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Abstract 

The human voice is used regularly in day-to-day activity, particularly by teachers, 

politicians and singers. This can place a level of strain on their vocal mechanism. To 

counter this, professional voice users may undergo some form of vocal tuition. How- 

ever, there is a prevalence of subjective, sometimes ambiguous tuition techniques. 

Vocal damage can therefore occur in spite of, or partially because of, the tuition 

techniques that are supposed to help the subject. 

It is hypothesised that a computer system which can a) objectively measure a 
large set of parameters relating to vocal performance, b) appropriately translate 

these parameters to a smaller set of easily interpreted measures, and c) dynamically 

display this information in an appropriate graphical form may be able to provide a 

measure of progress to complement instructive techniques during vocal tuition. 

A highly flexible, easy-to-use tool for the analysis and visualization of voice 

source and acoustic signals has been developed called ALBERT (Acoustic and 

Laryngeal Biofeedback Enhancement in Real-Time). The system can be used to 

provide real-time feedback on the state of a number of voice parameters. The vi- 

sualization of these parameters is highly configurable, and includes 1D, 2D and 3D 

arrangements with optional colour mapping. ALBERT is novel in its ability to dis- 

play many popular laryngeal and acoustic parameters in many informative graphical 

configurations. The system can be used in real-time to function as a tool for use by 

a voice tutor. 

To test the hypothesis, three studies are presented of vocally developing male 

and female subjects as follows: i) a six week course of vocal expression, ii) a group of 

actors over an eight month period, and iii) a group of singers over a time span of 2.7 

years. Two voice parameters in particular have been identified as indicative of vocal 

performance: the closed quotient of the vocal folds (CQ) and the spectral amplitude 

in the frequency band within which the phenomenon of the 'singer's formant' is 

known to occur relative to the spectral amplitude of the complete acoustic output 
(Ratio). ALBERT has been used as a tool to provide real-time visual feedback of 

these parameters in the context of singing tuition. Results suggest that ALBERT 

is a tool with considerable potential for use in a voice tuition process. 
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Chapter I 

Research aims and report 

structure 

1.1 Introduction 

This chapter introduces the context of the research presented in this thesis. The 

reader is introduced to the predominance of vocal abuse in many professional fields, 

and the ambiguous techniques frequently employed in the process of vocal tuition to 

counter this. A need for objective assessment is identified, and a proposal presented 
for the role of real-time feedback. An overview of the research presented in this thesis 

follows: 1) the identification of voice parameters which change with the process of 

vocal tuition; 2) the design and implementation of a suitable real-time system; and 
3) a formal assessment of the benefits of the real-time system based upon (2) when 

used as a tool for vocal tuition. 

1.2 Vocal use and abuse 

The voice is used in everyday life in many different contexts. For some people, 
their profession demands a higher level of voice usage. Examples include doctors, 

politicians, teachers, and telephone operators. These people often experience a high 

level of unintended vocal abuse, often with consequencial vocal damage. 

Teachers are prime examples of professional voice users who can suffer from vocal 
health problems. Comins (1992) found that 34% of voice patients in some speech 

1 
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and language clinics were teachers. After a recent landmark tribunal decision was 

made to compensate a teacher who lost her voice during the course of her work, it 

was reported that "a flood of similar claims" was predicted (Morrow, 1994). One 

comment from a speech and language therapist highlights the extent of the problem; 

"These are not just numbers; they represent people who have not been 

advised about a problem 'to which teachers are prone. They represent 

classes without their teacher, or taken by a supply teacher at a cost to 

the school of over X 90 a day. Speech and language therapists know from 

cases that some teachers will damage their voices permanently by con- 

tinuing to teach with laryngitis, whilst others may, mistakenly, be given 

a course of antibiotics, when their basic problem is not infection but 

inefficient voice production. " (Comins, 1992) 

1.3 Deficient voice tuition 

Almost without exception, all instances of abuse could be avoided with appropriate 

education and training (Morrow, 1994). However, vocal training is itself open to 

much ambiguity and abuse. The voice teacher needs to embody principles from a 

wide field of expertise (see figure 1.1). In practice, however, it is often found that 

there is a bias towards subjective appreciation (generally shown as the left hand side 

of figure 1.1) rather than objective assessment (the right hand side of figure 1.1). 

For example, the English National Curriculum has recently been expanded to 

require the objective assessment of the oral skills of pupils. Teachers attempting 

to satisfy this requirement were reported as realising that they did not have the 

knowledge or ability to suitably assess the qualities under consideration (Stables, 

1992). Quoted comments include 'ý.. if we knew enough about the processes involved 

we could actually give that child the help" and "I really question what we are looking 

for in terms of actual proficiency". This is one indication of considerable deficiencies 

in conventional voice tutoring systems. Vocal damage may be a direct consequence. 
In one formal assessment 47% of voice students were shown to have sought medical 
help for voice problems (Sapir, 1993). 
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Figure 1.1: The relationship of voice teacher to the performer and 
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1993) 
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1.4 Ambiguous tuition techniques 

The problems indicated as prevalent in the field of voice tuition may well be due 

largely to the various styles of tuition adopted. Some forms of tuition are ambiguous 

and subjective in their approach. This is illustrated in an example taken from the 

field of singing tutorage: 

"I was once told to imagine the smell of a freshly cooked pork chop before 

embarking on 'Un Aura Amorosa'from Mozart's Cosi fan tutte, ... the 

memory of pork chops I have known still disturbs my concentration when 

I sing the part of Ferrando. " (Lavender, 1994) 

Techniques employing mental imagery are frequently employed. This is illus- 

trated in the following extract: 

"I have frequently used the following mental images in dealing with the 

difficulties in the phrases immediately preceding the high C-flat in the "0 

Don Fatale" aria of Eboli from Don Carlos: On the third beat (a rest), 

two bars preceding the high C-flat, immediately preceding the triplets 

which lead up to the high note, I imagine a water wheel with water flow- 

ing over it. Directly preceding the high note, during the inspiration, I 

imagine a well at the back of my head into which the sun is shining. 

The water in the well feels warm, the rays of the sun (the breath during 

inspiration) are causing the space at the back of my head. " (Quoted in 

Immoos, 1993) 

There are indications that the use of mental imagery in the process of vocal 

tuition may not be as appropriate as its prevalence of use might suggest (Anderson 

& Helstrup, 1993). For example, Reed & Johnsen (1975) found that it is more 

difficult to find a hidden part in a mental image of a complex figure than in a 

physical percept of the same figure. Chambers & Reisberg, (1985) reported that 

subjects were unable to "see" the alternative interpretation of classical ambiguous 
figures in their mental images of the figures, but were able to see this as they drew 

their images on paper. Clearly, these points raise questions concerning the suitability 

of the use of mental imagery as a form of reliable guidance. 
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Orton (1938) epitomises the desire for objectivity: 

"Sims Reeves wrote: 'The tones in the head register vibrate, especially 

at the bridge of the nose, and the highest notes convey a sensation as 

of an electric thrill in the head. ' Such a description, and many similar 

ones, surely demonstrate, by their diversity and ambiguity, the need of 

tangible guides and tests in attempts at voice culture. " (Orton, 1938) 

1.5 The reduction of ambiguity 

Ambiguities present in the tuition process may be resolved through the use of an 

automated system able to objectively measure voice usage, and to offer appropriate 

visual incitement for vocal development. '. A description of objective in this context 

may be the expression or use of facts without distortion by personal feelings or 

prejudices. 

Such a system would be able to complement the central figure of the voice 

teacher. 

However, in order to create such a system, there must first be some understanding 

of the natural progression of voice development. To this end, studies are required 

of people as they undergo vocal training so that parameters indicative of vocal 

development which may then be embodied in the creation of a voice assessment and 
development system are identified. 

A formalisation of these proposals is contained in the following thesis hypothesis. 

1.6 Hypothesis 

It is hypothesised that computer systems which 

1. objectively measure a large set of vocal attributes, 

2. appropriately translate these attributes to a smaller set of easily interpreted 

measures relating to vocal efficiency, and 

'In this context, visual feedback is a form of biofeedback. 
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3. dynamically display this information in an appropriate graphical form during 

the process of vocal tuition 

may be able to provide a useful objective measure of progress for the advance- 

ment of vocal development. 

In order to satisfy this hypothesis, the following objectives are to be resolved: 

1. the analyses of developing voice users in order to identify parameters indicative 

of voice development. 

2. the development of a software tool for vocal tuition able to embody these 

parameters in the process of real-time analysis and subsequent visual display. 

3. a formal evaluation of the usefulness of the real-time visual feedback system. 

1.7 Thesis content and structure 

Chapter 2 considers the nature of the voice in order to set the context for a subse- 

quent assessment of vocal parameters which appear relevant to the process of vocal 

tuition. It describes the anatomy of the voice, and the acoustic operation of the 

physiological mechanisms of which the voice comprises. Attention is given to the 

articulatory controls used in phonation, and to the role of the larynx. 

Chapter 3 considers voice source and acoustic output parameters which may be 

suitable for use in a real-time system intended for use as a tool to help improve 

vocal development. Previous related research addressing the application of these 

parameters in tools for vocal tuition are discussed. 

Chapter 4 presents three studies considering trends in the parameters identified 

in chapter 3 in voice users as they undergo tuition. In study 1, male and female 

subjects were analysed before and after a six-week course of vocal expression. Study 

2 presents a longitudinal assessment of male and female actors in training over a 

period of 8 months. Subjects undertook a number of vocal tasks including singing 

and three different modes of vocal projection. Developmental parameters and gender 

differences are discussed. Study 3 presents a longitudinal assessment of three male 

singers in training over a maximum time span of 33 months for both speaking and 
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singing voice. Taken in aggregate, the studies indicate two parameters in particular 

which appear to reflect the progress of vocal development. 

Chapter 5 presents the design and implementation of a highly configurable as- 

sessment and visual feedback system which is able to provide and update a visual 

representation of the parameters identified in chapters 3 and 4 in real-time as a tool 

used by a voice tutor for the tuition process. 
Chapter 6 assesses the performance of the real-time system when used to pro- 

vide visual feedback on the developmental parameters identified in chapter 4 in the 

context of singing tuition. 
Chapter 7 presents an overview of conclusions concerning the research, and dis- 

cusses directions in which future research could go. 

The Appendices include the assessment procedures used for the voice studies, the 

User Guide for the software presented in chapter 5, an assessment of the accuracy 

of the software in assessing voice parameters, and a description of how the real-time 

system discussed in chapter 5 may be used to present a real-time display based upon 

a linear correlation between two parameters. 



Chapter 2 

Voice anatomy, physiology 

acoustics 

2.1 Introduction 

This chapter provides the background for a subsequent examination of parameters 

that may be appropriate for analysis by a voice development system. After an 

overview of the vocal process, the anatomy of the three sections of the vocal system 

is described. ' The acoustic consequences of the physiological mechanism of the 

vocal system is then discussed. Conclusions are drawn concerning the operation of 

the voice with regard to the design of a real-time visual feedback system for the 

enhancement of vocal performance. 

2.2 The phonation circle 

All the processes involved in human speech can be considered in a circular pattern, 

for example, the "phonation circle" (see figure 2.1) of Perkins & Kent, (1986). This 

thesis describes work concerned with complimenting the section of the phonation 

circle concerned with aural reception and related neural processing (top left and top 

of figure 2.1) with feedback based on real-time analysis of the voice, presented in a 
'There are several instances in tl-ýs chapter where there is more than one name for a particular 

object. Where this has been encountered, the primary label is used, with any other name(s) 
mentioned in brackets when the word is first used. 

8 
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Figure 2.1: The phonation circle (After Perkins & Kent, 1986) 
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Figure 2.2: Production of the voice (From Sataloff, 1992) 

visual forin. In preparation for this, the nature of the vocal process imist be carefullY 

considered so that parailieters relating to vocal tilition which can be monitored bV 

such a systern may be subse(illelitly identified. 

2.3 An overview of the vocal process 

The fii--, t signal within the chaill of' procesm's fia viace pro(hictimi m-cur, iii the 

cerebnd cortex of the brain (for example, ill the area). This l-, -, howil ill 

figure 2.2. It is transmitted to the vocal organs by the nervous system. The organs 

il"Volved with the production of Speech and Singing illaY be divided into three units 
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Figure 2.4: General arrangement of the vocal organs (From Crystal, 

1987) 
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(see figure 2.3 and 2.4). These are the subglottal system, the glottal system, and the 

supralaryngeal system. Power is supplied in the form of a controlled release of air 

flow by the lungs, which are themselves a subset of the subglottal system. As this 

air passes through the glottal system the air flow may be converted into a controlled 

sequence of pulses. Then, in the supraglottal system, the pressure wave is shaped 

through the use of adaptable resonators. The acoustic signal finally radiates from 

the mouth and nose (Lieberman & Blumstein, 1988). Auditory and tactile feedback 

enable the speaker or singer to 'fine-tune' the sound (Lieberman, 1977). 

In the following sections, the anatomical units that are of prime importance in the 

physiological functioning of each of the three speech production units are considered. 

Their role in the generation and control of articulated sound is assessed. 

2.4 The subglottal system 

2.4.1 An overview 

The subglottal system is the power source for the vocal production of sound (Proctor, 

1980). It comprises the lungs, rib cage, and abdominal, back and chest muscles. 

Each lung is arranged in lobes, three on the right, two on the left. The trachea 

is joined to the larynx and comprises a tube of 18 cartilages which are enclosed 

by the trachealis muscle. The base of the trachea stems into two smaller tubes, 

called bronchi (Stradling, 1968). These bronchi then sub-divide iteratively into 

progressively smaller tubes, called bronchioles and ducts. Alveolar air sacs are 

situated at the end of each duct. They pass oxygen into the blood stream on 
inhalation and release carbon dioxide on exhalation. 

The upper cavity of the subglottal system is called the thoracic cavity (chest). 

This is shown in figure 2.4. The lower section is called the abdomen. The thorax is a 
barrel-shaped bone and cartilage cage containing the pulmonary system, respiratory 

passages and the heart. The thoracic cavity contains the mediastinurn (mainly the 

heart, blood vessels, and esophagus) and the two thin, air-tight pleural membranes 
in which the lungs are encased. The abdomen contains the digestive system, and 

several other organs that do not play a part in the vocal process, such as the kidneys 

and liver. The abdomen and thorax are separated by a dome-shaped muscular 
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Figure 2.5: Physiology of the human head (From Sataloff, 1992) 

structure called the diaphragm. 

The chest wall consists of the rib cage. the diaphragm, the abdominal wall, the 

abdominal viscera, and the muscles of the chest an(] abdomen. The pulinonarý 

systern consists of the network of tubes leading froin the trachea (windpipe) to the 

alveolar air sacs at the outermost reaches of the lungs. The respiratorY pump is the 

terin given to the chest wall and the pulmonary system (Hixon, 198-1). 

The thorax is forined by 12 pairs of ribs attached by cartilage to the 12 thoracic 

vertibrae of the backbone. In front, the upper 10 ribs attach by cartilage to the ster- 

num (breastbone). The lowest two are unattached. The lower ribs slope downwards 

from their connection to the sternum. Accordingly, the ribs move laterly outwards 

when they are raised. The upper ribs are hinged in such a way that they inove 

foxvard slightly when raised, but do not provide as inuch expansion as is achieved 

with elevation of the lower ribs. 

2.4.2 Subglottal muscles 

The diaphragin is a flat sheet of' muscle and tendon connected to the lo-vN, (, r border n 
of the rib cage (Proctor, 1980). It is shaped like an inverted bowl. When the rim 
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muscles contract, they flatten the domes on each side, thereby achieving vertical 

expansion, and pull up on the lower ribs, moving them outward. 

The external intercostal muscles run from the lower border of one rib to the 

upper border of the rib below, filling the outside of the eleven spaces between the 

ribs. They function as if they were in a single sheet of muscle pulling all of the lower 

ribs toward the first rib, which is attached to the first throacic vertebra and to the 

base of the skull. 
The serratus posterior muscles are flat muscles slanting down from the neck to 

insert into the second through to the fifth ribs. They help in lifting the upper ribs. 
This results in slight expansion of the thorax and stabilises the upper ribs for the 

pull of the external intercostals which provide the major force for raising the ribs. 

Other muscles often assist in raising the rib cage. The levatores costarum (rib 

elevators) are a series of 12 small muscles, each of which inserts into the rib just 

below the vertebra from which it originates. When contracted they pull up on the 

ribs, although their influence is small due to their size and poor leverage position 
(Perkins & Kent, 1986). 

2.4.3 Respiration 

The lungs are positioned within the thoracic cavity. They are the main organs 

of respiration. We inhale and exhale in order to move oxygen into the lungs and 

carbon dioxide from them (Proctor, 1980; Hixon, 1987). For speech and singing, 

we use this inspiratory-expiratory function to make the chest function as a pressure 

pump. In order for pressure to be increased, the lungs must be inflated. This is 

accomplished by creating a partial vacuum which requires expansion of the volume of 

the chest. The chest may be expanded in three dimensions; vertically, transversely 

(sideways) and anteroPosteriorly (front to back). Vertical expansion is achieved 

by lowering the diaphragm, which is the floor of the chest cavity. Lateral and 

anteroposterior expansion result from raising the rib cage. To apply exhalatory 

pressure, the lungs are squeezed by lowering the rib cage and pushing the diaphragm 

upwards by muscular contraction of the abdominal muscles (Perkins & Kent, 1986). 

The predominant muscles for inspiration (inhalation) are the diaphragm and the 

external intercostal (rib) muscles. Expiration (exhalation) is largely passive during 
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Figure 2.6: Waveform measures of subglottal system (Frorn 

Stathapoulos & Sapienza, 1993) 

normal respiration. The elastic properties of the lungs and rib cage typically force air 

out of the lungs after inhalation. During active expiration, abdominal muscles may 

raise the pressure within the abdomen and thereby force the diaphragm upward. 

Alternatively, they may lower the ribs and sternum to decrease the dimensions of 

the thorax (MacNeilage et al., 1979). 

Figure 2.6 illustrates the pattern of movement for several parameters of the 

subglottal system. Lung volume, rib cage and abdominal displacement are shown 
(in addition to intraoral air pressure, oral airflow and the acoustic signal which are 

measures from the glottal system and supralaryngeal vocal tract). These signals are 

shown for a period of normal breathing followed by a sequence of several spoken 

words. In this figure, the strong correlation between lung volume displacement, 

rib cage displacement and abdominal displacement during the process of breathing 

can be seen. With inspiration, each of the measures rises, reflecting the use of the 

rib muscles and diaphragm to expand the lungs and draw air into the body. The 

abdominal displacement occurs due to the downward movement of the diaphragm. 

With expiration, each of the measures falls as the elastic forces in the muscles cause 

0 10 Is 
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Figure 2.7: Three views of the larynx (From Sundberg, 1977) 

I (), 

the diaphragm and rib structure to return to their relaxed state. InlinediatelY 

prior to phonation, maximum Iting volunic, displacement is recorded. This reflects 

inspiration by the subject of a sufficient quantitY of air for the subsequent sequence 

of utterances. During the sequence, a gradual decrease in hing volume displacement, 

rib cage displacement and abdominal displacement occurs as the air supply required 

for phonating is used and the volume of air in the lungs decreases. At the end of 

the sequence, inspiration immediately occurs again in order to refill the lungs. 

2.5 The larynx 

2.5.1 Introduction 

The larynx. illustrated in figures 2.7,2.8, and 2.9, fiiii(-tl()ii,, ýi. ý a valve that 

connects the respiratory systein to the airway passages of the throat. mouth and 

nose (Rossing. 1990). It has evolved in part to help prevent anYthing but air from 
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Figure 2.8: Anatomy of the larynx (After Perkins & Kent, 1986) 
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entering the lungs. It also serves as a pressure device for such biological activities 

as coughing, sneezing and elimination. It is attached to the top of the trachea and 
is the outlet of the respiratory pump into the upper airway. It can close tightly to 

make the thorax rigid with compressed air, such as when lifting a heavy object. It 

can close to an appropriate extent so that the vocal folds vibrate when air pressure 

pushes against them. This latter function produces voiced sounds. The generation 

of voiced sound is called phonation. 
The second laryngeal function that has been borrowed for speech and singing 

functions is the ability of the larynx to open. This is required for the production of 

voiceless sounds. 

2.5.2 The laryngeal framework 

The laryngeal framework consists essentially of five relatively large cartilages and 

several muscles that move these cartilages into different positions (Perkins & Kent, 

1986) (see figures 2.7 and 2.8). The entire larynx is attached to the top of the 

trachea by ligaments and muscles that connect it to the base of the tongue above 

and the sternum below. 

2.5.3 Layngeal cartilages 

The cricoid cartilage is the anatomical base of the larynx, to which the other car- 

tilages attach (Lieberman, 1977). It differs from all other tracheal rings in that it 

forms a complete circle. The largest and most prominent of the cartilages is the 

thyroid cartilage. See figure 2.8. It is best known for its prominence, commonly 

called the 'Adam's apple' (thyroid notch). To the rear, it stretches up to a superior 

horn and down to a inferior horn. It is the lower horn that provides a pivotal at- 

tachment to the cricoid which permits the two cartilages to rock back and forth to 

each other. This is illustrated in figure 2.8. This ability is the basis for changing the 

length of the vocal folds in pitch adjustments. When these two cartilages are pulled 

towards each other, the vocal folds are lengthened; when tilted apart, the folds are 

shortened. 

The arytenoids, a pair of small cartilages shaped roughly in the form of a pyra- 

mid, are mounted opposite each other on the rim of the signet portion of the cricoid 



CHAPTER 2. VOICE ANATOMY, PHYSIOLOGY & ACOUSTICS 20 

cartilage. They posess two forms of motion; rotation and gliding, which occur to- 

gether. When they rock, their front sides tilt f6ward or away from each other. 

When they glide, their back sides slide toward or away from each other. With these 

two movements, the vocal folds may be abducted (opened) or adducted (closed) 

(Sawashima & Hirose, 1981; Ladefoged, 1973). This is ilustrated in figures 2.9(a) 

and 2.9(b) respectively. Each arytenoid has two processes (prongs), one projecting 

f6ward, the other laterally. The anterior one is called the vocal process, to which the 

vocal folds attach. The lateral projection is the muscular process, to which several 

of the muscles responsible for rotation and gliding attach. The upward projection 

is the apex. 

The epiglottis (shown in figure 2.7) is the least important of the main cartilages 

of the larynx. It provides the anterior wall of the tube leading from the vocal folds 

to the throat (Perkins & Kent, 1986). 

2.5.4 An overview of the larynx muscles 

The larynx has four basic anatomical components: a cartilaginous skeleton, intrinsic 

muscles, extrinsic muscles and a mucosal layer. This is illustrated in figure 2.7. The 

most important parts of the laryngeal skeleton with regard to the generation of 

voiced sound are the thyroid cartilage, the cricoid cartilage and the two arytenoid 

cartilages. Extrinsic muscles connect these cartilages to other throat structures; 
intrinsic muscles run between the cartilages themselves. 

One pair of intrinsic muscles extends from the arytenoid cartilages to a point just 

below and behind the Adam's apple. These muscles are called the thyroarytenoid 

muscles. They form the body of the vocal folds. The space between them is the 

glottis (shown in figure 2.5). 

The intrinsic muscles change the relative positions of the cartilages. These 

changes alter the shape, position and tension of the vocal folds. In particular, 
the cricothyroid muscle acts within the context of pitch control by increasing the 

longitudinal control of the vocal folds (Perkins & Kent, 1986). 

The extrinsic muscles raise and lower the laryngeal skeleton. The resulting effect 

also changes the angles and distances between the cartilages and alters the resting 
lengths of the intrinsic muscles. 
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2.5.5 The larynx muscles 

A brief description of the larynx muscles follows. 

9 Abductor muscles 

The posterior cricoarytenoids (shown in figure 2.7) are flat muscles arising 
from the back wall of the cricoid cartilage. They insert into the muscular 

processes of the arytenoid cartilages. They are the major muscles responsible 
for rocking and gliding the arytenoids apart and for the abduction of the vocal 
folds (Sawashima & Hirose, 1981). 

Adductor muscles The lateral cricoarytenoid muscles arise from the lateral 

borders of the cricoid cartilage (Perkins & Kent, 1986). They insert into the 

muscular processes at the outside corners of each arytenoid cartilage. They 

pull in essentially the opposite direction from the posterior cricoarytenoids 

and consequently their effect is the opposite; they adduct the arytenoids, and 

are also able to squeeze the anterior tips of the vocal processes tightly together 

in a condition of medial compression. 

The interarytenoids are formed by two muscles, the transverse arytenoid and 

the oblique arytenoids (shown in figure 2.7). The tranverse arytenoid extends 

horizontally across the backs of the pair of cartilages. It pulls their middle 

edges together from bottom to top. The oblique arytenoids extend from the 

muscular processes of one arytenoid to the apex of the other. Their action is 

to pull the upper tips of the arytenoids together. 

o Vibrator muscles The muscles that are set into vibration to produce sound 

are part of a larger pair of muscles, the thyroarytenoids (Titze et al., 1989). 

This consists of two parts; the internal thyroarytenoids (the vocal folds) and 

the external thyroarytenoids, which are lateral to the vocal folds. The thy- 

roarytenoid can be considered as protruding into the upper airway to produce 

an arch structure when the vocal folds meet. 

9 Vocal folds The internal thyroarytenoids are the vibratory positions of the 

vocal folds. This paired muscle is normally referred to as the vocalis. Its 

location is shown in figure 2.5. The action of this muscle when it contracts is 
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to pull the vocal process, to which it attaches, into a straight line toward the 

thyroid notch (the point of origin). This action shortens the vocal folds and 

adducts them (assuming they were abducted). In addition, there is a stiffening 

of the vocal folds (Hollien, 1960). 

e Vocal fold lengthening muscles The cric6thyroid muscles (shown in figure 

2.8) originate from the front of the cricoid cartilage and insert into the lower 

border of the thyroid cartilage. Their contraction is responsible for pulling the 

two cartilages together, thereby lengthening and stiffening the vocal folds. 

2.5.6 Layers of the vocal folds 

Five distinct layers of the vocal fold structure have been identified (Hirano, 1975). 

This is illustrated in figure 2.5. Beneath the thin, lubricated epithelium on the 

surface lie the superficial, intermediate and deep layers of tissue called the lamina 

propria. Underneath this is the thyroarytenoid muscle (vocalis muscle). Each of the 

five layers have their own physical properties that combine to produce the smooth 

shearing motions which are fundamental to vocal fold vibration. The vocal folds 

can be regarded as behaving physically like a three layer structure, consisting of a 

cover (the epithelium and superficial layer of the lamina propria), a transition layer 

(intermediate and deep layers of the lamina propria) and a body (the thyroarytenoid 

muscle) (Titze & Strong, 1975). 

2.5.7 Laryngeal membranes and ligaments 

The laryngeal cartilages are attached to joints and covered with membranes. In 

this section, the most prominent membranes in the process of speech generation are 

discussed. These are: 

False vocal folds These are situated above the true vocal folds. They consist 

mainly of thick folds of mucous membrane that protude into the airway, but 

not as far as the true vocal folds. The false folds originate just below the 

attachment of the epiglottis and insert into the lateral edges of the arytenoids 

below the apex. They do not normally vibrate through conscious control. 

Typically, their role is passive. 
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Laryngeal ventricle Between the false and true vocal folds is a deep indenta- 

tion in the mucous membrane wall of the larynx called a ventricle. This is the 

laryngeal ventricles, also called the ventricle of Morgani. This extends nearly 

the complete length of the vocal folds. It is bound laterally by the external 

thyroarytenoid muscle. Within the ventricle are several mucous glands. These 

provide lubrication of the true folds. 

Conus Elasticus This is a broad elastic membrane which covers the entire 

inner wall of the larynx. The lower portion of this membrane extends from 

the glottal edges to the cricoid cartilage. It is covered with mucosa. 

Vocal ligament This is an integral part of the mucosal cover of the vocalis 

muscle called the lamina propria. This consists of a superficial layer that 

provides a loose connection between the outer epithelial covering of the glottal 

edge and the intermediate and deep layers of the lamina propria that attach 

to the vocalis muscle. The intermediate layer contains elastic fibres. It blends 

into the deep layer, which contains collagenous fibres (thread-like strands). 

These two layers together form the vocal ligament. This construct permits 

the mucosal membrane to vibrate more or less independently of the vocalis 

muscle, which vibrates synchronously but less vigourously (Perkins & Kent, 

1986). 

2.5.8 Supraglottal cavity 

The tube immediately above the larynx is called the laryngeal collar (supraglottal 

cavity) (Rossing, 1990). This cavity is formed anteriorly by the epiglottis, posteriorly 
by the arytenoids, and laterally by the aryepiglottic folds. 

Embedded within these membranous folds are the aryepiglottic muscles (Perkins 

& Kent, 1986). These appear to be a continuation of the oblique arytenoid muscles, 

which, after inserting into the arytenoid cartilages, extend upward and f6ward to 

insert into the epiglottis. Contraction of the aryepiglottic muscle, coupled with the 

oblique arytenoids, tends to tilt the arytenoids against the epiglottis and to pull the 

epiglottis, down. To push the epiglottis back, the thyroepiglottis contracts. 
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2.6 The supraglottal system 

The supraglottal system (supralaryngeal vocal tract; see figure 2.3) consists of the 

various passages from the glottis to the lips (Gauffin & Sundberg, 1978). It involves 

the pharynx, mouth and nasal cavities, including the tongue, teeth, velum, and lips. 

The production of speech sounds through these organs is known as articulation 
(MacNeilage et al., 1979). 

There are parts of the vocal tract that are immobile (passive articulators) and 

those that can move under the control of the speaker (active articulators). 

2.6.1 The passive articulators 

Passive articulators include the upper teeth, which are used in conjunction with the 

tongue to form a constriction for several sounds such as the first sound of 'thin', the 

ridge behind the upper teeth (called the alveolar ridge) against which many speech 

sounds such as [t] and [s] are made, and the bony arch behind the alveolar ridge, 

known as the hard palate, which is used in the articulation of a few sounds, such as 

the first sound of 'you 7. 

2.6.2 The active articulators 

A brief description of the active articulators follows. 

Pharynx - This is a long muscular tube leading from the laryngeal cavity to 

the back part of the oral and nasal cavities. The areas adjacent to these cavities 

provide a means of dividing the pharynx into sections: the laryngopharynx, 

oropharynx, and nasopharynx (see figure 2.5). The pharynx can be narrowed 

or widened. Certain types of consonant can be produced by making a con- 

striction here, and movements of the larynx, soft palate, and tongue may also 
involve pharyngeal modifications that affect the quality of the sound. 

Soft palate (velurn) - This is a broad band of muscular tissue in the rear 

upper region of the mouth, whose most noticeable feature is the uvula, which is 

an appendage that hangs down at the back of the mouth. In normal breathing, 

the soft palate is lowered, to permit air to pass easily through the nose. In 

speech there are three main positions that affect the quality of sounds: 
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i) The soft palate may be raised against the nasopharyngeal wall to make a 
'velopharyngeal closure' so that air escapes only through the mouth. This 

produces a wide range of oral sounds, such as all the vowels and most of the 

consonants of English. 

ii) The soft palate may be lowered to allow air to escape through mouth and 

nose. This is the position required to produce nasafized vowels, as used in, for 

example, the French word 'bon'. 

iii) The soft palate may be lowered, but the mouth remains closed. In this 

case, all the air is released through the nose, as in nasal consonants such as 
[m] and [n]. 

e Lips - The orbicularis oris is the main muscle controllng lip movement, though 

several other facial muscles are also involved. The lips may be completely 

closed (i. e [p] and [m]) or held apart in varying degrees to produce the different 

kinds of rounding or spreading used on vowels or the friction of certain kinds 

of consonant. 

9 Jaw - The mandible bone permits a large degree of movement. It controls the 

size of the gap between the teeth and strongly influences the position of the 

lips. 

o The tongue - The tongue is the most versatile of the articulatory organs. It 

can move in any of three main directions through the action of the various 'ex- 

trinsic' muscles: upwards/fowards (such as for [i]), upwards/backwards (such 

as for [u]), and downwards/backwards (such as for [a]). In addition, several 

'intrinsic' muscles determine the shape of the tongue, in any position. For 

example, some muscles raise or lower the tongue tip, or move it to the left or 

to the right. 

Two examples of the articulatory state required for pronouncing vowels are 

shown in figure 2.10. For the vowel [i], the tongue is arched f6ward and upwards 
(Fant, 1960). For the vowel [u], it is arched backwards, and the lips are relatively 

closer. The acoustic role of the articulators, and voice source are discussed in the 
following sections. 
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U 

Figure 2.10: Vocal tract profiles for two vowels. The shape is deter- 

mined by the lip and jaw openings, the tongue shape, the velum, and 

the larynx. (After Fant, 1960; in Sundberg, 1987) 

2.7 Acoustics of the voice 

2.7.1 Glottal action 

To recall, the action of the glottis to produce a sound is called phonation (Lieberman, 

1977). Phonation depends on how the airflow interacts with the muscular and elastic 

tensions of the vocal folds. 

During breathing, the arytenoid cartilages are held outward, keeping the glottis 

open in a wide-open position. When phonation is about to begin, the arytenoids 

move inward and bring the vocal folds to a position of adduction (figure 2.9). The 

chest and lungs press inward and the diaphragm contracts, causing the air pressure 
below the glottis to rise. When this subglottal pressure is sufficiently higher than 

the air pressure above the glottis, the closing tension on the folds is overcome and 

they begin to open in a glottal slit between the folds. As the glottal slit opens, air 

begins to flow out through the glottis. The subglottal pressure continues to force 

the glotis to open wider, and there is an increasing airflow through the glottis, until 

the natural elastic tension of the folds, which increases dynamically with increased 

opening, balances the separating force of the air pressure. Then the glottal opening 

and the rate of airflow through the glottis have reached their maximum value. At 

this point the kinetic energy that the vocal folds received during the opening move- 
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Front view From above 

Figure 2.11: The pattern of vocal fold movement (From Sundberg, 

198T) 

ment is stored as elastic recoil energy, resulting in a restoring force large enough 

to overbalance the separating force of the airflow. This stored energy also causes 

the folds to move inward. The inward movement gathers momentum and contin- 

ues. When the glottis becomes sufficiently narrow, the high velocity of movement 

of the air particles within the narrow glottis creates a suction effect, which tends 

to accelerate the vocal folds towards each other. This phenomenon is known as the 

Bernoulli effect (Ladefoged, 1973; Laver & Hanson, 1981). Both the elastic restoring 
force and the Bernoulli force act to close the glottis. Elastic restoring forces during 

this collision of the vocal folds, in conjunction with the sub-glottal pressure, then 

start a new cycle of action (Stevens, 1988). The acoustic main excitation is at the 

instant of closure of the vocal folds (Sundberg, 1987). The pattern of vocal fold 

movement is shown in figure 2.11. The rolling motion along the medial parts of the 

vocal folds is referred to as the mucosal wave (Sundberg, 1987). 

As long as subglottal pressure remains at a sufficiently high level and the ary- 

tenoid cartilages hold the vocal folds together, voicing phonation occurs and the 
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glottis will continue to emit a rapid series of air pulses. This produces the glottal 

waveform. 

2.7.2 The spectrum of the glottal sound source 

The pulse train is the basic sound source for vowels and all other voiced sounds. 
The spectrum of this sound source depends on just how the glottis forms the pulses. 
The exact form of the airflow through the glottis has an effect on the glottal sound 

spectrum (Fry, 1979). 

The sound produced by the larynx is a complex tone which contains the funda- 

mental frequency of the sound together with many partial components (Perkins 

Kent, 1986). 1 
There are two primary characteristics of the glottal spectrum (Berke & Geratt, 

1993). These are; 

1. the frequency spacing of the fundamental and harmonics, and, 

2. the amplitude pattern of the components over frequency. 

The glottal spectrum is affected by several glottal parameters, including the 

duration of the open portion and the ratio of the open portion to the closed portion 
(Laver & Hanson, 1981). These parameters are discussed in detail in the next 

chapter. 

The frequency spacing depends on the repetition rate of the pulses in the glottal 

wave. The amplitude and phase characteristics of the spectral components depend 

on the exact shape of the pulses. The spectrum of the glottal pulse reveals the 

spectral amplitude distribution as a result of the glottal pulses. Figure 2.12 shows an 

idealised example of a glottal wave and corresponding spectrum. The fundamental 

frequency of the spectrum shown is 10OHz. Each harmonic component occurs at 

integer multiples of this frequency. 

The amplitude of the components in the glottal spectrum have a pattern that 

generally decreases from low frequency to higher frequency harmonics at an average 

of 12dB per octave. Component amplitudes of the glottal spectrum relate to the 

degree of rounding of the glottal waveform. Examples illustrating the basis for 

this relationship are shown in figure 2.13. A pure sine wave has only one spectral 
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(b) Spectrum of the glottal flow wave shown in (a) above 

Figure 2.12: Idealised glottal area, flow and spectrum (After Pickett, 

1991) 
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Figure 2.13: Spectra of simple waveforms (From Dodge & Jerse, 

1985) 
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component (figure 2.13(a)). Any non-sinusoidal period signal (such as all those 

produced by the action of the larynx) introduce other spectral harmonics at higher 

frequencies. This is illustrated by figures 2.13(b)-2.13(e). The number of spectral 

components, and in general their amplitude, is proportional to the rate of opening 

and closing of the glottal wave, and to the relative length of open and closing times. 

An illustration of a greater degree of higher partials resulting from a sharper rate of 

opening and closing can be seen by comparing the waveform shown in figure 2.13 (a) 

with that shown in figure 2.13(b). An illustration of the effect of differences in the 

relative length of the open and close times can be seen by comparing the waveform 

in figure 2.13(d) with that shown in figure 2. ý3(e). Although both have the same 

rate of opening and closing, there is a greater degree of high frequency partials in the 

spectrum of the latter waveform than of the former, due to the relatively narrower 

pulse. 

These parameters relate physiologically to the style and force of speaking and to 

individual characteristics of vocal fold behaviour (Kent, 1993). Several studies have 

indicated the validity of applying these signal processing techniques for models of 

the voice. For example, Cheng and Guerin (1985) conclude that the open quotient 

plays "a comparatively important role" and utilise the notion of the voice as a 

source-filter model (to be discussed in the following sections) to support the theory 

that the energy in the high frequencies of the source spectrum increase with CQ. 

The 12dB slope used for glottal spectrum roll-off is a fair approximation for 

average, relaxed phonation (Fant, 1960). Phonation of a greater degree of relaxation 

results in glottal pulses that are relatively niore rounded on the corners, causing the 

glottal spectrum to slope downward more steeply (typically -15dB/octave). For 

forceful speaking, the glottal waveform can have a relatively sharper rising and 
falling edge because of higher subglottal pressure on the opening of the vocal folds 

and a higher level of Bernoulli suction before the closing. An example roll-off in this 

mode of phonation would be -9dB/octave (Fant, 1970). 

The fundamental frequency of the glottal pulsing is perceived as pitch. The 

former depends on the tension on the vocal folds, the effective mass of vocal folds, 

and on the subglottal pressure (Laver & Hanson, 1981). The effective mass depends 

on the size of the vocal folds, which are themselves dependent on sex, age and 
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Figure 2.14: Average source spectra from untrained voices (filled 

circles) and professional singers (open circles). The spectra are rep- 

resented by a curve showing how the spectrum contour deviates from 

the standard slope of -12dB/octave. (From Sundberg, 1987) 
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The average voice source spectrum characteristic has been shown to exhibit 
differences between adult untrained speakers and professional singers. Deviations 

from the standard glottal spectrum slope of -12dB/octave are shown plotted in figure 

2.14. This figure uses results from two different investigations which used the same 

method of analysis (Carr and Trill, 1964; Cleveland, 1976; discussed in Sundberg, 

1987). The curves shown in the figure represent the av erage obtained from the 

vowels /u:, i:, a: /. The amplitude of the fundamental (labelled in the figure as 

partial 1) is clearly stronger for professional singers. In addition, the amplitude of 

partials 7 to 9 are clearly greater for the singers. These voice source contrasts may 

be appropriate for consideration as part of an assessment criteria for the voice in a 

system for voice development. These, and other attributes, are discussed in depth 

in the next chapter. 

2.7.3 Supralaryngeal acoustics 

The sound produced by the glottis is propagated through the supralaryngeal 
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Figure 2.15: The production of model vowels according to the source- 
filter theory. An idealized spectrum slope of -12dB/octave is assumed 
for the glottal airflow spectrum. It is modified by the filter responses 

of the vocal tract, shown for four different vowels, to produce the 

final vowel spectrum on the right. (After Pickett, 1991) 
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Figure 2.16: The effect of vocal effort on the vowel spectrum. The 

overall slope of the vowel spectrum is steep for low effort and more 

gradual for high effort. Second and third formants are relatively 

more intense under high vocal effort. (After Pickett, 1991) 

vocal tract to the outside air. The tract can be considered to act as a filter which 

emphasises spectral areas of the source sound at frequencies at and near the reso- 

nant frequencies of the tract (Fant, 1983). The spectrum of the vocal output can be 

altered by changing the activity of the articulatory organs within the vocal tract, 

so that the resonant characteristic of the signal changes (Hillenbrand & Gayvert, 

1983). This approach is called the source-filter theory of vowel production (Fant, 

1960). Examples of the different position of the vocal tract articulators are shown in 

figure 2.10. The resonant peaks of the vocal tract determine the filtering curve of the 

tract. When this filter curve is applied to the spectrum of the glottal sound source, 

the vowel sound spectrum is produced. This is illustrated in figure 2.15, in which 
diagrams show how the spectrum of the glottal sound source is modified accord- 

ing to filter curves of the oral-pharyngeal tract to form the vowel sound spectrum 
(Cleveland & Sundberg, 1983). 

Formants are spectral areas in which there is a particular embellishment. It 

has been shown that four or five formants are relevant for the majority of voiced 

sounds (Sundberg, 1987). Any alteration in the cross-sectional area of the vocal 

tract results in shifts of formant frequency and strength (Johansson et al., 1983). 

Vowels can be seen to have distinctive patterns of formant structure, as figure 2.15 
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illustrates. 

An illustration of the effect of changes in the glottal spectrum in combination 

with supralaryngeal vocal tract qualities is shown in figure 2.16. For low vocal effort 
the spectrum is relatively steeper in slope (approximately -15dB/octave) and the 

level is relatively low in amplitude. However, for higher effort the general amplitude 

of the partials has increased, reflecting a higher level of acoustic output. Although 

the spectrum peaks are at the same frequency location the spectral slope has changed 

considerably to one of approximately -9dB/octave (Pickett, 1991). The spectral 

slope is shallower with higher amplitudes at the high frequencies and higher spectral 

amplitudes than those shown for less effort, but the fundamental component is lower 

in amplitude. These increases in the amplitude of resonant oscillations are due solely 

to the increase in spectral energy from a shift in glottal action. 

2.8 Conclusions 

This chapter has considered the process of phonation. The operation of the sub- 

glottal system, larynx, and articulators have been discussed in depth. 

With regard to monitoring the human voice, it has been indicated that two key 

loci are appropriate for the monitoring of any act of phonation. These are: 

o the larynx, at which the glottal pulse is applied, and 

* the acoustic output, at which articulatory effects may be assessed. 

The next chapter assesses parameters expressed at these two loci which are likely 

to be appropriate for monitoring as part of a analysis and visual feedback system 
for voice development able to operate in real-time. 



Chapter 3 

Parameters for real-time 

assessment 

3.1 Introduction 

In the last chapter a comprehensive overview of the process of phonation was pro- 

vided. Two key loci for monitoring vocal production were identified as 

1. the voice source (larynx), and 

2. the acoustic output of the subject. 

In this chapter the parameters expressed at these two loci which relate to vocal 
development are assessed for suitability for inclusion within a system for vocal as- 

sessment and tuition able to operate in real-time. Previous research concerning the 

application of these parameters for real-time display is considered. 

3.2 Voice parameters 

From an assessment of the scientific literature, the following parameters have been 

identified as major indicators of vocal usage. 

From the acoustic output: 

* Loudness 

* Qualities of the acoustic spectrum 

36 
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Figure 3.1: Changes in spectrum level in four equally wide frequency 

bands associated with changes in SPL as observed in a singer (left) 

and non-singer (right) phonating the vowel /ae: / at deliberately var- 
ied vocal loudness (From Gauffin & Sundberg, 1989) 

From the voice source (larynx): 

o Fundamental frequency 

* Closed quotient of the laryngeal period 

In the following sections these parameters and their potential for use as part of 

a real-time system for voice development will be discussed in detail. 

3.3 Loudness 

3.3.1 Introduction 

Differences have been observed in patterns of loudness (usually measured in 

terms of the sound pressure level (SPL)) between trained and untrained voice users. 

For example, Gauffin & Sundberg (1989) observed voice source variations in a singer 

and a nonsinger under different levels of loudness. Figure 3.1 illustrates the sound 

level of the fundamental and all formants in the frequency range 2-4KHz of a singer 

and a non-singer who both phonated the vowel /ae: / at different levels of loudness, 
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Figure 3.2: Differences between SPL for covered and open singing of 

the lowest spectrum partial. The mean values of the difference are 

shown for six subjects. Fundamental frequency (FO) for each subject 

is also displayed. (From Hertegard et al., 1990) 

but at constant fundamental frequency. The graph indicates that the singer is able 
to maintain the generally even distribution of formants regardless of SPL. The non- 

singer is less able to maintain this consistency. Gramming et al. (1988) noted that 

when reading in noise singers raised their mean sound level relatively less than non- 

singers, implying an ability to convey their voice efficiently through means other 
than the raising their SPL alone. 

Differences in SPL output between certain modes of voice usage have also been 

identified. For example, figure 3.2 shows the relative difference in SPL between the 

fundamental of the note when singing in a 'covered' style' to give the impression of 
just one single register over the entire range compared to singing in the contrasting 
&open' style2 (Hertegard et al., 1990). The level is consistently higher for covered 

than for open singing. 
'defined by the author of the study as characterised by a raised jaw, no lip protrusion, a small 

lip opening, retracted tongue tip, raised tongue dorsum, and the subjective sensation of a squeezed 

or constricted throat. 
2 defined by the author of the study as characterised by a low jaw and tongue position and a 

pitch-dependant size of mouth opening. 

123456 
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The difference in the level of SPL from one instant to the next is known as 

shimmer, and it is often used as a measure of voice peturbation (i. e., Ludlow et al., 

1987; Orlikoff & Kahane, 1991; Slavit & Maragos, 1994). Gelfer et al. (1991) indi- 

cated that trained singers exhibit a more consistent level of shimmer than untrained 

singers. A real-time display of the measure may be of benefit in encouraging vocal 

stability. 

3.3.2 The use of loudness in a real-time display 

Methods supported by computer instruction would be likely to help support the 

development of acoustic output level control in many different contexts of voice 

usage. However, the application of a real-time display of this parameter does not 

appear to be widespread. This may be because it is relatively easy to control, which 

reduces the usefulness of a real-time display of the parameter. 

In one example, a real-time display of the level of acoustic output was used in 

the treatment of an adult male subject (Cott, 1994). This subject was a professional 

academic who was frequently required to use his voice for talks and lectures. As soon 

as his acoustic output reached a particular volume level, his voice would effectively 

cease functioning. A portable device was created which monitored his SPL output 

and presented the information visually via a series of LED displays which were worn 

on his wrist. The subject could then inconspicuously look at the display during the 

process of his presentations and was able to consciously control the output level of 
his voice to ensure his voice usage remained within the SPL range known not to 

cause problems. 

3.4 Acoustic signal changes 

3.4.1 The 'singer's formant' 

Sundberg (1974), amongst others, noted that a spectral envelope peak is resident 
in the region of 3KHz for voiced sounds produced by male opera and concert singers 

in Western music culture. A simple example illustrating differences in spectra be- 

tween trained and untrained singers is shown in figure 3.3. He originally attributed 

it to a clustering of the third, fourth and fifth formants, resulting in increased impact 
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of the frequency spectrum in these areas. This peak is generally called the singer's 

formant (Sundberg, 1987). Other names also exist for it, including "head resonance" 

or "ring". Several other studies have observed this phenomenon (i. e. Seidner et al., 

1983; Walker, 1992) including an analysis of CD recordings of professional tenors 

(Lindsey and Howard, 1989). This resonance has also been recorded using vibration 

sensors in various locations around the body, with a spectral resonance observed for 

trained singers, but absent for untrained singers (Sakakura and Takashi, 1988). 

The centre frequency of the singer's formant is dependent on the type of voice, 

pitch, and vowel (Sundberg, 1987). For example, Seidner et al. (1983) report that 

the center frequency of the singer's formant varies between 2.3kHz and 3kHz for 

basses, and 3kHz and 3.8kHz for tenors. 

3.4.2 Physiological correlates 

Sundberg (1974) originally postulated that the singer's formant was due to a length- 

ening of the pharynx and a widening of the cross-sectional area in the pharynx at the 

level of the larynx tube opening to more than six times the area of the opening. A 

widening of the pharynx base appears to have been verified with the use of acoustic 

pulse reflectometry techniques' (Clark, 1992). Others (i. e. Yanagisawa et al., 1989) 

have noted a strong relationship between constriction of the aryepiglottic sphincter 

and the production of the singer's formant. 

Acker (1987) studied vocal tract adjustments for the projected voice. He consid- 

ered the perceptual, acoustic and physiological features of the spectral 'ring', and 

constricted vocal modes (defined as a loud vocal production, using a raised jaw, no 

lip protrusion, a small lip opening, retracted tongue tip, raised tongue dorsum, low- 

ered soft palate, and the subjective sensation of a squeezed or constricted throat) 

in a listening test with spectrographic evaluations and conventional radiography. 

In a perceptual test, 80% selected the ring vocal productions as the louder sound, 

although analysis revealed both ring and constricted conditions had a similar pat- 

tern of overall amplitude levels. The only spectral differences between ring and 
"The technique is described by the author of the study in the following way. An acoustic pulse is 

introduced to the mouth, and analysis of the reflected sound allows reconstruction, using complex 

algorithms, of the area-distance function. 
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constricted modes that appeared were the higher amplitudes in the spectral regions 

between 1.3kHz and 2kHz and at 3.6kHz. Although the vocal sound utilising the 

singer's formant appeared to be louder than the constricted form of vocal articula- 

tion, the recorded SPL was only slightly higher. This implies that the effect of the 

singer's formant gave the impression that the vocal sound was more predominant. 

This would clearly be an important quality to encourage in singing training. 

The different physiological states employed by the subject between the different 

modes of singing assessed by Acker (1987) are shown in figure 3.4. The mouth 

opening was recorded as being considerably wider. The soft palate was further 

above the palatal plane for the ring mode than for the constricted mode. The ring 

phonation mode exhibitted a relatively greater cross-sectional area at the point in 

the vocal tract above the vocal folds. 

Sundberg (1987) demonstrated that a singer can change the shape of the vocal 

tract to align formants near to harmonic frequencies. He observed that this can 
be used as a strategy of tuning the resonator to increase the sound pressure level 

(SPL) of a vowel, particularly in the female voice. This technique may be used by 

a professional singer to enhance the spectral region of the singer's formant. 

Although use of these techniques would be hard to encourage directly at a phys- 
iological level, it may be that a form of graphical visualization based on acoustic 

analysis, operating in real-time, could incite the appropriate physiological actions 
that are required for this phenomenon. 

3.4.3 Assessment methods 

The spectrogram. presents a visual representation of spectral amplitude from which 

the singer's formant phenomenon can be observed. It is established in a diagnostic 

context (i. e., Sataloff, 1992) and there are also reports of its use as a tool for inciting 

vocal technique in certain contexts (such as the training of deaf children; e. g., Stark, 

1972; Goldstein & Stark, 1976; Stewart, 1976; Huggins, 1980). However, in many 

cases the high degree of information presented to the user is more likely to confuse 

rather than inform. Analysis must be carefully applied in order to derive valid and 

useful information for improving vocal technique (Miller and Schutte, 1990; Brooks 

et al., 1981), which greatly reduces the applicability of the spectrogram as an easy- 
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to-use tool for real-time feedback. This is surnmarised in the following quote : 

"Another computer-based aid currently in use is the Speech Spectro- 

graphic Display ... but the complexity of the display may be an inherent 

disadvantage... " (Brooks et al., 1981) 

A method for reducing the acoustic spectrum information to a set of easily inter- 

preted parameters related to vocal development, such as the measure of the singer's 
formant discussed previously, is therefore likely to be useful for the developing voice 

user. 

Watson (1992a; 1992b) developed one such measure. He concluded that the 

'singer's formant' is a misleading description and chose to evaluate higher partial 

enhancement in terms of the difference between the mean of the two largest partials 
in the 50-180OHz band and the mean of the two largest partials in the higher par- 

tial band 2200-500OHz. He used the term 'resonant balance' (RB) to describe the 

methodology. This measure was also used to determine objective profiles of different 

types of singing. Figure 3.5 illustrates the RB profiles for bass, tenor and soprano. 
Distinctive contrasts between the voice types are visible. 
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However, a real-time measure of RB would require complex contextual analysis 

for which enough data has not currently been derived. For example, maximum RB 

values for each class of singer are shown in figure 3.6 for the vowels /u/ and /i/. 

The pattern of RB is distinctly different for each vowel. Other vowels may exhibit 

different trends, but these remain uninvestigated. In addition, the specific approach 

measure does not have a wide research base. This algorithm would also be fairly 

demanding to be successfully implemented in a real-time digital computer system. 
The original research was carried out by hand and eye judgement (Watson, 1993). 

An automated implementation would require a high resolution fourier transform in 

order to ensure accurate detection of the appropriate partials in the spectral signal. 
The time taken for such a high level of processing in combination with subsequent 

visual display of an appropriate form is likely to be beyond the real-time performance 

of currently available computer systems. 
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3.4.4 A real-time measure 

The display of a single parameter representative of the singer's formant phenomenon, 

presented in a feedback context other than the display of the entire acoustic spec- 

trum might therefore be a useful attribute for a real-time voice tuition system. To 

achieve this, a method used to evaluate the phenomenon of the singer's formant ob- 

jectively from the digital representation of the acoustic signal was developed. This 

is described in section 5.8.1. 

3.5 ]Fundamental frequency 

3.5.1 Introduction 

The fundamental frequency of the voice (often referred to as 'FO') has been iden- 

tified as a highly important parameter of speech and singing (Crystal, 1988; Baken & 

Orlikoff, 1987). It is affected by a wide variety of issues, including sex, age (Aronson, 

1985) and health together with the acoustic environment (Summers et al., 1988) and 

the nature of the speech task. An example of the latter is indicated by the results of 

a study indicating that speakers undergoing police interviews frequently exhibit a 

lower mean and/or modal FO value than for a disputed telephone recording for the 

same speaker (Hirson et al., 1993). In addition, it is well known that all languages 

rely to some extent on intonation to convey information (Crystal, 1988). Abberton 

& Fourcin (1978), for example, demonstrated that listeners were able to identify 

familiar speakers solely on the basis of suprasegmental laryngeal information (pre- 

dominantly mean fundamental frequency and the fundamental frequency contour 

shape). 
There is a natural pattern of change in average fundamental frequency with age. 

This is illustrated for males (10-90 years) in figure 3.7(a) (Kent & Bukard, 1981). 

This trend is verified and a more gradual rate of decline indicated for females in the 

results of an examination into average fundamental frequency for male and female 

subjects aged 4,8 and at adult age (Stathopoulos & Sapienza, 1993). This is shown 
in figure 3.7(b). Other studies have verified considerable changes evident at the age 

of puberty (Penderson et al., 1982; 1984). Figure 3.7(b) also illustrates differing 

levels of fundamental frequency with intensity for males and females across age. 
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Rating Number 

of subjects 

Mean singing 

range 

% frequency 

peturbation 

Lesion 

Very deficient technique 9 25 1.05 3 

Deficient technique 9 24.5 . 75 6 

Expected technique 6 27 . 91 5 

Above expected technique 3 (F) 42 . 65 1 

Good technique 3 (F) 65 . 30 3 (early) 

Table 3.1: The relationship of vocal technique ratings to singing 

range, from very deflcient technique (top row) to good technique 

(bottom row). (F) denotes subjects were female only. Singing range 
is in sernitones. (After Teachey et al., 1991) 

Fundamental frequency has also been shown to be indicative of mood (Williams 

& Stevens, 1972). For example, one study found that 80% of 112 listeners were 

able to determine the difference between voice source only recordings of people 
immersed in mental depression and the same group of people after recovery (Nilsonne 

Sundberg, 1985). This has clear connections to areas of vocal performance such 

as acting where, for example, the impression of mode and tone is critical to the vocal 
delivery. 

The difference in FO from one instant to the next is called jitter. It is used as 

a measure of voice peturbation, often in combination with shimmer (i. e., Ludlow et 

al., 1987; Orlikoff & Kahane, 1991; Slavit & Maragos, 1994). Gelfer et al. (1991) 

concluded that trained singers exhibit a more consistent pattern of jitter perfor- 
mance than untrained singers. A real-time display of the measure may be of benefit 

in encouraging vocal stability. 
In the following sections, the role of FO as an indicator of changes in the physi- 

ology of the developing voice and the potential applicability of this voice parameter 

to a system intended to help enhance voice development are considered. 

3.5.2 Rindamental frequency range 

The fundamental frequency age span for males aged 20-60 years is approximately 



CHAPTER 3. PARAMETERS FOR REAL-TIME ASSESSMENT 48 

107-12011z (Hollien and Ship, 1972). The corresponding data for women in the same 

age range is 214-22711z (Kelley, 1985). It has been demonstrated that frequency 

range tends to be directly proportional to a rating of vocal quality, as based on 

an acoustic judgement of the subjects voice (Teachey et al, 1991). For example, 
deaf children have also been shown to speak with a narrower fundamental frequency 

range than their normally hearing peers, across all ages and for both sexes (Beijk, 

1992). Table 3.1 tabulates a correlation between singing range and the proficiency 

of vocal technique for a number of subjects who had some form of medical complaint 

relating to voice usage. Subjects with better technique exhibit considerably higher 

FO range, in addition to less FO peturbation and generally less lesions. 

3.5.3 Fundamental frequency and intensity range 

The phonetogram is a graphical display of the fundamental frequency and inten- 

sity capabilities of the voice. Many studies (Le, Gramming et al., 1988; Gramming, 

1991; Awan, 1993) have indicated that the information displayed by a phonetograrn 

appears to have a wide range of applicability in the assessment of singing and speech. 
Awan (1993) noted that there were significant correlations between the total inten- 

sity range and the intensity range used in speech for trained female vocalists. His 

study demonstrated that trained singers exhibit improved overall FO and intensity 

capabilities in comparison to their untrained counterparts. These phonetograms are 

shown in figure 3.8. A major conclusion of the study was that "maximum perfor- 

mance" tests can provide important information about phonation activities. 

3.5.4 Range analysis in real-time displays 

Clearly, the range of FO and vocal intensity are important measures of vocal per- 
formance in certain contexts. But by its very nature the range of a certain vocal 

parameter is not a suitable measure for real-time display. (Similarly, a minimum 

speech sample duration of 90 seconds is required in order to attain a stable FO dis- 

tribution (Barry et al., 1990)). However, it would be possible to derive the range of 

a vocal attribute during the process of a tuition session. This measure could then be 

suitable as a long-term indication of vocal development rather than as a short-term 

measure suitable for real-time display, although once the subject's voice range is 
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known a real-time display could be used to encourage an expansion of this range. 

3.5.5 The use of fundamental frequency in a real-time display 

FO has been widely examined as a parameter for real-time display. A number of 

systems have been developed for its analysis and display in a real-time domain. One 

system, discussed in more detail in section 3.6.7, enables real-time analysis of FO and 

other voice source parameters, and is able to display statistical information in several 

of standard analytical modes, including scattergrams and two-dimensional graphs 
(Howard and Garner, 1992). A very similar system has also been developed by Spaai 

et al., (1993) with extensions to include the plotting of a target intonation pattern, 

with word annotation at the correct loci. One system aimed towards developing 

voice users of the primary school age group is the SINGAD (SINGing Assessment 

and Development system) system (Welch et al., 1988; Welch et al., 1989a; Howard 

and Welch, 1993). It employs visual targets in the form of bitmaps of various shapes, 

such as flags and rockets. An example of the use of bitmaps of houses is shown in 

figure 3.9 (a). The user can'attempt to guide the moving line representative of pitch 
by raising or lowering the pitch of his/her voice and aiming at or around the icons 

(Rossiter et al., 1993). 

Other software products have been produced aimed at adult singing tuition 

(for example, Smith & Monk, 1994; Morgan, 1994). These use conventional music 

notation to present pitch stimuli and the response of the user. 
An ability to measure the pattern of FO is clearly of importance in the design 

of a real-time tuition analysis and display system. The currently existing systems 

considered are inflexible in the way they choose to present a visual indication of 
the status of FO, and are generally unable to jointly consider the performance of 

other parameters. They are all based around standard graphical techniques, pre- 
dominantly with the x-axis mapped to time and y-axis mapped to frequency. Very 

little flexibility is proferred from which an appropriate form of voice analysis and 

subsequent graphical interaction may be selected. 
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Figtire 3.9: SINGAD screen displays (Frorn Rossiter et al., 1993) 

(a) SINGAD development screen 
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3.6 Laryngeal closed quotient 

3.6.1 Introduction 

A primary statistical measure of the voice source is the relative time for which the 

vocal folds are in contact (Ardran et al., 1953). This is often referred to as the 

larynx closed quotient (CQ) of the vocal fold period. This section discusses the role 

of the closed quotient in some depth, and considers the potential applicability of 

this parameter to a real-time system for voice development. 

3.6.2 The applicability of closed quotient 

There are several reasons as to why the CQ measure is considered highly relevant 
to voice analysis and development. 

1. Howard (1992) suggests the following theoretical base. When the vocal folds 

are in contact, acoustic energy is transmitted to the listener via the orator's 
lips. When the folds are apart, a proportion of the acoustic energy is trans- 

mitted via the subglottal cavities to the lungs where it is absorbed and lost 

to the listener. Therefore, any increase in time for which the folds are closed 

relative to the time for which they are open will improve the overall acoustic 

efficiency because the time for which sound energy is lost to the lungs during 

each cycle (termed 'subglottal damping') will be reduced. 

2. Transglottal pressure increases so that when the glottis opens, the product of 

glottal flow and subglottal pressure means that there is more energy in the 

resulting release (Rubin et al., 1967). This is related to the signal processing 

waveform and corresponding spectrum discussed previously in section 2.7.2. 

3. Prolonged closed quotient helps maximise the mucosal wave, which plays a 

major role in the dynamics of vocal fold function and the conversion of air 
flow to sound energy (Watson, 1992). 

3.6.3 Changes in closed quotient across different levels of intensity 

Stathopoulos &- Sapienza (1993) used a flow mask to calculate the level of open 

quotient (OQ) for men and women at three different levels of vocal intensity. Ex- 
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pressed in terms of CQ, women were found to have similar levels of CQ for soft 

and comfortable modes of phonation but a considerably higher level for the loud 

mode of phonation. For men, there was a progressive increase in the level of CQ 

across the three levels of intensity. These data are illustrated in figure 3.10, in ad- 
dition to indications of the pattern of CQ across age and gender. It may be that 

the potential for a real-time analysis and display system considering CQ in solitude 

would be considerably enhanced by additionally considering trends in SPL and other 
parameters. 

3.6.4 Changes in closed quotient for different modes of singing 

The CQ parameter has also been examined as a measure of different singing styles. 
Howard (1992) considered the change in CQ for a tenor singing a fragment of an 
Elizabethan madrigal in different styles. Although following a fairly consistent pat- 
tern of CQ measures across fundamental frequency, the average operatic CQ values 

were consistently higher than the conventional early music values, which were con- 

sistently higher than the Elizabethan values. 
Evans & Howard (1993) investigated the difference between the quality known 

as 'belting' and an operatic technique in a female subject. Scattergrams of laryngeal 
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CQ against fundamental frequency were made for several vowels sung at different 

pitches. The level of CQ for the belting quality remained relatively constant across 

all vowels and pitches at approximately 50% to 60%, whereas the opera quality 

exhibited a considerably lower CQ for the lower pitches, although it rose with pitch. 

3.6.5 The relationship between closed quotient and vocal training 

Closed quotient has been demonstrated to be indicative of the level of training 
in male, non-dysfunctional subjects. 

With regards specifically to adult males, Howard et al. (1990a) recorded and 

analysed 18 subjects whose vocal training ranged from no formal training to a high 

level of professional training. He found that the level of CQ was in direct proportion 

to the level of training of the subject. Figure 3.11 shows the concluding graph of 

this paper, in which the correlation is clearly shown. Gauffin & Sundberg (1989) 

concluded that the non-singers in their study typically shifted phonation towards 
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pressed phonation (i. e., unnecessarily increased CQ) when the loudness of phonation 

was increased, whereas the phonation type of the trained singers changed less with 
loudness. 

With regards to adult females, an initial assessment by Howard (1994) considered 

the variation of CQ with changing fundamental frequency for a group of adult female 

singers with varying singing backgrounds. A comprehensive assessment of 26 female 

subjects of varying degrees of singing experience concluded that the pattern of CQ 

across FO was generally constant (+/- 2%) for subjects of little training, but was 

generally increasing for subjects who had experienced a high level of training. The 

concluding graph from this paper is shown reproduced in figure 3.12. An earlier 

study (Howard et al., 1990b) supports the conclusions of this work. 

Further evidence of a contrasting performance of CQ across FO between males 
and females is provided by Lindsey et al. (1988), who found that in speech the 

females had decreasing CQ with increasing fundamental frequency while the males 
did not. 
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A succint summary of the performance of CQ across FO was provided in Howard 

(1994): 

* For female subjects: 

1. CQ tends to be reduced for pitches below D4 (587.33Hz) and increased 

for pitches higher than B4 (987.77Hz) with training, and 

2. the CQ/FO gradient within the pitch ranges: G3 (392. OHz) to G#4 

(830.61Hz), and B4 (987.77Hz) to G5 (1568. OHz) tends to correlate pos- 

itively with the number of years singing training/experience. 

9 For male subjects: 

1. CQ remains essentially constant with FO, and 

2. CQ means tend to correlate positively with the number of years singing 
training/experience. 

3.6.6 The suitability of closed quotient as a real-time measure 

As Howard (1992) concluded, a measure of CQ would seem to have a considerable 
degree of applicability to real-time display systems. However, caution is required 
in interpreting the results of CQ measurement. CQ has been shown to perform 
in context-dependant ways, and any real-time display would therefore benefit from 

being able to assess and present information in a form appropriate to the context 
in which the parameter is being expressed. NVatson (1992b) warns 

There is... a caveat for laryngologists making. laryngograph examina- 

tions. A long closed quotient is an attribute of an operatic singer but 

an untrained voice, without the muscular development achieved during 

training, will probably be suffering from a pathological voice, if seen to 

present with extended closed quotients of this order. The diagnosis will 
be quite different from that for a fully trained singer. 

A system intended for use as a tool for vocal development must be able to be 

configured to draw conclusions about the merits of a change in the level in CQ within 
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the context of the vocal act. Simply inferring that, for example, the attainment of 

a relatively higher level of CQ for an adult male singer is an improvement may not 
induce improved vocal performance, depending on the context of the increase, but 

instea, d incite incorrect vocal technique and lead to damage of the vocal mechanism. 
With regard to problems such as this, it is expected that the real-time feedback 

tool to be developed would be designed for use with a tutor, and not in place of the 

tutor. 

3.6.7 Previous real-time closed quotient systems 

In one research project, an analogue circuit was devised and produced (Rothen- 

berg; & Mahshie, 1988). This processed the Lx waveform and produced an output 
level indicative of the level of CQ which could be displayed on an oscilloscope. A 

more advanced project enabled real-time monitoring of closed quotient in addition 

to fundamental frequency (Howard & Garner, 1992; Rossiter et al, 1993). Using an 

Ariel DSP board and an IBM-PC compatible computer, the Lx waveform is pro- 

cessed in real-time on a cycle-by-cycle basis to give FO and CQ traces which are then 

displayed graphically against time in real-time. Display options include bar graphs, 

two-dimensional graphs, and a display of the incoming waveform with the first order 
differential shown time-synchronised (a calculation which is of prime importance in 

the algorithmic operation of the system). Example screen displays are shown in 

figure 3.13. 

The latter system is functionally very well suited for stand-alone use as a mon- 

itor and analysis system of CQ and FO. However, the system suffers from certain 
basic constrictions, such as a small selection of fixed axis boundary options, and it is 

unable to employ other, potentially more appropriate methods of graphical display. 

It is also unable to consider additional parameters (whether in solitude or combina- 
tion) such as the level of acoustic output, or the distribution of energy across the 

acoustic spectrum. 
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3.7 Rates of larynx opening and closing 

In the previous chapter it was established that the rates of larynx opening and 

closing were of importance in vocal function. These two parameters may be useful 
in the process of voice monitoring. They may be beneficial when presented as real- 

time feedback for voice tuition. However, there appears to be no previous research 

in which comparable parameters are used in the assessment of the developing voice. 

The interpretation of these parameters must therefore be tentative and cautious. 

3.8 Conclusions 

Conclusions may be drawn concerning several aspects of the project. 

3.8.1 Real-time system design 

A number of real-time visual displays have been reviewed. These have been shown 

to operate on a very reduced set of voice measures, typically one or two parameters 
in solitude. It is proposed that a real-time system with the following functional 

requirements would be of more benefit in vocal tuition; 

1. the analysis of a number of voice source and acoustic parameters, including 

FO, CQ, SPL and spectral qualities, 

2. the ability to algorithmically process these parameters in order to more effec- 

tively determine some measure of vocal quality, and, 

I the suppport of a number of visual display techniques from which an appro- 

priate display method may be selected to convey visual feedback. 

The way in which these points have been addressed is discussed in chapter 5. 

3.8.2 Parameters indicative of vocal useage 

In this chapter, a number of voice source and acoustic parameters have been iden- 

tified as potentially useful for real-time visual feedback. These are: 

* SPL as an objective measure of loudness 
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9 The ratio between spectral amplitude in the 2 to 4KHz band and the 0 to 

5KHz band as an objective measure of the 'singer's formant' phenomenon 

o Fundamental frequency 

* Closed quotient of the laryngeal period 

In addition, there are indications that the following two parameters may reflect 

vocal development; 

o The rate of opening of the vocal folds 

* The rate of closing of the vocal folds 

3.8.3 Longitudinal assessment 

An accurate model of vocal development is a highly important attribute for any 

system intended for the assessment of vocal function. The studies discussed in 

this chapter that address measures of the developing voice (i. e., Gramming et al., 
1988; Gramming, 1991; Awan, 1993; Howard et al., 1990) draw their conclusions 
from observations of several different vocal mechanisms at differing levels of vocal 
development (e. g, a trained group and an untrained group). An alternative approach 
in which the same set of vocal mechanisms is analysed during the process of vocal 
development may be a more appropriate approach for the identifyication of changes 
that occur as a function of development. 

This is addressed in the next chapter, in which three studies concerning the 

identification of longitudinal parameters are presented. 



Chapter 4 

Longitudinal voice studies 

4.1 Introduction 

This chapter presents three longitudinal studies that attempt to identify some voice 

source and acoustic parameters indicative of adult vocal development. Identified 

trends are likely to be appropriate for consideration in the design of a voice analysis 

and assessment system able to operate in real-time. 

Study I (3M+6F) 
A course of vocat 

e. Wression over 6 weeks 

Study 2 (6M+4F) 
Actors in training 

over an 8 month period 

Study 3 (3&0 
Singers over a 
2.7yearperiod -w- 1 2 3 

Year number 

Figure 4.1: Relative length and timing of the three studies. Key: 

xM=number of male subjects. xF=number of female subjects. 

The first study considers objectively measured changes in a group of male and 

female subjects over a six week part-time course of vocal expression for their speaking 

voices. The second study considers a group of male and female acting students in 

full-time training during an eight month period. The third study considers three 

male subjects who underwent regular singing lessons over differing periods up to 2.7 

61 



CHAPTER 4. LONGITUDINAL VOICE STUDIES 62 

years. 

A visual representation of the relative timing and length of these studies is shown 
in figure 4.1. The geographical context, the form of vocal tuition received by the 

subjects, the tutors, and the subjects themselves were different for each study. All 

subjects were classed as being vocally non-dysfunctional. 

The ability to measure the SPL output of subjects was gained in the period 

prior to the commencement of study 2. For this reason, SPL data is available for 

the complete length of study 2 only. 
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4.2 Study 1A6 week course of vocal expression 

4.2.1 Introduction 

This study addresses changes in some voice source and acoustic output parameters 

of male and female subjects as a result of attendance at a short course of vocal 

expression. 

4.2.2 A course for vocal expression 

Reference I Sex I Age Occupation 

Mi M 22 Sound engineer 

M2 M 25 Voluntary consellor 

M3 M 38 Solicitor 

F1 F 24 Radio production trainee 

F2 F 55 Museum guide 

F3 F 50 Counsellor 

F4 F 41 Revenue control 

F5 F 54 Journalist 

F6 F 65 Lay reader 

T1 F 64 Voice tutor 

Table 4.1: Experimental subjects for study 1 

A group of nine people attended a six week part-time practical course in vocal 

development taught by a professional voice tutor at Warwick University, England. 

Subjects were classed as not being vocally dysfunctional in any way. One two hour 

session was held per week, in the early evening. The subjects comprised of three 

men (age range 22-39; mean=28.33; sd=6.94) and six women (age range 24-65; 

mean=48.17; sd=12.93). The course tutor (female; age 64) was also recorded as 

a potential reference against which to consider measured parameters for the nine 

subjects. A summary is shown in table 4.1. Subjects were treated as a group, with 

each subject receiving the same treatment. 

The overall aim of the course was to increase the ability of the students to use 
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their vocal mechanism and to increase awareness of the context within which it may 

be used. 
Special guidance was provided in week 2 by a Speech Therapist, and in week 4 

by a specialist in the Alexander Technique. Please refer to Appendix A for more 
detailed notes made by the voice tutor on the schedule undertaken. Further in- 

formation on the context within which this course was developed may be found in 

Comins (1992) and Kingston (1994). 

4.2.3 Recordings 

In addition to the tutor each subject was recorded immediately before and after at- 
tending the course. Subjects were given identical instructions during both recording 

sessions. During the recording procedure subjects were required to remain at an 

approximate distance of 0.3m from the microphone. Subjects were asked to main- 
tain a fixed distance from the microphone during recordings. They were asked to 

read the following items (reproduced in Appendix B) aloud in a manner they felt 

appropriate: 

1. an extract from 'The Voyage' by Katherine Mansfield, 

2. an extract from 'Androcles and the Lion' by Bernard Shaw, and 

3. a sequence of sixteen consonant-vowel-consonant word structures. 

The first item is pure narrative, the second requires the subject to express their 

voice 'in character', and the third item is a word sequence which requires the subject 
to articulate all the English vowel sounds. In combination, it is considered that these 
texts provide a fair portfolio of vocal activity across a variety of tasks. 

The first two texts were not used as part of the course itself, whilst vowel ar- 
ticulation similar to that employed by the third test item was used in the tuition 

process. 

Recordings were made of the voice source and acoustic output signals. A Sony 

TCD-D1O-PRO DAT recorder was used to record the signals at a sampling frequency 

of 48KHz. The output from a Sennheiser MKH/40/P48 cardioid microphone was 
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recorded onto one channel and the output from an electrolaryngograph was recorded 

on the other channel. 

The recorded signals were then transferred into a Silicon Graphics Indigo com- 

puter and stored in Speech Filing System (SFS) format (Huckvale et al., 1987; 

Edginton et al., 1992). Subsequent analysis of the voice source and acoustic out- 

put signals was made using the techniques described in chapter 3 using specially 

developed software. 

4.2.4 Data analysis 

Several voice source and acoustic output parameters identified in the last chapter 

were analysed. These are: 

1. CQ' 

2. Ratio, 

3. FOI 

4. the rate of opening of the vocal folds, and 

5. the rate of closing of the vocal folds. 

The results of the analyses are discussed in the following sections. 

4.2.5 Results 

4.2.5.1 Ratio 

In chapter 3 the phenomenon of the singer's formant was discussed. The acoustic 

signals of the subjects were analysed in order to determine whether a change related 

to this phenomenon could be objectively measured. A distinctive change would 

imply that the physiological basis for the phenomenon may have occured in the 

subjects as a result of the course of vocal tuition. 

A procedure (described in section 5.8-1) was used to evaluate this phenomenon 

objectively from the digital representation of the acoustic signal. This was carried 

out for each acoustic recording in order to derive an indication of the spectral bal- 

ance. The spectral range covering the frequency domain where the phenomenon of 
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Ratio FO 
K. 1- F-I.. All Was F-. I.. All 

f r 1 * 1272 7 9608 6.8163 121.16 291.26 173.22 : 
Aft , , :, "73 : S 3391 9.7911 131.64 210.92 184.50 

Passage 1 
Chang* -0 :: ' 9 : 3773 :: -0.0251 10.48 11.67 11.27 
Sinc- -7 8 3 7394 -0.2848 8.65 5.86 6.51 

D. tor * 10 0544 7 5546 0.3879 134.33 206.67 182.69 
Altar 10 

: 
2420 9: 2173 9.5589 161.97 226.91 205.26 

Passage 2 Chang * " 0 : .. 1 ' 1710 1 : 27 63 2, ' O 22 " 
%incr so ý e5 1 2.00 9 ý 3 9601 20: 57 :. g 12: 36 

O*t*r* : 0066 4 695, 4.7195 227 33 2 198 5 174.61 
Aft- 

: 
6077 5: 4194 6.5355 : 

140 74 1: 21 32 187.79 

Vowels 
Chang 3.600 : 0 8036 1 7360 13.41 13 07 13 18 
tincr: " S 71.1 J 

: 
17 ILI 1, 3 

: 
6 1702 10.53 

: 
6 59 7: 5S 

B. for* 11: '-: 7 "g 126.77 201 53 17 6 61 
Attar 62 82 

: 7519 143.81 
: 

215 76 1 
:7 19 8 

All three Chang. 0.0510 0: 7 '07 27 0 , 14 23 17 

I 
%i=-. O. S304 IS. 2. , 3828 13 S : , 7 06 S9 

I 

CQ sic SIO 
Males resales All M. I.. Females All Males Females All 

Before 45.61 43.47 44.19 0.20S756 0.190396 0.296516 0.050491 0.061627 0.06191S 
Passage 1 After 40.34 43.49 42.44 0.191867 0.317169 0.275402 0.05530S 0.065624 0.062165 

ChmW. -5.20 0.02 -1.75 -0.016889 0.126773 0.078886 0.004814 -0.002003 0.000270 
ti-ease, -II. S7 0.04 -3.95 -8.090223 $6.584032 40.142199 9.534372 -2.961342 0.435364 

before 46.0s 46.81 46.55 0.195404 0.266988 0.243127 0.052881 0.072561 0.066001 

Passage 2 Aftex 44.70 46.24 45.73 0.219094 0.415289 0.349891 0.059092 0.072656 0.060135 

Cbmwe -1.35 -0.56 -0.83 0.023690 0,148301 0.106764 0.006211 0.000094 0.002133 
tiýaam* -2.94 -1.20 -1.78 12.123409 55.545845 43.912781 11.745944 0.130235 3.232437 

B. f r* :7 1 ý 1 4 S O 'a 45.73 0 705 29 9 0 2 09253 0 25: 521 0 04 4 78 0 065314 0 059702 
Vowels Aft: er 5: # 6 : 5 62 4 . 70 45 0: 2 054% 

: 
0 01 3 958 

: 
0 28 155 : : 

8 a 0 04 1 
: 

0 0,6931 0: 060893 

ch"g* -1.25 O. S7 :04 0 0.0634: 0 0.012705 0.029634 0.000339 0.001616 0.001191 
UWreass -2.66 1.27 0: .6 3 2.216 32 4.392469 11.462712 0.699969 2.474961 1.994528 

D. f*re 46.00 76 44 4 5 17 0 201 853 : 0 228282 0.219472 0.050935 0.068919 0 062 924 
AfteW 42.97 

: 
44 61 4 

: 
4 07 . 209 , 47 0 0: 352234 0.304738 0.055287 0.067949 ,: 0 , 63 129 

All three 
chmve -3.03 -0 14 :1 10 07 0 * ""' 123952 0 0.085266 0 004352 -0 00 0970 0 00 04 0 
tiýeas. -6.58 0: 32 

: 
2 45 ,: '10.10 1 1: 297904 38.950572 : 55 a 448 1 

:" 
73 , -1 0 12 

: 
1: 8 277 0 

Table 4.2: Summary of mean change for passage 1, passage 2, and 

vowel sequence for male, female and both genders combined 
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the 'singer's formant' has been shown to occur was set at approximately 250OHz- 

400OHz, and the spectral range for all dependable acoustic output was set at 0-5KHz. 

A mean value was obtained for each acoustic recording by summing all the Ratio 

data produced during the analysis of that recording and dividing by the total number 

of data. 

Both recording sessions took place in the same environment. This was a lecture 

classroom similar to that used by the class for the duration of the six-week course. 

The similarity in appearance and acoustic characteristics of the recording environ- 

ment to the tuition environment would, it was hoped, support vocal delivery in the 

subjects which would more accurately reflect any developmental changes. 

The results of analysis of the Ratio parameter are summarised as part of table 4.2 

and illustrated in figure 4.2. Both male and female subjects exhibited an average 
increase. Although the average increase for males (0.53%; n=3) was small, the 

average increase for female subjects was considerably higher (15-29%; n=6). There 

are several potential reasons for this relative difference. For example, it may be 

the case that the nature of the course is in some way more suited to females than 

males, or that female subjects require, on average, less vocal tuition than their male 

counterparts for changes in vocal practice to take place that result in increased 

spectral amplitude in the singer's formant region. In addition, the average age of 

the three male subjects (28.3 years) is much lower than the average age of the female 

subjects (48.17 years) and this may bias the study. It is interesting to note that 

these increases can be compared to negligible change in the measured parameter for 

the tutor. This may additionally imply that the measured increase has occured as a 

result of the course of vocal expression itself, rather than as some constant change 

applicable to all measures. 
When expressed as a percentage increase, the relative difference in Ratio appears 

high (for example, there is an increase of 71% for the ratio parameter derived from 

male subjects reading the sequence of vowels). However, it is important to remember 
that the actual levels are fairly small, so that any small change will result in a 

relatively large measure when expressed as a percentage increase. As discussed 

previously, differences in gender, age or measurement may go some way towards 

explaining this. One possible explanation for the relatively high increase for the 
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vowel sequence compared to the other passages is that the vowel sequence acted 

as a subconscious signal to the subject to more fully vniplo. y the mode of voice 

articulation taught on the course, during which extended pronounciation of some 

vowels wa -s used as the basis for several exercises. An alternative hypothesis is 

that the sarne vocal mode was consistentlý, employed by subjects, but that the 

measurement of generally higher level of increase for the vowel passage is largely 

due to the relatively greater proportion of time for subject vowel phonation relative 

to non-voNvel phonation, such as consonants. 

4.2.5.2 Fundamental frequency 

The mean fundamental frequency (FO) of the three vocal tasks were calculated 

from the elect rolaryngograph signal using a procedure to be described in section 

5.9.2. 

The results concerning the average fundamental fre(juviicy ()f tho subjects are 

suininarised as part of table 4.2 and illustrated in figure 4.3. The ineasure of funda- 
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Figure 4.4: Closed quotient (CQ) mean and standard deviation mea- 
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mental frequency rises for all subjects, with the exception of on(, woman (labelled 

Fl) for whom it remained constant. It is conjectured that the process of vocal 

tuition, specifically the work on pitch optimisation (section 4 of Appendix A), has 

exercised and subsequently tightened the vocal muscles, resulting in a corresponding 

increa, se in pitch. It is also interesting to note that this may be applicable to the 

course tutor, in which a nivasureable increase in fundamental frequency has also 

been recorded. 

4.2.5.3 Laryngeal closed quotient 

As discussed in chapter 3, a measure of the time for which the vocal folds are in 

contact relative to the time for which they are apart, called the larynx closed quotient 

(CQ). has been shown to be an important measure in assessing vocal efficiency. 

This has been derived from the elect rolaryngograph signal (using a technique to be 

described in section . 5.9). 

Results of the analysis of the level of CQ are sunimarised as part of table 4.2 
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and illustrated in figure 4.4. In general, it appears that the average level of CQ does 

not rise. Indeed, there has been a small decrease in the parameter when expressed 

as an average for all subjects. There are several potential reasons for the negligible 

change. The type of training experienced by the subjects on the course may not 
have encouraged the vocal change which results in the changes in CQ noted in 

previous research. Additionally, the level of training experienced by the subjects in 

this study is of a very small duration when considered in the context of previous 

studies. For example, the correlation reported by Howard et al. (1990) between the 

average level of CQ and vocal training implied that training of the order of years 

rather than months was required in order to record a significant increase in the level 

of CQ. It is proposed that this study, in which subjects were taught for a total of 

only 12 hours, is not of a sufficient length to give rise to developments in the vocal 

mechanism which would result in a clear increase in CQ- 

Although it has previously been demonstrated that there are effects of changes 

in CQ on spectral output (section 2.7.2) the results from this study do not appear 
to support this. For example, a large increase of 71.9% in the measure of spec- 
tral output in the Ratio parameter was previously noted for male subjects during 

phonation of the vowel passage. However, a corresponding decrease in mean CQ 

of approximately 6.6% was observed. This supports the suggestion that the short 
duration of the course is insufficient to produce clearly measurable change in some 

vocal parameters. 

4.2.5.4 The rate of closing of the vocal folds 

As discussed in chapter 3, a consequence of vocal training may be manifested 
in the rate of closing of the vocal folds, possibly in a manner which is to some 

extent independent of the CQ measure. In order to investigate this, the value of 

the maximum time differential was derived, (using a technique to be discussed in 

section 5.9.4). 

The results are surnmarised as part of table 4.2 and presented graphically in 

figure 4.5. In considering the mean analysis of the data it appears that there was an 

overall increase in this parameter. Expressed as a percentage, the mean increases 

evaluate at 3.4% for male subjects, and 54.3% for female subjects. However, consid- 
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sequence 

erable care needs to be made in interpreting this parameter. Previous research into 

changes in the objectively measured rates of opening and closing of the vocal fol(k 

which is relevant in this context have not been encountered. It cannot be safely 

concluded that the increase is a product of the training process. 

4.2.5.5 The rate of opening of the vocal folds 

A measure of the rate of opening of the vocal folds was also derived using the 

technique to be described in section 5.9. 

The results are suniniarised as part of table 4.2 and presented graphically in 

figure 4.6. A first observation is that this parameter is considerably lower than that 

derived for measuring the rate of closure of the larynx. This concurs with previous 

research iii which it has been well establislied that for the non-dysfunctional voice 

the rate of closure of the vocal folds is faster than the rate of opening (see section 

. 5.9). 

On average there is an increase in the parameter after vocal training for inale 
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subjects. This has been evaluated at approximately S. 5/( . 
However, there is ito coin- 

parable pattern of increase for feniale subjects. In terins of 

derived data, differences between the pattern of vocal fold action have previou-sly 

been determined. For example, in chapter 3 it was shown that the pattern of' CQ 

across FO is different for iiiales and females. It may be that the invasure ofthe rates 

of opening and closing is also gender-specific in sonic, waY. However, further research 

would be required to substantiate this. 

4.2.6 Conclusions 

The voice -, oiir(-(, and acoustic signals of three inale and six I'Cinale vvrv 

recorded before and after taking part in a six week course of vocal expression. A 

number of parameters have been assessed for changcý,. Clear increases have been 

observed for the level of spectral amplitude in the spectral region known a.,,, the 

singer's foriliant and for the average fundamental frequency of the voice. Changes 

in the average level of' CQ have been observed, and increases in the level of opening 
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and of closing of the vocal folds have been cautiously interpreted. There may be 

some gender specific trends in the data, but due to the small sample base these may 

instead be attributed to some extent to other factors such as the age of the subjects. 

Further work is required in order to clarify the validity of the rate of opening and 

of closing parameters and the extent to which they may reflect vocal development, 

and to address gender specific changes. Furthermore, a period of longitudinal as- 

sessment longer than the period of six weeks addressed in this study would be more 

approriate in assessing parameters of vocal development. To address both these 

points, two further studies have been made. These are presented in the following 

sections. 
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4.3 An improvement to acoustic processing 

Although the method adopted for acoustic analysis in the longitudinal 

study is regarded as snfficient to provide an indication of longitudinal changes in 

acoustic parameters, an improvement would be to ensure the acoustic signal was 

processed only when voiced phonation was detected. In this way the acoustic signal 

would not be processed during voiceless activity or periods of silence. 
A refinement to the algorithmic process was therefore devised as follows. Each 

buffer of elect rola ryligogra ph signal data is analysed for im indicýition of voiced 

phonation. If this is detected. the corresponding buffer of' acoustic signal data is 

processed to derive parameters based on acoustic analYsis. If' voicing activity is not 

detected, the buffer of acoustic data, is not processed. This is illustrated in figure 

4.7. 

12" 1240 112! 10 12.. 1340 .0 1-0 

01 

r- 124.12.. 
.. 

2.0 1 
. ....... 

320 1 11380 

.......... ...... 

CL. 

Nei NI, vs YeN Yes 

Figure 4.7: This figure shows example time-synchronised acoustic 

and electrolaryngograph signals (labelled 'SP' and 'LX' respectively) 

with vertical bars used to indicate buffer start and end tinies. Pro- 

cessing of a buffer of acoustic data only takes place if voiced phonation 
is detected in the corresponding buffer of electrolaryngograph data. 

In this example a buffer update rate of 25Hz is assumed. 
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4.4 Study 2 Actors over an 8 month period 

4.4.1 Introduction 

This section presents an assessment of the vocal development of a group of actors 

in training over an eight month period. 

4.4.2 Subjects 

The subject set comprised of six men (age range 20-30; mean=22.67; sd=3.54) 

and four women (age range 20-36; mean=25; sd=6.56). Subjects were recorded on 

location at the Acting School at which they were working on the second year of their 

diploma. Tuition is provided in a mixture of practical skills including singing, ballet 

and several styles of acting performance. Several plays were staged during each term 

length of approximately 10 weeks. Subjects board at the school, which is situated 

in the heart of the country away from towns and cities. Subjects undergo the same 

intensive training and have therefore been regarded as a set to which stimulus has 

been applied. 

4.4.3 Recordings 

Recordings were made on seven separate occasions at intervals of approximately 

four weeks. They were paid for each recording session attended. Subjects were 

given identical instructions for each of the recording sessions. During the recording 

procedure subjects were required to remain at an approximate distance of 0.3m from 

the microphone. Prior to reading the text items, subjects were required to phonate 

at a constant amplitude for a period of several seconds. During this phonation, an 

SPL meter was placed next to the microphone and the level was assessed. This test 

was recorded, and the level noted for future calibration of the subject output level. 

Subjects were then asked to phonate in five different vocal tasks. Subjects were 

asked to read the items aloud in a manner they felt appropriate: 

a sequence of phonetically balanced spoken text (80 seconds) 

2. a recited passage read in a normally projected voice (35 seconds) 

3. item 3, read in a voice that is the opposite of maximum projection (35 seconds) 
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4. item 3, read in a voice with maximum projection (35 seconds) 

5. 'Baa-baa black sheep' nursery rhyme sung verse (20 seconds) 

Approximate times taken to read the items are given in brackets. This procedure 
is reproduced in full in Appendix C. The textual content of items 2,3, and 4 are 
identical and were selected by the subject prior to the first recording session. They 

were recited from memory. Subjects were not given a pitch reference for item 5, 

and were instructed to sing the verse in a comfortable range and manner they felt 

appropriate. This selection of vocal tasks enables assessment of subjects for their 

speaking and singing voices, and for recitation at three different modes of projection. 

In combination, they provide a portfolio of vocal performance which may be assessed 

to provide an indication of vocal development as a consequence of training. 

Stereo recordings were made using a Sony TCD-DIO-PRO DAT recorder at a 

sampling frequency of 48KHz. The acoustic output of the subjects was monitored 

via a Sennheiser MKH/40/P48 cardiod microphone on one channel, and the output 
from an electrolaryngograph was recorded on the other channel to monitor the area 

of vocal fold contact. 

Voice source and acoustic output signals were recorded and analysed using an 

early version of the ALBERT software to be described in chapter 5. 

Recording sessions took place in similar, although not identical, environments. 
These were lecture classrooms similar to those used by the subjects for tuition 

and performance during their course. The similarity in appearance and acoustic 

characteristics of the recording environment to the tuition environment would, it 

was hoped, support vocal delivery in the subjects which would more accurately 

reflect any developmental changes. 

4.4.4 Accumulated data 

Some subjects were not present for all recording sessions. Technical failure was also 

responsible for the absence of SPL measures for one female subject in the sixth 

recording session, and two female and one male subject in the seventh session. A 

summary of the accumulated data is shown in figure 4.8. In order to process the 

recorded data, the difference from one session to the next was first derived for each 
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Figure 4.8: Study 2- data recorded and analysed 

parameter. If a gap was present in the data, it was replaced with a value which 

was a linear interpolation of the value derived froin the recording iminedi- 

ately preceding and succeeding the session for which data, was absent. Increment 

values were averaged for all subjects to create two patterns of change for inale and 

feniale subjects. These were then successivelY applied to the means from the first 

recording session, at which all subjects were present, to create a sequence of values 

representative of mean trends in the data across the sequence ofrecording sessions. 

4.4.5 Results 

The reý, ults for the five vocal tasks werv averaged to produce a invasure which in 

addition to a consideration of the data trends in isolation may help in an assessment 

of the data. 'Male and feniale subjects exhibited several contrasting tronds and will 

be firstly in combination, and then in isolation. 

Fi, nire 4.9 illustrates the intervals a, t which recording sessions took place. A 

period of considerable trannia was experienced at the school which groatl. v affected 

all subjects during the period of the third and fourth recording sessions. n 
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Group experienced high 
levels of stress and traurna 

Figure 4.9: Study 2- recording intervals 

4.4.5.1 The rate of opening and closing of the vocal folds 

Figure 4.10(ii) and 4.10(b) illustrate the longitudinal pattern of change, for the 

rate of closing and opening measures respectively for both genders. There appears 

to be a consistent general decrease in the rate of closing for feniale subjects, with 

a pattern that may be interpreted as a relatively sinaller downward trend for male 

subjects. 

For female subjects, the general decrease in rate of closing is clciirly visible during 

examination of the five vocal tasks in isolation (figure 4.10(a)), although there are 

some positive fluctuations in the ineasure at sessions 2 and 4. Analysis ofthe rate of 

closing for each of the five tasks plionated by males does not produce an indication 

of clear trends in the data. In this instance it appears that all voice tasks exhibit 

slightly descending values followed by temporary upwards fluctuations at the third 

and seventh sessions. but that voice tasks exhibiting relatively higher levels of rates 

of closino' (spoken text. maximum projection and singing) in general exhibit less 

stabilitv. Both --ender., -ý exhibit similarities. including a local peak at session 2 and 

a generally decreasing trend in the data, but the rate of descent across training for 

females is greater and exhibit,., local peaks at session 4 which is absent for males. t-ý 
The average for both genders combined exhibits a general (lecrease in the inea- 

sure. However. resillt,..; for the rate of opening of the vocal folds are not distinct for 

siibj(, (-t.,, of vither gender. Examination of figurc 4.11(a) indicates a gencrallY de- 

creasing pattern for the iiiiiiiiiiiiiii and inaxiiiiiiiii projection tasks and spoken text 
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of male subjects, with less clear patterns of decrease for the other two assessment 

tasks. Correlation analysis indicates a small decrease assessed over all sessions for 

subjects of both genders, but of a small gradient. There are similarities between 

male and female subjects as for the rate of closing of the vocal folds, but to less of 

an extent, with the local peak at session 4 of relatively greater magnitude. 

Research concerning objectively measured rates of opening and closing of the 

vocal folds derived from an electrolaryngograph do not appear to be large in quan- 

tity. As for study 1, this implies that conclusions concerning these parameters must 
be carefully drawn. Titze (1990) developed a model of the vocal folds from which 
he derived a number of physiological changes that would affect the two measure- 

ment techniques developed for this study, including increased convergence in the 

glottis and a change in phase between the upper and lower portions of the vocal 
folds. However, these were theoretically based and it is considered unlikely that they 

may be expressed as a consequence of the tuition received by the non-dysfunctional 

voice users assessed in this study. It has been previously determined that there is 

considerable variability of the voice source signal across different subjects. For ex- 

ample, the opening phase of the electrolaryngograph signal often exhibits a 'chink' 

or 'knee' in the signal (i. e. Anastaplo & Karnell, 1988). This apparently occurs less 

frequently for the male voice than for the female voice, but not to the extent that 

specific male-female differences can be identified (see Moore's comments in MacCur- 

tain et al., 1981). On the basis of the accumulated data it is not considered that 

the parameters of the rates of opening and closing adopted for this study can be 

reliably used as a pointer for the state of vocal development. 

4.4.5.2 Fundamental frequency 

Results for the measure of fundamental frequency for subjects are shown in figure 

4.10(c). In general, it appears that there are gentle fluctuations in the measure, 

including a distinct rise towards the end of the recording sessions. 
Examination of the performance for vocal tasks in solitude indicate that, for 

female subjects (figure 4.12(c)), a steady climb is discernable for the sung passage 
(although a period of non-growth is evident for sessions 4 to 5), with all other vocal 

tasks exhibiting rising tendancies for sessions 1 to 3 and 5 to 6, but with a distinctive 
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downwards fluctuation at sessions 4 and 5. For male subjects (figure 4.11(c)), vocal 

tasks exhibiting lower levels of fundamental frequency (minimal and normal levels of 

projection) may be regarded as exhibitting a clear rise in frequency with downwards 

fluctuations during the period of trauma (sessions 4 and 5). For the remaining three 

vocal tasks, the pattern of change is less clear, with some tendancies in common 

with that of minimum and intermediate projection discussed earlier. Items exhibit 

a general rise apart from the final session, which it should be remembered is based 

upon parametric change in a relatively low level of subjects (n=2; see figure 4.8). 

With regard to the mean values, the pattern of change appears consistent for 

subjects of both gender. It may be conjectured that the initial drops in fundamental 

frequency correspond to excitement experienced by the subjects at the prospect of 
being involved as subjects in a scientific experiment expressed for the first recording 

session as an artifically inflated FO value, complimented by the prospect of earning 

money in an environment which by its solitude does not otherwise provide such 

opportunity. There appears to be a gentle climb of FO prior to sessions 3 and 
4, during which subjects experienced considerable stress, which commences again 
during sessions 5 and 6. As discussed in section 3.5, correlations between mood and 
FO have been noted in previous research although there appears to be no general 

agreement on the effect on fundamental frequency as a consequence of depression 

and related stress (see, for example, the overview in Nilsonne & Sundberg, 1985). 
It may be that the downwards fluctuations in FO towards sessions 3 and 4 reflect a 

generally more depressed mood amongst the subjects. 
In study 1a statistically significant increase in FO was observed in subjects 

after attendance of a six week course of vocal expression. As considered in the 

conclusions for that study, such a change would imply that the process of vocal 
tuition has exercised and subsequently tightened the vocal muscles, resulting in a 

corresponding increase in pitch. This may be expressed as a function of longitudinal 

development for many voice subjects, and the results presented here may be very 
tentatively interpreted as supporting such a proposal. 
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4.4.5.3 Sound pressure level (SPL) 

Results for the mean sound pressure level (SPL) values are shown in figure 4.10(d). 

This measure appears to exhibit contrasting patterns of change for male and fe- 

male subjects. Male subjects exhibit a consistent downward trend, whereas female 

subjects appear to exhibit a general increase, although with less consistency. For 

both genders, there is a very strong consistency in the pattern of SPL data across 

the five vocal tasks (figures 4.11(d) and 4.12(d)). As discussed previously (section 

3.3), previous research indicates that trained vocalists use significantly greater mean 

intensity levels than untrained vocalists, which implies that a generally increasing 

trend in SPL may occur as a function of vocal training. The SPL data for female 

subjects may be tentatively interpreted as supporting this proposal. However, this 

clearly does not appear to apply to male subjects. It may be that the contrasts be- 

tween the two genders indicate differing modes of development for male and female 

subjects. 

4.4.5.4 Laryngeal closed quotient and Ratio 

Results for the measure of CQ and Ratio are shown in figures 4.10(e) and 4.10(f) 

respectively. For CQ, male and female subjects exhibit almost identical patterns of 

change across time. After small changes during the first two sessions, the pattern of 
CQ exhibits a relative dip in value for sessions 3 and 4 followed by a large increase. 

Examination of the data for each of the five tasks individually indicates that for 

male subjects, the same pattern of change applies to each of the tasks, with a dip 

noteable for sessions 3 and 4, followed by a general increase thereafter for each of 

the five tasks, which is not sustained for the maximum projection and spoken text 

vocal tasks. 

A very similar pattern of behaviour is also evident for the Ratio parameter, as 

shown in figure 4.11(f), including downwards fluctuations during sessions 3 and 4. 

The relative dip in CQ evident for speaking voice and maximum projection tasks 

discussed previously is also expressed in the pattern of Ratio data. Female subjects, 
however, exhibit a contrasting behaviour of an initial rise in Ratio followed by a 
decrease in the measure across successive recordings. This performance is generally 
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consistent across the five vocal tasks, as is evident in figures 4.10(f) and 4.12(f). 

The downwards fluctuation during recordings 3 and 4 observed for male subjects 

are also evident. In view of the extended period of psychological trauma experienced 

by the subjects during the period of time in which sessions 3 and 4 were recorded, 

it may be conjectured that the downward fluctuation in CQ and Ratio parameters 

is reflective of stress which has influenced vocal development. 

4.4.6 The relationship between laryngeal closed quotient and Ratio 

In order to more fully investigate the correlation between CQ and Ratio mea- 

sures, scatterplots were made of the mean CQ and Ratio values. These are shown 

for male and female subjects in figures 4.13(a) and 4.13(b) respectively. The linear 

interpolation values for each of the vocal tasks (labelled G) are listed at the right 

hand side of figure 4.13. A commonly used measure of the goodness of fit between 

two variables, the coefficient of determination, (Rsq), has been applied to data for 

each of the five assessment tasks. Male subjects express a clear, strong correlation 

between CQ and Ratio for each of the five vocal tasks, with the set of large Rsq 

values reflecting a high level of cohesion between the two parameters. In contrast, 

the data for female subjects indicates that three vocal tasks exhibit a positive cor- 

relation, and two exhibit a negative correlation. The Rsq values indicate a low level 

of cohesion between the two parameters, for all five tasks. 

The implication from this data is that the acoustic consequences of increased 

CQ at the voice source level have resulted in increased spectral amplitude in the 

singer's formant region relative to the full vocal output spectrum measured. The 

data set for the projected mode of phonation exhibits a correlation which is of a 

similar gradient to that of the other four vocal tasks, but at a higher level of Ratio 

constant. It may be that this data is merely the extension of a correlation between 

the two parameters that is more exponential than linear. However, the distinct 

location of the data away from all other data implies that some other phenomenon 
is more likely to be responsible for the shift. The relatively higher volume level of 

acoustic output demonstrated by the subjects for this mode of phonation (figure 

4.11(d)) may involve the use of a physiological mechanism which is not in use for 

the other four tasks, resulting in a much higher level of spectral amplitude in the 
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singer's formant range. For example, the lowering of the larynx and widening of 

the pharyngeal cavity reported by Sundberg (1974) may be evident in this mode 

of phonation, but not for the four other vocal tasks. Note that subjects are not 

trained singers, but are being trained to sing as part of a general regime intended 

to enhance acting skills. 

4.4.7 Contrasts between the two genders 

The observed differences between the two genders in SPL, CQ and Ratio parame- 
ters may be accounted for according to the following theory. Female subjects have 

higher fundamental frequencies than their male counterparts (figure 4.10(c)). This 

results in relatively less partial components in the spectral output. Consequently, 

the task of 'tuning' resonant frequencies in the vocal tract to match voice source 

excitation (whether a conscious or subconscious task) must be a harder target for 

female subjects to achieve than for male subjects. This may be part of the reason 
for the relatively more indistinct pattern of Ratio (figure 4.10(f)) derived for female 

subjects over the recording sessions. It is a well-known phenomenon that when 
loudness is increased, the higher spectrum overtones gain more in amplitude than 

the lower ones (Sundberg, 1987). This was discussed previously (section 2.7.3; figure 

2.16). Gramming (1991) noted that, other things being equal, the higher the SPL, 

the higher the frequency of the first formant. Female subjects appear to be placing 

more emphasis on the consequences of increased SPL (figure 4.10(d)) to achieve 
impact during the period of this study. This is in contrast to male subjects who 

may be regarded as exhibitting a trend towards increased spectral amplitude in the 

singer's formant region (figure 4.10(f)) and who therefore may place less emphasis 

on the use of sound level to provide impact (as indicated in figure 4.10(d)). 

Previous research considering the nature of trained singers concluded that for 

voices below about 30OHz most voices seek to energise formant clusters in the higher 

partial bandwidth 2200-500011z using an extended glottal source bandwidth (Wat- 

son, 1992). Furthermore, above this frequency the strategy changes to dynamic tun- 

ing of the lower formants (predominantly the first and second) to available low-order 

harmonics and the employment of a less wide glottal source bandwidth. Although 

this analysis is based on professional singers rather than developing actors, it is inter- 
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Figure 4.14: Pattern of change of mean CQ/Ratio for all male sub- 
jects, for all five assessment tasks. Spline interpolation (Hearn & 

Baker, 1986) is used to indicate one possible path of development 

between the data points. The third and fourth data points in the 

series correspond to a period of high trauma. 

esting to note that for the two vocal tasks exhibiting high fundamental frequencies 

(female subjects; singing and maximum projection assessment tasks, expressing val- 

ues between 270Hz and 31OHz) there appear to be indications of behaviour which 
is different from that of the other vocal tasks. This includes a general increase in 

fundamental frequency for the singing task in contrast to varied performance for 

the other tasks, and a relatively more stable maintenance of a level of ratio across 

recording sessions for both singing and maximum projection tasks in contrast to 

varied fluctuations for the other tasks. 
A plot of mean data for all five assessment tasks expressed by male subjects 

was generated in order to provide a general indication of the pattern of CQ/Ratio 

42 43 44 45 46 
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development across the recording sessions. This is shown in figure 4.14. Spline 

interpolation has been applied to illustrate one way in which the data may have 

developed between the recording sessions. The data may be interpreted as expressing 

a generally increasing trend in CQ and Ratio parameters, with a decrease evident for 

the period of trauma during which recordings 3 and 4 were made. It is suggested that 

for male subjects one goal of vocal development is to advance along a developmental 

continuum', one facet of which is CQ and Ratio parameters, with the caveat that 

the pattern of movement along this continuum may involve downwards as well as 

upwards fluctuations. Although female subjects may share a similar goal, this study 

has not produced evidence to substantiate this proposal. 

4.4.8 Individual performance 

All of the preceding discussion has been based on longitudinal data derived from 

the means of male and female subjects. In order to more fully consider the CQ/Ratio 

behaviour in male subjects, profiles of the six male individuals were derived for each 

of the six vocal tasks (figure 4.15) and of development of CQ/Ratio across the 

recording sessions for which subjects were present (figure 4.16). 

Analysis of figure 4.15 indicates that subjects exhibit individual CQ/Ratio do- 

mains. It is interesting to note that clustering is relatively more dispersed for the 

vocal tasks which by their nature may be likely to exhibit more varied performance. 
For example, the minimal projection task required voiced phonation. The exclusion 

of whispered speech from the performance of this task enforced a restriction on the 

subjects which may be likely to result in a relatively less consistent performance 
from one recording session to the next. This may help explain the relatively greater 
dispersion of CQ/Ratio data for this task (figure 4.15(c)) than for the other tasks. 

Each individual exhibits a characteristic clustering of CQ/Ratio values for each 

of the five vocal tasks. Individual CQ and Ratio domains are apparent. For example, 
'The concept of a continuum against which to compare states of some form of development is not 

in itself a new idea. Other models pertaining to some form of voice development exist, such as those 

involved in children's singing (Welch, 1986; Welch et al., 1991). The continuum proposed in this 

thesis is regarded as having application to a wide span of developing adult male voice users, with 

the considerable benefit that its objective base facilitates incorporation as part of an automated 

device intended to help the development of a user along the continuum. 
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relative to the six individuals as a whole subject 6 demonstrates consistently low 

Ratio values with middle to high range CQ values, and subject 2 demonstrates low 

CQ values and relatively high Ratio values. 
Figure 4.16 provides an indication of individual CQ/Ratio performance across 

recording sessions. The general pattern of a dip in CQ and Ratio values correspond- 
ing to the period of extreme stress noted previously during recording sessions 3 and 
4 are clearly exhibited by subjects 2 and 3. A similar pattern is exhibited by sub- 
ject 1, although with less consistency, especially with regard to initial Ratio values. 
There are indications that the pattern of CQ/Ratio for subject 4 also follows this 

pattern, with the second data point possibly indicative of temporary emphasis on 

a particular vocal technique, or to ill health. Subject 6 was only recorded for the 

first four sessions, and appears to exhibit signs of an initial decrease in CQ/Ratio 

performance followed by a gradual increase. However, this is hard to quantify in 

view of the relatively small number of data elements. Subject 5 exhibits the same 
dip in CQ/Ratio value shown by all male subjects concluding an errant data point 

which may have arisen from causes similar to that proposed for the subject 4. 

4.4.9 Further correlations 

Further investigation has been made concerning the relationship between the differ- 

ent voice parameters for the male and female subjects in this study. With regard to 

the application for which this study has been made, measures of normal correlations 

can be used in the configuration of real-time displays to appropriately encourage the 

enhancement of improved modes of phonation. For example, a real-time display of 

spectral amplitude in the singer's formant band may be of benefit in the process 

of singing tuition. However, if this measure is shown to increase with the level of 

acoustic output, a subject may, for example, be fooled into believing he has improved 

his resonant output when in fact this has only been expressed as a consequence of 
increased output level. If the exact relationship between the singer's formant and 
SPL can be expressed mathematically, a real-time computer feedback system can 
be configured to take this into account. 

Previous research has established that subjects phonating at successively higher 

levels of sound level exhibit increased levels of fundamental frequency. For example, 
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Gramming et al. (1988) determined that an increase of 1dB results in an increase 

of approximately half a semitone. This correlation was later refined by the author 
to 0.3 to 0.5 semitones per dB (Gramming, 1991). A plot of mean data for FO and 
SPL values was generated (see figure 4.17), from which it was evaluated that male 

subjects exhibit an increase of approximately 27dB per octave, which corresponds to 

0.44dB/semitone. Female subjects exhibitted a similar correlation of 30dB/octave, 

which corresponds to 0.4dB/semitone. Both values are therefore within the refined 

range of increment proposed by Gramming. The increased level of data are likely 

to be of benefit in further refining the nature of changes in FO and SPL. 

As discussed in chapter 3, Stathopoulos & Sapienza, (1993) required their sub- 
jects to phonate at three different levels of loudness (soft, comfortable, loud) and 

recorded decreased OQ (increased CQ) across these modes. However, a correlation 

statistic was not proposed. A plot of CQ against SPL (see figure 4.18) from the data 

derived for this study indicates that an increase in output level of 1dB is associated 

with an increase in CQ of 0.4% for male subjects. The same statistic was evaluated 
for female subjects as 0.08% per dB, although the correlation between the two pa- 

rameters is much weaker than for male subjects. This is reflected in the relatively 
lower Rsq value shown. 
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It is logical to infer that because a positive correlation has been established be- 

tween SPL and CQ, and between FO and SPL for male subjects, it is likely that 

there will also be a positive correlation between FO and CQ. Figure 4.19 illustrates 

the results of plotting CQ against FO. Male subjects (figure 4.19 (a)) exhibit a strong 

positive correlation, with correlation analysis indicating that an increase in funda- 

mental frequency of one octave will result in an increase in CQ of approximately 
12%. The data for female subjects (figure 4.19(b)) exhibit no correlation, which 

concords with the weak relationship between CQ and SPL (figure 4.18). 

The graph shown in figure 4.20 demonstrates that the level of spectral amplitude 
in the singer's formant region increases with the level of sound output. A previous 

study investigated two male and two female subjects phonated at three different 

levels of intensity (low, medium, high) (Hollien, 1993). Subjects exhibitted increased 

spectral amplitude in the 2700-340011z band expressed as a ratio relative to the SPL, 

although no correlation statistic was given. In another study a high correlation 

was observed for each of three professional singers between the two parameters 
(Cleveland & Sundberg, 1983). For example, for the baritone subject analysed in 

the study an increase of 1dB in overall SPL resulted in an increase of approximately 
1.7dB of the singer's formant. From the data derived for this study and presented 
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in figure 4.20 it has been determined that for an increase in acoustic output of 1dB 

there is a relative increase in spectral amplitude in the singer's formant band relative 

to the rest of the acoustic output spectrum of 0.55% for male subjects, and 0.49% 

for female subjects. 

A logical inference from the combination of SPL and FO (figure 4.17) and SPL 

and Ratio (figure 4.20) positive correlations is that the Ratio parameter also exhibits 

a positive correlation with FO. A plot of these two parameters is shown in figure 

4.21 for subjects of both genders. Measurements from the graph indicate that, for 

both genders, an increase in frequency of one octave will result in an increase of 

spectral amplitude in the singer's formant band of 16%. 

These data considered in aggregate provide strong indications that male and 

female subjects employ different modes of voice usage. Female subjects are shown 

to exhibit very different patterns of CQ across both SPL (figure 4.18) and across FO 

(figure 4.19). However, they exhibit very similar performances of Ratio across SPL 

(figure 4.20) and across FO (figure 4.21). The implication is that female subjects do 

not employ the same voice source mechanism as that employed by male subjects, 
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but are nonetheless able to achieve similar performance in terms of acoustic output. 

4.4.10 Conclusions 

This study has investigated a number of voice source and acoustic output parameters 
in a group of male and female actors under training. Results indicate that male and 
female subjects exhibit similar patterns of CQ with training. Male subjects express 

generally increased levels of spectral amplitude in the region of the singer's formant 

with training. This is not the case for female subjects, who appear to rely on 

increased levels of SPL output to achieve impact. There are further indications 

that male and female subjects do not employ the same voice source mechanism. 

For male subjects, a strong correlation is observed for the level of closed quotient 

and spectral amplitude in the singer's formant band. A developmental continuum 
has been proposed which is reflected in the relationship between CQ and Ratio 

parameters. 

There is additionally some indication that trauma experienced by the subjects 
during the course of the study resulted in temporary changes to their voice usage. 
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4.5 The discard of two parameters 

With regard to the two parameters: the rate of opening and closing of the vocal 
folds, neither study 1 nor study 2 provided any clear indication of the effectiveness 

of the parameters as indicative of vocal progress (section 4.2.6 and 4.4.5.1 respec- 

tively). Although this does not mean that the parameters are not useful in some 

voice assessment contexts, these parameters (as defined in section 5.9.4) have been 

discarded as monitors of long-term vocal development. 
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4.6 Study 3 Singers over a 2.6 year period 

4.6.1 Introduction 

This chapter presents a long-term study over a maximum period of 2.7 years of three 

male subjects undergoing singing tuition. 

4.6.2 Subjects 

Three male subject were recorded. They are referred to as subjects M1, M2 and 

M3. They were recorded over a period of 141,120 and 69 weeks respectively. This 

equates to approximately 2.7,2.2, and 1.3 years. All subjects were in their early 

twenties when recording began. 

Subject M1 had several years of vocal training experience and chose singing 

performance as his main study interest as part of a first degree in Music. The other 

two male subjects had no previous vocal tuition of any form. They attended singing 

lessons for personal interest. Each of the three subjects received tuition by different 

tutors. 
A summary of details concerning the subjects is shown in table 4.3. 

Subject Age Recording Number Experience Experience/ 

key at span Of prior to motivation 

start , 
(weeks) 

, recordings recording I I 
Mi 20 141 10 2 years pre- Main instrument of study 

degree study for first degree 

M2 23 120 9 None No public performances, 

for personal interest 

M3 20 69 12 None Amateur performances, 

for personal interest 

Table 4.3: Experimental subjects for study 3 
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4.6.3 Recording 

In order to assess their speaking voice, subjects were required to read aloud a se- 

quence of phonetically balanced text frequently used for speaking voice assessment. 
In order to assess their singing voice, subjects were required to sing a two-octave 

scale up and down, with inhalation between each octave. The procedure used in the 

assessment of these tasks is reproduced in Appendix D. Singers were not specifi- 

cally asked to warm up prior to recording. In terms of frequency range, the same 

allocated two octave scale was sung for each recording session. The times taken by 

the subjects to read the spoken passage and sing the two octave scale were typically 

80 seconds and 25 seconds respectively. For the recordings, a cardioid Senheiser 

MKH/40/P48 microphone was used. Subjects were required to maintain a constant 
distance of approximately 0.3m from the microphone. Prior to recording, subjects 

were required to provide an indication of the loudest level at which they were to 

phonate and appropriate recording levels were set to ensure clipping would not oc- 

cur. These remained unaltered for the duration of the session. 

The measure of the goodness of fit between two variables, the coefficient of 
determination (Rsq), was applied to the data derived. 

4.6.4 Results 

4.6.4.1 Laryngeal closed quotient 

Figure 4.22 illustrates the pattern of change for the singing voice assessment 

of the CQ parameter across time. Subject M1 exhibits a strong increase during 

the first 20 weeks of analysis, with a general increase from the first assessed CQ 

of 37% across the first 18 weeks to a CQ of 47%. Data from the remaining three 

assessments indicate a generally stable CQ value in the mid 40% region, with a final 

CQ value of 49%. The general pattern of increase in CQ is substantiated by the 

positive linear and rank correlations shown. The difference between initial and final 

CQ for this subject is approximately 12%. It is interesting to compare this span 

with that presented by Howard et al. (1990) in their assessment of 18 male singers 

who had differing levels of vocal tuition. This study listed extreme values of 35% to 

63%, a span of 28%. The smallest value in this study was the assessed mean CQ of 
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Correlation Rank correlation 

C 
0 

Time (weeks) 

Subject MI 
Rsq = 0.5590 0.0797 0.9152 

Subject M2 
Rsq - 0.5867 0.1168 0.8000 

Subject M3 
Rsq = 0.2765 -0.1104 -0-2587 

Figure 4.22: Measures of CQ across the recording sessions for the 

singing voice assessment 

a male subject who had no singing training or experience. The largest value was the 

assessed mean CQ for a subject with 6 years singing training and 30 years singing 

experience. The increase of 12% expressed by subject MI over a period of 2.7 years 

therefore indicates a comparable rate of growth. 

The inital assessment for the singing voice of subject M2 is 40%. There then 

follows a consistent pattern of increase during the first 40 weeks, followed by a period 

of fluctuation over the next 40 weeks. The final two data points indicate a sustained 
level of CQ in the region of 50% to 55%. The span from initial to final CQ value for 

this subject is approximately 13%. This figure is similar to that noted previously 
for subject M1, and it also compares favourably with data from the Howard et al. 
(1990) study. Positive linear and rank correlations reflect the observed pattern of 

general increase. 

The increasing trend demonstrated by subjects Ml and M2 is not expressed 
by subject M3. The assessment for this subject demonstrates a highly fluctuating 

pattern. Linear and rank correlations indicate a generally decreasing trend. In the 

assessment of the contrasts presented by this subject, it is important to remember 

0 40 80 120 160 
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Rsq = 0.7011 -O. o664 -0.750 
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Rsq = 0.2469 -0.0375 -0.0839 

Figure 4.23: Measures of CQ across the recording sessions for the 

speaking voice assessment 

that the data for this subject is available for only half the time period of the other 

subjects. It may be that although the subject underwent singing lessons his appreci- 

ation of the instruction he received was limited. An objective measure of the level of 

absorption of advice received during singing tuition is very hard to derive, and this 

has not been attempted. Another possible reason for the contrasting trend may be 

that the tuition received by the subject was not appropriate for a developing singer. 

This might not be identified in the amateur context within which the subject infre- 

quently performed. The tutor may have regarded subject M3 as too restricted in his 

vocal delivery and prescribed exercises for increased breathiness, which might result 

in a decrease in the level of CQ. Alternatively, it may be that for this individual an 
increase in mean CQ is not expressed until after a relatively much greater period of 

vocal tuition than that received by subjects M1 and M2. If further assessment had 

been possible a subsequent shift in direction towards increasing CQ may have been 

recorded. 

0 40 80 120 160 
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Figure 4.23 illustrates the pattern of change in mean CQ for the speaking voice 

assessment of the three subjects. The pattern of CQ generally fluctuates more than 

for the corresponding singing voice data, although the magnitude ofchange in CQ 

is typically half that of the singing data. Subjects 
-Ml and A12 exhibit decreasing 

trends, Nvhilst subject ---\Il exhibits a positive correlation, although this is of a inuch 

sinaller inagnitude than that for his singing voice assessment (0.0216 compared to 

O. OT9T). The contrast between the singing and speaking voice data trends may be a, 

clear reflection of the form of vocal tuition experienced bY the snbjectsý tuition was 

given in the art of the singing voice only. The data, also concurs -, vith an observation 

of the Howard et al. (1990) study discussed previously in which the high correlation 

between inean CQ and the level of singing tuition for siiiging voice was shown to be 

considerably smaller for the speaking voice. 

Figure 4.24 presents three graphs of CQ against FO for the singing voice assess- 

ment of subject M1. The subject exhibits an essentially constant, linear pattern of 

CQ across FO. Nvith a clear tendency for the general level of CQ to rise across time. 

Again. this concords with the Howard et al. (1990) study in which a generallY level 

response ofCQ across FO was observed. 
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4.6.4.2 Ratio 

Figure 4.25 illustrates the pattern of change for the Ratio paraincter across time 

for the singing voice assessment. For subject M1, the pattern of change in Ratio 

is sin-illar to that of CQ. The subject exhibits a strong increase during the first 20 

weeks of analysis, with an increase from the first assessed mean Ratio value of 12'Y(, 

to a value of 25'7( across the first IS weeks. The following three data points indicate 

a dip in value to 16(7( , 
followed by a linear rise to the final Ratio value of 26/(,. 

The difference between initial and final Ratio values is 13(/t. The general pattern of 

increase in Ratio is confirnied by the positive linear and rank correlations, shown. 

The initial assessment for the singing voice of subject A12 is There then 

follows a pattern of general increase during the first 60 weeks to 17'Y( . 
This is fifflowed 

by a downwards fluctuation over the next 40 weeks, resulting in a final Ratio value 

of 17'7( . 
The span from initial to final Ratio value for this snbJect 1,, approximately 

7'/( . 
Positive linear and rank correlations support the identification of a generally 

increasing trend, although of smaller magnitude thail that for subject Nll. 

The increasing trend demonstrated by subjects MI and M2 iý,, not exhibited b. N,, 
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subject M3. The assessment for this subject demonstrates a highlN, fluctuating pat- 

tern with a slightly decreasing trend over the 69 weeks. The reasons proposed pre- 

viously for the contrasting pattern of CQ expressed by this subject apply equally to 

the observed difference in trend for the Ratio parameter. The,, (, include a naturally 

slower rate of voice development, consequences of the relatively smaller time span, 

and potentially different or incorrect singing tuition that inay have been rec(ived by 

the subject. 

Figure 4.26 illustrates the pattern of change in inean Ratio for the speaking voice 

msessinent data for all three subjects. The pattern of Ratio for speech fluctuates 

more than for the corresponding singing voice data, and this is reflected In the 

relatively lower rank correlation values. However, all subjects exhibit a generally 

increasing trend in the parameter over time. The level of increase in Ratio over the 

time period of the a. -, sessinent is much smaller tham that of the singing voice data for 

subjects MI and N12. A,, fOr the CQ parameter, the contrast botween singing and 

speaking voice data trends is regarded as a consequence of tuition in singing voice 

performance only. Subject N13 exhibits an increase over the assessment period for 
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his speaking voice which contrasts with the decrease for his singing voice, but linear 

and rank correlations for both sets of data. indicate very low levels of correlation. 

Figure 4.2T presents three graphs of the Ratio parameter across FO for the singing 

voice assessment of subject 1\11. This figure corresponds to the CQ data, shown in 

figure 4.24. Although the pattern of CQ across FO is not, as stable as that illustrated 

previously for CQ, the general level of the Ratio parameter is also ýshown to rise 

across time. The less consistent response across FO inay be a reflection of the 

relatively higher level of variability in the acoustic domain compared to that of the 

voice source domain. 

4.6.5 The correlation between laryngeal closed quotient and Ratio 

In previous research. it continuum was proposed based upon it linear correlation 

between the CQ and Ratio parameters (Rossiter & Howard, 1994a). The data, 

from the three niale subjects in the current study were assessed for an indication 

of this trend. A plot of CQ against Ratio is shown for the singing assessnient (lata 

derived for each subject in figure 4.28. The range of CQ and Ratio data derived 

froin the speaking voice assessment are also shown superimposed. This facilitates a 

comparison between the ran es of the two contrasting assessment tasks. Sc; itt(, rl)l()t. "- 

and line,. -, of best fit between the two variables for thespeaking voice assessment data 
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for each of the three subjects are shown in figure 4.29. 
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Subjects '"-%Il and M2 exhibit clear positive correkitions between CQ and Mitio 

(figure 4.28(a) and 4.28(b)). This is reflected in the high and rank correlation 

values shown to the right of the scatterplots which are of similar value for both 

subjects. Furthermore, the development along the coutinumn is clearly expressed 

(with temporary downwards as well as upwards fluctuations) in the data, for both 

subjects. Singing voice data for both subjects is shown to generally start at the 

lower end of the CQ/Ratio domain identified for speaking voice and subsequentlY to 

develop towards CQ and Ratio values at a, relatively higher level (figure 4.28(a) and 

4.28(b)). Both subject, -, may be regarded as reinforcing the proposal made pre6ously 

that one goal of voice tuition is to advance voice users along a continumn between 

the two parameters. These subjects also exhibit a positive correlation between CQ 

and Ratio for their speaking voice (see figure 4.29) although tho ý, treilgth of' these 

correlations (indicated by the Rsq and rank correlation values sho-, vu) is comsiderablY 

less than that for their singing voice, for which they have received tintion. 

Subject M3 exhibits several contrasting With regard to his singing 
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voice assessment (figure 4.28(c)), the line of best, fit is of considerably smaller gradi- 

ent than that of the other two subjects, and the subject does not exhibit a generally 

increasing trend along the continuum. The level of cohesion between the two pa- 

rameters is far less than that of subjects M1 and M2. This is reflected in the, very 

low Rsq and rank correlation values. Furthermore, although the singing assessinent 

data for the subject is assessed as initially very close to his speaking voice domain 

(similar to subjects N11 and N12), the subsequent pattern of' progress indicates a 

highly fluctuating, general mo%, enient towards CQ and Ratio values of' less magni- 

tude relative to the speaking voice range. This is in complete contrast to subjects 

M1 and _N12. 
With regard to his speaking voice assessment (figure 4.29), subject, M3 

exhibits a negative correlation between CQ and Ratio. Both other subjects exhibit 

positive correlations. 

Clearly, the CQ/Ratio performance of subject N13 is very different to that of the 

other two subjects. No specific reasons for this suggest themselves. It' the subject 

received singing tuition of a different, possibly inappropriMe, form reLitive to that 

experienced by subjects 1\11 ýmd M2, this might ýiccount for the diffOrence. Ho"vever, 

the exact nature of the tuition received by any subject over such ii long period of 

time would be impossible to monitor objectively. 

4.6.6 Conclusions 

The singing and speaking voice performance of three inale -, ubjects has been assessed 

over periods of time ranging up to two and a half years during xiii(. 11 tlj(, 

received singing tuition. Trends found for two of' the subjects, indicate iii(-r(, a,, *(, (] 

levels of laryngeal closed quotient and spectral amplitude in the forniant 

region as a function of training. A third subject, ol)-, (, rN-(, d for half the thile of the 

other txN, o subjects, Nvas not shown to exhibit any clear trend with respect to these 

paraineters over the assessment period. 



CHAPTER 4. LONGITUDINAL VOICE STUDIES III 

30- 

20 

10- 

0 

20 

CQ (%) 

Actor 1 

Actor 2 

Actor 3 

Actor 4 

Actor 5 

Actor 6 

Subject Ml 

Subject M2 

Subject M3 

60 

Figure 4.30: Scatterplot and line of best fit of Ratio and CQ for 

assessment of the singing voice, for the 6 male subjects assessed in 

study 2 and the 3 rnale subjects assessed in study 3. 

4.7 Discussion of the three studies 

There are clear inclications from study 2 and study 3 that both CQ and Ratio 

parameters reflect vocal development for adult nia, le subjects. Study 1 is regarded 

as am assessment of too brief a period for this phenomenon to have bven expressed. 

The strength of the relationship between these two parameters is furthor illustrated 

by plotting the data for the two parameters derived from all the male subjects in 

both study 2 and study 3. This is shown for the singing voice assessment task in 

figure 4.30. The lines of best fit shown indicýin, a clear positive relationship botween 

the two parameters for all except actor 3 from -ýtudy 2, -, vho lia. s the least number 

of data points of the set. 

The-, v studies provide pointers to the design of a computer system which can 

30 40 50 



CHAPTER 4. LONGITUDINAL VOICE STUDIES 112 

function for the provision of visual feedback for use as a complimentary tool in 

tuition sessions. The parameters observed as indicative of vocal development would 

appear to be useful for monitoring and display by the system. In the next chapter, 

the design and implementation of a computer program which has been developed 

to assess and visually present these and other parameters in real-time is discussed. 

In chapter 6 the usefulness of the software tool is then investigated. The system 
is used to present the state of the CQ and Ratio parameters both in solitude and in 

combination in real-time, in the context of singing tuition. 



Chapter 5 

A tool for biofeedback 

5.1 Introduction 

In the conclusions to chapter 3 it was noted that existing real-time visual display 

systems only assessed a highly restricted set of voice parameters, presenting visual 
information concerning the state of those parameters in only a very few limited 

display styles. In this chapter a new software tool called ALBERT (Acoustic and 
Laryngeal Biofeedback Enhancement in Real-Time) is presented which has been 

designed for real-time visual feedback for use in a very wide range of voice tuition 

contexts, and for analysis which may take place in non-real-time for use in a similarly 

wide range of voice analysis contexts. For both modes, the analysis of the voice and 
the subsequent visual display of voice parameters are largely configurable. A flexible 

approach is provided so that voice parameters may be assessed individually or in 

combination. With regard to the visual displays and the graphical user interface 

through which the user is able to control the software, provision is made in order 
that the most suitable visual feedback can be presented for tuition and/or analysis. 
Several example applications are given based upon observations made in previous 

chapters, and from other research sources. 

5.2 The benefit of visual feedback 

Research considering the benefit of visual feedback per se has not yet been con- 

sidered. To address this deficit, in this section an overview of previous research 

113 
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concerning the benefits of visual feedback in enhancing a learning task is presented. 
This helps in building a context for the ALBERT system. 

There are strong indications in the scientific literature that the addition of vi- 

sual feedback to the normal auditory stream perceived by voice users strengthens 
the learning process. For example, during face-to-face interaction between people, 

expressions may count for as much as 55% of communication (Hadfield, 1994). Boyle 

et al. (1994) showed that communication between pairs of subjects who could see 

each other while performing a cooperative problem solving task was more efficient 
than that between pairs of subjects who could not see each other. Sumby and Pollack 

(1954) demonstrated that allowing subjects to see the face of a talker who is uttering 
isolated words that must be identified against a background of noise is equivalent 
to improving the signal-to-noise ratio by up to 24dB. Walden et al. (1993) demon- 

strated that elderly and middle-aged people achieved recognition scores in the region 

of 90% when presented with information in combined audio and visual presentation, 

compared to 30% to 40% for either audio or visual data in solitude. 
With regard to the application of computer based visual feedback for dysfunc- 

tional voice subjects, Michi et al. (1993) reported that computer based visual feed- 

back was effective in treating Isl sounds for patients with cleft palate, and Allen 

et al. (1991) indicated the merits of a study into the treatment of hyperfunctional 

dysphonia through the visual display of EMG signals. There is also a large body 

of literature concerning the application of visual feedback systems to the teaching 

of deaf people, with several reports indicating improved performance for subjects 

taught with computer based visual feedback when compared to similar subjects who 

used no computer tools (for example, Brooks et al., 1981; Arends et al., 1991) or 

who used tactile feedback instead (e. g., Youdelman et al., 1988). However, studies 
into the use of real-time visual displays with normal, non-dysfunctional voices ap-- 

pear to be rare. In one study, Welch et al. (1989) demonstrated that the SINGAD 

system discussed previously (section 3.5.5) can have a positive effect on the singing 
development of primary school children of normal ability, both with and without 

teacher interaction. There are therefore strong indications in general that the en- 
hancement of feedback signals by the provision of complimentary visual displays 

can be beneficial to the learning process, with the caveat that the feedback must be 
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incaningful and readily undo-stood. 

I F) 

5.3 ALBERT - Acoustic and Laryngeal Biofeedback En- 

hancement in Real-Time 

A,, lit chapter 2, the proce-'s Ot "peech or call he cmisidered 

as a circular flow of information in which the acoustic product is perceived by the 

brain as a form of feedback. This enables any adjustilients to be inade 

to the inode of plionation in order to better match a target state. A sYstvin called 

ALBERT (Acoustic and Laryngeal Mofeedback Enhancement in Rcal-Time) lia-s 

bevil developed to present visual feedback in real-time. or optionally iii non-i-val-time 

Figure 5.1: The phonation circle of Perkins K, Kent ( 1986) with t lit, 

domain of ALBERT superimposed 
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Figure 5.2: An overview of the ALBERT system process 
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when used for voice analysis only. 
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The domain within which the ALBERT software operates when employed for 

real-time feedback is shown overlaid on the normal feedback loop in figure 5.1. In 

this mode of usage, the software serves to complement aural feedback with feedback 

based upon an assessment of vocal production presented in a visual form. An 

overview of the system process is shown in figure 5.2. 

For both real-time and non-real-time operation, the system operates in the fol- 

lowing way. Information from the voice is derived from the output of the electro- 
laryngograph and microphone. From these signals voice parameters are derived. 

These may then be transformed by user-defined algorithms to create further para- 

metric measures. Finally, any of these parameters may be displayed through a 

number of user-defined visualizations, including one dimensional, two dimensional 

and three dimensional graphs. Colour may also be configured to further enhance the 

display of information. This program has been implemented on a Silicon Graphics 

Indigo computer. This procedure is discussed in detail during the course of this 

chapter. 

5.4 ALBERT discussion of formal requirements 

In this section the formal requirements for the ALBERT system are discussed. 

Overview : The system will analyse electrolaryngograph and acoustic micro- 

phone signals to derive parameters relating to voice usage, and be able to display 

these parameters graphically in real-time. 

Formal requirements : Formal requirements of the systems are; 

1. Analysis of parameters derived from the acoustic signal 

That the system is able to analyse the following parameters from the acoustic 

signal: 

(a) the spectral distribution of the voice output (Ratio) 

(b) the loudness of the voice (SPL) 

(c) the change in loudness from one time instant to the next (shimmer) 
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2. Analysis of parameters derived from the elect rolaryngograp h signal 

That the system is able to analyse the following parameters from the electro- 

laryngograph signal: 

(a) the fundamental frequency of the voice (FO) 

(b) the larynx closed quotient of the voice (CQ) 

(c) the rate of opening of the vocal folds (oa) 

(d) the rate of closing of the vocal folds (ca) 

(e) the peak-to-peak amplitude of the electrolaryngograph period (Ix amp) 

(f) the change in amplitude of the electrolaryngograph period from one time 

instant to the next (Ix shimmer) 

(g) the period-to-period change in fundamental frequency (jitter) 

3. The graphical user interface 

The user must be provided with easy-to-use controls over: 

(a) the processing and display of acoustic signal information. 

(b) the processing and display of electrolaryngograph signal information. 

(c) the properties of the voice parameters derived from the two input signals. 

(d) the way in which the state of the voice parameters may be visualized. 

4. Visualization 

The user must be provided with the ability to visualize the state of voice 

parameters in 1D, 2D and 3D display configurations. For reasons of clarity, a 

visualization must employ a minimum of 15% of the complete screen display. 

5. Information on how to use the system 

The user must have easy access to information on how to use the software. 

6. Real-time performance 

The system must be able to derive all voice parameters listed and visually 

present the state of any parameter at a frequency of not less than 1011z. 
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In the following sections, the design and usage of the system created to satisfy the 

formal requirements is discussed in detail. At the end of the chapter (section 5.16) 

there is an assessment of the product with regard to each of the formal requirements. 

5.5 Access to the ALBERT User Guide 

A comprehensive user guide has been written for the ALBERT system. A copy is 

contained in Appendix E. 

Access to the user guide and its contents has been designed to satisfy the fol- 

lowing criteria: 

1. Centralised distribution - in order that new versions of the manual may 
be easily accessed at a single distribution point. 

2. Hypertext implementation- in order that the user may quickly and effi- 

ciently traverse the user guide contents. 

3. World access - in order that anyone (with sufficient access) may access the 

user guide. 

To satisfy these criteria, the user guide has been made available via the world 

wide web (www). It has been supported both in a format suitable for printing, so 

that a hard copy reference can be made by the user, and in a format suitable for 

efficient hypertext traversal. ' 

5.6 Functional units 

5.6.1 Introduction 

In the design of ALBERT, the parameters that have been made available to the user 
for control over ALBERT functionality have been grouped into units according to 

'The user guide was written using the UTEX(Lamport, 1986) formatting system. A ver- 

sion suitable for viewing on the www was obtained by converting the document using the 'la- 

tex2html' program (Drakos, 1993). This address at which the ALBERT user guide may be found 

is: http., -//www. york. ac. uk/-elecI0/ýlbert-manual. htmi. Both postscript and hypertext versions are 

presented. The postscript version can be printed out and used as a hardcopy reference. The 

hypertext version can be used to traverse, view and print specific sections of the manual. 



CHAPTER 5. A TOOL FOR BIOFEEDBACK 120 

their function. These units are presented to the user on a number of forms. A form 

is a window in which a set of graphical user interface (GUI) controls such as buttons 

and sliders are presented to the user. For example, the user controls concerned with 

acoustic processing are presented on one form; the user controls concerned with 

voice parameter display and editing are contained on another form. 

Several properties of the forms can be configured by the user. The user can 

control form position, height, width, and whether or not the component is to be 

displayed. In this way the display can be configured for maximum efficiency with 

regard to the context in which the system is being used. For example, if the user is 

only exploring visual feedback based on analysis of the voice source signal, then the 

forms which contain controls relating to acoustic monitoring are not required and 

can be toggled off. This is illustrated in the example shown in figure 5.3. Similarly, 

figure 5.4 illustrates an arrangement intended for efficient control of acoustic analysis 

alone. 

5.6.2 An overview of the forms 

A brief description of the 16 forms used by ALBERT follows. 

1. Header form. This form provides a banner for the display of the name and 

version number of the software. It additionally provides the user with easy 
access to the ALBERT manual in electronic form. 

2. Audio form. This form provides the user with an easy method to start the 

program used for audio input/output control. 

3. Acoustic form. This form contains the main controls for acoustic processing. 

4. Acoustic and source form. This form provides the user with the ability to 

change the processing and display update rate. 

5. File record form. This form provides the user with easy control over the 

recording and playback of acoustic and laryngeal signals to file. 

6. Memory record form. This form provides the user with easy control over 

the recording and playback of acoustic and laryngeal signals to memory. 
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analysis 

(b) Key to display 
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Figure 5.4: An example configuration of ALBERT for acoustic output 

analysis 



CHAPTER 5. A TOOL FOR BIOFEEDBACIC 123 

7. Voice source form. This form is the primary form for controlling the pro- 

cessing and display of voice source signals. 

8. Misc buttons form. This form contains buttons which were judged as not 
functionally appropriate for inclusion on other forms. These include access to 

useful sound editing and processing software tools, and an exit button. 

9. Visualization form. This is the main form used to configure visualization 
displays of voice parameters. 

10. Threshold form. This form provides access to a major parameter used in 

the algorithmic processing of voice source signals. 

11. Refractory time form. This form provides access to a second parameter 

used in the algorithmic processing of voice source signals. 

12. Ratio form. This form enables the user to control the parameters used in the 

algorithmic assessment of the presence of the singer's formant in the acoustic 

signal. 

13. Params form. This form is used to enable the user to view and alter voice 

parameter fields. 

14. Period form. This form is used for analysis and animation of the electro- 
laryngograph period. 

15. Save and load form. This form provides the user with the ability to configure 

part or all of ALBERT functionality through the saving and loading of files. 

16. Form visibility control. This form provides a means for the user to control 

the visibility of each form. 

17. Form size control. This form provides a means for the user to control the 

width and height of each form. 

Each of these forms is discussed in context in the following sections. In the User 

Guide (Appendix E), a low-level description of the operation of each form element 

is discussed. 
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5.6.3 User control over form attributes 

5.6.3.1 Introduction 

Usually, the user is not provided with control over the user interface of a software 

program. ALBERT, however, has been designed so that the user is able to easily 

control some attributes of the user interface. Specifically, the user has control over 

the visibility, width, and height of each form. 2 In the next two sections the advantages 

of these features and the way in which they are accessed are discussed. 

5.6.3.2 Form visibility 

If all of the forms were presented on the screen at the same time the resulting display 

would be confusing and largely unmanagable because of the large screen area that 

would be used, and because of the many functions that would be presented to the 

user. The user is therefore provided with the ability to easily select whether each 

form is to be displayed on the screen, or is to be hidden from view. 

The form through which this facility is accessed is shown on the left of figure 5.5. 

A sequence of toggle buttons are presented. Each button is labelled with the name 

of a form, and has an associated indicator light. If a form is currently displayed, the 

light is on. If the form is currently not displayed, the light is off. If a form is visible, 

the user may click on the button which is labelled with the name of the form. The 

form will then be removed from display. Alternatively, if the form is currently not 

on display (which would be indicated by the button light in 'off' mode) then a press 

of the button will cause the form to appear. 
2 The user can also control the position of each form. However, the way in which this is imple- 

mented is dependant on the windowing system used when ALBERT is executed, and control over 

this facility is outside the domain of ALBERT. For example, software running on Silicon Graphics 

computer systems are normally controlled through the '4Dwm' windowing system, and the control 

mechanism for moving a form within this system is engaged by default by holding down the ALT 

key and pressing the F7 key, but different window systems may have a different control mechanism 

for the same function. 
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Figure 5.5: User control over form visibility, width and height. The 
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control on the left can be used for managing the visibility of each 

form. The control on the right can be used for managing the width 

and height of each form. 
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5.6.3.3 Form size 

126 

In the design of ALBERT a method was designed so that the user could control 
the width and height of each form. There are several reasons why this facility can 
be useful. For example, the user may only require the display of a small number 

of forms. It may therefore be appropriate to size these forms much larger than 

normal, facilitating user control and the visual presentation of the user interface. 

Furthermore, ALBERT may be executed on a computer which has a greater visual 

resolution than that of the model on which the ALBERT system was developed. In 

this case the current form size will appear relatively smaller (other factors, such as 

the physical size of the visual display unit, remaining constant). 
The form through which this facility is accessed is shown on the right of figure 

5.5. Three sliders are provided. Two are provided for the control of the x axis 

and y axis dimensions. The third is provided for easy control of both dimensions 

in combination. The latter enables the aspect ratio of the form to remain constant 

regardless of any change in size. Changes made using the size control form are 

addressed only to the last form displayed. 

5.7 An overview of the flow of information 

The flow of information is illustrated in figure 5.6. 

Both voice source and acoustic signals undergo unique forms of analysis. From 

this analysis, a number of voice parameters are derived. Two forms of display 

particular to each form of signal are supported. 

The voice parameters derived during this process are then combined into a single 
list. The user may control the various parameter properties and the way in which 

the parameter information may be displayed in visualization configurations. 

In the following sections, this process is discussed in full. 
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Figure 5.6: Overview of the system process. Key: ADC = Analogue 

to digital converter 
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Figure 5.7: Fourier transform on a sequence of windows. R repre- 

sents the sampling frequency of the signal. R/2 is called the Nyquist 

frequency. It is the theoretical limit on the highest frequency that can 

be represented in a sampled digital signal (From Dodge and Jerse, 

1985). 

5.8 Analysis of the acoustic signal 

5.8.1 Deriving a measure of the singer's formant 

128 

The display of a single parameter representative of the singer's formant phenomenon 

presented in a feedback context other than the display of the entire acoustic spec- 

trum was previously identified as likely to be a useful attribute for analysis and 

for provision as a real-time voice tuition system (section 3.4.4). To achieve this, a 

method used to evaluate the phenomenon of the singer's formant objectively from 

the digital representation of the acoustic signal was developed as follows. Prior 

to real-time operation, two spectral ranges were identified. The first indicates the 

entire spectral range for which changes in the acoustic output of the voice can be 

reliably detected (0-5kHz). The second spectral range covers the frequency range 

where the singer's formant is generally located (2kHz-4kHz). 

A 128 point Fast Fourier Transform (FFT) (Cooley & Tukey, 1965) is carried 

out on the accumulated speech for each buffer of data. This process is illustrated in 
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Figure 5.8: Spectrogram of a trained singer, with time aligned graph 

measure of the accumulated fft coefficient amplitudes in the region 

2-4KHz relative to the accumulated amplitudes across the range 0- 

5KHz. 

129 

figure . 5.7. 

This produces an array of coefficients corresponding to the amplitude level. ", 

in the acoustic spectrum. The coefficient va, lues for both pre-determined ranges 

are summed. A ineasure of the relative amplitude level of sl)(, (-tr; il partiýds in tho 

singer's formant region (labelled Ratio) can then be derived it, the ratio of the total 

fft coefficient amplitudes present in the singer's formant range (labelled A, f) to the 

total fft coefficient amplitudes present in the spectral range wsed by the human voice 

as a whole (labelled This inclex is then multiplied by 100 in order to produce 

a percentage measure. In smininary: 

Ratio(%) f* 100 
-41"I'll 

A simple in (I ic at ion of the -way in whic Ii th is measure fluctuates wit Ii voca I (I I ia I it y 

is shown in figure . 5.8. The area labelled 'Nrocal (, xor(-is(, ' indicated in the figure 

illustrates the relative increase of spectral amplitudes in the singer's formant regioll n 
during the expression of a particular vocal exercise in which good vocal quality is 



CHAPTER 5. A TOOL FOR BIOFEEDBACK 130 

gradually 'brought in' to the sound and then released. 3A corresponding increase 

and subsequent decrease in the Ratio measure is evident. 

5.8.2 Deriving a measure of the sound pressure level (SPL) 

The role of SPL as an indicator of vocal usage has been discussed previously (section 

3.3). In order to derive a measure of this parameter, the following method was 
devised. 

First, a reference level is required. For this the user is required to phonate at 

a constant output level whilst maintaining a constant distance to the microphone. 

During this time a button on the user interface is pressed. ALBERT will then 

sum each coefficient amplitude to derive a reference value, labelled A0. During the 

process of phonation, a SPL meter must be held next to the microphone in order 

to record the level at that position. This value is now entered by the user into 

ALBERT. It is labelled SPLO. 

During acoustic processing, each fft coefficient amplitude is summed to derive 

a total amplitude value (A). The increase in sound level (labelled SPLj) is then 

derived by the following formula (Blitz, 1964). 

SPLi(dB) = 20loglo 
A 
Ao 

To get the current dB level, the SPLj value is simply added to the reference 

value originally entered by the user. 

SPL(dB) = SPLo + SPLi 

Assuming the distance between microphone and subject remains constant, AL- 

BERT will subsequently supply a correct SPL level reading. This is expressed as 

the 'spl' variable. 
A measure of the stability of the SPL data, known as shimmer was also discussed 

previously (section 3.3). 

This is derived on a buffer-by-buffer basis by subtracting the current SPL value 

with the previous SPL value. 

shimmer = SPL. - SPLn-I 

3 This example exercise, from the Bet Canto school of singing, is called the Mesa Di Voce. 
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5.8.3 Display of acoustic signal information 

Information derived from the acoustic signal can optionally be displayed as both 

a spectral cross-section and a spectrogram. Two examples of each are shown in 

figure 5.9. 

5.8.4 User control over acoustic signal analysis 

5.8.4.1 Introduction 

There are two forms which support controls concerning acoustic signal analysis. 

The first contains high-level controls, such as the selection of channel and a control 
for turning on and off the fft process. The second contains sliders for control over 
the algorithm used to derive the 'Ratio' parameter, such as the frequency range 
boundaries. 

5.8.4.2 Primary control form 

This form is shown in figure 5.10. 

It contains the main controls for acoustic processing. These are : 

1. channel selection. 

2. turning on the fft algorithm. 

3. SPL calibration (section 5.8.2). 

4. The viewing of a recording. This facility enables the user to zoom in and play 

or print part or all of the signal sequence. 

5. Access to a spectrogram display. 

6. Access to a display of spectral amplitude across frequency. 

7. The ability to vertically scale the display of fft coefficient amplitudes in the 

Amp/freq window. 
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Acoustic output processing and display 

Figure 5.10: Acoustic analysis control form 

5.8.4.3 Ratio parameter control form 
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This forin enables the user to control the parameters used in evaluating the 'Ratio' 

paraineter. Two sections are present in the forin; 

1. Total amplitude band. Two sliders are presented with which the iiscr can 

control the lower and higher frequency limits of the larger band. These default 

-Hz respectively. to OHz im(l 51"L 

2. SF amplitude band. Siinilarly, two sliders im, presented with which the ii,, (, r 

cýiii c(nitrol the lower iin(l higher fre(Inency I)and within which the phenonivilon 

of the singer's forniant is known to occur. These defimit to 2KHz ýInd 4KHz 

respectively. 

5.9 Analysis of the elect rolaryngograp li signal 

5.9.1 Introduction 

In order to design a sYstem that is able to provi(le fee(lback on the vocal activ- 

ity of a subject, a decision needs to be made on the most appropriate inethod of 

allalysilig the vocal actioll", of the Subject. 

Olle lll(, tllo(l for derivilig the Closed (Iiioti(, llt of* the larviigeal period i,,,, through 
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Figure 5.12: Cross-section of the neck at the level of the larynx 

indicating current path across the vocal folds for open and closed 

glottis (After Garner, 1993) 
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the use of an electrolaryngograph (Abberton et al., 1989). A pair of electrodes is 

placed on either side of the thyroid cartilage at approximately the level of the vocal 
folds. This is illustrated in figure 5.11. When a high frequency electrical voltage 
is maintained between the electrodes, the resistance is proportional to the current 
flowing between the electrodes and hence the area of vocal fold contact. The two 

extreme cases of open and closed glottis are illustrated in figure 5.12. An example 

of the signal output of an electrolaryngograph is shown in figure 5.13(a). 

5.9.2 Deriving a measure of fundamental frequency and closed quo- 
tient 

When analYSing the output of an electrolaryngograph, the polarity of the signal is 

first checked to ensure that positive changes reflect increased inter-electrode current 
flow. The detection of the start of the closed phase is based on the assumption that 

the vocal fold contact area changes more rapidly when it is increasing than when it 

is decreasing (that is, the folds snap together more rapidly than they part) (Davies 

et al, 1986). This relationship has been verified by several studies. For example, this 

was verified by observing the motion of the vocal folds with the aid of a stroboscope 
(Askenfelt et al., 1980). 

These points on the electrolaryngograph waveform (which is often referred to 

as 'Lx') can be located by deriving the positive peaks in the time differentiated 

Lx waveform. These are then used to define the start of the closed phase (CP) 

in each cycle. The time between these peaks is used to provide a measure of the 

fundamental period (Tx). See figure 5.13. The end of the CP is the instant when the 

negative-going Lx waveform crosses a fixed ratio of the current cycle's amplitude. 
The ratio, set at 3: 7, has been shown to exhibit a result close to that obtained by 

inverse filtering (Howard et al., 1990). 

Electrolaryngographically derived CQ is then obtained by the following equation: 

CQ(%) CP 
* 100) Tx 

This is illustrated in figure 5.13(a). 

A measure of fundamental frequency and closed quotient is also available from 

analysis of the airflow produced during phonation. This can be obtained from a flow 
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(b) The derivation of Closed Quotient (CQ) from an airflow waveform. As for (a), the 
maximum flow declination rate is defined from the greatest negative peak of the differential 
glottal airflow waveform. (From Stathopoulos & Sapienza, 1993) 
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Figure 5.13: The derivation of fundamental frequency and closed 

quotient from electrolaryngograph and airflow waveforms 
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mask (Rothenburg, 1973) which is placed 
_over 

the face of the subject. All air in- 

take and exhalation then takes place through the mask, enabling precise monitoring. 

The air flow signal is first inverse filtered to counter the effects of the supralaryngeal 

vocal tract on the voice source signal. The method used to subsequently derive 

CQ is almost identical to that for deriving CQ from the electrolaryngograph out- 

put described previously, although a slightly different ratio constant is used in the 

definition of the end point of vocal fold closure. This is illustrated in figure 5.13(b). 

However, due to the nature of the flow mask design, the acoustic signal produced by 

the subject is altered prior to reaching his/her ear. This introduces a high level of 

error into the acoustic feedback signal, which is probably the most important feed- 

back parameter for the process of vocal tuition. An example of disquiet expressed 
by two professional singers may be found recounted in Sundberg & Gauffin (1979; 

pp. 304). The consequences of changing or depriving the subject of the sound they 

produce are hard to formalise (Ward & Burns, 1978) but are clearly unacceptable 

liabilities to a voice tutoring process. 

5.9.3 Deriving a measure of the peak-to-peak signal amplitude 

Most forms of electrolaryngograph design employ some form of automatic gain con- 

trol (e. g., see Baken, 1987). This includes the electrolaryngograph used for the 

studies presented in this thesis. However, if the design is altered to remove this, or 
if an early model is used which does not have this design feature, then the peak- 

to-peak amplitude of the electrolaryngograph period will change in proportion to 

the distance of the vocal folds from the electrodes in the vertical plane (other fac- 

tors remaining constant) (see, for example, Gilbert et al., 1984). A measure of 

the peak-to-peak amplitude might then be useful in several voice tuition contexts. 
For example, trained singers are known to exhibit markedly less variation in larynx 

height than untrained singers (Sundberg, 1987). For this reason, a measure of the 

peak-to-peak period amplitude is provided as one of the parameters supported by 

ALBERT. 

A measure of the associated level of shimmer is also supplied. 
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Figure 5.14: Deriving a measure of the rate of larynx opening and 

closing from the electrolaryngograph waveform 
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5.9.4 Deriving a measure of the rates of larynx opening and closing 

In chapter 2 it was established that the rates of larynx opening and closing were 

of importance in vocal function. A measure of these may be derived by obtaining a 

value of the maximum and minimum derivatives of the electrolaryngograph period. 
These values are further divided by the peak-to-peak amplitude of the period to 

take into account the recording level. This is illustrated in figure 5.14. 

These two parameters may be useful in the process of voice monitoring. They 

may be beneficial when presented as real-time feedback for voice tuition. However, 

as discussed previously in section 3.7, there appears to be no previous research in 

which comparable parameters are used in the assessment of the developing voice. 
The interpretation of these parameters must therefore be tentative and cautious. 
For example, the model of the vocal folds presented by Childers & Krishnamurthy 

(1985) demonstrated that an increase in the angles of opening or closing of the 

vocal folds would result in a change to the electrolaryngograph signal (Childers et 

al., 1987), although the authors concluded that a measure of the differential of the 

signal was still appropriate for determining instants of opening and closure. 

0- maximum decreasing differential 

-------------- 

/ 

---------- I 
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5.9.5 The effect of quantisation 
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The rate at which ALBERT samples electrolaryngraph (and acoustic) signals is 

maintained at 48kHz (which is the highest sampling rate that the hardware is capable 

of). The Silicon Graphics audio hardware incorporates anti-aliasing filters to ensure 

that only frequencies lower than the nyquist frequency are sampled. 

However, because of the quantisation of the signal, a high frequency signal is 

poorly represented by the digital sampling process when compared to the sampling 

of a low frequency signal. This contrast is illustrated in figure 5.15. At a frequency 

of 125Hz, one period will be represented by 384 samples. This resolution has an 

associated maximum error of 0.325Hz, which corresponds to 0.26%. In contrast, 

at a frequency of 100011z, one period will be represented by 48 samples. This has 

an associated maximum error of 20.81-1z, which corresponds to 2.08%. Clearly, the 

effects of quantisation at high frequency must be noted when considering the results 

of ALBERT assessment, although phonation at such high fundamental frequencies 

is normal for only a small subset of voice users (such as soprano singers). 

5.9.6 Display of the electrolaryngograph signal 

5.9.6.1 Normalised period dispIay 

As discussed previously, the electrolaryngograph signal is analysed in order to de- 

termine the laryngeal period start and end points. This information is required for 

the subsequent derivation of the voice source parameters, which is carried out on a 

cycle-by-cycle basis. The portion of electrolaryngograph signal between these two 

points can optionally be displayed with signal amplitude and length of time nor- 

malised to fit a window of arbitrary height and width. Two examples are shown in 

figure 5.9. This display enables the viewer to easily visualize the relative closed and 

open phases of the larynx period regardless of signal amplitude or frequency. 

During use of the normalised period display, it was realised that the ability to see 

the electrolaryngograph signal immediately prior to the currently displayed period 

signal would be of further aid in visualizing the performance of the electrolaryn- 

gograph signal. A simple slider mechanism was provided for the user to select the 

extent to which the electrolaryngograph signal preceding the period is to be dis- 
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Figure 5.15: Accuracy of deriving fundamental frequency from the 

electrolaryngograph output for phonation at 1KHz and 125Hz digi- 

tally sampled at 48KHz 
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played. The user is able to select a value between 0% (show none of the previous 

period) and 100% (show both the current period and the previous in the normalised 

period display). An intermediate value of 50% has been found appropriate during 

use. 

5.9.6.2 Animation of vocal folds 

A facilitY was developed to animate an artificial image of the vocal folds so that 

users may more easily understand the relationship between the normalised signal 

and the action of the vocal folds. This is illustrated in figure 5.16. Different levels 

of CQ derived from the last period are reflected in the time for which the animated 

vocal folds are shown in contact. The user may select a continuous repetition of this 

sequence, or a single sequence. A slider is provided so that the user may alter the 

speed of the animation. 

5.9.7 User control over electrolaryngograph signal analysis 

5.9.7.1 Introduction 

A total of four separate forms have been provided for the user to control the way in 

which ALBERT assesses the electrolaryngograph signal. These forms are discussed 

in the following sections. 

5.9.7.2 Primary control form 

This form is the primary form for controlling the processing and display of voice 

source signals. It is shown in figure 5.17. The user is given access to the following 

attributes. 

1. The channel of the incoming electrolaryngograph signal 

2. The ability to turn the entire voice source processing mechanism on or off. For 

example, if the user is only interested in processing the acoustic signal, then 

this button would sensibly be switched off. 

3. The ability to invert the incoming electrolaryngograph signal. This option 

is useful because often there are differences between DAT machines made by 
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Figure 5.17: Voice source control form 
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different manufacturers which may meau that a signal recorded on one DAT 

machine Nvill played back on another machine in an inverted forin. 

4. Attribute derivation. The user can select the extent to which vach buffer of 

incoming elect rolaryngograph signal is processed and graphical display,,, based 

oil analysis of the signal are updated. There are two options: a mode in 

. ngograph period present which only the first electrolary ill each buffer will he 

processed, and a mode in which all periods are processed. The former option 
is typically used for real-time function; the latter for analy-, i-, wheit real-time 

performance is not important, but a thorough analysis of' the signal is. 

5. An automated process for setting the value of' it parameter used in the assv-, s- 

ment of thv electrolaryugograph signal (discussed iii the f0llowim, ývctioii). 

6. Access to the iioriiialiý, (, d period displaY (section . 5.9. G. 1). 

The ability to view and print selected areas of the recorded voice source signal. 

S. The ability to engage a low pý,,, ss filter. This can be useful in processing noisy 

vlectrolaryngograpli signals. The cut-offfrequency, which has a default ot'5000 

FIZ. i,, -Ilowil ill a , -ýInall Nvindow. If' required, the lisel. call alter HID, vahle. 
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5.9.7.3 Threshold form 
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This form provides easy access to a parameter used in the assessment of the elec- 

trolaryngograph signal. This parameter represents the smallest signal level that the 

voice source processing algorithm will judge to be a rising edge of the electrolaryn- 

gograph signal. If this value is too low, then the algorithm may be too eager to 

interpret the incoming signal as a rising edge. If this value is too high, then the 

algorithm will never detect a rising edge. A sensible intermediate value is required. 
This parameter may be automatically set by the press of a button on the voice source 
form. Alternatively, the user may wish to override the automatic setting. This can 
be achieved by simply clicking on the slider provided in this form and selecting the 

desired level. 

5.9.7.4 Refractory time form 

This form provides easy access to a parameter used in the processing of the elec- 

trolaryngograph signal. It represents the smallest interval of time immediately fol- 

lowing the detection of a rising signal edge indicative of the start of a laryngeal 

period within which the voice source analysis algorithm is not permitted to detect 

a further rising edge. This parameter can be used to optionally improve the perfor- 

mance of the voice source processing algorithm. For example, if it is known that the 

vocal task under assessment does not involve phonation at a fundamental frequency 

higher than 50OHz, this slider can be set to 2ms; if it is known that the vocal task 

does not involve phonation at a fundamental frequency higher than 25011z, then the 

slider may be set to 4ms. This may be achieved by simply clicking on the slider and 

selecting the desired level. 

, 5.9.7.5 Period form 

This form is used for analysis and animation of the electrolaryngograph period. It 

is shown in figure 5.18. 

1. Smoothing style. This enables the user to select a form of smoothing for 

use in the normalised period display. 
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Figure 5.18: Voice period control form 
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2. Period display buffering. In this section the user is able to control the form 

of hiifferm,,, iiýed m the nornialised period display. Single or double buffering 

may be elected. In the latter mode, the sequence of electrolaryngograph 

periods aj)jwan, visually smoother. However. a small time delay is incurred 

(of the order of one fiftieth of a second) each time the display is updated. 

This is due to the hardware operation of the Silicon Graphics computer. This 

delay may be inappropriate when a heavy Nvork-load is required for real-time 

operation. 

3. Period frame-by-frame display. This facility is provided to enable the 

user to examine a sequence of voice source activitv that has been recorded 

to file. The user can enter the start time. end tinie and interval of analysis. 

One period of elect rolaryngograph signal at each interval is shown normalised. 

Tiining-ý and fraine numbers are shown underneath each displayed period. 

4. A nim at ion. This controls t lie a nim at ion feat ure discussed previously (sect ion 

-ided with control ovvr the animation display. mode .9-G .2i. 
T he user is proN I 

of repetition. ; tlll of animation. 

Display of the signal prior to the current period. Tliis section con- 

taill. " t1le sli(icr ('011ti, ()l (11ý, cus, -w(l prcvlou. ýIy 1)i-o,, -id(, (l for control ov(ýr optional 

gograph s display of t1w (, Ivctrolaryng ignal ininioliatch- prior to t1w currently 

assv, ý, výl perio(l. 
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5.10 Voice parameters 

5.10.1 Introduction 

The list of parameters derived from the two forms of signal input which ALBERT 

analyses and updates are listed below. 

1. the fundamental frequency of the voice (FO) 

2. the closed quotient of the voice (CQ) 

3. the rate of opening of the vocal folds (oal) 

4. the rate of closing of the vocal folds (ca') 

5. the spectral distribution of the voice output (Ratio) 

6. the loudness of the voice (SPL) 

7. the change in loudness from one time instant to the next (shimmer) 

8. the period-to-period change in fundamental frequency (jitter) 

9. the peak-to-peak amplitude of the electrolaryngograph period (Ix amp) 

10. the change in amplitude of the electrolaryngograph period from one time in- 

stant to the next (Ix shimmer) 

11. time 

In section 4.5, it was concluded that the rate of opening and closing of the vocal 

folds are not appropriate indicators for vocal development at this time. These two 

parameters, listed above as numbers 3 and 4, may be more appropriate as aids to 

analysis rather than as suitable parameters for real-time feedback. 

A formal evaluation of the assessment of these parameters by the ALBERT 

system is presented in Appendix P. 

4TMs label was chosen to reflect the method in which the parameter is derived; the rate of 

ppening (indicated by the maximum differential) divided by the peak-to-peak amplitude of the 

period. 
"This label was chosen to reflect the method in which the parameter is derived; the rate of closing 

(indicated by the minimum differential) divided by the peak-to-peak amplitude of the period. 
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Figure 5.19: ALBERT parameter control window 
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5.10.2 User control over the parameters 

In figure 5.19 these parameters are shown listed in the user interface display through 

which their properties may be viewed and edited by the user. The form is divided 

into two sections. The first section, shown in the top left hand corner of the form, is 

a simple list of each voice parameter. In the second section, a list of the properties, 

referred to as fields, of the parameter is shown filled with the relevant data of the 

currently selected parameter shown highlighted in the first section. To look at the 

fields of a particular parameter, the user needs only to click on the name of the 

relevant parameter in the first section. To adjust any of the parameter fields, the 

user needs to click on the appropriate field and alter the value as appropriate. The 

following parameter fields are displayed, all of which may be altered by the user. 

1. Desc7iption. Verbose description of the parameter. 

2. Graph IabeL The parameter label (optionally) displayed when the parameter is 

mapped to a graph axis. For example, the default label used for the 'frequency' 

parameter is 'Freq'. 

3. Graph unit. The parameter unit (optionally) displayed when the parameter is 

mapped to a graph axis. For example, the default unit used for the 'frequency' 

parameter is 'Hz'. 

4. Algmithm labeL This is the label used to refer to the parameter in an algo- 

rithm reference (discussed below). For example, the default label used for the 
'frequency' parameter is TO'. 

5. Legal range - minimum. This is the minimum legal vaJue of the parameter. 
For example, the default legal minimum value of the 'frequency' parameter is 

30. 

6. Legal range - maximum. This is the maximum legal value of the parameter. 
For example, the default maximum legal range for the 'frequency' parameter 
is 1200. 

7. Graph range - minimum. This is the minimum parameter value to be plotted 

on a graph. For example, the default minimum graph range for the 'frequency' 
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parameter is 30. 

8. Graph range - maximum. This is the maximum parameter value to be plotted 

on a graph. For example, the default maximum graph range for the 'frequency' 

parameter is 1200. 

In addition, a boolean field indicates whether the visualization of the parameter 

will be mapped logarithmically by default. This may also be altered. If the state 

of this variable is not true, then any visualization of the parameter will be mapped 
linearly by default. For example, this is usually true for the 'frequency' parameter, 
but is not true for the 'time' parameter. 

5.10.3 Extending the list of voice parameters 

A new parameter may be created by the user by pressing the I add new parameter 1. 

A 'skeleton' parameter is then created by ALBERT with dummy fields. The user 

may then alter these fields according to his/her requirements. The user is able to 

define a new parameter based on an algorithmic treatment of other parameters. For 

example, to provide a new parameter which gives an indication of the performance of 
CQ with regard to frequency, the user can request a new parameter button, provide 

a new name for the parameter (for example, CQ-f req), and enter the equation for 

the new parameter (in this case, CQ/Freq). Once the other fields have also been 

entered, the new parameter may be used for visualization or for reference by a 
further algorithm. 

5.11 Recording acoustic and electrolaryngograph sig- 

nals 

5.11.1 Introduction 

There are many advantages in being able to record a sequence of voice source and 

acoustic signals. For example, a library of acoustic and electrolaryngograph record- 
ings can be constructed for easy reference, and a recorded sequence may be played 
back any number of times, facilitating the exploration of different forms of analysis 

and visualization in the interpretation of the signals. Furthermore, by recording a 
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Figure 5.20: User control form for file record and playback 
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sequence prior to analysis, the user is assured of a thorough analYsis, of' the sequence 

regardless of the analysis and display load placed on the systeni. 

Two recording facilities are provided. The first is the ability to record and 

playback to and ftom a fileý the second is the ability to r(, cord and pla. ykick to and 

from memory. These are discussed iii the following s(, ctioii:,. 

5.11.2 Recording to file 

Controls over the recording and playback of acoustic and lar. ), ngeal ,; ignals to filv are 

presented on the form shown in figure 5.20. To start the recording of the incoming 

signal, the user clicks on the [ýý button. A recording indicator light will turn on. 

To finish recording, the i1ser presses the button again. The recording light will turn 

off and the length of the recording shown at the top of the form Nvill be updated. 

This is expressed in seconds. To play the file, the user clicks on the button. 

The play indicator light Nvill turn on and the recorded sequence will be played back. 

The light Nvill turn off when playback is complete. 

It was realised that there would be occasions when it would be useful to be able 

to specifically instruct ALBERT to lialt playback of' a recorded sequence without 

the entire recording being played. For example, the user might to quickly check 

the coilteiitý., of a selected file by listening to the first few seconds. A mcclianisin Nva.. " 

developed so that the user could halt a playback sequence prior to the end of' the 
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recording. For this, the user clicks on the PLAY button a second time. The play 

indicator light will then be turned off and playback will cease. Alternatively, if the 

user does not interrupt playback the play indicator light will turn off and play back 

will cease without user interaction as soon as the end of the recorded file is reached. 

Normally during playback the recorded file is read and played via the internal 

speakers. To an extent, this will slow down the speed at which ALBERT will be able 

to proceed. Furthermore, if ALBERT has a heavy work load, there will be a delay 

between the playback of each buffer. This can be perceptually very disconcerting to 

the human car. For this reason, a silence mode was implemented. When engaged 
by the user via a press of the appropriate button, the audio buffers read from file 

are subsequently processed in silence. 

5.11.3 Recor ing to memory 

If the host computer running ALBERT has a lot of memory, it is useful to be able 

to have the option to use this memory for storing signals as an alternative to using 
file storage space on the hard disk. In addition, the speed of processing for signals 

stored in memory is faster than for signals recorded to file, because the access time 

is much quicker. 
For these reasons, the function and user interface design of the form discussed 

in the previous section for recording and playback from file was duplicated for the 

purposes of recording and playback to and from memory. 

One functional alteration was made. When a program such as ALBERT ceases 

operation, the contents of the memory used by that program are normally lost. This 

would mean that any recorded sequence held in memory would also be lost. For this 

reason, the ability to save a memory recording to file was developed. To this end, 

the function and name of the I Recording button originally present on the 

'Record to file' form was replaced by one for the selection of a filename to which the 

memory recording is to be transferred. 



CHAPTER 5. A TOOL FOR BIOFEEDBACK 152 

5.12 Methods for visualization 

5.12.1 Introduction 

Prior to the design of the system some consideration was given concerning voice 

parameters and their display in the analytical scientific literature. A summary of 

the display methods adopted in forty research papers and their application is shown 

in table 5.1. There is a wide selection of parameters, display configurations, and 

of tasks to which the configuration sets were applied. However, all the studies 

utilise fundamentally identical graphical techniques. Predominantly, this is a two 

dimensional representation of information with one parameter mapped to the x axis 

and another mapped to the y axis. It is only the selection of parameters which is 

different for each visualization case. 

A system was therefore designed in which the visual structure for information 

display was not fixed in any predetermined form, but could be easily configured by 

the user in a matter of seconds in any combination s/he required. In this way the 

manner of information display is not fixed to a handful of select display modes in 

the manner of all voice parameter display software currently available, but is left 

largely free for exploration and configuration by users. The visualization approach 

adopted supports all of the display modes listed in table 5.1 and the tasks for which 

they were used, in addition to other modes created by the user employing any of the 

parameters derived for display. Within the ALBERT software one dimensional and 

three dimensional displays are also supported in addition to the two dimensional 

displays previously discussed. The former is intended predominantly for real-time 

display as part of a vocal task given to a subject, the latter for investigation and 
6 analysis of the interaction between a selection of voice parameters. 

5.12.2 An example application 

Examples of display configurations which could be used for real-time feedback are 

shown in figure 6 with application to the real-time display of jitter. A bar graph 

6At the time of writing the ALBERT 3D visualization options are underdeveloped, as priority 

was given to ID and 2D visualization support which are of greater application for use as real-time 

tuition tools. 
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7"une against FO - Transient time in singers (Leonard et al., 1987) - with superimposed Intensity against time - vowel example 
(Horii, 1983) 

LX signal amplifude against 2-une - Voice register change (Roubeau et al., 1987) 

FO against FO, scattergran; - Structured distribution of successive pitch periods for young woman with moderate creak (Hirson 

& Roe, 1993) 

FO against time - Vibrato patterns for different singing styles (Howard, 1992). Pitch stimulus for assessing junior high school 

singers (CDoksey, 1993). Trained male baritone two octave scale (Lindsey & Howard, 1989). Incentive 

displays for encouraging voice development in primary school users (Welch et al., 1989). Improving the 

speech of deaf children (Wirz & Anthony, 1979). Teaching intonation to deaf persons (Spaai et al., 1993). 

The vowel in 'dart' spoken by a healthy adult female (Abberton et al., 1989). The effect of articulation in 

singers and speakers (Baken & Orlikoff, 1987). Voice register change (Roubeau et al., 1987). Analysis of 
Parkinson's disease (Watson & Macaulay, 1994). Performance demands (Coleman, 1987) 

CQIOQ against time - Trained male baritone two octave scale (Lindsey & Howard, 1989). The vowel in 'dart' spoken by a 
healthy adult female (Abberton et al., 1989). 

CQ against FO, seattergram - Different singing styles (Howard, 1992). Belt and opera qualities in the female voice (Evans & 

Howard, 1993). 10 trained/untrained male singers (Lindsey & Howard, 1989). 21 trained/untrained female 

singers (Howard et al., 1991). a trainedfuntrained singer, read passagetsung two-octave scale (Howard et al., 

1990). Healthy adult male reading a2 minute passsage (Abberton et al.. 1989). 

CQ against FO - Male tenor/baritonetbass voices (Cleveland & Sundberg, 1983) 

Ratio against intensity - Artistststudentstmusicians/non-singeM male/female subjects (Hollien, 1993). Male tenor/baritone/bass 

voices (Cleveland & Sundberg, 1983). 

Ratio (enerV in 3Kffzfdkr) against finre - Stage singers (Winckel, 1971) 

SPL against FO (PHONETOGRAM) - Voice change during puberty for boys (Pederson et at., 1982). Voice change during 

puberty for girls (Pederson et al., 1984). Malelfemale singerstnonsingers (Gramming, 1991). Malelfemale 

singers/nonsingers/vocal dysfunction (Gramming, 1988). Trained/untrained vocalists (Awan, 1993). 

Performance demands (Coleman, 1987). 

SPL against FO, scattergram (density mapped to SNR) - Visual representations of the voice (Klinghoiz, 1990) 

Shimmer against Jitter - Nonnal and dysfunctional voice users (Haji et al., 1986). 

Relative power againstfrequency (SPECTROGRAH) - Singing formant analysis for different types of western operatic singers 
(Walker, 1992). Acoustical efficiency in singing (Simonson, 1992). Belting and pop modes of female singing 

(Schutte & Miller, 1993). Singing voice analysis (Miller & Schutte, 1990). 

Table 5.1: Example visualization conflgurations and function pre- 

sented in the scientiflc literature, and example conflgurations and 

applications in which ALBERT may be used. Order of entries: y- 

axis followed by x-axis, coloured black unless specified as scatter- 

gram. ILX' refers to the signal derived from an electrolaryngograph. 

'Ratio' refers to the level of spectral amplitude in the singer's for- 

mant region relative to all voice spectrum output. ISNRI stands for 

signal-to-noise ratio. 
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display is shown in figure 5.21 (a), and a 2D display of jitter against time is shown in 

figure 5.21(b). In both instances, the subject can use the display during sustained 

phonation to concentrate on maintaining a small deviation from the target pitch 
(visually expressed in both 5.21 (a) and 5.21(b) as minimal fluctuation in the vertical 

plane, with a mean value close to zero). 

5.12.3 User control over the parameters 

A form has been designed for easy control over the visualization parameters. This 

is shown in figure 5.22. Functionally similar elements of the user interface presented 

on the form have been grouped together into seven sections for improved access and 

presentation. These are: 

1. High level attributes of the visualization. This includes the selection of 

1D, 2D, or 3D graph configurations, and the mode of colour display. 

2. Parameter mapping. This section provides the user with the means to map 

the voice parameters assessed by ALBERT to the axes of the visualization 

configuration. 

3. Display options. The user is able to select which axes elements he/she 

regards as appropriate for display, including control over the display of labels, 

tick marks, and the axes themselves. 

4. Spawn graph. This section presents the user with a list of possible window 

sizes from which an appropriate selection may be made. Alternatively, the 

user may spawn a window of a specific width and height. It is also possible to 

'overlay' a new graph on top of a graph of the same format which is already 

present on the screen. For reasons of clarity, the smallest graph size which the 

user can select is 15% of the total screen size. This size has been found an 

appropriate minimum during use of the system. 

5. General graph control. Four buttons are available for high-level graph 

control. These are for the following functions. 
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(a) The cleansing of graphs. All graphs are cleared of data and reset to their 

original state. All statistics associated with the graphs (such as mean 

and standard deviation values) are also reset. 

(b) The deletion of graphs. All graphs, and the windows containing the 

graphs, are cleared of data and removed. 

(c) The transfer of graph images to file. 

(d) Control over the filename to which the graph images are transferred. 

6. Update mode The graph displays may be optionally controlled to react only 

to an update of either voice source parameters or acoustic parameters, or 

both. For example, it is often required that displays are updated only when 

voiced activity is detected. In this case it would be appropriate to select the 

I Update from ýrýalid LX button, and to ensure that the I Update from valid ýP] 

button was deselected. The visual display of any parameter (even if it is based 

on the aroustic signal) will then only take place if voicing action is detected. 

5.12.4 Using colour for real-time feedback 

A further level of abstraction may be achieved through the use of colour to 

present information. Children learn colour names at an early age and may well find 

a changing colour display of more interest than, for example, a constantly black 

display. There are many colour associations (Macdonald, 1990), all of which may be 

actively exploited for the process of voice tuition with ALBERT. For example, colour 

has the ability to evoke emotional responses or to trigger memories. Warm hues (i. e., 

red, orange, yellow) can imply action or danger. Cool hues (i. e., green, blue, grey) 

can imply passivity or sadness. Guidelines for the selection of appropriate colour 

selections already exist. For example, Hunt (1987) recommends the use of Green and 

Red to indicate a two band scheme, and white, cyan, and orange to indicate a three 

band scheme. Some appreciation of the subject's abilities, limitations and cultural 

and educational background are appropriate in the creation of a colour mapping 

scheme for real-time information display. Colour schemes can then be 'personalised' 

to suit the subject and vocal task. 
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The use of colour in real-time voice displays appears to be very rare. In one 

instance the frequency of the first three formants in the acoustic output spectrum 

were mapped to the red, green and blue guns of a television monitor (Watanabe 

et al., 1985). This continuous display was designed for the hearing impaired. The 

authors concluded that their colour display system performed much better than an 

equivalent non-colour display. 

An illustration of one complimentary colour scheme is shown in figure 5.21(c). 

In this example, the real-time display of jitter discussed previously (shown in figure 

5.21(a) and 5.21(b)) is enhanced by a colour scheme which has been designed to 

express poor phonation of a target pitch as a relatively darker display, and good 

phonation as a relatively lighter display. Subjects can then concentrate on trying 

to maintain as light a display as they are able. 

The use of a simpler colour scheme which is appropriate for a different selection 

of vocal tasks is shown in figure 5.23(b). In this example, a simple linear gray scale 
has been arranged. This colour scheme has been employed in the graphs shown in 

figure 5.23(a), where the height of the bar graphs have been mapped to fundamental 

frequency, and the level of grayness of the bar graphs have been mapped to CQ. 

Relatively higher levels of CQ are manifested as relatively darker bar graph displays. 

The subject can then, for example, concentrate on maintaining a consistently dark 

display (corresponding to a high level of vocal efficiency) whilst controlling the height 

of the bar graph display during pitch exercises. 

5.12.5 The appropriate visual presentation of data 

There are dangers in presenting information concerning the physiology of the voice in 

the literal form which many devices provide (such as the videoendoscope, MRI and 

X-ray devices). By the nature of their operation these devices tend to invite the focus 

of attention on particular elements in the process of vocal production. This reflects 

their role predominantly as tools for diagnosis and analysis concerning particular 

areas of vocal anatomy, rather than their ability to effectively present information 

suitable for a developing voice user who is unlikely to have a thorough knowledge 

of physiological mechanisms used in the voice process and who may accordingly be 

unable to concentrate on a specific physiological task. Sundberg (1987), for example, 
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ALBERT has been designed so that detail deemed by the user to be at too low 

a level to be appropriate for the tuition task may be discarded. This approach 

has been supported through two main features. The first is the ability to combine 

any number of voice parameters algorithmically into a single parametric measure, 

which can then be updated and displayed in real-time. The second is the ability 

to configure the display to present parameter values in one of many different levels 

of abstraction. For example, any parameter may be displayed as a dynamically 

changing bar measure. However, the labelling of the axes may appear alien to many 

subjects, such as children. The user can therefore deselect several attributes of axis 

labelling, including the entire axis display. Examples of this are shown in figure 

5.23 (a). 

Tufte (1983) and others espouse the maximising of the data-ink ratio criterion. 

This measure is defined as the ratio of ink used for data to the ink used for the whole 

display. This parameter holds true for computer displays also with the description 

of 'ink' changed to 'pixels' (the smallest element on a computer display). The free 

control given to the user for configuring the visualization enables the maximisation 

of this measure for highly effective information display. 

5.13 The rate at which information is updated 

5.13.1 Introduction 

In the design of any system for real-time feedback, some consideration must be given 

to the rate at which the process of deriving information and subsequent display is 

carried out to ensure appropriate modes of operation for the learning process. Some 

vocal tasks result in phonation of very high pitch; for example, the singing of a 

soprano top C requires phonation at a pitch of approximately 1046 Hz. Therefore, 

for each second of phonation in this mode, the pattern of vocal fold movement which 
imprints the fundamental waveform onto the flow of air from the lungs occurs more 

than 1000 times a second. For the sake of real-time feedback there is no advantage 
to analysing each of the occasions for which the vocal folds oscillate. The human 

brain is not able to process such a high rate of information usefully. 
For example, the propogation of neural signals ranges from a tenth of a second 
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to a hundredth of a second for eye to hand coordination (Hendee & Wells, 1993). 

Therefore, it is reasonable to assume that a similar range of rates of information 

transfer occurs from the presentation of an image during real-time feedback and 

subsequent reaction to that image. In addition, a visual image is known to linger on 

the retina for about a tenth of a second, and if during this instant it is replaced by a 

new image the two will seem to merge (Jones, 1994). Practical experience in virtual 

reality environments also suggests that an update period of 90ms, very close to the 

rate of image merging noted by Jones, is adequate to give an illusion of continuous 

motion (Wenzel, 1992). 

On the basis of these observations, ALBERT has been designed with a default 

update rate of twenty times a second, which has been found comfortable and ap- 

propriate during use. However, there are occasions for which a different update rate 

may be suitable. For example, about 1 in 2000 people are susceptible to photo- 

seizures (McCrone, 1994). The frequency most likely to trigger an epileptic fit in 

a susceptible person is 18 times a second. A user of ALBERT may therefore wish 

to alter the update rate from 20 times a second to one further removed from that 

of the frequency domain in which photoseizures are known to occur, such as 25Hz. 

Furthermore, in dim light the persistence of vision increases (Jones, 1994). This 

phenomenon could be usefully exploited by reducing the update rate. This would 

enable ALBERT to support a higher level of real-time analysis and visualization. 
Provision has been made within ALBERT to enable the user to change the update 

rate at any point in time through access to a simple slider mechanism on the GUI. 

As discussed previously (section 5.9.7.2), a comprehensive analysis mode of op- 

eration is available in which each and every vocal fold oscillation is analysed and 

the derived information displayed as required. For some high load instances, this 

facility is supported at the sacrifice of real-time performance. 

5.13.2 User control over the update rate 

Three sliders are provided on the form. One displays the number of updates per 

second, another displays the number of samples per buffer, and a third displays the 

length of time of each buffer. All three slider values are inter-related. A change in 

one of the three will result in automatic changes to the other two. 
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5.14 Saving and loading ALBERT configurations 

10'3 

The user may wish to use a particular configuration of' analysis and displa. v on 

many occasions. In order that the arrangement does not have to be reci-vated on 

each occasion, the user is able to save and load the state of ALBERT. The forin 

used for this is shown in figure 5.25. In addition to tll(' al)IIItY to save and h)ad 

the entire statv of ALBERT, the user is also able to save and 1();, (l suhsvtý, ()f the 

state. For example, the user may have two different arrangements, savv(I to file 

(such as one for voice source analysis aud One fOr acoustic analy'sis) and may Wish 

to incorporate elements of both into a single arrangement. The ability to a. ccess the 

various domains within ALBERT would greatly facilitate this task. 

The following domains illav be saved and loaded. They an, listed here in the 

order in which they appear on the control form. 

1. VisnaliZation. This includes all ID, 2D ým(l 3D graphs and colmir configura- 

tiolls, ill a(l(litloll to the Illappilig inform at loll of voice parailleter" to graphs 

and the positions of graplis on the screen. 

2. It. cins. This includes the fields of all voice parameters, including aity paraine- 

ters that may have be(III created by the user. 
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3. Forms. This includes the position, size and visibility of every form. 

4. Acoustic display and flags. This includes the position and size of both acoustic 
displays and all flags associated with acoustic processing. This does not in- 

clude any information that may be held within the 'Items' and 'Visualization' 

domains. 

5. Voice source display and flags. This includes the position and size of the 

normalized period display and all flags associated with electrolaryngograph 

processing. This does not include any information that may be held within 

the 'Items' and 'Visualization' domains. 

6. All the above. This covers all of the domains listed above, which in aggregate 

completely define a state of ALBERT. 

The ability to load each of the domains listed were also made accessible to the 

user via command line options for added usefulness. Please refer to the User Guide 

for usage information (Appendix E). 

5.15 Some example real-time applications 

5.15.1 Examples based on the state of one parameter 

5.15.1.1 AduIt singers 

As discussed previously, a real-time display based upon quantitative evaluation of 

the singer's formant phenomenon may be of use in the process of singing tuition 

(section 5.8.1). The ALBERT software could be configured to function as a tool for 

this purpose based on the Ratio parameter. The parameter could then be displayed 

in a number of ways, such as a plot on a 2D graph with FO or time parameters 

mapped to the x-axis. 

5.15.1.2 Child singers' 

A similar phenomenon has also been observed in child singers. Current research 

has indicated that children phonating at high fundamental frequencies exhibit in- 

creased spectral amplitude in the 700-180OHz region as a function of vocal training 



CHAPTER 5. A TOOL FOR BIOFEEDBACI%. 

Lowest value in range 
(i. e., when time =0 secotids) 

165 

Highest value in range 
(i, e.. wheit lime =7svcwtd%: ) 

I 

RED ORANGE YELLOW GREEN BLUE INDIGO tIOLET 

I 

ON 

Increasing value 
(i. e., successive intervaR oftime) 

Figure 5.26: An example colour scheme for use in mapping time as 

a mechanism to encourage attention 

(White et al., 1994). A real-time display b; vsed lipoil (111ailtitative ovýj I,, a tioij of tilis 

I therefore be useful in the tiiition of cI I ild si 11 7 phenomenon iiiaN 

This could be achieved by using the same process as that doscribod f'()r adult 

singers, but with selection of the frequencY range TOO-180OHz instead of 2-41\Hz. 
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5.15.1.3 Subjects with short attention span 

A number of'voice users are unable to concentrate for long period:, ()f time. Tlii, ', ' 
includes children and adults with learning difficultics. The ALBERT software can 
be configilred to complement the display of a parameter with colour in a number 

of ways. This facility can be used to create it real-time display which continually 

changes colour. 

This first requires the design of an appropriate colour scheine. An example is 

illustrated in figure 5.26. Al the colours of the rainbow have luim vmj&pW in the 
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comments that 'the absence of any guide to follow' i, one of' four major causes of' inaccurate child 

singing. 
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This colour scheme can then be mapped to reflect the value of a parameter. In 

this example, the colour set would be mapped to time. In this way the display would 

continually change colour. The time for which the colour set would cycle can be 

predetermined. An appropriate example may be seven seconds. The display would 

then change to a different colour with the passing of each second. 

5.15.2 Examples based on the performance of two voice parameters 
in combination 

5.15.2.1 Introduction 

In section 4.4.9, it was demonstrated that the performance of many voice parameters 

are interlinked. The suitability of a real-time display of one of the parameters 

may be increased by deriving an algorithmic measure which takes into account 

the performance of one or more other parameters at the same time instant. The 

following examples illustrate some tuition contexts in which such an adjustment is 

appropriate, and the way in which ALBERT may be configured to accommodate 

these contexts. 

5.15.2.2 The display of CQ with regard to SPL changes 

In section 3.6.6, it was concluded that a real-time display of the level of CQ of 
the vocal folds may be of considerable benefit in the tutoring of vocal efficiency. 
In chapter 3 it was shown that male subjects exhibit progressively higher levels 

of CQ with increasing levels of acoustic output (SPL). A real-time display of CQ 

may therefore appear to demonstrate improved efficiency which has in fact been 

expressed only as a consequence of increased output volume level. An adjustment is 

required in which the effects of increased SPL are accounted for in the monitoring 

process. This can be achieved by taking the two coefficients m and c which have 

been previously determined for the linear relationship y= mx + c. In this case, 

m=0.4 and c= 41. Using the ALBERT system, these may be entered into formula 

G. 5 presented in Appendix G, with the parameter name 'cq' substituted for the 

variable y, and the parameter name 'SPL' substituted for the variable x. The result 
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of this formula may be given a new label, such as 'quality' or 'target', and selected 
for display in any of the visualization styles discussed previously. Any increase in 

CQ expressed by the subject is then assessed relative to the volume level of acoustic 

output, and subsequently displayed in real-time. 

5.15.2.3 The display of Ratio with regard to SPL changes 

In a context similar to that of a real-time display of CQ, a display of the level of 

spectral amplitudes in the singer's formant region may be useful in encouraging a 

professional quality in the singing voice. However, in the second voice study this 

parameter was also shown to increase in proportion to the level of SPL output 
(section 4.4.9; figure 4.20). A real-time display of the level of spectral amplitudes in 

the singer's formant band may therefore appear to demonstrate improved efficiency 

which has in fact been expressed only as a consequence of increased output volume 
level. An assessment of this parameter which has been adjusted to take into account 

the effects of loudness would be more appropriate. This may be achieved by the 

same process as that described for the real-time display of CQ, with the parameter 

name 'Ratio' substituted for the parameter name 'CQ'. 

5.15.2.4 The display of development along a CQ/singer's formant con- 

tinuum 

After the assessment of developing voice parameters presented in chapter 3 it 

was concluded that for male subjects there was a strong correlation between the 

level of CQ and the level of spectral amplitude in the singer's formant frequency 

band. This is illustrated in figure 5.27. The study also concluded that there were 
indications that developing voice users could be regarded as aiming to improve vocal 

performance along the CQ/Ratio line of correlation illustrated. In order to create a 

single parameter representative of progress along this continuum, an equation was 
derived (number GA in Appendix G). Based upon this equation, a new parameter 

can be created and subsequently displayed for use as a real-time indicator of progress 

along the line of continuum. 
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5.16 An examination of the product compared to the 

original requirements 

In this section the product is judged with regard to the original formal require- 

ments (section 5.4). For this task ALBERT was run on a Silicon Graphics Indigo 

computer. 8 The original requirements of the system are listed together with a de- 

scription of the way in which these requirements have been met. 

1. Analysis of parameters derived from the acoustic signal 

That the system is able to analyse the following parameters from the acoustic 

signal: 

(a) the spectral distribution of the voice output (Ratio) 

(b) the loudness of the voice (SPL) 

(c) the change in loudness from one time instant to the next (shimmer) 

Provision has been made for the system to analyse each of these parameters 
(sections 5.8.1 and 5.8.2). 

2. Analysis of parameters derived from the electrolaryngograph signal 

That the system is able to analyse the following parameters from the electro- 
laryngograph signal: 

(a) the fundamental frequency of the voice (FO) 

(b) the closed quotient of the voice (CQ) 

(c) the rate of opening of the vocal folds (, oa) 

(d) the rate of closing of the vocal folds (ca) 

(e) the peak-to-peak amplitude of the electrolaryngograph period (Ix amp) 

(f) the change in amplitude of the electrolaryngograph period from one time 

instant to the next (Ix shimmer) 

(g) the period-to-period change in fundamental frequency (jitter) 

gThere are several different models which operate at a faster rate than this model (such as the 
Silicon Graphics Indy computer). However, access to these machines was not available. 
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Provision has been made for the system to analyse each of these parameters 

(sections 5.9.2,5.9.3, and 5.9.4). 

3. The graphical user interface 

The user must be provided with easy-to-use controls over: 

(a) the processing and display of acoustic signal information. 
i 

(b) the processing and display of electrolaryngograph signal information. 

(c) the properties of the voice parameters derived from the two input signals. 

(d) the way in which the state of the voice parameters may be visualized. 

The user is provided with a series of forms. Each form contains controls 

concerning a particular aspect of system function. All of the aspects listed 

may be easily controlled by the user through the controls presented on these 

forms (sections 5.6.1 and 5.6.2). Furthermore, several properties of the user 

interface may be controlled by the user for enhanced ease of use (section 5.6.3). 

4. Visualization 

The user must be provided with the ability to visualize the state of voice pa- 

rameters in ID, 2D and 3D display configurations. For reasons of clarity, a 

visualization must employ a minimum of 15% of the complete screen display. 

The user is supported with control over a number of visualization configu- 

rations, including 11), 2D and 3D displays. Colour mapping may optionally 

be employed for enhanced presentation of information (sections 5.12.3 and 

5.12.4). 

5. Information on how to use the system 

The user must have easy access to information on how to use the software. 

The user guide has been arranged on the world wide web to provide easy 

access, at a centralised information point (section 5.5). 

6. Real-time performance 

The system must be able to derive all voice parameters listed and visually 

present the state of any parameter at a frequency of not less than 1OHz- 
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An assessment of the ALBERT system running on a Silicon Graphics Indigo 

computer has demonstrated that this criteria has been met. 

Appendix F contains an assessment of the performance of the system in evalu- 

ating each of the voice parameters. 

5.17 Conclusions 

This chapter has considered the nature of visual feedback for real-time voice analysis 

and subsequent enhancement of vocal qualities. It has introduced a highly config- 

urable system which may be used in real-time as an aid for voice tuition in a number 

of contexts, or in non-real-time as a tool for voice analysis. The system is able to 

support advanced analysis and display of parameters derived from voice source and 

acoustic output signals. The user is able to control many attributes of the way in 

which the system functions so that the most appropriate form of analysis and display 

may be arranged. This includes several properties of the graphical user interface, 

the rate of analysis and display, parameter control and visualization configuration. 
The arrangements may be stored to file. 

Several examples of configurations for real-time voice feedback have been pre- 

sented. 

The next chapter presents an investigation into the advantages of the system 

when used as a complimentary tool in the context of voice tuition. 



Chapter 6 

An assessment of biofeedback 

6.1 Introduction 

This chapter presents an assessment of the usefulness of the ALBERT system when 

used to provide visual feedback in real-time. The development of several parameters 

relating to vocal usage in two subjects have been considered as the subjects under- 

went consecutive sessions of singing tuition with a professional teacher. One subject 

was taught conventionally and the other was taught by the tutor with the aid of the 

ALBERT system configured to provide visually presented biofeedback based on the 

CQ and Ratio parameters identified in chapter 3 as indicative of vocal development. 

These parameters were presented as visual feedback both in solitude and then in 

combination. 
Previously, a discussion of the benefits of real-time visual feedback noted that 

several reports have indicated a relatively greater progress in the process of vocal 

tuition when subjects were taught with the aid of graphically presented biofeedback 

(i. e., Michi et al., 1993; Welch et al., 1989) (section 5.2). However, ýome studies 

neglect to employ a reference subject (i. e. Wirz & Anthony, 1979; Oster, 1988; Allen 

et al., 1991). This means that any observed trends are subject to the criticism that 

they may have occured regardless of the use of biofeedback. A formal study into 

the role of biofeedback in vocal development may benefit by employing a reference 

subject against which the progress of a subject taught using biofeedback can be 

compared. This is the approach taken in this study. 

172 
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FigUre 6.1: Bar graph display used for real-time hiofeedback 

6.2 Tuition 

Two male subject, ý were selected for the studY. Neither had all. N. proviou" 

of vocal tuition. A total of six periods of singing tuition won, receivod by each 

subject. Across the six sessions, subject A was taught lising convelitiolial tociliji(jiles 

with instruction being provided aurally by the tutor, with appropriate practical 

denionstrations. Subject B, in contrast, was a, dditiona. lly provided with visually 

presented biofeedback of the CQ and Ratio parameters. Those w(, i-(, employed in 

the following order: 

1. CQ - used during lessons 1 and 2 

2. Ratio - m5ed during lessons 3 and 

3. CQ and Ratio combined - ? t,,; e(i during lessons 5 and 6 

For (3) above, the CQ and Ratio paranletvrs were as-sessed relative to progress 

along the linear correlation between the two parameters observed during study 2 

(s(, (, section 4.4.9: figure 5.2-1). Details are given in Appendix G. 

Information was presented as a one dimensional graph identical or similar in 

appearance to figure 6.1. The bi0feedback update rato was twelve times a second. 
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This rate was based upon the assessment of the demands of the human visual system 

discussed in the previous chapter and the real-time load which the ALBERT system 

is required to handle. For the maximum load, this involved i) engaging the fft 

process for assessing the Ratio parameter, ii) engaging the voice source process for 

assessing the CQ parameter, and iii) updating the bar graph display of the parameter 

presented as feedback. The rate was found to be comfortable and appropriate during 

use. 

Lessons were held at approximately the same time of day, on the same day of 

successive weeks. For reasons of diary incompatibility a delay of one week had to be 

introduced between tuition sessions 3 and 4, and between sessions 5 and 6. Lessons 

were given by an established singing tutor and professional singer. 

6.3 Recording 

In order to assess their speaking voice, subjects were required to read aloud a se- 

quence of phonetically balanced text frequently used for speaking voice assessment. 
In order to assess their singing voice, subjects were required to sing a two-octave 

scale up and down, with inhalation between each octave. The assessment procedure 
is the same as that used in assessing the subjects for study 3 (see Appendix D). A 

frequency range for the singing assessment task was selected by the tutor for each 

subject individually. In terms of frequency range, the same allocated two octave 

scale was sung for each recording session. Subjects were initially recorded in the 

hour preceding the first tuition session. Subsequent recordings were made in the 

hour following each of the tuition sessions. Singers were not specifically asked to 

warm up prior to recording. Subjects were not given tuition or biofeedback during 

the recording period, but were simply instructed to perform the two assessment 
tasks as well as they could. The times taken by the subjects to read the spoken 

passage and sing the two octave scale were typically 80 seconds and 25 seconds 

respectively. 
Stereo recordings were made using a Sony TCD-D1O-PRO DAT recorder at a 

sampling frequency of 48KHz. The acoustic output of the subjects was monitored 

via a Sennheiser MKH/40/P48 cardiod microphone on one channel, and the output 
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Figure 6.2: Measures of FO across the recording sessions for the 

spoken passage relative to the lowest value in the data set 

from an electrolaryngograph was recorded on the other channel to monitor the 

area of vocal fold contact. Subjects were required to maintain a constant distance 

of approximately 0.3m from the microphone. Prior to recording, subjects were 

required to provide an indication of the loudest level at which they were to phonate 

and appropriate recording levels were set to ensure clipping would not occur. These 

remained unaltered for the duration of the session. Subjects were then required to 

phonate at a constant volume for a period of several seconds during which the SPL 

level at the position of the microphone was recorded by means of a DAWE D-1422C 

digital impulse sound level meter. The assessed level was then used as a reference 
for subsequent analysis of SPL for the recorded data. 

6.4 Results 

6.4.1 Fundamental frequency 

Results for the level of mean spoken passage fundamental frequency (FO) are 
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shown in figure 6.2. Subject B exhibits a clear, generally decreasing trend in mean 

FO. Subject A exhibits a relatively higher level of fluctuation. 

In the analysis of study 1, it was found that there was a statistically significant 
increase in mean FO for a group of male and female subjects after a short period 

of vocal tuition. It would be logical to expect the subjects in this study to exhibit 

generally increasing mean speaking voice FO. An initial observation of the data 

does not lend itself to this theory. During the first period of singing tuition in 

our study, the singing tutor identified a target range for the singing voice of both 

subjects based upon a professional assessment of their vocal potential. Subsequent 

tuition was based upon realising the potential of both subject's voice with regard to 

their target range. However, research by Gramming (1991) into adult voice usage 

concluded that the mean ITO value for normal speech was at approximately 20% 

of the total fundamental frequency range in semitones. Awan (1993) reported a 

similar result of 12-16%. Both authors noted that this level was essentially identical 

for trained and untrained subjects. In the following assessment, a compromise of 

17% is used. 

Figure 6.3 illustrates the first and last recorded mean speaking voice FO data 

relative to the FO frequency span after the final singing lesson. This is shown 

for both subjects. For subject A, the initial mean FO was approximately 7% of 

the final FO range. The pattern of change of FO illustrated for this subject in 

figure 6.2 demonstrates a generally unclear trend, although both linear and rank 

correlations imply a gradual increase in FO as a product of training. The subject may 
be regarded as exhibitting a gradual trend towards the 17% level. The indistinct 

pattern expressed by subject A may be regarded as a consequence of the close 

proximity of the subject's mean FO to this target level. For subject B, the initial 

mean FO for speech was approximately 30% of the final FO range. The pattern of 

change for this subject (figure 6.2) demonstrates a generally decreasing FO. This 

trend may also be interpreted as implying mean speaking voice FO is moving towards 

the 17% level of a target FO range. The clearer trend expressed by this subject may 
be a consequence of the greater difference between initial and target mean FO. This 

result provides strong indications to support Awan's (1993) proposal that 'training 

to influence aspects of the singing voice may also affect aspects of the speaking voice 
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Figure 6.3: A comparison of mean speaking voice FO with singing 

voice FO range assessed after the final tuition session 
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i. na p-edi'etable manne7'. 

However, these observations are subject to the criticisin that the observed trends 

in fundaiiienta I frequency may be d tie to some othercause such ; is iiatura I variability. 

The results froin study 1 (section 4.2), ill which all subjects demonstrated an incroase 

in inean fundamental frequency after a6 week course of vocal expression may be 

further regarded as all indicator that the results discussed for tll(' two Subjects ill 

this study inust be tentatively interpreted. 

The role of biofeedback in this trend is hard to identify. FO is not amongst the 

parameters presented as biofeedback to subject B. A tentative cmichision is that Hic 

FO trends exhibitted by both subjects are expressed as a function ()t' tuition In the 

manner discussed, and that biofeedback lias not had a direct influence. 

6.4.2 SPL 

Fig, ure 6.4 illustrates the pattern of change for the SPL parameter. There li; ivc heen 

previous observations that trained vocalists iise significandly greater inean intensitY 

le-vols in speech than untrained vocalists Awan, 1993). Both linear and rank 

234567 



CHAPTER 6. AN ASSESSMENT OF BIOFEEDBACK 179 

correlation measures have been applied to the speech and singing assessment tasks 

undertaken by the subjects in our study (see figure 6.4). These indicate a general rise 

in SPL across the period of training for both subjects. This applies to both speech 

and singing assessment. However, a consistent pattern of increase was not observed. 

The mean speaking voice SPL data for Subject A, who was taught without the aid 

of biofeedback, exhibits a gradual decrease in SPL across the first three recordings, 

with a subsequent general rise. However, the mean values for the sung scale exhibits 

a drop in SPL after the first tuition of session, with a subsequent pattern of consistent 

increase. Subject B, who was taught using biofeedback, exhibits a different pattern 

of data. In contrast to subject A, subject B exhibits a pattern of initial rise in 

mean singing voice SPL, followed by fall and then subsequent rise, with a final fall 

in value. 

For subject B, the trend in mean SPL is almost identical across all recording 

sessions for the singing and speaking voice assessment data. This is clearly not the 

case for subject A. However, it may be that this is due to some form of individual 

difference in the appreciation of tuition, or of physiology or anatomy between the 

two subjects. For example, the consistency in SPL between speech and singing voice 

modes for subject A may be due to the usage of two different modes of voice expres- 

sion, where subject B may only have used one. In addition, the study covers only 

a relatively small period of training. Differences in trends between subjects must 
therefore be carefully interpreted. The identical pattern of SPL for both speaking 

and singing voice expressed by subject B may be a result of the use of biofeedback, 

in which the subject was taught using objectively measured and displayed parame- 

ters. This may have resulted in a higher level of personal confidence in voice usage, 

resulting in a higher level of influence on the speaking voice. 
In terms of the general fluctuations observed, it must be noted that the influence 

upon SPL of the tuition which the subjects received is hard to assess. It would 

appear to be reasonable to conclude that fluctuations in SPL would occur as a 
long term function of tuition, reflective of shifts between different aspects of vocal 

production during the process of tuition and development. 
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A Singing 1.9589 0.8571 
A Speech 0.2995 0.6071 
B Singing 1.9145 0.9643 
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Figure 6.5: Measures of CQ across the recording sessions 

6.4.3 CQ and Ratio 
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Figure 6.5 illustrates the pattern of change for the CQ parameter. For the speech 
data, the subject taught without the aid of biofeedback (subject A) exhibits small 
but generally increasing changes, with consistent rise until session 4 whereupon 
the CQ data dips in value, followed by negligible change. For the singing data, 

the subject exhibits consistent increases of gradually increasing magnitude until 

recording 5, whereafter there is consecutive decrease for the two remaining data. 

The pattern of change for both singing and singing voice data is similar, in that 

data for both exhibit a general rise followed by fall. However, this is of far greater 

magnitude for the singing data than for the speech data, and the point at which the 

pattern of rise changes to fall occurs at different points. These trends contrast with 
data for the subject taught with the aid of biofeedback (subject B) who exhibits 

a consistently increasing pattern of CQ for the singing task, with only a small 

reduction for the final value. The pattern of mean CQ values for the speech task 

fluctuates up and down to a similar degree of that exhibitted by subject A. The 

pattern of change of mean CQ speaking voice data does not clearly follow that of 
the singing voice data. Rank correlations (see figure 6.5) assessing the pattern of 
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CQ data with regard to the recording number indicate a higher level of consistent 
increase for the subject taught using biofeedback. Linear correlations indicate very 

similar levels of correlation for the two subjects for the singing voice assessment, 

and a higher level of correlation for the subject taught using biofeedback for the 

speaking voice assessment. 
Figure 6.6 illustrates the pattern of change for the Ratio parameter. For the 

speech data, the subject taught without the aid of biofeedback (subject A) exhibits 

a generally consistent pattern of increase. A very similar pattern of change is evident 

for the singing data, with one major exception after the first singing lesson where 

a relatively large local increase has been recorded. The subject taught with the 

aid of biofeedback (subject B) exhibits a fairly consistent general increase in Ratio 

for the singing task, with a small dip in value for the final recording. For both 

subjects, the pattern of Ratio values for the speech task follows a pattern which is 

generally consistent to that of the singing task. Both linear and rank correlations are 
higher for the singing voice assessment than for the speaking voice assessment, which 

reflects the nature of the tuition in singing performance received by the subjects. 

Both forms of longitudinal correlation are similar for the two subjects. 
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The CQ and Ratio parameters are shown plotted against each other for the 

speaking and singing voice assessment in figures 6.7 and 6.8 respectively. For the 

speaking voice assessment, it can be seen that the slope of the line of best fit for the 

subject taught without using biofeedback (subject A) is negative. This contrasts 

with the positive correlation for the subject taught using biofeedback (subject B). 

It may be that the biofeedback employed by subject B has reinforced the state of 

vocal development for the subject, resulting in a higher level of confidence in the 

use of the same mode of vocal usage for speaking voice expression. Alternatively, it 

may be that the data would have been observed even if biofeedback had not been 

employed. 

To illustrate the way in which the electrolaryngograph and spectrum signals 

reflect the observed longitudinal change in the CQ and Ratio parameters, represen- 
tative frames were derived from the recordings for subject B. These are shown in 

figure 6.9. 
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6.4.4 A comparison between performance of the speaking and singing 

voice 

In figure 6.8 the domain of the CQ and Ratio parameters for the speaking voice 

assessment data illustrated in figure 6.7 is shown superimposed on the singing voice 

assessment data. In comparison to the singing voice assessment, data for the speak- 
ing voice exhibits a slightly smaller range with regard to the Ratio parameter, and 

approximately one third of the range of the CQ parameter. This applies to both 

subjects. The progression of CQ/Ratio performance across successsive assessments 

of the singing voice is shown to pass through the domain of the speaking voice data. 

This is also shown to apply to both subjects. However, the subject taught with- 

out the aid of biofeedback, subject A, exhibits a shift in direction at recording 5. 

Subsequently, the subject's path of CQ/Ratio data passes back over the domain of 
his speaking voice data. In contrast, subject B continues in a generally increasing 

CQ/Ratio direction. This difference may be regarded as further indication that 

subject A has retrogressed in contrast to the development of subject B. It may be 

conjectured that the biofeedback employed during the tuition of subject B is largely 

responsible for this contrast. 

6.5 Discussion 

In chapter 4, a strong correlation was observed between the CQ and Ratio pa- 

rameters. In this section, CQ and Ratio data is compared with the second study 

presented in that chapter. This study has the most comparable time scale of the 

three studies presented. To recall, study 2 involved analysis across an eight month 

period of a group of 6 male subjects studying acting skills. The corresponding CQ 

and Ratio data for both speech and singing tasks have been superimposed on the 

data derived for subjects A and B. Data for the speaking voice and singing voice 

assessment are shown in figures 6.10 and 6.11 respectively. For the speaking voice 

assessment, the span of CQ/Ratio data for the subjects from the previous study is 

similar to that expressed by subjects A and B. However, the correlation between 

the two parameters appears stronger for the subjects of the previous study. This is 

likely to be due primarily to the greater emphasis on speaking voice development in 
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the training of these subjects, and secondly to the relatively greater number of sub- 

jects. For the singing voice assessment the span of both CQ and Ratio data for the 

subjects of the previous study is far smaller than that expressed by subjects A and 
B. This is also likely to be a reflection of the greater emphasis on singing tuition 

in the vocal development of subjects A and B. Subjects from the previous study 

studied primarily acting, rather than singing, skills. They undertook singing lessons 

at relatively less frequent intervals. Furthermore, the style of singing tuition was 

not that of the Bel Canto technique adopted by the tutor in the tuition of subjects 

A and B. In addition, because some subjects were unable to confidently complete a 

two-octave scale at the start of the recordings made for study 2, the nursery rhyme 

'Baa Baa Black Sheep' was used for an assessment of the singing voice instead of 

a two-octave scale. This form of assessment may be regarded as placing less of a 

demand on the performance of the singing voice for many subjects, and this may 

also be reflected in the contrast in assessed CQ/Ratio development. 

Figure 6.12 illustrates the trend in data for CQ and Ratio parameters for the 

subject taught using biofeedback. With regard to the CQ and Ratio parameters, 
it is interesting to note the small influence on one parameter when biofeedback is 

presented concerning the other. When biofeedback was presented based on the level 

of CQ (reflected in figure 6.12, intervals 1 and 2) there was a relatively high increase 

in the assessed level of CQ. During this period, the Rato parameter exhibitted a 

slight rise followed by a slight fall in value. When biofeedback was presented based 

on the level of Ratio (figure 6.12, intervals 3 and 4), the CQ parameter exhibitted 

only very slight increases in value. When biofeedback was presented based on both 

parameters combined (intervals 5 and 6), there was an initial increase and subsequent 
decrease in the singing voice assessment for both parameters together. For each of 
the three occasions in which a previously unobserved parameter is employed as 
biofeedback there is a large advance in the formal assessment of that parameter for 

the first tuition session in which it is used, followed by relatively less advance for the 

second tuition session. This was actually expressed as a reduction in the case of the 

CQ and Ratio parameters combined (interval numbers 5 and 6). Two conclusions 

may tentatively be drawn; 

1. the visually presented biofeedback in this study has been absorbed as part of 
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the subject's voice usage technique to an extent and subsequently expressed 

in formal assessments, and 

2. the greatest appreciation of biofeedback based on a particular parameter oc- 

curs during initial use of the biofeedback. 

Furthermore, it would appear that biofeedback based upon either CQ or Ratio 

parameters in solitude in the context of this study has a major effect on the visually 

presented parameter, but small effect with regard to objective assessment of the 

other parameter. 
With regard to the CQ and Ratio parameters considered in combination, the 

progression of subject A may be regarded as appearing to lose direction along the 

previously proposed developmental continuum. This is in contrast to subject B, who 

maintained a relatively steady rate of advance. Both linear and rank correlations 

(figure 6.7) indicate stronger correlations for the subject taught using biofeedback, 

both for singing and speech tasks. Two previous observations also support the pro- 

posal that biofeedback has resulted in relatively more sustained vocal development; 

the greater clarity of trend in mean speaking voice FO for subject B (figure 6.3), and 

the far greater level of consistency between speaking and singing voice mean SPL 

(figure 6.4). 

However, all of the conclusions presented in this section are not proven. Other 

factors that are in themselves unrelated to the use of visual feedback, such as nat- 

ural variability and differences between the two subjects, may be partly or wholly 

responsible for the observed trends. 

6.6 Conclusions 

This study has identified clear developmental trends in the level of laryngeal closed 

quotient and the level of spectral amplitude in the singer's formant region relative 

to all spectral output. Measures of FO and SPL have also exhibitted trends as a 
function of the development process. There are indications that the influence of 

real-time visually presented biofeedback of laryngeal closed quotient and a measure 

of the 'singer's formant' phenomenon has supported a higher level of consistently 

sustained increases in parameters relating to vocal performance than an equivalent 



CHAPTER 6. AN ASSESSMENT OF BIOFEEDBACK 190 

tuition context in which biofeedback was not employed. However, the observed 

trends in data may be partly or wholly due to factors which are unrelated to the 

use of visual feedback. 



Chapter 7 

Conclusions 

7.1 An overview of research with regard to the original 

hypothesis 

In chapter 1, a hypothesis was proposed which stated: 

Computer systems which 

1. objectively measure a large set of vocal attributes, 

2. appropriately translate these attributes to a smaller set of easily interpreted measures 

relating to vocal efficiency, and 

3. dynamically display this information in an appropriate graphical form during the pro- 

cess of vocal tuition 

may be able to provide an useful objective measure of progress for the advancement of 

vocal development. 

In order to satisfy this hypothesis, the following steps were proposed: 

1. The analyses of developing voice users in order to identify parameters indicative of 

voice development. 

2. The development of a software tool for vocal tuition able to embody these parameters 
in the process of analysis and subsequent visual display which can operate in real-time. 

3. An assessment of the usefulness of the visual feedback system employed in real-time 

tuiton. 

191 
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The work that has taken place towards the satisfaction of these goals is consid- 

ered below: 

1. The identification of parameters indicative of voice development 

An analysis of the vocal mechanism was presented in chapter 2. This pro- 

vided the base for an identification of several voice source and acoustic output 

parameters in chapter 3 which were shown to relate to voice performance. 

In chapter 4 these parameters were then analysed for their suitability as a 

measure of vocal development. This analysis provided indications to support 

the proposal that the level of closed quotient of the vocal folds and the level 

of spectral amplitude in the singer's formant frequency region relative to the 

level of spectral amplitude in the remainder of the vocal output spectrum were 

both reflective of vocal development to an extent. 

2. The development of an appropriate system 

A highly configurable software project was then developed for analysis and 

visual feedback of voice signals able to operate in real-time as a tool for a 

voice tutor. As presented in chapter 5, the software is able to assess a number 

of voice parameters in solitude or in algorithmic combination, and to present 

the value of these data in an appropriate form of visual display during the 

phonation process. 

3. An assessment of the system using the identified parameters 
This software tool was then used to present the two parameters identified as 

indicative of vocal development as part of a formal assessment of the benefits of 

their assessment and presentation in real-time. This was presented in chapter 

6. The study demonstrated the useability of ALBERT in a training context, 

where its application in supporting a programme of voice tuition was well 

received by both instructors and students. There are some indications that 

use of the system could support a higher level of consistency in improvement 

of vocal performance than an equivalent tuition context in which the system 

is not employed. 

There are some indications that the original hypothesis has been satisfied, al- 
though it has not been proven. 
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There are several areas in which this research may be extended. These are discussed 

with regard to the three goals: 

1. The identification of parameters indicative of voice development 

The performance of the voice parameters discussed in chapters 2 and 3 with 

vocal tuition may be clarified by further studies. These would benefit from 

assessments over a wide range of contexts of voice usage, over longer periods 

of time, and with a greater number of subjects. As a result of such research, 

there may be a clearer appreciation of parameters whose role is largely known, 

such as the CQ and Ratio parameters, in addition to others whose role is 

less clear, such as the rate of opening and closing parameters considered in 

voice studies 1 and 2. The nature of the developing female voice in particular 

warrants further research. 

2. The deveIopment of an appropriate system 

The ALBERT system was designed to be highly flexible. Changes to the 

software are required only if a currently unsupported parameter is identified 

as useful for monitoring in a tuition context. ' 

3. An assessment of the system using the identified parameters 

The usefulness of any changes to ALBERT could then be assessed. There 

are many different tuition contexts including the field of linguistics and the 

treatment of dysfunctional voice subjects in which the benefits of biofeedback 

are largely untested. Formal tests with large number of subjects would provide 

indications of the usefulness of the ALBERT system in these contexts. 

'If alterations are required, the use of the world-wide standard programming language called 'C' 

will considerably facilitate any required alterations. The graphics library which ALBERT employs 

in the visual display of information (called 'GL') is also rapidly becoming adopted as a world-wide 

standard for graphics programming. FVrthermore, the cost of hardware on which the ALBERT 

system will run without alteration has dropped over the past 3 years from S7000 to S3000, with an 

associated increase in speed of a factor of 3. This trend looks set to continue, bringing affordable 

tools for voice tuition within reach of the average voice tutor and user. 



Appendix A 

Study I- programme of work 

Over a period of six weeks subjects received vocal tuition involving the following 

techniques. 

1. Physical balance of posture and alignment, relaxation (including 

support from Alexander Technique specialist) 

Free-up physical constriction and nervous tension. 

Locate areas of tension and contrast stiff limbs with relaxed areas. 

Increase ability to achieve stillness, calm control, hold attention. 

Check balance and carriage of head, neck, shoulders, and support for the lar- 

ynx within neck, and any other areas needing release. 
Check flexibility and ease of vocal tract jaw, lips, tongue, soft palate and 

throat. 

Increase ability and ease in deepening breath capacity and control. 

Convey effective visual message to listeners, readiness to interact. 

2. Breathing 

Extend effective breath capacity to power the voice. 

Centralise breathing, involve lower rib expansion and diaphragm and abdom- 

inal muscles to support easy breath and voice flow. 

Select adequate breath supply to support vibration of vocal folds. 

Employ greater pressure of breath to achieve greater volume of voice. 
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3. Resonance 

Balance modification of the voice in throat, mouth and nose. 
Maximise use of open jaw, mouth shaping and resonance for carrying power 
(projection). 

Balance mouth resonance emphasising front for greater flexibility of inflexion. 

Make sure voice "rooted", supported by the body. 

4. Pitch 

Each subject tests to select optimum pitch within their unique voice range. 
Increase range and flexibility. 

5. Muscular energy of organs of speech (lips tongue, etc) in forming 

words 

Check precision of shape and closure in forming vowels and consonants (for 

clarity only, not to adopt any specific accent). 

Increase awareness and sensitivity of sound qualities in words that enhance 

meaning, visual or sound 'image'. 

6. Reading text and speaking 

Adapt to the 'intention' or mood in spoken text or in speaking. 
Establish appropriate pauses, rhythm, phrasing and pace. 
Assess the role, status or tone the speaker transmits. 

Size up need to adapt to the listening group. 

Estimate effect of voice with reverberation from windows, walls, or absorbed 
by carpets, ceiling height, etc. 
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Study 1- assessment procedure 

1. Opening lines from the short story 'The Voyage' by Katherine Mansfield. 

"It was a beautiful night, mild, starry, only when they got out of the cab and 

started to walk down the Old Wharf that jutted out into the harbour, a faint 

wind blowing off the water ruffled under Fenella's hat, and she put up her hand 

to keep it on. It was dark on the Old Wharf, very dark: the wool sheds, the 

cattle trucks, the cranes standing up so high, the little squat railway engine, 

the huge coils of rope, all seemed carved out of solid darkness. Here and there 

on a rounded wood-pile that was like the stalk of a huge black mushroom, 

there hung a lantern, but it seemed afraid to unfurl its timid, quivering light 

in all that blackness; it burned softly, as if for itself... " 

2. Excerpt from 'Androcles and the Lion' by Bernard Shaw. 

Subjects were instructed not to read the parenthesised actions, which were left 

in order to keep the context clear. Subjects were given the following context 

prior to reading : The centurion addresses the Christians with whom he, and 

the other soldiers, have been fraternizing on the journey to Rome. 

"Halt! Orders from the Captain. [They halt and wait]. 

Now then you Christians, none of your larks. The Captain's coming. Mind 

you behave yourselves. No singing. Look respectful. Look serious, if you're 

capable of it. See that big building over there? That's the Coliseum. That's 

where you'll be thrown to the lions or sent to fight the gladiators presently. 
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Think of that; and it'll help you to behave properly before the captain. [The 

Captain w7ives]. 

Attention! Salute!... " 

3. Consonant-vowel-consonant word sequences. 

BOOD BEAD BAD BUD BED BIRD BARD BOARD 

MOON MEAN MAN MUN MEN MURN MARN MORN 
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Study 2- assessment procedure 

1. Please say your age and experience 

2. Please say your name and today's date 

3. Please read the following passage: 

The Story of Arthur the Rat 

There once was a young rat named Arthur, who would never take the trouble 

to make up his mind. Whenever his friends asked him if he would like to go 

out with them he would only answer, "I don't know. " He wouldn't say "Yes" 

and he wouldn't say "No" either. He could never learn to make a choice. 

His aunt Helen said to him, "No-one will ever care for you if you carry on like 

this. You have no more mind than a blade of grass. " Arthur looked wise, but 

said nothing. 

One rainy day the rats heard a great noise in the loft where they lived. The 

pine rafters were all rotten, and at last one of the joists had given way and 
fallen to the ground. The walls shook and the rats' hair stood on end with 
fear and horror. "This won't do, " said the old rat who was chief, "I'll send 

out scouts to search for a new home. " 

Three hours later the seven scouts came back and said, "We've found a stone 
house which is just what we wanted. There's room and good food for us all. 
There's a kindly horse named Nelly, a cow, a calf and a garden with an Elm 

tree. " Just then the old rat caught sight of young Arthur. "Are you coming 
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with us? " he asked. "I don't know, " Arthur sighed, "the roof may not come 

down just yet. " "Well, " said the old rat angrily, "we can't wait all day for you 

to make up your mind. Right about face! March! " And they went off. 

Arthur stood and watched the other rats hurry away. The idea of an immediate 

decision was too much for him. "I'll go back to my hole for a bit, " he said to 

himself, "just to make up my mind. " 

That night there was a great crash that shook the earth, and down came the 

whole roof. Next day some men rode up and looked at the ruins. One of them 

moved a board, and under it they saw a young rat lying on his side, quite 

dead, half in, and half out of his hole. 

4. Please think of a passage you can recite for at least 30 seconds. Please recite 

it - 

a) in your normal speaking voice 

b) in a quiet, withdrawn voice (minimal projection) 

c) as if you are on a stage in front of an audience (maximum projection) 

5. Please sing the following verse. 

Baa-Baa Black Sheep 

Baa-Baa Black Sheep have you any wool? 

Yes sir, Yes sir, Three bags full. 

One for the master, and one for the dame, 

And one for the little boy who lives down the lane. 
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Study 3- assessment procedure 

1. Please say your age and experience 

2. Please say your name and today's date 

3. Please read the following passage: 

The Story of Arthur the Rat 

There once was a young rat named Arthur, who would never take the trouble 

to make up his mind. Whenever his friends asked him if he would like to go 

out with them he would only answer, "I don't know. " He wouldn't say "Yes" 

and he wouldn't say "No" either. He could never learn to make a choice. 

His aunt Helen said to him, "No-one will ever care for you if you carry on like 

this. You have no more mind than a blade of grass. " Arthur looked wise, but 

said nothing. 

One rainy day the rats heard a great noise in the loft where they lived. The 

pine rafters were all rotten, and at last one of the joists had given way and 
fallen to the ground. The walls shook and the rats' hair stood on end with 
fear and horror. "This won't do, " said the old rat who was chief, "I'll send 

out scouts to search for a new home. " 

Three hours later the seven scouts came back and said, "We've found a stone 
house which is just what we wanted. There's room and good food for us all. 

There's a kindly horse named Nelly, a cow, a calf and a garden with an Elm 

tree. " Just then the old rat caught sight of young Arthur. "Are you coming 
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with us? " he asked. "I don't know, " Arthur sighed, "the roof may not come 

down just yet. " "Well, " said the old rat angrily, "we can't wait all day for you 

to make up your mind. Right about face! March! " And they went off. 

Arthur stood and watched the other rats hurry away. The idea of an immediate 

decision was too much for him. "I'll go back to my hole for a bit, " he said to 

himself, "just to make up my mind. " 

That night there was a great crash that shook the earth, and down came the 

whole roof. Next day some men rode up and looked at the ruins. One of them 

moved a board, and under it they saw a young rat lying on his side, quite 
dead, half in, and half out of his hole. 

4. Please sing a two octave scale up and down. You may wish to take a breath 

between each octave. 
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Chapter I 

Introduction 

1.1 The ALBERT program 

ALBERT was created as part of a SERC sponsored project entitled Real-time visual 

displays for professional voice development between 1992 and 1994. It was designed 

to satisfy the need for a comprehensive analysis system for voice source and acoustic 

output signals of the human voice able to operate in real-time. An illustration of the 

way in which ALBERT can be employed for real-time visual feedback is shown in 

figure 1.1. In this mode of operation, ALBERT is used for real-time visual feedback. 

The software runs on a Silicon Graphics machine equipped with audio hardware 

(such as an Indigo or Indy computer). It was written entirely using the 'C' pro- 

gramming language. Graphics were controlled using the 'GL' graphics library. The 

FORMS graphical user interface (GUI) system developed by Mark Overmars was 

used in the creation and handling of the graphical user interface. David Rossiter, the 

Research Associate employed for the project, wrote the software and this manual. 

1.2 Reading this document on the computer 

This User Guide is available both as a postscript document and as an interactive 

hypertext document at the following www address. ' 

'This document was written using the 'latex' formatting system. A version suitable for viewing 

on the world wide web (www) was obtained by converting the document using the 'latex2html' 

program created by Nik Dracos. 
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Figure 1.1: An overview of the ALBERT system process 
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http: //www. york. ac. uk/-eleclO/albart-manual. html 

The postscript document can be printed out and used as a hardcopy reference. 

The world wide web version can be used to traverse, view and print specific sections 

of the manual. 
The manual may be accessed using the ALBERT program by pressing the 

button of the ALBERT main program graphical interface (see section 

4.2). 

1.3 Terminology used in this manual 

Some of the terms used in this manual may be unfamilar to the reader. These are 

described below. 

Form. A form is a graphical window which contains controls that the user can 

operate. Each form is concerned with a particular area of operation. 

Drag out. To 'drag out' is the term used to describe the technique used to 

give the user control over the height and width of the window. This involves the 

user clicking on the left mouse button and then, whilst holding down the button, 

moving the mouse down and to the right. The outline of a window will be shown. It 

will expand and shrink with the mouse movement. The user may release the mouse 
button when the required dimension has been achieved. 

Fields. In the context of this User Guide, fields represent certain qualities of a 

voice parameter. For example, the legal minimum and legal maximum values of the 

'Frequency' parameter are both fields of the parameter. 

In the course of the text, a rectangular outline is used to indicate the description 

of a button presented in the user interface. For example, OIN7 andFOFF I buttons 

appear in several places. 

1.4 Organisation of this manual 

In section 1, an overview of the requirements and aims of the ALBERT software 

is provided. In section 2 the basic controls required for the user to start using 

ALBERT for voice source and acoustic analysis are discussed. In section 3, control 
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over voice parameter fields and visualization is described. In section 4, ;1 cmnpletv 

description of the use of all ALBERT forms is provided. Finally, in section 5 and 6 

command line control and Function key operatiows are describcd. 

1.5 Hardware required 

1.5.1 Introduction 

The ALBERT systein can be iused to allalyse the voice Source, or tll(, acoustic 

output. or both combined. There are certain hardware requirements (in addition to 

the computer itself) depending on the desired function. 

1.5.2 Voice source analysis 

Ali external 1)1(, c(, of hardware is required in order to use the sYstem for voice source 

aiialysi,,. This is called an clecffolaryng(ý(puph. In order to use it, two electrodes 

need to be placed oil the surface of the neck at the 1(, Nr(, l of the thyroid cartilage. 

A high frequency current is applied. When correctly used, the level of* impedance 

to this current is proportional to the area of vocal fold contact. Uso of' the vIvctro- 

laryngograph is illustrated in figure 1.2. 
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1.5.3 Acoustic analysis 

A microphone is required to analyse the acoustic signal. However, one is normally 

provided as standard with the Silicon Graphics computer. 

1.5.4 Both combined 

ALBERT can process both voice source and acoustic signals at the same time. If 

this is desired, a microphone different to that supplied with the computer hardware 

is probably required. The microphone and electrolaryngograph signals need to be 

combined. A special lead may have to be constructed for this. Alternatively, one 

method is to pass microphone and electrolaryngograph outputs into a DAT machine, 

and then pass the output from the DAT machine into the Silicon Graphics computer. 
This has the benefit that any input to the computer can be recorded for future 

reference. 

1.6 Setting up the environment 

1.6.1 Introduction 

It is advisable to set up the software environment in which ALBERT operates before 

running the program. Some ALBERT functionality relies on setting these environ- 

ment variables, as discussed below. 

1.6.2 The ALBERT-SFS variable 

The audio and/or voice source signals recorded to file within ALBERT can be in- 

teractively viewed and printed. To achieve this, ALBERT uses the speech filing 
2 

system (SFS) suite of programs. A temporary file is created during the process of 
transferring the recorded signals from the file in which ALBERT originally recorded 
the signals into the SFS domain. ALBERT relies on one environment variable to 

point to a directory where this temporary file is to be placed. This variable is called 
$ALBERT-SFS. 

2 This requires that the SFS programs are properly set up in the normal way - see section 1.6.4. 



APPENDIX E. ALBERT USER GUIDE 213 

It is usually appropriate to point this variable to the temporary file space area 

of the computer, such as /usr/tmp. For this purpose, it is recommended that you 
have the following lines in your c. 5hrc file in your home directory. 

set ALBERT-SFS = /usr/tmp 

setenv ALBERT-SFS $ALBERT-SFS 

Before using this utility, you must be sure that the directory (in this case, 
/usr/tmp) exists and that the directory can be read from and written to by all 

users. 

If required, the relevant directory can be created by typing 

mkdir /usr/tmp 

and can be made readable and writable by everyone by entering 

chmod a+rw /usr/tmp 

1.6.3 The ALBERT-INFO variable 

ALBERT relies on another environment variable to tell it how to present the manual. 
This variable is called $ALBERT-INFO. It is recommended that you have the following 

lines in your cshrc file in your home directory. 

set ALBERT-INFO = 'mosaic 

http: //www. york. ac. uk/-elecIO/albort-manual. htmll 

setenv ALBERT-INFO $ALBERT-INFO 

With this configuration, upon clicking the button ALBERT will call 

up the world wide web (www) viewer program called 'mosaic' and point it to the 

interactive hypertext version of the manual. 

1.6.4 Other programs 

In order to achieve its power, ALBERT uses several other programs for certain 
functions. Separate documentation exists for each of them, to which the reader is 

referred for further information. They are; 
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1. icol. This is an editor for interactively creating a colour scheme against which 

to map a range of data values. 

2. bob. This is a 3D interactive viewer program which is able to use icol to 

produce visualization displays of any section of a range of data. 

3. sfs programs. These are used when the user requests that the recorded audio 

and/or electrolaryngograph signals be viewed. This is done by pressing the 

, 
r-V-iew-S-P7-, or buttons (see section 1.6.2). 

You must ensure that these programs are properly set up in the normal way, 

with the user path set so that the programs can be executed when ALBERT needs 
to do so. Please refer to the manuals for information on how to do this. 

1.7 Summary 

This chapter has introduced the ALBERT system, discussed the hardware require- 

ments, and provided information on how to access the User Guide and arrange the 

environment so that ALBERT can operate properly. In the next chapter the user 
is introduced to the ways in which ALBERT is used to analyse voice source and 

acoustic signals. 



Chapter 2 

How to get going 

2.1 How to run ALBERT 

To run the program, just type 

albert 

from the normal shell window. 
Some command line options exist. These are discussed later, in section 5.1. 

2.2 Recording and playback 

Voice source and acoustic signals can be recorded within ALBERT. Recordings can 
be made to memory or to file. Two forms are provided for control over each of these. 

They are essentially identical. To begin recording a sequence, just press the 

button on the form. Press it again to finish recording. PressFp-la-yý to play it back. 

During playback, the signals will be analysed by ALBERT if the algorithms have 

been turned on. The user can examine the soundfile by pressing the [Eig button, 

which transfers the audio information into SFS format and calls the SFS viewer 

program. 
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Figure 2.1: One period of the electrolaryngograph waveform with 

normalised amplitude and frequency 

2.3 The voice source signal 

2.3.1 Introduction 
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There are ý, oiiic basic steps before ALBERT can be used to aiial. vý, c an vIectrolarYn- 

gograph signal. 

2.3.2 Correct use of the elect rol ary ngogra 1) h 

Ensure that the clectrolaryngograph is used in a, manner appr()priat(, for getting 

the best possible signal. This requires the careful positioning ()f both clectrodes 

oil either side of the neck at the level of the lary'nx. The clectrolarygograph signal 

should be viewed oil ail oscilloscope. Once a ba, sic signal has been obtained, an 

improved signal can often be obtained by trying a few ditferent vlectrode Im. sitions 

whilst phonating. A good clear signal oil an oscilloscope displaY should 1()()k similar 

to that shown in the window displayed in figure 2.1. 

2.3.3 Ensuring ALBERT is analysing correctly 

The user must ensure that ALBERT is set to interpret the infin-mation froin the 

electrolaryng-ograph in the bost way This requires ensuring that the proo-rain treats 

tlii,, signal appropriately. The inain controls for this are shown in figure 2.2. 

The primary selections that need to be inade areý 
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1. whether to Invert the signal or not. If the signal on the CRO looks like an 

tipside-doxvn version of figure 2.1, press the invert ON button. 

2. the channel ( I-c-7"fft or 
FR, ýghýt) on which the signal is incoming. F 

There is an option to let you see NvIiia signal the progr; ini is receiving. Press the 

button FPeriodl on the voice source forin (section 4.8). A window will come up. An 

example is shown in figure 2.1. In this window the computer will displ; ly what it 

regards as one period of the electrolaryitgogra, pli signal. It scýileý, the sign; il to fit the 

window regardless of the frequency or amplitude of the sigiml. This displity is very 

useful in ensuring that the program is treitting the incoming electi-ohiryngograph 

signal correctly. 

The voice source assessment algorithill ll('('(IS to be 'tulled, to correct 

operation. An appropriate method for this is; 

1. Get the 'apanel' prograin display oil the screen by pressing the I Audio cont 

button at the top left of the inain screen display. 

2. Say 'ali' alond for several seconds. During this tliii(, perform action. s (3) and 

(4) below. 
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3. Alter the input level meters on the apanel display so the level is close to the 

maximum height possible without the red area lighting up. 

4. Press the threshold button. ALBERT will now calibrate itself. 

A slider control is aJso provided so that the user may directly control the perfor- 

mance of the electrolaryngograph signal analysis algorithm. This is present on the 

Threshold form (section 4.11). 

2.3.4 Analysis modes 

There are two modes for deriving information from the electrolaryngograph signal. 

The first examines the incoming signal at periodic intervals and uses only the first 

legitimate signal it encounters in each buffer of incoming signal. The second option 

requires ALBERT to extract every single legitimate period from the incoming signal. 

The first option is suitable for real-time use; the second is not, because it takes a lot 

more time to process all the periods in each buffer instead of just the one. To select 

the first option, press the attribute derivation I First in b7uff7er button. To select the 

latter option, press the I All in buffeýr button. 

2.3.5 Period display options 

The user is able to control the display of the period signal in several ways. The 

control form for this is shown in figure 2.3. For example, the user can select how 

much of the previous period to display. If the user wants to see only the current 

period, he can would move the slider shown on the form to the far right. If the user 

wishes to see all of the previous period in addition to the current period, he/she 

would move the slider to the far left. An intermediate selection of 40% is good for 

positioning the main body of the electrolaryngraph period signal approximately in 

the centre of the window. 

2.3.6 Animation 

Using the same form (figure 2.3), the user has access to a simple animated display. 

This infers the action of the larynx from the last period display. The user should 

first obtain a good period signal, and then press the button. Animation 
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Figure 2.3: Voice period control form 
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will be shown in a scaleable window. Repeated action L, availablc bly pres.,, ing the 

comma key, or by selecting one of the appropriate buttons. 

2.4 The acoustic signal 

The control for han(Iling the processing of the acoll'ýtlc signal i", 'llown ill figlin, 

2.4. In order to analyse the acoustic signal, the user inust first select the relevant, 

channel ([71eft /[Ri-gjht]). The selected channel will usuallY be the opposite to the 

electrolaryngograph signal channel. However, it is possible to analyse the spectrum 

of the electrolaryngograph signal instead of' the acoustic signal simply, by selecting 

the channel of the clectrolaryngograph signal. 

In order for the acoustic signal to be analysed, the algorithin used to process 

the signal must be turned on. The is achieved 1), Nll pressing the FFT algorithin 
FO-N] 

button. The user can then select whether to Nri(, w the acoustic information as a plot 

of spectral amplitude across frequency, or as a spectrograin. To display the fin, mer, 

the user would select Anip/Freq [Shoi7v. To display the lalter, the user would solect 

Freq/time 

2.5 Summary 

This chapter has introduced the basic tochniques required to ALBERT t*()i- voico 

source and acoustic signal analysis. In the next chapter advanced tocliniques are 
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Figure 2.4: Acoustic analysis control form 
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presented for controlling and displaying the state of the voice parameters which 

ALBERT derives froin the two signals. 



Chapter 3 

Parameter and visualization 

control 

3.1 Introduction 

From the voice source and acoustic signals several voice parameters are derived. 

This chapter describes how these parameters may be controlled and visualized. 

3.2 Voice parameters 

If both voice source and electrolaryngograph signals are being processed correctly, 
ALBERT updates a number of parameters which the user can analyse. These are: 

1. the fundamental frequency of the voice (FO) 

2. the closed quotient of the voice (CQ) 

3. the rate of opening of the vocal folds (oa) 

4. the rate of closing of the vocal folds (ca) 

5. the spectral distribution of the voice output (Ratio) 

6. the loudness of the voice (SPL) 

7. the change in loudness from one time instant to the next (shimmer) 

8. the period-to-period change in fundamental frequency (jitter) 

221 
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9. time 

10. the peak-to-peak amplitude of the electrolaryngograph period (Ix amp) 

11. the change in amplitude of the electrolaryngograph period from one time in- 

stant to the next (Ix shimmer) 

The user can display each of these parameters using visualization techniques 

described in the next section. Prior to this, however, the user may wish to examine 

or alter some of the properties of the parameters. The control for this is shown in 

figure 3.1. 

The parameters are listed in the window shown in the top-left hand corner of 
the form. To see the fields of a particular parameter, the user needs to select the 

parameter from this list by clicking on it. The fields will then be shown in the small 

windows to the right and below the parameter list. The user can alter the fields by 

clicking on the field and altering the text. 

3.2.1 Extending the list of voice parameters 

" new parameter may be created by the user by pressing the I add new parameter 

" 'skeleton' parameter is then created by ALBERT with dummy fields. 

The user may then alter these fields according to his/her requirements. The 

user is able to define a new parameter based on an algorithmic treatment of other 

parameters. For example, to provide a new parameter which gives an indication 

of the performance of CQ with regard to frequency, the user can request a new 

parameter button, provide a new name for the parameter (for example, CQ-f req), 

and enter the equation for the new parameter (in this case, CQ/Freq). Once the other 

fields have also been entered, the new parameter may be used for visualization or 

for reference by a further algorithm. 

3.3 Parameter visualization 

The state of any of the parameters supported by ALBERT can be displayed using 

the Visualization controls shown in figure 3.2. For example, to display the state 

of the fundamental frequency parameter as a bar graph, the user would typically 
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Figure 3.1: ALBERT paraineter control window 
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Figure 3.2: ALBERT visualization control window 
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select the [T-D--ý and I Always bla buttons, click on the ILX Freq' label in the y 

axis column, and then select one of the 'Spawn window' options in the centre of the 

form. The display will appear in a window, and the state of the parameter will be 

shown updated in real-time. 

By following a similar process, a two dimensional graph can also be created. For 

example, to display a 2D plot with time along the x axis and frequency along the y 

axis, the user would typically select the FRDý and I Always black I buttons, Click on 

the 'time' label in the x axis column and the 'LX Freq' label in the y axis column, 

and then select one of the 'Spawn window' options. The display will appear in a 

window, and the graph will be plotted in real-time. 



Chapter 4 

Functional units 

4.1 Introduction 

ALBERT has many functional components. For example, there are some functions 

concerned with only voice source analysis, and there are some functions concerned 

with acoustic analysis. The controls for the various ALBERT functions are grouped 
together and presented to the user on separate units, called 'forms'. In this section 
the functionality and control of each of the 16 forms is described in detail. 

The order in which the forms are described in the following sections is the same 

as that in which they are listed on the Visibility control form, which is usually shown 

at the top right hand corner of the screen. If you are reading this section next to 

a, or on, a computer running ALBERT, you may wish to click on the form being 

described so that you can relate the descriptions with the actual form display. 

4.2 Header form 

This form provides a banner for the display of the name and version number of the 

software. It additionally provides the user with easy access to the ALBERT manual 
in electronic form. 

226 
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4.3 Audio form 

227 

This form provides the user with an easy method to start the program used for audio 

input/output control. This is currently the Silicon Graphics 'apanel' program. 

4.4 Acoustic form 

This form contains the main controls for acoustic processing. It is shown in figure 

2.4. It contains controls for : 

1. ý channel selection 

2. turning FTVW the fft algorithm, which must be enabled for acoustic analysis 

and SPL assessment 

3.1 SPL calibrationl. For this, the fft process must be engaged. Phonation is 

required at a constant output level and constant distance from subject to 

microphone. During this period of stable phonation this button should be 

pressed. ALBERT will then prompt for the SPL level in dB's (as determined 

by an SPL meter at the position of the microphone). Assuming the subject 

maintains the same constant position relative to the microphone, ALBERT 

will subsequently supply a correct SPL level reading when the fft process is 

turned on. This is expressed as the 'spl' variable. 

4.1 View recording ý This button transfers the acoustic channel of a recorded file 

sequence (section 4.6) to the Speech Filing System (SFS) domain. The SFS 

editor program called 'es' will appear. The user may then zoom in and play 

or print part or all of the signal sequence. 

5. . Provides the user with a spectrogram display. 

Provides the user with a display of spectral amplitude across 

frequency. 

7. Scale. The display of spectral amplitudes in the Amp/freq window can be 

scaled vertically using the slider provided. Use of this slider does not otherwise 

affect processing and display of the acoustic signal. 
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4.5 Acoustic and source form 
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This form provides the user with the ability to change the processing and display 

update rate. Three sliders are provided; one displays the number of updates per 

second, another displays the number of samples per buffer, and a third displays the 

length of time of each buffer. All three slider values are inter-related. A change in 

one of the three will result in automatic changes to the other two. 

There is additionally a button to transfer the file recording of both voice source 

and acoustic signals into SFS form for interaction and display in the manner de- 

scribed previously (section 4.4). 

4.6 File record form 

This form provides the user with easy control over the recording and playback of 

acoustic and laryngeal signals. Using this form, both signals can be recorded to file. 

The name of the file is 'default. bin' by default. The user may select a new file name 

by clicking on the I Recording box. 

To start the recording of the incoming signal, the user clicks on theFR--EC-ý button. 

The recording light will turn on. To finish recording, the user presses theFR- JE 7C 

button again. The recording light will turn off and the length of the file shown at 

the top of the form will be updated. This is expressed in seconds. 
To play the file, the user clicks on theFP-L--A7Y button. The play indicator light 

will be turned on and the recorded file will be played back. If the user wishes to 

stop playback before the end of the file has been reached, he/she needs only to click 

on the PLAY button a second time. The play indicator light will then be turned off 

and playback will cease. Alternatively, if the user does not interrupt playback, the 

play indicator light will turn off and play back will cease automatically when the 

end of the file is reached. 
AI Silence model button is provided. When this is not turned on, the recorded 

file is read and played via the internal speakers. If ALBERT has a heavy work load, 

there will be a delay between the playback of each buffer. Although this does not 

affect the performance of ALBERT whatsoever, it can be very disconcerting to the 

human ear to hear a disjointed stream of audio and electrolaryngograph signals. For 
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this reason, the silence mode was implemented. When engaged, all buffers of audio 

and electrolaryngograph data that are read from file are silently processed. 

4.7 Memory record form 

This form duplicates the function and display of the File record form discussed in the 

last section, but with recording and playback made to/from the computers memory 

rather than a file. 

All the functions described in the last section are present, with the exception of 

the I Recording button. Clearly, as this form does not involve recording 

to file, this button is not required. Instead, it has been replaced by aI Save to file 

button. This enables the user to transfer the contents of the memory recording to 

a file, whose name they may determine. If provision was not made for this function 

then any memory recordings would be lost when ALBERT ceased operation. 

4.8 Voice source form 

This form is the primary form for controlling the processing and display of voice 

source signals. It is shown in figure 2.2. The controls are individually discussed 

below. 

1. LX channel. This enables the user to select the channel of the incoming 

electrolaryngograph signal; f-Lef7t or 

2. LX processing. This enables the user to turn the entire voice source processing 

mechanism Fo-nj or Fo-ff-ý. For example, if the user is only interested in processing 

the acoustic signal, then this button would sensibly be switched off. 

3. Invert. This control permits the user to invert the incoming electrolaryngo- 

graph signal. For example, this option is useful because often there are dif- 

ferences between DAT machines made by different manufacturers which may 

mean that a signal recorded on one DAT machine will played back on another 

machine in an inverted form. 
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4. Attribute derivation. This controls the extent to which each buffer of incom- 

ing electrolaryngograph signal is processed and graphical displays based on 

analysis of the signal are updated. There are two options. The first is labelled 

First in buffer. If this option is selected, only the first electrolaryngograph 

period present in each buffer will be processed. The second option is labelled 

I All in bu In this case, all periods are processed. The former option is 

typically used for real-time function; the latter for analysis when real-time 

performance does not matter, but a thorough analysis of the signal does. 

5. - When the user presses this button, the electrolaryngograph signal 

is analysed and the 'threshold" parameter of the algorithm used to assess the 

elecrolaryngograph signal is assessed and set. This parameter may also be 

directly controlled by the use of the Threshold form discussed below (section 

4.11). 

6.1 Show perioTý When pressed, the outline of a window displaying one nor- 

malised period of the electrolaryngograph signal appears. The user may then 

use the mouse and 'drag out' the window to the required width and height. 

as he/she feels is appropriate. The signal is normalised so that regardless of 

signal amplitude and frequency, the period is scaled to fit within the window 

dimensions. To remove the window, press the I Show period I button again. 

7. The voice source channel of the signals which have been recorded 

to file (using the form discussed previously in section 4.6) are transferred into 

Speech Filing System (SFS) domain and displayed using the interactive viewer 

program called 'es'. The user can zoom in to examine and playback sections 

of the signal. Press 'q' or click on Rfl to exit the viewer. Seethe 'es' manual 

page for further information on how to use the program. 

8. Low pass filter control. This enables the user to engage a low pass filter. 

This can be useful in processing noisy electrolaryngograph signals. The cut- 

off frequency, which has a default of 5000 Hz, is shown in a small window. If 

required, the user can click on the window and alter this value. 
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4.9 Misc buttons form 
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This form contains buttons which were judged as not appropriate for inclusion on 

other functional units. These are; 

1.1 Sound editor 1. This calls the 'soundeditor' program supplied by Silicon Graph- 

ics. It is useful for editing sound. See the soundeditor manual page for infor- 

mation on how to use the program. 

2.1 Convert filel. This calls the 'soundfiler' program supplied by Silicon Graphics. 

It is useful for converting audio files between different formats. 

3.1 Leave ALBERT 1. This can be used to exit ALBERT. The user is prompted 

with the message 'Are you sureT. Clicking onFy-e-sý causes the program to 

terminate. Clicking on riFol ensures the program does not terminate, and that 

ALBERT continues to perform as it did before the button was pressed. 

4.10 Visualization form 

This is the main form used to display voice source and acoustic parameters. It is 

shown in figure 3.2. There are seven sections in which elements of the GUI which 

are functionally similar have been grouped. These are discussed in order of their 

appearance from left to right and top to bottom. 

1. Number of dimensions/ Mode of plotting. This section enables the 

user to control the highest level attributes of the visualization. These are 

the selection of [-15ý, F27D7 or gý] graph configurations, and the mode of 

colour display. Options for the latter are; I always blacq, I scatterýý, and 

use colour mapý. 

2. Parameter mapping. This section provides the user with the means to 

map the voice parameters assessed by ALBERT to the axes of the display 

configuration. If the user has selected a 1D display, then only the 'Y axis' 

column is applicable. If the user has selected a 2D display, then only the 'X 

axis' and T axis' columns are applicable. If the user has selected a 3D display, 

then the 'X axis', 'Y axis' and 'Z axis' columns are all applicable. The Tolour 
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mapping' column is applicable for either 1D, 2D or 3D configurations if the 

user has selected the I Use colour map I option, as discussed above. 

3. Display options. The user is able to select which portions of axes display 

he/she desires. The first option, I Handle determines whether any axes or 

portions of axes are displayed at all. If this is flagged on, then the remaining 

three controls apply. These are; I Show tic , which controls the display of axes 

ticks, I Show labels 1, which controls the display of axes labels, and I Show title 1. 

which controls the display of axes titles. 

4. Spawn graph. This section presents the user with a list of possible window 

sizes from which an appropriate selection may be made. The list of possible 

window sizes varies from very small to very large. In addition, the user may 

spawn a window of his/her own specific height and length by selecting the 
FF-Tre-e-s7ize window option. The outline of a window will then appear. The 

user can then click on the left mouse button and 'drag out' the outline of the 

desired window size. It is also possible to 'overlay' a new graph on top of 

a graph of the same format which is already present on the screen. This is 

achieved by clicking on the button, and then selecting the graph 

which the current configuration is to be positioned over by clicking on the top 

of the graph. 

5. General graph control. Four buttons are available for high-level graph 

control. These are; 

(a) I Cleanse all graphs I All graphs are cleared of data and reset to original 

state. All statistics associated with the graphs (such as mean and stan- 
dard deviation values) are also reset. 

(b) I Delete all graphs I All graphs, and the windows containing the graphs, 

are cleared of data and removed. 

(c) I Dump all graphs I All graphs, are dumped to file in the Iris 'rgb' file 

format. They are given the suffix '. rgb'. This includes any statistics 

windows associated with the graphs. Any statistics data displayed in 

these windows are also output in text format. These have the suffix 



APPENDLY E. ALBERT USER GUIDE 233 

'. txt'. In each case, the first few characters of the file name are selected 
by the user (see (d) in this list). If the graph under consideration is a 
1D graph, the filename is then extended by an underscore character and 
the label text of the y axis parameter. If the graph under consideration 
is a 2D graph, the filename is extended by an underscore character, the 

label text of the x axis parameter, another underscore character and the 

label text of the y axis parameter. If the graph under consideration is a 
3D graph, the filename is extended by an underscore character, the label 

text of the x axis parameter, another underscore character, the label text 

of the y axis parameter, another underscore character and the label text 

of the z axis parameter. 

(d) I Graph dump parameter If the user presses this button, he is prompted 

with a string entry field. This contains the first few letters of the file- 

name used in the writing to file of graph images. Any sequence of ap- 

propriate characters may be entered. This enables the user to easily 

alter the filename of all graph images so that, for example, a previ- 

ous set of graph images is not overwritten. If the user clicks on the 

Use graph index in filename option, then the filename of each graph 
image transferred to file (as described in the last list item) is further ex- 
tended by an underscore character and a unique number. This is useful 
if, for example, two graphs are present on the screen with the same x and 

y axis, but with otherwise different configurations. If this option was not 

enabled, the transfer of the second graph image to file will overwrite the 

image of the first graph, because the graphs will have identical filenames. 

6. Update mode The graph data and display may be optionally controlled to 

react only to an update of either voice source parameters, or acoustic parame- 

ters, or both. For example, it is often required that displays are updated only 

when voiced activity is detected. In this case it would be appropriate to select 

the I Update from valid LX I button, and to ensure the I Update from. valid SP 

button was deselected. The visual display of any parameter (even if it is based 

on the acoustic signal) will then only take place if voicing action is detected. 
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4.11 Threshold form 
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This form provides easy access to a major parameter used in the algorithmic pro- 

cessing of voice source signals. It is often used in conjunction with the refractory 

time form and the voice source form (sections 4.12 and 4.8 respectively). 
This parameter represents the smallest signal level that the voice source pro- 

cessing algorithm will judge to be a rising edge of the electrolaryngograph signal. If 

this value is too low, then the algorithm may be too eager to interpret the incom- 

ing signal as a rising edge. If this value is too high, then the algorithm will never 

detect a rising edge. A sensible intermediate value is required. This parameter is 

automatically set by the use of the button on the voice source form (section 

4.8). Alternatively, the user may wish to override the automatic setting. This can 

be achieved by simply clicking on the slider and selecting the desired level. 

4.12 Refractory time form 

This form provides easy access to a major parameter used in the algorithmic pro- 

cessing of voice source signals. It is often used in conjunction with the threshold 
form and the voice source form (sections 4.11 and 4.8 respectively). 

The parameter represents the smallest interval within which the voice source 

analysis algorithm is not permitted to detect the rising edge of an electrolaryngo- 

graph period. This parameter can be used to strengthen the performance of the 

voice source processing algorithm. For example, if it is known that the vocal task 

being analysed will not require phonation higher than 50OHz, then this slider can 

be set at 2ms; if it is known that the vocal task will not require phonation higher 

than 25OHz, then the slider may be set at 4ms. This may be achieved by simply 

clicking on the slider and selecting the desired level. 

4.13 Ratio form 

This form enables the user to control the parameters used in evaluating the 'Ratio' 

parameter. This parameter is derived by assessing the total spectral power within 

one frequency range with regard to a larger frequency range of which the former is 
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a subset. Two sections are present in the form; 
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1. Total frequency band. Two sliders are presented with which the user can 

control the lower and upper frequency limits of the larger band. These default 

to OHz and 500OHz respectively. 

2. SF frequency band. Similarly, two sliders are presented with which the user 

can control the lower and upper frequency band within which the phenomenon 

of the singer's formant is known to occur. These default to 200OHz and 400OHz 

respectively. 

4.14 Params form 

This form enables the user to view and alter ALBERT voice parameter fields. It is 

shown in figure 3.1. 

The form is divided into two sections. The first is a list of the descriptions and 
labels of all voice parameters. 

The second is a list of the parameter fields for the currently selected parameter 

(shown highlighted in the list). To look at the fields of a particular parameter, the 

user needs only to click on the name of the relevant parameter in the list. To adjust 

any of the parameter fields, the user needs only to click on the appropriate field and 

alter the value as appropriate. The following parameter fields are displayed. All of 
them may be altered by the user. 

1. Desmiption. Verbose description of the parameter. 

2. Graph IabeL The parameter label (optionally) displayed when the parameter is 

mapped to a graph axis. For example, the default label used for the 'frequency' 

parameter is 'Freq'. 

3. Graph unit. The parameter unit (optionally) displayed when the parameter is 

mapped to a graph axis. For example, the default unit used for the 'frequency' 

parameter is 'Hz'. 

4. Algo? ithm labeL This is the label used to refer to the parameter in an algo- 

rithm reference (discussed below). For example, the default label used for the 
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'frequency' parameter is 10'. 

5. Legal range - minimum. This is the minimum legal vaJue of the parameter. 
For example, the default legal minimum value of the 'frequency' parameter is 

30. 

6. Legal range - maximum. This is the maximum legal value of the parameter. 

For example, the default legal maximum value of the 'frequency' parameter is 

1200. 

7. Graph range - minimum. This is the minimum parameter value to be plotted 

on a graph. For example, the default minimum graph range for the 'frequency' 

parameter is 30. 

8. Graph range - maximum. This is the maximum parameter value to be plotted 

on a graph. For example, the default maximum graph range for the 'frequency' 

parameter is 1200. 

In addition, aI Default log scale I button is provided. If this is true, then any 

visualization of this parameter will be mapped logarithmically by default. If this 

is not true, then any visualization of this parameter will be mapped linearly by 

default. For example, this is usually true for the 'frequency' parameter, but is not 

true for the 'time' parameter. 
A new parameter may be created by the user by clicking on the I Add new parameter 

button. A skeleton parameter is then created by ALBERT with dummy fields which 

the user then needs to tailor to his/her own requirements. A message will appear 

explaining that a new parameter has been created, and that the user should select 

the parameter from the parameter list in order to edit the parameter fields. This 

new parameter must be defined in the 'Equation' field shown at the bottom of the 

form. For example, if the user has created a new parameter to assess the perfor- 

mance of the CQ parameter with regard to the FO parameter, he/she may feel it is 

appropriate to enter the following; 

cq/f 0 
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Once the other fields have also been entered, the new parameter can be accessed 

via the list of parameters presented on the Visualization form (section 4.10). It may 
then be used in the same manner as that used for the other parameters for axes 

mapping or colour display. 

4.15 Period form 

This form is used for analysis and animation of the electrolaryngograph period. It 

is shown in figure 2.3. It is usually used in conjunction with the voice source form 

(section 4.8). 

1. Smoothing style. This enables the user to select the graphical style of 

smoothing used in the normalised period display. Four options are available; 
I Cardinal ý and I Bezier ý The selection of these options do 

not otherwise alter the way in which the electrolaryngograph signal is pro- 

cessed. 

2. Miscellaneous. In this section the user is able to control the form of buffering 

used in the normalised period display. FSingleý or rDoubiel buffering may be 

selected. In the latter mode, the sequence of electrolaryngograph periods 

appears visually smoother, but at the cost of a small time delay which may 
be inappropriate for real-time operation with a heavy work load. 

A button is also provided for the transfer of the normalised period window 

image to file. The image is transferred to a file named 'period. rgb'. 

I Period frame-by-frame display. This facility is provided to enable the user 

to examine a sequence of voice source activity that has been recorded to file. 

The user needs to enter the start time, end time and interval of analysis. For 

example, to see electrolaryngograph periods at one second intervals, starting 

at 2 seconds and ending at 5 seconds, the user needs to enter '2', V, and 
'1' respectively. Finally, to start the analysis sequence, the user must choose 
between two options. These are I Show OK and F-Show all frames . The 

former option instructs ALBERT to only display a period if one is encountered 

at the appropriate time interval. The latter instructs ALBERT to display the 
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nearest subsequent period if a period is not encountered at the required time 

interval. For both options, timings and frame numbers are shown underneath 

each displayed period. 

4. Animation. This facility was developed to help in an explanation of the 

origin of the electrolaryngograph period. 

Click on the [-Sho--wý button. A window outline will appear. Click on the left 

mouse button and drag out the required window size. An artificial pair of 

vocal folds will appear, and they will immediately move together and apart in 

a manner similar to that of real vocal folds. 

The user can click on I Repeat once to repeat the sequence. Usually, however, 

it is more appropriate to select the Repeat continuously I button. The anima- 
tion sequence will then continue until the user clicks on the I Repeat continuously 
button a second time. The slider provided can be used to alter the speed of 

the animation. 

For correct operation, the user needs to ensure one valid period of electrolaryn- 

gograph activity is recorded. Use of the normalised period display (section 4.8) 

will help with this. This is because the last closed quotient (CQ) parameter 

value derived by ALBERT is used in the animation sequence. For example, 
during the animation sequence the vocal folds will be shown in contact for a 

relatively greater period of time if a large CQ value was previously assessed 

than if a small CQ value was assessed. 

5. Voice period analysis. By default, the normalised period display discussed 

previously (section 4.8) will only show one complete period. However, it is 

often useful to be able to see some of the previous period as well. For example, 

this is useful to ensure that the voice source assessment algorithm is operating 

correctly. To this end a slider is provided, labelled 'Percentage of previous 

period to show'. The user may then change the slider value to the desired 

level. The normalised display will change to reflect the new value, in real- 

time. 
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4.16 Save and load form 
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This form e3dsts purely to give the user access over the saving and loading of several 

ALBERT domains. The following domains may be saved and loaded. They are 
listed here in the order in which they appear on the Save and load form. 

1. Visualization. This covers aH 1D, 2D and 3D graphs, and any associated 

statistics windows. The mapping of parameters to graphs, in addition to the 

position of graphs on the screen and within windows are all included. 

2. Iterm. This includes the parameter fields of all voice parameters, including 

any new parameters that may have been created by the user. 

3. Forms. This includes the position, size and visibility of every form. 

4. Acoustic display + flags. This includes the position and size of both types 

of acoustic display and all flags associated with acoustic processing. This 

does not include any information that may be held within the 'Items' and 

'Visualization' domains (discussed above). 

5. Voice source display + flags. This includes the position and size of the nor- 

malized period display and all flags associated with electrolaryngograph pro- 

cessing. This does not include any information that may be held within the 

'Items' and 'Visualization' domains (discussed above). 

6. All the above. This covers all of the domains listed, which in aggregate com- 

pletely define a state of ALBERT. 

Note that the loading functions for these domains are also accessible via AL- 

BERT command line options (section 5.1). 

4.17 Forms ON OFF control 

This form provides a means for the user to control the visibility of each and every 
form. A simple toggle button is provided for each form. Each button has an asso- 

ciated indicator light. If a form is currently displayed, the light is on. If the form 
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is currently not displayed, the light is off. The user may click on the appropriate 
button to instruct ALBERT to display or hide a form as he/she requires. 

4.18 Forms size control 

This form provides a means for the user to control the width and height of each 
form. 

Three sliders are provided. Two are provided for the control of the x axis and 

y a. -6s dimensions. The third is provided for easy control of both in combination. 
This slider enables the aspect raio of the form to remain constant during the change 
in size. In order to use these controls, the user should click the toggle button 

corresponding to the relevant form once (if the form to be changed is not visible) or 
twice (if the form to be changed is visible). This is because changes made using the 

size control form are addressed only to the last form displayed. Slider values can 

then be altered. The form under alteration will immediately reflect the changes in 

dimension. 



Chapter 5 

Command line control 

5.1 Command line options 

To see these, just type 

albert -I 

ALBERT will just list the command line options, and will not start up in the 

normal way. 

The following sequence (or similar) should appear: 

This is albert version 2.8 

See on-line manual for details 

By David Rossiter 1993,1994 

Syntax : 

albert -I - show this information 

-P <filename> - play binary audio file on start up 

-v <filename> - load visualization config file 

-i <filename> - load items config file 

-f <filename> - load forms config file 

-a <filename> - load acoustic config file 

-P <filename> - load voice source config file 

-A <filename> - load complete setup config file 

241 
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The second option, -P <f ilename>, enables ALBERT to point to a particular 

voice source and acoustic file recording by default. This is useful if, for example, 

the user is working on the analysis of a particular file. 

The remaining options all provide command line access to the controls discussed 

in section 4.16. 

5.2 Preparing aliases 

This section describes one way in which users may find it easier to use ALBERT. It 

does not contain essential information, and may be skipped. 

Normally, ALBERT is started simply by typing albert. ALBERT will then 

start in its default configuration. It is possible to configure ALBERT, and then to 

save the configuration information to file. This configuration can then be used when 

ALBERT is started up, if required. As discussed, the command structure for this 

would be; 

albert -A config. all 

If a particular configuration is regularly used, it is a good idea to create an alias 

for the command, to aid memory and reduce the amount of typing required. For 

example, if a configuration of ALBERT intended for voice source analysis is saved 

to a file called 'source. all', then it would be useful to have the following line in the 

. cshrc file in your home directory. 

alias sbert 'albert -A source. all' 

Thereafter, only the word 'sbert' needs to be entered to start ALBERT in that 

particular configuration. 
Other 'alias' directives can be used to create a portfolio of easily labelled con- 

figurations of ALBERT. 



Chapter 6 

Functions keys 

There are some special functions which are accessed by pressing one of the function 

keys. These are; 
For any visualization display: 

1. FT-21 Move the mouse to a window. Press this button. The window image will 
be transferred to file. The name of the file will be derived according to the 

procedure outlined in section 4.10. 

Concerning 2D graphs: 

1. FT4ý Point the mouse at a 2D window. Then press this button. The two 

dimensional graph is then translated to a three dimensional 'wafer' and passed 

to the three dimensional visualization program 'bob' for interactive viewing. 
The name of the intermediate file is bob. XxYxZ, where X, Y, and Z are the 

lengths of the relevant dimension. In this case, the Z dimension will be 1. 

Note that the current version of 'bob' is not able to interactively visualize a 
data slice of only one data item thick. 

2. FF71 Point the mouse at a 2D window. Press this button. A new window 

is spawned. This shows mean and standard deviation, and total number of 

samples statistics for the parameters mapped to the graph. 

3. rF---91 Point the mouse at a 2D window. Press this button. The graph is then 

calibrated to use the entire range of the colour map. This is intended for use 

with scattergram displays after a sequence of data has been analysed. 
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Concerning 3D graphs: 

1. Point the mouse at a 3D window. Press this button. The graph is then 

translated to the three dimensional visualization program 'bob' for interactive 

visualization. While 'bob'is running, normal program operation is temporarily 
halted. To stop the program, select ý from the 'bob' menus. The name of 
the intermediate file is bob. XxYxZ, where X, Y, and Z are the lengths of the 

relevant dimension. 

2. FF-1-1-1 Point the mouse at a 3D window. Press this button. The three di- 

mensional graph is then saved in binary format, but the 'bob' program is not 

automatically executed. The name of the file is bob. XxYxZ, where X, Y, and 
Z are the lengths of the relevant dimension. I 



Appendix F 

ALBERT parameter testing 

F. 1 Introduction 

This Appendix describes tests made to establish the accuracy of the ALBERT soft- 

ware in assessing the voice parameters it is capable of analysing. 

F. 2 A computer program for testing ALBERT 

In order to maintain precise control over the signal sequences with which ALBERT 

was to be tested, a computer program was written. This program was designed 

to generate a signal sequence and store it in a file which could then be read from 

ALBERT for assessment. 
Several features were implemented so that a comprehensive range of test signal 

sequences could be generated. The user is provided with control over the following 

parameters. 

1. The number of periods to output. 

2. The (initial) period fundamental frequency. 

3. The (initial) peak-to-peak amplitude of the period. 

4. The mark phase percentage. For example, a value of 50 would be entered for 

a period of equal mark to space ratio. 

5. Sine or square wave ouput. 
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6. The fundamental frequency increment to be applied to each successive period. 

7. The peak-to-peak amplitude increment to be applied to each successive period. 

The software code, which contains a description of the command line parameters, 

is listed at the end of this Appendix. 

F. 3 Closed quotient 

To assess ALBERT analysis of closed quotient (CQ), a square wave signal was gener- 

ated for a range of frequencies with constant mark: space ratio. This was performed 

for levels of CQ of 5%, 50%, and 95%. On each occasion, the signal sequence con- 

sisted of 1000 signal periods. The mean data are presented in table F. 1. On each 

occasion, the standard deviation was assessed as zero. 

Frequency 1 575 1 501'o I 951'o 

50.0 5.000 50.000 95.000 

100.0 5.000 50.000 95.000 

200.0 5.000 50.000 95.000 

400.0 5.000 50.000 95.000 

500.0 5.000 50.000 95.000 

750.0 5.000 50.000 95.000 

1000.0 4.255 50-000 95.744 

Table F. I: Assessment data for CQ values at input CQ levels of 5%, 

50% and 95% across a range of input FO values 

From the table it can be seen that a precise representation of the input mark: space 

ratio is attained except at the highest frequency. In this instance, errors were ev- 

ident for the minimum and maidmum CQ levels. It is conjectured that these are 
due to quantisation errors, and that this error was not evident for the 50% level 

because the quotient was a factor of the number of samples representing one pe- 

riod. Consequently, a precise evaluation occured at which quantisation error was 

not evident. 
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FA Fundamental frequency 

In order to test ALBERT's analysis of fundamental frequency, a square wave signal 

was generated for a range of frequencies. On each occasion, the signal sequence 

consisted of 1000 signal periods. The mean data are presented in table F. 2. On 

each occasion, the standard deviation was assessed as zero. 

In earch case, the signal is accurately analysed. 

Input FO I Assessed FO 

50 50.000 

100 100.000 

200 200.000 

400 400.000 

500 500.000 

750 750-000 

1000 1000.000 

Table F. 2: Assessment data for FO. Mean values are shown across a 

range of input FO values 

From the sequence of test signals presented to ALBERT, it would appear that 

no error exists in the assessment. However, this is because the periods assessed 

by ALBERT are of a length which are appropriate for accurate assessment. If 

an alternative value is generated, such as a frequency of 1025Hz, then a value of 
1043.478 is returned and the error becomes apparent. 

A discussion of the effects of quantisation is given in chapter 5. 

F. 5 Rate of opening and closing 

In order to test ALBERT's analysis of the rate of opening and the rate of closing, 

square and sine wave signals were generated for a range of frequencies. Each signal 

sequence consisted of 1000 signal periods. The mean data are presented in table 

F. 3. On each occasion, the value assessed for the rate of opening and the value for 
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the rate of closing were identical, and the standard deviation was assessed as zero. 
The results are shown in figure F. 3. 

FO I Square input I Sine input 

50 1.000 0.0033 

100 1.000 0.0066 

200 1.000 0.0131 

400 1.000 0.0261 

500 1.000 0.0327 

750 1.000 0.0490 

1000 1.000 0.0652 

Table F. 3: Assessment of rates of opening and closing for a selection 

of frequency values 

Results for the square wave signal are consistent, and concord with theoretical 

expectations. 

Results for the sine wave test signal increase with the fundamental frequency 

of the period. An examination of the data indicates that the assessed values are 
directly proportional to the input frequency. The equation for deriving the value of 

these parameters (labelled ca for the rate of closing, and oa for the rate of opening) 
for sine wave input can be expressed as follows. 

ca = oa = n. FO 

where FO is the fundamental frequency of the input signal and n is a constant 

of value n=0.000652. 

A discrete unit is interpreted by the computer as representative of one instant of 

the periodic signal. The value is proportional to frequency because the number of 

samples representing one period of the incoming signal is itself directly proportional 

to the frequency of the signal. 
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F. 6 Peak to peak amplitude of the signal 

In order to test ALBERT's analysis of the peak-to-peak amplitude of the period, a 

square wave was generated at a frequency of 20OHz at varying levels of peak-to-peak 

amplitude. Each signal sequence consisted of 1000 signal periods. The mean data 

are presented in table F. 4. On each occasion, the standard deviation was assessed 

as zero. 

The results are shown in figure F. 4. Values are presented in terms of the number 

of quantisation levels from peak to peak. There is clearly a precise correlate. 

Input I Pk-to-pk a 

30 30 

300 300 

3000 3000 

30000 30000 

Table F. 4: Assessment of the peak-to-peak amplitude for a selection 

of input peak-to-peak amplitude values 

F. 7 Ratio 

In order to test ALBERT's analysis of the 'Ratio' parameter, two sine waves were 

generated. One sine wave was generated at a frequency within the superset frequency 

range but outside the subset range. Another was generated at a frequency within 
the subset range. Both sine waves were of equal amplitude. ALBERT was then 

used to assess the value of the Ratio parameter. The amplitude of the sine wave 

signal within the subset range was then doubled, and the parameter assessed again. 
The amplitude of the sine wave was then set to be three times the amplitude of 

the other partial, at which the parameter was assessed, and again at four times the 

amplitude. 

The values are shown in table F. 5. There is a clear correlation between the 

theoretical results and the actual results. 
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Ratio between partials 
I Parameter value 

I Theoretical value 

1: 1 49.825 50.0 

1: 2 66.369 66.66 

1: 3 73.472 75.00 

1: 4 78.390 80.00 

Table F. 5: Assessment of the Ratio parameter 

F. 8 SPL 

In order to test ALBERT's analysis of sound pressure level, one 20011z sine wave 

was generated at a known peak-to-peak amplitude. ALBERT was then calibrated 

with this signal as a reference level of 5OdB. The amplitude of the partial was then 

successively increased. On each occasion, the new SPL value was observed. 
The results are shown in figure F. 6 in addition to the theoretical equivalent. 

Relative increase I Parameter value 
I Theoretical value 

1: 1 50.000 50+0.000 

1: 2 56.047 50+6.020 

1: 3 59.590 50+9.542 

1: 4 62.091 50+12-041 

1: 5 64.096 50+13.979 

1: 6 65.636 50+15-563 

1: 7 67.034 50+16.901 

1: 8 68.190 50+18-061 

1: 9 69.231 50+19-084 

1: 10 70.185 50+20.000 

Table F. 6: Assessment of the sound pressure level 
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F. 9 Jitter 

In order to test ALBERT's analysis of the 'jitter' parameter, a sequence of square 

waves was generated with each period one Hertz higher than the previous period. For 

example, if the initial fundamental frequency is 10OHz and the increment parameter 

is 5Hz then a sequence of periods will be generated with in the following fundamental 

frequency order. 

10OHz 

105Hz 

11OHz 

115Hz 

120Hz 

125Hz 

Several sequences were generated. Each was generated with 101 periods. This 

ensures that the jitter value is calculated by ALBERT 100 times. The first column 

of table F. 7 lists the initial fundamental frequency of the sequence. A frequency 

increment value of 1Hz was requested in each case. The mean and standard deviation 

of the analysis of the sequence are listed in the remaining two columns. 

Initial FO I Jitter mn 
I Jitter sd 

100 0.993 0.07 

500 0.995 0.92 

1000 0.910 1.95 

Table F. 7: Assessment of the Jitter parameter 

Theoretically, there would be no deviation from the mean in each case. However, 

in practice a deviation from the mean is evident. The level of this error is propor- 

tional to the fundamental frequency. This is because of the effects of quantisation. 
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ALBERT is not always able to accurately determine the FO value of each and every 

period (discussed previously in section FA). This problem is particularly evident in 

the analysis of relatively high fundamental frequency signals. Because the accuracy 

of the jitter parameter is dependent on the accuracy of the FO parameter, an error 
is present in evaluating the jitter parameter as a consequence of the error due to 

quantisation implicit in the derivation of the FO parameter. 

F. 10 Electrolaryngograph period shimmer 

In order to test ALBERT's analysis of the electrolaryngograph 'shimmer' parameter, 

a series of test signals were generated that employed signals of regularly increasing 

peak-to-peak amplitude. For example, if the initial peak-to-peak amplitude is 1000 

quantisation levels, and the increment is 10 samples, then a sequence of periods will 

be generated with the following peak-to-peak amplitude values. 

1000 

1010 

1020 

1030 

1040 

1050 

Several sequences were generated. Each sequence consisted of 1000 periods. The 

first period in each sequence had the peak-to-peak amplitude value listed in the first 

column in table F. 8. An amplitude increment value of 10 was requested in each 

case. The mean data is presented in the second column in the table. In each case 
the standard deviation was zero. There is clearly a precise correlate. 
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Initial amp 
I Amp mn 

100 10 

1000 10 

10000 10 

Table F. 8: Assessment of the electrolaryngograph Shimmer parame- 

ter 

F. 11 Acoustic shimmer 

In order to test ALBERT's analysis of the 'shimmer' parameter derived from the 

a, coustic signal a test sequence of increasing, known, peak-to-peak amplitude was 

generated. In order to create such a sequence, sine wave signals were generated. 

These sequences were then concatenated in order to produce a single test signal 

sequence. Each element of the concatenated sequence was identical in terms of 

fundamental frequency and the total number of periods in the element. However, 

each element of the sequence had a unique peak-to-peak signal amplitude. For each 

successive element of the concatenated sequence, the peak-to-peak amplitude was 

one order higher than that of the previous element. 

An expression for the total sequence (labelled ST ) can be derived in terms of 

the sequence elements (each labelled S, where x is the peak-to-peak amplitude of 

the element, in samples) as follows. 

ST = Sio + Sloo + slooo + Sloooo 

The symbol + is used to indicate the process of concatenation and not addition. 
The length of each element in the concatenated sequence ( S., ) was set equal to 

the buffer length employed by ALBERT for the test. It is known that a order 

of magnitude increase in peak-to-peak amplitude of a sine wave is theoretically 

equivalent to a relative increase of 20dB. Therefore, the measure of shimmer under 

test should express a mean value of 20dB, with zero standard deviation. 

A total of three different signal sequences were presented to ALBERT. Each 

employed a different peak-to-peak amplitude starting value. On each occasion, 
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ALBERT was first calibrated using the first element in the concatenated sequence 

as a reference of 1OdB. All three sequences employed the same structure and timing 

of logarithmic increments. The mean and standard deviation results are presented 
in table F. 9. 

Initial pk-to-pk amp Shimmer mn Shimmer 

10 20.064 0.061 

30 20.074 0.063 

60 20-097 0.070 

Table F. 9: Assessment of the Shimmer parameter 

F. 12 Signal generator software code 

The code of the software program used to generate the signal sequences used for 

testing ALBERT is listed below. 
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/**********************a******************$*************************** 

C sourc* cod* for 'signal I program. 

This program writes a sequence of square or sin* waves to 

a binary soundfile in ALBERT format. 

By David Rossitor 1995 

To compilo: 

cc signal. c -lc-s -lgl-s -lm -laudio -o signal 

Usage: 

signal <output f ilename> <number of periods> <frequency> 

<poak-to-peak amplitude in samples> ftark phase percentage> 

<wavetypo> <frequency increment> <peak-to-peak amp increment> 

where : 

<output f il*name> is the name of the binary file to which the sequence 

is to be written. 

<number of poriods> is the total number of periods to be written to file. 

<frequency> is the (initial) period frequency. 

<poak-to-poak amplitude> is the (initial) peak-to-peak amplitude of the 

signal, in samples. 

<mark phase p*rcentage> is the percentage of the period to be output 

as 'mark' state. For example, this value would be 60 to create 

a period of equal mark to space ratio. 

<wavetype> Type of wavef orm. I for sinewave, 2 for squarewave. 

<frequency increment> The increase in frequency for each successive 
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period, in Hz. A value of 0 ensures output of a constant frequency. 

<peak-to-poak amp increment> The increase in peak-to-peak period 

amplitude for each successive period, in samples. A value of 0 ensures 

output of a constant peak-to-peak amplitude. 

Note that the <mark phase percentage> option is not applicable 

if a sinewave is being generated. 

[Further work: implement buffering operation] 

/* Include files */ 

#include <fcntl. h> 

#include <math. h> 

#include <stdlib. h> 

#include <malloc. h> 

#include <stdio. h> 

#include <gl. h> 

#include <gl/gI. h> 

#include <gl/device. h> 

#include <audio. h> 

#include <Sys/file. h> 

#include <Sys/types. h> 

#include <Sys/ctype. h> 

#include <Sys/stat. h> 

/* Dofines */ 

#define SAMPLE-RATE 48000 /* Fixed sampling rate 

Sdefin* SINEWIVE 1 /* Flag for sine wave 

#def in* SQUAMEWIVE 2 /* Flag for square wave 

/* Variables */ 

char filoname[303; /* Destination filename 
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FILE *fil*pointer; /* Pointer to destination file */ 

char signal-type; /* Type of signal; sin* or square */ 

float freq_inc, 

amp-inc; 

long loop. 

p*riod_number; 

long number-of-poriods, 

samplos-per-period; 

float froquency. 

mark, 

mark_porc, 

amp; 

short mark_value, 

space_Talue; 

long mark-length. 

spac*-length; 

/* Increment in frequency each period 
/* Increment in amplitude each period 

/* Variables used in for 0 loops */ 

A Total number of periods to be output 
A Number of samples for each period */ 

/* Current period frequency 

/* Current period frequency 

/* Current period frequency 

/* Signal peak-to-peak amplitude 
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/* Value of output signal during mark phase 
/* Value of output signal during space phase 

/* Number of samples for mark phase 
/* Number of samples for space phase 

/* Functiozx3 */ 

void updato-sample-timing-valuesO 

/* Calculate number of samplG3 per period 

Sa2pl43-por-period-((1.0f/frequency)*(float)SAMPLE-RATE); 

/* Calculate number of samples per period */ 

mark-mark-porc/100.0f; /* Convert to fraction 

/* Calculate number of samples per quotient 

mark-longth-(float)samplq)s-per-period*mark; 

space-longth-(float)samples-per-period*(float)(I. Of-mark); 
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void updato-mark-space-valueso 

/* Calculate sample values for mark and space quotients */ 

mark_valuo-amp/2.0f; 

space-valuo--I. Of*(amp/2.0f); 

I 

Main program 

main(char *argc. char **argv) 

/* Obtain parameters from command line string */ 

strcpy(filonano. argv[1D; /* Output filename */ 

nwab*r-of-periods-(long)atof(argv[21); /* Number of periods to be written 

froquency-atof(argv[31); /* (Initial) fundamental frequency 

amp-ataf(argv[41); /* (Initial) pk-to-pk amplitude */ 

mark-porc-atof(argv[51); /* Mark quotient as perc of period 

signal-typo-atof(argv[61); /* Type of signal */ 

froq-inc-atof(argv[71); /* Frequency increment each period 

amp-inc-ataf(argv[el); /* Amplitude increment each period 

/* Update parameters */ 

update-mark-spaco-valuesO; 

update-sample-t iming-values 0; 

/* Open file for output */ 

if ((filepointer-fopen(filoname. "v")) -- NULL) 

printf ("unable to open output file %s". f ilename); 

*ISO 

/******** Period output loop 

for (poriod_number-O; poriod_number<number_of-periods; period-number++) 

if (signal-typo--SQUIREWAVE) ( 
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/******** MAU signal section 

for (loop-0; loop<mark-length; loop++) 

f write (Imark_value, sizoof (short). 1, f ilepointer); /* Lef t channel 

f write (kmark_value, sizoof (short)& 1. f ilepointer); /* Right channel 

/******** SPICE signal section 
for (loop-0; loop<space-longth; loop++) 

f write (tspaco-value. sizoof(short), 1, filepointer); /* Left channel 

f write (Ispace-value, sizoof(short), 1. filepointer); /* Right channel 

) /* end of if (signal-typo-SQUAREWAVE) 

else 

if (signal-type-SINEWALVE) f 

for (loop-0; loop< (mark-length+space-length) ; loop++) ( 

sark-yalue-amp*O. Sf* /* Calculate sinewave value (uses radians) 

(float) sinf( (float) ((float)loop 

/(float)(mark-longth+space-longth)) *2. Of *3.141692f); 

f write (A: mark_value, sizoof (short), 1. f ilepointer); /* Left channel 

f write (kmark_value, sizoof (short), 1, f ilepointer); /* Right channel 

I 

I /* ond of 'if (signal-typo-SINEWAVE)l */ 

/* Handle incremental frequency 

if (fr*q-inc) ( 

fr*quency+-freq-inc; /* Update value 

update-samplo-timing-valueso; 
I 

/* Handle incremental peak-to-peak amplitude 

if (amp-inc) ( 

amp+-amp-inc; /* Update value 
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update-mark-spaco-values 0; 

f close (f ilepointer); /* Close file */ 



Appendix G 

Progress along a linear 

correlation 

G. 1 Introduction 

This appendix presents two equations which may be used to derive and present 

information in the ALBERT system described in chapter 5. Both equations may be 

used to present information relative to a linear relationship between two variables. 

The first (labelled GA below) provides a single measure representative of the relative 

progress of the user along this line. The second (labelled G. 5 below) provides a single 

measure representative of the relative distance from the line. 

Please refer to figure G. 1. Both equations require the equation of a line (labelled 

the developmental axis with formula y= mx +c) against which the relative position 

of the data pair (labelled (a, b)) is to be compared. For example, in chapter 4a 

continuum was proposed between the level of closed quotient (labelled CQ) of the 

vocal folds and the level of spectral amplitude in the singer's formant frequency band 

relative to all voice spectra output (labelled Ratio). The equation of the correlation 

between these two variables was determined as y=1.132x - 2.5, with the x axis 

mapped to CQ and the y axis mapped to Ratio. The values for m (1.132) and c 

(-2.5) from this equation, in addition to new CQ and Ratio values derived in real 

time (entered as a and b respectively), may be entered into equation GA to produce 

a measure indicative of the progress of the voice user along this continuum. Thus, 
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axis 

elopmental 
axis 

: mx+c 

x axis 

the 
ais 

y=d -x 
m 

(a, b) data pair derived in real-time 
(p, q) point of intersection between developmental axis and perpendicular 
La measure of how far (ab) is away from the developmental axis 
Cy offset of developmental continuum line 
dy offset of perpendicular line 

Figure G. I: Deriving a measure of advancement along a line in 2D 

space 



APPENDIX G. PROGRESS ALONG A LINEAR CORRELATION 263 

the user needs only to enter this equation into a new parameter (detailed in section 
5.10.3) and spawn a display of this parameter (section 5.12) to create an appropriate 

tool for real-time visual feedback. 

In the following explanation, the 2D linear relationship against which progress 

is measured is referred to as the developmental axis, although this may be regarded 

simply as a convenient label. 

G. 2 Derivation 

G. 2.1 Measurement of position along a continuum 

The first step is the derivation of a point along the developmental axis (labelled 

(p, q)) at which a perpendicular line will intersect the data pair (a, b). 

The equation of the developmental axis is known; 

mx+c 

The formula for the perpendicular line is 

x 
y=d-- (G. 2) 

m 

Rearranging G. 2 to produce the offset for the perpendicular, labelled d; 

y 

d=b+a (G. 3) 
m 

At the point where the perpendicular intersects the developmental axis both line 

equations are equivalent. For example; 

G. 1 = G. 2 

x 
mx+c=d- - m 

mp+c= dp 
m 
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Am +1 =d-c m 

P(7n'+ 
m 

m(d - c) 
1+ M2 

Substituting G. 3; 

m(b + -I- - c) in 
1+M2 

p- 
bm+ a -cm (G. 4) 

G. 2.2 Measurement of the distance of the data pair from the con- 

tinuum 

Using pythagoras' rule, a measure (L) may be derived for expressing how far away 

the data pair (a, b) is relative to the developmental axis (see figure G. 1); 

q)2 + (p - a)2) 

In terms of L; 

J(b 
- q)2 + (p - a)2 (G. 5) 
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