Oblate Dipole Bands in the A~200

Region

Thesis submitted in accordance with the
requirements of the University of York

for the degree of Doctor of Philosophy
by

Roderick Matthew Clark

Department of Physics October 1993



Acknowledgements

First and foremost, I wish to express my gratitude to my supervisor Dr. Bob Wadsworth.

His enthusiastic encouragement is an example to all lecturers and supervisors. I also
thank Dr. Doug Watson, head of the Nuclear Structure Group at York, for his continual
support and guidance throughout my studentship. I acknowledge receipt of a postgrad-
uate studentship from the SERC and a vote of thanks should go to Prof. Jim Matthew,
Head of Physics, for allowing me to spend my time in the Department.

There are many people (too many to mention individually) who have been involved
with the work presented in this thesis. Many others have made my studentship into an
enjoyable time. Special thanks should go to Prof. John.F.Sharpey-Schafer, Drs. Neil

Rowley, Eddie Paul, Simon Mullins and Paddy Regan, who have all, at one time or an-
other, acted as surrogate supervisors. Thanks also to Dr. David Ward, Head of TASCC,

and Dr David Radford, whose support and assistance while I was visiting Chalk River
was invaluable. I am also indebted to Prof. Witek Nazarewicz and Dr. Ramon Wyss who
provided their codes at the NBI ‘Hands on Nuclear Structure Theory Workshop’, and
they have also been very patient guides through the theoretical interpretations described
in this thesis.

The Daresbury crew have shown great resolve in the difficult times surrounding the
NSF closure. I wish them well in the future. All the EUROGAM collaborators, French
and English, have been a great deal of pleasure to work with. A special mention must
go to Dr. John Simpson for his good-natured encouragement over the many long days

at Daresbury.

Finally, a mention for the York students and postdocs, past and present, ...you know

who you are.

This thesis is dedicated to my parents.



Declaration

The experiments which are described in this thesis were run in collaboration with many

different colleagues. The subsequent data analysis was performed by me. All of the
computer codes used to assist the analysis and interpretation of results were written by

other people. I obtained results from the codes by running them myself. Any other

results that have been supplied to me have been correctly referenced.



Contents

1 Introduction

1.1

2.1
2.2
2.3

2.4

2.5
2.6

3.1
3.2
3.3

3.4

Shape Coexistence . . . . . . . it it i v i vt oo o v o v oo oo o oo

Nuclear Models

Liquid Drop Model . . . . . . . o i i i i i i it i s it v e e e e
Nuclear Deformations . . . . « ¢ ¢« ¢t ¢t o o 0 o v o v 0 v 0 v o v o 0 o a0 o
The Shell Model . . . . . . ... ... e e e e e e e
2.3.1 The Harmonic Oscillator . . . . . v ¢ v o v v v v 0o 0 v v o0 v 0 o
The Deformed Shell Model . . . . . . . ¢t v i i i o v vt v vttt o oo o
2.4.1 Anisotropic Harmonic Oscillator . . . . . ¢ ¢ v v ¢ v v 0 0 0 v s o s
2.4.2 The Nilsson Hamiltontan . . . . . . . . . ¢ v v v v v v oo v o oo
2.4.3 The Woods-Saxon Potential . ... ... ..o
244 Nilsson Diagrams . . . . . . . o0 v v v v v v v o v oo b0 o s 0
The Shell Correction Approach . . . . . . . . i v v v v e v v v v v v oo
Pairing Correlations and the BCSModel . . ... ... ...

Collective Nuclear Rotation

Rotational Bands. Band Crossings. . . .. .. ... v oo v oo oo
Momentsof Inertia . . . . . . . . . v i i i vt i e e e
Angular Momentum. Coupling Limits. . ... ... ..o
3.3.1 The Strong Coupling Limit (Deformation Alignment) . .. .. ..
3.3.2 The Decoupling Limit (Rotational Alignment) . . . ... ... ..
Cranking. . . . . i L i i i it e e e e e e e e s e e e

111

-

00 =3 Ov O

11
14

14
16
16
17
19
22

26
26
29

30



CONTENTS 1V

3.4.1 Symmetries of the Cranking Hamiltonian. Signature. . ... ... 34
3.4.2 Signature Splitting. . . . . ... ... . i e oo 35

3.5 Tilted AxisCranking . . . . . . . v ¢t v v o i v i it ot v et et e 35
3.6 The Cranked HFB Approach. . . . ... ... v oo 37
3.7 Comparison with Experimental Values . ... ... ... ... ... 38
3.8 TRS Calculations. . . . . ... ... ... e e e e e e e e e e e 41
4 Experimental Considerations 44
4.1 Population of High-Spin States . . . ... .. ... ... 44
4.1.1 Compound Nucleus Formation and Decay . .. .......... 45
4.1.2 Heavy-Ion Beam Production . . . . . . .. ..o e v v v oo 48
4.1.3 Targets . . . o v v v v i it ot st e e e e e e e e 48

4.2 ~-rayInteractions. . . .. .. . . ¢ et ittt i e i 49
4.3 Detectors . . v v v v v v v v v bt s e e e e e s e s e s e e s e s e e s 51
4.3.1 Inorganic Scintillators . . . . . . ¢ ¢ o v ot v i s e e 51
4.3.2 Germanium Detectors . .. . ¢ ¢« v ¢ v v vt 0 o s o oo v 0 0o 53
4.3.3 Escape Suppressed Spectrometers . . . . . . . ¢ oo 0oL 54

4.4 Detector AIrays . . ¢ ¢ v v v v v o v o s et e e e e e e e 54
4.4.1 TESSAd . . . i i i e e e i e e s e e e 57
4.4.2 TESSA3 Electronics . . . . . ¢ v v v v v o v o o o s v o 0 0 o s s 58
4.4.3 8m-Spectrometer . . . . . . .. ¢t i v ottt e e e et 61
444 EUROGAM-l. . . . . . . ittt ottt s oo oo s s 62
445 EUROGAMElectronics . . .. . v ¢ v v oo v v oo oo o0 oo 62

4.5 Analysis Techniques . ... .. .. ...t vo oo oo 65
4.5.1 TESSA3/87 Coincidence Analysis . . . . . « ¢ ¢ ¢ 0 v o 0 0 0 v o 65
4.5.2 EUROGAM High-Fold Coincidence Analysis . . . . .. .. .. .. 66
4.5.3 Background Subtraction .. ... ... .. oo 67
4.5.4 Energy and Efficiency Calibrations . . ... .. ¢ v e v oo 67
4.5.5 Directional Correlation from Oriented States (DCO) . ... ... 68

4.6 Lifetime Measurements of Nuclear States . . . . ... ... .. ... ... 69



CONTENTS

6

4.6.1 Electromagnetic Transitionsin Nuclei . . . . .. ... ... ...,
462 DSAM Measurements. . . . o v ¢ v o v s o v o v o 0 0 v 0 0 0 o o
46.3 RDM Measurements . . . . . ¢ ¢ v v v et o v v 0t v 00 0 o oo
4.7 TheExperiments . . . . . ¢ 0 v v v i v v o v v oo v vt oo s o oo oo o
4.7.1 197198DPh Experiments . . . . . v 0 v v b v b0 b e e e e e e e e
472 202BiExperiment . . . v v v v v vt ot e e e e e e
473 19T1BPL RDM Experiment . . . v v ¢« v o o 0 o v o 0 0 0 0 0 00 0
474 EUROGAMExperment . . .. . . ¢ o v v o v v oo v v o o v oo
Results
51 TESSA3 Results . .. ... .. 0 i ittt e veoonsoeneas
0 0 B e 2 - Y I S R
5.1.2 107Pb . . .. it e e e e e e e e e e e e e e e e
5.1.3 202Bj . . .. .. it e e e e e e e e e e e e e e e e
52 EUROGAMBRBesults . .. . v v v o vt o v oo n oo o oo s oo oo
53 8r-RDM Results . . . .. . ¢ ¢ttt v o v v o v e o v oo o oo 000 0o
Discussion
6.1 Structure of Low Lying Levels in Even Lead Nuclet . . ... ... ...
6.2 Structures Aand Bin®Pb . . .. .. .. i i e e
6.3 The Al=1 Band Structuresin !®®Pb. . ... ... ¢ c v v oo vn
6.3.1 Band 1. .. .. ... i i i vt ittt e
632 Bands2,3,and 4 . ... .. ...ttt
6.3.3 Band 5. . . .. . i i it i e et i e e s e s e e
6.4 The Al=1 Band Structuresin ®*'Pb. . . . . . . .. ¢ v v o v v v o oo
6.5 AlI=1 Oblate Structuresin Other Pb Nuclea . ... .. ... . ¢
6.6 Alternative Scenariowith Pairing. . . . . ... ¢ v v v v v v oo v o0 v o
6.7 Al=1BandsintheBiNucle1 ... .. .. ...
6.7.1 Structuresin2Bi . . . .. .. . i e
6.8 Lifetime Measurements of Bands in **™%Pb , . . . .. .. .. ... ...
6.9 Comparison with the A~130 Mass Region . . .. ... ...

69
70

70
73
74
79
75
76

79
80
80
100
109

116
124

146



CONTENTS
7 Summary and Future Work

7.1 Summary . . o i st e s e e e e e e e e e e e e e e e



List of Figures

1.1

2.1
2.2
2.3
2.4
2.9

2.6
2.7

2.8

3.1
3.2
3.3
3.4
3.9
3.6
3.7
3.8

4.1

4.2
4.3
4.4

Spectrum showing transitions in the SD band of ¥*Pb. . ... .. .. .. 4
Binding energy per nucleon as a function of mass number A. . . . .. .. 6
Nuclear shapesinthe B8yplane. ... ... ... ... ..., 9
Shape of the Woods-Saxon potential. . . . .. ... .. .......... 11
Nuclear levels of the shell model with spin-orbit term. .. .. ... ... 13
Nilsson diagram forneutrons. . . ... .. .. ... ..., 18
The level density in an infinite three dimensional potential. . . . . .. .. 20
Potential energy surfaces in the Sy plane. .. ... ... ... ... .... 21
Occupation probabilities, v2, near the Fermi surface when A #0. . . . . . 25
The effect of the Coriolis force on two nucleons. . . . ... ... ..... 27
An illustration of band interactions. . . . . ... ... ... .. ...... 28
The strong coupling limit. . . . ... ... ... ... ..., 31
The decoupling limit. . . . . . . . ... ... ..., 32
Tilted axis cranking. . . ¢ ¢ v v v v v v vt e et e e e e e e e e e e 36
A plot of quasi-particle routhians. . . . .. ................. 39
The quasi-particle aligned angular momentum. .. ............ 40
A TRS map for a configuration in ***Pb. .. ... ... .. .. .. .... 43
The decay of a compound nucleus. .. ................... 46
Continuum and discrete liney-rays. . ............00..... 47
Linear attenuation coefficients for Ge. . . . . . . . . . v v o v v v v v . .. 50
Energy band structure of an activated crystalline scintillator. . . . . . . . 52



LIST OF FIGURES i

4.5 The design of an escape suppressed spectrometer. . . . .. .. .. .... 55
4.6 Singles spectra taken using a ®®Cosource. ... .............. 55
4.7 The TESSA3 multi-detector array. . . . ... ¢ v v v v v v v v v v oo 58
4.8 TESSA3electronics. . . . . v v v v v i v i it it et e bt e e e 59
4.9 Photograph of the EUROGAM-larray. ... ... ..ot 63
4.10 The basic design of the EUROGAM data acquisition system. . . . . . .. 64
4.11 The total projectionof amatrix. . ... . .. . 0ttt et v ot oo 66
4.12 The experimental set-up for an RDM measurement. . . . . . . ... ... 71
4.13 Schematicof theplunger.. . . . . . . ¢ . . i i i i it it it v v oo 76
4.14 Photograph of the plunger. . . . . . . . . . . v o it v i i v vt v oo v n 77
5.1 Level schemefor 1%°Pb. . . . . . . . . i i it i ittt i e e e 81
5.2 Single gate on the 429 keV y-ray. . . . . .« v v v v ¢t v v v et s 83
5.3 Single gate on the 506 keV transition. . . . . ... ... o0 84
5.4 Relative total transition intensities for band 1in **Pb. . . . . . ... .. 85
55 Spectrumforband 1in®Pb. . .. .. .. .. i i oo 85
56 Spectrumforband2in!®®Pb. . . ... ... . . i e oo 90
5.7 A summation on the 283, 477, and 484 keV y-rays. . ... .. .. .. .. 90
58 Spectrumforband3in'®Pb. ... ... ... . o i oo 02
5.9 Single gate on the 472 keV transition. . . . . . . . . . . ¢ v v oo 04
5.10 Spectrum forband 4in *Pb. . .. .. .. . ... o oo oo 95
5.11 Summation of the 122 and 159 keV gates. .. ... ... ... ... 95
5.12 Spectrum forband 5in®¥Pb. . .. ... ... .. .o 0o o oo 07
5.13 Level schemefor ¥ Pb. . . . . . .. . .. .t i i it it n oo 101
5.14 Level scheme for 1®"Pb showing the irregular sequence. .. ... ... .. 102
5.15 Spectrum showing band 3 (the irregular cascade) in **'Pb. . . ... ... 104
516 Spectrumforband 1in ®"Pb. . . ... .. ... ... o oo, 105
5.17 Spectrum for band 2 observed in ¥®"Pb. . . . . ... ... ..o 0oL 105
5.18 Summation of the 163 and 219 keV gates. .. ... .. ... 106

5.19 Spectrum for the bandin ¥®Pb. . . .. .. .. . . . oo 108



LIST OF FIGURES 1X

5.20 Spectrum for thebandin *®*Pb. . . . ... .. .. e it 108
5.21 Level schemefor 2%Bi. . . . . . . . i vt it v ittt ittt 110
5.22 Spectrumforband 1in2%Bi. . .. .. .. ¢ i i i i it e e, 112
5.23 Spectrum forband 2in2%Bi. . . ... .. .. it e . 113
5.24 Spectrum forband 3in%®Bi. . .. ... ... .. . it 115
5.25 Partial level schemefor ***Pb. . . . .. ... ... oL 117
5.26 Partial level schemefor ¥®Pb. . .. ... ... ... .. .. .. 118
5.27 Spectrum showing band 1in ®Pb. .. .. .. ... .. v, 119
5.28 Spectrum showing band 3in *®Pb. .. ... ... .. ... .. ... 119
5.29 Spectrum showing band 1in 2*"Pb. . ... .. ... .. .. v ... 120
5.30 Spectrum showing band 3in 2®Pb. . . .. .. .. .. ., 120
5.31 Gate on the 1142 keV E2-crossover transition. . . . . . .. .. ... ... 121
5.32 Gate on the 867 keV E2-crossover transition. . . ... ... ... .... 121
5.33 Gate on the 850 keV E2-crossover transition. . . .. ... ... ..... 122
5.34 Gate on the 755 keV E2-crossover transition. . .. .. .. .. ... ... 122
5.35 Partial gated spectra for the 279 and 216 keV transitions. . . . . . . . .. 125
5.36 Partial gated spectra for the 238 and 280 keV transitions. . . . . . . ... 126
5.37 Partial gated spectra for the 201 and 267 keV transitions. . . . . . . ... 127
5.38 Partial gated spectra for the 294 and 270 keV transitions. . . . . . . . .. 128
5.39 Decay curves for the 279, 216 and 156 keV transitions. . . ... ... .. 133
5.40 Decay curves for the 280 and 238 keV transitions. . . . .. .. . . . ... 134
5.41 Decay curves for the 267, 201 and 151 keV transitions. ... ... .... 135
5.42 Decay curves for the 294, 365 and 385 keV transitions. . ... ... ... 136
5.43 Decay curves for the 370 and 359 keV transitions. . . . .. .. ... ... 137
5.44 Decay curves for the 270 and 152 keV transitions. . . . . . « ¢« . ¢ v ¢ .. 138
6.1 Yrast levels for the even ***-2®Pbpuclei. . . . . .« ¢ v v v v v e oL 140
6.2 Single-particle Woods-Saxon diagram for neutrons. . . ... ....... 142

6.3 Experimental single-particle neutron levels in the odd Hg isotopes. . .. 143
6.4 S plots for bands 1-4in 18Pb. . . . . . .. .t e e e 147



FIGURES

6.0

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

7.1

X
3(2) plots for the AI=2 bands in 1®41%Hg, . . ... ............ 149
Single-particle Woods-Saxon Routhian diagrams for neutrons. . . . . .. 150
Single-particle Woods-Saxon Routhian diagrams for protons.. . . . . .. 150
Single-particle Woods-Saxon Routhian diagrams for neutrons. . . . . .. 151
Quasiparticle Woods-Saxon Routhian diagram for N=116. .. ... ... 152
Calculated equilibrium deformations (3, v) for the proton configurations. 153
The oblate driving force of the lowest lying 1;3/;3 neutron orbits. . . . .. 154
3{3) plots for band 4 in *Pb and band 1in ¥*'Pb. .. .......... 158
3(2) plots for band 3 in !*®Pb, band 2 in *’Pb, and band 2 in '**Pb.. . . 159
The p-h excitations for the bands in 2*7%Pb, ., . . .. .. .. ... ... 159
&(2) plots for band 2 in 2°°Pb and band 1in ¥¥Pb. .. ... ... .. .. 160
a(2) plots for band 1 in 2°°Pb, the long band in !**Pb, and band 2 in °*Pb.160
The p-h excitations for the bands in 19929%2%pL, . [, . . . .. ... ... 162
G(2) plots for all the regular dipole bands in the Pb and Bi nuclei. . ... 165
3(2) plots for bands 1, 2, and 3 in 2°?Bi, and bands 1 and 2 from **'Pb. . 168
Deduced B(M1)-values. . ... ... it i it vetoosoennos 169
The generation of angular momentum in the TAC scenamno. . . . . . . .. 174
Experimental and calculated B(M1) values for bands in ***Pb. . . .. .. 175
A comparison between the AI=1 bands in the mass A~130 and A~190
TEZIOMS. o ¢ o o o o o o o v o o o s o o o s s s o s o s o s a e e e 176
181

Spectrum of band 1 in '%¢Pb.

llllllllllllllllllllllll



List of Tables

4.1 Theresolving powersof arrays. . . . . . v v v v o v v v o e 0 o s o o o n 57
4.2 The reactions used in the experiments. . ... ... .. ... ... 74
4.3 The breakdown of ‘unpacked’ fold-nevents. . ... ............ 78
5.1 The numbers of bands assigned to the various nuclet. . .......... 79
5.2 Intensities in the 98 and 92 MeV data sets for bands 1 and 3 of **Pb. . . 82
5.3 Angular correlation ratiosin ***Pb. . . . ... ... o 0oL 83
5.4 Details of transitions in band 1 and structure A of 1**Pb. . . . .. .. .. 87
5.5 Experimental lower limits of B(M1)/B(E2) ratios for bands in **Pb. .. 89
5.6 Details of transitions in band 20f®Pb, ... ... ... ... .. 01
5.7 Details of transitions in band 3 and structure Bof ¥**Pb. . . . . ... .. 93
5.8 Details of transitionsin band 4 of ***Pb. ... ... ... ... ... ... 96
5.9 Details of transitions in band 5of **Pb. ... ... ... ... .. oo . 98
5.10 Details of transitionsin band 1of*"Pb. . ... .. ... ... ... ... 103
5.11 Experimental lower limits of B(M1)/B(E2) ratios for bands in **Pb. . . 106
5.12 Details of transitionsin band 20f *'Pb. . ... .. ... ... ... ... 107

5.13 Ratio of intensities of the bands in #°?Bi in high and low fold matrices. . 109
5.14 Experimental lower limits of B(M1)/B(E2) ratios for bands in ?%?Bi. . . . 111

5.15 Details of transitionsinband 10of2®Bi. .................. 112
5.16 Details of transitions in band 20f*®Bi. ...... ... ... ... 114
5.17 Details of transitionsin band 3of?*™Bi. .................. 115
5.18 B(M1)/B(E2) values measured from the EUROGAM data. . ....... 123
5.19 Measured lifetimes of statesin ®Pb. . . ... ... . ... .. ...... 130



TABLES i

5.20 Measured lifetimes of statesin *'Pb, . ... ... ... ... ....... 131
6.1 Spherical decomposition of neutron single-particle states. . . . ... ... 144
6.2 Spherical decomposition of proton single-particle states. . ... ... .. 145
6.3 Proposed configurations. . . . . . . .. .. ... i e e 169
6.4 Clebsch-Gordan coefficients. . . . . . ... ... .. ... .. ... ... 170
6.5 Deduced B(E2) transition rates. . . . . ... ... ... ... 171

6.6 Calculated B(M1) transition rates. . . ... ... ... .. ..., 172



X111
Abstract

Data taken with the TESSA3 array, during three separate experiments, revealed a total
of thirteen different Al=1 sequences in five different nuclei: five bands were seen in
198ph, three in °7Pb, one sequence in '°°Pb, one in !*°Pb, and three more in 2°?B;.
Angular correlation ratios and intensity arguments suggest that they are sequences of
magnetic dipole transitions with small, negative E2/M1 mixing ratios (8g3/ar1 ~-0.1).
The associated E2-crossover transitions are weak, leading to large B(M1)/B(E2) ratios
[>10(pn/eb)?]. The dynamic moments of inertia for the bands are low (S(?) ~10-25
hMeV-1) and they are comparable in magnitude to those of the AI=2 oblate bands
seen in the neighbouring Hg nuclei.

It is suggested that the bands seen in *°®~?%'Pb can be explained in terms of oblate
high-K two—-quasiproton configurations coupled to aligned quasineutrons (four in °*8Pb)

lying close to the Fermi surface. These quasineutrons (which occupy f5/2, ps/a, and low-

( i)3/; levels) tend to stabilize the oblate deformation. The more regular bands involve
the ijs/2®hg/2 or h3,; quasiproton configurations, whilst the irregular bands are most
likely based on 7(hg/2®sy/2). The isospectral behaviour of several of the bands can be
explained by considering the role of the normal-parity {1=1/2 ‘singlet’ neutron orbital.
This interpretation is extended to include the bands observed in the Bi isotopes.
Lifetimes of sixteen states in four different dipole sequences of 1271%Pb have been
measured using a recoil distance technique. The experiment was performed using the
8n array and the Chalk River precision plunger. High-statistics data taken with the
EUROGAM spectrometer resulted in the observation of several E2-crossover transitions
associated with the bands. From accurate branching ratios and all the available lifetime
data, including results of previous DSAM studies, B(M1) and B(E2) transition prob-
abilities are deduced. Intrinsic quadrupole moments, Qo, and quadrupole deformation

parameters, (;, are also estimated. These are shown to be qualitatively consistent with

the configuration assignments. However, they do not go far enough to uniquely specify
a configuration for each band. For each structure, the absolute B(M1) values, calculated

either with the model of Donau and Frauendorf, or with the TAC semi-classical model,

are found to be at least a factor of two too large.



Chapter 1

Introduction

1.1 Shape Coexistence

The equilibrium shape of a nucleus depends on the detailed microscopic properties of
the nuclear quantal system. This can be seen from the fact that many rotating nuclei

prefer to take up prolate shapes, whilst for a classical rotating object (e.g. the earth)

the favoured equilibrium deformation is oblate, The single-particle structure near the
Fermi surface plays a particularly important role in determining the nuclear shape. If
the single-particle energy can be reduced by occupying states which lie close to the

Fermi surface at a non-spherical shape (whether oblate, prolate, or triaxial) then for a

nucleus at sufficient excitation energy this shape may become favoured. In addition to
such microscopic features, the macroscopic binding energy (liquid drop energy) is also
important in determining the nuclear deformation. The balance between these effects

forms the basis of the Strutinsky procedure (see section 2.5) for calculating nuclear shapes.

It i1s possible for two different shapes to coexist at the same excitation energy. It has
been suggested that most, if not all, nuclei display some type of shape coexistence (see
review articles [Hey83, Wo092)).

Many studies have been carried out on semi-magic nuclei, particularly those near the
2=50 (e.g. Sn, Sb) and Z=82 (e.g. Hg, Tl, Pb) closed proton shells. In the even-even
tin nuclides the normal low-lying yrast states will be spherical and can be described in

terms of neutron excitations. Rotational structures in nuclei bordering on the spherical
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Z=350 closed shell have been known for some time, e.g. [Bro79]. Moreover, many well

known prolate rotational cascades have recently been established to high spin in several

odd-A antimony (Z=51) isotopes [LaF'92, Jan93] and even-A Sn nuclei [Wad93]. This
collectivity in these nuclei is related to the deformed 2p~2h »[g? /289 /2,]0'," excitation of the
even tin core. In addition, a wh;4/; orbital, intruding from above the Z=50 shell closure,
tends to stabilize the enhanced prolate deformation. In the odd-A iodine (Z=53) isotopes
low-lying near-yrast structures are explained by moderately deformed prolate rotational
bands based on 7h;;/,[550]3  and wg; /1,[404]§+ Nilsson orbits. However, in contrast
to the Sb and Sn isotopes the high-spin structure of the heavier odd-A iodine nuclei
(118-121]) is dominated by non-collective oblate structures [Pau92]. An intruder band
stmilar in nature to the bands in the Sb and Sn isotopes has recently been observed in
113] [Pau93].

The possibility of shape coexistence in the neutron deficient lead isotopes came with
the discovery of low lying 07 states, which were interpreted as oblate proton 2p-2h ex-
citations across the Z=82 closed shell ([Dup84, Ben89, Dup90, Wo092}). In a spherical
potential the energy required for such an excitation is ~7 MeV. However, the 7(2p-2h)07
states in a deformed potential will require less energy due to the proton-neutron interac-
tion and the energy gained by breaking a nucleon pair. It is predicted that these states are

weakly oblate. Other 2p-2h excitations of the ‘broken’ proton core have been predicted,
e.g K*™=8%, 11~ states. I"=11" isomeric states, based on the intruder configuration
W(h9/3®i13/398;,22)Kt=11- have been observed in }°41%€Pb [Ruy86, Pen87]. Measured g-
factors confirm the interpretation of the levels [Pen87|. It is expected that collective
rotational oblate bands should be built on such configurations. However, before the
present study, the only candidate for such a band was a weak irregular sequence of dipole
transitions built on the I*=11" state in 1*Pb [Fan01].

In the neighbouring 1%°-%Hg (Z=80) nuclei sequences of AI=2 transitions have been
successfully explained [Hub86, Meh91] within the framework of the cranked shell model

(see Chapter 3). Just below the Z=82 proton shell closure the level density makes 1t en-
ergetically favourable for the nucleus to adopt a weakly deformed oblate shape (32~0.15,

4~-60°) which can rotate collectively. The observed band crossings are explained by the
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strong rotation-alignment effect experienced by the low-{) members of the 1;3/3 multiplet
which lie close to the neutron Fermi surface at this deformation.

Another striking manifestation of shape coexistence in the Pb nuclei around N=112
are the recently observed superdeformed (SD) bands [Hen91, The90, Bri90, Wan91|. Su-
perdeformation has also been observed in several near-by Hg and Tl isotopes (see review
articles [Sha92, Mey92, Jan91] and references therein). At large prolate deformations
low level density shell gaps appear around Z=80 and N=112, leading to strong negative
shell contributions which stabilize the nuclear shape. The increase in surface energy is
offset by rotation and Coulomb energy contributions, and in the mass 190 region the
superdeformed shape can persist to relatively low spin (e.g, I~6A for the band in ***Pb).
The configurations of these superdeformed states involve the occupation of the ‘intruder’
wiy3/2 and vj;5/3 orbitals.

Several of the experiments reported in this work were originally motivated to search
for SD bands in 1°7198Pb, The lowest seven transitions of a very weak SD band in °°Pb
were previously reported [Wan91), and the structure was assigned to '*Pb on the basis
of an excitation function analysis. From the data taken with the EUROGAM array
(see section 4.7.4) the existence of this SD band has been confirmed. A 9—y matnx
was formed using quadruples (4-fold) data. At least two of the y-rays of a quadruples
event were required to be members of the band, and the remaining two y-rays were
then incremented into the correlation matrix. A third gate was then set on each band
member. Local background was subtracted, and the resulting spectra summed to give the
final spectrum presented in Fig. 1.1. The band has been extended considerably with the
addition of eight more transitions to the top of the cascade. The topmost transition of
852.6 keV corresponds to the highest rotational frequency of any of the known SD bands
in the A~190 region. The data are still under analysis and will be reported elsewhere
[Hib93).

To summarize, the interplay between the macroscopic binding energy and the micro-
scopic level structure can result in an excited nucleus taking up a non-spherical equi-
librium deformation. It is possible for different nuclear shapes to coexist at the same

excitation energy and spin. The semi-magic nuclei around the Z=50 and Z=82 proton
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Figure 1.1: Triple-gated y-ray specirum showing transitions in the SD band of 8 P}.

The transition energies of the in~-band transitions are labelled with their energies in keV.

shell gaps display a particularly rich vaniety of excitation modes.

The focus of the spectroscopic investigations described in this thesis is the high-spin
structure of !*Pb and its nearest neighbours. In particular, **Pb has proven to be
an excellent example of a variety of phenomena, showing how different nuclear shapes
may coexist in one nucleus. At the ground state *®Pb is spherical, and the low-lying
transitions can be described in terms of simple neutron excitations. At higher spin the
decay is dominated by sequences of enhanced M1 transitions. These are related to the
breaking of the proton core and the nucleus taking up a weakly oblate shape. The recent
discovery of a prolate SD band of 15 transitions, surviving to low spin, perhaps provides
the most dramatic example of shape coexistence in this nucleus.

The results described in this work represent the first observation of magnetic dipole

sequences in the Pb and Bi isotopes. The observation of these structures was quite

unexpected but is proving an extremely rich source of information.



Chapter 2

Nuclear Models

2.1 Liquid Drop Model

To explain the observed saturation properties of a nucleus, its low compressibility, and its
well defined surface, an analogy is drawn to the properties displayed by a liquid drop. This
allows an explanation of bulk properties of nuclei such as the variation of their binding
energies with mass. In addition phenomena such as particle evaporation and fission can
be thought of in terms of their liquid drop analogies, i.e. molecular evaporation from the
surface and the division of a drop into two smaller droplets.

Von Weizsacker, Bethe and Bacher, proposed a semi—empirical approach where the
dependence of nuclear binding energy on N and Z could be taken from theory, whilst
the coefficients of the terms could be varied to fit the experimental data,[Wei35, Bet36].

Their semi-empirical mass formula for a nucleus is:

2 _ 2
M(A, Z) = Zmy + (A — Z)mn — ayA + a, AV + a2 + 202 A‘«’Z)

7 +6  (21)

where M(A,Z) is the mass of the nucleus. The first two terms are the mass of the
protons and neutrons in the nucleus respectively. The third term, called the volume
term, arises from the saturation of the short range nuclear force, which means that only

nearest neighbour nucleons will interact. It is proportional to A. Clearly nucleons near
the surface have fewer nearest neighbours with which to interact and are consequently less

bound. The correction to the volume term from this loss in binding energy is proportional

o
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A

Figure 2.1: The binding energy per nucleon as a function of mass number A. The smooth

curve 18 from a semi-empirical mass formula ssmilar to equation 2.1. This diagram has

been taken from [Lei59].

to the surface area, which is in turn proportional to R? (R being the nuclear radius) and
therefore A3/3, This effect is accounted for by the fourth term. The Coulomb repulsion
between protons is accounted for by the term a.Z?A~*/3, This form is expected classically.
The ‘asymmetry’ term, a,(A-2Z)?A"!, reflects the tendency for stable nuclei to have the
same numbers of protons and neutrons. The final term,é, takes account of the pairing
interaction between nucleons. It arises from the short range and attractive nature of the
nuclear force and leads to greater binding between like nucleons when they are coupled

to zero spin. When coupled like this the two nucleons are on average closer (larger spatial

overlap of their wavefunctions) and hence more bound. The formula accounts very well

for the observed nuclear masses as can be seen in a plot of the binding energy per nucleon

(B/A) against mass number (A), as shown in Fig 2.1.
A typical set of values, obtained by fitting B(A,Z) to measured binding energies, is:

a,=15.8 a,=18.0 a.=0.72 a,=23.5 6=ta,A~¥%0or0 a,=335

All units are MeV. More refined versions of the liquid drop formula, giving better fits,
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have been developed, notably by Nix and Swiatecki, [Nix69], and Moéller and Nix, [Mol81].

Despite predicting the average binding energy per nucleon very well, systematic devi-
ations from the fit are observed at particular proton and neutron numbers. In addition,

further problems arise if the nucleus is considered to be a classical liquid drop. The

average separation of two nucleons is predicted, from the model, to be around 0.7 fm (i.e.

the distance at which the nucleon-nucleon force is a minimum). From experimental data
the average inter-nucleon spacing is found to be ~2.4 fm. This can be understood in

terms of the Pauli Exclusion Principle, which forbids two nucleons from approaching any

closer. This larger separation means that nucleon scattering processes are rare compared

to the scattering events of molecules in a liquid. This highlights the need to remember

that the nucleus is a quantal system.

2.2 Nuclear Deformations

If a nucleus is non-spherical it becomes necessary to parameterize the nuclear surface.

One possibility is to describe it by the length of the radius vector from the origin to the
surface,
oo A
R=R(6,4)=FRo [l 4an+ 3 3 o} Yu(6,9) (2.2)
A=1 p==A

Details of this prescription are given in [Rin80], but the main features are now pointed
out. The constant ag describes changes in the nuclear volume. If, like a liquid drop, the

nucleus has very low compressibility then a constant volume is assumed for all deforma-

tions. This defines the constant ago, up to second order as:

1 2
Qoo = — 7 laa,] (2.3)
dm '\gl:-# "

The A=1 mode represents a translation of the whole system. The parameters a;, can be

fixed by the condition that the centre of mass lies at the onigin. To make sure that the

radius remains a real quantity we find that:

ay, = (—1) axr-, (2.4)
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For axially symmetric shapes:

ay, = 0, T 7& 0 (2.5)

The parameters a,o are usually denoted by the symbols 8.

The most common nuclear deformations are quadrupole (A=2), and there will be five
parameters, aj,, necessary to describe the orientation and shape of the nuclear ‘drop’.
Three will correspond to the three Euler angles which determine the spatial position of

the nucleus. With a suitable transformation to the body-fixed system, the five coefficients
will reduce to two, real, independent variables, azo and aj;(=a;-3, az1=az-1=0), which,
together with the Euler angles give a complete spatial description of the system.

A triaxiality parameter, 4, can be defined by:

az0 = fcosy | (2.6)
1 .
an = —sPainy (2.7)
Thus,
; |@a,|’ = a3 + 243, = B° (2.8)
and eqn(2.2) becomes:
R(6,¢) = R [1 + B -1%c037(3cos’7 -1) + \/§sin7ain’9coa29] (2.9)

The quadrupole shapes (A=2) are then represented by the co-ordinates 83, v (see Fig
2.2). For 4 values of 0°, 120°, and 240° we have prolate shapes. For 4 values of 60°, 180°,
and 300° we have oblate shapes. When « is not a multiple of 60° the nucleus will have a

triaxial shape, with no two principal axes having the same length.

2.3 The Shell Model

Deviations from the liquid drop model predictions are observed to occur in experimental

data at particular ‘magic’ nucleon numbers (2, 8, 20, 28, 50, 82, and 126). The largest
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Figure 2.2: Nuclear shapes in the B,y plane. This diagram has been taken from [Rin80].

separation energies, for the least bound nucleon, and the highest binding energies are
found to occur for ‘doubly magic’ nuclei like $He,, 8Os, 35Cazs, and 33°Pb;26. To explain
these observations a nuclear ‘shell model’ was developed.

The basic assumption is that the nucleons within a nucleus are considered as inde-
pendent particles moving on almost unperturbed single particle orbits. The nucleonic
interactions create a field which, to the lowest order approximation, is common to all
nucleons. The single particle energies and wavefunctions are then found by a solution of
the one-particle problem with the potential determined on an experimental basis.

The general Hamiltonian of the system is given by:

A 32 A
H = E [—-é-’;‘-v,? + Zv(:,;)] (2.10)

i=1 i>i
where i represents all the co-ordinates of the i** nucleon (e.g., position r;, spin s;, isospin
t;). The first term is the kinetic energy. The second term represents the two-body
interaction between nucleons. In the shell model the two-body interaction 1is replaced by

the one-body potential.

S u(i,3) ~ 3 Vs (2.11)

D> =1

This 1s by no means a trivial thing to do.



CHAPTER 2. NUCLEAR MODELS 10
The shell model Hamiltonian can be written:

A
Ho =) h; (2.12)
with,
R,
h; = —'2-;;V.- + Vsm (1) (2.13)

The single-particle Hamiltonian must satisfy the Schrodinger equation:

hidr(i) = exd(s) (2.14)

where €, 1s the single-particle energy. The functions ¢, provide an orthogonal basis for

use in an occupation number representation within the framework of second quantization.
Noting that the nucleons are fermions (and consequently their creation and annihilation

operators must obey the Fermi commutation relations) we may write the nuclear shell-

model Hamiltonian as:
Hy =Y ealas (2.15)
with eigenfunctions,

|¢kllk’l'“lk4) = allalg"'al_‘l_) (2'16)

(where |-) represents the bare vacuum)

and eigenvalues,

Ekl 2y by = ekl + fk’ + see + fh‘ (2'17)

The form of the shell model potential must now be considered. A nucleon close to

the centre of the nucleus will experience a uniform field and feel no net force such that:

(agff'))r:o =0 (2.18)

The nuclear forces also have a finite range such that:

V(r)~0, r> R, (2.19)
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Figure 2.3: Shape of the Woods-Sazon potential.

where Ry 1s the nuclear radius. The nuclear binding forces will get stronger going away

from the surface towards the interior. A form of potential which describes these features

18 the commonly used Woods-Saxon potential:

VW3(r) = =Va [1 + ezp (r — Ro)] N (2.20)

a

where, Ro=nuclear radius=1.2A1/3 fm
VQ ~50 MeV

a=the surface diffuseness parameter~0.5 fm

The shape of the Woods-Saxon potential is shown in Fig. 2.3. A simple approximation

to the Woods-Saxon potential, that is often used, is the harmonic oscillator.

2.3.1 The Harmonic Oscillator

The form of the harmonic oscillator potential is:
r\} m
V(ir)=-V% [l - (-E-o) ] = -:—z-wg(r’ — R3) (2.21)

It is an unphysical potential since it tends to infinity, but this will only affect the ex-
ponential tails of the wavefunctions. Also, since it is analytically soluble it can provide

some insight into the behaviour of states.

It is well known that the harmonic oscillator gives equidistant energy levels, such
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that:

J
en = hwo (N + '2-) - Vo (2.22)

with, N=2(n-1)+1 n=12,... 1=0,1,2,...

These levels are D(N)-fold degenerate where,

D(N) = %(N +1)(N +2) (2.23)

where, N=number of oscllator quanta
n=radial quantum number

l=angular momentum quantum number

wo=oscillator frequency

The levels with a definite N constitute an oscillator shell. They will have either odd or

even | values, and hence will also have the same parity (x=(-1)').
The harmonic oscillator reproduces the magic numbers 2, 8, 20. Two additional

features are needed before the higher magic numbers are correctly reproduced.
Firstly, an additive term proportional to -1* flattens the bottom of the potential.
This pushes states with higher-1 wavefunctions down in energy. The second feature is to

explicitly include a spin-orbit interaction which incorporates the spin dependence of the

nuclear force [HJS49, May49]. This usually takes the form:

Vso = f(r)l.s (2.24)
where,
f(r) = z\-:-:-c;—l:-, A~ —0.5fm? (2.25)

The function f(r) is peaked at the nuclear surface. The spin-orbit term splits the oth-
erwise degenerate levels with j=1+1/2. Making the spin-orbit term attractive accounts

for the experimental observation that the j=14+1/2 levels are lower in energy than the
j=1-1/2 levels. The spin—orbit interaction will sometimes depress a level, with large 1, low

enough to intrude into the next lowest major oscillator shell. These states are known as
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‘unnatural parity’ or ‘intruder’ states, and they play an important role when the nucleus

becomes deformed.

These two additional features in the harmonic oscillator potential reproduce the ob-

served magic numbers 2, 8, 20, 28, 50, 82, 126. This is illustrated in Fig. 2.4.

2.4 The Deformed Shell Model

There is a great deal of experimental evidence for the existence of stable nuclear defor-

mations. This includes:

1. The existence of rotational bands, which require the presence of stable nuclear

deformations.

2. Large quadrupole moments, that have been observed in nuclei far from the spherical

closed shells.
3. Strongly enhanced quadrupole transition probabilities, B(E2) (xQ3).

4. Single particle spectra, which cannot always be explained within the framework of

the spherical shell model.

To explain these observations the idea arose to use a deformed average potential.

Since the nuclear forces are short range one would expect the potential to have the same

shape as the nuclear density distribution.

2.4.1 Anisotropic Harmonic Oscillator

If we assume an ellipsoidal distribution to describe the density of the deformed nucleus,

the single particle Hamiltonian may be written as:

h? 2 , M, 3 2 2 2 2.2
ho = —%V +-§-(w,:n +wyy® + w;2°) (2.26)

where, w,, w,, w, are chosen such that,

W, = WQ&' (2.27)

ay
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(v=x, y, or z; and a, are the half-axes of the ellipsoid). The condition for volume

conservation 1is:

wewyw; = constant = wj (2.28)

The Hamiltonian, eqn. 2.26, is separable in x, y, and z. The eigenstates are characterized

by n., n,, n, with eigenvalues,
co(nanyn,) = hwi(ng + 1/2) + hwy(ny, +1/2) + hw,(n, + 1/2) (2.29)
For an axially symmetric shape, with z as the symmetry axis, then,
W) = We = W, (2.30)

and one may introduce a deformation parameter,é, such that:

Wwp = wg(5)(1 + :3?"5)1/2 (2'31)
4 \1/2

wy = wo(8)(1 — 56) (2.32)

Nilsson introduced a deformation dependent oscillator length,

32 1/2
b(8) = 2.33
= | (239)
and dimensionless ‘stretched’ co-ordinates,
, T
— - 2.

r'= 2 (2.34)

Expressed in terms of these co-ordinates eqn. 2.26 becomes:

) = (394 32 - [, (235

The eigenstates are now given by:

co(nznyn;) = €(n,n,my) = hw,(n, +1/2) + hwy (20, + |my| + 1) (2.36)
with, N = Ne+Ny+n; = n:+2np+ml

where m;=A=projection of orbital angular momentum on the symmetry axis.
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2.4.2 The Nilsson Hamiltonian

In the spherical shell model it was necessary to include a strong spin-orbit interaction

and a term to ‘flatten the bottom’ of the potential, before agreement with experiment
could be achieved. In order to include these effects in a deformed shell model potential,

Nilsson ([Nil55]) added two terms to the anisotropic harmonic oscillator Hamiltonian
such that:

h = ho(8) — Khwo(2l.58 + ul?) (2.37)

It was empirically observed that, for higher-N states, the shift in energy given by the 1

term was too big. This term was therefore altered such that,

ul? = p(1? — (1)) (2.38)

where, (1?)y=N(N+3)/2 and represents the expectation value of 1? averaged over one
major oscillator shell. The parameters x and p are chosen for each oscillator shell (and
therefore differ for different mass regions) so as to reproduce the experimentally observed
states (see, e.g. [GLN67]). The fitting of these parameters will also take into account the
Coulomb repulsion between protons, which is not included explicitly in the model.

It should be noted that the Hamiltonian no longer commutes with the j? operator,

i.e. there is no longer a good quantum number for the total angular momentum. The
only quantum numbers that remain conserved are the parity, 7, and the component of

the total angular momentum on the symmetry (z) axis, {2, where,

A = z-component of the orbital angular momentum

Y} = z-component of the nuclear spin

The states are usually labelled by Q*[N n, A]. [N n, A] are known as the asymptotic

Nilsson quantum numbers which are good in the limit of extreme deformation.

2.4.3 The Woods-Saxon Potential

Another commonly used form of deformed nuclear potential is the generalized Woods-

Saxon potential. Parameterizing the nuclear surface in terms of spherical polar co-
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ordinates we have,

—R(6,9)\]™
—_— V 9 — — .1:_._......_.__’_.... .
Vivs(r) (r,0,9) Vo [1 + e:cp( 20, 9) )} (2.40)
A spin-orbit coupling term 1s included which has the form:
E 2
Vso(r) = —Aso [—%] (VVws X p)o (2.41)

where p, and o are the nucleon linear momentum and spin operators respectively. A
Coulomb term is included explicitly to account for the proton-proton repulsion. It is
given by:

Vo Z -1 1
Coll = 4/3xR3J v/ =1

dr (2.42)

2.4.4 Nilsson Diagrams

One could now in principle use one of the above forms of deformed shell model potentials
to calculate the energies of states at given deformations, thereby generating a ‘Nilsson
diagram’. Such a diagram is presented in Fig. 2.5. Several important features of such a

diagram should be noted (a fuller discussion may be found in [Nil55]).

o The onset of deformation causes levels degenerate in j to split into j+1/2 different

levels each of degeneracy two.

e The quadrupole field causes levels with lower-{) values to be shifted down for
positive (prolate) deformations. The wavefunctions of these states will have a large

spatial overlap with the density distribution and will consequently come lower in

energy.

e For non-zero deformations it may happen that two levels with the same {1* values

but originating from different j-shells will interact and interchange properties. As

a rule, levels such as these can never cross.

o The slope of the Nilsson levels, €, is given by the single-particle matrix element of

the quadrupole operator.

dey

8- —(k|r"Yao|k) (2:43)
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It becomes possible for unnatural parity states to intrude down into a lower shell.

o At zero deformation the magic numbers appear at regions where the level density
is low. As the deformation changes these level gaps disappear, but different smaller
gaps may occur at some particular deformations. These gaps lead to an increased

stability of the deformed nuclear shape for certain nucleon numbers.

2.5 The Shell Correction Approach

The liquid drop model of the nucleus accounts for the bulk properties of nuclei fairly
well. The shell model approach, which considers the quantized independent motion of
a particle in an average field, reproduces nuclear properties for which nucleons in the
vicinity of the Fermi surface play an important role. Combining these two different

approaches results in what is known as the ‘shell correction’ approach.

Binding energies of nuclei are strongly dependent on the level distribution near to
the Fermi surface. A nucleus is expected to be more bound if the level density is low
(since the nucleons can then occupy deeper, more bound states). In general, for a quantal
system, degeneracy leads to reduced stability. The nuclear ground-state corresponds to
the state of lowest possible degeneracy. A ‘magic’ nucleus (at a shell closure) can be

thought of as the one that is the least degenerate among its neighbours.

The binding energy may be thought of as having smooth and fluctuating parts.

E =FEo,.+ Erpm (2.44)

An idea of Strutinsky ([Str67, Str68]) was to calculate the oscillatory part, Eo,., within
the shell model framework and take the smooth part, Ezpar, from the liquid drop model.

The shell model energy is itself made up from an oscillatory and a smooth part,

A
Esn= )€ = Eo,.+ Esx (2.45)

1=1

Within the shell model the single-particle level density, g(e), may be written as:

g(e) = > (e — &) (2.46)
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Figure 2.6: Schematic representation of the level densily in an infinite three dimensional

polential.

where, é(€ - ¢;) is the Dirac delta function.

The particle number can be expressed as:
A
A= / g(e)de (2.47)

The shell model energy is:
A
Esh = / eg(e)de (2.48)

The density function may be re-written to explicitly separate smooth and fluctuating

terms,

g(€) = g(e) + 8g(e) (2.49)

where g(e) is the ‘average’ part of the shell model density, while ég(¢) is the oscillatory

part. (See Fig. 2.6). The particle number can now be written as:
A
A= / g(e)de (2.50)

where A # .

An expression for the ‘average’ shell model energy is:

Egn = j_ : eg(e)de (2.51)
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Figure 2.7: Potential energy surfaces in the S~y plane calculated from a Strutinsky shell

correction procedure. Taken from [And76].

This average shell energy physically represents a smearing of the Fermi surface, and
changes the occupation probabilities of levels near to it.

Thus, finally, the binding energy given in eqn 2.44 may be re-written,
E = Erpm + Eosc = Erpm + (Esn — Esn) (2.52)

E;pa is the macroscopic energy contribution while [Es;.—E's;.] (=6Egss) is the microscopic

shell correction.

The function g(e) is usually written as:

g(e) = :71- _[_ : 9(€)f ( e; e) de (2.53)

The constant 4 is the ‘smoothing range’ and is approximately of the same magmtude as

the energy difference between successive nuclear shells (i.e. 4 =~ Auyg). The function f is

a smooth ‘folding’ function; usually a Gaussian.

One of the applications of the Strutinski method is the calculation of energy versus
deformation plots. They are usually presented as energy contours in the S—y plane.

Examples of such potential energy surfaces, for several different nuclei, are shown in
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Fig. 2.7. The hexadecapole deformation is usually taken into account by minimizing the
energy with respect to G4 at each point. The method can be extended to include the
effects of pairing and of nuclear rotation. The resulting Total Routhian Surfaces (TRS’s)
will be discussed in detail later (see section 3.8).

2.6 Pairing Correlations and the BCS Model

In addition to an average nuclear potential determining the properties of nucleonic single—-

particle orbitals, a residual two-body interaction must be added to account for many ob-

served properties of nuclei. The evidence supporting these additional pairing correlations

include:

1. Level gaps in the excitation spectra of even—even nuclei (few collective levels below

~1.5MeV) when compared to neighbouring odd-even nucle:.

2. All even—-even nuclei have I=04 ground state spins.

3. The total binding energy of odd-even nuclei is found to be less than the mean

binding energy of the two neighbouring even-even nuclei.

4. Nuclear moments of inertia, derived from rotational bands, are typically found to

be less (~50%-80%) than their expected rigid body values.

The two-body force is the result of the short-range component of the inter-nucleon

force. Monopole pairing, which leads to an interaction only between pairs coupled to I=0,
is considered to be the most important component of the pairing interaction. Intuitively,
the most energetically favourable situation is when the wavefunctions of nucleon pairs

have the largest spatial overlap. Considering the Pauli Exclusion Principle, this will
be when the particles are travelling in time reversed orbits. The nucleons will scatter

between different pairs of such orbits.

Higher multipole pair fields can not always be neglected if calculations are to accu-
rately reproduce experimental results. For instance, theoretical estimates of rotational

band-head energies in deformed rare-earth nuclei clearly show that quadrupole pairing
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has to be taken into account, [Die84]. Its inclusion also influences calculated moments of
inertia and band-crossing frequencies.

In addition, any full treatment of pairing must describe both static and dynamic
pairing regimes. Dynamic pairing correlations describe the quantal fluctuations of the
pair gap which arise as a consequence on the finite number of particles in heavy nucle,
[Shi89, Shi90].

The concept of fermion-pairs forming a Bose gas was first formulated by Bardeen,

Cooper, and Schrieffer, [BCS57], to explain electron superconductivity. Bohr, Mottelson
and Pines, [BMP58], and later Belyaev, [Bel59] extended the theory to describe the finite,
nuclear-superfluid system. The nuclear ground state of an even-even nucleus can then
be regarded as a Bose condensate whilst the low-lying levels in an odd-even system can
be thought of in terms of excitations of the unpaired particle.

In its simplest version the nuclear Hamiltonian including a two~body monopole pair-

ing interaction reads:

H = Z e,(ala,, -+ aLap) -G E 511“!;1“&23#2 (2'54)

v>0 vl,v3

The first term is simply the sum of the single-particle energies while the second term

contains the pairing interaction. Here, |7) is the time reversed state of |v).

The BCS model supplies an approximate solution to the problem of the nucleonic
motion generated by the Hamiltonian, H, after applying the variational principle with a

trial wavefunction of the form:

[¥scs) = [[ (v — voala})l-) (2.55)

>0

Here |-) denotes the vacuum state of the particles. The squares of the coefhicients u, and

v, are the occupation probabilities and they are normalized to umty,
ul +v3=1 (2.56)

The BCS trial wavefunction will mix components with different numbers of particles (i.e.
the particle number is not conserved). Hence, it is necessary to impose the condition

that the expectation value of the particle number has the correct value,

(‘I'BCS INIII'BCS) - N (257)
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This is achieved by adding an auxiliary constraint into the Hamiltonian,

H' =H- N (2.58)

The Lagrange multiplier, A, is the chemical potential.

Equation 2.58 characterizes a system of interacting nucleons. By applying a Bogolyubov

transformation,
al=u,al - v, a, a,=u,a, — v,al
V p<,, v Vv v yep (2 59)
aL=upaI-. + V,a, ap=u,2p + v,a!

where a! and a, are quasiparticle creation and annihilation operators (obeying the
Fermion commutation rules), it becomes possible to describe the system in terms of

non-interacting quasiparticles (or more correctly quasiparticle excitations). These quasi-

particles may be thought of as a mixture of particle and hole states.

Minimization of the total energy,
(Ypes|H — AN|¥pcs) = minimum (2.60)

predicts the quasiparticle excitation energy of a state |v) relative to the ground state to

be

E, = /(e, — A)? + A? (2.61)

A is the ‘pair gap parameter’ and i1s a measure of the pairing strength,

A=G) uu, (2.62)

»>0

The pair gap parameter is related to the single particle level density, g(e), by:

A  ezp [_ G';(E)] (2.63)

Some important qualitative points need to be made before leaving the discussion of
pairing correlations. Paining effects and the quasiparticle-excitation description are most

important within ~ A either side of the Fermi surface. This is the region where scattening
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Figure 2.8: Occupation probabilities, 13, near the Fermi surface when A #0.

of nucleons from their time reversed orbits can occur and results in the ‘smearing’ of the
Fermi surface (when A #0), see Fig.2.8. Above this the states will correspond to pure
particle states while below they will be nearly pure hole states. For an odd system the
occupation of a state by the unpaired particle will ‘block’ the level and the state should

not be in the trial wavefunction (see eqn. 2.55). This blocking is a consequence of the

Pauli Exclusion Principle which prevents this level from participating in the scattering

processes by pairing correlations.

' UNIVERSITY
OF YORK
LIBRARY




Chapter 3

Collective Nuclear Rotation

3.1 Rotational Bands. Band Crossings.

Deformed nuclei are known to exhibit collective rotational bands. The rotational motion
can be regarded as involving the coherent contnbutions of many nucleons (hence, the term

‘collective’). The relation between the excitation energy, E, and the angular momentum,

I, was generally found to behave smoothly as
hz
E = -2—§I(I+ 1) (3.1)

where & is the static moment of inertia. A semi-classical treatment of a rigid rotor gives

the same form of equation as eqn. 3.1. The series of states with consecutively increasing
angular momentum is known as the ‘rotational band’. The lowest state of the band is
referred to as the ‘bandhead’. Many different intrinsic configurations can be bandheads of
different rotational sequences. The state of lowest energy at a given angular momentum

is called the ‘yrast state’. The locus of yrast states forms the ‘yrast line’.

In an even—-even nucleus at low rotational frequency the yrast band will be based on
the ground state configuration, i.e. all the nucleons are in pairwise occupation of time-
reversed orbits with the lowest excitation energy possible. The spin and parity of the
ground state will be I"=0%. The bandhead of the first excited band will correspond to a

two—quasiparticle excitation. As the rotational frequency increases, the excitation energy

of this first excited band may be lowered with respect to that of the ground state band

26
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Figure 3.1: The effect of the Coriolis force, Feor, for two nucleons moving in time-reversed

orbits. The force acts in opposite directions for each nucleon, tending to pull them apart

and eventually breaking the pairing.

until at some critical frequency, Werit, it becomes energetically favoured. This is known
as the first band crossing. It may be explained in terms of the eftect of the Coriolis force
(see later) on two nucleons of the ground state configuration. As the rotational frequency
increases the two nucleons will experience a Coriolis interaction which acts in opposite
directions for each nucleon pulling them apart. At the critical angular momentum, I,
the pair will be broken and each nucleon may align its intrinsic angular momentum along
the rotation axis, see Fig. 3.1. The nucleus can reduce its rotational frequency, w, without
loss of total angular momentum, I, because of the gain of the intrinsic aligned angular
momentum of the nucleons, i (this describes a ‘backbend’). The first excited band then

becomes energetically favoured.

Near to the crossing point a plot of the excitation energy versus spin shows a char-

acteristic behaviour. If the crossing takes place over one or two states the interaction
between the bands is said to be weak and a plot of the moment of inertia, &, versus w?
displays a backbend. If the crossing between the bands takes place over several more
<tates the interaction between the bands is said to be strong, and the plot of the moment

of inertia displays an upbend. The two situations are illustrated in Fig. 3.2.
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(a) Weak (b) Strong
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Figure 3.2: Schematic illustration of band interaction a) weak, b)strong.
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3.2 Moments of Inertia

It 1s found empirically that the static moment of inertia for a rotating nucleus is typically

50-80% of the rigid body value. This is due in particular to the presence of pairing
correlations.
Two important quantities known as the nuclear moments of inertia may be introduced,

[Boh81], which reveal more about the intrinsic nuclear structure. The ‘kinematic’ moment

of inertia is expressed by

I

(1) = ple
) = S (3.2)

whilst, the ‘dynamic’ moment of inertia may be written as

1 BE1™Y  dr
(3) . | 23L& _ ,dls
S [ﬁ, dI,] s (3.3)

Here, I, represents the component of the total angular momentum on the rotation axis.
The moments of inertia reflect the changes in a rotational band. The dynamic moment
of inertia, S3), is very sensitive to alignment effects, whereas the kinematic moment
of inertia, S(1), describes the nuclear rotation at a given angular momentum, I, and
rotational frequency, w. For a rigid body the two quantities coincide.

The nuclear moments of inertia can be related to experimental observables. For
instance, a rotational sequence of states decaying via stretched electric quadrupole tran-

sitions (E2) has kinematic and dynamic moments of inertia given by the expressions

2 —1
(1) — 2 .
S - (3.4)
o) _ 48 (3.5)
AE, |

Here, I is the spin of a state decaying via a 4-ray of energy E,. AE, is the energy

difference between two successive transitions.

For a cascade of M1-transitions the corresponding expressions are

KT
(1) —  S———— #
3 = 5 (3.6)
3
g - N (3.7)

AE,
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3.3 Angular Momentum. Coupling Limits.

The total angular momentum, I, of a rotating nucleus can be decomposed into two parts.
The first i1s the angular momentum generated by the collective rotation of the inert
even—-even core, R. The second component is that generated by the intrinsic motion of

the valence nucleons, J. Thus, it may be written that
I=R+1J (3.8)

Such a nucleon-core coupling scheme is only valid when the rotational motion of the inert
core is slow when compared to the single-particle motion (the adiabatic condition) since
then the core will have an equilibrium deformation. The model leads to useful 1ntuitive

pictures of how the single-particle motion of the valence nucleons is modified by rotation.

In odd-mass nuclei, the intrinsic angular momentum of the valence nucleons, J, is

non-zero. The excitation energies of the rotational system are given by

hz 2 hz 3 3
Brow = o (1= 3) = o= (I 4 37 - 21.3) (3.9)

The term I.J represents the Coriolis interaction. Extreme limits of the nucleon-core

coupling may then defined.

3.3.1 The Strong Coupling Limit (Deformation Alignment)

The odd particle adiabatically follows the rotation of the even core. This situation is
schematically represented in Fig. 3.3. It arises if the coupling to the deformed nuclear
field is much stronger than the perturbation of the single-particle motion by the Coriolis

interaction. This 1s true for

1. large deformations
2. small Coriolis matrix elements (low—j or high-Q)

In a semi-classical picture the angular momentum vector J precesses around the defor-
mation axis. The projection of the total angular momentum on the symmetry axis, K, is

then a good quantum number. No K-mixing takes place and there is consequently little
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Figure 3.3: A schemaltic vector diagram showing the strong coupling limit.

signature splitting (see section 3.4.2). The spin sequence of the rotational band is then

given by

I=K,K+1,K+2,.. (3.10)

3.3.2 The Decoupling Limit (Rotational Alignment)

In this limit the Coriolis force is so strong that the coupling of the nucleon to the deformed
core i8 negligible. As a result the rotational band is determined by the properties of the

even core with the particle angular momentum, J, added in a near-parallel way to that
of the core. The projection of J on the rotation axis, a, then becomes a good quantum

number. States with a=J are energetically favoured. The resulting spin sequenceis given

by
I=R+o,R+a+2,R+a+4 (3.11)

Decoupled states with a<J lie higher in energy. The large Coriolis interaction leads to

strong K-mixing and large signature splitting. The situation described above is schemat-

ically illustrated in Fig. 3.4.
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Figure 3.4: A schematic vector diagram showsng the decoupling limit,

3.4 Cranking.

The time dependent Schrodinger equation may be wntten

5;" Hiyr (3.12)

where the subscript L represents the non-rotating laboratory system. Assuming that the

nuclear shape is axially symmetric, we can transform from the laboratory frame into the
intrinsic frame by means of a rotation operator

R = e~evt (3.13)

I, represents the component of the total angular momentum on the rotation axis, x

(which is perpendicular to the symmetry axis, z). Using the rotation operator, R, one
may write

YL = Ryrne (3.14)

Hy = RH[,;;R-I (3'15)

Substituting these expressions into eqn.3.12, the Schrodinger equation within the intrinsic

rotating frame becomes

WSVl — )i (3.16)
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Thus, the cranking Hamiltonian (or routhian) may be written as

HY = HIM - thz (3.17)

The second term of this equation is analogous to the Coriolis and centrifugal forces
of classical mechanics, which anse because of the non-inertial system of reference for
H“, The two inertial forces play an important role, by altering the motion of nucleons.
The Coriolis force has the tendency to align the angular momenta of individual nucleon

orbitals along the rotation axis, whilst the centrifugal force has the effect of pushing them

away.

The total cranking Hamiltonian as given in eqn. 3.17 can be re-expressed as the
summation over the single-particle cranking Hamiltonians, h*
HY =) k(i) = ) (hine(3) — hwja(s)) (3.18)
i ‘
Here, j, represents the component of the intrinsic angular momenta of the nucleon aligned

along the rotation axis. The Schrodinger equation for single-particles may be written
he®) = e, |v®) (3.19)

where, e is the single-particle energy in the rotating frame and |*) is the single-particle

eigenfunction. The real energies, e,, are given by the expectation values of the intrinsic

single-particle Hamiltonian, hyn:. They may be wntten
e, = e, + hw(v”|ja|v*) (3.20)

Rearranging and differentiating this expression with respect to w gives

dey i 1w
= = =h{v*|7a]v") (3.21)

From this result it is clear that orbitals with large components of angular momentum
aligned along the symmetry axis (the quantity given by eqn. 3.21 is often called the

‘alignment’) are those most affected by rotation.
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3.4.1 Symmetries of the Cranking Hamiltonian. Signature.

The solution of eqn. 3.16 reduces to the eigenvalue problem of H“. The diagonalization
procedure, usually employed to solve this problem, can be greatly simplified if the sym-

metries of the cranking Hamiltonian, H“, are exploited. The intrinsic Hamiltonian, H;,,,
is, in most cases of interest, invariant with respect to panty inversion, P, and time re-
versal, T. If, in addition, the deformed average field, V, entering Hy,; 1s characterized by

an even—multipole expansion (e.g. quadrupole and hexadecapole components only) then

H;,.. remains invariant with respect to the three rotations of 180° about the principal

axes. These may be represented by the rotation operators
R = ezp(—irl,) x=1=z,y,2 (3.22)
The full cranking Hamiltonian, H*, will remain parity invariant since
[Hpne, P)=0 , (L, P]=0 (3.23)

However, since I, changes sign under the time-reversal and the rotations R, R,, then
all these symmetries are broken. The only symmetry that remains (along with parity
invariance) is that described by the R, operator (a rotation of = about the x-axis).
Thus the eigenvalues, ¢, and the eigenfunctions, |), of the single-particle cranking
Hamiltonian, h, may be labelled by the parity of the state, 7(v), and by the eigenvalue

of the R, operator, r.(v). Instead of using r,(v), a new quantum number a(v) is often

used and is related to r.(v) by
re(v) = ezp[—ira(v)] (3.24)

The quantum number r () is called the signature of the state [v*), whilst a(v) is called

the signature exponent. (Note, sometimes in the literature the word ‘exponent’ is dropped

and a(v) is called the ‘signature’). The advantage of using a(v) is that it is an additive
quantity.

For systems with even numbers of nucleons one finds

r=+41 (a=0) I=0,24.

T = --1 (a - 1) I = 1,3,5..-

(3.25)
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whilst for odd-A

r=—i (a=+3) I=122. (3.26)
r=+i (a=-3) I=3737%.

3.4.2 Signature Splitting.

For a symmetrically deformed nucleus, rotation breaks the time-reversal symmetry due
to the presence of the wl, term in the cranking Hamiltonian. The effect is greatest for
orbits with a large projection of the intrinsic angular momentum on the rotation axis, J,,
(i.e when the projection of the intrinsic angular momentum on the symmetry axis, 2, is
small). The degeneracy with respect to {0 is then split. The energy difference between
the orbitals is known as the ‘signature splitting’. Orbitals with |Q2|=3 have non-zero
diagonal matrix elements with the operator J, at w=0. These states split immediately.

All the other states will split at higher rotational frequencies as the =3 component

mixes into the wavefunction of the state.

3.5 Tilted Axis Cranking

In the description of cranking presented above rotational states may be interpreted as
quasiparticle excitations in a potential rotating uniformly with a rotational frequency, w,
about one of the principal axes (PA). The x-axis was used in the preceding description.
Very recently the idea of uniform rotation about a tilted axis (TA) (i.e about a non-
principal axis) has been shown to be very useful in describing the properties of high~K

bands [Fra91, Fra93). Fig 3.5 schematically illustrates the TA scenario.
Where the TA procedure differs from the more general prescriptions of three-

dimensional cranking, [Tho62, Har80, Cuy87], is in the assumption of uniform rotation
about the tilted axis. This leads to the additional constraint that the angular momen-
tum and angular velocity vectors must be parallel (i.e., solutions involving the precession
of the angular velocity vector about the angular momentum vector are excluded). The
energy is minimal for this parallel geometry, and the corresponding configurations will

represent the lowest rotational bands. The restriction also considerably simplifies the {ull
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TAC

PAC 3D
Figure 3.5: Schematic sllustration of tilted azis cranking.
three-dimensional cranking problem.
The TA cranking Hamiltonian may be written as
;’D == H — w.I (3.27)

with,

W ==(w1:w5:“h)

= w(sinfcosd, sinfsing , cosf )

The tilting angles, 6, ¢, of the angular momentum vector with respect to the PA are
determined by making w parallel to I at fixed deformation (3, ). This is equivalent to
minimizing the Hamiltoman given by eqn. 3.27. Solutions, corresponding to minima of

the expectation values of eqn. 3.27, are found self-consistently by keeping w parallel to
I at each (8, v) deformation.

Parity, x, remains a good quantum number. However, TAC solutions are not eigen-

functions of the operator describing a rotation of x about the rotation axis. Consequently

signature is broken. Each TA solution is associated with a AI=1 rotational band of parity
x, and whose states are interconnected by direct-M1 and crossover-E2 transitions. The

predictions of TAC will be discussed more fully later (see section 6.8).
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3.6 The Cranked HFB Approach.

Instead of starting with the cranking Hamiltonian, HY, one may write
HY = HY — AN (3.28)

N is the particle number operator, where X is a Lagrange multiplier, which may be

interpreted as the chemical potential. The variable A is used to ensure particle number

conservation such that
N = (—|N|-) (3.29)

where, |-) represents the vacuum configuration.

The Hamiltonian may be re-written using the formalism of second quantization

W : 1
H" = " (ems — hw(ja)ins — Abiar) el + 1 ) v,,.,:,,.,;clcl.c,,;c,l (3.30)
w! winy,
where e,,s are the matrix elements of the single-particle Hamiltonian, and v represents

a two-body force. Using a Bogolyubov transformation (see eqns. 2.59) after a long but

transparent transformation (see, for example, (Goo76, Ban73]) the Hamiltonian H'“ may

be expressed in the form
H"™ = Hyo + Hyy + Hzo + H, (3.31)

Hoo is a constant; Hy; contains terms of the type ata, and Hyg terms of the type atatl, aa.
H4 contains fourth-order terms of the quasi~particle creation and destruction operators,

a! and «; it may be thought of as representing a quasi-particle interaction. The HFB

approach to the problem involves

 Choosing the transformation in such a way that Hy; becomes diagonal and the term

H,o, simultaneously, becomes zero.

o Treating Hy, the quasi-particle interaction, in an approximate way.

A consistent application of the ideas results in the HFBC equations

> (v, — Absy) AL + ApyBi| = er Al (3.32)

v
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= 2|87~ 2650) B + 25,4 = 1B (3.33

where Ag and BE are the transformation coefficients of the Bogolybov transformation.
The eigenvalues €} are the single-quasiparticle routhians. The quantity vg. is the self-
consistent single-particle cranking energy, whilst Ag, is the self-consistent pairing po-
tential. The HFBC equations are non-linear, since both vg, and Ag, depend on A% and

Bj. It is therefore necessary to find solutions using an iterative procedure. For example,

1. vg and Ag, may be guessed at.

2. e/, Ay and By can then be calculated.

3. vg, and Ag, can be recalculated.

4. The whole procedure is repeated until self~consistency is achieved.

A general solution is exceedingly difficult. Approximations are often made in order to
simplify the procedure. For instance, the two-body force is often limited to a short-
range component only, while the one-body term of the Hamiltonian eqn.3.30, e,.s,can be
produced through the ad hoc introduction of a single-particle potential (e.g. the Woods-
Saxon potential, see eqn.2.40). The self-consistency conditions will then no longer be

satisfied. An example of quasi-particle routhians, calculated using a procedure similar

to that described above is shown 1n Fig. 3.6.

Finally, it should be noted that, once again, symmetries exist which can be exploited
to simplify the problem. Parity is conserved, but time-reversal invariance is broken. The

signature remains a good quantum number and may be used to classify solutions.

3.7 Comparison with Experimental Values

The cranking approaches described above allow the calculation of routhians in the in-
trinsic fra