Graphical Application and Visualization

of Lazy Functional Computation

Sandra Periam Foubister
Submitted for the degree of Doctor of Philosophy
The University of York

Functional Programming Group,

The Department of Computer Science.

May 1995

Abstract

Mere academic toys or the tools of the future? Lazy functional programming languages have
undoubted attractive properties. This thesis explores their potential, from the programmer’s
point of view, for implementing interactive and graphical applications to which they do not
seem immediately suited. The discussion 1s centred round two example applications.

One 1s a graphical design program based on an 1dea of the artist M. C. Escher. The the-
si1s argues that the graphical user interface may be encapsulated in an “interpret” function
that when applied by a mouse click to an interface of appropnate type yields the required
behaviour.

The second example 1s a monitoring interpreter for a functional language. The idea is
that if the mechanics of the reduction are presented at a suitable level of abstraction, this
may be used to give insight into what 1s going on. On the basis of this the programmer might
modify the code so that a program runs more efficiently in terms of speed and memory re-
quirements.

Problems of displaying the reduction are addressed, and solutions proposed for over-
coming these: displaying the graph as a spanning tree, to ensure planarity, with extra leaves
replacing missing arcs; compacting the display into a quotient graph using equivalence classes
for nodes; displaying only part of the graph and allowing the user to browse this; and check-
pointing to reduce the number of reduction stages to show. A metalanguage for user defini-
tion of such visual filters 1s developed. This gives the programmer flexibility in attaining a
meaningful view of the reduction process.

The conclusions are that, even using current implementations, lazy functional languages
are not only capable, but well suited, to writing interactive graphical applications. However
the problems 1nherent in laziness need to be tackled by allowing strictness annotations and
by further development of monitoring facilities such as those proposed here.

Contents

1 Introduction 1
1.1 Motivation o e e e e e e e e e e e e e e e e e 1
1.1.1 The virtues of functional programming |

1.1.2 Ammofthethesis 2

1.2 See how they runl — The Escherprogram 3
1.3 See how they run II — The monitoring interpreter 4
1.3.1 Rationale for the interpreter S

1.4 Outlineofthesis s 6
2 Graphics and interaction 9
2.1 Introduction L, 9
2.1.1 Sequencing. e, 10

2.1.2 Referential transparency 10

2.2 Interaction 11
2.2.1 Continuations e 12

2.2.2 Transaction combinators, 13

2.2.3 Strategies for marrying I/O with referential transparency 15

23 Graphicso Lo 20
2.3.1 Functional Geometry oL, 21

2.3.2 Functional Movies oL 22

2.3.3 Wray'sspreadsheet 24

2.3.4 Dwelly’sRubikcube 25

2.4 A declarative interface? oL oL, 25
2.4.1 Models and prototypeso 26

2.4.2 The interface to the window system 28

2.5 Motivation for the Escher program 31
3 The Escher program 32
3.1 Introduction, 32
3.2 User'sviewoftheprogram 33
3.2.1 Outhne ot the program 33

322 Usmgtheprogram 34

3.2.3 How user interface principles are observed 37

3.3 Implementation of the program 38
331 Owverallview 38

3.3.2 Interaction 39

3.3.3 Programstate 40

1

3.4 ASSESSMEN e e e e e e e e e e e e e e 45
3.4.1 Advantages and disadvantages of using a lazy functional language 46
3.4.2 Satisfactory performance?o 48
3.4.3 Declarative implementation of the interface? 49
3.5 Futurework 50
Monitoring and profiling S2
4.1 Introduction 52
4.1.1 Whattomonitor?33
4.1.2 Howtomonitor? 4
4.2 Routine collection of statistics oL 54
4.3 Sideeffectingtracingo e 35
4.3.1 The Chalmers hbccompiler 33
4.3.2 Kieburtz’ proposalo 0oL 35
4.3.3 Instrumentation of the SML-NJcompiler 56
4,34 A snapshottoolforfly 57
4.3.5 A snapshottoolforglide 57
4.4 Debugging without sideeffects 58
441 Errorsasvalues 000, 58
4.4.2 The Daisy “debug”tool, 59
443 Kishon L. 60
4.5 Purpose built environments oL 0oL L oL 61
4.5.1 The Transparent PrologMachine 61
452 Lieberman’sZstep o oo 62
453 Nissonand Fritzson, 03
454 Kamin'sCentaur 64
4.5.5 Snyder’s “Lazy Debugging” 65
4.5.,6 Taylor’'sProspero, 66
4.6 Profiling graphreduction oL 67
46.1 Harteland Veen 67
4.6.2 TheGlasgowprofiler. 67
4.6.3 The Yorkprofiler.o, 68
4.6.4 TheUCLwprofiler. 69
47 DIsCussion e e e e, 70
47.1 Finding errors inthe sourcecode 70
4.7.2 Optimising execution performance 72
4.7.3 Illustrating the reduction process 73
474 Whatweneednow L. 73
A monitoring interpreter 74
5.1 Imtroduction, 74
52 Thehlanguage, 75
52.1 Functions, 76
.22 Types . . .o 76
523 Primitives, 78
524 Lambdalftng 79
5.3 Thereductionmodel 80

334 Thelnterface e e e e e 4]

111

5.3.1 Graphreduction 0L, 80

532 Rewriterules o, 80

5.3.3 Orderofevaluation 81

5.4 Visual representation of graph reductton L. 83
5.4.1 Problems in displaying thereduction 83

5.4.2 Overcoming complexity: Graph-trees 84
5.4.3 Overcoming the problem of size I. Browsing 83

5.4.4 Overcoming the problem of size II: Spatial filtering 86

5.4.5 Overcoming “Too many graphs to show”: Temporal filtering . . . &7

5.5 Defining the compaction 88
5.5.1 whiff - ametalanguage for defining filters 89

552 Spatialfilters oL Lo 90

5.5.3 Temporalfilters 94

56 Overviewofthint e, 95
5.6.1 The prompt-response interface, 96

5.6.2 Themimgraphdisplay 96

5.63 Themammdisplayarea 97

364 Thecontrolpanel 97

5.6.5 Implementation anduseothint 97

6 The implementation of hint 99
6.1 Introduction 99
6.2 Implementing thereductton 100
6.2.1 Overview of expressionreduction 100

6.2.2 Lexicalanalysisandparsing 101

6.2.3 Thereductionstate 105

6.2.4 Function applicationo L. 108

0.2.5 Declarative implementation of the reductionrules 109

0.2.6 Stepping through the reduction 109

6.3 Displaying the programgraph 110
6.3.1 Graph-trees, 111

6.3.2 Cluster-trees: vertices of a compacted graph-tree 112

0.3.3 Displayable graph-trees 113

6.3.4 The display of the graph-tree 116

6.4 Implementing the filtering metalanguage 116
0.4.1 whiffprimitives 117

6.4.2 Haskell functions to implement whiff primitives 118

6.4.3 The compilation of whiff expressions. 119

0.4.4 Incorporating filtersinthedisplay 122

6.5 Thehintiterface, 122
6.5.1 Thecontrolpanel 122

6.5.2 Themteraction 122

6.5.3 Appearance ofthedisplay 123

1V

7 The use of hint

7.1 Introduction
7.2 Visualizing simple graphreduction
7.2.1 Themapfunction
7.2.2 The sieve of Eratosthenes
7.2.3 Thetwo list foldoperators
7.24 Anmmated diagramso
7.3 Identifying errors
7.3.1 Useofthe Errorvalue
7.3.2 Locating asemantiC €rror e e .
7.4 Exploringaprogramgraph
7.41 Browsing e e e e
7.4.2 ‘Talloringthecompaction
7.5 Theproblemoflabeling
7.6 Limitations of thesystem.
707 Summary L e e e e e e e e e e e e
8 Conclusions and future work
8.1 Introduction
82 It’salie! e,
8.3 hinttoassuagethelie? o oL 0oL
8.3.1 Bndgingthegap
8.3.2 Limzitations of the prototype
8.3.3 Potential development
834 AhintforHaskell?.,
84 Escherrevisited
841 Escher
8.4.2 Interface interpretation inhint
85 Conclusion

A Code of Escher program

B Reduction rules for hint

124
124
125
125
126
127
123
129
129
130
132
132
133
136
140
142

143
143
144
145
146
146
147
150
151
151
151
152

153

179

List of Figures

2.1 Sequencing transaction combinators. 14
2.2 Koopman’s commandinterpreter.o 14
2.3 Example of the UNQ annotation. 18
2.4 A function from picturetopicture.o ... 20
2.5 The type of Henderson’s picture building function. 21
2.6 Typesof flipandbeside. 22
2.7 Arya’srepresentation of apicture.o L, 23
3.1 Some patterns created with the Escher program. 33
3.2 Escher’'sstamps. e 34
3.3 Escher’spatterns. L e, 34
3.4 Asamplescreen. e e e 35
3.5 The intercombinator. Lo, 39
3.6 The Escher program state. 40
3.7 State transition diagram for the Escher program. 42
3.8 The action represented by a click in the Tilearea. 43
3.9 1Interfacetype and associated functions. 45
3.10 The Escherinterface. 46
3.11 The gridfunction. o e e e e e, 47
4.1 Tracingin £1ly. L e e e e e, 57
4.2 Tracinginglide. e e e >3
4.3 Representing a partially evaluated expression. 58
4.4 Definition of FACTINZStep.« v v v v v v i oo, 62
4.5 Errormessage InZstep. 0o e e e e e e e e e 63
4.6 Nilson and Fritzon’s debugger inaction. 64
5.1 Syntaxoth. s 76
5.2 Turner’s tautology checker. L. 77
5.3 The pattern matching case statement. 78
5.4 The danger of losing sharing when lambda lifting. 79
5.5 Thereduction of square (3 + 1) o oL 80
5.6 Three stages in the evaluation of foldr plus 0 [1,2,3,4].. 82
5.7 (Haskell) Definitionof foldr. L. 82
5.8 square (3 + 1) asagraph-tree.. 84
5.9 Definitionof fib.o 85
5.10 Two possible displays of £fib 7., 835
5.11 Subjecting a graphtoa PLUSINTfilter.. 87

Vi

5.12
5.13
5.14
3.15
5.16
5.17

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

7.1
7.2
1.3
7.4
7.5
7.6
1.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

The effect of the NoaPPLY filter. ... 88

Collapsing a graph-chain: temporal filtering. 88
An h definition of primes using the sieve of Eratosthenes. 92
The raw graph and the eftect of the NOAPPLY filter. 93
The ARITH filter, then this composed with the NOAPPLY filter. 93
The layout of the hintscreen. 97
Stages 1n the reduction of an expression. 100
The Parsertype. o e e e, 101
The Exprtype. o o e e e, 101
The Bindingtype.. e e 102
Sortsofnode. 103
Thenodeclass. 104
The FiveTree type. e 105
Implicit addresses 1n a two generation FiveTree. 105
Look-upmakFiveTree., 106
The graph type. o 106
The Garbage Collectionmodule. 108
Circularity 1n the binding of a group of functions. 109
The application of take., 110
Stages in the display of a program graph. 110
A definition of extended indices.o L., 111
Extending indices. o oL, 112
The graph-tree type e, 112
The cluster-tree type. e 113
The cluster graph and associated types. 113
Threading. o 114
The displayable graph-tree and vertex types. 115
Syntax of whiff. 117
Compilation rules for whiff expressions. 120
Themap function., 125
Abarrageof filters.o L 126
h definition of foldl. 127
Comparison of sum defined in terms of foldr and foldl. 127
Comparison of andlist defined in terms of foldr and foldl. 128
An erroneous definition of foldr.o Lo 129
The error message preceded by the step betore. 129
Definition of mintree. o Lo 130
Error inmintree. e e e e e e e, 131
The h definition of insertionsort. 132
Theisoxrtgraph. oL 133
The browsingof isoxrt..o 134
The NOCASE filter applied to the isort graph. 135
The NOCASEAPPLY filter applied to the isort graph. 136
Three versions of the applynodemn fa. 137
The result of various labels for the NoaPPLY filter. 138

Vil

Acknowledgements

I am glad of this opportunity to thank some of the many people who have enabled me to
complete this thesis: above all, of course, Colin Runciman my supervisor, for showing me
the fun of functional programming and making it all possible; the wise polymath Alan Dix
who cared for me when Colin was away; past and present members of the York functional
programming group, especially Ian Toyn; many other people at York, notably all the sup-
port staff; Marc Thomas who helped me win a car; people in Edinburgh who stored the con-
tents of my flat; Thomas Johnsson and Lennart Augustsson whose LML compiler marked
the beginning of practical lazy functional programming; people in Glasgow
especially Will “always helpful” Partain; Margaret Swain who is making good use of her
first word processor 1n her 87th year and 1s a dear friend; Holly and Megan who keep me
supplied with pictures tor the walls; finally colleagues at Heriot-Watt who have encouraged
my dual existence, especially the Vision Group whose machines have generously hosted sev-
eral megabytes of Haskell compiler and window system files for me. The work was funded

by a SERC grant.

Viil

Declaration

The design program discussed in Chapter 3, and much of the matenal in that chapter includ-
ing the 1dea of a mouse click as a function application, I originally presented in a paper at the
3rd International Conference for Young Computer Scientists held in Beijing in 1991 [36].
A revised version appears as Chapter 4 in the book: Applications of Functional Program-
ming [335].

I discussed the technique of displaying a graph as a tree with shared nodes indicated by
display references at Graph Drawing '93 in Paris in a talk entitled: “The Display, Browsing
and Filtering of Graph-trees™.

The use of spatial and temporal filtering, here described in Chapter 5, and of the meta-
language used to define compaction rules, are outlined in “Techniques for Simplifying the
Visualization of Graph Reduction™ [37], presented at the 1994 Glasgow Functional Pro-
gramming Workshop in Ayr.

These papers are co-authored by Colin Runciman, my supervisor, and result from col-
laboration with him.

1X

Drawing hands by M. C. Escher

This picture epitomises an outline of the thesis:
on the one hand lazy functional programming creates an interactive graphical program,
based on an 1dea of M. C. Escher;
on the other hand an interactive graphical program, itself a lazy functional program,
delineates a lazy functional computation.

Chapter 1

Introduction

1.1 Motivation

Lazy functional programming 1s like the curate’s egg — good 1n parts. The virtues of the
functional approach (see Section 1.1.1 below) are not in question, but the unpredictability
of implementations in terms of the performance of programs sometimes outweighs these
attractive features.

John Darlington writes [22]:

“The late 1980s promise to be fascinating years tor workers in declarative lan-
guages. This coming together of parallel machines, mature declarative languages
and transformation based programming environments means that all the, mutu-
ally supporting, components are in place for a searching appraisal of the ulti-
mate practicality of this approach.”

The “practicality” of the approach will depend on 1ts ability to deal with the space and time
problems for which functional programming is infamous. The motivation for this thesis is
to take part in that appraisal which is continuing into the 1990s. The focus is on the point
of view of the programmer rather than the implementor: using current implementations can
we provide evidence that this style of programming 1s viable? What information does the

programmer need in order to write efficient programs?

1.1.1 The virtues of functional programming

Functional programming has several attractive properties which make research into its ulti-
mate viability worthwhile:
Directness Once the programmer has abstracted the essence of a specification, the direct-

ness of the functional style allows it to be precisely reflected in the program text. The

[\ 9

CHAPTER 1. INTRODUCTION

code produced is clear and readable, and therefore easy to modify.

Freedom from side effects Part of the directness results from freedom from side effects:
a programmer may concentrate on a function definition without needing to consider
possible consequences for other parts of the program. Functional expressions are ref-
erentially transparent, so functional programs are suited to equational reasoning. They

may also be transformed manually or automatically to optimise performance.

Lazy evaluation The lack of side eftects also results in the order of evaluation not being
important. Lazy functional programming exploits this. It extends the scope of appli-
cation for higher order functions, and, for example, allows termination conditions to

be separated from loop bodies.

Potential for parallelism The flexibility in order of evaluation also gives functional lan-
guages apparent potential for parallel implementations. This aspect 1s a current area
of research, and may well be of paramount importance for the the future use of func-
tional programming.

Higher order functions The use of higher order functions, together with the possibility of

exploitation of polymorphism, facilitates design abstraction, code reuse, conciseness

of code, and reliability and ease of programming.

Such features “push back the conceptual limits on the way programs may be modularised” [50].

1.1.2 Aim of the thesis

The overall aim of the thesis 1s to demonstrate that the problems of space and time usage can
be understood sufficiently for them to be controlled, so that these uncontroversial benefits of
lazy functional languages can be reaped, for example, 1n the context of interactive graphical
applications.

[am concentrating on interactive and graphical applications as these are likely to expose
problematic subtleties arising from intricate program structures, and unpredictable evalua-
tion order. For example the order of evaluation in a lazy language cannot be predicted in the
absence of implementation details, but an interactive application requires precise sequenc-
ing; and the “state” of both program and display in a graphical application needs to be rec-
onciled with the functional style. Such applications also afford possibilities for exploring
laziness, for example in the use of “almost circular” definitions [4, 12]. Such applications
are also likely to expose any “embarrassing pauses” or space leaks.

There are two complementary objectives, both fitting the heading of “See how they run”’

CHAPTER 1. INTRODUCTION 3

1. to develop suitable programming techniques within a lazy functional programming

system for interactive graphical applications, and

2. to develop an interactive functional programming environment (itself a purely func-
tional program) in which program evaluation may be monitored and observed graph-
ically. The aim here is to enable a programmer to write “better” programs, i.e. that

use fewer resources, through better understanding of what 1s going on as they run.

Both objectives are explored in the context of particular applications, the first an interac-
tive graphical design program based on an 1dea by the artist M. C. Escher, the other a minimal

programming environment for a functional language. Both implementations are written 1n

Haskell [34].

1.2 See how they run1 — The Escher program

There are both potential advantages and disadvantages in writing pure declarative interactive
graphical programs.

The implementation of a program architecture based on a functional description of the
interface may lead to an enhanced clarity of programming; this clarity may be reflected in
a declarative user interface. This suggests that the declarative style may be used to express
directly, not only an executable prototype, but the implementation itself.

But the abstraction involved in using the declarative style means that the programmer
no longer has control over storage management, so implementations of functional languages
may make less efficient use of conventional machine resources than other languages [60].
Unless the programmer has access to monitoring facilities, the time and space properties of
programs are often unpredictable: the programmer may unwittingly create a program that re-
quires an unexpectedly large, or even increasing, amount of space in which to store shared
structures and suspended computations; this may then slow the program down because of

time given over to memory management, and the program may crash 1f the memory require-

ments become too great.

Another possible problem is that interfacing with an imperative window system could
result in a lack of referential transparency. There 1s already evidence that such problems may
be overcome [27], and there is a current spate of active research explicitly aimed at defining
a suitable graphical interface (e.g. [18, 96]). But at present 1t remains an open problem.

The purpose of Part I of the thesis 1s to investigate the practical limits of the pure lazy

functional paradigm by implementing an interactive graphical application in Haskell, ex-

CHAPTER 1. INTRODUCTION 4

plicitly reflecting the specification in the program code, and observing the program’s run
time behaviour. The Escher program discussed in Chapter 3 provides an early example of a
simple declarative graphical interface, and 1t 1s argued 1n Section 2.1.2, in Chapter 2, that the
apparent problem of different displays resulting from the same input is artificial. The aim
here 1s to build on the work of Andrew Dwelly [27] which suggests that the potential prob-
lems can indeed be overcome, and that the expressiveness of a lazy functional language may
indeed be exploited in this context. He writes, in connection with his dialogue combinators

(see page 13):

“The techniques presented here, allow the construction of modern graphical user
interfaces with a lazy functional language. Such interfaces have the advantages
of being both compactly and understandably described, as well as being effi-
ciently executable.”

The Escher program confirms the expectations engendered by Dwelly’s work 1n a more sub-
stantial application. It also develops the concept of the interface as a structure to which an
interpreting function may be applied, by means of a mouse click, ytelding the required in-

terface behaviour. Dwelly goes on to say:

“It is interesting to note that one area of computer science that has still to benefit
from graphic user interface design, 1s that of software environments for func-

tional languages ...”

And this leads to the second aspect of the thesis: the development and use of a monitoring

interpreter for a quintessential non-strict functional programming language.

1.3 See how they run II — The monitoring interpreter

In approaching the space and time problems mentioned above the functional programmer
has only recently begun to have access to tools akin to those available to the imperative pro-

grammer for analysing program behaviour. In 1989 Augustsson and Johnsson [9] were writ-
Ing:

“There is ...a lack of tools for analysing program behaviour; the usual UNIX
tools for profiling programs, like “prof”, do not work so well 1n a lazy eval-
uation context, or with higher order functions. When programming 1n a style
making much use of the predefined higher order functions like map, reduce,
etc. the profiler may well say that most of the time 1s spent In map or reduce
— hardly a big help when trying to pinpoint the bottlenecks 1n one’s program.”

CHAPTER 1. INTRODUCTION S

Although the situation is currently being remedied, as discussed in Chapter 4, there is
still a need for tools which give the user details of the reduction process in a digestible and
meaningful form. Statistics about a computation may be revealing, but it may be that some
form of visualization of the reduction process 1s needed to expose the nature of a problem:
relevant structural properties of the program being run may not be exposed by a statistical
account of the composition of the heap.

The discussion 1n Part II of the thesis i1s based around the design, implementation and
use of a monitoring interpreter. It 1s unusual 1n that it 1s a graphical functional programming
environment written in a purely functional style. This enables further observations to be

made regarding the suitability of a lazy functional language for such an application.

1.3.1 Rationale for the interpreter

People are unable to predict the behaviour of a lazy functional program because, although
the order of reduction 1s deterministic in a given sequential implementation, it 1s not intu-
itively obvious. Even with statistics, or diagrammatic summaries, about the memory usage
as provided by cost centre or heap profiling, discussed in Chapter 4, the exact causes cannot
be shown, and it may be therefore that the programmer does not gain understanding of what
is going on in sufficient detail to be able to control it.

One solution would be to make all details of the reduction open to inspection. Two
problems arise: the level at which to do this and, whatever level 1s used, the overwhelm-
ing amount of information that would be provided. There 1s a need to be able to relate the
data to the source code. To portray the reduction in terms of the combinators to which it gets
translated is inadequate and potentially confusing.

Simple graph reduction/template instantiation fulfils the needs to relate the observation
of the process to the source code while being sufficiently close to reduction using supercom-
binators to be likely to throw light on the performance resulting from a real implementation.
This is discussed further in Chapter 5. Having chosen this level of presentation we are left
with the other problem — of too much to show. The program graph could be displayed 1n its
entirety on the screen — but even using labeling with source names the overall view 1s com-
plex even in simple examples. So the problem 1s to get a handle on the graph so that it may
be understood. One of the sources of complexity 1s the crossing of arcs 1n a display, another
is its potential size. There are various possible solutions to these such as only showing part
of the graph and (somehow) ensuring as much planarity as possible — one that completely

solves the arc crossing problem, but at the expense of potentially making the size problem

CHAPTER 1. INTRODUCTION 6

worse, is to use a graph tree, a spanning tree of the graph with missing arcs displayed as
extra leaves (see Chapter J).

In order to compact such a structure, or, indeed, the original graph, without losing the
meaning and structure of the graph, the proposed solution is to display a quotient graph
where each vertex is a subgraph of the orginal graph. The partitioning of the graph is ac-
cording to equivalence rules which state whether or not any adjacent pair of graph nodes
belong to the same subgraph, i.e. whether the arc between them should be collapsed. In or-
der that the viewer may control the display the equivalence rules need to be flexibly definable
by the user on the basis of accessible primitive conditions on the relevant nodes.

Similarly, as the reduction proceeds, the viewer needs to focus on specific sections of
computation: this time it 1s conditions on complete graphs that need to be used to determine
which sections of the reductions may, at least temporarily, be skipped over.

A metalanguage 1s devised to enable the user to define his/her own filters over a display
and/or over a sequence of reduction steps, and a highly interactive interface proposed so that

such filters may be flexibly applied to create useful views of the computation.

1.4 Outline of thesis

Chapter 2 considers the problems of sequencing and referential transparency 1n relation to
interactive graphical programs. It goes on to review the principal approaches to writ-
ing interactive functional programs. There 1s then a review of evidence that the func-
tional style is particularly appropriate to manipulating graphics, provided by existing
examples of interactive graphical lazy functional programs. The possibility of a con-
venient declarative definition of the graphical user interface 1s explored. Techniques
for interfacing between a functional program and a window system are outlined. Fi-

nally the “Escher program” to be discussed in Chapter 3 1s introduced.

Chapter 3 describes the implementation of an interactive graphical program in a lazy func-

tional language. It investigates:

1. advantages and disadvantages of using a lazy functional programming language

for such an application;
2. whether the performance of the program is satisfactory — i.e. the first aspect of

“See how they run’;
3. a declarative implementation of the user interface, including:

e the representation of a mouse click as a function application;
e the incorporation of principles of user interface design;
e the viability of a generic functional model of interaction.

CHAPTER 1. INTRODUCTION 7

There is first an account of the application from the user’s point of view; then the im-
plementation is discussed, ending with an account of the interface; the program is re-
viewed according to each of the points above; finally a “Future work” section proposes

possible extensions to the program, and work deriving from its implementation.

Chapter 4 reviews monitoring and profiling tools for functional languages. Existing sys-

tems are discussed under the headings:

¢ Routine collection of statistics
e Side effecting tracing

e Debugging without side effects
e Purpose built environments

e Profiling graph reduction

The chapter closes with a discussion in which the requirements for the proposed mon-

itoring interpreter are established.

Chapter 5 discusses the design of a programming environment to incorporate the monitor-
ing interpreter — the second aspect of “See how they run”. The nature of the language
to be interpreted is described and justified. An account is given of the reduction pro-
cess. Problems involved in displaying graph reduction are identified, and solutions
involving filters are proposed. A metalanguage 1s described for defining functions
to compact the display, and to determine which reduction steps to show. Finally an

overview of the prototype system 1s given.

Chapter 6 presents the implementation of the programming environment. The reduction
needs to proceed through identifiable steps, and to permit the gathering of informa-
tion both at a global level, such as the number of the current step, and at the level of
individual program nodes, such as the name of the function the application of which
created them. The display needs to incorporate the elements proposed in Chapter 3,
such as the presentation of the graph as a browsable tree, and the compaction of the

display according to user defined rules.

There is first an account of the implementation of the reduction. Then a technique for
transforming a program graph into a structure that may be displayed without crossing
of arcs is delineated. The implementation of the checkpointing and of the compaction
of the display 1s described. The final section discusses the appearance and function-

ality of the user interface.

Chapter 7 illustrates the potential of the system by showing examples of its use. There

are specimen screen dumps to show how the system may be used for teaching and

CHAPTER 1. INTRODUCTION S

for locating errors. Then there is a demonstration of the effect of browsing, and of
how a spatial filter may be tailored to the compaction of a particular display. This is
followed by an account of the problems of labeling a compacted graph. Finally there

1s discussion of the limitations inherent in the approach taken.

Chapter 8 concludes by tying together the various strands of the thesis, assessing what has

been achieved, and proposing future work.

Chapter 2

Graphics and interaction

2.1 Introduction

Functional programming 1s beginning to yield programs that run at a viable speed, suggest-
ing that this concise and clear way of writing programs may be exploited in interactive graph-
ical applications. Interactive functional programs were being written in SASL as early as
1979 [94]; and the seminal work on functional graphics, Henderson’s Functional Geome-
try [45] was published 1n 1982. But until implementations supported acceptably fast pro-
cessing of functional programs, perhaps with the advent of Lazy ML [9], and Ponder [103],
there was no incentive to write functional programs that were both interactive and graphical.

Moreover, even with the possibility of programs running at an acceptable speed, there re-
mains the problem of referential transparency. We take it as axiomatic that referential trans-
parency is required, so that the concomitant benefits of functional programming’ may be
exploited. However, as we are working with non-strict languages, in which the order of
evaluation may not be directly inferred from the program text, there are potential problems
with the sequencing needed in an interactive program. Referential transparency might also
appear to have been violated when the same input to a graphical program may result in dif-

ferent displays, depending on the state of the window system.

Outline of chapter

This chapter considers the problems of sequencing and referential transparency. It goes on to
review the principal approaches to writing interactive functional programs. There 1s then a

review of evidence that the functional style is particularly appropriate to manipulating graph-

lexpressiveness, ease of transtormation and potential for parallelism

CHAPTER 2. GRAPHICS AND INTERACTION 10

Ics, provided by existing examples of interactive graphical lazy functional programs. The
possibility of a convenient declarative definition of the graphical user interface is explored.
Techniques for interfacing between a functional program and a window system are outlined.

Finally the “Escher program” to be discussed in the next chapter is introduced.

2.1.1 Sequencing

In an interactive program the order of output events, and the timing of output events with
respect to the program input, has to be predictable, given a particular input. The program-
mer has to ensure that, whatever order of reduction 1s chosen by the implementation, the
program will progress as required at run time. For example Wray [103] points out that a
prompt should be output before the evaluation of any expression referring to the input.

To obviate the problem of sequencing, the programmer has either to craft the program
very carefully, or to make use of programming schemes that pre-package the sequencing,
for example: continuations [49], transaction combinators [86, 26], dialogues [63], and the
monadic style [70]. These are described below.

To some extent the techniques employed to control sequencing will depend on features
of the language used. For example David Turner’s languages from SASL [94] to Miranda [93]
have included user input as a primitive lazy list. Such languages can, therefore, use all the

techniques available for manipulating lazy lists.

2.1.2 Referential transparency

The apparent problem of different displays resulting from the same input 1s artificial. The
representation of the result of evaluating an expression 1s not part of the result, whether di-
rectly displayed on the screen, via the operating system, or indirectly via a window manager.
However, the result of an expression may, in its representation, change the display environ-
ment which is an aspect of the state of the window manager. For example, in a monochrome
graphical context it may change the drawing mode from black on white to inverse video.
Changing the graphical display 1s updating it, so a program that does this appears to be ma-
nipulating an external variable. It may also affect the representation of future results. Yet
there is no violation of referential transparency. The possibility of the representation of the
result being a change 1n the environment (that may affect the representation of future results)
'« not of direct concern to the program that is producing these results. The intermediate re-
sults of the program can be regarded as side-effecting actions, which, themselves, are pre-

cisely determined. Recent work in Glasgow [70] by Phil Wadler and Simon Peyton Jones

CHAPTER 2. GRAPHICS AND INTERACTION 11

has captured this within the Haskell type system: I/O procedures become part of the inter-
mediate values that are computed. This monadic style is described in Section 2.2.3.
Referential transparency is also at stake in the case of programs that interact in other
ways with the outside world. For example, functions that take a filename as argument should
return the same result, given the same file name. Yet, over time, the “contents” of the file
with that name may change. Various solutions have been proposed to this — for example
the program may only be allowed to read a file once, then to keep whatever the file holds as
the referent of that filename for the whole of the computation no matter what happens to the

“real” file meantime. Another solution is to use the monadic scheme mentioned above.

2.2 Interaction

The functional approach to programming has developed tfrom a theoretical background which
has threads of mathematics, lambda calculus and denotational semantics. This theorising

was not geared towards the writing of useful programs, and, in particular, the pragmatics of
writing interactive programs was not of immediate concern to the early pioneers. Even now

some strict functional languages, those that do not apply a function until all its arguments

are fully evaluated, regard I/O as being beyond the domain of the pure functional language.

For example in SML [59] there 1s an input “command™ input (std-in,10) refers to
the next 10 characters typed in at the keyboard. This treatment of I/O has 1ts own problems

of suitable packaging to ensure correct sequencing. There 1s, however, validity in the view

that interactive functional programs have two elements — one 1s pure; the other, concerned

with I/O, is side effecting. This contrasts with the view of an interactive functional program

as having a potentially infinite stream of input which 1s processed into a potentially infimite
stream of output. In a strict system such an input list would be treated like any other, so a
list-processing function would not be able to provide the basis for an interactive application

as all the input would need to be present before the program could be executed.

This section presents the solution that was found for this, the use of continuations, then
an alternative control system, transaction combinators, that can be used 1n non-strict lan-
guages. It goes on to outline various systems that have been proposed for dealing with /'O
more generally in functional languages, and concludes with a look at a recent development,

the use of state monads, which appears to offer a neat answer to the problem.

CHAPTER 2. GRAPHICS AND INTERACTION 12

2.2.1 Continuations

The first interactive functional programs were written with the use of continuations. Initially
this was in the broadest sense using so-called Landin streams (see below), then, beginning

with HOPE, the technique was used with lazy lists.

Landin’s streams

Landin [57] proposes a solution to the problem of a language not being able to handle a
potentially infinite list directly. He introduces a special function that he calls a stream. In
the kind of strict language that he 1s discussing, a function is applied to a list of arguments.
A stream is a nullary? function: applied to an empty list of arguments it returns a pair of
which the first component 1s the head of the stream, and the second component is another
stream, representing the tail. Burge [15] (p 136) notes that such streams are * ... most useful
for implementing tunctions which process character streams from input”.

In order to structure an interactive program with such a representation of the input, con-
tinuations may be used. A continuation style version of a function takes an extra, functional,
parameter called “the continuation”. The result of the normal application of the original
function is given to this continuation function as an argument, so that the continuation rep-
resents ‘“‘the rest of the program”™. The use of continuation functions 1s not peculiar to inter-
active programs.

The continuation style of interaction was proposed for HOPE [17], a strict language, but
with one lazy feature, a lazy cons. In this proposal, a function input takes an argument
of type device, and returns a lazy list, where items are read trom the device when needed.

Similarly a function output evaluates the elements of a list and directs output to an indi-

cated device.

Lazy lists

The use of lazy lists allows other control structures in addition to continuations. Lazy lists
have been used to represent input to functional programs since SASL [94]. Contusingly,
these lazy lists are also referred to as streams, though in the context of modern lazy functional
programming languages there is little danger of ambiguity in the use of the term.

The “stream style” of interaction refers to a program mapping a lazy stream of input to

a lazy stream of output. Hudak and Sundaresh [49] demonstrate that this is equivalent in

21 andin calls it none-adic

CHAPTER 2. GRAPHICS AND INTERACTION 13
expressiveness to the continuation style.

2.2.2 Transaction combinators

An alternative to the use of continuations, which exploits the laziness of streams, yet allows
them to be used in a controlled way, was proposed in 1986 by Simon Thompson [86]. A
similar scheme was put forward by Andrew Dwelly in 1988 [26]. This is the transaction
combinator style. Pieter Koopman’s editor [56] uses specialised transaction combinators in
1ts implementation. The idea was first mooted by John O’Donnell [63], whose dialogue
function 1s a combinator that he defines in order to describe and implement components of

an applicative programming environment.

Thompson combinators

Thompson, using Miranda notation, defines a function type: interact, which epitomises

an individual interaction:
interact * ** = (1input, *) — (1nput, **, output)

The type is parametrised on the program states before and after the interaction. A func-
tion of type interact takes as argument some 1nput and a state, and returns the unused
input, a new state, possibly of different type to the original one, and some output.

He goes on to propose combining forms, combinators, tor such interactions. These are
examples of control structures that help build composite interactions. They also have the
benefit of making implicit the recursion required by the interactive program.

Transaction combinators are often of type interact * *, where the type of the pro-
gram state remains constant to allow cyclic interaction. However, where the exact number
of transactions is explicit in the combinator, the type of the state may change. For exam-
ple Figure 2.1 shows how the combinator seq combines two interactions performed one
after the other. This also, incidentally, illustrates a benefit of lazy evaluation: the function

make_output, which pushes a string on to the output stream, allows the output of outl

before the invocation of inter2.

Thompson defines a whole library of transaction combinators and associated functions,

including combinators for iteration, selection between interactions, and sequencing.

CHAPTER 2. GRAPHICS AND INTERACTION 14

seq :: lnteract * ** -> interact ** *** -> 1nteract * ***
seq 1nterl inter2 x

= make_output out (inter2 (rest,st))

where (rest, st, out) = interl x
make_output :: output -> (1nput, *, output) -> (1nput, *, output)
make_output piece (in, st, out) = (in, st, piece++out)

Figure 2.1: Sequencing transaction combinators.

Dwelly combinators

Dwelly [26] proposes a similar set of combinators. There are two minor differences. One is
that the type of the program state 1s assumed to be constant: he parametrises his Dialogue
type, which 1s otherwise equivalent to Thompson’s interact type, on only one state type.
The second difference 1s that the state and input are regarded as separate arguments, rather
than as a pair. A further option would be to regard the input as part of the program state,
in which case an interaction function would return a new state and some output, without
explicit reference to the rest of the imnput.

As Dwelly applies transaction combinators to the manipulation of the graphical user 1n-

terface, his work is particularly relevant here and is further discussed later in this chapter

(Section 2.3.4) [27].

Koopman combinators

Koopman [56] uses specialised transaction combinators, with arguments specific to his ap-
plication, in his functional definition of an editor. For example Figure 2.2 shows the function
that he calls commandinterpreter that selects the combinator to apply next, represented

by editoperation, as well as controlling the overall interaction.

commandinterpreter text commands I

= response: prompt : commandinterpreter newtext nextcommands
WHERE |
commandline: rest = commands

editoperation
response: newtext: nextcommands

parse commandline
editoperation text rest

Figure 2.2: Koopman’s commandinterpreter.

This is an early demonstration of the suitability of functional programming languages

CHAPTER 2. GRAPHICS AND INTERACTION 15

for elegantly implementing interactive programs. He notes, for example, that his program is
an order of magnitude smaller than than a comparable program in an imperative language,
that 1t was quickly written, and easily extended. He points out that such a program could
be incorporated into an integrated functional programming environment, which is indeed

something that O’Donnell [63] was doing at round about the same time.

O’Donnell combinators

O’Donnell’s dialogues [63] predate, yet in some ways extend, the Thompson/Dwelly model.
A dialogue 1s an abstraction of the interaction between two processes. It can be used to de-
scribe, not only a human using a computer, but also two communicating processes. It is an
interactive session between two participants, each of which has a state that contains infor-
mation about the history of the interaction. Each also has a transition function: stp_fcn,
that defines its actions.

This stp_fcn 1s similar to a Thompson/Dwelly combinator, but the indication that the
dialogue is to end is determined in the transition function, rather than in the overall control-
ling function. It returns the stream of unused inputs, a list of outputs to be sent to the other
participant, a new state, and a Boolean value to indicate whether that participant wishes to
terminate the dialogue. The dialogue function repeatedly applies stp_fcn to the current
values of inputs and state in order to find the new inputs’ and state’. The inputs that

the stp_fcn did not consume are used in the next step of the dialogue unless the dialogue

terminates.

One of the participants begins the dialogue by starting the other. From then on each
computes a new state and a new output from its previous state and the last input 1t received.

Such functions can be used to implement a programming environment, which the user can

extend by creating new components.

2.2.3 Strategies for marrying I/O with referential transparency

The discussion so far has concentrated on the concerns of style of interaction and control of
sequencing. There are other questions that need to be addressed. There 1s a need to ensure
that /O is implemented in such a way that the functional program is referentially transpar-
ent, and that facilities are offered for all flavours of I/O that a program might require —

not just user interaction, but communication with all sorts of devices and processes. Even

Haskell [34], the Esperanto of functional languages, does not fully come to grips with the

problem (see below).

CHAPTER 2. GRAPHICS AND INTERACTION 16

This section presents various strategies for coping with the conflicting demands of “pure”

functional I/O and the messy real world of asynchronicity, non-deterministic merging and

parallelism:

e Henderson’s use of tags, and an interleave function:
e Stoye’s message passing;

e HOPE+C’s result continuations;

e Concurrent Clean’s event 1/O:;

e Haskell’s approach to I/O;

e the monadic approach.

Henderson’s operating system

Henderson [46] defines a multi-user operating system in 250 lines of functional code that has
a (latabase application and an editor. It also has a facility to run programs. The text of these
programs 1s put into the database by means of the editor. He introduces tagging to allow
separate users to see on their monitor only the responses associated with their particular re-
quests. Additional tagging could also be used to allow the user to access different databases,
with the user explicitly tagging requests at the keyboard®.

Henderson implements an interleave “function” that behaves 1n a demand driven
way: “because of demand for its result, it constantly demands its arguments”. In order to im-
plement interleave as a real function, he considers time-stamping items to enable

interleave to choose between its arguments. This 1s effectively adding a “fair merge”,

an idea that was later explored by Abramsky and Sykes [1].

Stoye’s message passing

William Stoye [83] proposes a system which also uses a non-deterministic merge operator.
As the non-determinism is only used at the “bottom level” of a program, he regards this as
an improvement on Henderson’s proposed functional operating system, which 1s not reter-
entially transparent.

Stoye doesn’t attempt to make his merge a function. Part of the run-time system, re-
ferred to as “the sorting office”, does the merging of the output streams from active pro-

cesses. It sorts them and merges them into input streams according to their tags. He con-

3Henderson’s use of the terms response and request 1s from the point of view of the user, rather than the
program. This kind of usage may be the basis of the confusion that the Haskell Response and Request

types can cause, as these are from the point of view of the Haskell program.

CHAPTER 2. GRAPHICS AND INTERACTION 17

siders that such isolation of non-determinism from the functional processes is a convenient

way of maintaining their referential transparency.

Result continuations

Nigel Perry [65, 66] champions another technique for maintaining the separation of the pure
functional aspect of a program from the side-effecting parts. The technique uses so-called
result continuations. These are implemented in HOPE+C, a research language specially de-
signed to demonstrate the result continuation system.

Under this scheme, a programis a function of type: o — Result where « is the type of
the 1nitial state, and Result 1s a pair of an operation request and a (continuation) function
of type 0 — Result, where (3 is the type of the value returned by the operation request.

This scheme 1s attractive, in that HOPE+C allows 1solation of the parts of the program
that are referentially transparent. But it forces the continuation style which may have an
unattractive imperative teel, and HOPE+C does not capture the spirit of declarative I/O. What
1s needed 1s a language, or a method of writing interactive programs, in which the program-
mer could write without needing to worry about the problem of referential transparency,

knowing that the system being used would guarantee this.

Histories and event 1I/O

An alternative to maintaining a separation between the functional program and the environ-
ment is to pass the environment around within the functional program.

Backus’ FL [10] has an implicit history parameter as additional argument to every func-
tion, and as part of every result, though it is unchanged except for occasions where 1/O takes
place. The history component models the state of /O devices and the file system.

Another more recent proposal comes from the University of Nijymegen [2], regarding
the language Concurrent Clean. Several mechanisms are involved in their treatment of 1/O.
Firstly there is explicit environment passing where needed: rather than passing the environ-
ment to all functions, or to none, it is passed only to functions with side-etfects. Secondly,
single threaded environments can be created by the use of an extension to the type system
of a unique type predicate: UNQ. Type rules and type definitions can contain UNQ predicates.

Figure 2.3 shows the definition of a unique file type using the UNQ notation.

This defines a type UFILE which is equivalent to FILE, but instances of its type will be used

linearly. Thus the UNQ type predicate can be used to force programs to use objects 1n a sin-

CHAPTER 2. GRAPHICS AND INTERACTION 18

TYPE
:: UFILE -> UNQ FILE

Figure 2.3: Example of the UNQ annotation.

gle threaded way, and offers possibilities for generating efficient code, for example in the
implementation of arrays. However, they point out that a functional model for I/O should
be multi-threaded, and should specify the least possible amount of reduction order; and nei-
ther file nor stream based models are well suited for describing such behaviour. Concurrent
Clean, therefore, uses event /O, which 1s an explicit environment passing method.

The environment 1s modeled as an TO0system of IOstates, each of which is a UNQ ab-
stract object. Each TOstate is associated with a Device, an object that encapsulates a sin-
gle thread of 1/0O. The program can only perform I/O through an 10state. In order that the
Device$ may cooperate, each Device function operates, not only on its current IOstate,
but also on a Programstate. As the interaction proceeds, input events to the program are

in turn dispatched to the appropriate device, like the procedure in Stoye’s sorting office.

Standard Haskell’s I/0 system

Haskell’s I/O system regards a program as communicating with the outside world via syn-
chronised streams (lazy lists) of messages. A program issues a stream of requests to the oper-
ating system, for example: WriteFile String String or ReadFile String. These are
of type Request. In reply the program receives a stream of responses of type Response,
for example: Success or Str String.

A Haskell program has the type:
Dialogue :: [Response] — [Request].

Both textual and binary forms of Request and Response are provided for.
As a continuation based version of /O may be defined 1n terms of a stream based one,

such as Haskell’s, a consistent set of primitive transactions for continuation based I/O 1s also

provided. For example, corresponding to the file system Request:
AppendFile String String

there is a continuation transaction using which the programmer may express directly

“what to do with” the associated Response:

appendFile :: String — String — FailCont — SuccCont — Dialogue

CHAPTER 2. GRAPHICS AND INTERACTION 19

The type SuccCont is a synonym for Dialogue, and FailCont a synonym for
IOError — Dialogue.

Thais 1s adequate for simple I/O, but does not cater for non-determinism, asynchronicity,
nor parallelism. There is surely a case for explicit acknowledgement of time as an indepen-
dent parameter — in addition, that is, to the relative time implied by sequencing. The LML
hiaton is available to the Chalmers’ Haskell B. compiler, and goes some way towards alle-
viating the problem, but is not a standard component of Haskell. In the case of the Glasgow
compiler, the ccall used to implement monadic I/O (see below) 1s made available to the

programmer, but the need to use such a non-functional extension appears to expose a limi-

tation on the current language definition.

The monadic approach

Wadler [100] proposes the use of monads, a concept taken from category theory, as a conve-
nient structuring mechanism for certain kinds of programs written 1n a functional language
— particularly those that require a program “state” to be passed round throughout the pro-
gram. The use of state monads not only enables single-threading of the state to be guaran-
teed, but also allows the type of the state to be changed with minimal alteration to the text
of the program.

The Glasgow Haskell compiler makes heavy use of the monadic style 1n 1ts implementa-
tion. Of particular relevance here is the use of monads in conjunction with a non-functional
ccall to permit referentially transparent interactive programs to be written in a quasi 1m-
perative style [70]. This is similar to the use of result continuations in HOPE+C, described
above. The ccall is a non-standard extension to Haskell. It can call any “function™ written
in C. Used indirectly, and safely packaged in a monadic type, the ccall enables referentially
transparent ccalls to be made, but it is also made directly available to the programmer so
is a potential source of unsoundness as well as power.

In [70] the IO a type is presented as a way of reconciling being with doing. The type

TO a represents actions which, when performed, may do some I/O and then return a value

of type a. For example:
getcIO :: IO Char

putcIO :: Char — I0 ()

getcIOisan action which reads in a character from the standard input and returns that char-

acter;: and putcIO a is an action which writes the character a to standard output (and returns

nothing of interest, hence the ()).

CHAPTER 2. GRAPHICS AND INTERACTION 20

Such primitive I0 operations may be combined to provide the basis for interactive pro-

grams. For example:
bindIO :: IO a — (a — IO b) — IO Db
“Ifm :: I0 aandk :: a — IO bthenm ‘bindIO‘' k behaves as fol-

lows: first perform action m, yielding a value x of type a, then perform action
k X, yielding a value y of type b, and then return value v.”

The Glasgow Haskell I/O system, apart from the ccal1l itself, is implemented in Haskell.
The type I0 a 1s defined as a function which takes the state of the world as argument, and
returns the new state of the world and a value of type a. As the 10 type is implemented as
a monad, the world state 1s used in a single threaded way, and I/O operations are applied to
the real world immediately they are computed. The “world” value manipulated by the pro-
gram 1s a dummy, as the real world 1s updated in place, but 1t is kept as a token to ensure the
correct sequencing of the interaction. The type can then be regarded as being that described

above. An I/0O monad has also been incorporated into the Yale Haskell system.

2.3 Graphics

The previous section shows how the potential problems for interactive functional programs,
involving sequencing and referential transparency, may be overcome. This section reviews
pioneering work on functional programming and graphics that demonstrates that the func-
tional style is more than suitable for programs that incorporate the manipulation of graphics.
Conceptually a function may take a picture as argument and return a picture as result. For

example a function could be defined to invert a picture along the horizontal axis (see Fig-

ure 2.4).

Figure 2.4: A function from picture to picture.

The first work on functional graphics concentrated on the representation of a picture such
that a function applied to it may return another, modified, picture. Pictures can then be com-
bined in various ways to create other pictures. Four papers that embody this idea, and ap-

ply it 1n novel ways, are outlined next. They are Henderson’s “Functional Geometry” [45],

CHAPTER 2. GRAPHICS AND INTERACTION 21

for its seminal status, Arya’s “Processes in a Functional Animation System” [8], which de-
scribes the creation of functional movies, and two early accounts of interactive graphical

applications: Wray’s spreadsheet [103], and Dwelly’s graphical application of transaction

combinators [27].

2.3.1 Functional Geometry

This 1s the classic work on graphics and functional programming — all subsequent work

In the area refers to it, yet the article itself only references a book about the artist Maurits

Escher [28].

Henderson introduces a method of describing pictures. He then uses this to simulate the
structure of one of Escher’s woodcuts: Square Limit. The particular functions that Hender-
son defines for creating pictures from other pictures are, accordingly, strongly geared to-

wards his Escher example.

Pictures

In Henderson’s scheme, a picture 1s a set of line segments defined with reference to a grid.

A function, grid, 1s used to build pictures (Figure 2.5).

grid : integer X integer X List (linesegment) -> picture

Figure 2.5: The type of Henderson’s picture building function.

A line segment is represented by the four integers that make up the coordinates of its two
end points. A picture need not be as high nor as wide as the grid, but the size of the grid will
affect the display of the picture in relation to a bounding box which provides 1ts display area.
For example a picture defined in a bounding box 10 units high, with a maximum y coordi-
nate of 7, will always have a maximum y coordinate that 1s '1'76 the height of any rectangular

bounding box in relation to which it 1s displayed.

The bounding box is defined by three vectors which describe the position of the lower
left corner of the box, in relation to the origin in question, and the length and orientation of
its sides. The bounding box may be a rectangle or other parallelogram. In order for a picture

to be displayed, its grid is fitted into the bounding box and its line segments drawn to and

from the appropriate coordinates.

CHAPTER 2. GRAPHICS AND INTERACTION 22

Building pictures from pictures

Pictures may be built from other pictures. For example the function £1ip reflects a pic-
ture on a vertical axis exactly bisecting the picture’s grid, and the function beside puts two
pictures next to each other such that beside (m,n,p,q) is the picture obtained by juxta-
posing p to the left of g with rescaling along the x axis resulting in the ratio of their widths

being m to n. The types of these functions are given in Figure 2.6.

flip : picture -> picture

beside : integer X integer X picture X picture -> picture

Figure 2.6: Types of £1ip and beside.

Similarly, above (m,n,p,q) 1s the picture obtained by juxtaposing p above g with
rescaling on the y axis resulting in the ratio of their heights being m to n.

Using nil as the picture with no line segments 1n 1t, above and beside can be used to
define pictures that are “distortions” of the original.

Another function, rot, performs 90 degree anticlockwise rotation of the picture. The
bounding box, however, does not rotate, so the rotated picture will not have the same shape

as the original unless the bounding box 1s a square.

Escher’s Square Limit<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>