzmann distribution, which has its
origins in statistical mechanics, but also occurs in computer science in algorithms
such as optimisation by simulated annealing (Kirkpatrick et al., 1983). While
e-greedy assigns equal probability to all actions when a random selection is per-
formed, the Boltzmann strategy weights the probabilities using the Q(s,a) values
for the current state. So while the action choice is still random, actions leading to

higher rewards will have a greater probability of being selected (see Figure 3.2).
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Figure 3.2: The e-greedy strategy chooses the greedy action with probability (1 — €)
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and otherwise chooses randomly using a uniform distribution. The Boltzmann
strategy does not explicitly distinguish greedy and random actions. Instead the

overall probability of choosing an action is weighted by the action’s Q(s, a) value.

How much the probabilities are affected by the state-action values is determined by
the temperature parameter I'. This allows us to choose from a spectrum of policies
ranging smoothly from fully-random to fully-greedy, depending on our choice of
value for T'. High temperatures make the action choice more random, low temper-
atures encourage greedy behaviour. In state s, the probability of selecting action

a, is given by the distribution:

eQ(sraﬂ)/T

P(an) = zeQ(S:ﬂ:‘)/T
]

Decaying Parameter Values

Both the e-grecedy and Boltzmann strategies are compatible with the theoretical
conditions for Q-learning to converge to the optimal value function. In addition,
they both tend to focus the exploration effort along paths in the state space which
have been shown to lead to good rewards, resulting in fast convergence. However,
for fized values of the € and T parameters, the control policy will continue to
select sub-optimal actions, even when the value function is arbitrarily close to
the optimum Q*(s,a). In practice, once the value function is reasonably close to
Q*(s, a) it is desirable to make greedy choices in the value function. This can be
achieved by gradually decaying the value of parameter € (or T').

For the SARSA algorithm, decaying the value of € (or T') is even more important
if we want to learn the optimal value function. Since SARSA is an on-policy
algorithm, it will converge to the optimal value function only if the control policy
tends towards greedy actions over time. Without decaying the parameter values

SARSA will converge to the value function for the control policy, not the value

function for the optimal policy.
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Successful applications of the e-greedy and Boltzmann strategies are strongly

dependent on:

1. choosing a good initial parameter value to ensure enough exploration occurs.

2. decaying the parameter at the correct rate so that exploitation can take place

once the value function is close to the optimum.

Unfortunately there is no analytic method to determine a suitable initial value and

decay rate for a given problem. Suitable values therefore need to be determined

by trial and error.

3.3.2 Directed Exploration Strategies

The e-greedy and Boltzmann strategies require no extra state to be stored in ad-
dition to the table of Q(s,a) values. There is therefore no explicit record of which
areas of the underlying MDP have been explored. Instead we rely on the fact that
if enough random actions are taken over a long time interval it is probabilistically
likely that all areas of the MDP will be explored. This is what makes the choice of
the initial value and decay rate of € or T' so vital to the success of these strategies.
Since there is no way to detect when enough exploration has taken place these
values must be selected by trial and error.

More complex exploration strategies have been developed which store addi-
tional information during learning to track the progress of exploration. This al-
lows a more informed decision to be made as to when enough exploration has taken
place. Thrun (1992) uses the term directed to describe such exploration strategies.
In contrast, e-greedy and Boltzmann are known as undirected exploration strate-
gies. In addition, Thrun (1992) proposes a classification of exploration strategies

based on which information influences exploration decisions:

Utility-based Strategies which are based on the estimated value of each state-
action pair, i.e. value function information. Actions which lead to large

rewards are explored more often. The e-greedy and Boltzmann strategies are

examples of utility-based strategies.

Counter-based Strategies which store a count of the number of times each state-

action pair is visited. Actions which have small counter values are explored

more often, which drives the agent towards areas of state space which are

not well-explored. See Sato et al. (1988) for an example.

Recency-based Strategies which measure how much time has passed since each

state-action pair was visited. Actions which have not been visited for some
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time are favoured for exploration, which again drives the agent towards

poorly-explored areas of state space. See Sutton (1990) for an example.

Error-based Strategies which measure how much the Q(s,a) value of each state-
action pair changes during updates. Actions which have recently undergone
large changes in value are assumed to have larger error. These actions are

favoured for exploration in order to reduce the error. See Thrun and Moller

(1991) for an example.

Directed exploration strategies can also be either local or distal (Wyatt, 1997).
Local strategies only use information about the current state (such as counters or
recency information) to decide whether to explore. Distal strategies consider in
addition the long-term exploratory benefits of actions. For instance, consider a
state with two actions which have both been well-explored, but where the second
of these actions would allow the agent to reach an unexplored state in several time
steps. A local strategy in this state would not detect the exploratory benefit of
the second action, whereas a distal strategy would. Measures of exploratory worth
such as those described by Thrun (1992) can be back-propagated in distal strate-
gies using dynamic programming or temporal difference updates. For a detailed
discussion and an empirical comparison of local and distal strategies the reader is
referred to Meuleau and Bourgine (1999).

Most directed strategies are heuristic approaches without any formal justifica-
tion. They are generally inexpensive computationally, allowing them to outperform
undirected strategies both in terms of sample complexity and computational effort.
The main disadvantage of heuristic approaches is that they often require parameter
selection and tuning for each new application domain.

Kearns and Singh (2002) describe a model-based algorithm utilizing a counter-
based exploration strategy. This algorithm is interesting because its learning time
can be polynomially bounded, whether the time is measured by environment time
steps or computational operations. Given upper bounds on the mean and variance
of the reward function in any state of an MDP, there is probability of (1 — §)
that their algorithm will learn a policy where the discounted return in all states
is > V * (s) — € in a time bounded by an expression polynomial in % and %. This
is mainly of theoretical interest, but it does suggest that in the future it may be

possible to develop efficient directed methods which also have a formal basis.

3.3.3 Bayesian Approaches to Exploration

Asymptotic convergence results for Q-learning and SARSA make very few assump-

tions about the MDP in which learning takes place (Jaakkola et al., 1994; Singh
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et al., 2000). The only major restriction is that the variance of the rewards received
from each state-action pair must be finite. When such a wide range of environ-

ments are possible it is difficult to estimate the potential benefit of an exploratory
action. Thankfully most of the problems we want to solve with RL do not re-
quire this generality. The mean and variance of the reward function can usually
be bounded. In other cases the reward function may be completely known before
learning begins, leaving only the transition probabilities unknown. When we have
this kind of prior knowledge about the distribution of the underlying MDP model,
a mathematically rigorous way to reason about exploration is to use a Bayesian
statistical framework.

In Bayesian statistics, a prior distribution models the initial uncertainty. As
new data is collected a posterior distribution can be calculated which reflects how
the uncertainty has changed after observing the data. In RL the unknown param-
eters are the transition probabilities and reward distribution for each state-action
pair. The transition probabilities define a multinomial distribution over successor
states. The uncertainty in these probabilities can therefore be modelled with a
Dirichlet distribution®. Rewards may be drawn from any underlying distribution,
but are usually modelled using a Gaussian distribution.

Given a model of our uncertainty in the underlying MDP, how can we decide
when it is worth exploring? Since integrating probabilities over the entire distri-
bution of MDP models is unlikely to be feasible, approaches to date have been
based on sampling the distribution of models. In Dearden et al. (1999) dynamic
programming is used on the sampled models to generate estimates of the optimal
Q(s,a) values for the underlying MDP. A separate Gaussian distribution is then
used to model uncertainty in each set of Q(s,a) estimates, which is used to guide
exploration based on an information gain criterion. Strens (2000) proposes a sim-
pler scheme where a single sample from the distribution of models (a “hypothesis”)
is generated at the start of each of a series of finite length “trials.” Dynamic pro-
gramming is used to create an optimal policy for the hypothesis model. This policy

is then used to select actions during the trial.

Approaches based on sampling from a distribution of MDP models are compu-
tationally expensive, since optimal policies for each sampled model must be found
by dynamic programming. To avoid this expense, a number researchers have pro-
posed Bayesian-inspired approaches on a smaller scale. One such approach is to

adopt a local view each state of the MDP as a bandit problem. A bandit problem

?In most cases a state-action pair has only has a non zero transition probability for a few
destination states. Therefore it is usually necessary for efficiency reasons to model the distribution

with a representation suited to a sparse distribution. See Dearden et al. (1999) for further details.
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(Berry and Fristedyt, 1985) is a single state problem where the goal is to identify by
trial and error which of the available actions has the highest expected reward. Op-
timal solutions (in a Bayesian sense) can be calculated for many bandit problems
(Gittins, 1989). We can view each state of an MDP as a bandit problem where the
“reward” for taking an action is the optimal discounted return Q*(s,a). Unfortu-
nately, in RL the value of Q*(s, a) is initially unknown, and must be approximated
by its estimate Q(s,a). The local bandit problem for each state is therefore non-
stationary, which makes some kind of forgetting mechanism necessary if Q(s,a) is
used for the bandit’s reward.

The interval estimation method (Kaelbling, 1993b) is a non-Bayesian strategy
which adopts the local bandit problem view. Uncertainty in the value of each state-
action pair is modelled using a Gaussian distribution. Some small probability o
is chosen, and for each action an upper bound is calculated so that the true value
is below the bound with probability (1 — «). The action with the highest upper
bound is always chosen for execution. If the action turns out to be a poor choice,
the upper bound will be reduced as the statistics are updated. If the action is a
good choice, the upper bound will remain high and the action will continue to be
selected in that state.

Meuleau and Bourgine (1999) present a method similar to interval estimation,
based on a Bayesian technique for bandit problems using Gittins indices (Gittins,
1989). A related Bayesian approach which models the uncertainty of each Q(s,a)
value during the progress of Q-learning is presented by Dearden et al. (1998).

3.3.4 External Sources of Exploration

In the standard reinforcement learning setting the learning agent is tabula rasa.
This means that the agent begins the learning process with absolutely no knowledge
about how its environment behaves. In the Bayesian RL framework the tabula rasa
assumption is relaxed, since the agent is provided with a prior distribution which
models and quantifies the agent’s uncertainty of the behaviour of the environment.
In both cases the responsibility for making intelligent exploration decisions rests
entirely with the agent.

In particularly complex environments with sparse rewards, the learning time
can be shortened significantly by using an external source to perform the initial
exploration (Smart and Kaelbling, 2000). The external source could be a human
controlling the system, or a hand-coded policy. This introduces an element of
teaching into the RL process, making the initial phase of learning similar to be-
havioural cloning (Sammut, 1996). The advantage of this approach is that sparse

rewards can be quickly uncovered by the external source, but the reinforcement
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learner can go on to learn a policy which improves on the performance of the exter-
nal source. Bentivegna et al. (2004) use such techniques to develop robotic systems
capable of playing air-hockey and a marble-maze game.

The disadvantage of this approach is that the quality of the learned policy is
strongly dependent on the quality of the external source. If the external source is
very sub-optimal, it is possible that exploration will be insufficient to avoid con-
verging to a local optimum. In the worst case, if there is no known reasonable
hand-coded policy for a domain, and the task is beyond a human controller, this
approach is probably inapplicable. Conversely, Driessens and Dzeroski (2002) dis-
covered that it can be problematic if the external source is too close to the optimal

policy, since a learner observing only optimal actions may not be able to distinguish

between good and bad action choices.

3.3.5 Limitations of Improving the Exploration Strategy

Extensive previous research and continued interest in exploration techniques re-
flects the fundamental nature of the exploration-exploitation trade-off in RL. A
good exploration strategy is vital for learning the optimal policy in a reasonable
time. A variety of both simple and complex strategies were surveyed in this sec-
tion. The more complex strategies require fewer explorative actions at the expense
of greater computational effort. Simple strategies such as e-greedy and Boltzmann
tend to be preferred when the environment is simulated, since environmental expe-
rience is cheap and plentiful. Directed and Bayesian strategies become most useful
when experience in the environment is limited or expensive to obtain.

Despite the gains that the directed exploration strategies afford us, there is a
limit to how far they can make large reinforcement learning problems tractable.
The difficulty of large reinforcement learning problems is primarily due to the ex-
ponential growth of the state space as the number of state features is increased.
While it may not be necessary to visit all of these states if there is a known bound
on the reward function, it remains likely that a large subset of the state space must
be repeatedly visited to establish the optimal policy within some reasonable error
bound. So even if we had access to a perfect exploration strategy, the sample com-
plexity would still increase exponentially. To tackle this problem, we need either to
use some technique to reduce the size of the state space, or to generalise between
similar states so that we do not need to visit all state-action pairs. Techniques for

dealing with the state space explosion are discussed in Sections 3.4, 3.5 and 3.6.
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3.4 Value Function Approximation

In many situations, representing the function Q(s,a) — R explicitly as a table of

real numbers will result in some degree of redundancy. If two states are similar in
terms of state features, it is likely that a given action will have similar value if taken
in either of the two states. To take advantage of this property, a representation is
required for Q(s, a) which will allow us to generalise between similar states. There

are a number of advantages to generalisation:

e By removing redundancies in the table of Q(s, a) values, the function can be

represented more compactly in memory.

e Each update from experience affects more than one state, which can acceler-

ate convergence to the optimal value function.

e Values of states which were not encountered during learning can be estimated.

e Learning can take place in domains with continuous state spaces.

This form of generalisation in reinforcement learning is known as value function
approzimation, since the goal is to create an approximation of the entire value
function from a limited number of examples. Numerous existing techniques for
function approximation can be used from the fields of inductive concept learning,
pattern recognition and statistical curve fitting. In this section the application of

such techniques to reinforcement learning is considered.

Historical Remarks

Recent research has focused on applying function approximation techniques to the
popular Q-learning (Watkins, 1989) and TD(A) (Sutton, 1988) algorithms, which
were both originally presented with the assumption of an exact tabular repre-
sentation. However, learning an approximate value function is a concept which
originated in early game-playing programs. In his seminal work on the design of
chess programs, Shannon (1950) first suggested that a program could learn from
the outcome of each game it played by changing the coefficients of the evaluation
function used to rate positions of the board. Samuel (1959) implemented such a
program to play the game of checkers, using among other techniques an ad hoc
method for re-estimating the value of board positions based on the estimated value
of a board position encountered several moves later, a technique with many simi-
larities to the more general TD()) algorithm. The evaluation function in Samuel’s

program is a linear combination of numerical features of the board position.

02



e - .-—l--i-l-n-l--l-.-n,,.;,‘. -

Use last reward

>
A=
- e to estimate value
g = _ of previous state
i) ——> (%{) =4 v
t+1 7 -3 A |
Extract state E o | Estimate t+
features 8 Z | state value |
- |

v

Input features <
req+ 'YV(SH_I)

Train the
approximator

‘ Create training
example

(s, .1, g + 'YV(SHI)}

Figure 3.3: Instead of performing backup operations in a table data structure,

experience can be used to generate training examples for a function approximator.

There has also been a wide range of research on combining function approxi-
mation with dynamic programming (see Section 2.3), using approximators such as
orthogonal polynomials (Bellman and Dreyfus, 1959) and splines (Daniel, 1976).
However, most of these approaches assume that an exact model of the environ-

ment is available for use in calculations, and so they are not directly applicable to

reinforcement learning.

3.4.1 Fundamentals of Approximation

Consider using an algorithm such as TD(A) (Sutton, 1988) to calculate the value
function V7™ for some policy 7. The estimated value function at time ¢ is written as
V,. When function approximation is combined with the TD(A) algorithm, V; is no
longer represented as an exact table, but in a compact form which approximates
the table. The approximator is often a parameterized function, which represents
V; using a fixed size parameter vector 0;. Other approximators are based on a
finite database of experiences recorded during training. In either case, the number
of parameters or experience data points is usually much smaller than the total
number of states.

Each TD() backup, which would usually update individual values in the table
representation, can now be used as a training erample for the function approxi-
mator, as shown in Figure 3.3. For example, in the simplified case of TD(0), the

value of the state encountered at time t, Vi(s;), is re-estimated using the value of

the subsequent state as r¢41 + YVi(si+1). To improve the function approximation,

we use the tuple (s¢, 741 + YVi(5t+1)) as a training example for the approximator.

This approach allows us to choose from a wide range of existing supervised

learning algorithms for purposes of function approximation. Not all supervised
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learning techniques are equally appropriate however. The distribution of training
examples will appear non-stationary until V; becomes a good approximation of
V™. Some neural-network methods require multiple passes over a static training
set, and would be poorly suited for reinforcement learning.

Note that although much of the discussion in this section is framed in terms of
learning the state value function V™(s), these methods can apply equally well to

approximate the state-action value function Q7 (s, a).

3.4.2 Comparing Function Approximation Techniques

How can we compare the performance of two function approximation methods?
Since many supervised learning methods seek to minimize the mean squared error

(MSE) over the training examples, a criterion often used to compare function

approximations in a reinforcement learning context is:

MSE(6:) = )  P(s)[V7(s) — Vi(s)]’

Here P(s) is a probability distribution which weights the error values accord-
ing to the likelihood of arriving in a particular state. Note that for on-line re-
inforcement learning, P(s) is dependent on the policy being used to explore the
environment. If we change the policy over time (e.g. to approach the optimum)

then P(s) will also change over time. This is a source of instability when function
approximation is combined with on-line learning,.

It is arguable whether this is the best criterion with which to grade approxima-
tions, since the greedy policy derived from a parameter vector 9-; which minimizes
M SE(@:) can often be outperformed by a greedy policy derived from some other
value of §,. However, on the basis that a value function which minimizes the MSE

will result in good performance, there are two important properties of our method

to be determined:

e How close to the optimum is the V; which minimizes M SE(B:)? In other

words, what is the most accurate value function representable in our function

approximator?

e Does the combination of the reinforcement learning and function approxi-

mation methods selected guarantee convergence to this minimal M SE(Q-;)

approximation?

It is the second of these properties which is most problematic, and is discussed in

more detail in Section 3.4.7.
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3.4.3 Linear Approximation Methods

Function approximators based on a linear combination of basis functions offer a

number of advantages. They are backed by strong mathematical theory. There
are also efficient algorithms for performing gradient descent on the parameters
of a linear approximator. These algorithms converge to a global optimum which
minimizes the MSE over a static training set.

The functional structure of a linear approximator is illustrated in Figure 3.4.

Given a set of n basis functions {¢;(s)} and a vector of n parameters 6, we can

express the linear approximation of the value function as:

Vi(s) = ) bigi(s)
i=1

The correct choice of the basis functions {¢;(s)} is an important factor in
determining the success of a linear approximator. In making this choice, we can
exploit any prior knowledge we may have about the learning problem to select input
features which are good discriminators for the value function. Feature selection is

a vital stage for most supervised learning methods, both linear and non-linear.

L

V Approximate state value

9 Summation unit

Bl 0, 93 9n Adjustable parameters

@ @ @ """" @ Input features

Figure 3.4: Linear approximation architecture for learning a value function.

Coarse Coding

We could use the unmodified state variables (whether discrete or continuous) as
the basis functions, but this is unlikely to be a successful approach, given the
limited representational power of a linear approximator. A more suitable set of
basis functions can be constructed using coarse coding (Hinton et al., 1986). Each
feature in coarse coding is defined as a region of the state space, and the basic
approach is to use a large set of overlapping features which between them cover the

whole state space. Coarse coding generally uses binary features, which have value 1
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if the current state lies within the receptive field of the feature, and otherwise have
value 0. It turns out that using relatively coarse features with significant overlap is
more effective in most situations than using fine-grained disjoint features, although
if features are too coarse then it becomes difficult to represent fine-grained changes

in the true value function.

Tile Coding

Tile coding® (Albus, 1981) is a form of coarse coding which has proved to be a
popular function approximation technique for reinforcement learning (Watkins,
1989; Lin and Kim, 1991: Sutton, 1996). In tile coding, we define sets of features,
each set being an erhaustive partition of the state space. Each of these sets is
known as a tiling, and each feature in the set is called a tile. The multiple tilings
are each offset by a different amount in the state space (see Figure 3.5), which
improves the generalisation achievable by the approximator. The tilings need not
be uniform grids, an arbitrary partitioning strategy can be used. Tile coding is
generally combined with hashing techniques to reduce memory requirements. This
compresses a large tiling into a smaller set of tiles, each tile being composed of

several non-contiguous regions spread randomly over the state space.

Tiling | Tiling 2

2D state Current Tiling Active
space state feature
Figure 3.5: Tile coding uses coarse binary state features, arranged into a number

of overlapping tilings.

3.4.4 Memory-Based Approximators

Memory-based approrimators are a family of approximation methods which are not
based on a parameterized functional model. Instead a finite number of training
examples are simply stored in memory for later use. After training, the values of
new states are approximated using a subset of examples whose state features are

most similar to the new state. The set 1s determined as and when a new state

3 A tile coding approximator is sometimes known as a Cerebellar Model Articulation Controller

(CMAC) since this was the original name used by Albus (1981).



value needs to be estimated, i.e. at query time rather than at learning time. This
kind of approach is sometimes known as instance-based learning or lazy learning.
The k-nearest neighbour algorithm (Cover and Hart, 1967) is an example of a
memory-based approximator. Using this algorithm, the approximate value of a
state would be the mean value of the £ most similar states encountered during
training, where k is some constant. Sheppard and Salzberg (1997) use a variant of

k-nearest neighbour as a value function approximator for Q-learning, resulting in

a method which they term lazy Q-learning.

Kernel Methods

Kernel methods (Shawe-Taylor and Cristianini, 2004) are powerful memory-based
machine learning methods that have only recently been used for reinforcement
learning. The core idea in these methods is to map examples into an implicit feature
space ¢(x) (where x is the vector of state variables and ¢ is a mapping to a rich
space of state features). Since ¢(x) can contain a large (or even infinite) number
of features, or be expensive to evaluate for other reasons, we avoid evaluating ¢(x)

explicitly by defining a kernel function k:

k(x,x") = (¢(x), $(x"))

The value of k(x,x’) is the inner product of two states mapped into the rich
feature space, which can be seen informally as a measure of the similarity of the
two states. Note that evaluating ¢ is not necessary to calculate k. ¢ remains an
implicit feature space arising from the choice of kernel function k. Kernel methods
not only benefit from the computational saving of avoiding the evaluation of ¢, but
also allow powerful domain-independent kernel-based algorithms to be developed,
which can then be tailored to a specific application with a domain-specific kernel
function. Kernel methods can generalise very eflectively from only a very small
number of stored training examples.

Some researchers have begun assessing how kernel methods can be used for
value-function approximation in RL. Ormoneit and Sen (2002) demonstrate the
robustness of a kernel-based reinforcement learning algorithm in a theoretical con-
text. The empirical performance of reinforcement learning algorithms based on
Support Vector Machines (Dietterich and Wang, 2002) and Gaussian processes
(Rasmussen and Kuss, 2004) has also been investigated. A limitation of these
approaches is that they all rely on offline processing. Developing effective online

kernel-based reinforcement learning algorithms is an active area of research.
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3.4.5 Decision Tree Approximators

A number of researchers have developed function approximation approaches which

draw their inspiration from decision tree* learning algorithms such as ID3 (Quin-
lan, 1986). Chapman and Kaelbling (1991) presented the G-algorithm, which in-
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