
Graphical Application and Visualization

of Lazy Functional Computation

Sandra Periam Foubister

Submitted for the degree of Doctor of Philosophy

The University of York

Functional Programming Group,

The Department of Computer Science.

May 1995

Abstract

Mere academic toys or the tools of the future? Lazy functional programming languages have
undoubted attractive properties. This thesis explores their potential, from the programmer's
point of view, for implementing interactive and graphical applications to which they do not
seem immediately suited. The discussion is centred round two example applications.

One is a graphical design program based on an idea of the artist M. C. Escher. The the-
sis argues that the graphical user interface may be encapsulated in an "interpret" function
that when applied by a mouse click to an interface of appropriate type yields the required
behaviour.

The second example is a monitoring interpreter for a functional language. TIIe idea is
that if the mechanics of the reduction are presented at a suitable level of abstraction, this
may be used to give insight into what is going on. On the basis of this the programmer might
modify the code so that a program runs more efficiently in terms of speed and memory re-
quirements.

Problems of displaying the reduction are addressed, and solutions proposed for over-
coming these: displaying the graph as a spanning tree, to ensure planarity, with extra leaves
replacing missing arcs; compacting the display into a quotient graph using equivalence classes
for nodes; displaying only part of the graph and allowing the user to browse this; and check-
pointing to reduce the number of reduction stages to show. A metalanguage for user defini-
tion of such visual filters is developed. This gives the programmer flexibility in attaining a
meaningful view of the reduction process.

The conclusions are that, even using current implementations, lazy functional languages
are not only capable, but well suited, to writing interactive graphical applications. However
the problems inherent in laziness need to be tackled by allowing strictness annotations and
by further development of monitoring facilities such as those proposed here.

i

Contents

Introduction 1
1.1 Motivation I

1.1.1 The virtues of functional programming I
1.1.2 Aim of the thesis 2

1.2 See how they run I- The Escher program 3
1.3 See how they run II - The monitoring interpreter 4

1.3.1 Rationale for the interpreter 5
1.4 Outline of thesis 6

2 Gra phics and interaction 9
2.1 Introduction 9

2.1.1 Sequencing 10
2.1.2 Referential transparency 10

2.2 Interaction 11
2.2.1 Continuations 12
2.2.2 Transaction combinators 13
2.2.3 Strategies for marrying 1/0 with referential transparency 15

2.3 Graphics 20
2.3.1 Functional Geometry 21
2.3.2 Functional Movies 22
2.3.3 Wray's spreadsheet 24
2.3.4 Dwelly's Rubik cube 25

2.4 A declarative interface? 25
2.4.1 Models and prototypes 26
2.4.2 The interface to the window system 28

2.5 Motivation for the Escher program 31

3 The Escher program 32
3.1 Introduction 32
3.2 User's view of the program 33

3.2.1 Outline of the program 33
3.2.2 Using the program 34
3.2.3 How user interface principles are observed 37

3.3 Implementation of the program 38
3.3.1 Overall view 38
3.3.2 Interaction 39
3.3.3 Program state 40

ii

3.3.4 The Interface 41
3.4 Assessment

45
3.4.1 Advantages and disadvantages of using a lazy functional language 46
3.4.2 Satisfactory performance? 48
3.4.3 Declarative implementation of the interface? 49

3.5 Future work
50

4 Monitoring and profiling 52
4.1 Introduction 52

4.1.1 What to monitor9 53
4.1.2 How to monitor? 54

4.2 Routine collection of statistics 54
4.3 Side effecting tracing 55

4.3.1 The Chalmers hbc compiler 55
4.3.2 Kieburtz' proposal 55
4.3.3 Instrumentation of the SML-NJ compiler 56
4.3.4 A snapshot tool for fly 57
4.3.5 A snapshot tool for glide 57

4.4 Debugging without side effects 58
4.4.1 Errors as values 58
4.4.2 The Daisy "debug" tool 59
4.4.3 Kishon 60

4.5 Purpose built environments 61
4.5.1 The Transparent Prolog Machine 61
4.5.2 Lieberman's Zstep 62
4.5.3 Nilsson and Fritzson 63
4.5.4 Kamin's Centaur 64
4.5.5 Snyder's "Lazy Debugging 65
4.5.6 Taylor's Prospero 66

4.6 Profiling graph reduction 67
4.6.1 Hartel and Veen 67
4.6.2 The Glasgow profiler 67
4.6.3 The York profiler 68
4.6.4 The UCL profiler 69

4.7 Discussion 70
4.7.1 Finding errors in the source code 70
4.7.2 Optimising execution performance 72
4.7.3 Illustrating the reduction process 73
4.7.4 What we need now 73

5A monitoring interpreter 74
5.1 Introduction 74
5.2 The h language 75

5.2.1 Functions 76
5.2.2 Types 76
5.2.3 Primitives 78
5.2.4 Lambda lifting 79

5.3 The reduction model 80

iii

5.3.1 Graph reduction 80
5.3.2 Rewrite rules 80
5.3.3 Order of evaluation 81

5.4 Visual representation of graph reduction 83
5.4.1 Problems in displaying the reduction

83
5.4.2 Overcoming complexity: Graph-trees

84
5.4.3 Overcoming the problem of size 1: Browsing

85
5.4.4 Overcoming the problem of size H: Spatial filtering

....... . 86
5.4.5 Overcoming "Too many graphs to show": Temporal filtering

.. . 87
5.5 Defining the compaction

88
5.5.1 whi ff-a metalanguage for defining filters

........... .
89

5.5.2 Spatial filters
........................... . 90

5.5.3 Temporal filters
......................... . 94

5.6 Overview of hint
95

5.6.1 The prompt-response interface
.................. . 96

5.6.2 The minigraph display
...................... . 96

5.6.3 The main display area 97
5.6.4 The control panel 97
5.6.5 Implementation and use of hint

97

6 The implementation of hint 99
6.1 Introduction 99
6.2 Implementing the reduction 100

6.2.1 Overview of expression reduction 100
6.2.2 Lexical analysis and parsing 101
6.2.3 The reduction state 105
6.2.4 Function application 108
6.2.5 Declarative implementation of the reduction rules 109
6.2.6 Stepping through the reduction 109

6.3 Displaying the program graph 110
6.3.1 Graph-trees Ill
6.3.2 Cluster-trees: vertices of a compacted graph-tree 112
6.3.3 Displayable graph-trees 113
6.3.4 The display of the graph-tree 116

6.4 Implementing the filtering metalanguage 116
6.4.1 whif f primitives 117
6.4.2 Haskell functions to implement whi ff primitives 118
6.4.3 The compilation of whi ff expressions 119
6.4.4 Incorporating filters in the display 122

6.5 The hint interface 122
6.5.1 The control panel 122
6.5.2 The interaction 122
6.5.3 Appearance of the display 123

iv

7 The use of hint 124
7.1 Introduction 124
7.2 Visualizing simple graph reduction 125

7.2.1 The map function 125
7.2.2 The sieve of Eratosthenes 126
7.2.3 The two list f old operators 127
7.2.4 Animated diagrams 128

7.3 Identifying errors 129
7.3.1 Use of the Error value 129
7.3.2 Locating a semantic error 130

7.4 Exploring a program graph 132
7.4.1 Browsing 132
7.4.2 Tailoring the compaction 133

7.5 The problem of labeling 136
7.6 Limitations of the system 140
7.7 Summary 142

8 Conclusions and future work 143
8.1 Introduction 143
8.2 It's a liel 144
8.3 hint to assuage the lie? 145

8.3.1 Bridging the gap 146
8.3.2 Limitations of the prototype 146
8.3.3 Potential development 147
8.3.4 A hint for Haskell? 150

8.4 Escher revisited 151
8.4.1 Escher 151
8.4.2 Interface interpretation in hint 151

8.5 Conclusion 152

A Code of Escher program 153

B Reduction rules for hint 179

V

List of Figures

2.1 Sequencing transaction combinators 14
2.2 Koopman's commandinterpreter 14
2.3 Example of the uNQ annotation 18
2.4 A function from picture to picture 20
2.5 The type of Henderson's picture building function

.........
21

2.6 Types of f lip and beside 22
2.7 Arya's representation of a picture 23

3.1 Some patterns created with the Escher program 33
3.2 Escher's stamps 34
3.3 Escher's patterns 34
3.4 A sample screen 35
3.5 The inter combinator 39
3.6 The Escher program state 40
3.7 State transition diagram for the Escher program 42
3.8 The action represented by a click in the Ti1e area 43
3.9 Interface type and associated functions 45
3.10 The Escher interface 46
3.11 The grid function 47

4.1 Tracing in f ly 57
4.2 Tracing in glide 58
4.3 Representing a partially evaluated expression 58
4.4 Definition of FACT in Zstep

......................... 62
4.5 Error message in Zstep

........................... 63
4.6 Nilson and Fritzon's debugger in action 64

5.1 Syntax of h............................... .. 76
5.2 Turner's tautology checker 77
5.3 The pattern matching case statement 78
5.4 The danger of losing sharing when lambda lifting 79
5.5 The reduction of square (3 + 1) 80
5.6 Three stages in the evaluation of fo1 dr plus 0 [1,2,3,4 82
5.7 (Haskell) Definition of fo1 dr 82
5.8 square (3 + 1) asagraph-tree 84
5.9 Definition of f ib 85
5.10 Two possible displays of f ib 7.................... ... 85
5.11 Subjecting a graph to a PLUSINT filter 87

vi

5.12 The effect of the NOAPPLY filter
....................... 88

5.13 Collapsing a graph-chain: temporal filtering
................. 88

5.14 An h definition of primes using the sieve of Eratosthenes
......... 92

5.15 The raw graph and the effect of the NOAPPLY filter
............. 93

5.16 The ARITH filter, then this composed with the NOAPPLY filter
.......

93
5.17 The layout of the hint screen 97

6.1 Stages in the reduction of an expression 100
6.2 The Parser type 101
6.3 The Expr type 101
6.4 The Binding type 102
6.5 Sorts of node 103
6.6 The node class

104
6.7 The FiveTree type

105
6.8 Implicit addresses in a two generation FiveTree

......... 105
6.9 Look-up in a FiveTree

......................
106

6.10 The graph type 106
6.11 The Garbage Collection module 108
6.12 Circularity in the binding of a group of functions

........ 109
6.13 The application of take 110
6.14 Stages in the display of a program graph 110
6.15 A definition of extended indices

................. ill.
6.16 Extending indices

........................ 112
6.17 The graph-tree type 112
6.18 The cluster-tree type 113
6.19 The cluster graph and associated types 113
6.20 Threading 114
6.21 The displayable graph-tree and vertex types 115
6.22 Syntax of whi ff........................ 117
6.23 Compilation rules for whi ff expressions 120

7.1 The map function
........................... ... 125

7.2 A barrage of filters 126
7.3 h definition of f oldl 127
7.4 Comparison of sum defined in terms of f oldr and f oldl 127
7.5 Comparison of andlist defined in terms of f oldr and f oldl 128
7.6 An erroneous definition of f oldr 129
7.7 The error message preceded by the step before

............ ... 129
7.8 Definition of mintree 130
7.9 Error in mintree 131
7.10 The h definition of insertion sort 132
7.11 The isort graph 133
7.12 The browsing of isort 134
7.13 The NOCASE filter applied to the i sort graph 135
7.14 The NOCASEAPPLY filter applied to the isort graph 136
7.15 Three versions of the apply node in fa................ ... 137
7.16 The result of various labels for the NOAPPLY filter

........... ... 138

vii

Acknowledgements

I am glad of this opportunity to thank some of the many people who have enabled me to
complete this thesis: above all, of course, Colin Runciman my supervisor, for showing me
the fun of functional programming and making it all possible; the wise polymath Alan Dix
who cared for me when Colin was away; past and present members of the York functional
programming group, especially Ian Toyn; many other people at York, notably all the sup-
port staff; Marc Thomas who helped me win a car; people in Edinburgh who stored the con-
tents of my flat; Thomas Johnsson and Lennart Augustsson whose LML compiler marked
the beginning of practical lazy functional programming; people in Glasgow
especially Will "always helpful" Partain; Margaret Swain who is making good use of her
first word processor in her 87th year and is a dear friend; Holly and Megan who keep me
supplied with pictures for the walls; finally colleagues at Heriot-Watt who have encouraged
my dual existence, especially the Vision Group whose machines have generously hosted sev-
eral megabytes of Haskell compiler and window system files for me. The work was funded
by a SERC grant.

viii

Declaration

The design program discussed in Chapter 3, and much of the material in that chapter includ-
ing the idea of a mouse click as a function application, I originally presented in a paper at the
3rd International Conference for Young Computer Scientists held in Beijing in 1991 [36].
A revised version appears as Chapter 4 in the book: Applications of Functional Program-
ming [35].

I discussed the technique of displaying a graph as a tree with shared nodes indicated by
display references at Graph Drawing '93 in Paris in a talk entitled: "The Display, Browsing
and Filtering of Graph-trees".

The use of spatial and temporal filtering, here described in Chapter 5, and of the meta-
language used to define compaction rules, are outlined in "Techniques for Simplifying the
Visualization of Graph Reduction" [37], presented at the 1994 Glasgow Functional Pro-
gramming Workshop in Ayr.

These papers are co-authored by Colin Runciman, my supervisor, and result from col-
laboration with him.

ix

Drawing hands by M. C. Escher

This picture epitomises an outline of the thesis:
on the one hand lazy functional programming creates an interactive graphical program,

based on an idea of M. C. Escher;
on the other hand an interactive graphical program, itself a lazy functional program,

delineates a lazy functional computation.

x

Chapter I

Introduction

1.1 Motivation

Lazy functional programming is like the curate's egg - good in parts. The virtues of the

functional approach (see Section 1.1.1 below) are not in question, but the unpredictability

of implementations in terms of the performance of programs sometimes outweighs these

attractive features.

John Darlington writes [22]:

"The late 1980s promise to be fascinating years for workers in declarative lan-
guages. This coming together of parallel machines, mature declarative languages
and transfon-nation based programming environments means that all the, mutu-
ally supporting, components are in place for a searching appraisal of the ulti-
mate practicality of this approach. "

The "practicality" of the approach will depend on its ability to deal with the space and time

problems for which functional programming is infamous. The motivation for this thesis is

to take part in that appraisal which is continuing into the 1990s. The focus is on the point

of view of the programmer rather than the implementor: using current implementations can

we provide evidence that this style of programming is viable? What infon-nation does the

programmer need in order to write efficient programs?

1.1.1 The virtues of functional programming

Functional programming has several attractive properties which make research into its ulti-

mate viability worthwhile:

Directness Once the programmer has abstracted the essence of a specification, the direct-

ness of the functional style allows it to be precisely reflected in the program text. The

I

CHAP7ER 1. INTRODUCTION

code produced is clear and readable, and therefore easy to modify.

Freedom from side effects Part of the directness results from freedom from side effects:

a programmer may concentrate on a function definition without needing to consider

possible consequences for other parts of the program. Functional expressions are ref-

erentially transparent, so functional programs are suited to equational reasoning. They

may also be transformed manually or automatically to optimise performance.

Lazy evaluation The lack of side effects also results in the order of evaluation not being

important. Lazy functional programming exploits this. It extends the scope of appli-

cation for higher order functions, and, for example, allows termination conditions to

be separated from loop bodies.

Potential for parallelism The flexibility in order of evaluation also gives functional lan-

guages apparent potential for parallel implementations. This aspect is a current area

of research, and may well be of paramount importance for the the future use of func-

tional programming.

Higher order functions The use of higher order functions, together with the possibility of

exploitation of polymorphism, facilitates design abstraction, code reuse, conciseness

of code, and reliability and ease of programming.

Such features "push back the conceptual limits on the way programs may be modularised" [50].

1.1.2 Aim of the thesis

The overall aim of the thesis is to demonstrate that the problems of space and time usage can

be understood sufficiently for them to be controlled, so that these uncontroversial. benefits of

lazy functional languages can be reaped, for example, in the context of interactive graphical

applications.
I am concentrating on interactive and graphical applications as these are likely to expose

problematic subtleties arising from intricate program structures, and unpredictable evalua-

tion order. For example the order of evaluation in a lazy language cannot be predicted in the

absence of implementation details, but an interactive application requires precise sequenc-

ing; and the "state" of both program and display in a graphical application needs to be rec-

onciled with the functional style. Such applications also afford possibilities for exploring

laziness, for example in the use of "almost circular" definitions [4,12]. Such applications

are also likely to expose any "embarrassing pauses" or space leaks.

There are two complementary objectives, both fitting the heading of "See how they run":

CHAPTER 1. INTRODUC77ON 3

1. to develop suitable programming techniques within a lazy functional programming

system for interactive graphical applications, and

2. to develop an interactive functional programming environment (itself a purely func-

tional program) in which program evaluation may be monitored and observed graph-
ically. The aim here is to enable a programmer to write "better" programs, i. e. that

use fewer resources, through better understanding of what is going on as they run.

Both objectives are explored in the context of particular applications, the first an interac-

tive graphical design program based on an idea by the artist A C. Escher, the other a minimal

programming environment for a functional language. Both implementations are written in

Haskell [34].

1.2 See how they run I- The Escher program

There are both potential advantages and disadvantages in writing pure declarative interactive

graphical programs.
The implementation of a program architecture based on a functional description of the

interface may lead to an enhanced clarity of programming; this clarity may be reflected in

a declarative user interface. This suggests that the declarative style may be used to express

directly, not only an executable prototype, but the implementation itself

But the abstraction involved in using the declarative style means that the programmer

no longer has control over storage management, so implementations of functional languages

may make less efficient use of conventional machine resources than other languages [60].

Unless the programmer has access to monitoring facilities, the time and space properties of

programs are often unpredictable: the programmer may unwittingly create a program that re-

quires an unexpectedly large, or even increasing, amount of space in which to store shared

structures and suspended computations; this may then slow the program down because of

time given over to memory management, and the program may crash if the memory require-

ments become too great.

Another possible problem is that interfacing with an imperative window system could

result in a lack of referential transparency. There is already evidence that such problems may

be overcome [271, and there is a current spate of active research explicitly aimed at defining

a suitable graphical interface (e. g. [18,96]). But at present it remains an open problem.

The purpose of Part I of the thesis is to investigate the practical limits of the pure lazy

functional paradigm by implementing an interactive graphical application in Haskell, ex-

CHAPTER 1. INTRODUCTION 4

plicitly reflecting the specification in the program code, and observing the program's run

time behaviour. The Escher program discussed in Chapter 3 provides an early example of a

simple declarative graphical interface, and it is argued in Section 2.1.2, in Chapter 2, that the

apparent problem of different displays resulting from the same input is artificial. The aim
here is to build on the work of Andrew Dwelly [27] which suggests that the potential prob-
lems can indeed be overcome, and that the expressiveness of a lazy functional language may
indeed be exploited in this context. He writes, in connection with his dialogue combinators
(see page 13):

"The techniques presented here, allow the construction of modem graphical user
interfaces with a lazy functional language. Such interfaces have the advantages
of being both compactly and understandably described, as well as being effi-
ciently executable. "

The Escher program confirms the expectations engendered by Dwelly's work in a more sub-

stantial application. It also develops the concept of the interface as a structure to which an

interpreting function may be applied, by means of a mouse click, yielding the required in-

terface behaviour. Dwelly goes on to say:

"It is interesting to note that one area of computer science that has still to benefit
from graphic user interface design, is that of software environments for func-
tional languages ... "

And this leads to the second aspect of the thesis: the development and use of a monitoring

interpreter for a quintessential non-strict functional programming language.

1.3 See how they run 11 - The monitoring interpreter

In approaching the space and time problems mentioned above the functional programmer

has only recently begun to have access to tools akin to those available to the imperative pro-

grammer for analysing program behaviour. In 1989 Augustsson and Johnsson [91 were writ-

ing:

"There is ... a lack of tools for analysing program behaviour; the usual UNIX
tools for profiling programs, like "prof", do not work so well in a lazy eval-
uation context, or with higher order functions. When programming in a style
making much use of the predefined higher order functions like map, reduce,
etc. the profiler may well say that most of the time is spent in map or reduce
- hardly a big help when trying to pinpoint the bottlenecks in one's program. "

CHAP7ER 1. INTRODUC77ON 5

Although the situation is currently being remedied, as discussed in Chapter 4, there is

still a need for tools which give the user details of the reduction process in a digestible and

meaningful form. Statistics about a computation may be revealing, but it may be that some
form of visualization of the reduction process is needed to expose the nature of a problem:

relevant structural properties of the program being run may not be exposed by a statistical

account of the composition of the heap.

The discussion in Part II of the thesis is based around the design, implementation and

use of a monitoring interpreter. It is unusual in that it is a graphical functional programming

environment written in a purely functional style. This enables further observations to be

made regarding the suitability of a lazy functional language for such an application.

1.3.1 Rationale for the interpreter

People are unable to predict the behaviour of a lazy functional program because, although

the order of reduction is deterministic in a given sequential implementation, it is not intu-

itively obvious. Even with statistics, or diagrammatic summaries, about the memory usage

as provided by cost centre or heap profiling, discussed in Chapter 4, the exact causes cannot

be shown, and it may be therefore that the programmer does not gain understanding of what

is going on in sufficient detail to be able to control it.

One solution would be to make all details of the reduction open to inspection. Two

problems arise: the level at which to do this and, whatever level is used, the overwhelm-

ing amount of information that would be provided. There is a need to be able to relate the

data to the source code. To portray the reduction in terms of the combinators to which it gets

translated is inadequate and potentially confusing.

Simple graph reduction/template instantiation fulfils the needs to relate the observation

of the process to the source code while being sufficiently close to reduction using supercom-

binators to be likely to throw light on the performance resulting from a real implementation.

This is discussed further in Chapter 5. Having chosen this level of presentation we are left

with the other problem - of too much to show. The program graph could be displayed in its

entirety on the screen - but even using labeling with source names the overall view is com-

plex even in simple examples. So the problem is to get a handle on the graph so that it may

be understood. One of the sources of complexity is the crossing of arcs in a display, another

is its potential size. There are various possible solutions to these such as only showing part

of the graph and (somehow) ensuring as much planarity as possible - one that completely

solves the arc crossing problem, but at the expense of potentially making the size problem

CHAPTER]. INTRODUCTTON 6

worse, is to use a graph tree, a spanning tree of the graph with missing arcs displayed as

extra leaves (see Chapter 5).

In order to compact such a structure, or, indeed, the original graph, without losing the

meaning and structure of the graph, the proposed solution is to display a quotient graph

where each vertex is a subgraph of the orginal graph. The partitioning of the graph is ac-

cording to equivalence rules which state whether or not any adjacent pair of graph nodes
belong to the same subgraph, i. e. whether the arc between them should be collapsed. In or-
der that the viewer may control the display the equivalence rules need to be flexibly definable

by the user on the basis of accessible primitive conditions on the relevant nodes.

Similarly, as the reduction proceeds, the viewer needs to focus on specific sections of

computation: this time it is conditions on complete graphs that need to be used to detennine

which sections of the reductions may, at least temporarily, be skipped over.

A metalanguage is devised to enable the user to define his/her own filters over a display

and/or over a sequence of reduction steps, and a highly interactive interface proposed so that

such filters may be flexibly applied to create useful views of the computation.

1.4 Outline of thesis

Chapter 2 considers the problems of sequencing and referential transparency in relation to

interactive graphical programs. It goes on to review the principal approaches to writ-

ing interactive functional programs. There is then a review of evidence that the func-

tional style is particularly appropriate to manipulating graphics, provided by existing

examples of interactive graphical lazy functional programs. The possibility of a con-

venient declarative definition of the graphical user interface is explored. Techniques

for interfacing between a functional program and a window system are outlined. Fi-

nally the "Escher program" to be discussed in Chapter 3 is introduced.

Chapter 3 describes the implementation of an interactive graphical program in a lazy func-

tional language. It investigates:

1. advantages and disadvantages of using a lazy functional programming language

for such an application;
2. whether the performance of the program is satisfactory - i. e. the first aspect of

"See how they run";
3. a declarative implementation of the user interface, including:

" the representation of a mouse click as a function application;
" the incorporation of principles of user interface design;

" the viability of a generic functional model of interaction.

CHAPTER 1. INT'RODUCTION 7

There is first an account of the application from the user's point of view; then the im-

plementation is discussed, ending with an account of the interface; the program is re-

viewed according to each of the points above; finally a "Future work" section proposes

possible extensions to the program, and work deriving from its implementation.

Chapter 4 reviews monitoring and profiling tools for functional languages. Existing sys-
terns are discussed under the headings:

* Routine collection of statistics
" Side effecting tracing

" Debugging without side effects
" Purpose built environments
" Profiling graph reduction

The chapter closes with a discussion in which the requirements for the proposed mon-
itoring interpreter are established.

Chapter 5 discusses the design of a programming environment to incorporate the monitor-
ing interpreter - the second aspect of "See how they run". The nature of the language

to be interpreted is described and justified. An account is given of the reduction pro-

cess. Problems involved in displaying graph reduction are identified, and solutions
involving filters are proposed. A metalanguage is described for defining functions

to compact the display, and to determine which reduction steps to show. Finally an

overview of the prototype system is given.

Chapter 6 presents the implementation of the programming environment. The reduction

needs to proceed through identifiable steps, and to permit the gathering of informa-

tion both at a global level, such as the number of the current step, and at the level of

individual program nodes, such as the name of the function the application of which

created them. The display needs to incorporate the elements proposed in Chapter 5,

such as the presentation of the graph as a browsable tree, and the compaction of the

display according to user defined rules.

There is first an account of the implementation of the reduction. Then a technique for

transforming a program graph into a structure that may be displayed without crossing

of arcs is delineated. The implementation of the checkpointing and of the compaction

of the display is described. The final section discusses the appearance and function-

ality of the user interface.

Chapter 7 illustrates the potential of the system by showing examples of its use. There

are specimen screen dumps to show how the system may be used for teaching and

CHAPTER]. INTRODUCTTON 8

for locating errors. Then there is a demonstration of the effect of browsing, and of
how a spatial filter may be tailored to the compaction of a particular display. This is

followed by an account of the problems of labeling a compacted graph. Finally there
is discussion of the limitations inherent in the approach taken.

Chapter 8 concludes by tying together the various strands of the thesis, assessing what has

been achieved, and proposing future work.

Chapter 2

Graphics and interaction

2.1 Introduction

Functional programming is beginning to yield programs that run at a viable speed, suggest-
ing that this concise and clear way of writing programs may be exploited in interactive graph-
ical applications. Interactive functional programs were being written in SASL as early as
1979 [94]; and the seminal work on functional graphics, Henderson's Functional Geome-

try [45] was published in 1982. But until implementations supported acceptably fast pro-

cessing of functional programs, perhaps with the advent of Lazy ML [91, and Ponder [103],

there was no incentive to write functional programs that were both interactive and graphical.

Moreover, even with the possibility of programs running at an acceptable speed, there re-

mains the problem of referential transparency. We take it as axiomatic that referential trans-

parency is required, so that the concomitant benefits of functional programmingl may be

exploited. However, as we are working with non-strict languages, in which the order of

evaluation may not be directly inferred from the program text, there are potential problems

with the sequencing needed in an interactive program. Referential transparency might also

appear to have been violated when the same input to a graphical program may result in dif-

ferent displays, depending on the state of the window system.

Outline of chapter

This chapter considers the problems of sequencing and referential transparency. It goes on to

review the principal approaches to writing interactive functional programs. There is then a

review of evidence that the functional style is Particularly appropriate to manipulating graph-

'expressiveness, ease of transformation and potential for parallelism

9

CHAPTER 2. GRAPHICS AND INTERAC77ON 10

ics, provided by existing examples of interactive graphical lazy functional programs. The

possibility of a convenient declarative definition of the graphical user interface is explored.
Techniques for interfacing between a functional program and a window system are outlined.
Finally the "Escher program" to be discussed in the next chapter is introduced.

Sequencing

In an interactive program the order of output events, and the timing of output events with

respect to the program input, has to be predictable, given a particular input. The program-

mer has to ensure that, whatever order of reduction is chosen by the implementation, the

program will progress as required at run time. For example Wray [103] points out that a

prompt should be output before the evaluation of any expression referring to the input.

To obviate the problem of sequencing, the programmer has either to craft the program

very carefully, or to make use of programming schemes that pre-package the sequencing,

for example: continuations [49], transaction combinators [86,26], dialogues [63], and the

monadic style [70]. These are described below.

To some extent the techniques employed to control sequencing will depend on features

of the language used. For example David Turner's languages from SASL [94] to Miranda [93]

have included user input as a primitive lazy list. Such languages can, therefore, use all the

techniques available for manipulating lazy lists.

2.1.2 Referential transparency

The apparent problem of different displays resulting from the same input is artificial. The

representation of the result of evaluating an expression is not part of the result, whether di-

rectly displayed on the screen, via the operating system, or indirectly via a window manager.

However, the result of an expression may, in its representation, change the display environ-

ment which is an aspect of the state of the window manager. For example, in a monochrome

graphical context it may change the drawing mode from black on white to inverse video.

Changing the graphical display is updating it, so a program that does this appears to be ma-

nipulating an external variable. It may also affect the representation of future results. Yet

there is no violation of referential transparency. The possibility of the representation of the

result being a change in the environment (that may affect the representation of future results)

is not of direct concern to the program that is producing these results. The intermediate re-

sults of the program can be regarded as side-effecting actions, which, themselves, are pre-

cisely determined. Recent work in Glasgow [70] by Phil Wadler and Simon Peyton Jones

CHAPTER 2. GRAPHICS AND IIVTERACT70N

has captured this within the Haskell type system: 1/0 procedures become part of the inter-

mediate values that are computed. This monadic style is described in Section 2.2.3.

Referential transparency is also at stake in the case of programs that interact in other

ways with the outside world. For example, functions that take a filename as argument should

return the same result, given the same file name. Yet, over time, the "contents" of the file

with that name may change. Various solutions have been proposed to this - for example
the program may only be allowed to read a file once, then to keep whatever the file holds as
the referent of that filename for the whole of the computation no matter what happens to the
46real" file meantime. Another solution is to use the monadic scheme mentioned above.

2.2 Interaction

The functional approach to programming has developed from a theoretical background which
has threads of mathematics, lambda calculus and denotational semantics. This theorising

was not geared towards the writing of useful programs, and, in particular, the pragmatics of

writing interactive programs was not of immediate concern to the early pioneers. Even now

some strict functional languages, those that do not apply a function until all its arguments

are fully evaluated, regard 1/0 as being beyond the domain of the pure functional language.

For example in SML [59] there is an input "command": input (std-in, 10) refers to

the next 10 characters typed in at the keyboard. This treatment of 1/0 has its own problems

of suitable packaging to ensure correct sequencing. There is, however, validity in the view

that interactive functional programs have two elements - one is pure; the other, concerned

with 1/0, is side effecting. This contrasts with the view of an interactive functional program

as having a potentially infinite stream of input which is processed into a potentially infinite

stream of output. In a strict system such an input list would be treated like any other, so a

list-processing function would not be able to provide the basis for an interactive application

as all the input would need to be present before the program could be executed.

This section presents the solution that was found for this, the use of continuations, then

an alternative control system, transaction combinators, that can be used in non-strict lan-

guages. It goes on to outline various systems that have been proposed for dealing with 1/0

more generally in functional languages, and concludes with a look at a recent development,

the use of state monads, which appears to offer a neat answer to the problem.

CHAPTER 2. GRAPHICS AND INTERAC77ON

2.2.1 Continuations

12

The first interactive functional programs were written with the use of continuations. Initially

this was in the broadest sense using so-called Landin streams (see below), then, beginning

with HOPE, the technique was used with lazy lists.

Landin's streams

Landin [57] proposes a solution to the problem of a language not being able to handle a

potentially infinite list directly. He introduces a special function that he calls a stream. In

the kind of strict language that he is discussing, a function is applied to a list of arguments.
A stream is a nullary 2 function: applied to an empty list of arguments it returns a pair of

which the first component is the head of the stream, and the second component is another

stream, representing the tail. Burge [151 (p 136) notes that such streams are most useful
for implementing functions which process character streams from input".

In order to structure an interactive program with such a representation of the input, con-
finuations may be used. A continuation style version of a function takes an extra, functional,

parameter called "the continuation". The result of the normal application of the original
function is given to this continuation function as an argument, so that the continuation rep-

resents "the rest of the program". The use of continuation functions is not peculiar to inter-

active programs.
The continuation style of interaction was proposed for HOPE [17], a strict language, but

with one lazy feature, a lazy cons. In this proposal, a function input takes an argument

of type device, and returns a lazy list, where items are read from the device when needed.

Similarly a function output evaluates the elements of a list and directs output to an indi-

cated device.

Lazy lists

The use of lazy lists allows other control structures in addition to continuations. Lazy lists

have been used to represent input to functional programs since SASL [94]. Confusingly,

these lazy lists are also referred to as streams, though in the context of modem lazy functional

programming languages there is little danger of ambiguity in the use of the term.

The "stream style" of interaction refers to a program mapping a lazy stream of input to

a lazy stream of output. Hudak and Sundaresh [49] demonstrate that this is equivalent in

'Landin calls it none-adic

CHAPTER 2. GRAPHICS AND INTERAC77ON 13

expressiveness to the continuation style.

2.2.2 Transaction combinators

An alternative to the use of continuations, which exploits the laziness of streams, yet allows
them to be used in a controlled way, was proposed in 1986 by Simon Thompson [86]. A

similar scheme was put forward by Andrew Dwelly in 1988 [26]. This is the transaction

combinator style. Pieter Koopman's editor [56] uses specialised transaction combinators in

its implementation. The idea was first mooted by John O'Donnell [63], whose dialogue
function is a combinator that he defines in order to describe and implement components of

an applicative programming environment.

Thompson combinators

Thompson, using Miranda notation, defines a function type: interact, which epitomises

an individual interaction:

interact * ** = (input, *) -4 (input, **, output)

The type is parametrised on the program states before and after the interaction. A func-

tion of type interact takes as argument some input and a state, and returns the unused

input, a new state, possibly of different type to the original one, and some output.

He goes on to propose combining forms, combinators, for such interactions. These are

examples of control structures that help build composite interactions. They also have the

benefit of making implicit the recursion required by the interactive program.

Transaction combinators are often of type interact * *, where the type of the pro-

gram state remains constant to allow cyclic interaction. However, where the exact number

of transactions is explicit in the combinator, the type of the state may change. For exam-

ple Figure 2.1 shows how the combinator seq combines two interactions performed one

after the other. This also, incidentally, illustrates a benefit of lazy evaluation: the function

make-output, which pushes a string on to the output stream, allows the output of outi

before the invocation of inter2.

Thompson defines a whole library of transaction combinators and associated functions,

including combinators for iteration, selection between interactions, and sequencing.

CHAPTER 2. GRAPHICS AND INTERACTION 14

seq :: interact * ** -> interact interact

seq interl inter2 x
make_output out (inter2 (rest, st))
where (rest, st, out) = interl x

make_output :: output -> (input, *, output) -> (input, *, output)
make. output piece (in, st, out) = (in, st, piece++out)

Figure 2.1: Sequencing transaction combinators.

Dwelly combinators

Dwelly [26] proposes a similar set of combinators. There are two minor differences. One is

that the type of the program state is assumed to be constant: he parametrises his Dialogue

type, which is otherwise equivalent to Thompson's interact type, on only one state type.

The second difference is that the state and input are regarded as separate arguments, rather

than as a pair. A further option would be to regard the input as part of the program state,

in which case an interaction function would return a new state and some output, without

explicit reference to the rest of the input.

As Dwelly applies transaction combinators to the manipulation of the graphical user in-

terface, his work is particularly relevant here and is further discussed later in this chapter

(Section 2.3.4) [27].

Koopman combinators

Koopman [561 uses specialised transaction combinators, with arguments specific to his ap-

plication, in his functional definition of an editor. For example Figure 2.2 shows the function

that he calls commandinterpreter that selects the combinator to apply next, represented

by editoperation, as well as controlling the overall interaction.

commandinterpreter text commands
response: prompt : commandinterpreter newtext nextcommands
WHERE
commandline: rest = commands

editoperation = parse commandline

response: newtext: nextcommands = editoperation text rest

Figure 2.2: Koopman's commandinterpreter.

This is an early demonstration of the suitability of functional programming languages

CHAPTER 2. GRAPHICS AND INTERACTION 15

for elegantly implementing interactive programs. He notes, for example, that his program is

an order of magnitude smaller than than a comparable program in an imperative language,

that it was quickly written, and easily extended. He points out that such a program could
be incorporated into an integrated functional programming environment, which is indeed

something that O'Donnell [63] was doing at round about the same time.

O'Donnell combinators

O'Donnell's dialogues [63] predate, yet in some ways extend, the Thompson/Dwelly model.
A dialogue is an abstraction of the interaction between two processes. It can be used to de-

scribe, not only a human using a computer, but also two communicating processes. It is an
interactive session between two participants, each of which has a state that contains infor-

mation about the history of the interaction. Each also has a transition function: s tp-f cn,

that defines its actions.

This stp-f cn is similar to a Thompson/Dwelly combinator, but the indication that the

dialogue is to end is determined in the transition function, rather than in the overall control-

ling function. It returns the stream of unused inputs, a list of outputs to be sent to the other

participant, a new state, and a Boolean value to indicate whether that participant wishes to

terminate the dialogue. The dialogue function repeatedly applies stp-f cn to the current

values of inputs and state in order to find the new inputs, and state'. The inputs that

the s tp-f cn did not consume are used in the next step of the dialogue unless the dialogue

tenninates.

One of the participants begins the dialogue by starting the other. From then on each

computes a new state and a new output from its previous state and the last input it received.

Such functions can be used to implement a programming environment, which the user can

extend by creating new components.

2.2.3 Strategies for marrying 1/0 with referential transparency

The discussion so far has concentrated on the concerns of style of interaction and control of

sequencing. There are other questions that need to be addressed. There is a need to ensure

that 1/0 is implemented in such a way that the functional program is referentially transpar-

ent, and that facilities are offered for all flavours of 1/0 that a program might require -

not just user interaction, but communication with all sorts of devices and processes. Even

Haskell [341, the Esperanto of functional languages, does not fully come to grips with the

problem (see below).

CHAPTER 2. GRAPHICS AND INTERACTION 16

This section presents various strategies for coping with the conflicting demands of "pure"
functional 1/0 and the messy real world of asynchronicity, non-deten-ninistic merging and
parallelism:

" Henderson's use of tags, and an interleave function;

" Stoye's message passing;

" HOPE+C's result continuations;

" Concurrent Clean's event 1/0;

" Haskell's approach to 1/0;

" the monadic approach.

Henderson's operating system

Henderson [46] defines a multi-user operating system in 250 lines of functional code that has

a database application and an editor. It also has a facility to run programs. The text of these

programs is put into the database by means of the editor. He introduces tagging to allow

separate users to see on their monitor only the responses associated with their particular re-

quests. Additional tagging could also be used to allow the user to access different databases,

with the user explicitly tagging requests at the keyboard 3.

Henderson implements an interleave "function" that behaves in a demand driven

way: "because of demand for its result, it constantly demands its arguments". In order to im-

plement interleave as a real function, he considers time-stamping items to enable

interleave to choose between its arguments. This is effectively adding a "fair merge",

an idea that was later explored by Abramsky and Sykes [I].

Stoye's message passing

William Stoye [83] proposes a system which also uses a non-deterministic merge operator.

As the non-determinism is only used at the "bottom level" of a program, he regards this as

an improvement on Henderson's proposed functional operating system, which is not refer-

entially transparent.

Stoye doesn't attempt to make his merge a function. Part of the run-time system, re-

ferred to as "the sorting office", does the merging of the output streams from active pro-

cesses. It sorts them and merges them into input streams according to their tags. He con-

3 Henderson's use of the terms response and request is from the point of view of the user, rather than the

program. This kind of usage may be the basis of the conftision that the Haskell Response and Request

types can cause, as these are from the point of view of the Haskell program.

CHAP7ER 2. GRAPHICS AND INTERAC77ON 17

siders that such isolation of non-determinism from the functional processes is a convenient

way of maintaining their referential transparency.

Result continuations

Nigel Perry [65,66] champions another technique for maintaining the separation of the pure
functional aspect of a program from the side-effecting parts. The technique uses so-called

result continuations. These are implemented in HOPE+C, a research language specially de-

signed to demonstrate the result continuation system.
Under this scheme, a program is a function of type: Oz -+ Resul t where a is the type of

the initial state, and Res u1t is a pair of an operation request and a (continuation) function

of type 0 --+ Result, where 0 is the type of the value returned by the operation request.
This scheme is attractive, in that HOPE+C allows isolation of the parts of the program

that are referentially transparent. But it forces the continuation style which may have an

unattractive imperative feel, and HOPE+C does not capture the spirit of declarative 1/0. What

is needed is a language, or a method of writing interactive programs, in which the program-

mer could write without needing to worry about the problem of referential transparency,

knowing that the system being used would guarantee this.

Histories and event 1/0

An alternative to maintaining a separation between the functional program and the environ-

ment is to pass the environment around within the functional program.

Backus' FL [10] has an implicit history parameter as additional argument to every func-

tion, and as part of every result, though it is unchanged except for occasions where 1/0 takes

place. The history component models the state of 1/0 devices and the file system.

Another more recent proposal comes from the University of Nijmegen [2], regarding

the language Concurrent Clean. Several mechanisms are involved in their treatment of 1/0.

Firstly there is explicit environment passing where needed: rather than passing the environ-

ment to all functions, or to none, it is passed only to functions with side-effects. Secondly,

single threaded environments can be created by the use of an extension to the type system

of a unique type predicate: uNQ. Type rules and type definitions can contain UNQ predicates.

Figure 2.3 shows the definition of a unique file type using the uNQ notation.

This defines a type UFILE which is equivalent to FILE, but instances of its type will be used

linearly. Thus the uNQ type predicate can be used to force programs to use objects in a sin-

CHAP7ER 2. GRAPHICS AND INTERAC77ON 18

TYPE

:: UFILE -> UNQ FILE

Figure 2.3: Example of the uNQ annotation.

gle threaded way, and offers possibilities for generating efficient code, for example in the
implementation of arrays. However, they point out that a functional model for 1/0 should
be multi-threaded, and should specify the least possible amount of reduction order; and nei-
ther file nor stream based models are well suited for describing such behaviour. Concurrent

Clean, therefore, uses event 1/0, which is an explicit environment passing method.
The environment is modeled as an Iosystem of Iostates, each of which is a UNQ ab-

stract object. Each Iostate is associated with a Device, an object that encapsulates a sin-

gle thread of 1/0. The program can only perform 1/0 through an i0state. In order that the

Devices may cooperate, each Device function operates, not only on its current Iostate,

but also on a Programs tate. As the interaction proceeds, input events to the program are

in turn dispatched to the appropriate device, like the procedure in Stoye's sorting office.

Standard Haskell's 1/0 system

Haskell's 1/0 system regards a program as communicating with the outside world via syn-

chronised streams (lazy lists) of messages. A program issues a stream of requests to the oper-

ating system, for example: Wri teFi le String S tring or ReadFi le String. These are

of type Request. In reply the program receives a stream of responses of type Response,

for example: Success or Str String.

A Haskell program has the type:

Dialogue :: [ResPonse] --+ [Request].

Both textual and binary forms of Request and Response are provided for.

As a continuation based version of 1/0 may be defined in terms of a stream based one,

such as Haskell's, a consistent set of primitive transactions for continuation based 1/0 is also

provided. For example, corresponding to the file system Request:

AppendFile String String

there is a continuation transaction using which the programmer may express directly

66 what to do with" the associated Response:

appendFile :: String --+ String -4 FailCont --+ SuccCont -+ Dialogue

CHAP7ER 2. GRAPHICS AND INTERAC77ON 19

The type SuccCont is a synonym for Dialogue, and FailCont a synonym for

IOError -* Dialogue.

This is adequate for simple 1/0, but does not cater for non-detenninism, asynchronicity,

nor parallelism. There is surely a case for explicit acknowledgement of time as an indepen-

dent parameter - in addition, that is, to the relative time implied by sequencing. The LML

hiaton is available to the Chalmers' Haskell B. compiler, and goes some way towards alle-

viating the problem, but is not a standard component of Haskell. In the case of the Glasgow

compiler, the ccall used to implement monadic 1/0 (see below) is made available to the

programmer, but the need to use such a non-functional extension appears to expose a limi-

tation on the current language definition.

The monadic approach

Wadler [100] proposes the use of monads, a concept taken from category theory, as a conve-

nient structuring mechanism for certain kinds of programs written in a functional language

- particularly those that require a program "state" to be passed round throughout the pro-

gram. The use of state monads not only enables single-threading of the state to be guaran-

teed, but also allows the type of the state to be changed with minimal alteration to the text

of the program.

The Glasgow Haskell compiler makes heavy use of the monadic style in its implementa-

tion. Of particular relevance here is the use of monads in conjunction with a non-functional

ccall to permit referentially transparent interactive programs to be written in a quasi im-

perative style [70]. This is similar to the use of result continuations in HOPE+C, described

above. The cc a 11 is a non-standard extension to Haskell. It can call any "function" written

in c. Used indirectly, and safely packaged in a monadic type, the cc a 11 enables referentially

transparent ccalls to be made, but it is also made directly available to the programmer so

is a potential source of unsoundness as well as power.

In [70] the 10 a type is presented as a way of reconciling being with doing. The type

10 a represents actions which, when perfon-ned, may do some 1/0 and then return a value

of type a. For example:
getcIO :: 10 Char

putcjo :: Char - 10 ()

get cIO is an action which reads in a character from the standard input and returns that char-

acter; and put c 10 a is an action which writes the character a to standard output (and returns

nothing of interest, hence the ()).

CHAPTER 2. GRAPHICS AND IN7ERAC77ON 20

Such primitive 10 operations may be combined to provide the basis for interactive pro-

grams. For example:
bindIO :: 10 a -ý (a -+ 10 b) --+ 10 b

"If m:: 10 a and k:: a --+ 10 b then mI bindIO' k behaves as fol-
lows: first perform action m, yielding a value x of type a, then perforrn action
k x, yielding a value y of type b, and then return value y. "

The Glasgow Haskell 1/0 system, apart from the ccal 1 itself, is implemented in Haskell.

The type 10 a is defined as a function which takes the state of the world as argument, and

returns the new state of the world and a value of type a. As the io type is implemented as

a monad, the world state is used in a single threaded way, and 1/0 operations are applied to

the real world immediately they are computed. The "world" value manipulated by the pro-

gram is a dummy, as the real world is updated in place, but it is kept as a token to ensure the

correct sequencing of the interaction. The type can then be regarded as being that described

above. An 1/0 monad has also been incorporated into the Yale Haskell system.

2.3 Graphics

The previous section shows how the potential problems for interactive functional programs,

involving sequencing and referential transparency, may be overcome. This section reviews

pioneering work on functional programming and graphics that demonstrates that the func-

tional style is more than suitable for programs that incorporate the manipulation of graphics.

Conceptually a function may take a picture as argument and return a picture as result. For

example a function could be defined to invert a picture along the horizontal axis (see Fig-

ure 2.4).

invert Fvl

Figure 2A A function from picture to picture.

The first work on functional graphics concentrated on the representation of a picture such

that a function applied to it may return another, modified, picture. Pictures can then be com-

bined in various ways to create other pictures. Four papers that embody this idea, and ap-

ply it in novel ways, are outlined next. They are Henderson's "Functional Geometry" [451,

CHAPTER 2. GRAPHICS AND BVTERACTTON 21

for its seminal status, Arya's "Processes in a Functional Animation System" [8], which de-

scribes the creation of functional movies, and two early accounts of interactive graphical
applications: Wray's spreadsheet [103], and Dwelly's graphical application of transaction

combinators [27].

2.3.1 Functional Geometry

This is the classic work on graphics and functional programming - all subsequent work
in the area refers to it, yet the article itself only references a book about the artist Maurits

Escher [28].

Henderson introduces a method of describing pictures. He then uses this to simulate the

structure of one of Escher's woodcuts: Square Limit. The particular functions that Hender-

son defines for creating pictures from other pictures are, accordingly, strongly geared to-

wards his Escher example.

Pictures

In Henderson's scheme, a picture is a set of line segments defined with reference to a grid.
A function, grid, is used to build pictures (Figure 2.5).

grid : integer X integer X List (linesegment) -> picture

Figure 2.5: The type of Henderson's picture building function.

A line segment is represented by the four integers that make up the coordinates of its two

end points. A picture need not be as high nor as wide as the grid, but the size of the grid will

affect the display of the picture in relation to a bounding box which provides its display area.

For example a picture defined in a bounding box 10 units high, with a maximum y coordi-

nate of 7, will always have a maximum y coordinate that is -I- the height of any rectangular 10
bounding box in relation to which it is displayed.

The bounding box is defined by three vectors which describe the position of the lower

left comer of the box, in relation to the origin in question, and the length and orientation of

its sides. The bounding box may be a rectangle or other parallelogram. In order for a picture

to be displayed, its grid is fitted into the bounding box and its line segments drawn to and

from the appropriate coordinates.

CHAP7ER 2. GRAPHICS AND =RAC77ON

Building pictures from pictures

22

Pictures may be built from other pictures. For example the function f lip reflects a pic-
ture on a vertical axis exactly bisecting the picture's grid, and the function be si de puts two

pictures next to each other such that beside (m, n, p, q) is the picture obtained by juxta-

posing p to the left of q with rescaling along the x axis resulting in the ratio of their widths
being m to n. The types of these functions are given in Figure 2.6.

flip : picture -> picture

beside : integer X integer X picture X picture -> picture

Figure 2.6: Types of f lip and be si de.

Similarly, above (m, n, p, q) is the picture obtained by juxtaposing p above q with

rescaling on the y axis resulting in the ratio of their heights being m to n.

Using ni1 as the picture with no line segments in it, above and be si de can be used to

define pictures that are "distortions" of the original.

Another function, rot, perfonns 90 degree anticlockwise rotation of the picture. The

bounding box, however, does not rotate, so the rotated picture will not have the same shape

as the original unless the bounding box is a square.

Escher's Square Limit

Finally Henderson presents functions that he uses to create a convincing diagram resembling

Escher's Square Limit from four elements similar to those on which the actual print is based.

As he uses square bounding boxes, the elements are not themselves distorted, but the juxta-

position of fullsize squares with smaller ones results in an overall, controlled, distortion.

2.3.2 Functional Movies

In his Ph. D thesis [7] and subsequent FPCA article [8] Kavi Arya describes a functional pro-

gramming system for producing graphical animations. He uses Miranda as his functional

programming language and SunVieW4 as his window system. The motivation was the prob-

lem of rapidly prototyping animation sequences, in particular where this involves interac-

Sun Visual/Integrated Environment for Workstations

CHAPTER 2. GRAPHICS AND INTERACT70N 23

tion between components of the animated sequence. He uses a functional language, so the

program is more easily changed than if he had been using an imperative language, and a
prototype can be relatively quickly developed.

The work is carried out using a 2D key frame animation system, where successive frames

are written to a buffer and flipped at the appropriate time onto the screen. The programmer
is effectively defining a sequence of these frames. Such a picture sequence is referred to as

a movie.

Creating movies

A movie consists of a sequence of pictures each of which is a set of polygons, closed to

enable the modelling of opacity, and each polygon is described as a set of vertices, as shown
in Figure 2.7. A cycle of key frames capturing the key elements of an action, such as a man

walking on the spot, indefinitely repeated, is called a character.

MOVIE = [PIC]
PIC = [[VEC11
VEC =NXN

Figure 2.7: Arya's representation of a picture.

A group of functions is defined that combine two movies in different ways, for example:

overlay :: MOVIE --+ MOVIE --+ MOVIE takes two movies and returns a result in which the

corresponding frames are overlaid. Other functions are used for cueing. These exploit the

time ordering implicit in the sequence of pictures.

Beguiled, no doubt, by Escher, Arya also describes functions to convert from one picture

to another in a given number of steps, and even to convert from one movie to another. For

example what starts out as a walking man may turn into a flying bird. This is a version of

"in-betweening" [16], a way of formally describing movement as the transition, in a number

of steps, from one defined picture to another, as used extensively in cartoons.

So far the movies defined are but the building blocks for more complex varieties of an-

imation. A character in a movie is, for example, likely to "move" across the screen, rather

than staying at one spot, and may change in size or orientation. Accordingly, Arya defines a

type: BEHAVIOUR =[PIC -+ PIC I which is a sequence of changes undergone by a character

in a movie. Behaviours themselves may be combined by parallel or sequential composition

for which Arya supplies infix operators inspired by CSP [48].

CHAPTER 2. GRAPHICS AND INMRACTION

Processes

24

Arya introduces the idea of _functional processes as a formalisation within which the ele-

ments of a display may communicate with one another. The execution mechanism of pro-

cesses is called trace, again inspired by CSP.

The input stream to a process is a series of messages, and each message is a sequence

of pairs of the fon-n (channel, value). The channel consists of an identifying string. Each

value is a picture, or a number, or a vector, or a component of a behaviour. Generally a trace

associates a single message with each frame of animation.

When a process is "listening" on a channel, it checks at each frame the elements of the

message that contain that channel. Values associated with that channel may trigger appro-

priate continuations, for example in a movie consisting of a man and a vending machine as

its two communicating processes, when the man reaches the vending machine he will turn

round and walk away from it. The communication is dealt with using actors, a notion orig-

inally due to Hewitt [471.

Arya's work is interesting in that it brings together diverse areas of functional program-

ming and makes effective use of them in an application that would not seem at first sight to

be very amenable to this style of programming.

The actual pictures produced are disappointingly unrealistic, but he does emphasise that

his focus is on the processes involved and their suitability for rapidly prototyping animation

sequences. He tries to free the animator from machine-oriented patterns of thinking, thereby

facilitating his creativity, so the skeletal nature of the examples is really unimportant.

2.3.3 Wray's spreadsheet

Wray [103] devised an interactive graphical system as a basis for discussion in his Ph. D. the-

sis. It is called ANS -A Novel Spreadsheet - and is unusual in that the cells of the spread-

sheet can be positioned anywhere on the screen, rather than being in conventional columns

and rows. The program is a function that: "takes a list of bytes from the keyboard/mouse,

and sends a list of bytes to the screen".

While developing his system, Wray independently invented transaction combinators,

that he refers to as complex and recursive stream processing functions. Another program-

ming technique that he finds to be of use is "almost circular programming", the technique

of "using the answer before it is all there". Aspects of this technique were first presented by

Bird

CHAPTER 2. GRAPHICS AND INTERAC77ON 25

Wray's example of circular programming is in the central loop of his spreadsheet:

Letrec new-state = transition-f unction old-state new-state

Wray hit problems of unexpected ordering, in particular: when moving a cell to a new
location, using mouse clicks, the cell would disappear as soon as it was selected rather than

waiting until its new position was chosen. Fairbairn [32] points out that this results from

answers being computed as soon as possible in a language with normal order semantics. The

programmer has explicitly to ensure that the "remove ... redraw" sequence does not start

until the destination is received.

Wray also discusses the other problem that dogged early interactive applications, that of

space leaks: "Uncertainty about the time and space behaviour of functional programs is the

worst blow to their credibility where guaranteed perfonnance is needed. " Recent techniques

that serve to reduce such uncertainty are included in Chapter 4, in the review of monitoring.

2.3.4 Dwelly's Rubik cube

The LML distribution [9] includes example interactive graphics programs by Andrew Dwelly.

He uses LML's TONEWS primitive, that directs string valued program output to the NeWS [38]

window system. Particularly impressive is a multicoloured, mouse-click manipulable, Ru-

bik's cube. This is convincing evidence that lazy functional programming is suitable for real

interactive graphical applications.

Dwelly's definition of transaction combinators is given in Section 2.2.2. His bias to-

wards graphical applications led him to a particular combinator which controls the behaviour

of a dynamic graphical interface. The relevant code is presented in his FPCA paper [27]

He points out that his Allcase combinator mimics the event-response user interface

described by Green [40] as the model with the greatest descriptive power of three models

presented.
The Treecase combinator allows the definition of a dynamic user interface, capable of

modifying the list of rules that it uses. Finally Dwelly uses the TreeCase combinator to

define a hypercard program that is both dynamic and multithreaded.

2.4 A declarative interface?

Even these early example applications show the benefits of using a lazy functional language

in an interactive graphical context. Such a language is good at expressing the manipulation

CHAPTER 2. GRAPHICS AND INTERACTION 26

of graphical structures, and the potential problems of structuring referentially transparent
1/0 may be avoided.

More recent research has focused on the interfaces: between the user and the window

system, and between the functional program and the window system.
This section looks at each of these is turn: first at the declarative modelling of the user

interface, then at some of the practicalities of interfacing a declarative language with a pro-

cedural window system.

2.4.1 Models and prototypes

The advantages of using a functional programming language for both formally specifying

and prototyping interactive programs were first claimed in the mid-eighties, in particular by

Turner [91], Henderson [44] and Alexander [3].

Direct execution of prototype systems

Peter Henderson points out the potential of functional programming for reducing the cost of

software development: with its simple mathematical basis, it facilitates the design of correct

programs. He claims that "functional programs combine the clarity required for the fon-nal

specification of software designs, with the ability to validate these designs by execution".

His prototyping language me too is a modeling tool for system designers. It is an implemen-

tation of a formal specification notation in a functional language that allows specifications

to be directly executed as prototyping systems.

Formal definition of an interactive system is desirable for various reasons: to facilitate

communication about a proposed system, to provide a standard by which an implementation

may be assessed, and to allow proofs of formal properties to be carried out. Workers in the

area find it convenient to separate out levels of description, and to use different techniques

to define these different levels.

Levels of description

For example Heather Alexander conceives of a presentation layer, concerned with the details

of screen appearance and device handling, and a dialogue layer, concerned with the protocol

of exchanges between the user and the system. The description of the dialogue is expressed

in notations that are effectively functional: eventCSP, which is a subset of Hoare's CSP

for communicating sequential processes, is used to outline the order of events in a dialogue,

CHAPTER 2. GRAPHICS AND IN7ERAC77ON 27

and event I SL which is used to define the actual events, the primitive steps involved. The

eventISL notation is adaptable to a host language in which it is embedded - in her case

me too and the programming language C.

Approaches to modeling dialogue

Mark Green [40] surveys three models of the dialogue between a user and an interactive

computer system: transition network, context-free grammar, and so-called event models.
This last model was not as established as the others at the time he was writing. Based on

the concept of input event, it is particularly suited to the description of direct manipulation
interfaces. Such interfaces were only then coming into widespread use, and there had not

previously been any apparent need to account for multithreaded dialogues. Green concludes

that the event model has the most descriptive power. However, as the other two may each
be translated into the event model, a system designer may use whatever notation is most

apposite for the particular application in hand, so long as the user interface management

system provides run time support for the event model. As will be seen, the event model has

relevance to techniques used in the selection of a transaction in the example program of the

next Chapter.

An early attempt to model a generic user interface with a functional program

An explicit attempt to model a generic user interface with a functional program is described

in Steve Cook's paper [21]. The intention is to use generic components to develop families

of interactive applications with common user interface characteristics. To do this he pro-

poses using a functional language which has polymorphic functions, higher order functions,

and a particular concept of subtype. At the time there was no language in which he could im-

plement his ideas. But now there is Haskell with type classes and subclasses which exhibit

the required properties. In Cook's parlance:

"A type o- is a subtype of another typeT (a <- T) if a has all the fields of 7-,

and usually more, and the common fields are appropriately related. -

This is very like the Haskell class system, where a subclass has all the methods of its super-

class, and possibly some of its own. Haskell classes, however, are restricted in that they may

only be parametrised on one variable, the instance of the class, so the system is not in fact

used in the declarative description of the interface to be developed.

CHAPTER 2. GRAPHICS AND IN7ERAC77ON

The PIE model

28

Colin Runcimans's PEE model of interactive systems is extensively developed by

Alan Dix [24]. It formalises the essence of such a system: there is input, and interpreta-

tion of this by the system to yield output. The input is labeled: P, for Program - meaning
the sequence of commands directed to the system; the interpretation: I for interpretation,

and the Output: E for Effect (hence the acronym PIE). The interpretation is afunction from

input to output.
The model, with appropriate extensions, may be used as a focus for detailed formal ex-

pression of principles of interaction at all sorts of level of sophistication and complexity. It

is attractive because of its simplicity, its generic nature, and, in the context of this thesis, the

possibility of directly expressing the model in a functional language [73]. This is an example

of the creation of an executable prototype in fulfilment of a specification, that is effectively

more than a mere prototype: it is the system that was specified.

2.4.2 The interface to the window system

In one sense the interfacing of a functional program with a window system is but a special

case of the problem discussed in the first part of this chapter, of relating the pure declarative

style to the (nasty) real world of side effects, sequencing and multithreading. It deserves sep-

arate consideration, however, because this special case is crucial to the increasing proportion

of applications that require the use of graphical workstations, and because some proposed

solutions to the problem exist already.

This section also serves to give a brief overview of the state of the art as context for the

choice of the MGR window manager in the application to be described in the next chapter.

This may be slightly misleading, however, as most of the systems to be described did not

exist at the time the program was being developed.

An intermediate imperative program

An obvious solution to the problem of interfacing a pure functional program with a win-

dow system is to use an intermediate imperative program. This interprets output from the

functional program into commands for the window system, and translates output from the

window system into input for the program. Merging of streams of input, for example from

the mouse and keyboard, may be performed either by the window system, or by the inter-

mediate program. This scheme is like that for 1/0 with a strict language: the declarative and

CHAPTER 2. GRAPHICS AND BVIERACTION 29

non-declarative elements are kept strictly separate, so the aspects of the implementation that

are amenable to transformation, for example, are clearly delineated.

The use of MGR

MGR 5 is for "ManaGeR" [95]. It is highly suitable for use with a lazy functional program
because there is no need for an intermediate imperative program, nor for the program to do

any merging of input. Any language that can output strings can be used to write MGR appli-

cations as MGR responds to commands that are escape strings - strings the first character

of which is ESC - and passes to standard output any that are not. MGR is also responsible
for the merging of input from the mouse and input from the keyboard.

The functional program receives merged input from MGR, and calculates output includ-

ing escape strings for the window manager. MGR does not provide features like scrollbars

that programmers are beginning to expect, for example from X window system toolkits -
though such features may be derived form the lower level facilities that are available. This

is an advantage, in that the display is not pre-customised to a standard form, but also a dis-

advantage as the programmer has to define most details of the display explicitly. MGR was

chosen for the application described in the next chapter.

The TONEWS character in LML

In LML [91, the output of a program is normally printed on standard output. There are ways

of directing output to files. There are also a number of special characters that will redirect the

rest of the output. These include TONEWS which opens a channel to the NeWS [38] window

server and permanently redirects both input and output to it.

Using TONEWS a functional program can set up communication between itself and the

window manager. The language is also able to do polling and merging of input: if a program

is in hiatonic mode it does not hang if there is no input, instead a hiaton is returned,

indicating that no normal character is available.

Both hiatons and TONEWS are primitives which extend the language in a practical way.

The next system to be described involves another extension to the LML compiler.

'MGR was developed at Bellcore by Stephen Uhler. It is freely available by ftp from

flash. bellcore. corn, and versions exist for various different platforms, including Sun 3, sparc,

dec3 100 and Macintosh.

CHAPTER 2. GRAPHICS AND INTERAC77ON

Fudgets

30

"Fudgets" is the name given to functional widgets (window gadgets) by a team working at
Chalmers University [18]. Although they are using LML and Haskell, the principles in-
volved are not language specific, and the GUI toolkit that they are implementing manipulates
the X window system - though, again, the choice of window system is not crucial to the
basic idea.

They have developed a library of fudgets that implement common user interface ele-
ments inc uding buttons, menus and scrollbars. This will form the beginning of a compre-
hensive GUI toolkit. But "A fudget program is ... a hierarchy of concurrent processes com-

municating with each other and with the world" and the fudget concept has been used to
do standard Haskell 1/0, suggesting that the system being developed is a specialisation of a

general way of structuring interactive functional programs.

The Concurrent Clean system's 1/0 interfaces

Concurrent Clean [96] is an experimental pure, lazy, functional language that was originally
designed to be used as an intermediate language between arbitrary functional programming
languages and arbitrary machine architectures. It may also be used as a language in its own

right, in which computations are expressed in terms of graph rewriting. As mentioned in
Section 2.2.3, the language allows the definition of unique types, values of which have only

one path to the root of the graph, i. e. are not shared so need not be copied when their value

changes. This allows such unique objects to be updated without danger of losing referential

transparency.

The relevance of Concurrent Clean here is that a programming environment for the lan-

guage has been developed which provides amongst other things a "high level 1/0 interface

with the Macintosh toolbox and with the X Window System". In conjunction with the use

of unique types, this enables the functional programmer to write efficient graphical appli-

cations. Limitations are firstly that Concurrent Clean used as a programming language is

very terse, so the programmer needs to customise it, and secondly that the explicit environ-

ment passing used to implement 1/0, in particular in relation to event 1/0 used for graphical

applications, requires that the number of interface objects be fixed.

CHAPTER 2. GRAPHICS AND INTERACTION

Glasgow Haskell's ccalis to X

31

Glasgow Haskell's ccall extension, also mentioned in Section 2.2.3, may be used to link

a Haskell program to any other system, an in particular a window system such as X. Cur-

rent work in Glasgow includes the implementation of combinators similar to fudgets, called
budgets [72]. These are built on top of an interface to the Openlook widget set, and mostly

correspond directly with widgets of OUT (Open Look Intrinsics Toolkit).

Yale Haskell's interface to CLX

Finally, the Yale Haskell implementation is now also offering an interface to the X Window

System that is built on top of the Common Lisp X interface [79]. As with the Glasgow sys-

tem it uses an 10 monad to control the sequencing and single threading.

2.5 Motivation for the Escher program

This chapter has outlined various ideas for overcoming the apparent problems in writing in-

teractive graphical applications in a lazy functional language. Pioneering applications are

presented as evidence that this can be done. The next chapter describes a slightly larger

application written to see whether the benefits of functional programming are still evident,

or whether they become outweighed by performance considerations. The Escher program

allows a declarative expression of the interface to be implemented, where a mouse click rep-

resents the application of a function that "interprets" the interface.

The program is also a preliminary exercise for the more substantial programming envi-

ronment, implemented in Haskell, that is the basis for discussion of the second part of the

thesis.

Chapter 3

The Escher program

3.1 Introduction

This chapter describes the implementation of an interactive graphical program in a lazy func-

tional language. It investigates:

1. advantages and disadvantages of using a lazy functional programming language for

such an application;

2. whether the performance of the program is satisfactory - i. e. the first aspect of "See

how they run";

3. a declarative implementation of the user interface, including:

" the representation of a mouse click as a function application;

" the incorporation of principles of user interface design;

" the viability of a generic functional model of interaction.

There is first an account of the application from the user's point of view; then the imple-

mentation is discussed, ending with an account of the interface; the program is reviewed

according to each of the points above; finally a "Future work" section proposes possible ex-

tensions to the program, and work deriving from its implementation. The complete text of

the Haskell version is given in Appendix A.

32

CHAP7ER 3. THE ESCHER PROGRAM

3.2 User's view of the program

33

The application of this chapter is an interactive graphical design program. It is potentially
of more than recreational use, as the patterns that it enables users to create often resemble
wrapping paper, or wallpaper' (Figure 3.1).

IN Wirý

; ojt=e

,7

AM

0

Figure 3.1: Some patterns created with the Escher program.

3.2.1 Outline of the program

0

0

The application builds on Henderson's work on Functional Geometry [45]. This article,

written in 1982, only references a book about the artist M. C. Escher [31]. This program, too,

was inspired by Escher and incorporates the functional manipulation of graphical patterns.

There are important differences, however. Whereas Henderson's functions were aimed at

'There has, admittedly, been some concern expressed regarding my taste in wallpaper.

CHAPTER 3. THE ESCHER PROGRAM

Figure 3.2: Escher's stamps.

34

combining given pictures that "fitted together" in certain combinations, the scheme described

here helps the user to design pictures that can be combined in Escheresque ways, not just to

do the combining. Another difference from Henderson's work is that the program uses in-

teraction, in conjunction with the use of a workstation.

The program is based on an idea arising from a game used by Escher in 1942, described

in The magic mirror of M. C. Escher [30]. He carved lines on a square stamp to intersect

the four sides in the same relative places - when prints from a stamp are used for tiling,

continuous lines are obtained, whatever sides of the square are adjacent. Escher also carved

the mirror image of the first stamp (Figure 3.2). Using these two stamps in any given square,

eight different prints may be obtained by rotation. From such prints Escher created patterns,

illustrated in Figure 3.3.

3.2.2 Using the program

A user of the program creates designs, corresponding to stamps, and tiles a display area with

their rotations and reflections to make a pattern (Figure 3.4). Phases of the design are re-

Figure 3.3: Esc er's pattems.

CHAPTER 3. THE ESCRER PROGRAM

flected in modes that determine the appropriate action associated with a mouse click.

35

.......

........
........

........

...

....

DRAW

.........
....

.....

...... SAVE

........

........
.........
...

GET

.......
.........

....

.........

..........

CLEAR

.........

........

.........

......
....

..........

..........

......

.......

........

STAMP DESIGN

Within the TILE DESIGN area,
a big tile, based on orientations of
a print design, can be built.

Using TILE mode the right button
will select from a palette at the bottom
of the screen, and the middle button will
place the selection within the big tile.
Within the area the right button will
delete squares.

Using ALTER mode the right button will
invert squares, and the middle button
will rotate them.

PRESS RETURN TO RETURN TO THE PROGRAM
OR CLICK SOMEWHERE ELSE TO FIND OUT MORE
I

Figure 3A A sample screen.

Draw mode: creating or modifying a stamp

There is a 19 x 19 grid in which to draw lines that define the stamp. Lines are drawn by

depressing the middle button at the position of one end of the required line, and holding the

button down until the position of the other end is reached. During this process the line is

rubberbanded by the window manager until the button is released. Only if both ends of the

line are within the STAMP DESIGN area is the line added to the existing stamp. The ends

of the lines are adjusted to points on the grid, and gently curved lines may be simulated by

polylines. Unwanted lines may be deleted by clicking with the right button near the mid-

dle of the targeted line. As the stamp is created, a miniature version of its progress may be

observed in the lower right hand portion of the screen. The program encourages the user

to make a stamp that will combine neatly with different orientations of itself, by marking

all four edges of the square grid with little circles whenever a line is drawn that touches any

one of them. These indicate the positions that must be incorporated into the stamp if designs

CHAPTER 3. THE ESCHER PROGRAM 36

built from it are to be continuous. This is illustrated in the STAMP DESIGN area of the sam-

ple screen in Figure 3.4, where the simulated Escher stamp is seen to touch the edge in two

places: 3 dots and 7 dots in from the comer. Each of these is associated with 8 little circles,

which are drawn at the same relative places from all comers. The sample screen also shows
the eight orientations of Escher's stamp and yet another picture built from them.

Four circular screen buttons next to the STAMP DESIGN area form the DRAW menu. The

top button, when marked, indicates that the program is in Draw mode, and that lines will
be rubberbanded. Normally clicking on this button will put the program into Draw mode if

it is not already. The SAVE button enables stamps to be "saved", coded as uNix text files.

Clicking on this menu button initiates a dialogue in which the user is prompted for the name

of a file under which to save the stamp. In a similar way the GET button initiates a dialogue

for retrieving a previously saved stamp - this replaces whatever design is present.

Tile and Alter modes: building a pattern

Once the stamp has been formed, or a previous one restored, it can be used for creating a

pattern on the larger grid. Next to this grid are five circular screen buttons that form the

TILE menu.

Clicking on the TILE button puts the program into Tile mode, and causes all eight

miniature stamps to be displayed. These may then be selected with the fight hand mouse

button and subsequently positioned with the middle button in the TILE DESIGN area -a
9x9 grid of dots, to enclose 8x8 stamps. Stamps in the TILE DESIGN area may be deleted

by clicking over them with the fight button.

Selecting the ALTER button allows prints that are already in place in the larger grid to be

individually rotated (middle button) or inverted (right button).

The SAVE button is used to save a picture, and, as with the stamp SAVE, prompts the user

for a filename.

When a previous picture is retrieved, through the use of the GET button, the orientations

inherent in the picture are imposed on the current stamp. However the picture is also saved

as a PostScript file to be printed out - from outside the program at present - or incorpo-

rated into a document (such as this one). The GET button may also be used to impose prede-

fined patterns of orientation onto the current stamp, for example those used in the creation

of Escher's pictures. The names of these predefined patterns are, however, not displayed

though they may be seen through the use of the HELP system (see below).

As with the DRAW menu there is a CLEAR button, which clears the grid.

CHAP7ER 3. THE ESCRER PROGRAM 37

Finally the T4 button provides a token, and limited, forrn of tiling the whole area with

a repeated pattern - ideally the largest patterned rectangle to be found in the grid, or that,

for example, in the top left comer, but in fact it takes the 4 tile square in the top left comer,

and patterns the area with this.

Help mode: the help system

Clicking on the HELP button puts the system into Help mode: in this mode a mouse click

does not result in the action itself, but in the display of text describing the action. Pressing

<<CR>> to leave the Help mode puts the program into Draw mode. Figure 3.4 shows the

display in Help mode, with the Help button marked with an extra circle. A mouse click has

occurred over the TILE DESIGN area, so text appropriate to that is shown.

The quit "mode"

The QUIT button allows the user to quit the application elegantly - though they can also quit

by typing %". This may be considered a "mode" as the action of mouse buttons is altered

by their ceasing to have an effect on the output of the program, but Quit does not need to

be coded as a mode.

3.2.3 How user interface principles are observed

Two examples of principles of interface behaviour are: that the user should be free to decide

in what order to do things [23], and that there should be consistency in the use of the mouse

buttons. Both principles can be followed if we arrange that each mouse click represents a

function application, the result of which is clearly reflected to the user in the interface, and

that there is consistency in the effects of each button's function applications. The user then

has a good model of what is going on, and is free to do things in any order. The designer, in

turn, does not need to anticipate the possibly idiosyncratic requirements of particular users.

As will be seen in Section 3.3.4, the need for modes constrains the possible order of events

to some degree, but even between modes there is consistency in the use of mouse buttons.

The left button is unavailable to applications that use MGR as it is pennanently reserved

for system use, so it is the action of the middle and right buttons that is in question. We use

the middle button to do things, such as draw lines and place tiles, and the right button to

complement this by selecting lines and tiles for deletion, and tile orientations for placing.

The right button is also used to select screen menu buttons; and when the tiles in the design

CHAP7ER 3. THE ESCHER PROGRAM 38

are individually rotated or inverted, the middle button does the rotating and the right one
does the inverting, which can be regarded as selecting the other mirror image of the stamp.

The different ways in which the interface may respond to similar user actions, depend-

ing on the prior history of the interaction, correspond to what are referred to here as modes.
Modes are needed because we have only two mouse buttons available, yet there are more

than two transactions appropriate to each area of the screen. For example, while the graph-

ics cursor is within the design area, a middle button press can be used to place a tile, or to

rotate one, depending on the mode. Hence a state beyond the values intrinsic to the appli-

cation, one which incorporates the mode, is required. As will be seen, the Escher program
has a state that includes the Mode.

3.3 Implementation of the program

Here we have:

*a brief overview of the program which introduces the chosen window manager: MGR;

a view of the program as the specialisation of a generic interaction function;

the elements of the program state for the Escher program, in preparation for

a fairly detailed description of the programming of the interface, which demonstrates

how this may be regarded as a specialisation of a generic interface interpreting func-

tion.

3.3.1 Overall view

Here is the layered architecture of the system as a whole:

Application Progra

I Functional Programming Language:

I Window system:

lWorkstation: Sun 3/ Spar

The choice of window manager is MGR [95]: "Client programs communicate with MGR

via pseudo-terminals over a reliable byte stream. Each client program can create and manip-

ulate one or more windows on the display, with commands and data to the various windows

CHAP7ER 3. THE ESCHER PROGRAM

multiplexed over the same connection. "

39

MGR is network transparent, like X Windows [78], though much smaller and simpler. The

direct connection with the window manager obviates the need for an intennediate program
in order to communicate with the functional program. The program runs happily on both

Sun 3 and Sparc workstations.

3.3.2 Interaction

The interactive process exploits lazy evaluation: all the input that the program is going to re-

ceive has to be represented in the expression that is the program. It is essential for this style

of interaction that the programming language allows unevaluated expressions to be manip-

ulated by its programs. The interactive program evaluates the input by need, allowing lazy

evaluation to enforce the desired sequentiality.

The program is an application of a generic, higher order, combinator called inter, to

appropriate arguments. Figure 3.5 shows the definition of inter in Haskell.

inter :: (state [Input)
(state [Input]

inter endp transf inter'

where

Bool) -> TransD state
Dialogue)

inter' state input resps
lendp state input =
lotherwise = out ++ outs

where
(out, state', input', resps') = transf state input resps
outs = inter' state' input' resps'

-- Transaction combinator modified to keep track of Responses
type TransD state = state -> [Input] -> [Response] ->

([Request], state, [Input], [Response])

Figure 3.5: The inter combinator.

It is a wrapper function that extracts output, in the form of Responses, from successive

applications of the transaction function trans f. This has to be a transaction combinator

with a type modified from that of Thompson/Dwelly combinators to incorporate Requests

and Responses so that it conforms with Haskell's treatment of 1/0 - bearing in mind that

a Haskell program is of type Dialogue i. e. [Response] -+ [Request]. The type of

trans f is also given in Figure 3.5: it takes a state, a list of inputs (each one in our case a

string), andalistof Responses, and returns a quadruple consisting of alistof Requests,

which is the output to be captured, a possibly modified state, and the input an Responses

CHAPTER 3. THE ESCHER PROGRAM 40

yet to be received. The program needs to keep track of Responses as it needs to refer to

particular Responses, to access the contents of particular files, when retrieving previously

saved stamps and patterns. endp is a condition on the state and inputs, that indicates that

the program is finished - in the case of the Escher program, there is no terminal state, so a
function [Input I --+ Bool would suffice.

A more general version of the inter function also outputs a prompt appropriate for the

state at each step of the interaction. This is, however, unnecessary here as the screen dis-

play serves as sufficient cue to the user. Note that the user input is separate from the list of

Responses in the definition. A wrapper function, in this case main, is needed to extract

this from the Response to ReadChan stdin.
MGR directs user input, as a list of character strings, to the application program. It can

also be asked to return a string when an event occurs, such as the press of a mouse button.

Such strings are simply incorporated into the program's input. They may contain substi-

tutable parameters: for example %p will be replaced by the coordinates of a mouse click.
Indeed, most input strings to the program represent a mouse click, though some, such as

the name of a pattern to retrieve, represent keyboard input. The list of Requests consists

mainly of escape strings for MGR, directed to standard output. Some of them, however,

direct text to files, e. g. PostScript coding of patterns.

3.3.3 Program state

The program state is defined in Figure 3.6.

type State = (Mode, Stamp, Sel, (Board, Board), Flag)
data Mode = Draw I Tile I Alter I Help
type Stamp = [([Intl, [Intl)l
type Sel = Int
type Board = [((Int, Int), Sel)]
data Flag Dsave Dget Dclear Act

Tsave Tget Tclear T4

Figure 3.6: The Escher program state.

The mode characterises the actions initiated by a particular button press, as described in Sec-

tion 3.2.

The Stamp consists of the lines that make up the current design together with the coded po-

sition of their edge connections, if any.

The Sel is the current orientation used when putting stamps on the Board. It is coded as

CHAP7ER 3. THE ESCHER PROGRAM 41

an Int ranging from 0 (blank) to 8. An alternative is to use the orienting function itself, but

a coding scheme is needed for identification of selection boxes, and in the transcription to

PostScript, so it is convenient to use the same type in the program state. It might be clearer,

though, to use meaningful codings, Le name the orientations, and translate these into numer-
ical coding for the PostScript when needed.
A Board is a list of orientations, each associated with a square on the pattern grid. The

second Board was introduced to eliminate a space leak when a previously saved pattern is

being retrieved (see Section 3.4.1).

The F lag is used primarily to signal an interaction that involves file handling, and will incor-

porate more than one Request -> Response pair. Under "normal" circumstances, which
involve a mouse click and a corresponding change in the screen display, the Flag is Act.

Clicking on a menu button that entails a file interaction, causes the correct Flag to appear
in the state. The transaction function is so defined that, when this happens, a special interac-

tion appropriate to the flag is started. The type Flag is also used when temporarily marking

menu buttons, hence includes representatives for all of them - apart from Mode buttons, as

these are marked according to the current and previous Mode when the mode is changed.

State transitions

Figure 3.7 illustrates the state transitions in terms of Mode and Flag changes when a menu

button is pressed. Mouse clicks over other areas initiate the appropriate interface transac-

tion according to the overall Escher interface interpretation (see Section 3.3.4). When the

program starts up the mode is Draw, and the final mode change is to Quit by a click on the

QUIT button. When the mode is Help there is only one possible mode change, which is to

go to Draw mode by pressing the carriage return key. In other modes the menus may serve

to change mode, while leaving the Act flag operative. Menu buttons labelled SAVE and GET

leave the mode unchanged, but initiate a transaction with the user that involves the output

of a prompt, and the reading in of a filename.

3.3.4 The Interface

The implementation of the interface has to meet various requirements. We must observe

principles of interface behaviour, take into account peculiarities of the particular window

system being used, and exploit the lazy functional style.

The interface may be described as a collection of areas, each of which has a display

element and transactions associated with it for each button. Functions are defined to

CHAP7ER 3. THE ESCHER PROGRAM

Figure IT State transition diagram for the Escher program.

42

extract from the interface description the actual display or the function associated with a par-

ticular mouse click. Ideally a transaction would depend solely on which button was pressed

and what area of the screen the graphics cursor is in at the time of a mouse click. This part

of the interface description would have the type:

Button -4 Area --ý Transaction

However, mouse buttons have many uses in the program, and, as shown in Section 3.2.3,

there may be more transactions appropriate to an area of the screen than there are mouse

buttons available. This implies that the user must, on occasion, explicitly change mode be-

fore performing a desired action - for example, after placing a tile he may wish to invert

it, but must first change from Tile to Alter mode.

Peculiarities of MGR

Mode changes are also necessitated by the particular window manager being used. If MGR

permitted mouse clicks to have a different effect over different areas of the screen, perhaps

depending on the particular window under the cursor, there would be less need for mode

changes. But, in MGR the need for rubberbanding in response to a mouse click has to be

known in advance. It is not essential to hold such mode information in the functional pro-

gram - as it has, in any case, to be held by MGR - but the simpler the program state,

the more complex the messages for MGR must be. It is convenient to keep the mode in the

CHAP7ER 3. THE ESCHER PROGRAM 43

program state, however, as the mode may then be subject to pattern matching. This is used,
for example, in the definition of the function ti1ef given in Figure 3.8 and explained in the

next subsection. The function ti1ef is applied when a button click is received in the TI LE

area.

tilef :: Button -> Coords -> Stat
tilef button coords (mode, stamp,

((undo . tplace) oldas ++

(mode, stamp, sel, (board,

where

-> (String, State)
sel, (board,

_), _)
tplace new,

-- MGR instructions
Act))

-- new state

atile = sqid coords
wcoords = wscale stamp
oldas = assoc atile board
tcoords = btlocate coords
board' = newas atile new board
new = case mode of

the particular tile
scaled stamp
old orientation
coordinates of the tile
new board
new orientation

Tile -> case button of

Alter -> case

R0
M sel
button of
R inv
M rot

tplace o= put tcoords (orient xymax o

delete
from state

o1 da s invert old
o1das rotate old

wcoords)

Figure 3.8: The action represented by a click in the Ti1e area.

Another possibility is to keep afunction appropriate to the mode in the state, but this has the

disadvantage that the mode cannot be directly accessed, yet is needed to enable the correct

menu buttons to be labeled/unlabeled when changing mode. Of the four modes in the pro-

gram: Draw, Tile, Alter and Help, the first three have as much overlap as possible so

that the user need not usually be aware of the current mode, although there is clear visual

indication of this. In particular a click on a menu button from any of these has a consistent

action.
The presence of MGR as the windowing system also has implications for the nature of

the program. Some of the facilities offered by MGR invite the application to hand over some

of its control, for example the event strings mentioned earlier.

More significantly, MGR receives escape strings computed by the application and trans-

lates these into appropriate changes in the display and its own state. Thus an element of the

program9s output stream can have a representation that is a change in MGR's state, and/or

a change in the display. Nevertheless, as discussed in Chapter 2, referential transparency is

CHAPTER 3. THE ESCHER PROGRAM 44

not violated. We have a declarative program computing an imperative stream of messages.
The fulfilment of the program specification depends on the mediation of MGR, as well as

on the action of the program itself. However, almost of all of the application's complexity
is coded in the functional program structure, not in the interpretation of the messages.

Pattern matching on the mode - the ti1ef function

Here is a procedural account of the definition of ti1ef shown in Figure 3.8. The function

tilef identifies a tile, atile, the square associated with the coordinates coords speci-
fied by the mouse click. It deletes the existing orientation of the stamp associated with that

square, oldas, and places the new orientation there instead. This new orientation is obtained
by pattern matching on the mode, Tile or Alter, and the button, R (right) or m (middle).

A new state is also returned. This incorporates the new board, board,, leaving the mode,

stamp and sel (current selection) unchanged, and confirming the current Flag to be Act.

A mouse click as a function application?

The coordinates, Coords, that are used to determine in which display area a mouse click

takes place, may also be needed in the transaction that the click represents. For example a

right button click over one of the displayed orientations makes that orientation the current

selection. The relevant screen area is the whole group of orientations, but the particular ori-

entation over which the button was pressed is also needed to allow the transaction to proceed.

Thus a screen area is associated with a transaction that also depends on the Mode, Button

and Coords. A fixed interface is a collection of such elements. In the present case a list

is suitable collection, but in another application, for example where disparate active areas

are scattered over the screen, a tree structure might be more appropriate. The choice of data

structure is dictated by how it is accessed in the program. The interpretation of an interface

is a repeated cycle of identifying a display area that is subject to a button press, and apply-

ing the corresponding function to yield the transaction. Thus a mouse click does, indeed,

symbolise a function application. The body of the text of the Escher Interface module is

shown in Figure 3.9.

The interpret function searches through the list of FindActs; when it finds one where

the pt, the point clicked on, is inFA, this identifies the action, actFA, to be applied. Trans

represents the transaction combinator type. A dynamic interface might extend the type of a

display element to include the function for its own display. This could be neatly encapsu-

CHAP7ER 3. TBE ESCHER PROGRAM

type Interface = [FindActl

FindAct has two functions: one to recognise mouse clicks,
the other to return the appropriate action

data FindAct
FA (Coords Bool) (Mode -> Button -> Coords -> Trans)

inFA :: FindAct -> Coords -> Bool
inFA (FA pb _) pt = pb pt

actFA :: FindAct (Mode -> Button -> Coords -> Trans)

actFA (FA
-

tfun) tfun

interpret Interface -> Mode -> Button -> Coords -> Trans
interpret = notrans [I
interpret (fa: rest) mb pt = if inFA fa pt

then actFA fa mb pt
else interpret rest mb pt

Figure 3.9: Interface type and associated functions.

45

lated in an extended interface element type, that includes the information to be sent to the

window manager to display the area, TOMGR:

data DrawFindAct =

DFA ToMGR (Coords --+ Bool) (mode -* Button --+ Coords --+ Trans)

The display information, and the function for finding the displayed area, can be defined to-

gether to ensure that these are synchronised, i. e. the relevant active area correponds to the

one displayed. There can then be a menu building function, that at once displays the menu,

including button labels, and defines its active areas and their actions.

In the Escher program there is no need for such a menu function, as the menu buttons are

permanently displayed; a menu, however, is described as an area which itself is an interface

to be interpreted. The definition of the Escher interface as it appears in the program is given

in Figure 3.10.

It can be seen, for example, that the action when the ti1 emenu is selected with a mouse

click is to use that same click in the interpretation of the tile menu interface: tmenu.

3.4 Assessment

Here the implementation of the Escher program is assessed in relation to the points men-

tioned in the introduction to this chapter.

CHAPTER 3. THE ESCHER PROGRAM

escher interface Interface
escher-interface [FA indesign desfun

FA indesmenu (interpret dmenu)
FA inbigtile tilefun
FA intilemenu (interpret tmenu)
FA inpicarea orifun
FA inhelp helpfun
FA inquit quitfun

Figure 3.10: The Escher interface.

3.4.1 Advantages and disadvantages of using a lazy functional language

46

Some of the factors listed under "The virtues of functional programming" in Chapter I are

exploited in the application: directness, use of higher order functions and lazy evaluation.

Directness

Just as in the implementation of functional programs there is "delight in the close interplay of

theory and practice" [68], there is also tremendous gratification resulting from the expression

of ones ideas directly in the code, without assuming any details about implementation. The

use of a functional language enables and encourages a precise reflection of the structure and

functionality of the program in the structure and detail of the code. Take for instance the

Escher module. This encapsulates the program's interaction. It imports the overall active

areas from EscherAreas: the design, design menu, tile and tile menu areas, the orientation

boxes and the Help and Quit buttons. The escher-interf ace function relates each of

these to its action - including relating the menu areas to their respective actions as defined in

the imported Tmenu and Dmenu modules. This conceptual grouping reflects the specification

of the program in the code. It also echoes the visual grouping of areas, so the three views

of the program: the specifier's, the implementor's and the user's, are consistent and plainly

related. The whole code of the program is included as Appendix A so that the detail of the

interrelationships may be examined.

Higher order functions

There is extensive use of higher order functions in the program. For example a picture is

a list of lines, each represented by a list of end coordinates: I xO, YO, x1, Y1 I- The func-

tion toright which moves a picture to the right, is defined entirely by composition of other

functions: toright :: Int --+ (Line] --+ (Line]

CHAPTER 3. THE ESCHER PROGRAM

toright = map . mapx . (+)

47

Functions, and partially applied functions, may be passed between modules as values. For

example a function for drawing a grid, defined in a Geometry module, is used for drawing

both the stamp design and tiling areas as grids of dots. The Draw and Tile menus, how-

ever, may also be drawn as grids: single column grids of circles. The definition is shown in

Figure 3.11.

grid :: Int Int Int -> Int ->
(Int Int [Char]) -> Coords -> [Char]

grid xgap ygap xlength ylength drawf [xor, yor] =
concat [drawf xyIx <- xOlist, y <- y0listl
where
x0list = gridlist xor xgap xlength
yolist = gridlist yor ygap ylength
gridlist orig gap len = take len (iterate ((+) gap) orig)

Figure 3.11: The gr id function.

It has several arguments: the xgap, ygap :: Int determine the horizontal and ver-

tical spacing of the grid elements; x1ength, y1ength :: Int are the number of grid

elements in each direction; drawf is a drawing function that, given a pair of coordinates

will return a string which, when picked up by the window manager, causes the appropri-

ate shape to be drawn; finally, [xo r, yo rI:: Coor ds represent the origin of the grid -

changing this moves the whole grid on the display. 'Me grid function is defined with a list

comprehension that says "apply the function drawf to all pairs of points of which one is

drawn from the list of possible xs, and the other from the list of possible ys. "

Laziness

Lazy evaluation is essential to the control of the interaction. This is described in section 3.3.2.

A note on debugging

This controlled expression of interaction may be used to provide a convenient channel for

debugging. Under the transaction combinator model there is output at every stage of an in-

teraction, even if this is on occasion an empty string. This was exploited in the insertion

of "debug statements" during the program development, directly connected to the output

stream of the program. For example: wrong lines were being deleted in the creation of a

stamp, so the code was changed to augment the list Of Requests, that included the request

CHAP7ER 3. THE ESCHER PROGRAM 48

to MGR to "delete the line with such and such coordinates", by directing to a file the pa-

rameter and intermediate result values of the function that identified the line, revealing an
instance of numeric overflow. All the "plumbing" necessary for such debugging of a pure
functional program [42] is already present if transaction combinators are used. However,

one still has to be careful not to affect the strictness properties of the program, only tracing

the values of expressions that are also needed for the untraced computation.

Disadvantages?

The only restrictions encountered during the development of the program were limitations

imposed by the chosen window system - which itself could be extended if necessary. There

were minor problems in performance, especially when earlier versions of the Chalmers' and
Glasgow Haskell compilers were being used.

3.4.2 Satisfactory performance?

The program runs satisfactorily, with only minor "embarrassing pauses" for

garbage collection. When it was subjected to heap profiling a source of unnecessary space

usage became apparent: retrieving a predefined pattern involved retaining the string of MGR

instructions to display it. Each individual line of the pattern, coded as an escape string for

MGR, was repeated in its relevant orientations 64 times as part of the Request to redraw
the big tile. These escape strings were joined together to form the long argument to that one
Request. This caused the program to slow down noticeably if the pattern was complex,
i. e. had more than about twenty lines in it. The effect was negligeable with small examples.
Now only the new orientations are put into the program state at first. A series of transactions

that consume no input, each triggered by the program state, place the tiles from the second
Board to the first, one by one, until there are no more to place. This is reflected in the first

clause of tiletrans:
tiletrans :: State -> [[Char]] -> [Response] ->

([Request], State, HChar]], [Response])

tiletrans state inpt -(-: resps) Itilestoput state =
([AppendChan stdout str], newstate, inpt, resps)
where
(str, newstate) = tput state

The condition ti1est opu t on the state does the checking. The rest of the definition of

tiletrans is given in Appendix A. In this clause the tPut function returns the string to

draw an individual tile, and the state after this has been transferred from the "new" board to

the cuffent one.

CHAPTER 3. TBE ESCHER PROGRAM 49

3.4.3 Declarative implementation of the interface?

The program architecture conveniently reflects the interface that is being described. The

description of the interface is to a large extent declarative, in particular a mouse click is rep-

resented as a function application, as shown in Section 3.3A in a given context, it extracts

the required behaviour from the system. There is a danger, however, of attempting to adapt

a specification to accommodate a simple declarative model, rather than fitting the model to

the specification. It is not always appropriate for the limits of an active area to coincide with

a displayed outline. In the Escher program, though menu selection requires a mouse-click

strictly within a menu item as displayed, when drawing lines in the grid the user should be

allowed the same margin of error at the edge as in the centre, so end-points slightly outside

the grid are acceptable. Not only must such margins be incorporated in a general purpose

region-selection function, but also there is complexity in labeling menu boxes: the displayed

grids have many elements, but only one label, which could be above, below, or to the side of

the grid, or even somewhere in the middle of it; every element of the tile and draw menus,
by contrast, requires a properly placed label. In addition the label itself may involve a font

that is not fixed width. We have not yet implemented a model which permits such flexibility.

Incorporation of principles of user interface design

The presence of Modes and Flags in the program state highlight tensions between a simple

declarative expression of the interaction and the particular nature of the application. The user

of the system need not, naturally, be aware of any implementation details - it is the state of

the display, not that of the system, of which the user is aware. Thus the declarative nature of

the program may, perversely, be used to hide the system state from the programmer who, for

example, has no inkling that a Flag lies behind his dialogue with the program. On the other

hand, as we have seen, the user must explicitly change mode under certain circumstances,

and is made aware, by the marking of mode buttons, of relevant aspects of the current state -

such as which transactions are currently possible. Thus usability properties of predictability

and observability ([25] page 318) are present, and, where it matters, the state of the system

is mirrored in the state of the display.

A generic functional model of interaction?

The inter combinator of Figure 3.5 is one of a family of wrapping functions that may be

used to encapsulate interactive programs. Such functions may differ In details, such as the

CHAP7ER 3.771E ESCRER PROGRAM 50

presence or absence of an explicit prompt, but also in the type of their overall result. For

example an inten-nediate stage of interaction, in a more complex program than the Escher

one, may need to keep track of the input and responses in order to hand these to the next

stage, so the wrapper function itself may be of the type of an interaction combinator.
With the help of such functions, interactive programs may be defined by finding the ex-

act nature of their arguments - in particular the overall transaction combinator. Thus we
have a generic model of interaction which, when filled out with the details of an application
becomes an executable specification that is the application.

3.5 Future work

The program is fun to use and frequently results in the creation of satisfying patterns. One

can envisage extensions to the program, such as the use of colour and a scrolling area in

which to view the overall pattern, which would require but minor enhancements to an im-

plementation that used a window manager offering the appropriate facilities. Various sug-

gestions for other extensions and enhancements have been received. For example: users

would like to combine different stamps with the same edge connections in the tiling area.

A palette of suitable stamps, previously saved, could be provided for this. The tiled area

itself forms a mega-Escher-tile, which would fit with orientations, and even suitably scaled

versions, of itself. The Escher program, and its possible extensions, has sufficient variety of

features to make it a good vehicle for exploring other styles of interaction, and more sophis-

ticated ways of interfacing with window systems, such as the "fudgets" (functional window

gadgets) system being developed at Chalmers' University of Technology in Sweden [18], to

interface between LML/Haskell and X Windows.

We note with Dwelly [27] that:

66 ... one area of computer science that has still to benefit from graphic user in-

terface design, is that of software environments for functional languages ... "

The Escher program was a preliminary exercise to the design of such an environment, one

that will enable the fulfilment of the other aspect of "See how they run" (the visualization

of lazy functional computation), by displaying the functional computation as it proceeds.

The ability of a program to change its user interface dynamically, together with a mouse

click representing a function application, imply that the user can change the program. This

is being exploited in the environment where the user is developing a functional program as

CHAPTER 3. THE ESCHER PROGRAM 51

well as using one. The environment is described in Chapter 5, following a review of current

approaches to monitoring and profiling.

Chapter 4

Monitoring and profiling

4.1 Introduction

The programmer wishing to write a correct and efficient program needs to understand what
happens when it runs. But until recently there have been very few tools to monitor the be-

haviour of functional programs.

If a program is not behaving the way it should, the aim of debugging may be either a pro-

gram that yields a correct result, or one that runs at the required speed or within a required

amount of memory. Usually an inappropriate speed implies "runs too slowly", but it may

be that the program runs too fast. For example in the context of a graphical application, a

display may not be held for long enough. In all cases of program misbehaviour the problem

may be revealed, and understood, if the programmer can see what's going on. This under-

standing may then be used as the basis for changing the program so that it runs correctly.

The aim is to gain insight.

There was a mention in Chapter 3 of the ease with which "debug statements" may be in-

serted into the output stream of an interactive functional program. However this technique

is restricted to interactive programs, and can only be used to investigate a limited aspect of

program performance: the nature of fully evaluated intermediate values. In general, mon-

itoring the behaviour of lazy functional programs is problematic. The order of evaluation,

though precisely determined in any given sequential implementation, is often not intuitively

obvious. So debugging information may be produced in a surprising, and apparently jum-

bled, order. More importantly, structures involved in the reduction process, such as closures,

do not have an obvious textual representation.

For these reasons, and because many systems aim to preserve referential transparency,

52

CHAPTER 4. MONITORING AND PROFILING 53

it is not possible to use arbitrary "print statements" to see what is going on. Tools like the

UNIX prof [71] may not be very revealing as large sections of a computation may appear

to be attributed to a higher order function such as map.

4.1.1 What to monitor?

It is the programmer's task to relate the desired program behaviour with the actual program
behaviour -a debugging tool merely presents information. There are three levels of error

at which debugging may usefully be directed.

Errors detectable by automatic checking of the program text.

These range from insignificant syntax errors, to type inconsistencies that may reflect

trivial errors, but, on the other hand, may be symptomatic of, and pointers to, semantic

errors. Focused and eloquent error messages from the type-checker may be a great
boon to the functional programmer. It may also be revealing to allow the compiler to

infer the typing of a program, and to compare this with the typing that the programmer

intended.

Errors in the design and implementation of an algorithm.

These may be detected, for example, by checking assertions about the relationship of a

function's arguments to its result. Applying a suspect function to a range of arguments

is a technique used by several of the researchers mentioned below [54,64].

Errors in performance of a program.

That is: errors in the speed at which a program runs, and errors in the amount of

memory used. These two aspects of performance appear to be closely related -a
lazy functional program that is doctored to make use of less space will usually run

faster [75] as less time need be spent on garbage collection, and there is the comple-

mentary space-time tradeoff where the more memory that the program has available,

the faster it will run, as memory management takes up a smaller proportion of the pro-

gram's running time.

Most of the work described below concentrates on algorithmic and semantic debugging, but

there are also a few papers concerned with perforinance debugging [43,75,76,20]. The two

are not entirely unconnected: machine considerations may be the cause of apparent semantic

errors, for example numeric overflow may result in apparent errors in the otherwise blame-

less implementation of a correct algorithm.

CHAPTER 4. MONITORING AND PROFILING

4.1.2 How to monitor?

54

There are two main approaches to monitoring: one is gathering statistics about the program

as it runs; the other is causing diagnostic reports to be output. These reports may incorpo-

rate the display of cumulative information, so the approaches are not entirely separate. And

whatever data are gathered, there has to be some textual or graphical display of them to the

programmer/user.
The rest of this chapter considers approaches to monitoring and profiling under the cat-

egories of:

" Routine collection of statistics (Section 4.2)

" Side effecting tracing (Section 4.3)

" Debugging without side effects (Section 4.4)

" Purpose built environments (Section 4.5)

" Profiling graph reduction (Section 4.6)

The requirements for the system to be implemented are then determined in the light of this

existing work.

4.2 Routine collection of statistics

Various measurements are available from many existing implementations, such as the num-

ber of reductions performed, the size of the heap reported at garbage collection time and the

number of garbage collections e. g. [9,88,52]. These can be used as a guide to writing effi-

cient applications, but are not useful in locating either specific errors, or specific sources of

excessive time and space usage.

An early example of a profiler that is intended as an aid to tuning the performance of

functional programs is described in a paper [5] that is included in the Standard ML distri-

bution [6]. This profiler uses standard techniques of counting function calls and execution

time measurement similar to pro f [7 1] and gpro f [39]. The authors describe a modifica-

tion of such techniques. They maintain a so-called "pointer-to- cu rrent-function -entry" to

determine which function's call-count to increment, rather than using the program counter.

There is also a scheme for coping with anonymous functions, that involves making up names

for them, such as f. anon. These can then be treated like any other function. This low level

accounting allows the statistics collected to be more accurately associated with elements of

the source code.

CHAPTER 4. MONITORING AND PROFILING 55

Recent work to provide more detailed measurements, and to display their results in a

comprehensible form, includes heap profiling [20,77,75]. Unlike the "window into the

store" [54] that can, for example, give the values of variables at stages in the evaluation of an
imperative program, the view of the heap offered by heap profiling reveals instead detailed,

lower level infon-nation about the state of a running program. This information is based on

a census of appropriately tagged elements in active memory. Such profiling of the program

graph is discussed further in Section 4.6.

4.3 Side effecting tracing

The most direct equivalent to "just put in a print statement" in implementations of functional

languages is to get the implementation, rather than the functional program itself, to do some-

thing similar.

4.3.1 The ChalmerS hbc compiler

Indulgent environments such as the Chalmers LML/Haskell system, developed from the

original Lazy ML compiler [9], provide side-effecting tracing facilities which can be used
during program development without necessarily compromising the referential transparency

of the final program. A compilation option results in the availability of vast quantities of

trace material, which may be examined using checkpoints of named function applications.

A particular argument may be evaluated to weak head normal form, and printed. While the

tracer is on, it prints messages indicating, for example, that a traced function is just about to

be entered.
There is a potential weakness here, as the value requested might not ordinarily be re-

quired at this point, so its calculation may not terminate. Also this tracing may affect the

space properties of the program, so is not generally suitable for investigating space faults.

4.3.2 Kieburtz' proposal

Kieburtz [54] offers a proposal for the structured debugging of a functional language. This is

in addition to techniques such as writing show functions for appropriate argument and result

types in order to print out the effects of applying a suspect function to different arguments.

Given that the programmer is willing to do this, the problem in the middle of a larger, more

complex computation, is rather to obtain the values of the arguments than to display them.

CHAPTER 4. MONITORING AND PROFLLING 56

The values may already be defective because of the faulty behaviour of some other function.

There is also the problem of representing. /unctional values.

The proposal is to use MI: s exception mechanism to trace the history of values, and to

enable the programmer to examine this context incrementally. Any function that may raise

or propagate an exception is given an exception continuation as an extra argument. This will
be applied to any exception that arises to produce the result.

He gives as an example a putative exception generated by arithmetic overflow. This,

however, is a reminder of a comment by Hall and O'Donnell [64] that error values tend to

be oriented towards handling exceptional numeric conditions and are less useful in other

circumstances.

4.3.3 Instrumentation of the SML-Nj compiler

Tolmach and Appel [87] describe a system that uses automatic instrumentation of the user's

code. They note that programmers will "instrument" their code to print out values, or trace

the flow of control, when attempting to locate an error. The key idea is to insert such instru-

mentation automatically wherever an identifier is bound (to report its value), and wherever

a function is called (to report the caller and the callee). The debugger is implemented in ML

as an extension to the SML-NJ compiler. Since the instrumentation is part of the code, de-

bugging information is not distorted by the compiler's code transformations, and there is no

need to attempt to map machine code back to the original source code. The whole approach

is motivated by the SML-NFs implementation of the callcc primitive [6]. Information

available from the debugger is only generated on request, and this minimises the overhead

on performance that it causes.

Potential breakpoint locations are called events. These occur at each value declaration,

at the top of each function, at the top of each case branch, and prior to each function call.

These locations are also convenient points at which to collect the values of bound variables.

The debugger maintains a counter which is incremented whenever an event takes place. The

value of this counter is referred to as the current time.

The debugger supports reverse execution, using a primitive routine gotoTime. A series

of state checkpoints is maintained to facilitate time-travel within the computation.

The user is allowed to set breakpoints at particular source program locations, or at par-

ticular times in the program's execution history. Tolmach and Appel also plan to have their

system support modification of store values, as do O'Donnell and Hall [64] (see below).

CHAPTER 4. MONITORING AND PROFILING 57

4.3.4 A snapshot tool for fly

Fly [89] is a programming environment based on an eager SECD machine. It supports a

purely functional, higher-order, strict language.

The debugging tool that it provides logs the application of suspect functions, showing
the arguments, and optionally the results, of each application. The eager evaluation strategy

means that these arguments and intermediate results are fully evaluated, so their value can be

directly represented. User defined and primitive functional values are represented by their

names. Error values as proposed by Mycroft [611 (see Section 4.4.1) are used to represent

undefined results.
In the case of a non-terminating computation, it is necessary to interrupt the process be-

f ly> Define oneso --+ I: oneso.
[ones I
f ly> oneso.
^c
interrupt
fly> Trace.

oneso
ones()

oneso-+
ones()

oneso-+
ones() -+

: ones()

Figure 4.1: Tracing in f ly.

As in the ten-ninating case, the snapshot tool performs a separate computation on the

fore displaying a trace. The trace represents the computation up to the interrupt. See, for ex-

ample, the (abbreviated) trace generated by an interrupted infinite list of ones in Figure 4.1.

state of the machine. The result is pretty-printed to give a source-level snapshot of the in-

terrupted computation.

4.3.5 A snapshot tool for glide

In the same paper [891, Toyn and Runciman also describe a snapshot tool for an environment

based on lazy combinator graph reduction: glide. Both environments are described in more

detail in Toyn's thesis [88].

Some of the problems faced by the snapshot tool for the environment for a lazy language

are the same as those for fly. In both cases the intention is to be able to offer finite source-

001

CHAPTER 4. MONITORING AND PROFILING 58

level textual representations of an interrupted functional computation. Both systems need to
be able to show: primitive functions; data values; identifiers; and derivations. See the ones
example in the glide version in Figure 4.2.

g1i de > Define ones --+ I ones
glide> ones

1,1^C , 1,1,1,1,1,1,1,1,1,1,1,1,1,1, linterrupt
glide> Trace

ones ->
(1: ones

Figure 4.2: Tracing in gl i de.

The snapshot tool in the lazy environment, however, has the additional problem that inten-ne-

diate results may not be fully evaluated. The solution is to display the text of an expression

representing them. Here is another example:

glide> Define gen fx -* x: gen f (f x)
glide> gen((+)1)0
^C[O, 1,2,3,4,5,6,7,8,9,10,11,12,13interrupt
glide> Trace
(14: gen ((+) 1) 15)

Figure 4.3: Representing a partially evaluated expression.

4.4 Debugging without side effects

An alternative approach to debugging exploits the constraints imposed by the applicative

style rather than trying to circumvent them. It does not depend on side effects to show what

is going on in the evaluation [41]. One such approach was first suggested by Mycroft [61].

4.4.1 Errors as values

Mycroft's concern is to ensure that code transformations do not change the semantics of the

language. He points out that: if system functions are implemented to return special error

values, rather than to cause an interrupt to be generated, not only is referential transparency

preserved, but a backtrace of an error is automatically built up. Such a system allows wrong

CHAP7ER 4. MONITORING AND PROHLING 59

values, i. e. values that are conceivable and well typed, but incorrect, and error values, to be

treated in the same way.

[1/0, Hd (NIL) ,3+ 51 should return
[Error: Division by zero, Error: Hd of NIL, 8]

which also demonstrates, by returning separate results for the items in the list, that this scheme
is suited to parallel processing. Here is an example he gives of a backtrace:

The expression 1/0+3 might return:
Arg for PLUS not number: error +3
Error: Division by zero: 1/0

4.4.2 The Daisy "debug" tool

Another way to make use of the applicative style is to get functions to return debugging

information as part of their result. This is used in the work of Hall and O'Donnell [64], and

most recently in the monadic style of error handling [101].

Hall and O'Donnell [42,64,4 1] discuss debugging techniques in the context of a purely
functional language called Daisy [5 1] that uses lazy evaluation. They claim that debugging

tools written in the functional language itself are effective in helping the programmer find

such bugs as do occur.

Their approach is to use shadow variables. It is a specialisation of a technique whereby

primitive functions return, in addition to their normal value, a message specifying their in-

puts. Every function is transformed into a debugging version that returns a pair of the return

value and debugging information. Functions must be capable of receiving and propagating

debugging values embedded in their inputs. When tracing information is not required, func-

tions just ignore the debugging components of their inputs.

Hall and O'Donnell have automated such transformation of user defined functions. They

created a system function that is built round a template which contains debugging code and

user code place holders. This function replaces the place holders with the user's code, re-

turning a new function which the user may name and apply to interesting arguments.

They give the transformation of the definition of the factorial function f act, which in-

corporates messages such as "f act receives ... returns ... ", to include the rel-

evant intermediate results when the message is output. This incorporates, for example, the

transformed definition of the primitive mpy (multiply) that will return a pair consisting of the

two arguments multiplied together: result, together with the debugging message giving

the inputs to mpy and the result:

CHAPTER 4. MONITORING AND PROFILING

mult =\ Ix Y1 -
let result mpy Ix Y1
in [result

I'mult receives" xy "returns" result]

With the definition of f act modified in a similar way, the output of f act 4 is:

60

[fact receives 411 (fact receives 311 [fact receives 2
[fact receives 1]] fact receives 0 returns 1] [mult receives

11 returns 11 fact returns 1] [mult receives 21 returns 2] fact
returns 2] [mult receives 32 returns 61 fact returns 6] [mult
receives 46 returns 24] fact returns 24]

Full tracing produces too much output to be conveniently useful. Hall and O'Donnell's

solution to this is to use an interactive debugging package. A program to be debugged is

modified to include input and output streams. As Daisy uses an interpreter, the source code
is easily available to the debugger. The debugging package goes through the original source

program responding to the user's enquiries. Controversially, the user is allowed to change

the value of a variable, for example to see whether functions applied after a given point return

a correct result given the correct input. It is also at any point possible for the user to ask to

see a listing of all the bound variables in scope.

4.4.3 Kishon

Kishon [55] presents a monitoring semantics to capture the monitoring activity found not

only in Kieburtz' proposal, and Hall and O'Donnell's work, but all kinds of debuggers, pro-

filers, tracers and monitoring daemons. It is an extension to a language's standard denota-

tional semantics, parametrised with respect to the specifications of the monitoring. Not only

can this monitoring activity be fon-nally described, but the semantics, he claims, can be used

as a practical basis for building effective monitors.

He points out the advantage of enabling programmers to write their own monitors with-

out fear of changing program behaviour. While developing a program the emphasis is on

getting the program to behave as it should. Using a formalised extension to the standard se-

mantics of the language during that phase lets the development proceed in a more structured

way. By specialising a monitoring semantics with respect to a source program, an instru-

mented program is created, in which code to perform monitoring actions has been automat-

ically embedded.

Monitor semantics consists of a language (monitor syntax) to specify monitoring oper-

ations, monitor domains as value spaces in monitoring semantics, and monitoring functions

CHAPTER 4. MONITORING AND PROFLUNG 61

to map a language's abstract syntax annotated with monitor syntax to "monitoring meaning"
drawn from semantic and monitor domains.

4.5 Purpose built environments

Programming environments for declarative languages, with monitoring facilities, have tended

to be geared more towards pedagogic than practical applications, because it is easier to dis-

play clearly the evaluation of a small example than that of a large and complex program.

A precedent for the monitoring of realistic examples, and one that can be adapted for

the use of the beginning student or the advanced programmer, is TPM, the Transparent Pro-

log Machine [291. Although this does not involve afunctional language, it has exemplary

features and some of the principles it embodies could usefully be applied in the context of a

functional language.

4.5.1 The Transparent Prolog Machine

This is an execution monitor and graphical debugger for Prolog. Some of the insights from

TPM are relevant here:

e "It is possible to display an execution space involving thousands of nodes on today's

graphics workstations. "

That this has been shown to be both possible and effective is encouraging to the developer

of a graphical debugger for functional programming.

"When a Prolog programmer is debugging a program which he or she has personally

been developing over a period of weeks or months, an overall graphical view of the

execution space of that prograrn is highly meaningful to that programmer because it

conveys its own gestalt ... "

This is illustrated with diagrams that demonstrate that parts of the program can be recog-

nised even when labeling of the nodes is removed, thus allowing a smaller scale diagram

(showing more nodes) to be meaningfully displayed. If the execution graph of afunctional

program can be represented in an analogous way, it may be that incongruous features such

as unnecessary space leaks can also be identified. They could then be subject to closer in-

vestigation.

CHAP7ER 4. MONITORING AND PROHLING

4.5.2 Lieberman's Zstep

62

Lieberman's Zstep [58] is a stepper for Lisp designed to facilitate locating the code responsi-
ble for a bug, as Lieben-nan notes that this identification of the relevant code is often the main
debugging task. Zstep integrates an editor with a stepper, and when a function is invoked, its

definition is retrieved as a text file and displayed in the editor's window. During the stepping

evaluation, Zstep visually replaces an expression, or sub-expression, by its value "conform-

ing to an intuitive model of evaluation as a substitution process". As it is usually not known

whether a particular evaluation needs to be examined more closely until after a result has

been obtained, Zstep allows the user to delay the decision until then. Lieberman suggests an

analogy of checking alibis against fact in a criminal investigation - if the result of evaluat-

ing a sub-expression is not as expected, this evaluation deserves closer inspection. In order

to help programmers locate a bug, the system allows them to have an overview of a process

which can subsequently be examined in more and more detail as required. This "zooming

in" will also be seen in the work of Taylor [841.

Menus appear under two conditions:

Just before evaluating an expression: Do you want the details?

Just after returning a value from the evaluation of an expression: Continue stepping

or step back?

Zstep uses error objects to handle exceptional conditions. If evaluating some code causes an

error, Zstep substitutes the error message for the code that caused the error, where normally

it would substitute the value. Error objects are propagated: a function applied to one yields

an error object with the same error message.

He gives an example of this: having defined the function FACT as:

(DEFUN FACT (N)
(COND HZEROP N)
1)
((TIMES N

(FACT (N - 1)))))

Figure 4.4: Definition of FACT in Zstep.

he attempts to apply FACT to the string '' FOO ' '. This causes the error message shown in

Figure 4.5.

CHAPTER 4. MONITORING AND PROFILING

''The argument given to the ZEROP function,
''FOOll, was not a number''.

Figure 4.5: Error message in Zstep.

63

Stepping back allows the user to see where this message arose in the context of the original

code. One window displays the original definition while another shows the definition with
the N replaced by '' FOO' . and (ZEROP N) replaced by the error message. Another ex-

ample locates a missing parenthesis with a message:
''The function CAR was called with too many arguments'',

again with the relevant portion of the source code highlighted.

4.5.3 Nilsson and Fritzson

Nilsson and Fritzson [62] describe an "algorithmic debugger". The user is allowed to con-

centrate on the declarative aspects of a program's semantics, without needing to consider

the order in which computations take place. As this order is not easily predictable, it is an

advantage not to have to take it into account. The user need only ask himself: "Does this

function applied to these results yield the correct result? ".

The debugger first executes the program, and builds an execution trace tree. It then

searches for the bug by traversing this execution tree in a preorder manner. At each node

the debugger interacts with the user by asking whether or not the behaviour of the proce-

dure invocation corresponding to the node is correct. Where the arguments to the function

would be partially evaluated expressions, the system uses a process of strictification, looking

forward to their fully evaluated forms where possible.

Figure 4.6 shows an example from the paper of the user interaction generated by working

down the execution tree of an erroneous sort program. The user can answer "yes", "no",

or "maybe". The system remembers the answers so that, unless the answer was "maybe",

the same question is not asked twice.

There are problems with the system though: answers to an average of 50 or 60 questions are

needed to find a bug even in a "toy" program. Building the entire execution tree causes a

large time and space overhead; and subtle problems arise in the implementation of strictifi-

cation.
Nevertheless the technique could be used with some larger programs if they were suit-

ably modularised, and if the user were willing to isolate sections for Scrutiny.

CHAP7ER 4. MONITORING AND PROFLLING 64

sort(in: list=[2,1,3], out: sort[3,1])?
no
sort(in: list=[1,31, out: sort[3,11)?
no
sort(in: list=[31, out: sort[3])?
yes
insert(in: elem=l, in: list=[31, out: insert=[3,1])?
no
insert(in: elem=l, in: list=[], out: insert=[l])?
yes
A bug has been located inside the body of the function insert

Figure 4.6: Nilson and Fritzon's debugger in action.

4.5.4 Kamin's Centaur

The next system to be discussed, Kamin's Centaur [53], has the more usual pattern of the

user initiating the debugging interaction.

Centaur is a generic interactive programming environment. It works with abstract syntax

trees (ASTs) that are supported by a Virtual Tree Processor. There are tools to: describe a
language's concrete syntax, to translate concrete syntax trees into ASTs, and to pretty-print

the ASTs as programs and traces.

One language implemented is a minimal functional language with lazy semantics. As

a debugging system, Centaur allows the programmer to home in on an interesting part of

an execution trace by using a hypertext approach. This approach is used to deal with the

problem of infon-nation overload that is associated with trace based debugging. Whereas

following lazy evaluation step by step may be impenetrably confusing, the overall pattern

of an evaluation may be simple, so that such traces may be valuable.

In Kamin's trace semantics, the value of an expression is a history of evaluation steps. A

trace may be regarded as a tree, each node representing the evaluation of an expression, and

its children the trees of its subexpressions. If the expression is the application of a closure,

the node also has a child giving the trace of the body of the closure.

As the trace of the history of the evaluation may be very big, the aim is to provide a

hypertext interface for exploring it. A user of the debugging tool may click on a value and

ask it to "explain itself" getting a choice of:

* the expression, the evaluation of which produced the value;

* the environment in which the expression was evaluated (i. e. the bindings to the values

in the A expression);

CHAPTER 4. MONITORING AND PROFLUNG 65

9 the history of the value - meaning the sequence of function applications that led to

it;

also, for closure values:

* the A expression contained in the closure;

e the environment contained in the closure.

Environments are displayed by opening new windows for them. Expressions are represented

textually, with closures depicted as a symbol: << - >>. Clicking on a closure symbol

causes the lambda expression stored in the closure to be highlighted in the window that con-

tains the source code. The closure can then be further explored:

selectinglShow closure env I from a menu, for example, causes anew window to appear

which contains bindings of locally bound variables.
A major problem with Centaur is that it is not able to debug programs that enter an un-

productive loop: as the program does not produce any trace, there is no value for which to

request the history.

4.5.5 Snyder's "Lazy Debugging"

A similar reconstruction of source level debugging information, from a combinator based

machine, is used by Snyder [80]. He envisages debugging as searching the reduction-history

space of a computation. He uses the phrase "lazy debugging" to mean delaying until run time

the decision as to what part of the reduction history to investigate at source level. In addition

to reconstructing information that can be related to the source program, his system makes

use of a history mechanism that can reverse reductions. His browser's facilities include:

e single or multiple stepping to the next or previous reduction;

o moving up or down a level in the abstract syntax tree;

* displaying an accessible variable binding or function definition.

After correctness has been established, the programmer's main concern is efficiency. Snyder

mentions profiling tools as a useful first step in identifying the time and space consuming

parts of a computation, and alludes to features that have been useful in providing diagnostic

profiling inforination:

colour coding of a visual representation of the node space: for tags and reference

counts;

colour coding of the displayed parse trees: to identify variable types, and sharing in-

formation;

CHAPTER 4. MONITORING AND PROFLUNG 66

o statistics on the number of reductions by category.

Snyder puts forward the idea of running the reduction in the manner of a motion picture, so

that the programmer can easily detect changes in the program graph.

4.5.6 Taylor's Prospero

This "movie" analogy is central to the Prospero system developed by Taylor [84,85]. Pros-

pero, is a teaching tool for students who are leaming Miranda [93]. It uses simple graph

rewriting in its implementation. It can evaluate Miranda programs and display the stages of

evaluation to the user as a graphical display.

Taylor proposes a system of filters in order to focus the display on particular aspects of

an evaluation. One variety of filter he calls simple filters. These take a representation of an

expression and return a new representation, usually removing low level information from

the graph. For example apply nodes may be omitted in the representation of a constructor

function applied to its arguments - these arguments are then shown as direct descendants of

the constructor function node. Users are allowed to combine basic filters to create their own,

to enable them to view the program in a way that helps them gain insight into the reduction

process, or to look for the source of a particular error.

The other sort of filter Taylor calls temporal filters. These change the appearance of an

expression over a period of time, as opposed to the "one reduction step" lifetime of simple

filters. Temporal filters involve: searches through the evaluation history for the start of a

section to be observed; a mask that determines the appearance of the expression of interest

throughout the scope of the temporal filter; and a stop condition.

Unlike O'Donnell and Hall, and Kieburtz, Taylor normally avoids allowing the user to

change the direction of an evaluation as this might result in unnecessary non-termination.

But in his proposed searching strategies for start conditions for a temporal filter there are

options to evaluate arguments prematurely - though any such evaluation is subsequently

thrown away.

The Prospero system is the one most resembling that implemented and used for the pur-

poses of this thesis, so is of particular interest: both display graph reduction steps in source

level terms; both have systems of spatial and temporal filters, though as will be seen the ap-

proach is not identical, and the terminology is different; and both allow the user to define

filters appropriate for the particular computation to be observed. There are naturally differ-

ences in the interfaces, and in the implementation and target languages used. But the main

differences lie in the display of the graph and in the definition of filters. Where Prospero

CHAP7ER 4. MONITORING AND PROFLUNG 67

is not concerned with crossing of arcs nor, for example, keeping the traditional display of
having the function to the left and the argument on the right of an apply node, the system to
be described converts the graph into a tree so that there is no crossing of arcs, and the usual
left-right ordering of nodes is always possible. My system also incorporates a metalanguage
for user definition of filters. This permits the conditions for the compaction of the graph, and
the choice of breakpoints to be more precisely defined.

4.6 Profiling graph reduction

Profiling graph reduction could be seen as an extreme form of compacting the information

from a reduction graph. Such pictures of the graph that are shown consist of representa-

tions, not of program nodes, but of statistical data garnered from them. Three profilers are

presented: from Glasgow, York and UCL. But first there is an account of one of the earliest

examples of this technique as applied to functional programming.

4.6.1 Hartel and Veen

The precursor to the work described below is that of Hartel and Veen [43]. They investigate

the process of combinator graph reduction. Using four small and four medium-sized SASL

programs as examples, they measure the size and composition of the combinator graph at
intervals while the program is running. Their analysis of the graph is, however, not as de-

tailed as that of the more recent systems. For example nodes are classed as application or

constructor nodes, and not further subdivided by function or constructor name.
They note that all major transitions in the size of the graph can be related easily to the

algorithm. In most cases the graph grows to a certain size which remains fairly constant

until the final phase where it reduces to the result. Most nodes have a very short life "60%

of nodes witness no more than 10 reduction steps", and on average one node is reclaimed

per reduction step. 94% of the nodes, in the case of their medium sized programs, represent

structure rather than data values, suggesting that further implicit coding of structure could

yield savings in time and storage. For example they suggest special constructor nodes for

arrays and records.

4.6.2 The Glasgow profiler

Peyton Jones and Sansom have been working in Glasgow on a profiler that concentrates on

time and space problems [77].

CHAPTER 4. MONITORING AND PROFILING 68

They point out that a possible reason for the paucity of tools for measuring the dynamic

space and time behaviour of lazy functional programs is that the program is executed in an

order that is not immediately apparent from the source code. It is also not easy to relate
dynamically gathered statistics to the original code.

Their solution to this is to use a concept of cost centres. These are labels with which
the user may annotate source code expressions. During execution statistical information is

gathered about the expressions being evaluated and attributed to the appropriate cost centre.
This is intended to enable the programmer to identify "critical parts" of the program that

account for much of the space and time used. A cost centre is determined by annotating

source expressions with a set cost centre expression construct scc.
For example scc 1'f oo 'I (map (f x) list) causes the evaluation of

(map (f x) 1ist) to be attributed to the cost centre %%foo,,, though not the evalua-

tion of x nor 1ist. If these were required to be monitored, nested cost centres could be

used. Costs are only attributed to a single cost centre.

Their scheme does imply that the user needs to have a clue in advance what sections of

code will be of interest, in order to identify useful cost centres to set. For each cost centre

they collect aggregate information about its associated pieces of source code:

* the time spent evaluating instances of the expressions;

* the amount of memory allocated;

e the number of instances of the expressions that were evaluated.

Serial profiles can then be produced either by aggregating the information collected for each

time interval, or by sampling the execution state during the interval. They point out that:

44 any runtime event, or heap closure property of interest, can make use of the

cost centre mechanism to relate the information back to the different parts of

the source"

The proposed heap profiling has similarities to that described by Runciman and Wakeling

below [75].

4.6.3 The York profiler

The York heap profiler [75,74] is an innovative profiling tool that emphasises the analysis

of memory space. It consists of two parts: a modified Lazy ML compiler which generates

profiling inforination as a program executes, and a display program which converts such data

into profile graphs expressed in postscnpt. The particular facts that the prototype version

CHAPTER 4. MONITORING AND PROFLUNG 69

focuses on are: the composition of the heap in terms of constructor nodes and closures of

named functions, and the names of the functions that produced the nodes in the course of

the evaluation of expressions containing their application.

The graphs suggest possible target functions for reducing space consumption, akin to the

critical parts mentioned above. The example on which the system was first tried exhibited
five problems that were subsequently remedied, two of them involving changes to the com-

piler, and three to the code of the example program. This resulted in a reduction of space

used from 1.3Mb to 9Kb. The program also ran twice as fast.

The profiler has subsequently been used to analyse the translator in the LML compiler
itself [74], but with whole types as contructors and whole modules as producers. Here again

the execution cost was significantly reduced. This illustrates that such a tool can be used

effectively, regardless of the size of the target program.

A version of the York heap profiler has now been added to the Chalmers' Lazy ML/Haskell

distribution.

4.6.4 The UCL profiler

Yet two more profiling techniques are being developed at UCL [20,19] by Clayman, Parrott

and Clack.

The first involves the use of a cost function. However, this is unlike the Peyton Jones

and Sansom cost centre. It writes the cost of evaluation of an expression to a special output

stream, without maintaining any cumulative information. The authors are not happy with

this, however, as the cost function is dependent on its context. This means that in a parallel

implementation, where the order of evaluation of expressions may vary from one run of the

program to another, timings returned may not be consistent. They prefer a different tech-

nique that is not affected by the properties of run time behaviour. This technique they call

lexical profiling.
In lexical profiling function definitions rather than expressions are profiled: only the

costs of expressions textually contained in a function definition are attributed to that func-

tion; and statistics are collected over a whole program run. This is like making the function

definition something like a Glasgow cost centre. The data collected for a profiled function

consists of:

" the space usage of the function over time;

" the time spent in its evaluation;

" the number of times it was called;

CHAP7ER 4. MONITORING AND PROFILING

e and the number of calls it made, and to whom.

70

One of the authors' chief design objectives is to help the programmer to identify parts of a

program which consume a disproportionate amount of resources. They demonstrate the use-
fulness of relating results collected during the run of a program to the source code: tail strict-

ness is introduced into a program that uses f oldr by giving it as argument a function that

unnecessarily pattern matches on its own second (list) argument; the profile clearly shows

that this errant function is being repeatedly called by another that uses fo1 dr in its defini-

tion, and not merely that it is repeatedly called by f oldr in the execution of the program.
The system does not yet cope with source code at the Haskell level, as it has been de-

veloped using intermediate level code so that names assigned by the compiler to functions

created by lambda lifting and optimisation may be used directly. But the scheme looks as

though it could be of real practical use in detecting the origin of space faults when it has

been developed further: although the programmer can still not "see what's going on", the

evidence from lexical profiling may give even more clues than, say, the York profiler, so

this sounds like a potentially very useful tool.

4.7 Discussion

The various strands of recent work on monitoring have the common theme of observing the

reduction of functional programs, but with several different aims. These include:

1. finding errors in the source code;

optimising execution performance;

3. illustrating what is going on for teaching purposes.

There are also aims that are outside the scope of this thesis:

4. optimising compiler performance;

5. exploring parallelism.

In relation to points I-3 above, what tools would the programmer ideally like to have, and

how far does existing work go to provide them?

4.7.1 Finding errors in the source code

In the absence of any automated assistance in searching for bugs, the programmer has var-

ious lines of attack on the problem. If there is no clue as to where the problem arises, each

function of the program needs to be tested separately for accuracy of output, given correct

CHAPTER 4. MONITORING AND PROFILING 71

input. The action of suspect functions may be tested by changing them to return debug-

ging information. In a strict world this would be sufficient, and could be directly automated,

though the problem of representing functional values needs to be resolved; in a lazy world

the situation is complicated by intermediate stages of the computation involving closures

rather than easily displayable values. These may be as arguments to the function, as well as

resulting from its application.

The programmer does not normally want to know what is going on in the reduction pro-

cess, but only which functions are misbehaving. A view of the process is required that will

show where the error(s) occur, and perhaps suggest remedies.

Which of the existing schemes provide a solution? Kieburtz [54], Hall and O'Donnell [64]

and Kishon [55] all include in their conception, implemented in some form by the last two,

a trace of the computation available to the user. Tolmach and Appel [87] get the compiler

to instrument the user's code. This has an advantage that transformations to the code are

reflected in transformations to the debugging information, so there is no problem in relating

the two. The -T flag in the Chalmer's LML compiler has a similar effect, and does allow

checkpointing, but the output produced is hard to control and understand.

Lieberman's Zstep [58] is a step in the right direction but, because of the amount of trace

information generated, would be exceedingly tedious to use on a large example. He suggests

that setting breakpoints might help the navigation through the evaluation, but he didn't im-

plement this. Nilsson and Fritzon's "algorithmic debugger" [62] is also along the right lines,

but again is only suitable for small examples because of the number of questions the user

would have to answer for a larger one. Centaur's [53] hypertext system, if used in conjunc-

tion with checkpointing, which Kamin does not do, might be a solution that could be used

for larger examples - but his implementation of the system, keeping a history of evalua-

tion steps, seems not very efficient. The inability to deal with programs that loop is a serious

flaw, as such looping may be the very symptom of the bug one wants to investigate.

The glide system can helpfully show the state of a non-terminating computation, but

when tracing a computation that terminates, merely indicates which clauses of the function

definitions have been tried, not with the actual arguments. Finally Snyder's reduction history

is yet another method of approaching the requirements, also unsuitable for large examples.

So there is as yet no satisfactory general purpose tool for finding bugs in lazy functional

programs. Kishon's monitoring scheme [55] may be the way forward here. An ideal pro-

gramming environment should offer the programmer facilities for sytematically creating an

idiosyncratic tracing mechanism appropriate for his particular application program, perhaps

CHAPTER 4. MONITORING AND PROFILING 72

by joining together multiple monitors to create new ones. This may include the possibility

of stepping backwards or forwards in a computation, and the creation of breakpoints by, for

example, identifying suspect functions. So we can identify some first requirements for the

system to be developed:

Requirement 1 Let the user adapt the tracing to particular applications.

Requirement 2 Allow the user to step through the reduction.

Requirement 3 Permit the creation of breakpoints.

4.7.2 Optimising execution performance

In order to optimise execution performance it is helpful to be able to identify sections of code

that cause space faults. The complexity of the evaluation process, in the context of a lazy

functional language and a compiler that does some transformation, is such that theorising

about the program behaviour from cold is unproductive, because it is error prone.
This is where heap profiling comes in. The ability to see detailed statistics about the com-

position of the program graph has already proved to be effective in identifying code that is

inefficient with regard to space usage [75]. It may be that the efficiency of the running pro-

gram is closely linked with the implementation of the compiler. For example a local pro-

totype of the York profiler included an option to use Wadler's suggested scheme to obviate

the problem of the elements of tuples not being efficiently garbage collected [98]. Although

this was only implemented for pairs, programs would run using this modified version of the

compiler that would run out of space using the conventional version.

At this early stage in the development of usable implementations for lazy functional lan-

guages the programmer may need to have control of options such as this, and to use them

in conjunction with the particular code being written. An alternative is to modify the code,

where possible, to take account of the compiler's foibles. For example a coding trick can be

used to avoid the problem with tuples mentioned above: an extra function is introduced to be

given as argument the expression that reduces to the tuple; the elements of the tuple are then

accessed by pattern matching rather than projection so the construction is effectively broken

up. This allows programs to run that otherwise crash with "Out of heap space" messages,

but does impair the readability of the code.

The success of heap profiling suggests that it should be an intrinsic part of every serious

environment for lazy functional programming. It will assist in the development of pragmas

for the lazy programmer, both general ones and others geared to particular implementations.

The only disadvantage of heap profiling is that, although details of the reduction processes

CHAPTER 4. MONITOREVG AND PROFMING 73

may be inferred from the views provided of the heap, there is no explicit account of what is

going on. The programmer has to make infon-ned guesses as to what is happening from the

overall view. From this another requirement for the proposed system emerges:

Requirement 4 Give detailed information about the reduction process.

4.7.3 Illustrating the reduction process

The problem of giving a view of the reduction process, for teaching purposes, is easier to

solve, because at the stage at which students need such a teaching tool, small examples suf-
fice. There is little information to display and a relatively small number of reduction steps.

Whether it is appropriate to display a representation of the actual reduction steps of the

computation is another matter. It is probably best at first to present the process using a simple

graph reduction model. Taylor's Prospero [84] does this, and offers filters which allow small

examples to be shown. Techniques of filtering and focusing need to be further developed

for such displays to be of real, practical, help in exploring larger examples. This suggests a
further requirement for the proposed system:

Requirement 5 Provide powerful techniques of filtering and focusing so that the display

may be of practical use for large examples as well as small ones.

4.7.4 What we need now ...

Bringing together the requirements enumerated throughout this section, what we need now
is a programming environment that will:

1. let the user adapt the tracing to particular applications;

2. allow the user to step through the reduction;

3. permit the creation of breakpoints;

4. give detailed information about the reduction process;

5. provide powerful techniques of filtering and focusing.

Chapter 5

A monitoring interpreter

5.1 Introduction

This chapter presents the design of a monitoring interpreter for a lazy functional language,

that will fulfill the needs enumerated at the end of the previous chapter. The scale of the

exercise demands something simpler than an interpreter for, say, full blown Haskell. So

a language has been devised that is sufficiently sophisticated to enable the system to give

convincing results, but otherwise as simple as possible. The language is for the most part

a subset of Haskell, so is called h. The interpreter is called hint, as it is an h interpreter,

and because it is designed to give hints as to what is going on in the reduction process. The

implementation of this interpreter is in Haskell, providing further evidence of the benefits

and limitations of using a lazy functional language for an interactive graphical application.

Techniques and algorithms involved in the implementation are described and assessed in the

next chapter.

The hypothesis is that given a display of what is going on in a computation, at an appro-

priate level of detail, the functional programmer will be able to make use of the information

to write "better" programs, i. e. more efficient in ten-ns of space and time usage. Until imple-

mentations of lazy functional programming languages become really efficient, such consid-

erations may make the difference between a program running and not running. The idea is

to have a system that displays a series of program graphs that represent a computation as it

proceeds: a sort of electronic animation of textbook presentation of graph reduction. These

graphs may be very large. And there may be very many reduction steps. Hooking up the

reduction to some pre-existing graph display package is not adequate except for small ex-

amples, as in general one has to exploit the characteristics of the particular type of graph to

74

CHAPTER 5. A MONITORING lNTERPRETER 75

tailor, and compact, the display meaningfully. Showing a computation in great detail could

take an inordinate length of time. Thus the focus is on depicting graph reduction on a small

screen in a reasonably short time. Subsidiary questions arising from this are:

" How to implement the reduction?

" How to decide which reduction steps to show?

" How to simplify and compact the display without losing its original meaning?

Outline of chapter

The structure of the rest of this chapter is as follows:

" the nature of the language to be interpreted is described and justified; (Section 5.2)

" an account is given of the reduction process; (Section 5.3)

" problems involved in displaying graph reduction are identified, and solutions involv-

ing filters are proposed; (Section 5.4)

"a metalanguage is described for defining functions to compact the display, and to de-

termine which reduction steps to show; (Section 5.5)

" finally an overview of the prototype system is given. (Section 5.6)

5.2 The h language

The intention is that the information provided by hint during the reduction of an h expres-

sion offer an accurate view of the reduction of an equivalent expression in Haskell by a con-

ventional implementation. It is important to ensure that an h program is not misleading with

respect to corresponding Haskell programs in regard to expressiveness and the reduction

process to which it is submitted. Ideally h programs would be a subset of Haskell programs.

This is not quite the case, as pattern matching in h is expressed slightly differently from

that in Haskell: in h patterns may not occur in lambda abstractions and function definitions,

and there are no list comprehensions. As discussed below there is a pattern matching case

expression, as in Haskell, but one that always returns a function with the same arity as the

constructor found i. e. either a constant or an expression to apply to the arguments of the

constructor on which the pattern matching succeeded. This forces pattern matching to be

explicit in the reduction graph which facilitates observation of the reduction. And, so long

as this difference is taken into account, Haskell programs may be expressed in h, after suit-

able transformation, with only minor syntactic modification.

CHAPTER 5. A MONITOREVG 17VTERPRETER

5.2.1 Functions

76

Definitions are equational. Functions are constructed with explicit or implicit lambda ex-

pressions at the top level. Identical lambda expressions would be legal Haskell. Function

application, as in Haskell, is expressed by juxtaposition, so fa means: f applied to a.
Lambda expressions in h are only allowed at the top level, so that there is a "function

name" to which they can be related. There are no local definitions of any sort to complicate

this. Most compiled implementations of functional languages lift local definitions out of the

outer lambda expression within which they occur. Thus by writing auxiliary global defini-

tions in h we can effectively program at the supercombinator level. Binary functions may
be used in infix form, as in Haskell, by enclosing the function name in grave accents. The

syntax of h is given in Figure 5.1.

command deflexpr
def iden var* = rhs-expr
expr const I applic I casexpr

fun I data I cond I(expr
rhs-expr (\ var --+)* (expr I rhs-expr)
fun iden preop applic I prim
data char string int I list I pair constr
applic exprexprI

expr inop expr I
(applic)

casexpr case expr of casepr+
casepr expr--ýexpr
preop (inop)
list [(expr (, expr)*
pair (expr expr)
prim head tail I null I fst I snd I

mod I div
cond if expr then expr else expr
inop +I-I == I: I ++ I*I 'iden'

>1<1>=I<=I&&III

Figure 5.1: Syntax of h.

5.2.2 Types

There are built in primitive types in h corresponding to Int, Bool, Char, List and Pair

(and Error). In addition to these, users' own types may be used. There are no user defined

types, so they might be called user implied types: hint recognises constructors by their

initial capital letter. It is as though all constructors are regarded as instances of a Universal

CHAPTER 5. A MONITORING INTERPRETER 77

type. The system requires that all constructions be saturated, as, otherwise, it has no way of
knowing the assumed arity of constructors. Indeed no user defined function is ever checked

for arity, so the system can express functions of variable arity. For example see the defini-

tion of Turner's tautology checker [94] in Figure 5.2. Here the tautology f is of type B001

when n is 0, Bool -* Bool when n is 1, Bool -* Bool --+ Bool when n is 2, and so on.
The original application of taut requires n to be the number of Boolean arguments to the

tautology function. Thus n is 2 when checking the validity of De Morgan's law.

hi> taut n
case n of

0 -> f

-> taut (n-1)
hi> taut has been defined
hi> demorgan pq= not
hi> demorgan has been defined
hi> taut 2 demorgan
hi> T)rue

(f True) && taut (n-1) (f False)

(p && q) == not p 11 not q

Figure 5.2: Tumer's tautology checker.

Týpe checking

There is no static type checking in h, and dynamic checking only insofar as the application

of a primitive to the wrong sorts of arguments results in an error value that incorporates an

error message. The lack of type checking permits functions of variable arity as shown above.

It also, for example, admits lists of mixed type,

But how significant is this lack of type checking in relation to the intention to keep the

expressiveness and reduction properties of h close to those of Haskell? A type system in

general constrains what can be expressed. The "switching off" of typechecking does not

radically alter the graph reduction process, yet allows the interpreter to be quicker and sim-

pler than it might otherwise be.

Pattern matching

As in core Haskell there is no pattern matching in h of the implicit kind: recognising argu-

ment patterns to choose which equation in the definition of a function to apply. Instead h

expresses pattern matching at an intermediate level with a case expression which maps con-

structors to a function with the same arity as the constructor. This allows pattern matching

CHAPTER 5. A MONITORING INTERPRETER 78

to be displayed in a manner that is consistent with the rest of the reduction, and ensures that

the display is not complicated by a need to include argument variables. The use of such a

case statement is illustrated in Figure 5.3.

h version:
take n list

take' nht=

Haskell version:
take
take 0
take n (h: t)

case list of
II
(h: t)

case n of
0

-> 11
-> take In

-> 11
-> take (n-1) t

take (n-1) t

Figure 5.3: The pattern matching case statement.

In the definition of take the case expression pattern matches on the list: if this is

null, an empty list is returned; if this is a list with head h and tail t, the function take In

is returned, to be applied to h and t. The case expression in the definition of take' pattern

matches on n, in the case of n0 returning [I, otherwise returning an expression that

involves another call to take.

Sometimes when tracing a computation a surprising amount of reduction is seen to be

necessary before pattern matching can be resolved, e. g. the insertion sort example, page 132

in Chapter 7. Here the intuition of "inserting the head of a list into the sorted tail of the list"

is shown, in the display, to involve a cascade of case expressions, representing cumulative

unresolved pattern matching at every element of the list, that can only be disentangled once

the empty list at the end is reached.

5.2.3 Primitives

A limited selection of primitive functions and operators is provided. These are required to be

saturated for simplicity of implementation, though their partial application may be achieved

by creating a user defined function with the same effect, e. g. plus xy=x+y. Infix oper-

ators may be used in prefix form if parenthesised as in Haskell. There is a conditional con-

struct, if ... then ... else, and constructors and projector functions for lists and pairs.

CHAPTER 5. A MONITORING INTERPRETER

5.2.4 Lambda lifting

79

As noted in Section 5.2.1, local definitions in Haskell are replaced by named auxiliary func-

tions in h. This creates two problems. One is that the process of lambda lifting by hand is te-
dious and error prone. This could be overcome by automating it, perhaps retrieving Haskell

code from a Haskell compiler after the lambda lifting phase, while ensuring that supercom-
binators are tagged with a name derived from their function of origin. The other problem is

a danger of loss of laziness, as supercombinators that have been derived by lambda lifting

may have built in to them values of arguments to the original function. This can only be

emulated by defining a specialised version of the function in h. Again, the problem may be

overcome by properly automating the lambda lifting.

As an illustration, Figure 5.4 shows a modified version of an example function from

Stoye's thesis [82], also discussed in [67]. The Haskell definition of f has two possible h

counterparts:

Haskell version:
fxg

where
g00
gnefx+g (n

h version without sharing:
nsf xn= case n of

00
nsf' x (n

nsf, xn= ef x+ nsf xn

h version with sharing:
sf xn= case n of

0 -> 0

- -> sf' (ef x) n
sf' efx n= case n of

00
sf'' efx n

sf'' efx n= efx + sf' efx (n

Figure 5A The danger of losing sharing when lambda lifting.

ns f loses the sharing of efx, and sf maintains it. Here ef represents an expensive func-

tion to emphasise the requirement that its repeated application is to be avoided, if possible.

In the sharing version ef x is only calculated once, and all other instances are shared. Its

value becomes incorporated in a partial application of sf, in a similar way to the Haskell

CHAPTER 5. A MONITORING INTERPRETER 80

versi on where efxis incorporated into g. The version without sharing results in efx be i ing

calculated n times.

5.3 The reduction model

The simplest way of deriving a graph to display from the state of the reduction is to use graph

reduction by template instantiation in the implementation. So the reduction of h expressions

is implemented using graph reduction, and the program graph is available for display at any

point in the process. The Haskell functions that implement the reduction are a declarative

expression of the target language's reduction rules. These are given in Appendix B. An

account of the implementation of the reduction is given in Chapter 6.

5.3.1 Graph reduction

Graph reduction is a form of expression rewriting that includes sharing by means of point-

ers [102]. The process may be visualised by showing a succession of graphs, each repre-

senting an inten-nediate stage in the reduction of the expression (Figure 5-5). The vertices of

16

square +>>

3

Figure 5.5: The reduction of square (3 + 1) .

the graph are elements of the intermediate expression: values, built-in functions and vari-

able names. There may also be "apply" nodes (@), representing function application, that are

implicit in the functional expression. The arcs of the graph build the expression's abstract

syntax tree, with sharing expressed by more than one arc going to the same vertex.

5.3.2 Rewrite rules

The reduction process is deten-nined by a series of graph rewrite rules. There is a "current

node to be reduced" which is the root of the next subexpression to be reduced. This is orig-

inally the root of the main expression to be evaluated. Before an expression can be reduced

op"

CHAPTER 5. A MONITORING INTERPRETER 81

it may be that some of its subexpressions need to be evaluated, either completely or to a

normal, canonical, form. In Figure 5.5 the 3+1 needs to be evaluated before the * may be

applied.

5.3.3 Order of evaluation

The order of evaluation of sub-expressions in a functional program does not affect the final

result, though it may affect whether the reduction terminates or not. Sub-expressions may

even be evaluated in parallel, but this is not our concern here. In a sequential evaluation

there are two principal orders possible: outermost and innermost. Outermost reduction, also

called normal order or lazy evaluation, only reduces a sub-expression so far as its result is

needed to reduce the main expression. Innermost reduction, also called applicative order

and eager evaluation, causes the arguments to a function to be fully evaluated before the

function can be applied.
Our main interest here is in exploring lazy sequential reduction. The order of evaluation

in such an implementation is deterministic, but not necessarily intuitive. Our aim is to enable

the user of our system to write "better" programs - i. e. demanding fewer resources for their

execution - through understanding what is going on in the reduction process in terms of the

constitution of the graph.

NaYve graph reduction is not very efficient. Actual implementations of functional lan-

guages usually use optimisations of it [67]. The resulting reduction process may still be rep-

resented as a series of graphs, but these are no longer directly associable with the source

code. However, such optimisations have simple graph reduction as their basis, so observ-

ing simple graph reduction is potentially useful in understanding what is going on in more

sophisticated schemes of reduction.

An important question relating to the display of the reduction is the level at which this

should take place. The aim is to be able to relate what is going on to the user's source code in

more detail than can be obtained from something like heap profiling, yet not to overwhelm

the user with too much detail. The raw use of the program graph may well provide too much

detail for anything larger than toy examples. However it is a clear way of presenting sharing,

and offers a well articulated framework from which, as will be shown, a compacted display

may be produced.

As an example of the display of a graph with no sharing, Figure 5.6 shows three stages in

the evaluation of the expression f oldr plus 0[1,2,3,4]. This suggests the usefulness

of a system like hint for teaching. The definition of f oldr is given in Figure 5.7.

CHAPTER 5. A MONITORING INTERPRETER 82

0

foldr p lus 2

3

4

+

lz", ý 20

foldr p lus

+

ZN
+

2+

ZN 3+

ZN 40

Figure 5.6: Three stages in the evaluation of f oldr plus 0[1,2,3,4].

foldr z [I =z
foldr fz (x: xs) =fx (foldr fz xs)

Figure 5.7: (Haskell) Definition of f oldr.

The steps from the display of the reduction confirm the intuition of the cons (:) nodes

of the list being replaced by the functional argument f, and the tenninal [I being replaced by

z. The figure shows the expression before any further reduction takes place, an interinediate

step - where some of the (:) cells have been replaced by +, and finally the graph just

before the elements of the list become added together. (Here "Apply" nodes are shown as

o, rather that @: as discussed in Section 7.5 this is not quite satisfactory either.)

5.4 Visual representation of graph reduction

The idea is to display the program graph at each stage in the reduction i. e. after every change

engendered by a rewrite rule, or at less frequent intervals on request.

5.4.1 Problems in displaying the reduction

The reduction mechanism involves the application of a successor function for reduction states.

Some "steps" do not involve a change to the program graph. For example: steps that push

another node onto a stack of nodes to be reduced. Such changes are not intended to be dis-

played to the user who is observing the graph, though it would be possible to extend an im-

plementation to show the more detailed mechanics of the reduction If this were required.

From the point of view of the observer, however, a step is a change in the reduction state

that also involves a change in the program graph. This will include any pattern matching

reductions associated with the case expression.

00,

CHAPTER 5. A MONITORING INTERPRETER 83

There is a need for a display algorithm. But in addition to the general question of dis-

playing the graph three specific problems arise:

The potential complexity of the graphs There is no guarantee that the program graph will
be planar - indeed, the features of a lazy language: sharing, recursion, and "knot ty-
ing" in general, make planarity unlikely; so the display of the graph may be compli-

cated by crossing of arcs, or by potentially long and unwieldy arcs if maximal pla-

narity is attempted. A proposed solution to this is the creation of graph-trees Q 5.4.2).

The potential size of the graphs The program graph is a detailed and low-level structure.
It will be very large in all but trivial examples. Two solutions are proposed for this:

one is to use browsing, with a miniature version of the graph as a map (§ 5.4.3); the

other is to compact the graph by regarding certain connected patches of graph each to

be one cluster in a graph of clusters. We refer to this as spatial filtering (§ 5.4.4).

The potential number of graphs to show The problem of there being too many reduction

steps may be resolved by regarding the sequence of program graphs itself as a graph.
(If alternative reduction paths were allowed, for example in a system that offered a
"strict" option, it might be more than a linear sequence.) A similar scheme to the fil-

tering of individual program graphs may be used to compact this graph of graphs, col-
lapsing a whole chain of steps into one. We refer to this as temporalfiltering (§ 5.4.5).

5.4.2 Overcoming complexity: Graph-trees

One way of simplifying the display is to avoid any crossing of arcs. Rather than trying to dis-

play every arc in the graph, display a spanning tree enhanced with display leaves to represent

arcs that would otherwise not be shown. Display leaves are labeled with a reference to the

vertex to which they represent an arc. The resulting tree is a graph that is homomorphic to

the original one, but the problem of graph display is now limited to that of tree display. The

special kind of tree being displayed is referred to as a graph-tree (Figure 5.8). The shared +

node is now represented by its instantiation (on the right) labeled with a display reference:

10 1, and by a display leaf (on the left) labeled only with the display reference.

This might seem a rather drastic solution. In this example we already had planarity, and

there will be non-planar graphs where planarity might be achieved much more simply, with-

out the need to convert the graph into a tree. Figure 5.10 shows an example of this. The first

display is that provided by the prototype system from the definition of f ib shown in Fig-

ure 5.9. Numbers in curly brackets are display references. The second display illustrates a

*

(0) + (0)

3/\

Figure 5.8: square (3 + 1) as a graph-tree.

CHAPTER 5. A MONITORING INTERPRETER 84

corresponding planar graph. Although the arcs do not cross it is not easy to see at a glance

where each leads. With the use of graph-trees there is a danger of replacing the problem of
deciphering a display complicated by crossing of arcs by the problem of disentangling dis-

play references: in order to identify a display leaf one has to find its instantiation by matching

some visual label. However the graph-tree:

9 offers a simple and consistent technique;

9 proves convenient when it comes to browsing and compacting the display;

may be a useful intermediate representation from which to derive a cyclic yet still pla-

nar graph: joining display leaves to the vertex to which they refer, so long as this does

not involve crossing an existing arc. The dual technique only breaks an arc if it crosses

another - but lacks the advantage of inten-nediate representation as a tree which is

more conveniently subjected to filtering.

f ib =f ib' 11
fib' n1 n2 acc

if (acc == 0) then nl else fib' n2 (nl + n2) (acc

Figure 5.9: Definition of f ib.

5.4.3 Overcoming the problem of size 1: Browsing

The problem of size, compounded by the addition of display leaves, may be simply resolved

in two ways: by reducing the scale of the display, or by only showing part of it. But these

both introduce further difficulties. Reducing the scale makes the labels harder to read; and

showing only part of the display may cause the viewer to become disoriented in relation to

the graph as a whole.

However the two solutions may be effectively combined by showing a minigraph scaled

to fit exactly onto a small window, and using this as a map for browsing, as advocated by

poll

CHAPTER 5. A MONITORING INTERPRETER 85

(01
+

(1) 'o/
(2)

(3) (2j+

(4) (3)+

jo,

/ \ýý

Figure 5.10: Two possible displays of f ib 7.

Beard and Walker [I I]. This has the advantage that all the structure is available to scrutiny

if required, yet distinctive patterns within this, possibly hidden by the complexity of the full

scale graph, may be revealed in the minigraph. The minigraph, which is a graph-tree, has

the shape it would have if labels were present, for concordance with the main display, but

no labels are shown. The main display is in a larger window, but on a fixed scale, so the

graph-tree may have to be pruned. Arcs to vertices off the display are truncated to forrn

stubs. These features are all illustrated in the isort graph on page 132.

Possibilities for browsing

There are several possibilities for browsing:

" browsing may be governed by a click in the main display area, the coordinates of the

click determining the new display root. The user may be offered every displayed node

as a potential root, or be confined to moving either to the display parent of the root of

the display or to one of the stubs;

" the display may be moved up, down, fight or left, by a click in a control panel, a click

in the region of the display to which movement is required, or even by keyboard com-

mands;

" browsing may be governed by the minigraph display area - an outline of the main

display is shown in the minigraph window, and this may be changed by a mouse click

to another region of the graph-tree;

CHAPTER 5. A MONITORING INTERPRETER 86

*a fish-eye display could be used where all the graph is on the display, but an area of

interest is magnified in relation to others. In this case the scaling functions would be

considerably more complex.

A version of the prototype includes an implementation of the first of these. See the fig-

ures on pages 132 and 133.

5.4.4 Overcoming the problem of size 11: Spatial filtering

In order to reduce the number of vertices in the graph to be displayed, without violating the

meaning of the original graph, the notion of a homosemantic graph is introduced. The idea
is that a cluster of vertices with their interconnecting arcs becomes one vertex in a graph of

clusters. This vertex inherits all the arcs from the vertices it incorporates that connect with
the rest of the graph. The value of the new vertex is the piece of graph that it represents. The

label for the cluster may reflect any aspect of the part of the graph that it symbolises. This

technique of condensing the graph is referred to as spatial filtering. Figure 5.11 illustrates

the effect of a hypothetical PLUSINT filter on the first stage of square (3 + 1). The filter

OR
10) (0) [31 (0)

.0
.0

'44

Figure 5.11: Subjecting a graph to a PLUS INT filter.

causes adjacent nodes that are + or Integer to be part of the same cluster. The arcs to be

collapsed are indicated by dashed lines. The cluster is shared, so has a display reference, and

two possible labels are shown: [3], indicating the number of nodes in the cluster, and (3

+ 1) indicating the expression that the cluster represents. Although the full structure of the

original graph is not retained in the display, the condensed graph has the same meaning so

long as all information relevant to the user's requirements is displayed in the cluster label.

The condensed graph retains meaning

The particular rule by which a graph is partitioned has created a view of the graph that re-

gards nodes within the same cluster to be homologous, and the articulation between them to

OIN

CHAPTER 5. A MONITORING INTERPRETER 87

be immaterial. Information that is temporarily hidden either is not significant to the view, or

must be available to the viewer through the cluster label. The label associated with such a

spatial filter must expose every relevant detail that would otherwise be obscured. For exam-

ple a filter called NOAPPLY condenses a chain of Apply nodes, together with the function to

which they directly or indirectly belong. The name of the function must be retained in the

label unless the view is to regard all functions as effectively identical. This is illustrated in
Figure 5.12. Again dashed lines indicate arcs that will be collapsed.

plus

3

n1im
3

Figure 5.12: The effect of the NOAPPLY filter.

5.4.5 Overcoming "Too many graphs to show": Temporal filtering

The sequence of graphs may also be filtered so as only to show stages of interest. Defining

the temporal filter in terrns of adjacent graphs that may be regarded as equivalent rather than

in terms of the properties of graphs of interest achieves a satisfying consistency: the user

need only think in tenns of compaction rules in both cases. This is illustrated in Figure 5.13

where, again, arcs to be collapsed are indicated by broken lines. G 1, G2 etc. represent graphs

in a reduction sequence. Here graphs 2,3 and 4 are coalesced. Note that the compaction does

not determine what will be displayed as a representation of the collapsed chain of graphs.

Usually, however, the required display will be of the first graph or the last in the collapsed

3pl. 3lo. - G3- 3110- G4 JwG5

NU/
1)pp. G

2.3.4)P,. - G5

Figure 5.13: Collapsing a graph-chain: temporal filtering.

009

CHAP7ER 5. A MONITORING INTERPRETER

series. This is discussed further in Section 5.5.3.

88

The proposal is that the requisite quotient graphs be obtained in both spatial and temporal
filtering by the definition of equivalence rules which determine whether two nodes are part

of the same cluster, or two graphs part of the same series.

5.5 Defining the compaction

Given that the graph is going to be displayed as a tree, there seem to be two main options
for creating a filtered graph-tree:

1. filter the graph, then convert the result to a graph-tree, or

2. convert the graph to a graph-tree, and filter that.

1. Filtering the graph Intuitively it is the graph itself that one wants to filter. One approach
is to assume a filtering process: initially each node in the graph would be a single node

cluster; a particular filtering rule would be detennine whether or not a node is to be

added to an existing cluster; such a filtering rule would be applied recursively through

the graph. But problems arise. If the order of compaction affects the final structure of

the graph, the definition of filters must take this into account. The order of compaction
is potentially significant when dealing with any graph which is not a tree, as the treat-

ment of a shared node may depend on the direction from which it is approached. There

is the minor inconvenience of needing to keep track of nodes that have been visited

during the filtering process. Also, a filtering rule may need information about ances-

tors to a node, that is not directly available.

An alternative approach is to regard the filtered graph as a quotient graph, and to change

the emphasis of the problem from the means of reaching the compacted structure, to

its nature. What is needed is the rule which says whether two nodes are part of the

same equivalence class, and may thus be regarded as part of the same cluster. Given

such a rule, the compacted graph may then be displayed as a graph tree with the dis-

play leaves in fact referring to clusters rather than to individual nodes or the original

graph.

2. Filtering the display Filtering the display also has intuitive justification: it is the display

that is too big so needs to be made smaller. The procedural difficulties encountered

in the graph filtering process are avoided. But there is a new problem: the filter must

take display leaves into account. Under what conditions will they become single node

clusters rather than be merged with their parent?

CHAPTER 5. A MONITORING INTERPRETER 89

Again the filtering may be described in terms of an equivalence rule. To determine

whether an arc in the raw graph-tree is to be collapsed, the rule merely has to state

the conditions under which two adjacent nodes are in the same cluster. This scheme
is able to take ancestors into account, by reference to information collected during the

creation of the graph-tree. Thus any node has access to information about the whole

graph through its parent and children. Not all the problems mentioned disappear. For

example display leaves have to be given special attention in the definition of the filter.

But the approach has an attractive simplicity and has been chosen for the prototype.

5.5.1 whi ff-a metalanguage for defining filters

Both spatial and temporal filters require a compaction rule and a labeling function in their

definition. The spatial filter comprises a quotient rule which determines whether two graph

tree nodes are part of the same equivalence class, i. e. part of the same vertex in the clustered

graph, and a labeling function which extracts information from the cluster tree at each vertex

and formats this into a string label. The temporal filter analogously needs an equivalence rule

to decide whether adjacent graphs are to be "collapsed" together, and a function which both

selects a graph to display from the collapsed series, and may also collect information from

the series of graphs to show with it, as a caption.

A bank of suitable rules and functions could be built into the system, possibly with fa-

cilities for composing them to give more flexibility. Ideally, however, the user would have

the power to write his or her own filters in a metalanguage for expressing filtering rules.

Such a metalanguage has been incorporated into the prototype, called whi ff- for writing

h interpreter filter functions.

For the system to be completely flexible and the user to have access to every aspect of

the reduction process, the implementation of reduction and of filtering could be so closely

tied that the user becomes an implementor. The ideal filtering provision lies between the two

extremes of offering a choice of primitive filters and effectively exposing the implementa-

tion. What is needed is a simplified model of the interpreter that is consistent with the actual

implementation.

CHAP7ER 5. A MONITORING IN7ERPRETER 90

5.5.2 Spatial filters

Spatial compaction rules

A spatial compaction rule determines whether two adjacent nodes are part of the same clus-

ter, so that the arc between them will be "collapsed" in the clustered graph-tree.

type SpCompact = Node -* Node --+ Bool

To express the rule, whi ff offers primitives by which to refer to properties of a node.
These primitives involve a view of nodekind that does not force the user to think in terms of
datatypes that may be used in the implementation. For example, the user may wish to ex-

press: "Is it a value? ", "Is it an integer? ", "Is it 12? ". In whiff these become: is Val, is In t,

and itis 12. Other attributes of a node reflect the information gathered by the interpreter

during the reduction. In the prototype this includes: producer - the name of the function

the application of which caused the node to be created; and st ep - the step number of its

creation, thus indirectly, by reference to the current step number, also its age.
However the condition under which two nodes are to be part of the same cluster may

involve their context in the display. For example a rule may only apply to nodes that are

not descendants of the node currently being reduced. There is, then, a need for "family rela-

tionship" functions that transfer a whiff function to the relevant other node(s): e. g. parent

- the display parent; anydescs - at least one descendant; child i- the child node at

position i. As an example: parent (is Apply) is True if the display parent is an Ap-

ply node. The parent function can return any appropriate whiff value, and these may be

combined using h functions and primitives in the definition of filters.

The availability of the parent function suggests that the spatial compaction rule may be

defined solely in terms of a condition on the child node: if reference to the display parent is

needed, the parent function may be used. The spatial compaction rule becomes a predicate

which determines whether a node is coalesced with its parent:

type SpCompact = Node --* Bool

A simple example of a spatial compaction rule is the NOAPPLY filter, illustrated in Fig-

ure 5.12, which may be defined at the hint interface as:

NOAPPLY = parent (is Apply) && ownpos == 0

CHAPTER 5. A MONITORING INTERPRETER

Labeling the clustered graph tree

91

The compaction rule does not fully determine the appearance of the compacted graph. For

this a labeling scheme is needed. Each vertex in the compacted graph represents a graph
tree. A labeling function determines how the graph tree at each vertex is presented in the
display. There may be alternative labeling functions for the same compaction rule.

As with the spatial filters, labeling functions might be provided as primitive. An exam-
ple would be "the leftmost node of the cluster tree", for use with the NOAPPLY filter. Other

options could include a representation of the cluster tree as an expression, its size (number

of raw graph tree nodes), the age of its root node in reduction steps, etc.. But here again it is

preferable to offer flexibility to users to define their own labels. The prototype system uses

a folding function over the cluster tree, for which the user has to provide:

unit: a function to apply to leaves of type: /Node --+/ inf o

join: a function to apply at inner nodes of type: /Node -*/ [info] -ý info.

The [in foI is from the graph tree nodes below.

display: a function of type /cluster -+/ info -* String,

which controls the final fon-natting of the cluster label

The first two functions have the node in question as an implicit argument that may be ac-

cessed by whi ff primitives; the display function has the cluster as an implicit argument,

and its own set of whi ff primitives. A whi ff primitive represents a function application

to an implicit argument. In the functional expression it has the type of the result of this ap-

plication, but there is no need for the user to refer explicitly to the "node" or "cluster" that

will be the argument. The whi ff primitives are explained further in the next chapter in the

description of the implementation of whi ff (Section 6.4).

Here is an example of a labeling function definition. It labels application clusters cre-

ated by the NOAPPLY filter with the function names. The unit function is: u= show, which

shows a representation of the node, the join function: head, and the formatting func-

tion: d= id.

The treefold arguments are associated using "keywords" u, i and d thus:

NASHOW =u show j head d id

The compaction rule and labeling function, which are defined separately and may be changed

separately, may also be associated to create a named spatial filter thus:

NA = (NOAPPLY, NASHOW)

CHAPTER 5. A MONITORING INTERPRETER

Examples of spatial filtering

92

To illustrate the definition, composition and visual effect of spatial filtering we take the com-

putation of the series of prime numbers using the sieve of Eratosthenes. Figure 5.14 gives
the h definition of primes.

primes
sieve P1

sieve' p1=
pf ilter p xl =

pfilter' px1=

rom n

sieve (from 2)
case pl of

(P: l) -> sieve,
p: sieve (pfilter p 1)
case xl of

(x: l) -> pfilterl p
if (x 'mod' P) == 0
then pfilter p1
else (x: pfilter p 1)
n: from (n + 1)

Figure 5.14: An h definition of primes using the sieve of Eratosthenes.

Figure 5.15 shows the raw graph tree as the second prime number, 3, is just about to be out-

put, and the effect of applying the NOAPPLY filter to this. The labeling function has been

modified to include marking the node currently being reduced with -, and representing
display leaves as display references, here an integer between curly brackets. The I O} is a

display reference which represents 3 in each case, as may be seen in the bottom level of the

tree where the display reference is associated with its instantiation. At the top of each dia-

gram is a modified cons node, displayed as --: --. This represents an output node, a device

used in the implementation of the stepping interpreter that permits the display of the reduc-

tion of a constructor argument to be associated with the rest of the display even though the

constructor itself is no longer part of the graph.

Figure 5.16 illustrates a slightly different view of the graph tree, using a spatial filter that

collapses tree sections that represent any arithmetic expressions - not merely those consist-

ing of + and integers, as in the PLUS INT filter of Figure 5.11. In this case it is labeled by the

expression that it represents, using an "inf ix" function defined in h. The whi ff definition

of the compaction function, ARI is as follows:

ARI parent AR

AR is Mathop && alldescs (is Int 11 AR)

The labeling function shows leaf nodes unless they are display leaves, clustered sections are

represented by infix expressions, and each vertex is also marked as appropriate with a dis-

play reference (s re f) and whether it is the current focus of the reduction (s f ocus).

CHAPTER 5. A MONITORING INTERPRETER

-(0) 0 --- (0) sieve

A1 sieve 0 pfilter

(0) pfilter

zý z1-1ýý ... A pfilter --- (0) 002f reyn

/\ A pfilter 2 fron +

-(013 1 -(013 1

Figure 5.15: The raw graph and the effect of the NOAPPLY filter.

--- (0) 0 --- (0) sieve

A1 sieve 0 pfilter

00 -[0) pfilter

zýlý pfilter --- (01 002 fron

pfilter 2 fron --- (013 +1... (0)3 +1

Figure 5.16: The ARITH filter, then this composed with the NOAPPLY filter.

ASHOW =u show j JAR d DAR

JAR lss infix show lss

DAR ct sfocus ++ sref ++ id ct

The spatial filter associates the compaction with the labeling: ARITH = (ARI, ASHOW)

Figure 5.16 also shows this arithmetical filter composed with the NOAPPLY filter:

93

NOAPAR = NOAPPLY II ARI. This is associated with a labeling function that needs to take

the nature of the cluster into account:

SCOMP =u show j JCOMP d DAR

JCOMP lss = if is Mathop && alldescs (is Int 11 AR)

then infix show lss else head lss

opk

CHAPTER 5. A MONITORING lNTERPRE7ER

5.5.3 Temporal filters

94

The compacting and labeling elements of temporal filters have been combined in the proto-
type: the user is able to define checkpoints which determine the graphs to show, and cumu-
lative data are presented with each displayed graph, but there is no extra "caption" informa-

tion. A checkpoint implies a compaction rule: a step that is not a checkpoint is implicitly

coalesced with the following step. Graphs at checkpoints are displayed under the current

spatial filter, and cumulative information about the reduction: the number of function appli-

cations, the "step number" and the graph size, is shown.
It is possible that some other graph than the first or the last (or both) in a series might be

required, an obvious example being the largest in the series. Other information such as the

number of reduction steps between particular checkpoints could also be of interest, though

this may be obtained indirectly through reference to the step number at each stage. But it

is quite possible that the most useful information about a subsection of the reduction might
be provided by some complementary scheme such as a version of heap profiling, which, as

will be discussed in Chapter 8, is one possible line of future work.
Both the checkpointing function and the spatial filter, or either of its elements, may be

changed at a checkpoint. Amongst other things this enables the user to see different views

of a stage in the computation without the need to recompute.

Defining checkpoints

As the most likely graphs to be shown in a compacted series are the first and/or the last, the

checkpointing whi ff primitives all exist in two forrns to allow the user to choose which one

as appropriate. For example the graph just before or just after any function application may
be seen using definitions such as:

CHECKBEFORE = isfunorCHECKAFTER = wasfun, and to see both:

CHECKBOTH =isf un II was f un To see graphs just before the application of a particu-

lar function, or set of functions one may use a definition such as:

TARGETS =is in ["f namel ", "f name2 ", etc]

The type of a checkpointing function is: ReductionState --+ Bool. Ideally all aspects

of the reduction state would be accessible to the user via such primitives, including cumula-

tive information such as the "function meter" that keeps track of the number of applications

of each function,

CHAPTER 5. A MONITORING INTERPRETER 95

Another variety of checkpoint is the "output event". A checkpoint to catch the step il-

lustrated in Figures 5.15 and 5.16 would be:

FIGSTEP = hasout: the step has some output, or even FIGSTEP = outis 11 3
indicating "show the graph when a3 is about to be output". If the next graph had been

wanted, the hadout and outwas primitives could have been used instead. A safeguard
is needed to allow for a checkpoint never being reached in a non-terminating computation.
This can be established by making use of the gstep primitive which returns the step number

of the graph, to determine a default checkpoint after some predefined large number of steps.
Other conditions on the overall state may also be of interest, such as the presence of par-

ticular application chains, but this would necessitate capabilities that the prototype system
does not yet offer.

5.6 Overview of hint

A prototype programming environment for h has been developed to investigate the effec-

tiveness of different techniques for presenting sequences of program graph. In addition to

making and undoing function and filter definitions, and typing in expressions to be evalu-

ated, possibilities for the user are itemized below, under the headings of the wish list reached

at the end of Chapter 4.

1. Let the user adapt the tracing to particular applications. 'Me user can define and ap-

ply spatial filters that enable a summarised view of the graph to be shown. Both these

spatial filters and any temporal filters (or checkpoints) may be tailored precisely to the

particular program, for example with the use of named functions.

2. Allow the user to step through the reduction. The user may step through the reduction

either by single steps or between checkpoints defined as temporal filters;

3. Permit the creation of breakpoints. The user may observe the program graph at every

reduction step - or less frequently as desired; the temporal filter may be changed at

any breakpoint;

4. Give detailed information about the reduction process. The user may browse the pro-

gram graph at each step at which it is displayed, receive details regarding both local

and global information, and change their view of the graph by applying different spa-

tial filters.

5. Provide powerful techniques of filtering and focusing. These are provided by the spa-

tial and temporal filtering schemes.

CHAPTER 5. A MONITORING INTERPRETER 96

This section describes the user interface, and gives an account of the features implemented

in the prototype.
There are four main display areas needed: a prompt-response interface for typing in ex-

pressions, and for defining and undefining functions, filters and filter auxiliaries; a minigraph
display area to give an overall view of the graph; a main display area; and a control panel.
A sketch of the layout is given in Figure 5.17.

MINI

DISPLAY

MAIN DISPLAY AREA

CONTROL

hi> PANEL

PROMPT-RESPONSE INTERFACE

II

Figure 5.17: The layout of the hint screen.

5.6.1 The prompt-response interface

The prompt-response interface is not affected by the tracing: whether or not tracing is

switched on the user may make or undo function and filter definitions, or offer an expression

for evaluation. In return the system gives a message indicating whether the function/filter

has been successfully defined/undefined, or the result of evaluating the expression. When

the reduction is being monitored, the result is output progressively, if appropriate, as the

computation proceeds.

5.6.2 The minigraph display

The whole program graph is scaled to fit in the minigraph display area, after being subjected

to any current spatial filter. The intention is to give an overview of the graph rather than to

CHAP7ER 5. A MONITORING INTERPRETER 97

present its details; labels would be too small to be readable in a large graph: so no labels are

shown.

5.6.3 The main display area

The program graph, or as much of it as will fit, is shown in the main display area after com-

paction with any current spatial filter. The labeling is also determined by the spatial filter.

5.6.4 The control panel

The control panel in the prototype is used to display thefiUnction meter, a table of function

and primitive names each associated with the total number of its applications so far. An

"ideal system" would also use this area of the screen for locating control buttons for brows-

ing and stepping, and for changing the current filtering elements, but this functionality is

currently accomplished by entering commands at the keyboard.

5.6.5 Implementation and use of hint

The next two chapters discuss the implementation and use of the hint environment.
Chapter 6 outlines the implementation of the environment. It shows that Haskell is very

apt for some aspects of the implementation such as: the direct expression of the reduction

rules, graph representation, the transformation of the program graph into a graph-tree, the

spatial filtering and display of a graph-tree, and the interpretation of the interface.

Chapter 7 is about the use of hint: possible benefits of using graph display in the teach-

ing of functional programming; locating errors; exploring a program through browsing; the

definition and composition of suitable spatial filters; the problem of labeling; and limitations

of the system.

Chapter 6

The implementation of hint

6.1 Introduction

The implementation of hint is in Haskell as a contribution to the investigation of the ap-

propriateness of using a lazy functional language for such an application.
A simple interpreter would evaluate a suitably parsed expression directly and return the

result. This is not sufficient here, as the computational steps need to be separately identifi-

able for tracing purposes. So the reduction procedure is strongly governed by the require-

ment to create an original program graph which is transformed step by step until the final

result of reducing the given expression is reached. Another consideration is the need to col-
lect information about the reduction for possible display, both cumulatively and at each re-
duction step.

Aspects of the implementation that are of interest are those that conveniently exploit the

use of a lazy functional language, and those which are necessary elements in the creation

and filtering of the graph-trees that are used for display.

Outline of chapter

This chapter discusses:

" the reduction process; (Section 6.2)

" the display of the program graph; (Section 6.3)

" the implementation of spatial and temporal filtering; (Section 6.4)

" and the hint interface. (Section 6.5)

98

CHAPTER 6. THE IMPLEMENTATION OF Hfl\TT

6.2 Implementing the reduction

99

The reduction model is essentially a template instantiation model, the "simplest possible im-

plementation of a functional language" as described in Peyton Jones and Lester [69]. This

fulfills the requirement of providing a program graph for possible display at each reduction

step, the nodes of which are directly associable with the user's source code.
This section describes:

" an overview of the reduction process; (Section 6.2.1)

" lexical analysis and parsing; (Section 6.2.2)

" the reduction state; (Section 6.2.3)

" the mechanics of function application; (Section 6.2.4)

" declarative implementation of the reduction rules; (Section 6.2.5)

" stepping through the reduction. (Section 6.2.6)

6.2.1 Overview of expression reduction

Users type in text representing expressions to be evaluated, and h and whi ff definitions.

This is parsed into an abstract syntax tree, which is bound and, in the case of an h expression,

added to the heap to create the initial program graph. This undergoes successive transfor-

mations, the reduction steps, until the final program graph is reached. The process is sum-

marised in Figure 6.1.

Expression: text

parse

ssion: abstract syntax tree

bind

ssion: boundform

add to heap

Programgraph - represented asFiveTree

step

Intermediate program graphs - possible output at each
step

Final program graph

Figure 6.1: Stages in the reduction of an expression.

CHAPTER 6.7HE LN4PLEMENTA77ON OF HINT

6.2.2 Lexical analysis and parsing

100

Lexical analysis and parsing in hint exploit well known techniques that have frequently

been used to demonstrate the suitability of lazy functional languages for such applications
(e. g [99,33,69]). The implementation uses a Parser type which takes a list of lexical to-
kens, and returns a triple: whether or not the parse has been successful, maybe a parse tree,

and the remaining lexical tokens. 1

data Deft = Deftree Identifier (Expr Identifier)
data WhiffDeft = WhiffDeftree Identifier (Expr Identifier)

data PT =E (Expr Identifier) Abstract syntax tree
D Deft Definition
WD WhiffDeft Whiff definition
ERROR String

type Parser = [Lexsl -> (Bool, Maybe PT, [Lexsl)

Figure 6.2: The Parser type.

The Parser type is shown in Figure 6.2, which also shows the parse tree type, PT. There

are legitimate intermediate forms of parse tree that are not shown - for example for gath-

ering arguments to a primitive function.

data Expr a= ENAT Int
EVAR a
EPRIM Identifier [Expr a]
ECONSTR Identifier [Expr a]
EAPP (Expr a) (Expr a)
ELAM Identifier (Expr a)
ENIL
ECONS (Expr a) (Expr a)
EPAIR (Expr a) (Expr a)
EBOOL Bool
ECHAR Char
ECASE Identifier (Expr a) [Expr all
ECASEPR CaseMatch (Expr a)
EERR String

Figure 6.3: The Expr type.

'A parse may be successful yet return Nothing, hence the need for both the Bool and the Maybe type.

CHAP7ER 6. THE LNfPLEMENTA77ON OF HINT

The expression type

101

The Expr datatype (Figure 6.3) is parametrised on the type of value associated with vari-
-11 ables, which is initially I dent ifi er, but becomes (B inding tag) (Figure 6.4) when an

expression is bound prior to becoming part of the program graph.

data Binding tag = ToThisIs Nid
Func (FunRule tag)
Caf Identifier Nid [Identifier]
BindError Identifier

Figure 6A The Binding type.

The binding of expressions

The potential of parametrising the expression type is discussed in Peyton Jones and Lester [69]

the Binding type here is an example of their binder. An expression to be evaluated is

transformed into a bound form, then its elements become tagged nodes in a program graph

in which the reduction takes place.

A function name is replaced by an element that includes the function name, for display

purposes, as well as the relevant function application rule. CAFs have within them the ad-

dress of the expression that they represent.

Program nodes

A constituent node of the program graph has three essential aspects: the sort of node it is,

the addresses of its successor nodes, and a tag for garbage collection (See Section 6.2.3).

The node type

The sorts of node are enumerated in the Nodeop definition in Figure 6.5. As well as values,

primitives, functions, constructors, application and indirection nodes (ThisIs), there are

also:

o output nodes to synchronise the display of the graph and the output - for example

keeping a constructor in the display of the graph while its arguments are being evalu-

ated, even after its own representation has been output;

o Cons and Pair nodes, which though unnecessary at this level in their role as con-

structors, reflect the special syntax of lists and pairs, and facilitate their display;

CHAPTER6. THE IMPLEMENTATION OF HINT

data Nodeop tag Val Value
Prim Funid
Closure SoFar (FunRule tag)
Constr Identifier
Apply
ThisIs
Out Identifier
Cons
Pair
Case Identifier
Casepr CaseMatch
CaseApply Identifier

Figure 6.5: Sorts of node.

102

Case nodes for the pattern matching case statement, and related to these: case pair

nodes, Casepr, which associate a constructor with the appropriate function, and case

apply nodes, caseApply, which coordinate the application of the function to the ac-

tual arguments of the constructor being matched.

The node class

In order to be able to use nodes with different types of tag, a Node class is defined. This is

in anticipation of using this field for holding information as well as garbage collection, for

future use in the creation of quotient graphs. The definition of the Node class is given in

Figure 6.6. The class requires the following operations:

mark - to mark the tag

clear -toclearthetag

marked - is the tag marked?

scs - addresses of successor nodes

news cs- change the addresses of successor nodes

indi - is this an indirection node?

The module includes functions related to these: rna, real address, and rnv, real node value,

for following an indirection chain to the node it represents - the ultimate referent, and

nodelist to return the successors of the node at a particular address. Nid2 is defined as a

synonym for Ind (index).

2 Nid for Node Identity, but also to imply the nest (address) in the FiveTree (see page 104) that it represents.

CHAPTER 6. THE BWPLEMENTA77ON OF HINT

module Nodes where

import FiveTree (Ind(..), FT(..), nodevalue)

type Nid = Ind
type Freelist = [Nid]
type Busylist = [Nidl

class Node a where
mark a a
clear a a
marked a Bool
scs a [Nid]
newscs a [Nid] -> a
indi a Bool

realnode :: (Node a) => FT a -> Nid -> (Nid, a)
realnode fta nid = case (indi node) of

Fal se (nid, node)
realnode fta nid2
where
[nid2] = scs node

where
node = nodevalue fta nid

rna (Node a) => FT a -> Nid -> Nid
rna (fst

.). realnode

rnv (Node a) => FT a -> Nid -> a
rnv = (snd .). realnode

nodelist (Node a) => FT a -> Nid -> [Nid]

nodelist (scs .). nodevalue

Figure 6.6: The node class.

103

The use of a FiveTree (see below) is assumed, but the heap might instead be repre-

sented by any of a class of types, including Arrays, that allow the appropriate updating and

look-up facilities.

The tag

It may seem strange that the node type in Figure 6.5 has to be parametrised on the type of the

tag. It is because the node type that embodies a function, the Closure constructor, carries

within it a template instantiation rule that represents the function application. However this

usually involves the creation of graph nodes, which are tagged. Thus the template instantia-

CHAPTER 6. THE IMPLEMENTATION OF HBVT 104

tion rule has to be parametrised on the type of the tag, hence also the closure constructor,
hence the Nodeop type as well. Arbitrarily specifying the type of the tag to avoid this would

make the implementation easier to read, but harder to change.

6.2.3 The reduction state

When an expression is to be reduced in hint a reduction state is derived from the overall

evaluation environment. This reduction state is parametrised on the type of the node tags

and on the type of global information to be collected. It has six component fields: the heap,

a busylist, a freelist, stacks of nodes to be reduced, an output field, and a global information

field.

The heap

data FT a= Finger aI
Hand (FT a) (FT a) (FT a) (FT a) (FT a)

Figure 6.7: The FiveTree type.

The heap is an association of node-address pairs. For historical reasons 3 FiveTrees are

used to keep track of the node/address associations. The type is given in Figure 6.7. Ad-

dresses are implicit in a given FiveTree. Figure 6.8 shows the implicit addresses in a two

generation FiveTree. Figure 6.9 demonstrates how these addresses are assumed in the Five-

Tree lookup function.

05 10 15 20 16 11 16 21 27 12 17 22 38 13 18 23 49 14 19 24

Figure 6.8: Implicit addresses in a two generation FiveTree.

3 When the prototype was first being developed there was no efficient implementation of Haskell arrays. In

addition the Haskell compiler that was being used (Glasgow: Version 0.4) did not support constructor functions

with more than five arguments!

CHAPTER 6. THE LN4PLEAlENTA77ON OF HINT

locateFT :: FT a -> Ind -> FT a
locateFT (Hand ftO ftl ft2 ft3 ft4) n=

locateFT ft (n 'div% 5)

where
ft = case newn of

0 -> fto
1 ftl
2 ft2
3 ft3
4 ft4

new-n =n mod, 5
locateFT f@(Finger

_) _=f

Figure 6.9: Look-up in a FiveTree.

The graph

data Graph index value =
G index (index -> value) (index -> [index])

Figure 6.10: The graph type.

105

The graph type is parametrised on index and value types: indices uniquely identify ver-

tices, values are vertex labels, not necessarily unique. A rooted directed graph is represented

as the index of its root together with two characteristic functions. The first characteristic
function maps indices to values, the second maps indices to their successors in the graph.

Figure 6.10 shows an expression of this in Haskell. In the context of graph reduction, index

is the type of addresses in the program graph, and value, the value type, is that of the pro-

gram nodes. The first characteristic function is implemented by a look-up in the FiveTree,

and the second relies on the successor operation, scs, of the Node class (see page 103).

The stacks

The stacks are lists of nodes waiting to be reduced. With laziness and sharing it is possible

that a node may be incidentally reduced before its turn in the stacks, but this does not mat-

ter as a check is always made whether the next node to be reduced is already in weak head

normal form. There is one "final" stack, which originally has the node corresponding to the

root of the overall expression to be reduced. If the final result is a base value, this will appear

as a single node here in normal fonn. If the final result is a composite construction, the final

stack will have more than one node in it corresponding to the number of arguments to the

CHAPTER 6. THE LN4PLEMENTA77ON OF HINT 106

constructor node, and any intermediate output nodes which exist in order to synchronise the

output. In the notation for the reduction rules in Appendix B, the Stack is the final stack of

the reduction state and the Dump represents the rest of the stacks.

The output field

When a final value has been completely or partially evaluated (for example the head of a list

may be available), a string version of this is put in the output field of the reduction state. The

next step is always to display this output, before proceeding with the reduction.

Global information

The information field of the reduction state holds information that cannot be derived from

the current program graph alone. This may include, for example, the current step number.
Such information may be used in the display, but may also be transferred to the tag of nodes

created by a function application.

The free list, the busy list and garbage collection

The busy list contains the addresses of roots of live subgraphs, the nodes of which are not

available for allocation. This includes the roots of predefined constant applicative expres-

sions (CAFs). As the node type contains within it the addresses of successor nodes, the busy

list is used to protect all the nodes involved in the CAF expressions. The busy list comes into

play when the heap is full, and the reduction process calls the garbage collector to create a

new free list. In addition to the busy list, the garbage collector must be given the address of

the root of the program graph, from which all live nodes may be accessed, and any nodes

that are currently in the process of being inserted into the graph. Figure 6.11 shows the com-

plete garbage collection module, including the definition of the garbage collection function.

It uses the higher order function fo1 dl to apply the state transition function live recur-

sively. The f oldl function is also used in the binding of functions (Section 6.2.4). Thefiree

list has the addresses that are available when adding new nodes to the graph. The function

to add a new node uses the head of the free list as the address at which to put it. As the busy

list only contains the roots of needed expressions it is not the case that nodes are either on

one list or the other.

CHAPTER 6. THE IMPLEMENTA77ON OF HINT 107

module GC (gc) where

import Nodes (Nid(..), Freelist(..),

Busylist(..), Node(..), rna)
import FiveTree (FT(..), nodevalue, updateFT, ftlmapFT, Ind(..))
import Normal (Normal(..))

live :: (Normal a, Node a) => FT a -> Nid -> FT a
live fta nid =

if marked node then fta
else foldl live fta' (scs node,)
where
node = nodevalue fta nid
node' = if indi node then newscs

else mark node
[nid'] = scs node
fta, = updateFT nid node, fta

-- gc relies
gc :: (Normal

gc fta nids =

interfta = foldl live fta nids

(mark node) [rna fta nid']

n the previous gc having cleared all nodes
a, Node a) => FT a -> Busylist -> (Freelist, FT a)
ftlmapFT (not . marked) clear interfta

where

Figure 6.11: The Garbage Collection module.

6.2.4 Function application

A function is applied when a closure node of arity n is next to be reduced, and is saturated

(i. e. already has n arguments). An expression built by the function rule within the closure is

placed in the graph with its root at the address of the closure node. The formal parameters

of the function are replaced in the expression by indirection nodes that point to the addresses

of the real arguments. The ToThis Is constructor in the bound expression is used for this:

every EVAR variable-name in the function definition, that does not itself represent a func-

tion, becomes an indirection (This is) node to the real argument in the relevant position of

the argument list. Any references to function names in the function definition will become

bound as they are added to the graph, including the calling function itself if it is recursive.

The implementation of mutually recursive bindings provides a good example of the use

of circularity, a feature offered by lazy functional languages that allows part of the result of a

functional application to contribute to the calculation of that result. This happens outside the

environment for a particular reduction, in the more general evaluation environment for the

interpreter. The function to f roc - "to function rule or CAF' - binds a single function or

CHAPTER 6. THE LWPLEMENTA77ON OF HINT 108

constant definition with reference to an existing group of bound functions and constants. In

the definition of multi f roc, which simultaneously binds a group of definitions, tof roc
is directed by f oldl to create a new evaluation environment with reference to the bound

functions and constants of the new environment that is being created.
Before any expression evaluation in the hint environment, a check is made whether

any new definitions have occurred since the last evaluation: if so, all functions and constants
become rebound to create an up-to-date environment in which to bind the expression to be

evaluated.

A circular definition for binding a group of definitions
before evaluating an expression

multifroc [Deft] -> Evalenv tag -> Evalenv tag
multifroc env = env
multifroc defs@(-:

-) env = finalenv

where
finalenv = foldl (tofroc (fracs finalenv)) env defs

Figure 6.12: Circularity in the binding of a group of functions.

6.2.5 Declarative implementation of the reduction rules

The step function takes a reduction state and returns the next one in the series. It is effec-
tively a concise declaration of the reduction rules. These are given in Appendix B.

The h language has primitive functions, from which all others are built, and these may

correspond directly to Haskell functions. As h has no explicit type checking, the consis-

tency of a primitive application has to be ensured before a value is passed to Haskell. For

example the expressions (2 > 3) or ('a' >Ib,) will both yield False, but the expres-

sion (2 > 'a') will yield an error message from hint: the appropriate values will not be

passed to the underlying Haskell which would cause the whole system to crash.

6.2.6 Stepping through the reduction

Stepping through the reduction involves moving from one step of interest to the next. With

no temporal filtering in place this means displaying the graph after every application of the

step function. When filtering is in place, this determines which steps are of interest. When

function application is used for checkpointing, the graph may be shown before and/or after

CHAPTER 6. THE IMPLEMENTATION OF HINT 109

the function is applied. Figure 6.13 4 shows, for example, the first application of take 5 in

the expression take 1[1,2,3]

0 --- taike: uase

take
AA

11o
AA

22 take'
AA

3 11 3 [1

The first picture illustrates the marking, with-, of the next node to be reduced. In this case

it is an Apply node. The second shows the pattern matching case expression that arises from

the function application: if it's return [1; if it's apply take, I to the arguments of

the constructor.

Figure 6.13: The application of take.

6.3 Displaying the program graph

Displayable graph-tree

6.3.4 scaled and positioned

Screen display

Pro am graph

6.3.1 T Shared nodes replicated

Graph-tree

6.3.2 Subjected to equivalence rule

Cluster graph-tree - vertices are Cluster trees

6.3.3
1x

positions and display references allocated

Figure 6.14: Stages in the display of a program graph.

4 The thick horizontal lines that appear above some of the screendumps are part of the border of the display

window, and have no other significance
5The h definition of take is given in Chapter 5, Figure 5.3.

04,

CHAPTER 6. THE IWPLEMENTA77ON OF HINT 110

The implementation of graph-trees exploits both laziness and the use of higher order
functions. The relationships between the various graphs and trees involved in the display of
a program graph are summarised in Figure 6.14. The numbers down the left hand side of
the figure refer to subsections within this section.

A graph-tree is created by identifying a spanning tree of the program graph, and repli-

cating shared nodes to create display leaves (Section 6.3.1). Sharing information is kept

as an association between display leaves and the particular nodes that they represent. The

graph-tree is subjected to the equivalence rule embodied in the current spatial filter to cre-

ate a cluster graph-tree, which is a graph-tree the nodes of which represent appropriately

collapsed regions of the raw graph-tree (Section 6.3.2). Labels are allocated to the clusters,

and this enables x positions to be determined (Section 6.3.3). The display of this displayable

graph tree then depends on the allocation of an x scaling factor, and ay distance with which
to separate the generations (Section 6.3.4).

6.3.1 Graph-trees

As graphs in their own right, graph-trees can also be described using the Graph type. But

because they include display leaves, they need to use an extended version of the index type

of the graph from which they are derived. An example of an extended index type is given in

Figure 6.15. Here the constructor GraphNode builds extended indices from original graph

data ExtIndi index = GraphNode index
DisplayLeaf Int
NoIndex deriving (Ord)

Figure 6.15: A definition of extended indices.

node addresses; DisplayLeaf builds display leaf indices with unique integers. Finally

NoIndex is a null value; this is the index of the parent of the root of a graph-tree, when the

graph-tree type is defined as a threaded structure as described below.

Figure 6.16 shows indices and extended indices for the graph-tree in Figure 5.8 on page 84.

The graph-tree type

A graph-tree is a represented as a function from an extended index to a pair consisting of the

extended index of the parent and those of the child nodes. The graph-tree type is parametrised

CHAPTER 6. THE IMPLEMENTA77ON OF H17VT

A
GraphNode A

B DisplayL af 0 GraphNode B

D GraphNode C GraphNode D

Indices for a piece of graph with corresponding extended indices.

Index Value Extended index Index

A * GraphNode A ---- IN- A

B + GraphNode B --- -im- B

GraphNode C C
3

GraphNode D --- 0- D

DisplayLeaf 0 --- -No- B

Necessary associations.

Figure 6.16: Extending indices.

on the type of the original index (Figure 6.17). The type is effectively a representation of two

functions: from an extended index to its parent, and from an extended index to its children.
The graph-tree type is used in conjunction with associations between extended indices and

original indices. By reference to this and to the original graph, an extended index may be

associated with a value, as well as with its predecessor and successors. By extending the

index type in this way, it is possible to determine from the constructor of an extended index

whether it refers to a display leaf or to an instantiated node.

data GraphTreeFun index =
ExtIndi index -> (ExtIndi index, [ExtIndi index])_

Figure 6.17: The graph-tree type

6.3.2 Cluster-trees: vertices of a compacted graph-tree

A cluster in the filtered graph tree must retain the structure of the part of the graph that it sum-

inarises. This may be done using a structure such as a cluster-tree, as shown in

pok

CHAP7ER 6. THE EWPLEMENTATION OF HBVT 112

Figure 6.18. The type is parametrised on an index type, which will in fact be an extended

data ClusterTree index =
Unit index I Join [ClusterTree index]

Figure 6.18: The cluster-tree type.

index type. The intuition for cluster-trees is that they are either a unit unit, or a composite

join. The composite has the root of the cluster-tree at the head of the list followed by its

children, which are themselves cluster-trees.
The filtering process involves the creation of a cluster-graph, by the use of a particular

filtering equivalence relation with reference to the raw graph-tree and its associated sharing
information, and to the original graph. Again the representation of the structure involves

various associations, here expressed as a binary search tree. Haskell definitions are given in

Figure 6.19.

type ClusterGraph index
BinSearchTree index

(ClusterTree index, [(index, Maybe Ref)], [index])

data Ord a => BinSearchTree ab
Empty I

Branch a (BinSearchTree a b) (BinSearchTree a b)

type Ref = Int -- references coded as integers

Figure 6.19: The cluster graph and associated types.

The cluster graph is parametrised on its (extended) index type. The binary search tree is

used to derive a memoised function from such an index to:

9 the cluster-tree of which it is the root;

* indices of the constituent nodes of that cluster-tree, each associated with a reference

if it is shared;

* the indices of the roots of child clusters.

6.3.3 Displayable graph-trees

The laziness of the implementing language is again exploited in the creation of the final

structure used for the display and browsing of the filtered graph.

CHAPTER 6. THE IMPLEMENTATION OF HINT 113

The displayable graph-tree type is a threaded structure of which an impression is given
in Figure 6.20. Again this is based on the little example in the previous chapter (page 84).

Each element represents a view of the whole graph-tree since each contains its parent, which
inal eleme I in its turn contains the origi nt among its children. The diagram is simplified in

that the cluster-tree at each vertex, and the displayable graph-tree in clusters deriving from

display leaves, are not illustrated. The threadedness is of use when browsing, as a mouse

click with the cursor over the root of the display may cause the parent of that graph-tree

node to become the new root of the display. All the information needed for the new display

is already encapsulated there.

Figure 6.20: Threading.

The vertex of a displayable graph-tree includes the relevant cluster-tree, unless it repre-

sents a display leaf in the cluster graph, in which case it includes the displayable graph-tree

appropriate to the cluster to which that leaf represents an arc.

Figure 6.21 shows the fonnulation of the displayable graph-tree and vertex types in

Haskell. The xpos is a provisional position on the x axis that may be scaled to an actual

x coordinate. Gen is an integer for the generation - the depth from the graph-tree root as

Oft

CHAPTER 6. THE EWPLEMENTATION OF HINT

data DispGraphTree index =
DGT Xpos Gen (Vertex index) [DispGraphTree index]
NoDGT

data Vertex index
Val index (ClusterTree index) (Cref, Nref)l
RefVer index (DispGraphTree index) (Cref, Nref)

Figure 6.21: The displayable graph-tree and vertex types.

114

opposed to the display root. The vertex is parametrised on the (extended) index type as
its instantiated version, Val, has a ClusterTree which is parametrised on the extended
index.

The [DispGraphTree index] is a list of displayable graph-trees consisting of the

parent, followed by the children, of the one in question. NODGT is needed for the parent

of displayable graph-tree representing the root cluster.

An instantiated vertex Val has its index, a cluster-tree, and a cluster and node reference.
The cluster reference is Nothing unless any of the nodes in the cluster tree is shared. The

node reference is Nothing unless the root of the cluster-tree is shared.

A display leaf vertex RefVer also has its index, which by reference to sharing infor-

mation collected in the creation of the original graph-tree allows it to be associated with a

value in the original graph, which may be needed for the construction of its display label.

The display leaf vertex has the cluster reference of the vertex to which it represents an arc,

and a node reference depending on the particular node within the cluster.

The creation of a displayable graph-tree involves an almost circular definition

(see page 107): the creating function is given a parent as argument to use in the

(parent: children) field, but those children have the displayable graph-tree that is being cre-

ated as parent. Circularity is also involved in the allocation of references: when a cluster-

tree is first encountered its corresponding vertex is given the reference that it will have in the

fully completed structure. If it is not shared, this will be Nothing.

Provisional x positions are allocated according to a modification of Vaucher's

algorithm [97]. This makes allowance for variations in the number of children and the length

of vertex labels (but these are still restricted to a fixed number of lines of text). This has been

adequate for demonstrating some of the problems and potential of displaying filtered graphs;

but the question of labeling clusters, discussed in the Chapter 7, is complex and deserving

of further work.

CHAPTER 6. THE IMPLEAIENTA77ON OF HINT

6.3.4 The display of the graph-tree

115

The display of a displayable graph-tree requires a scaling function that enables the xpos to
be translated into an actual x coordinate. It also requires ay distance by which to separate
the generations.

In the main display the root of the graph is placed so that as much as possible of the graph
is shown, given a fixed y distance, and a fixed separation between adjacent node labels. The

scaling function is calculated from this root position.
In the minigraph both the x scaling function and the y distance are calculated so that the

whole graph may be displayed. The graph may change size fairly drastically over a short

series of steps, so the scaling in the minigraph might be fixed so that the largest graph in that

sequential group will fit, an example of "display inertia".

Browsing a graph tree

Clicking on a node brings it to the root of the display. The x position of the mouse cursor
is associated with the cluster in the appropriate generation according to the y coordinate.
By virtue of "containing" its display parent and children, the new displayable graph tree

has all the information it needs to be redisplayed. The effect of browsing may be seen in

Figure 7.12 in Chapter 7.

6.4 Implementing the filtering metalanguage

The aim of whif f, the filtering metalanguage, is to allow the user to express compaction

rules, labeling functions and checkpoints in accordance with the model of reduction ex-

plained in Chapter 5. The user is provided with a palette of whi ff primitives and primitive

expressions with which to define filters. Auxiliary whi ff definitions may also be used. This

is illustrated in Chapter 5 where, for example, the ARITH filter on page 92 is defined using

the auxiliary AR. Users write definitions of filtering functions and auxiliaries in h enhanced

with the primitives that whi ff provides. So h primitives and functions may be incorporated

in whi ff definitions.

Spatial filters require a compaction function and a labeling function to be associated by

pairing. Checkpoints and compaction functions may be defined directly. Labeling functions

are defined using the u, j, d "keyword" scheme described on page 91.

CHAPTER 6. THE IMPLEMENTAT[ON OF HINT

6.4.1 wh if f primitives

def iden var* = rhs-expr
rhs-expr (\ var --+)* (expr I rhs-expr)
expr hexpr I applic I prim

cond I ujd I(expr)
hexpr <<h expression >>
applic exprexprl

expr inop expr I
(applic)

prim nprim I vprim I rprim
cond if expr then expr else expr
inop <<h infix operator >>
preop (inop)
nprim producer I age step

ownpos I node nodeni
is (argnode I nodekind) I get argnode
itis argnode val I relpfun

vprim vsize sleft I sright I sage
sstep sroot I sfocus I ssize
sref I srefs I showexpr lit string

rprim isfun wasfun isprim wasprim
gstep hasout hadout getout I gotout
isin fnames wasin fnames I outis string outwas string

argnode Char I Bool Prim Function
Constr Casepair Caseapply
Output Int

nodekind Val I Mathop I Ordop I Boolop
Cons Pair I Apply
Dleaf Focus I Case

relpfun child int parent I allancs I someancs
alldescs somedescs I allkids I somekids

ujd u expr j expr d expr
val int I char I bool I string

Figure 6.22: Syntax of whi ff.

116

The whi ff primitive expressions may be regarded as returning result values of the ex-

pected h basic types. For example, is Int: Bool, get Function: [Char], gstep: Int.

There are primitives that implicitly refer to:

" nodes, mainly for use in the display compaction;

" cluster-trees, mainly for use in the labeling functions;

" and reduction states, for the temporal filtering.

The labeling function may make use of node primitives, as well as the cluster specific ones.

When this happens the node primitives are applied to the root of the cluster. The syntax of

whi ff is given in Figure 6.22.

CHAPTER 6.77-IE LN4PLEMENTATION OF HINT 117

6.4.2 Haskell functions to implement whi ff primitives

Here are illustrations of Haskell functions underlying the three groups of whi ff primitives.

Node primitives

When a whi ff definition refers to is Int, for example, this is translated into the Haskell

function isInt of type (FilterArgs, ExtIndi) -* Bool. This first checks that the

node represented is a value node, then that it is indeed an integer. When a definition refers
to a particular integer value, as in itis Int 3, this invokes the Haskell function isIntN

of type: Int -* (FilterArgs, ExtIndi) --+ Bool, which is itself defined in terms of
isInt.

As another example, the parent primitive, which transfers a whi ff function to the dis-

play parent of the node in question, invokes the Haskell sf parent ftinction, defined as fol-

lows:

sf parent :: ((Fi 1 terArgs, ExtIndi) -4 a) --+ (Fi 1 terArgs, ExtIndi) -+ a

sfparent f=f. parenid

parenid is of type (FilterArgs, ExtIndi) --+ (FilterArgs, ExtIndi), returning

the ExtIndi of the display parent paired with the FilterArgs. This transfers the appli-

cation of the function f to the display parent.

Cluster primitives

There is a similar relationship between the whi ff cluster primitives and the underlying

Haskell functions. Here the type is usually (FilterArgs, Vertex) -* String. For ex-

ample the whif f primitive ssize invokes the Haskell function sizeshow which returns

an empty string when applied to a vertex which is a display leaf (paired, as ever, with the

FilterArgs), but returns a string version of the size of the cluster in other cases.

Reduction state primitives

Finally here is an example of a reduction state primitive. A criterion for a checkpoint may

be that a particular value is about to be output. Again the whif f primitive, hasout string

directly reflects a Haskell function. It is of type String --+ [ReductionState] -+ Bool.

The string argument to the whi ff function is passed to this. The Haskell function is ap-

plied to the series of reduction states and returns the appropriate Boolean result. The Haskell

function needs first to check the presence of output, then that it matches that described in the

temporal filter.

CHAP7ER 6. ME MPLEAIENTA77ON OF HINT

6.4.3 The compilation of whi ff expressions.

118

The compilation of a whi ff expression involves the invocation of any such auxiliaries. The

compiler returns an h expression. This incorporates values returned when the relevant Haskell

auxiliaries are applied, in context, to a particular node, vertex, or series of reduction states.
The "context" here is encapsulated in a type called Fi1t erArgs, and includes all the infor-

mation about the graph-tree that a filtering function might conceivable require. Whilst the

argument to a whi ff primitive is conceived of as "Node", "Vertex" or "Reduction State",

the Haskell auxiliary is in fact applied to an ExtIndi, a Cluster-tree, or a series of re-
duction states, each associated (by pairing) with the current value Of FilterArgs.

The interpretation of the resulting h expressions makes use of a different (and less com-

plex) mechanism than that involved in the stepping interpreter. There is no need for step-

ping. More importantly, the whi ff evaluator works at the h expression level - i. e. values

of whif f computations are h expressions. This simplifies both the composition of whif f

expressions, and the incorporation of h expressions into whi ff definitions.

A filtering or labeling function is applied to its argument in an environment, env, Of

which the relevant components for the whi ff compilation are a context, cxt, and associa-
tions between wh iff identifiers and their definitions, de f s.

The context here has two elements: aspects of the reduction state encapsulated in the

FilterArgs type, and the focus of the filtering primitive. The FilterArgs type includes,

for example, associations between the identifier of a node and that of its display parent, and

details of the reduction state such as the current step number. The focus is a node in the case

of a spatial filtering primitive, a cluster in the case of a labeling primitive, and a series of

reduction states in the case of a temporal filtering function. The context is thus expressed as

one of three different Haskell types. So the compilation of a whi ff expression is effected

by one of three Haskell functions, which apart from the type of the context element of the

environment are otherwise very similar. Their action may be summarised in a small set of

"compilation rules" shown in Figure 6.23.

Here We,,, represents compilation in an environment consisting of: the associations be-

tween whi ff names and their definitions, env Idef 1; and the node, cluster-tree, or series

of reduction states in context, envfcxtl. I-Iask represents the Haskell filtering auxiliary

associated with a primitive whi ff expression.

CHAPTER 6. THE IMPLEMENTATION OF HINT

1- Wenv id Wenv [envldef 1 id
2. Wnv w Haskenv{cxtl W

3. Wenv fe1= W[f]env ýe

4. Wenv V1=V

5. Wenv ýc ei ...
en 1=C (Went; ý ei 1) ... (Wenv ý en 1)

6. Wenv ý (A id. e)expr ý= Wenv«Wenv e)[expr/Zd])
7. Wenv e, e2 1= (wenv ý e, 1)(Wenv ý e2 1)

8. Wenv h ei ... en ý=h (Wenv j ei ý)
...

(wenv j en 1)

9. Wenv A id eý=A id (wenv e
10. Wenv case e of cpl ... CPn =

case (wenv ýe ý) Of (wenv CPII) ...
(wenv ý CPn])

11
-

Wenv c -+ e]=c -ý
(Wenv [e

Figure 6.23: Compilation rules for whi ff expressions.

Other notation is as follows:

* id - an identifier;

W -a whi ff primitive expression;

f-a "Family relationship" wh if f primitive;

V- an expression representing a basic value;

c el ... en -a constructor with its arguments;

el e2 - el applied to e2;

h el ... en - an h primitive function with its arguments;

* case e of cpl ... cp.,, -a case expression;

0C -* -a case pair.

The three rules that are crucial to the compilation are rules 1,2 and 3.

119

An identifier that represents a user defined whi ff expression is replaced by the body of

the definition (Rule 1), through a look up in the def s element of the environment. Other

identifiers may be names of h primitives or user defined h functions. 'Mese are unaffected

by the compilation, and returned unchanged as part of the h expression that is the result.

A whi ff primitive expression is replaced by the result of applying its associated Haskell

filtering auxiliary in the relevant environment (Rule 2). For example:

Node primitive The whi ff expression is Int is replaced by the (h expression version

of the) Boolean returned when the Haskell filtering auxiliary isInt is applied to the

particular node with the associated reduction information.

CHAP7ER 6. THE EWPLEMENTA77ON OF HINT 120

Cluster primitive The primitive vsize is replaced by the (h expression version of the) In-

teger returned when the Haskell filtering auxiliary, also called vs ize is applied to the

particular cluster.

Reduction state primitive The whi ff primitive isf un - does the current reduction state

represent the application of a function? - is similarly replaced by the (h expression

version of the) Boolean returned when the Haskell filtering auxiliary is Fun is applied
to the current reduction state.

In all cases the cxt element of the environment is the relevant focus (node, cluster or series
of reduction states) paired with the FilterArgs.

The third crucial rule, Rule 3, specifically applies to spatial filtering: it is "family rela-
tionships" between graph-tree nodes that are in question. One can imagine, however, using

similar functions in the context of a series of reduction states - with, for example, the current

reduction state having a similar relationship to the previous reduction state as a graph-tree

node has to its display parent, i. e. the one before.

The "family relationship" function f is one of:

parent - the display parent

child n - the child node at position n

anyancs - any display ancestor

allancs - all display ancestors

anydescs - any display descendant

alldescs - all display descendants

anykid - any child node

allkids - all child nodes

The effect of such a primitive is to transfer the application of its first argument, which is

functional, to an environment in which the context element of the environment is changed

appropriately. The Fi 1 terArgs is not changed, but the focus moves from a particular node

to its parent/child node/display ancestors etc.. For example where f is parent the context

changes from a node to its display parent; where f is chi 1d0, the function is applied to the

leftmost child of the node currently in focus.

The other compilation rules ensure that these crucial rules are applied wherever whi ff

primitive expressions or identifiers are encountered, not just at the top level.

CHAPTER 6. THE IMPLEMENTA77ON OF HINT

6.4.4 Incorporating filters in the display

121

When a filtering function is applied, it is in the context of a particular node, cluster, or series

of reduction states (together with relevant other data represented by Fi 1 terArgs). Haskell

auxiliaries involved in the filtering return values that are incorporated into the whi ff com-

piled h expression. This is reduced, using the non-stepping expression interpreter, to yield

an h expression from which the appropriate Haskell value may be obtained. For example
the Haskell value True is derived from the h expression EBOOL True. The value is of type

Bool in the case of the spatial compaction and checkpointing filters, and string in the case

of the labeling function.

6.5 The hint interface

6.5.1 The control panel

There are many possibilities for the hint interface. As well as the various browsing schemes
described in Section 5.4.3, there is also the option of exploiting the potential offered by the

control panel window. In the prototype this is used only to display cumulative information

about the reduction. It would also be an appropriate area for displaying cumulative infor-

mation as specified by a caption function. But the idea behind the control panel is to help

the user choose and define spatial and temporal filters for the display of the reduction.

6.5.2 The interaction

The implementation of the prototype uses the generalised version of the overall interaction

function used in the Escher program in Chapter 3 (Figure 3.5). As the interaction is almost

entirely controlled at the keyboard, the system of interpretation of active areas used in the

Escher program is not necessary. Apart from browsing, where the sites of the displayed

graph-tree nodes become points within one big active area, there is no need to locate input.

However the interpret function could be incorporated if the definition of compact-

ing functions, and the changes of checkpoint and of spatial filter were to be accomplished

through dialogue boxes, rather than by simple text commands as at present. Then the rel-

evant areas within the control panel window would be programmed to initiate appropriate

dialogues. This would have the benefit that the user could, for example, be prompted for the

three components needed in the definition of a labeling function. Warnings could be given

where a user refers to a whi ff component that has yet to be defined. Lists of appropriate

CHAPTER 6. THE IMPLEAIENTA77ON OF HINT 122

named functions could be displayed, for example when changing filters. Such lists could
be merely reminders, or could themselves become menus from which the user could select
the required element. Such guidance in the definition of filters and their components would

make the process simpler for the user and help to reduce errors.
Another function of the control panel might be to change modality, so that the effects

of a mouse-button click in a particular area are not restricted to two: the number of buttons.

For example a button click in the displayed graph-tree area might have one of three effects:
to change the root of the display, to expose the structure of a cluster-tree, or to change the
label shown.

6.5.3 Appearance of the display

The appearance of the display of the prototype is more easily conveyed with screendumps

than with words, so the next chapter uses screendumps to illustrate the use of the prototype.
There is also a discussion of the problems of labeling, and of limitations of the system.

Chapter 7

The use of hint

7.1 Introduction

The hint environment may be used for various purposes. It may be regarded as an inter-

preter for defining functions and evaluating expressions at the prompt/command/response
interface. The "stepping" through the reduction may be used to illustrate the mechanics of

simple graph reduction. The system may be used to investigate the cause of a wrong result,

or, if the result is correct, on the cause of a space fault or, indeed, on confirmation that there

is no space fault. If the error is that the computation does not terminate, checkpoints may
be set to monitor its progress in the expectation that the state of the graph will help pinpoint

where the problem lies.

This chapter presents screendumps that illustrate how hint may be used in teaching and

in finding errors (Sections 7.2 and 7.3). There is then a longer example which demonstrates

the effect of browsing, and shows how a spatial filter can be tailored to the compaction of

a particular display (Section 7.4). There is then discussion of the problem of labeling sub-

graphs (Section 7.5). This is a vital aspect of the monitoring as the label has to show clearly

just enough detail to give the user the information needed to understand both the nature of the

particular cluster that it represents and the relationship of this to other collapsed subgraphs

on the display. Finally there is a section concerning the limitations of the hint system (Sec-

tion 7.6), followed by a chapter summary.

123

CHAPTER 7. THE USE OF HINT 124

7.2 Visualizing simple graph reduction

One use of the hint environment is to illustrate the mechanics of simple graph reduction
for teaching purposes. In this section we give further examples of this:

ea graphical representation of the map function;

9 an illustration of the cumulative filters involved in the realisation of the "sieve of
Eratosthenes" definition of primes;

e and a comparison of the higher order list-processing operators f oldi and f oldr.

7.2.1 The map function

imap

foll square
A

2
A

3
A

Figure 7.1: The map function.

Figure 7.1 illustrates elements involved in the display of a simple reduction under the

NOAPPLY filter (defined on page 90). It shows the step in the reduction of the expression:

map square [1,2,3,4] where square 1 has been identified as the first item to output,

and the square function has just been applied. The output node, indicates that the

value of reducing the expression on its left is to be output, and is there to enable the rest of

the program graph to be displayed during this reduction. The sharing of the 1, the argument

to square is shown in the display reference: f 01. The focus of reduction is the * node, as

indicated by the - before it. The "rest of the graph", on the right of the output node, is

seen to represent the expression map square [2,3,4 1.

CHAPTER 7. THE USE OF H17VT

7.2.2 The sieve of Eratosthenes

sieve

pf ilter

(0) pfilter

19 pfilter

17 pf ilter

13 pf ilter

11 pfilter

7 pf ilter

5 pf ilter

3 pf ilter

2f ron

[0123 1

Figure 7.2: A barrage of filters.

125

Figure 5.14 on page 92 showed an example of the sieve of Eratosthenes used to compute

the list of prime numbers to illustrate the use of the NOAPPLY filter. Figure 7.2 shows it a few

steps later as the number 23 is about to be output. This shows the amassing of the barrage

of filters through which a new number must pass.

Again the sharing is indicated by the display references 101, each of which represents

the 23 which is clearly marked in the graph, in all its instances, as being the next node to be

reduced.

CHAPTER 7. THE USE OF HINT

7.2.3 The two list fold operators

foldl fz list = case list of
[I -> z
(h: t) -> foldl' fz

foldl, fzht= foldl f (f z h)

Figure 7.3: h definition of fo1 di.

126

Introductory textbooks on functional programming often have a section which compares
the two higher-order list processing functions f oldr and f oldl (sometimes called reduce

and accumulate). The hint system may, through its pictures, help the student understand

the comparison. The definition of f oldr is given in Figure 5.7 on page 82. The definition

of f oldl is shown in Figure 7.3.

A +

2 --- o

0
A

003
A

f oldr plus 4

0
0

f aldl (0) 02

(0) 0

(Olplus 0

Figure 7A Comparison of sum defined in tenns of f oldr and f oldl.

Figure 7.4 gives a visual basis for comparison of the use of f oldr and f oldl in the

definition of sum. The expression in each case is f old plus 0[1,2,3,4]. In the case of

the use of fo1 dr, in the screendump on the left, it may be observed that the + node at the root

might have been applied, had hint had the associativity of + built into its reduction rules, as

soon as the 2 became available. The f oldl example shows that a strictness annotation on

the second argument to the f oldl function would in this instance save space as the numbers

would be summed eagerly, rather than lazily, into the accumulator. In the example shown,

the expression plus (plus 0 1) 2 would be represented by a single 3 node.

Polk

CHAPTER 7. THE USE OF HINT

False 0

0 to):

0
True True (0)

f oldr and

NOW No

0
00

True (0)

f oldl (1) 0 False

[1)and True

Figure 7.5: Comparison of andlist defined in tenns of f oldr and f oldl.

127

Figure 7.5 illustrates a potential space leak in f oldl. It gives visual confinnation of the

relative efficiencies of f oldr and f oldl in the context of defining a list version of and, as

described in Bird and Wadler [131 (page 151). They point out that given a list:

XS = [X1iX2i
... i Xn]

, and assuming that some element of this list, xi, IS False, the expression

f oldr and True xs requires but O(Z) steps for its evaluation, whereas

f oldi and True xs needs O(n) steps. The expression involved in the figure is:

f old and True (False: trues), where trues represents an infinite list each element of

which IS True. In the case of fo1 dr, Fa 1se is encountered as the first element of the list,

and the very next reduction will reduce the graph to but one node representing the value

Fa 1se. In the case of fo1 dl the computation will not terminate. Adding strictness to the

second argument to fo1d1 would save space, but would not affect termination.

7.2.4 Animated diagrams

The examples that have been presented suggest that showing stepwise reduction to a student

may help in conveying insight. It could be argued that showing the procedure of reduction

is not conducive to declarative thinking: the particular order of reduction, and the details

of the implementation should not need to be taken into account. Yet teachers of functional

programming do use diagrams that look uncannily like hint screendumps! Used with dis-

cretion, hint could usefully animate such diagrams for the teacher. For practical purposes

the implementation does need to be taken into account, a recurrent theme in this thesis.

op,

CHAPTER 7. THE USE OF HBVT

7.3 Identifying errors

128

This section illustrates the potential of hint to locate and understand errors. The first ex-

folde fz xs = case xs of
11 -> z
(h: t) -> folde' fz

folde' fzht=fh (folde z t)

Figure 7.6: An erroneous definition of fo1 dr.

Error: fbinop error: (1)+(folde))

Figure 7.7: The error message preceded by the step before.

ample shows an invocation of hint's Error value. The second example exposes a wrong

definition.

7.3.1 Use of the Error value

The existence in h of an Error value is useful in locating errors. Unlike an application

of error in Haskell, the creation of such a node does not stop the reduction, so it may be

seen, normally being involved in the creation of other error nodes when it is found to be an

inappropriate argument or whatever. Here is a tiny example, where f oldr has been wrongly

defined as in Figure 7.6. The recursive call to f olde omits f as the first argument. When

this is applied in the expression f olde plus 0[1,2,31 it yields an error value shown in

Figure 7.7. In the preceding step, fo1 de is applied to only two arguments, so is regarded

by hint as a partial application: an inappropriate argument to the + primitive.

If olde
A

0
A

2
A

3 11

pl

CHAPTER 7. ME USE OF HINT

7.3.2 Locating a semantic error

129

If hint had a typechecker, an error such as that described above would have been caught
before the function could be applied. Indeed the main purpose of the Error value is to pre-

vent such type errors from crashing the system. The system may, however, also help the user
detect semantic errors in a type correct function definition. Figure 7.8 gives a definition of

mt tree

mt' tl t2
min nl n2
allnew n tree

toleaf n
totree n tl
mintree tree

= case tree of
(L n) id
(B tl t2) mt'

= min (mt tl) (mt t2)
= if n1 < n2 then n2 else n1
= case tree of

(L v) toleaf n
(B tl t2) totree n

Ln
t2 =B (allnew n tl) (allnew n t2)

= allnew (mt tree) tree

Figure 7.8: Definition of mintree.

mintree, a function to replace a binary tree of integers by another of the same shape but

with every leaf replaced by one containing the smallest value of the leaves of the original

tree. The (user implied) type of the tree is:

data BT =L Int IB BT BT

The error is in the definition of min which returns the wrong (greater) value.

Figure 7.9 illustrates stages in the reduction of an expression, under the NOAPPLY filter,

that expose the mistake. Figure 7.9 (a) shows, on the left, the initial expression:

mintree (B (B (L 1) (L 10)) (B (L 2) (B (L 9) (B (L 5) (L 6)))))

On the right is the stage in the evaluation where the left part of the result tree is about to be

output. The --B-- is an output node representing the top level tree constructor. The value

in the leaves is the shared 10. This is about to replace the values in the leaves of the right

part of the result tree as the first argument to alinew.

Figures 7.9 (b) and (c) represent steps intennediate to the two others. Figure 7.9 (b)

shows the calculation of the minimum value, initiated by the need to output the value at the

first leaf. At this point the value is shared, but in order to reach the final result the tree will

in fact have to be traversed twice: once to find the minimum value, then again to propagate

this through the tree. This is because h, lacking local definitions, cannot express circular

definitions [121, where part of the result is used in the calculation of that result.

CHAPTER 7. THE USE OF HINT

ýuintree
I

B

B
A

LL

1 10
IA

9LL

56 5

allnew

allnew w--(ilut (DIB

(1) (21 BLB
1A

B JOI 2LB

A1A L (2lL LL
11 11

1 10 56

(a)

(b)

allnew (I)hif
A

(2)hif L (1) L
11A

(41 (2) (5) (0) --- < (4110 (311 2L

B allnew

LL (0110 B

tu) (0) L
I

/\ 2LB
IA

9LL

IA LL

5

130

Figure 7.9: Error in mintree.

CHAP7ER 7 THE USE OF HINT 131

Figure 7.9 (c) exposes the erroneous definition. In interpreting the diagram it is nec-

essary to bear in mind that the numbers in curly brackets are display references whereas

numbers without these represent integer values. The lower of the two hi f, conditional, ex-

pressions states that if the first value (13} representing 1) is smaller than the second (141

representing 10), then return the second (10) otherwise the first (1). Thus the wrong value

will be returned, and mintree has been defined as maxtree.

7.4 Exploring a program graph

The example in this section does not exhibit a spacefault as such, but illustrates that thinking

declaratively rather than procedurally may mislead the programmer into ignoring essential

space costs. It is further used to show the effect of browsing, and the tailoring of a spatial
filter to the specific graph in question to achieve a similar effect by compacting parts of the

graph not currently of interest.

The example is insertion sort. The definition of an is or t function is given in Figure 7.10.

The intuition of inserting the head of a list into the sorted tail of the list does not necessarily

isort list = case list of
H -> 11

-> isort'
isort' ht= ins h (isort t)-

Figure 7.10: The h definition of insertion sort.

involve visualizing the implementation waiting to pattern match at every item in the list until

the final [] is reached. Yet it must do, and Figure 7.11 shows how it looks in hint (with a

null filter). This is, incidentally, another example of a graph where planarity may almost be

achieved using pencil and paper.

7.4.1 Browsing

Sorting a list of six items using a null filter produces a display that runs off the main display

screen. This step may thus also be used to illustrate browsing to bring a missing section

of graph onto the display. Clicking on the hif node causes this to move to the root of the

display, revealing the nature of what were, in the original display, stubs: the double circles

indicating that there is more. The browsed version is shown in Figure 7.12.

CHAPTER 7. THE USE OF HINT 132

IAN : Case

(9) (I)i-: C.. $

.. - STEP NUMBER: 20 SIZE 477-
6 ins- I

6
6

i 7
2)1- C...

sort

ins' (8)

(7) --- (3)kif

i. N., (7)4 <

hi>
Parge err r
hi> Neý demo
The defi u itione have been replaced by those in demo
ý1> Define

!o ldlp" : fold " "folde- "foldp" : "foldl" "foldl- 'foldr' "foldr- "sum" "sum'" "take'
. . . t ke' ones fib" "nfib'" "na ts' "plus" 'plusl" "map" . map'" "fib" "cont" " filter'

ter': "cons" "id' "ins" "ins : f 11 " "isort" "isort'" "qsort' 'qsort'" "legsthan" 'gore'
, 1 , ,1 ieve" eve'" "pfilter" 'pfilt er'" 'primes' "from'

hi> map (plus 1) ul 2,31
234
hi> isort [1,2,3,4,5,61 <CR> to continue

Reduction aborted q, to stop
hi> fib 31
2178309
hi> igort [1,2,3,4,5,61

Figure 7.11: The isort graph.

7.4.2 Tailoring the compaction

Figure 7.13 illustrates how spatial filtering can be used here, instead of browsing, to compact

the graph so that the part that was off the display can be seen.

The raw graph in Figure 7.11 reveals a pattern of linked trees, each with a case node at

the top resulting from the application of the ins function (ins: case). This is the effect of

the pattern matching on the tail of the list at each list element. In order to see the part of the

graph currently off the display we would like to compact these trees, but to leave the hif

structure at the bottom in full display. We leave also the case nodes themselves in order to

keep an outline of the graph-tree structure. So the rule is that a node is collapsed with its

display parent if it is a descendant of a case node, but not itself a case node:

CASE = someancs (is Case) && not (is Case)

CHA PTER 7. THE USE OF HEVT 133

Mhif

M (6) M f6)6

(6) (4) (ý4

ilks

i sort 7
i sort 16
ins 6
i ns II

Figure 7.12: The browsing of isort.

However this would also collapse the section at the bottom of the display that we wish

to observe, as this is also a descendant of a case node, so we exclude the "next node to be

reduced" and its descendants:

CASE = someancs (is Case)

not (is Case 11 is Focus 11 someancs (is Focus)

That is the compaction rule. Now what is to be the display rule? Single node clusters are

to be displayed as the node they represent, unless they are display leaves in which case we

would like to see the display reference only. The whi ff primitive for this is nodenl (see

Section 7.5). Clusters that are larger than one node are those deriving from the CASE rule,

and will be labeled with the case node at their root. Thus the i oin function discards nodes

below, and shows the node at the "join":

JCASE -= node

The final forinatting function might be required to: mark the next node to be reduced, sf ocus;

show any display references, sref; and, if the size, vsize, is greater than 1, put the letter

"S" followed by the size, ssize, of the cluster:

DCASE ct = sfocus ++ sref ++ ct ++

(if vsize >I then (lit " S: ") ++ ssize else

The display function is thus:

SHOWCASE =u nodeni i JCASE d DCASE

CHAPTER 7. THE USE OF HEVT

[O)ins: Case 5: 10

fil fl)ins: Case 5: 10

[2) [2)ins: Case 5: 10

(3) [3)ins: Case 5: 10

(6) (7) [6) (7)6 0

o

ins (615

Figure 7.13: The NOCASE filter applied to the i sort graph.

134

And the complete spatial filter is defined as:
NOCASE = (CASE, SHOWCASE)

A further refinement might be to compose the CASE filter with the NOAPPLY filter, which in

this display would get rid of the two Apply nodes in the expression ins 5 at the bottom

right of Figure 7.13.

NCA = CASE 11 NOAPPLY

However the labeling of a cluster then needs to be related to the rule the application of which

created it. Using the SHOWCASE labeling scheme here would result in the topmost Apply

node being shown, rather than the name of the function being applied. The unit (u) and

display (d) functions are the same for both kinds of cluster, but the join (j) function has to

take account of the node at "the join".

JNEW lss = if is Apply then head lss else node

The labeling function is then:

SHOWNCA =u nodeni i JNEW d DCASE

and the new spatial filter:

NOCASEAPPLY = (NCA, SHOWNCA)

The effect of applying this composite spatial filter is shown in Figure 7.14.

CHAPTER 7. THE USE OF HINT

(Olins: Case 5: 10

[1) fllins: Case 5: 10

(2) (2jins: Case 5: 10

[3) f3jins: Case 5: 10
Zý-ý

ýmm[4) mmm[4)hif

(6) f7l [6) [716 ins Sr: 3

t7l f5i f615 [51[]

Figure 7.14: The NOCASEAPPLY filter applied to the i sort graph.

7.5 The problem of labeling

135

Spatial filtering has been introduced both to tailor the compaction of raw program graphs,

as illustrated in Section 7.4, and to present distinctive views of the graph, giving the user in-

sight into the reduction process. Such views are largely characterised by the labeling scheme

in use. This section discusses some of the problems encountered in labeling, and solutions
found, or proposed, for overcoming these. There is discussion of:

" the display of Apply nodes;

" the need for two show primitives for whiff;

" the indication of sharing;

" the marking of the focus of reduction;

" strictification of sections of the graph;

" and some other possibilities for the display of labels.

The display Of Apply nodes

In general the presentation of single node clusters is clear. An exception is the Apply

nodes, often shown as @ in the literature, and in hint "simplified" to o. Arguably the ap-

plication should be conveyed solely by the articulation of the graph, just as In the textual

form application is denoted by juxtaposition. Figure 7.15 illustrates just how much more

straightforward and uncluttered is the third version, where this is the case.

CHAPTER 7. THE USE OF HEVT

/0\/0\ /"*4\
f

Figure 7.15: Three versions of the apply node in

136

This may seem a minor point, but in a large and complex display such niceties may have

a significant effect in the reduction of clutter on the screen. This makes the task of the ob-
server easier.

Two show primitives for whi ff

The show function for nodes may represent a display leaf in the graph tree as its ultimate

referent. For example a display leaf that refers to an Int 2 node it may simply be labeled

2. Alternatively a display leaf may be left as an empty string (see Figures 5.15 and 5.16 in
Chapter 5). The advantage of not displaying the node's value is that there is no redundant

display information, thus again reducing "noise" in the display of the overall structure. In

those examples there is a display reference which identifies the ultimate referent. But there

are also advantages in showing the value of a display leaf: not only does the viewer know

that this node is shared, but also what it represents. This saves effort if the ultimate referent

is not instantiated on the current display.

In fact whi ff offers two show primitives to the user, node and nodeni (node, but not

display leaves), so that the more appropriate version may be chosen.

However, this choice may have further implications. For example where a function node
is shared under the NA filter (No Apply), it is not necessarily the root of the cluster, so using

one-to-one references the display reference will not appear. If, in addition, it is a display

leaf, and the labeling scheme join function transfers the label of the leftmost node at each

junction, an empty string will appear instead of the function name. Figure 7.16 shows three

versions of a graph in the reduction of f oldl plus 0[1,2 , 3,4] that illustrate the effect

of various combinations of node labeling and final display functions.

In Figure 7.16 (a) the node show primitive is used. Because of this, both of the shared

plus nodes are labeled with the function name. In fact the other plus nodes are also shared

(see Figure 7.4). Where the shared function node is not a display leaf, however, it is also

not the root of the cluster of which it fon-ns a part, so its display reference is not available.

This display of sharing is further misleading in that it is plus, not plus 0 1, that is shared

CHAPTER 7. THE USE OF HINT 137

--- foldl ... foldl ýIýfoldl

/N
folplus plus 11 to) 11 to) plus

plus
44 plus 4

plus 33 plus 3

[O)PIUS 2 [O)PIUS 2 [O)Plus 2
AAA

010101

(b) (C)

Figure 7.16: The result of various labels for the NOAPPLY filter.

(again, see Figure 7.4). This particular node is labeled somewhat arbitrarily with the display

reference because, according to the display algorithm, it is the instantiation in the graph-

tree of the function node. Whenever any spatial filter is applied, the display of sharing can

become confused in this manner.

In Figure 7.16 (b) the nodenl show primitive is used. This gets nd of the duplication of

the label in the display leaf for the first argument to f oldl. But it also results in an empty

string being propagated to the level of cluster label, leaving blanks in the display. This is

because the intermediate plus nodes are display leaves but not single node clusters.

Figure 7.16 (c) gives the most satisfactory picture. Here the node version of the show

primitive is used, so display leaves have their value reflected in the unit label. But now the

display function removes the name from display leaves:

DNAct = sfocus ++ sref ++(if is Dleaf then ""else idct)

Showing displaY references

In hint, sharing of clusters is shown as a number in curly brackets. These curly bracketed

references can be hard to distinguish from other labels: when the referent is itself an integer

it is difficult to tell at a glance which is the value and which the referent. Possibilities for

overcoming this include representing the reference in a different font or in inverse video, or

placing it differently in relation to the node. Tufte writes, in a slightly different context:

"... color effortlessly differentiates between annotation and annotated" [90]

CHAPTER 7. ME USE OF HINT 138

suggesting another possible solution, given a suitable environment.
Another problem in the display of sharing is that shared nodes may be within clusters.

Experimentation with two level sharing labels has not yet yielded a satisfactory solution to
this problem.

Marking the focus

The - marking of the next node to be reduced is also not entirely satisfactory. Again the

use of colour to make it stand out, or even to have a flashing node (or flashing nodes where
it is shared) might be clearer.

Strictification

The ARITH filter, illustrated in Figure 5.16 in Chapter 5, suggests that a strictification prim-
itive might be usefully provided by wh if f. According to the AR I compaction rule involved

(see page 92), clusters consist entirely of arithmetic operators and integer nodes, or are sin-

gle node clusters, so could take advantage of such a primitive - perhaps displaying a cluster

as the result of its evaluation.

The values obtained from fully reduced clusters might be used not only in the labeling,

but in determining checkpoint criteria. The user would need to beware of the possibility of

non tennination, though perhaps the system could help with this by, for example, keeping

track of the number of reductions and abandoning the attempt to strictify if necessary. The

primitive would then effectively be: "strictify if possible within a limited number of reduc-

tions". Another problem would be that large examples might take noticeable time to process

the necessary calculations: using the current scheme, the whole graph needs to be compacted

and labeled for the x positions to be allocated to the graph tree - even regions of the graph

that are not initially displayed.

In a sense this strictification would be a fon-natting primitive. Other, simpler, such prim-

itives might, for example, display a list of characters as a string, and a list of other elements

using the h syntax of square brackets and commas.

Some other possibilities

Here are some other possibilities for the display of labels.

Richer labels A more general algorithm, in the spirit of those presented by Bloesch [14],

could display labels of varying depth. This could allow clearer differentiation between

elements of a textual label.

CHAPTER 7. THE USE OF HEVT 139

Using ASCII text for labels limits the flexibility of the display. If labels of different

depths are allowed this opens the way to using pictorial representations, for example

where filters of different kinds are composed characterising the rule that produced a

particular cluster.

Miniature graph-trees Each cluster could be displayed as a miniature version of the graph-
tree it represents. This could be combined with an option to expand a cluster to its

constituent graph-tree in place, or to display it elsewhere on the screen such as in the

minidisplay window.

The use of colour The use of colour has already been mentioned. Its potential for structur-
ing the display is much more than for helping the viewer decipher display labels. For

example the age of clusters could be expressed on a scale of darkness in a particular
hue. Labels on display leaves could be in a characteristic colour to make the distinc-

tion obvious. Different fields of cluster labels could each have a distinguishing colour.

Display the graph as a graph? An assumption in the design and implementation of hint

has been that the display of the raw program graph, or of a compacted version of this,

would be too complex to decipher. This could be mistaken. It may be that an ideal sys-

tem by default displays the graph rather than a graph-tree, with the option of convert-
ing to a graph-tree as required. Techniques for isolating parts of the graph for further

exploration could be devised. The main problem with this, apart from the display con-

siderations, would be the relative complexity of defining compaction rules: no longer

can a node be assumed to have but one parent.

The display of the graph introduces the problem that graph-trees avoid: the crossing

of arcs. Conversely it avoids the problems of graph-trees: the need for display refer-

ences, and an increased number of nodes to display.

7.6 Limitations of the system

Here are some of the limitations of the hint system. This includes both restrictions due

to the specific implementation of the prototype, and others to do with the general approach

taken.

CHAPTER 7 THE USE OF HINT

Size

140

A future hint may well be used with large examples to help solve, in particular, the problem

of locating the source of mysterious space leaks. Indeed during the development of the sys-
tem itself such insight would have been invaluable. However the prototype has not yet been

used with computations involving more than around 30,000 steps, mainly because of its own
exemplary space leak. One might observe that if a program such as hint itself could easily
be made to behave properly using existing tools, then a hint-like tool would be unnecessary

anyway.

At present the system cannot deal with other than quite small examples, because of the

space leak. This is not an insurmountable problem, however. In principle a similar system

would be able to apply the power of the compaction, labeling and checkpointing scheme that
has been implemented in wh if f to any size of graph.

As the space characteristics of a target program do not interfere with performance in

small examples, the hint system so far has been used to demonstrate these, but not to iden-

tify problems relating to space usage. However this is the area where such a system might

well be most useful from a practical point of view.

Sharing

The problems of displaying sharing in a compacted graph have been described above. An-

other aspect of sharing that might usefully be included is a sharing index. It is not easy to

find the appropriate definition of this. It would be something along the lines of weighting

shared nodes with the number of descendant nodes, and comparing this with the total num-

ber of nodes. But the possibility of direct and indirect cycling in the graph complicates this.

As sharing of nodes suggests less space usage, and less reductions, it may be that a high

sharing index would denote an efficient program. Given a suitable index, hint could keep

track of it, though such a facility is not built into the system. However, in defining cluster

labels, the user may take the number and proportion of display leaves into account.

Profiling

Unlike heap profiling, the hint system does not offer statistics relating to the program graph,

nor does it give diagrammatic summaries of the constitution of the graph. In theory it could,

as it has the raw inforination explicitly available. The aim of the system in the context of the

thesis has been to give insight into the reduction process by displaying a (simplified) view

CHAP7'ER 7. THE USE OF HINT 141

of the graph. In a sense though, pictures used to display statistics about the graph are giving

yet another view of the structure, since heap profiles also provide a (highly) simplified view

of the graph. Heap profiles amalgamate information from disparate regions of the graph,

whereas compaction rules in hint compel the user only to collapse together regions of the

graph that are adjacent. However the labeling of a cluster may involve analysis of the clus-
ter's constitution, so, in hint terms, heap profiling corresponds to a special labeling of a

completely compacted graph. It may be that a hint-like system would ideally offer both

sorts of view, and a facility for switching between them.

7.7 Summary

This chapter illustrates the use of hint, discusses some of its limitations and gives some ideas

for its potential development.

The display of the program graph as a teaching aid may reinforce concepts, such as the

effects of reduction order, by giving the additional visual dimension. To some extent the

use of hint is an extension of existing practices, and offers an animation of text book-like

diagrams. Errors in definitions may be pinpointed by detailed observation of the reduction
in action.

Space characteristics of a program graph may be explored using spatial filters, and the

progress of a reduction may be monitored using temporal filters. An example is given of

a spatial filter tailored to the compaction of the display of a particular program graph. In

principle the hint system has the power to compact very large graphs, though in practice

this has not been achieved because of a space leak in its own implementation.

The usefulness of a compaction scheme lies mainly in the ability of cluster labels to con-

vey the needed information. The hint system offers a very flexible labeling scheme, but

further possibilities are proposed. These include additional labeling primitives to be avail-

able to the user, and alternative labeling schemes involving graphics and colour, rather than

the existing one line, black and white, ASCII labels.

In contrast with heap profiling, the hint scheme is designed to enable and assist the user

to gain a detailed view of the articulation of the program graph. Indeed one of the aims was

to provide the sorts of view that heap profiling could not give. It does not, in its present fonn,

provide summaries of aspects of the whole graph in graphical fonnat. In principle, though,

this would be possible, through novel schemes of labeling a completely compacted graph.

Chapter 8

Conclusions and future work

8.1 Introduction

The previous chapter on the use of hint shows, amongst other things, how such a system

may help programmers understand the space characteristics of their programs. This brings

us back to the questions in the introduction:

Using current implementations can we provide evidence that this style of programming
is viable? Well, two medium sized implementations are used to illustrate this thesis that are

themselves evidence. And they illustrate as intended the two aspects of "See how they run":

the performance of the Escher program is discussed in Chapter 3; and the hint environment

allows the programmer to watch the program reducing.

What information does the programmer need in order to write efficient programs? More-

over, does an environment such as hint provide this information? Here the evidence is more

confused. Certainly hint shows the reduction in a novel way, and enables information about

the reduction to be compacted in a meaningful way. But it is not certain that this is sufficient

basis for the programmer to program efficiently.

This chapter discusses the possibility that the programmer must take the implementation

into account: Section 8.2. There is then a discussion of the potential usefulness of a system

such as hint, and of possible future developments: Section 8.3. In Section 8.4 the Escher

program is revisited, and its structure reviewed in the light of the subsequent work on hint.

Finally Section 8.5 concludes and ties together the various strands of the thesis.

142

CHAP7ER 8. CONCLUSIONS AND FUTURE WORK 143

8.2 It's a lie!

It's a lie, of course. You have to take the implementation into account. "This style won't
'work' because there'll be a space leak ... Oh no, it's alright, because the compiler we're

using has a 'Sparud' option" [8 1]; and debugging is hard: what functional programmer has

not encountered "Fail: head [J" and reacted either with "Oh bother I forgot to account for... "

or worse "Where on earth... T' This is an analogous to the situation with the heap profiler

when (++) is seen to be both creating and taking up an inordinate amount of space. Here the

user may define their own append for every module in order to isolate the one creating the

problem, but this is extremely tedious.

And what about the reputed conceptual clarity of functional programming? The sim-

plicity of functional programming, the directness of thinking always in terms of function

argument and result were not always so obviously appealing. Many writers of functional

programming theses of seven or eight years ago felt obliged to offer an introductory section

to explain basic concepts of functional programming. Now that these may be assumed new

apparent complications arise. For example when referring to a lazy system one may glibly

mention that a function returns "the input that it has yet to receive", or that it "makes use of

part of the final result in creating that result"; and in the realm of 1/0 monads we talk about a

"World" on which actions may be made without compromising the referential transparency

of the program that does not even have to mention it. Logically these too are simple con-

cepts, but intuitively they are so incongruous as to create a psychological barrier towards

systems that involve them.

In practice too, no way is the use of lazy functional programming the concise, clear,

expressive medium that I would like to make it out to be. I have spent hours, nay weeks,

chasing space leaks. The structure of the Escher program that does indeed nicely reflect its

specification was only reached through the most tortuous routes. This resulted mainly from

inherent problems in the nature of the style. The very aspects of lazy functional program-

ming that make it so attractive: the lack of need to be concerned with memory management,

the possibility of compactly defining functions, the blissful ignorance of order of evalua-

tion - each has a corresponding, and potentially lethal, drawback. Without direct control

of memory allocation the programmer cannot be sure that the program is going to behave

"properly": there may be chains of partially evaluated expressions and the laziness of the

system ensures that they do not get fully reduced unnecessarily, and through this means the

program may run out of memory; functions may be neatly composed - yet the resulting sys-

CHAP7ER 8. CONCLUSIONS AND FUTURE WORK 144

tem may create closure chains so that the effect is not at all as "neat" in tenns of perfon-nance

as expected; the order of evaluation actually occurring may be such that the programmer is

misled by the "strict" thinking that the declarative style encourages that reductions will take

place "as written", whereas in fact they may not. The programmer regards fon-nulae as being

equivalent to the values to which they (may) reduce; in terms of absolute meaning they are,
but in a lazy system the reduction will only take place if the result of the reduction is needed.
The conception of an expression as the result of its evaluation may be useful in grasping the

essence of a function definition. But as discussed in Chapter 5 this may lead the programmer

to imagine that an expression is reduced when it may well not be. Conversely, on occasion

the result of evaluation may take up more space than the redex from which it arose, so the
delay of an evaluation is sometimes a good thing from the space point of view.

It appears that the programmer needs to take the implementation into account, but may
do this through having an appropriate mental model rather than a detailed knowledge of the

low level processes involved. Even with awareness of implementation details, the program-

mer needs to think in higher level tenns. The mental model may be used as a yardstick to

assess the practicality of a particular approach to a function definition. It is important that

the mental model be not misleading, hence the need in Chapter 5 to justify the use of h and
its implementation using simple graph reduction and template instantiation as being rele-

vant to "real" Haskell implementations. It is obviously relevant to the h implementation as

it reflects it directly. In fact textbook presentation of functional programming to the pro-

grammer is also usually at this level of abstraction, precisely for the same reasons that are

used to justify its use in hint: that it enables the reduction process to be seen in source level

terms, and that it offers a view of the reduction that is compatible, for example, with actual

implementations using supercombinators.

8.3 hint to assuage the lie?

Given that hint offers a view of program reduction at an appropriate level, various ques-

tions arise:

1. Can the use of a monitoring system such as hint bridge the gap between the need to

take the implementation into account, and the desire to program at a level that does

not need to?

2. How far does the prototype system go towards this?

CHAP7ER 8. CONCLUSIONS AND FUTURE WORK 145

3. What more could it do to give the programmer the required insight into the reduction?

4. If such a system is worthwhile, what problems are envisaged in developing a version
to handle full blown Haskell?

8.3.1 Bridging the gap

The solution to having the advantages of lazy functional programming without the disad-

vantages is to have just as much control as is necessary over the elements that one would
ideally prefer not to have to consider. A monitoring system, as such, is evidently not suffi-

cient to allow the programmer to assume control of any aspect of the reduction. A system

such as hint does have the advantage over one that displays the information about the graph
in purely statistical terms. The programmer may in small examples trace what is going on
in the reduction, for example the occurrence of an error with its appropriate error message

may be noted. In larger examples he may summarise the graph in different ways in order to

explore its structure in more detail.

However if an environment did offer options for the user to have some control over the

reduction process, it could provide the best of both worlds. In general, as discussed in Chap-

ter 4, reducing the amount of memory needed by the program also reduces the time it takes to

run as there is less memory management overhead. The main problems are, then, those that

cause too much space to be needed. As illustrated in the heap profiling work [74] this may
be caused by too little as well as by too much laziness. In the second case, at least, strictness

annotation may offer a cure. There is also a case for strictness declaration where the pro-

grammer would indicate the expected strictness of a function application, which could then

be checked along with the type of the function. Another situation where there may be exces-

sive space usage, as mentioned above, is one where the value of a reduced expression takes

up more room than the redex from which it was derived. Here the programmer might wish

an option to cause it to revert to its unevaluated state [92]. However this may only be nec-

essary when such a value needs to be present for a relatively long time after its creation, and

is, moreover, either not needed in its evaluated form during that time, or easily reconverted.

8.3.2 Limitations of the prototype

The prototype hint does not give the user any control over the reduction. It does, though,

allow the reduction process engendered by different versions of a function to be observed

so that the apparently more efficient may be chosen. As it notes the age of nodes it also

CHAPTER8. CONCLUSIONS AND FUTURE WORK 146

has the potential to keep track of the age of evaluated nodes, so that if there were an option
to cause them to revert to the unevaluated form, the age could be used as the criterion for

when to do this. The idea of the monitor as having an overview of the computation, and the
facility to step backwards within it, suggests that it might be possible to use this to recreate
the expression from which the result was derived. The prototype in fact does not have this
facility, so this is one urgently needed next step. The provision of spatial filters in hint

offers options to compact the graph in a flexible way so that even when the graph is large

the user of the system may, through different views of a particular reduction step, reach an
understanding of the graph's composition.

8.3.3 Potential development

Despite the limitations, the facilities incorporated in the prototype hint are sufficient to il-
lustrate the points made in the thesis. For it to be developed into a more generally useful
tool various changes and improvements are envisaged. These may be grouped into:

1. planned adjustments/improvements to the existing system;

2. further ideas for the ideal system.

1. Towards a more sophisticated prototype

Stepping

Although it is possible in the prototype to move from one reduction step to the next, or from

one checkpoint to the next according to the current temporal filter, it is not possible to step
back, nor to define checkpoints such as "The step where this node ceases to be part of the

graph". One would like to have a much more flexible mechanism for investigating the reduc-

tion, analogous perhaps to incorporating Snyder's "reduction-history space" [80]. Facilities

such as stepping back to the creation of a particular node, or to an instance of a particular

application chain might help the programmer find out what is going on. Keeping a particular

address at the root of the display, rather than invariably placing the root of the graph there is

another technique that might be worth exploring. As any particular node is not guaranteed

to be present from one step to the next, some default, such as returning to the root of the

program graph, would be needed to allow for this.

The enhancements suggested are: to introduce stepping back as well as stepping for-

wards, and to offer extra primitives for the description of checkpoints.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 147

Browsing

Even with spatial filtering in place, graphs will be large when hint is used with bigger pro-

grams. This is particularly because, unlike the case with heap profiling, similar clusters in

the graph are not merged - it is not a sorting of the graph into statistically related elements,
but a partitioning of the graph. This is deliberate, with the intention of maintaining the rele-

vant articulation of the graph, so giving the user a view of the reduction state that may enable

them to understand the process better.

But without a browsing facility this exercise is very limited. Exploring the program

graph is analogous to exploring the reduction space: there is a lot of detailed information

that may or may not be relevant. The aim is to help users identify and isolate the sections that

will give the them insight into the process. Partly this is done through the filtering. Spatial

filtering collapses together patches of the graph the detailed structure of which is irrelevant

to a particular view of the graph. Temporal filtering similarly collapses together stretches of

the reduction that are not of interest to a particular view of the reduction. But just as step-

ping is a vital element in exploring the reduction, browsing is a vital element in exploring a

particular program graph.
So in the ideal hint users should be able to move around freely in the graph, jumping

from display leaves to their referents, seeing what lies beyond stubs, opening up clusters.

2. The ideal hint

Further development of a system like hint would undoubtedly be worthwhile - both for

teaching and for helping programmers understand their programs better, whether they could

directly influence the reduction process or merely affect the program behaviour through the

functional code. This section discusses some of the features that were either rejected from

the prototype as not being essential for the thesis, or that were beyond its scope for other

reasons. For example the use of colour, while potentially a great asset to a practical hint,

is not vital to the argument that presenting the reduction in the hint style can be of help to

the programmer.

Instantiation

The arbitrary instantiation of nodes according to the graph tree creation algorithm can create

problems in the display: for example a patch of interconnected graph may become widely

dispersed and its structure effectively lost to the viewer. The ideal hint would offer solu-

CHAP7ER8. CONCLUSIONS AND FUTURE WORK

tions to this. Possibilities include allowing the user to:

" change the spanning tree;

" change the instantiation of a particular node;

" click on a node and be alerted to all its referents, perhaps by flashing;

" selectively join display leaves to the clusters that they represent.

Colour

148

The use of colour in labeling might remove some of the confusion which labeling with an
ASCII string currently causes. Other possibilities for labeling are discussed in Chapter 7 Sec-

tion 7.5, in particular reflecting age bands by colour. This would mainly be of use when the

active spatial filter includes age amongst its criteria as otherwise there is no reason to ex-

pect nodes in a particular cluster to be of similar age. Another example of potential use of

colour is to differentiate between the names of producer and consumer functions - the con-

sumer function being the one the application of which is going to cause this node to become

detached from the graph.

Reduction mechanism

If the hint user could specify strictness through annotation of the original function defini-

tions, or at run time, the environment would fulfil the requirements of Section 8.3.1. There

could also be simulated parallelism - several parts of the graph being reduced simultane-

ously: an effective target for the viewing mechanism, but opening a new can of worms with

its own problems, so that in the short to medium term this would be both counterproductive

and hard to implement. A more practical option might be to have a strict version of hint

with its own set of reduction rules that the user could switch to.

As many of the problems of lazy functional programming arise when 1/0 is involved,

it would be good to monitor this. A very simple early prototype of hint had a miniature

"screen". It allowed the strings to and from MGR to be observed, as lines and circles were

drawn and deleted. In the context of the thesis work it was not appropriate to follow this up

further, and using a window manager other than MGR, where the messages to and fro are

already strings, would involve decoding of the messages to make them readable. Despite

this I think it would be a worthwhile and revealing exercise.

CHAP7ER 8. CONCLUSIONS AND FUTURE WORK 149

Interrupt

It would sometimes be useful to interrupt an h computation in between checkpoints without
crashing the environment, and possibly with the display of information about the reduction
at the point of the interrupt. The question of implementing this is a separate problem, de-

pending of course on the implementing language - for example LML: s hiatons might be

used.

8.3.4 A hint for Haskell?

Scaling up the system to include full blown Haskell would involve three main elements: type

checking, local definitions, and conventional pattern matching. The monitoring would be

optional so that the overhead it represents does not affect the normal running of the system.
This is reminiscent of the Glide system [88] where the display of trace infonnation involves

a separate calculation to that used in the non-monitoring reduction. Type checking is well

researched and would complicate the implementation, but should not be problematic.

Local definitions

Local definitions are really needed: for example circular programs cannot be investigated

using the current hint, yet their very circularity would make this of interest. Name clashes

could be overcome, even allowing for anonymous definitions. A simple solution, for ex-

ample, would be to append the main function name and the local name: f name. 1name. In

the case of anonymous local definitions, they might be numbered as they occur in the text:

f name. 1, f name. 2 etc..

Pattern matching

The pattern matching should be displayed, as illustrated in the isort example in Chapter 7

on page 132. Here case expressions cascade, each "waiting" for the resolution of the next

one. The problem will be the translation of Haskell pattern matching to one that may be

meaningfully displayed without overly complicating the display with pattern variables.

Strictness annotation and declaration

If the system is to allow strictness annotation and declaration, this too will need to be taken

into account. Indulgent existing Haskell implementations such as the Chalmers hbc already

feature strictness annotation as a pragmatic extension to the language. Strictness declaration

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 150

could be checked along with the type declarations. Ideally both strictness annotation and
declaration would be part of the standard language.

Window system

The use of MGR is ideal for the prototype system as it enables the interfacing to be a very

minor part of the implementation - highly appropriate for a thesis that is not focusing on
that aspect. The hint for Haskell must take into account the window systems that people
tend to use. This suggests it should be implemented in X windows. As described in Chap-

ter 2 there is a lot of current work on interfacing lazy functional languages to X windows
that may be exploited here.

8.4 Escher revisited

What changes, if any, might be made to the design of the Escher program in the light of the
implementation and use of hint?

8.4.1 Escher

The Escher program was originally written in Lazy ML, but translated into Haskell as imple-

mentations became available. The specification evolved along with the program, so rewrit-
ing would involve a more direct approach: the concept of the program as interface descrip-

tion may now be implemented directly, though the specification should first incorporate the

changes proposed in Chapter 3. As mentioned in that chapter, the advent of heap profiling

was exploited to locate and eliminate a space leak. However the use of hint has not so far

provided insight that might be applied to the Escher program.

8.4.2 Interface interpretation in hint

On the other hand, the interpret function described in Chapter 3, together with a descrip-

tion of the interface in terms of active areas, could be applied to hint. There is scope for

both fixed active areas such as buttons to regulate stepping in the control panel and dynamic

active areas such as the location of particular clusters for use when browsing. As there are

potentially a lot of displayed nodes, and each is associated with a view of the threaded dis-

playable graph tree structure, it is important that the calculation of the interface is done lazily.

As ever, strictness properties have to be given prominence!

CHAPTER& CONCLUSIONS AND FVTURE WORK 151

8.5 Conclusion

We have seen that, in the context of a lazy functional language, the programmer may, to
some extent and by devious means, control time/space factors without changing the imple-

mentation. Pragmatically, though, the programmer has to take the particular implementa-

tion into account. This suggests that monitoring systems that give a view of the reduction
at an appropriate level of abstraction are likely to be invaluable. A prototype monitonng
interpreter is used to explore various problems that arise in attempting to observe the reduc-
tion process, in particular size and complexity, as well as concern for authenticity. Solutions

to these problems have been suggested (Chapter 5), implemented (Chapter 6), and demon-

strated (Chapter 7).

The study took place in the context of an investigation into the pragmatics of writing
interactive graphical applications in a lazy functional language. Two exemplars were used,

one the monitoring interpreter itself, the other a graphical design program. Although in both

cases the implementation process offered evidence of some of the problems inherent in the

style, they nevertheless benefited from the use of a lazy functional language in their imple-

mentation.
The conclusions are that, even using current implementations, lazy functional languages

are not only capable but well suited to writing interactive graphical applications. However

the problems inherent in laziness need to be tackled by allowing strictness annotations and
by further development of monitoring facilities such as those prototyped here.

Appendix A

Code of Escher program

Here is the code of the Escher program discussed in Chapter 3. The modules are in alpha-
betical order:

Design. hs MGR. hs

Dmenu. hs MagicNos. hs

Dtrans. hs Main. hs

Escher. hs Maths. hs

EscherAreas. hs PostScript. hs

Etrans. hs Rational. hs

Geometry. hs State. hs

Help. hs T4. hs

Interact. hs Tile. hs

Interface. hs Tmenu. hs

Layout. hs Transact. hs

Lib. hs Ttrans. hs

Lines. hs

152

APPENDIXA. CODE OFESCHER PROGRAM 153

4-) 4J
El) W

. r-i H U) 0, U) m Q) m 10 ro uu r. x x ý4 En ý4 ý4 (D -11 U)
rA 41 -r-I -4 4-4

.
r, 1" 4-) u 0 4-) (v

a) Q) 4-1
v v 41 a) In W t3) $-4 0

> $1.0 Q)
+ 0 -, A 4-4 >1 +

-54
>1

ý4 M
Q) ý4 41 ý4 4
J

En u 0

CD ;: ý
4 H

r-i
U) W

-1 u
r-I

ro -1 a) x
x 0 40 Ea ý4 fl. 0)

-4 >1 CD r-I 0 4-) -r-I , r-l >1 rcl
. 1-) fý - >1 >1 >1 -1 4-) - 41 (1) U)

U) ý4 1 'r-4 ý4 41 Ea 4) ul rlý r, Q)
- CD 4-4 4-4 4.4 ul ro U) (D 0 ý4

a >, 44 4-4 44 ý4 0 1: 1 04 a) 0 (13
L8 -1 >1 -1 -1 "A (1) "u a) (0 4 . ri r., >1 + a) 01 (o - 4-) rd ro ro 4- Q, rE; 4-) r-A X0 W rý

> (0 H - 4-) r-A ., ý ol t),
4-) 4J ý4 H 44 (1) 4.) rcý r-I a)

+
11"
1

M0
$4 4) ý4 ý4 ý

A
0 4J I

4-) 0 111, u (3) ý4
- - 4 (a u 41 il rl 0

1-1 CN
C:)
11

(d (13 (0 --
11

4-)
)- 4

rl -
(1)

L) ý4
0 -i

tm ;j 0

> 4 j-
ýýý

-
(1 1 , 40 -A

r ýl M 44
1 1 - S4 (d (n w rj)

ýý ý
9- 1 -0 ro

r
"

0U
() Q) Q)

0
I

CD 11 I
- ý4 -

1 bi (D H P, - ro (0 - 41
Q
m 10

>1 v r-i 0 +++ -- -r-I 0- >1 :j 11 ý4 (U 4-) 11 5.1

l i
tý

x
In 0

)
04 Ha rcl x

ri
g .
(1)
(D

Cq
u

E:
ý-l 41

I- -i d

--
1-1 ý
Xý 4) 4J

Q A
rd 4-) 1

W
+ U)

Q) fo
> r=i Q) 'I" (U

Q)
bi

r

44

rl ý: ol
r (
-S4 ý4 .

(d (d Q) M-
04 + u

ý4
0
r:; -

rci
aý

4-)
d
(1)

L14
0

a) 4-) 68 C) -0 CD r-A CD ý4 ý4 rl -1 - r-I a) U,
I

1
4 (D X0 -1 4J 00 4-) - ul Q, U ý4 4-) 0

41 4-) Q) 41 -1 11 -H "A ul (1) 4-) M 41 -r-i a) 0
44 44 44 -- Eý

'1"
0 1 1-1 r--? -1 U) In u -ri rA (, I Ul r-i rA ý111 4-) 4.4 44 44 0 41 H - En U) 04 a) -1 Q, ý? (1) 41 rý 0 ý4 4-3

x + 11 ý4 - 11 = Ul -H -A S., r-A 0 rd -1 0 0 Q)
ý4 ý4 m ro rd rd 4-4 rj) 41 u 0 (1) >1 PQ
000 ý4 --- rA rA Q) ý4 4.4

(d 4-) 4-) ý4 41 1 'I'l rd -4 A

a) (U (U Q) Q) In 11 0 J-) u I
C) > ý4 ý4 ý4 04 9. (d r-4 glý u ji (d a)
x v >4 10 -A ro fa (0 In Ell r-i 44 - X r-i --H ý4 (1) -r-I ý-4 rA 0 a) 04 41 11

1 -r-I ýj (d ro rd
969

ro -
0 rj -

-
Cý

-
r-i rd

,
ro -i -, I u U) -4 ý4 rn ý, ý 11 >1

44
. rq

C 4 U) ý4 ý4
ý4 ý4 U) La U)

,, , ,,
ý4 ý4

rd
U)

-
Q)

-- rl P
a) a) 0 a)

Q) in
ý4 -A

U ý4

-W -ý
P: (d
0 El) 4J

H
11

r-I
ý4

0) 11 11 a) (L) En S" (D Ol P: En (v I., En u -r-I a) 0 ;J .. (13
ý4 ý> r-I -4 -H ý4 -r-I -H 4-4 -4 11 4-) a) a) -w -A b) 0

En 0 L) -4 (1) -4 r-I -A ýA rO U L) -H 4
1-4 r-i r-I CD (N C14 C14 ý4 a) (u a) (i) (1) $1 ý4 U) 4-) Q) (1)

Q) . H a)
44 U rc$

-H ý:
0)

ro
tm

rd
H

(L) a)
IIQ) W lll l ý:: rl
II rd rcl III 1 0 0

cq en Nt W) ýc r- 00 C7ý 0 ý- C14 Cl?) --t in 110 t-- 00 O'\ 0-N cl) 't tr) ýc r- 00 C7ý C) N cf) t kjj \, D r- 00 C)Iý (=) -. 4 cq
Nt It ýt Kt Nt 'Itt 't til tn tn in kn in tr) W) tr) tr) ýc IC "o I'D I'D \C "o "D ýc "o r-- r- r-- r- r. - r- t-- r- r- 00 00 00

ý4
0
>1

. rl 4-4
r-I 4-) 0

El) (15 Q) 4.) 41
>1 u

t)) 4J -4 ý4
rl 04 0

-r-4 44 Ell Ell (d X

rd 00- r-I I -r-I :8 ý4 - u
;j 4-) ro U) k -i -ri

H U) u 0 (1) 04

() rd a) I >1 >
rl (1) ýQl , 0
r-I Q) -4 4j

Q)
U) ý4 a) ý4 X -

0 91 -4 a 01 04

r-l 4-) m (1) rd
U) 4-) W r-j -

13 Q) 0x 4j - 9 , ill 4-) 0
r

rA , F: ý ý: a) 6 ro
4)
> 41 cl

ýQ r-i Ell
(v U) Q)

r
rd (d

ý
0
ý Ea 4-4 4j 5" (v cl ý4 4 f

0M0 11.1
0 4j 44 Q) a -r-4

ri-H 4-) 0 fý ro I" ý4 rd
u 4-) u 4-) . 14 4 x

0) 0 (d rl ý: 0 ro ;j I -r-I
H U) 4-) -r-I (15 0 ý4 El) (Y) a
Ell En f., ý4 , - ý4 - a -H

(1) a) a) a) x r-A ro ý4
rd ri Q) r-i a) > ý4 0- ra Eý 0X

El) ý4 >1 o o ý:: a A> >
3 a) Q) 0 (Z x r-A b'

u -4
-I rd

4-
ý:: 0 a

, I,
- r-A -1 ý4 (d -rA -4 ý4 -r r 4-) u a) 04 U) fli L) L) a r-I M a ý-l "A L) c$

ý4
ýQ' Ell -H W En

ý4 *H J-) - rl ý4
10 0 ul 0

4-4 rA ro

P:
0

z
W m Ea 0 En -1 -r-I J., 0) U) El) :30 L)

rc:
ý:: 4-) Ea
0 4-) 0 4J

-4
M

(D
rl

,::
41

0 -4
4-) ýQ

-4

ri - r-A E0 -r-I

u0 r-i ý4
0

ý4
0

ý4
0

ý4 ý4
00

ý4
0

ý4
0

ý14 4J " ý:
ýQ

ýJ

ro R R 04 a HFi a
r: ;

-rA

.
r-4 . 14

4J
U)

10
x
H
a

v

Q) a)
A

. 14
4-4 Q)

41
>1

ý4
:j ý4
ji u
u En En
H 41 (1)
04 W - E 1ý 1ý 91

0 (v A-) . r-I L8
4-) C4 -i f"

, C: - r-I H
t)l (L) 4-) Q) (1) a)
r-I r,. 4-) 4-) 4-) 1-,, 0

r-I 0
I,, A 0 4J 41 41 4-) -1

a) ý4 (d I 1 0 0 0 Q) x
ý141

0 r-4 C) ý4 ý4 r-i A
4J q4 Q - (1) 1 CD

C . F. "0 x
ý4 ro P:

7 ý
4-)

0 rl (d 91. C:) r4 F. Q) E F. F. E ý4 F: II
44 (d H 41 0 H

U) - X (0 4-) 4-) 4-) 4-) ý14
ro - -A - U U 4-) ý4 ý4 ý4 ý4 A

ý
ý:

a) AA a) (I) O a) Q) a) a) Cl. 1 4)
4-) rl A I1 4-) 4-3 ý4 > > > Q) a) ý

;j (13 0 1 '44 (0 (IS - ri ý, Sý g, 4J ýQ
41 -H 0 1X 41 4-) 41 -r-I -4 -1 -r-i _1

0 0 F-: 4
ýQ

ý4 ý4
ý4 ý4 m 41 4-) -4 r-A 11 4 J H A >i ý

F : (I) AA A A A A A A A 1 1.0
En ý4 Q) A M II I I I I I I I r-I
m 0 -r-4 I (d o - X-
51. 0 ý4 L) 0 -1 CN (n Ilzv Ln ý-o I- Go

-r-I ý4 0 JJ 41
ro a rl 11 C: " >, II
0 0 H r-I - - 11
U Q) ý4 0 C)

a) 4-) N ::
t; Ei

U)
ý4 a) 4-J 4-) Q) a) 44
0 J., U) C: 0- r-'

44 &1 -H -14

$4 ý4
0 0 0 0

CD -4 cq r#) e v-) \z r- 00 c> CD - rq me V-ý ýe r- 00 oý CD - rq rf) 'Kt (f) ýc r- 00 Cý CD -
ý. IC, 1 (4) -e kn �0 r- oo c> rq C'A c9 rq Cq rý r-1 c, -I (-A r-1 rn rn rn rn rn rf) M rn rn rn et

APPENDIKA. CODE OFESCHER PROGRAM 154

0 -1 U)
r-I ý4 ro r-i
-4 0) . r-I 0 rl
(o + (d m 4-1

4-) (1) +
(a 04 C) 00 (15

En J-) 4-)
ro

ra o -1 r_: (1) 0
EP) W 4J 0> Ul

4. j ý:: I rl (d rl 4-)
u-H H 4-) Cý ý4 (a -i (1) co u 0 (1) 44

U) ý4 4-) a) Ef)
ý4 ý4 'r-I a) 0 0 Q) 0 44 L) -1 4-)
> u 0U (1)
w 0 uk r-I 11.

r. ý4 Z 4-) -1 + . ri ý4 0)
(L) >1 u 4-) 0 H

4-) a) + r-I
(d IQ + ; l.

(d 0 r-i 0)
rill

m ý4 10
CD 0 r-i 4-) 4-) 4-4 fo

>1 >1 w 41 4-)

Q) 0 -I 0 -I) 1 r r 4. - . 11 U) 4-1
ý4 V) u xx ý4 F-i 4-)

r-I ý4 ý4 r(I u (1) 44 - El)
J., 0) 9 1 (n (v 0 44
4J rl 1-1 0 4j b) 0)

. rA (D In w - -11 -r-I - ul a) A- r-i -r-I + Uu 4-) , 4-) En 0) 0 a) N 1 ý4 ý4
(a + ý4 ý4 fo 0 - ý4 . 1-4

04 41 -r-I 00

rq 40 to a) a) ý4 41 U) x >1 U 41 -r-I u ill > 0 0 r-A u L)
-i E0 44 H H 4-) ý4 4-) J-) -1 F_: a) - ro -1 -ri : 9: (1) 0 >1 11 11 rd u rq 4.3

ý
rl 1, - 41 () T ý

. 4-) 0) 0) 0 ý4 04 4.)
(d
Izl

-1
N

(a Ej)
r a)

rý X --
0H

4-) H -ý;
a)

ý 0 . ri
ý LO $4 ++

, u -
,

. r-I -ri ý4 1 w El) r-I 0 (d U)
44 4A

u1 a) 6p 0 CD x >1
rd U (a C) ro 10 (V U4 rA U) r-I q- -H (, 4 4-) - (a U

4-) ý4 r, J, ' rl r-l rd u - a) 4-3 4-) rl H 0 ji E AA
A (a 0 a) u 11 11 a) - r, U) ý 1. - a) 0 H rl II a) () 0 -1 - 0 CD 1-1 to tP 0 r-l 0H 4 A 1-4 a) Q H A r-I rl uu- - X ri) En -1 ro A r-I 04 11 4.) 1 ý1.1 A Ln x >1 ra 0 r-l r-j - a) a) a) I A (L) 4J § I U
0 u (1) 4.4 A >1 -1 -1 a) ý: s 0) (D 1 0 ýA 4-) r-4 a) - ro -. -- to

(1) (1) Q) uu f! ý4 4J - Ol
ýo

0 0m ý4 0 4-) r-i 41
51, $4 ý4 ý4 -1 (13 r: 'r-I 4-) J-) ý4 44 F-A U 0 ro ý'. (z rý q) x >1

X -r-I (L) -H -ri r-i -1 H 11 1-1 rl 0 EQ 44 H () .. 11 F-I r, aa
El) (1) A-) !: ý Uu :j (o ý4 H 4-) U) Ell -4 (a
4)

rill F: C; -- (a u .. () 0 L) 11 w rl .. Lo W -1 r=;
U) U) 4-) H >1 r-I (n 44 fo (d -1 -11 .. 11 0
() u

9-
, r.

T)
44 u Q) a) (0 H ý4

ý4 ý4 En ý4 0 (v ý4 u u ý4 7ý Ef) r-I -1 u (d a) a) 00
Ef) 0 X (d ý4 ý4 0 r4 a) Q) (a ro U) u -4 -4 00 a) (1) (a 44 04 ., A rA 4.4 (d r-A r-I uu ul (13 (d uu 51. Q4

u u (d (d En En L) U ý: ý:

II U) U) II Q) ' a) r I Iu u : ýý :: U) U) 00 r-I r-I En U) IIu u o II cs I I U) ul ý: ý: 4-) 4-) ý: ý:

, tt V-) ýo r-- 00 C*ý C) -N m tt kn ýo r- 00 ON CD N Cn 't W) "o r-- 00 C*ý 0-Nm 'It W) IC t'- 00 C-, C) - C14 cf) ýI-
NN C14 C14 NNm mm mm cn mmm Cf) Itt It Nt Nt It Nt Nt 't It W) W) W) W) W) W) W) VI) tn WI) \10 \C \C \C ýc

04 0

I
4J ro 41

1 En w
Q

rl

r, -1 4 10 0) -4
Eý 5.1 a) 4-) u a)

'1., 0

a) ro x 0 0 4-) a
a) Q) -r-I 44 (d U) H
4-) C: 04 0 U) (d f-: a) Z 0 (o 4J En (13 4-) -r-I 0)

(d a) . 1i w a) 4.) U Q r0

0) -1 U En b, 0
9

0 0 rl w
U 0 (1) EQ li ro En F_:

-li U) > ýj a) En a) 0 0
44

1 0 Q
'rq
rd w

rd
a)

(a Q 4-) (N
-A N Q)

rd
1 0 ý

ro (d c: u Icl > I
r

F-: r, 4.) 1-1 b) ý4 r 4j (d
1

ra Q Cl
a) > U) (0 H ill -1 - U) r=; 0 Cq rcl
U) . r-I 4-3 14-4 rc:

04 1u a a)
1 H a) 0 4j

>
ý4

-I
ý- a) Ef)

En a)
4-)

a) 0) U) , r-I 1 - r it r. ro 0 00 En ý: r-i - L) ý4 ý4 ri
Q) 0 H Q) -1 4-) U) 4) ý-4 u

> r-4 En (o rl u >0 0

. 11 o S., u H ý4 En (1) u I Er)
ý4 M ul ý4 0 rA -rq ý4 C:) (A

a) 0 L) 4-) a) ý4 r-I H -11 ý4 L) 4-) 0 (0
U) W a) u 41 41

a) ý4 r,
0 (L) ý4

)
r-i

, A
Q)

i

u
Q)
En

R $4
(0

En 174'
-4)

H J-j

0 -q rl (D 4- 0 fl r - ý
l . 1

r

4-) Ef) F-: U ý4 4-) ý4 - il J . 4) OD L)

rl 1 R 4.) -r-I
,

rl 0 4-) a)
)

ý4
d (n a) 4 () - 5'. ý a) JJ 0) I M

.
ý4
-I a) ,

4-) f. -4 Q) Ef)
a)
1 1

r-4
-1

4-
r :

(
0- b) 4) - J " ., ý: r u

r-A C14 f. r 1 . , - 1 -
-1

.

M ýi 0 Ul a) -W H r-) k. 0 9 . 4-j a) C)
41 " 1-1 Lr) a rcl ý4 (L) -I -r-q r0 A U) ro Q) OD a)

. rA v (a 0 a) m a) 4 a) >1 >1 F-: I rlc$ -
Q (1)4 m -I + t3l r. AII a) a)

> a) F:
4-)
r 11

1 4-J 1-4
Q

A,
Ix

44 :j
., A 0 A-)

a) -
ý:: -

ý4 4-)
rl

-
A-)

41
4-) 4-) --1

ý
- -i rd

.
H v 01 ý

-r-I - 4-j ý4 0 Q) 0 ro 91 z ri rl t)) U) X r
-- j

.

rA 04 t)) 0 a) 5 ý U) 4- F: H 0) a0 H1 -4

1 ý4 rcl u ý11. A -4 a) -r-I En rl a) w U) ro 44 -0

ý4 A 0 ý4 F-I -0 4-) 0 4-) 1 r: ý4 11 ý: 0 H -4 ro a) A a) r-I
1

4.) U)

-I
0 41

+ 0 U) El) 4-) 0 Q) (a 04 u -r-I --I 1 9. m$.
A ýZp -14

En .. a) a) 4..) Fý &J 44 H ý4 A ý4 U 11 0 a) W -r-I 0 1 0)

rc$ A-) 44 ý4 ý4 ý4 o r. --I rl rd a) (d I -r-I ý4 ý4 4.) El) En -1 -r-I

-4 F : ýj (o (d 'S.,
ý4 H X: a) u o r. 4 44 r-A r-A 4-J 4-)

ý4 - H (L) L) > (D a) U 44 11 ý4 4-) ý4 4-) 44 --1 a) a) En (n Z

0) ý4 (a r. r., u -r-I 0 0 0 11 0 H
Q) J., o J1. U) 0 4.4 ýS4 H 11 ýf.) N En ýr.

-I-)
ý4 >1 4-

4-) a) F: U) 0
l

u U %. D ro t)) Ef) -r-4
4.) 4-3 x >1 ra ri .

rc$ 0 0 o E - r-' --x u ý: ýý

En M 4-) 4J 5 U) U) ý4 cn ý4 (a 0 0) 4J 4-) (a
r (L) a) ;j o

ýx
ý . rl 44 rn En r4 0 a)

r
%D W . -i ý4

r
M V) ý4 -4 MM ý4

,
0 ý4 ý4 U) ý4 ý4 ý, ý; 0 (13 (0 u 41 o uu u a uu 44 W

(13 rd ro 0 it 5 9
1 1 1

ý4 ý4

-11 .

ý4 ý4

(v (V a) a) a) I1 :
o r. 11 F: r: I l l uu Il uu I

0 - C'4 M I- w) ý-C r- 00 CN 0- C, 4 m Rt W) ýO r- 00 C7ý C- C14 m

M :t tf) \, D r- 00 C7., (=) ýN en 'Rt W) \. c r- 00 C*N 0 0 00 0 0 0 CD 00-- -- ------ CA CA (-4 (N
00 OC) 00 00 00 OC) 00 C;., c7N C7ý (ON C*ý ON CN Cý C*N C7, -1 ý -- - - - --- - -- ---- -- --- -

APPENDIXA. CODE OFESCHER PROGRAM 155

. ++ .. . E0
+ ++ ++++ ++ ++ + El) H

ý4
01
U

>1

b)

I

0

rl
fa En

rl
44

ý4
> 4-) 0
a) ý4 ri
ýj tp ý4 4-1

E-4 r, C4 0 (n ý4
11 z0 0 $1, (0

Ef) rl 0 11 4-) w ro

(a - Q) (a Q) H ro rl 0 r. ý4 4-)
ý9:

a) (1) F: r-I Iri (n a) a) (d E-4 ro - a) r, - ý4 A=0 -H 4J w
-S4 a) 1 ý4 4-) In ý4 Q) Q)

0 :ý . r-I 144 A-) C) ý4 A 4J
4-1 4.) 44 S4 (a 71 0

.0 :j () Q) 40 E-1 En Q) a)
I-i ýj 4-4 r-I 4 41 (0 z rd r-I ý4

A -1 4-) H 'I" rl -. 41 U) 0 4-) Q)
(0 ý4 ý4 (1) () -I-) C--, Pý 0 0 44 rl - U) u lcý -14 4-) pq 0 0> 44 w P4 -rq 4j 0) 0- rA En - ý4 rý
0 > 4-4 44 rd 0 a) -1 rl w 4j ro -4 (d (15 H

11: 4 Ea IQ U) > 4.) ý4 0 ý4 U) rd b) a) 0) (V - 1)>
En ý4
El) - q a) r-I ;j (d 4J

En -1
1

41 Q EOI
4- i

4
r

a) 44
Q 0 fn 0 -4 .H

-1 U) 04 a)
-

En 4-) r-A
w rý --I

--I ý: a) o ill a) r:; r-I ro 4-) a) u a) ý4 ý'. ý'. ro I:; - -, rl
(o - 41 rc$ 0 r-A Q) 04 ý4 -r-I r-4 m Q) ý$ w 4-) .- -- -I -1 4-)
41 (V ý4 "i a) 0 a) 0 1-1 -r-i Q) ý4 > 4-) a V) ýS4 a) - (D 10 u
4-)
(o

> rl
(d 0

0 a ýý
'0 4-3 -ý4 41

W 4-) 0 4-4
a) En

r-I ý4
u ýJ

,4
0 En

ý4
0

(a
4

z
-ý

ý ro ý4 rl X rcl -r-i I

U)
::)

(1) rl
>-

a) 4J 0 Q, 4- -I (1) 4 Q) 0) a) -W 0ý ro ' u En
- to)

0>
44 -1-) rd -4 4-) 0 -1 0

ý4 0 ý4
(d tm 51

i
1 r - 4 J, 1 0 a) En 0 a) (D 04 -1

as 9. a) Q) 4-) J-) -1 r-I E0 4-) Q) U) Ef) C.) :J T$ F: 0 4-) 014

-r-I U) r-i vl 0W 0> 4J a) ýA - -
U) -S4 -I U 4-) E-4 (0 E- 0 0 a)
a) 44 U 0 -A -r-I Ef) ul 44 U) -r-i ý4 ý4

Q) - a) 4-) (o Q) (0 a . >1
ý4 f" W (1) -1 -1 L) 91 ý4

ý4
-I 4 4 " 0 a) rc$ 00r a) 44 a)

H 1ý (1)
L) r 4

r-A

-I P U)
m
W

fd En
1)

41 4-) 4-4
r - f

>1 ý4 ,
-ri A 41 . ro -r

a) F_: a)
5.
(d

(1
4-)

Q)
r4

t3)
(1) r-l

:j ý4
0 Q)

= (a ý> ý4 0 0 -4 ri) >1
-ti

H Ef) ý4 rd 41 4-) a) -H Q) (0
fý rl 41 (1) 1: 1 U) 0 E-1 121 4

I (d ý4 Q) Q) Q) 4J JJ 4-) 4-) 4-1 .0 4J liz:
4 -1 ý4 P PP ý4 ý4

1ý) E-i 4-) 4 0 0 00 00

0
04

ri. -H ri -ri

,, c r- 00 a-, C) - C-4 en -t W) ,c r- 00 ON C) _0 N m ýt tf.) IC r- 00 C) -. 4 C14 M 'tt V') '-. c r-
C'n cf) Cn Cn 't Nt 't "t ki -) tf) kn V Cf) 4: t tr) \, c rý 00 C7.,

Ell

0
0

4-) ý4 0
cn ro (1) . r-I P:

r-4 All 4-j " ==Q,
U , PL4 4-) u = 9.1 w ý:: r. -
ul a) ul (a c F-: , - 9.1 (L) -- --=

:- 'ic: ill En 0- - ro 44 - 4-) fl.
0 Z r: a) -ri 0 4-3 0 --
r-I 0 0 U) F_: t3l Q)

L) U) 4-1 ý4 q) H 4-) X: -1-i ý: l r-I
(d - r-A U 4-) rc$ En Q) U ý4 0 4-1

44 (d (D a) M 0W Irl (0 a
ý4 ý4 4-) 4J En Ei Q 4J -1

4J (V E- (d z u In
4-1 (D 4j 0 M b) 04 CD 44
F: U ,M 4J ý4 r4 Vý, r-I -, A a) -i -r-I 4-)

41 H to - 0 4-) ý4 -r-I 4 rd $4 M (1) 1-4
4-) 4-4 .I u 4-) . 1.1 E-1 ý: E-1 10 ý4 M a) 44 Q (13

r_: - ý4 .- 4 4-) 0
)

4-) (z w -H ro G ý'. ý'. 0
) 44 M - ý4 (L) -. ;j 4- -H A ý4 Ej = Q) 0 -1 a) 4-

0 ý4 (d 41 ý U) Ea ýA it
(15 m (1) F_: 0 U) C: a) - a w r. ft ýQl Ell r: x (0 fý r-A H .0 ro Q) ý4 4-) M 1-1.4-1 4M (d Q) r. 41 0 41

u ý4 Lo (15 (n X 10 . r-I 4J 40 (o - r-i ul
rc$ ra ýj -1 fý a) ý4 F: -4 4. j -1 4 4-) 4-) En

. rq a) . 14 - - on 0 ýj J L) 0 j 4-) 0 0
:j -1
0 -S4)

9r - r-I
-- -I

4.)
4 4- -I

4-) (a L) - ri
41 (1)

4-) A rl Fý -: --ý 11 4 4 - r - r

ri . ro . r-I -I-) Ol u >, § o-H Q) ýt o in ýj F: -0
L44 4-1 :j -4 ro r-I r. 0 U a) 44 0

x Ul .0 --- -1-) $4 A q) A En (a u 0 U) a) 10, rd -11 Q) -I

a) 0 rA L) En (a 4 1 -0 ý4 Ul a) 0 4.) ý4 4-)

44 En K 04 (1) :j >j 4-) r-i ro W ý:: 0
ý4 CD a) ý4 a) ji En 0 Q) 0 (13 10
0A 0 -1 -4 ro u S'. 0 ro r-A (d (d ra a) W t)) ý4 it u a) -0

04 Q) -r-j 0E -H 00 a) 44 -4 4-) 4-J 0Q r-4 ro -r-I -, q a) U r-A U Q)

4) E 44 4-) rc$ F14 0X rj) ý4 rl L) (a ul 4.) -0 o a) ý4 u ý -, A ro Q a) - ---- -- W -1 0 -A (a :J 0 41 -L-) 4-j r-i - rA
4-) 4 U) U 4 Q) PQ b) 4J rd a) M0

ý4 C: 41 En 0 -, 4 ;j L) >1 -4 (ý -4 U) - ri 0 En u
ý4 W -4 rd Ul rd A U) a) 41 .0 Q) 0 En a)
(o J., 41 En 44 C-) I a) r(j 41 rý 04 U) ý4

fo r: 0
j

fo ý4 4

)
ro U) Q)

4r
R5
) ro

C: -4
) l

u U)
J)

4-) Q)
Q) -A (1) ý4 W Q) ,

Ul 4-J 44 4. J (a U) 4 a) a
r

0 -1 ý a . 1- ý : a ra r
4j oU ý4 >1 :J ý4 11) W rA 0 41 o 4-) C: -r-I ý4 C: -4 C: 0 S, X: X: Q

o (a w ý:: r_: (a 0 a) Ei 4-j ul En U) C: 0 E-4 -I ro ro 3: -- 41 Eý ýj 4-) Z:) 1-3

>1 u -4 J., En (o $4 >1 0 c =c =c

(z a ý: - (1) 8 ý4 4. J (d 4j u

-I j
(13

rI En En :1a E-4 0 ý. j LO -r :
-4 W 11

ý4 a) 4.) 4.) JJ 4.) 4J 4j a) u 10 (is

r-i 0 0 r-i m ý4 $4 ý4 ý4 ý4 ý4 4 rl 4

,aý: ý: E-4 4 0000 00 10 (0 En En

0 0 aa R 9 " (0 (0
J1. J., I10 EE E

4- q : : : 44 4 4 El) ul II rz

. -, -4 r-4 -r-I -r-i - r

tr) r- 00 C., CD
"0 \, O ý, c \C r- CD (. 4) Nt W) \C r- 00 (7N 0

'
-
'

C'4
'

en ýt W')
1 '

\C rý
'

00 CN
'

CD - C-4 M -t tf,)

-. 4 ý- --4 -4 -- -ý r- 00 ON --I ---- ýN cn ql- v C 4 C 4 C 4 C 4 (N C 4 C 4N 4N C f4) M MM Cf) M

APPENDIXA. CODE OFESCHER PROGRAM 156

0 a) 0 -1 4J ýl I- -r-i
J-) ,H -1 ý:

44 0 rl J-) -1 0
0Q0 rl P: A-i

0 4-) t3) 0 4J rq co 0 a) 4.3
p! = 4-) J., ýJ

rl 4J
4-)

U)
a)

fo -0 -A 4J Q) rill 4J r-A
(D fo 41 (d r-i 4-) :1 A-) ro 4-) 3 3
$4 J-) -4 4J 10

ýq
4 rc$

9

fl. r. (d rl --I ý911
(L) ro rl M -, 1 0 a) (1) (D ýj b) 4-) -A -r-I 4-) r-A u ro 4 rj z -, I Q -r-i 4-) r: 3 4 ý11 ý4 H

41 0 ýA ý4 (1) 41 U) a) 0)
H0 (1) -A Q) r-l -H a)

'11, m4 Q) (d 4 ý: ý4 4 4J
Q) a) - r. 1, - 04

.0 .0 U) r. ro
ý4 ý4 0 f-I 41 ro 0

. 11 f
' '$ rd (o rd 0 a) rl = r (a 0 7 u Q) *rq 4-) o ra ý4 ro

-1.1 ;: 1 Q) 44 a) :j 44 44 (1) rc$ 41 0 Eý (L) 44 4-) Q) 4j 4-4 a 4-) A H Ea 00 u (d - r=; - (1) ý4
U) r-i -1 -li I E--, (d fý ý4 - a) a) Ea rA

'o = (1) -r-I a) G
ýq

bi 4.4 r, -, ý4 Q) % a) 4-)
'o 41 o4 El) Q) -4 N (1) Q) rd ý4 W ý4 rA

ro gl. -w4 4-) a) En (a Fl (d a) U) ý - 4) (o
41 ;j Q)

:I
r (a

ý4 L) ý4
-I r $)

Q)
1

ý ý9 41 ro ý 41 ji 1-1.
l - c E-1 Q U a) 4 M - ý4 ý:: -1 z 0. r-i Q) a) 0 r-A U) ý,, 4.) (n U) 41 0 U) -r-A r-A bi Q) -r-i Jý ý4 u 4-3 M (D = 4-3 tp 0 0 r-l ý4

41 a) -4 r:; 4-) Q) (d 04 4-) 40 1', U) (1) 5.1 0 w F-: 4-) ý4 El) ý'. 0
U U) W b) r-I U -i -ri A 0) *li "I 'I" -- (v 'r-i 4-) -r-I ý4 w 0 0 - (n (o
ro

44
a)

ro
a) -r-I

ro
-r-I -r-I -r-I ý4 Ul r-i 4-) -1 U4 (L) En Q) r-I 4-) 4J A ,H

,
ý4 ý4

ý4 Q,
Ir" U) : 9:

ýq
a ýD r-I r-I " 4 r ,

(d 4J r-i > r-i ji 41 1 En Ic. ýj r)
, , f -r-I -4 -ri l $1 A -4 a) 9" -rl :j ;: 5 0 E-4 0 S.

(D -r-I -4 -1 -1 -1 0 ro -1 ro rd I- ý: 0 ý: C4 : ý, ro ri ý: 4
ýQ

U) rl (d 0 >1
ill 4-) 4-) ý4 ý' ,====== == = === rl 0 ý4 - = = L) 4 1<4 41.4 0<4 _0 J-) 1ý 44 44 (z 4-J 4-J
U) H rJ4 114 FZ4 C74 r14 Dr4 54 r....... W ý4 4-3 C4 + +
Q) r-i ji :3 11 + +

(D 0 vQ
A0 r.
1 4-) A 0

ý4 J-) A A A A 1 4.) A
;: 5 44 1 1 1 1 4J 4.4 1

ro ra ýq
0 (D ;j 0

Q) 44 41 0 ý4 10 4
4-) ý4 ý4 z a) a) a qj 4) 0 4)
;, I Q) a) rc$ ro r-i r-i 4-) (z : E: Q) IcJ
r-I 4-) 4-) 00 a) -, -i ý4 ro 0 a)

S1. 0 .. fý fý : 3ý E- 4 0 .. 0 r=; ý.,

.. I 1 (1) a) ý4 ý4 ý4 U) ý! V)
a) a) W 44 44 (d ýJ ýJ (d

10 10
(1) (v () 44 44

U u -1 -4 U) U)
W U) w ri -4 (1) (D
(V a) a) 4. J 4-) 10 10

, --I Nm Nt tn,.. o r- 00 CN C) - C14 cntl- V') IC r- 00 oN 0-N cf),: t W) 10 r- 00 c7N 0-NM,: t W) ýc r- 00 a, \ 0-
NNNNN C14 C4 C4 C4 MMMMMMMMMM 't 'tt -t 'ýt -t 'tt -t tl- -t -4t tf) V-) tn tn W) tr) W) W) tf) tr) \0 IC

0 Ea a)
ý4 1-1 >
4-) m (0 - - r=; 43
Ea rl 41 Ul

.H a) u 41 (a + ý4 a) I-i + ji ý4 r-A FX4 4J 0
U) m D Q) V: ro

ý4 (D 0w M . 11
ro rc$ 1ý ý. w -
(1) 0 4-) fý

$4 0
-, A rq

+ ý4 4-) (V U)
(a 41 1 r_: 4-) 4-)
(a 4-) 4-) 04 fo 01 ý4

ý-l H (13
7 ý ý4 -r-i 4J (a

4 10
4-) r, -- 41

E-1
+ 4-) En ro (D U) M r,

ý

+ U) Ea a) E) rl -
ý4 4j a) u U) ft ro I . 4-4

++ co (i) ý4 m ro 4-4 ý4 ;J ý
++ 4-) 10 44 (D ý4 4-) (C5

ý4 - (a 0 ý4 ý4 (1) 0 Q) 04 ý4

ro ý4 4-3 10 (1) a) (d 41 rý :1- 0 E -4 rc$
+ _1 ro 4-) . 1.) (D 4-) U) Q)
+

1
ý4 *H

rl a)
l>

H- Q) ro
V) En

41
j

(1) 1 3
In Q) 0 b) ýj r 0 : 4

ý4 -ri 41 0 u0 41 11 ý4 1 -H aZ vQ u

(a + a) I-i M E -r-I 04 Ell IM ý4 4-) - ro -j - -r-i (1)
+ 4-) (o J-) a 0 Q) u ý4 Q) I

ro J-) U) (v ý4 0 (o 4-) 0 (a
ý4 J-) -rq 0 w ++ 4-) 04 L) a a)

-4 rd El) 0 Q) 4j 0 ++ A-) (d En w ý4)-) r-i -- - - 0) ý4
U) Q) . r-i rc$ rd En 4-) Q) (1) a) U a) En U) -4 (o - - - -
W Ell r-A --I - 0 ý4 (13 44 En J. "

)
4 ['ý Q) a)

)
rc$ ro U) U :J ýJ ý4 44

10 r. U Q) ý 0 E-1 II (z a) (1) 4-
C: 44

4-
5- (a

ý4
rd

ý4 Q)
0 rd

"I 0
ý::
(1)

F-:
(D

(o
a)

a)
i Ell ý4 4 -

W ý4 Ell U) A 4-J ý4 (a (0 0 A-) 0 0 ý:: C: 4 F=;

J, ' P [I S4 C: I to 0) Eý ý4 rJ4 Ej Q) (1) m . u r-I rl
4J ý4 (d L) r-I - ý4 44 En

A 4-) 10 4 U) - r-i -4 -A 00E
ý4 1 ý4 4-) EO

4 1 i a) En
En

(15 (o (d 4j ý4 (V ,1 1- l
Q) En -li

ý4 a
ý

ý4 0 4j ro (d ý4 (o ý4 Q) 0 4. J (1) (L)
r-i rcl w 1: 1 r, ý4 ý4 0 0 (a ý4 ý4 0 4-) u >1 ý4

rj ý4 (D E =ý ýj - -4 (D 4-) 4-4 C-) 4-) (0 M :r En 4-) En rd u ý4 4

0 4-) C: En In a) Q) 0 ý, a (1) 0) -1 M -r-I ý4 44 M L) ý4

0 0 (o r-A -1 0 a) ý4' ý4 ro En 4.)
,

(D
,

ý4 U) Q) Q) Q) :J ýj 9.1
4-) C) 41 uu Ea C: -4 (D 0 (1) - A. - J. (D F: a

.0 Ei 4 rz: 9-1ý (a
- Ef) U) 0 ý4 rj) En L) 41 (0 r-I (a 0 ý4

ý4 . r, ý4 r:; 04 Q) r. En ý:: ý4 11) 4-) Q) 41

'(5
::

I In r. 1- 12) ý4 F-: 0 w H Eý : I: LO 0W
a) a) 01 U) Q) -r-4 -r-I

r-I ý4 ý4 U -4 4-) 44 4j Q) 4-) 4-) 4-) 4-j 4-) 4-J Jj 4-) 4j 4J

u as (d 0 ul En En Xý r_: a) u 1-4 ý4 ý4 ý4 ý4 ý4 ý4 ý4 ý4 ý4 ý4

rc$ (v (D W Q) W E-1 ýJ 0000 00 0 0 0 0
ro 10 10 a 9 a 04 04

0 0 1 0 2 rz E E
1 0 0 1 4-) 4-) 1111 1 -4 -r-4 -14 . 14 - ̀ 4 rq -4 -r-q -H

.I
CD - cq rn e tf) ýc r-- oc c, c oo c\ CD - rý rf) e ke) IZ r- 00 C> CD - r,) rn 't V. 1e rý 00

, -q ý- (q c9 rq C-1 c--1 rq C-j r-1 r, 1 (, q Cr) ("r) M()MMMM ry) - CA rf) -t v) \c r-- oo e' ------- czý

APPENDIXA. CODE OFESCHER PROGRAM 157

ý4

U) U) ý4
w -1 u

U) t; tý u

a) (D ri -rq rA .
1.1 ý4 ý4 u

00 E

44 04
>1

4
4J

0 a) 11 1

E
fý ý4
Q) a)

41
0

ý4 4 Ul u
U)

* -4 4) ro ý: r-l -H ý4
ý4 u I ý4 ýj a0
ra . 14 - - 04 00 (a >1

04 ji 4J ý m 0) F, A

ý4
ý4 a)

rij d
0

0

r. rA u
0

0
(

00 00

>1
04 -I 4-j

ý4

4.4 Fj , -1
R U

in 04 104 '
r, ý4 ++ ý4

U) (1) -1 a 4j 0 0

0
ro Q)
r,

t; 0
m rd -1

ý4
0

u
I

W - - 0 ý4 ý4
rl" V a) x

.H ý4 a)
)

-
ro

"r-, tm
ý >

Ej 5-
j j

U0
ý > A >1

ro
I1 -11 ý F: 4-

(a ý4
(a

4;
.I 0x

>1 ,

: ; 4 1
- 11 ()
U 04 4-) U)

r-i
04

4
990

44 W 0
m

Q4 10
41 4-) 4-) ý4

U)
ri 0 (15 ý4 r-i T)

0 rcl 0 Ul 0 (a 0
rl -4 0) . - - - tm . 0 0 " A-) (0 m Q) 0

. ri rA -r-I - - - t)) -r-I aa ýA -1 -- u a) ro 1 0) (d
ýý

ý4 w
4-) En

ro
-

-
-
-

*li ý4
ýj 0

(d (d
U) M

U ý4 ý4 ý4
ý4 0

ýQ
4

4
41

ýD Q)
ý4

A
1

41
4-)

(a
A

ý4 t)) 0 X 04 ýj

44 0 115 X
g1

uu r-i Q) 41 41 ul 9.1
0 -4 (v 04

'D))
-1 a) 4

,6
0.
0

ý4 (o
l

04 0)
Z -H a

ý4
d 1

;j
r

10
ý

4-)
() a) U) 10

El) U) En ro U r14 (n J- , -
a Ir.

)
r-l

(is 'Al 4-)
((

t3l 0) ý4
(4

u
11

(D . Q)
A

0 a)
Fý

ý4
4 Q) En 0 0 0) Q) ý4

'0
r=; 0 $4 r. 0

m (v 0) ý4 9" ý4 a) ý: u 5.1 U) 0
0 rO -1 a) 4a . rl ý'- A" 04 a) -1 ., 1 r)

(13 (d - ý4 41 co ro
ý0

R r-i -H ý: 4-) r-i --
Q) (1) Q) a) a) a) -1 (1) -r-I r -- rA -r-j .. 11 q) ..

1) 4 r: i
0

41
d

r-I
M 1

'0 ý: ---
11

4-) 11 J-)

ý4 ý4
(0

44
()
U)

(
(d (D (v 4-) (1) a) (V rl Q, 0) :: l

(D W ý4 -1 4" L) 4, - r-A 'r,
Q) a)

ý1.1
0

(D ri 41 Q 0) a) 41 -H 4-) 41 (v
41 Q) 4-) 41 4-j 4.) rA ý4 4-) r=;

V) ul r, -i ý4 ý4 ý4 b) $1, (is En 5.1 rl 0) f-, -i -1 0 ul
w W ., q 0 0 0 r-l ri - a) -1 ., A -ri rA -r-I -r-I r-i 4) 4

R R 0.4 I

l1

ro
r 1

1

l
41
q

4-)
r

: : R
-1 -H

R

. 14
,

1 -A I -H
.

-11 1-H

C) C4 M lzt V) ', C t- 00 C'ý C) -N M Itt V-) ý. C t-- 00 (ON 0-NMt W) I'D r- 00 (7% C) ý
N M ct tn ý'o r-- 00 C)-N --ý -4 -1 --4 -4 - -, ý- C14 C4 C4 C4 N Cq N Cl NN cf) MM cf) M cf) cr) er) cf) cf) ,t , ýt

4J

a)
, 4j ý4 Q

U) E-4 (IJ 04 (d -

4-) -ri I,, r-4
o 4-) 4.) 0

a) (1) >1
a) rl U) 4-) F: (v r-A 0 4-) (D 0

q0 U) (is -4 (1) a) 4-) ýJ 4j A-) ý4
ý 04 -S4 (v En 4-) a ý4 U 0
>1 tP (D a 4-) u ill :j (d En 4J 0

-A r, -1 4-) A-) -1 -4
W "A 4-) 4-) r-A rl r-I -4
ýj -S4

r. 0 L) 44 (1) a) -r-I 41 (n Q5
0u a) -r-I = 0 ýq -4 ý: r. 4j -r-I
r-I -H -4 -H ý4 ý4 rcl r-i 44
> -4 -, 1 a) aW (D ;j ro 1 ý4 0 44 0

(D U 44 10 r, u -r-j rd a 0 ;j ý4
0, ý4 0) a) 00 0 r: 3 -H a) 0 Ol Q4

r-A 04 >1 0) ill 4 -r-I r:;
) -1 1)4 ý4 (D

ý4
0 u) :j 51 0

u Q
En

0=
4J

- - - H b) (1) (D
'0 41 0

ý1.1
>1 ro rd 44 4-J 0 >

111.4-)
z

t (1 a) 41
4-)

0) A - ýr.
0) r. -

)
00 -r-I

r-I lr i
0 4-)

rl
0 "
H0 ' 1 4-3 ýA r-I Q (U

0 Ef) r
ý4

4-) 0
- r-I 4-

04
, r l U) Ul -r-I -H

ý Q 4-) 4.) U) - -4 >

4) W l 0 rd 4-J b) V Fz: 4-3 0 -4 r4 $. 1 4-) ý4 Q)
' -S4 (13

-
4-) 5- 4-) 4 Ea . 91 0 Ea 0 ro 4-) 0 4J :J 0

ýS.
u (1)

,
-r-I 4-) 4J W -rq ý4 (U -r-I a) F:

x 41 ul -r-I
4-) (1)
:j S4 u)

r-l
w 41

L)
- 44 Q) ý4

0
r.

41 -H r-4
r-4

r-A ý$ ý4 Q4 - 0 (0 ;j 4 ro r. 0 (o 0 r-I 4-) + ro 0 ý4 4-) C-) 0

w (U
4 ji

w r 4-) a) 5.1 4-) rl E- -r-I H L.) Q) 0
1

+ F: 4J a) (d F: 4J

I ji 4-)
l

ý
- r-I Q

'ill
U) 0 rl 0) a)

a) a) A
41 IS4 , r-I L) ý

p0
a) . U) 0 U) 9

(1) 0
-r-I

ý4 44
4-)
:j

>M
0 -, 1

"=
C:

rd
ro

a)
r-I

il
Ul

ýj
0, $1,

0 4-1
(V

(1) J-)
A El)

I
ri) r-I

. 0) r-i -4 (V -, -,
'

A 4-) AA
r j

R5
(L) 0 ýq A-)

S4 En
+
+

.H w rl fo (1) ý4 0 -ri -r-I r-A J, ý4
)0

11 u4
j ri) " In E-4 :1 - E) Q)

Q ý4 U (0 40 4-J ý4 U 4- 5 :
ý:: u F: r - -I > ý4 l r

44 (d (0
ý4

4-)
C4 ý4

ro
$4

-
+ r.

a) r-i rý
u- r-I

.0 11 4-) 4-1 +
ý4 0 0 0 0 . 14

10 fl. fl. r. 11.1 u C4 -- + ++ 9
0 9), :1= .

A A A 4-) A AA
11

A
1

-4 a)
4J
a)

0
1 4-)

:j
44 1
0 4 En

ý4 4 ý4 4-) a
a) Q) a W (D ý4 r-A

W
ro

ro r-4 0 a)
r-4 (d
r4 ý4

4J
r-4

fo
Aj

Q)
ý4
f:) E-4 o Eý X, E-4

Q)
En 4-4 44

44

ý4
0

C14

t-- OC) (: N m qd, kf) ý-c r- 00 CN C:) C14 rf)

0
Itt tt)

00 00
ýc r- 00 C-A C)

00 00 00 00 C\ C7,
N
cr\

m :T
C\ C\

tr)
ON C,

r--
C-

00 C71\
C\ ýDN

ýo \0 \, c \, o ýo \ýc Z ýc r- r- r-- r-- r- r-- r- r- r- r- 00 00 000 ý ý ,

APPENDIXA. CODE OFESCHER PROGRAM

>1
>1

H ý4

En
U

4J
I V) En 0

Ell (d rcj f-I
U) Irl Ef) Q) ý4 4-) El)

M ro ý4 75 - F: o ri) - a)
ý4 4-) 0 Q) 4-) 4-)

U) 0 0 0 El) - 0 ýA U) (d
ýr 0 0 (v 0 -1 a) 41 u $4 >1 a) *ri ý4 ý4 W

a) + -1 1,, 0 -A ul 4-) + -4 >1 -r-4 4-) -r-i ul
0 rn 0 ý4 1-1 U) 0 U

4 4-) 4-) -r-I Ef) 4j (d ý4 rý 4j
ý4 ;j 4-) 4-) r-I U rj) (D M El) 4J 4-)
Q) 0 :1 W rcl ý4 F: rl (1) U) 0 ul In
-W Eol - r-l f" U - 44 U)

r-4 Q) L) a)
Q) P: (D r. 11 Cý ll it 11 11 11

ý4 44 U) ri rý: -1 x
E-4 4-1 El) 44 H -ri -I -

(a 1 0 Q) r-I ý: r-I X
4J ro - - >I ý4
W I rd

(D -rq 0 A A H (D

rd 4-) (a ro 4-1
ý4 rd - J-) ý: - ;j Pý z 0
0 4-) Q) ul a) 41 >1
0 Ef) 4J r. U) I

. rl u (d EO) rA a) C)
r34 U) 4.) r(j r-I in x
II A ro U) ý4 (d rc$ (a - 4-)

1 ý4 0 $4 ý: u En ri)

Q) 0 w 0Q a) a) u u fl, 0 rl U- 0 ý4 ý4
rd 0u -4 a) -r-I

41 4-) rA -1 u 4-) A-) r, ý4 4j 0 A-) ý4 4-) ý4 0 ý4 W 0 M
ý: s 0 w 4-) ;j 0) :j (d 4.3 U) ý: ý', -r-I

4-) pq 41 ý111 -W 0 0 ul U) a) -1 r-A 41 _4 rd

ý4 44 44
ý4

0

158

4J

4-)
El)

4-j En 4-)
(d rd U
4J p 9
Ef) 0

0 41
0) u a) (n

a) H L) r-i 0 ro 41 4.) . 14 41 -A En (n 41
4J " EQ r-i 0 4J -H 4-) r-I En

En 'A Ea U) -r-i ro a) fl, rd -r-I 4J ý4 rý
0 11 1 ý4 -1 0
ý4 44 a) 4-1 (0 In ro (1) 0 (1) E-4 4-) a) E0 a) 4-) (0 a) 0 ro r-I () -4

ro F: (d 41 4-) Q ý4 El) -1 .H ro 4j El) (a M0 ro 41 (D ji
'A U) 4-) 0 ý4 M A-) (0

(1) 0 C4 U) -u o ra
4j ý 0 u u rj)

ro 41 (0 - a) rc$ r-4 4-) ro u 0 0 m
ý4 M 4-) a) ri) 0 J-) a) U) - ri ý: En -4 ý: 0 4-) E0 u r:; U) rj) 4-4 V 0 Ul J..) a)
0 En 4-) (a - ril U) ri) - U) 4-)
U M Ef) r-I 41

in 4-3 ro 04 En 11 11 11 11 11 11 11 11 11 A rd El) ý4 4-) -1 ý4 0 -4 4-)
0 W o EO
0 rl L) U) H

0u ro 4-) r-I 4-) Q) I r. 10 a) a) 4-) rA (U ý4 E0 Ul -ri
4-) 51 ý4 J-) 0 ril ý4 (1) w -r-I 0 (0 Q)

:: 1 0 (1) :j 4-) 0 a) ro -r-I -4 -1 0 ro ý4
pq 4-j 0 4-) 0 r-I (D -r-I 41 U r-i (n 0)

En 41 ra 0 r-A

44 44
ý4

(L) Q)

41 4-) 4.)

V') �0 r- oo cý CD - r-ý me Wý ýc r- 00 Cý CD - r4 M ýt tA 1,0 t- 00 Cý CD - ('-l rf) xt V-ý ýo r- 00 C> CD - clq rf) Kt V)
rq rq r-ý C--1 c-, 1 rn cn m rn rn mm rn rn rn ýe eeee -e -e -e 't -e V-ý vi vý vi vi V-) vi V) V) V) eeN, 0 "0 \m ýe

4-) $4

In m a) ý4 10 0 r-I
- -1 (1) r=; (L)

u >1 u 5
(d H r-A a) Q)

0 a)

0 41
I Ell 4-) 4

. 11 a) ul

I'd a L) ýJ ro

44
0 ý4 ý4
>1 (13 (1)

m U- ý4 4-) ý4 (d 4
V) -ri -1 0
91, 1 0
0
H bi
4-) - -H (13 ý4 0 -W

m
4-) 0 ý4

ý4 >1
>

m
0

r-I
L) 1

0
4

(D u

ý4
4

40
0 41 4-)

1
r-I 4

ý4 .0 4-)
0 $1,

t3) M am U) 04 4J 44 M ý4

0, ., -1 -1 -4 M -, I z H >0
(0 ý4 a) 0 Ol ý4 0 (n a) 44

b) 0 0 0 E-1 0 r-I 0 Q) U) X
u

P ýD -14 ý4 r.

4.) A ý4 4J 0

E-4 0 0 4J
U) 4-) 4-) -r-I En r-I U

rcl 4J 41 ý4

u ý4 Ol 0 ýj (1)

a) 0 (D ý4 0 4-4
ý4 0 ý4 U 4-)

ra u Q, 4J ý4 4-) ý4
Q) -4 . ri ý4
14 6 u U) 4
(13 P4 4 V.

ýl Q, rq r-l u ro (z ý4

ý4
a) 4.) ý4 ý4 4-) 4-) ro rA (a

I: , - (d (d w 04 04 ý4 (1) 44 (D a) Q)

.
U) U U ýz r-I

r. r4 F: 4-) 0 Q) 4 ý4 1-4

0) - . 14 r4
EA (D -r-I

W . r-I
W p ro 4-) (z ;: 1

r 10 I o
0

51,
. rl

1
I

r.
-r-4 -A

I
1 -1 1- r-I I. H I III I rz

j ýi
10 ý4
0
r4

04

U)
L)

rY4
x0

0 -1

E-1 ro 0 "A 4j $4
En

- ro I ro ý4

0

0 En Q)
41 rl
4-) ý4 4-) ý4

;j (o r-i tz 0 ý U)
M0 a) U (a

CQ U) 0- ra ý:
rj) -1 En a) a)

U)
ro 0 X
ý4 rci U ý4 0 -00

ro r-A J-) 0 -1 ý: (a (n I-) ro
0 a) En 0 V0 Q) Ef) :J 5-'ý

ý

(n wu ri) 4-3 :: 5 u

ý4
41 9.1

Q) a) bi

4-) r: i a) . r-i 0 0 En 4J w Q)
En 0 E-4 M

4-) 4-) 4J 4J
ý4 ý4 ý4 ý4
0 0 0 0

C4
E E

-1 ., A -14 -H

ul 0 z

En :j u
a) o a ., A

>1

4-1 4-)
ý4 ý4 ý4 ý4 ý4 ý4
0 0 0 0 0 0

. 14 -4 -4 -14

C14 Cf) WI) 110 r- 00 c7N C) - cq Cf) Nt W) IC r- 00 0-NMt w) ýC r- oo Cý (=) . c, 4 c4) :t
tt .t ýt ct -t "t 'I- V-) tf) tr) W-) W-) W-) V-) W) V') - C14 en 'R: t V') 1.0 r- 00 C)N -------ý__C, 4 C., j C., 4 C, 4 C, 4

APPENDLXA. CODE OFESCHER PROGRAM 159

3
ro A 0
. 1i I (a El) ý4 4 10
U) -u ý4

(a 0

Ul 0
ro A

4-3 41
- 4-)

u +
r4

4J 0
A ý4 04

>1 + ý4 10
+ H 10 0 11 -1 0 (1)

(a 4J ., A 4-) u CD rl
04 0 ý4 f-i 0

'1ý M H
>1 + >1 ý: 01 4.) 4-) H" NN (d (v A >1 v r-I u En >1 >1 >1 >1 -4 ý4

Is" I ý4 ýJ
11 11 x + p >1 4j 4-) H

CN N cq >1 4-1 0 U) M rl u
xX xx 0 Q) 0 U (L) 44 5.1 x- f., rl a) $1,

11 1ý X H r, -rq (z U) 0 H 41 a) a) r-4
r-I H 'A CN x -H H -i ý4 (1) ýj U) r-I -i >1 >1 >1 >1 44 ýý >> + + rl 44 -r-I >1 a) ji II 11 44 CD >1 - 0 rc5 -r-I A ý: -1 -S4
-i (N -i H r-i 11 11 11 ý4 ro 4-) -4 bi I mo (a (d ý4
xX xx rci 1 (d a) ýj r-l x m 41 a) 0o0 (d rl 4 ýA H co rd 0 ý4 4-) 10 U) tm 4-) 'In, H + u (d I ý: a) ý: 0 1 X >1 11 U 4-)
a) W a) (1) a) a) (1) (1) a) u x ý4 >1 (d -, A v (1) (13 rl 0 0 $1, rd ý4 rl rc5 rci ý4 r-ý U) 4-) 4J ý4 ý4 ýA ý4
H -li -, A -4 ro rd A ro 04 4-) 4-4 A b) 0 0 a) g-ý

r-4 1-1 1-1 -4 44 A >1 I u H a0 a) I F-: X >1 r-A rA Q)
(0 ý4 LO ý: E ý> Ea En I I ro - 1 .0 (0 ro -1 (L) - P,

, 1,, 11 (d 4-) >1 Q) X (d J-) -i >, AJ 4-) a 4-4 -1
Isl

11 4.) A - i, - En 44 04 5.1 >1 En ul (d 0 r-i
X -i I -L-i -r-I 00 H x -H . ri U)

H 4.) 4-) r-A -1 Eli (d
A >i H a) A tw 41 U 5'ý 44 rC5 A 4j 44 10 rd 0, rl

A >i A -4 1 Q) rl (1) 0 U) ý: rl -1 -ri 0 4-4
10) r-i cv) H ý4 -r-I rl m ý4 ý4 ý4 H 0

x fl, 4-) U 1-4 4-J ý4 4-) 4.) (1) ý4 b) M0 Lo 7;
1 -x 4-) (o 0. ýA x A I-i u rd rl r-i rc$ ý-, Ea

flý -1 41 1 91, A-) H -r-I I -A (a U) H x- 11 11 -W a) ro
H >1 fl, C:) H u u m 4-4

90.

ri En ý> q
>1 a) A 41 44 0 Q) A 4-) 4-) 4-) -r-i Q)

A ý4 1 11 (d 0 11 -r-I r-I rj) I (d (1) En rA -f rcl
11 CD I F-4 al 4-) rd t3) U ý4 -4 -r-4 ro ýl (1) ::

.. x 11 41 (n >1
R

u ýA 4-) >1 $'ý a) r-4 r-4 -H 0 lz:
4-3 r. >1 -r-I .. I "1 0 r. 0 4 CD C, ýq U 4-3

a) a) r, >1 :jx0 H ID4 0 X >i 0) 0)
r-I r-4 4-) 4-) x 4-4 (1) U
Ul b) x 0 41 rd

rl r. r. ro 0 0 H (1) ý4 (1) x
(is M ý4 ý4 rd ro 40

ý111
4 0

4-) 4-) r-I r-I U u (d ý: ý: U) H OL4 E-1 75 ro
ý4 ý4 (a fo . 14 -4

-r-I .H 1 ý4 ý4 1111 ý4 P
ý4 ý4 44 4-4 U) W U L) 1 ro ro IIII b) bi I I

k1l) 110 1- 00 ON 0-N Cf) It kr) IC r- 00 a, \ 0ýN cf) tt kf) \C r- 00 c\ 0 ---4 cq cn -tt V-) "o t- 00 (7\ C) cn -t V-)
v kf) te) W) W) w

ID4

L)
0

0 ý4
000

44 44 u 41
0 r-i 0 4-3 En

(1) 0
CD U) r. -11 ý4

0 0 0 rl a) "I
4j A A 4-) AA U) -

4-) 11X 04 u

ý4 rc$ -
rd r0 ri

Q) a) H ý4
ý4

0 Ul
u U 4-) 41 U)

44
rd 4j A-)

A A
ý4

(1)
41

U) U) 0
ro

u
(1)

44 0 0 (1) ul U) 0 ý: ý4

0 - 4j ro 4.) ý: 'd -r-I El) (Z 0

W En 0 U) Q) 4-) ji ý4 -r-I -i ý4

a) -1 4-) 4-) A r-I I-, a) u 0 u (0
rO - r-I r-j En En (1) r-A r-i

j
0 4j 0

j
rcl ý4

1 Eý
0 E-4 a) L) . r-i -S4 -ri 4 fo ý -
r=; ý4 El) 4-) ý4 P U) 11 4j 144 r-A () U) ý4

U) ý4 11 F_: a) 11 Ea U) U)

r-A E-4 4-) ro ý4 ý:: - W (1)

r"I ý4 r-I a) (o 4-) (A rd a) LW a

J-) A (v
R

E-1 -r-I U) + x Q) ý4 ý4 0 10 4-) 44 -1
:j I - r-I '1" 4-) E- + 0 0 E-1 0 ý4 ý4 u -, (-4
04 J-) (o A

44 A
r-I -u 0

0 a) ý 10 -- ro - En a) - r-I 4-) 1 a) EO) r-A 4
r(5 J.) f., Eli Q -A Q) - r-I -r-I 1 0
ý4 (Z Ln r-I U)

0 0 4-) ro r-A ro 11 11
0 Ell + r_: ý4 -S4

10 rd (a >1

U + 0 ý4 r-A ý4 (U (n ý4

u a) - 0 ý: - m (D a) 0 41 . 1.1 41 En 41 it
ý4 ý4 ý4 u ý4 Ea 0M a) Q) w

a) 4-j u 4-1 >1 a) -i Ea ý11. (n 15 ul ý: j (D 0) En ý4 r-A U) 0 0ý 41

- ý: - 0 a) - ý: 0 f., -A-) :J
r

0 a) 0 (a ý4

, -1 -4 Ei ý4 .. I Q) o (0 0 zx ýl 0

a) a) E 0 4-) 0
11.1

J., 4j (1) 41 4j 4-3 0 4j 4. J AJ

4.) 4-) u C: u a) ý4 ý4 ý4

ý4 ý4 a) 4.) Q) 0 4 ý4 ýl
r

00 0 a)
(13 fo r-I 1-4

o 04 R 0,

4-) 41 a) I a) 001 1 1 0 E 0
EO) En U) I En 10 rc$ I I 1 4-1

-- 00 C- M 't kf) \C t'- 00 ON C -N cn It tf) \C r- 00 C\ 0- C14 C '4 ff) Iýt
, r

\, o ý, c \, o r- r- r- r- r- r- r- 00 00 00 00 00 00 00 00 00 00 C7ý C*N C7, \ 't tr) ýc r- 00 0ý ---

APPENDLKA. CODE OFESCHER PROGRAM 160

Ell to u

4.) Ij
"
Ef)

P4
En U)

(a
El) Q) a) a)

0 4.)
04
04

4-) ý4

+ 0 0
+ 04

En Eý

ý4
fa

rd H -
+
+

ýJ
a

ýJ Q)

P4
(1)

ý4 4 4-J A 41 41
rl
H -H 44 Q)

0) >1
c -i

0 0 4J a) U) :I ý4 >4 44
00 A - L) a) 0 a) (D a) 4-1 4-4 (10 >1 mu U 4-) ý4 U) -r-I 4J 4-3 ý 4 0

iy. 0
0 04

r-i a)
ro

E l
ý4
a) (D

fo fd
4

Eý
- -r-I
a 4-4

+
+

a4

Cl
-4 4-) (1)

ro (0 J ,
' l
r

9.1
Q)

(/)
r

El)
Q) A

In -11
Z

w z .
ri 4-) . 0 b) A . 0A

a
rl

(d _4 ..
0

I ro
ýr:
E-4

H
rX4

0 ý4
41 04 r-l 1 C4 1

En -1 4-4 1 4.4 ý4 0 (A 0 En
0

r ,
- a) - a)

En
rl

ý4
a)

00 rcl
ý4

J-)
rc5 0

E-4
0

E-1
cl ý4 0
a) a -4

$1
;1

a)
A EO

Z (L)
- En

4-) a) fo En A-) (L) a) a 0 C4 (1) co 04 41 44 1 q, 0 4J -H 41 -r-I 0 ý4
0

u
0 0)
2: r w :3 (v (d 4-) 0 -0 tn ý. 4-) r=; () .

It U
41 F: -r-i

r:
0

:: 1 a
Ul

- 04

-W
ý4

(D
A 0 C:

W E-1 N H0 r-I 0 Q) ý4 (L) rcD 111
ý4 rl 04

4-) a
ty) 4-)
F-: U 4-)

0 Pý (d 0
(v 0 W >1

1 a) () (13 - r-I (d fl, -- Q4 r-A
Ea (A (a

0
4-)

ý 4 f13
-H r-A A-)

5.1
0 w 0 (13

ý4 CO
ý4 ý4
4-) Q)

0)
-4 a)

AA A

TA
M ýA - 4-) ý4 a

r-I 4-) Q) -, -I EO) 4J U ý4 a ý4 a) a) ý4 rý:
r-A
0

;j
VQ

4.) Ul
Ln -r-I w U 4.) C: 0 -rq (1) J-) -- ,- Ea 4-4 (0 Q) 0 rc$ ý4

R
z (0 Q 4-) >1 -r-I 44 ýj -- Q) - I a) a) M CQ A Q) 0 ý4

-1-) 44 ý4 ý4 4J ý4 p ýA A-) 9ý a) I a) P In a) 1 P4 (1) (13 fd a) ;j > a) A (ý 4
1

r:; j" 4-) A4 4-) 4-) Qý a) - r-I ý4 1 Q) 4J u 9 . (1) 4-) W ý4 u U) U ý11 ;j 1-1 41 0
. ri u rA 4-) ý4 a) ý4 ý: s uI ul o 4.) U) H 0 44 0 4-3 0 rc$ (a rc$ ý4
rd

U)
w

1-1
u 0 -r-I '11, r-l

44
AA 4-3 A

11 ri
a)

0 (1) 4-)
0(r (1)

ý4 - -
04

En
Pý
P4 %

44 4-)
a)

j 4-)
L)

4-)
1

1 En 1
(L)

44 a)
j

41
) :: 1

0
0

ý-l -

- U) 4 fd u 0 a) 1 0 9" b) -W rn a) .0
ý4 a) W ý a) r, (d 4-) En U U (d 04 4 $, = En 0m ;j rd " 0) u (d 4-) 4-) 4-) (Yj 4J El) 104 (a ul - U)

ý0, 0 U to 1" (a J., (a 0 a) (a ý4 U) a) 1 44 rA 0 rx, - U) 44 4-J Ul (o -, i ý4 4J 4-J 4-) 4-J ý4 J-) EO) Q) ý4 0 -1 (D (1) 0 (1) (A -S4 a) EO (n to :3 4-) u (L) 04 4-) c: u 40 El) ro J-) --- -- 0, 0 :J fo .0 (a ý4 All I 4J Q)
u ý4 -, i rg 0 1 (v - o 44 sl a) uQ u

11 ý4 4.4 (Tj ;j > Cý H U) -- r. (1) 4-) ý4 fl
(1) W 4-) a) 4.) En 0 .. a)

10 Q) -1 (a ý4 ýJ ul 4j (1) ;j (1) . r-I ý: 04
0

ýo li 4.) ý:: 0
'0 r-I EP) ý4 $4 9.1 ý111 W (d FM4 El)

FA E-4 ro H -r-I U) 4.) ýD (1) (1) 4
4-) 4-3

I1 0

C, 4 en -t tn "o r- 00 aý C) Nm "t m m Clf) Cf) M C4 M kf) \0 1-- 00 CN --4 N C-4 CN N M 'It kn '-. o t-- 00 (01ý

ý4
En

Q)
ý4

Lýd 4-)
4-) 4.) 51,

'ri Q) 0
Lýi $1, L14
LS H CN CN -, 1 4-) ri

II >1 >1 (a 4.4
V qj C: a) ý4

"I cl) a) 4-3
+ + xx ro

;j 0 ý4
x >1 >1 -1 U) a I

u 4-3
r-q >1 0 - 9.1 4-)
0 V V >1 >1 -1 0 Q,
0 x x 44 0 ++

U L)
x 0

ý4
ro

(d Q)
ý

-4
-4

44
-1

++

A
4 0W 1 1

r-i I LS LS 4j 0 (d 4J
1.8 LS ý4 ý4 ý4 U) M u rl

U) 0 (a r-I 4 4-3 0 uU0
110 X >1 4-) 4-) 0 Uu 6 4-) 51. - 44 - -r-4 En 41 m
ý4 u u m ý4 ý4 U) -1 U) + a) rý 4-) a)
0 A A a) Q) U) -rq -r-I (a ý4 P 11) (0 + 0) ý' ý4 0) 4 ý4

ý4 ý4 A L) L) a) 0 04 Vý - (L) ý-l ý'. (a ý11. Ln M
u ý ý rl 0 1 +00

-l
$4 44 ý4

1 ý4
(d r-I
ý4 U

(is
(1)

(a
-1

1-
Q,

04 4-) "1
:

A
. rq -H

ul
r

- El) I (D (13 ý4 1
- (o 44

r_
0

1 11 if rd 11 L) ll ri) 0 (1) - (a + ý4 0 :1
ý4 x ;j 0 11 r-I 4-) 4.) + rd 44 0 ý4
0 0 -r-I 04 P4 L) "I x 0z >1 a)
0 1 CN -ri J-) ;: I r-I 0 w (0 u + 0 >

>1 U >1 ý4 L) 4-) G) t" 4J a) - + 11) -1 Fj 0
0 1 (a ro - a) 4 (0 ý4 C4 ý4 (n Q) +
0 CN A 1ý > Ul 4-) (n 4-) (D I (a r-I 0 ý4 :j A-) + 10

x I x r. r. a -1 ý4 rý a) 4J (IS ý4 -, 1 (1)

a) (a a) -4 0 fd 0 U J., x a) a)
A U)

rd
a) r-A
ý > 4)

ý4
4)

a)
1 1 x 0) 4) U

ý4
4J 0

I

>1
ý4 1

4 1
0- - - ý . w (1) 0 . a

4
4J - 1-4

.0 ý H 0ý ý -4
x

ý4
0

(D
X ,

U 1 10
En F:

4-) ý4
0 4-)

. 14
U)

r-I
a)

0

0)
+
+

kj 0 Q)
:10 ý4 4J rl x 0 . 4

41 4-) X Q) 4 0 4J a) (a Q)
(v ý4 4-1 > 0) >

A A 4-) 44 Ef) 4-) 4-) (d :J ro ý: l 0-H (a
>1 >4 I x 0 (a (V - x ý4 4j Z 4-) U) 'Cý

>1 >1 a) a) rA a) -4 (1) Q)

4-) 4-) 4-) $4 En - :3u 4)
u u 0 ý4 a C, . 1> r: 0
X x r-I 0 -4 0 a)

14 41 a) 1-1 >1 a) E-4
a) -r-I (n a)

a 04

ý4 ý4 0 04

rA 0

4.) 4J 4-) uu u 1-4 (L) 44 tj) a) 41 a) 0) En
u U U $4 $4 P (V 4 a) -4 -1 ý4 ý4 (n En a)
0) Q) a) -4 -r-I rq

x &4 00 a a a 4-) 4-)
ý4 uu u R r-I r-4 rl

1 rl 91.0 f., : : 1 0 w
1

a) 5. ý4

. 14 - r-I -1 r-l -4 rq I r4 r-l -14 11.
rý rq . ri Q)

ý, o r- 00 C)N C, 4 m "tt V-) 1ý0 C) -NM 'tt V-) 1,0 r. - 00 CN C) - N m -zT W) ý, c t-- 00 C., =
tn tf) tr) tr) I'D 1,0 "D IC ýc -ý N M 'I' V) ', C t-- 00 ON ----- -- - - - C14 Cý4 N N CII NNN N C-4 r-,

APPENDLYA. CODE OFESCHER PROGRAM 161

Q) C4 0)
ý4 1 (a .H m 0 t;) ýA

0 0
u) 0) M u

4J -H rl -r-i rA 04 ý4 ý4 P ý4 04
r-I M ro (v u 41 - 01 00
Q) 04 ý-f rO ý4 x 0 -- tý

-I-) rc$ 0 -H Q)
1

rcj -
)

a 4)
1 u4 rl J-

l0
4

ý 0

ý4 (v En ý4 u 44
ý4 tD) 41 0 4-) al 41 H -r-i - . 1-i
11 R ýj ro x ý4 (U ý4 ý4 04

4-) ý 01 r-A 91 a) 10 - Ul 04 00 ý4
x

IQ ýS4 (1) Uk
0-H
U) ý:

4-)
-

.0
,

ýA .H 9 U-) U.)

rj 41 r-4 M q a) 9j --ý ro - 4 4)
u 9

r 1-1 A

(D 0 ý (0 --I ýA Q) -H a P
- l

, ý4
5 ý

. 1-1 H -o r=; 'd ,,
ý Q ++

(a rl
(1) u fTj a)

-4
a) w

((S U
Q,

0 41
z (1)

U)
ý

9
U)

u
Au r

ll,

ýA . r-I $-,
) a

rd
0 1 -1 U)

r j
ý U

"
04 ý4

o

4- (
x Q) ;j

-

fý 4-)
0
t)) ý

04
4)

c l
P

r-l
4)U 0

Q) r-A 41 q, 41 -
-

4
4-)

4 - t; 4
-1 -r-I

4J u
U) 4) S4 (D

ý4 0
a) 44

;U
) -- U

04
m ý

-rj 9

ý
-4 ý4 - ý4 ro En r-A

4 a
(1) ý4 (D

) -- 4
u

ý4
0

,

> (d 4-) (13 0 ; - -1 Ea Cý 4-) rd ý4
95

ý4 >1 rR
Ei 5 , M a) rd ý4 0 XX ý4 u

r4 ý4 4-) rd >1 -1 04 4J -r-I Q4

4J -H ra ýl L)
x Q) (1)

LO 4j
x

En 0 " 'C' F, 04 r-A -r-I U
Q) i

ul
m

ý4 M

, (i) r-A Fj a) j Cý 0 a))

9F

41 q,
U)

4 (v (V , rcl fý 4-) 4. ý Ea :- tm -r-I
04 04 ý4 -r-i II- . 11 ý4 u 11 1 1**

r-i ý4 U0 "A ý4 Z (0 U ý4 ý4 ý4 U 4j ro
r=; ý

IQ (0
) H ý -

ýA 0 b) 0 ý4 0QQ ý4
)

Ul A bi 0) 04
. . 14 rl r-I 4- (1) - (0 A uM 0 ý l l " 4- -r-I > l ý I H -1 (0 (15

Ea Im ý4 ý4 ý4 > ý4 a) 0 ý4 (d -1 x
ýI

u -4 "A () u (a ý4 ý4 b) 0)

-r-I U) - (a El) UQ a) i-i 4-)
Ell

-4 0
UU

-H 'A a)
U) Uf

Cý
) rD B

'
il a) 4-)

3
bi 0 0

4) .H
34 4- 04

l 4
0 :)

ro a rcl r rfc
ý

>1 A
ý; Lý Sol

--
ý4 0
A-) 10

4-) H
0 (d U)
(v 4-) (0

ý4 ý4

4-) 4-3 4-) J-) W 10 r0 0 0 W
ý4 k ýA ýA rl 0 . 11 -r-I t3) m
0 0 0 0 EA ýj ý: l ý4 ýA . 1i -H El
R R R R 44 L" In

a)
El)

) l -ý R R R a
-1 H -1 H r c r r r 10 ro

M 'Tt tt) 'so r'- 00 O'N 0-NM 'It tf) \C r- 00 C*\ 0-N en tt t/I 10 r- 00 (3', ý 0-Nm 'tt tr) \C r- 00 Cý, 0
--1 -1 -. 4 --1 -" _-q ýNN C14 NN C14 C14 NNN Cf) cn cn cn Cf) ff) mM cn m 11, IZI- Nt I- It It It Itt lqt I- W)

>I
0 1-1 r:: (1) 1 - a) Q) ý4 4J 4

(o 4J

(13 4-) ýr - - 10 (U $-4 -14 10 0 ý4 04 ý4

bi ý4 U) ý4 El) (11 0 (o
rl

7ý
'd 0 ý4 Ef) E-4 4-) (d ý4 5

r-A -H (D 0 r-4 E-4 4-) En 04 a) () Ma
;j 10 ý4 M 44 fi rl ý4 "I a :j

4-4 ýl a) 0 (13
a) -A

I ý4
'(1,4-)

ý4

Mu E-1 M 4-) En 4-) 4-) 0
rl Ea rd ul ;j :j

ro A ý4 Q) 0 (n Q
1114 ý4 0 ro ft ri (0 4-) ý4

0 0 4-4 L44 ý4 ý11 (1) ro
0 a) 41 0 u U) 4-) (0 10 -S4

r: i
r=; u (z U (d rd (d (d a) >00 ýA

(a 4-) 44 ý4 A 44 44 ý4 En r: j fo o
a) 44 A ý4 0 1 P4 41

4-) u 44 W :j Pý
rl 0 - 4-) 4-) 4-) 0

P: (d 0 .H Q) 4-) M 91. ý4 H ro : E:
(D -H 4-4

: :
4-) 1 U 41 rz: rl 0 (D q
4-) rc$ (o ýj (d 44 - ý4 (0 0

a) r. (L) ul 0 a) 0 4-4
ý

M ý4
) Ol () a) Q) 4-)

ý: (d 4-) x 0 4 4- 1
'

ul
0 rl H r-I 41 A 0 L" 1, r-I ý4 ý4 Ea

jz: 4-) H ý4 A 44 0 4j 1 4-3 a) 0) (z
U) E-1 0 ;j 0 r=;

44 4J ý4 0H
1

J-) a) 0 75 :1 04 0 ý4
4 _: 10 A A ý4 0 0 4j 4-)
0) 0 4j 1 1 Q)

l
z ý4 ul

,
ri

: : :
- z M - .. ýL l '"

0 ý4

fý 4J - - U) - - r-I 4-) U) 4-) 4-) u A >1 41 4-) Q) (1)

ro
ý

r
I-i L) rd

ý4
0, ro

0
r.
:1

rd
r

Ea
a)

I (o 10 >

-4 ý4 CA ý4 It
El) o

)
o
ý

(d
ý

-
r-I 0 Z 44 ' ,

-W
04 0 rd 0

'1., -4
4 ro rl ro

4-
4-)

4
0

4
4-) F-: 0 P4 - 41 4-) u r: 4 Ul k" Q)

4-) -4 -4 0 ýj 0 0 0 a)
ý4

-A
fX4

u
A 11

0
En

Q)
ýA

fo
4-4

-1 Q) r. 0
ro 0 -r-I u -

ýL4 u

(D - A I a ý4 Q) 0
Q) U)

4.)
r A 4 1 -

ý4 ý4 En 'Cl
>1 fa

ro Ef)
4

(1) W 1 04 r. (1) (v Q) o (z

0 (d F.:
)

U)

A Q)
4.)
u -

u :5
44

75
ý4

4-)
Q

ý4

"

4J 44 --1 r-A U)
Q) C Q4

E a) M U
r

r 0 - 4 ro
1 . En ro ý: En 0 a) r-I 44 4-) ro o 1 4

4-4 > (1) ý4 W a) U) 4j
u

ý4
0

(D
U

(15
LW r.

ýq

rl

r-q 1 4-) 11
..
..

- .4
--

En

11.1

(d -4 .0
ý11.

a) r. 10 4--)
0 (d

>1 J-j ro 0 ro 0 (o ý4 . r-I 04 ET4 Q

J J J 1
ý4 0 :: 1

W 3-) W ý4 u t-W 4) rX4 9 Q) ý4 4- 4 4- 4- A-) (d - rA 0) Q

0) ro -4 U) 0 E-1 A

ý4

0)
4-)
0 .. 54 ..

rjý
-

a)
1ý

9)
ý4

Q) (L)
ý4 ý4

:j
0

:j 4-J 'rý 0 4-) u li ;J
5" -4

:J
04
En 41 4-)

r
rJ4 U >1 >1 m

0 ý4 ý4 ý4
(a

44

H (L) M (o
(d

44
ft

44
ý4
fo in a) a) Q) a)

(a
0

(z Q)
0W 14-4 - rA X

0 0 0
k"

r
44

r
4.)
r.

4-) 4-1
V4 z

0 ro .
4

.
4 44 44 1 1 - 4 -A -4

11 10 1 4-) .1 - 1

0
75
Q)
U)
0

u

:J

Ef)

41
ýl
0
>1

10

, rq rn e v-) �0 r- oo c\ CD - rq c4) 'mt V, 'Z r- 00 C> CD - r, ý rn e V) �o r- 00 oý CD - cq

--, -4 --4 "-. 4 --4 --9 - --'d --'4 rq rq r, 1 cq c9 rý cq rq rq rq rn r-) r-) en re) rn rf) rn (-) rn eeeý rq rn -e Kr) ý, 0 r- DC vý,

APPENDIXA. CODE OFESCHER PROGRAM 162

(a

r-I (0

H 0)
ý4 H
0
>1

ýi u
41 4-4 4-) 41
ill U - r-I F-:

r-I , 44
P4 0 0

4-) 44

ý911

ý

b) 0 (1) Q) 41 H 0
-S4 ý4 ro

44 0 ro Fý 41
C4 x (d (D

ro z 75 0 >1 0 00
(0 u H (ts 0

r-I 1- 04 04 E-f 0 04 E/) U ý4 u H
U)

1 rd 0
-1 (D

1
9 . 11 ;

-
ro 04 r=; ý4

a)

-
4

w (a
4 C

o
uu 41 C) E-1 r-i 0 0 HH z

All (0 41 ý: 04 a- r, " H a) 4-) Ln 4-) b) I- 4.)
;

a) LO 1-1. H

0 j d
X C-4 0 1 H

0
J-
"1

r
4

0
Q

0
rA

-4
(0

ý
.

-4 L)
0ý

'
1; 11 -zil En 44 r C) 0

c

Q) ý4 uu Q) a) rl rl L) 0 U) l P4 0
Lr)

04 1 -r-I ý, ' ý4 H u P4 -11 A 04 04 04 4-) ++a rl v 41
M -1 r-A AA A (0 0 ý4 0

11 44 4 4-) b) tm II I P: ý4 C3
ý4 0 U g: -ri -1 (N (A M

U)
Z En

0 U)
1 A U

-r-I FA ý4 ý4 (a IzIl OD 1 44 0 a) 1 '0
ý4 a)

0 H
1 Q. 0

44
0

H u
H

u
-A

ý

- -
ýA ý4
00

(a (0

b) 0)
)

a) 41

00

x >1 ri))

-, 1 C13

>1
C)

Lf)
-W to ý4

J-) A 4
x >1 (d U)

A () () u
I -ri -ri -1

a
ý4

11
W

(z A-) Ln El) x
(U

E-4 1 0) u i
L) u

1- A
uo

A - -I -

$1

-H

rl
0

a 04 04
)

Q)

; u
3

o 4-J

z
-
r, -4

4-
51 ri)

-l
-P

- r
04 a

r r
04 Qý rd -A

4-
rl v rl i -r a 4- :: j L n -

b) (v 11

W -r-I J-) H t)) - ý4 4-) H Er-I 4 ý4 Q)
H 44 rd 11 0 (d x 4-) 0) 0) ý4
% Q) 4J .. 11 .. 11 0 4J .. wI x (1) w m
0 ro P, r) r, .. 0 E-4 W m (0 (v ý4 ý4 4-)

W
i

ro I'd
H 4 1

(a
a)

rd
(1)

> a) (D
ý ý

41 4-) 4-) x
W
X

u

.H
-,
ý

9 9 -
ý4 ý4 ý4 ý4 r ' ý4 00

4
ý1: N

4 4
(a (a

En
- -I

X
a)

X
(1)

(i)
4)

E-4 a
4

0 44 44 b) U) (d ru
.

41 0 IQ
A Eri 4 JJ 41

r > 4-) 4-) - a
u u Uu u u u0 xx In Ef) r-A
rl . r-I rq -H H * a) r-A 1 -r-I Q)
a 04 04 a

: :
a 41

:
> >

0 - C'4 Cl) It V') "0 r- 00 C-, 0 --1 Nm -gl- tr) "0 r- 00 as 0-N cf) qt tf) , C) r- 00 a-, (=)
N cn IRt t1l) 1ý0 rl- 00 CN 00 00 CD CD CD CD CD CD --4 --4 -. 4 --q --4 --4 --4 -4 -4 _0 C, 4 NN CN4 C14 N cq N NN mm cf)

>1

4-)

ý4 ý4 ý4 (I. (z

rl
0
x

0 0 51,
0

b)

44 4-) 4-3 41

4-) 44 44
r4
4J :J

r.

9 ro
9 a)

ýi +

F4
41 ý4

U)
_H ýA

0)
ri

U)
Q)

0
>1

cn
5

ý ro
1

ý4
zt ro I

4-) 41 a) -4 0)
ri . 1.1 Q) ;j rA
ý4 4-) -A a u ý4

ý4
(0

Q.
rd

1

(0
m

r-i
0

0
ý ý4

0
(0
1 1

-4
4-)
ý

r-i
0
0

0

0)
ý

Ol
ý

0) 0)
.
1.

co 4-) 44
4
L)

.1
U)

4
(a fQ 4 4

A J-) 4j A ý4 1 ý4 0 A ý4 (a 1 ý4

I L) u ril
(0 ++ ý4 rd En ý4 4-) ý4 (a ro 0 U) ý4

4) 0) M b) 11 J-) -14 M rC5 .I L) 4-) -4
,

b) -4
- rl ' r4 -r-4 F-: r.

A
F:
H

U ý4
0

0
r:;

R rý
:: s

f. U
H 0 41 -P ý4 r-I r , 0 ji 44

4
a) -I r-q 0

0 a 4j 0 0 0) tm
ý ý

a) -
ý U) A ý4 J-) u A rz ý4

A ý4 4-1 rý X >1 4 4 4
u Ol Iu M

1 (0 Ha a rd (d a) ýj I U (0
r 1 r

fa C: ro - .0 4-1 E ýi A., z ý4 4 o A ý4 z Q ý4 ý:: .1 .
o

-%4 A ý4

ri J-) - I , U r-I
-ý

I til

.4

U-
-ý

U

. i
1 -4

U
ý4 w

0
ý

H
() 4

0) 4) 0 ri) (a 1-4
r
LO

4
0)

-
-1 4 J 9

F-I M .. 11 . - l ý
11 ..

.. 11 (13 (a E-4 ..
11

.. 11
P:

H
ri w

0
ý4

ro
11

..
a)

10
..
.. 11

L) g ý
H

--i

ro 10 a) 12) P ý4 w ro ro 11 W (D
1

a) 95 ro (a 11
ri -, A (13 M x r. rl rl -r-I .. 2 x .1 . F: c: _4 . 14 U)

ý4 ý4 W a) E-4 :J ýj ý4 ý4 E-4 E-4 :J Eý ý4 ý4 1-4

44 44
0

0) 0)
a

r-A r-A

. rl

44

Ei
44

E
Ol 01

Ei F. Fi
4-4 44 0) u u

04 4 41 41 1 -1-) -W 4. j 4J 41
J-) 4j 41 4.)

cq re) e v) ý, 0 r-- oo c\ CD - cq rn gt In �0 r- 00 C> CD - r-1 (4) ýt kn ýc r- 00 cý CD - (, q Cr) e v, ý ýc r- 00 (: CD -
vli vi V_ý V) Vl> vi V) \C "0 ýo "0 IZ 14D IZ \, O 1,0 1,0 r- r- r- r- r- r- r- r, r, r- 00 00 wx >O �ý ' �� >O �, c2, Z,

APPENDLYA. CODE OFESCHER PROGRAM 163

(0 ro ý4 b) b) + (a ýA + u g1
0

41 10 r-l
04

4j
>1
4 t3)

a) u+ (o
. rl -r-I rl 4j -ri + ý-[
ý4 ý4 (d a C) ro 00 4-) ri (0 >1 4-) ý4 + ý4

Q4 + Q
0 rA 0 +
ý4 ý4 + >1
a -r-I 4.) ro mm C: En 0, ý4 Ul ý4 + ý4 ý-4 (o

r-I ri 0 -4 (d rl + (0 (0 (V ý4 ý4 -1 Q) 0 (V ý4
00 + rO 0) rQ En 41 -4 Q, r-i + r: (1) M (D 4-) F, + L) 0) (0

r-A A-) ;j ++ ri (d ýq + ++ + Ell U)
4J ro r. + + + Q)
X F: -r-I (D ro ro (N CN 4J Q) a) (a rd rd -r-I 4j dp Ln A-) 4-4 44 44 44 Ef) -1 -A ý4 J-) ý4 0 0 ý4 X I a) Q) t3)

++ 0 (V ý
4

u u) 0 rz; 0 0) (1) 0 ri) 4 ro 0
ý4 ý4 0

4) In 0 rl ý0 0
L) a) + r=; 4.) V

)) 1
o Q) z

- 1 + 4- a
ý1. Ln ý4 >1

UU 4.) 4-3 rd --j 0) ý4 , A-) Q U)
A AAA ý4 ý4 04 4j 4.) 0 ý4 Ln +H

I r-l -r-I Q Ea :j ý4 f: 1 H0 + -r-I ý4 0- 0)
uu

'o
0) 0 HI Ul 4j ý4 CD 4-) ýA

ý4
(a

Fi 4
L)

9 4.)
1

44 4 j
d

4) (L) C:) -r-I 4) 04 - rd

> 41 a) - rl .1
:j xx

0 1 (
0 to

(1)
ý4

4
A-)

C) ,
, CD

> U)
ý4 91 a) ý:

+

+
a)
ý4 ý4 fo

(d a) r-I a) a 04 4J 04

-r-I 0 ro 01 0) -1 + 40 a) (a 41 -0 U) b) u a) 11 11 A r=; -i ;j rd ro Q) 0 -S4 CD a+ 4.) rcl J-) rd rcl ro Q) U)
E4 QQQ ý4 1 a) ý-l ", ý4 4-) ý4 + ; l. 11.0 P: a) r-A a) 4-4 44 4-) 0 -r-I (a m + 44 -r-I 0 r4 (o ý4 Q a)

j- fj 4 Im (L) 0 ý: U) r:; + 0 r-: + r-I 0 ý: 44 4-) 0 ro 4
ro 0 U) () ý: QI rd 0 + Ell dp a) r-I ý4 U) 4-) -

r-i
r,

rd
F :

a ý4
-1 (0

a) a)
-4 -4 1

0) rd
a) - -I

0
)

rd Q)
r 1

r., -r-I +
- i

$', =
10

a 9 -i (D ý4 W >1 ý4
r 4 - 1

(D 4
r r
r)u

-
(d

r ý
4)Q

4-
4)

,-4
(d ý J

r 0) +
ý: a)

0

-H 4) ro
(0

04
it Ea (z -4 Q cl (o

1 l ý4 ý4 91. - ;j - ;j
4;

(d r-A a) ý4 ý4 - ý4 4-) -H U) fý F: U) -, I (1) - r-I -i 4J a) 4 rd (1) u
*H 'r-I 'r-I r-I Ef) a) 00 C4 4-) (d ty) :j Fý u a) F-: U b) 0 -r-I ro r,) Ef) (0 x a) 04 41 U) 11

S4 S4 -r-I En 4 -4 W 0-4 4 (D r--f 4-) Q) 0
ý4 ý4 41 ý4 Q 4.) 4 E (d ul 41 U TA -1 9 (d 41
(a (a 0 (a ý4 4-) u ý4 (1)

ul m : a) (13) S4) J ý: .. I1 0 10 0 -1 U) ý:
ý4 0 F 0 a)

rc:
a - a

(1) (d IA
4-

a)
(d
ý4 04 04

a)

J,, a)
En

(1) -1
4) ro

4-) 0 ý4
a) a) Q 4.) 4-) E-4 ;jr: 3 U U) (:) ;j ýj E-1 EQ rý (o H rd 10

0

Iu II II gl
-, t tr) ý, c r- 00 C., 0- N M ýt In IC r- 00 Cr*s C -4 N rf) ýt V-) ýc r- 00 0ý 0 -4 NM Rt W) 1.0 r- 00 c) 0-NM It

r- 00 00 00 00 00 00 00 00 00 00 c-A c., ON C7\ aN aN C-ý as, ON ON c) c) C) c) 00000 C) -----
-4 r4 C14 cq N cl CN4 C14 CNI C14 C14 C14 C14 NNN

0

rl
x r_: (D
(D w fý
4-) ý111

Ea 0
-4 H t3l 10

a) 0
+ 4.) > 4-) 4-4
+ x -4 -r-I

a) 4J U) +
41 rl) 0

44 ---
0 CN m IQM ý4 >1

u -1 Q) -H

-4 + J". a) + + 4 4-4

+ 0 41 0

Cl
C) +

+
Cl +

U)
0

x
44

144 Q) En + C) a) 0 4-) Im 44 AAA

1 ý4 Ln 4-) ý4 '0 rq (d -0 111
0 95 (a b) -X rd 0 . 4-1 0) - r-4 -
00 (o - a) o (1) Uu Uu J1. U 5'. ý4 44 ý4

a) ý4
04 ý4 0 J-) $4 ý4 ý4 ý4 U m- r-I (d 10 ro ý4 ro 0 ý$ 4-) Ln r. rA -14 -lq -rq - ý4 Ea ro

. 11. fo r-i > 4-1 (V
4-1 ý4 X - 0) ý'. C-) u (d ", ý4 U ý4 44 44 (a Q) -4

0 4-) U 01 U) 44 (z a) r-l 0
)

4) 4 5 ýA AE co ro 0
zý u

- 0
> Q)

m 0) U
Eý Eý E

Ln x 4-) 0 4-) 0 r-A 4- 44 4 1 I 4 1
I a) ý4 (D 4j A 0 0 4-1 u A ý4 U)

C) 41 A 4-) to 4-) AA AA Eý M . I m
Ln x ;J Q) II I1 10 0 E-1 Q) u t" U

- ý; 'd
a) 10 0 10 4-j ro 0) 0

(d ý4 - 4-) x co (D rd 11 0 ý4 r. CQ ro (D (0 11 x
4 (d 4-) a) ý4 Z ro 0 r4 a) ;j -r-I ro r-i

u
rl 4-) 0 4-) 4-) 0 0z Q) 0 r-i 4J r-A 4-) 0 rX4 tm

ý

(13 F-I a) El) xx E-1 ro a) ý4 -4 -1 (L) rq U fo t)

(L) u 'A ý4 a) W E-1 0 En Q E-1 4 ý1: w r-4 it
a) ýD E (d a) a) (D 44 r-4
ý4 pq u ro ro ý4 t"

1 (z U) a) Q) 00 14 Q) - 0) 0

x 4) 4-) -, 1 4j
ýq

4 W -14 10 rc$ W U) >1 P ý4 ý4 fa

(v r-l
> 0 ý4 0 0 X (1) Q) (0 (0 Q) ý4

.0
ý4 ý4 ý4 ý4 (D U) ri) 0 2 5 ý4 ý4

(d (a
E-4
0 E-1 P rA -4 x

>> ý4 ý4 5N

(D 1-4 1
I

C: ý::
. r-4 - r-4

I
I

1 (0
IE

(a
E :j :J

III
III

J., L) U u

r- 00 cr, C) cf) r- 00 ON 0- C4
- I

M 'qt wl '%C r- 00 a-,
I l

0- C4 M 'ýt V)
1

ý, Q r- 00 (7*, 0 -" Cf)
c n cn cn 'Rt 'It "t "t "t W) tf) W) V)t i) tr) W) t n tr) tn ýc \C ýc %0 IC ýo \C \10 110 \C r- r- r- r-

-4 _4 -. 4 -., ,-" -4 -4 -4 -4 -4 -ý ý- ý -ý ý- ý- -- -- --- -- -- --- -- --- ---

APPENDIXA. CODE OFESCHER PROGRAM

El)
10 N

>
>I 0
En

++ x ý4
++ A rl

1 44 >1
C, -1 En
>1 >1 m 44 1-1

04 0

00

lvl ýo
AU

U) Lo I r, 0
0

++ -U ++ IQ
44

+

A

L)
++ >1 f--: Q)
++ >1 (1) U)

x ý4 -A
C) -1 (o 4-) ý4
xx A 44

1 El) In
44 04

00 (1) 0A
4J

A (d
N Iu ril (a J,,

- x -1 4-)
AN 0

04 1
A
I+ A (d

+ 1 4-)

Ef) 44
(d 4-) XA rA

A 44
I W

4-1 A $1
-x rd (13 1 U) 1 0 (d ., 4 -4
.0, - m u x I (d - u >1
rl 0 ý4 (V 0 (0 .. 4-) v-
H >1 0 ý4 0 -x ro - 11 F-: II En N Fi)

-I - ri) H X

C) LI-4 (d >1
LI-4 44 "7 4-4

mM >
04 04 04 04 0 r-I
0 (d 4-) 4-) 4-) a) a) Eý (t)

. 1i -r-I -4 -1 r=; fi F. Ei (13 (d (a ý4 ý4 a) >>>
-1 -1 -4 -r-I u uuu uUu u u ý4 000
4-3 4-) 0 0 0 rl ý:: rl 10 0

r4 E P.

1 a) a) (v 4-) 4-) 0 000
U) to u Uuu 04 r4 " u u 1 ý4 ý4 ý4

Cl)
4::

-'-I

0 -4 N cn qt kil \ýc t- 00 C*ý 0-N cn ýt V-) \C r- 00 ON C) -N cr) "t kn ý, o r- 00 C71\ 0- C14
C14 N C14 N cq N C14 C14 C14 N c1r) Mm c1r) m cr) cr) en m cn -: r 'I- -t -t -t -t "t Nt -t 't In tn tn C14 rn :t kf) \C r-

'i
4-)
(d
4J
U)

ý4
0

r4 En 10 0
ul

., A 41
-4

0 'r, 10 9 dp

-1 4-)

U) a) ý-; ro rl ý4 El) . 1-4 ý
0 (d .H Fi Eý r-I 44 4-)

- r-I 0 a)

ýj (a + J-) = U)
4-) "+ 0, (N
(13 4) 1 dp (D A

a) ra J-) rci -4 rc$ I
ro U) 0 a) 0
0 (13 1 Fý ll: ý En 10 E ý:

-0 r-i (d
Fi a) ý4

A-) 44 4-) En C)

a) En 0W (d

.. 4-) a) rj A-) ro r-l Ea u

.. rcj
Ul 0

- En 0
- . 14 ý

-1
ro

-1
wAA

m ý:: El r-A rcl 11
a) . r-4

S4 W
A ý4
I (z

0

ý4

9 a) ý4 4-) (0 -1-) a) -ý
5

rd W ;j ro o 0) ý4
U) 01

ý4 (o x 5
. r-l
En

(o
L)

a) a) .
r-A .0 r-I

10
: -j 1-4

0 U)
Z, +

Ei (o
u

0)
ro

. r-I
a

rl a) ap
J-) r-I =

0
rc$. 1.1

4.) +
AW 11 11

Q 10 rl I -H 'A

(d ro ý 'H
(d ý4

ý
ri (a 'Ics -r-I rd ý4 ý4 -A EO) -,

(o 0
A-J

1-4 (o
a) rd -, -1

r-A
(0

4
(d ý4 (0 0, (ld ý4 r=;

4-)
ol
C: 4-)

4-) - L)
rd Q)

-4
U

a) t))

r r-i a) H 111 0 S4 Q) r-I 4-) (n 0 La (0 a
U 'd

L) 04 U 4-) . r-4 (n - ý4 'r-4 4-) 0 ý: Q) 4-) w
(o r4 U ro ý4

ý4
10

4-4 (1) Q)
00 10 ro

44 U (d 00

UU

' I - 00 c7N 0 --1 C'4 M 'ýT V') ýc r- 00 Oý 0ý C, 4 C*" "t W" "0
tt) r

. '. -4 C-4 NNC N4 NNN N C, 4 N cf) en M cn M M cn
-4
C-4 N

ý
N N C4 c-4 C14 N C14 N C4 Cq N Cq Cq N Cq Cq N Cq NN

164

U) tý) >1 rl 1; . ri ý4
U) u a)
x >1 >

4-4 ., A
U) rz ý4
H

ý4

(15 1 0,41 04 ol (0 ý4
r-I r. E a)
r-I rA >
(0 u I r.
+

ul + 04 0
rd

. rA U) ý4

0

44 41 41
Pý

lcý
(0

U) () tD) 4-)
t3) x -ri 0

. rA 44 ý4 ý4
ý4 0 r-I

ý4 (D 41 41
41 rd F:

ý> U)
A0
11 r=; ý-4 ro U,

a) 0 11 -4 (o ý: ý4 44 a) ul r-I U

4.)
ol 75 F_: -H I (o
Do r-I :J 1[11 - A-) -4 41 41

0 44 In (d ;J0
44 x ID4 ý-4

U)
En 0 (D

4.4 0 rl
>> -H r-4
00 En (1) En U) 4-) ý4

ý4 ý-l ý4 u

-r-I -, -I -, I r. $4 ý-l rn ro ro rd :jI: i r-i
4-) 4J 0 aa 04 r, 4 ro ;j
En -4 -1
r-4 r-A

r-A fu

ý4

00
4-) U
U)

, 1;
L) (d
0
U)

4

a) (a Q)
4.) r: i ý1.1 0u

0
ri

a0
M 1ý

41 Fý a)
u ý4
J--ý 4-)
0 U)
u. 'i

U)

En

>
0

a (a ý4

x

X

4-4

AA

x

11

>1

x

44

4

U)

El)

U) Q)

44 -1

v-2

CD a)

(1) En
ra fo (a

(I)

-r"1

u 0 El)
En

ul
-i

II

---1

14-4
A

(z
A En

>
. 14

(a -

uu
00
M U)
cn U)
(13 m

u CL

a
A 113

0
u

xx
Q) (1)
4-) .0 00
41 1-)

CD ýt \C r- 00 V,

APPENDIXA. CODE OFESCHER PROGRAM 165

0 a) E ýq

0) 0 t3l ý4 4
Q) $1,0 11. Q)
4-) -r-A 44 -ri El)
(a -1 (1) ý4 ; 11 -

r-I ol A-) -H 0
:j , ý4 El) ro

04 0 (d
0 ro
(is -001 Jý 4-) 4j ro ýj (D 41

ý'. 04 rl (1) 41 U) 4-)
0 00 "A 4J (a 0) U)
41 4-4 44 U)

F,: +
;1 04 + ý4

-1 M 'd L) 4-) En ý4 0
5-1 ra rc$ ill (d Ea ;I ý:: 4-) ý E0

-1 (1) (1) [A - 4 En ý4 ý4
P r-A fý 4-) - Q) - - ;j
4-) Q) a) 574 r, ý4 + u U)
Ea 4-) 10 4-) ro 0 (a ++

r: a) ;j u -1 L44 + In
a) ý4 1-1 Ell 4-) L)

77 a) r-A 0> 4J 0 (1) L) rq
(v 04 (a L) 44 a) XM fý ro 41 ý4

4 rl u ý4 r-A 4-) a) Q ro ;jA
-

a >1 a)
U r-i En -ri -4 a) 4j (z r-4 4-4 1 0 0 (0 44 ro

44 in j" ý4 0x 0
(1) Ul

A (d rO U) ý14

r
4J -- >1 I

I W r-I 4-) o d F: fI r a) X, -r-I - r-I 0 En (d H x x o=
Q) rA Q) (1) ý: M r=; F: - C-) (1) =m 4-) ý4 CN (n 0 ýQ
P: >1 4. J H -W (1) 4J

0
0 W ý4 A-) x 00 r-i H Ej

A -1 4-) 4-) 0UU ý4 ý4 -r4 0A r4 (L) 0 rl J., (d
I r-I 0 (0 4-J b) ý4 (L) 4-) a) 4-3 UI " 4 4-) u 0 .0 4-3 ýL4 4-) 4-) 4-) tD) r:;

Hu -r-I ý >4 > u I ýr. 44 LW -1 U) a) = >4 r, = r, f. r, F_: 0

r. u a) a) rl gl, (1) - ý: w -1 (1) 0 000
0 4-) (a ý4 U) 4j -1 :ja ý4 11 u Fi 4-) 44 r:; 44 44 44

0 L) 44 (a fo 4. J ý4 0 0
ro u 10 En x

)
. 11 u
u EQ

a) F14
1 ýr

0
4 3

u 11 11 11
U) rl U) a 4 4 -

0 a) 4J (1) 4-) (D 4-)
U) ul ul . 14 0 Zc ý4 4-) (a

,
41 Q)

r 4-) z gX ý4 u) 11 r-: 0 ý.
0 44 0

u o
a) 0 u 4.1 'a U) a) (d 11 0

P4 0 Q) U) -r-I -r-I jj (Tj Q) a) (d X 1" 44 5 r-i r: l

:: 1 r-A o 'o 5 -4 r, ý4 r-i r-A ý4
'0 -1 (1) a)

ý: ý: F14 :1 r=; .00
0 (a b) ro L) L) (d u 4-) -1 -1-f 0)

'
U) u

,
(d 113 ro L) U r-l ý4 a) 5 ý (d ro ý4 r.

q0 1
E0.

U) ý
Q)

U)
a)

: r-i
(13

:- r-I
L)

: -i
U

: 0 1ý (L) (d
44 Ef) V, r-A

I :j
1 44

O*N C) - (14 M (=) -ý C14 m 'RI, W) \0 r- 00 c7N 0- C'4 M "t V,) ,c (-- 00 aN 0-C, 4 m Rt W) INC)

Itt kn WI) W) W) -Nm I- W) 110 r- 00 ON -ý -4 -. 0 -* -ý --4 -. 4 -0 -0 -" NN C'4 C14 NNN C14 C14 C14 Clf) m c1r) Clf) m c1r) m

-ii
H

A

4-)
(0

0)

10 F-I

a

U)

Ell
>1

En
x

CN
x

Cý >1

x
C-4 C-4 >1
X >1

x >1

>1

>1 >1

xx
>1 >I

in ri) ýt
x >, to

7;

r:;

CN C14

>1 >1

Cý
44

x-
cq

44 X

>1 >1

44

x

44

>1 >1

(ý Cý
xx

>1 >1

t" 44

>1

r4 Fi

r,

9

lö

t»

+

x

ý114
0
J-) 10

z0 10

A0
1 4-)

>1

x

01 0)

. rq -14
ý4 ý4
00

m
r,

(0 3-)

ýi c)
C) A.,

i-)
Id
r. ýC. rd -4-) >,

' x

,Q (d
(n ý4
Q) lö ro

ýý Q)
(0 41 U)

X

(0 (V
-4 rn c:

AX

, tp

ý4

A
I En

1 ý4

4-)
10

>1

x

uu
ro ro

04 a

(�j

C-)

A

HX

U

Qi

II

H

4JJ

A

Q) F-I
4-)
(a
4-)
0
ý4

. rl
4-3
rl
(a

u (v
4-)
(d
4-)
0
ý4

13
ý4

>, x
04 tz

-- rd (0

X: 04 tz
(0 (d ý: ý>
5 r:; U)

c4 cý c4
(0 (0 (1 (0

EEEr:;
Q)

k4 ý4 U 4j
(V (L) Q) 0
>> 4-) ý4
r. r. (13 -14

-, 4 -, -1 4-) 4-)
ý4

ýQ
0

, --4 Li ý-4

(o -4 C"l M "t V-) ý, o r- 00 C)N C) -4 NmR: t V) 10 r- 00 c7s C) - C14 C'f) ý: r W) ýc r-- 00 c7N C) -N cn It If) IC r- 00

00 (7N _4 4 ý- , --o -4 -4 - -ý ý c-4 NN C4 NNNNN CII cn V) cf) M cn cf) en cn C*f) m ý: r 't 't 'RT tT 't q: T 't tT

APPENDIXA. CODE OFESCIIER PROGRAM 166

11
rl
0

01 b) 4-4
t3l 0 rl -1

ro -11 M ý., Fý 0) rl 4-3 ý4 4-) Ea 0

r-i ro ý4 10 44 El)
0 a) -, 1 (3 ra 4-)

f, 4.) En b)
4-)

El)
"1 4.) 44

4J 4-) 0 a)
0 0W4.) Ea
4-) (0 b)

'o I Ef)
Il ý4 'A 4.) (1)

.H -4 10 a)
0 4
rz; ji

In 4J 4-)
ro 0 ro 0 L) a) rd 0 ý4 -r-I ý4

44 44 rc$ Ef) U) 0
44 (d 4-) ý4 0 r. - (L)

ý4 0 Q) -H 4. J
-4 (D 44 Q) U r.

U)

rl
N rl 0

ul -1 ro A-)
0

L14
F-I

4.) 4-) . 11 (D E0 4-) (L)
4-) ul 0 ul

+ (d a) -li fý ý4 ril 0 0+ 0 J., 10 ;1 41 4.) (d f-I C: 41 10
U) r-i J-) 0 U) ý4 1-4 H S.

9

(1) 44 10 (1) F-: -r-I a) ra
(d ý4 ý4 0

14
Q) 10 > 41

ý

r- OD ý4 fd + 0W 4-) x Q, 43 fo a
+ 0 r-A -1 -r-A -I ra "

U4 75 r-I a ý4 0 >1 >1 (1) 0) rc$

'ji) >1 fl. (d - a) 1 4-4
)

a 4-3 ý4

u
(1
4-)
d

0
Jý
1

0

Ei i
J

4
A0

U) I

(d Fi

ri (0 Lo W
) Q)

4 (1

() - -I

0 r-I
0 0)

)

r-I
0

-r-i
6 Lo

ý
li

(
>

4
4)

4
Q) a)

1 4.
rd ý4 - U) (L) (n

r
ý4 rc5

4-
4-)

F-: -1
0M

(d
0)

44 -r-I
j

U) U) ý, ' - 4-)
ý

U) .
)

11
4
()

4
(a ji Lf) CN 41 Ln N

4. ý4

-r-I 0 04 Cý4 N
4 a) it rl 04 -1 -, o CO r-i 4. J -r-I k. D 00 r-j Q,

rd I
0u 10
ro -

0
z

rA ro 40
ý4 44 - 4-) 4-)

0
(d 0

ýq (D cv) Icil (--
(D

'0
rl gm -ýý 00 -, 1 >1

44
0 (1) a) a) 11 U W ý4 z x ill 11 11 11 11 11 11 a) ro t; 0)
Ej .0 4-) 4-3

9
.. -1 a) (d (0 a) I

ro rl 'r, 'r-i 04

4-) 0 ;j (13 .. 44 0) J-) Q) a) rý
I

(D 4.) a) ý4 ý4 ýj (0 ýA ý4 (13
ý4 r-i -1 0 ro r, ý4 ý4 'r-I r-i P Jll 44x >1

) 11.1 j
4

ýq
x >1

)) J J
00 U)

4) 0 0
M J

00
ro ro

Z Z -rq rd ro 0 4- ...

-i -I -I
4 4- 4. 4 4

1- -I - -I - -I U)
Q Q

4
u 0

I r r
Q) (L) (1) (L)

- r r r
r I

00 Glý CD - clq rn e V) 1,0 t- 00 CD (1,1 Me V) ýo r- 00 C> CD - CN (n e V') \M r- 00 01, CD
c-- r- 00 00 00 00 00 00 00 00 00 - rý Cf) le In \, 0 t-. 00 cý -4 -.. 1 --4 --4 ýýýý -1 r, ý c9 C', ý r, ý r, ý C'ý rg C'ý c9 C, 4 rn

--1 0

to u

ým

>1

4-)
rl

0
04

0
4-)

>1
ý4
0
U)
ý4

L)

(n
u

.H J.,
04
(13
ýq
m 0)

4-) 0
u

a) U) > (D
0

0
I Ul

>N

913
u

10
9.1

10
ý4
:J

ý4

a)

0
t)) rl
Q, a)

. rA
ý4

En

ý4

A-) ul

0) +
F:

. 14 Q)

-s4 L) 0
cl L)

u Q)

a) 0 4-) $4

Eol

x 41

Q)
ý4 >
00 Q)

44 E
41

10 co ý,

>1 >
ýJ 4 Q)

41

I U)

0 U)
a)

ý4
4-) 0

0

a)
ýQl a)

ý: ro
-i

U) (1)
(d ý4

0 Q)

En Q) 0

ul -4 ý4 0
(D U) rA
4-) Q=
(D (a

10i ý4 ()
EO

ý4
U) :J 11
ýs U)
0 (a 0)

-1 (1) a
ý4 0
(a E
>0

41
41 rc$

(1) 0

CD

(n

0
. ri
ul

jl,
lö ý:

a)
JJ

0 4J
0
u

0

a) 0
C4 ro

I EP)

rl

T;
J-)
E0

4
4-)

Q)

En
+

10 w+
Q, ., I =

-4 J., -

ý4
00 1ý

4-4 0
>1 0

x
0

4j r4
(a 4-)

41 ý4 ý4
ý4 0 a) 41
4-1 (L) > ul
U) ý4 V.,

ý4
b, :J
zuwx

r-I U)
ý4 ý4 :j
41 0
ul 0

0

Q) Q) 0)
ý4 En

ý4
41

10
f.,

9.1
H

H

U)
rl
0

0)

44
0

rl
0

ý4 E
0

41 u
x En
a) Q)

(1) 0

ý4 ý4

x
I a)
1 41

4)

U)
(L)
ý4
41
x

Q)
41

T;
rd

a)
10

10

(1) a)
10 10
00

4-) 4-j
a) Q)

-4 -4
Q) (i)

10 10

Ln

44

11

(D
10
0

E
4J
ý4

Q)
W

00 Oý, C) -ý (ý rn gt VI IZ r, - 00 Cý CD --4 (1-ý rn 't V) e t- 00 C> CD rlý f4) it V) ýc r- 00 0', CD rq rn Kt V) �0 r-
rn cn e gt e xt eetee et V) VI kr) v) V) V) V) V-i V) Wý 'V 'Z "0 ý-0 ýC ýC ýc ýc \O r- r- r- r- r- r- r-

H

(a 11

'r-A

>1
x

10

0
u
En

41
M

ý4
u

w

U

a)

. 1-)

ý4

En

10 -
(13
ý4

0
44
0

a) 0
1-1 ()
L) U)
$4

(d ý4

ý4
10 ý4

APPENDIXA. CODE OFESCHER PROGRAM

Tý

u

0m (Y) m

00 mH u Ln
-, j Ln Ln Ln Ln L) cq 00 OD OD

a) Q) a) Q)
-4 r-A -i r-4

ý4 uUUu
-r-I ý4 ý4 ý4 ý4

L) u

uuou
ý4 ý4 ý4 ý4 ý4

. rA -r-i -1-1 -r-I -li
uuuUu

44 BJ ýA

0 H

44
0

4-)

E-1
>1

U)
;J
ý4 a)
0 r-i L14 -1

41 41
ul S.,

0) H C, 4
H

x4
II

rl
b)
H
En
a) ro
(1)

Ic: 4-)

rl
.H

ro

ro

>1
M

(13

U)

r, H CD

rd 3-) 4-)
x

p4 ro ro
xx

Q4 p4

Z
0z

ul F-4
a) +++
x++++
0+++++

++++
= Pý =+ P4

ýJ pq N= 04 E-4

: R: E-4 W4 E-4 E-4 pq =4H
w ý-l w ý_q 114 w ýD E,

r: 3
ý

U) 0U E",
ý

In 0U E-4 ýri Ol (n E-4

r-4 00 Lo C-4 a) ýJl m0 1- 0) m0ý. D
-; J1 CN r- mm Nr 0 %D N r- cq CN Ln w t. 0 -i H C-4 C'4 m 31 -; *' Ln Ln E- OD 141 w

0
Ln U) 0N 00 C-4 OD -i v 'Z)4 I- r- cq 0

+0oH0www E- kD [-- + Ln Ln -4 (v)
0++ N31 Nif IZII + lq; p IV +H r-

++
00000000 C) CD -W 00 00

0 41 f., J-)
4-) 0 51,0 0000000000000000

- r=; 0 4j 4-) J-) 4-) 4-) 4-) 4j 4j 4-) 4-) 14-4 4-) J-) 0 4j J-J Fý
En ý4 A-) 44 b) bi tp b) b) 0) 0) tm b) b) t)) tM 44 b) 0) 4-)

ý4 r-4 5ý 00", 0 ý:: r, 1'. r, 05r. 91. a) F: P: ýA
(j) -I -r-I -r-I -1 -r-i -r-I -r-I -1 -ri -ri -, q -, 1 -4 -A t; l -1 -4 (1)

. rl L) (d ý4 ý4 ý4 ý4 ý4 ý4 ý4 ý4 ý4 ý4 ro ý4 ý4 ý4 ý4 ý4 V)
ý4 - Fý 4-3 4-) J-) 4-) 4j 4-) 4-) 4j .0 4-) a) 4-) 4-) fa 4.) 4-) ý::
4-) -, 1 Ea U) rA En En U) U) En En w Ea Fý in in r-4 Ea U) -4

U) rA

z Q)
H ý4 U) EQ
Pý (a b) 0) In
E-1

En ý4 ý4
(1) 4-3 4-)

'Ci 4.)

167

iý 0 ý4

0u
ý4

4-4

>

4-) . 1.3
u r.

ý4

44
a) 0

0
U) r-i

-H J-)
ro

4-) ul

ý4 (Z

u U)
En

CD - c9 M xt V) 1,0 t- 00

clý Me V) \C r- 00 oý CD - rl M �t Wý \M r- 00 c> CD c9 me V-ý \z r- oo c\ CD CD CD CD CD CD CD CD CD
t'- r- r- r- r- r- r- t- 00 00 00 OC) 00 00 00 00 00 00 (: C> C\ C\ olý C> oý cý oý Cý -- --4 -ý -.. 1 -4 --4 --. 1 -- (', l me

0*,

I

ý4
b)
0

44
0

(V

r, -.

(V

4-) c
(0 ý

Ol

ý4
4-) 0 10

>1 N0"
a Ln (N M

-r-I 4J

10 0) 0) Ma9

,H -r-i -A (d p
" ý4 P ý4 0) ý
4.) 000

xx >1
a C4 04

I 4-J 4-) J-) 4-) 4-)

a) 4-)
En r,
(d H

En

0
4j
41

4.)

ý4
0

4-4

E
41

44
0

0
U)

a) (15 J-) b) 10
(d

r-4 ý4

ý4 4. J

En W
5.1 t;
0 -1

- rA $4

4.) 0 Ln C'4
r-I OD 00 r- 00
ý:: :p C-4 Ln -I ýD cq
r-4

44

10 t; tp b, a H -r-I . r-I
M u

$4 ý4 ý4 Ul ý4

41 000 r

ýýEý
E'i

4-) 41 41 4J 41 41 J-)

Q) 4J
ul F-:

0
ý4 4-)

4-)

10 u
;j

a) 4.)

ý4
0

44

rl ro

4-)

4 4
0

0
4J

(IS M
-4 ý4

I

0)
ý4

E0
r. t;
0-H
H ý4

A-) 0 Ln
- r-i >, N 'Zil r- CC)

ý11 4 -clq V) Ln r-I 'j, CN
r-I 44 11

r0 t; mm0. ý4

ý4 ý4 ý4 0)

0001 >1 A44
:3 73 $4

1ý -r-I
u

44

41

4J

a) 04
(v I 41 9
41
44
0 u

>1

U)
. rA

u

41

0 Aj Cý
A-)

a) ý4
4-) a
ro u

Q)
ý4 4-)

En L44
51. 0
0 ý4

. rq V) 0
J-j C: ýD 0

0 CN r- c)
C: -4 -A -, o

-, 1 4-)
4-4 ro
a) 41

ro 91. Ol M t)) Q4

a) -r-4 -ri -4 (0
-, A ý4 ý4 ý4
ý4 000

o4 o xx>,
ý Q Mn

r-)UUU L) ()U
-4 "A -H -4

-
--1 "A . 14 : ý 04 0, ol a a CL CL

ý4
0

44

rd ý4
4-4

:: s J-j
ý4

0 (a
4J
4J

ro 4-)
f.,
:: l 10
0
ý4

En -4
a) 0)

r-4 'M
u
ý4 0)

. rJ ýQ u
75

z 4-) 0
0u

Eý a)
Eý ý4
ýD (a '0
m0

0) E
14 ril
C) (1) a)
0

ýC. li-I x El 4-)

-. N cn ,t tn ý, o r- oo (oN o- cq (") l' t") ', c r- 00 CN 0- C14 cl) :T W) \0 r- 00 ON CD - C14 m "tt W-) ýo r- 00 ý7N 0-
C4) cf) cn C4) en en m cn cn zr :t "t "t tt qt ý: r "t If) W) V') W) tn W) tn tf) W) W) 0 ýc C \0 ,c IC C "D IC 11C r- r-

APPENDIXA. CODE OFESCHER PROGRAM 168

>1 rn
ýl .H

4-)
4-)

U) a 4J 04

44 4. J > 4-) > F-: to ý4
0 (1) rd Q) m fo (1) a)

tm U) 0) U) ý4 ý4
a) 4-) 41 rci ro 4J rl
4J 44 LW 44 44 44 4J r-I a m 04 ro (D 9 4-) Q)

En 4-) A A AA A rl Q) rc$ -, i (d 4-) 10
ri) 0 4-) 4J f15 ý4
Ef) rg Q) U) -4 ro
a) F: U 0 (a 4J > 4-) > 4J ý-l 04 0 W 0 4

r-4 a) (0 (L) (a fd EP) 04 r-4 U) >1
44 0) U) bi En 4J (D (L) (n EO Q)
U) E-1 P QQ U) ý4 Q) ý[: ul to

ýq r-l -W ý4
44 4.4 ;j -W ;j U)

41 U) r-4 0 El) 0 ul ý4 4-) (1) 0
(d (d 11 H r-I -4 4-) a) 4-) ý4
4.) u -H 4-) (, ' . + (D Ea co ý4 (0 4.4

U) ý: :1 -w a) + 04 10 ý4
0 rc$ ý4 b) rc5 ý4

Q) Q) V) (v El) U) 4-4 0 10 A-) 11 0 E r. ro 0
0 4-) 0 ý4 f" U) L) 4-) -rq r:: 5.1 U) 11 0 (0 ý4 - ý4

(d (d (1) (0 1 a) a) L) Q) 0 4J ý4
- A-) ý4 ý4 - 4j 4-) 0) Jý ý: (1) Q, 4J 10 10r. a)

U) 4J 41 4-) u (13 ý4 (d r-I rd 0 r. 0 4-) L) F-I
4-) :j ro 00 (0 ý4 a) 0 11 4-) 0 u ýJ
m 4-) 11 0 (1) 4.) 4.) 4 1: ý 5 A 41 41 -r-I

a) ID4 a)

ýj r. -
;j 41 rd

J-) 04 4-) (a U) U) '11,
0 u 41 4 :j 0) -H 41 rl

ýj 41 Ea :j ý4 W 4-) U 4j 11 a
ýq 4-) (v 11 0

0 P4 0 J-) rl :j 9 r. (d -1-) 44 ro 4j ý4

rd 11 En ro fd r4 ri W 4-) (13 - o rý 41 1
41 a) 11 4-) 11 U) ý: 4.) - ro En 4-) U) M ý:, 4

ýQ ý4 (n m0 ý a) ý4 z0 (h 10 a) m
(o ý4 0 f., A-) 41 Jý 4-) ý4 fl. Icl -

En a) 4-J ý4 r-l (d ul 11 u (D 0 ri a) 44 AA
as (d 04 04 rd -1 a) En 0) 4-) ý-, 11 ý4 ro ro 0 1-4 En A 011

4-) m4 En :1 a) 0 El) bi 0) V) 0 L) U) I
En a) U :1 U) ý4 M rt; $1,1,, ý'. ri (d a) 4.)

ro ý4 rd I (d w ;j a 0- (v -0u (d EO - ýA 7 in -I
0 (D (D .. F-: to r-A .

1" (o (d 4-) En ý4 9.1 En 04

(1) Q4 4-) a) U A-) u (1) ý4 a) a) 41 a) 11 0 a)

a (1) - (d a a) - I(,,
E-4 4-) 3 4-3 :j 41 -14 F-:

ýA P 4j ý4 4j 4-) rl
.0 ji (d $4 4 (d ýq

r, a) ý4 Q) J-J (a 0U Q)
Q) 4-) En Q) :j U) a) - .. 4-) a) :j 4-) a) V) Q) rd :1 4-) 4-) U)

. rl 40 ý4 X: ", rj) .. En 4 0 En 44 '1" -1 0
ýq 41 ro !ý cn , ý: - -rq ý: 0 4j -r-I 4-) a) ri - (D ýj --F: u U) 44 4-3 4-) 4-) rc$ Q

>1 uu u 0
Ef) a) r-I 41 (a fo (a (.) (1) W a) 0 r, :j .0 In Ef) U) a) ý ro 110 4-) 0Q H 0 rl rl rd 41 00

r-I ý4 (0 (13 ro () L)

. r-I 41 111 1 ý4 ý4 ý4 11 Q) Q)
4.3 44 111 1 4j 4-) 4j 11 10 rcl

1, C) r-- 00 C*ý C) - Nm ýt tn ý, O r- 00 (ON C- Nm Nt kn IC r- oo (ON 0-C, 4 cf) Tt W-) "0 r- 00 CN 0- C14 m ct tf) "o
:t Itt I- Ilt: r tr) WI) tn kn W) WI) WI) W) W') kill \. o ý10 11C 110 \C \C \C \10 \10 \. o I-- r- r- r- r- r- r- r- r- r- 00 00 00 00 00 00 00

0

. 1-4 4-) L)

ri) f., o- ;J
a) ul r-I .0 -1 4.) -a
u 9.1 r-q

ý
H 4-) 41 Q) 0 44

(d (d (d ý4 ý4 U) ý ýj ro 4j 0

44
ý4

ro
0

ý4
4J 111, 4..)

u a)
4-)

r-I

(d
(d

(L)
. 14

0 r-i -
m0 U)

z a) a) (1) (v a) W
a) r4 41 J-) 0 r-I 10 (d Q) r-I 4-) En In Ell U) (D

41 tj) Q) (v (a ul u a) 4-) 1 -4 (a -I r-i r-I r-I :j

r a) ý., P b) ul ,M .- 4-) 4-) ro (o ro (a ý4 - 4-)
l

. rA
4 -r-I o 0 0 5'ý 4-) U) 54 P14 P4 r14 P A- (z

I a) 41

ý
4-) -1 fý 4.4

Q) Q) (is
-1 ý4 Ea
u ;j 41 - En ro 0) A AAA A Ell (A

4
w ul V) > r-i

rd
ý4

ro
41 -A

-r
Ef) $1,0
(d (13 E Ln 0.,

MI
r-I

III I - F: Q) 0 41
44 U ý: .

in, , ., i ý: ý4 U) ON (D 44 U) ý4 :j

U) 0 ý4 r-4 El) W :j El) a) E-1 4-) EP) Eol 4j > 4j > rý U) 04

r-I
(V

1-1
4-)
W

0 41 (z -
Q) 6 4J

r. M,
ro

-i
(a

Q)
Q) Im

(0 W (a
U) U) U)

(D

(1) U)
s

0 Q) 0
04 Qý J-)

U)

-ri .. ;I ýA
j En (d -rq

PL4 10 P P00 1 ý: -4 U)

44 ro r. I U) r:;
)

ý4 r-I
1

(d
U

ý4 (a
ýr

0) 0)

C4 r-i
4-) 4-)

j
4-)
(o

0

1 ý
fo rq

r-A

En
I'd

ý4
(d

1
ro -0

4-
04 11)

0
44

0 1
0

4

-r-I

44
:
Q

(13

4
.

44 0 ý4 9 H U) 4-4 1 En PQ Q)
)

11 11 11 41
A ý4

0 I Q) 4-) En 0 ý4
4) -

0
0 r

ý4 ft 41
0) b, ro

1 (d r-i
-4 r-I Q)

1 4-
A (0

r. m
-
9.1 ý4 U

l
a) 04 U) a rA PL4 M U) 1 4-3

- () U)
0 0 (a En 4-) a) H a) ý: 5 J-) 4-) 0 El)

--a
- r-I

)
. rA

j
r, 91.

0 91 - -i

4-)
rý

0
4-) ýj 4j

41 11 r-I
EO -- 44

- -
- 41 ý4 - (n

4-
(13

4
u

(1)
-, A

4
-r-I

r
r-i rd rA

rj En En

1 4j (
-
ro

.. U)

--- - -

ý4 :j
(13 04 -

(0 Q)
[I ý ý4

4-) (d 0
0 -

4-)
() 0 a)

(d
0)

-
-

,
J-)

,
0)

D-
ý4 -4 J, ' 17., J-) --1 ý4 U) 40 1 u a) ..

a)
ý

U)
0 . rj) r L) (ý11 x Q, ro it (0 U) Q) X a) ro -ý4

W ro U 4-) .. - 4-) 1

4
, r-i A ' ,

4 4 C)o (a Q)
4

0 Q) .0-, 1
r-I -ri W

a
-1

Q) 4J ý4 ý4
4-) (IS (a M

C:
L)

ý4
0

U)
Q)

(13
4-)

ý4 4J ý4 44 it
0
11) -

ý4 ý5 Q) o 41 o r: 3 En 0 AW
41 (d - r-I (1) u 0 i: ý u 4-) -rq M rQ U) (L) U A -ri 1

, ý4 it
1 4-1 ý)4

1. -4 w
41 --1

1
ý4

H 04 4-) U)
J() Q) (D

4
4
P:

fu
ý4 U) f" 0) 0 ro -A M -&j

>1
ý4

M
41 Q)

1 A

4J a) tm

0
-, -i (Ij

J ,
41 P

U
00
Z (d C: 4-)

4J
U) En M ý4 U)

. 0 En (n U ý4 M U)
-4 Q)

ýj
0 0) a 4ý)

Q)
F. 41 41 Lo

a) Q) C4 -4 a) a 5'. 0 4.)
En

-1 (D
t3) 4J

.r
En ý14 >3 -4 Q (13 u 0 U) U)

El) En
Q)

(z
ý4 0 (a r, Q) Q) "A 4-) V) Q) U) En

:J
4 4 Pý 41 134 Z 1-4 E-4 U) 41 ji 41 4.) 41 r. C:

4-)
41
-4 ji P:

Q)

-

Q) Q)
Q)

r-I 4j JJ 4-) 4.) 4J AJ 41 . 11 4.) 41 41 41
. 1-4 -H -r-I H -r-I (0 fa

ý4 ý4
) 1

M 44 C: Q - -1 ý4 ý4 ý4 ý4 ý4 ý4 ý4 ý4
0

ý4 ý4
00

ý4
0

ý4
0 Q) a) Q) a) Q)

4- 4
(1) (1)

fo 0 E- 0 0 00 00 0 0
a 04 " 04 r-I r-i -4 -4 -4 -4 -4

0
R R9 a

r=; E Ei EE . r-4 -14 -r-I . 14 -r-4 . 14 . 14
Ei r-4 . 14 41 4-) 4-) 4J 4J 41 4-)

(=) -, C. ') m d- W) ýD t-- 00 C, ý 0 -NM "T ýn 'No r- 00 C., 0 - C'4 M 'tt V) ýc 1-- 00 C7*, CD - C'4 M 'tt V)
4" It IZ , I I I

ý -ý --4 -ý - ýý - rq NNN N N cq cq N N m rf) m rf) mM C4) mr) m tt tt CT T I Rt

V-) '. 0 C, OC) (7, ý , -ý -ý

APPENDIXA. CODE OFESCHER PROGRAM 169

Z Q)
H a ý4 00

U) (1) >
(1) (d + En 4-) ý4 0 En (n

+ a L) r-I 4-3 L) El) f:) r. 04
Q) 11

ul U) r.
4-) ý4 - rj 4-) 0

. 11 ri - 1 ý4 u ý4
1ý .. Q) 4-1 04

-1 - - (a ro
+ -- (0 - - w r. 1 + ý4 04 T; 9

- 1 44 4-J -1 W U)
r: 4 (0 En H a) -1 0 , li 0 ý4 -4 ý4 !ý r-I U) 0) -4 41 ro I Z

44
-rq (1) 1 :: j a) r-I 10 ýA - 41 4 1-1.1

41 H 4-) 0 04 1 EO) + 4J -1

r-I w rl ro 41 10 - E0 "0
ro
r: i .. -

L" + .0-- rO --I - - -1 a) -1 r. r. -0 (a Q, - I C4 4-) ý:: ý:: - U)
-A ro g" En I = ro (n . 11 - ra -rq (a -A I "
-W 0- it -P Ef) -H 1 4j -W I co r4 ý4

Ic: Ea

rd - U) (a a) In En In (1) Qý En rq u ý4 a) Q) Q) ý4

-H a) En 11 "A -i P, H -1 -1
r-A rq 11 1 ;J H (o 0 r-I Xu -4 -r-I -4 1
,H -1 0 f., u 41 Q) 44 44 44

(1) E-1 ,H (1) Q, + rl
-1 04 .. -4 4-) Q)

41 1 tý 4-) C: -1 +M 1 4-) . r-f II r, 4-) 0 41 4J ý'ý IJ 1 4-1
4J 0- En 4J rcl

++ + w :j I N ., A A-) :1 a ý4 -, A -
4.) 4..) -1 S1. (d .. . -1 0 rd 4J 11 - o -r-I a) ý4 4J

n U) r-4 --I = rd -1 ý4 r-l rcl -1 ul - (D rd ý4 4j 3: U)
0 (D -1 a) 95 ro (d 4-) 44 4.) a) -, 1 41 4-) L) 4-) ri 4-) U) -i En a) rl a) Q) (D A-) rA b) = ý4 r-I ra -H U) Ul it (v r-I (Ij

ra r, rA I El) 11 4 4) (d ý4 -i b) (d Qý = a) - r-I 41 ý111
4-) a X: -r-I 41

a) (13 4-3 4-) ro 11 Ell U) (d -A p 04 0 4-) ý1.
ý4 , U) P: Ef) 4J 4-) En

U) j" - to ý4 LI-4 -1 -ý a) LI-4 (o - - ý: o I a) fo 0 a) - 0 L) rq (1) 4-4 -4 Fý
-54 (D 4 , 4-1 -1 4 " 4 fý - A-)

ý r-I
r $

0 -r-I
0 a) u

4-4

d
-4 0

)$
ý4 -4 Q

4 ro M
A A Iu rA U

r
41 01 U

- -I
r

) (D 4 c ' U) (0
4- 4

4-4 4)
-r
DL % ,

14
4)

c$ rZ4
-I a)

a)
"

ý4 1
:L 0

0: 4
r - r" (D 0 14-4 -1 m (a r, .

-r-I
4 ' N

ro a) 1]
- (1) S4

ý l
4-) (1) rj 4-)

F- W
0 ul

-%4 10 4-) -4 a) -- ý4 '14 ý4 fd 04 44 H ý4 ri 04 LI) -r-I ý4
0 r-I rd (a (D Q) (L) 0 (D 00 --1 (o ý4 0 4.) E/) -4

4-1 r-4 11 11 ;j a) 4-) a) 5 Pý r-I ý4 En 10 r=; : 9: 0 (d Q) ro
>1 En r-I Ef) -1 -, ý4 ;j Ef) ul
(0 -1 w a) U 44 L) :J 44 1-1 El)

r: j -4 1
r:; (1) -, 1 ý4 04

-
J, rc$ En 0 U) (ES ji Vj Ef) (D . El) U) mi M

r, 4.1 , Ul ý4 0 44 U) ý4 (d rZ4 ri) (D ol ý4 En (o Q) v
ý4 W a) a) 0 J-) Q I. J tj' 44 C-) 4-) a) a) V U) 0) 41 (1)
(1) 41 rc$ ý4 4u (o H :j (D r. (0 $4 (1) 4-) r-I r: (o ý4
-w ý: s 0 -1 0 ý4 H A-) - ý4 :: 5 -1 -4 4-)
A-) 0 EO 04 a) ul 9

0, 4-3 a) w a)
-H 4-) 0 El) En >

(D rl M
U) Lo U)
41 10 1 4-)
LW 4.4 1 11 44

00 C*s C-) -N m Rt W) IC t-- 00 0ý 0- NM "t tt) \C t-- 00 CN 0 - cq m Rt V) ýc r- 00 CN C) M 't tf) IC r- 00
N Nm m en Mm Cf) mmmm I- ýt I: t Iýt I: t Nt Itt Ict 't "'Zt W) W) tf) W) W) W) tr) kn kn t/I \C \C I'D \C \C \10 \10

4-)

a)
U) 121 V a) U)

a) -S4 4-1 ý4 ý4 u

11 ý4

4-)
A U)

4J (1) r-I
En 4-) ý4 r-4

41 ri z
H Q) 4-) 4-)

til o ý4 + -4 4-) :j
Q) 0 4J + Q) (a 0
ý4 Ell 0 1 >1 4.)

., A ý4 04 a) 4-) En + ul

1-1 0 En U) 4 r-I +
ý4 r-l 0 Q) Z 4-J a) 4J :J 3
0 ý4 ý4 1 4-) u ý4 En 0 r-I En En 4
ý4 00 4-) - ;" H Ea -r-I (L) Q) rl (0

E0 rq (d E-1 (a 44 J, ' 11 ý4 ý4

-r-I ýj a) A ý4 u (1) 4j ro 75 ro
rcs (0 -4

1
0 r-I I J-) >

0
-

Q)
m ul

4 J (1) 41
rcl
ý::

ý4
n 9 , ro (d W (-

r-I I LI) 4-1 () - r-I PL4 U) Ef) - U) 4.3 :J-. r-I u 0

- a) rd rn Ef) - -A ro r. 0 r-I (d 0 4..) uII

(D - rcl rl . r-I ý4 4-) 44 0 4j -4 J-) IT5 11 U)

4j - 4.) 0 -r-I EO) 1-4 ro z a rA En -H 4-) 11 Q) A A+- u

(0 _0 ý'. ý. ro ro a 1,, 4-) H ro (n a) 4-3 11.1
U) ý4 1 1+ 04 ra

A-) En (D ýl F: Q) -W 4-) ý:: En

. rq Ln -, A r-) (a ý4 --4 - (n En
44 1 1-4 ri) -rq (1)

r-q -I-)
41 -1-1

ý4 ý4
0

4)
Im -4 0

4-) - r
El) 44
(o A -A 4.) F: En u 44 U rcl ro M Q) - 4-1 A AA - ,

rj - I -r-I (D 0 0 ro 75 4J 4-) 12) ý4 AJ

-4 ý4 4-) 41 t)) 4-) ; rd Sý 4-4 Ell 44 Q) r: r-4 (L) :: $

r-i 4-) U) En a) a 9.1 4. _x a) 0) -r-I ý: 0 ý4 0U Cý 0
U) Z 14 0 Q) A-) -W $4 H 4-4 (a ý4 U) ý4 Rý Q) :1 u

4-1 U) ý4 Ef) 11 11
ri)

(a Q)
Ij 4)

rJ4 4
4J

0 rA
r-i

(a
Ei

ý4 -4
. -i P

L) EO) . Ef)
A 41 r-q

lq
-A 4-) U) 0 - rA ý:: (ý I ro U) 11 ý: - (1) (a 41

I U) a) -H U) rO ý4 I> (1) ro M 4-) U) 4ý U)

-I-)
ý4 4-J a) ý4 0 1 (o ý4 M ý4 -4 ro

Q) ýj W ýr
C: a)

ý4 0
En 0

0
u 1 U) 1 4-J 0 E a) ý4 vi a) ý4 r(l :: 5 a) Ln u

4J 4-J
rj) ..

4-)
(d ý: F: -1 L) 41 4-) 1 44 (L) Q) ý4 Q)

a) 10 4-)
F: ý::

r-4 -14

I
1

W
>

0 4-)
ro

ý4 J. '
- ý;

0 ý4
u-

ý4 $4 ý4 1 41 r-A 4J 0
1 0) 0 ro U)

4J Q) 41

4-) 44 --1 C: a)

:1 () U 0)

ro 04 (n U) Q) a) 4.4

C-4 M 'tt W-) 'C r- 00 a, C C'4 cf) Nt kn 'C r- 00 CN r-
00 C7, 00 (7'ý 0 0 (=) (= 0 (=) 00

-
C:) (=)
--

-
-

-
-

--
--

ý--"

cq

cq
-

00 00 Oo ON CN ON c7N ON ON C7, \ O'ý (0, ý C7" -

APPENDIXA. CODE OFESCHER PROGRAM

r7l

V

(N

r-1

0 11
0A

CN
A F_:
I

4-)
0
H vl

A 11
Iv

41 H

A 11

H0

Q) a) a) (1)
4-) 4.)

a) a) A4

rd U)
r.
0
4-)

ý4 (0

X Q) 0 Q) (d --I 4-3 4
10 10 0

a) (1) a) 4-) 4-) - r-I 4-4
H 5" (a 44 0
ý4 -H -4 -14
L) ýA ý4 L) ý4

(1) 04 04 a) a) 0 C4 ro

a) ý4 rA ý4
0

.Q
0

a) (a u 4J
(a 41 a)

4-) L) 4J
M -4 r, 0 0 (a
rl a) 4-) 4-) -ri 4-) > (D U)
4-) (d -4 44 C:
(d 4 tp 0 4-J (D
Q) 41 r-I ýA Ea U) r, -4
L) 0 -1 il. a) 4J

U) 0 4

ý: a) 44 4.) =
> r, OD r=;

rd (d 41 a) 41 0
En a) EQ a -r-I 51. ý4

Ell -r-I ý4 -rq 4-4
;j En ý4 0 ý4

41 L)
04 U) U) 4-)

ý4 0 -4 U) 0) 0 (d
U -r-I -r-I 0 -A 4-J r-A
cn 41 4-) a (D rl ul
41 u ri

0

ul P: Ol Q) Q) ýj rd
0 :j -1 44 a ý4
P4 PL4 E-o

+ 0 0
+ 4j 41

a) Q)
> Q,

P: + 0 + -H
I- + +

U) CN
>1

0 H

0 0 0 L) (D 4 4 En En
+ +
+ +

OD A-)
44 En

+ +
Lr) + +
r-- V-4 N

ý4 x
0 44

44 a) o 0 0 111, 4
4-)

ý4

$4
0 (d o

ro u 4, 4-) 4 ji ,
a) u (d I rz: C, 4 A., - - - 0 ri) -r-i X

00 4j 4-) C14 ý4
En f., (d A -
0 a) u 1 dP >I

+
+ x

04

-1 (1) Q) (L) ri)
ý4 - '10 71 ý4 '0 0
u ý4 (a 0) (o a

0 (1) a) 0 0 4.)
U) En u
0 0) -1 C14 Q 0 ro ro

a) 4-J 4J
ý4 ý4
0 0 OD OD

U) En
0 00

44

(n ý ýI
Id (1)
ý4 X- 4-)
00
0 ý4

44

0

+
+

ji

11 0
u

+ 41
0+ to
0 p4
u 44

44

4-3 44

44

170

ý4

,
C: 41 4J J-)
U (a (0 Q,

I r-A - r-I
U) U) ýj
rl rl a
rd fa Q,
ý4 ý4 -1

U) 41 41 (1)
El) 4-)

0 ýD 0
0 fn r-i

(n ý4
00 Ol m

-ri C) 00 (a ý111
r-I 0N ý4 u
ý: 1 41
0
$4 A

41

00 -H
ý4 ý4
4-J 4-3

r. 0 En
-H -rA ý4 Ef) U)

Nm Nt W) C) - C4 M ': t W) \-C r- 00 C'N C> -N Cf) 'tt kf) \C V- 00 O's C) - C4 M ": t W) 1.0
NNN --4 N Cf) 'tt W) \, O r- 00 C., -4 --4 --4 --4 ýý --4 --4 -4 --4 cq N C14 C14 C'4 C'A C'4 C"4 C'4 C"4 cf) cn rn mm (*f) M

4-3 +
En ;j +
E 0

En En

IS4
0 a

ý4 4 En
En -rq EO

E0
4-3 ý4
J., + 4j tm

4-) >4
5

0) + (n 4-) u ý
x a) U)
a) 4J 0
4-) A.) + ý4
Ell (d + ri 4-J r=; U) 44

El) 44
ji U U)

=
-r-I
ý-l (D - r-I Ef) rd

rd
(0

4-)
U)

a)
P:

= 4-) (a rn 4-) 41 r-i -ri

rn (o a) ý4 4- 1-4 r-I 04 04 r-i
(D -M - 0 - -
>

+ + (L) ý4 En F: 0

++ 4-) -A
++ ýj

0
-
4-)

-- Q)
En 04

rd to a :j 0

4-)
(n

r-l
r-A

- ý4 4-) u

44 :jM En
En
a)

4-)
0)

10 -1 4-) ýý En -

1: 1 04

0

44 0

-rl -H
44 ýL4

U 0+
+

r: ý ro 4-) (0
(13 r:; t

0 ý4
rcl 121

ro
4-)

(D W 04 - 4J - U)

.

J-)

r-I -4

a)

04 rd Q,
04 J-)

'
r.

ý4 ý4
- -

- r-q J-) ra
dIIr

ý4
U)

ý . C:
M r-I 3:

-g r-A
J -0

:i (
u (1) N 0 ý4 U

,
00 ý4 rý 4-) 9o

,
'd D 2

41 En 41
x0

0x 11
U a) 0 ý4 a) - W

ý4 U) W 4-) El)
4)a

.4 rl 4
(z a L)

J-) .
(a 0 -A $4 Ef)

41

ý4
4.)

En 0

m q: t tf) . C) r- 00 cN 0 - C, 4 cf) T: r W) IC r- 00
r- r- r- r- r- r- r- 00 00 00 00 00 00 00 00 00

x
H
Q4

0
4-) 4-3

ý4 00
00
ý4

U) 44 CN
4-) Q)

z >
-Ij 4-3

41 El)
4-) . 1-) vv

0) ýq U) 0 -
A 4-4 44 +

4-) Q) -I -r-I - 'I F- to
+ a)

ý4 (1) Q) (1) ý4
to En U) M a)

44 -1 -A -4 jlý
U) --I (L) (1) a) ý-

r, ý4 En -4 Q) 0
4J 44
a)
ý4 0 4-) 1
C4 41 0 fl. to

(13 ý4 1-1

ý4 A (1)
a J-) I C: 4J F: 0

rl 0 r. 4-) r. 0
H ý4 44 H 4-j H 0 ý4

Ch 44 r. ýQ 1,4 124 r-I A HA A
0 (0 It I 4-J ý4

44 A 0 a)
Q) 4-) 1 44 4J 0

. 1.1
rj) 1,4 rA .H 1,4

En 91. to J., 4J

ul 41 U
U -4

41 4-) A-)
-4 1ý4 1,4 0 0
:J (a m 44 44 0 0

rc$ 44 1W ý4 1,4
0

&

G ri -4 u u
Ei u) U) 'o ro -Q .Q

Z- r1q M le V) "0 r- 00 V' CD -
- (, q (4) xt VI NC r- 00 C> ý-ý- CN C'l

APPENDLYA. CODE OFESCHER PROGRAM 171

S., ý4
ri ý4 Ul a) (0 10 4-)
4-3 r=; ý4 4-)
4-1 En (d (d
;j 0) 44 4-) 0 04 ý4 %4 10 0 (a -4 000 7

4-4 X Q) >1 --I
0 r-i 4-) 0

r. 10 -, 1 ý4 %I, - -i w
-r-I ro (z 4-3 0 0 E0 a) 44

0 ri ý4 0 4J 91, Ea Q)
-I En r:: C) U 4J (0 Ef) b) rcj 44 Q) 41 F: rd ýj ý4 S., Q) I m 4-) 04 0 (V -H a) PQ E--, ý4 - ul fl. (a . ri 4j C! -r-4 4 P4 rO Q) rA 41 ý4 41 41 rcl 4-1 ý4 >
u En (v ý4 (0 ro u -4 In PQ -H rcl 4 41 0) 0 ý4 ý4
(D 0 41 (n Q) r r-l rc$ 44 U) rcl ýq

1
10 ýA 1111 fö 4 4) ý4 (L) 'd ý4 , a) (0 04 i.,

El) 4 0) b) 4 ý4 0 (a (1) (1) > a)
-4

l U
4-) rl (1) 0 41 a) ýE: 0 '0 ý4 to -A -1 (0 4-) 1-4 a) - + -I 'd ý4 4 m0 (1) Lo L) -1 0 (0 5.1 - + -w 0a ri) A-) - Fi 4 E-1 Q ;I m H 0
-r-I 4-) ýE: r. Q) , U) ý. r. - -1 - A Q) (1) ý4 0) 0 ýA 41

;j0 En . ri - (a
4-) 4.) J-) 4-) 4-) 4-) $4 0 r(5 -1 rA

rb a) 41 (1) U) 4 :J rl a) (1) (0 J-) + :3J,, r: ý4 ro 04 > In (1) $4
+ 4-) 0 a) o r-I (D 0 >1 (1)

- U) a) 104 FZ4 U) ý4 4-) r-I -1 4-)
x 4-) rcl 4-) U) E-1 r_: ý4 -1 4-) 4J - 0

0 ji (D Q) 0 A..) -, 1 4-)
(a 0 (d El) 1-1 (1) ý: F: rc$ 0 4-) H 4 -1 > El) ý4 4-) H Q)

4.) U 4. J --, 4-) - (13 ;: r -r-I U) r. - U) 1 4-3 rq A W 4-) u (ý ;j -- ro , 4-) U) p 0) H- ý4 4-J L) P I 4-) Q $4 CA U) J-) -r-I ro r, 1 -1 a) r4 a)
(d -rq a) ýj (a (a Fj ý4 -4 a) r-I H r-I ý-l 4-) ý4

IQ 0 ý: (15 J-) 1-4 > - (d (v rd 4-4 H 44 - a) 4-)
ýq U) .01 Eý ý4 4-) 4-) (D 44 a) 4-) 0

rQ
0 0- -r-I - U) 0

A - w r. , 0 to U) En U) 41
U) 0 ý4 ro 0 ri) a) U b) ril - 4-1 4. j ý4 U)

rIu 4j ý4 E-1 Q)
rd ý4 0 a)

-W :j 41 11
t3) ý4 4j rj) ;j U 4-) 0 Ea (d ý4

4. J H U) U) 0 -r-I r-I al UW w ý4 U)
(a 11 rill :j ý4 0) 4-) , Q) -i 4j ý4 :j a) 9i 0 ý4 J., (L) U) (d ul -H (d ro ý4 (0 U -1 Q) r-l 4-) U) a) u 41 1-4 4J 4-) ý4 41 (d 0 a) 0 ý4

0 4j 4j
4-)
(a

ý4 a) J" r-l
)0 (d 4 U) M4 4 4

w
1

4J
ý

rX4 (L)
4

co 0 En m E-4
4 ro (d A-i - > 4-) (d -r-I 0 - 0

-
;j

4
0 0

C: 4
4.) 0 a)

0
u a) U) Q) -W a) (0 a)

U) ý4
0

ý4
0

U) rd
0

9 41
(a 1

4.)

4-1 41 r4 H rc$ 11 4-) 1 4-) 1 41 41
M

10 4j

Itt t1l) Iýc r- 0 C'4 M tl- W)ýc r- 00 Cý 0-C, 4 m -: t tn \D r'- 00 C, C:) - C14 cf) 't tf) "D
Cf) Cf) Cf) cir) C'4 M :t V') 1ý0 r- 00 (ON ---4 -4 -4 --4 -4 --4 -1 --4 -4 cq cq C'4 C'4 NNN C'4 NN C4) en en M Cl) cn cn

Ul
Q,
H
4-)

9
fl,

0
ill U)

En

Zý
In
H

r-I
ty,
Ul

04

41
(0
L)
q
0
u

+ +

A

0
ý4

U)
H

4-4 4-4
r-I r-I

a)
ý4

4-)

U)
41
U)
0

4-)

44
0

ul

41 ýo
m

m09
r=; Ei

a 04

U)
All

(0
Z.,
0

pý

Z:
G)

All

10

,a
-A
(d 0
rl
0

4j t3l
(a _4
ý4 Eol

4-4
0

0

(ti

C',

-I

'd "Jd
10 ý4
(13 0

(d
5.1
0

-1

10
0
Ei

Q)

>
-, i Q,

H0 (1)

,>
. 11 4.4 A

-a a) - 14 (d 0)

:J
'cl

1 ý: :j 0
4; 11

00
fl. ý::

. lJ

H

J-)

H

F-: **
t

>1 >1

>1 >1

-i-) rl
h-i -x *e*

xxxx

0000
10 rl r. r. 9 1.

ýd lö A

U)
ý4 >-4 ý4

2
ý4

II

4J.

0 (d
A

ý4
(1)

44 C:

., I ý:

:1

>1

F-

>1

(1)
W

>1
1-4

A 4-1

C)
V
x

H 4-4

. rq

ul tn
ýQ ýQ tu fli ý4 ý-4

rl
0

10
5.1
0
u

ý4
0
ý4
ý4

>1
wA
>

>

ý4 4-)
Q) 51ý
NH

>1

44 fO
>>
41 4-)

(ö

Öl

Z$ j-)
.Q fo
Q) ý4

10

ý:
1

ý4 0
0

11.1 4-4 U)

r- 00 C" 0- C14 cf) Nt
-.

0- C'4 M Ict W) I'D t- 00 c7N (=) - C-4 (ýf) :t W) ý, c r- 0c) ON C) - CIA rýl
cn cf) m :t ýt 't 'CT zt C14 cn lq: r W) 1.0 r- 00 CN -ý -ý- -ý - -M --- C'4 C'4 C, 4 C14 C, 4 C, 4 C, 4 N r4 C-4 cq) Ce) rfý r-,

APPENDLKA. CODE OFESCHER PROGRAM

0

ro N (d
'rA a)

'ZI E0 ý4
-4 (0
73 10
0 (D t3l

ý r=; -4 ý4 -H ý4 Q) J. J
t3) .0 0 a) a) ý4 'a ý4
ag * r-,

4-J
0 a)
4-) 'rý ji 41 0

4J En

41 -1
41

0
-r-I U) 44 0
ji 0

10 10

a) a) rc: a) U) u
-0 J-) -r-I 4J (o

1-4 M u
0 (a 04 --1

ýA r-A
a) 115 04

ro a) a) ý4
U) 0

-1 a) a) 44

U) r i 0 c

0
4J U)

0 0 (a
-r-I U ý4

U) 4J a)
ill U >1 En 4-)

(V :jM
E-1 rX4 E-4 (d 4-J

a) U

Pl

0

Q)

z
1-4 . ri
41

E-A

Q)

10
0
fi

Ea
0
z
u (1)

4-) 4-)
ý4 ý4
00

04

0
ý4
P4

4J

L)

0
4-)
rd U)
41
0 4-)

+ Ul
Q) + . r-4 ý4

CN + 0
+ 41

0
44 E0 U

U)
>1 4-) rn rA

rý 0 En
-4 a) + 0) r. a) (o N0+ 'r, r. 3: ý4 11
L) -1 H ý4 ý3: 0 a)

--i U, -1 o o ro [I Ef)
44 L) 4J rc$ rj)

.H a) U ý4 A

ril
En L)

0 4-) m

4-1 J-j H
u-

ri) L)

44
L)

fo En

172

(n
(a

ýA 0 0 0

-0 4-) A
+
+ L)

4-)

$4 x
0 (o
0
u

ý4 A
01

44
4J +

>1

>1
(d A +
uI +

.H xX
44 JJ

'
() H=a

0

ýý (D 0
"Allil ll o **
Ell I u CN CN

ul U) ul
ý:: 4-) 'd 0 0 ý4 ++
00 ý4 ý4 $4

-riHO0 0 >l xx
4-) 00 0
UAUu u x

ýJ ý4
44 4. J 0 0 -H

u u ý4 -w
a)
-1 >1
ri

r-i r-i r-i 'ri -H -A -r-4 1 4-) 41 41 4J

>1

x

0 ý4

Ul
llc$
ý4
0
0
u

>1

x

ý4
(a W

El) Lo
10 10
ý4 ý4
00
00
uU

CD

>1

xX

00
ý4 ý4

U

4J

H

A

4J

H

H

H

0

0
0

H

>1
x

r-i
0
U

+

La

ý4
0
0
u

>1

a) (1) U ý4

115 10
ý4 ý4
00
00
uu

0 1,,

>1 >1

xx

ýl -4
00
uu

CD ---4 rq cn e V) \C r- 00 C> CD - cq me Vi \C r- 00 C*, CD - rý rn e kf) �o r- 00 C> CD ---4 rý 00 O, \ 4 -4 -1.4 --4 --11 --4 --. 1 --g -. -1 ---4 C*q c9 rq C, 1 rq (1, t C, 1 r, 1 r-1 r-1 rn cn cy) M (1f) rf) M rn M rn gt e

tm
r.

0 ý4

0
41 (D

4-)
U) (13

-4 L)
H

13,0
N 10

>
H ý4
ý4 04
(1)

rd 0
0
4J

ji
-44

a) b) 0 ý4
ji

0 44
4-) 41
ji QI
0. r-i c:

PQ 4-)
Efl -1

ra ro ý:

10

rEi

a) (1)
110 10

U)

-1 11
W

U)

A

(a
4j
U)

EO

H
> U)

ý4 ý4
04

0
ý4 El)

u In
(d

r-I 04 fo En

4-) 10
4-)

U) b) ro
E0 co 11 0

10 r-A ý4 4-4
(a I

0 Q)

- ul D) 4j In
10 ro rq
ý4 $4 Q) r-I
ra (d ý4 41 -A

4j 00 En (d 41
EO mA 4J

41 r-i ul 0 co r-I
0 4j Q)

ý4 Q) 0 A (n
(d - 4j M I
0 it I
m- 4-4 u A r-I 4-)

4J - U) H I :: s 0) 4-) (A
rd r-I 11 "0 C: --i b) (d -r-I
ý4 A F14 Q, a) -ri 0 4-) r-A
M -A 4j 44 -4
0 A (a r-I

1 44 0 4J 4j rcj A Q)

4-) - 4J w 0
, a) I ra 0

rc$ r. U) E
4-) 4-) (o I :: l r: .. 11 (1) (a
(/) Ea J-) - 04 ý4 El) (1) 1-1

w1 0 a) 4-)
l

4-)
J

;j9 44 0)

41
En

-w
ji

::
a

:
0,

ro

-S4
o

a) (0 0 0 ý4 r4 44
10 ro -4 a 4-) 4j (a to R
ý4 ý4 01 Ol . 1i (n En E -4 -%ý -14 M ra (a (a (a 4J (o Q) 4) mM ý4 ý4

4.) 4.) 00 1-4 1-4 r-A (13 (a
En En ýQ

a 44 4-4 1 rz E
EO) U) E0 U) E0 El) I U) U)

ý4

- 41
ý4 U)
(a ..
X., u

4.4
a) 0
>

4- A-) 0 Q) 41 CN -4
Ea ji

:j
A 11 ýQ AA
I11

ý4 a)
F: 41 ul x Qý
0 Ef) (a
41
4J
:j0

Aj
4J
:j ý4 U

ýQ
Q)

00
4J 41
4J 4J

4-) 41
W Q)
ul En

77

A

ý4

00

0) 4-1 4-)

-, -, Q) a)
ý4 U) Lo
Aj
a) 11 11

tn 4J
J.,

ýd 'o t), . 11 -14 -rq
F- E ý4
4-) 4-) 4.)
Q) Q) Q)
(n U) U)

00 0-% CD -.. d c9 rn -e v) ýo r-- oo O, \ CD - rý rn e VI \O r-- 00 Cý CD - (N rn e Wý \C rý 00 C> CD - r-1 (f) -e vl ý, 0 rý
rn (f) xt Kt Kt e ýt �t ýt xt nt e V) V') kn V-1 vlý V) V) V) lf) V.) ýc ýC ýc 1,0 ýo 1,0 ýo ýc ý. 0 ýc r- r- r- r- r- r- r- r-

APPENDIXA. CODE OFESCHER PROGRAM 173

aa
(0 (15 Fi 0) b)

0
41

>1

10 Cý 04

El) b) M

x
+ (1)

04

41 a)
4.4 -1
0

ý4
U)
H

u
r4

0
-r-I

r.
ý4 0

r-A
rd

(D 4-J ul
rl -1 - a) 4-)

+ r. 41
ý4 ;j 0) ol rd Q) 4J 0Q

ri -r-I -1 P4 104

U) U) ý4 + u ý4 ý4
00

4-) 4-) . 1-1

-j U)
x 44 ro

x >1
>

4J 44
N

1
(D ro 4-) 4-) 4-1 H -A

0

-
U) ý4 1

m
F-: 1-4 -H

C) H P 1 x 04

0 ýA Ix
0

1
;j
L)

>1 0 0 (v
l

x >1 >
- w 4 4-) il -- -r-I r. t 3) b) (d P: 0- S4 1 u 4-) -- 01 FA -r-I -ri

ý4 ý4
-, 0 'r-I
0 (1) ro

H >1
A , 04 0 A00 0 ý4 ý4 >1

4J ro X 41 u F: ++ 4J Ix >1 ul (o 0 A r-A

-ol
X 7- 111,

X
L) ý4

ý4
(v rl (o

ri
44 0

H
U) b) (n

aa

.0 4-3 A-)
U) 0
(o 0) U

1 4-)
Ell a) 0 - (d ý4 :1 a) - o A -1 -H a) 011 4-) , 4-) ý111 (a 0u H 1 ý4 ý4 ý4 X F: x

ra ro U) A b) x rl 00 (a -4 44
a) 4J ýA I Ef) rl r-l 4.) X >1 - -1 (u x

(1) 0
4-) 0

a) (1) A
X ý4 1

(d
4.)

(1)
ý4 >1

a)
41 a)

04 a
A)4)

6

U) AA
4-) r-I A -4

4-) 0 :: l U (1) - 4-3 ý4 - -
11 FA 0 04

1 4-)
Q 4.) 4j a) 0X M AA 75 41 0 4-) 11 U L) 9" ý4 rc$ 9 11 -rf X >1 I . 1-i ý:: 11

r $
4-) 4-)
El)

a)
)

Q)
)

-r-I -rA H r. rl H En c U) A- 4- 04 04 11 -1 EQ >1 X >1 4-) 4-) ý4 U) >1
-ri -rq (d rd :: 44 r-I 11 En (D a)
1-i -1 4-) 4-) W ýS4 -S4 0 a) (D rl Q) 4.) (a 144 > x

4J (a (0 ri) En 10
ý4 ýA 4

10 0
r1i it 11 0 >1 ty, a) -, U) 4-) 4-1 4-3 4-3 4-) (a (d C- A..) A4

-54 _S4 A-) 4-) 1 L) ro rA ý-l 0) (1) (n
. r-l
H

. 1-1 -H 0r r-l 0
-li Hm ý-l ý4 ý4 xx >1 H -r-A -H (o ra

. . 0 1 I10 (d (0 11 -1 1-1 r-I I H -1 -4 111 01 V
(d r-i -r-I r-l -H I :j ;j II r=; Fi fý 11 4-) A-) 4-) 1 4-) 4-) 4.3 111 EQ U)

-NM 'tt tt) "o r- 00 C7*, C) -N (4) "t tt) I'D r- 00 ON 0-NM qt In \C r-- 00 Cý 0-NM ýt tt) \C r- 00 ON 0-
Nt I: t Itt Iql- Itt Iýt It ITt It tt) tn in tr) tr) tn tn kn tr) W) \0 \C 110 \ýo \. o \D \C \C ýo \C r- r- r- r- r- r- r- r- r- r- 00 00

a) - ýi 10 ul ý4
0 (a ý$

V 4-) CD
El)

ý4

a) > 6 ý4

4-1
(a 0 J-) Ell

ý4 -1 P (d 43 a) ý4
0 ;j 44 0) ,0 ý4 LW 4J

04 ý4
-ý4 ý4 0 x

(D -1 0u ý4

, -4 r, bi (d - a)
-4 (a -H f., 4-1
E-4 fý En W 'o

(1) 1,, (D ý "I
91 0 10 ill 14 0

4-4
rl
ro 4J

Q,

En U) ý4 4-) J-) --
(0 0 u -- 4-) 4-3 - Q4

A 44 ý4 -

Fi a
41

a)
ý4

a)
10 44

r-i 4j 0
F_: 9.1

41 00
ý

1 4-) t;
ý4 44 -0 U) -Z 4-) -, 1 . 11 N
M ý4 P: 4j Cý U) 4.) En -M ý4 41 41 -1 - Q) ý: I
0 (d 0 LI) ;J -4 4j -H 0 ý4 En 4-) N 0 41 4-3
ý4 r-A * r-I 41 0 -1 ýo fl. >1 (a Q, , r-, ý4 F-: En

4-) (o m- r-I a 0 H En 4-) H -ri
(a 0) J-) .0 "A x 41 U) J-) ý4 ý: >4 - r-A

-H 4-J r-I 1, - -1 (v , 0m - TI ý4 -0 0)
4-) fl a) -ri ; l. 0x Q -, j 0 ýj (0 4-) ý4

J-) ý4 Q) ý4 0 u rd 0
0

9m
41 -I

m
- -I

I
E- 'Ei)

A -14
(13 r-l r, a r r -1- 0
04 ý4 H U Ul a CO ýEý ý4 - fý

a) 0 a) 0 rci -- - - --- 0 4-3
C: 44 >1 El) 4-) 0 4J x ri F: A 41
ý: 0 44 (o W ., q (d 1 04 - H - IN rý C, 4

0 r-A -1 (V 4-) u U) J-) o m ý: -4 f., a) H glý
10 91, a -1 -1 En 0 (d (1) 0 A U) I-q
(1) 0 rý U) 4-) -r-' -r-I r-I ý 0 ý4 ý4 1 + 4-) 44 -1 1 11.
w -lq 0 -r-q 44 r-i J-) - (d

)
rý - r-4 a) 41

ýj J-) -rA ro 44 (d 4 En 4
,

4. 41 C: H r. 11

fo 4J 0 -w - 4J ý4 41 z 0) 0) J. 0 r - 11 H
U) uu 41 04 ýj a) a) U) (1) Jz: 51 ji H CN
0-H a) 4 Ul -r-i a) 04 5 4 4-) 4-) -14 OD .0-

En 0 44 -1 00 ý4 r-I >1 u llý 0 4-) ýq (0 0) -1 44 -- F: C-4 ..
C: . r-i *H a) rj _4 u -4 0 En () (D 115 -, 1 4-1 (a 4-1 -11 0 .. 11 .. 1: ý ý--l g-ý .. C:

, 4-) J-) El) a El) E-4 4-3

:: 5 41 w a) a) ý: ý:
.0 4J

a) 0 LI) 41 .0 4-) 41 4.) 4-) 41 4J Q) N N N 0 0 w En
4 ý4 0 ý4 ý4 ý4 ý4 ý4 ý4 ý4 ý4 0 4 -rq -, f -r-4 ý4 ý4 -4

E-4 P4 A-i 4-) 0 a 00 0 0 000 0 4j 4j M U) M 4J Lj r--q
ro a 104 a od ý4 ý: ý: x x a 04 ro rcl R

F. E E Ei Ei E I I 1 0 0 a) w 00 C:
r-l -lq -A -r-I -4 -r-I . 14 rq I 1 1 ý4 ý4 r. f-: r. z rA

4J

F-I

(o

rq CD r- 00 C7N CD - rq rn e vl �o r- 00 C> CD - C-A rn e V-) �C r- OC VN CD
nt -, (11) rf) Izt V) "0 r- o0 (2-1 1-4 -ý -- rq cq C, 4 rq C'4 rq rý r-1 rq C, ý rn m rn rn re) re) r-, rn rý rý, ýt

APPENDIXA. CODE OFESCIIER PROGRAM 174

El)
r:

a) OD 0
H

- 0
2

ý7
0 0 44

44
41 +

ý; Jl rd (5 +
+

En
a) rl

ý4
0

04
4-)

ý4 0 0 Q) 0 :j. r-I + u

4-) co + (o ý4 (D
U ý4 + 44

:
0 ro

Q) . r-I a) + ý4 (D 0-
ri) 04 >

1 0 (1) r-I Z -4
r-i x 4-) 4-) () - a) (1) co M 4-J U)

OD x + U) 00

X: 4-) : 0 + rl 4 ý11 rý r. 0 4-) ýr, ; ý ýQ -- E0 W Ef) (a r-l r-i gl . q) rl 0+ L) 0 r. 1ý Pr4 - ro o- 4 44 -H 4J ri -- tl a) Ell 41 Im
41 0 (1) U) fo 4-) (z

11) 44 4 -4 44 44 ýj r-I 0 -r-I 4-) 0) 0 PQ ýT4

U) Q) > rl
OD

44
ý4

)
H u 4.4

0 tm ýq r, A -4 -r-i A 0
Q

1 r"
0

4-4 (d
41

I
r-f a) -- rA

0 rl 4J r-A a) 1 1 4-4 ý: 44 Icl ý4 Fý -1 4) 110 10 44 (0 J-) 1 04 11) a) ý4 >1
r-I JJ ý4 ý4

ý4 >1 F-: - (D X U) U) a) - - 11 :J ji U
_0

MM 0
ý4 r-A Hx P0 44 -1 r-i 'I"

ý4 - F: "I E 0 A-) 0 0
Q) 0 (L) a) a) 4-) - F-i 4-) 4j En
> A

-11 4.) 1
H

En u 41
(1) rci 11 ý4 (a u 4-4 44 A ý4 (d 44 4-) (0 U) 41

0 44 1 0 En ;j ý4 :1 rA r. a) a) 4.4 o rc5 ri) a) r. a) 0 0 (a A-) ýi w 41 r: U ý4 J-J 4J 4-) r-A a) 4-) >1 m ý4 (d 0
ý4 0 r-I r: 4 (a ý4 4-3 4.)
:j
4J

.. 0
u

41 E-1 4 E-4 E-4 U)

00 0 J-) 4j 4j 4J 4J J-j
(1) .. 11 xx 4-4 44 44 r:;

ro, -1 ý4 ý4 ý4 ý4 ý4 ý4
rl M rl 00 41 4-) 4-) E-A E-4 0 0 000 0
ý4
;j

(d (d
04 04

(d
04 1

ro
0

a
r=i

4-) 4-) 4-) 4.)

Cf) 't V-) ýc t-- 00 oý, o-N rf) "t V.) "D t-- 00 C'ý 0- C'A cr) "t V') 1,0 r'- 00 (0ý
('ý C14 NN C14 NN c1r) cf) cf) cf) MMMMM 'zt 'ct ý: t Nt Nt 'tt 'tt 'It 0 -4 N Cf) ', I-
w-4 -4 -4 ýq ýq -. 4 -4 r--q -4 ý4 -4 ý -4 -4 ý -4 ý ý4 -4 --4 --4 ý ýý -N cf) 'I, kf) \C (, - 00 (0, ý -----

a) En

0

Cý
41

L)

ji 41 44
4J ;j 4-)
(d 0 4-)
4j 44 ID4
ul r:; 0

+ a) -
U) 4 U) (D

bi (d J-) rl ro U)
ro rl t3l 0 4-)
(1) ý4 En 01 co u U)
4-) 0 CD 0
m >1 I

a 0 a) 4-) 0 ý11 4-) - Ici
0 ý4 4J

W 0 4J rA ro

4-) U) -4 4j ý4 U) 41
u En r-l -1 - a
W 41 >1 ul 4-4

4 1 ý4 41 0

44 ul 044 x 0 4 41

(D - a) -4 a) - 44 tm a) a)
ý4 ro rA ý4 ro 0

Q) ul a) 0 -4
U) r-4 r. 4-) u

rA 0 (D . 14 0
41 4-) Lo 41 $4 N ý4 4-)

41 r-4 ý4 Q) ý4

It ý4 ji 0 -4 1 El) u

a) ra 0 r-I -r ý: - U) Q ý4

ý4 ý ,, u
+

ty)
a)

-
-4 U)

0 ra C:
ý4 -

0
4-)

ý4
:j

(1)
1.1

(a 4-) >1 A
-) .)

r0 ril r. (V I 4J A (1) 00 4- L) r-4 4-

.H Ul H >1 J., U) (o ý4 1 44 r-i >1 ;j
rcl 4-) - , 1-1 L) (1) . 11 r-4 A Q) (D + F-:

41 11 ý4 0
ý111 - 41 -4 1 -S4 X: 4-) ýw

ý4 4-) A -1 ul 0) ý14 0 -4 4-) 4-) (o ý4 4J 00 C) -4 C- kD Ln OD

4-j ý4 H X a) - 4J (1) H

4) 44 ý4 (0 C14 H ý4 (d 41 44 C: AAAAAAA (L) A
- 0 0

0
11 11

ul
r-A
(z

0 AIIIIIII
I a)

U)
ý: $

I

U) 0
r l En H -r-I En U) C) 'T co r- %. D V) 4-) ji i

1 -1 H- ý4 0 Q) 0 4-3 Rs V) ý::

I Ul - >1 1 ý4 OD _C: - -4 z L) -ri ý-i

ý4 (1) E0 U) 1.4) u w a) 0) En U) En .0 J-) H

0 ., q A-) 41
(13 cz ý4

En 41 41 41
-4 .

11.
ý11. .

1. ý4
(15
4-) ý4

44 >
1 W Lo J-) 44 () U 0 M ty, M 0 0 C:

(D r-4 ý 0) En
-
41 (d (d 00 44 E-4 OW ý4

4
r-I r-I
4-) 4J 1

JJ
00

ý4
:j

tn En ul En ýq
I I -A H- r-I 1 1 ý4 ý4 1 4-J

0N en ICT kn IC r- 00 ON C) - rq m 11, WI) r- 00 ý7N 0- C14
N en t 11.) ý, o r- OC) CrN (=) -. 4 NM It W) ý-c r- 00 c-N 000 C) 000C00

- ' -
C'4

"

00 00 00 00 00 00 00 00 CN C7, N C)N ON CN Cý ON CN C N (0" --- -- -

APPENDIXA. CODE OFESCHER PROGRAM

+ + +
+ + +

r. F-:
91 Ea
- 4-) rl

-1 - U) a)
rl r4 U) Cl) -4 ý4 0 0 Q) Pi W -A Ul

En rl -- 121 J-) a) R
rj 4) - ý4

ri 4-4 b) (d -

r l r
a)

r
rl 9

0, c
a)

. ý4
(0 Q) a

Q Q)
rl H

E-4
--

rc$ rQ
> Q) (D $4 rl r-l a) a) 4-1 ý4 ý4 Q) ý4 r-I ý4

ý4 -r-I 4J a) (o Q) 10 0) 0 ýj ý4 0 ý4 (d J, - u+ 4-) 4-1 0 a)
A-) 41 04 4-) + 4-) >1 44 r,
E0 a) 41 (d Lo 4-) ý4

ý4 a) ý4 (1) a) 0
>1 (is 4 4 u
i a) (1) Q) 4-) 4-)

En 4 -1
:j -4-4 Ea 41 u f., M 44
o o o 0 0 rd a) 0 (d -r-I 4-) 0, 4-) ý4 ý4 (1) fl, 1-4 J.,

0 U3 rl
(V En ý rd r, J-) 0 A-) ý: 4-) ý4 4J
ý4 0 a) 0 41 4J 4-) 4j rd Q) 44

o > -r-I rd r, :j ý4 rl 41 a)
-1 (V 4j Q rc$ 0 41 -1

U) 4J (V -r-I -r-I 4J (d
r, 4-3 a) fo rc:

ý4 ro ý4 U) ý r(j 41 P4
o Q) -1 41 w ji ro :J Q) 0
41 b) 4 9" Q) fu gll U rf., rd w Q) 4-)
4-) E-4 (a ý4 -1 4-) Q)

44
a) ý4 0 EA

r(j 4j 0U 4
4-4 E-4 a) FX4 (v ýA 4J

W 144 0 ý4 Il 0 ý4 -ri
0 0 E-1 4j P4 0 E-4

44
4-)

175

ý4

0
+ 4J +

ý,, = , - 4.) Ea r_: w (a ý4
, f-: N CN u (a (a r-i 4J

1ý ri) ý4 = (Z a) ýA 1 r-I ý4 ý4
-L-)

a) (a 0 rl) (a 4-) F: 4)
ý11. ri) r-I a) 10 ý4

(1) 04 > 0 (o
H En

fl L) (z ý4 41 ý4
H (o ý4 E-4 (0 Q)

-i A-) 4J
4-) 4-) 4.) 10 >1

4-j l "I 1ý rl ýq 4-) - -I H En m 4-)
r-I Ea 4.) ýA r-i 4 rd -rA (1) -j - Q) 0 a) ý4

ro a) a) Q) r-i '0
u a) En I ILI - ra ro

L) r) -1 ýj 0- 0 a) i H 41 r-i 04 a) EP) LW 41 r-) 6 A ;j0 ý4
- ro M0 ý4 - a) I rl 0 r; it > U)

r_: (U
H ý4

El) En x
i q) 0 ýJ -- 0) rc$ ý4 Q)

.H u -ri 44 Q) - '0 ý4 (z 4-)
4-4 fa 4J a) rc$ _4 oo Q) in 44 k) r-A 0 a) fý o -4 -1 ý4 (o .H El) ri) U L) >
(is a) Ea L14
u 4-)

4-)
Ell El) 41
41 J., 04 (o 41 41

ro (d ;: 5 U M q) q) ýj rl a j
r-4 11. ,j fý 0

ro 10 L) U) El) (d 0 Pý >1
Q) ra fl, (a $4 Q) 0 (a

M . rq Q
rl 4-)

U 44 (v 41 10 (1) 4-) 4J .0 41
4-) Q) ý4 S., r-I ý4 ý4 ý4 ý4
0 E (a 0 0 0 0

1 0 I r: i
r- oo Cý CD - cq rn �t V) \M r- 00 C> CD - r-1 Me kt) 1,0 t- 00 Cý CD - (q (y) CD
V) V-) V) \C \C \C \M "0 "0 \. O \M "0 1.0 r- r- r- r- r- r- r- r- r- r- 00 00 00 00 - rq rn e V') \M r- 00 0� -

.

.

4-)
x 11, --

0 rl 11 ;j rTj 11.1 ý4 0 4-) 0 0 w J-)
a) -4 0 4-) Q) En En

4-) -1 4j J-) r. ;j 4-4
u -1 (0 ý4 :J r, - 1 :J 0 0

En 0 (1) ý4 a) r: A r, 0 r-I a) F:
r: El) Jll 04 ýA 11 -1 41 Q - a) 0 (d - -W ý4 rill (a . In

. rA a) 4J (d 4-) (D 4-) >1 4-) :J
4-) En

)
4

)
4-) -, 1

l
9 -,

)
0
)

4.4 4J
0

r,
4J - r-I 4

4-
(d

4- u r Dk U) 0
4. 4- 0

(13 -ri 0 a) - rq
H
ý4

>,
ýQ Ef) 4j -4 44 En P: -1 U Ea u ý4 F-: u En ý4 En a

f., u L) Ef) 0 w I- a) (0 a) (a (D k _0 ;J 0. H ro
0 rd (0 U) 0 a) EQ r-A I,, ý4 (v 0 U ý4 Q)
4-) ý4 fo ri) (z ri) -4 ID4 4.) a) M ý4 4-4 -, 1 (1) - r-I (1) 44 4j 0) >

0 4-) U) ý4 $1, w - r-I 0 4J 0 r-I 4-J 4 4 ý4 Q 0 C: Q)
L) 4J (d E-4 0 0 4-) 4-) 0 (d Q) r4 El) En ý4 a 4J 41 -A
fý= ji 11 4-) a) -1 H 4-) a) 1-1 U) a) Q) El) ji >1 0) r

- (0 0 ý4

4-) ;j 4-) -r-I El) En A 4-) E- M r. ý4 a) (1) - U) 41 EO) (1) a Fi 0 0 + En ý4 'li rl 41
ýj 41 1 rd .H0 r. (d 10 4-1 Q (D a) EO :: s En Fý 0 F, ý4 + r-I a) 4-) M Q)

rq 41 Q) Q 4J 0 ý4 llý ý4 ý: s (d ý :1 0 ý4 04 m 4-) ý4
Q) $4 4-J En 0 J., 4-) 4-) M 0 Q) >1 0 (a -r-l U 0 (d ý4 4-4 (D 4-) 0

. 1.1
U) (0 U) X o ýi rd a) 4-) OD ;j 4j ", 4-) ý 45 ýi ý ro - u C4 -4 (n rl (0 En 4J El)

r-I r, a) r4 0 ý4 H
rQ

ýl --4 2 (d r. - a) ., I . r-I (0 a

ýj 0 4.) ý4 0 ý4 z x r-i ro -1 ul 0 (1) F_: -1 4.) C: u

4-) u 4J rj) 4-4 0 0 "A 4.) H a) 41 Q) A-) EO 0 0 -r-I 41
OD V, 4-) to ý-4 -, I E-4 4-) -H 4-3 4J 44 M -4 ý4

t)l r $;J 0)
:j

4
ý: 4-)

l
4-)
J d -r-I Q

Q)
ro

-4
J .0 H

Q)
4) 4-J ý4 0 A 4) Q) rl -ri c a) a :: - ý (ý 4 -

4.) rcl U (0 $4 ro J' . 4) W -4 r 0 ro 4 w 4 -, 1 0 F-: Q) 4-) 4-J
Q) 4-J 0 0 -r-I 4-) Q 4j -r-I (1) L) a) 0 ý> LO r-A En U (1) > U) u fli
4.) Ul L) P: r=; -1 (1) Q) Ei (d 4-) 0 -4 r-I 41 (a Q) ra 4j r-A a) - r-4 0 C4
(d a) 4. J fa 0 4-) 4 r_: 0 4-) 41 Q) 10 () 'S., = ul 4-) :: 5 :j Q) -r-I --4 ýQ :: j

4-4 -1 4-) W EO) (a 4-) a) -1 E0 0 0) w r-i ro M - E-1 0 4-) 0 C: ý4 ý4
ý4 u (d 4.) -4 (1)

'0 '0 r-i ý4 Q) P -r-I -H (1) -r-I 4-) U) (1) () 4-) 4-) Q)

0 -4 ýj '0 ý4 a) -W 4J fo ul a) 4-) E 4-) ý4 ý4 f" ý4 (v rz Q) (1) 0 P
(n u r, 4-) J-j U U) -r-4 0 :j r-I ft (D :j U) u 0 44 ý4 U
En 0 Q 4-) 0 ýD 10 ý9: >1 P a) 10 Ul Q) 4-1 Q) t" -H Q) ý4 4-3 EA

cc En (0 -A Q) A -1 o r. gl. gl. (13 r. 0. 0 rc$ F-: r-I 4 0
'E.

Q)
-(ý 4-) 4 44 -, 1 0 9:

M 44 4-) U I -r-I H 4-) 4J J-) 'r, H ýQ
E-1 ý4 E-1 --1 -4 Eý 4-) - 4-)

0 fd ý4 ý4 4-) 44 == = = = = -r-I = = = = = =
(0 El) 4J (1) 4-) 0 (1) 0 0 44

0 J-) > ro J-) 4-J
E0 U) ul r, -4 0

(0 r-4 H -r-I -1
r: l a5 rz E

U) 11 C14 -4
a) u ro (d a ;j
rz; O E :J o M o
4-) fa (ts 4-) r, r. Ei ý: U) U)

r-- oo c> CD - r-, 1 mt V) 1,0 r- 00 C> CD - r-4 me v) �0 r- oo c> CD - r-ý m qt v) \ýo r, oo c> CD - r-4 rf) -t kf)
--4 --4 ý C, 4 C, 1 cq (9 rý rý Cý r9 r-1 rq M rn M r1) ff) M Cr) rf) rn rn le it le eee xt ýe nt it kf) V) V) V) V) V)

APPENDIXA. CODE OFESCHER PROGRAM 176

U U)
(a m 41 0

41 Fi U) (a
ý4 r-q a) 4-4 0) ,N ý6

ý 1. rl
(d 0
11, - r-i
4-) 4J 04

A + u 4-)
ý4 (d ri r_:
a) EQ ý4 rA 4 rl ý4 4-1 0 rý -: 4-) (0 (a a) x A 4J 0 ý4 41 0 ý4

-A ý4 44
-r-I (d $4

0 A ý4 k -r-I 4-) ý4 4j (1) 41 0 1 EA 41 44 4J f-: L)
9

t; 4J U)
u) a) r I - 91, r4 U) (d A (d 0 + a) Q) 41 10 ri -ri 0 (a a) ý-4 H r-A A ro ri I+ 4-) + r-i > 41 ýA r-i ý4 L) ý4 0 -, I

1 ý4 r-A ;j (0 m 0 (o
E

, >1 Lo 41
4-) ý4 E-4 0 M0- a) ;j Q4 - rl -

r ; 0 ý4 1 ro ý H
.ý u (a 4-) Q)

7
,; tý - L) ý4

44 0 a) :j U) r-I Ef)
-S4 ,- EA a) A 0 r-A 0 L) r-I ý4 b) 4-) En

I uu - a) U) -1 0 Q) 0 -r-i 0 A - + + + +

A r .< N
-

A 11
ro
0

AA
11 1

ro (d
)

0 () J-) ro Eý ý4 C4
r

1 41 . .

1
. 0 - 1 11 E

04
4.4 4-)

ý4 4-
0- r-I

00
ý: w

0
M

:1
11.

0 o
x Q, U)

w
- r-I ý4 fJ

4-) 4J in 04 0 4) 00 0wý; a) ý4 -, i ro -1 M a)
r-i U) 4-) a) ýE: cl) u -, A J-) m 4-) u r: ý . 1i f34 ý4 (D ý4

a) a) rl Q) ý4 -- --- - 0 ro

U) x1 0 0 a) En 7 rA u r-A 0)
A - rd U a) 4-) U) u . 14 A I r: 3 - J-) u rl 0 (t (L) -Sý 4-1 -1 1 11 .. ý4 (0 a) II (Tj (0 El) 4-) Z 44 4-) ý4 ý4

0 (1) m .. 4-) 4-) ý4 to W fI a) a) b) ;j u ý4 (d (d (d rc$ 4-)
4-) rcl r: j U) ul a) 4-) 4 91, a) (d 4-) Ei a) rl 0 H a) . 41 ý4 -r-I (n
0, o ;j (d > ý4 m0 r-i U) A >1 M 4-) In

9
(a ý4 a)

H z V) Ef) 1 0 E0 ý4 (a 4-) 4-) (v "A a) -1 ý (a rd rl 4-) rl Q) t3) ro I
- 1 4-4 rl rl Q, 41 In E-4 En 0 E-1 C) ý-l E-1 ý-l Z" I a) -4 0, 0

.. (13 (d w (d E U J..) r: ý
kk 0 ý4 a) 4-) 4j 4j 4j 4-) 4-) 4j -W 4j ý4 ý4
4J 4-) (d 41 ý4 ý-l ý4 ý-l ý4 ý4 ý4 ý4 ý4 (d

ý4 E-1 E-1 4-J 000 000 0 00 (D

a)
41
0 0

R 1-4
rl)

r-I
u

r-l -ri -4 - -r-I -1 -4 41 4-)

V') \C r- 00 cý (C) - rý rnKt wý %o r- 00 C\ CD c9 M V') ýo r- 00 Cý CD - C, 1 me er) \C
in V) V') tn vi ýM "0 "0 \Z ýo ýo \Z \. 0 ýo \M -ý rg rn xt VI \ýc r- 00 C> rt C'ý C'4 C'4 C, 1 C'l r, ý

a) Q) U) u
rl rd

Ul (o 44
ý4 IQ ý4 ý4

04 r-i Q)
0 a) ý4

10 a A
0 1

a) Ln x U)
LO u I-i Q) -ri (a A

4-) 4-) ko 4-) ý4 1
() a

I lo
Q,

0 0 0
10

> ji
r- ' ' Ln + 4 H 4-) 0 4J En

$4 + u
0 t)) r-I -ri 0 -r-I r14 ý4

, li 4-4 (0 ro ý4 4-) $1, 1 El) a) E-1

-H S4 r-i rl (a ý4 4-) a)
ý4 (d -W 44 (0 0 ro A

(d H a) 4-J 4-) 4-) M 0
ý4 X (v -rq 4-)

0 a) (1) $4 ý4 J-)
rl 41 0 a) 4-) 4-)

-1 El) $4 ý4 + (13 ý4

(15 41 ý4 W + 44 0

4-4 (d a) 41 .
1.1 (1) 44 A ý4 ý4 0

ý4 J-, (1) Ell - ri b) + 4J ý4 4.) A 1 ý4 44 4J Q)

a) 4-) r-I ;j 44 rd + 4j 0 $1 P: I 4J 0
.0 0 4-1

4-) H U) r-A (a r-l Q) C) (U ri U) Q) (1) u r. rz: A
0 J, 44 (v 0 r, 44 0) 4J 4j (1) >0 ý4 r=; ill 0)

'
rd - r: . r-I I

U) H 0 '1" 4-) (t 4-) (o U) uý 0 ýo fli a) (D ý: ý . 0 0A A A
Q) -H rd 4-3 ý4 ýj r-4 ro

'
4 A-)

-1 ý
r-j
ý

Z U) -W I
0 4J

I r, I
(d

rý
0

1 A-) En E--i 0 44 M , ý4 f ro 0 4-) ., f ý 4
- 4

u, ol 'd - (d Q) Q) Ln X 41 0 :: 1 1 4 1 - 4J

(Ij 0 1" ý4 A -S4 -1 4-) -4 4-) (D r-I ý: $ w ý4 Q rn 4-j

ý4 J-) -4 0 1 11 ý4 44 gl, -r-I U) (1) 4-) C: 4-j J-) --1 0 :3

a) J-) 0 (13 -A 44 :: j ill 0 Q) () A a a) 0 m
41 4j J-) PU En -W -S4 . 11 E-4 Q)

i l
C)
ýo

r: i fa 1 -4 En
a) (0

4-) VQ
(z A Ell U r. :j

-1 " 0>
ro a
ý4 F :

ý4
N

(d
ý4 (0
Q) rd -

l W ý4 rl - 11 J., u 4A I

4)
1

ý4 - 0 (1) rz 0 '- w0 ++ C) 0 (0 ri)
1

41 1

:j a 0 Ei En ýj -r-j U 4J 44 ++ Lr) 4-4 0 S . AA a)

ý4 95 0 A$ m 0 ro 0)
1

(a 0 44 11 ý: $ - ro
(1) co (1) 9 . rc$ ý4 4-) 0 F: 4j 0

ý4 A (o ý4 + w ro ro 0 rd 0 E-1 A-) a (1) Z. x
0 (d F-: 1 4-) 0) >1 ý4 ý4 000 Q)

r
-4 Ej H -

W (D U) (0 :: 1 4-) U) 4-) F-: 41 4-) E 4-) 5 A o w

U w- > t3l t)) 'I . r-4 U) ý4 ý4 -r-I X
-j

U)
-W

u a) ý4 0 (0

(o 0 ýi . r-4 (d I (d 44 ul 0 0 (0 ý4 Q) ý4 91 ý4 F: 10 Q) (L) r:: A
4-4 . Q) r=; 0 0) r-i

a) -4 a) 4J 4-) 41 4-4 u C: (o 41 a) -1 Q) :j0 ýr.
rd (A 1

ý4 En 0 41 t)) ý4 4-4 ji Q) 0 a) En ý4 (n 44 4-) 0 Q) 0)
1

Q) ý4 4-) (a (1) 4-) (a U) ý4 J-) r-I -4 4-) C: 0 ý4 rA 4 4.) -
91 44 r-I C: ;: j 4J a) 0 (L) 44 r_)

)
> -r-I Ef) -, I rd

>
0
0

m
ý4 u

co z

Ei :J 44 ý: 0 Ul 4J En ý4 U)

ýs
a

r-A
j

M Q) C: 4J
44 4J
(1) :j rl --4 XM - U)

41 R U) ý: j :J
44 44

0 Q) ý4 Q) (1) Q4 4J 4-)
0 -H 9. 41

ý4 ý4
00 4-4 . r-I Q) (v 4J E-4 4. J 4j u

r1 -4
00

1 ý4 ý4
-H -A
44 44 1aa

14 11

kn ýC) CO C)., -ý N cn 'I- tf) ýo C-- 00 CN 0
- C, 4 m ý: r tf) 1,0 r- 00 C7*, C) C, 4 fn

.
qt w) IC r- 00 SIN

' ' ' '
.o-., ý- ý- Cq C-4 Cq NN Cq N C"I Cq Cq ff) Cn (") M Cf) M (4) MM (1) 'It It 'It It It 'It 'It 'It 1 'IT W)t) kr, r) W tr)

APPENDIXA. CODE OFESCHER PROGRAM

m 91.
ý4
41
ul
a)

rd
0
Ei

+
+

+ + E-1

00

ul H

En a)
44 rc$ A-) (v

ro 0

0 u ul
r-l u (D

>1 Q)
U) ro

0
ý4 (V ý4
(a U) E-f 10 4-) 4-)

IZII W -1 (d En L) E-4 r-I ýA -ý4
r-I 0 ý4

ýo El)
4-) x (71 U)

ý4 a - a)
(d 41

H

4-)
ý4
(o 0) Q) d (

En

41 (d ý4 4-)
(73 41 4-) rd

4-) ri El) J-) Ea U) A-)
(a $1, ý: a) rd a) U) (v , -0 0 a) ý4 ý4 rd ý4 ý-,

w L) r-I a) oo 4-) 0E
4-)
:j
0 r-A

. r-I
4-) L14
0 0
4-) 4-)

,: t W) I'D r'- 00 C*N 0- C14 M tt tf) "o r- 00 CN
1ý1- Zt Itt Nt Iýt ýt tf) W) W) tt") tn W) WI) t1r) in WI)

4j
Ea

-4
-4 --
.H (n -
4-) 10 ýý

ý4 rn
0 ý4
0U
u

11 1 ý- + " ": r
+

En CN r-i (1)
r-I

4-) 0

ý4 ; 34
0

v 104

- (D Q) Ef)
xa ý4 ý4

E-i (o (D u L)
4-) 4j 0 r. Ql -4
W In 0 0 ý4

4-) H -H L) u0
m r-i 0

Ef) 41 -11 0 41 J-)
. rq U) 41 41 U) F-:

c) -, I (L)
Q) -I -H rc$

4.) ra ro p
. 14 0 0
Q, L) En - 4j

0 Ell
ý4 U Ea -4
(d - En ul U) 0 r-A
(1) r-A r-I , M0 04 (0

r-I (V 4J r-q 41 u - ý4 CN
() En EQ ri) ý: Cý Q) r-i r-i

4-4 -H 0 zr r-4 ý4 ý4
r-4 4-) J-) N u u

S4 En 11 ro 10
k -4
(a -1 U) E q)

- ro J) ro 91 ý::

.
r-I m0 - U)

ý! W ý4 (D E 4-) ri) r-l
a) r-i 4-) J-) 4-) - u) ro -4

4) 0) Mý W -r-I ý4 -r-4
ý4 0) 4-J 4j ý4 r-I 0 4J

ro :j a) -A 0 L)
0 0 C: ý4 U -H
Ei 0 ý: a

177

r- 00 C> CD - (9 rn e V) \M r- 00 C> CD - (9 rn

r, ý Cq rq ch re) m (f) rn rn rn rn rr) rf) 't e 't 't

Appendix B

Reduction rules for hint

Here are the reduction rules referred to in Chapter 6. The relevant elements of the reduction

state are the Stack and Dump, which together constitute the stacks element of the hint

reduction state, and the nature of the next node to be reduced.

REDUCTION STATE ELEMENTS:

S= [I or n: ns - The Stack is empty or n is next
D=[] or ss - The Dump, the rest of the stacks, is empty or not
n: ýt] -t is the node at address n
n: whnf - the node at address n is in weak head normal form

NODE TYPES:

< V]> - Value
< a] n, n, > - Apply node with its arguments
< fan,... n,,, > - Function f of arity a with m arguments
< Ip' n> - Unary primitive with its argument
< I p' n, n, > - Binary primitive with its arguments pO - cons, pair

2 (++) Pi

2
P2 all other binary operators

< I tf n, n2 n, > - Conditional with its arguments
< I co no ... n, > - Constructor co with m arguments
< I cs e cpl ... CPn > - Case node with discriminating expression e

and case pairs cp, to cpn
< I cp I co e> - Case pair with its distinguishing constructor co, and expression e

that is an expression to apply to the arguments of the constructor
< Ica] e no ... n,,, > - Case-apply node with the expression to return if there are

no arguments, or to apply to these arguments otherwise
< Io] ni ... n,,, > - Output node with list of nodes to be evaluated and output
< ittj n> - An indirection node "This Is: " address n
< app p ni ... n... > - the node resulting from the application of primitive p to its arguments

178

APPENDIXB. REDUC77ON R LILES FOR HINT 179

The rules are expressed as follows. On the left is any necessary property of the state.
For example

D={]

means that this rule applies when there are no nodes in the dump. Then the rule depends on
the condition above the line. If this holds the next step is the condition below the line. Any

output resulting from the step is written on the right of the rule.

REDUCTION RULES:

The end of the program has been reached when there are no longer any nodes to reduce.

S=[] D=[]
END

When the Dump is empty, value nodes have their value output, constructor nodes cause the

output of the constructor name and the creation of an output node. output nodes direct

arguments of the constructor to the Stack to be evaluated. A partial application of a function

is recognised as such.

n: ns n: jvj
foutput v S= ns

S=n: ns
n :<I co] n,,... n, > foutputicoll

n :<IoI co n,, ---n,,, >

S=n: ns n: < Io Icon, ný n. >
S= (n,, : n: ns) n: < Io] co n,... n. >

[]S=n: ns n: < ýo1 co
S= ns

S=n: ns n: < Ifa In,. n,, > (m <a) joutput : "partial applzcation of " If J}
S= ns

If there are nodes in the Dump, and the next node to be reduced is in weak head normal forrn

-pop I.
DS=n: ns n: whnf

S= ns

If the next node to be reduced is an Apply node, and its first argument is another Apply

APPENDIXB. RED UC77ON R ULES FOR HINT 180

node, the first argument is pushed on the Stack.

S=n: ns n: < Ia In, n, > n, :IaI
S=n, : n: ns

If the next node to be reduced is a saturated Closure, apply the function at the Closure
node. The next node to reduce is never an indirection node as these are transparent. Such

nodes need explicit mention, however, for their role here in the instantiation of the formal

parameters of a function application

n: ns
Ifa in,... n, > (m=a)

n :<ýf] (a, / <I ti I n, >) ...
(a, / <[ti I n,

The pattern matching case statement is represented by case nodes which have the construc-
tor on which to match, and a series of case pairs. If the left hand argument of the first pair
does not match, the next one is tried. If there are no case pairs left, an error node is created

with an appropriate message.

S=n : ns
n<I cs]e<I cp, ý co, e, >, cp, ... cpn >e: <j co, I n,, n. > (co, ý, -' co,)

n: < ics]ecp,... Cp, >

n: ns
n :<ý cs]e<ý cp,] co, e, > ... cp, >e: <[co,] n� ... n. > (co, = co,)

n: ns

n :< Ica I el no n.

[cs]e>e :<ý co, 1 n�... n.

n: <jv: VERR ("Error in case match f or" I co, 1)]

When there is a case match a CaseApply node is created. This applies the right hand side of

the case pair to the actual arguments of the constructor on which the match was made, unless

the right hand side of the pair is a constant, in which case this is pushed onto the Stack.

n: ns
n: < Ica Ie no... n. > e: < if] n,.. . n,

n: < ýf]n,... n, no ... n. >

n: ns
n: < [ca] e>e :< ývj

n :< [v] >

The conditional primitive evaluates its first argument. If this is True, the primitive node is

APPENDIXB. REDUC77ONRULES FOR HINT

replaced by its second argument; if not, its third.

S=n: ns n: < ý if In, n2n3 > n, : ýv : True
S= n2 : ns

S=n: ns n: < I if]nln2n3 > n, v: False
S= n3 : ns

S=n: ns n: < ýif] ni n2n3 >

n,: n: ns

181

The constructor primitives cons and pair create cons and Pair nodes without evaluating

their arguments.
n :< p2 n, n2 >

S=n: ns -0 n: < appp2 n, n2 >
0

Unary primitives are head strict.

S=n: ns
n: < jp'] n, > n, : whnf

n: < apppl ni >

S=n: ns n: < ý p'] n,,
S=n,: n: ns

Left strict primitives need to evaluate their first argument.

n :< p2 n, n2 > n: whnf S=n: ns p2 n: < app 1 n, n2 >

S=n: ns n: < P1n, n2

S= nj: n: ns

Bi-strict primitives need to evaluate both their arguments.

n :< p2 n, n2 > n, : whnf n2 : whnf
n: ns n: < app p2 n, n 22

n: ns n: < P'2 n, n2

n,: n,: n: ns

Bibliography

[1] S. Abramsky and R. Sykes. SECD-M: a Virtual Machine for Applicative Multipro-
gramming. In Jean-Pierre Jouannaud, editor, Functional Programming Languages
and Computer Architecture, pages 81-98, Nancy, France, 1985. Springer-Verlag.

[2] P. M. Achten, J. H. G. van Groningen, and M. J. Plasmeijer. High level specifica-
tion of 1/0 in functional languages. In John Launchbury and Patrick Sansorn, editors,
Functional Programming, Glasgow 1992, pages 1-17. Springer-Verlag, 1992.

[3] Heather Alexander. ECS -A technique for the formal specification and rapid proto-
typing of human-computer interaction. In M. D. Harrison and A. Monk, editors, Peo-
ple and Computers: Designing for Usability, pages 157-179. Cambridge University
Press, 1986.

[4] L. Allison. Circular programs and self-referential structures. SOFTWARE - Practice

and Experience, 19(2): 99-111,1989.

[5] A. W. Appel, B. F. Duba, and D. B. MacQueen. Profiling in the presence of optimisa-
tion and garbage collection. Technical Report CS-TR-197-88, Princeton University,
1988.

[6] A. W. Appel and D. B. MacQueen. A Standard ML compiler. In G. Kahn, editor,
Functional Programming Languages and Computer Architecture, pages 301-324.
Springer Verlag, 1987.

[7] Kavi Arya. The Formal Analysis of a Functional Animation System. PhD thesis,
Oxford University PRG, 1988.

[8] Kavi Arya. Processes in a Functional Animation System. In FPCA '89 Conference

Proceedings, pages 382-395.]BM 1J. Watson Research Centre, 1989.

[9] L. Augustsson and T. Johnsson. The Chalmers Lazy ML compiler. The Computer

Journal, 32(2): 127-141,1989.

[101 J. Backus, J. H. Williams, E. L. Wimmers, P. Lucas, and A. Aiken. FL Language

Manual parts I and 2. Technical Report RJ 7100, EBM Research Division, 1989.

[11] David V. Beard and John Q. Walker 11. Navigational techniques to improve the

display of large two-dimensional spaces. Behaviour and Information Technology,

9(6): 451-466,1990.

[12] R. S. Bird. Using circular programs to eliminate multiple traversals of data. Acta

Infonnatica, 21: 239-250,1984.

182

BIBLIOGRAPHY 183

[13] Richard Bird and Philip Wadler. Introduction to Functional Programming. Prentice
Hall, 1988.

[14] Anthony Bloesch. Aesthetic Layout of Generalised Trees. SOF7wARE- Practice
and Experience, 28(3): 817-827,1993.

[151 William H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.

[16] Peter Burger and Duncan Gillies. Interactive Computer Graphics. Addison-Wesley,
1989.

[17] R. Burstall, D. MacQueen, and D. Sanella. HOPE: An Experimental Applicative Lan-
guage. In Conference Record of the 1980 LISP Conference, pages 136-143, Stanford,
1980.

18] Magnus Carlsson and Thomas Hallgren. FUDGETS: A Graphical User Interface in
a Lazy Functional Language. In FPCA '93 Conference Proceedings, pages 321-330.
ACM Press, 1993.

[19] Chris Clack, Stuart Clayman, and David Parott. Lexical Profiling: Theory and Prac-
tice. Technical report, University College London, 1993 (to appear in the Joumal of
Functional Programming).

[20] Stuart Clayman, David Parrott, and Chris Clack. A Profiling Technique for Lazy,
Higher-Order Functional Programs. Technical Report RN/92/24, University College
London, 1991.

[21] S. J. Cook. Modelling Generic User-Interfaces with Functional Programs. Cam-
bridge University Press, 1986.

[22] John Darlington. Software Development in Declarative Languages. In Susan Eisen-
bach, editor, Functional Programming, pages 71-85. Ellis Horwood, 1987.

[23] A. I Dix. Giving control back to the user. Human-computer interaction - Interact'87,
1987.

[24] Alan Dix. Formal methods and interactive systems: Principles and practice. PhD

thesis, University of York, 1988.

[25] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-computer inter-

action. Prentice Hall, 1993.

[26] Andrew Dwelly. Synchronising the 1/0 behaviour of functional programs with feed-
back. Information Processing Letters, 28: 45-51,1988.

[27] Andrew Dwelly. Functions and Dynamic User Interfaces. In Proceedings of the con-
ference of Functional Programming Languages and Computer Architecture, pages
371-381, Imperial College, London, 1989. Addison Wesley.

[28] J. L. Locher (ed). The world of M. C. Escher. Harry N. Abrams, Inc, 197 1.

[29] M. Eisenstadt and M. Brayshaw. The Transparent PROLOG Machine (TPM): an ex-

ecution model and graphical debugger for logic programming. Journal of Logic Pro-

gramming, 5(4): 277-342,1988.

BIBLIOGRAPHY 184

[30] Bruno Ernst. The Magic Mirror of M. C. Escher. Ballantine, New York, 1976.

[31] George A. Escher. M. C. Escher at work. Elsevier Science Publishers B. V., North-
Holland, 1986.

[32] Jon Fairbairn. Design and implementation of a simple typed language based on the
lambda-calculus. Technical Report 75, University of Cambridge, 1985.

[33] Jon Fairbaim. Making Fon-n Follow Function: An Exercise in Functional Program-
ming Style. SOF7"WARE -Practice and Experience, 17(6): 379-386,1987.

[34] Joe Fasel, Paul Hudak, Simon Peyton Jones, and Phil Wadler. Special issue on the
functional programming language Haskell. A CM SIGPLAN Notices, 27 (5), 1992.

[351 Sandra P. Foubister. Graphical Design. In C. Runciman and D. Wakeling, editors,
Applications of Functional Programming. UCL Press, 1995.

[36] Sandra P. Foubister and Colin Runciman. After Escher... Patterning the graphical in-
terface in the functional style. Proceedings of the International Conferencefor Young
Computer Scientists (ICYCS'91), Beijing, pages 151-155,1991.

[37] Sandra P. Foubister and Colin Runciman. Techniques for Simplifying the Visual-
ization of Graph Reduction. In Kevin Hammond, David N. Turner, and Patrick A
Sansom, editors, Functional Programming, Glasgow 1994, pages 66-77. Springer,
1995.

[38] J. Gosling, D. Rosenthal, and M. Arden. The NeWS Book. Springer-Verlag, 1989.

[39] S. L. Graham, P. B. Kessler, and M. K. McKusick. An Execution Profiler for Modular
Programs. SOFTWARE - Practice and Experience, 13: 671-686,1983.

[40] Mark Green. A survey of three dialogue models. ACM Transactions on Graphics,
5(3): 244-275,1986.

[41] C. V Hall and J. I O'Donnell. Debugging in a side effect free programming envi-
ronment. A CM SIGPLAN Notices, 20(7): 60-68,1985.

[42] Cordelia Hall, Kevin Hammond, and John O'Donnell. An algorithmic and semantic
approach to debugging in Haskell. In ThirdAnnual Glasgow Workshop on Functional

Programming, pages 44-53. Springer, 1990.

[43] P. H. Hartel and A. H. Veen. Statistics on Graph Reduction of SASL Programs. SOFT

WARE - Practice and Experience, 18(3): 239-253,1988.

[44] P. Henderson. Functional programming, formal specification and rapid prototyping.
IEEE Transactions on Software Engineering, 12(2): 241-250,1986.

[45] Peter Henderson. Functional Geometry. In Conference record of the 1982 ACM

Symposium on Lisp and Functional Programming, pages 179-187. Oxford Univer-

sity PRG, 1982.

[46] Peter Henderson. Purely functional operating systems. In J. Darlington, P. Henderson,

and D. A. Turner, editors, Functional Programming and its Applications, pages 177-

192. Cambridge University Press, 1982.

BIBLIOGRAPHY 185

[47] C. Hewitt. Design of the APIARY for Actor Systems. In Conference Record of the
1980 LISP Conference, pages 107-118, Stanford, 1980.

[48] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

[49] Paul Hudak and Raman S. Sundaresh. On the Expressiveness of Purely Functional
1/0 Systems. Technical report, Yale University Department of Computer Science
(YALEU/DCS/RR-665), 1988.

[50] John Hughes. Why Functional Programming Matters. The Computer Journal,
32(2): 98-107,1989.

[51] S. Johnson. Daisy language manual. Technical report, Computer Science Depart-
ment, Indiana University, 1987.

[52] Mark P. Jones. Gofer - functional programming environment Version 2.20,199 1.

[53] Samuel Kamin. A debugging environment for functional programming in Centaur.
Technical Report 1265, INRIA - Sophia Antipolis, 1990.

[54] R. B. Kieburtz. A Proposal for Interactive Debugging of ML Programs. In Proceed-
ings of the Workshop on Implementation of Functional Languages, pages 151-155.
Chalmers University of Technology, Programming Methodology Group, Report 17,
1985.

[55] Amir Kishon, Paul Hudak, and Charles Consel. Monitoring Semantics: A Formal
Framework for Specifying, Implementing, and Reasoning about Execution Monitors.
Technical Report YALEU/DCS/RR-850, Yale University Department of Computer
Science, 1991.

[56] P. W. M. Koopman. Interactive Programs in a Functional Language: A Functional
Implementation of an Editor. SOFTWARE - Practice and Experience, 17(9): 609-
622,1987.

[57] P. J. Landin. A correspondence between ALGOL 60 and Church's Lambda Notation.
Communications of the ACM, 8(2): 89-101,1965.

[58] H. Lieberman. Steps Toward Better Debugging Tools for Lisp. In ACM Symposium

on LISP and Functional Programming, pages 247-255,1984.

[59] Robin Milner. A Proposal for Standard ML. In A CM Symposium on LISP and Func-

tional Programming, pages 184-197, Austin, Texas, 1984.

[60] James H. Morris. Real programming in functional languages. In J. Darlington,

R Henderson, and D. A. Turner, editors, Functional Programming and its Applica-

tions, pages 129-176. Cambridge University Press, 1982.

[61] Alan Mycroft. Abstract Interpretation and Optimising Transformations for Applica-

tive Programs. PhD thesis, University of Edinburgh, 198 1.

[62] H. Nilsson and P. Fritzson. Algorithmic Debugging of Lazy Functional Languages.

In M. Bruynooghe and M. Wirsing, editors, Programming Language Implementation

and Logic Programming, pages 385-389, Leuven, Belgium, 1992. Springer Verlag.

BIBLIOGRAPHY 186

[63] J. T O'Donnell. Dialogues: A basis for constructing programming environments.
SIGPLAN Notices, 20(7): 19-27,1985.

[641 J. T O'Donnell and C. V. Hall. Debugging in applicative languages. Lisp and Sym-
bolic Computation, 1: 113-145,1988.

[651 Nigel Perry. 1/0 and Inter-language calling for Functional Languages. In Proceedings
of the XVth Latin American Conference on Informatics, 1989.

[66] Nigel Perry. The implementation of practical functional programming languages.
PhD thesis, Imperial College of Science, Technology and Medicine, 1990.

[67] Simon Peyton Jones. The Implementation of Functional Programming Languages.
Prentice Hall, 1987.

[68] Simon Peyton Jones. UK research in functional programming. SERC Bulletin, pages
24-25,1992.

[69] Simon Peyton Jones and David Lester. Implementing functional languages: a tuto-
rial. Prentice Hall, 1992.

[70] Simon Peyton Jones and Philip Wadler. Imperative Functional Programming. InACM
Conference on the Principles of Programming Languages, pages 71-84,1993.

[71] UNIX programmer's manual. prof command, 1979.

[72] Alastair Reid and Satnam Singh. Implementing fudgets with standard widget sets. In
J. T. O'Donnell and K. Hammond, editors, Proceedings of the 1993 Glasgow Work-
shop on Functional Programming, pages 222-235. Springer, 1994.

[73] Colin Runciman. From abstract models to functional prototypes. In M. Harrison and
H. Thimbleby, editors, Formal methods in human-computer interaction, pages 201-
232. Cambridge University Press, 1990.

[74] Colin Runciman and David Wakeling. Heap profiling of a lazy functional compiler.
In Functional Programming, Glasgow 1992, pages 203-226. Springer-Verlag, 1992.

[75] Colin Runciman and David Wakeling. Heap profiling of lazy functional programs.
Technical Report 172, University of York, 1992.

[76] Patrick Sansom. Execution profilingfor non-strict functional languages. PhD thesis,
University of Glasgow, 1994.

[77] Patrick M. Sansom and Simon L. Peyton Jones. Profiling Lazy Functional Languages.
Technical Report (draft), University of Glasgow, 1992.

[78] Robert. W. Scheifler and Jim Gettys. The X Window System. ACM Transactions on
Graphics, 5(2): 79-109,1986.

[79] Liang Sheng. Yale Haskell X Interface. Yale University, 1993. (distributed with the
Yale Haskell compiler).

[80] Robin A. Snyder. Lazy Debugging of Functional Programs. New Generation Com-

puting, 8: 139-161,1990.

BIBLIOGRAPHY 187

[81] Jan Sparud. Fixing some Space Leaks without a Garbage Collector. In Peter Dybjer,
John Hughes, Andy Moran, and Bengt Nordstr6m, editors, Proceedings of El Win-
terM&e. Programming methodology group, University of Gbteborg and Chalmers
University of Technology, 1993.

[82] William Stoye. The implementation offunctional languages using custom hardware.
PhD thesis, University of Cambridge, 1985.

[83] William Stoye. Message-based functional operating systems. Science of Computer
Programming, 6: 291-311,1986.

[84] J. Taylor. A System For Representing The Evaluation of Lazy Functions. Technical
Report 522, Department of Computer Science, Queen Mary and Westfield College,
1991.

[85] Jon Taylor. Presenting the evaluation of lazy functions. PhD thesis, Department of
Computer Science, Queen Mary and Westfield College, 1995 (forthcoming).

[86] Simon Thompson. Writing Interactive Programs in Miranda. Technical report, Uni-
versity of Kent at Canterbury (UKC Computing Laboratory Report No 40), 1986.

[87] Andrew P. Tolmach and Andrew W. Appel. Debugging Standard ML Without Re-
verse Engineering. In A CM Conference on LISP and Functional Programming, pages
1-12, Nice, France, 1990. ACM Press.

[88] Ian Toyn. Exploratory Environmentsfor Functional Programming. PhD thesis, Uni-

versity of York, 1987. YCST 87/02.

[89] Ian Toyn and Colin Runciman. Adapting combinator and SECD machines to display
snapshots of functional computations. New Generation Computing, 4: 339-363,1986.

[90] Edward R. Tufte. Envisioning information. Graphics Press. Cheshire, Connecticut,
1990.

[91] D. Turner. Functional programs as executable specifications. In C. A. R. Hoare and
J. C. Shepherdson, editors, Mathematical logic and programming languages, pages
29-54. Prentice Hall, 1985.

[92] D. A. Turner. A new implementation technique for applicative languages. SOFT
WARE - Practice and Experience, 9(l): 31-50,1979.

[93] D. A. Turner. Miranda: A Non-Strict Functional Language with Polyrnorphic Types.
In Jean-Pierre Jouannaud, editor, Functional Programming Languages and Computer
Architecture, pages 1-16, Nancy, France, 1985. Springer-Verlag.

[94] David Turner. SASL Language Manual. Technical Report CS/79/3, University of
St. Andrews, Department of Computational Science, 1976 (revised 1979,1983).

[95] Stephen A. Uhler. MGR -C Language Application Interface. Bell Communication

Research, 1988.

[96] Marko van Eekeken, Halbe Huitema, Eric N6cker, Sjaak Smetsers, and Rinus Plas-

mijer. Concurrent Clean language manual. University of Nijmegen, 1993.

BIBLIOGRAPHY 188

[97] Jean G. Vaucher. Pretty-printing of trees. SOFMARE - Practice and Experience,
10: 553-561,1980.

[98] P Wadler. Fixing Some Space Leaks with a Garbage Collector. SOFTWARE - Prac-
tice and Experience, 17(9): 595-608,1987.

[99] Philip Wadler. How to Replace Failure by a List of Successes. In Jean-Pierre Jouan-
naud, editor, Functional Programming Languages and Computer Architecture, pages
113-128, Nancy, France, 1985. Springer-Verlag.

[100] Philip Wadler. Comprehending Monads. InACM Conference on LISP and Functional
Programming, pages 61-78, Nice, France, 1990. ACM Press.

[101] Philip Wadler. The essence of functional programming. In ACM Conference on the
Principles of Programming Languages, pages 1-14. ACM Press, 1992.

[102] C. P. Wadsworth. Semantics and pragmatics of the lambda calculus. PhD thesis,
Oxford University PRG, 1971.

[103] S. C. Wray. Implementation and programming techniques for functional languages.
Technical Report 92, University of Cambridge Computer Laboratory, 1986.

