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ABSTRACT 

Schistosomes infect their hosts via a percutaneous route, during which they are likely to 

come into contact with numerous innate accessory cells, including those with potent antigen 

presenting cell (APQ function. In this thesis, innate interactions between skin-stage 
Schistosoma mansoni larvae and accessory cells were investigated in vitro. Molecules 

released by the parasite following transformation (0-3hRP) but not soluble preparations of 

whole larvae stimulated cytokine production by a variety of accessory cells independently 

of endotoxin. Furthermore, Interleukin (EL)-10 and IL-12p4O but not FL-6 production 

stimulated by O-ARP was partly dependent upon recognition by Toll-like receptor (TLR)4, 

whereas FcyRs had little clear effect upon the cytokine response. In addition, mannose 

receptor (MR) ligands were identified within O-ARP, suggesting numerous pattern 

recognition receptors (PRRs) are involved in schistosome recognition. 

Investigation of the effects of 0-3hRP upon maturation of 'professional' APC 

demonstrated that dendritic cells (DC) responded by increasing cytokine production, up- 

regulating MHC II, CD40, and CD86 expression (but not CD80 or OX40L), and exhibiting 

an increased capacity to prime proliferation of CD4+ cells in vitro. However, 0-3hRP 

induced an 'intermediate' state of maturation when compared to the microbial products 

LPS and Zymosan A. Further in vitro analysis demonstrated that DC matured with 0-3hRP 

primed CD4+ cells to secrete a Th2 profile of cytokines. Moreover, inoculation of mice 

with 0-3hRP-matured DC led to the development of polarised Th2-type responses in vivo. 

Finally, treatment with anti-CD40 antibody reversed the capacity of 0-3hRP-matured DC 

to prime for Th2 responses instead causing the induction of Th I -type responses. 

In conclusion, the innate immune system recognises schistosome material released upon 

infection, resulting in the stimulation of accessory cells. These putative schistosome 

'pathogen-associated molecular patterns' (PAMPs) act to promote induction of Th2 

acquired responses via their direct effect upon APC. 
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CHAPTER ONE 

INTRODUCTION 



INTRODUCTION OVERVIEW 

Schistosomiasis is a serious parasitic disease of humans and has been the focus of intense 

scientific study. Although much work has centred upon the immune responses following 

vaccination with radiation-attenuated cercariae and the immune-related pathology induced 

by schistosome eggs, little is known about the initial innate response to infectious cercanae. 

Recently, the role of innate responses in the generation of acquired immunity to pathogens 

has become clearer, providing valuable insights into the mechanisms that may be involved 

during infection with schistosomes. 

In this introduction, I will describe the evidence for innate and acquired immune responses 
during infection with Schistosoma mansoni, primarily in the murine model. This will cover; 

9 the induction of inflammatory and acquired responses generated by normal larvae 

dunng the initial stages of migration from the skin to the lungs, 

9 the induction of inflammatory and acquired / protective responses generated by 

radiation-attenuated larvae, 

o and finally, the immune responses elicited to adult worms and to schistosome eggs. 

I will then provide an overview of the current understanding of innate immune responses, 
focussing upon; 

e the induction of innate responses by infectious agents and disease, 

e the role of innate responses in the initiation of acquired immune responses, 

e the role of innate responses in the polarisation of acquired immune responses. 
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PART 1 Parasite / Host interactions during schistosomiasis 

1.1 Introduction to the disease 

Schistosomiasis is a debilitating parasitic disease of both humans and livestock. It is 

prevalent in parts of sub-Saharan Africa, south and central America, and eastern Asia. 

Recent estimates suggest that 200 million people are infected worldwide, with I million 

mortalities per year. The WHO places it second in importance only to malaria in terms of 

morbidity, suggesting that it contributes considerably to the economic deprivation of many 

developing countries. Thus, schistosomiasis is a global disease of huge social and 

economic importance. 

The disease is caused by infection with trematode helminth worms of the Schistosoma 

genus. There are three main species of schistosomes that infect man, S. mansoni, S. 

haematobium, and S. japonicum, although less frequently zoonoses can occur with a 

variety of other mammalian species. Of these species, most experimental work, including 

that presented in this thesis, has centred on S. mansoni. 

Infection of the mammalian host follows exposure to water containing free-swimming 

cercariae that are released from the intermediate host (freshwater snail). Infective cercariae 

penetrate the skin of the host and transform into skin-stage schistosomulae. These larvae 

undergo a complex migration from the skin by an intra-vascular or intra-lymphatic route to 

the lungs, before reaching the liver where they mature to adults (reviewed by Wilson, 

1987). The mature worms then form male and female pairs that migrate to either the 

hepatic portal / mesenteric veins (S. mansoni and S. japonicum), or the veins of the bladder 

(S. haematobium). Here, they take up a long-lived residency and female oviposition occurs 

approximately 5 weeks post-infection. The eggs cross into the lumen of the gut, or the 

bladder, from which they are excreted in faeces, or urine, respectively. The excreted egg-, 

hatch upon contact with fresh water, releasing miracidia which infect the intermediate 

molluscan host. 

Adult schistosomes live for an average of 5 to 10 years resulting in chronic infection of 

their hosts. The parasite has co-evolved with its human host to increase host / parasite 
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survival, thus increasing the chance of successfal transmission. In this respect, schistosome 

infection results in a spectrum of chronic disease that is graded according to severity. 

Whilst the majority of cases are associated with low-level morbidity, termed "intestinal 

schistosomiasis", approximately 4% - 12% develop "hepatosplenic disease" characterised 
by severe fibrosis of the liver. This pathology is mainly due to the immune response to the 

egg. Unfortunately for the host, not all eggs released by the female exit from the body. 

Using experimental models of primate infection, it has been estimated that 10% of eggs are 

washed by the hepatic portal blood-flow to the liver (Farah et al., 1997). Within the liver, 

eggs become trapped in the sinusoids and the host initiates the formation of inflammatory 

granulomas around them. These granulomas are associated with fibrotic scarring and 
destruction of the surrounding tissue. However, it should be noted that these granulomas 

appear to serve a protective role against hepatocytotoxicity induced by egg molecules, 

possibly by limiting or preventing toxin release (Dunne et al., 198 1; Doenhoff et al., 198 1; 

Dunne and Doenhoff, 1983; Murare et al., 1992). Ultimately, the cumulative effect of 
fibrosis can lead to an increased portal blood pressure due to blockage of blood-flow, 

resulting in the development of oesophageal varices and upper gastro-intestinal bleeding, 

and contributing to splenomegaly. Indeed, pathology directly correlates with egg burden 

(Cheever et al., 1977). In severe cases of chronic schistosomiasis these varices can rupture 
leading to death. 

Control of schistosomiasis via the use of anti-helminthics, molluscicides, education, and 
improved sanitation is either too expensive, or has inherent difficulties in effective 

execution. Therefore, the development of a vaccine is a major goal of much of the current 

research into schistosomes (reviewed by Bergquist et al., 2002). To be effective, a vaccine 

would have to limit infection, or limit infection-induced pathology. However, in designing 

vaccine strategies it is essential to understand the host immune responses that occur during 

normal infection, and those that may lead to protection. In this respect, study of innate 

immune responses to schistosomes during the initial stages of infection could provide 

valuable insights into early host / parasite interactions, and lead to a greater understanding 

of the events that culminate in the priming of the acquired immune response. 

The scope of the work that can be covered studying human infection is limited for ethical 

and practical reasons. Therefore, experimental models of infection in laboratory animals 

have been developed. Indeed, the initial host / parasite interaction has often long passed 
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once a person presents with clinical disease, necessitating the use of animal models in this 

area of research. S. mansoni can infect many animals, including rodents and primates, and 

therefore numerous models of infection have been developed. Of these, the mouse model 

has been the most intensely studied due to both its wide availability and because it is fully 

permissive to infection. Using mice has the added advantage that they are the most widely- 

studied animals in immunological research. For these reasons, the mouse model forms the 

focus of my work presented in this thesis. 

1.2 Parasite migration and development during infection. 

1.2.1 Parasite migration 

Cercariae need to successfully infect their mammalian host in order to develop into adults 

and continue the life-cycle. This requires the parasite to undergo a complex process of skin 

penetration and internal migration. Penetration is an active process achieved by both 

physical burrowing of the parasite and the release of proteolytic contents of the pre- and 

post-acetabular glands which digest a pathway through the stratum comeum and epidermis 
(reviewed by Salter and Mckerrow, 2002). During this period of penetration the cercariae 

transform into schistosomulae, lose their tails, and shed much (60%) of their surface 

glycocalyx (Samuelson and Caulfield, 1985). Within approximately 30 minutes, the larvae 

breach the stratum corneum and progress through to the basement membrane of the 

epidermis (Wilson and Lawson, 1980). 

The basement membrane appears to impede parasite migration, and after remaining there 

for between I and 3 days the schistosomulae cross into dermis (Wheater and Wilson, 

1979). The majority of larvae then exit the dermis via post-capillary venules but 

approximately 10% - 20% exit via lymph ducts (Wheater and Wilson, 1979; Mountford et 

al., 1988). Those larvae that exit the skin via the vasculature are carried to the lungs 

directly by the venous blood flow, whilst lymphatic migration first requires traversal of the 

local skin draining lymph node (sdLN). The length of time it takes for schistosomulae to 

migrate from the skin varies considerably, with some larvae detectable in the lungs or 

sdLN as early as 2 days post-infection. The TV2of parasite migration from the skin varies 

between reports, and ranges from approximately 4 days (Miller and Wilson, 1978; Georgi, 
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1982; Mangold and Dean, 1984), to 5.3 days (Wilson et al., 1986), and most likely reflects 

the technique used to assess migration. 

Schistosomulae eventually arrive in the lungs, with peak numbers of parasites detected at 

approximately day 6 (Miller and Wilson, 1980) to day 7 (Wheater and Wilson, 1979; 

Mangold and Dean, 1983; Mangold and Dean, 1984; Wilson et al., 1986). The lungs, with 

their complex narrow capillary network, represent a formidable obstacle to the parasite, 

apparent by the slow migration of the larvae through this organ (Wilson and Coulson, 

1986). Indeed, following arrival at the lungs, larvae undergo considerable elongation, 

which is thought to be necessary for successful migration through the pulmonary 

vasculature (Wilson et al., 1978). 

It is generally accepted that after leaving the lungs, the parasites travel in the direction of 
blood flow via the pulmonary vein to the left side of the heart. From here, they are 
distributed by the systemic blood flow. Those larvae arriving in the splanchic organs 

negotiate the capillaries and are carried to the liver by the portal blood flow. Most become 

trapped in the hepatic sinusoids and develop into blood feeding worms (Wilson and 
Coulson, 1986). Those larvae that arrive in other organs traverse the capillary networks 

and return to the pulmonary vasculature whereupon the cycle of migration is repeated. 

Hepatic accumulation of the larvae appears to be complete by day 21 post-infection 

(Wilson et al., 1986). Following arrival in the liver, larvae initiate blood-feeding and 

mature to adult worms. What causes maturation is not known. Upon pairing, adult worms 

migrate back up the veins of the hepatic portal system, where they take up residency in a 

state of permanent copulation. 

1.2.2 Parasite attrition during migration 

Parasite migration in naYve mice is associated with a large degree of attrition, with only 

about 40% - 50% reaching maturation (Mangold and Dean, 1983; Mangold et al., 1986). 

Autoradiographic tracking of larvae showed that more than 90% of the parasites had exited 

the skin and were present at other host sites 14 days post-infection, demonstrating that the 

skin is not the major site of parasite death (Wilson et al., 1986). Lymphatic migration also 

does not appear to affect parasite viability (Miller and Wilson, 1978; Mangold et al., 

1986). Since autoradiographic tracking demonstrates that the hepatic-portal worm 
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population is complete by day 21 post-infection, it is thought that migration of the 

remaining parasites must be halted and that their position indicates their place of death 

(Wilson et al., 1986). Based upon this supposition, the lungs appear to be the predominant 

site of parasite attrition. 

Death in the lungs has been indirectly associated with the entry of parasites into the 

alveoli (Crabtree and Wilson, 1986). Since, short-term residence in the alveoli does not 

affect parasite viability (Coulson and Wilson, 1988), it has been suggested that the 

mechanism of parasite death in the lungs is probably one of starvation through 

unsuccessful migration (Wilson, 1987). 

The fact that less than 50% of larvae reach maturation suggests migration through the host 

is inherently difficult. However, a role for the immune system in parasite attrition cannot 
be ruled out. Several studies assessing different immune components have demonstrated 

that the absence IL-12 (Anderson et al., 1998), IL-4 (King et al., 1996a), IFNy receptor 

(Wilson et al., 1996), and TNF receptor I (Street et al., 1999), do not affect the number of 
larvae reaching maturation. However, the absence of CD28 (King et al., 1996b), or IgE 

(King et al., 1997) does result in increased wonn burdens, suggesting that parasite attrition 

may represent 'innate resistance' to schistosome infection. 

Once larvae have matured to adults there is little evidence in the murine host that parasite 

attrition occurs. In addition, the longevity of adult survival during human infection also 

suggests there is little attrition of the parasites once they have reached this stage. 

1.3 Early inflammatory responses to normal infection: from penetration to lung stage 

migration 

Skin penetration and migration of larvae are highly invasive and relatively protracted 

events that involve the traversal of several immuno-competent organs. It would therefore 

seem likely that the onset of schistosome infection would trigger host innate / 

inflammatory immune responses. The evidence to support this hypothesis is described 

below. 
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1.3.1 Local inflammatory responses 

Infection of the skin is accompanied by acute inflammation. Both histological and 

physiological examination demonstrates that the skin-exposure site approximately doubles 

in thickness 2-3 days after infection, although increased tissue thickness has been 

reported as early as 6 hr post-infection (Mastin et al., 1983; Incani and McLaren, 1984). 

Inflammation is protracted, and although peaking 2-3 days post-infection (Mastin et al., 
1983) the skin stays significantly thickened up to day 14 (Mountford et al., 2001), 

considerably later than the point when most parasites have left the skin. This inflammation 

represents thickening of both the epidermal and dermal layers (Incani and McLaren, 1984). 

1.3.2 Local cellular responses 

Infection-induced inflammation is accompanied by changes in both epidermal and dermal 

cellular constituents and tissue ultrastructure. Histological studies provide evidence of 

neutrophilic / granulocytic infiltration in the epidermis, as early as 3 hr post-infection, 

which form micro-abscesses in the epidermal squames by 6 hr (Incani and McLaren, 1984; 

Ward and McLaren, 1988; Elsaghier and McLaren, 1989). Some of these neutrophils 

showed signs of degeneration, whereas others contained phagosomes possibly filled with 
debris and parasite gland secretions and could be observed adhering to the schistosomulae 

(Incani and McLaren, 1984). Resolution of abscesses occurred by day 4 post-infection 

(Incani and McLaren, 1984) by which point most larvae have left the epiderinis. This acute 

neutrophilia can be mimicked using an experimental model of parasite-induced 

chernotaxis, whereby intra-peritoneal injection of artificially-transformed schistosomulae 

results in the transient influx of neutrophils (2 - 12 hr) into the body cavity (Chao et al., 

1986). In addition, keratinocytes (which comprise the majority of the epidermal cells) in 

the vicinity of larvae show a considerable amount of hypertrophy (Incani and McLaren; 

1984). More recently, immuno-histochemical analysis has demonstrated that epidermal 

accessory cells, which may be Langerhans cells (LQ up-regulate surface expression of the 

activation markers MHC H and CD86 from I and 12 hr post-infection respectively (Angell 

et al., 2001 a). Although migration of these cells from the epidermis may be impaired 

during infection due to parasite-derived Prostaglandin D2 (PGD2; Angell et al., 2001 a), this 

data suggests that infection may stimulate local antigen presenting cells (APQ to capture 

and present parasitic antigen. 
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In the dermis, inflammatory responses can be observed by one to two days post-infection 

and are characterised by oedema, hyperkeratosis, leukocyte and erythrocyte infiltration, 

and considerable vasodilation (Miller and Wilson, 1978; Wheater and Wilson, 1979; 

Mastin et al., 1983; Incani and McLaren 1984; Ward and McLaren, 1988; Elsaghier and 

McLaren, 1989). This corresponds with the gross swelling of the skin described earlier. 

Specifically, dermal cellular infiltrate is initially diffuse, although some congregation 

below the basement membrane occurs. The infiltrate is comprised of both granulocytes, 

which are predominantly neutrophils (but include some mast cells), and mononuclear cells 

(Wilson and Wheater, 1979; hicani and McLaren, 1984; Ward and McLaren, 1988). 

Moreover, dermal MHC 11+ cells aggregate beneath epidermal larvae, again suggesting that 

local APC become activated (Riengrojpitak et al., 1998). By days 3-4, the inflammatory 

infiltrate was mainly mononuclear, and not granulocytic (Elsaghier and McLaren, 1989). 

Moreover, these cells were organised into distinct foci (Wheater and Wilson, 1979), which 

suggests chemotaxis towards parasites or tissues damaged / stimulated by their presence. 

Notably, mast cells appeared to undergo degranulation, and free granules were seen 

amongst the other cell types (Incani and McLaren, 1984). Importantly, this may be a direct 

consequence of interaction with parasite molecules in the skin, since material released by 

cercariae has recently been shown to cause deganulation of a rat basophil cell-line 

(Machado et al., 1996; Rao et al., 2002). It is unlikely that the inflammatory infiltrate is 

due to haemorrhage caused by physical trauma of the vasculature, since intra-dermal 

injection of guinea pigs with cercarial homogenate, or material released by cercaniae, 

resulted in rapid (30 min) oedema with an influx of neutrophils and eosinophils (Teixeira 

et al., 1993). Notably, some cells in the vicinity of schistosomulae were seen to undergo 

apoptosis in the skin of infected mice, and it has been suggested that the larvae may 

actively induce cell death as a method of immune evasion (Chen et al., 2002). 

In contrast to the skin, the appearance of schistosomes in the sdLN 2 to 7 days post- 

infection did not correspond with a visible host leukocyte response using histological 

techniques, although cellular damage to host leucocytes in the vicinity of the parasite was 

observed (Wheater and Wilson, 1979). Similarly, with the arrival of schistosomes in the 

lungs there is initially no recognisable host inflammatory tissue response detectable at the 

gross level (Wheater and Wilson, 1979; Mastin et al., 1983; von Lichtenberg et al., 1985). 

Although larvae can adhere to lung microvasculature endothelial cells in vitro (via active 
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cell remodelling), suggesting direct interactions may occur in vivo, these cells appear to 

take on an anti-inflammatory phenotype (Trottein et al., 1999a; 1999b). However, in vivo 

an inflammatory response develops by day 9 post-infection with increasing time post- 

infection (Menson and Wilson, 1990; Smythies et al., 1992a), and cellular foci can be 

observed within the vicinity of the lung schistosomulae (von Lichtenberg et al., 1985). In 

addition, alveolar macrophages increase their expression of MHC 11 and CR3 but decrease 

the expression of 174/80 (Menson and Wilson, 1990). It is possible that these inflammatory 

foci have a role in the parasite attrition that occurs in the lungs, potentially prohibiting the 

passage of larvae through the vasculature. In this respect, IL-6 -/- mice have greater 

numbers of leukocytes recruited to the alveoli in response to a secondary infection with 

schistosomes, and also a much greater level of parasite mortality in the lungs (Angeli et al., 
2001b). 

1.3.3 Local cytokine production 

Cytokines are the hormones of the immune system, allowing cells to communicate in 

paracrine, endocrine and autocrine fashion during responses to pathogens. The balance of 

regulatory and inflammatory cytokines is thought to play a key role in controlling immune 

responses to infection. Relatively few studies have addressed whether cytokines are 

produced in the skin in response to infection, and which cells are responsible for producing 

them. Wolowczuk et al. (1997) detected increased expression of EL-7 mRNA but not IL-2, 

IL-5 or IL- 10 in the skin infection site from day I post-infection. It is noteworthy that 

increased IL-6 mRNA expression in the skin was also detected but not restricted to the site 

of infection, suggesting that parasite infection may lead to a general heightened 

inflammatory status of the host. Transient expression of EFNy and IIL-4 was also detected 

on day 5 post-infection (Wolowczuk et al., 1997). In addition, Angeli et al. (2001 a) 

detected increased TNF(x, IL- I P, EL-4, EL- 10, and TNFR-H but not inhibitory EL- I Ra 

mRNA expression in the epidermis ftom I to 120 hr post-infection. More recently, a 

technique for culturing split pinnae has allowed detailed examination of cytokine 

production by the infection site as a whole organ (Hogg et al., 2003 a). Using this 

technique, increased EL- I P, EL-6, IL- 10, IL- I 2p4O, EL- 18, MEP- I (x, MIP I P, and eotaxin, 

can be detected in the culture supernatant from day I (earliest time-point examined) to day 

8 post-infection. Notably, production of EL- 1 2p4O and EL- 18 remained increased 
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(compared to naYve pinnae) up to day 14 post-infection, albeit at sub-peak quantities. In 

vitro work has demonstrated that schistosomulae and their products stimulate human and 

murine keratinocytes to produce IL- I Ra, EL- 10, and PGE2, which has been linked to 

parasite-derived PGE2 production (Ramaswamy et al., 1995a; 1995b; 2000). These host 

molecules have anti-inflammatory functions and may regulate the innate response during 

infection (Ramaswamy et al., 2000). In addition, human dermal microvasculature 

endothelial cells produce increased levels of IL-7 following in vitro culture with 

schistosomulae, and EL-7 mRNA expression could be detected in the vessels of human skin 

grafts 6 days post-infection (Roye et al., 1998). 

1.3.4 Inflammatory response upon re-infection 

Re-infection of mice previously exposed to cercariae results in increased dermal 

inflammation, characterised by more rapid and greater swelling and cellular influx 

compared to primary infection, indicative of an immediate hypersensitivity reaction 
(Incani and McLaren, 1984; Ramaswamy et al., 1997). Indeed, re-infection is also 

characterised by a much greater eosinophilic influx into the tissue and greater mast cell 
degranulation in re-infected tissue. Larvae can also be observed invested in a surface coat, 

with neutrophils and eosinophils attached (Incani and McLaren, 1984). This response may 
be mediated by parasite-specific IgE which is thought to be both induced and directed, in 

part, against the proteases released by the parasite (Verwaerde et al., 1986; 1988). Notably, 

skin from mice infected several times with the related schistosome Trichobilharzia regenti 
displays dramatic signs of type I hypersensitivity upon re-infection, with an abundant mast 

cell influx not seen in primary infection, and greatly increased levels of histamine, IL- I 

IL-4, EL-6 and IL- 10 production by in vitro-cultured pinnae (Kourilova et al., 2003). 

1.3.5 Human inflammatory responses 

The potent inflammatory responses generated in mice following exposure to schistosomes 

reflect the immediate hypersensitivity reaction observed in the skin (dermatitis) of some 

humans following infection (Farid et al., 1987). Some patients also develop acute 

pulmonary pneumonitis. These illnesses are caused by immediate hypersensitivity 

responses thought to be a consequence of mast cell and basophil activation by skin and 
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lung-stage schistosomulae (Hofstetter et al., 1982), although the pulmonary disease may 

also be caused by immune complexes between antibody and antigen from migrating lung 

schistosomulae (de Jesus et al., 2002). 

1.4 Acquired immune responses to normal infection: from penetration to lung-stage 

migration 

1.4.1 Lymphocyte activity 

Following infection with schistosomes, an acquired immune response is generated in both 

the sdLN and the mediastinal (lung-draining) LN (mLN). Cells from both sites are able to 

proliferate in vitro in response to re-stimulation with schistosome antigen, peaking on day 

7 post-infection in the sdLN but much later at day 15 in the mLN (Pemberton et al., 1991). 

Analysis of the cells within these organs demonstrates that both T-cell and B-cell numbers 

greatly increase in vivo following infection (Constant et al., 1990), corresponding with an 
increase in organ weight (Pemberton and Wilson, 1995). Again, peak cell number in the 

sdLN occurs 4-7 days post-infection, but not until approximately day 28 in the mLN 
(Constant et al., 1990; Pemberton et al., 1995). Notably, the kinetics of cell proliferation in 

vitro and cell numbers in vivo follows the pattern of parasite migration through the skin to 

the lungs, and probably reflects the levels of parasite antigen presented within these 

organs. 

A study using bronchoalveolar lavage (BAL) to analyse cellular events in lung alveoli 

demonstrated a transient influx of lymphocytes between days 14 and 21 post-infection 

(Smythies et al., 1992a). These cells produced cytokines upon in vitro culture with soluble 

schistosomulae antigen (SSP) suggestive of antigen-specific lymphocytes. These studies 

imply that differentiated effector T-cells migrate to the lung during the latter periods of 

larval migration through this organ. 

1.4.2 Cytokine production 

Detailed analyses of the antigen-specific cytokine production by cultured sdLN cells 

showed that there was production of EL-2, EL-3, IL-4, EL- 10, and IFN7 from day 4 post- 
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infection, suggestive of a mixed Thl / Th2 or ThO-type response (Pemberton et al., 1991; 

Hogg et al., 2003a). However, IFNy production peaked at day 4 post-infection whereas IL- 

4 production peaked at day 6, suggesting that Th I responses slightly precede Th2 

(Pemberton and Wilson, 1995). However, by day 14 post-infection both EFNy and IL-4 

production returned to near naYve levels (Pemberton and Wilson, 1995; Hogg et al., 
2003 a). In addition, increased levels of EL- 12p4O were produced by in vitro cultured sdLN 

cells from day 4 post-infection, which decreased but remained elevated above naYve levels 

by day 14 post-infection (Hogg et al., 2003a). This cytokine is of particular interest due to 

its ability to drive Thl polarisation. 

A similar profile of IL-4 and IFN7 production was also detected upon re-stimulation of 

mLN cells, although peak production did not occur until day 15 post-infectlon (Pemberton 

et al., 199 1). As with cell proliferation, the kinetics of T-cell cytokine production probably 

reflects the levels of parasite antigen being presented within these organs. 

Subsequent analysis of cytokine gene expression within the sdLN using semi-quantitative 
RT-PCR showed a similar cytokine profile to that produced in vitro, with Th 1 -associated 
EFNy, and Th2-associated EL-4 transcripts being detected at day 5 post-infection (Betts and 

Wilson, 1998). However, by days 10 and 15 transcripts of EFN7 had reduced to levels 

within naYve animals, but EL-4 remained high and a small increase in EL-5 was detected, 

possibly suggesting the cytokine profile was becoming more Th2 dominated (Betts and 

Wilson, 1998). 

Notably, infection with the related schistosome species T. regenti also results in a mixed 

Th I/ Th2 response, however, in multiply-infected mice re-infection results in an extremely 

Th2-polarised response, which is associated with Type I immediate hypersensitivity in the 

skin (Kourilova et al., 2003). Therefore, it is possible that local hypersensitivity reactions 

will help to drive Th_2 cytokine production. 

1.5 Inflammatory and acquired immune responses to y-irradiated cercariae 

Although the initial interactions between the normal parasite and the host's immune system 

have received little attention, responses to vaccination with radiation-attenuated larvae are 
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relatively well studied, since this regime induces a high level of protective immunity to 

challenge infection (reviewed by Dunne and Mountford, 2001). A brief review of this work 

provides greater evidence of host inflammatory responses upon exposure to larvae, and an 

understanding of events involved in priming for this protective acquired response. 

1.5.1 Inflammatory responses and APC stimulation in the skin 

The presence of attenuated larvae results in a pro-inflammatory response in the skin 

exposure site (as determined by pinnae thickness and in vitro cytokine production) similar 

to that seen in normal infection, although some inflammatory parameters appear more 

protracted (Mastin et al., 1983; Hogg et al., 2003a). Immunohistochernical analysis 
demonstrates an influx of 7/4+ neutrophils into the dermis by day 2 post-vaccination 
(Kumkate and Mountford, unpublished data). Increased CD II b+ populations were also 

detected, suggestive of them being macrophages (MO). Furthermore, IL- 1 2p4O+ cells were 

detected within the areas of greatest cellular influx (Hogg et al., 2003a). Analysis of cells 

detaching from the pinnae during culture shows a dramatic increase in number by day I 

post-vaccination, reaching a peak by day 4 (Mountford et al., 2001). Moreover, some of 

these cells were IIL- I 2p4O+ and expressed CD IIb, CD IIc, and F4/80, suggestive of them 

being myeloid dendritic cells (DQ and / or possibly MO (Hogg et al., 2003 a). These cells 

could be taken to be indicators of those contributing to dermal inflammation, but also 

indicate which types are capable of migrating to the sdLN to drive acquired responses. 

Further evidence of APC activation by irradiated parasites is provided by 

immunohistochernical studies. Larvae in the epidermis were shown to attract and interact 

with MHC II+ cells following migration into the dennis (Riengrojptak et al., 1998). There 

were also increased numbers of CD 11 c+ cells in the dermis, and as such may be dennal DC 

(Riengrojptak et al., 1998; Hogg et al., 2003a). Upon migration to the dermis, larvae 

become surrounded by CD 11 c+ cells, which could be detected up to 15 days post-exposure 

(Riengrojptak et al., 1998). In addition, Langerin+ LC decrease in number in the epidermis 

after vaccination, suggesting maturation and migration of these cells (Kumkate et al., 

2003). Indeed, LC have been detected in the dennis below penetrating larvae immediately 

following vaccination. The apparent emigration of LC corresponds with increased numbers 

of Langerin+ and MHC lI+ cells detectable in the sdLN (Kumkate et al., 2003). 
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Furthermore, accessory cells in the periphery of the sdLN interact with migrating larvae, 

and appear to contain endosomal vesicles comprised of cellular debris (Riengrojptak et al., 

1998). 

1.5.2 Acquired immune responses 

When compared to normal infection, exposure to irradiated larvae results in a markedly 
different acquired immune response. Firstly, antigen-specific responses are more 

protracted in the sdLN and mLN from vaccinated mice, as judged by proliferation and 

cytokine production of in vitro re-stimulated LN cells (Pemberton et al., 1991; Hogg et al., 

2003a). Moreover, cells from vaccinated mice produce greater levels of IFN7 but not IL-4. 

One interpretation of this data is that vaccination induces a more Thl response, however, it 

could equally be said that normal infection induces a more Th2 response. 

Several studies have attempted to determine what factors are involved in the induction of 

this protective acquired response. T-cell priming appears not to involve antibody or 

antigen-specific B-cells (Anderson et al., 1999; Jankovic et al., 1999). In contrast, T-cell 

IFNy production is highly dependent on EL-12 production, since sdLN cells from IL- 

12p4O-deficient mice produce greatly reduced levels of EFNy and greatly increased levels 

of EL-4 both at the protein and mRNA level (Anderson et al., 1998). Indeed, administration 

of recombinant IL-12 shortly after vaccination boosts EFNy production (Anderson et al., 

1998). However, in situations where EL-12p4O is elevated at the site of infection (e. g. IL- 

4R(x -- mice), production of IFNy by sdLN does not increase and IL-4 does not decrease, 

although levels of EL-5 and IL-13 are lower (Mountford et al., 2001). This suggests that IL- 

12p4O production at the site of infection may not increase Thl responses but could 

decrease Th2 responses, and that T-cell EL-4 production is not dependent upon EL-4 or IL- 

13 signalling (since these cytokine receptors share the IL-4R(x chain). In addition, IL-10 

appears to have a role in regulating the induction of protective pro-inflammatory 

responses, since EL- I O-deficient mice develop more highly polansed and more protective 

Thl responses, and exhibit greater inflammation at the skin site of exposure (Hoffman et 

al., 1999; Hogg et al., 2003b). 
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1.5.3 Challenge parasite death 

A great deal of controversy surrounds the mechanism of challenge parasite death in 

vaccinated animals. Following a single vaccination, the role of antibody in schistosome 
death is highly debatable. Results from several studies of B-cell-deficient mice disagree 

with each other, suggesting B-cell effector mechanisms either do, or do not, contribute to 

resistance (Jankovic et al., 1999; Anderson et al., 1999). Moreover, mice deficient in 

several Fc receptors show no defect in vaccine-induced immunity (Jankovic et al., 1999), 

but single vaccination of EL-4R(x-deficient mice results in impaired resistance associated 

with a lack of Th2-type antibodies (Mountford et al., 2001). In contrast, a Thl CD4' T- 

cell-mediated, EFN7-dependent, mechanism of challenge parasite death is largely 

undisputed (Smythies et al., 1992b; Wilson et al., 1996; Wynn 1996; Jankovic et al., 
1999), and protection can even be boosted by addition of rEL- 12 (Wynn et al., 1995; 1996; 

Anderson et al., 1998). In comparison to single exposure, there is clear evidence that 

antibodies play a role in the increased level of protection elicited by multiple vaccination 
(Caulada-Benedetti et al., 1991; Hoffinan et al., 1999). Thus, both hurnoral and cell- 

mediated mechanisms can operate in challenge parasite death. This prompted Wilson and 
Coulson (1999) to propose the 'Happy Valley Hypothesis' suggesting that schistosomes 

can survive if there is a relatively ineffective mixed Thl / Th2 response, but the 

environment becomes much more hostile if the response is strongly polarised to either pole 
(Wilson and Coulson, 1999). However, Wynn and Hoffman (2000) disagree, having 

recently demonstrated that high-level protective Thl and Th2 responses can develop 

simultaneously in multiply-vaccinated mice (Hoffinan et al., 1999), and suggest that 

greatest protection will be afforded by a vaccine that elicits both strong humoral and 

cellular responses. 

1.5.4 What is special about attenuated larvae? 

What causes the difference in cytokine profile between normal infection and vaccination is 

the subject of much debate. Radiation-attenuated parasites undergo retarded migration 

through the skin and the sdLN with delayed arrival in the lungs. Larvae fail to migrate 

further than the lungs in which most parasites die within the first 3 weeks post-vaccination 
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(Mastin et al., 1983; Mangold and Dean, 1984; Mountford et al., 1988). Harrop and 

Wilson (I 993a) observed that irradiated parasites had constrictions on their bodies 

indicative of contractions of circular muscle, and suggest that delayed migration may be 

due to a disruption in neuromuscular function. 

Alternatively, a recent report suggests that irradiated parasites may stimulate less anti- 
inflammatory IIL- 10 production by host keratinocytes (Ramaswamy et al., 2000). This 

could allow greater inflammatory responses to occur in the skin, which subsequently 
impair migration. However, Hogg et al. (2003a) demonstrate that there is little difference 

in pro-inflammatory cytokine production following vaccination compared to infection, 

although vaccination induces transiently lower levels of IL-10 production compared to 

infection, at early time-points. 

Delayed migration may allow for greater deposition of antigens and pathogen-associated 

molecular patterns (PAMP), and more time for parasite / accessory cell interaction 

(Mountford et al., 1988; Mountford et al., 1992). In this respect, more parasite-released 

material was found in the sdLN of vaccinated mice compared to normally infected mice 
(Mountford et al., 1988). However, it is possible that the process of attenuation causes the 

larvae to release more antigen material (Mountford et al., 1988). There could also be other 
differences between attenuated and normal larvae. Chen et al. (2002) state that irradiated 

parasites do not release a T-cell apoptotic factor and thus cause less cellular apoptosis 

during migration. Alternatively, it has been suggested that irradiation may induce abnormal 

antigens that make these parasites more immunogenic (Wales et al., 1992). However, a 

limitation of this theory is that, in order to be effective, a memory T-cell population would 

need to recognise unaltered parasite epitopes. In addition, the material contained within 

cercariae is pre-formed, with little de novo synthesis occurring until after 24 hr post- 

transformation (Harrop and Wilson, 1993b), therefore, it is likely that irradiated parasites 

have the same repertoire of molecules as normal cercariae. Moreover, there is not a great 

deal of difference in the initial (day I- 4) inflammatory immune response induced by 

vaccination compared to infection (Hogg et al., 2003a), suggesting that there is little 'bio- 

chemical' difference between these larvae at this early stage. Therefore, if normal larvae 

express parasite PAMPs, the irradiated larvae should have the same PAMP complement, 

and thus APC which are stimulated by exposure to irradiated parasites are also likely to be 

stimulated in a similar fashion / mechanism by exposure to normal larvae. 
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1.6 Inflammatory and acquired responses to normal infection: adult worms and eggs 

Many normal larvae successfully migrate through the lungs and proceed to mature in the 

liver. The onset of egg production leads to a dramatic increase in the levels of circulating 

antigen, with large quantities of soluble material released by the ova (Ashton et al., 2001). 

1.6.1 Acute infection 

The high levels of foreign antigen result in immune hyper-responsiveness, with increased 

levels of both IFNy and IL-4 detectable in infected mouse serum by 4 weeks-post infection 
(Wolowczuk et al., 1997). Prior to the onset of egg production (3 weeks post-infection), 

splenocytes re-stimulated in vitro with SSP, or soluble adult worm antigen (SWAP), 

produced high levels of EFNy and low levels of EL-5, and this is thought to be suggestive of 

a Th I response (Pearce et al., 1991; Grzych et al., 1991). Following the onset of egg 

production, a dramatic switch is seen in the profile of cytokines produced by splenocytes 

upon re-stimulation with parasite antigens. This is characterised by down-regulation of the 

Thl response in favour of a Th2-type cytokine profile (Pearce et al., 1991). The role of 

these Th2 cytokines may be to inhibit, or reduce, the pathogenic effect of inflammatory 

mediators (Brunet et al., 1997; Fallon et al., 2000). 

The ability of schistosome eggs to drive Th2 responses has been thoroughly investigated 

and the mechanisms leading to this switch are becoming more understood. Artificial 'egg 

only' infections (in which eggs are injected into recipients) are characterised by transient 

ThO followed by Th2 responses (Vella and Pearce, 1992). Moreover, SEA preferentially 

drives Th2-related responses after administration in vivo as judged by cytokine and IgE 

production, a characteristic dependent on its carbohydrate constituents (Okano, et al., 

1999). Specifically, the pentasaccharide lacto-N-fucopentose III (LNFP IH) appears to 

have Th. 2 adjuvant properties, driving acquired responses as well as polarising towards a 

Th2 phenotype (Okano et al., 2001), suggesting it has PAMP characteristics. One 

mechanism by which these carbohydrate moieties could induce Th2 responses is through 

the induction of EL- 10 production, and the expansion of EL- 10 producing B-cells 

(Velupillai and Ham, 1994; Velupillai et al., 1997), since this cytokine can inhibit pro- 

inflammatory Thl responses (Section 1.12.3). Egg-induced EL-6 production by LN cells 
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has also been implicated in EL- 10 production and Th2 polarisation (La Flarnme et al., 

1999; 2000). A glycoprotein from SEA can also stimulate M-4 production by human 

basophils in vitro, which might potentiate Th2 polarisation (Haisch et al., 2001). 

Alternatively, it was recently shown that SEA can preferentially induce Th2 polarisation 

through its direct effect upon DC (MacDonald et al., 2001). In this respect, the role of DC 

derived cytokines and co-stimulatory signals in this polarising function has been explored 
in several recent publications and will be discussed later in chapters 6 and 7. 

1.6.2 Chronic infection 

The down-regulation of host inflammatory Th I immune responses is critical for the 

progression to a chronic state of infection (Brunet et al., 1997; Fallon et al., 2000). The 

study of egg granulomas, which are mediated by egg-antigen specific CD4+ T-cells 

(Mathew and Boros, 1986), suggests that in addition to modulation of inflammatory 

responses, chronic infection is characterised by down-regulation of immune responses per 

se, leading to a state of immune hypo-responsiveness (reviewed by King, 2001; Sadler et 

al., 2003). 

One potential mechanism that could induce immune hypo-responsiveness is the inhibition 

of T-cell proliferation. In this respect, exposure to glycolipids contained within SEA causes 

DC to prime for regulatory T-cells that suppress T-cell proliferation through IL- 10 

production (van de Kleij et al., 2002). The LNFP III sugar from SEA also expands a subset 

of Mý (termed 'suppressors'), which can directly suppress T-cell proliferation and 

suppress Th I -type inflammatory cytokine production via contact-dependent and cytokine- 

dependent (IFNy & IL- 10) mechanisms (Atochina et al., 200 1; Terrazas et al., 200 1). 

Moreover, EL- 10 appears to be critical in the down-regulation of the granulomatous 

immune response during chronic schistosomiasis (Flores-Villanueva et al., 1996; Sadler et 

al., 2003). 

1.6.3 Human acute and chronic disease 

The regulation of acquired immune responses depicted in the mouse model reflects much 

that is known about pathology observed during human infection. A study of patients with 
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clinically acute disease showed their peripheral blood mononuclear cells (PBMC) 

produced numerous pro-inflammatory cytokines, and higher levels of EFNy but lower IIL-5 

when stimulated with SEA, or SWAP, compared to cells from patients with chronic 

schistosomiasis (de Jesus et al., 2002). Immune hypo-responsiveness is also characteristic 

of the majority of chronic infections in the human population, and has been linked to IIL- 10 

production (Malaquias et al., 1997; King, 2001). Most individuals with chronic but 

relatively asymptomatic intestinal disease appear to develop Th2 patterns of cytokine 

production (Williams et al., 1994; Araujo et al., 1996). In contrast, development of more 

severe hepatic disease in a minority of patients is associated with immune hyper- 

responsiveness (Dunne and Pearce, 1999), characterised by greater antigen-specific PMBC 

proliferation (Bahia-Oliveira et al., 1992), and elevated levels of the Thl cytokines IFNy 

and TNFcc (Mwatha et al., 1998; Henri et al., 2002). 

1.7 Summary 

The first section of this introduction has provided the reader with the current body of 
knowledge surrounding the inflammatory innate responses and acquired immune responses 

that follow infection with normal schistosomes. This has demonstrated that acute 
inflammatory responses characterise the immediate events in the skin following infection 

with schistosomes. It is highly possible that these responses are a result of direct parasite 

recognition by the innate immune system, although it is equally possible that tissue damage 

caused by parasite penetration and migration may also stimulate the inflammatory cascade. 

Following the innate response, a parasite- specific acquired response is generated in the 

local lymphoid tissues. This response may contribute to the considerable level of larval 

attrition that occurs during parasite migration, but may also lead to acute allergic 

hypersensitivity. However, compared to the relative wealth of information regarding the 

development and regulation of acquired responses to schistosomal egg antigens, it is not 

known what innate / inflammatory factors are important in the development of the acquired 

response during the early stages following infection. It is most likely that the initial 

inflammatory / innate reaction is critically important in this process. In this respect, the 

current body of knowledge surrounding the immune response following vaccination with 

radiation-attenuated larvae has been summansed. This provides a more in-depth 

32 



understanding of the orchestration of innate and acquired responses to larvae, and may 

indicate factors that are involved in the generation of acquired immune responses during 

nonnal infection. 
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Part 11 Innate immunity and its impact upon the induction of acquired 

immunity: innate recognition and T-cell polarisation 

The innate immune system is the first line of defence against infectious agents. Whilst 

minor pathogen insults may be dealt with without the requirement of further 'immune 

help', the outcome of many infections is usually determined by the induction of highly 

specific adaptive / acquired immune responses. This event involves the recognition of non- 

self antigen peptides by lymphocytes through diverse, and therefore, highly specific 

receptors in the form of T-cell receptors (TCR) and B-cell receptors (BCR or soluble 

antibody). Clonal expansion of the antigen-specific lymphocytes leads to the generation of 

acquired effector responses, under the direction of cytokines produced by CD4+ T-helper 

cells (Th). These effector responses can be divided into 'inflammatory' cell-mediated 

responses and humoral immune responses, and the generation of the correct type is thought 

to be key to the resolution or outcome of many infections. 

Although the basic model of adaptive immunity was proposed many years ago, only 

relatively recently has it been proposed that the initiation of acquired responses, and more 

specifically the type of effector mechanisms employed, is dependent upon the initial innate 

immune response to the pathogen (Fearon and Locksley, 1996; Medzhitov and Janeway, 

1997). In this respect, it has been suggested that the ftinctional outcome of the immune 

response to a pathogen is deten-nined by the innate response (Fearon and Locksley, 1996; 

Medzhitov and Janeway, 1997). 

Therefore, I will briefly introduce the current theories surrounding innate recognition 

during infection, and the downstream events that culminate in the generation of acquired 

T-cell help and the polarisation of the effector response. 

1.8 Current theories on innate recognition 

The innate immune system is thought to be evolutionarily ancient compared to the 

acquired system. Murine innate immunity also closely resembles what is known about 

human innate immunity, therefore, both the human and murine systems will be discussed 

together. 
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The innate immune system differs fundamentally from the acquired system in the manner 

in which it recognises potential infections. Whereas the latter can generate a seemingly 

infinite repertoire of receptors (approximately 1011 specificities) by genetic recombination 

of TCR and BCR genes, the innate immune system relies upon germline-encoded receptors 

which are limited in number by the size of the genome. In addition, while acquired 
immunity is primarily concerned with recognition of pathogens, innate recognition has 

been the subject of much debate. In this respect, innate recognition can be grouped into 2 

strategies: recognition of 'pathogen non-self (or 'pattern recognition'), and recognition of 

changes in host tissue associated with infection / disease, termed 'danger' or 'extended- 

self. 

1.8.1 Pathogen 'non-seýf' recognition orpattern recognition 

Janeway (1992) and Medzhitof and Janeway (1997) suggest that the innate immune system 
has evolved with the fundamental ability to discriminate between host molecules and 

pathogen molecules, enabling invading organisms to be destroyed without non-specific 
damage to the host. They propose that the innate immune system evolved a number of non- 

clonal receptors, tenned pattern recognition receptors (PRRs), which recognise molecular 

motifs, or patterns, that are common to many different pathogens, termed PAMPs. Several 

evolutionary pressures have determined the nature of these PAMPs. Firstly, genetic 
limitations on the number of possible innate receptors, means PAMPs must be shared by 

large groups of pathogens, hence the recognition of patterns or motifs rather than unique 

specific sequences. Second, the generally high rate of pathogen mutation has provided a 

great selection pressure to recognise only conserved PAMPs that are essential to pathogen 

survival, such that any mutation is lethal, or renders the organism non-pathogenic. Third, 

Medzhitof and Janeway suggest that PAMPs are absolutely distinct from self-antigens, 

thus allowing discrimination between self and non-self. 

Many PAMPs have so far been identified, the majority of which appear to have glycan or 

lipid components. These include bacterial cell-wall components, (LPS, lipo-teichoic acid, 

peptidoglycan), viral double-stranded RNA (dsRNA; Alexopoulou et al., 2001), yeast wall 

products (mannan, P-glucan), spirochete glycolipids (Schroder et al., 2000) and non- 

methylated CpG DNA motifs which are characteristic of bacterial but not mammalian 
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DNA (Sparwasser et al., 1998; Hemmi et al., 2000). In addition, putative protozoan 

PAMPs have also been identified from Leishmanial species (Borges et al., 2001; Hawn et 

al., 2002) and Trypanosomes (Camargo et al., 1997) including glycophosphoinsitol (GPI) 

anchors (Campos et al., 2001). The intense amount of study in this field has meant that the 

number and types of PAMPs so far identified is still rapidly growing. 

1.8.2 Danger theory of innate recognition 

Originally proposed by Matzinger (1994), the danger model of innate awareness describes 

how innate accessory cells can become activated by signs of tissue distress that occur 
during infection. In this respect, molecules produced by stressed cells, such as heat-shock 

proteins (HSPs), or molecules released by damaged tissues and necrotic cells, are normally 

not visible to innate accessory cells and therefore their appearance could signal for 

'danger'. Evidence supporting the existence of 'danger signals' is now starting to 

accumulate. Several groups have demonstrated that necrotic cells but not apoptotic cells 

stimulate DC (Gallucci et al., 1999; Sauter et al., 2000; Basu et al., 2000). In addition, 

certain human HSPs, such as HSP60, HSP70, HSP 90, and gp96, activate Mý and / or DC 

(Basu et al., 2000; Ohashi et al., 2000; Kol et al., 2000; reviewed by Wallin and 

Ljunggren, 2002), as do host molecules generated during tissue damage and inflammation 

(Okamura et al., 200 1; Smiley et al., 200 1; Termeer et al., 2002; Johnson et al., 2002), 

although this data may have been an artefact of endotoxin contaminants (Wallin and 

Ljunggren, 2002; Akira et al., 2003). Interestingly, many of these host danger signals are 

highly conserved between species, and related HSP from microbes also stimulate the 

innate immune system (Kol et al., 2000). Recognition of danger signals may occur through 

PRRs that also mediate recognition of PAMPs (Ohashi et al., 2000; Kol et al., 2000), 

indicating that innate discrimination between self- and non-self is not as rigid as current 

models suggest (Janeway and Medzhitov, 1997; Bendelac and Medzhitov, 2002). In this 

respect, Gallucci and Matzinger (2001) refer to PAMPs as 'exogenous danger signals'. 

Under the blanket term of the 'danger model' could be included the 'induced-self' and 

4missing-self' recognition of abnormal cells (reviewed by Diefenbach and Raulet, 2003). 

induced-self recognition relies on stressed cells up-regulating surface expression of cellular 

molecules that are associated with 'abnormal' cells, whereas 'missing-self recognition 
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describes the loss of inhibitory signals (supplied by the expression of certain surface 

molecules on normal cells) that may occur upon cellular damage. 

This is a rapidly changing area of immunology and it should be noted that there is still 

much debate on the finer theoretical points of innate recognition (Medzhitov, 2001; 

Gallucci and Matzinger, 2001; Johnson et al., 2003). However, for this thesis, the models 
discussed above represent adequate descriptions of the mechanisms of recognition. 

Innate recognition of both exogenous and endogenous 'danger signals' could occur dunng 

the initial stages of infection with schistosomes. in this respect, schistosomes may express 

molecules with PAMP-like activity. In addition, penetration and migration of larvae causes 

a high degree of cell lysis and necrosis, and might induce cellular stress or changes in 

surface expression of regulatory molecules. 

1.8.3 Pattern recognition receptors 

PRRs are either soluble plasma proteins, or are present on the surface of innate accessory 

cells. These receptors are highly diverse in their nature and function and six distinct 

families have been identified (Medzitof and Janeway, 1997). These include the C-type 

lectins, such as the homologues DEC-205 and the mannose receptor (MR), integrins, such 

as the complement receptor 3 complex (CR3), leucine-rich receptors, scavenger receptors, 

pentraxins such as Serum amyloid P and C-reactive protein, and lipid transferases, like 

LPS-binding protein (LBP). Notably, the family of leucine-rich receptors termed Toll-like 

receptors (TLRs), due to their homology with Drosophilia Toll-receptor, appear to play a 

central role in the recognition and signalling of pathogen products. These have been the 

focus of much research and so far, 10 mammalian TLRs have been identified. Each of 

these TLRs appear to be involved in the recognition of distinct ligands, although direct 

ligand-binding by many of them has not been formally demonstrated. 

Another property of some PRRs, is their ability to recognise several structurally related, or 

even unrelated ligands. This receptor promiscuity is not fully understood, but in the case of 

TLRs it may occur through the association with distinct accessory proteins / receptors. For 

example, TLR4 together with MD-2 and the PRRs CD14 and LBP, form the LPS receptor 

complex (reviewed by Underhill and Ozinsky, 2002). In addition, TLR2 dimerisation with 
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TLRI and TLR6 contributes to the diverse array of TLR2 PAMP ligands (Ozinsky et al., 

2000). Table 1.1 demonstrates some of the known self and non-self ligands for PRRs. 

Receptor Family Example Ligands 

C-type lectins MR Terminal Mannose 

DEC-205 Terminal Mannose 

Leucine-rich receptors TLR2 + (TLR6 or TLRX)* 

TLR3** 

TLR4 

TLR5 

TLR9 

Scavenger receptors 

Pentraxins 

Macrophage scavenger 

receptor 
C-reactive protein 

Lipid transferases 

Intergrins 

LBP 

CD11b, c: CD18 

Bactenal lipoproteins 

Peptidoglycan 

Zymosan 

GPI anchor 
Lipoarabinomannan 

dsRNA 

LPS 

HSP 60 (human and chlamydial) 
Fibronectin EDA 

F protein 
Flagellin 

CpG DNA 

Bacterial cell wall components 

Phosphatidyl choline 
LPS 

LPS 

LPS 

Table 1.1 Examples of pattern recognition receptors of the innate immune system and 

their ligands. Table adapted from Medzhitov and Janeway (1997) and Underhill and 

Ozinsky (2002). 

TLRX = TLRs 

** Alexopoulou et al., 2001. 
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PRRs are highly diverse in their function. Soluble receptors are mainly involved in 

opsonisation of pathogens and activation of the complement effector pathway (Sastry and 

Ezekowitz, 1993; Mold et al., 2001). In contrast, ligand binding of cellular PRRs can 

stimulate a variety of 'hard-wired' innate accessory cell functions, detailed below. 

Importantly, the type of response that is elicited is thought to be dependent upon the 

receptor (Akira et al., 2003). For example, intracellular signalling pathways utilized by 

TLR4 have functional distinctions compared to other TLRs, and will be discussed in more 
detail in Chapter 3. In addition, Underhill and Ozinsky (2002), emphasise that individual 

pathogens are likely to express a variety of different PAMPs that will be recognised 

simultaneously. Therefore, the response generated upon PAMP / 'danger' recognition is 
dependent on both the individual PRRs involved, and the interaction between multiple 
PRRs. This confers a certain amount of pathogen-specificity upon innate responses, which 

could be important in determining the types of acquire immune response that follows. 

A non-classical mechanism of pathogen (or self) lipid recognition that may also contribute 

to innate immunity occurs through CD I d-restricted receptors on a specialised T-cell subset 

terined natural killer T-cells (NKT). These receptors are TCRs but have an invariant TCR(x 

chain, and NKT cells have many properties unlike normal ap T-cells and more like innate 

cells, including a high natural frequency and the rapid production of ILL-4 and IFNy 

following stimulation (reviewed by Kronenberg and Gapin, 2002). 

1.9 Innate immune responses 

The innate immune system is comprised of numerous immuno-competent accessory cells 

that can act as sentinels in sites of potential infection, such as the skin. This tissue is 

populated by a vast array of accessory cells including epidermal LC, Mý, DC, natural killer 

(NK) cells, keratinocytes, and granulocytes, such as mast cells, eosinophils, and 

neutrophils (Williams and Kupper, 1996). Depending upon the cell type and the PRR 

engaged, PAMP recognition can cause a plethora of cellular responses, including 

intemalisation of pathogens / pathogen material (via phagocytosis, endocytosis, 

macropinocytosis), induction of cell cytotoxicity, the release of soluble immune mediators 

including cytokines and chemokines, and the maturation of APC. These responses may be 

directly, or indirectly, important in the development of innate immune responses and the 
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induction of acquired immunity. In addition, innate recognition by accessory cells also 

contributes to effector functions during acquired immune responses. 

1.9.1 Phagocytosis, endocytosis, and macropinocytosis 

Phagocytosis, endocytosis, and macropinocytosis are the mechanisms by which leukocytes 

ingest particulate and soluble pathogens / pathogen material. Numerous PRRs have been 

implicated in initiation of these mechanisms, such as MR (Sallusto et al., 1995), DEC-205 

(Jiang et al., 1995), and scavenger receptors (Peiser et al., 2002). In addition, opsonised 

material can be ingested via Fc and complement receptors (Mold et al., 2001). Cytokines, 

such as EL-4 and IL- 10, also effect the endocytic activity of MO, providing a mechanism 
for regulation of antigen uptake during inflammatory responses (Montaner et al., 1999). 

Interrialisation is involved in several accessory cell functions. Particularly important to the 

development of acquired responses is the processing and presentation of antigen by the 

specialised APC subset of accessory cells. Internalisation leads to the delivery of pathogen 

material to proteolytic endocytic, or phagocytic organelles, within which the antigens are 

catabolised, and become complexed with MHC II (reviewed by Harding et al., 2003). 

Although APC constitutively sample the environment by macropinocytosis (independently 

of PRR-ligation), receptor-mediated uptake dramatically enhances the efficiency of antigen 

capture and presentation (Jiang et al., 1995; Sallusto et al., 1995; Tan et al., 1997). 

In addition to antigen presentation, it has recently been demonstrated that internalisation 

can have an important role as a precursor event in TLR-mediated intracellular signalling by 

certain PAMPs. In this respect, TLR9 is restricted to endosomal intracellular compartments 

(Ahmad-Nej ad et al., 2002). In contrast, most TLRs appear to be expressed on the surface 

of accessory cells, although site-restricted expression within specialised subsets of 

accessory cells has been reported (Hornef et al., 2002). 

1.9.2 Production of cytokines, chemokines, and eicosanoids 

innate recognition also results in the production and release of important inflammatory 

mediators, such as chemokines, eicosanoids, and pro-inflammatory and regulatory 

40 



cytokines, including TNF(x, IL- 10, IL-6, EL- 10 and IIL- 12. These molecules act as soluble 

messengers with paracrine, endocrine, and autocrine functions, allowing the activation of 

further accessory cells. One consequence of this cross-talk is a series of complex events 

that results in inflammation, characterised by recruitment of further accessory cells into the 

site of infection. Another is the regulation of the local APC population in terms of 

composition and activity. A brief overview of these soluble molecules will be given. 

Cy! okines 

The control of inflammatory cytokine production is thought to be mediated through 

induction of NF-Yp signalling pathways. However, some accessory cells, such as 

neutrophils, contain preformed cytokines whose release does not require transcription 

(Bliss et al., 2000). TLRs are the major players in signal transduction for cytokine 

production utilising a pathway that shares much in common with EL- IR signalling due to 

the shared Toll / IIL- IR domains (TIR) they contain. Signalling through TIRs ultimately 

leads to the translocation of NF-rcp transcription factors to the nucleus through the 

recruitment of an adapter protein MyD88, and activation of IRAK serine / threonine 

kinases (reviewed by Underhill and Ozinsky, 2002). Alternative pathways that are specific 

to individual TLR have also recently been identified and will be discussed further in 

Chapter 3. This may explain the differences in cytokine gene expression induced by 

different TLR ligands (Re and Strominger, 2001). In addition, non-TLR PRRs, such as the 

MR and CDI lb, may also be involved in signalling for cytokine production (Yamamoto et 

al., 1997; Perera et al., 2001), possibly through a phagocytic mechanism (Shibata et al., 

1997). 

Key cytokines in the development and regulation of inflammatory responses are TNF(x, IL- 

I P, IL-6, and EL- 10, which are produced upon stimulation by numerous different accessory 

cells including Mý, neutrophils, and DC. Both TNFcc and IL- IP are potent pro- 

inflammatory cytokines sharing a similar spectrum of action that includes the activation of 

most accessory cells (reviewed by Mantovard, 1999 and Wallach et al., 1999). In addition, 

they stimulate APC maturation and emigration to local draining LN (Cumberbatch et al., 

1997a; 1997b). IL-12 is thought to mainly exert a pro-inflammatory effect by orchestrating 

EFNy production (Ma and Trinchieri, 2001), although it can also directly stimulate NF-KP 
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translocation in DC (Grohmann et al., 1998). Although the paracrine effect of IL-6 is the 

up-regulation of acute phase proteins (involved in anti-microbial defence) by the liver, its 

local effect during acute inflammation appears more regulatory (Xing et al., 1998). 

Concurring with this, EL-6 can reduce Mý and DC production of pro-inflammatory 

cytokines (Takenaka et al., 1997). IL-6 also stimulates differentiation of human monocyte 

precursors to Mý rather than DC, suggesting this cytokine will affect the constituent APC 

population (Chomarat et al., 2000). IL- 10 is a potent anti -inflammatory cytokine favouring 

the resolution of immune responses. Its effects include down-regulation of APC activity 
(Wang et al., 1999; Corinti et al., 2001), down-regulation of pro-inflammatory cytokine 

(e. g. TNFa and EL- 12) production and inhibition of cellular cytotoxicity by Mý (Kane and 

Mosser, 2001; Corinti et al., 2001). 

Chemokines 

The production of chemokines by tissue Mý and DC, and other accessory cells, is thought 

to play a major role in the initiation of inflammatory responses (Luster, 2002). Chemokine 

production is thought to be under control of a NF-Kp-dependent pathway, and thus 

principally the domain of TLRs. Chemokine genes expressed following TLR engagement 

include IL-8, MIP- I cc, and MIP- I P, although as for cytokines, these are differently 

regulated by separate TLRs (Re and Strominger, 2001). Briefly, IL-8 recruits neutrophils 

(Barker et al., 199 1; Kuijpers et al., 1992), whereas MIP- I cc and MIP- IP recruits Mý, 

immature DC (Dieu et al., 1998) and NK (Salazar-Mather et al., 2000). Chemokines may 

also be able to stimulate accessory cells to up-regulate cytokine production, since 

signalling through CCR5 by T gondii can result in EL-12 production (Aliberti et al., 2000). 

In this respect, it has been reported that MEP- 1 a, MIP- I P, and RANTES co-operate with 

IFNy to up-regulate CD40, EL- 12, and TNF(x expression by Mý (Dorner et al., 2002). 

Eicosanoids 

Eicosanoids are small lipid molecules with endocrine and autocrine activity, and most is 

known about the prostaglandin and leukotriene eicosanoids. Stimulation of accessory cells, 

such as Mý and DC, is thought to result in the phospholipase A2-dependent release of the 

membrane-bound progenitor arachidonic acid. This is then converted to different 
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prostaglandins, via constitutive cyclo-oxygenase (COX)- I and inflammation-inducible 

COX-2 enzymes, and various prostaglandin synthases (Harizi et al., 2002), or to 

leukotrienes by the lipoxygenase pathway. Prostaglandins and leukotrienes have profound 

effects on innate accessory cells. Of these, PGE2 stands out as the most studied, and is 

known to cause decreased production of EL-12, EL-6, and TNFCC by Mý (Zhong et al., 

1995), but increased IL-10 production (Shinomiya et al., 2001). PGE2 has also been 

implicated in the inhibition of DC activity, via the up-regulation of EL- 10 production 
(Harizi et al., 2002). 

1.10 Innate immune responses: induction of acquired immunity 

Effector CD4+ Th cells co-ordinate the acquired immune response. The single crucial event 
in the activation of naYve Th cells is ligation of their surface TCRs with peptide-MHC 11 

complexes. APC are a specialised subset of accessory cells that can capture exogenous 

antigen and present it to Th cells in complex with MHC H. In this respect, APCs are the 

cells that link innate and adaptive immunity. In addition, the initial activation of the innate 
immune system is critical to the induction of strong effector T-cell responses, including 

increased T-cell proliferation and the generation of long-lived memory (Reinhardt et al., 

2001). 

1.10.1 APCs 

Several types of accessory cell can express MHC 11 and can therefore act as APCs. 

However, DC, and to a lesser extent Mý, are the most potent activators of naYve Th cells, 

and in this respect they have become regarded as 'professional APC'. Their potency is 

emphasised by work using antigen-loaded DC as 'natural adjuvants' to elicit protective 

immune responses to pathogens (Flohe et al., 1998). DC can be divided into several 

subsets that are described in more detail in Chapter 5. 

The type of APC that will be involved in T-cell priming depends upon the site of antigen 

deposition and the inflammatory response that may accompany this. In infections where 

entry to the host is percutanous, such as schistosomiasis, APC within the skin may capture 

exogenous antigen and then migrate to local sdLN. The skin is known to contain several 

43 



types of APC: a specialised subset of DC tenned LC resides in the epiden-nis, while 

additional DC and MO also reside in the dermis. Moreover, the innate response that follows 

infection may critically change the repertoire of APC that are present (see above). 

1.10.2 Antigen uptake andprocessing 

As discussed earlier, APC can internalise antigen via a number of constitutive and PRR- 

mediated mechanisms. Antigen uptake can also be mediated by specific antibodies on B- 

cells (Rock et al., 1984), and through FcR and complement receptors on phagocytes such 

as Mý. Following degradation of antigen material in the endocytic compartment, peptides 

are loaded onto freshly synthesised MHC II molecules. The mechanisms of peptide loading 

are relatively well defined, and involve a sequence of proteolytic events to remove a 

protein (invariant chain) which blocks the MHC H peptide binding site, allowing antigen 

peptides to bind (Harding et al., 2003). 

1.10.3 Migration to T-cell areas 

Priming of naYve T-cells requires APC to be present in the T-cell areas of primary 

lymphoid tissues, such as spleen or local draining LN. This can occur in two ways: APC at 

the site of infection can capture antigens and then migrate to the lymphoid tissues. 

Alternatively, antigen may be carried directly to the LN, or spleen, in draining lymphatic 

fluid, or blood, where it can be processed by the resident APC. Moreover, migration of the 

pathogen may also take it through primary lymphoid tissue (as during schistosomiasis), 

where-upon antigen could be deposited directly. 

During percutaneous infections, skin-derived APC are likely to be important for antigen 

presentation. In this respect, stimulated resident tissue DC are known to down-regulate 

their expression of chemokine receptors CCRI, CCR5 and CCR6, whilst up-regulating 

expression of CCR7, allowing them to migrate from the tissue through the lymphatics 

towards the T-cell rich areas of the local LN (Sozzani et al., 1998; Dieu et al., 1998). 

Certain cytokines, including IL- 1P and TNF(x, are essential to the ability of LC to migrate 

from the skin, and can stimulate the cells to up-regulate expression of MHC 11 
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(Cumberbatch and Kimber, 1995; Wang et al., 1997; Cumberbatch et al., 1997a; 1997b). 

In fact, in the absence of these cytokines LC migration is greatly impaired (Cumberbatch 

and Kimber, 1995; Wang et al., 1997; Cumberbatch et al., 1997a). In contrast, IL-10 

inhibits LC migration, possibly by down-regulating IIL- IP and TNF(x production in the 

epidermis (Wang et al., 1999), and by maintaining the expression of CCR6 (Dieu-Nosjean 

et al., 2001). 

1.10.4 T-cellpriming 

In order to proliferate and generate effector cells, naYve CD4+ T-cells must receive co- 

stimulatory signals in addition to those signals received through the TCR. The most 
important co-stimulatory signal is thought to be received through CD28 but other signals 

also contribute to T-cell activation, including CD 154 and OX40, and will be discussed 

further in Chapter 6 and 7. These co-stimulatory signals are supplied by membrane surface 

molecules expressed on APC, such as CD80, CD86, CD40, and OX40L, and are thought to 

be essential for full activation of T-cells and prevention of T-cell death. In this manner, 

their absence can lead to reduced T-cell responses or T-cell anergy (unresponsiveness) 

(Boise et al., 1995; Van Gool et al., 1999). Indeed, T-cell responses to schistosome egg 
deposition are greatly reduced in CD28 -/- mice (King et al., 1996b). In addition, APC- 

derived cytokines may also contribute to the co-stimulatory signal (Holsti et al., 1994; 

Vella et al., 1997; Teague et al., 1997). Co-stimulatory signals act to enhance T-cell 

survival during proliferation by the induction of anti-apoptotic 'Intrinsic survival factors', 

such as Bcl-XL and Bcl-2 (Boise et al., 1995; Vella et al., 1997; Teague et al., 1997; 

Rogers et al., 2001). Upon activation, T-cells up-regulate their expression of a number of 

co-stimulatory receptors, such as CD 154, OX40, and 4-1 BB. Ligation of these molecules 

by their APC-expressed counterparts (CD40, OX40L and 4- 1 BBL, respectively), is 

thought to act as a series of check points in priming, delivering survival and maintenance 

signals to developing T-cells (Rogers et al., 2001; Cannons et al., 2001). 

Immature APC express low levels of co-stimulatory molecules and MHC II, and are 

inefficient in activating naYve T-cells. However, upon exposure to a variety of stimuli 

including many pathogens and PAMPs, such as LPS (Whelan et al., 2000), mycobacteria 

(Schnare et al., 2001), CpG DNA motifs (Sparwasser et al., 1998), yeast cells and hyphae 
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(d'Ostiani et al., 2000), 'danger signals' such as necrotic cells (Gallucci et al., 1999), and 

pro-inflammatory cytokines (Brunner et al., 2000; Schnare et al., 2001), DC undergo a 

maturation program that leads to increased expression of MHC II and co-stimulatory 

molecules, and an increased ability to prime T-cells. 

The mechanisms that control the up-regulation of these molecules are not fully understood. 
Similar to the control of cytokine production, PAMP-stimulated expression of co- 

stimulatory factors is also thought to mainly be controlled by signal transduction through 

the TLRs (reviewed by Medzhitov, 2001). However, the signalling pathways that lead to 

DC cytokine production can be different to pathways resulting in maturation and co- 

stimulatory factor expression. For example, DC from mice deficient in the adapter protein 
MyD88 fail to produce pro-inflammatory cytokines but still up-regulate MHC 11 and co- 

stimulatory factor expression upon exposure to LPS (Kaisho et al., 2001) or dsRNA 

(Alexopoulou et al., 2001). In contrast, both cytokine production and maturation 

stimulated by CpG motifs, or mycobacteria, rely on MyD88 (Schnare et al., 2000; 2001). 

Signalling could also be due, in part, to the induction and release of stimulatory autocrines, 

such as IL- IP and TNFa, the latter of which also signals through a MyD 88 -independent 

pathway (Schnare et al., 2001). The role of non-TLR PRRs in PAMP-driven DC 

maturation remains to be determined. 

1.11 Polarisation of acquired immune responses 

1. IL I Polarity of the acquired response: Th I and Th2 subsets 

CD4+ T-cells are responsible for both the type and the co-ordination of the acquired 

immune response. This is achieved through the repertoire of cytokines they produce upon 

activation. It has become widely accepted that murine effector CD4+ T-cells can be divided 

into two subsets based upon their profile of cytokine production (Mosmann et al., 1986). 

Thl cells produce EFNy and are potent drivers of cell-mediated 'Inflammatory' effector 

responses, characterised by delayed-type hypersensitivity (Cher and Mosmann, 1987). 

These cytokines can induce cellular cytotoxicity in Mý, and cause class-switching of 

antibody production to IgG2a- In contrast, Th2 cells produce IL-4, IL-5, EL-6, IL- 10 and IL- 

13, which drive antibody-associated humoral and allergic-type responses through enhanced 
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B-cell help, mast cell and eosinophil proliferation and activation, and switching to IgG, 

and IgE antibody production (Cherwinski, 1987; Fiorentino et al., 1989). A similar Thl 

and Th2 paradigm of cytokine production has been described in human effector T-cell 

responses (Del Prete et al., 1991). 

Recent advances in this field demonstrate that are there are a number of other CD4+ T-cell 

subsets which do not fit into this Th I/ Th2 model. First, ThO cells have been described 

which produce both Thl and Th2 cytokines (Firestein et al., 1989). These may represent an 
intermediate pluripotent phase of development prior to differentiation to polarised Thl or 

Th2 cells (Kamagowa et al., 1993). However, it is also possible that ThO cells form a stable 

subset of T helper cells (Miner and Croft, 1998). Second, resurgence in the field of T-cell 

mediated suppression has led to the identification of several 'suppressor' or 'regulatory' T 

cell populations (Teg). 'Naturally occurring' populations of Teg cells are present in un- 

manipulated mice and are enriched within CD4+ CD25+ cells (reviewed by Read and 

Powrie, 2001). In addition, a number of inducible Treg subsets have been described, 

including TO (Chen et al., 1994), Trl (McGuirk et al., 2002), and anergic T-cells (Chai et 

al., 1999). Again, similar cells types have been described in humans. The relationship 

between these different cells is unclear, but they appear to act through a diverse variety of 

cytokine (EL- 10 and TGFP) and cell-contact dependent mechanisms, in order to suppress 

both innate and T-helper cell responses (Chen et al., 1994; Chai et al., 1999; Read and 

Powne, 2001; McGuirk et al., 2002; Maloy et al., 2003). 

1. IL 2 Th I/ Th2 response in disease 

Infection can result in a broad spectrum of acquired Th cell responses, which is important 

in determining the course of disease. Some disease states are characterised by highly 

polarised responses, as demonstrated by; 

* the extensive work from R. Locksley's and P. Scott's laboratories on healing / non- 

healing Leishmania dependent on the induction of Thl and Th2 responses, respectively 

(Heinzel et al., 1989; Scott, 1991) 

the work done on Trichuris muris infection in which Th2 responses result in protection 

and Thl responses result in susceptibility (Else et al., 1993; Bancroft et al., 1998). 
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Alternatively, under the correct conditions mixed Th I/ Th. 2 responses can be highly 

protective, such as against challenge schistosome infection following vaccination of IL- 10 

-/- mice with irradiated larvae (discussed above; Hoffmann et al., 1999). Moreover, in 

malaria infection both Thl and Th2 responses can contribute to protection against the 

pathogen but at different stages of its life-cycle. These studies demonstrate that, depending 

upon the disease, immune responses need not be highly polarised in order to be protective. 

1.12 Innate immune responses: factors affecting T-cell polarisation 

Many factors have been linked to the development and regulation of Thl and Th2 subsets. 
Those derived from the innate immune system are thought to be critical for the initial 

progression towards a polar response (Fearon and Locksley, 1996). There is also thought to 

be a significant amount of cross-regulation between the Th subsets through the repertoires 

of cytokines they produce. However, exogenous innate signals may tip the balance of 

regulatory ones. 

1.12.1 PAMPs and PRRs 

A certain degree of specificity in innate responses is provided by differences in the 'hard- 

wired' responses to ligation of particular PRRs or PRR combinations, allowing the 

discrimination of diverse PAMPs or pathogens (Underhill and Ozinsky, 2002). Indeed, 

there is evidence that DC can directly interpret the information encoded in PAMPs, or 

'danger signals', and subsequently drive polarised Th responses (Whelan et al., 2000; 

MacDonald et al., 2001; de Jong et al., 2002; Manickasingliam et al., 2003), even to the 

extent of distinguishing between different cellular stages of the same organism (d'Ostiani 

et al., 2000). This will be discussed in further detail in chapters 6 and 7. 

The flexibility of innate accessory cells probably lies in the down-stream signalling effects 

of engagement of specific PRRs. The importance of TLR signalling in polarisation of T- 

cells has been investigated in a number of studies using mice deficient for the signalling 

adapter protein MyD88. These mice fail to mount Thl responses but develop Th2- 

associated responses when exposed to Toxoplasma gondii (Jankovic et al., 2002). They 

also fail to mount a Thl response when immunised with ovalbumin in complete Freunds 

adjuvant (Schnare et al., 2001), a mixture of mycobacterial PAMPs that signal through 
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TLR2 (Means et al., 1999; Underhill et al., 1999a). Although MyD88 is also important in 

the signalling pathways of the pro-inflammatory cytokines EL- IP and EL- 18 (Adachi et al., 

1998), mice deficient in bioactive IL- 1P and IL- 18 (i. e. caspase- I -/-) exhibited normal T- 

cell responses (Schnare et al., 2001). These studies have led to the hypothesis that TLR 

recognition and signalling pathways may only be relevant for the development of Th I and 

not Th2 responses (Schnare et al., 2001), although this requires further work to be verified. 

1.12.2 Antigen presentation, co-stimulatoryfactors, and APCs 

In addition to the crucial involvement in T-cell priming, co-stimulatory factors such as 
CD28, CD154, and OX40 may also have differential roles in Thl and Th2 development. In 

this respect, the role of CD80, CD86, CD40, and OX40L expressed upon APC has been 

the focus of intense study that has lead to contrasting observations, and will be discussed 

more thoroughly in Chapter 6 and 7. 

Many studies show that the certain types of APC preferentially stimulate either Th I or Th2 

responses. In this respect, DC infected with M tuberculosis drive Thl differentiation, 

whereas infected Mý do not (Hickman et al., 2002). The inherent difference in T-cell 

polarisation by APC is possibly due to the repertoire of cytokines or co-stimulatory factors 

that these cells express (Hickman et al., 2002). Different DC subsets have also been 

implicated in preferentially priming Thl or Th2 responses. However, despite these studies, 

it has been suggested that certain APCs, such as DC, are plunpotent in their T-cell 

polarising capacity, and currently this is an intensely studied area of research. 

1.12.3 Cytokines 

Of all the factors known to affect the development and polarisation of the Th populatIon, 

cytokines are thought to play the most critical role. They can act directly upon T-cells, or 

may affect polarisation indirectly by interfering with innate responses. Since the cytokines 

of the innate and acquired system overlap considerably, their possible roles as exogenous 

and endogenous factors will be discussed together. 

IL-12: This cytokine is produced by a variety of accessory cells and APC, such as Mý, DC 

and neutrophils, and it is a major link between innate and adaptive immunity (Trinchien, 
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2003). It has a direct and critical role in driving Thl polarisation, which has been 

extensively studied in vitro and in vivo (Hsieh et al., 1993). However, although APC- 

derived IL- 12 may be required for optimal IFNy production, it may not be a necessity for 

Thl induction (MacDonald and Pearce, 2002), suggesting that other mechanisms are also 

involved in this pathway. IL-12 may affect T-cell polarisation in a number of ways. 

Addition of EL-12 to T-cell cultures can result in induction of Thl responses when a 

normal Th2 response would prevail, while ablation of IL-12 leads to the inhibition of a 

normal Thl phenotype (Hsieh et al., 1993; Manetti et al., 1993; 1994). Moreover, EL- 

l2p40 -/- mice mount impaired Thl responses (Anderson et al., 1998; Jankovic et al., 
2002). One way in which IL-12 could enhance Th polarisation is by stimulating up- 

regulation of IL- 18 receptor a (IL- I 8Ra) expression, and EL- 12 receptor P2 (IL- I 2RP2) 

allowing cells to respond to these potent Thl inducing cytokines (Chang et al., 1999; 

Smeltz et al., 2002). In addition, EL- 12 may potentiate Th 1 responses by stimulating EFNy 

production by NK cells (Kobayashi et al., 1989) and y8 T-cells (Skeen and Ziegler, 1995). 

Expression of the IL-12 receptor may be critical in the control of T-cell polarisation, since 

exposure to IL-4 decreases expression of the IL- I 2RP2 subunit, leading to an increased 

likelihood of Th2 polarisation (Szabo et al., 1997). 

TNy: One of the most important cytokines produced by Thl cells, IFNy can also be 

produced by activated NK cells (Kobayashi et al., 1989), CD8+ T-cells, and y8 T-cells 

(Skeen and Ziegler, 1995). In addition, it has been found to be produced by APC such as 

DC (Ohteki et al., 1999). The involvement of EFNy in the direct induction of Thl 

differentiation remains unclear. It appears that IFNy is critical in the development and 

sustenance of Thl differentiation, but alone it may not be sufficient to drive polarisation 

down this route (Scott, 1991; Macatonia et al., 1993). Recently, it was observed that EFNy 

appears to limit the negative effects of EL-4 on EL- I 8Rct and EL- I 2RP2 expression 

(Nakamura et al., 1997; Smeltz et al., 2002), which could explain the positive feedback 

mechanism of this cytokine. EFNy may also indirectly induce Th I differentiation through 

the activation of APC, such as Mý, which then produce more pro-Th I IL- 12 and less 

inhibitory IL- 10, in response to PAMP recognition (see Chapter 3). 

IL- 18: This cytokine is produced by a number of accessory cells, including IFNy-activated 

Mý (Okamura et al., 1995). The observations that EL- 18 receptor is only expressed on Th I 
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cells (Xu et al., 1998) partly explains the effects EL- 18 has on T-cells. Firstly, it has little 

effect on Th cell IL-4 or EL- 10 production (Micallef et al., 1996; Robinson et al., 1997). 

Secondly, on its own, IL- 18 is relatively ineffective at driving Th 1 polarisation, although it 

acts in synergy with IL- 12 to augment T-cell IFN7 production (Micallef et al., 1996; 

Kohno et al., 1997; Robinson et al., 1997). Therefore, EL- 18 may not be an important 

cytokine in the initial event involved in polarisation but appears to function by enhancing 

and sustaining Thl responses (Okamura et al., 1998). 

Other potentially 'Thl -associated' cyjokines: 

IL-10 and TNF(x have been implicated in Thl polarisation (D'Andrea et al., 1993). 

These may act indirectly, as IL- 10 synergises with IL- 12 to stimulate IFNy production 

by NK cells and y8 T-cells (Hunter et al., 1995; Skeen and Ziegler, 1995), and both 

TNFcc and IL- IP stimulate accessory cells to exhibit a pro-inflammatory phenotypes 

and drive APC maturation. TNF(x also enhances T-cell expression of EL-12RP2 

(reviewed by Trinchieri, 2003). 

IFNoc can support Thl polarisation in the absence of IL-12 in response to certain 

PAMPs, such as dsRNA (Manetti et al., 1995). 

EL- 15 and IIL-21 were both recently shown to induce T-cell synthesis of EFNy, IIL- I 2RP2 

and EL- I 8R mRNA (Strengell et al., 2002), although the role of these cytokines in Th I 

development remains to be fully explored, and a recent report suggests IL-21 is a Th2 

cytokine (Wurster et al., 2002). 

EL-23 and IL-27, also have Thl polarising activity (Trinchieri, 2003), and both are 

produced by stimulated APCs (Oppmarm et al., 2000; Pflanz et al., 2002). The receptor 

for IL-23 shares the IL- 12RP I chain, and induces similar signalling as EL- 12 (Parham et 

al., 2002), which could explain why these molecules share similar functions. However, 

IL-23 appears to be less efficient than IL- 12 at driving EFNy production (Oppmann et 

al., 2000). IL-27 is also a strong inducer of EFNy production, acting in synergy with IL- 

12 and IL- 18 (Pflanz et al., 2002), and mice deficient for the EL-27 receptor chain 

TCCR (homologous to the EL-12RP2) have impaired Thl responses (Chen et al., 2000). 

IL-4: EL-4 is thought to be one of the major players in differentiation of Th2 cells. Gene 

deletion of IIL-4 significantly impairs the generation of Th2 responses (Kuhn et al., 1991; 

Kopf et al., 1993), while the addition of EL-4 increased the frequency of IL-4-producing 
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cells, but decreased that of IFNy-producing cells (Swain et al., 1990; Le Gros et al., 1990). 

IL-4 may drive Th2 polarisation in a number of ways. Firstly, it is thought to operate in a 

positive feedback loop since STAT6, an essential transcription factor for Th2 cytokines 

and Th2 development (Shimoda et al., 1996; Takeda et al., 1996), is activated through the 

IL-4 receptor (Hou et al., 1994). EL-4 can also act on APCs, such as Mý, to inhibit the 

production of IL- I 2p4O in response to PAMP stimuli (Major et al., 2002), with IL-4 

signalling thought to result in increased binding of a suppressor site in the p40 promoter 

(Becker et al., 2001). 

IL-4 can be produced by a wide array of cells, including T-cell subsets, and accessory cells 

such as mast cells and basophils (Machado et al., 1996; Haisch et al., 200 1; Rao et al., 
2002). IL-4 also acts with IL-3 to expand mast cells, which may result in a preferential 

environment for Th2 responses in the tissues. Recently DC have been shown to produce 

IL-4 in response to yeast hyphae, and subsequently drive Th2 polarisation (d'Ostiani et al., 
2000). However, DC from IL-4 -'- mice do not loose their ability to prime for Th2 

differentiation, although EL-4 production by responder T-cells is crucial (MacDonald and 

Pearce, 2002). This suggests that exogenous EL-4 is not essential for the induction of Th2 

responses, and that IL-4 may not be involved in the initial switch to Th2 cytokine 

production 

Perhaps surprisingly it has been shown that there could be a negative feedback mechanism 

to regulate IL-4 production and Th2 polarisation. Several studies demonstrate that IL-4 

stimulates human DC (Kalinski et al., 2000) and PBMC (D'Andrea et al., 1995) to produce 

increased levels of IL- I 2p7O. Moreover, culture of DC with Th2 cells leads to EL-4- 

dependent production of EL-12p7O and the reversal of the Th2 cells to a ThO / Th I 

phenotype (Kalinski et al., 2000). However, this is obviously controversial since it 

conflicts with the inhibitory effect of IL-4 on IL- 12 production, as discussed above. 

IL- 13: EL- 13 has many overlapping biological functions with EL-4 (de Waal Malefyt et al., 

1993), including the differentiation of Th2 cells (Bancroft et al., 1998; McKenzie et al., 

1998). The similarity between the function of these cytokines reflects the shared EL-4R(x 

chain used for signalling (Mohrs et al., 1999). Although EL- 13 is produced by ThO, Th 1, 

and Th2 activated T-cells (de Waal Malefyt et al., 1995), unlike IL-4 it only exerts its 
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action upon accessory cells, since T-cells do not express the IL- 13 receptor. In this respect, 

IL- 13 inhibits pro-inflammatory cytokine production, including EL- 12, by monocytes (de 

Waal Malefyt et al., 1993). Since IL- 13 is only expressed by activated T-cells it is not 
likely to be an early factor involved in Th2 polarisation, but may be a signal to augment it. 

IL-6: IL-6 is produced by both APCs, such as Mý, DC and B-cells, but also by Th2 cells, 

and has been documented to be involved in the induction of Th2 polarisation (Rincon et 

al., 1997; La Flamme et al., 2000). IL-6-deficient mice infected with Borrelia burgdorferi 

have greater incidence of inflammatory arthritis, and their splenocytes produce less IL-4 

upon re-stimulation in vitro (Anguita et al., 1998). IL-6 also drives naYve T-cell production 

of IL-4, although this is dependent upon endogenous EL-4 production (Rincon et al., 1997; 

Diehl et al., 2002). However, IL-6 can directly inhibit Thl differentiation through an IL-4- 

independent mechanism, by up-regulating suppressor of cytokine signalling (SOCS)- I 

expression, which interferes with EFN7 signalling (Diehl et al., 2000). In addition, IL-6 

may act by inducing IL- 10 production that could then inhibit Th I responses (La Flamme et 

al., 2000). Therefore, IL-6 may not be a primary stimulator of Th2 differentiation but can 

augment it upon IL-4 production. Moreover, IL-6 can inhibit Thl differentiation from an 

early stage, and therefore might be an important innate cytokine in driving Th2 responses. 

IL- 10: IL- 10 is an immunomodulatory cytokine. It is associated with Th2 polarisation, 

preferentially suppressing Thl responses, however, it also down-regulates acquired 

responses per se (de Waal Malefyt et al., 199 1; Taga and Tosata, 1992). This affect of IL- 

10 is thought to be an indirect result of its inhibitory actions upon pro-inflammatory Th I- 

promoting cytokine production by accessory cells and APC, and its down-regulatory effect 

on MHC II and co-stimulatory factor expression by APC (Fiorentino et al., 199 1 a; Hsieh et 

al., 1993; Corinti et al., 2001; Hickman et al., 2002). 

Chemokines: No direct effect of chemokines on T-cell polarisation has been described. 

However, since the type of APC may bias the outcome of priming, chemokines could 

indirectly influence polarisation by determining the cellular constituents of the APC 

population immigrating into a site of inflammation (discussed above), and emigrating to 

the draining LN. In addition, MIP- I ot, MIP- I P, and RANTES (produced by NK and Th I 
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cells and some accessory cells) have been implicated in Thl polarisation by driving pro- 

inflammatory cytokine production by rFN7-activated Mý (Dorner et al., 2002). 

Prostaglandins: PGE2 is an inducer of Th2 responses. It is thought to function through its 

mainly down-regulatory affects upon APC pro-inflammatory cytokine production (Kuroda 

et al., 2000; discussed above). In this respect, DC cultured with PGE2 drive potent Th2 

responses (Vieira et al., 2000; de Jong et al., 2002). 
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1.13 Aims of this study 

The overall aims of this project are to; 

4P determine how schistosomes interact with the innate immune system during the initial 

stages of infection; 

* establish what effect this interaction may have on the development of the acquired 
immune response to the parasite. 

Due to the complexities of immune interactions in vivo, this thesis focuses almost entirely 

on dissecting innate responses to schistosomes in vitro. To achieve the above aims, this 

thesis is structured around two key objectives, as follows. 

a) The first objective is to detennine if skin-stage schistosomes possess PAMP-like 

molecules that can directly stimulate innate accessory cells. 

Chapter 2 briefly deals with the production of parasite TAMP' preparations from 

schistosomes transformed and cultured in vitro to different developmental states. 
Chapter 3 concerns the screening of these schistosome preparations for their ability to 

stimulate murine Mý (as a representative of the innate immune system). 

The involvement of different cellular receptors in the recognition of parasite material is 

investigated in chapters 4&5, focussing upon the MR, and the FcyR. 

b) The second objective is to determine what effect putative parasitic PAMPs have on 

APCs. 

APCs fonn the bridge that links innate and acquired responses and are likely to be a 

critical factor affecting both the scale and the type of acquired immune response 

generated during infection. Therefore, in Chapter 6 the effect of schistosome PAMPs 

upon the maturation state of DC (the 'professional' APQ is examined in depth. In 

order to detennine the effect of parasite PAMPs upon the priming and polarisation of 

acquired immune responses, Chapter 7 deals with the outcome of Th cell priming by 

schistosome-activated DC, using both in vitro and in vivo methodologies for analysis. 
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CHAPTER 2 

PRODUCTION OF SCHISTOSOME PAMP PREPARATIONS FROM 

IN VITRO CULTURED LARVAE 



2.1 INTRODUCTION 

In order to determine whether S. mansoni larvae express PAMPs during the initial stages of 

infection, a number of different larval preparations will be screened for their ability to 

stimulate innate accessory cells. This parasite material must be, 1) representative of the 

molecules that come into contact with innate accessory cells during the different stages of 

skin penetration and migration; and 2) produced in large / sufficient quantities. 

Infective cercariae are easily obtainable in bulk from patent snails maintained at the 

University of York. However, ex vivo skin-stage schistosomulae are very difficult to obtain 
in large numbers, as they have to be extracted from the skin infection site, requiring 

significant numbers of infected mice. Coupled with this, molecules released by the parasite 

to facilitate penetration and migration will be lost within the host tissues. Therefore, a 

method for the high yield in vitro culture of artificially-transformed larvae was adopted to 

provide a viable source of large quantities of parasite material. Briefly, this method 
involves the mechanical-transformation of infective cercariae into schistosomulae, which 

can then be cultured in vitro to different developmental stages. This method also allows for 

the collection and analysis of the material released by cercariae during transformation and 

subsequent migration, such as the contents of the pre- and post-acetabular glands. As these 

released molecules are some of the first schistosome molecules to which innate accessory 

cells are exposed, they represent an important source of potentially stimulatory PAMPs. 

The aim of this short chapter is to describe the techniques used for the in vitro culture of 

schistosomulae, and to simply compare the different larval preparations that will be used in 

subsequent experimental chapters to study the effects of schistosome PAMPs upon innate 

accessory cells. 
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2.2 MATERIALS AND METHODS 

2.2.1 Parasites 

A Puerto Rican strain of Schistosoma mansoni was maintained by routine passage through 

out-bred NMR- I mice and albino Biomphalaria glabrata snails. 

2.2.1.1 Cercariae 

Schistosome cercariae were harvested from snails harbouring patent infections 

(approximately 260 snails from which 650,000 larvae are shed; pers. com. R. Curwen and 

A. Wilson). The parasites were induced to shed into clean 'aged tap-water' by exposure of 
infected snails to intense light (2 x 20OW bulbs) for 2 hr. Cercariae were then pooled, 

ensuring that snails and faeces were excluded, and concentrated by sedimentation on ice 

for I hr. In order to reduce naturally occurring microbial contaminants, cercariae were 

washed three times with sterile chilled 'aged tap-water'. Cercariae were frozen at -20 T 

prior to processing into soluble cercarial preparation (SCP; see section 2.2.1.4). 

Alternatively, cercariae were mechanically-transformed by vortexing for 90 sec in 2ml of 

sterile chilled RPMI 1640 containing 200 U/ml penicillin and 100 ýIg/ml streptomycin 

(Invitrogen, Paisley, UK) (RPMI-O). 

2.2.1.2 In vitro culture of schistosomulae 

Mechanically-transformed larvae were cultured in vitro in 25 ml RPMI-O for 3 hr at 37 T 

and 5% C02, in a T25 tissue-culture flask (Nalge Nunc International Corp., Naperville, 

USA). The absence of foetal calf serum (FCS) from this medium ensured that all protein 

present in the supernatant (SN) after culture would be parasite-derived. During this period, 

the now immobile cercarial heads (transformed to schistosomulae), and the cercarial tails, 

settled on the bottom of the culture flask. The top 20 ml of culture SN, was then removed, 

leaving 5 ml of larval sediment. A further 20 ml of RPMI-O was added to resuspend any 

particulate material released by larvae into the sediment. The heads and tails were allowed 

to sediment for 10 min, before the removal of the top 20 ml of SN. The pooled SN formed 

the basis of the 0-3 hr released molecule preparation (0-3hRP; Section 2.2.1.3). 
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Parasite heads, were isolated from tails by centrifugation (250 g for 12 min) on a 

discontinuous (45% / 70%) Percoll (Amersham Scientific, Amersham, UK) gradient, made 

up in RPMI-O (Lazdins et al., 1982). The denser larvae accumulated at the interface 

between the 45% and 70% layers, whereas the less dense tails remained in the upper region 

of the 40% layer, allowing the heads to be removed. Larvae were washed 7 times with 10 

ml RPMI-O to remove Percoll and the few remaining tails. They were then pelleted, frozen 

at -20 'C, and used to create the soluble 3 hr schistosomule preparation (3hSSP) (Section 

2.2.1.4). Alternatively, schistosomulae were cultured for longer periods of time to allow 
further development. Consequently, larvae were resuspended in 20 ml Medium 169 

(adapted from Basch, 198 1), containing 200 U/ml penicillin, 100 ýLg/ml streptomycin and 

5% heat-inactivated, low-endotoxin FCS (Harlan Seralab, Loughborough, UK) (M169-5). 

Medium 169 comprised BME (EAGLE) medium containing HEPES buffer (20 mM), 
Schneiders medium (5%, v/v; Invitrogen), lactalbumin hydrosolate (0.1%), glucose 
(0.1%), hypoxanthine (5 x 10-7 M), serotonin (1 x 10-6 M), hydrocortisone (1 x 10-6 M) 

triiodothyronine (2 X 10-7 M), and MEM vitamins (0.5%, v/v; Sigma-Aldrich, Poole, 

UK). Schistosomulae were then cultured in M169-5 (approximately 2000 - 3000 parasites 

ml) in 24-well plates (Nalge Nunc), and harvested 18 hr, 3 days, 5 days or 8 days later, 

depending on the stage of development required. The larvae were resuspended and pooled 

into 50 ml tubes and centrifuged at 45 g for 5 min. The SN was discarded and the larvae 

washed 4 times with RPMI-O, to remove any FCS components. The final larval pellet was 

frozen at -20 OC. These larvae were then used to create the 18 hr (I 8hSSP), 3 day QdSSP), 

5 day (5dSSP) or 8 day (8dSSP) soluble schistosomulurn preparations (Section 2.2.1.4). 

2.2.1.3 Preparation of soluble released larval molecules (0-3hRP) 

During the following procedure, parasite material was kept on ice at all times to ensure 

minimal enzymatic degradation. Pooled SN from the first 3 hr schistosomulae culture was 

centrifuged (120 g), 4 T, for 8 min to pellet any remaining heads and tails. This process 

was optimised in order to reduce any contaminating heads or tails, whilst increasing the 

amount of particulate released material remaining in suspension. The released parasite 

material within the SN was then concentrated 50-fold using Ultrafree-MC centriftigal filter 

units with 5 kDa cut-off membranes (Millipore, Watford), and used to produce 0-3hRP. As 
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a control, an equivalent volume of RPMI-O culture medium containing no parasite material 

was concentrated 50-fold using the same method. 

2.2.1.4 Production ofsoluble preparations ftom whole larvae and released molecules 

As above, parasite material was kept on ice at all times to minimise enzymatic degradation 

of the constituents. The suspensions were then sonicated (21 kHz at 6.5 ýim amplitude) for 

3 min. Each preparation was then centrifuged (100,000 g, for I hr) to separate soluble 

material within the supernatant ftorn the insoluble pellet. These were finally sterilised by 

irradiation with UV light for 30 min. The resulting soluble preparations are summarised in 
Table 2.1. 

Source of larvae Equivalent larval developmental Acronym 

stage in vivo 

Infective cercariae Infective cercariae SCP 

Artificial-transformation and in vitro 
culture ofschistosomulae 

Molecules released during first 3 hr Molecules released @ onset of O-ARP 
of in vitro culture infection (x50 conc. ) 

Medium control a N/A RPMIc 

3 hr in vitro larvae Epidermis 3hSSP 

18 hr 11 Epidermal / dermal interface l8hSSP 

3d 66 Dennis 3dSSP 

5d Lymph node / Lung 5dSSP 

8d Lung 8dSSP 

Table 2.1 Summary of the schistosome preparations analysed in this thesis and the 

source material used to produce them. 

a equivalent medium control to 0-3hRP. 
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2.2.2 Characterisation of soluble schistosome preparations 

2.2.2.1 Quantification of material within soluble preparations 

Protein concentration was used as the basis for quantitative comparison of the different 

soluble schistosome preparations. This was deten-nined using the Coomasie Plus-200 assay 

(Perbio Science UK Ltd, Tattenhall, UK). Samples were referenced against a bovine serum 

albumin (BSA; Sigma-Aldrich) standard curve. The preparations were tested neat, or at 
dilutions of 1: 2,1: 5, or 1: 10. The soluble preparations were then stored at -20 OC until 
ftirther use. 

2.2.2.2 SDS-PAGE analysis 

Samples (10 ýtg) of the schistosome preparations were denatured by boiling in LDS sample 

buffer and reducing agent for 5 min, before being separated on pre-cast 4% - 12% gradient 

acrylamide gels at 200 V for 40 min, in MES SDS running buffer containing 0.1 % 

antioxidant (all reagents from Invitrogen). Gels were stained with Brilliant Blue G- 

Colloidal Concentrate TM (BBGC; Sigma-Aldrich), a Coomasie based stain, according to 

manufacturer's instructions. Specifically, gels were fixed in 7% glacial acetic acid in 40% 

(v / v) methanol for I hr, and then stained in BBGC overnight. Gels were then de-stained 

with 10% acetic acid in 25% (v / v) methanol for 30 sec and then up to 24 hr in 25% 

methanol. 

2.2.2.3 Endotoxin content 

Endotoxin content of the preparations and of LPS from Escherichia coli strain 011 l: B4 

(Sigma-Aldrich) was determined using the Pyrogent Pluso Limulus Amoebocye Lysate 

(LAL) test kit (BioWhittaker, Wokingham, UK), according to manufacturer's instructions. 

Specifically, the presence of endotoxin in a sample was detected by the formation of a gel- 

clot after the lysate was incubated with the sample for 1 hr at 37 OC. The sensitivity of the 

lysate was first confirmed using an endotoxin standard of known potency. The endotoxin 

content of the preparations was then determined, in duplicate by performing a limiting 

dilution assay. 
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2.3 RESULTS 

2.3.1 Analysis of protein content of schistosome preparations 

Comparisons of total protein content of the preparations showed that the released larval 

molecules (0-3hRP) were less abundant (295 ± 39 ýtg / 650,000 parasites; n= 3) compared 

to the content of the equivalent 3hSSP preparations (1851 ± 460 [tg / 650,000 parasites) 
from whole larvae. SCP and the later stage schistosomulae preparations also contained 
higher levels of protein than 0-3hRP. 

Analysis by one-dimension (I -D) gel electrophoresis demonstrated that 0-3hRP differs 

considerably in protein content to SCP and larval SSPs (Figure 2.1). 0-3hRP contained 4 

dominant protein bands, at approximately 60,50,26 and 12 kDa, plus a large number of 

minor bands. 0-3hRP also contained a complex of large proteins (75 -> 250 kDa) that did 

not resolve clearly as discrete bands. 

SCP contained a larger array of discrete protein bands compared to 0-3hRP. This protein 

complement included all the components of 0-3hRP, except for the 75 -> 250 kDa 

complex and the 50 kDa band (Figure 2.1). Indeed, the protein complex appeared unique to 

0-3hR-P, and the 50 kDa protein was much more abundant in the released material 

compared to all of the soluble whole larval preparations (Figure 2.1 and Figure 2.2). 

The 60,26 and 12 kDa bands present in 0-3hRP were also present in, SCP, 3hSSP and 

18hSSP, but were less abundant (Figure 2.1). However, analysis of later stage preparations 

showed these bands to disappear, or be greatly reduced in concentration (Figure 2.2). 

Compared to each other, the preparations of whole larvae were more alike in content, with 

most bands expressed at similar levels within all preparations (Figure 2.1 and Figure 2.2). 

SCP contains two bands that were not detectable in other preparations, one at 

approximately 100 kDa and one at just under 50 kDa, whereas there was comparatively 

little difference in 3hSSP and l8hSSP (Figure 2.1). A greater variation in protein content 

was apparent when all the whole larval preparations (ASSP to 8dSSP) were compared 

(Figure 2-2). 
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2.3.2 Low levels of naturally occurring endotoxin are present in soluble preparations 

The gel-clot based LAL assay was used to detect and quantify the presence of endotoxin 

within the preparations. Data is presented as endotoxin in 50 [tg of schistosome 

preparation, because in subsequent chapters up to 50 ýtg / ml was used in cell stimulation 

assays. Of all the preparations tested, 0-3hRP contained the highest levels of endotoxin, 

ranging from 0.5 -2 Endotoxin Units (EU) per 50 ýtg of protein (Table 2.2). However, in 

subsequent screening of all batches of 0-3hRP, the average endotoxin content (n = 16) was 

6.17 ± 1.1 (mean ± SEM) EU per 50 [ig protein (data not shown). In contrast, a volume of 

RPMIc that was equivalent to 50 ýtg 0-3hRP contained less than 0.03 EU. 

Compared to 0-3hRP, soluble whole larval preparations contained very low levels of 

endotoxin (Table 2.2). Of these preparations, SCP had the highest endotoxin content level, 

containing between 0.06 - 0.2 EU / 50 ýLg protein, whereas 3hSSP, l8hSSP and 8dSSP all 

contained less than 0.02 EU / 50 ýtg protein. 

Analysis of the EU content of purified LPS from E. coli, demonstrated that it had an 

endotoxin activity of 4 EU / ng (data not shown). Therefore, an estimate of LPS levels 

within the preparations could be calculated (Table 2.2). 
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0-3hRP SCP 3hSSP 18hSSP 
IIIýIýII 

Figure 2.1 O-ARP differs in protein composition compared to whole 

larval SSPs. Soluble schistosome preparations (10 [ig / lane) were 

separated on a 4% - 12% gradient bis-tris acrylamide gel. Samples were 

denatured by boiling for 5 min in sample buffer, and run for 40 min at 

200 V. The gel was then stained with colloidal Coomasie overnight. 

Black arrows indicate the 4 dominant protein bands within 0-3hRP. The 

brace indicates a protein complex within 0-3hRP. Grey arrows indicate 

two protein bands which are visible only within SCP. 

64 



CL M (L a. CL U) U) U) Cl) Cl) (1) U) Cl) U) U) 
co co 

kDa 

250 

150 

100 "am* 
75 

50 

37 

--oo. "W ow 400 '""W* 25 

15 TO' 
10 

Figure 2.2 Soluble preparations of schistosomulae cultured in vitro to 

different developmental stages vary little in protein composition. 

Soluble schistosome preparations (10 ýtg / lane) were separated on a 4% - 
12% gradient bis-tris acrylamide gel. Samples were denatured by boiling 

for 5 min in sample buffer, and run for 40 min at 200 V. The gel was 

then stained with colloidal Coomasie overnight. Arrows indicate the 

positions of the 4 dominant Protein bands within 0-3hRP. The brace 

indicates the position of the protein complex within 0-3hRP. 
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Preparation Endotoxin (EU) 
per 50 pg 

preparation 

Equivalent LPS' 
(ng) per preparation 

(5 0 Pg) 
SCP i 0.06 0.015 

SCP ii 0.20 0.050 

0-3hRP i 0.50 0.125 

0-3hRP n 0.70 0.175 

0-3hRP iii 2.00 0.5 

R-PMIc i < 0.03 b 
< 0.007 b 

3hSSP i 0.02 0.005 

18hSSP i 0.01 0.003 

8dSSP i 0.003 0.001 

Table Z2 Endotoxin content of schistosome preparations, as 

determined by the LAL assay. 

a Endotoxin content of LPS from E. coli strain 0111: 134. 

b RPMlc has no protein content, so value displayed represents amount of 

endotoxin in a volume equivalent to a 50 gg / ml aliquot of 0-3hRP. 
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2.4 DISCUSSION 

In this chapter, I demonstrate that soluble parasite preparations can be produced from 

schistosomulae cultured in vitro to different developmental stages. In addition, I -D gel 

electrophoresis reveals that the released molecule preparation, 0-3hRP, differs 

considerably in protein composition compared to the soluble preparations of whole 

parasites. In contrast, preparations of whole parasites show considerable similarity between 

different larval developmental stages. It is important to note that the goal of this chapter 

was not to provide a detailed analysis of specific proteins or components, but to simply 

identify whether there were major differences in the preparations, which will be used in 

subsequent experimental chapters for investigation of their immunological properties. 
Moreover, Rachel Curwen has undertaken an in-depth two-dimension (2-D) proteomic 

analysis of these skin-stage larval preparations (with the aim of identifying vaccine 

candidates) as part of her PhD studies under the supervision of Prof. R. A. Wilson. 

In this study, I used a method of mechanical-transformation of cercariae originally 
documented by Ramalho-Pinto et al. (1974). In vitro culture of larvae transformed using 

this technique results in schistosomulae that are viable, as reintroduction of both in vitro 

and ex vivo parasites results in similar levels of maturation (Harrop and Wilson, 1993b). In 

addition, several other methods of artificial-transformation have been documented. These 

can be grouped into 'penetration through skin membranes', using excised mouse or human 

skin, or 'chemical' transformation of cercariae, such as incubation with skin-derived 

products, like linoleate or linoleic acid. Although 'penetration of skin membranes' is the 

most natural method, it produces very low numbers of schistosomulae. Also, much of the 

material released during transformation is lost in the membrane, rendering this a poor 

method against the original criteria (Section 2.1). In a comparison of mechanical (vortex) 

versus chemical (linoleate) transfort-nation, both methods resulted in larvae with surface 

characteristics of schistosomulae (Salafsky et al., 1988). However, significant differences 

in the biochemical characteristics of these schistosomulae were observed, with chemical 

transformation resulting in dramatic increases in the detectable levels of eicosanoids, such 

as PGE2, in the larval culture SN. In an immunological context, eicosanoids can exert both 

stimulatory and inhibitory effects on a variety of innate accessory cells (Section 1.9.2). 

Moreover, fatty acids, such as linoelic acid, are potentially toxic and are known to have 
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effects on immune cell function, including inhibition of Mý cytokine production (Tappia et 

al., 1995). Therefore, the method of mechanical-transformation was chosen since it allows 

for the collection of material released by cultured schistosomulae that will lack potentially 

toxic / inhibitory fatty acids and contain only low levels of eicosanoids, allowing screening 

for stimulatory characteristics without interference from the presence of inhibitory 

prostaglandins. 

The parasite preparations used in my studies will be composed of protein, lipid, and 

carbohydrate moieties. All of these molecules are represented within the repertoire 

pathogen PAMPs that have been identified to date (Section 1.8.1 & 1.8.3). However, 

protein is likely to be the major constituent of my preparations, since others report that 

similar released preparations consist of protein and carbohydrate in ratios of 5: 1 - 7: 1 

(Vieira et al., 1986). Therefore, the quantitative and qualitative analysis of the different 

preparations in this study was based upon protein content. Moreover, methods for detection 

and quantification of protein are also far more reliable than for the other molecular species. 

My studies demonstrate that the mean (n = 3) amount of soluble material released by the 

parasite during the first 3 hr of culture (0-3hRP) represents approximately one sixth of the 

protein contained within the 3 hr soluble schistosomula preparation (3hSSP). This 

compares with values of one third (Harrop and Wilson, 1993b) and one twentieth 

(Ramaswamy et al., 1995b), reported in previous studies. The variation in these estimates 

is probably due to differences in either quantification techniques, or in the methods of 

production. Therefore, since 0-3hRP is less abundant than soluble material from whole 

larvae, the availability of 0-3hRP will be the limiting factor for use in subsequent cell- 

based stimulation assays. 

In addition to the material released during the first 3 hr post-transformation, migrating 

schistosomulae are also known to release material up to 14 days post-infection (Mountford 

et al., 1988). However, the amount of material released rapidly decreases with time post- 

infection. The profile of antigen release by schistosomulae in vivo is similar during in vitro 

culture, with three times as much material being released during the first 3 hr post- 

transformation, than released during the subsequent 24 hr of culture (Harrop and Wilson, 

1993b). Although the material released by the larvae from 3 hr to 8 days of culture may 
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contain parasite PAMPs, the low levels at which it is released make it impossible to collect 

enough for subsequent in vitro analysis of the stimulatory properties. 

I -D gel-electrophoresis showed the released molecule preparation, 0-3hRP, to have a more 

simple protein composition than the soluble whole larvae preparations. However, in-depth 

analysis of the 0-3hRP proteome using 2-D gel-electrophoresis has shown that it is 

comprised of over 100 components (pers. com. R. Curwen). As there is little protein 

synthesis by schistosomulae during the first 24 hr post-transforination (Harrop and Wilson, 

1993b), the molecules released by the larvae should be a constituent of the whole cercanae. 
Indeed, the majority of proteins within 0-3hRP were also present in SCP. However, most 

of these were less abundant, effectively diluted by the many additional protein species 

contained within SCP. Conversely, some of the shared components were more 

concentrated in SCP. This suggests that these represent largely non-secreted molecules, or 

somatic constituents. There are also bands within 0-3hRP that are not present in SCP. 

These may either represent the products of enzymatic degradation that could occur during 

the 3 hr period, or could be very dilute within SCP. 

Much work has been done to characterise the material that is released by cercariae as they 

undergo transformation. Up to 60% of the cercarial surface glycocalyx is shed into the 

culture SN during the first 3 hr post- in vitro transformation (Samuelson and Caulfield, 

1985; Samuelson and Caulfield, 1986; Marikovsky et al., 1986). The glycocalyx is highly 

glycosylated (Xu et al., 1994; Cummings and Nyame, 1999). For example, mucins are 

present within the cercarial glycocalyx and are secreted into the skin by the parasite and 

are thought to aid adherence and penetration of the host (Cummings and Nayame, 1999; 

Theodoropoulos et al., 2001). Much of this glycosylated material will be of high molecular 

weight, yet unlikely to resolve as a discrete protein bands under SDS-PAGE 

electrophoresis. Therefore, the complex of large proteins (75 -> 200 kDa) observed within 

0-3hRP, may potentially be comprised of the soluble fraction of these molecules. However, 

due to the membranous nature of the glycocalyx, the majority should be removed in the 

insoluble fraction of the concentrated SN, when centrifuged at 100,000 g for I hr. Indeed, 

analysis of crude non-centrifuged 0-3hRP shows it contains a much greater quantity of this 

high molecular weight protein complex (R. Curwen), suggesting that most glycocalyx 

material is absent in 0-3hRP, and consequently from SCP as well. 
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A large proportion of the material released by the parasite during transformation originates 

from the pre- and post-acetabular glands. This material is packaged into distinct vesicles, 

which are deposited as the parasite penetrates the host (Fishelson et al., 1992). Much 

controversy has surrounded the abundant protease component of this material, which is 

primarily thought to facilitate the degradation and penetration of host skin. Indeed, many 

skin structural molecules, such as elastin and collagen, are known to be substrates 
(Mckerrow et al., 1985a), and protease inhibitors can block cercarial penetration (Lim et 

al., 1999). Moreover, cercarial proteases have also been implicated in immune evasion 
(Pleass et al., 2000) and the shedding of the cercarial glycocalyx (Marikovsky et al., 
1988a). The main proteolytic component released is a serine-protease termed elastase. 
Historically, there have been 4 cercarial elastase genes registered (Salter et al., 2002), and 

numerous serine proteases of 25 kDa (Landsperger et al., 1982), 27 kDa (Darani et al., 
1997), 28 kDa (Marikovsky et al., 1988b), 30 kDa (McKerrow et al., 1985b), 47 kDa 

(Chavez-Olortegui et al., 1992) and 60 kDa (Marikovsky et al., 1988b) identified from 

cercariae. It has been suggested that some of these are products of the same gene, but with 
different post-translational modifications (McKerrow et al., 1991). However, a more 

simple picture of released cercarial proteases is emerging, with a single chyrno-trypsin 

serine protease composed of multiple 25 kDa iso-forms proposed to be solely responsible 

for the observed elastase activity. Elastase has also been identified on the surface 

membrane of transformed schistosomulae (Ghendler et al., 1996), and therefore, may be 

present in the S SPs used in my study. Indeed, in the I -D gel shown, the most dominant 

band observed within 0-3hRP, also present in the preparations of whole larvae up to 

3dSSP, was approximately 26 kDa. Other typsin-like proteases that had previously been 

identified in released cercarial material are thought to be contaminants derived from the 

intermediate snail host (Salter et al., 2000; Salter et al., 2002). With the method described 

in this chapter for the extensive washing of cercariae, snail protease contaminants should 

not be present in the schistosome preparations used in this thesis. Immuno-histochemical 

techniques have also identified cysteine-proteases, including cathespin-L, within the 

vesicles of the post-acetabular gland, suggesting these will be present in the released 

material (Dalton et al., 1997). Therefore, the proteases contained within the pre- and post- 

acetabular glands are likely to constitute a large proportion of 0-3hRP. 
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Other molecules known to be released during transformation include two 23 kDa proteins, 

Translationally Controlled Tumour Protein (TCTP; Rao et al., 2002) and S. mansoni- 

derived apoptosis inducing factor (SMAF; Chen et al., 2002). TCTP is also expressed in all 

other life-cycle stages, as a variety of differently sized but related molecules. Oddly, TCTP 

and SMAF were described by the same group, however appear to be the same molecule, as 

a BLAST search on the N-terminal sequence of SMAF perfectly matches part of TCTP, 

yet the authors make no mention of this (R. Curwen). The same group has also described a 

16.8 kDa protein with anti-inflammatory properties within the released material and 

soluble preparations of schistosomulae (Ramaswamy et al., 1995a; Rao and Ramaswamy, 

2000). 2D-gel separation followed by mass-spectrometry has confinned that Sm 16.8 is 

abundant within 0-3hRP (R. Curwen). Eicosanoids, such as PGE2, and leukotriene B4 

(LTBA are synthesised upon transformation (Fusco et al., 1985) but are only detected at 

low levels in the released material from mechanically transformed parasites (Salafsky et 

al., 1988). Moreover, the protein thought to control eicosanoid synthesis, a 28 kDa 

glutathione-s-transferase (GST 28; Herve et al., 2003) is known to be abundant in 0-3hRP, 

as well as SSPs (R. Curwen). Some of the pre- and post-acetabular gland contents are also 

glycosylated, binding to numerous different lectins (Linder, 1985). Indeed, glycans 

containing the Lewis X (Le') epitope, which is also carried by the immuno-regulatory 

pentasaccharide LNFP III from schistosome eggs (Section 1.6.1 - 1.6.2), are found within 

the released material (Koster and Strand, 1994), and are likely to be present in 0-3hRP. 

Therefore, the contents of 0-3hRP have been well characterised by others, demonstrating 

that it contains a complex mixture of potentially stimulatory molecules. 

In addition to molecules shared with 0-3hRP, the soluble schistosomulae preparations 

(SSPs) also contain many additional protein bands. Indeed, a 60 / 66 kDa doublet, 

potentially present on the surface of cercariae and schistosomulae, was recently described 

to stimulate neutrophil migration (Coelho-Castelo et al., 2002). However, as with the 

cercarial glycocalyx, the majority of the membrane-bound surface molecules are likely to 

have been removed from the preparations by centrifugation at 100,000 g. Therefore, the 

SSPs will largely represent somatic molecules, such as Heat Shock Proteins (HSPs), actin, 

and pararnyosin. 

A major consideration from the start of this project, has been the potential for exogenous 

endotoxin contamination within the schistosome preparations. The infective cercariae used 
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for the in vitro culture of schistosomulae originate from a non-sterile environment. 

Therefore, the method used to create the preparations was developed at the beginning of 

my PhD in order to greatly reduce the potential for contamination. This involved washing 

cercariae three times with sterile water prior to transformation, and the use of low 

endotoxin culture components and equipment. In addition, in all culture steps, the larvae 

were incubated with penicillin and streptomycin to inhibit bacterial growth. However, I 

identified that a limited amount of endotoxin is present in the different preparations (0.003 

- 6.17 EU per 50 ýtg / protein). It must be emphasised that these levels of endotoxin are 

classed as low (e. g. commercially available FCS marketed specifically as 'low endotoxin' 

[Invitrogen] is certified as containing not more than 10 EU / ml). 0-3hRP consistently 

contained higher levels of endotoxin than the whole larval preparations. This is most 

probably due to the process of concentrating culture SN 50-fold, effectively concentrating 

endotoxin as well. Moreover, the protein concentration of 0-3hRP is much lower than the 

other preparations, in effect increasing the relative protein to endotoxin ratio. 

The stimulatory effect of endotoxin has been well documented, and therefore, could 

potentially affect the stimulatory properties of the schistosome preparations. In this respect, 

the bacterial PAMP lipopolysaccharide (LPS) is the major active constituent of endotoxin. 

Several steps were taken in subsequent chapters to minimise the effect that this endotoxin 

contamination would have on the stimulatory properties of the schistosome preparations. 

The cyclic peptide polymyxin B (PMB) binds to the stimulatory lipid A region of LPS. 

Therefore, Detoxi-gelTM (Perbio Science UK Ltd), a PMB gel matrix, was used to remove 

the LPS. Unfortunately, much of the schistosome preparations were lost on these gel 

columns (data not shown), and therefore, this technique was abandoned. As an alternative, 

PMB is also known to inactivate the stimulatory properties of LPS when used directly in 

culture (Duff and Atkins, 1982). Indeed, it has become widely used to determine 

immunological properties of experimental agents, in the absence of endotoxin signalling 

(e. g. Yoshida and Koide, 1997). 

In summary, I have produced several soluble preparations of released and somatic 

molecules from in vitro cultured schistosomulae. These preparations have been produced 

in sufficient quantities for use in in vitro cell-based stimulation assays. The released 

molecule preparation (0-3hRP) is considerably different to the whole larvae preparations, 
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which on the other hand are broadly similar. Further to this, endotoxin contamination is 
detected at low levels in all preparations but is greatest in 0-3hRP. 
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CHAPTER 3 

Mý CYTOKINE PRODUCTION IN RESPONSE TO 

SCHISTOSOME PAMPS 



3.1 INTRODUCTION 

The schistosome preparations produced in Chapter 2 are likely to have stimulatory effects 

on innate accessory cells. Screening for these stimulatory properties requires an 

experimental in vitro cell-based assay using a defined source of cells, which should be 

available in large quantities and have measurable function as a readout of stimulation. 

The innate accessory cells present in the skin which may respond to invading schistosomes 

include epidermal LC, Mý, DC, granulocytes, NK, and keratinocytes (Williams and 

Kupper, 1996). In depth analysis of events following parasite penetration and migration 

through the skin, demonstrate acute local inflammation at the infection site, during which 

large numbers of mononuclear and granulocytic cells immigrate into the dermis and 

epidermis (Section 1.3.2). This cellular influx is likely to be caused by soluble factors, such 

as cytokines and chemokines, released by resident innate accessory cells stimulated by the 

presence of invading larvae. Recruited inflammatory accessory cells may respond in a 

similar way, and there is both in vivo and ex vivo evidence of pro-inflammatory and 

regulatory cytokine production at the site of infection (Section 1.3.3). Many of these innate 

accessory cells are rare or difficult to obtain ex vivo in sufficient quantities to screen the 

soluble schistosome preparations for their stimulatory properties. However, there are 

several techniques for the isolation of large numbers of Mý from murine tissues. Mý are 

also known to release large quantities of many pro-inflanu-natory and regulatory cytokines 

upon in vitro recognition of numerous pathogen PAMPs (Stein and Gordon, 1991; Moors 

et al., 2001; Nau et al., 2002) giving a quantifiable readout of stimulation. 

Mý, or their tissue-specific subsets, can be found in the majority of organs within the body 

and there are a variety of isolation techniques to enable their study in vitro. Mý may be 

resident within close cellular matrices, such as in the skin, but their isolation involves the 

use of traumatic enzymatic digestion techniques to dissociate them from connective 

tissues, and usually only a few cells are recovered. One alternative is to use Mý that exist 

in tissues lacking this close cellular restraint, such as the lung or the peritoneal cavity, from 

which they can be extracted by simple lavage. Using the peritoneal cavity as the Mý source 

has the additional benefit that relatively large quantities of cells are obtainable. For these 

75 



reasons, most in vitro studies on Mý have been performed using cells obtained from the 

peritoneal cavity. 

From a single mouse, approximately 2-3x 106 peritoneal exudate cells (PEC) can be 

obtained, of which 50% - 70% are "resident" Mý (reviewed by Fortier and Falk, 1994). 

However, injection of sterile inflammatory mediators 3 to 7 days prior to lavage causes the 

elicitation of "inflammatory" Mý (Mý) into the cavity, which dramatically increases the 

numbers of cells that can be harvested. A variety of different inflammatory irritants can be 

used, such as proteose peptone, thioglycollate, casein (Fortier and Falk, 1994), or Bio- 

gelTM polyacrylamide beads (Stein and Gordon, 1991). Of these, thioglycollate increases 

the number of peritoneal M+ to the greatest extent, resulting in approximately 6-fold more 

cells (Fortier and Falk, 1994). Therefore, this method was chosen to produce the large 

number of iM+ needed to screen the parasite preparations. 

Peritoneal lavage results in a mixed population of peritoneal exudate cells (PEC), which in 

addition to resident and Mý, includes neutrophils and B lymphocytes. There are several 

methods to purify Mý, based on cell size, density, or adherent function (reviewed by 

Gessani et al., 2000). Of these, the latter technique is the simplest and most widely used, 

relying upon the strongly adherent properties of Mý while less / non-adherent PEC (e. g. 

granulocytes and lymphocytes) are removed by washing. 

Mý can exist in a variety of maturation and activation states, resulting in a heterogeneous 

population within the tissues (Gordon et al., 1986; Rutherford et al., 1993). A two-step 

model of activation has been proposed, whereby Mý are 'primed' by cytokines but need a 

secondary signal, such as PAMPs, to 'trigger' or 'stimulate' a fully activated functional 

phenotype (Pace et al, 1985). Numerous cytokines are known to prime for Mý activation, 

such as EFN(x, EFNP (Pace et al., 1985), IIL-4 (Crawford et al., 1987) and GM-CSF (Reed 

et al., 1987). However, one of most potent and intensely studied is EFNy (Pace et al., 

1985), known to dramatically increase levels of some cytokines produced by Mý in 

response to stimulation with PAMPs, such as LPS (Rutherford et al., 1993) and 

glycoproteins from Typanosoma cruzi (Camargo et al., 1997). Thus, it may be necessary to 

prime the Mý with EFNy to achieve detectable cytokine production in response to the 

schistosome PAMP preparations. 
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In addition to primary cultures, MO cell-lines have been used to study the stimulatory 

properties of pathogen PAMPs (Kirikae et al., 1993; Yoshida and Koide, 1997). The use of 

cell-lines is beneficial because the population is completely homogeneous in maturation 

and activation status, and large numbers can be produced. There are a variety of murine 

MO-derived cell-lines that could offer an insight into the stimulatory properties of the 

parasite preparations. These include the BALB/c-derived J774 and RAW 264.7 lines. 

Furthermore, some clones have been created to lack certain PRRs, such as the CD14- 

deficient J3. DEF. 3 line (Kirikae et al., 1993). 

The aim of this chapter is to determine whether the schistosome preparations created in 

Chapter 2 are capable of stimulating the production of cytokines by primary Mý and 

IFNy-primed Mý (IFN7-Mý), and by Mý cell-lines. The profile of cytokine production in 

response to schistosome preparations will be compared to that of other well-documented 

PAMPs, such as LPS and Zymosan A. Finally, the response of Mý to live schistosomes 

will be examined. 

3.2 MATERIALS AND METHODS 

3.2.1 Mice 

All mice were maintained in open housing at the University of York animal unit. C57BL/6 

mice were bred in house, while C3H/HeN and C3H/HeJ mice were obtained from Harlan 

UK. Mice were age and / or sex matched in individual experiments. 

3.2.2 Production of inflammatory MO (iMO) 

Pentoneal exudate cells (PEC) were extracted from mice by pentoneal lavage 5 days post- 

injection with 0.5 ml sterile 0.09% thioglycollate medium FTG (Sigina-Aldrich). Where 

stated, in later experiments 0.5 ml 3% Brewers thioglycollate medium (Sigrna-Aldrich) 

was used as an alternative inflammatory agent. The medium used during collection and 

culture of Mý consisted of RPMI 1640, containing 200 U/ ml penicillin, 100 ýIg / ml 

streptomycin, 2mM L-glutamine (Invitrogen), and 10% heat-inactivated low-endotoxin 
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FCS (Harlan- S eralab; RPMI- 10). Due to the highly adherent nature of Mý, all medium and 

plastic-ware was kept chilled throughout the cell extraction procedure. Mice were killed by 

cervical dislocation, and chilled RPMI-10 (10 ml) plus air (I ml) was then injected into the 

peritoneal cavity using a 25 gauge needle. The cavity was then palpated before removal of 

the injected medium using a 23 gauge needle, attached to a 10 ml syringe. The PEC- 

containing medium was immediately decanted into a chilled 50 ml polypropylene tube 

(Falcon), and pooled from several mice if required. PEC were centriftiged at 350 g for 5 

min to remove remnants of thioglycollate and resuspended in fresh chilled medium (1 ml 

mouse). An aliquot of the cell suspension was diluted 1: 1 with diluting fluid (0.5 % 

Malachite green solution in 1.5 % acetic acid) and the cells counted using a 
haemocytometer. Cells were adjusted to IX 106 cells / ml, and plated out in either 24-well 

plates (I x 106 cells / well), or 96-well plates (2 x 105 cells / well; Nalge Nunc). 

Mý were purified from the PEC population by adherence to plastic. Specifically, after 

culture for 2 hours at 37 T, 5% C02, in a humidified incubator, the non-adherent cells 

were discarded from the adherent Mý monolayer. Semi-adherent cells were then removed 

and discarded by gently washing the monolayer 3 times with pre-warmed medium. 

3.2.3 Phenotypic characterisation of the Mý population 

PEC and adherent Mý populations were analysed for the expression of myeloid 

differentiation markers using flow cytometry. 

3.2.3.1 Preparation of cells for phenotyping 

To remove adherent Mý from the cell-culture wells, the culture media was discarded and 

the cell monolayer rinsed with phosphate buffered saline (PBS; pH 7.2; 137 mM NaCl, 1.5 

MM K-H2PO4,8 mM Na2HP04; 2.6 mM KCL). Following incubation with Trypsin-EDTA 

(0.25%, 1 mM, respectively; Invitrogen) for 10 min at 37 'C, to loosen attachment, the 

cells were then removed using the bung of aI ml pipette as a rubber policeman. RPMI- 10 

was immediately added to the cell suspension to quench the trypsin and limit the cleavage 

of cell surface markers. Cells were then washed with chilled medium and all subsequent 
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steps carried out on ice to minimise Mý adherence. Alternatively, the whole PEC 

population prior to adherence-selection was analysed. 

3.2.3.2 Staining of cells with specific antibodies 

PEC or Mý were re-suspended in cold phenobuffer (PB; PBS containing 0.01% CaC12. 

0.0 1% MgCl2 and 0.1 % BSA; Sigma-Aldrich) and all subsequent steps carried out on ice 

to minimise non-specific staining. Aliquots of cells (up to 5x 105) were incubated with 2 

ýil Rabbit IgG (Sigrna-Aldrich) for 10 min, to block Fcy receptors and any non-specific 

antibody binding sites. Cells were then incubated for 30 min with optimum concentrations 
(100 ýLl) of purified, biotin-conjugated, or fluorochrome-conjugated antibodies against 

specific surface markers. Fluorochromes used in this and subsequent chapters were; 
Fluorescein isothiocyanate (FITC), R-Phycoerythrin (PE), Quantum Red TM (QR TM) or Cy- 

Chrome TM 
. Antibodies against surface markers were as follows (clone; supplier): Gr- I 

(RB6-8C5; Caltag-MedSystems Ltd, Towcester, UK), F4/80 (CI: A3-1; Caltag), B220 

(RA3 -6B2; BD PharMingen, Oxford, UK), CD IIb (Mac- 1, M 1/70; BD PharMingen), or 
CD45 (30-FI 1; BD PharMingen). Alternatively, corresponding cell aliquots were 
incubated with isotype-matched antibodies of irrelevant specificity, in order to control for 

non-specific binding and to establish background levels of cellular auto- fluorescence. After 

staining, cells were washed in 1.5 ml PB. Cells stained with fluorochrome-conjugated 

antibodies were re-suspended in 100 ml PB and analysed. Cells stained with purified 

antibodies, were incubated for 30 min with optimal concentrations (100 ýtl) of FITC- 

conjugated antibody to rat IgG y-chain (STAR 69; Serotec, Kidlington, UK), whereas cells 

stained with biotinylated antibody were incubated with streptavidin-conjugated QR TM 

(Sigma-Aldrich). Cells were washed, as previously, and resuspended in 100 ýtl PB for 

analysis. 

3.2.3.3 Differentiation of livefrom dead cells 

To determine the percentage of dead cells, 10 ýtl of Propidium Iodide (PI; 200 mg / ml in 

PBS; BD PharMingen) was added to relevant cell aliquots and incubated for 20 sec before 

flow-cytometric analysis. Those cells staining positive for PI were considered dead. 
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3.2.3.4 Flow-cytometry 

Flow-cytometry was performed using an EPICS XL (Coulter) equipped with a 15 mW 

argon ion laser of 488nm wavelength. This machine contained three different filters, 

allowing for analysis of three different 'colour' flourochromes. FITC (green; 530 nin peak 
fluorescence) was measured using the FL- I detector, PE (orange; 575 nm) and PI were 

measured using the FL-2 detector, while QR (violet; 670 nm) and Cy-Chrome (violet; 670 

nm) were measured using the FL-3 detector. In addition, size and granularity of the cells 

was deten-nined using forward and side light scatter (900 to the laser source), respectively. 

3.2-3.5 Analysis of cellphenotype 

One-colour flow-cytometry was performed on the cells. On histograms depicting 

fluorescence intensity, a minimum- fluorescence cursor was set at an arbitrary value, 

typically on the 1% to 5% most fluorescent cells stained with the appropriate isotype 

control antibody. When cells stained with the specific antibody were analysed, the 

percentage of cells within this cursor was taken as the positive cell value, and the value 

adjusted to account for the arbitrary background staining. To determine the physical size 

and granularity of the positive or negative cells, this cursor was used to 'gate', or limit, 

analysis on the desired population. In addition, on the size versus granularity scatterplots, 

cregions' were set around particular cell populations. Using these regions, the population 

could then be excluded from, or focused upon, in subsequent analysis. Details of the 

'gates' and 'regions' used in analysis, are included in figure legends. In all experiments a 

'discriminator' was set on the forward light scatter parameter. Any events below this 

setting were subsequently excluded ftorn all analyses, thus ignoring very small events, 

such as cell debris. Equally, all oversized events (i. e. clumped cells) were removed from 

subsequent analysis using a cell 'region'. 

3.2.4 Mý stimulation assays 

Adherent Mý were used to determine the stimulatory properties of different pathogen 

PAMPs or parasite preparations. In addition, responses by EFN7-Mý were also analysed. 

This was achieved by co-culturing Mý with IFNy (5 U/ ml equivalent to 0.5 ng / ml; 
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purified from the culture supernatant of 211 A CHO cell-line) during stimulation assays. 

All assays were carried out within 96-well plates. 

3.2.4.1 Stimulation ofMý with parasite preparations andpathogen PAMPs 

The adherent monolayer of Mý was cultured for defined periods of time between 30 min - 
48 hr with soluble parasite preparations (10 - 200 [tg / ml; produced as described in 2.2.1), 

LPS (0.1 - 10 ng / ml; from E. coli, strain 011 I: B4; Sigma-Aldrich), or Zymosan A (0.2 -5 

[tg / ml; Sigma-Aldrich). Stimulation assays were carried out in the presence, or absence, 

of polymyxin B (PMB; 0.0 1- 100 ýtg / ml; Sigma-Aldrich). Culture supernatants were then 

removed and frozen at -20 'C, to await the detection of cytokines released by Mý, using 

ELISA. 

3.2.4.2 Stimulation of WO with live parasites, or neat parasite culture supernatant 

In order to determine the stimulatory properties of live parasites, Mý were cultured for 24 

hr with larvae (50 - 200 parasites / well) and PMB (3 [tg / ml). Three different parasite 

groups were analysed, and consisted of cercariae (CercN), mechanically-transforined 

cercariae (CercT; vortexed for 90 sec), or mechanically-transformed larvae that had been 

cultured in vitro for 3 hr followed by removal of the culture supernatant (3hSom). This 

culture supernatant, termed 0-3hSN, was also assayed for its stimulatory properties. Cell- 

culture supernatants were then removed and frozen at -20 OC, to await the detection of 

cytokines using ELISA. 

3.2.5 Culture of murine Mý cell-lines 

3.2.5.1 Maintenance of cell-lines 

The BALB/c derived Mý cell-line J774A. I was a gift from Dr. M. Taylor, University of 

Liverpool, and the J774A. I derived CD 14-deficient J7. DEF. 3 line was a gift from Dr. F. 

Kirikae, International Medical Centre of Japan. Both lines were grown as monolayer 

cultures in RPMI- 10 in the absence of penicillin and streptomycin. Cells were cultured in 

25 CM2 (10 ml media), or 75 cm 2 (50 ml media) tissue-culture flasks (Nalge Nunc). Cells 
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were sub-cultured when grown to confluence, typically every 2-3 days. To harvest, 

adherent cells were detached into the culture media using a cell scraper (Nalge Nunc). 

Cells were then seeded into new flasks at 1: 5-1: 10 split ratio. Both cell-lines tested 

negative for mycoplasma contamination using the Mycoplasma plUSTm PCR primer set 

(Stratagene, La Jolla, CA, USA). 

3.2.5.2 MO cell-line stimulation assays 

J774A. 1 or J7. DEF. 3 cells were harvested, transferred into fresh RPMI-10, and seeded into 

96-well plates at IX 105 cells / well. This quantity of cells was shown to be optimal for EL- 

6 and IL- 12p4O production in response to stimulation with LPS (data not shown). Cells 

were then cultured for 24 hr alone, in the presence of LPS (0.3 - 2000 ng / ml), or with 

different soluble schistosome preparations (50 ýtg / ml), and with or without the addition of 

PMB (10 ýtg / ml). In some experiments, an optimal concentration of EFN7 (I U/ ml) was 

used to prime the cells simultaneous to culture with pathogen stimuli. Cell-culture 

supernatants were then removed and frozen at -20 'C, to await the detection of cytokines 

using ELISA. 

3.2.6 Detection of Mý - released cytokines by ELISA. 

3.2.6.1 ELISA procedure 

Paired antibody capture ELISAs, utilising a biotinylated detection step, were used to detect 

and quantify the levels of cytokines within the Mý culture supernatants. At all stages, 

incubations were carried out in a total volume of 50 ýfl unless otherwise stated. Maxi- 

sorb TM 96-well plates (Nalge Nunc) were coated with an optimal concentration of capture 

antibody (see Section 3.2.6.2) diluted in PBS, and incubated in a humidified chamber 

overnight at 4 T. Plates were subsequently washed 3 times with 150 ýtl PBS, before 

blocking for 6 hr at room temperature (RT) with 150 ýtl of 10% FCS in PBS (block). 

Following removal of blocking agent, cell-culture supernatants were added to duplicate 

wells, either neat, or diluted in block at 1: 2,1: 5, or 1: 10. In addition, duplicate serial 

dilutions of known recombinant cytokine standards were performed. Plates were then 

incubated overnight at 4 OC, following which they were washed 5 times with 200 ýd of PBS 
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containing 0.5% Tween 20 (Sigma-Aldrich) (PBS-T). Wash was discarded and plates 

incubated with optimal dilutions of biotinylated detecting antibody (Section 3.2.6.2) in 

PBS-T, for 1.5 hr at RT. Plates were washed as before, and incubated with streptavidin- 

conjugated horseradish peroxidase (Amersham Scientific), at a dilution of 1: 5000 in PBS- 

T, for I hr at RT. Following a final wash, 50 [d of SureBlue TM tetra-methylbenzindine 

substrate (TMB; Kirkgaard and Perry Ltd., via Insight Biotechnologies Ltd., Wembly, UK) 

was added to each well and allowed to develop before reading at 63 0 nm, at 10 min 
intervals, using a MRX microplate reader (Dynex Technologies, Billingshurst, UK). 

Concentrations of cytokine within samples was determined against the recombinant 

standard curve. 

3.2.6.2 Antibodies and cytokine standards 

All antibodies were obtained from BD PharMingen, unless other wise stated. The presence 

of the following cytokines were analysed in the Mý culture supernatants (coating antibody 

clone; detection clone); EL-10 (30311; polyclonal; both from R&D Systems, Abingdon, 

UK), EL-6 (MP5-2OF3; MP5-32C 11), EL- 10 (JES5 2A5; SXC- 1), EL- I 2p4O (C 15-6; 

C17.8), and TNF-cc (G281-2626; MP6-XT3). Recombinant standards were as follows: IL- 

IP and IL- 10 (R&D Systems), EL-6 (BD PharMingen), IL- 12p4O (Dr S. Wolf, Genetics 

Institute, Cambridge, MA, USA), and TNF(x (Genzyme). 

3.3 RESULTS 

3.3.1 Purification and characterisation of peritoneal Mý. 

Injection of inflammatory mediators into the peritoneal cavity results in the immigration of 

numerous 'inflammatory' accessory cells. Purification of inflammatory macrophages 

(Mý) from these peritoneal exudate cells (PEC) was achieved by adherence of 1Mý to 

plastic, followed by removal of non-adherent cells. In order to confirm this technique, the 

PEC population both before and after adherence were analysed. 

The cellular composition of the PEC population was notably different to the population of 

adherent iMý (Figure 3.1 a). Moreover, within the PEC population, only 5 0% were positive 
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for the pan-leucocyte marker CD45, compared to 93 % of the adherent Mý (Figure 3.1 b). 

Analysis of the size and granularity of CD45+ cells within the PEC, demonstrated that 

there were 6 main cellular subsets (Figure 3.1 c). However, selection by adherence resulted 
in the dramatic decrease or complete removal of three of these subsets, leaving three major 

cell groups. Further analysis demonstrated that one of the adherent subsets was comprised 

of dead cells (Figure 3.1 c region B), leaving two major cell populations. However, in many 

repeats of this experiment, these two populations were shown to merge, with proportional 
loss of the smaller less granular population (Figure 3.2a). Subsequent analysis of the live 

adherent population (approximately 95% of all cells) showed that 98% were CD45+, 79% 

were F4/80+, and 90% were CD II b+ (Figure 3.2 b, c, d). The large granular population was 

shown to consist entirely of F4/80+ and CD II b+cells, whereas the small, less granular 

population was entirely F4/80-, and contained all the CID 11 b- cells (Figure 3.2c & d). 

3.3.2 Defining the optimum conditions for Mý stimulation by schistosome PAMPs. 

Cytokine production by Mý was used to determine the stimulatory properties of the 

different schistosome preparations. Prior to screening all of the preparations, the soluble 

cercarial antigen preparation (SCP) and the classic PAMP LPS were used to optimise the 

culture conditions for in vitro stimulation of Mý cytokine production. These studies were 

based upon the detection of EL-12p4O and EL-6 in the supernatant of the cultured cells, 
following overnight stimulation with SCP or LPS. 

3.3.2.1 MO concentration, schistosome PAMP concentration, and IFN7 concentration 

From initial studies, it was shown that the optimal Mý concentration was Ix 106 cells / ml 

for EL- I 2p4O production but 2x 106 cells / ml for IL-6 production (data not shown). Since 

limited numbers of cells were obtainable from a single mouse, 1X 106 cells / ml were used 

in further experiments. Titration of IFN7 demonstrated that 5U/ ml primed Mý for 

optimum IL- I 2p4O production in response to PAMP stimulation, and the optimal 

concentration of SCP using both Mý and IFN7-primed Mý (IFN7-Mý) was 50 [Ig / ml 

(data not shown). Therefore, these concentrations were used when comparing the 

stimulatory properties of the different schistosome preparations. 
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3.3.2.2 Kinetics of cytokine production in response to schistosome PAMPs 

Kinetics of cytokine production by both iMý and EFN7-Mý were studied in response to 

stimulation with the cercarial preparation, SCP, the released preparation, 0-3hRP, and the 

concentrated-media control for 0-3hRP (RPMlc). IL-12p4O was detectable in the 

supernatant of iMý as early as 3 hr post-stimulation with 0-3hRP, and 6 hr post-stimulation 

with SCP (Figure 3.3a). Moreover, the levels of EL-12p4O detected in iMý supernatants in 

response to stimulation with either parasite preparation appeared to reach a plateau by 6 hr. 

In contrast, EL- 1 2p4O production by IFN7-MO continued to increase with time up to the 

final time-point (Figure 3.3b). Dramatically greater levels of IL-12p4O were produced by 

IFN7-MO, than by iMO, in response to stimulation with SCP or 0-3hRP (Figure 3.3a & b; 

note difference in y-axis scale). 

EL-6 production by iMý showed a similar pattern to that of IIL- I 2p4O, reaching a plateau by 

6 hr post-stimulation (Figure 3.3c). However, an increase in EL-6 production over 

background levels was detectable by I hr post-stimulation. IFN7-priming of Mý had little 

effect on the kinetics of IL-6 production following stimulation with either parasite 

preparation (Figure 3.3d). Moreover, in contrast to EL-12p4O production, priming of iMý 

with IFN7 had a little effect on the levels of IL-6 produced. Indeed, when the responses of 

Mý from individual mice (n = 3) were compared, priming with EFN7 did not significantly 

(p > 0.05) effect the levels of EL-6, but significantly increased the levels of IL-l2p4O (P < 

0.05) produced in response to SCP (data not shown). 

IL- 10 was also detectable in the supernatants of Mý stimulated with 0-3hRP, although not 

in response to SCP (Figure 3.3 e). The production of EL- 10 was detectable by 3 hr post- 

stimulation, from which point the levels increased, reaching a plateau by 6 hr. In contrast 

to its effects upon Mý production of IL- I 2p4O, IFNy-priming abolished IL- 10 in response 

to 0-3hRP (Figure 3.3f). 

It is important to note that compared to the stimulatory properties of 0-3hRP, the 

concentrated medium control (RPMIc) had no stimulatory effect upon IL- 1 2p4O, EL-6, or 

EL- 10 production by Mý or IFN7-MO (Figure 3.3). 
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Analysis of later time points showed that detectable EL- I 2p4O from Mý stayed at a plateau 

up to 48 hr post-stimulation with either preparation (Figure 3.4a). In contrast, the levels of 

IL- I 2p4O detected in IFNy-Mý supernatants continued to rise with time, failing to reach a 

plateau by 48 hr post-stimulation (Figure 3.4b). The levels of EL-6 detected in response to 

either parasite preparation, in both Mý and IFNy-Mý supernatants, remained static 

between 6 to 48 hr post-stimulation (Figure 3.4c & d). Detectable EL- 10 in the supernatants 

of Mý stayed at a plateau until 24 hr, after which the level decreased (Figure 3.6e). The 

dramatic inhibitory effects of IFNy-priming upon IL- 10 production by Mý appeared to be 

transient, since 48 hr after stimulation with 0-3hRP, EL- 10 could be detected in the 

supernatants (Figure 3.4f). In addition, low levels of TNF(x from Mý stimulated with 0- 

3hRP only, could be detected at the earlier time points (6 and 12 hr) (data not shown). In 

contrast, IL- IP was only detectable at 24 hr and 48 hr post-stimulation with 0-3hRP (data 

not shown). IFNy-activation of Mý dramatically increased production of TNF(x in response 

to 0-3hRP, peaking later at 12 hr, but still detectable up to 48 hr, whereas EFN7 had little 

effect on EL- IP production (data not shown). Therefore, all subsequent analyses were 

confined to detection of cytokine production at 18 hr, and restricted to EL-12p4O, IIL-6 and 

IIL_ 10. 

3.3.3 Material released by schistosomes stimulates Mý cytokine production 

independently of naturally-occurring endotoxin 

Analysis of the kinetics of iMO and IFNy-MO cytokine production showed that for all 

cytokines tested, 0-3hRP consistently stimulated much higher levels of production than 

SCP (Figure 3.3 and 3.4). Analysis of these parasite preparations using the LAL assay 

showed that they contained low levels of naturally-occurring endotoxin (Section 2.3.2). In 

addition, there was considerably more endotoxin within 0-3hRP, than in SCP. Therefore, 

this leads to the hypothesis that the stimulatory properties of these preparations may be due 

to levels of endotoxin contained within them. Thus, two approaches to deten-nine the 

stimulatory effects of the parasite preparations independently of endotoxin were explored. 

Firstly, the major active component of endotoxin is lipopolysaccharide (LPS), the 

stimulatory properties of which are well known to be inhibited by the antibiotic Polymyxin 

B (PMB) (Haranaka et al., 1984; Iwagaki et al., 2000). Therefore, PMB was used to 

determine the stimulatory properties of the parasite preparations in the absence of LPS 
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signalling. Secondly, the most potent types / strains of LPS are known to stimulate innate 

cells through TLR4 (reviewed by Netea et al., 2002). Therefore, the stimulatory properties 

of the different parasite preparations were determined in the absence of signalling by 

endogenous LPS using Mý from C3H/HeJ mice that lack the functional TLR4 gene 

(Poltorak et al., 1998). 

3.3.3.1 PMB inhibits the stimulatory properties ofLPS in a dose-dependent manner, whilst 

not affecting cellfunction, or viability. 

Dose-response assays were performed in order to determine the most effective 

concentration of PMB to block the stimulatory properties of quantities of LPS similar to 

that within 0-3hRP. Using the LAL assay, it was determined that LPS from E. coli strain 
0 11 I: B4 had an activity of 4 EU / ng (Section 2.3.2). Thus, 0.1 and I ng / ml of LPS (0.4 

and 4 EU / ml, respectively), were used to test the effectiveness of PMB to block the 

stimulatory properties of endotoxin. 

LPS stimulated low levels and high levels of dose-dependent EL- 12p4O production by Mý 

and IFNy-primed Mý, respectively (Figure 3.5a & b). Addition of PMB inhibited the 

stimulatory properties of LPS, also in a dose-dependent manner. Indeed, 0.1 ýtg / ml and 

greater levels of PMB completely blocked EL- I 2p4O production stimulated by 0.1 ng / ml 

LPS, whereas I- 10 ýtg / ml PMB completely blocked IL- I 2p4O production stimulated by 

I ng / ml LPS. Addition of PMB had no effect on EL- 1 2p4O production by resting cells, 

with no cytokine detected at any of the PMB concentrations. 

A similar trend in IL-6 production by Mý and IFNy-Mý in response to LPS and PMB was 

observed (Figure 3.5c & d). Again, 0.1 ýtg / ml of PMB was enough to block cytokine 

production in response to the lowest concentration of LPS. However, 10 ýtg / ml was 

needed to completely block the higher concentration of LPS. From this data, it was decided 

that in all subsequent experiments PMB would be used at concentrations between I and 10 

ýtg / ml in order to block the stimulatory properties of endotoxin present within the 

schistosome preparations. 
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It has been shown that PMB can stimulate innate accessory cells, such as human 

monocytes (Hogasen and Abrahamsen, 1995), to produce cytokines. However, in my study 

this effect was not evident using Mý or 11`Ny-Mý cultured with 0.0 1- 10 ýig / ml of PMB 

(Figure 3.5a - d). In addition, low levels of PMB (0.2 - 20 [tg / ml) had no effect on cell 

viability (data not shown), demonstrating that the concentrations of PMB to be used in 

further assays (I - 10 ýig / ml) are not cytotoxic to Mý. 

It has also been shown that high levels of PMB can synergise with pro-inflammatory 

stimuli to further stimulate monocyte production of cytokines (Cavaillon and Haeffner- 

Cavaillon, 1986). Therefore, PMB could potentially synergise with schistosome PAMPs 

within the parasite preparations if PMB was used to block the stimulatory properties of the 

endogenous endotoxin. Therefore, it was important to determine if low levels of PMB 

interfere with the stimulatory properties of PAMPs other than LPS. In this respect, 
Zymosan A (a yeast PAMP preparation) stimulated dose-dependent IL- I 2p4O production 

by Wý, which remained unaffected by the presence of PMB (Figure 3.6). 

3.3.3.2 O-ARP retains its stimulatory properties in the presence of PMB. 

The two strategies to determine the stimulatory properties of schistosome preparations in 

the absence of endotoxin signalling were combined. Thus, cytokine production by Nlý 

from 'LP S -responsive' C3H/HeN mice was compared to that of Mý from 'LPS- 

unresponsive' C3H/HeJ mice, in response to stimulation with schistosome preparations in 

the presence of increasing concentrations of PMB. 

The stimulatory properties of 0-3hRP were compared to a concentration of LPS (I ng / ml) 

shown to have twice the quantity of endotoxin activity, as that calculated to be in 0-3hRP. 

Neither LPS, nor 0-3hRP, stimulated iMý from 'LPS-responsive' C3H/HeN mice to 

produce detectable levels of EL-12p4O (Figure 3.7a). Moreover, neither LPS, nor 0-3hRP 

stimulated IL- I 2p4O production by iMý 'LPS -unresponsive' C3H/HeJ (Figure 3.7b). In 

contrast, LPS stimulated high levels of EL-6 production by C3H/HeN iMý (Figure 3.7c). 

However, this was dramatically reduced by the addition of PMB, with I ýIg / ml PMB 

causing aI 0-fold decrease and 10 ýtg / ml causing a 90-fold decrease in the levels of IL-6 

detected. In comparison, 0-3hRP stimulated lower levels of EL-6 than LPS but these 
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properties were only slightly reduced (1.6 fold) by the addition of I ýtg / ml PMB. 

Moreover, a higher concentration of PMB (10 [tg / ml) had no ftirther effect on IL-6- 

inducing capacity of 0-3hRP. 

LPS stimulated I O-fold less IL-6 from C3H/HeJ Mý, compared to C3H/HeN Mý (Figure 

3.7d). This low level of IL-6 could be further reduced up to 5-fold by addition of PMB- In 

contrast, responses to 0-3hRP were only slightly reduced (1.5 fold) in Mý from C3H/HeJ 

compared to C3H/HeN, and subsequent addition of PMB had no effect upon these 

stimulatory properties (Figure 3.7d). It is important to note that in the presence of PMB, 0- 

3hRP appeared to stimulate the same amount of IL-6 from both C3H/HeN and C3H/HeJ 

iMO (Figure 3.7c & d). 

When IL-10 production from C3H/HeN iMý was analysed, the highest concentration of 

PMB completely inhibited the stimulatory properties of LPS, whereas 0-3hRP remained 

unaffected (Figure 3.7e). However, in contrast to IL-6 production, 0-3hRP stimulated 

higher levels of IL-10 than LPS, in the absence of PMB. Moreover, the production of IL- 

10 in response to 0-3hRP remained unaffected by addition of PMB. No EL-10 production 

by C3H/HeJ iM+ was detected in response to LPS, whereas 0-3hRP stimulated a low but 

detectable amount of IL- 10, which was not inhibited by the addition of PMB (Figure 3.7f). 

However, the levels of IL-10 production by C3H/HeJ iM+ in response to 0-3hRP were 

more than 4-fold less than that produced by C3H/HeN iM+ (Figure 3.7e & f). 

In a parallel experiment was performed using IFNy-MO from each mouse strain, elevated 

levels of IL- I 2p4O were detected after stimulation with LPS and 0-3hRP (Figure 3.8a & b). 

However, the stimulatory properties of LPS but not 0-3hRP, were ablated by addition of 

PMB (Figure 3.8a & b). The stimulatory properties of LPS were greater than that of 0- 

3hRP, when using IFNy-MO from C3H/HeN mice (Figure 3.8a). However, the response to 

LPS was dramatically lower (13-fold), using IFNy-MO from C3H/HeJ mice (Figure 3.8b). 

The response to 0-3hRP was also considerably reduced for IFNy-Mo from C3H/HeJ mice 

(5-fold), but the fold decrease was not as great as for LPS. 

The pattern of IL-6 production by IFNy-MO was very similar to that of iMO (Figures 3.7 c 

&d and 3.8c & d). However, the amount of EL-6 produced in response to 0-3hRP in the 
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presence of PMB was lower in C3H/HeJ cell-cultures compared to C3H/HeN cell-cultures, 

although this was less than a 2-fold reduction (Figure 3.8c & d). In addition, priming with 

EFNy had a different effect upon the levels of EL-6 produced in response to both 0-3hRP 

and LPS between the two cell types. In this respect, EFNy-Mý from C3H/HeN mice 

produced up to 4-fold more IL-6 than their iMO counterparts, whereas IFNy-Mý from 

C3H/HeJ mice produced only 2-fold more IL-6 than WO (Figures 3.7 c&d and 3.8c & d). 

In contrast to Mý, no detectable IL- 10 was produced by IFNy-Mý from either C3 H/HeN 

or C3H/HeJ mice in response to any stimuli (Figure 3.8e & f). 

Cytokine responses by Mý and IFNy-M+ from C57BI/6 mice followed a similar pattern to 

that produced by the respective C3H/HeN Nlý (Figure 3.9). 

3.3.4 Molecules released by schistosomes but not soluble preparations of whole 

larvae, are stimulatory for cytokine production by Mý. 

Having detennined the stimulatory properties of 0-3hRP in the absence of signalling by 

contaminating endotoxin, the stimulatory properties of all early skin-stage schistosome 

preparations were compared in a set of parallel experiments. 

None of the soluble schistosome preparations stimulated detectable production of IL-12p4O 

by iMý from either C3H/HeN or C3H/HeJ mice (Figure 3.1 Oa. & b). However, 0-3hRP 

stimulated much higher levels of IL-6 and IL-10 production by iMý from either mouse 

strain than any of the other schistosome preparations (Figure 3.1 Oc - f). Indeed, of all the 

soluble whole parasite preparations (SCP, 3hSSP, and 18hSSP), only the cercarial 

preparation SCP stimulated an increase in EL-6 production by C3H/HeN iMý, which was 

partially inhibited by addition of PMB (Figure 3.1 Oc). Moreover, SCP stimulated only very 

low levels of IL-6 production by C3H/HeJ (Figure 3.1 Od). None of the soluble whole 

parasite preparations stimulated any detectable IL- 10 production (Figure 3.1 Oe & f). 

The response of IFNy-Mý to the different preparations was similar to the response by IMý 

(Figure 3.11 a- f), with 0-3hRP being the only preparation to stimulate IL- I 2p4O and IL-6 
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production by cells from either mouse strain in the presence of PMB (Figure 3.11 a- d). No 

EL- 10 was detectable in any of the supernatants of the EFNy-Mý (Figure 3.11 e- f). 

This pattern of cytokine production was mimicked when Mý and IFNy-Mý from C57BI/6 

mice were used in this assay with 0-3hRP but not soluble whole parasite preparations 

stimulating high levels of IIL- I 2p4O, IL-6, and IIL- 10 in the presence of PMB (Figure 3.12). 

3.3.5 0-3hRP stimulates a different cytokine profile to other pathogen PAMPs 

From this point onwards, a different source of thioglycollate (Brewers Thioglycollate; 

Sigma-Aldrich; 3% final concentration), was used to elicit Wý into the peritoneal cavity. 

This resulted in greater numbers of PEC obtainable from individual mice (18 x 106 ± 2.1 x 

106 ;n= 3) compared to the original thioglycollate (7.1 X 106 + 0.4 x 106 ;n= 3). The 

adherent Mý elicited by 3% Brewers thioglycollate were slightly purer for the Mý markers 

F4/80 (87%) and CDI lb (92%; data not shown) when compared to the Mý elicited by the 

original thioglycollate (Figure 3.2). Functionally, these Mý produced lower levels of IL- 

10 and EL-6 in response to a range of stimuli (data not shown). 

0-3hRP is unique amongst the parasite preparations in its ability to stimulate Mý 

production of IL- 10, EL- 1 2p4O, and high levels of IIL-6. In order to more ftilly characterise 

the response to 0-3hRP, its stimulatory properties were compared to those of other 

pathogen PAMPs, representing bacteria (LPS), and yeast (Zymosan A). The two pathogen 

PAMPs were chosen due to their recognition by innate cells through different receptors, 

with LPS signalling largely through the TLR4 (Poltorak et al., 1998), and Zymosan A 

signalling through a TLR2-dependent pathway (Underhill et al., 1999b). 

Zymosan A appeared to stimulate production of the highest levels of EL- I 2p4O of all the 

PAMPs (Figure 3.13a). LPS also stimulated considerable amounts of EL-12p4O, whereas 0- 

3hRP + PMB stimulated only a little. In contrast, LPS stimulated the highest levels of EL-6 

(Figure 3.13b). 0-3hRP also stimulated high-level EL-6 production, which was much 

greater than the very low levels stimulated by Zymosan A. Similar to EL-6, LPS stimulated 

the highest levels of IL-10 (Figure 3.13c). 0-3hRP also stimulated IL-10, but this was low, 
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and like the production of IL-12p4O, it bordered on the lower limit of detection of the 

ELISA. In contrast, Zymosan A did not stimulate production of detectable IL- 10 

The batches of 0-3hRP tested here contained between 0.5 - 17.7 EU per 50 ýtg of protein, 

equivalent to 0.125 - 4.4 ng of LPS. To control for endotoxin, parallel cultures of Mý 

stimulated with LPS and PMB were performed. In all experiments, 1,3 and 10 ng / ml LPS 

stimulated higher levels of IL- I 2p4O, IIL-6 and IIL- 10 than 0-3hRP + PMB (data not 

shown). However, detectable cytokine production in response to all concentrations of LPS 

was completely inhibited by addition of PMB at 3 ptg / ml (data not shown). 

3.3.6 The J774A. 1 and J7. DEF. 3 Mý cell-lines do not respond to stimulation with 

schistosome PAMPs. 

The J774A. 1 Mý cell-line and the derivative J7. DEF. 3 line that lacks expression of surface 

CD14 were used to further study Mý responses to schistosome PAMPs and analyse the 

role of CD14 in parasite recognition. Since CD14 is a PRR known to be involved in the 

recognition of LPS (Perera et al., 2001), the response of these cell-lines to LPS was 

initially characterised. LPS (24 - 2000 ng / ml) stimulated dose-dependent production of 
IL- 12p4O by J774A. I cells (Figure 3.14a). However, at the lower levels of LPS (< 24 ng 

ml) production of IL-12p4O was not detected. A non-toxic and non-stimulatory quantity of 

PMB (10 ýtg / ml; data not shown) completely inhibited the production IL- I 2p4O by 

J774A. I cells in response to up to 74 ng / ml LPS, and considerably reduced the 

stimulatory properties of concentrations of LPS higher than this. J7. DEF. 3 cells also 

produced IL- 1 2p4O in an LPS dose-dependent manner (Figure 3.14a). However, in 

comparison to J774A. I cells, J7. DEF. 3 cells produced much less EL- 1 2p4O in response to 

74 - 666 ng / ml LPS, but similar quantities in response to 24 and 2000 ng / ml LPS. 

Moreover, in the presence of PMB, only the highest concentration of LPS (2000 ng / ml), 

could stimulate detectable production of EL-12p4O from J7. DEF. 3 cells compared to 222 

ng / ml LPS when using J774A. I cells. 

Similar to the pattern of IL- I 2p4O production, both J774A. I and J7. DEF. 3 cells produced 

IL-6 in a LPS dose-dependent manner (Figure 3.14b), although J7. DEF. 3 cells were less 

sensitive, producing lower levels of IL-6 than J774A. I cells, and only to ý! 74 ng / ml LPS 
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compared to ý! 24 ng / ml for J774A. I cells. Again, PMB inhibited production of EL-6 in 

response to up to 74 ng / ml LPS for J774A. I cells and 666 ng / ml LPS for J7. DEF. 3 cells, 

and reduced levels of IL-6 production in response to higher levels of LPS (Figure 3.14b). 

In comparison to LPS, none of the schistosome preparations, whether in the presence or 

absence of PMB, stimulated J774A. I cells to produce detectable levels of IL- I 2p4O or IL-6 

(Figure 3.14c & d). For this reason, the effect of schistosome preparations on J7. DEF. 3 

cells was not examined. 

iMý primed with IFNy produced greatly increased levels of IIL- I 2p4O when stimulated 

with schistosome PAMPs (Section 3.3.1 - 3.3.4). Therefore, an optimal concentration of 

EFN7 was used to prime J774A. I and J7. DEF. 3 cells during stimulation with LPS, or 

schistosome preparations. IIFNy-primed J774A. I cells were more sensitive to stimulation 

with LPS, producing detectable levels of EL-12p4O and IL-6 in response to as little as 0.9 

ng / ml LPS (Figure 3.15 a& b), when compared to non-primed cells (Figure 3.14a & b). 

Moreover, EFNy-primed J7. DEF. 3 cells were also more sensitive to stimulation with LPS, 

producing detectable EL-12p4O in response to as little as 0.9 ng / ml LPS (Figure 3.15a) 

and detectable EL-6 in response to as little as 2.7 ng / ml LPS (Figure 3.15b). Indeed, EFNy- 

primed J7. DEF. 3 cells produced more EL-12p4O in response to 0.9 - 2000 ng / ml LPS than 

the respective J774A. I cells, whereas in the presence of PMB the IL- I 2p4O production was 

similar for the different cell types across the range of LPS concentrations (Figure 3.15a). In 

contrast to IL- I 2p4O production, both cell types when primed with IFNy produced similar 

levels of IL-6 in response to a range of LPS concentrations, whereas in the presence of 

PMB, EFNy-primed J774A. I cells produced more IL-6 than the respective J7. DEF. 3 cells 

(Figure 3.15b). 

0-3hRP stimulated detectable production of EL- I 2p4O by IFNy-primed J774A. I cells, 

whereas the soluble whole larval preparations SCP, 3hSSP and l8hSSP remained non- 

stimulatory (Figure 3.15c). Similarly, 0-3hRP, but not the soluble whole larval 

preparations, stimulated detectable production of EL-12p4O by IFNy-primed J7. DEF. 3 cells 

(Figure 3.15c). Compared to IFNy-primed J774A. I cells, IFNy-primed J7. DEF. 3 produced 

more IL- I 2p4O in response to stimulation with 0-3hRP, as observed in response to LPS. 

However, in the presence of PMB, 0-3hRP failed to stimulate detectable production of IL- 
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12p4O by J774A. I or J7. DEF. I cells. It is important to note that the 0-3hR-P introduced 

approximately 0.5 ng / ml LPS into the cell culture, and in the absence of PMB 0-3hRP 

stimulated approximately the same amount of ELI 2p4O as 0.9 ng / ml LPS, by either 
J774A. I or J7. DEF. 3 cells (Figure 3.15a & c). 0-3hRP also stimulated PMB-sensitive IL-6 

production by IFNy-primed J774A. I cells, whereas the whole larval preparations remained 

non-stimulatory (Figure 3.15d). In contrast, none of the schistosome preparations 

stimulated detectable EL-6 production by IFNy-primed J7. DEF. 3 cells. Again, this pattern 

of cytokine production was similar to that seen in response to an equivalent concentration 

of LPS (0.9 ng / ml) to that contained within the 0-3hRP (Figure 3.15b & d). 

3.3.7 Live schistosomes stimulate Mý cytokine production 

As soluble preparations of cercariae and in vitro cultured schistosomulae do not stimulate 
high or detectable levels of cytokine production by Mo, this raises the question of whether 
live larvae can stimulate cellular responses, and if so, whether this is dependent upon the 

PAMPs released by the parasite. Infective cercariae (CercN) stimulated a dose-dependent 

increase in IL-6 production by iMO (Figure 3.16). Indeed, as few as 50 cercariae / well 

stimulated an increase in detectable EL-6 over background. However, cercariae that had 

been transfonned immediately prior to co-culture with the iMO (CercT) stimulated between 

1.3- and 2-fold more IL-6 compared to CercN (Figure 3.16). No IL-12p4O or EL-10 was 
detected in any of the wells (data not shown). 

The stimulatory properties of the transformed cercariae were then compared to those of its 

components parts (i. e. the material released by the parasite during the first 3 hr post- 

transformation [0-3hSN] and the 3 hr larval heads and tails, devoid of this released 

material, 3hSom). The 3hSom stimulated increased IIL-6 production over background, at 

100 and 200 but not 50 parasites / well (Figure 3.17). However, the levels of IL-6 produced 

were considerably less than detected in response to freshly transformed cercariae. In order 

to determine if the difference in stimulatory properties of 3hSom and CercT was due to the 

absence of the released molecules, 0-3hSN was assayed for its stimulatory capacity. 0- 

3hSN also stimulated an increase in detectable IL-6 over background levels at quantities 

equivalent to 100 or 200 but not 50 parasites / well (Figure 3.17). Again, these stiMulatory 

properties were less than that of transformed cercariae but similar to 3 hr larvae and tails. 
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Therefore, the amount of EL-6 production stimulated by both 0-3hSN combined with the 

3hSom, approximately equalled that stimulated by freshly transformed cercariae (CercT). 

Notably, the levels of IIL-6 produced in response to 0-3hSN were much lower than 

produced in response to the concentrated soluble preparation 0-3hRP (see Figure 3.13b). 
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Figure 3.1 PEC and adherent PEC populations differ in cellular composition. 

PEC were extracted from mice 5 days post-injection with 0.09% thioglycollate, and 

analysed as the whole population (i). Alternatively, PEC were incubated in tissue 

culture grade plastic for 2 hr, at 37 T. The non-adherent population was 

subsequently discarded and the 'adherent' population resuspended and analysed (11). 

Flow-cytometry was used to analyse the size and granularity of all cells (a). Cells 

were stained with CD45-specific Cy-Chrome'-"-conjugated antibody (red line) or an 

appropriate isotype control (blue line), and the percentage positive for CD45 

determined (b). Alternatively, the size and granularity of CD45- cells was determined 

(c). Analysis was based on 10,000 cells (b) or 10,000 CD45- cells (a & c). The 

population (B) was comprised of dead cells as determined by PI staining. 
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Figure 3.2 The adherent PEC population is highly enriched for Mý. 

PFC were cultured for 2 hr in 24-well culture plates (I x 101), after-which 

non-adherent cells were washed off and discarded. The remaining 

adherent population (A) was removed and the size and granularity ofthe 

cells determined (a). Alternatively, cells were stained with specific 

antibodies (red line) to CD45 (b), F4/80 (c) or CDI Ib (d), or with 

appropriate isotype control antibodies (blue line). The dead cell 

Population (13) was determined by PI staining, and gated-out of surface- 

inarkcr analysis (A-13). Data is representative of a minimum of 3 

experiments. 
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Figure 3.3 Kinetics of cytokine production by M+ stimulated with 

different schistosome PAMPs. iM+ (a, c, e), or IFNy-M+ (b, d, f), were 

cultured with SCP (M; 50 gg / ml), 0-3hRP (*; 50 gg / ml), RPMIc (x), or 

alone (*), for varying lengths of time (0 - 12 hr). Supernatants from 

triplicate wells of a 96-well plate were pooled and analysed by ELISA for 

production of IL- I 2p4O (a & b), IL-6 (c & d), or IL- 10 (e & f). Arrows 

indicate the lower detection limit of the ELISA. 
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Figure 3.4 Kinetics of cytokine production by Mý stimulated with 

different schistosome PAMPs. Mý (a, c, e), or IFN7-Mý (b, d, f), were 

cultured with SCP (M; 50 ýig / ml), 0-3hRP (0; 50 ýtg / ml), RPMlc (x), or 

alone (*), for varying lengths of time (6 - 48 hr). Supernatants from 

triplicate wells of a 96-well plate were pooled and analysed by ELISA for 

production of IL-12p4O (a & b), IL-6 (c & d), or IL-10 (e & f). Arrows 

indicate the lower detection limit of the ELISA. 
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Figure 3.5 PMB blocks the stimulatory properties of LPS. Mý (a & c), 

or IFNy-Mý (b & d), were cultured overnight with 0 (*), 0.1 (0), or 1 

(40), ng / ml LPS and the indicated concentrations of PMB (0 - 10 ýIg / 

ml). Supernatants from triplicate wells of a 96-well plate were pooled and 

analysed by ELISA for production of IL- I 2p4O (a & b), or IL-6 (c & d). 

Arrows denotes the lower detection limit of ELISA. 
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Figure 3.6 Effect of PMB on cytokine production by Mý after culture 

with Zymosan A. Mý were cultured overnight with different 

concentrations of Zymosan A (0 -5 Vtg / ml) with (clear bars), or without 

(solid bars), PMB (3 ýtg / ml). Supernatants from triplicate wells of a 96- 

well plate were pooled and analysed by ELISA for production of IL- 

12p4O. Dashed line denotes the lower detection limit of ELISA. Data is 

representative of 2 experiments. 
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Figure 3.7 Mutation in TLR-4, or co-culture with PMB, have different 

effects on iMý cytokine production when stimulation with schistosome 

PAM Ps is compared to LPS. 1Mý from C31 1/1 IcN 'ITS-responsi ve' (a, 

c, e), or C3H/HeJ 'LPS-unresponsive mice' (b, d, 1), were cultured 

overnight alone, or with LPS (I ng / ml), or 0-3hRI) (50 [ig / nil). in the 

presence of 0 (black bars), I (grey bars), or 10 (white bars), pg // ml I'M B. 

Endotoxin content of 0-3hRP :! ý endotoxin content of I ng // nil ITS, as 

judged by LAL assay. Supernatants from triplicate wells ol'a ()6-\, 'Vcll plaic 

were pooled and analysed by ELISA for production ot'l I, I 2p4O (a & b), 

IL-6 (c & d), and IL-10 (e & f). Data is representative oI'2 experiments. 

Arrows indicate the lower limit of detection of the ELISA. 
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Figure 3.8 Mutation in TLR-4, or co-culture with PMB, have different 

effects on IFNy-Mý cytokine production when stimulation with 

schistosome PAMPs is compared to LPS. ll`Ny-Mý froin (")11/1 IcN 

'ITS-responsive" (a, c, e), or C3H/IIeJ 'ITS-unresponsive micc' (h, (1,1), 

were cultured overnight alone, or with LPS (I ng / nil), or 0-31iRP (50 pg/ 

ml), in the presence of 0 (black bars), I (grey bars), or 10 (whitc bars), ýig 

/ ml PMB. Endotoxin content of 0-3hRP:! ý endotoxin content of I iig / iIII 
LPS, asjudged by LAL assay. Supernatants from triplicate "ells ofii 90- 

well plate were pooled and analysed by ELISA I'Or production oHL- 121140 

(a & b), IL-6 (c & d), or 11,10 (e & f). Data is representative of-1 

experiments. Arrows indicate the lower limit ofdctcctIon oftlic 
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Figure 3.9 PMB has different effects on Mý cytokine production when 

stimulation with schistosome PAMPs is compared to LPS. C57BI/6 

iMý, or IFNy-Mý, were cultured overnight alone, or with LPS (I ng / ml), 

or 0-3hRP (50 pg / ml), in the presence of 0 (black bars), I (grey bars), or 

10 (white bars), pg / ml PMB. Endotoxin content of 0-3 hRP :! ý endotoxin 

content of I ng / ml LPS. Supernatants from triplicate wells of a 96-well 

plate were pooled and analysed by ELISA for production of IL-12p4O (a 

& b), IL-6 (c & d), and IL- 10 (e & f). Arrows indicate the lower limit of 

detection of the ELISA. No bar means data point was not perfon-ned. 

107 

-- keiis unry 0-3hRP -- - Leiis uniy 0-3hRP 

-- uens L)niy 0-3hRP -- Cells Only 0-3hRP 

-- Cells Only 0-3hRP -- uens uniy 0-3hRP 



Figure 3.10 In the presence of PNIB, O-ARP but not other soluble 

schistosome preparations, stimulates cytokine production by Mý 

from both LPS-responsive and LPS-unresponsive mice. Peritoncid M(ý 

from C311/HeN (a, c, e), or C3[1/rleJ (b, d, e), were cultured overnight 

alone, or with the different parasite preparations indicated (50 pg /nil), and 

in the presence (clear bars), or absence (black bars) MAIM ( 10 ýtg / in I). 

Supernatants from triplicate wells of a 96-well plate were pooled ýInd 

analysed by ELISA for production of ll, - I 2p4O (a & b), IL-6 (c & d), and 

IL- 10 (e & f). Dashed line denotes the lower level ot'de1cction ofl ýH SA. 

Data is representative of 2 experiments. 
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Figure 3.11 In the Presence of PMB, 0-3hRl" but not other soluble 

schistosome preparations, stimulates cytokine production by I FNY-Mý 

from both LPS-responsive and LPS-un responsive mice. ll, 'Ny-M(O from 

C311/1-JeN (a, c, e), or C31111-IeJ (b, d, f). were cultured ovenilght alone. m- 

with the different parasite preparations indicated (50 pg /ml), ýind In the 

presence (clear bars), or absence (black bars) ofPM B( 10 ýtg // in 1). 

Supernatants from triplicate wells of a 96-well plate were pooled '111d 

analysed by FLISA for production oHlA -2p40 (a & b). IL-6 (c & d). or 

IL-10 (e & f). Dashed line denotes the lower level ot'delection ()I* 1-11"A. 

Data is representative of 2 experiments. 
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Figure 3.12 In the presence of PMB, 0-3hRP but not other soluble 

schistosome preparations, stimulates cytokine production by both Mý 

and IFN7-Mý from C57131/6 mice. Mý (a, c, e), or IFNy-Mý (b, d, f), 

were cultured overnight alone, or with the different parasite preparations 

indicated (50 ýtg / ml), in the presence (clear bars), or absence (black bars) 

of PMB (10 [tg / ml). Supernatants from triplicate wells of a 96-well plate 

were pooled and analysed by ELISA for production of IL- 12p4O (a & b), 

IL-6 (c & d), or IL-10 (e & f). Arrows denote the lower level of detection 

of ELISA. 
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Figure 3.13 0-3hRP stimulates a different profile of iMO cytokine 

production compared to other pathogen PAMPs. Mo from C57131/6 

mice were cultured overnight alone, or with 0-3hRP (50 [tg /ml) plus PMB 

(3 ýtg / ml) (n = 11), LPS (I ng / ml) (n = 3), or Zymosan A (1.6 ýtg / ml) 

(n = 2). Supernatants from triplicate wells of a 96-well plate were pooled 

and analysed by ELISA for production of IL- 12p4O (a), IL-6 (b), or IL- 10 

(c). Data is presented as mean ± SEM of three experiments, except for 

Zymosan A where n=2. Within each individual experiment up to 6 

batches of 0-3hRP were tested, and contribute to the mean. Dashed line 

denotes the lower limit of detection of ELISA. 
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Figure 3.14 LPS but not schistosome PAMPs, stimulates cytokine 

production by the J774 M+ cell-line, a property which is semi- 
dependent on expression of CD14. J774 cells ( 0, a&b; white bars, c& 

d), or the equivalent CD I 4-deficient J7. DEF. 3 cells (0, a&b; grey bars, c 

& d), were cultured overnight with LPS (0.1 - 2000 ng / ml), or different 

schistosome preparations (50 j_tg / ml), in the presence (dashed lines, a& 

b; hatched bars, c& d), or absence (solid lines, a&b; solid bars, c& d), 

of PMB (10 pg / ml). Supernatants from triplicate wells of a 96-well plate 

were pooled and analysed by ELISA for production of IL- I 2p4O (a & c), 

or IL-6 (b & d). Arrows denote the lower limit of detection of ELISA. 

Data is representative of up to 3 experiments. n. d. = not done. 
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Figure 3.15 LPS but not schistosome PAMPs, stimulates cytokine 

production by IFNy-primed J774 Mý cell-line, a property which is not 

dependent on expression of CD14. J774 cells ( 0, a&b; white bars, c& 

d), or the equivalent CD14-deficient J7. DEF. 3 cells (0, a&b; grey bars, c 

& d), were cultured overnight with IFNy (I U/ ml), and LPS (0.1 - 2000 

ng / ml) or different schistosome preparations (50 Vtg / ml), in the presence 

(dashed lines, a&b; hatched bars c& d), or absence (solid lines, a&b; 

solid bars, c& d), of PMB (10 ýtg / ml). Supernatants from triplicate wells 

of a 96-well plate were pooled and analysed by ELISA for production of 

IL- I 2p4O (a & c), or IL-6 (b & d). Arrows denote the lower limit of 

detection of ELISA. Data is representative of up to 3 experiments. 
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Figure 3.16 Mechanically-transformed cereariae are more stimulatory 

than untransformed cercariae. iNlý from C57131/6 were cultured 

overnight alone, or with different concentrations (50 - 200 parasites / well) 

of cercariae (CercN; *), or mechanical ly-transformed cercariae (CercT; 

E). All iNlý were cultured in the presence of PMB (3 ýtg / ml) throughout. 

Supernatants from triplicate wells of a 96-well plate were pooled and 

analysed by ELISA for production of IL-6. Dashed line denotes the lower 

limit of detection of ELISA. Data is representative of 2 experiments. 
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Fig re 3.17 The stimulatory properties of artificially-transformed 

cereariae are shared between the products released by larvae and the 

larval bodies. Mý from C57BL/6 mice were cultured overnight alone, or 

with different concentrations (50 - 200 parasites / well) of mechanically- 

transformed cercariae (CercT; 0), mechanically-transfon-ned cercariae 

that had been previously cultured in vitro for 3 hr (3hSom; 0), or the SN 

from the 3hr in vitro cultured cercariae (0-3hSN; *). All iMO were 

cultured in the presence of PMB (3 ýtg / ml) throughout. Mý supernatants 

from triplicate wells of a 96-well plate were pooled and analysed by 

ELISA for production of IL-6. Dashed line denotes lower level of 

detection of ELISA. Data is representative of 2 experiments. 
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3.4 DISCUSSION 

In this chapter, I have demonstrated that the soluble material released by transforming 

schistosome cercariae (0-3hRP) is a potent stimulator of IL-6 and IL- 10 production by iMý 

from a variety of mouse strains. Moreover, when administered in parallel with IFNy, 

0-3hRP stimulates high levels of the Th I -associated pro-inflammatory cytokine EL- I 2p4O. 

3.4.1 The Mý-based assay 

At the start of this investigation, considerable time was spent to validate and optimise the 

iMý-based assay used to screen the stimulatory capacity of schistosome PAMP 

preparations. From heterogeneous inflammatory PECs, a highly enriched iMý population 

was generated using adherence-based selection. The vast majority were large, highly 

granular, and expressed the MO markers F4/80 and CD I lb. Since the expression of these 

markers varies greatly with MO activation and maturation states (McKnight and Gordon 

1998), these results suggest that this technique generates a heterogeneous adherent MO 

population. Furthermore, numerous parameters (including concentration of cells, EFN7, and 

schistosome PAMPs) were optimised for in vitro stimulation of iMO cytokine production. 

The kinetics of EL-6, IL- 10, and EL- 1 2p4O production by iMO were shown to be 

approximately similar, all reaching peak levels by 6 hr post- stimulation and remaining at a 

plateau until at least 24 hr post-stimulation. Therefore, for ease of experimental design, 

further analysis of cytokine production was restricted to 18 hr post-stimulation. 

Due to the limited numbers of Mý obtainable from individual mice, cells from several 

animals were often pooled. Consequently, it was generally not possible to look at variation 

in cytokine production between individual mice. In addition, due to the limited availability 

of schistosome PAMPs, it was impracticable to analyse variance between stimulation 

regimes, since assays were restricted to triplicate wells for each treatment, and the volume 

of supernatant required for multiple cytokine ELISA's meant these wells were pooled. 

However, experiments were repeated several times, giving greater confidence in the data. 
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3.4.2 Schistosome PAMPs are concentrated within larval released material 

The highly stimulatory properties of 0-3hRP suggest this preparation is rich in schistosome 

PAMPs. In contrast, the soluble preparations of in vitro-cultured schistosomulae (SSPs) 

were non-stimulatory causing little, if any, EL-6, EL- 10, or IL- I 2p4O production by 1Mý or 

IFNy-Mý. This suggests that these preparations contain few stimulatory components. The 

physiological context in which innate immune recognition of schistosomes evolved may 

reflect the difference in the stimulatory properties of these preparations (0-3hRP versus 
SSPs). The schistosome components most visible to innate accessory cells will be those 

released by the parasite during migration through the skin (such as 0-3hRP), and larval 

surface molecules. In contrast, since more than 90% of parasites exit the skin during 

infection (Wilson and Coulson, 1986), the host accessory cells are unlikely to be exposed 

to their somatic larval molecules (likely to be the abundant components of the SSPs). 

Alternatively, it could be argued that some somatic molecules within the SSPs should be 

stimulatory due to possible homology with host 'Danger Signals' and other pathogen 

PAMPs, for example highly conserved Heat Shock Proteins (HSPs), or DNA (Section 

1.8.1 & 1.8.2). Therefore, the SSPs may also contain inhibitory components that 

antagonise any stimulatory PAMPs, resulting in net stimulatory properties that are 

undetectable. In contrast to SSPs, the preparation of whole cercariae (SCP) was observed 

to have some stimulatory properties. However, compared to 0-3hRP, these properties were 

low, often verging upon the undetectable. It seems likely that SCP will contain some 

stimulatory 0-3hRP components but are greatly diluted by non-stimulatory / inhibitory 

somatic constituents (Section 2.4). 

In addition to schistosome PAMP preparations, live parasites stimulated dose-dependent 

IL-6 production. Cercariae that were mechanical transformed (CercT) were twice as 

stimulatory as their non-transformed counterparts (CercN). The only physical difference 

between these two groups is the active release of head gland material and shedding of the 

glycocalyx by CercT, whereas CercN remained intact in culture not shedding their tails 

(data not shown). Moreover, the stimulatory capacity of CercT was split approximately I 

I between the material released into the SN during the first 3 hours of culture (0-3hSN), 

and 3 hr schistosomulae from which the 0-3hSN was removed (3hSom). This provides 

clear evidence that components within the released material can stimulate Mý cytokine 
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production. Although 0-3hSN released by 100 to 200 cercariae stimulated less EL-6 

production than concentrated 0-3hRP, it demonstrates that physiological levels of these 

released PAMPs remain stimulatory for WO cytokine production. It is noteworthy that the 

stimulatory nature of 3hSorn contrasts with the non-stimulatory nature of the soluble 

preparation 3hSSP. The apparent increase in stimulatory capacity of the live larvae could 
be due to the presence of membrane bound surface material present on the schistosomulae 
(Section 2.4). Alternatively, the material that these larvae continue to release into the 

supernatant following the first 3 hours of culture could account for this. 

3.4.3 Schistosome preparations contain PAMPs of larval origin 

One concern of the work presented in this chapter is that the stimulatory nature of 0-3hRP 

may be due to the presence of naturally occuring endotoxin. However, it must be 

emphasised that the levels of endotoxin in 0-3hRP can be classed as 'low' (Section 2.4). 

Because low-levels of LPS endotoxin is detected within these preparations, contamination 

with other microbial endotoxins, such as bacterial lipoproteins and fungal glycans, cannot 
be discounted. However, since LPS is the most potent of these microbial stimulants, the 

contribution of other microbial PAMPs to the stimulatory properties of 0-3hRP, is likely to 

be much less important. Indeed, yeast-derived Zymosan A (Section 3.3.5) and Gram 

positive bacterial peptidoglycan and lipoteichoic acid (Takeuchi et al., 1999) are only 

stimulatory at microgram levels. Because LPS endotoxin was detected at low levels (pg to 

ng), any other microbial PAMPs present are likely to be at equally low levels, and thus of 

little significance. 

The results of this chapter strongly suggest that the stimulatory properties of 0-3hRP are 

predominantly due to schistosome PAMPs and not endotoxin. Definitive evidence of 

schistosome PAMPs in the released material is demonstrated by the fact that transforming- 

cercariae are almost twice as stimulatory as their non-transfon-ning counter-parts. In these 

experiments, both parasite groups were derived from exactly the same pool of larvae. 

Therefore, any microbial / endotoxin contaminants would be present in equal quantities in 

both cercarial suspensions. Thus, the increase in stimulatory capacity of transforming 

larvae must be due to the active release and shedding of larval PAMPs. Since 0-3hRP 

represents a considerably concentrated preparation of this released larval material, the 
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parasite PAMPs would be expected to account for most of its stimulatory properties. 
Preliminary studies also suggest that the stimulatory components of 0-3hRP are heat labile 

(data not shown). Since LPS endotoxin is thought to be heat stable (Smiley et al., 2001), 

this would demonstrate that the stimulatory properties of 0-3hRP are independent of LPS. 

In addition, 0-3hRP retained the majority of its potent EL-12p4O, EL-6, and EL-10 

stimulating properties in the presence of endotoxin-neutrali sing PMB. In contrast, PMB 

dramatically inhibited the stimulatory properties of LPS. PMB exerts this neutralising 

effect by high-affinity binding and subsequent blocking of the stimulatory Lipid A moiety 

of LPS. The control LPS used in this study was selected for its highly stimulatory 

properties from a range of sources by screening different preparations (data not shown) and 

reviewing the literature (Luchi and Morrison, 2000). Consequently, the potency of this 

control was probably much higher than the endotoxin contained within 0-3hRP. It has been 

reported that the stimulatory properties of LPS from some bacterial strains are less 

effectively blocked by PMB than others (Cavaillon and Haeffner-Cavaillon, 1985). 

However, at concentrations equivalent to the endotoxin contained in O-ARP, PMB still 

retained blocking capabilities against these 'PMB-resistant' LPS strains (Cavaillon and 

Haefffier-Cavaillon, 1985). From these results, I conclude that culture with endotoxin- 

neutralising PMB is a good method for further examination of the effects of 0-3hRP on the 

innate immune system. 

In this chapter I also show that LPS-stimulated cytokine production by Wý and EFNy-Mý 

was dependent on the presence of a functional TLR4 gene, as demonstrated using cells 

from LP S -unresponsive C3H/HeJ mice. In contrast, in the absence of TLR4 signalling, 0- 

3hRP still stimulated production of EL- 10 and EL- I 2p4O by iMý and EFNy-Mý respectively, 

albeit at a lower level than produced by cells from LPS-responsive C3H/HeN Mý. 

Moreover, both iMý and IFN7-Mý production of IL-6 was similar in the two strains of 

mice in response to 0-3hRP, in the presence of PMB. Since the adherent iMý populations 

from both C3H/HeJ and C3H/HeN mice were phenotypically and quantitatively similar 

(data not shown), it is unlikely that the difference in cytokine production was due to 

variations in cell population. However, it is conceivable that cells from C3H/HeN mice 

might be at a higher state of activation (due to endogenous priming by endotoxins within 

the peritoneal cavity), resulting in increased EL- I 2p4O or EL- 10 production. Nevertheless, 
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because IL-6 production is so similar between strains, this is unlikely. Therefore, my data 

strongly suggests that there are both TLR4-dependent and TLR4-independent stimulatory 

components within 0-3hRP. Although it has recently become apparent that LPS from some 
bacterial species signals through TLR2 (Hirschfeld et al., 2001; Werts et al., 2001), it is 

likely that both the TLR4-dependent and independent signalling pathways involved in 0- 

3hRP recognition are due to schistosome PAMPs and not endotoxin, as both were activated 
in the presence of PMB. This is quite probable as the complexity of 0-3hRP suggests it 

may contain numerous ligands for different PRRs. Moreover, TLR4 is a promiscuous 

receptor, sharing its signalling function with many different PAMPs (Section 1.8.3). One 

candidate PRR potentially involved is TLR2, since glycolipids from soluble schistosome 

egg antigen (SEA) that may be common to 0-3hRP, are recognised through this receptor 
(van de Kleij et al., 2002). Thus, the evidence suggests that 0-3hRP contains potent 

schistosome PAMPs that stimulate through a variety of different PRRs. Moreover, PMB is 

useful to examine the stimulatory properties of 0-3hRP in the absence of endotoxin 

signalling. 

3.4.4 Control of cytokine production by schistosome PAMPs 

In this chapter, I show that Mý can produce a variety of cytokines upon exposure to 

schistosome PAMPs. Indeed, Mý are regarded as a principle source of both pro- 

inflammatory (e. g. TNFcc, IL- I P, IL-6, & IL- 12) and regulatory cytokine production (e. g. 

IL- 10 & IL-6) during innate immune responses. As such, the mechanisms that control Mý 

cytokine production are the object of intense study. Furthermore, I show that the profile of 

Mý cytokine production differs both qualitatively and quantitatively in response to diverse 

pathogen stimuli, with LPS and 0-3hRP stimulating IL- 10, IL- I 2p4O, and high levels of 

IL-6, and Zymosan A stimulating little IL-6, no IL- 10, but higher levels of IL- I 2p4O. 

These observations support the hypothesis that Mý individually tailor responses to specific 

types of pathogen (Nau et al., 2002). 

The initial trigger for cytokine production by pathogens is thought to be the direct or 

indirect ligation of specific TLRs, or other PRRs, resulting in translocation of cytokine 

promoter-binding NF-icp transcription factors to the nucleus (Section 1.9.2). It has been 

proposed that the differences in macrophage cytokine production to diverse pathogen 
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products are due to signalling events mediated by the specific TLRs (Hirschfeld et al., 

200 1; Nau et al., 2002). Indeed, studies have shown that TLR4 agonists but not TLR2 

agonists preferentially induce expression of IL-6 (Hirschfeld et al., 2001; Schilling et al., 

2002). My work is partially consistent with these findings as TLR4-mediated LPS 

signalling resulted in high IL-6, whereas Zymosan A, thought to signal in part through a 

TLR2-dependent pathway (Underhill et al., 1999b), resulted in low IL-6 production. 
However, 0-3hRP poses an anomaly to this model, since it stimulated high levels of IL-6 in 

the absence of TLR4. This suggests there is a TLR4-independent pathway of high level IL- 

6 production through which 0-3hRP signals. 

The control of IL-6 production has been linked to the adapter proteins through which TLRs 

mediate signalling for transcription of cytokine genes. Specifically, all TLRs utilise the 

MyD88 pathway. However, TLR4 can signal via a MyD88-independent pathway. This 

alternative TLR4 signalling pathway utilises the MyD88 adaptor-like (MAL) adaptor 

protein (also known as Toll-IL- IR domain containing adapter protein [TIRAP]). Moreover, 

it is this TIRAP-dependent pathway which is thought to be required for maximal IL-6 

expression by MO (Schilling et al., 2002). Although the majority of work on Zymosan A 

suggests it signals through a TLR2 / MyD88 pathway, a MyD88-independent pathway has 

also recently been described (Edwards et al., 2002), which could explain the residual levels 

of IL-6 that were produced in response to this PAMP. However, responses to O-ARP 

appear to provide evidence of a TLR4 / TIRAP-independent alternative pathway for 

maximal IL-6 production by iMO. Moreover, my data appears to show redundancy in the 

IL-6 signalling pathway, since the majority of the IL- I 2p4O / IL- 10 stimulating capacity of 

0-3hRP was dependent on TLR4, yet IL-6 production was not, suggesting TLR4- 

dependent signalling can be replaced by the alternative pathway. In this case, the 

alternative pathway of IL-6 production signals weakly for IL- I 2p4O and IL- 10 production. 

Notably, other TLRs are now thought to utilise a TIRAP pathway (Horng et al., 2002), and 

it may be those through which 0-3hRP is co-recognised. Indeed, with very recent work it is 

becoming evident that other MyD88-independent signalling pathways exist in humans 

(Oshiumi et al., 2003), and thus probably exist in mice, through which PRRs may signal 

for maximal IL-6 production. With the intense amount of work taking place in this area, 

these other IL-6 transcription pathways may soon be described. 

123 



In addition to TLRs, it is also possible that components of 0-3hRP may signal for cytokine 

production through other PRRs. Although, there is limited evidence of direct signalling by 

non-TLR PRRs for cytokine production, the mannose receptor has been implicated in IL-6 

and IL- 12 production in response to a variety of PAMP ligands (Shibata et al., 1997; 

Yamamoto et al., 1997). Indeed, the J774A. I cell-line is reported to lack surface 

expression of the MR (Diment et al., 1987), which could explain the apparent lack of 

responsiveness by this and the related J7. DEF. 3 cell-line to stimulation with 0-3hRP and 

the other schistosome PAMP preparations. This proposition will be explored more fully in 

Chapter 4. Moreover, the J774A. I cell-line could also lack other PRRs whose functions 

may be important in schistosome PAMP recognition. Alternatively, this line may have a 
higher threshold of stimulation that must be reached before detectable cytokine production 

occurs since these cells were also less sensitive to stimulation with LPS than primary M+. 

The activity of the Mý was also critically important for the cytokine profile produced. 

Priming iMý with exogenous IFN7 dramatically increased the levels of IL- 12p4O whilst 

decreasing the level of IL- 10 produced in response to both 0-3hRP, SCP, and LPS. It is 

well documented that priming with IFN7 is required for iMý to produce high levels of IL- 

12p4O in response to stimulation with a variety of PAMPs (Chensue et al., 1995; Murphy 

et al., 1995; Skeen et al., 1996), and live pathogens (Flesch et al., 1995; Camargo et al., 

1997). IFN7 acts by enhancing the binding of PAMP-induced, NF-KP heterodimer, p50 / c- 

REL transcription factor complex to the IL- I 2p4O promoter (Murphy et al., 1995). This 

explains why IFN7 alone does not stimulate IL- I 2p4O production. The decrease in IL- 10 

production by IFN7-Mý compared to iMý, has previously been documented (Fiorentino et 

al., 1991b), but less is known about the intracellular mechanism involved. In contrast to 

IL- I 2p4O and IL- 10, IFN7 had inconsistent effects on the production of IL-6 stimulated by 

0-3hRP and SCP. Reviewing the literature, the capacity of IFN7 to effect IL-6 production 

remains controversial. Many groups have demonstrated that IFN7 enhances IL-6 

production in response to a variety of PAMP stimuli but the potency of this effect is 

limited and not as great as for IL- I 2p4O (Fiorentio et al., 1991 b; Goodridge et al., 200 1; 

Schilling et al., 2002). In contrast, other groups demonstrated that IFN7-priming had no 

effect on iMý production of IL-6 in response to LPS (Shnyra et al., 1998; Takeuchi et al., 

1999). Perhaps differences in the activity of the iMý used in my experiments, due to 

variables such as mouse age, or priming within the peritoneal cavity by endogenous 
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endotoxin, could account for this effect. This could also explain the considerable variation 

in overall levels of IL-12p4O produced by Mý between experiments (Figure 3.3 and 3.4). 

3.4.5 Stimulatory components within O-ARP 

0-3hRP is a complex mixture of components (Section 2.4) retaining stimulatory properties 

although it is thought to contain potentially anti-inflammatory factors (i. e. prostaglandins 

and Sm 16.8; Section 2-4). Many of the documented components of 0-3hRP have possible 
immunological properties, such as glycans containing the Lex epitope, and the abundant 

protease component. For example, some proteases including those released by cercariae 

can stimulate basophils to produce IL-4 and histamine (Machado et al., 1996), although the 

effect of schistosome proteases on Mý cytokine production is not known. Furthermore, the 

protease component complies with the PAMP-criterion of being essential for the survival / 

pathogenicity of an organism (Medzhitov and Janeway, 1997), since protease inhibitors are 

able to block parasite penetration (Lim et al., 1999). Alternatively, the schistosome may 
have evolved virulence factors, which sequester host pathways that result in cytokine 

production and inflammation (be that via PRRs or other surface receptors). This could be 

beneficial to the parasite as the inflammation and oedema produced by injection of 

cercarial homogenate actually enhances parasite infectivity (Fallon et al., 1996). In this 

respect, 0-3hRP probably contains several homologues of host proteins that may have 

stimulatory functions. For example, the homologue of TCTP can stimulate histamine 

production by mast cells (Rao et al., 2002). Thus, O-ARP most likely represents a mixture 

of potentially stimulatory PAMPs, potentially stimulatory host homologues, and as 

discussed above, potentially inhibitory factors. These may act on iMý directly, via 

recognition through PRRs, or by utilising other host signalling pathways, resulting in a 

profile of cytokines similar to LPS. 

In summary, the material released by S. mansoni cercariae upon transformation is highly 

enriched for putative parasite PAMPs. A soluble preparation of these PAMPs (0-3hRP) 

stimulates pro-inflammatory and regulatory cytokine production by MO. This cytokine 

profile is similar to that stimulated by the TLR4 agonist LPS but not the TLR2 agonist 

Zymosan A. Furthennore, the stimulatory properties of 0-3hRP are semi-dependent on 

signalling through TLR4, although 0-3hRP stimulates high levels of IL-6 via a TLR4- 
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independent pathway. This data provides a basis for further analysis of the effect of these 

putative parasite PAMPs on cells of the innate immune system, and on the priming of 

acquired immune responses. 
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CHAPTER 4 

SCREENING FOR MACROPHAGE MANNOSE RECEPTOR 

LIGANDS WITHIN THE SCHISTOSOME PAMP RFPERTOIRIE 



4.1 INTRODUCTION 

In Chapter 3,1 demonstrated that skin-stage schistosomes express PAMPs that stimulate 

cytokine production by murine Mo. These PAMPs were concentrated within the material 

released by cercariae during transformation, and their recognition involved both a TLR4- 

dependent and a TLR4-independent pathway. 

Many host PRR's are involved in the recognition of PAMPs by innate accessory cells, 
including members of the TLR family (leucine-rich proteins), intergrins, and C-type lectins 

(Medzhitov and Janeway, 1997). One such C-type lectin is the Mý mannose receptor 
(MR), which has been implicated in the recognition of viruses, bacteria, fungi and protozoa 
(reviewed by Linehan and Gordon, 2000). In addition to its well-defined role in microbe 

phagocytosis and endocytosis (e. g. Sallusto et al., 1995; Tan et al., 1997), the MR is also 

thought to be involved in the induction of cytokine production (including EL-6 and IL- 12), 

upon recognition of PAMP ligands (Garner et al., 1994; Yamamoto et al., 1997; Shibata et 

al., 1997). 

The MR is a complex receptor with 8 carbohydrate recognition domains (CRD), and an 

additional lectin activity mediated by its N-terminal cysteine-rich domain (MR-Cys). 

CRI)s are lectins with affinity for mannose, fucose and N-acetyl-glucosamine. Co- 

operative binding by multiple CRI)s generates the high affinity of the MR for multivalent 

oligosaccharides, such as certain glycans found upon the surface of microbial pathogens 

(Taylor and Drickamer, 1993). In this respect, the function of the MR in innate recognition 

of microbial PAMPs has been attributed to these domains (Taylor and Drickamer, 1993), 

although these regions also bind endogenous ligands, such as lysosomal enzymes and 

secretory glycoproteins (Linehan et al., 2001). Since schistosomes are known to synthesise 

many glycans, some with homology to host structures (Cummings and Nyame, 1999), it is 

a reasonable hypothesis that there may be MR ligands within this schistosome glycan 

repertoire. Indeed, molecules secreted by schistosome eggs have recently been shown to 

contain MR ligands (Linehan et al., manuscript submitted). Moreover, the material 

released by schistosomes during transformation is thought to be highly glycosylated (Veira 

et al., 1986), and it is possible that MR ligands may be concentrated within this highly 

stimulatory schistosome compartment. An additional indication that the MR may be 
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important in schistosome recognition came from observations that the J774A. I Mý cell- 

line, thought to be deficient in MR expression (Diment et al., 1987), was refractory to 

stimulation with schistosome PAMPs (Section 3.3.6). 

A naturally-occurring soluble form of the mannose receptor (sMR) has been used to 

identify MR ligands (Martinez-Pomares et al., 1998). However, sMR is only detectable at 

low levels in murine serum and Mý culture supernatant, making it difficult to obtain 

(Martinez-Pomares et al., 1998). A recombinant fusion protein containing MR CRDs 4 to 7 

fused to the Fc portion of human IgG, (CRD4-7Fc) has been produced and successfully 

used to probe for MR ligands within immobilised preparations of host tissue and host 

tissue-sections (Linehan et al., 2001), and schistosome egg secretions (Linehan et al., 

manuscript submitted). This MR probe has been shown to possess the same specificity as 

soluble MR (sMR) when tested with certain glycoconjugate ligands (Linehan et al., 2001). 

Moreover, a study of the recognition properties of segments of CRDs suggests that CRD4- 

7 are sufficient to mediate ftill affinity for high-mannose-type glycans (Taylor and 
Drickamer, 1993). 

The purpose of this short chapter is to study the expression of MR CRD ligands within the 

different schistosome preparations, using the CRD4-7Fc probe, in order to gain insight into 

the involvement of this PRR in schistosome PAMP recognition. 

4.2 MATEFJALS AND METHODS 

4.2.1 Lectin blotting 

The soluble MR probe (CRD4-7Fc) was a gift from Prof Siamon Gordon (University of 

Oxford). 

Soluble schistosome preparations (Section 2.2.1) were applied directly to pre-wetted (PBS; 

pH 7.2) Hybond TM PVDF membranes (Invitrogen) placed in a Bio-DotTm dot blot 

apparatus (Biorad Laboratories Ltd., Hemel Hempstead; UK) under suction. Alternatively, 

preparations were separated by I -D SDS-PAGE electrophoresis under denaturing 

conditions (previously described; Section 2.2.2.2), and then electrophoretically transferred 
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to PVDF membranes (hivitrogen) for 90 min at 30 V in blot transfer buffer (10% methanol 

and 1% NuPAGE Tm antioxidant in NuPAGEO transfer buffer; Invitrogen). Pre-stained 

molecular weight markers (Biorad Laboratories Ltd. ) were used for size comparison. To 

ensure separated material had transferred, the gels were stained with BBGC (Sigma- 

Aldrich), as described previously (Section 2.2.2.2). 

In some experiments, membranes were treated with sodium periodate prior to blotting. 

Specifically, membranes were equilibrated in sodium acetate solution (0.1 M; pH 4.5) 

solution for 30 min, then cut into strips and incubated with sodium meta-periodate (20 

mM; Sigma-Aldrich) in sodium acetate solution, or with sodium acetate solution alone, for 

I hr at room temperature (RT) with agitation. Strips were then washed twice with sodium 

acetate, and incubated with sodium borohydride (50 mM; Sigma-Aldrich) in PBS for 30 

min and then washed extensively in Tris buffered saline (TBS; pH 7.6; 137 mM NaCl, 20 

mM Tris) containing 0.1% (v / v) Tween 20 and 10 mM CaC12 (TBS-T). CaC12 was 
included in the buffer since MR binding is calcium dependent. 

In all subsequent washing and incubation steps, TBS-T was used except where specified. 

Membranes were blocked overnight at 4 'C in TBS-T plus 5% (w / v) non-fat milk and 

then rinsed twice before incubation with CRD4-7Fc (I ýtg / ml) for I hr at room 

temperature (RT) on an orbital shaker. In some experiments, membranes were incubated 

with CRD4-7Fc in the presence of 50 mM D-mannose (Sigma-Aldrich) in order to out- 

compete specific binding. The membrane was then extensively washed (rinsed twice, then 

washed once for 15 min followed by 3 washes for 5 min), and incubated with sheep HRP- 

conjugated anti-human IgG (1: 2000 dilution; Amersham Pharmacia Biotech UK Ltd., 

Little Chalfont, LTK) for I hr with orbital agitation. Finally, membranes were extensively 

washed as above before bound HRP was detected using chemiluminescence. Specifically, 

membranes were incubated with ECL plUSTm reagent for 5 min (Amersham Pharmacia), 

drained, and exposed to autoradiography film (Hyperfilm TM 
-ECL; Amersham Pharmacia). 

Exposure times were typically in the range 30 - 120 secs. Film was developed using an X- 

graph. 
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4.2.2 Phenotypic analysis of MR expression by iMý 

To determine if iM0 express the MR, inflammatory PEC were phenotyped using flow- 

cytometry. PECs from C57BI/6 mice were elicited using 3% Brewers thiogy1collate broth 

and harvested as previously described (Section 3.2.2). Red blood cells were lysed with 

ACK buffer (150 mM NH4Cl, 10 mM KIHCO3 and 0.1 mM Na2EDTA; Sigma Aldrich), 

and the remaining cells washed three times with RPMI- 10 (Section 3.2.2). Cells were 

stained with optimal concentrations of specific antibodies, or irrelevant isotype matched 

antibodies, using the method previously described (Section 3.2.3.2). Antibodies against 

various surface markers were as follows (clone; supplier): FITC-conjugated F4/80 (CI: A3- 

1; Caltag) and biotin-conjugated MR (5D3; gift from Prof Siamon Gordon, University of 

Oxford). Cells stained with biotinylated antibody were then incubated with streptavidin- 

conjugated QR TM (Sigma-Aldrich). Two-colour staining was used to analyse co-expression 

of F4/80 and MR. 

For two-colour flow-cytometry, the required amount of compensation was set using 

samples stained with specific antibody for one marker and the irrelevant isotype control for 

the second marker. Compensation is the use of electronic signal algorithms to prevent one 

colour's signal spilling over into another. 

4.3 RESULTS 

4.3.1 CRD4-7Fc recognises schistosome carbohydrates 

The recombinant fusion protein CRD4-7Fc was used to probe for ligands within the 

soluble schistosomal PAMP preparations, using a lectin blotting technique. CRD4-7Fc 

bound to dot-blots of 0-3hRP, SCP, and l8hSSP (Figure 4.1 a). In contrast, RPMlc did not 

contain ligands for the MR probe. The binding between the schistosome ligands and the 

MR probe was highly specific, being out-competed by the monomeric ligand mannose 

(Figure 4.1 b). 

To test whether CRD4-7Fc binding was dependent upon the glycan constituent of the 

schistosome preparations, membrane immobilised samples were first oxidised with sodium 
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periodate and then reduced with sodium borohydride, in order to structurally alter any 

carbohydrate components. To control for this procedure, an identical membrane underwent 

a similar procedure except that it was not exposed to sodium periodate. Treatment of the 

dot-blots with sodium periodate destroyed the ligands for CRD4-7Fc within 0-3hRP, SCP, 

and l8hSSP (Figure 4.2b), whereas control treatment did not affect the ability of the MR 

probe to bind to the sample (Figure 4.2a). Interestingly, CRD4-7Fc binding was 

consistently more intense for SCP and l8hSSP compared to 0-3hRP, even though equal 

amounts of these preparations were loaded onto the membrane (Figures 4.1 and 4.2). 

In order to determine if CRD4-7Fc was binding to similar ligands within the different 

preparations, samples were first separated by I -D SDS-PAGE and then probed. The 

soluble preparation of 3 hr in vitro-cultured schistosomulae was also included for 

reference. The most distinctive difference in the pattern of lectin binding was between the 

released schistosome molecules and the whole larval preparations. Specifically, the ligands 

within 0-3hRP did not resolve into distinct bands rather being associated with a 75 - 250 

kDa complex of macromolecules (Figure 4.3). In contrast, distinct ligand bands were 

visible within SCP, 3hSSP, and 18hSSP (Figure 4.3). Moreover, there were numerous 

different ligands within each of these preparations. One of the most striking features of 

these bands was their high molecular weight, ranging from approximately 75 to 250 kDa. 

Although several bands of equal size were shared between these whole larval preparations, 

SCP contained a band of approximately 100 kDa, which was detected only weakly in 

3hSSP and not in l8hSSP. Similarly, both schistosomulae preparations contained a distinct 

band of just under 150 kDa, which was not present in SCP. There was little difference 

between the ligand binding patterns of 3hSSP and 18hSSP. 

4.3.2 MR is expressed by a proportion of iMý 

Flow-cytometric analysis confirmed that iMý express the MR. F4/80+ cells comprised 60% 

of inflammatory PEC (Figure 4.4ia). Furthermore, 18% of PEC were MR+ although the 

levels of receptor expression by these cells was relatively low (Figure 4.4ib). Subsequent 

two-colour staining revealed that the MR+ PEC were F4/80+ (Figure 4.4iia & b), and that 

they represented approximately one third of the F4/80+ restricted group (Figure 4.4ia & b). 
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Figure 4.1 CRD4-7Fc binds to ligands within soluble schistosome 

preparations. Soluble schistosome preparations (4 jAg) were dotted onto 
PVDF membranes. In one experiment the membrane was probed with 

CRD4-7Fc (I pg / ml) (a). Alternatively the membrane was probed with 
CRD4-7Fc in the presence, or absence, of D-mannose (50 mM) (b). 

133 



Sodium 

periodate 

0-3hRP 
& is 

SCP 

18hSSP 

+ Sodium 

periodate 

Figure 4.2 CRD4-7Fc binds to glyeans within the soluble schistosome 

preparations. Soluble schistosome preparations (4 ýtg) were dotted onto 
PVDF membrane. The membrane was cut into strips which were treated 

with (b), or without (a), sodium meta-periodate. The membranes were 

then probed with CRD4-7Fc (I pg / ml). 
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Figure 4.3 CRD4-7Fc binds to distinct ligand bands within soluble 

whole larval preparations but not within 0-3hRP. Soluble 

schistosome preparations (10 ýtg / lane) were denatured and separated on 

a 4% - 12% gradient bis-tris acrylamide gel. The separated material was 

then transferred to a PVDF membrane and probed with CRD4-7Fc (I ýtg 

/ ml). The brace indicates a ligand complex within 0-3hRP. The grey 

arrow indicates a ligand band visible only with SCP, and the black 

arrows indicates a ligand band visible only within 3hSSP and l8hSSP. 
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Figure 4.4 The MR is expressed by a proportion of inflammatory macrophages. 

i) Thiog lyco I late-el 1 cited PEC were analysed for their surface expression of F4/80 (a) or 
MR (b). Cells were stained with antibodies specific for the surface marker (red line), or 

with matched isotype controls (blue line). The values represent the percentage of cells 

expressing the marker. For each marker, the population of positive cells was characterised 

upon size and granularity, and compared to the whole cell population. ii) Cells were 
double stained with antibodies specific for F4/80 and the MR (b) or appropriate isotype 

controls (a). Control antibody staining is represented by the quadrant boundaries, and 

values represent the percentage of cells in the garticular quadrant. 
13 

All cells 



4.4 DISCUSSION 

In order to determine if the skin-stage schistosomes express MR ligands, I employed a 

strategy of probing immobilised schistosome material with a recombinant fusion protein 

containing the fourth to the seventh CRDs of the murine MR. The MR CRDs incorporated 

into this probe confer recognition of high-mannose-type glycans and mediate recognition 

of a variety of microbial polysaccharides (Taylor and Drickamer, 1993). Moreover, this 

fusion protein has previously been used to successfully detect endogenous MR ligands 

(Linehan et al., 2001). In these assays, soluble mannose was used to out-compete binding 

to ensure that lectin / ligand interactions were specific. As an additional control, ligands 

were treated with sodium periodate to destroy glycan structures and demonstrate that 

binding was directed to the carbohydrate moieties. These controls were important since the 

CRD4-7Fc probe contained the Fc portion of human IgG which could potentially bind to 

Fc receptors that are known to be expressed by schistosomulae (Loukas et al., 2001). 

In this chapter, I have shown that soluble preparations of skin-stage schistosomes contain 

PAMPs recognised by CRDs of the MR. Therefore, I conclude that MR ligands are 

expressed in the soluble compartments of cercariae, schistosomulae and the material 

released by cercariae upon transformation. As might be expected, these ligands were all of 
high molecular weight, probably due to heavy oligosaccharide chains. The ligand species 
in the whole larval preparations (SCP, 3hSSP, 18hSSP) fon-ned distinct bands when 

separated by SDS-PAGE, that were not present in 0-3hR. P. This suggests that some ligands 

are exclusive to the somatic larval material. These ligand bands are most probably internal, 

or tegument components, since they are unlikely to represent cercarial glycocalyx material, 

which would also be present in 0-3hRP (Section 2.4). The detection of a schistosomulae 

specific band suggests that a new ligand could be synthesised upon transformation. 

However, it could be an enzymatic digest product of a one of the larger ligands contained 

within the whole larval preparations. Perhaps surprisingly, the ligand material contained 

within 0-3hRP did not resolve into discrete bands using SDS-PAGE. Since nearly all the 

proteins within 0-3hRP were below 75 kDa in size (Section 2.3.1), this suggests that the 

major protein components of 0-3hRP do not contain MR CRD ligands. The high molecular 

weight complex of ligands within 0-3hRP is probably the same high molecular weight 
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complex of proteins described in Section 2.3.1, and could well represent schistosome 

mucins (discussed in Section 2.4). 

Binding of carbohydrate ligands through the MR is thought to affect a range of Mo and 

accessory cell immune functions, such as phagocytosis and endocytosis of microbes, and 

the induction of cytokine production (Garner et al., 1994; Sallusto et al., 1995; Yamamoto 

et al., 1997; Shibata et al., 1997). Furthermore, MR activity may be important in adaptive 
immunity, through the uptake of antigens by DC and the delivery of these to MHC 11- 

loading compartments (Sallusto et al., 1995). In this respect MR-mediated up-take of 

antigen greatly enhances the efficiency of antigen presentation (e. g. Tan et al., 1997). 

Therefore, my data suggests that recognition through the MR may play a role in the innate 

and adaptive immune responses to schistosome infection. Indeed, approximately one third 

of F4/80+ PEC, thought to represent iM0, were shown to express the MR suggesting that 

culture of iMo with schistosome preparations (described in Chapter 3) would result in MR- 

mediated recognition of schistosome PAMPs. However, it is difficult to speculate what 

function MR recognition could have during infection and in the Mo responses observed in 

Chapter 3, since a recent review suggests that down-stream effects of MR ligation are not 
hard-wired, with many factors affecting MR-induced effector functions, such as the 

activation-state of the M0, the type of ligand, and co-operation with other lectins (Linehan 

et al., 2000). This is understandable for a receptor whose functions are though to include 

clearance of host secretory and circulatory glycoproteins, as well as microbial phagocytosis 

and immune signalling. This complex effector function could explain why the schistosome 

preparations containing the greatest quantity of MR ligands (SCP, 18hSSP) did not 

stimulate Mo cytokine production, whereas the preparation with the least quantity of 

ligands (0-3hRP) was a potent stimulator of cytokine production. One possible 

interpretation of these results is that schistosome MR ligation does not lead to cytokine 

production. Indeed, some reports suggest that MR ligands must be particulate in order to 

stimulate cytokine production (Shibata et al., 1997). This is controversial, since others 

suggest that soluble ligands are stimulatory (Garner et al., 1994), while a recent report 

suggests that MR ligation can actually have inhibitory functions on DC cytokine 

production (Nigou et al., 2001). Thus, a similar inhibitory effect on Mo cytokine 

production could be envisaged. In this respect, 0-3hRP could be most stimulatory for 

cytokine production because it contains lower levels of 'Inhibitory' MR ligands. In 
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addition, the MR ligands within 0-3hRP and the soluble whole larval preparations were 

quite different in character as deten-nined by SDS-PAGE separation, and therefore may 

actually have different effects upon receptor- ligation. It is yet unclear what controls these 

differences in MR ftinction, and further work is awaited in this area. 

It should be noted that the MR could also recognise schistosome PAMPs via its Cys-MR 

domain, which is not included in the CRD4-7Fc probe. Although only endogenous host 

ligands have been described for this region of the receptor, one of these, the Le x 

oligosaccharide (Martinez-Pomares et al., 1996; Leteux et al., 2000), is thought to be 

contained within 0-3hRP (Section 2.4), and could affect the outcome of MR-induced 

effector functions. In order to confirrn a role for the MR in innate immune responses to 

schistosome PAMPs, mice deficient for this receptor could be used in future studies. 

In this brief chapter, I have shown that soluble preparations of skin-stage schistosomes 

contain ligands of CRDs from the murine MR. However, MR ligands were more abundant 

in whole larval preparations than in the released products of schistosomulae, suggesting 

that MR recognition of somatic schistosome PAMPs may not be involved in signalling for 

cytokine production. In this respect, the repertoire of MR CRD ligands within the 

stimulatory 0-3hRP appear to be quite distinct to that of the whole larval preparations, 

possibly accounting for the difference in the stimulatory properties of these preparations. 
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CHAPTER 5 

THE ROLE OF Fcy RECEPTORS IN THE RECOGNTION OF 

RELEASED SCHISTOSOME PAMPS 



5.1 INTRODUCTION 

Fcy receptors (FcyR) are important phagocytic PRRs on accessory cells. These receptors 

recognise the Fc portion of antibodies of the IgG isotype but also mediate the recognition 

and phagocytosis of other soluble 'Innate' PRRs, such as the pentraxin family members 
Serum amyloid P and C-reactive protein, when in complex with pathogen PAMPs (Mold et 

al., 200 1; Bharadwaj et al., 200 1). Fc7R ligation by IgG-opsonised L. major amastigotes 

was recently shown to have a profound effect upon the regulatory function of Mý, acting in 

synergy with PAMPs to induce high-level IL-10 production (Kane and Mosser, 2001). This 

IL- 10 can inhibit pro-inflammatory cytokine production by additional Mý populations and 

enhance susceptibility of these cells to infection by amastigotes. Together with this, the 

observation that IL- 10 -/_ mice are able to control Leishmania infection has led to the 

proposal that amastigotes use host IgG as a virulence factor to exploit the inhibitory effects 

of signalling through FcyRs (Kane and Mosser, 2001). In this respect, Fc7R ligation is also 

known to directly suppress Mý production of EL-12 (Sutterwala et al., 1997; 1998; Grazia 

Cappiello et al., 2001; Gerber and Mosser, 2001). Indeed, Fc7R signalling via antibody, or 

pentraxins, can lead to the abrogation of IL- I 2p7O production concurrent with the 

induction of high levels of IL- 10 in response to many pro-inflammatory stimuli, including 
TLR-dependent PAMPs, danger signals, and CD40 ligation (Gerber and Mosser, 2001). 

Further studies have shown that these effects are mediated through the common FcR y- 

chain of the Fc7Rs (Sutterwala et al., 1997; 1998; Mold et al., 2002), an essential 

component in the signalling from FcyRI and FcyRIH (Takai et al., 1994). 

It is a reasonable hypothesis that production of parasite-specific antibody following 

infection with schistosomes could also promote the regulation of pro-inflammatory 

responses stimulated by parasite PAMPs released upon subsequent infections, or during the 

ensuing larval migration. In addition, opsonisation of parasite PAMPs by pentraxins could 

have a similar effect, but without requiring a preceding acquired (antibody) response. 

The availability in York of a small number of mice that lack the 7-chain of the FcRs (FcR 7 

-/-) allowed us to perform a short series of experiments to examine the potential role of 

FcyR-mediated regulation of inflammatory responses. A preliminary study by other 

researchers in the group demonstrated that infection of FcR y -/- mice resulted in reduced 

141 



IL- 10 production by skin biopsies on days 4 (prior to schistosome-specific antibody 

production) and 7 post-infection compared with those from wild-type (WT) mice (pers. 

com. K. Hogg and A. Mountford). However, there was more than 50% reduction in the 

production of IL-10 following re-infection of previously vaccinated FcR y -/- mice in which 

parasite-specific antibodies are abundant. 

Therefore, the aim of this study is to further investigate the role that Fc7Rs have in the 

recognition of released larval PAMPs, with respect to the resulting profile of IL- 10 and IL- 

12 production by Mý. The majority of work investigating FcyR signalling in PAMP- 

stimulated IL- 10 and IL- 12 production has been performed using in vitro Mý-stimulation 

assays. Since, I have already defined such an assay to study the effects of schistosome 
PAMPs on cytokine production (Chapter 3), a similar system incorporating inflammatory 

peritoneal Mý will be used in these studies. This chapter will follow three strategies. 

Firstly, the profile of IL- 10 and EL- I 2p4O production by Mý from FcR 7 -/- mice will be 

compared to that from WT mice upon culture with larval released material. This will 

determine whether signalling through the y-chain is essential to the 'Innate' profile of 

cytokine production stimulated by schistosome PAMPs. Secondly, cells from WT mice 

will be stimulated with released larval PAMPs in the presence or absence of anti-parasite 

polyclonal serum (antiserum), in order to determine whether Fc7R ligation by anti-parasite 

antibody / antigen complexes effects the profile IL- 10 and IL- I 2p4O produced by normal 

Mý. Released larval material will be used in these experiments since it should contain 

PAMPs that stimulate iMý directly through PRRs, and it provides the source of parasite 

antigens to forin complexes with the anti-parasite antibody. Finally, responses by FcR 7 

Mý will be compared to those of WT upon culture with larval released material, in the 

presence of antiser-um, to determine whether signalling through they-chain is essential for 

the profile of cytokines stimulated by schistosome PAMPs in the presence of parasite- 

specific antibody. 
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5.2 MATERIALS AND METHODS 

5.2.1 Animals 

All mice were maintained in open housing at the University of York animal unit until used. 

A breeding colony of FcR y -/- mice (Takai et al., 1994) were a gift from Prof. R. Grencis 

(University of Manchester), and together with wild-type (WT) 129 x C57 mice, were bred 

in-house. 

5.2.2 Preparation of crude released larval material 

Infective schistosome cercanae were obtained, concentrated, and transformed, as described 

in Section 2.2.1. These larvae were then cultured in vitro in RPMI 1640, containing 200 U 

/ ml penicillin, 100 [tg / ml streptomycin, and 2mM L-glutamine (UMI-00), at 37 T. The 

volume of medium used to culture the larvae depended on the amount of larval material 

required for the stimulation assays, typically 10 ml. After 3 hr, the culture supernatant was 

removed and centrifuged at 120 g, 4 OC, for 8 min to pellet the heads and tails, which were 

subsequently discarded. The remaining crude preparation, containing both the soluble and 

insoluble fractions of released material, was then sterilised by LTV-irradiation for 30 min 

and termed 0-3hRM. Because of the particulate nature of 0-3hRM it was not possible to 

accurately measure the protein content of the different batches used in these experiments. 

5.2.3 Production of anti-parasite polyclonal serum to larval released material 

Anti-parasite polyclonal serum (IRS) against larval released material was raised in a rabbit 

by subcutaneous immunisation with 0-3hRM in 'Complete Freunds adjuvant' and 

produced 'in house' by Harrop et al. (2000). Control rabbit serum was obtained from naYve 

animals (NRS). The IRS had previously been shown to contain abundant antibodies against 

0-3hRM, as judged by ELISA (Harrop et al., 2000). IRS and NRS were heat-inactivated 

for 30 min at 56 T, and then sterilised by UV-irradiation for a further 30 min. 
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5.2.4 Mý stimulation assay 

Inflammatory peritoneal MO (iMO) from WT or FcR y -/- mice were elicited, harvested, and 

adherence-puri fled in 96-well plates as described in Section 3.2.2, except that RPMI-00 

was used instead of medium containing FCS, and in one experiment (Experiment 2) cells 

were cultured at a concentration of 0.5 x 106 cells / ml rather than 1x 106 cells / ml (due to 

limited cell availability). 1MO were then cultured in a total volume of 200 ýd medium for 

24 hr with LPS (10 ng / ml), with a3: 1 dilution of 0-3hRM, or without any supplements. 
These stimulation assays were carried out in RPMI-00 containing 5% FCS, 5% NRS, or 
5% IRS. Supernatants were then harvested and analysed by ELISA for production of IL- 

10, or IL-12p4O, as described in Section 3.2.6. 

5.3 RESULTS 

5.3.1 IL-10 production stimulated by 0-3hRM is not effected by the absence of FcyR 

signalling through the common FcR -y-chain 

In order to determine the contribution of FcyRs to the recognition of released schistosome 

molecules, the response of 1Mý from FcR y -/_ mice to larval PAMPs was compared to that 

of cells from wild-type (WT) animals. Due to the limited availability of these mice, this 

study was restricted to 3 experimental repeats. 

Mý from the different mouse groups were cultured in media containing neutral FCS and 

either released larval material (0-3hRM), or LPS, in order to determine if they substantially 
differed in their ability to produce cytokines to these PAMP stimuli in the absence of 

specific antibody / antigen complexes. 1Mý from FcR 7 -/- mice produced marginally 

greater amounts (1.24-fold) of EL- 10 than their WT counterparts in response to 0-3hRM 

(Experiment 1; Figure 5.1 a). Similarly, the absence of this receptor had minimal effect on 

the level of IL- 10 produced in response to LPS. The same pattern was observed in two 

further experimental repeats (Experiment 2&3; Figure 5.1 b& c). In contrast, the profile 

of IL- I 2p4O produced by these two different Mý populations (in response to either 0- 

ARM or LPS) varied considerably between experiments, since a dramatic increase seen in 

the absence of Fc7R y-chain signalling in Experiment I (Figure 5.1 d) but a decrease was 
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observed in the repeat (Experiment 3; Figure 5.1 e). It is noteworthy that the high 

background levels of IL- 10 and IL- 12 production by cells cultured alone observed in 

Experiment 3 (Figure 5.1 c& e), were later confin-ned to be due to contaminating endotoxin 

in the batch of commercially available FCS used for that assay. However, for the purpose 

of my study, this further demonstrates that IL- 10 production did not differ greatly between 

the two Mý populations in response to stimulation with 0-3hRM in the absence of parasite- 

specific antibody/ antigen complexes. In addition, the overall levels of IL- 10 and IL- 

12p4O stimulated by 0-3hRM differed considerably between the experimental repeats, 

whereas LPS stimulated production of relatively consistent amounts of this cytokine. Since 

different batches of 0-3hRM (derived from separate cercarial sheds) were used in each 

experiment, the variation in IL- 10 production probably reflects the variation in the actual 

quantity of schistosome material to which the cells were exposed. In this respect, the batch 

of 0-3hRM used in Experiment 2, in which the least IL- 10 was detected, was thought to 

contain the lowest amount of parasite material. Furthermore, fewer cells (0.5 x 10 6 

compared to Ix 106 / MI) were used in this experiment. 

5.3.2 0-3hRM-specifc antibody has little effect on the production of IL-10 by Mý 

stimulated with released schistosome PAMPs 

To detennine if parasite-specific antibody alters the profile of cytokine production by IMý 

resulting from recognition of schistosome PAMPs, 1Mý were cultured with crude larval 

released material (0-3hRM) in the presence of anti-0-3hRM serum (IRS), or a neutral 

control serum (NRS). A crude preparation of the larval released material was used (rather 

than a soluble fraction centrifuged at 100,000 g) because it was deemed important to have 

both the soluble and insoluble components present. In this context, FcyR clustering that 

leads to the initiation of signalling pathways (following ligation by antigen / antibody 

complexes) may occur to a greater extent in the presence of particulate antigen. LPS was 

included as a stimulatory PAMP that should not cause antibody ligation of FcyR in the 

presence of anti-parasite polyclonal serum. The data from three experiments is presented in 

Figure 5.2, with the results of Experiment I and 2 corresponding to those presented in 

Figure 5.1. Experiment 4 represents an unrelated assay. 
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When cultured in neutral NRS, Mý produced high levels of IL- 10 upon stimulation with 

0-3hRM (Experiment 1; Figure 5.2a). Conversely, in the presence of anti-larval IRS, 1Mý 

produced dramatically lower levels of IL-10 (0.33-fold) when stimulated with 0-3hRM 

(Experiment 1; Figure 5.2a). In contrast, the levels of EL- 10 produced in response to 

stimulation with LPS did not differ when Nlý were cultured in IRS compared to NRS. 

However, in two further experimental repeats (Experiment 2& 3), IL-10 production 

stimulated by 0-3hRM did not decrease when the assays were carried out in IRS compared 

to NRS; in Experiment 3 the levels actually increased 1.2-fold (Figure 5.2b & c). Similarly, 

there was no clear difference in the levels of IL-12p4O stimulated by 0-3hRM following 

culture in either NRS, or IRS, when the results from two experiments were compared 
(Figure 5.2d & e). 

5.3.3 Maximal IL-1 0 production in the presence of anti-schistosome antibodies 

requires Fc7R signalling through the common FcR 7-chain 

As an alternative method to analyse the effect of schistosome-specific antibody / antigen 

complexes on stimulation by larval PAMPs, the cytokine response of iMý from FcR y 

mice to larval PAMPs was compared to that of cells from wild-type (WT) animals 
following culture in IRS. Again, the data from three experiments is presented (Figure 5.3), 

and directly correspond to those performed using FCS (Figure 5.1). 

Compared to culture with neutral FCS (Figure 5.1), the profile of IL- 10 production by FcR 

7 -/- and WT Mý stimulated in the presence of anti-0-3hRM serum displayed marked 

differences. Mý from FcR 7 -/- mice produced considerably lower levels of IL-10 in 

response to stimulation with either 0-3hRM (0.52-fold) or LPS (0.55-fold) when cultured 

with IRS, compared to the WT controls (Experiment 1; Figure 5.3a). This was repeatable 

in two further experiments (Experiment 2&3; Figure 5.3b & c), albeit less dramatically in 

Experiment 2. In contrast, the profile of IL- I 2p4O produced by the different cell 

populations was not consistent between experiments (Figure 5.3d & e). However, the 

relative increase in IL-12p4O production by FcR y -/- Mý upon stimulation with 0-3hRM, 

or LPS, observed in Experiment I (Figure 5.3d) mirrored that seen upon stimulation in the 

presence of FCS, in the same experiment (Figure 5.1 d). Similarly, the relative decrease in 

IL- I 2p4O production observed in the absence Of 7-chain signalling in Experiment 3 (Figure 
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5.3e) mirrored that in the equivalent experiment in the presence of FCS (Figure 5.1e). Itis 

also noteworthy that in experiments where there was overall high levels of EL- 10 there was 

little IL-12p4O production (Experiment 3; Figure 5.3c & e), whereas low levels of IL-10 

corresponded with higher levels of EL-12p4O production (Experiment 1; Figure 5.3 a& d). 
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Figure 5.1 Deficiency of FcR 7-chain-signalling has little effect on IL- 

10 production in the absence of specific antibody. 1Mý from WT (solid 

bars) or FcR y -'- mice (hatched bars) were cultured in medium containing 

FCS alone, with supernatant from in vitro-cultured transforming cercariae 

(0-3hRM), or with LPS, for 24 hr. Supernatants from duplicate, or 

triplicate wells of a 96-well plate were pooled and analysed by ELISA for 

production of IL- 10 (a, bc), or IL- 12 (d, e). Dashed lines indicate the 

lower detection limit of the ELISA. Data from three experiments are 

presented (Experiment I- 3). ND = not done. 
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Figure 5.2 Presence of 0-3hRM-specific antibody does not affect IL- 

10 production. Mý from WT mice were cultured alone, with supernatant 

from in vitro-cultured transforming cercariae (0-3hRM), or with LPS, for 

24 hr in medium containing either normal rabbit serum (open bars), or 

serum from a rabbit immunised with 0-3hRM (shaded bars). Supernatants 

from duplicate, or triplicate wells of a 96-well plate were pooled and 

analysed by ELISA for production of IL- 10 (a, b, c), or IL- 12 (d, e). 

Dashed lines indicate the lower detection limit of the ELISA. Data from 

three experiments are presented (Experiment 1,2, & 4). Experiments I 

and 2 correspond to those presented in Figure 5.1. 
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Experiment 1: IRS 
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Figure 5.3 Deficiency of FcR y-chain-signalling causes reduction in 

IL-10 production in the presence of specific antibody. iklý from WT 

(solid bars) or FcR y -I- mice (hatched bars) were cultured alone, with 

supernatant from in vitro-cultured transforming cercariae (0-3hRM), or 

with LPS, for 24 hr in medium containing serum from a rabbit immunised 

with 0-3hRM (IRS). Supernatants from duplicate, or triplicate wells of a 

96-well plate were pooled and analysed by ELISA for production of IL- 

10 (a, b, c), or IL- 12 (d, e). Dashed lines indicate the lower detection limit 

of the ELISA. Data from three experiments are presented (Experiment I- 

3), and correspond to those presented in Figure 5.1. ND = not done. 
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5.4 DISCUSSION 

The Fc7Rs may play an important role in the regulation of immune and inflammatory 

responses during disease. In this respect, these receptors can have a synergistic effect upon 

IL- 10 production and an inhibitory effect upon IL- I 2p4O production by murine Mý in 

response to a range of stimuli. In this study, I used several methods to investigate the 

effects of Fc7R-signalling upon the profile of regulatory and pro-inflammatory cytokine 

production stimulated by larval PAMPs, to determine if these receptors may function in 

regulation of the inflammatory responses following exposure to schistosomes. No clear 

role for these receptors was evident in innate responses to parasite PAMPs, since IL- 10 

production was not reduced by the absence of signalling through the FcR 7-chain when 

cultured in neutral serum. In contrast, FcR 7 -'- Mý produced reduced levels of IL- 10 

stimulated by released larval PAMPs in the presence of anti-parasite polyclonal serum 
(IRS), suggesting that Fc7R-ligation by parasite antigen / antibody complexes could 

promote IL- 10 production during the inflammatory responses initiated by schistosomes. 
However, no reliable difference was demonstrated between the levels of IL- 10 production 
by WT iMý following stimulation with 0-3hRM in the presence of IRS, or a neutral serum, 

NRS. Furthermore, no reliable differences in IL- 12p4O production between FcR 7 -/- and 

WT Mý, or culture in the presence, or absence, of anti-parasite antiserum were identified. 

FcyR signalling can be caused by the presence of pentraxin-opsonised pathogen PAMPs 

(Mold et al., 2002). The common 7-chain of the FcRs is an essential component of 

signalling through FcyRI and FcyRIH (Takai et al., 1994), and is required for the up- 

regulation of IL- 10 and inhibition of IL- I 2p4O production seen in response to pentraxin- 

opsonised pathogen PAMPs (Mold et al., 2002). In this respect, EL- 10 production by whole 

organ cultures of split pinnae is reduced in FcR 7 -/- mice compared to WT animals 4 days 

post-infection with schistosomes, which is prior to the onset of antibody production (pers. 

com. K. Hogg and A. Mountford). 

Therefore, to detennine if FcR y-chain-signalling contributes to the response of 1Mý to 

released schistosome PAMPs, Mý from mice lacking the FcR y-chain were analysed for 

their ability to produce IL- 10 and IL- 12p4O following stimulation with 0-3hRM in the 
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presence of a neutral serum that lacked parasite- specific antibody. Using this system, 0- 

3hRM stimulated slightly greater levels of IL-10 production by FcR y -/- compared to WT 

iMý, suggesting that FcR y-chain signalling does not contribute to IL- 10 production 

stimulated by larval released PAMPs. It is possible that the minimal increase in IL- 10 was 

due to a slightly higher activity of the FcR 7 -/- iMý compared to the WT. Similarly, LPS 

stimulated slightly greater levels of IL-10 in the absence of FcR y-chain signalling. Since 

pentraxin-opsonised LPS has been shown to augment IL-10 production by Mý (Mold et 

al., 2002), it would be expected that LPS-stimulated IL- 10 production by FcR y -/- Mý 

would be reduced compared to WT cells. Since this was not the case suggests that the FCS 

used in these experiments did not contain these opsonins in sufficient quantities to effect 

LP S-stimulated IL- 10 production, or that bovine pentraxins may not have a similar 
function to their murine counterparts. Therefore, it remains conceivable that schistosome 

PAMPs could be opsonised in vivo by murine pentraxins, and contribute to IL- 10 

production during the inflammatory responses in the skin via ligation of the FcyRs. 

FcyR-signalling is also caused by the presence of IgG-opsonised antigen, and binding of 

pathogen material opsonised with IgG, or polyclonal antisera, can result in the dramatic 

up-regulation of IL- 10 and inhibition of IL- I 2p4O produced in response to pathogen 

PAMPs (Sutterwala et al., 1997; 1998; Gerber and Mosser, 2001). Therefore, to determine 

whether opsonisation of parasite material by specific polyclonal antibody affects the 

stimulatory properties of schistosome PAMPs, Mý from WT mice were analysed for their 

ability to produce IL- 10 upon stimulation with 0-3hRM in the presence of anti-parasite 

polyclonal serum (IRS), or neutral serum (NRS). 

There was considerable variation in the production of IL- 10 between three experimental 

repeats, with stimulation by 0-3hRM in the presence of IRS resulting in increased, 

decreased, or the same levels compared to stimulation in the presence of NRS. However, 

the profile of IL- 10 produced in response to LPS in the presence of NRS, or fRS, did not 

differ between two repeats, suggesting that the variation observed in response to 0-3hRM 

could reflect differences in the schistosome material (such as concentration) used within 

each study. Therefore, it is impossible to say what overall effect anti-parasite antibody had 

upon IL- 10 production stimulated by 0-3hRM. However, it is clear that opsonisatlon by 
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anti-parasite antibody did not dramatically up-regulate the production of IL-10 stimulated 

by 0-3hRM. 

This obviously contrasts the many recent studies that conclusively demonstrate a dramatic 

synergistic effect of IgG-, or polyclonal antibody-, opsonisation upon EL- 10 production in 

response to a variety of different stimuli, including LPS, lipoteichoic acid, and hyaluronic 

acid (Sutterwala et al., 1997; 1998; Kane and Mosser, 2001; Gerber and Mosser, 2001). It 

is possible that antibodies within the polyclonal rabbit antiserurn used in my studies did not 

efficiently bind FcRs upon the murine Mý. However, this is doubtftil since LPS opsonised 

by polyclonal anti-LPS rabbit serum exhibited IL- 10 promoting activity (Gerber and 

Mosser, 2001). Moreover, the IRS used in this study conferred partial protection against 

schistosome infection to naYve mice, confirming a biological activity within this species 
(Harrop et al., 2000). 

Since the FcR y-chain is also required for the synergistic effect of antibody-opsonised 

material upon PAMP-stimulated IL- 10 production, Mý from FcR y -/-mice were used to 

fiirther investigate whether opsonised parasite material affects 0-3hRM-induced cytokine 

production. Using this system, 0-3hRM in the presence of IRS stimulated reduced levels of 

IL- 10 (between 0.5 - 0.8-fold) by FcR y -/- compared to WT Mý. This reduction was not 

due to a general lower activity of the FcR y -/- Mý, since cytokine production in the 

presence of neutral serum (FCS) was greater by these cells (discussed above). Therefore, 

this data indicates that opsonised parasite material could signal through the FcR y-chain to 

increase EL- 10 production by Mý stimulated with released schistosome PAMPs. Although 

the common y-chain is involved in signalling through a variety of other receptors, such as 

the high affinity IgE receptor, it seems likely the contribution to IIL- 10 production was 

made through the FcyRI, which has previously been shown to mediate such effects by IgG 

complexes (Sutterwala et al., 1998). 

It was expected that production of IL- 10 stimulated by LPS in the presence of anti- 

schistosome polyclonal serum, would not be affected by the absence of the FcR y-chain. 

Therefore, it is surprising that LPS also stimulated lower levels of IIL-10 production by 

FcR y -1- Mý than WT cells in the presence of IRS. The most feasible explanation for this 

observation is that IRS also contained antibodies against LPS. In hindsight this seems 
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logical, since the 0-3hRM used to generate this serum probably contained endotoxin to 

which the rabbit would have produced antibody. 

The observation that FcR y -1- Mý produce less IL- 10 than WT cells in response to 0- 

3hRM in the presence of IRS, suggests that parasite antibody / antigen complexes 

contribute to IL- 10 production. However, addition of IRS does not cause an increase in IL- 

10 production by WT Mý compared to culture in neutral NRS. It is possible that the IRS 

and NRS varied in content of a number of biological factors (in addition to antibody) that 

could have affected Mý cytokine production, such as regulatory cytokines (e. g. TGFP). 

Subsequent titration of both NRS and IRS demonstrated both to have inhibitory effects 

upon EL-10 and IL-12 production by Mý when used at high concentrations, such as used 

in these studies, which could have masked the effect of antibody complexes (data not 

shown). Similarly, differences between IRS and FCS could account for the considerable 

variation in IL-10 production by iMý cultured in these serums. 

Although this data appears to support a role for Fc7R signalling in IL- 10 production 

stimulated by opsonised 0-3hRM, the overall contribution of this to schistosome PAMP- 

stimulated cytokine production does not appear to be great. It is possible that the 

4regulatory' profile of cytokine production by Mý (when compared to EFN7-Mý; Section 

3.4) is not greatly affected by Fc7R signalling due to high levels of EL- 10 and low levels of 

EL- I 2p4O produced by these cells. Previous studies have focused upon responses by bone 

marrow-derived Mý, which produce a more 'pro-inflammatory' cytokine profile with high 

IL- 12 and low IL- 10, and which may be more sensitive to the consequences of Fc'YR 

signals. However, it is possible that the effects of opsonised 0-3hRM could be minimal due 

to cleavage of specific antibodies, or FcRs, by proteases contained within the released 

larval material. 

There was no reliable pattern in EL-12p4O production between two repeat experiments, 

when responses of WT and FcR y -'- 1Mý to 0-3hRM, or LPS, in the presence of FCS or 

IRS were compared. Similarly, there was no reliable pattern in IL- I 2p4O production by 

WT cells when comparing the effects of culture in NRS to culture in IRS. This variability 

may reflect a lack of sensitivity in these assays due to the relatively low overall levels of 

IL- 12 produced by Mý upon stimulation with 0-3hRM. Since FcR y-chain signalling 
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appeared to effect IL- 10 production in the presence of IRS, it is surprising that there was 

not a reciprocal effect upon IL- I 2p4O production. However, FcR 7-chain signalling could 

enhance IL- 10 production without inhibiting EL- 12 production. In this respect, the 

inhibitory effect of IgG-opsonised LPS upon Mý IL-12 production is independent of the 

IL- 10 production by these cells (Gerber and Mosser, 200 1 ). 

It is noteworthy that in experiments where there was overall high levels of EL- 10 there was 

little IL- I 2p4O production (Experiment 3; Figure 5.3 c& e), whereas low levels of IL- 10 

corresponded with higher levels of IL-12p4O production (Experiment 1; Figure 5.3a & d), 

suggesting that regulation of these two cytokines was tightly balanced. However, the 

factor that was primarily responsible for the predomination of either EL- 12, or IL- 10, was 
independent of PAMP stimulus (i. e. a similar profile was observed in response to both LPS 

and 0-3hRM), and appeared to be independent of the individual cell populations (i. e. the 

profiles were the same for both WT and FcR y -1- cells). 

In conclusion, it is unclear whether FcyRs, or other receptors utilising the common y-chain, 

contribute to the profile of Mý cytokine production stimulated by released schistosome 

PAMPs in the absence of schisto some- specific antibody. Furthennore, it is not clear from 

this study whether FcyR-ligation by antibody-opsonised PAMPs affect the Mý cytokine 

production stimulated by 0-3hRM, although this may potentially contribute to the 

production of IL-10. 
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CHAPTER 6 

INDUCTION OF DC MATURATION BY RELEASED 

SCHISTOSOME PAMPS 



6.1 INTRODUCTION 

DC are involved in the initiation of both innate and acquired immune responses during 

infection with pathogens. Immature DC reside in peripheral sites, such as the dermis, or 

epidermis, where they are optimally located to act as sentinels against potential pathogens 
(Steiriman, 1991). 

Early studies of DC showed that they have high levels of pathogen specific endocytosis, 

macropinocytosis and phagocytosis (Reis e Sousa et al., 1993; Sallusto et al., 1995). 

Further characterisation demonstrated that upon exposure / contact with pathogen stimuli, 
in vitro-cultured DC switch from a state of highly active environment sampling and 

antigen processing to a state of low environmental sampling (Cella et al., 1997). This 

change corresponded with dramatic up-regulation of MHC 11 expression and a switch from 

low to high T-cell stimulatory capacity, therefore allowing antigens captured at the site of 

infection / stimulation to be presented to T-cells (Cella et al., 1997). These two cellular 

states have been classified as 'immature', charactensed as expressing low levels of MHC 

11, and 'mature', charactensed as expressing high levels of MHC 11 (Pierre et al., 1997; 

Banchereau and Steinman, 1998; Sparwasser et al., 1998). 

DC have a unique ability to prime CD4+ T-cells (Steinman, 1991). This ability is due 

partly to their efficient capture and presentation of antigens, and partly to their capacity to 

migrate to, or their location in, T-cell areas of the local lymphoid tissue (Jenkins et al., 
2001). 

Studies of both human and murine DC demonstrate that they mature upon contact with a 

variety of different pathogens, or pathogen products, such as LPS (Cella et al., 1997; Lutz 

et al., 1999), CpG DNA (Sparwasser et al., 1998), dsRNA (Cella et al., 1999), Zymosan A 

(Reis e Sousa et al., 1993), and bacterial lipopeptide (Horng et al., 2002). However, it is 

becoming more fully understood that host molecules may play an important role in the 

maturation status of DC. Tissue factors, such as prostaglandins (PGE2) can drive human 

DC maturation, as can inflammatory cytokines such as TNF(x (Rieser et al., 1997; Cella et 

al., 1997). Indeed, inflammatory cytokines may be critical to the maturation of certain DC 

subsets (Cumberbatcb and Kimber, 1995; Wang et al., 1997; Cumberbatch et al., 1997a). 
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Moreover, contact with necrotic cells, danger signals, or physical trauma, can result in DC 

maturation (Gallucci et al., 1999; Johnson et al., 2002, Ten-neer et al., 2002). 

In addition to pathogen and host tissue factors, signals from effector T-cells, such as 

CD40L, can directly stimulate human and murine DC in vitro (Cella et al., 1996; Kelsall et 

al., 1996) and enhance DC maturation in vivo (Schulz et al., 2000). This provides evidence 

that feedback received by DC from T-cells during antigen presentation, could ultimately 

affect the outcome of priming. Indeed, it appears that ligation of CD40 can act as an 

amplification signal, enhancing the maturation phenotype of DC following stimulation 

with PAMPs and allowing the full display of maturation-associated factors (Schulz et al., 
2000; Edwards et al., 2002). 

Upon maturation, both human and murine DC up-regulate a variety of different cytokines, 

such as IL- 12, IL-6, and IL- 10, and membrane bound co-stimulatory factors, such as 
CD40, CD80, CD86, and OX40L. Further studies will undoubtedly continue to identify 

additional factors that can define the mature DC phenotype. However, it is only recently 

that the plasticity of the DC response to different stimuli has been fully appreciated. 
Several elegant studies have demonstrated that depending upon the source of stimuli, DC 

mature to different phenotypic states (d'Ostiam et al., 2000; Whelan et al., 2000; Huang et 

al., 200 1; MacDonald et al., 200 1; de Jong et al., 2002). These host factor / pathogen 

programmed responses are so specific that the DC can discriminate between different 

cellular states of the same pathogen (d'Ostiani et al., 2000). Moreover, the difference in 

maturation state leads directly to selective polarisation of the Th cell population during 

priming (d'Ostiani et al., 2000; Whelan et al., 2000; MacDonald et al., 2001; de Jong et 

al., 2002; McGuirk et al., 2002). Thus, depending upon the DC maturation signal, DC are 

instructed to mature to different states capable of priming for Thl, Th2, or 'Treg' 

polarisation. 

In the context of schistosome infection, there is evidence of epiderinal APC maturation, 

corresponding with up-regulated MHC 11 and CD86 expression (Angeli et al., 2001 a). 

Moreover, MHC Il+ cells accumulate in the dermis directly below schistosome larvae 

following infection (Riengrojpitak et al., 1998), and data emerging from our laboratory 

suggests that LC are stimulated to migrate from the epidennis, and IL-12-producing 

'myeloid' DC spontaneously migrate from the skin following vaccination with irradiated 
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cercariae (Kumkate et al., 2003; Hogg et al., 2003a). However, it is still not known if 

schistosome PAMPs directly stimulate these cells, or if tissue-derived inflammatory / 

'danger' signals produced during infection result in LC or DC maturation. Moreover, the 

maturation phenotype of DC exposed to schistosome PAMPs is not known. Since PAMPs 

released by transfon-ning cercanae are potent stimulators of iMý cytokine production, it is 

a reasonable hypothesis that these PAMPs will also drive DC maturation. However, in 

order to test this hypothesis, and to assess the maturation state that is induced, an in vitro 

stimulation assay is required. 

DC are rare within both lymphoid and non-lymphoid tissues, making it difficult to isolate 

sufficient numbers for the in vitro analysis of cell function. Several methods have been 

developed to increase the number of DC in vivo, enabling their subsequent recovery ex 

vivo. Injection of mice with 1710 ligand increases the numbers of DC found within a variety 

of organs, including LN and bone marrow (Maraskovsky et al., 1996). In addition, mice 

over-expressing GM-CSF had 3-fold more DC in their LN, than wild-types (Vremec et al., 
1997), although injection of GM-CSF did not have the same result (Maraskovosky et al., 
1996). However, these methods still do not result in sufficient cell numbers to study the 

effect of schistosome PAMPs on DC maturation and function. 

As an alternative to studying ex vivo DC, a method was developed for the generation of 
DC from murine blood borne precursors cultured in vitro with GM-CSF (Inaba et al., 
1992a). However, the yield from this technique was low, and it was quickly superseded by 

one using murine bone-marrow (13M) precursor cells cultured in vitro with GM-CSF, 

which generated a much higher yield (Inaba et al., 1992b). Since then, this technique has 

undergone numerous adaptations by different groups to produce DC of greater purity and 

higher yield (Lutz et al., 1999; Son et al., 2002). In turn, this has enabled the interaction 

between DC, pathogens, and host factors, to be studied in more detail. Therefore, this 

method was chosen to generate DC with which to study the effect of schistosome PAMPs. 

The literature is inconclusive over a single preferred method for the in vitro culture of BM- 

derived DC due to the many adaptations made by individual groups. Important culture 

factors frequently vary between different reports, including the type of culture vessel, 

length and regime of culture, deletion of erythrocytes before culture, deletion of non- 
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adherent cells during culture, and the cellular, or GM-CSF, concentration. Therefore, a 

number of factors relevant to the in vitro culture of BM-derived DC will be optimised at 

the start of this study. Four criteria were judged to be important in the optimisation 

process: 1) large scale generation of immature DC (IDC), 2) purity of 1DC after six days of 

BM culture with GM-CSF, 3) sensitivity of iDC to stimulation with PAMPs, as Judged by 

the fold increase in activation / maturation markers compared to non-stimulated cells, and 

4) purity of mature DC (mDQ resulting from overnight stimulation of iDC with PAMPs. 

The aim of this chapter is to determine whether schistosome P"Ps stimulate DC to 

mature. In this respect, the phenotype of the resulting mDC will be studied in detail. In 

order to gain perspective on the outcome of DC stimulation with schistosome PAMPs, the 

maturation phenotype of the resulting cells will be compared to that of DC matured using 

classical pathogen PAMPs (LPS & Zymosan A). These PAMPs will be chosen based upon 

their ability to 'instruct' DC to prime for Thl or Th2 polarised responses. In addition, the 

outcome of CD40 ligation during PAMP-induced DC maturation will be studied. 

6.2 MATERIALS AND METHODS 

6.2.1 Animals 

All mice were maintained in open housing at the University of York animal unit. C57131/6 

mice were bred in house, while BALB/c mice were obtained from Harlan UK. C57BI/6 

mice were used in all experiments unless specified. 

6.2.2 Generation of DC from bone marrow 

Two methods for the generation of iDC from bone marrow precursors were compared to 

determine which produced the most suitable cells for screening stimulatory properties of 

PAMPs. For these experiments, the purity of iDC and mDC, and the analysis of mDC 

maturation states, was deten-nined by analysis of myeloid differentiation marker expression 

using flow cytometry. 

160 



Allethod I. - Culture 'Flask'generation. This method, previously described by Whelan et al. 

(2000) and adapted from Inaba et al. (1992b), was learrit whilst visiting Kevin Rigley's 

laboratory at the Edward Jenner Institute for Vaccine Research. The culture medium 

(DCF) consisted of Iscoves MEM Glutamax 1, containing 200 U/ ml penicillin, 100 ýtg 

ml streptomycin, 50 VtM P-mercaptoethanol (Invitrogen), and 10% heat- inactivated low- 

endotoxin FCS (Harlan Seralab). Bone marrow cells were removed from the femurs and 

tibias of sacrificed C57131/6 mice as previously described (Lutz et al., 1999). Briefly, bones 

were cleaned of muscle and sterilised in 70% alcohol for I min. Bone marrow was then 

flushed-out with DCF using a 23-gauge needle, and cell clusters dissociated by gentle 

pipetting. Cells were cultured in 75 cm 2 tissue-culture flasks (I X 106 cells / ml) in 25 ml 
DCF supplemented with 20 ng / ml GM-CSF (Peprotech, London, UK), at 37 'C, in a 
humidified incubator. On day 4, the spent media (containing the non-adherent cell fraction) 

was carefully removed and discarded, and the flask containing the adherent and semi- 

adherent cells replenished with 25 ml fresh DCF, containing 20 ng / ml GM-CSF. Semi- 

adherent cells were defined as those that would detach from the adherent cell monolayer by 

gentle agitation of the culture medium. Two days later, the non-adherent and semi-adherent 

cell populations were recovered by gentle agitation and used as 1DC. 

Method 2: Culture ýplate'generation. This method, previously described by Son et al. 
(2002) and adapted from Inaba et al. (I 992b), was provided by Melanie Leech (University 

of Manchester). The culture medium (DCP) consisted of RPMI 1640 containing 2mM L- 

glutamine (Invitrogen) and all supplements as added to DCF media. Bone marrow was 

removed as described above. Prior to culture, red blood cells were lysed with ACK buffer 

(Section 4.2.2) and the remaining cells washed three times with DCP. The cells were then 

cultured in 6-well tissue-culture plates (Nalge Nunc) at a concentration of 1.8 x 106 cells 

well in 3 ml of DCP supplemented with 20 ng / ml GM-CSF. On day 4, a further 3 ml of 

DCP, containing 40 ng / ml GM-CSF, was added. Two days later, non-adherent and serm- 

adherent cells were recovered by gentle agitation and used as 1DC. 

6.2.3 DC stimulation and maturation 

For the comparison of DC generation techniques, iDC were seeded into 24-well, or 96-well 

tissue-culture plates (Nalge Nunc), at IX 106 cell / ml, in DCF or DCP containing 20 ng 
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ml GM-CSF. The cells were then cultured for 24 hr alone, or in the presence of LPS (10 ng 

/ ml; see below). 

Subsequently, 1DC generated using the selected method were used to determine the 

outcome of activation with different pathogen, or parasite, PAMPs. Specifically, IDC 

derived from C57131/6, or BALB/c, bone marrow were cultured for 24 hr in DCP 

containing 20 ng / ml GM-CSF as follows: 

* In media alone. 
Or with: 

e 0-3hRP, SCP, 3hSSP, 18hSSP (all 1.1 - 40 ýtg / ml; prepared as described in Section 

2.2.1). 

* Concentrated medium control RPMIc (for 0-3hRP) 

9 Zymosan A (0.2 -5 ýtg / ml; Sigma-Aldnch). 

9 LPS(1-100ng/ml; E. coliscrotypeOlll: B4; Slgma-Aldnch)- 

Assays were carried out in the presence, or absence, of PMB (0.1 - 27 ýtg / ml; Sigma- 

Aldrich) where indicated. Additionally, in some experiments low-endotoxin anti-CD40 

antibody (5 ýtg / ml; clone HM40-3; BID PharMingen) was added to the culture at the time 

of exposure to PAMPs. 

After culture overnight with the different PAMPs, the semi-adherent mDC were harvested 

and analysed for expression of surface markers. Culture supernatants were frozen and 

stored at -20 T to await detection of cytokines by ELISA. 

6.2.4 Phenotypic characterisation of DC populations 

To deten-nine the purity of DC cultures, iDC were analysed for the surface expression of 

myeloid (CD IIc, F4/80, Gr-I) and lymphoid (13220, CD4, CD80c) differentiation markers. 

In addition, mDC resulting from culture with different PAMPs were analysed for surface 

expression of CD IIc and maturation / activation markers (MHC 11, CD40, CD80, CD86 

and OX40L). Cells were stained with specific antibodies, or irrelevant isotype matched 

antibodies using the method previously described (Section 3.2.3.2). Antibodies against 
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various surface markers were as follows (clone; supplier): FITC- or PE-conjugated CD IIc 

(HU; BD PharMingen), CD40 (3/23; BD PharMingen), CD80 (R-MMP-1; Caltag), CD86 

(P, MMP-2; Caltag), Gr-I (RB6-8C5; Caltag), F4/80 (CIA3-1; Caltag), B220 (RA3-6132; 

BD Pharmingen), CD4 (CT-CD4; Caltag), CD8ot (53-6.7; BD PharMingen), or biotin- 

conjugated I-A b, d (28-16-8S; Caltag) and biotin-conjugated OX40L (RM I 34L; 

PharMingen), followed by streptavidin-conjugated Quantum Red TM (QR; Sigma). Where 

specified, two-colour staining was used to analyse co-expression of activation markers and 

CDl Ic on mDC. In this context, the respective antibodies were conjugated to different 

fluorochromes. 

To detennine the number of dead cells, 10 [il of PI (200 mg / ml PI in PBS) was added to 

relevant cell aliquots and incubated for 20 sec before flow-cytometric analysis. Those 

staining positive for PI were considered dead. 

In some experiments, DC were also analysed for expression of intracellular IL- I 2p4O, or 

IL-4, as previously described (Hogg et al., 2003a). Briefly, Golgi Plug TM (I ýig / ml; BD 

PharMlngen) was added to the mDC culture 6 hr before harvesting. DC were first labelled 

with CD II c-FITC as described above. Cells were then fixed and permeabilized with 
Cytofix / Cytoperm TM (131) PharMingen) according to manufacturer's instructions, and 

stained with PE-labelled IL- I 2p4O mAb (clone #C 15.6; BD PharMingen), or IL-4 mAb 

(clone BVD6-24G2; Caltag). 

Cells were analysed by one-colour, or two-colour, flow-cytometry as previously described 

(Section 3.2.3.4 - 3.2.3.5, or Section 4.2.2, respectively). Low expression of I-A and CD86 

is constitutive on some DC but levels of these markers can be up-regulated following 

stimulation. In order to deterimne the percentage of cells expressing high levels of I-A or 

CD86, the cursor was set to exclude all negative and low-level expressing events. 

6.2.5 Cytokine ELISAs 

In addition to the cytokines studied in Chapter 3, DC culture supernatants were tested for 

production of IL-12p7O, IL-4, and IFNy, using ELISA (Section 3.2.6). Supernatants were 

tested neat, or at 1: 2,1: 5,1: 10, or 1: 20 dilutions. Lower limits of detection are shown on 
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figures as dashed lines, or arrows. The IL-12p7O ELISA incorporated the same 

recombinant standard and detecting antibody as the IL-12p4O ELISA (Section 3.2.6), but 

uses an IL- I 2p7O-specific capture antibody (Clone 9A5; BID PharMingen). The antibodies 
for the other additional cytokines were also obtained from BD PharMingen as follows: 

(coating clone; detecting clone): IL-4 (BVD I-ID 11; BVD6-24G2) and LFN7 (R4-6A2 

XMGI. 2). Recombinant standards were as follows: IL-4 (BID PharMingen) and EFN7 

(2A II CHO cell supernatant). 

6.2.6 Statistics 

Data comparisons were tested for significance using the one-tailed Students t-test, 

assuming equal variance if p>0.05 when tested with the Levene's test. Values where p:! ý 

0.05 were considered to be significant, whereas values wherep > 0.05 were considered not 

significant. The following nomenclature was used to denote the value of the significance: 
*p:! A. 05, **p:! ý0.0l, ***p:! ý-0.001. 

6.3 RESULTS 

6.3.1 Generation of maturation-inducible iDC from BM precursor cells. 

'Plate' and 'Flask' methods of generating 1DC from BM precursors were compared. The 

major differences in these techniques are summari sed in Table 6.1. Between the two 

techniques, no difference was observed in the purity of iDC generated from BM after six 
days of culture with GM-CSF, as determined by expression of the DC marker CDI Ic (40% 

versus 39% for 'Plate' and 'Flask' methods respectively; Table 6.1). In contrast, the Yield 

of putative 1DC compared to the starting cell number was twice as high using the 'Plate' 

technique compared to the 'Flask' technique (2.2-fold versus no increase; Table 6.1). 

After transfer to 24-well plates and further overnight culture in the presence of GM-CSF, 

the purity of CD II c+ cells increased in both 'Plate' and 'Flask' generated populations, 

although the former were considerably purer (53% versus 44%, respectively-, Table 6.2a). 

Matured DC (mDQ generated using both techniques showed greatly up-regulated 

expression of high levels of MHC 11 (MHC , high ) after culture with LPS (48% 'Plate'; 32% 
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'Flask') compared to DC cultured alone (27% 'Plate'; 20% 'Flask'; Table 6.2a). Moreover, 

the percentage of mDC expressing CD40, also increased upon stimulation with LPS (58% 

'Plate'; 45% 'Flask') compared to DC cultured alone (34% 'Plate'; 31% 'Flask'-, Table 

6.2a). However, the increase in levels of expression of MHC 11 high and CD40 on LPS- 

stimulated DC compared to DC cultured alone, was slightly greater in the 'Plate'-generated 

population (1.8-fold and 1.7-fold respectively) compared to the 'Flask'- generated 

population (1.6-fold and 1.5-fold respectively; Table 6.2b). Thus, the 'Plate' generation 

technique was used for all subsequent experiments, due to the higher yield of 1DC, the 

higher purity of CD 11 c+ cells after further overnight culture of iDC, and the greater 

sensitivity of iDC to stimulation with LPS. 

Further adaptations to the 'Plate' generation method (e. g. using only BM from femurs) 

increased the purity of CDI lc+ cells in the 6 day old iDC population to 59% (Figure 6.1 a), 

although in many experiments the purity of CD II c+ cells reached 70% (data not shown). 
To ensure reasonable consistency between experiments, iDC were routinely tested for 

CD IIc expression. Analysis of size and granularity of the cells shows that granularity 

increases with size in a continuum, such that there are not any distinct individual cell 

populations (Figure 6.1 b). However, further analysis shows that the CD II c+ population 

comprises the largest and most granular cells, whereas the CD II c- population comprises of 

the smallest and least granular cells (Figure 6.1 c& d). Moreover, the vast majority of the 

large granular population are CD II c+. Indeed, a quadrate placed on the size versus 

granularity scattergram effectively distinguishes the CD 11 c+ and CD II c- populations, with 
85% of CD 11 c+ cells and only II% of CD 11 c- cells in box (11). 

More in-depth phenotypic characterisation of the iDC population demonstrated that nearly 
half (48%) of the cells were MHC II+ (Figure 6.2i. a). Moreover, two distinct groups 

existed within this population, one expressing high levels, and one expressing low levels of 

MHC 11 (Figure 6.2ia). Importantly, the MHC 11 low expressing cells were greater in 

number (27% compared to 21 %), suggesting that the majority were of an immature state, 

and J usti fying their description as iDC. Most of the MHC ll+ cells were located in the large 

granular population (Figure 6.2ib). As most of the large granular cells were CD II c+ 

(Figure 6.1), this suggests that the MHC ll+ cells are also CD1 lc+. Indeed, further 

characterisation using two-colour flow-cytometry, showed that 95% of the MHC ll+ cells 
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were CID II c+ (Figure 6.2na& b). Moreover, 95% of the CD I 1c- cells were MHC IF (data 

derived from Figure 6.211). 

Analysis of other myeloid differentiation markers, demonstrated that 46% of iDC were 

F4/80 + and 24% were Gr-1+ (Figure 6.2ia). The F4/80+ cells were of the large granular 

population, suggesting that they were also CID II c+ (Figure 6.2ib). In contrast, the majority 

of the Gr- I+ cells were of the small / low granular population, and so were distinct from the 

CD II c+ cells (Figure 6.2ib). Analysis with other leukocyte markers showed that there were 

no CD4+, or CD8+, cells (data not shown) and only 2% of cells were B220+ (Figure 6.2i. a). 

6.3.2 Optimisation of PMB concentration for use in iDC stimulation assays. 

In order to deten-nine the effects of schistosome PAMPs upon iDC, PMB was used to 

inhibit the potential stimulatory effects of low levels of contaminating endotoxin. PMB 

concentration had previously been optimised to inhibit endotoxin stimulation of 1Mý 
following culture with parasite PANIPs (Section 3.3.3). However, due to potential 
differences between these accessory cells, the concentration of PMB was optimised for 

culture with iDC using E. coli LPS as a model endotoxin. Both concentrations of LPS (10 

and 100 ng /m 1) stimulated high levels of IL- 12p4O and IL-6 production compared to iDC 

cultured alone (Figure 6.3). However, these stimulatory properties were blocked by PMB 

in a dose-dependent manner, with 1 ýtg / ml PMB completely blocking 10 ng / ml LPS, and 

3 Vg / ml PMB completely blocking 100 ng / ml LPS. Therefore, 3 ýLg / ml PMB was used 
in further assays to ensure sufficient blocking of endotoxin. In addition, this concentration 

of PMB had little effect on the IL-12p4O and IL-6 production produced in response to 

Zymosan A (Figure 6.4), suggesting it would not interfere with the stimulatory properties 

of schistosome PAMPs. Furthermore, PMB (0.1 -9 ýtg / ml; tnpling dilution) had no effect 

on the viability of iDC cultured alone, as determined by PI staining (data not shown). 

6.3.3 0-3hRP but not other schistosome preparations, stimulates cytokine production 

by iDC- 

The stimulatory properties of the different schistosome PAMP preparations were screened 

using iDC cultured in the presence of PMB. 0-3hR_P stimulated a dose-dependent increase 
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in both IL-12p4O and IL-6 production by iDC (Figure 6.5a & b). In contrast, the soluble 

whole larval preparations, SCP, 3hSSP and 18hSSP, and the RPMIc control, did not 

stimulate increased production of either cytokine (Figure 6.5a & b). Similarly, in separate 

experiments the soluble whole larval preparations 3dSSP, 5dSSP, and 8dSSP, did not 

stimulate increased cytokine production (data not shown). No IL-10 was detected in any of 

the supernatants. It is noteworthy that in the absence of PMB, 0-3hRP stimulated 

production of 3- to 7-fold more IL-12p4O, and 9- to 12-fold more IL-6, than in the presence 

of PMB. This demonstrates the sensitivity of iDC to the low levels of endotoxin within 0- 

3hRP and supports the continued use of PMB to analyse the effect of schistosome PAMPs 

on iDC in the absence of endotoxin signalling. 

Since 0-3hRP exhibited greater stimulatory properties compared to other schistosome 

preparations, the study focused upon the response of 1DC to these released molecules. 

Since 40 ýtg / ml of 0-3hRP stimulated the greatest levels of IL-6 and IL- I 2p4O production, 

this concentration was used in all further studies, unless indicated. 

6.3.4 Cytokine response of DC to 0-3hRP compared to other PAMPs. 

There were no significant differences in IL- I 2p4O or IL-6 production by DC cultured with 

PMB, RPMlc + PMB, or LPS + PMB, compared to DC cultured alone (Figure 6.6a & b). 

Conversely, in the presence of PMB, 0-3hRP stimulated a significant increase in the levels 

of IL- I 2p4O (2-fold) and IL-6 (I O-fold) produced compared to all negative controls (Figure 

6.6a & b). However, the increase in IL-12p4O was small compared to that stimulated by 

LPS (198-fold) and Zymosan A (308-fold) (Figure 6.7a). Similarly, 0-3hRP + PMB 

stimulated only a small increase in IL-6 production (10-fold) when compared to LPS (282- 

fold) and Zymosan A (165-fold) (Figure 6.7b). Interestingly, LPS and Zymosan A 

stimulated different profiles of cytokine production, the former stimulating the highest 

level of IL-6, and the latter stimulating the highest levels of IL- I 2p4O. 

6.3.5 CD11c+ cells are the source of IL-12p4O stimulated by PAMPs. 

Two-colour flow-cytometry was used to identify the cellular source of the IL- I 2p4O 

detected in the culture supernatants of the enriched DC population. It is clear that after 
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culture with RPMIc, 0-3hRP, LPS, or Zymosan A, the vast majority of the IL-12p4O' cells 

were CD II c+ (94%, 96%, 87%, and 84%, respectively; Figure 6.8). Moreover, the 

percentage of CDI lc+ IL-12p4O+ cells increased after culture with 0-3hRP (13%), LPS 

(58%) and Zymosan (56%), compared to the RPMlc control (6.6%). In addition, the 

CDI Ic+ IL-12p4O+ cells had higher intensity of cytokine staining (as judged by the median 

fluorescence value) after culture with 0-3hRP (1.5), LPS (6.8) and Zymosan A (5.2) 

compared to the RPMIc control (1.1). This control was chosen as it had the highest 

background percentage of IL- I 2p4O+ cells relative to DC cultured alone, DC cultured with 

PMB, or DC cultured with LPS + PMB (data not shown). However, stimulation with 0- 

3hRP resulted in a lower percentage of CDI lc+ IL-12p4O+ cells and a lower intensity of 

IL- I 2p4O staining than LPS and Zymosan A, as would be expected from the profiles of 

cytokine released into the culture supernatant (Figure 6.7a). 

6.3.6 Phenotype of DC activated with 0-3hRP compared to other PAMPs. 

The up-regulation of MHC 11 complexes and co-stimulatory molecules during maturation 

greatly contributes to the APC function of DC. Therefore, expression of MHC 11, and the 

co-stimulatory molecules CD40, CD80, CD86, and OX40L, on DC stimulated with 0- 

3hRP was compared to DC stimulated with LPS, or Zymosan A. Two-colour flow- 

cytometry was used to compare the expression of CD IIc versus MHC 11 by the DC. 

However, due to limitations on availability of cells for flow-cytometric analysis, it was not 

possible to perforrn similar two-colour staining for co-stimulatory molecules. Therefore, 

analysis of CD40, CD80, CD86, and OX40L expression, was performed on the whole 

population of enriched DC. In the following experiments, expression of MHC II and co- 

stimulatory molecules was also detennined on DC cultured alone, or with PMB, LPS + 

PMB, or RPMIc + PMB. However, there was no significant difference between these 

controls. Therefore, only the data for DC cultured alone, or with RPMIc + PMB, which 

were the controls with the greatest background staining for MHC 11 and all the co- 

stimulatory molecules, are shown in the following figures. 

The CID IIc expression on DC changed after stimulation with different PAMPs (Figure 

6.9a & b). Indeed, LPS and Zymosan A led to an increase in the percentage of CD II c+ 

cells within box A. Most importantly, 0-3hRP (and RPMIc) had little effect on CDI Ic 

expression compared to DC cultured alone. However, any variation in the proportion of 
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CD II c+ cells between stimulation regimes would lead to difficulty in analysing the relative 

expression of co-stimulatory molecules upon the iDC using only one-colour staining. 

Therefore, only the larger most granular cells, previously shown to contain the vast 

majority of CDI Ic+ cells (Figure 6.1), were analysed by gating on box H (Figure 6.9c). 

Consequently, the difference in CDI Ic expression between DC cultured alone and DC 

stimulated with Zymosan A, or LPS, was dramatically reduced (Figure 6.9d). However, 

even gated on box H, there was still a slight increase in CD IIc expression on cells cultured 

with LPS, or Zymosan A, but because the overall levels of CD II c+ expression were very 
high (88% - 92%), this difference is much less relevant. Thus, for the surface expression of 
CD40, CDSO, CD86, and OX40L, only the large granular cells within H were analysed. 
This also increased the sensitivity of the system, as any change in the surface expression of 

co-stimulatory molecules on the CD II c+ cells would become more apparent. 

0-3hRP appeared to stimulate an increase in the percentage of CD II c+ cells expressing 
MHC 11 (Figure 6.10a). Moreover, the proportion of CD II c+ cells expressing MHC 11 high 

appeared to be greater for 0-3hRP-matured DC than for DC cultured alone, or with RPMlc 

(Figure 6.1 Ob). However, in both cases this was not significant and the levels of expression 

were lower than that stimulated by LPS and Zymosan A (Figure 6.1 Oa & b). 

0-3hRP stimulated slight up-regulation of both CD40 and high levels of CD86 (CD86 high 

expression compared to DC cultured alone or with RPMlc, but these levels were not 

significantly different (Figure 6.11 a& b). In contrast, DC stimulated with LPS or Zymosan 

A dramatically up-regulated CD40 (p < 0.05, andp < 0.01, respectively) and CD86 high (P 

< 0.05, and p<0.05, respectively) expression. 0-3hRP did not stimulate an increase in the 

proportion of cells expressing CD80 or OX40L, compared to DC cultured alone or with 

RPMIc (Figure 6.11 c& d). LPS and Zymosan A had differential effects on the expression 

of these co-stimulatory molecules. LPS appeared to up-regulate expression of CD80, but 

did not up-regulate expression of OX40L, whereas Zymosan A up-regulated expression of 

OX40L (p < 0.01) but not CD80. 

6.3.7 The response of BALB/c MC to 0-3hRP compared to other PAMPs. 

In order to detennine if maturation with 0-3hRP effected the capacity of DC to prime and 

polarise T-cells, it was necessary to use DC on a BALB/c background (Chapter 7). 

169 



Therefore, the maturation phenotypes of BALB/c DC were characterised after stimulation 

with 0-3hR-P, or the control pathogen PAMPs- 

6.3.7.1 Cytokine production. 

0-3hRP stimulated a highly significant increase in both EL-12p4O (P < 0.001) and IL-6 (P < 

0.001) production by BALB/c DC compared to controls (Figure 6.12a & b). This was 

dose-dependent, with a 7-fold and 18-fold increase in IL-6, and a 4-fold and 9-fold 

increase in IL- I 2p4O, after stimulation with 20 ýtg / ml and 40 pg / ml of 0-3hRP 

respectively. However, 0-3hR-P stimulated dramatically lower levels of IL-6 and IL- I 2p4O 

than LPS, or Zymosan A (Figure 6.13a & b). Notably, this was the same when a lower 

dose of LPS (I ng / ml), or a higher dose of Zymosan A (5 ýtg / ml) was used (data not 

shown). 0-3hRP did not stimulate detectable production of IL-12p7O, IL-10, or TNF(X, in 

contrast to LPS and Zymosan A (Figure 6.13c, d, e). Moreover, 0-3hRP did not stimulate 

production of IL-1p, in contrast to LPS (Figure 6.13f). It is worth noting that LPS and 

Zymosan A stimulated different profiles of cytokine production compared to each other. 

LPS stimulated higher levels of IL-6, IL- I P, and IL- 10, whereas Zymosan A stimulated 

higher levels of IL- 12p7O. Notably, IL-4 and IFNy were not detected in any of the 

supernatants. 

Similar to C57BI/6 DC, the percentage of IL-12p4O+ CDI Ic+ cells increased after culture 

with 0-3hRP (I I%), LPS (72%) and Zymosan (30%), compared to the negative control 

(6%) (Table 6.3). Again, similar to C57BI/6 DC, the vast majority of the IL-12p4O+ cells 

were CD II c+ (up to 94%) (Table 6.3). 

In contrast to the absence of detectable levels of IL-4 in DC culture supernatants, an 

increase in the percentage of IL-4 + cells was observed after stimulation with 0-3hRP 

(14%), or LPS (30%), compared to control (10%) (Table 6.3). In contrast, stimulation with 

Zymosan A appeared to decrease the number of IL-4+ cells (7%). Similar to IL- I 2p4O, the 

vast maj ority of the IL-4+ cel Is were CD II c+ (up to 94%). 
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6.3.7.2 MHC H and co-stimulatory molecule expression. 

As in Section 6.3.6, MHC 11 and co-stimulatory molecule expression upon BALB/c DC 

cultured alone, or with PMB, LPS + PMB, or RPMlc + PMB, was deten-nined. However, 

since there was no significant difference between these controls, only the data for DC 

cultured alone and RPMlc + PMB are shown. 

All PAMPs, including 0-3h-RP, stimulated an increase in the percentage of CD II c+ cells 

expressing NIHC II, although this was only significant (p < 0.05) for LPS and Zymosan A 

treatments (Figure 6.14a). However, 0-3h" stimulated a significant (p < 0.05) increase in 

the percentage of CD II c+ cells expressing MHC 11 high (70%) compared to negative 

controls (50%), but this was not as high as stimulated by LPS (76%) and Zymosan A 

(82%) (Figure 6.14b). A lower dose of 0-3hRP (20 ýtg / ml) also up-regulated expression of 

MHC 11 and MHC , high 
, although to a lesser extent than 40 ýLg / ml (data not shown). It is 

noteworthy that similar to iDC, analysis of all MHC II+ cells within the mature DC 

populations revealed that the vast majority (approximately 95 %) were CD II c+ (data not 

shown). 

Similar to the study of C57131/6 DC, analysis of co-stimulatory factor expression upon 

BALB/c DC was focused on the large granular cells (within box H) of the mDC 

population. Again, the vast majority of these cells were CD II c+ (Figure 6.15), with very 

few CD II c+ excluded by this method (< 10%; data not shown). Moreover, the proportion 

of CD II c+ cells within this population did not significantly vary between the differently 

stimulated DC groups (Figure 6.15). 

0-3hRP stimulated significant (p < 0.05) up-regulation of CD40 and CD86 hh 
expression 

but not to the same extent as LPS or Zymosan A. (Figure 6.16a, & b). Again, a lower dose 
high 

of 0-3hRP (20 Vg / ml) also up-regulated expression of CD40 and CD86 
, although to a 

lesser extent than 40 ýtg / ml (data not shown). As observed using C57131/6 DC, 0-3hRP did 

not stimulate up-regulation of CD80 and OX40L, whereas the differential effect of LPS 

and Zymosan A on these co-stimulatory molecules was clear. In this respect, LPS up- 

regulated CD80 (p < 0.05) but not OX40L expression, whereas Zymosan A up-regulated 

OX40L (p < 0.05) but not CD80 expression (Figure 6.16c & d). In addition, the phenotype 
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of DC stimulated with a lower dose of LPS (I ng / ml) was similar to those stimulated with 

100 ng / ml (data not shown). 

6.3.8 Ligation of CD40 effects the profile cytokines produced in response to 0-3hRP. 

Ligation of CD40 can amplify the maturation phenotype of differentially stimulated DC 

(Edwards et al., 2002). In order to detennine if the cytokine profile produced by 

stimulation with 0-3hRP is modified by CD40-signalling, DC were co-cultured with anti- 
CD40 antibody. The presence of the antibody substantially increased IL-12p4O production 
by both non-stimulated DC (10-fold) and by 0-3hRP-stimulated DC (4-fold) (Figure 

6.17a). In contrast, ligation of CD40 had much less of an effect on IL-6 production with 0- 

3hRP-stimulated DC producing just 1.6-fold more cytokine in the presence of the antibody 
(Figure 6.17b). Moreover, anti-CD40 stimulated only a marginal increase (1.3-fold) in 

spontaneous IL-6 production by DC cultured alone. In some experimental repeats IL-6 

production was up to 3-fold greater in the presence of anti-CD40, however, the effect on 
IL- I 2p4O production was always greater (data not shown). No IL- 10 (Figure 6.17c), IL- 

12p7O, IFNy, or IL-4 (data not shown), was detected in any of the supernatants. 

In addition, culture with the anti-CD40 antibody greatly increased the proportion of 
CD II c+ cells staining positive for IL- I 2p4O after culture alone (3.5-fold), or with 0-3hRP 

(2-fold), or Zymosan A (2-fold) (Table 6.4). In contrast, anti-CD40 treatment did not 

increase the percentage of IL-4+ cells after stimulation with 0-3hRP, or Zymosan A (Table 

6.4). Indeed, fewer DC cultured in the absence of PAMPs were IL-4+ in the presence of 

anti-CD40 antibody. Only the DC population stimulated with LPS appeared to contain 

more EL-4+ cells in the presence of the antibody, although this increase was slight (1.2- 

fold). 
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6-well 'Plate' 75 cm' 'Flask' 
Generation Generation 

CD11c' Purity of day 6 40% 39% 
iDC a 

Day 0 Cell Number b 1.8 x 106 / well 25 x 106 / Flask 

Day 6 Cell Number' 4x 106 / well 26 x 106 / Flask 

Cell Yield 2.2 1 
Day O: Day 6 
Cell Number 

Depletion of erythrocytes Yes No 
within fresh BM 

Depletion of non- No Yes 
adherent cell population 
during culture 

GM-CSF 20 ng / ml 20 ng / ml 

Medium RPM11640+10%FCS IscovesMIEM+10% 
FCS 

Culture Regime Day 3: Add 100% more Day 4: Discard 100% 
media, and then GM- of spent culture 
CSF to 20 ng / ml medium, replace with 
concentration new, and add 20 ng 
throughout. ml GM-CSF. 

Table 6.1 Comparison of BM-derived iDC culture techniques. 

'Values represent the percentage of cells staining positive with specific Ab 

compared to matched isotype controls, as determined by flow-cytometry. 

b Values represent the number of BM cells. 

'Values represent the number of non- and semi-adherent cells. 
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a. 

'Plate' Generation 'Flask' Generation 
LPS Treatment 0 10 0 10 
nglml 

CD11c 53% 56% 44% 46% 

MHC 11 high a 27% 48% 20% 32% 

CD40 34% 58% 31% 45% 

b. 

'Plate' Generation 'Flask' Generation 
N4_HC 11 

high a 1.8 1.6 

CD40 1.7 1.5 

Table 6.2 Effect of LPS stimulation on the expression of surface 

markers on iDC generated by different methods. BM precursor cells 

were grown in the presence of GM-CSF for 6 days in culture flasks, or 6- 

well plates. Non- and semi-adherent cells were then recovered and 

cultured overnight alone, or with LPS (10 ng / ml). Values represent the 

percentage of semi-adherent cells staining positive with antibody to 

CD IIc, MHC 11, or CD40 (a). Alternatively, values represent the fold 

increase in the number of positive cells upon stimulation with LPS 

compared to cells cultured alone (b). 

a represents the cells expressing high levels of the surface marker. 
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Figure 6.1 Phenotype of the iDC population generated from RM 

precursors cultured for six days in the presence of GM-CSý'. A distitict 

population of dead cells, shown to be positive lor 111, "its I(Icimlicd aiid 

gated out from all subsequent analysis. Cells were staMcd "Itli aimbodN 

specific for CDI Ic (red line), or with a matched isolype cmitrol (hluc 1111C) 

(a). The value in italics represents the pcrcenUigc ot'cells cx1irc. ssihig 

CD IIc (a). All live cells (b), and those positi vc (c), or iicpat iýc (d). 161' 

CDI Ic were characterised on their size and graiiularitý. IhCCjLK1draICo%cr- 

laid on the size/ granularity scattergrams arhitrarilý doides dic cells mto 4 

populations (i-iv). Data is representative at least ') expermicii1s. 
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Figure 6.2 Phenotype of the iDC population generated from BM 

precursors cultured for six days in the presence of (; M-('SF. 

i) A distinct population of dead cells, shown to be positive for III, was 

identified and gated out from all subsequent analysis. Cells were stained 

with antibody specific for the markers indicated (red line), or with 

matched isotype controls (blue line). The values in italics represent the 

percentage of cells expressing the marker and the values in red italics 

represent the percentage of cells expressing high / low levels ofthc marker 

(a). For each marker, the population ol'positive (b), or negative (c), cells 

was characterised on size and granularity. The quadrate ovcr-laid oil tile 

size / granularity scattergrams arbitrarily divides the cells Into 4 

populations (1-iv), and is in the same position as on Figure 4.1. Daw is 

representative at least 3 experiments. 

ii) In a separate experiment, cells were double-stained with antibodies 

specific for CD1 Ic and MHC 11 (b) or isotypc matched controls (a). 

Control antibody staining is represented by the quadrant boundaries and 

values represent the percentage of cells staining positive in the particular 

quadrant. The values in italics represent the CDI Ic' MIIC 11 * cells. or the 

CD II c- MHC' cells, as a percentage ofthe total MI IC I I' cel Is. 
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Figure 6.3 PMB effectively blocks the stimulatory properties of LPS. 

iDC were cultured overnight alone (*), or with 10 (0), or 100 (0), ng / 

ml of LPS, in the presence, or absence, of varying concentrations of PMB. 

Supernatants were removed and analysed by ELISA for the production of 

IL- I 2p4O (a), or IL-6 (b). Data is presented as the mean ± SEM of three 

separate wells, and is representative of 2 experiments. 
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Figure 6.4 PMB does not effect on the stimulatory properties of 

Zymosan A. iDC were co-cultured with 0 (*), or 3 (M), ýtg / ml PMB and 

the indicated concentrations of Zymosan A. Supernatants from triplicate 

wells were pooled and analysed by ELISA for production of IL- I 2p4O (a) 

or IL-6 (b). Data is representative of two experiments. 

180 

0 0.6 1.6 5 15 

Zymosan A pg / ml 

0 0.6 1.6 5 15 

Zymosan A pg / ml 



IL-12p4O 

5 

4 
E 
0)3 

0 qT 
CL 

64 

I 

0 

Schistosome PAMPs ýtg / ml 

b. I L-6 

4 

3 

E 

1 

0 

Schistosome PAMPs ýtg / ml 

EI SCP 

13 3hSSP 

EI 18hSSP 

EI RPM1c 

9 0-3hRP 

r7q SCP 

0 3hSSP 

ED 18hSSP 

13 RPMlc 

0 0-3hRP 

Figure 6.5 0-3hRP but not soluble whole schistosome preparations, 

stimulates up-regulation of cytokine production by DC. iDC were co- 

cultured overnight with PMB (3 ýtg / ml) and the indicated concentrations 

of different parasite preparations. Supernatants from triplicate wells were 

pooled and analysed by ELISA for the production of IL-12p4O (a) and IL- 

6 (b). t= not done. 
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Figure 6.6 0-3hRP stimulates significant levels of cytokine 

production. iDC were cultured overnight alone, or with PMB (3 ýtg 

ml), LPS (equivalent to EU content of 0-3hRP) + PMB, RPMlc + PMB, 

or 0-3hRP (40 ýtg / ml) + PMB. Supernatants were then removed and 

analysed by ELISA for production of IL- 12p4O (a) and IL-6 (b). Data is 

presented as the mean ± SEM of four individual wells and is 

representative of 3 experiments. Dashed line denotes the lower detection 

limit of ELISA. Levels of significance, as determined by Students t test, 

are indicated as: ** =P:!! ý 0.01 and *** =P:! ý 0.001. 

182 

DC PMB LPS + PMB RPMlc + 0-3hRP 
PMB PMB 

DC PMB LPS + PMB RPMlc + 0-3hRP 
PMB PMB 



IL-12p4O 

150 

E 

m 100 

CL 
C14 50 

0 

X 308 

b. I L-6 

80-1 
X 282 

60 

40 

20 

0 
DC 0-3hRP + PMB LPS Zymosan A 

Figure 6.7 Stimulation by 0-3hRP is dwarfed by the response to other 

PAMPs. iDC were cultured overnight alone, or with LPS (I ng / ml), 

Zymosan A (5 ýtg / ml), or 0-3hRP (40 ýtg / ml) + PMB (3 [tg / ml). 

Supernatants were then removed and analysed by ELISA for production of 

IL- I 2p4O (a) and IL-6 (b). Data is presented as the mean ± SEM of four 

individual wells and is representative of 3 experiments. Numbers in italics 

represent the fold-increase in cytokine production compared to DC alone. 
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Figure 6.8 CD11c' cells are the major IL-12p4O'population after culture with 

PAMPs, but the number of positive cells varies according to different stimuli. 

Expression of CD IIc versus IL- I 2p4O by iDC cultured overnight with RPMI, 0-3hRP, 

LPS or Zymosan A. Cells were stained with specific antibodies (b), or isotype matched 

controls (a). Control antibody staining is represented by the quadrant boundaries and 

values represent the percentage of cells staining positive in the particular quadrant. The 

values in italics represent the CD II c' IL- I 2p4O' cells as a percentage of the total IL- 

12p4O' cells. The values in red represent the median fluorescent intensity of staining for 

IL- I 2p4O' cells. 
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Figure 6.9 Overall CD11c expression changes after stimulation with different 

PAMPs but does not change on the large / highly granular cells. 1DC were 

cultured overnight alone, or with RPMlc + PMB (3 ýtg / ml), 0-3hR-P (40 [tg / ml) 

+ PMB, LPS (I ng / ml), or Zymosan A (5 ýtg / ml). Histograms display all events 

for DC cultured alone and demonstrate region H (a & c). Cells were stained with 

antibodies specific for CD IIc, or with a matched isotype control, and the percentage 

positive determined in the whole population (b), or within the region H (d). Data is 

presented as the mean +/- SEM of 3 experiments. 
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Figure 6.10 MHC 11 expression on tnDC cultured with different 

PAMPs. Percentage of CD II c' cells expressing MHC 11 (a), or high 

levels of MHC 11 (b) was determined after iDC were cultured alone, or 

with RPMlc + PMB (3 pg / ml), 0-3hRP (40 [tg / ml) + PMB, LPS (I ng 

mi), or Zymosan A (5 [tg / ml). Cells were stained with antibodies specific 

to CD IIc and MHC 11, or with matched isotype controls. Gating on all 

CD II c+ cells, the percentage positive for MHC 11 and high levels of MHC 

11 was determined. Data is presented as the mean ± SEM of 3 experiments. 

Levels of significance, as determined by Students t test, are indicated as: 

=P:! ý 0.05, ** =P:! ý 0.01. 
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Figure 6.11 Phenotype of mDC cultured with different PAM Ps. 

Percentage of cells expressing CD40 (a), CD86`91' (b), CD80 (c), or 

OX40L (d), was determined after iDC were cultured alone, or with RPMlc 

+ PMB (3 ýtg / ml), 0-3hRP (40 ýtg / mi) + PMB, ITS (I ng / ml), or 

Zymosan (5 ýtg / ml). Cells were stained with antibodies specific to CD40, 

CD80, CD86, or OX40L, or with matched isotypc controls. Analysis wýls 

restricted to large granular cells within box 11. Data is presented as the 

mean ± SEM of 3 experiments, except CD80 which is derived from 2 

experiments. Levels of significance, as determined by Students / test. are 

indicated as: *=p:! ý 0.05 and ** = p! ý 0.01. 
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Figure 6.12 0-3hRP stimulates highly significant up-regulation of 

cytokine production by BALB/c DC. iDC derived from BALB/c BM 

were cultured overnight alone, or with PMB (3 ýLg / ml), LPS (equivalent 

to EU content of O-ARP) + PMB, RPMlc + PMB, or O-ARP (20, or 40, 

ýtg / ml) + PMB. Supernatants were analysed for the expression of IL- 

12p4O (a), or IL-6 (b), by ELISA. Data is presented as the mean ± SEM of 

4 wells, and is representative of at least 4 experiments. Levels of 

significance, as determined by Students t test, are indicated as: p 

0.001. 
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Figure 6.13 Different pathogen PAMPs stimulate contrasting profiles 

of DC cytokine production. iDC derived from BALB/c BM, were 

cultured overnight alone, or with RPMlc + PMB (3 ýtg / ml), O-ARP (40 

ýtg / ml) + PMB, LPS (100 ng / ml), or Zymosan A (1.6 ýtg / ml). 

Supernatants were removed and analysed for expression of IL- I 2p4O (a), 

IL-6 (b), IL- 12p7O (c), IL- 10 (d), TNF(x (e), or IL- IP (f)ý by ELISA. Data 

is presented as the mean ± SEM of 4 wells, and is representative of at least 

2 experiments. Dashed lines represent the lower limit of detection of 

ELISA. 
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C5 7BI16 C5 7BI16 BALBIc BALB'c 
IL-12p4O IL-4 IL-12p4O IL-4 

DC 10% (94%) ND 6% (78%) 10% (87%) 

0-3hRP + PMB 22% (96%) 

LPS 85% (87%) 

0a Zymosan A 87/0 (84%) 

ND 11% (94%) 14% (94%) 

ND 72% (89%) 30% (89%) 

ND 30% b (90%) 7% b (82%) 

Table 6.3 Intracellular IL-12p4O and IL-4 staining on DC stimulated 

with different pathogen PAMPs. iDC derived from C57131/6 or BALB/c 

BM, were cultured overnight alone, or with 0-3hRP (40 gg / ml) + PMB 

(3 ýtg / ml), LPS (100 ng / ml), or Zymosan A (1.6 -5 ýtg / ml). Cells were 

stained with antibodies specific for CD IIc, and IL- I 2p4O, or IL-4, or 

with matched isotype controls, and analysed by 2-colour flow-cytometry. 

The values shown in bold represent the percentage of CD II c+ cells that 

were positive for IL- 12p4O, or IL-4. The values in brackets represent the 

CD II c+ cytokine' DC as a percentage of the total cytokine' cells. Data 

presented for C57131/6 DC is derived from the experiment shown in 

Figure 6.8. 

a5 ýtg / ml Zymosan A. 

b 1.6 ýtg / ml Zymosan A. 
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Figure 6.14 0-3hRP stimulates up-regulation of MHC 11 expression on 

DC derived from BALB/c BM. The percentage of CD II c' cells 

expressing MHC 11 (a), or high levels of MHC 11 (b), was determined after 

iDC were cultured alone, or with RPMIc + PMB (3 ýtg / ml), 0-3hRP (40 

ýtg / ml) + PMB, LPS (100 ng / ml) or Zymosan A (1.6 pg / ml). Cells 

were stained with antibodies specific to CD IIc and MHC 11, or with 

matched isotype controls. Gating on CD II c+ cells, the percentage positive 

for MHC 11 (a) and high levels of MHC 11 (b) was determined. Data is 

presented as the mean ± SEM of 3 experiments. Levels of significance, as 

determined by Students t test, are indicated as: p:! ý 0.05 and p 

0.01. 
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Figure 6.15 Percentage of cells expressing CD11c' within the large 

granular population does not differ after culture with different PAMPs. 

iDC derived from BALB/c BM were cultured overnight alone, or with 

RPMlc + PMB (3 ýtg / ml), 0-3hRP (40 pg / ml) + PMB, LPS (100 ng / ml), 

or Zymosan A (1.6 pg / ml). Cells were stained with antibodies specific for 

CD IIc, or with a matched isotype control. Data is presented as the mean 

SEM of three experiments. Analysis was perfon-ned on the large granular 

cell population within box H (see Figure 6.9). 
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Figure 6.16 Expression of co-stimulatory molecules on DC cultured 

with different PAMPs. Percentage of cells expressing CD40 (a), 

CD86 high (b), CD80 (c), or OX40L (d), was determined after BALB/c iDC 

were cultured alone, or with PMB (3 pg / ml), RPMlc + PMB, 0-3hRP (40 

ýtg / ml) + PMB, LPS (100 ng / ml), or Zymosan A (1.6 [tg / ml). Cells 

were stained with antibodies specific to CD40, CD80, CD86, OX40L, or 

with matched isotype controls. Analysis was restricted to large granular 

cells within box H. Data is presented as the mean ± SEM of 3 

experiments. Levels of significance, as determined by Students t test, are 

indicated as: * =p:! ý 0.05 and *** =p: ý 0.001. 
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Figure 6.17 Ligation of CD40 preferentially increases IL-12p4O 

production by unstimulated and 0-3bRP-stimulated DC, compared 

to other cytokines. iDC derived from BALB/c BM, were cultured 

overnight alone, or with 0-3hRP (40 pg / ml) + PMB (3 pg / ml), in the 

presence (hatched bars), or absence (open bars), of anti-CD40 antibody 

(5 pg / ml). Supernatants were removed and analysed for expression of 
IL- I 2p4O (a), IL-6 (b), or IL- 10 (c), by ELISA. Data is presented as the 

mean ± SEM of 3 wells, and is representative of 3 experiments. Dashed 

lines represent the lower limit of detection of ELISA. Levels of 

significance, as determined by Students t test, are indicated as: *** =p < 

0.001. 
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Anti- 
CD40 

Ab 

BALBIc BALBIc 
IL-12p40 IL-4 

DC Only - 6% (78%) 10% (87%) 

0-3hRP + PMB - 11% (94%) 14% (94%) 

LPS - 72% (89%) 30% (89%) 

Zymosan A - 30% (90%) 7% (82%) 

DC Only + 21% (88%) 7% (86%) 

0-3hP-P + PMB + 23% (92%) 13% (89%) 

LPS + 85% (86%) 37% (88%) 

Zymosan A + 64% (91%) 7% (84%) 

Table 6.4 Intracellular IL-12p4O and IL-4 staining on DC 

stimulated with different pathogen PAMPs. iDC derived from 

BALB/c BM, were cultured overnight alone, or with 0-3hRP (40 ýtg 

ml) + PMB (3 gg / ml), LPS (100 ng / ml), or Zymosan A (1.6 ýLg 

ml), in the presence or absence of anti-CD40 antibody (5 [tg / ml). 

Cells were stained with antibodies specific for CD IIc, and IL- 12p4O, 

or IL-4, or with matched isotype controls, and analysed by 2-colour 

flow-cytometry. The values shown in bold represent the percentage of 

CD II c+ cells that were positive for IL- 12p4O, or IL-4. The values in 

brackets represent the CD II c+ cytokine+ DC as a percentage of the 

total cytokine+ cells. The data presented for cells cultured in the 

absence of anti-CD40 antibody is derived from the same experiment 

but was presented in Table 6.3, and therefore is shown in grey type. 
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6.4 DISCUSSION 

In this chapter, I demonstrate that the PAMP material released by transfon-ning 

schistosomes (0-3hRP) stimulates maturation of iDC with a phenotype commensurate with 

them being potent APC. Indeed, 0-3hRP-induced maturation of iDC corresponds with up- 

regulation of IL- I 2p4O and IL-6 production, and elevated surface expression of MHC 11 

and the co-stimulatory factors CD40 and CD86. However, 0-3hRP stimulated lower levels 

of cytokine production and co-stimulatory factor expression when compared to the classic 

pathogen PAMPs LPS and Zymosan A. 

6.4.1 Generation of immature BM-derived DC 

Initially, I selected and developed a robust technique for bulk in vitro generation of 

enriched iDC based on the culture of BM precursors with GM-CSF. Of two techniques, 

'Plate' generation more fully satisfied the criteria set out in Section 6.2.1, and was used in 

subsequent experiments to generate iDC with which to study the stimulatory potential of 

schistosome PAMPs. Due to the notorious difficulty in establishing iDC culture of high 

purity, this technique was further optimised, resulting in cell populations highly enriched 

(up to 70%) for CD II c+ DC. Indeed, following continuous optimisation, the iDC 

populations used in the latter experiments of this chapter, and in Chapter 7, were routinely 

70% CD II c+ (data not shown). 

CID IIc is one of the most commonly used surface markers to identify DC, and is expressed 

on all subsets including myeloid, lymphoid and plasmacytold DC (Kelsall et al., 2002). 

Further phenotypic characterisation demonstrated that the iDC used in my study were 

negative for the lymphoid DC marker, CD8(x, and only 2% were positive for the 

plasmacytold DC marker, B220. As such, I conclude the CID II c+ DC used in this study 

were myeloid in origin. In addition, most of the CDI lc+ cells expressed low levels of 

F4/80. Although F4/80 is predominantly a Nlý marker, it is expressed on LC (Hume et (/I., 

1983), some ex vivo myeloid DC (Henri et al., 2001), and at low levels on BM-derived DC 

(Lutz el al., 1999; Reid et al., 2000), further supporting the conclusion that the cells 

generated in this study were myeloid DC. 
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A large proportion of the iDC population were also MHC If+ (48%). Two-colour flow- 

cytometry revealed that 95% of the MHC 11+ cells were CD II c+. The expression of MHC 

11 is indicative of the maturation state of the DC. In this context, less than 50% of the cells 

expressed high levels of MHC 11, demonstrating that the majority of DC were immature. 

Therefore, the DC culture technique used in this study is more appropriate than the 

recently described 'higher yield' method, which utilises BM cultured with both IL-4 and 

GM-CSF, and results in DC with a MHC , high mature phenotype (Son et al., 2002). In this 

context, the iDC used in this study more closely resemble DC which schistosome larvae 

would likely encounter in the skin. The spontaneous maturation of a proportion of the iDC 

in my cultures may have been caused by physical trauma during the culture period (i. e. 

through pipetting / changing of media), to which DC are sensitive (Gallucci et al., 1999). 

The minor population of CDI Ic- cells were almost completely MHC IF (95%), and 

partially Gr- I+, corresponding to previous reports that jDC generated after 6 days also 

contain low levels of myeloid precursor cells and granulocytes (Lutz et al., 1999). In this 

respect, the CDI Ic+ and CDI Ic- cells within the iDC, and mDC, populations could be 

divided upon the basis of their size and granularity. This allowed for analysis of surface 

marker expression to focus upon the large highly granular population, confident that this 

contained nearly all the CD II c+ cells, and was almost exclusively CD II c+. 

6.4.2 Schistosome PAMPs stimulate DC maturation: cytokine production 

Having defined the enriched iDC population, these cells were used to analyse the effect of 

schistosome PAMPs on DC maturation. In an initial screen of the schistosome PAMP 

preparations only 0-3hRP had the capacity to induce pro-intlammatory and regulatory 

cytokine production. This work supports the results obtained in Chapter 3 using 1Mý, 

which show that the material released by schistosome larvae upon transformation is highly 

enriched for parasite PAMPs compared to soluble preparations of whole larvae. Therefore, 

the effect of 0-3hRP upon DC was further charactensed; the DC response was also 

compared to that induced by LPS or Zymosan A. In addition to acting as positive controls, 

these well-documented pathogen PAMPs were chosen as examples of molecules that 

instruct DC to mature to a Th I -inducing phenotype (LPS; Whelan et al., 2000; MacDonald 

et al., 2001), or a Th2-inducing phenotype (Zymosan A; Manickasingham et al., 2003). 
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I show for the first time that molecules released by transforming schistosome larvae (0- 

3h") stimulate up-regulation of IL-12p4O production by 1DC. This corresponds with an 

increase in the number and intensity of staining of IL- I 2p4O+ CD II c+ mDC. Importantly, 

staining for intracellular IL- I 2p4O was restricted to the CD II c+ population (94% - 96%), 

demonstrating that the myeloid DC were the source of this cytokine. Although splenic 

myelold DC appear to produce little IL-12p4O upon stimulation in vitro (Edwards et al., 
2002), BM-derived iDC are well known to produce large amounts in response to 

maturation with numerous different pathogens or pathogen PAMPs, such as LPS, CpG 

DNA motifs (Sparwasser et al., 1998), whole live Mycobacterium tuberculosis (Hickman 

et al., 2002), or Propionebacterium acnes (MacDonald et al., 200 1). In addition, myelold 

DC are the source of abundant IL-12p4O produced by in vitro cultured skin biopsies from 

mice vaccinated with y-irradiated S. mansoni cercariae (Hogg et al., 2003a). 

IL- 12 is a pro-inflammatory cytokine (Ma and Trinchien, 200 1). Moreover, IL- 12 

increases blastogenesis of human T-cells (Kubin et al., 1994) and has potent Th I 

polarising activity (Manetti et al., 1994; Macatonia et al., 1995; Trinchien, 2003). 

Although the biologically active heterodimer IL-12p7O, which possesses the pro- 

inflammatory / Thl polarising function, was not detected in the culture supernatant of DC 

stimulated with 0-3hRP (DC/0-3hRP), it is probably released but at lower levels than 

detected by the ELISA assay. In this respect, analysis of the supernatants from DC 

stimulated with LPS (DC/LPS) or Zymosan A (DC/Zymosan A) demonstrated that IL- 

12p7O is released at concentrations approximately 1000-fold less than IL-12p4O. Since IL- 

12p7O is a heterodimer of the p40 and p35 subunits, most of the IL-12p4O detected 

probably represents monomeric p40, or the IL- I 2p7O antagonist p40 homo-dimer 

(Gillessen et al., 1995). However, the p40 sub-unit also complexes with ap 19 sub-unit 

cytokine to forin IL-23, which is known to be produced by DC (Oppmann et al., 2000). IL- 

23 is thought to share many of the properties of IL-12p7O, including driving IFNY 

production by T-cells (Oppmann et al., 2000), although a recent report suggests that it may 

possess greater pro-inflammatory properties (Cua et al., 2003). Therefore, the presence of 

IL-23 in the DC supernatant cannot be excluded. 
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In contrast to IL-12p4O, 0-3hRP did not stimulate production of IL-10, a potent anti- 

inflammatory cytokine, thought to promote Th2 polarisation through the inhibition of Thl 

responses. In addition, IL- 10 is also involved in the development of 'Treg' cells (McGuirk 

et al., 2002). IL- 10 is known to regulate IL- I 2p4O production in the skin and sdLN 

following vaccination with irradiated cercariae (Hogg et al., 2003b). Moreover, IL- 12 (and 

/ or IL-23? ) exerts reciprocal regulation of IL-10 expression in the skin (Hogg et al., 

2003b). Therefore, the control of IL-12p4O and IL-10 production may considerably affect 

the outcome of the innate and acquired responses during normal infection. In this respect, 

the profile of cytokines produced by DC stimulated with 0-3hRP greatly contrasts that of 

iMý, which produced high levels of IL- 10 and low levels / no IL- I 2p4O (section 3.3.3). 

Thus, the balance of IL- 12 versus IL- 10 production in the skin during infection with 

non-nal schistosomes may reflect the relative dominance of DC versus Mý responses. 

In this chapter I also show that 0-3hRP stimulates up-regulation of IL-6 production by 

iDC. Similar to IL-12, iDC are known to produce IL-6 in response to live pathogens, or 
PAMPs (Sparwasser et al., 1998; MacDonald et al., 2001). Therefore, although 

intracellular staining for IL-6 was not perforined, it is most likely that CD II c+ DC were the 

cellular source of this cytokine. Similar to IL-12, IL-6 also acts directly upon T-cells to 

increase proliferation during priming (Vink et al., 1990). Thus, the up-regulated production 

of IL-6 and IL-12p4O by 0-3hRP-matured DC suggests these cells will be more effective at 

priming T-cells. 

The direct effect of IL-6 early in the process of T-cell polarisation remains unclear, 

although it has been linked to Th2 induction (Rincon et al., 1997; LaFlamme et al., 2000; 

Moser, 2001; Diehl et al., 2000; 2002). On the other hand, IL-4 is known to be a potent 

driver of Th2 responses, and therefore production of this cytokine was determined. Using 

intracellular flow-cytometry, an increase in IL-4+ DC was observed after stimulation with 

0-3hRP, although no IL-4 was detected in the culture supernatants. It has been reported 

that DC can be positive for intracellular IL-4 (Kelleher et al., 1999), yet it has only rarely 

been detected in culture supernatants (d'Ostiani et al., 2000). Indeed, my data contrasts 

with that of MacDonald et al. (2001) who found no up-regulation of IL-4 mRNA by BM- 

derived DC stimulated with a variety of PAMPs (including LPS), although it is possible 

that differential regulation of this cytokine occurs at translation rather than transcription. 
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Since IL-4 has potent autocrine effects on DC, including up-regulation of MHC 11 (Son et 

al., 2002), it has been suggested that IL-4 may be released by stimulated DC but 

immediately bound by the surface receptors (Kelleher et al., 1999). Although fL-4 was not 
detected in the DC/0-3hRP supernatants, the intimate localisation of T-cells with DC 

during priming could result with paracrine functions of this cytokine. 

The profile of DC cytokine production stimulated by 0-3hRP differs greatly to that 

stimulated by the classical pathogen PAMPs LPS and Zymosan A. DC/0-3hRP produced 

considerably less IL-12p4O and IL-6 than either DC/Zymosan, or DC/LPS. Moreover, both 

DC/Zymosan and DC/LPS produced detectable quantities of IL- I 2p7O, IL- 10, and TNFU. 

This suggests that 0-3hRP instruct DC in a different manner to these PAMPs, leading to an 
, intennediate' state of maturation. There was also a significant difference in the profile of 

cytokine production stimulated by Thl-associated LPS compared to Th2-associated 

Zymosan A. Therefore, my data supports the hypothesis that DC possess substantial 

plasticity in their cytokine response to different PAMPs (Whelan et al., 2000; MacDonald 

et al., 2001; de Jong et al., 2002; Edwards et al., 2002). Interestingly, Zymosan A 

stimulated more IL- I 2p7O but less IL- 10 and IL-6, compared to LPS, which is more 

suggestive of a Thl profile, contrasting recent findings that all splenic DC subsets produce 
IL- 10 rather than IL- 12 in response to Zymosan A (Edwards et al., 2002). In addition, LPS 

stimulated a large increase in the number IL-4+ DC, which is indicative of Th2 promotion. 

Therefore, from the cytokme profiles it is very difficult to predict whether DC matured 

with 0-3hRP would preferentially prime for a Thl or Th2 response. Indeed, a recent study 

using adoptive transfer of IL-12p4O-, or IL-4-, deficient DC demonstrated that production 

of IL-4 was not necessary to prime a Th2 response, whereas production of IL-12p4O, 

although required for maximal T-cell EFN7 production, was not necessary to prime a Tli I 

response (MacDonald and Pearce, 2002). 

6.4.3 Schistosome PAMPs stimulate DC maturation: MHC 11 expression 

Up-regulation of MHC 11 expression is explicitly important for T-cell priming, and high- 

level expression of MHC 11 is commonly used to define mature DC. In this chapter I 

demonstrate that 0-3hRP stimulates maturation of iDC, corresponding with an increase in 

the number of MHC 11 high + cells, suggesting that DC/0-3hRP xvill have a greater capacity 
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to present antigen to T-cells. However, compared to DULPS, or DC/Zymosan A, fewer 

DC matured with 0-3hRP expressed high levels of MHC 11, concurrent with the hypothesis 

that 0-3hRP matures DC in a different manner to LPS, or Zymosan A, and leads to an 

intermediate state of activation. 

6.4.4 Schistosome PAMPs stimulate DC maturation: co-stimulatory factor expression 

Up-regulation of co-stimulatory factor expression is another way in which DC enhance T- 

cell priming. Indeed, ligation of T-cell CD28 by co-stimulatory CD80, or CD86, augments 
TCR-mediated proliferation, IL-2 production, and T-cell survival (Boise et al., 1995), and 

is essential for normal T-cell cytokine responses (Whelan et al., 2000), while the absence 

of this co-stimulatory pathway promotes T-cell anergy (Van Gool et al., 1999). Expression 

of CD40 on DC also contributes to the survival signal, helping to prevent T-cell anergy by 

CD 154 (CD40L) signalling (Van Gool et al., 1999). In addition, T-cell expansion is 

maintained by anti-apoptotic signals received through OX40 via DC-expressed OX40L 

(Rogers et al., 2001). 

In my studies, 0-3hRP was shown to induce the up-regulation of surface CD40 and CD86 

but not CD80 upon DC. Since the expression of either CD80, or CD86, by DC is sufficient 
for normal T-cell priming through CD28 (Whelan et al., 2000), 0-3hRP-stimulated DC 

should more effectively prime T-cell responses, through greater ligation of CD28 by CD86 

and CD 154 by CD40. Although DC/0-3hRP did not up-regulate surface OX40L compared 

to DC cultured alone (DC/media), the constitutive low level expression of this factor may 
be sufficient to prevent apoptosis of expanding T-cells. However, both LPS and Zymosan 

A stimulated greater up-regulation of CD40 and CD86 high expression than 0-3hRP, again 

suggesting that schistosome PAMPs drive an 'intermediate' state of maturation. There was 

also a considerable difference in expression of CD80 and OX40L between DC/LPS and 

DC/Zymosan A. Therefore, my data agrees with the observations that, in addition to 

cytokine production, DC possess substantial plasticity in their regulation of co-stimulatory 

factor expression in response to stimulation with different PAMPs (Whelan et al., 2000, 

MacDonald et al., 2001; de Jong et al., 2002). 

The role of co-stimulatory factors in T-cell polarisation is the subject of much debate, 

fuelled by observations that they are differentially regulated upon exposure to different 
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PAMPs. Since only LPS stimulated up-regulation of CD80, this could suggest this co- 

stimulatory molecule may have a role in Thl induction. Indeed, polar roles for CD80 and 

CD86 have been reported, with CD80 involved in Thl and CD86 involved in Th2 

commitment (Kuchroo et al., 1995). However, CD86 has been implicated in Th I priming 

by splenic DC (Moser, 2001). Conversely, another group reported that co-stimulation 

through CD28 per. se. promoted Th2 responses (Rulifson et al., 1997), supporting 

observations that CD28-deficient mice generate diminished Th2 but not Thl cytokine 

production, in response to deposition of schistosome eggs (King et al., 1996b). More 

recent data suggests that the role of CD80 / CD86 may chiefly be to promote T-cell 

responses rather than influencing T-cell differentiation (Schweitzer et al., 1997; Whelan et 

al., 2000). 

Co-stimulation via OX40L expression has also been linked to T cell polarisation (Flynn et 

al., 1998; Ohshima et al., 1998; de Jong et al., 2002) but again its role is controversial 

(MacDonald et al., 2001). My results conform with a possible role of OX40L in Th2 

responses, since Th2-associated Zymosan A but not Thl -associated LPS, stimulated an 

increase in the number of DC expressing OX40L. Since 0-3hRP did not stimulate 

increased OX40L expression this suggests that it may not drive Th2 polarisation. 

The effect of CD40 / CD 154 interactions on T-cell priming and polansation is also the 

focus of intense study. There is a strong case for the involvement of CD40 / CD 154 in Th2 

induction. In vitro, human T-cell production of IL-4 induced by anti-CD3 and anti-CD28 

requires co-stimulation through CD 154 (Blotta et al., 1996). Furthermore, adoptive transfer 

of CD40 -/- DC into wild type recipients demonstrated that CD40 expression is essential for 

the Th2 response induced by SEA-matured DC but not for the Th I response driven by DC 

matured with Prop ion ibacterium acnes (MacDonald et al., 2002a). In addition, the Th2 

responses that develop during S. mansoni infection, or after injection with schistosome 

eggs, are impaired in CD 154 -/-mice (MacDonald et al., 2002a, 2002b). However, DC 

expression of CD40 has also been associated with IL-12-dependent induction of Th I 

responses by murine and human DC in vitro (Cella et al., 1996; Reudl et al., 2000). 

In addition to its role as a co-stimulatory molecule for T-cells, CD40 also allows DC to 

receive feedback from T-cells during priming. Since T-cells express surface CD154 

immediately upon activation by APC (Schonbeck and Libby, 2001), the feedback DC 
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receive is restricted to anti gen- specific interactions. There is an increasing body of 

evidence to suggest that CD 154 is expressed on the surface of some accessory cells, 

including certain DC subsets, indicating that accessory cells could provide feedback to 

each other via CD40 to amplify innate responses (Schonbeck and Libby, 2001). A recent 

study suggests that CD40 / CD 154 interactions are essential for maintaining DC activation 
during infections that result in either Thl (T gondii) or Th2 (S. mansoni) responses (Straw 

et al., 2003). It is well established that ligation of CD40 can cause increased / high level 

production of IL-12 by both non-stimulated murine and human DC in vitro (Koch et al., 
1996; Cella et al., 1996; Reudl et al., 2000), and PAMP-stimulated murine DC in i, ivo 

(Schulz et al., 2000). Indeed, in this chapter I showed that signalling via CD40 following 

addition of anti-CD40 antibody increased IL-12p4O production by DC/0-3hP'P I 0-fold, 

corresponding with an increased frequency of IL- I 2p4O+ cells. Increased IL- 12 production 
following CD40 ligation could help amplify developing Thl responses (Cella et al., 1996; 

Schulz et al., 2000), suggesting that 0-3hRP may have Th I -driving capacity. However, it 
has recently been hypothesised that CD40 signalling acts more as an amplification signal 
for DC to increase the cytokine profile already programmed by PAMP recognition. In this 

respect, DC can produce increased IL- 12, or IL- 10, depending on the initial PAMP 

stimulus received (Edwards et al., 2002). Since stimulation of DC/0-3hRP with anti-CD40 

antibody resulted in increased IL-12p4O production but no increase in the frequency of IL- 

4+ cells, no detectable IL- 10 production, and only a marginal increase in IL-6 production, 

suggests that DC matured with 0-3hRP will not display increased Th2-associated cytokines 

during T-cell priming, and will therefore have limited Th2-driving capacity. 

6.4.5 Schistosome PAMPs stimulate DC maturation: an intermediate state? 

A recent report suggests that because of the extensive plasticity of DC responses, 

maturation cannot be defined by a simple set of markers (Huang et al., 2001). In this 

respect, the 'Inten-nediate' DC maturation phenotype induced by 0-3hRP is reminiscent of 

that revealed in studies of the nematode products ES-62 (Whelan et al., 2000) and SEA 

(MacDonald et al., 2001). Specifically, SEA matures BM-derived DC to express 

intermediate levels of MHC Il compared to LPS, yet without any increase in production of 

IL-12p4O, IL-12p7O, IL-6, IL-4, or TNFcc, or any increase in expression of CD40, CD80, 

CD86, or OX40L (MacDonald et al., 2001). Similarly, ES-62 matures BM-derived DC 

204 



without any increase in co-stimulatory factor expression and with limited up-regulation of 

IL-12p7O, compared to LPS (Whelan et al., 2000). Despite these very limited activation 

states, DC matured with ES-62, or SEA, were both potent drivers of Th2 responses 

(Whelan et al., 2000; MacDonald et al., 2001). However, although the maturation state 

induced by 0-3hRP bears similarity to that reported for SEA and ES-62, DC/0-3hRP do 

appear to have a more highly activated phenotype, evident by their increased IL- I 2p4O and 

IL-6 production, and up-regulated CD40 and CD86 expression. Moreover, in contrast to 0- 

3hRP, both ES-62 and SEA stimulated some up-regulation of IL-10 production. Therefore, 

whilst the limited activation state of DC/0-3hRP might suggest a potential to drive Th2 

responses, the up-regulated pro-inflammatory cytokine production and co-stimulatory 

factor expression suggests otherwise. 

As a point of note, when compared to DC generated ftom C57BI/6 mice, BALB/c 1DC 

appeared to be more sensitive the stimulatory actions of 0-3hRP, demonstrated by a greater 

fold-increase in cytokine production and expression of MHC 11 and co-stimulatory factors. 

One potential explanation for this observation could be the differential expression of PRRs 

upon these cells (Liu et al., 2002). Alternatively, there could be differences in the 

responses to receptor ligation between mouse strains, however, this is an area in which 

further research is awaited. 

6.4.6 Summary 

In summary, soluble schistosome PAMPs released during transforination (0-3hRP) 

stimulate maturation of iDC, corresponding with up-regulation of MHC 11 and co- 

stimulatory factor expression, and increased cytokine production. This suggests that DC 

stimulated with 0-3h" may play a role in developing the innate response, and have an 

increased capacity to prime T-cell responses. However, the maturation state of DC/0-3hRP 

appears limited compared to that induced by Th I -driving LPS and Th2-driving Zymosan 

A, which both stimulated greater overall expression of cytokine, MHC 11, and co- 

stimulatory factors. The specific maturation profiles of these control PAMPs were 

significantly different to each other, but because maturation with 0-3hRP differed from 

both LPS, and Zymosan A, it is difficult to speculate what effect DC/0-3hRP would have 

on T-cell polarisation. In this respect, 0-3hRP stimulated a DC maturation state not unlike 

that reported for the potent helm inth-deri v ed Th2 drivers, ES-62 and SEA. Therefore, 
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further investigation is required into the outcome of T-cell priming by DC matured with ()- 
3hR-P in order to more fully understand how interactions between schistosome PAMPS and 

the innate immune system may effect the polarisation of the acquired immune response. 
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CHAPTER 7 

PRIMING AND POLARISATION OF THE ACQUIRED IMMUNE 

RESPONSE BY DC MATURED WITH RELEASED SCHISTOSOME 

PAMPS 



7.1 INTRODUCTION 

The generation of cell-mediated or humoral acquired immunity can be critical to the 

outcome of infections, and is characterised by selective clonal expansion of Thl or Th2 

effector cells respectively. Generation of the correct type of response can confer protection 

against pathogens or disease, whereas the incorrect response may lead to immune-related, 

or disease-related, pathology. Many factors have been implicated in influencing 
differentiation of naYve T-cells towards committed Thl or Th2 effector lineages, but of 

critical importance is the outcome of the innate immune response during infection (Fearon 

and Locksley, 1996; Medzhitov and Janeway, 1997). 

In this respect, DC form the link between the innate immune system and the acquired 

immune response, initiating naYve Th cell expansion and differentiation by delivering 

antigenic (signal 1) and co-stimulatory (signal 2) messages. Furthermore, recent work has 

demonstrated that DC are highly plastic, with the ability to express a range of differential 

maturation phenotypes upon interpretation of the nature of the pathogen (via PAMPs), or 

the disease state (via tissue factors and cytokines). This flexibility allows the DC to prime 

for either biased Th I -type or Th2-type responses, or mixed Th 1/ Th2 responses (possibly 

representing ThO cells) (Whelan et al., 2000; MacDonald et al., 2001; de Jong et al., 2002; 

Manickasingham et al., 2003), and has led to the concept that DC deliver a third 

4polansing' signal (signal 3) to the expanding T-cell population (Kalinski et al., 1999). 

In Chapter 6,1 have described how 0-3hRP drives DC maturation which is charactensed 

by up-regulated MHC 11 expression, co-stimulatory factor expression, and cytokine 

production. However, whether stimulation with 0-3hRP increases the ability of DC to 

prime naYve T-cells remains to be established. Furthermore, despite analysis of their 

maturation state, it remains difficult to predict whether DC matured with 0-3hRP would 

drive a biased Th I or Th2 T-cell response, or a non-polarised response. 

To determine the outcome of T-cell pnming by 0-3h"-matured DC requires a neutral 

anti gen-presentati on assay from which the T-cell response can be quantified and 

differentiation towards the Thl or Th2 poles established. 
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Both in vitro and in vivo assays of T-cell priming have been described. Since many factors 

can affect the outcome of priming, including the antigen dose (e. g. Reudl et al., 2000; 

Bonnstra et al., 2003), and APC : T-cell ratio (Tanaka et al., 2000; Manickasingham et al., 
2003), in vitro T-cell priming assays, in which DC are cultured directly with T-cells, have 

the benefit that conditions can be much better defined, and are useful for determining how 

effective DC are in driving primary responses. In comparison, in vivo T-cell priming 

assays, in which antigen-loaded DC are injected into recipient mice and effector cells 

subsequently re-stimulated in vitro, offer the distinct advantage that the function of the DC 

can be determined in physiological context. 

Transgenic (Tg) mice are available that contain re-arranged TCR(X and TCRP genes, such 

that their germline DNA encodes a TCR specific for a peptide fragment. Several types of 

TCR Tg mice have been created, such as the D01 1.10 strain which express TCRs specific 

for a chicken ovalburnin peptide (OVA323-339) bound to I-A d MHC 11 (Murphy et al., 1990), 

or a strain which recognise a pigeon cytochrome C peptide bound to I-E k. Using antigen- 

restricted Tg T-cells in both in vitro and in vivo priming assays has the benefit that the 

frequency of antigen- specific responder cells is greatly increased, allowing for greater 

sensitivity in detecting differences between T-cell responses. In addition, this system 

controls for any variation in the antigenicity of different PAMP preparations, such that 

only the effect on DC polarising ability is studied. This antigen-restricted T-cell priming 

system has become widely used, although similar studies have employed various different 

assay regimes (Whelan et al., 2000; Manickasingham et al., 2003; Boonstra et al., 2003). 

Most importantly, in some studies DC are matured with PAMPs prior to in vitro culture 

with T-cells (Whelan et al., 2000), whereas others report co-culture of T-cells and DC in 

the presence of PAMPs (Manickasingham et al., 2003). Since some potential components 

of 0-3hRP may cause T-cell apoptosis and inhibition of proliferation (Vieira et al., 1986; 

Chen et al., 2002), the former system has the distinct advantage that these PAMPs can be 

removed prior to T-cell assay, and will thus be used in this study. 

Thl and Th2 cell populations are predominantly characterised by their differential 

production of EFNy and IL-4, respectively. Therefore many studies deten-nine levels of T- 

cell polarisation by measurement of these 'signature' cytokines. In addition, other 

cytokines can also be used to indicate Th2 polansation, such as IL-5. Since it is generally 

accepted that IL-4 is more potent than IFNy, direct comparisons of cytokine quantities are 
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obsolete, rather it is more relevant to compare cytokine ratios. Therefore, the T-cell 

polarising capacity of DC matured with 0-3hRP will be compared to those matured alone, 

with LPS, or with Zymosan A, as controls for cells priming mixed Thl / Th2, or polarised 

Th I, or Th2 responses respectively (Whelan et al., 2000; Manickasingham et al., 2003). 

Therefore, the effect of 0-3hRP on the ability of DC to prime both T-cell proliferation and 

polarisation will be assessed using an in vitro assay. In addition, the effect of 0-3hRP on 

the T-cell polarising capacity of DC will be determined in vivo. Polarisation will be 

determined by production of 'signature' T-cell cytokines, and will be compared to mixed 
Thl / Th2, and polarised Thl and Th2 control profiles. 

7.2 MATERIALS AND METHODS 

7.2.1 Mice 

A breeding colony of DOI 1.10 (xp TCR Tg mice (on a BALB/c background) were a gift 

from Paul Garside (University of Glasgow), and were maintained in-house at the 

University of York. BALB/c mice were obtained from Harlan UK Ltd, Bicester, UK. Mice 

were age and / or sex matched in individual experiments. 

7.2.2 Generation of differentially-matu red DC 

Bone marrow from BALB/c mice (Harlan UK Ltd) was used to generate iDC by the 

'Plate' method, as previously described (Section 6.2.1). The iDC were stimulated 

overnight in 24-well plates with the various pathogen PAMPs, as previously described 

(Section 6.2.3). Briefly, cells were cultured overnight alone, or with 0-3hRP (20 - 40 Vg 

ml) and PMB (3 [ig / ml), LPS (100 ng / ml), or Zymosan A (1.6 ýtg / ml). In some 

experiments, additional controls of iDC cultured with PMB, or PMB and a concentration 

of LPS equivalent to the low levels of endotoxin contained within 0-3hRP, were included. 

For assays in which the resulting PAMP-matured DC (mDQ were to be used for in vivo 

T-cell priming (Section 7.2.4), OVA323-339 (323-ISQAVHAAHA-EMAGR-339) peptide 

(100 nM; Albachem, University of Edinburgh, UK) was also added the DC cultures. 

Culture of iDC with OVA323-339 alone did not result in increased cytokine production, 

providing confirmation that the peptide was free of endotoxin. Additionally, in some 

210 



experiments low-endotoxin anti-CD40 antibody (5 ýtg / ml; clone HN140-3; BD 

PharMingen) was added to the culture at the time of DC exposure to PAMPs. After 

overnight maturation, mDC were collected and washed 3 times in 5 ml RPMI 1640 prior 

to use in either in vitro (Section 7.2.3), or in vivo (Section 7.2.4), T-cell priming assays. 

7.2.3 In vitro T-cell priming assay 

7.2.3.1 Purification of splenic CD4+ cells 

CD4+ cells were purified from spleens of DOI 1.10 Tg mice, using Magnetic-Activated 

Cell Sorting (MACS), following the manufacturer's instructions. Throughout this process 

the cells were kept sterile. Briefly, spleens were removed and placed in DCP media, 

consisting of R_PM1 1640 supplemented with 10% heat-inactivated FCS, penicillin (200 U 

ml), streptomycin (100 ýtg / ml), L-glutamine (2 mM), and P -mercapto ethanol (50 ýtM). 

Single cell suspensions were created using 40 [im cell strainers (Falcon, Becton- 

Dickenson, Oxford, LTK). Cells were centrifuged at 350 g, for 5 min, and the supernatant 
discarded. The cells were then incubated with ACK buffer (10 ml; Section 4.2.2) for 5 min 

at RT to lyse red blood cells. ACK buffer was then quenched with DCP (10 ml) and the 

cells washed once in DCP (10 ml). Splenocytes were counted using a haernocytometer and 

re-suspended in chilled de-gassed MACS buffer (MACSB; pH 7.2; PBS containing 2mM 

EDTA and 0.5% BSA; 90 ýd / 107 cells). Anti-CD4 microbeads (Miltenyi Biotec, Bisley, 

UK; 10 [t, / 107 cells) were incubated with the cell suspension for 15 min at 4 T. The 

splenocytes were then washed and resuspended in MACSB, and CD4+ cells positively 

selected by passing the suspension through a MACS MS+ column (Miltenyi Biotec). Flow- 

cytometric analysis determined the purified cells to be > 90% CD4+ (data not shown). 

7.2.3.2 Priming ofD01 1.10 CD4+ splenocytes by dififerentially matured DC 

T-cell proliferation assays were performed in 96-well plates (200 [d), whereas cytokine 

assays were performed in 96-well (200 [d), or 24-well (1 ml), plates. Purified CD4+ 

splenocytes (2-5 x 105 cells / ml) were cultured with y-irradiated (1500 krads) mDC (2.5 x 

104 cell / ml; Section 7.2.2) for 72 hr in DCP media with, or without, various 

concentrations of OVA323-339 (1 
- 100 nM). 
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For the proliferation assay, cells were then pulsed with [3 H]-Thymidine (0.5 ýtCi / well; 

Amersham Pharmacia), and harvested 18 hr later using a Packard Cell Harvester (Packard, 

Pangbourne, UK). Cell proliferation was detennined according to the incorporation of 3 H- 

thymidine into DNA using a TopCountTM scintillation counter (Packard). 

Alternatively, to deten-nine T-cell cytokine production, phorbol myristate acetate (50 ng / 

ml) and ionomycin (500 ng / ml; Sigma-Aldrich) were added to the cells after the first 72 

hr of culture. The culture supernatants were then removed 24 hr later and frozen at -20 T. 

7.2.4 In vivo T-cell priming assay 

For in vivo T-cell priming, mDC (3 - 4.5 x 105 cells in 100 [d) were administered to 

recipient nalve DO 11.10 Tg mice by subcutaneous injection over the sternum. After 7 

days, the spleens and axillary lymph nodes (sdLN) were removed aseptically into RPMI 

1640 and single cell suspensions created using 40 l_tm cell strainers. Cells were then 

washed, transferred to 96-well plates (sdLN cells, 2x 10' cells / well; splenocytes, 4x 105 

cell / well), and cultured with OVA323-339 peptide (100 - 1000 nM), or plate-bound anti- 

CD3E; mAb (0.25 pg / well; Clone 145-2CI 1; BD PharMingen). To prepare plate-bound 

anti-CD36 mAb, wells were coated with antibody in PBS (30 pl), incubated for 2 hr at 37 

'C, and then washed 3 times with PBS (150 ltl). Cells were cultured in R_PMI 1640 

supplemented with 3% heat-inactivated normal mouse serum (instead of FCS; produced in 

house), penicillin (200 U/ ml), streptomycin (100 [tg / ml), L-glutamine (2 mM), and P- 

mercaptoethanol (50 ýtm). After 3 days, culture supernatants were removed and frozen at - 

20 OC to await detection of cytokines by ELISA. 

7.2.5 Cytokine ELISAs 

Culture supernatants were tested neat, or at a 1: 2 dilution, for the presence of IL-4, IL-5 

and IFN7, using ELISA (Section 3.2.6 & 6.2.5). Lower limits of detection are shown on 

figures as dashed lines or arrows. The coating and detecting antibody clones for EL-5 

(TRFK5 and TRFK4, respectively) were obtained from BD PharMingen, whereas the 

recombinant standard was from R&D Systems. 
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7.2.6 Statistics 

Comparisons of data within an individual experiment were tested for significance using the 

two-tailed Students Mest, assuming equal variance ifp > 0.05 when tested with the 

Levene's test. Alternatively, data was expressed as the log value of the fold-increase in 

cytokine production when compared to the mean value produced by cells primed with 
DC/media. These values were then pooled from multiple individual experiments. The 

mean log data from pooled experiments was then tested for significance difference from a 

theoretic value of 0 (equivalent to a1 -fold increase, which represents cells primed with 

DC/media) using the two-tailed one-sample Students Mest. Values where p:! ý 0.05 were 

considered to be significant, whereas values where p ý! 0.05 were considered not 

significant. The following nomenclature was used to denote the value of significance: *p 

:! ý 0.05, ** p:! ý 0.01, *** p:! ý- 0.001. 

7.3 RESULTS 

7.3.1 DC matured with 0-3hRP have increased capacity to prime T-cells 

An in vitro 'anti gen-restri cted' assay was used to determine whether DC matured with 0- 

3hRP, or other control PAMPs, acquired a phenotype exhibiting increased capacity to 

prime T-cells. In this assay, differentially-matured DC were cultured with purified CD4+ T- 

cells from DOI 1.10 Tg mice, in the presence of varying concentrations of the model 

antigen (OVA). Subsequent proliferation was assessed by measurement of DNA synthesis, 

via the incorporation of 3 H-Thymidine. 

Compared to DC matured with media alone (DC/media), or with LPS and PMB (DC/LPS 

+ PMB), DC matured with 0-3hRP and PMB (DC/0-3hRP) primed for a significant 

increase in anti gen-specific T-cell proliferation in the presence of I and 10 nM OVA 

(Figure 7.1 a). Moreover, this heightened capacity to prime T-cell proliferation was 

enhanced by maturing DC with a greater concentration of 0-3hRP (Figure 7.1 a). 

Background proliferation of punfied CD4+ splenocytes was minimal (up to 16-fold less 

than DC-media; Figure 7.1 a). As expected, y-irradiated DC cultured without T-cells did not 

proliferate at all, demonstrating that they did not contribute to the proliferation observed in 
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the mixed T-cell cultures (data not shown). DC matured with LPS (DC/LPS) or Zymosan 

A (DC/Zymosan A) also exhibited an increased capacity to drive T-cell proliferation 

compared to DC-media (Figure 7.1 b). 

7.3.2 0-3hRP instructs DC to prime for Th2 polarisation in vitro 

To determine if DC/0-3hRP polarised the expanding T-cell population, the profile of Th I- 

signature (EFNy) and Th2-signature (IL-4) cytokine production was compared to that of T- 

cells cultured with the neutral DC/media control. A DC to T-cell ratio of 1: 10 was used as 

previous studies demonstrated this to result in a mixed Th response, characterised by both 

JFNy and IL-4 production (Whelan et al., 2000; Manickasingham et al., 2003). DC 

matured with either Th I -associated LPS (Whelan et al., 2000), or Th2-associated, 

Zymosan A (Manickasingham et al., 2003), were assayed as positive controls. The data 

from two individual experiments are presented (Figure 7.2). 

DC matured with PMB (DC/PMB) and DC/LPS + PMB primed T-cells for slightly 

increased EFNy production compared to DC/media (Figure 7.2a). DC/0-3hRP also primed 

for increase IFNy production compared to DC/media, but this was not more than that 

primed by the DC/PMB and DC/LPS + PMB negative controls (Figure 7.2a). Conversely, 

priming with DC/LPS led to a much greater increase in IFNy production than priming with 

any other mDC. In contrast to IFNy, DC/0-3hRP drove increased production of the 

reciprocal cytokine IL-4 compared to controls, whereas DC/LPS did not (Figure 7.2b). A 

similar pattern was observed in a repeat experiment, in which DC/0-3hRP primed T-cells 

for increased IL-4 but with little increase in EFNy production compared to DC/media, 

whereas DC/LPS primed for increase EFNy but not EL-4 production (Figure 7.2c & d). 

Additionally, DC/Zymosan A were also analysed in the second experiment, and primed for 

a similar cytokine profile to DC/0-3hRP, with increased IL-4 production but little increase 

in IFNy (Figure 2.2c & d). DC or CD4+ cells cultured alone did not produce detectable 

cytokine (data not shown). Taken together, the data from these experiments suggests that 

DC/0-3hRP promotes Th2 polansation. Indeed, increasing the dose of 0-3hRP appeared to 

enhance the DC capacity to drive Th2 polansation (Figure 7.3a & b). It is noteworthy that 

in these experiments increased production of one polar cytokine (i. e. IFNy or IL-4) did not 
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necessarily result in inhibition of the reciprocal polar cytokine when compared to 

DC/media. 

7.3.3 0-3hRP instructs DC to prime for Th2 responses in vivo 

During percutaneous infection with sch'stosomes, initial T-cell priming occurs In the sdLN 
(Constant et al., 1990; Pemberton et al., 1991). Therefore, I wanted to examine whether 
MC matured in vitro with 0-3hRP could prime for Th2 responses in vivo, after delivery via 

the skin. Consequently, DOI 1.10 mice were injected subcutaneously with differentially 

matured DC previously pulsed with OVA antigen; the outcome of T-cell priming was 
determined after 7 days by in vitro re-stimulation of sdLN cells with OVA. As with the in 

vitro assays, Th I- and Th2-associated, or neutral DC, were included as markers of 

polarisation. In addition to JL-4, production of another Th2 signature cytokine, IL-5, was 

also analysed. 

Re-stimulation with limiting dilutions of OVA (100 - 1000 nM) revealed that sdLN cells 
from mice injected with LPS-matured DC produced approximately 5-fold greater 

IFNy than sdLN cells from mice injected with DC/media (Figure 7.4a). In contrast, sdLN 

cells from mice injected with DC/0-3hRP, or DC/Zymosan A, produced no detectable 

IFNy upon re-stimulation with 100 nM OVA and only two-fold more than DC/media 

control, when re-stimulated with 1000 nM OVA. Analysis of Th2 signature cytokines 

revealed that sdLN cells from DC/0-3hRP recipients produced dramatically increased 

levels of IL-4 and IL-5 upon re-stimulation compared to cells from DC/media recipients 

(Figure 7.4b & c). Moreover, DC/LPS stimulated no significant increase in fL-4 

production and only a little increase in IL-5 production. Similarly to DC/LPS, 

DC/Zymosan A did not prime for increased IL-4 production, and only a limited increase in 

IL-5 production. However, in experimental repeats, DC/0-3hRP and DC/LPS appeared to 

drive little increase in IFNy production, whereas DC/Zymosan A stimulated increased 

IFN7, IL-4, and IL-5 production. Therefore, the data from three experiments (representing 

3 individual mice) was collated and analysed. Due to variations in overall cytokine 

production between the experiments, the data was expressed as the log fold-increase in 

cytokine production compared to the DC/media control. Therefore, in this analysis the 

DC/media control assumes the value of zero. In one experiment, sdLN cells from mice 
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injected with DC/LPS appeared to produce little cytokine, and so this data was 
disregarded. 

Analysis of the pooled data demonstrated that sdLN cells from DC/0-3hRP recipients 

appear to produce an overall decreased level of IFNy production upon re-stimulation with 

either concentration of OVA, compared DC/media (Figure 7.5a). In contrast, DC/0-3hRP 

primed for increased IL-4 and IL-5 production at both concentrations of OVA, compared 

to DC/media (Figure 7.5b & c). It is noteworthy that DC/0-3hRP-primed sdLN cells 

produced significantly more IL-4 and IL-5 than DC/media-primed cells in two of the three 

individual experimental repeats when re-stimulated with 100 nM OVA, and in all repeats 

when re-stimulated with 1000 nM OVA (data not shown). Overall, DC/LPS appeared to 

drive increased EFNy production, although the variation between experiments was 

considerable (Figure 7.5a). In addition, DC/LPS primed for little, or no, increase in IL-4 

and IL-5 production compared to that primed by DC/0-3hRP (Figure 7.5b & c). 

Surprisingly, DC/Zymosan A primed sdLN cells for increased EFNy and IL-5 production 

but with little increase in IL-4, apart from a small elevation upon re-stimulation with 1000 

nM OVA, and therefore appear to be less potent drivers of Th2 polarisation than DC/0- 

3hRP. 

Interestingly, the log fold-increases in IFN7 production primed by DC/LPS and 

DC/Zymosan A were quite low when compared to the log-fold increases in EL-4 and IL-5 

production primed by DC/0-3hRP. This is probably due to the relatively high levels of 

EFN7 but low levels / undetectable levels of IL-4 or IL-5 produced by DC/media (Figure 

7.4). 

To determine if subcutaneous injection of the differentially matured DC also affected the 

systemic polarisation of the T-cell population, splenocytes ftorn recipient mice were re- 

stimulated in vitro, in the same manner as for sdLN cells. Splenocytes ftorn mice injected 

with DC/0-3hRP produced higher levels of IFNy when re-stimulated with 100, or 1000, 

nM OVA compared to those from DC/media recipients but lower levels than splenocytes 

from mice injected with DC/LPS (Figure 7.6a). Splenocytes from mice injected with 

DC/Zymosan A also produced high levels of IFNy similar to, or less than, that produced by 

DULPS recipients upon re-stimulation with 1000, or 100, nM OVA respectively. Analysis 
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of 'Th2 signature' cytokines demonstrated that both splenocytes from mice injected with 

DC/0-3hR-P and those injected with DC/Zymosan A, produced dramatically increased 
levels of IL-4 compared to DC/media, whereas splenocytes primed with DC/LPS produced 
little (1000 nM OVA), or no (100 nM OVA), increase (Figure 7.6b). In addition, 

splenocytes from DC/0-3hRP recipients appeared to produce relatively high levels of IL-5 

compared to those from DC/media recipients (Figure 7.6c). In contrast, DC/LPS and 
DC/Zymosan A primed for less, or no, increase in IL-5 production. 

The data from three individual experiments were pooled, as for sdLN, allowing greater 

confidence in the trends observed in cytokine production. All PAMP-stimulated DC 

appeared to drive increased IFNy production compared to DC/media (Figure 7.7a). 

Moreover, this increase in IFNy production was similar between DC/0-3hRP, DC/LPS, and 

DC/Zymosan A. In contrast, splenocytes from mice injected with DC/0-3hRP and 
DC/Zymosan A but not DC/LPS produced increased IL-4 and IL-5 compared to cells from 

DC/media recipients (Figure 7.7b & c). Indeed, when splenocytes were re-stimulated with 
100 nM OVA, DC/0-3hR-P appeared to be a more potent promoter of IL-4 and IL-5 

production than DC/Zymosan A. Moreover, cells from DC/LPS recipients appeared to 

produce an overall decreased level of IL-5 production compared to splenocytes primed 

with DC/media, when re-stimulated with 1000 nM OVA. 

It is noteworthy that splenocytes cultured with anti-CD3 antibody (which non-specifically 

stimulates all T-cells) produced similar cytokine profiles to that of their OVA-re- 

stimulated counter-parts. In this respect, splenocytes from mice injected with DC/0-3hRP, 

DC/LPS and DC/Zymosan A, all produced similarly increased levels of IFNy compared to 

DC/media primed splenocytes, but only splenocytes from DC/0-3hRP and DC/Zymosan A 

recipients produced increased IL-4 and EL-5 (Figure 7.8a, b, c). Moreover, when the CD3- 

stimulated cytokine production was averaged for 3 separate experiments, the profiles were 

also very similar (Figure 7.9a, b, c). Considerable variation in EFNy production was 

observed between experiments due to high-level production by cells from DC/media 

treated mice in one experiment (data not shown). Although a large variation in the log fold- 

increase of IL-5 production compared to DC/media was apparent (Figure 7.9c), it is 

noteworthy that in each individual experiment, both DC/0-3h" and DC/Zymosan A 

primed for significant increases compared to DC/media. In contrast, in only one 
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experiment did DC/LPS prime for a significant increase in IL-5 production, with 

significantly reduced levels apparent in one of the repeats. 

7.3.4 Culture of DC with anti-CD40 antibody leads to a heighten ability to drive 

antigen-specific responses but impairs the generation of Th2 polarised responses 

One of the factors thought to play a pivotal role in the activation and function of DC is the 

interaction between CD40 and CD 154. In this respect, co-culture of DC with 0-3hRP and 

anti-CD40 antibody increased their production of IL- 12, a cytokine known to contribute to 

Thl development, whilst having limited effects on Th2-associated cytokines (Section 

6.3.8). However, the role of CD40-signalling in T-cell polarisation is controversial 
(discussed in Section 6.4). Therefore, the in vivo priming assay was used to deterimne 

whether stimulation through CD40 affects the ability of DC/0-3hRP to drive Th2 polarised 

responses. 

Upon re-stimulation, sdLN cells from mice injected with anti-CD40-treated DC/media 

produced 3-fold more EFNy, compared to cells from mice injected with untreated 

DC/media (Figure 7.1 Oa). Similarly, DC/0-3hRP treated with anti-CD40 antibody primed 

for 2-fold greater IFN7 production compared to the levels produced by sdLN cells from 

DC/0-3hRP recipients. In addition, analysis of Th2 cytokines revealed that sdLN cells from 

anti -CD40-treated DC/media recipients also produced increased levels of IL-4 and IL-5 (3- 

to 4-fold, respectively) compared to the low levels produced by DC/media-primed cells 

(Figure 7.1 Ob & c). In contrast, compared to the high levels of EL-4 and IL-5 primed for by 

DC/0-3hRP, sdLN cells from anti-CD40-treated DC/0-3hRP recipients produced 

significantly less Th2 cytokines (2- to 3-fold, respectively). 
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Figure 7.1 DC/0-3hRP promote T-cell proliferation. Splenic CD4' 

cells from DOI 1.10 mice were cultured alone (X), or with mDC 

previously matured alone (0), with '20' ýtg / ml (* ) or '40' ýtg / ml (0) 

0-3hRP in the presence of PMB, or with LPS and PMB (0) (a). In the 

same experiment, CD4' cells were also cultured with mDC previously 

matured with LPS (100 ng / ml; *), or Zymosan A (1.6 ýtg / ml; 0) (b). 

Cells were then cultured in the presence of OVA peptide (0 - 100 nM) for 

72 hr, before measuring DNA synthesis by uptake of IH-Thymidine. Data 

is presented as the mean ± SEM of 6 wells. Data is representative of 2 

experiments. 
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Data Set 1 Data Set 2 

a. IFN7 c. IFN7 

b. IL-4 d. IL-4 

Figure 7.2 DC/0-3hRP polarise nalive CD4' T-cells towards a Th2 

phenotype in vitro. iDC matured alone, with 0-3hRP (20 ýtg / ml) + PMB, 

with LPS (100 ng / ml), with LPS + PMB, or with Zymosan A (1.6 ýtg 

ml), were co-cultured with purified splenic CD4+ cells from DOI 1.10 

mice in the presence of OVA peptide (10 nM). After 3 days, cells were 

pulsed overnight with phorbol myristate acetate and ionomycin. The 

supernatants were analysed by ELISA for production of IFNy (a & c) and 

IL-4 (b & d). Data from two different experiments is presented (note that 

low levels of IL-4 in Data Set I were probably due to omission of P- 

mercaptoethanol from the culture medium). Data Set I represents values 

from pooled wells (a & b). Data Set 2 is presented as the mean ± SEM of 

3 wells (c & d). Arrows denote the lower detection limit of ELISA. Levels 

of significance are between DC/media control and test groups. 
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Figure 7.3 Th2-polarising function of DC is dependent on 0-3hRP 

dose. iDC matured alone, with 0-3hRP (20 - 40 ýLg / ml) + PMB, or with 
Zymosan A (1.6 [tg / ml), were co-cultured with purified splenic CD4+ 

cells from DO 11.10 mice, in the presence of OVA peptide (10 nM). After 

3 days, cells were pulsed overnight with PMA and ionomycin. The 

supernatants were analysed by ELISA for production of IFNy (a) and IL-4 

(b). Data is presented as the mean ± SEM of 5 wells. Arrows denote the 

lower detection limit of ELISA. Levels of significance are between 

DC/media control and test groups. 
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Figure 7.4 DC/0-3hRP drives polarisation towards a Th2 phenotype 

in vivo. DOI 1.10 mice were injected subcutaneously with OVA-pulsed 

DC previously matured alone, with 0-3hRP (40 ýtg / ml) + PMB, with 

LPS (100 ng / mi), or with Zymosan A (1.6 pg / ml). After 7 days, sdLN 

cells were re-stimulated in vitro with OVA (0 - 1000 nM) for 72 hr. 

Supernatants were analysed by ELISA for production of IFNy (a), IL-4 

(b), and IL-5 (c). Data is presented as the mean ± SEM of 3 wells. Arrows 

denote the lower detection limit of ELISA. Levels of significance are 

between DC/media control and test groups. 
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Figure 7.5 DC/0-3hRP drives polarisation towards a Th2 phenotype 

in vivo. In three separate experiments DO 11.10 mice were injected 

subcutaneously with OVA-pulsed DC previously matured alone, with 0- 

3hRP (40 ýtg / ml) + PMB, with LPS (100 ng / ml), or with Zymosan A 

(1.6 ýtg / ml). After 7 days, sdLN cells were re-stimulated in vitro with 

OVA (0 - 1000 nM) for 72 hr. Supernatants were analysed by ELISA for 

production of IFNy (a), IL-4 (b), and IL-5 (c). Data is expressed as log 

fold-increase in cytokine production compared to DC matured with 

media. Data is presented as the mean ± SEM of 3 individual experiments, 

except LPS for which n=2. Levels of significance are between 

DC/media control and test groups. 
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Figure 7.6 DC/0-3hRP drives systemic Th2 polarisation. DOI 1.10 

mice were injected subcutaneously with OVA-pulsed DC previously 

matured alone, with 0-3hRP (40 pg / ml) + PMB, with LPS (100 ng / ml), 

or with Zymosan A (1.6 ýtg / ml). After 7 days, splenocytes were re- 

stimulated in vitro with OVA (0 - 1000 nM) for 72 hr. Supernatants were 

analysed by ELISA for production of IFNy (a), IL-4 (b), and IL-5 (c). 

Data is presented as the mean ± SEM of 3 wells. Arrows denote the lower 

detection limit of ELISA. Levels of significance are between DC/media 

control and test groups. 
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Figure 7.7 DC/0-3hRP drives systemic Th2 polarisation. In three 

separate experiments DOI 1.10 mice were injected subcutaneously with 

OVA-pulsed DC previously matured alone, with 0-3hRP (40 ýtg / ml) + 

PMB, with LPS (100 ng / ml), or with Zymosan A (1.6 ýtg / ml). After 7 

days, splenocytes cells were re-stimulated in vitro with OVA (0 - 1000 

nM) for 72 hr. Supernatants were analysed by ELISA for production of 

IFN7 (a), IL-4 (b), and IL-5 (c). Data is expressed as log fold-increase in 

cytokine production compared to DC matured with media. Data is 

presented as the mean ± SEM of 3 individual experiments. Levels of 

significance are between DC/media control and test groups. 
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FiLyure 7.8 DC/0-3hRP drives systemic Th2 polarisation. DOI 1.10 mice 

were injected subcutaneously with OVA-pulsed DC previously matured 

alone, with 0-3hRP (40 ýtg / ml) + PMB, with LPS (100 ng / ml), or with 

Zymosan A (1.6 ýtg / ml). After 7 days, splenocytes were re-stimulated in 

vitro with anti-CD3 antibody for 72 hr. Supernatants were analysed by 

ELISA for production of IFNy (a), IL-4 (b), and IL-5 (c). Data is presented 

as the mean ± SEM of 3 wells. Arrows denote the lower detection limit of 

ELISA. Levels of significance are between DC/media control and test 

groups. 
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Figure 7.9 DC/0-3hRP drives systemic Th2 polarisation. In three 

separate experiments DOI 1.10 mice were injected subcutaneously with 

OVA-pulsed DC previously matured alone, with 0-3hRP (40 gg / ml) + 

PMB, with LPS (100 ng / ml), or with Zymosan A (1.6 ýtg / ml). After 7 

days, splenocytes were re-stimulated in vitro with anti-CD3 antibody for 

72 hr. Supernatants were analysed by ELISA for production of IFNy (a), 

IL-4 (b), and IL-5 (c). Data is expressed as log fold-increase in cytokine 

production compared to DC matured with media. Data is presented as 

mean ± SEM of 3 individual experiments. Levels of significance are 

between DC/media control and test groups. 
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Figure 7.10 Ligation of CD40 inhibits the ability of DC/0-3hRP to 

drive Th2 polarisation. DOI 1.10 mice were injected subcutaneously with 

OVA-pulsed DC previously matured alone, or with 0-3hRP (40 [tg / ml) + 

PMB, in the presence (hatched bars), or absence (open bars), of anti-CD40 

antibody (5 ýtg / ml). After 7 days, sdLN cells were re-stimulated in vitro 

with 1000 nM OVA for 72 hr. Supernatants were analysed by ELISA for 

production of IFNy (a), IL-4 (b), and IL-5 (c). Data is presented as mean ± 

SEM of 3 wells, and was obtained from the same experiment presented in 

Figure 7.4. Data is representative of 2 experiments. Arrows denote the 

lower detection limit of ELISA. Levels of significance are between cells 

cultured with, or without, anti-CD40 antibody. 

228 

DC/media DC/0-3hRP 

DC/media DC/0-3hRP 

DC/media DC/0-3hRP 



7.4 DISCUSSION 

hi this chapter, a series of experiments were performed using an antigen-restricted TCR Tg 

system to determine if exposure to released schistosome PAMPs affects the capacity of DC 

to prime and polarise T-cells. I demonstrate that maturation with 0-3hRP increases the 

ability of DC to stimulate clonal expansion of T-cells. Furthermore, exposure to 0-3hRP 

instructs DC to drive differentiation of the proliferating T-cells towards the Th2 pole in 

vitro. The capacity of DC/0-3hRP to drive Th2 polarisation was further demonstrated using 

a more physiologically relevant in vivo priming assay. 

7.4.1 T-cell proliferation in vitro 

A well-characterised in vitro T-cell priming assay, in which DC were co-cultured with 

purified TCR Tg T-cells in the presence of model antigen, was used to show that DC 

matured with 0-3hRP activate T-cells to undergo greater clonal expansion than DC 

matured alone. Clonal expansion of naYve T-cells requires signalling through both the TCR 

(signal 1), and co-stimulatory receptors (signal 2). This occurs following ligation of these 

receptors by specific antigen-MHC 11 complexes and co-stimulatory factors expressed 

upon APC. Importantly, the strength of signalling, determined by the amount of receptor 
ligation, is proportional to subsequent T-cell proliferation (Murtaza et al., 1999). 

Moreover, cytokines such as IL-12 and IL-6 are also co-stimulatory factors, increasing T- 

cell expansion during priming (Vink et al., 1990; Kubin et al., 1994). Therefore, the 

increased T-cell proliferation stimulated by DC/0-3h" probably directly relates to their 

up-regulated surface expression of MHC H and the co-stimulatory factors CD86 and 
CD40, and their up-regulated production of IL-6 and IL-12p4O (Section 6.3.7). This 

confirms that released schistosome PAMPs stimulate maturation of DC and highlights the 

relevance of this to the functional phenotype of these cells. Moreover, this study indicates 

that APC exposed to released schistosome PAMPs at the onset of infection may have an 

increased capacity to prime schistosome-specific T-cell responses in the host. 

Both LPS and Zymosan A stimulated greater expression of MHC 11 and co-stimulatory 

factor expression upon DC compared to that stimulated with 0-3hRP, yet this did not 

confer greater levels of T-cell proliferation. This suggests that other factors also affect the 
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rate of clonal expansion. Indeed, IL- 10 produced by both DC/Zymosan A and DC/LPS 

(Section 6.3.7) could act in an autocrine manner to regulate the APC function of these 

cells. In addition, Th cells could limit their own proliferation, through mechanisms such as 

IL- 10 production. Alternatively, incorporation of 3 H-thymidine into DNA only measures 

proliferation between two time points, thus representing a 'snapshot' of cell proliferation. 

Therefore, it is possible that peak proliferation could have occurred earlier in cultures 

containing DC/Zymosan A, or DC/LPS. Assessment of actual T-cell numbers may more 

accurately address this issue. 

7.4.2 T-cell polarisation in vitro 

The same 'antigen-restricted' in vitro T-cell priming assay was also used to detennine the 

T-cell polarising capacity of DC/0-3hRP compared to the control DC. As a point of note, 

the cytokine production measured in these experiments also represents a 'snapshot' of 

polarisation at one point post-priming. Although this is sufficient for the purpose of my 

study, further analysis of the kinetics of cytokine production may produce a more detailed 

account of T-cell differentiation following priming with the differentially-matured DC. 

DC/media primed for production of the Thl cytokine IFNy and the Th2 cytokine IL-4. In 

contrast to this mixed or ThO profile, DC/LPS primed for increased production of EFNy but 

not IL-4, whereas DC/Zymosan A primed for increased production of IL-4 but not IFNy. 

Therefore, as expected DULPS promoted a more Th I -biased response, whereas 

DC/Zymosan A promoted a more Th2-biased response, agreeing with previous reports 

(Whelan et al., 2000; MacDonald et al., 2001; Manickasingham et al., 2003). In 

comparison to DC/media, and other negative control DC, DC matured with 0-3hRP primed 

for increased production of IL-4, but little or no increase in IFNy production. Therefore, I 

conclude that DC/0-3hRP promote Th2 polarisation in vitro. It is noteworthy that DC 

matured with 0-3hRP appeared equally as potent as those matured with Zymosan A in 

driving towards Th2 polarisation. 

The responder T-cell population used in these assays may have contained low levels of 

memory T-cells, thought to exist by expressing an additional endogenously rearranged 

TCR, which allows them to respond to cross-reactive environmental antigens (Lee et al., 

1996). Although originally linked to IL-4 production (Macatonia et al., 1995), the presence 
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of these memory cells is now thought to preferentially skew the T-cell population towards 

EFN7 rather than IL-4 production when stimulated with similar levels of OVA to those 

used in my study (Hosken et al., 1995; Lee et al., 1996; Manickasingharn et al., 2003). 

Thus, the possible presence of Thl -promoting memory cells in the responder T-cell 

population emphasises the potency of DC/0-3hRP and DC/Zymosan A to drive Th2 

responses, and DC/LPS to enhance Thl responses. Differences in the number of these cells 
in responder T-cell populations could explain the variation in overall cytokine production 
between individual experiments. Many studies have used naYve T-cells selected for 

expression of CD62L high as responder cells. However, this requires access to a flow- 

assisted cell sorter, which unfortunately was not possible during the course of my studies. 

Furthermore, recent studies demonstrate that memory T-cells can be CD62L high (London et 

al., 1999; Ben-Sasson et al., 2000), thus questioning the validity of using this marker to 

purify naYve cells. 

7.4.3 T-cell polarisation in vivo 

The same 'antigen-restricted' system was used to determine the in vivo T-cell priming 

capability of DC/0-3hRP. This assay required adoptive transfer of 'antigen-loaded' mature 
DC into nalve recipient Tg mice, and subsequent re-stimulation of sdLN, or splenic, 

effector cells in vitro. Due to restrictions on available mice, one mouse per DC-type were 

compared in individual experiments but the results from three experiments were pooled to 

give greater confidence in the data. However, due to variations in the overall levels of 

cytokine production between experiments, the data was first expressed as the log of the 

fold-increase in cytokine production over the DC/media control. The cytokine profiles 

generated in repeat experiments did vary, as is evident by the standard error of the pooled 

data, although this was more notable in the profile of IFN7 production, than EL-4 or IL-5, 

possibly reflecting differences in antigen-responsive memory populations within the 

individual mice. Further experimental repeats should reduce the error within this data. 

Moreover, repeating this study with a greater number of mice per experimental group 

would be an advantage, removing inherent errors incurred by the direct comparison of data 

from different experiments. However, in all experiments DC/0-3hRP primed for a dramatic 

increase in IL-4 and IL-5 production by sdLN cells compared to DC/media and DC/LPS. 

This is reflected by the significance of the pooled experimental data. Although in one 
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experiment, priming with DC/0-3hRP also resulted in a limited increase in EFNy 

production, analysis of the pooled data demonstrated that there was an overall decrease in 

production of this cytokine compared to priming with the DC/media control. This leads to 

the conclusion that DC matured with 0-3hRP promote Th2 polarisation in the sdLN, 

reinforcing the observations from the in vitro assays. Furthermore, DC/0-3hRP were more 

potent than DC/Zymosan A at driving Th2 polarisation. Indeed, DC/Zymosan A appeared 

to prime for a more mixed Thl/Th2 response, with overall greater levels of IFNy and IL-5 

produced compared to DC/media primed sdLN cells. Similarly, DC/LPS appeared to prime 

for both increased IFN7 and IL-5. The overall increase rather than qualitative difference in 

the cytokine responses induced by DC/Zymosan A and DULPS compared to DC/media 

could reflect a greater overall level of in vivo T-cell priming by these DC, as might be 

expected from their increased capability to drive T-cell expansion in vitro. 

Injection of differentially primed DC also led to the polansation of responder T-cells in the 

spleen. This may have occurred through the immigration of effector T-cells ansing in the 

sdLN. Alternatively, the transferred DC may have immigrated from the sdLN to spleen. 

However, it is possible that following injection some DC bypassed the sdLN, and primed 

naYve T-cells upon their arrival in the spleen. Indeed, since the APC to T-cell ratio is 
known to affect polarisation (Tanaka et al., 2000; Manickasingham et al., 2003), 

differences in the number of DC reaching the LN or spleen between experiments could 

account for the variation observed in the resulting cytokine profiles. 

Similar to cytokine profiles produced by sdLN cells, splenocytes primed in vivo with 
DC/0-3hRP produced dramatically increased levels of IL-4 and IL-5. However, DC/0- 

3hRP also primed splenocytes for increased LFNy production. Indeed, both DC/Zymosan A 

and DC/LPS also primed for similar increases in IFNy production compared to DC/media 

(significant in 2 of the 3 individual experiments). However, only DC/Zymosan and not 

DC/LPS also primed for increased production of Th2 cytokines. Again, the increase in 

both Th I and Th2 cytokine production primed for by PAMP-matured DC suggests a 

greater level of in vivo T-cell priming in the spleen, compared to that by DC/media. One 

interpretation of this data is that DC/0-3hRP and DC/Zymosan A prime more for a mixed 

Thl / Th2, or ThO response in the spleen, and that DULPS drive only weak Thl 

polarisation. Alternatively, polarisation of T-cell responses represents a continuum 
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between highly differentiated Thl and Th2 poles, and thus, it could be interpreted that 

DC/0-3hRP and DC/Zymosan A prime more towards a Th2 response simply because they 

drive co-production of IL-4 and EL-5, in addition to EFNy. In this respect, DC/LPS may be 

described as Th I -polansing simply by not driving Th2 cytokine production. However, it is 

noteworthy that the log mean fold-increase in IFN7 production driven by DC/LPS and 

DC/Zymosan A in both the spleen and sdLN was low compared to the high log mean fold- 

increases in IL-4 or EL-5 production primed by DC/0-3h" and DC/Zymosan A (especially 

at the highest concentration of OVA). This suggests that the assay system could be biased 

towards Thl cytokine production, making it difficult to detect further Thl polarisation. 

It is interesting that in vivo DC/0-3hRP appeared to prime for a greater increase in IFN7 

production by spleen cells than by sdLN cells, possibly reflecting a difference in function, 

or in a biased potential for T-cell polarisation, of these organs. However, since priming in 

the sdLN might be expected to precede that in the spleen, these observations may reflect 
differences in the kinetics of priming in these organs. In this respect, developing Th2 

responses may first go through transient ThO phases in vivo (Vella and Pearce, 1992), and 

EFN7 production is thought to precede IL-4 by expanding T-cells (Bird et al., 1998). 

7.4.4 DC function in T-cell priming 

Although the DC populations used in these experiments contain a number of myeloid 

precursor cells / granulocytes, the vast majority of the MHC II+, co-stimulatory factor+ and 

cytokine+ cells were CD II c+ (Section 6.4). Thus, it is reasonable to conclude that enriched 

CD II c+ DC are responsible for the in vitro polansation of the T-cell population. This 

conclusion is supported by a similar study in which the outcome of priming was the same 

whether purified CD 11 c+, or non- fractionated whole BM-derived DC populations were 

used (Whelan et al., 2000). Furthen-nore, although DC can exchange antigen / MHC H 

complexes with each other (Bedford et al., 1999), it seems most that likely that in vivo 

polansation was primed directly by the PAMP-matured DC. 

The data presented in this chapter confirins the growing evidence that DC can distinguish 

between the nature of different pathogens, or their products, subsequently allowing them to 

drive either Th 1, or Th2, responses (Whelan et al. 2000; MacDonald et al, 200 1; de Jong et 
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al., 2002). This directly contrasts the view that DC subsets are pre-programmed to prime 

either Th I, or Th2 responses (Rissoan et al., 1999; Maldonado-Lopez et al., 1999; Moser 

2001). Moreover, recent work shows the plasticity of DC to drive either Thl or Th2 

polarisation is universal between DC subsets, and not just an aberrant trait of myeloid BM- 

derived DC (Manickasingham et al., 2003; Boonstra et al., 2003), suggesting that 0-3hRP 

could stimulate many DC subsets to prime Th2 responses. Interestingly, a bias in the 

potential of human and munne DC subsets to polarise T-cells could be explained by their 

selective expression of PRRs, which effectively restricts the class of PAMPs to which they 

can respond (Kadowaki et al., 2001; Kelsall et al., 2002; Boonstra et al., 2003). Since there 

have been no studies on the repertoire of PRR expressed on LC or dermal DC, it is difficult 

to know if they would be limited in the range of PAMPs to which they could respond. 
However, in vivo evidence of APC activation and accumulation at the site of schistosome 
infection / vaccination (Reingrojpitak et al., 1998; Angell et al., 2001 a; Hogg et al., 2003a; 

Kumkate et al., 2003) would indicate that these cells do respond to molecules released by 

penetrating schistosomes. 

The data presented in this chapter and Chapter 6 suggests that DC/0-3hRP prime for Th2 

responses in the absence of high levels of polarising cytokines and co-stimulatory factors. 

Similarly, the Th2 responses driven by DC matured with nematode ES-62, or schistosome 
SEA, occur in the absence of increased co-stimulatory factor expression or cytokine 

production (Whelan et al., 2000; MacDonald et al., 2001). Together with these studies, my 

work supports the view that Th2 differentiation represents a default pathway in the absence 

of strong polarising signals. This is consistent with observations that T-cells can be rescued 
from ES-62-driven Th2 polansation by addition of EL- 12 to cultures (Whelan et al., 2000), 

whereas Th I responses do not develop, or are impaired, using DC from IL-12 -/- mice, or 

can be ablated by addition of anti-IL-12 antibody to cultures (Whelan et al., 2000; Moser, 

2001; MacDonald and Pearce, 2002; Jankovic et al., 2002). Moreover, simultaneous 

blocking of a number of pro-inflammatory cytokines (EL- 12, EL- 18 and EFNU) in human 

DC / T-cell co-cultures switched Thl -dominated responses to Th2-dominated responses 

(de Jong et al., 2002). In addition, mice deficient for MyD88 develop Th2 instead of Thl 

responses to mycobacterial PAMPs, or T gondii infection, corresponding with a decrease 

in the activation state of their DC (Schnare et al., 2001; Jankovic et al., 2002). 
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Another way in which priming with DC/0-3hRP could result in increased IL-4 and IL-5 

production is through the expression of low levels of MHC H-peptide complexes, which 

has been linked to Th2 induction (Ruedl et al., 2000). Although 0-3hRP did stimulate 

increased expression of MHC 11 compared to DC/media, this was lower than on DC/LPS. 

This intermediate up-regulation of MHC 11 could allow increased T-cell priming, but result 

in Th2 rather than Thl polarisation. 

My data also suggests that Th2 polarisation need not require IL-10 production, since DC/0- 

3hRP did not produce this cytokine (Section 6.3.7). Similarly, Th2 polarisation driven by 

ES-62 is independent of IL-10 (Whelan et al., 2000). It is possible that DC/0-3hRP-derived 

IL-4 and IL-6 production may be involved in Th2 polarisation, although DC can drive Th2 

responses in the absence of IL-4 (MacDonald and Pearce, 2002). Furthermore, I 

demonstrate that Thl polansation can occur in the presence of considerable amounts of IL- 

10, IL-6, and IL-4, since DOLPS produced high levels of these cytokine in addition to 

high levels of pro-inflammatory cytokines, emphasising that the balance between these 

different signals is probably important to the outcome of T-cell polarisation. 

In contrast to DC/0-3hRP, DC/Zymosan A also appear to 'instruct' Th2 differentiation yet 
have a 'highly' activated maturation state, characterised by production of considerable 

quantities of polarising cytokines, such as IL-12p7O, and high level expression of co- 

stimulatory factors and MHC 11. It is noteworthy that at the doses used in this study 

DC/Zymosan A did not appear to be as potent as DC/0-3hRP in driving Th2 polansation in 

vivo, since they also primed for increased EFN7 by sdLN cells. It is quite possible that this 

is a result of the high levels the pro-inflammatory cytokines produced by DC/Zymosan A. 

In this respect, although Manickasingham et al. (2003) reported that DC stimulated with 

Zymosan A drive Th2 polarisation, their study focused upon splenic DC which have 

previously been shown to preferentially produce IL- 10 rather than IL- 12 upon exposure to 

this PAMP (Edwards et al., 2002). 

This data further highlights the complexity of the DC / T-cell interactions that result in the 

polarisation of the effector population, and demonstrate that there might be several 

independent mechanisms that lead to Th2 induction. Indeed, DC/Zymosan A but not DC/0- 

3hR_P up-regulated expression of OX40L, which has been implicated in Th2 polansation 
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(discussed in Section 6.4). One similarity between DC/0-3hRP and DC/Zymosan A is that, 

in contrast to DC/LPS, neither up-regulated expression of CD80, suggesting this factor 

could be involved in promoting Thl. polarisation, although this is highly debatable 

(discussed in Section 6.4). However, it possible that there is an essential factor for PAMP- 

driven Th2 polarisation, common to both DC/0-3hRP and DC/Zymosan A, which has not 

yet been identified, or was not analysed in Chapter 6. 

One factor thought to play a critical role in DC activation and function is the interaction of 

CD40 and CD 154. In this chapter, I demonstrate that simultaneous culture of DC with anti- 

CD40 antibody dramatically increases their ability to drive anti gen-specific acquired 

responses. This concurs with similar findings that CD40-activation of human DC results in 
increased T-cell proliferation and cytokine production in vitro (Cella et al., 1997). 

Furthermore, I demonstrate that anti-CD40 treatment of DC/0-3hRP reverses their capacity 

to prime Th2 responses, instead causing the induction of Th I responses. Indeed, in vivo 

administration of anti-CD40 antibody can reverse the Th2 response resulting from 

injection of schistosome eggs, in favour of a Thl response (Martin et al., 2000). One way 

anti-CD40 treatment may exert this pro-Th I effect is by stimulating increased IL-12p4O 

but not Th2-associated cytokine production (Section 6.3.8). Indeed, CD40 ligation on DC 

can lead directly to Th 1 polarisation through the increased production of IL- 12 (Cella et 

al., 1996; Ruedl et al., 2000). Concurrent with this, the inhibition of Th2 cytokine 

production observed in response to co-injection of schistosome eggs with anti-CD40 

antibody was dependent upon IL- 12 (and IL-23? ) production (Martin et al., 2000). 

Alternatively, the anti-CD40 antibody used in my experiments, and that of Martin et al. 
(2000) may act to mask CD40, thus blocking signals received, or given, through CD 15 4, 

since these are important for Th2 development (Poudrier et al., 1998). Indeed, DC 

generated from CD40 -/- mice have an impaired ability to drive Th2 but not Thl responses, 

and CD 154 -/- mice do not mount Th2 responses to schistosome eggs or schistosome 

infection (MacDonald et al., 2002a; 2002b). This work suggests that exposure of DC to 

released schistosome material during infection will lead to an increased ability to prime 

Th2 responses, but that feedback from CD 154' cells would potentially aid the development 

of Thl responses. 

It has been shown that T-cells from mice on BALB/c backgrounds default to a ThO / Th2 

phenotype upon priming in neutral conditions (Hsieh et al., 1995). These mice also 
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preferentially mount Th2 responses in experimental leishmanial infection, compared to the 

protective Thl response seen in C57BI/6 mice (Heinzel et al., 1989; Scott, 1991). 

Moreover, they develop Th2-dependent mechanisms of protection following schistosome 

vaccination (Mountford et al., 2001), compared to more protective highly Th I -polansed 

response mounted by seen in C57BI/6 mice. Together, these observations have lead to the 

suggestion that BALB/c are naturally 'Th2' mice. This bias may lie intrinsically with the 

T-cell (Hsieh et al., 1995), however, recent work shows that differences in DC responses 

also play a role (Kuroda et al., 2000; Liu et al., 2002). In this respect, BALB/c DC were 

more responsive to 'Th2 inducing' 0-3hRP, than their C57BI/6 counterparts (Chapter 6), 

suggesting that part of the 'Th2' phenotype of BALB/c may be due to their ability to 

respond to Th2 driving PAMPs. However, SEA can stimulate DC to drive Th2 responses 
in C57BI/6 mice (MacDonald et al., 2001). Repeats of these experiments using TCR Tg 

mice on a C57131/6 background would determine if 0-3hRP retains its 'Th2' properties in 

this Thl-associated strain. 

7.4.5 Summary 

In summary, PAMPs released during the transformation of schistosomes instruct immature 

DC to mature to a phenotype promoting T-cell proliferation. Moreover, these DC drive 

Th2 polarisation of antigen- sp eci fic responses. The differentiation towards the Th2 pole 

may occur due to a default mechanism of T-cells in the absence of polansing cytokines. h-1 

this respect, early ligation of CD40 on DC leads to increased IL- I 2p4O production and a 

switch from Th2 to Thl priming. However, it is possible that other factors may be involved 

in active polarisation of Th2 responses by 0-3hRP-stimulated DC. 
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CHAPTER 8 

GENERAL DISCUSSION 



The overall goal of this thesis was to determine if host accessory cells recognise molecules 

derived from schistosome larvae. The secondary objective was to establish what effect 

innate schistosome recognition may have upon the development of the acquired response. I 

have shown that molecules released from schistosome larvae in the first 3 hours following 

transformation are potent stimulators of innate accessory cells. Furthen-nore, APC exposed 

to these molecules acquire the capacity to drive Th. 2 responses. 

8.1 Innate recognition of schistosome larval molecules 

My studies appear to show that schistosomes directly activate the innate immune system 

through the expression of molecules with PANW-like activity. In this respect, larval 

components are capable of stimulating IL-6 and IL- 10 production by inflammatory MO 

(Chapter 3), and IL-6 and IL- I 2p4O production by IFNy-activated MO (Chapter 3) and 

BM-derived DC (Chapter 6). Furthermore, I show that these stimulatory larval components 

are highly concentrated within the secretory material released by the parasite (0-3hRP) 

(chapters 3& 6). This would appear logical since released larval components have the 

greatest potential to be encountered by the hosts' immune system. In addition, it is possible 

that larval surface components may also have stimulatory properties since iMO become 

activated following culture with live larvae. In the in vivo context, skin accessory cells are 
likely to be exposed to both secreted material and surface molecules. 

In contrast to 0-3hRP, soluble somatic preparations from whole larvae had little 

stimulatory capacity, suggesting either the absence or dilution of stimulatory components, 

and / or the presence of potentially inhibitory molecules. Although this thesis has focused 

entirely upon the identification of stimulatory schistosome material, analysis of the 

inhibitory properties of the larval preparations may further reveal important biological 

interactions that occur between parasite and host at the onset of infection. In this respect, 

eicosanoids produced by larvae upon contact with host precursor material (e. g. linoleic 

acid) may exert such an inhibitory effect in vivo, but are unlikely to be a factor in my 

preparations. 

One major concern throughout my studies has been the possible effects of low-level 

endotoxin contained within the larval preparations. In Chapter 3, several lines of 
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experimentation, including co-culture with polymixin B, were used to conclude that 

schistosome molecules (representing putative schistosome PAMPs) stimulate accessory 

cells independently of contaminating endotoxin. Further strengthening this conclusion, 
data presented in chapters 6 and 7 demonstrate that the schistosome PAMPs have a quite 

different effect on iDC compared to other classical microbial PAMPs, including the major 

endotoxin constituent LPS. This implies that iDC matured with 0-3hRP have not been 

stimulated in a manner suggestive of endotoxin contamination. Therefore, under conditions 

where endotoxin contamination is eliminated, my studies show that 0-3hR-P contains 

stimulatory molecules that represent novel innate ligands of larval origin. 

I have termed the stimulatory larval components as schistosome PAMPs, supported by 

evidence of their interaction with PRRs, such as the TLR4 and the MR (chapters 3& 4). 

However, they could instead represent virulence factors, which Medzhitof (200 1) states are 

not PAMPs due to their restriction to a limited number of pathogens. In this respect, the 

skin inflammatory response to cercarial secretions is known to aid parasite penetration 
(Fallon et al., 1996). Although coverall terms, such as 'Modulins' have been used more 

recently to describe pathogen molecules that exert effects upon the innate and acquired 
immune systems (Whelan et al., 2000), the general title of putative PAMPs will suffice for 

this thesis. 

Activation of innate accessory cells occurs following ligation of their PRRs. The 

stimulatory effects of 0-3hRP upon IL- 10 and IL- I 2p4O production was partly dependent 

upon the TLR4, since Mý and IFNy-Mý from C3H/HeJ mice, which lack a functional 

form of this receptor, produced considerably reduced levels of these cytokines compared to 

cells from C3HJHeN mice. The TLR4 is known to be a promiscuous PRR and my data 

suggests the existence of TLR4-ligands of schistosome origin, although another 

interpretation is that there was an intrinsic difference in the activation state of Mý from 

these mice. The availability of cell-lines expressing individual TLRs, additional TLR-gene 

deficient mice, and antibodies that block TLR signalling should enable us to more fully 

assess the roles of these receptors in schistosome PAMP recognition. An interesting issue 

raised by my results was that high-level IL-6 production stimulated by 0-3hRP appeared to 

be largely independent of TLR4 recognition. Further work upon the signal transduction 

events downstream of PRRs that lead to IL-6 production may help to explain these 
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observations. With a complex mixture of PAMPs, as represented by 0-3hRP, it is quite 

possible that simultaneous recognition occurs through several receptors. Indeed, although 

FcR 7-chain signalling appeared to have little role in IL- 10 production stimulated by 0- 

3hRP (Chapter 5), the released material did contain molecules recognised by carbohydrate- 

recognition domains of the MR (Chapter 4). However, MR ligands were much more 

abundant in the relatively non-stimulatory preparations of whole larvae, and represented 

molecular species distinct from those within 0-3hRP. Studies using MR -/- mice will allow 
further dissection of the role of this receptor in the innate responses to schistosomes. 
Fractionation of 0-3hRP would also allow identification of the individual schistosome 
PAMPs responsible for these stimulatory (or possibly inhibitory) properties, and the 

identification of the receptors through which they signal. 

8.2 Innate recognition of schistosomes: APC and the development of acquired 

immune responses 

The successful priming of an acquired immune response first requires activation of the 

local APC population, and there is clear evidence that this occurs in the skin following 

exposure to schistosome larvae (Hogg et al., 2003a). Consequently, immature BM-derived 

DC were used to study the effects of schistosome PAMPs on professional APCs (Chapter 

6). O-ARP stimulated the maturation of BM-derived DC corresponding with an increased 

number expressing MHC , high, CD40, CD86 high 
, and increased production of IL- I 2p4O and 

IL-6. However, when compared with the 'high-level' of maturation induced by the classic 

pathogen PAMPs LPS and Zymosan A, DC activated with 0-3hRP were shown to be of an 

'intermediate' maturation state, reminiscent (yet potentially distinct) of that stimulated by 

other helminth products (Whelan et al., 2000; MacDonald et al., 200 1). 

An in vitro antigen-restricted priming assay was used to show that DC matured with 0- 

3hRP had an increased capacity to prime for proliferation of CD4+ cells from DOI 1.10 (XP 

TCR mice in the presence of the model antigen (OVA peptide) (Chapter 7). This 

demonstrates that schistosome PAMPs have adjuvant-like qualities and that DC exposed to 

these molecules during the onset of infection would gain the capacity to prime acquired 

responses. 
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Comparison of the results from chapters 3 and 6 demonstrates clear differences between 

the responses of iM0 and DC to 0-3hRP. In terms of the amount of cytokine production, 0- 

3hRP had broadly similar effects on iM0 compared to LPS and Zymosan A. However, 0- 

3hRP caused only minimal increases in cytokine production by iDC compared to the high 

levels stimulated by LPS and Zymosan A. One interpretation of this is that there are 

differences in the responses of DC and iM0 to ligation of the PRRs responsible for 

recognition of 0-3hRP. In this context, signalling via the MR has been implicated in the 

inhibition of IL-12 production by human dendritic cells (Nigou et al., 2001) but has 

cytokine promoting effects upon Mo (Yamamoto et al., 1997). Alternatively, there may be 

differential expression of PRRs upon these cells, such that each is restricted in the 

repertoire of PAMPs to which they can respond. Analysis of the differences in the 

expression of PRRs between accessory cells remains to be fully investigated, and could 
lead to a greater understanding of the roles of individual accessory cells in responses to 

different pathogens. In this respect, differences in responsiveness of iDC and iM0 to larval 

PAMPs could reflect the relative contribution of these cells to the inflammatory response 

that occurs in the skin following infection. Furthermore, iM0 produced a regulatory 

repertoire of cytokines (IL- 10, IL-6, low IL- I 2p4O) upon stimulation with 0-3hRP, 

whereas the cytokine profile produced by DC was much more pro-inflammatory (IL-12p4O 

and IL-6), mimicking that produced by IFN7-primed Mo. In this respect, DC could 

indirectly enhance IL- 12 production by Mo during infection, through IL- I 2-mediated IFN7 

production from NK cells. Identifying exactly how the schistosome interacts with the range 

of other accessory cells in the skin, and how these cells co-operate to orchestrate the 

inflammatory response in vivo are major questions for ftirther research. 

8.3 Innate recognition of schistosomes: polarisation of the acquired immune response 

Innate responses appear to exert control over the selection of acquired effector responses, 

via the polarisation of the Th cell population. As the bridge between these two immune 

systems, DC are in a unique position to directly effect the outcome of Th cell priming, and 
further work in Chapter 7 focused upon the ability of DC exposed to released schistosome 

PAMPs to polarise acquired responses. Controls that were expected to prime for 'neutral', 

'Th I' and 'ThT polar responses were used to provide reference points, allowing the 

outcome of priming to be gauged. Using the in vitro antigen-restricted priming assay, DC 
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activated with 0-3hRP primed CD4+ cells from DO 11.10 (xp TCR Tg mice to secrete 

increased IL-4 but little IFNy similar to DC activated with Zymosan A. In contrast, CD4+ 

cells primed by LPS-matured DC only produced abundant IFNy. Furthermore, inoculation 

of DO 11.10 mice with DC matured by 0-3hRP in the presence of OVA, also led to in vivo 

development of polarised Th2-type responses in both the sdLN and spleen. 

A major area of research on T-cell regulation is identification of factors controlling the 

development of Th I and Th2 responses, since these represent potential targets for immuno- 

therapies that either promote protective, or interfere with deleterious immune responses. In 

this respect, the PRRs that are involved in the induction of Th2 responses are not well 
defined compared to the relative wealth of knowledge on TLR- and MyD88-dependent 

Th I responses. Much work has focused on the hunt for factors expressed by DC, or other 

APC which contribute to polarisation. A clear role for certain cytokines, most obviously 
IL-12, has been defined in the promotion of Thl responses but factors involved in Th2 

polarisation are less well understood. One current theory suggests that Th2 responses 
develop as a default of T-cell-priming by activated DC that do not produce known 

polarising cytokines (Kelsall et al., 2002). My data tends to support this view, since DC/0- 

3hRP are defined by a state of 'intermediate' maturation, and low-level cytokine 

production. 

Several studies have highlighted a critical involvement of individual co-stimulatory signals 
in the development of Th2 but not Thl responses. However, since many cytokines also act 

as co-stimulatory factors, it may be that high-level cytokine production by Th I -inducing 
DC compensates for the loss of any one co-stimulatory survival signal. Indeed, the absence 

of certain co-stimulatory signals results with the loss of Th2 responses without the 

development of compensatory Thl responses (MacDonald et al., 2002a; 2002b). However, 

the Th2-driving capacity of highly-activated DC/Zymosan A (Chapter 7) which produce 

high levels of cytokines and express high levels of co-stimulatory molecules supports the 

alternative theory that certain factors (possibly cytokines or co-stimulatory molecules) may 

actively drive Th2 polarisation, rather than by a passive default mechanism. One co- 

stimulatory partnership that clearly affects the differentiation of acquired responses is 

CD40 / CD 154.1 show that ligation of CD40 following anti-CD40 antibody treatment of 

DC matured with 0-3 hRP increased their production of IL- 12 and reversed their capacity to 
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prime Th. 2 responses, instead causing the induction of a more Th I -type response. CD40 

ligation could exert its effects by further activating DC to produce increased IL- I 2p4O, 

although the antibody used in this study could also mask CD40 and potentially block Th2- 

dependent signals between CD40 and CD 154. The use of CD I 54-expressing fibroblasts to 

ligate CD40 rather than anti-CD40 antibody would allow the dissection of the individual 

roles of CD40 and CD 154 signalling in the switch from Th2 to Th I induction by DC. 

Furthermore, gene-array, or proteomic, analysis of differentially-matured DC could 
identify new markers to better define DC maturation and highlight novel factors 

differentially expressed by Th I- or Th2-driving DC that could be involved in polarisation. 

8.4 Relevance to infection 

This is the first study to demonstrate that DC activated by released products from 

schistosome larvae acquire the capacity to drive Th2 acquired immune responses. A 

fundamental question is whether Th2 responses are important to host protection. In the 

context of schistosome infection, the widely accepted view is that exposure to normal 

cercariae results in a mixed Th I/ Th2 response compared to the more Th I polarised 

response induced by vaccination. My data suggests that DC activated during natural 
infection should skew the acquired response towards the Th2 pole. However, the response 

of local APCs in the skin and sdLN to released schistosome PAMPs may be only one of 

many factors involved in polarisation during infection. In this respect, it is possible that the 

presence of live larvae in situ-in the skin and sdLN might contribute to the induction of 

Th I rather than Th2 responses through the release of Th I -inducing PAMPs by later-stage 

parasites, or the surface expression of such molecules. Alternatively, endogenous danger 

signals released in the skin / sdLN due to tissue damage following parasite penetration and 

migration, could be involved in Thl induction. 

What about the development of immune responses following repeated exposure of the host 

to cercariae? In this respect, mice that are multiply-infected with either S mansoni, or T 

regenti, exhibit Th-2-associated immediate hypersensitivity reactions and cercarial 

dermatitis upon re-infection (Section 1.3.4). Indeed, single infection with T. regenti 

appears to result in a mixed Th I/ Th2 response in the sdLN, but in multiply-infected mice 

re-infection results in extreme Type-2 polarisation (Kourilova et al., 2003). Therefore, 

exposure of DC to released schistosome PAMPs may contribute to the development of 
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immediate hypersensitivity within the host, and repeat infection could enhance this by 

further polarising the Th2 response. Production of anti-schistosome antibody may also 

contribute to Th2 polarisation upon exposure to 0-3hRP, via the augmentation of IL- 10 

production via FcR y-chain signalling (Chapter 5). 

How come many individuals in endemic areas are repeatedly exposed to high levels of 

infectious cercariae yet do not develop correspondingly massive worm burdens? Very little 

is known about the dermal responses of humans whom are repeatedly exposed to cercariae. 

However, it is possible that Th2 responses induced by exposure to released larval material 

contribute to anti-schistosome immunity, potentially operating at the level of immediate 

hypersensitivity responses in the skin and lungs. Indeed, the natural parasite attrition that 

occurs following single infection is significantly decreased in IgE -1- mice (King et al., 

1996b). In addition, parasite death is more rapid during irnmediate-hypersensitivity 

reactions following the re-infection of mice multiply-infected with T regenti, compared to 

death following primary infection. 

The early induction of Th. 2 responses by parasite larvae may also predispose the host to 

develop Th. 2 responses upon egg deposition. Whether the schistosome molecules that drive 

Th2 responses to eggs are the same as the immunologically active components in 0-3hRP, 

or whether they act through the same PRRs, remains to be determined but these biological 

compartments share similar glycosylated molecules. 

Manipulation of the innate immune system could provide an important avenue to potentiate 

the development of protective immunity to infection. However, the results presented in this 

thesis raise important questions for the development of an effective schistosome vaccine. 

Although PAMPs within 0-3hRP have adjuvant properties, they may be of only limited use 

within a Th I -inducing vaccine due to their promotion of Th2 responses. Whilst these 

responses may provide protection, the development of vaccines that induce Type-2 

response have the potential hazardous side-effects of inducing allergies to bystander 

antigens. Moreover, although strong Th I responses can provide protection to infection 

(Wynn et al., 1995; 1996), repeated exposure to the Th2-inducing PANIPs released by 

cercariae (which would presumably occur in areas of endemic infection) could potentially 

revert vaccine-induced Th I responses towards mixed Th I/ Th2, or Th2 responses. 
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8.5 Summary 

In conclusion, it is fundamentally important that we understand the early innate events that 

follow exposure to schistosome cercariae and lead to the development of inflammatory 

responses in the skin and acquired responses in the sdLN. The work contained in this thesis 

furthers our knowledge of how accessory cells are stimulated during infection and the 

effect this has on promotion of Th2-type acquired immune responses. These events could 
be key to the development of immediate hypersensitivity to schistosomes, and may present 

a considerable obstacle to ftirther infection. Indeed, the role of Th-2 responses in host 

protection represents an exciting area for further study. A more precise understanding of 

the events that lead to the inflammatory response and polarisation of the acquired immune 

response will better enable intervention, or induction of protection against disease. 
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ABBREVIATIONS 

Gene deficient 

0-3hRM 0-3 hr released material 
0-3hRP Soluble 0-3 hr released preparation 
0-3hSN 0-3 hr released material 
3hSom 3 hr schistosormilae 
3dSSP 3 day SSP 

5dSSP 5 day SSP 

8dSSP 8 day SSP 

3hSSP 3 hr SSP 

18hSSP 18 hr SSP 

I-D I -dimension 
2-D 2-dimension 

ACK Ammonium chloride buffer 

APC Antigen presenting cells 
BAL Broncho-alveolar lavage 

BBGC Brilliant Blue G-Colloidal Concentrate 

BLAST Basic local alignment search tool 

BM Bone marrow 
BSA Bovine serum albumin 

CCR Chemokine receptor 

CercN Normal cercariae 

CercT Transformed cercariae 

CPM Counts per minute 

CR Complement receptor 

CRD Carbohydrate recognition domains 

Cox Cyclo-oygenase 

DC Dendritic cells 

DNA Deoxyribonucleic acid 

dsRNA Double-stranded RNA 

EDTA Ethylene diamine tetra-acetic acid 
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ELISA Enzyme-linked immunosorbant assay 

EU Endotoxin units 

Fc Antibody constant region 

FcyR Fey receptor 

FcR y Fc receptor y chain 

FCS Foetal calf serum 

FITC Fluorescein isothiocyanate 

GM-CSF Granulocyte-macrophage colony stimulation factor 

GPI Glycophosphoinsitol 

GST Glutathione-s-transferase 

HRP Horseradish peroxidase 

HSP Heat shock protein 
IFN Interferon 

Ig Immunoglobulin 

IL Interleukin 

IL-XR IL-X receptor 

IL- I Ra IL- I receptor antagonist 

iDC Irnmature dendritic cells 

imý Inflammatory peritoneal macrophages 

IFNy-Mý IFNy-activated peritoneal macrophages 

IRS 0-3hRM immunised rabbit serum 

IRAK IL- I receptor associated kinase 

LAL Limulus Amoebocye Lysate 

LBP LPS-binding protein 

LC Langerhans cells 

Le' Lewis X 

LNFP Lacto-N-fucopentose 

LPS Lipopolysaccharide 

Mý Macrophages 

MACS Magnetic activated cell sorting 

MACSB Magnetic activated cell sorting buffer 

MAL MyD88 adaptor-like 

mDC Mature dendritic cells 
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MHC Major histocompatibiltiy complex 

MIP Macrophage inflammatory protein 

mLN Mediastinal lymph node 

MR Mannose receptor 

MR-Cys Mannose receptor N-ten-ninal cysteine-rich domain 

mRNA Messenger RNA 

NF Nuclear factor 

NK Natural killer 

NKT Natural killer T-cell 

NRS Normal rabbit serum 

OVA Chicken ovalbumin peptide 

PAGE Poly-acrylamide gel electrophoresis 

PAMP Pathogen- associated molecular pattern 

PB Phenobuffer 

PBMC Peripheral blood mononuclear cells 

PBS Phosphate buffer saline 

PBS-T Phosphate buffered saline tween 

PCR Polymerase chain reaction 

PE Phycoerythrin 

PEC Peritoneal exudate cells 

PG Prostaglandin 

PI Propidium. iodide 

PMB Polymyxin B 

PRR Pattern recognition receptor 

PVDF Polyvinylidene difluoride 

QR Quantum red 

rIL Recombinant Interleukin 

RANTES Regulated on activation, normally T-cell expressed and secreted 

RNA Ribonucleic acid 

RPMlc Concentrated RPMI preparation 

RT Room temperature 

RT-PCR Reverse-transcription polymerase chain reaction 

SCP Soluble cercarial preparation 

sdLN Skin-draining lymph node 
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SEA Soluble egg antigen 

SEM Standard error of the mean 

SDS Sodium dodecyl sulphate 

Sm S. mansoni protein 

SMAF S. mansoni-derived apoptosis inducing factor 

SN Supernatant 

SOCS Suppressor of cytokine signalling 

SSP Soluble schistosomulae preparation 

STAT Signal transducer and activation of transcription 

SWAP Soluble adult worm preparation 

TBS-T Tris buffered saline tween 

TCR T-cell receptor 

TCTP Translationally controlled tumour protein 

T9 Transgenic 

TGF Transforming growth factor 

Th T-helper 

TIR Toll / IL- IR domain 

TER-AP Toll-IL- IR domain containing adapter protein 

TLR Toll-like receptor 

TMB Tetra-methylbenzidine 

TNF Turnour necrosis factor 

TNFR TNF receptor 

Tr Regulatory T-cell 
Treg Regulatory T-cell 

T 1/2 Time taken for half the event to occur 

U Units 

WHO World health organisation 

WT Wild-type 
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