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Abstract

As the power and availability of digital signal processing devices continues to increase, mo-
dem functions that were once performed by analogue methods are now being done digitally.
Perhaps the most critical function is synchronisation. This thesis is concerned with the study
of algorithms suited to digital implementation for carrier frequency, symbol timing & carrier
phase synchronisation. Digital algorithms are not only interesting because of the usual ad-
vantages of digital over analogue circuits, namely that they need no alignment and can lead
to reduced costs by large scale integration etc., but also because they allow one to develop
algorithms from a sound theoretical basis which come close in terms of their performance to
what is theoretically possible. By using digital algorithms it is possible to explore more of
the “design-space” in the search for optimum receiver structures.

The performance of digital synchronisers with offset and non-offset M-PSK type modula-

tions, popular for mobile radio & satellite applications, is explored via simulation and analysis
and a number of new results developed.



Chapter 1

Introduction

Problem Statement

Synchronisation is possibly the most important function in any receiver for without it all else
will fail. Developing new esoteric modulation and coding schemes is of little use without con-
sidering how one would implement appropriate synchronisation functions. This is particularly
true in modern times where emphasis is on modulation schemes that are spectrally eflicient,
in terms of the bits/s/Hz that they will support, and may have to operate in burst mode.
Synchronisation means the recovery of reference parameters associated with a modulated
waveform and the application of these parameters to aid the data detection process. These
parameters are carrier frequency, symbol timing and carrier phase (for coherent detection).
Actually, one can assume an extra parameter to be estimated, namely the transmitted data

sequence, as is done in a multiple parameter estimation approach.
In this thesis we are concerned with synchronisation in sampled receivers. That is to

say, we are interested in those algorithms that are suited to implementation on some form of
Digital Signal Processor.

The problem of synchronisation is illustrated by figure 1.1. A received passband signal,
perhaps after coarse frequency correction, is down converted to in-phase (I) and quadrature
(Q) components by a fired local oscillator. This analogue waveform is then sampled at a fized
rate by the two analogue-to-digital converters. We assume that the Digital Signal Processor
has no control over either the local oscillator frequency/phase or the clock frequency/phase.
Any corrections for the errors between the received signal frequency and the local oscillator
frequency will have to be done digitally. Similarly there will be errors between the local
sampling clock and the timing epoch of the received signal. Timing errors may be very small,
of the order of parts per million, but they are there nevertheless. Frequency errors can be
much larger depending on the type of environment the receiver has to operate in. For satellite
communications it is possible to have frequency errors as large as the baud rate.

As the signal processor makes no attempt to change the frequency/phase of the clock or
the local oscillator these systems are referred to as being asynchronous.

Digital asynchronous receivers of the type depicted in figure 1.1 are attractive for a number
of reasons. By reducing the amount of analogue hardware in the receiver to simply those
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Figure 1.1: Conceptual Asynchronous Timing/Phase Recovery System

functions required at the “front-end” we get all the benefits commonly associated with digital
systems, namely, low cost (in high volumes), large scale integration, and minimal variation
in performance from receiver to receiver. Of more interest, perhaps, is the philosophy of
developing a “generic” receiver based on the programmability of the Digital Signal Processor.
Conceptually, at least, one can change the function of the receiver, to detect a different
modulation scheme, for example, by changing the software rather than the hardware.

In figure 1.1 we have the conceptual block “Cartesian-To-Complex” to denote that the
Digital Signal Processor is, in general, performing complex operations upon complex data. We
are only concerned with these complex operations in this thesis and not with the “front-end”
configuration.

Our concern here is with floating-point algorithms and hence are strictly sampled, rather
than digital, in nature.

Overview of the Development of the Subject

The study of digital algorithms for synchronisation is relatively new. The field is really a
marriage between the two much more mature fields of Estimation Theory [1, 2] and Digital
Signal Processing [3] and there are few useful references on the subject in the open literature.
Many of the references that do exist concern analogue synchronisation methods, or are simply
digitalised versions of of analogue methods. A useful overview of synchronisation in data

communications is an IEEE special issue [4].

The earliest contributions to the development of the subject were by Mueller [5] who de-
veloped a general theory for “T”-spaced timing recovery in 1976. One of the special cases of
the general theory developed in [5] is usually referred to as the Mueller and Miiller algorithm.
Also, Lindsey in [6] describes an early-late method of timing recovery called the Data Tran-
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sition Tracking Loop (DTTL). Kobayashi {7] realised the advantages in multiple parameter
estimation applied to synchronisation systems.

Gardner has been one of the main protagonists in the modern development of the sub-
ject. He published his simple non data-aided timing-error detector for asynchronous timing-
recovery in 1988 (8], followed by a number of reports on digital synchronisation algorithms for
the European Space Agency [9, 10, 11, 12, 13]. It is only relatively recently that researchers
have realised that interpolation is an important function in asynchronous timing recovery
loops. Farrow developed a continuously variable delay element in 1988 [14]. Work on inter-
polation was expanded upon and consideration given to appropriate control structures more
recently in [15, 16].

Using methods borrowed from estimation theory Gardner developed his Maximum Likeli-
hood frequency error detector in 1990 [12]. At the same time other researchers had developed
other frequency-error detectors, some based on ad-hoc methods {17, 18, 19, 20, 21]. Many of
these were shown to have equivalent structures in [22].

The application of estimation theory to digital synchronisation not only, in some cases,
provides one with optimum structures for parameter estimation, but also provides the bounds
on synchroniser performance. In other words, this typically gives one an indication of the jitter
one can expect at a given value of signal to noise ratio. Bounds on synchroniser performance,
generally referred to as the Cramer-Rao bound, have been developed by Moeneclaey in [23, 24]

who has also developed synchroniser structures using estimation theory methods in [25, 26,
27]). More recently a modified Cramer-Rao bound has been developed by D’Andrea in [28]
which has been applied extensively in this thesis.

Worthy attempts to give an overview of the subject, even though it still has some way to
go before being fully developed, have been made by Gardner [9] and Jesupret [29].

Overview of Thesis

It is generally accepted that the development of a thesis such as this is something of a
“random-walk” process. The order of the material as it appears here is not necessarily in

the order it occurred chronologically. At the outset of this project more emphasis was placed
on modulation schemes for mobile radio and their performance in the flat fading channel. It
was during this initial period that work was undertaken on importance sampling, modelling
of the narrowband fading channel and differential & coherent detection schemes for Gaussian
Minimum Shift Keying (GMSK) and the characterisation of these schemes in terms of their
symbol error rates. At this stage of the project interest shifted to concentrating on how
to actually synchronise these narrowband modulation schemes starting with symbol, then
frequency and finally phase synchronisation.

The order then that the material appears follows a more natural flow. The next chapter
gives an introduction to the tools and methods employed in the simulation of communication

systems. Specifically important for synchronisers is the complex-baseband representation.

Work on the use of importance sampling to improve the error rate estimate (variance min-
imisation) is also given here.
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The order of the material then goes as: transmitter functions; channel modelling; receiver
synchronisation in the order in which it would occur!, namely, frequency, symbol timing and
phase recovery; and finally some notes on the integration of various receiver functions in a
sampled system.

Then we go on to characterise the modulation schemes that will be used extensively
throughout the rest of the thesis. We introduce various representations of these complex
modulation formats. The inter-symbol interference inherent in pre-filtered Continuous Phase

Modulation (CPM) schemes is quantified to be used later in the work on decision-feedback
equalisation. The root raised cosine pulse shapes and derivatives are given here which will

be used throughout the rest of the thesis. Also the simulation models for various modulation
schemes are given.

The next chapter is on channel modelling, specifically the narrowband fading channel ap-
propriate to urban mobile communications. A novel method of designing the FIR correlation
shaping filter based on the time domain window design method is presented. It is also noted
for the first time that the characteristics of the urban mobile channel can be approximated by
using a simple IIR filter with a cutoff frequency proportional, but not equal to, the required
Doppler frequency. We present a general method to derive this constant of proportionality.

We then move on to the main areas of effort in this thesis, namely, frequency and symbol
synchronisation. A number of algorithms for frequency synchronisation are studied. These
schemes will acquire signals with a frequency offset of the order of the baud rate. The
open-loop characteristics of the frequency-error detectors are determined, analytically and by
simulation, and small-signal linearised models developed using standard phase-locked loop
theory. Justification of the small-signal linearised models is then given by the examination
of the closed-loop acquisition and tracking performance. Some novel observations are made
with regard to the large-signal acquisition performance of the various loops.

The next chapter on symbol synchronisers rationalises a number of schemes available in
the literature in terms of the number of samples per symbol they require and the nature of the
nonlinearity in the timing-error detector. We concern ourselves with non-offset M-PSK type
modulation schemes. We re-write the timing error detector algorithms in their complex form,
from which properties such as carrier phase invariance become obvious. Researchers have in
the past tended to consider the problem of symbol timing recovery as a real operation on a

real signal. By re-writing the algorithms as complex we develop and characterise a new class
of timing-error detectors which have performance intermediate between decision-directed and
non data-aided algorithms. We characterise these new schemes analytically and by simulation.

It appears that these new schemes offer considerable improvement over conventional non
data-aided symbol synchronisers in that they too are carrier phase invariant, unlike decision-
directed methods, but do not have a sinusoidal S-curve characteristic and hence are not prone
to hangup. The gain of the new detectors are non-zero for zero modulation excess bandwidth
unlike conventional non data-aided schemes which cannot be used with tightly bandlimited

signals. We also look at the important subject of interpolation in sampled receivers and

*Neglecting for the moment joint detection schemes
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argue that continuously-variable polynomial are preferable to polyphase switched-coefficient
interpolators.

We then look at the problem of carrier phase synchronisation in sampled receivers. We
concentrate on an interesting technique, developed by others, of improving the performance
of pre-filtered CPM by decision feedback equalisation. We compare the performance of one
and two bit differential phase detection of GMSK with and without decision feedback, and
note that large gains in performance can be gained by application of this technique. We
also look at the ideal orthogonal coherent detector for offset modulation schemes. We also
show performance results of a quintessentially digital algorithm for feedforward carrier phase
recovery, namely, the Viterbi & Viterbi algorithm. We make the observation that not only
does one require differential encoding with such a scheme but also “phase-unwrapping.”

Finally, we indicate how the various aspects of this research can be brought together by
demonstrating how the various receiver functions can be integrated together. We show a
coherent system for the joint recovery of clock and carrier for MSK type modulation schemes.
A novel implementation of the integration of differentially detected CPM with decision feed-
back equalisation and symbol timing is given. Finally, a novel timing, phase and frequency

recovery system for non-offset modulation schemes is demonstrated.



Chapter 2

Simulation Tools and Methods

2.1 Introduction

In this chapter an overview of the Computer Aided Analysis and Design (CAAD) tools used
to model transmitter/receiver architectures and channels for digital land-mobile radio system
simulation. We shall examine techniques that can be applied more generally to simulation

of communications systems which will tell us the accuracy of parameter estimation and how
that accuracy may be improved.

2.2 The Signal Processing WorkSystem (SPW)

The CAAD system simulator used for the bulk of this thesis is the Signal Processing WorkSys-
tem. SPW is a communications/DSP systems simulator. It is made up of three basic parts;
the Block Diagram Editor (BDE), the Signal Display Editor (SDE) and the Filter Design
System (FDS). In the BDE one is able to design prototype communications/DSP systems
from a suite of available building blocks. Systems are built up by schematic capture of these
building blocks. The blocks available cover a wide range of signal processing functions includ-

Ing sophisticated system components such as Adaptive Filters. Having built up a prototype
detail it is possible to link this with a symbol to represent that system function. These
symbols can then be used as ‘black-boxes’ for use in further system designs. For example,
a CAAD detail of a receiver system may be saved in the file rx.detail which will then be

automatically represented at the higher hierarchical level by the symbol rx.symbol. This
hierarchical nesting can continue to whatever level desired.

Custom coded blocks can also be built where one desires a particular signal processing
block to undertake a function that cannot be expressed in terms of the fundamental building
blocks available. One defines a symbol with as many parameters passed to and from it as
required, uses SPW to compile this down to C code where the same parameters are then made

available and one can write whatever signal processing function was desired in software. Such
custom coded blocks would then take the place in a system design of the real-life functions
performed by software in microprocessors.

The second part of SPW is the SDE. This is where one designs signals to be input to the
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BDE and/or examines signals from the BDE. Signals to be used as inputs to the prototype
systems can alternatively be defined within the BDE itself by using programmable function
generators and noise sources. Signals in the SDE have further filtering and math or scalar
functions available.

The FDS is where one is able to design filters from a variety of methods for inclusion in

designs within the BDE. One is also able to examine the effects of quantisation on the filter’s
performance.

The BDE, SDE and FDS can all be controlled by their own Macro Command Language
(MCL) which is similar to ADA. The MCL is useful in that it allows one to automate repeti-
tive, tedious operations. Thus the MCL could be used to run system simulations over a range

of different parameter values to determine, for example, the bit-error rate performance of a
particular modulation scheme in a particular channel.

2.3 Complex Baseband Equivalent Signals

A general signal can be represented as follows,
s(t) = a(t) cos(wt + ¢(1)) (2.1)

where a(t) is the signal amplitude, ¢(t) is the phase and w, is its frequency. Now, noting that,

cos § = Re{e’?) (2.2)
s(t) can be written,
5(t) = Ref{a(t)e! Vi<t (2.3)
or
5(t) = Re{u(t)e’“*) (2.4)

The information of the real passband signal s(t) is now contained in the complex baseband

signal u(t) [30]. The signal u(t) is termed the lowpass equivalent of s(t). This type of analysis
applies also to other passband components such as filters.

Equivalent baseband signals are used in all the simulations performed by SPW to represent
passband signals. This is possible as SPW allows the use of complex signals. The sampling

frequency is then determined directly from the information bandwidth of the signal, rather
than the absolute bandwidth.

When simulating communication systems one is generally attempting to build up a model
of a process at a radio frequency (RF). It is impractical to represent these RF processes as real
signals and one generally has to resort to a complex baseband representation of both the signal
and the signal processing function. Thus, many of the systems that appear in SPW, such as
Costas Loops and Phase Locked Loops, may appear to be quite different in appearance from
their real counterparts as they are represented as complex equivalent models. The tutorial

paper by Franks [4] gives a good overview of the complex envelope representation of signals.
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In what follows, the equivalence of using the complex envelope representation of signals will
be demonstrated when one configures frequency conversion elements in SPW.

In real communication receivers a mixer is used to down-convert the received frequency at
RF (the Radio Frequency) to IF (the Intermediate Frequency) or baseband. This is accom-

plished by multiplying the received signal at a frequency of frr with a Local-Oscillator (LO)
at a frequency of fro. The result of this multiplication is to give frequency components at

the sum frequency, frr + fro , and the difference frequency, frr — fro. When considering
frequency down-conversion it is the difference-frequency component that we are interested in
and so the output from the multiplier has to be low-pass filtered.

One can use the complex multiplier blocks in SPW to simulate an ideal mixer. In order

to illustrate this, the equivalence between the real mixer and a mixer based on the equivalent
complex baseband model will now be demonstrated.

Firstly, using a real signal representation we define Y (t) as the input RF signal and R(t)
as the locally generated LO as follows:

Y(t) = A(t)cos (27 frrpt + 6(t)) (2.5)

and,

R(t) = cos (27r frot+ é(t)) (2.6)

where 6(t) is the phase of the input signal and 8(t) is the phase of the LO (an estimate of
6(t)). By multiplication we get:

Y(t) x R(t) = A(t)cos (27 frrt+0(t)) x cos (27 frot+ é(t))
= A(t)cos (2n(frr — fr0) t+6(2) - 6(2))
+ A(t)cos (27r(fRF+ fro)t+ 6(t) +9(t)) (2.7)

If we now apply a low-pass filter to this signal then the double frequency term can be set to
zero and the result is:

Y (t) x R(t) = A(t) cos (2n(frr — fro)t + 6(t) - 6(t)) (2.8)

We will be concerned with frequency down-conversion to baseband or such that fip = 0,

where fir = frr — fro. So when the frequency down-conversion is to zero IF the output of
the ideal mixer can now be written as:

Y (t) x R(t) = A(t) cos (8(2) — 6(t)) (2.9)

The real frequency down-conversion is represented schematically in figure 2.1.

In SPW we represent passband signals as equivalent complex baseband signals and so we
will now show the equivalence of using complex models to simulate a real mixer. In order to
represent the function of frequency down-conversion we need to replace the input RF signal
and the LO signal by their complex baseband equivalents which are:

Y(t) = A(t) exp (5 (27 frrt + 0(t))) (2.10)
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Lowpass

Complex
Conjugate

(a) Real Mixer (b) Complex Mixer

Figure 2.1: Real and Complex Baseband Representations of Mixers

R(t) = exp (j (27 frot + G(t)) (2.11)

respectively. It can be seen that the ideal mixer using complex equivalent baseband signals 1s

arrived at by multiplying the input signal with the complex-conjugate of the local oscillator:

Re {¥ (t) x R(t)"} = Re {A(t) exp (5 (27 (frr - fr0) t+6(t) - O(2))) }
(2.12)

simplifying to :

Re {Y(t) x R(t)*} = A(t) cos (9(t) - 0(t)) if frr = fro (2.13)

Thus the schematic diagram representing the ideal mixer but using complex signals is also
shown in figure 2.1. Similarly, if one were to directly multiply the signals together then the

sum frequency term would result. We shall be interested in the sum-frequency terms when
we look at squaring loops later on.

2.4 The Reliability of Bit Error Rate Measurements

The bit-error rate (BER) of a communications system is an important measurement of the

system’s performance. It is reasonable, therefore, that if one measures the BER either by
simulation or by experiment one should be able to specify the errors on this BER measurement.
The errors on the BER measurement arise in practice because one does not have an infinite
sample on which to make an estimate. If one forms an estimate of the probability of symbol
error by taking the ratio of the number of errors, n., to the number of symbols, n,, in a
given time, then this measurement could be in error by virtue of the fact that the underlying
probability of symbol error, p., is small compared to the total number of symbols — it is

conceivable that one might not measure any errors at all in the sample.
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In order to quantify the errors associated with BER measurements, either by simulation
or by experiment, one starts by deriving the probability distribution functions based on the
methods by which the BER is measured. There are two obvious methods by which the BER

can be measured; one can count a pre-determined number of symbols, n,, and note the number

of errors incurred, 71, or, one can count a pre-determined number of errors, n., and note the

number of symbols, 714, required to produce these errors. These two methods shall be termed
error-counting and symbol-counting respectively. Intuitively, one would expect that these two
methods would be entirely equivalent in terms of the estimated probability of symbol error,
and indeed this is the case, although it will be shown here that the probability distribution
functions of the random variables n, in symbol-counting and 7. in error-counting are not
equivalent.

One starts by deriving the probability distribution function for the error-counting case.
In this case a fixed number of symbols, ng, of which 7., 0 < 7 < n,, are in error. The

distribution function in this case is clearly given by the discrete binomial distribution as -
!

) R

fe (1 = pe)**~ % for 0 < 7. < 1, (2.14)

where p, is the probability of symbol error.
This distribution function in terms of its mean, E(%.), and its variance, E(#2) — E(i.)?,

where FE(z) is defined as the expected value of the random variable z and is given by -

E@)= Y. x(z’) e (1= pe)™ P (2.15)

fie=0 €

Thus for the binomial distribution the mean and variance are given by,

p = n,p, and 0° = ngpe(1 — pe) (2.16)

This gives the intuitively correct result that the expected number of errors is simply the
product of the number of symbols in the sample and the probability of symbol error. It is

reasonable to take the standard deviation as a measure of the error in the estimate of Ne!

for the normal distribution one standard deviation either side of the mean covers 68% of
occurrences whereas two standard deviations covers 95%. So if one defines the estimated

probability of error, p., as the ratio 7. /n,, then an error in the estimate of n. will be reflected
as an error In the estimate of p, as follows -

Ap, = g _ Ane — Pe (1 —pe) (2.17)

Ng Ng T

To derive the probability distribution function for the symbol counting scenario one notes
now that the number of symbols is the random variable, 7, n, < iy < oo, and the number
of errors, n., is fixed. The error counting procedure finishes as soon as n. symbol errors have
occurred. This implies that the last symbol in the 7, symbols is in error, leaving n. — 1 errors

In 11, — 1 symbols. The probability distribution function for the random variable 7, follows
directly as -

P(n,) = mpe"‘ (1 = pe)t*~™e for 0 < My < 00 (2.18)



Simulation Tools and Methods 11

where again p. is the probability of symbol error. This distribution is called the negative

binomial or the pascal distribution. The mean and variance are given as the expected values
E(fi,), and E(7?) — E(f,)* where E(z) is now given as,

e N — 1 |
E(z) = Z a:( ’ ) D't (1 —pe)te e (2.19)
ﬁ,=ﬂ¢ ne - 1
Evaluating these expected values gives the mean and variance as follows —
;L=I-1f-and a2=-&-(—1-—1) (2.20)
De Pe \DPe

Thus the expected values for n, is simply the number of errors divided by the probability

of error. If o is again used as a measure of the error in the estimate of n, then the error in
the estimate of p. can be written as,

. N n 1 — pe)
S 3 8

This is the same result as previously for the error in the estimate of p. which shows
that the two methods of determining the BER are equivalent although they are described by
different probability distributions.

In all of the BER simulations undertaken using SPW a fixed number of errors have been
counted and the appropriate number of symbols noted to form an estimate of the probability
of symbol error. The region of interest in terms of the theoretical probability of errors that
measurements will be taken between are p, = 10~! to p, = 1075, If all the data points will

be within 2¢ then for p. = 10~! and n. = 100 we can write the error in the estimate of p, as,

2 —
Ap, =2 ’%p—“) ~ 0.02 (2.22)
e

In terms of percentage accuracy this will render an estimate of p. which is 95% accurate.
Similarly, if the theoretical probability of error is p, = 10~° and the number of errors to

be counted is n, = 100, then the error in the estimate of p, will be Ap, & 2 X 107 and in
this case the estimate is 95% accurate.

The preceding analysis is substantiated if one examines the results of an error-counting
monte-carlo simulation to determine the BER for binary antipodal signalling in Additive
White Gaussian Noise (AWGN) as shown in figure 2.2. The two plots in the figure indicate
BER results when counting 10 and 100 errors. Together with these results are shown the 95%
confidence interval of 2 stadard-deviations from the theoretical ideal. One can see that all of

the results lie within 2 standard deviations of the mean. Also, counting more errors gives a
smaller spread in the BER results.

2.5 The Estimation of Bit Error Rate using Importance Sam-
pling

There are a number of ways to estimate the bit-error rate in the simulation of communication

systems [31], although they are only generally valid when when the noise present in the system
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is additive white and Gaussian. When the system contains nonlinearities then it becomes
more difficult to reduce the amount of simulation time by any special methods. Importance
sampling is a technique used in the simulation of communication systems which allows one
to either reduce the number of iterations used in the simulation whilst maintaining the same

accuracy in the bit-error rate estimate, or it will give higher accuracy when the same number
of iterations are used.

2.5.1 Importance Sampling using a Gaussian Bias Function.

The essence of the Importance Sampling technique is to consider the distribution of the
estimated error rate that one might get at a particular signal to noise ratio. For example,

consider the simple case of binary antipodal signalling in AWGN at a signal to noise ratio of
9.0dB.

If one expected 10 errors during the Monte-Carlo simulation then one would be required
to count 297378 symbols (=~ -}32-) on average. The distribution of the estimated error rate can
be found, by simulation, by selecting a random noise seed from a uniform distribution for
each simulation run. This is facilitated by the use of the Code Generation System to generate
a C source code which can be run over and over again with different noise seeds. The resulting
distribution obtained is as shown at the top of figure 2.3. It can be seen that this distribution
matches that of the binomial distribution put forward in the last section. The simulated and
theoretical mean of the distribution is also plotted in the graph.

Figure 2.3 also shows the distribution of the estimated probability of error for binary-
antipodal signalling in AWGN at an E}/N, of 9.0dB when we run the simulation for a fixed
number of symbols. Note that the mean and the variance of the distribution is the same in

either case.

The challenge for the Importance Sampling technique is to reduce the variance, or the
width of the distribution shown in figure 2.3 for a given number of sample points. This 1s
tantamount to achieving the same distribution with a reduced number of sample points. This

is done in practice by biasing the noise distribution in a predetermined manner in order to

increase the number of errors that occur, and then un-biasing the resultant estimate of the
bit-error rate.

The first bias functions that were suggested for the Importance Sampling technique simply
resulted in another Gaussian function but with increased variance. The use of such a bias

function can reduce the variance of the resulting distribution as is shown in figure 2.4. These
results where produced by biasing the noise by a factor of 2 and only counting one error! One
can see that we get a lower variance on the estimate for fewer errors counted.

The techniques of importance sampling are particularly important at high signal to noise
ratios, where the corresponding BER is low, or for complex systems which may take an
inordinate amount of time to run even at low signal to noise ratios.
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Figure 2.4: This illustrates the use of the Importance Sampling technique to reduce the variance
of the resulting BER distribution.

2.5.2 Other Distributions used for Importance Sampling

In the development of the subject [32], the first bias function that was used resulted in another
Gaussian noise distribution but with a greater variance. The results presented in the previous
section were those obtained when a Gaussian function was used as the bias function but with
a greater variance than the “underlying” noise variance. Recent work has used different
distributions which have better performance in terms of the sample size savings they offer,
or, equivalently, the variance reduction that they allow. Another distribution consists of a
translated Gaussian distribution. Such a distribution has a greater sample size saving factor
than the simple Gaussian distribution by virtue of the fact that, if the translation is chosen
correctly, it will result in a maximum amount of errors before the BER is biased to give
the final estimate. Other more recent distributions have an even better performance than
the Gaussian or translated Gaussian and these are the Gaussian Tail distribution (GT) and
the Rayleigh Tail distribution (RT). The GT distribution is theoretically optimum in that,
if the threshold in the system is known, then the BER can be estimated with zero variance!
However, there is a rather circular argument here in that knowing the system threshold is
tantamount to knowing the BER anyway. For most systems one can only make a guess at what
the BER will be. In such situations the optimum distribution to use is the RT distribution.

Thus, in terms of practical application, Importance Sampling does not provide all the
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benefits that at first sight one might suspect. This is because of the ambiguity in the theory
which implies that one gets the best sample size savings the more one knows about the system
threshold, which, in turn is tantamount to knowing the BER, which is what the simulation
should be attempting to estimate in the first place! It may be possible to use techniques which

rely on the system adaptively adjusting the bias function to produce an accurate estimate of
the underlying BER.

2.5.3 Relevance of the Work to CAAD of Communication Systems in Fad-
ing Channels

Much of the theory of Importance Sampling in the literature is concerned with improving
the accuracy of the BER estimate, or alternatively, reducing the number of symbols that one
has to count in order to obtain a BER estimate with a given accuracy, where these estimates
are obtalned in additive white Gaussian noise. In the simulation of mobile communication
systems not only is there an additive noise component but there is also a multiplicative
noise component (fading) and so the situation is somewhat different to that for which the
Importance Sampling theory was developed. It is possible in the simulation of a mobile system
to bias the additive component of the noise, as one would do conventionally, but it is difficult
to see how Importance Sampling could be used to bias the multiplicative noise component
and hence reduce simulation sample sizes. The problem of having to use large sample sizes

In order to obtain accurate BER estimates is particularly acute in the simulation of slowly
fading mobile systems. One could envisage a situation where, because of the slow fading, a

large number of bits would be in error during a deep fade biasing the actual BER upwards.
In such situations one would have to be sure that the simulation ran over a large number of
such fades in order to get an accurate BER estimate.



Chapter 3

Modulation Schemes for Digital
Radio

3.1 Introduction

In this chapter we introduce those modulation schemes which are popularly used for mo-
bile radio communications. There are two generic types of schemes which are diametrically
opposed in character, namely wideband and narrowband modulation schemes. Simply put,
the demarcation between these schemes is given by B X T' > 1 for wideband schemes and
B x T <« 1 for narrowband schemes, where B is the bandwidth that the modulated signal
requires and T is the symbol period. At the present time there is some argument as to
which schemes will ultimately prevail for the second-generation civilian digital cellular radio
systems. The contenders are the CDMA spread spectrum system {33] and systems based on
the narrowband modulation schemes 7/4-QPSK and GMSK as used by the American Digital

Cellular (ADC) and Special Mobile Group (GSM) {34]. It is only by extensive simulation and
field-work that the relative merits of these schemes can be assessed.

The emphasis of the work undertaken in this thesis is on narrowband systems.

3.2 Wideband Modulation Schemes

Wideband modulation can be achieved in the analogue domain by frequency modulation with
a large modulation index or, in the digital domain, by using a frequency-hopped carrier or
modulation of the signal with a pseudo-random code sequence with a high chip rate.

The use of spread spectrum signals in Land Mobile Radio follows from a knowledge of the
multipath structure of the channel. The channel can be modelled as a time-variant transversal
hilter with taps spaced by a minimum value of delay 7. The total delay spread [30], Tr,, is
then accounted for by having T,,/7 taps. If an impulse were to be sent through such a
channel then T, /T impulses, each multiplied by a complex coefficient, would be output with
a delay between each of 7 seconds. Alternatively, if a finite bandwidth signal were to be sent
through the time-variant transversal filter channel it would be required that the bandwidth

17
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of the signal used be given as W > 1/7 for each of the multipath components to be resolved.
Thus by sending a wideband signal through the multipath channel one is able to resolve
each component of the multipath, each having faded :ndependently of any other component
by virtue of the fact that they have travelled from transmitter to receiver by distinct paths.

These components can then be weighted optimally and combined at the receiver to ameliorate

the effects of fading. It can be seen that the use of wideband signals is a valid way of achieving
diversity.

3.2.1 RAKE Receivers for Wideband Mobile Radio

The technique above for achieving improved performance over multipath channels was first
suggested by Price in 1958 [35] for HF Communications via the ionosphere and later work
was done in applying the concept to Urban Digital Radio [36]. Price coded a binary signal
in to a wideband signal by using pseudo noise or PN - sequence, now referred to as Direct-
Sequence Spread Spectrum (DS - SS). Price coined the phrase RAKE to describe this type
of receiver. The receiver generates its own copy of the wideband signal to correlate with the
received signal, The wideband signals used for spread spectrum must therefore exhibit good

auto-correlation and cross-correlation properties. PN-sequences have the useful properties
for these purposes. For n = 1023 the sidelobes will be 30dB. Thus, very long PN-sequences

exhibit ideal correlation properties in the sense that they exhibit low sidelobe levels.

The correlator output on each tap in the RAKE is thresholded to decide whether a mul-
tipath component exists on that tap or not to avoid noise-only contributions. The correlator
outputs are then multiplied by weighting factors proportional to the path strengths. In the
model used here the channel coefficients were fed forward (assumed to be estimated with-
out error) and each correlator output multiplied by the complex conjugate of the channel
coeflicient. This weighting ensures that stronger signals are biased over weaker ones. This
weighting function can be highly nonlinear depending on the type of channel model used (more
of this later) but for the simple model adopted here and in [30] where the path strengths and
delays are known a priori and are equal the decision variable is given as a sum over all of
the squared outputs. It is found that ideal RAKE processing over L independent multipath
components is equivalent to L!* order diversity.

The block diagram of the RAKE equaliser for binary antipodal signals is shown in fig-
ure 3.1. In this system the channel coefficients are estimated from the received signals by
using a decision feedback method [30]. Systems that derive the channel coefficients from «
posterior: information are known as sounding receivers [36], the sounding signals can either
be the data itself or a specific sequence for sounding only. In RAKE the data is used to
sound the channel. In the figure, the filters used in estimating the channel coefficients have
to be wide enough to let the channel variations through due to the Doppler spreading of the

signal but narrow enough to reject noise. In the RAKE system illustrated the Butterworth
filters were used with the same 3dB bandwidth as the filters that were used to build up the
channel model. Note that as the channel coefficients are now being estimated there will be a

residual error rate at high signal to noise ratios giving a ‘bottoming out’ of the BER plots.
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Figure 3.1: Block diagram of a RAKE receiver for binary-antipodal data using coherent detection.
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This type of processing is unrealistic for the Land Mobile Channel as one generally is unable
to estimate the phase of the signal. That is, coherent techniques are generally avoided in
favour of differentially coherent or limiter-discriminator type methods. A RAKE processor
can also be configured to operate with differentially encoded antipodal signals.

3.2.2 Inadequacy of Wideband Models

Ultimately, an accurate model of the wideband multipath channel must be based on empirical
data rather than mathematical axioms [36].

The wideband models used above for the RAKE processing are somewhat simplistic in
that there are a fixed number of paths, the paths all have identical statistical variations
and the delays between the paths are constant and equal. The channel models in [36] are

developed empirically from measured data over different urban multipath environments and

as such the models are more reliable.

3.3 Narrowband Modulation Schemes

GMSK is a popular modulation scheme for digital cellular (GSM) and digital cordless (DECT
& CT-2) communications. Together with 7/4-QPSK, as used for the American and Japanese
Digital Cellular (ADC & JDC) systems, these represent the most popular narrowband schemes
used for mobile personal communications [34] at the present time. In this section we shall
describe the format of these modulation schemes and their characteristics. Discussions relating
to receiver architectures and performance shall be deferred until later.

It is noted that these schemes are essentially of constant amplitude. That is to say, all the
modulating information is in the phase, and not the amplitude, of the signal. More spectrally
efficient techniques will be exploited in the future where information is also encoded into the
amplitude of the signal. Such Quadrature Amplitude Modulation (QAM) schemes have been
discouraged up till now because of the amplitude variations that are imposed on the signal by
the fading channel. This makes it difficult for a receiver to differentiate between amplitude
fluctuations in the received signal due to the modulation and amplitude fluctuations due to

the channel variations. There are techniques for alleviating these effects and may become
more predominant in the future [37], [38], [39].

3.4 Raised-Cosine Filtering

For the QPSK and 7/4-QPSK modulation schemes studied as part of this work we have
generally assumed that the transmitter and receiver filters are both root-Nyquist with cosine-
rolloff characteristics H(f). These filters are needed in order to bandlimit the signal prior
to transmission. Note that the filtering is done after the modulation. We will consider a

scheme next, GMSK, in which the bandlimiting of the signal is accomplished by pre-filtering
the baseband data before modulation.
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The overall transfer function of the link, after matched filtering, is G(f) = H(f) H*(f),

which is a full-Nyquist cosine rolloff shape. We thus define the following transfer characteristic
for H(f).

1 —
HO& |f| < ( 2Ta)
T l « (1-a) (1+ «a)
H(f) = Hocos{ﬁ(fT_E“L"z')}’ o = T <37
T l o (1+ a) (1-a)
Hy cos{-z—c-; (fT-I--é--—--z-)}, —T o S f e (3.1)
0, 12

In the above equations 0 € a < 1 is the excess bandwidth of the pulse. The larger the
value of a the less tightly confined the pulse is in the frequency domain and the less the inter-
symbol interference for samples not taken at the optimum sampling point. Nyquist pulses
have zero inter-symbol interference at the optimum sampling points [30} but this optimum
sampling is something that we have to adaptively estimate in our receiver. As we shall see

later, to implement some receiver functions we will need the derivatives of the equations
in (3.1). These are as follows:

#T Hy . [ 1 « (1-a) (1+ a)
- —_— e <
2 Sm{Za (fT 2+ 2)}' 2T — f < 2T
H(f)={ =THy _ {_z_r_( l_g)} _(1+a) _(l—a)
e Mz \UT*373) o S <37 (3.2)
0, elsewhere

Plots of H(f) and H'(f) are shown in figure 3.2 for the Root-Raised Cosine filters repre-
sented by (3.1) & (3.2) for a = 0.5.

Raised Cosine filter impulse responses for 20% and 80% excess bandwidths are shown
in figure 3.3. Also shown is the filter impulse response with z/sin(z) equalisation which is
necessary when the input data to the filter is square-wave data. This is because the Raised-
Cosine impulse response is inter-symbol interference free only when it is convolved with a
train of impulses. The MATLAB design routine for these filters is included in Appendix A.

Figure 3.4 shows the eye-diagram that results when one filters binary-antipodal data with
20% and 80% Raised Cosine filters. It is evident that at the sample points (0,1 & 2 in the
figures) there is no inter-symbol interference irrespective of the filter excess bandwidth. This
1s the attractive property of Raised-Cosine over other, non-nyquist, pulse shapes. However,

one can see that there is a large amount of inter-symbol interference, or data noise, at points

between the optimum sampling points and this is worse as the filter excess bandwidth is
reduced.

Figure 3.5 shows the Power Spectral Density (PSD) of 20% and 80% Raised-Cosine filtered
data. The frequency axis is normalised to the baud rate.
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Figure 3.2: H(f) (Signal Matched Filter) and H'(f) (Frequency Matched Filter) for Root-Raised
Cosine filter with a = 0.5.

3.5 Gaussian Minimum Shift Keying

MSK can be considered to be both a form phase and frequency modulation. As such it can
be considered to be a linear and an nonlinear modulation scheme. GMSK is formed by pre-

filtering the baseband modulating data with a Gaussian filter before applying it to a frequency
modulator. In the ideal case, therefore, limitation of spectral spreading is achieved by filtering
at baseband rather than at RF as in many modulation schemes. This modulation scheme was
first presented in [40].

3.5.1 Mathematical Development of the GMSK Signalling Format

The Gaussian Minimum Shift Keyed modulation consists of applying a non-return-to-zero
(NRZ) data stream to a Gaussian filter and thence on to an FM modulator with a modulation
index of u = -15_; This scheme is illustrated in figure 3.6.

The analysis thus starts with the Gaussian lowpass filter that filters the data prior to

modulation. This filter has the impulse response given by

c o2t?
g(t) = exp (——) (3.3)

V2 2
where ¢ 1s
o B — -_23I'__B_t__ (3_4)

V/ 1og(2)
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Figure 3.3: Raised Cosine filter impulse responses
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Figure 3.4: Eye Diagrams of Raised Cosine Filtered Data
y T , T v T . | T T I T I
S -10} 1 =
é-—lﬁ - é-lfi" |
E E
-
2 R
2 20} { ¥ 20t .
5 O
z 2
& <
'%_35,_ ______ -§ 3 T I N .
2 :
E :
:‘E "30 ol - 7 _JOL-
~4() A \ 1 | i ; L | 40 ! | : 1 i 1 i
0 0.5 l 1.5 2 2.5 3 35 4 0 0.5 l 1.5 2 2.5 3 3.5 4

Frequency

(b) a = 0.8

Figure 3.5: Power Spectral Density of Root Raised Cosine Filtered QPSK
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Figure 3.6: Block Diagram of a Serial GMSK Modulator

In (3.4) B; is the bandwidth of the Gaussian lowpass filter. When the Gaussian filter
impulse response is convolved with a pulse of duration T centered on zero we get the pulse
response, G(t), in (3.6) using the definition of convolution in (3.5). The pulse response of the

Gaussian lowpass filter is show in figure 3.7 for different values of B;T, the time-bandwidth

product. Notice from the figure that the inter-symbol interference is increased for decreasing
B,T.

G(t) = /_ p(r)g(t — ) dr (3.5)
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