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ABSTRACT 

Foxes (Vulpes vulpes) are considered to be a pest in many parts of the world because of 
their predation on livestock, poultry and game. Predation poses costs to farmers in 

terms of loss of stock and measures taken to prevent losses. This thesis aimed to assess 
the costs of fox predation in Britain and the factors that influence them. Such research 
is an important step towards the effective and efficient management of fox predation. 

Questionnaire surveys of sheep farmers, free-range poultry producers, outdoor pig 
producers and game interests were carried out to collect data on the perceptions of stock 
losses to foxes, along with information on farm characteristics, husbandry and fox 

control. Regression analyses were used to determine what factors influenced the 
incidence and level of fox predation. Economic models were developed to assess the 
farmers' costs of predation and identify financially efficient management strategies. 

For all producer types, reported fox predation losses were low on the majority of 
holdings, although high predation levels were reported on a few individual farms. 

Variation in fox predation between holdings was associated with regional location, 
flock or herd size and the level of fox control on farms. Fox population density was 

only associated with predation losses in the case of sheep. 

Effective measures for preventing fox predation were identified for two producer types: 
indoor lambing for sheep and electric fencing for pig producers. Financial analysis 
indicated that the optimal strategy for a sheep farmer, in terms of minimising total costs 

of predation, was to house all ewes and lambs for less than a day. According to the 

analysis, housing ewes was a more cost-effective strategy than additional fox control. 
Expenditure on fencing solely to prevent fox predation was only worthwhile for some 

pig producers. In both cases, analyses indicated that, to meet cost-minimising 

objectives, some predation losses should be tolerated. 

The economic framework developed here can be used for future evaluations of livestock 

predation and management strategies from the farmer's point of view. In addition, 
identification of the factors influencing fox predation should help target research and 

strategies to manage the problem. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1. INTRODUCTION 

This study is concerned with the red fox (Vulpes vulpes) and its management in rural 
Britain. It concentrates on the costs of foxes to agriculture in Britain, including 

prevention and control, and factors influencing these costs. 

For as long as there has been settled agriculture in Britain, the red fox has impinged on 

people's activities and livelihoods (Kolb 1996). The situation regarding this species in 

the UK is complicated because it has interactions with many different economic sectors 
(agriculture, forestry, wildlife conservation and recreation), as well as ecologically, via 
its predation on small mammal and wild bird species. To some people the fox is 

unwelcome as a predator of poultry, lambs and game, while to others its predation on 

rodents and rabbits is beneficial. It is a hunting quarry, yet at the same time is treasured 

(Macdonald 1984), as Britain's largest native mammalian predator (Kolb 1996). This 

means that views on how fox populations should be managed vary, whilst fox control is 

frequently carried out with no clearly specified management objectives (Harris & 

Saunders 1993). The controversy surrounding fox management is primarily concerned 

with how important predation by foxes is for different interest groups, the effectiveness 

of culling and other remedial measures and the humaneness of culling methods (Heydon 

& Reynolds 2000a). 

This study aims to address two of these issues, by investigating the costs of fox 

predation to four agricultural sectors: sheep farming, free-range poultry production, 

outdoor pig production and game bird shooting interests; and determining what 

preventive measures help limit these costs. These sectors were chosen because they are 

those for which the costs of foxes are most significant. 
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1.2. ANALYSIS OF VERTEBRATE PEST MANAGEMENT 

Wildlife management implies the stewardship of a population and may be an attempt to 
make it increase, decrease or harvest it for a continuing yield (Caughley & Sinclair 
1994). In the case of vertebrate pests, it is usually the second of these (or holding the 
population at a reduced level) that is the aim. The concept of a pest is difficult to define 

and the issues involved in deciding whether an animal is termed a pest are both 

scientific and social (Harris 1989; Hone 1994). A general definition is a species that 

conflicts with human interests, having implications for economic systems or human 
health (Conway 1981; Harris 1989; Putman 1989; Hone 1994). It is the damage that 

vertebrate pests cause that justifies their control (Hone 1994). However, pest 

management is frequently carried out in an ad hoc fashion and the appropriateness of 

management is rarely assessed (Shea et al. 2000). 

One of the criteria for determining whether control is an appropriate management action 
is whether the benefit of carrying out control exceeds the cost and this should be 

determined before a control program is instigated (Conway 1981; Caughley & Sinclair 

1994) in order to prevent unnecessary or uneconomic control actions. For this reason 

and the fact that there is generally a need to weigh-up a number of conflicting objectives 

or allocate scarce resources among competing needs, economic analysis is a useful tool 

for the analysis of pest management (Mumford & Norton 1984; Bicknell 1993). The 

use of economic analysis for the management of arthropod, fungal and plant pests is 

well established. However, its use in such decision-making for vertebrates has been 

neglected (Hone 1994), probably because they cause less damage than invertebrate 

organisms (Pimentel 1986; Van Vuren & Smallwood 1996). A number of economic 

techniques can be applied to vertebrate pest control analysis. Four are described by 

Hone (1994): marginal cost-benefit, cost-benefit and cost-effectiveness analyses and 

decision theory. Mumford and Norton (1984) recognise a further category of analysis 

in pest management: the behavioural decision model, which attempts to account for the 

influence of a farmer's perceptions, personal objectives and other behavioural 

characteristics on decision making. Examples of some applications of economic 

analysis to vertebrate pests are outlined below. Hone (1994) provides a number of 

further empirical examples, including a few applications of cost-effectiveness analysis 
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to pest control, whilst also illustrating that much of the work has been theoretical or 
based on hypothetical situations. 

The analysis of pest control is not only important in financial terms, but also needs to 

meet social and moral criteria. Any control strategy should take acceptability into 

account as well as effectiveness and efficiency (Reynolds & Tapper 1996; Andrew & 

Robottom 2001). This thesis does not consider the ethical issues surrounding fox 

culling and the different methods that are used to manage fox populations. However, 

these are a significant input to pest control decision-making, and decision processes 

should not neglect animal welfare. 

In the resource economics literature, a distinction is often drawn between financial and 

economic analysis, generally with regard to cost-benefit analysis, e. g. Swanson and 

Barbier (1992). The definition of financial analysis used here is an analysis that 

determines the profitability (or returns) to a project or production system using actual 

market prices (Brent 1997). Therefore, financial analysis tends to assess the private 

costs of a project or action to a particular individual or firm and shareholders, for 

example (Hanley et al. 2001). Economic analysis, on the other hand, extends this to 

incorporate the hidden costs of externalities, adjusting market prices for distortions and 

including non-market costs and benefits to assess the implications of the project or 

action to society as a whole in terms of economic welfare (Barbier et al. 1997; Perry & 

Randolph 1999). The distinction is therefore drawn between the costs and benefits to an 

individual and the social gains and losses of an investment decision (Dasgupta & Pearce 

1978; Pearce & Moran 1994). 

1.2.1. Applications of economics to vertebrate pest management 

Aubert (1999) evaluated the costs and benefits of wildlife rabies control in France, 

comparing the cumulative costs of the two main strategies for management of the 

disease within the wildlife reservoir, foxes: lethal control and oral vaccination. The 

study concluded that vaccination was the less costly of the two strategies. However, it 

appeared that the benefits did not outweigh the costs for either strategy and the use of a 

formal cost-benefit analysis framework in the study was not apparent. A more formal 

cost-benefit framework was used to assess five possible solutions to the problem of 

brent geese grazing on farm crops in Britain (Vickery et al. 1994). These authors 
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pointed out that, whilst cost-benefit analyses have been carried out to evaluate the 

establishment of reserves and protection of wildlife areas, use of such analyses to 

evaluate the costs and benefits of different management options for single species have 

been neglected. Their analysis concentrated on the direct costs and benefits of brent 

goose management to farmers and society, considering farm profits and societal levels 

of taxation, and illustrated that the optimal solution from a cost-benefit analysis at the 

societal level may differ from that at the farm level. Although the authors were not able 

to consider all the benefits and costs of such management strategies both to farmers and 

society and to conservation and wild-fowling interests, their study highlights the 

difficulty in obtaining suitable data and deriving the values necessary for a full analysis 

of this type. 

Collins et al. (1984) also used a cost-benefit approach to assess whether the control of 

black-tailed prairie dogs to increase livestock forage was economically feasible from 

both the U. S. Forest Service (assumed to be an agent for society) and rancher 

viewpoints. The ability of the control programs to recover initial costs depended on the 

percentage of annual maintenance control, but initial costs were only covered when an 

unrealistically low re-population rate was assumed. Therefore the authors concluded 

that control of prairie dogs was not worthwhile in economic terms. Their analysis 

neglected some of the benefits of control, as well as non-market benefits and costs, but 

indicates that pest control is frequently undertaken despite the fact that it is not 

worthwhile. 

The benefits and costs of controlling coyotes to increase the hunting harvest of 

pronghorn in Arizona were studied by Smith, Neff and Woolsey (1986). They 

compared the predicted effects of eight different control strategies by computer 

simulation and estimated the net benefits ratio of each in comparison to the strategy of 

controlling in the first of ten years only. The strategy with the highest net benefits ratio 

was control every second year. However, further analysis of these data by Hone (1994) 

illustrates that their conclusions would have been different if the authors had assessed 

the cost-benefit ratios or costs of control only in order to decide which was the best 

strategy. 
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Choquenot and Hone (unpublished) incorporated bioeconomic models for the 
interactions between control operations, pig population density and lamb predation into 

a financial cost-benefit analysis comparing two methods of controlling feral pigs in 
Australia to reduce lamb predation by pigs. The authors were able to evaluate whether 
helicopter shooting was more cost-effective than 1080 poisoning and indications were 
that this depended on the standing pasture biomass. Models of increased complexity 
allowed the frequency with which control should be carried out for each strategy to be 
determined. The analyses illustrated that increasing the realism of models results in 
higher data requirements, but that simple models are often unable to address questions 
that are of much practical use. 

1.2.2. Valuing predation losses 

Rather than undertaking a full analysis of costs and benefits, various researchers have 

simply attempted to evaluate the costs of pest damage. There are several ways of 

valuing the costs of stock mortality. One approach is to use the `output loss' or the 

value of the animal when it is lost (McInerney 1987). However, this value is likely to 

be difficult to estimate if the animal is not at point of sale, when the output loss is 

simply the market price (McInerney 1987). An alternative approach is to use the 

resource cost, which is the expenditure on the animal up to its point of death. However, 

this will underestimate the `true' loss or cost (McInerney 1987). McInerney et al. 

(1992) argued that loss and cost should be defined as different from each other. Loss is 

the benefit taken away from the farmer (losses on the output side of production), whilst 

the cost (C) is the loss (L) plus expenditure (E) or the extra inputs due to mortality, 

which include the control and prevention costs (McInerney et al. 1992): 

C=L+E 

This approach was used by Bennett et al. (1999) to value the direct costs of endemic 

diseases in farm animals, where the costs of treatment and prevention were considered 

separately. These costs of treatment and prevention can be thought of as analogous to 

the costs of preventive measures and control in the case of livestock predation. It is 

important that these costs are considered in an assessment of wildlife damage, in 

addition to those of direct losses in output. 
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Studies estimating the costs of livestock predation by wildlife have generally estimated 

total costs to farmers based on the farm-gate or market price of an animal multiplied by 

the number of losses. These include Butler's (2000) assessment of the 'economic' costs 

of wildlife predation in Zimbabwe, with the aim of calculating the levels of 

compensation for local communities suffering livestock depredation under CAMPFIRE 

schemes. His valuations were in fact financial rather than economic losses and were 
based on questionnaire surveys of households with livestock. Further examples are the 

valuation of farm revenue losses due to fox predation of lambs on two Scottish hill 

farms (White et al. 2000b), losses of livestock to snow leopards in Nepal (Oli et al. 

1994), total losses due to livestock predation in the United States (Conover et al. 1995) 

and annual damage by wolves to livestock in Spain (Blanco et al. 1992). Andelt and 

Hopper (2000) estimated the total amount that producers using guard dogs saved in 

terms of reduced sheep losses to predators. Other estimates of the costs of agricultural 

damage by pests have been based on the producers' own estimates of damage, e. g. 

Baines et al. (1995) and Moore et al. (1999). 

A more sophisticated approach to valuing the financial costs of predation on livestock 

was developed by Mizutani (1999) for leopards on a Kenyan ranch. This involved 

estimating production models for sheep and cattle on the ranch with and without leopard 

predation and calculating the cost of leopards in terms of reduced income to the farm. 

Production models were used because the impact of predation one year was felt the next 

year, as the animals took more than an accounting year to mature. 

Total cost estimates of wildlife damage allow us to put a value to damage and may 

enable assessment of whether the animal can be considered to be a pest (or in the case 

of Butler's (2000) study how much compensation payments should be). However, 

McInerney et al. (1992) argued that total costs have no particular significance because 

they do not allow us to make decisions about what should be done about the situation, 

i. e. they are of little use in guiding resource use decisions (McInerney 1996; Perry & 

Randolph 1999), especially if it is not possible, or will be hugely costly, to eliminate a 

disease or pest (McInerney & Kooij 1997). Therefore, total costs alone generally do not 

help us determine what management action(s) should be taken to help alleviate the 

problem. 
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1.2.3. Approaches relevant to the economic analysis of predation losses 
The resources spent on preventing livestock losses to predators are likely to be traded 

off against the cost of these losses. Therefore it is not just the total cost of losses and 

preventive and treatment measures that should be considered in an economic analysis of 

predation, but how these relate to one another and therefore what is the most efficient 

point in terms of resource allocation. A number of approaches could be used to analyse 

the costs of predation in an economic framework, with the aim of aiding resource 

allocation decisions or efficient management. 

One evaluation technique used for assessing pest control is decision theory. Generally, 

a farmer has to decide what strategy or level of pest control or preventive measures to 

use before the economic impact of the pest is known. If there is uncertainty about what 

level of pest attack will occur, but the probability of any particular level of attack 

occurring is known, the expected outcome of alternative strategies can be determined 

(Mumford & Norton 1984; Hone 1994). Mumford and Norton (1984) suggested 

knowledge of the probabilities could be based on past experience. It could incorporate 

quantifiable factors, such as farm characteristics, for example. The expected outcomes 

of various preventive or control strategies can be determined in monetary terms via a 

pay-off matrix (Norton 1976; Mumford & Norton 1984; Hone 1994). 

An alternative to risk decision models is the use of marginal analysis, where the costs of 

preventive measures and/or control are compared with the benefits of reduced losses 

due to the control effort. Taylor et al. (1979) suggested that the production function 

approach should be used to estimate the optimum rates of predator control and the 

predator density, which is socially, economically and ecologically acceptable for 

predation of lambs by coyotes in Utah, by including predator density as an input in the 

function. The production function approach has been used by environmental 

economists to value environmental or resource quality for which there is no direct 

market value (Adams et al. 1982; Adams & McCarl 1985: Adams et al. 1986; Ellis & 

Fisher 1986; Mäler 1992; Freeman 1993; Narain & Fisher 1995; Acharya 1998). Whilst 

more direct market- or resource-based approaches (as discussed above) can be used for 

valuing livestock mortality due to predation, the approach illustrates how environmental 

resources can be included in production functions, which could then be used for more 
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detailed analysis, including assessing optimal levels of use of preventive measures (as 

outlined theoretically for livestock disease by McInerney 1996). 

As predation affects losses directly, we can also consider the cost- rather than the 

production-side of an operation. Fankhauser (1995) developed a cost function for sea- 
level rise, incorporating the costs of emission abatement, protection costs and the costs 
of damage due to sea level rise, which he used to find an optimal combination of 
abatement and protection levels, by minimising the cost function (minimising total 

costs). 

An alternative is to model the impact of control expenditures on losses more directly. 

McInerney et al. (1992) and McInerney (1996) proposed the disease loss-expenditure 

frontier as a way of estimating the avoidable rather than total costs of livestock 

mortality caused by disease in economic analysis. McInerney (1996) argued that such a 

model was more readily applicable to disease control decisions than a production 
function approach in that it was simple and easily applied empirically. The loss- 

expenditure frontier gives the general relationship between disease losses (L) and 

control expenditures (E) at the minimum level of output loss due to disease technically 

obtainable for each specified level of expenditure; the line L'L" on Figure 1.1 a. L' is the 

amount of losses if no control measures are undertaken and losses decline with 

progressive increases in expenditure, but at a declining rate because of diminishing 

marginal returns to disease control effort. In theory, a farmer could choose to accept 

losses of anywhere between L' and L", where livestock losses are reduced to an absolute 

minimum, but to minimise total costs in this situation the farmer should spend EM on 

preventive measures and accept LM losses. Point M defines this management strategy at 

which the lowest cost can be achieved in this situation or the economic optimum (where 

total costs CM = LM + EM). This economically optimal position for disease control 

expenditure versus loss to disease is when an additional unit of currency spent earns 

exactly the same additional unit in return (McInerney et al. 1992). This defines the 

point at which the cost of the disease is minimised, if the cost is defined as the loss plus 

expenditures (McInerney 1996). At this point, the marginal costs of control (MC) equal 

the marginal benefits of control (MB), where the benefits are defined as the reduction in 

livestock losses due to control, as illustrated in Figure 1.1 b. The optimal point, where 

the marginal cost and marginal benefit curves intersect, defines both the optimal level of 
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expenditure on control (EM) on the x-axis and the optimal level of losses the farmer 

should tolerate (LM), if the x-axis variable is inverse losses (i. e. benefits) rather than 

expenditure. 

The loss-expenditure frontiers for mastitis in the UK and Scotland have been estimated 
by McInerney et al. (1992) and Yalcin et al. (1999), respectively. Both sets of authors 

estimated the expenditures and output losses associated with specific control procedures 

and took the lower boundary of these points as the loss-expenditure frontier, the level of 

technically minimum-attainable revenue loss (technical efficiency) under different 

levels of mastitis-control expenditure. McInerney and Kooij (1997) used a similar total 

cost approach to evaluate alternative Aujeszky's disease (AD) control programmes. 
They considered the total costs of the disease to the economy as a whole and identified 

the most economic AD control strategy as the one with the lowest total costs. Their 

analysis indicates how, in addition to quantifying the avoidable costs of livestock 

mortality, the use of a loss-expenditure type approach could inform decisions on the 

allocation of resources to control expenditure and therefore identify efficient levels of 

control. 
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Figure 1.1 a: The disease-loss expenditure frontier (from McInerney et al. 1992 and 
McInerney 1996) 
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Figure 1.1 b: Marginal cost (MC) and marginal benefit (MB) curves for control of stock 
mortality, illustrating optimal point where curves intersect (EM/LM) 
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1.2.4. Pest abundance and pest damage 
The use of these types of analysis for the evaluation of pest management relies on the 

pest management action having an effect on pest damage. In order to assess this effect. 
the relationships between pest control and pest abundance and between pest abundance 
and pest damage need to be specified. Hone (1994) points out that a simple relationship 
between pest abundance and damage is unlikely and rare because the extent of damage 

depends on a number of variables other than the pest abundance. These include the 
destructive potential of each pest animal, which may vary with age, size, genotype and 

environment, the duration of exposure and the resistance of the object being attacked 
(Cherrett et al. 1971). Other factors may enhance susceptibility to pest damage, such as 

weather conditions, disease and the availability of alternative food sources. 
Consequently, direct estimates of damage functions tend to be difficult and expensive to 

obtain (Choquenot & Parkes 2001). 

Choquenot et al. (1997) found a positive association between predator densities and 

predation of livestock for feral pigs and lambs in Australia. This relationship was 

modelled by Choquenot and Hone (unpublished) in their assessment of the benefits of 

control strategies to prevent predation by feral pigs. In another Australian study, fox 

control was associated with lower levels of fox predation on lambs, but not with lower 

fox abundance (Greentree et al. 2000). The results of other studies on vertebrate 

predators, such as those on sheep predation by other canid species, have been less 

conclusive (Robel et al. 1981; Landa et al. 1999). The general lack of data on 

associations between vertebrate predator populations, control and damage is not 

surprising given the fact that even linking pest population dynamics with damage or 

yield loss for invertebrates and weeds, upon which a good deal more research and 

theoretical modelling work has been carried out, has proved difficult because of the 

complexity of the systems involved (Kropff et al. 1995; Hone 1994). 

1.3. FOX DISTRIBUTION AND PEST STATUS WORLDWIDE 

The red fox is a widely distributed species and is found throughout most of the northern 

hemisphere from the Arctic Circle in the north to Sudan in the south (Harris & Lloyd 
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1991; Gefen & Macdonald 2001). It is native to Europe, Africa and Asia and was 
introduced to eastern United States in the 1700s from where it spread west- and 
southward. It is also present in Australia, where it was introduced around 1850 (Lever 
1985). 

The control of foxes to reduce the damage they cause as a pest takes place across much 

of their range. In continental Europe, the pest status of the fox is primarily a function of 
it being the wildlife reservoir for a number of diseases, of which the most significant is 

rabies (Macdonald 1980; Anderson et al. 1981; Smith & Harris 1991; Artois 1997; 

Romig et al. 1999; Chautan et al. 2000; Suppo et al. 2000; Artois et al. 2001). Foxes 

are also considered a pest in many countries due to their predation of game animals. 
Examples include gamebirds and hares in Scandinavia (Märestrom et al. 1988; 

Lindström et al. 1994; Smedshaug et al. 1999; Kauhala et al. 2000; Kauhala 2001), 

gamebirds in Italy (Lovari & Parigi 1995) and pheasants and ducks in North America 

(Sargeant 1978; Sargeant et al. 1984; Sargeant et al. 1995; Schmitz & Clark 1999). 

Lamb and poultry predation by foxes also causes problems in countries other than 

Britain (Rowley 1970; Coman 1985; Brochier 1989; Saunders et al. 1997; Greentree et 

al. 2000). 

Foxes are often a threat to endangered species (Harris & Saunders 1993; Reynolds & 

Tapper 1996), especially in those areas where they are not native, such as Australia (e. g. 

Kinnear et al. 1988; Abenspergtraun 1991; Cowan and Tyndale-Biscoe 1997; Risbey et 

al. 2000) and California (e. g. Harding et al. 2001). Introduced foxes have contributed 

to the decline and extinction of marsupial populations and adversely affected the range 

and distribution of many species in Australia (Kinnear et al. 1988; Dickman et al. 

1993). In their natural range foxes also cause problems for species of conservation 

importance. Examples include passerine birds in Spain (Suarez et al. 1993), loggerhead 

turtles in Turkey (Yerli et al. 1997) and songbirds in Canada (Dion et al. 1999). 

34 



1.4. STATUS OF FOXES IN BRITAIN 

1.4.1. Population estimates for the whole of Britain 

Foxes are found throughout the British mainland. They were (until recently) absent 
from all the Scottish islands except Skye (Harris & Lloyd 1991; Harris et al. 1995), but 

appear to have been introduced recently to Harris in the Outer Hebrides (Harris et al. 
1995). A population estimate for the whole of Britain of 252,000 adult foxes in the 
Spring, which could double by late summer with the inclusion of juveniles and itinerant 

adults, was made by Macdonald et al. (1981). To calculate this figure, fox density 

estimates were made for each square in a sample of 256 1 km grid squares, then mean 
estimated densities were calculated for Institute of Terrestrial Ecology (ITE) land 

classes to obtain a map of densities across Britain. 

However, this figure is unlikely to be wholly accurate (Harris et al. 1995) and an 

estimate, attempting to overcome these problems, puts the total pre-breeding population 

of foxes in Britain at 240,000 (195,000 in England, 23,000 in Scotland and 22,000 in 

Wales), including barren vixens and itinerant foxes (Harris et al. 1995). The total urban 
fox population is estimated at 33,000 (30,000 in England, 2,900 in Scotland and 100 in 

Wales), whilst, if a mean litter size of five is assumed, around 425,000 cubs are born 

each spring (Harris et al. 1995). Of these estimates, those of urban populations are 
likely to be more accurate because precise data (from the studies outlined below) are 

available, whereas estimates for rural areas are less reliable due to paucity of population 
data (Harris et al. 1995). 

Rural population estimates were based on the few studies done in Britain (see below). 

These density estimates were assigned to land classes and mean densities estimated as 

the number of social groups per square kilometre. The number of foxes per social 

group was estimated from available data on the demography of rural foxes, but this is 

also very scarce (Harris et al. 1995). In addition, the use of land classes to extrapolate 

fox densities is questionable because it relies on the assumption that fox densities are 

mainly determined by landscape and habitat-related factors (Heydon et al. 2000). 

Heydon et al. (2000) found that predictions of fox densities based on landscape 

variables did not always fit in with estimates of fox densities obtained by alternative 

methods and hypothesised that another factor, such as culling by man, was influencing 
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fox densities in some regions. Therefore, density estimates based on regional rather 
than landscape variables may be more reliable. However, it should be noted that the 

quality of the original data in Harris et al. 's (1995) estimate of fox density using 
landscape extrapolation was questioned by the authors themselves and these same data 

were used by Heydon et al. (2000) to compare with other estimation techniques. 

The numbers of foxes killed by gamekeepers has been increasing since 1960 (Tapper 

1992; Heydon & Reynolds 2000a), which suggests that fox numbers may be increasing 

(Tapper 1992; Harris et al. 1995). This increase may be due to any of several factors: 

an increased rabbit population and increase in other food supplies, such as reared 

pheasants; the presence of sheep carrion in upland areas: the exploitation of urban food 

resources; and the relaxation of control by man (Harris et al. 1995). However, the 

magnitude of any change in fox populations and the definite causes behind any change 

are unknown. 

1.4.2. Local and regional fox population estimates 

Several studies have been carried out investigating urban fox populations (Harris & 

Rayer 1986; Harris & Smith 1987a; Harris & Smith 1987b; Harris & Woollard 1988) 

and estimates have been made for the sizes and distribution of populations in Bath, 

Birmingham, Bournemouth, Bristol, Cheltenham, Coventry, Dudley, Gloucester, 

Leicester, Nottingham, Poole, Solihull, Walsall and Wolverhampton (Harris & Rayer 

1986). These studies combined the results of a Spring count of the number of fox litters 

in an area of each city with the results of a sightings survey by school children; and fox 

densities were described using fox family group as the basic recording unit (Harris & 

Rayer 1986). From these data, predictive models for estimating mean fox density 

values from sociological data in urban areas were developed (Harris & Smith 1987b), 

meaning that population densities for any city in Britain can be estimated. 

Estimating fox populations in cities, although difficult, is easier than in rural areas, and 

much of the study of fox ecology has been centred upon urban areas. This means that 

there are few data on rural fox populations. Hewson (1986) investigated the numbers 

and distribution of breeding dens in different habitats in Scotland to -et an indication of 

fox numbers. He found an average of one den per 31.9 km2 in deer forest: one per 23.3 

km2 grouse moorland; one per 20.2 km2 on estates with a mix of agricultural land and 
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moorland; and one per 10.1 km2 on agricultural land (with game management). 
However it was not possible to relate the number of dens to the number of foxes, so a 
ratio, from Lloyd (1980), of 2.67 foxes to each litter found per km2 was used to estimate 
density: 0.08 foxes per km2 in deer forest, 0.11 per km2 on grouse moorland. 0.13 per 
km2 on a mix of agricultural land and moorland and 0.27 per km2 on agricultural land 
(Hewson 1986). 

In May 1974, the Forestry Commission carried out a survey of fox breeding dens in the 
New Forest to estimate the population density. The survey covered a 20 per cent 
sample of the forest and numbers were extrapolated to obtain a figure of 2.18 (+/- 0.45) 
foxes per km2 for the 271 km2 area of the New Forest (Insley 1977). However, this 

study will not have counted non-breeding or itinerant foxes and there is debate as to 
how reliable population estimates based on counting the number of breeding dens are 
(Insley 1977). 

Local fox population numbers were estimated for two sites in southern England, on 
Salisbury Plain and Dorset for the three years 1985-87 (Reynolds et al. 1993). The 

adult breeding population was estimated, after the mean territory and mean breeding 

group sizes had been calculated via a radio-tracking study, and expected cub production 

was estimated using two models: `minimum population model' and `territory packing 

model'. However, the figures were used for a comparison with the numbers of foxes 

culled and to estimate impacts on the population, so no definitive numbers are 

estimated. Quoted figures for the expected number of adult foxes, calculated using the 

two models, range from between 14 and 30 for the 15.2km2 Salisbury Plain area, and 

10.1 to 27.5 for the Dorset 11.0km2 area. These numbers did not, however, include 

itinerant foxes or immigrants that replaced culled foxes (Reynolds et al. 1993). 

Hewson has carried out studies investigating changes in the numbers and distribution of 

foxes in Scotland using data on fox kills (assuming these provide a reliable index of 

population changes) (Hewson & Kolb 1973; Hewson 1984a). He found that overall 

more foxes were killed in 1971-78 than 1961-68, but that there were differences 

between regions in the direction of annual changes in kills (Hewson 1984a). The use of 

kill data enables trends in population numbers over time to be looked at if constant 

control effort can be assumed, but does not -rive true population estimates. Hew son 
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(1984a) associates changes in fox numbers with changes in the number of field voles 
available as food; as is the case in north-east and west Scotland (Kolb & Hewson 1980) 

and Lochaber (Hewson 1984a). 

Heydon et al. (2000b) carried out a regional study of fox populations in three rural areas 
of Britain, in mid-Wales (Region A), east Midlands (Region B) and East Anglia 

(Region C), between 1995 and 1997, using line-transect survey techniques and censuses 

of fox breeding dens. The line-transect techniques gave estimates from 0.32 to 1.05 

foxes per km2 for Region A, from 0.79 to 2.76 per km2 for Region B and from 0.14 to 
0.60 per km2 in Region C between Autumn 1995 and Spring 1997, the lowest estimates 
being for Spring. These estimates were based on counts in open habitat only, forested 

areas being excluded from analyses. Density estimates for 1996 of 0.64±0.26 foxes per 
km2 for Region A (revised to 0.73±0.29 per km2, on inclusion of a percentage of barren 

females as found by Lloyd (1980)), 1.06±0.24 per km2 for Region B and 0.34±0.13 per 
km2 for Region C were obtained by censusing breeding earths. 

1.5. MANAGEMENT OF FOX POPULATIONS IN BRITAIN 

1.5.1. Reasons for management of fox populations 

The management of fox populations is taken to mean any deliberate interventions by 

man to manipulate the number, structure, distribution, and impact of foxes living in a 

defined area (Macdonald et al. 2000). Several studies have used surveys to determine 

the reasons why farmers and landowners in various regions of Britain undertake fox 

control (Macdonald 1984; Baines et al. 1995; Macdonald & Johnson 1996; Heydon & 

Reynolds 2000b; White et al. 2000a). The majority of farmers and landowners stated 

that their intention was to achieve several goals (Burns et al. 2000). Reasons given 

include reducing rates of predation on livestock and game, as well as on wildlife, 

reducing the spread of disease, for sport and as a good neighbour policy, with the most 

frequently cited reason in four of these studies (Macdonald 1984; Baines et al. 1995: 

Macdonald & Johnson 1996; White et al. 2000a) being to reduce fox abundance (Burns 

et al. 2000). Macdonald et al. (2000) suggest that a farmer's objectives are driven by 

the amount of damage it is perceived would occur in the absence of control. 
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There were regional differences in the reasons farmers and landowners gave for fox 

control and how these explanations were prioritised, which are related to a large extent 
to differences in farming practices and land-use between regions. There were also 
response differences with farm size (Burns et al. 2000). Control measures on larger 
farms seemed to be undertaken more as a preventive measure than as a reaction to 

recent experiences of fox predation (Burns et al. 2000; Heydon & Reynolds 2000b). In 

general, though, the studies suggest that recent experience of stock predation did 

influence a farmer's decision on whether to carry out fox control. In Heydon and 
Reynolds' (2000b) study of three regions in mid-Wales, east Midlands and East Anglia, 

72 per cent of farmers that controlled foxes stated that they aimed to contribute to 

regional fox control, rather than just remove troublesome foxes or reduce the number on 

their land. One problem with all the above studies, however, is that they tend to be 

biased towards lowland farms in England. 

1.5.2. Methods used to manage fox populations and published information on fox 
population management 

As with the fox population data, there is little precise information on fox management 

across the country, with few individual studies of management practices. There is no 

nation-wide strategy of fox control or management, with individual parties carrying out 

management independently, often with no specific plan or goal. A variety of different 

methods are used to kill foxes in Britain: lamping with rifles, shooting by day, hunting 

with hounds (gun-packs, on foot and horseback), digging out with terriers, lamping with 

lurchers, snares, traps, poisoning and gassing (Burns et al. 2000), with the use of these 

methods varying regionally (White et al. 2000a). There is, however, very little 

information on the number of foxes deliberately killed each year or on which methods 

are used (Burns et al. 2000). It has been estimated that 185,000 foxes are deliberately 

killed by humans in Britain per year (Pye-Smith 1997), 80,000 being shot, 50,000 dug 

out with terriers, 30,000 snared, 15,000 killed by fox hunts and 10,000 killed by 

lurchers. 

Insley (1977) states that 80 to 100 foxes were killed each season by hunts in the New 

Forest in 1974, while foxes were shot on neighbouring estates and farms (though no 

numbers were known, apart from a figure of over 40 annually for one estate). Lloyd 

(1968) provides a summary of fox control in Britain, but this is unlikely to be generally 
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applicable now due to changes in practices in the last 30 years. (For example, changes 
in the enforcement of laws governing the use of snares and poisons and in the laws 

themselves, as well as in the provision of bounties for killing foxes. ) 

Hewson (1984a) used data from various sources on fox kills in Scotland and states that 
the Forestry Commission annually killed more foxes than any other organisation 
(mostly by snaring) and had records covering over 20 years. Foxes were also killed by 
fox destruction clubs and hunts (Hewson 1984a). The figures from this study provide a 
time series of fox kills in Scotland, as well as some idea of regional variation in the 

years 1971 to 1978, with previous data from 1948 to 1970 also being available (Hewson 

& Kolb 1973). In 1992, the Forestry Commission's policy on fox control was revised 

and now the emphasis is more on a `quick and effective response to lamb killing by 

foxes on land adjacent to Forestry Commission forests' thus controlling only the 

specific individuals that cause problems (Chadwick et al. 1997). 

1.5.2.1. Hunting with dogs 

A study of fox hunting in Wiltshire (Baines et al. 1995) showed that farmers 

overestimated the number of foxes killed on their land by hunts, compared to the figures 

obtained from hunt Masters. In the 1994/5 hunting season (late summer to March or 

April), 0.11 foxes were killed per km2, according to hunt Masters of the hunts active in 

Wiltshire. In addition, in this same year, a mean weighted density of 2.15 foxes per km2 

were shot by farmers. Shooting occurred year round, but in this year efforts were 

concentrated in March (Baines et al. 1995). A study looking at three regions of Britain 

(mid-Wales, east Midlands and East Anglia) also found that farmers significantly 

overestimated the number of foxes killed by mounted fox hunts and foot packs, with the 

scale of the overestimation being between seven and twelve times (Heydon & Reynolds 

2000b). In a study of the impacts of fox-hunting in west Somerset and Exmoor (Manley 

c't al. 1999), it is stated that fox hunts were willing to be and were called out to deal with 

specific `problem' foxes. The study covered Exford and Stogursey and, in both places, 

fox control was mainly left to the local hunt. However, the numbers of foxes killed 

were not among the data collected. 

Macdonald and Johnson (1996) carried out a survey of fox hunts across the country and 

found that hunts killed more foxes during 'cubhunting' than hunting proper and that 
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hunting is less effective as the season progresses, also indicated by data discussed in 
Macdonald et al. (2000). Cubhunting takes place in September and October prior to the 

start of the fox hunting season in November and is intended to move foxes and 
encourage dispersal (Macdonald & Johnson 1996). Foot hunting packs in Welsh 

uplands were found to kill far more foxes than mounted hunts in the same region (at 
least an order of magnitude more). A mean density of 0.10 foxes were killed per km2 by 

hunts between 1960 and 1980, which gives a figure of approximately 14,500 foxes 

killed annually by hunts during this period, in Britain. More foxes were killed per km2 

during the late 1980s (nearly 0.15), due to an increase in foxes killed by hunts in the 
South. There was regional variation in fox kills by hunts, with more killed in the South 

than the North. This was also the case with foxes killed by gamekeepers, though figures 

were highest in the Southwest, which is not true for hunting kills. Farmers were found 

to kill the most foxes per km2 in the Wales and the West region and the least in the 

North (Macdonald & Johnson 1996). 

Harris and Lloyd (1991) summarise available data, estimating that around 12,500 foxes 

are killed each year by hunts (a figure of 15,000 is estimated by Macdonald and 

Johnson, 1996), whilst, between 1965 and 1980,22,000 foxes were killed annually by 

the Forestry Commission and the 221 fox destruction societies of England, Scotland and 

Wales (Lloyd 1980). More recent estimates put fox kills by Masters of Fox Hound 

Association (MFHA)-registered hunts at between 14,000 and 15,000 per year and kills 

by upland foot and gun packs at 7,000 to 10,000 (Burns et al. 2000). Heydon and 

Reynolds (2000b) collected data on fox kills by hunts and by gun packs. Hunt culling 

levels for the study regions as a whole were highest in the east Midlands region at 0.13 

foxes per km, six times higher than in the East Anglian region where 0.02 foxes were 2 

killed overall per km2. In the mid-Wales region, mounted hunts killed 0.09 foxes per 

km2 overall, whilst foot packs killed 0.50 foxes per km2. Hunts often keep fox cull 

records from which it is possible to obtain figures. However, the only feasible way to 

obtain information from other individuals carrying out fox control (such as farmers and 

gamekeepers) is by asking them after the control event (Heydon & Reynolds 2000b). 

1.5.2.2. Management by parties other titan organised hunts 

Fox control, mainly shooting with rifles, by gamekeepers occurs on most game estates 

in Britain. Pvc-Smith (1995) estimated that gamekeepers kill between 70,000 and 
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80,000 foxes a year in Britain, but Macdonald et al. (2000) believe this figure to be an 
over-estimate. Data from the Game Conservancy's National Game Bag Census (Tapper 
1992) show that approximately 2.0 foxes per km2 per year were killed by gamekeepers 
within shooting estates between 1980 and 1990. Reynolds et al. (1993), also quoting 
data from the National Game Bag Census, state that between 1970 and 1980, the 
regional average number of foxes killed per year could be as high as 5 per km2 in some 
years, with more than 100 foxes killed per km2 per year on occasion on some estates. 
The highest numbers of foxes were killed in southern England (Tapper 1992). By 

extrapolating figures from the National Game Bag Census, Macdonald et al. (2000) 

estimate figures of 38,000 foxes killed by gamekeepers in 1992 and 37,000 in 1998 in 
England and Wales. They also carried out a stratified analysis. dividing Britain into ten 

regions and came up with a figure of 39,000 foxes killed annually on shooting estates, 
including those with no gamekeepers, in England and Wales (Macdonald et al. 2000). 

However, the number of gamekeepers in Britain is not known precisely, nor is the 

number of individuals who actively cull foxes (Macdonald et al. 2000). 

In a survey of farmers in ten regions representative of lowland agricultural landscapes in 

England (Macdonald 1984), 32.6 per cent of farmers said that they controlled foxes, 

while 44.4 per cent of farmers in a survey sample of `midland' farmers (Oxfordshire, 

Buckinghamshire, Northamptonshire and Warwickshire) attempted fox control, half as a 

matter of annual routine and half only in response to sporadic damage (Macdonald 

1984). Lloyd (1980) estimates that a reasonable figure for the total number of fox kills 

in 1978 was 100,000 minimum. A figure of 477,000 foxes killed across England and 

Wales in 1980, based on an average of 2.3 foxes killed per km2 a year, is estimated by 

Macdonald et al. (2000), based on data from Macdonald and Johnson (1996), whilst in 

1995 an average of 2.26 foxes were killed per km2 in Wiltshire by farmers and hunt 

Masters (Macdonald et al. 2000). 

In Heydon and Reynolds' (2000b) survey of farmers and landowners in study areas in 

mid-Wales, east Midlands and East Anglia, 88 per cent of respondents reported that fox 

culling occurred on their land, with variation in culling frequencies between regions. 

with farm size and farm type. Of the farmers that stated that fox culling occurred on 

their land, 44 per cent relied on the services of organised groups for this. but the overall 

numbers of foxes killed by organised groups relative to the overall cull were low (less 
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than 10 per cent), with the exception of gun packs in mid-Wales. On average, farmers 

and landowners that practised culling killed 5.1 foxes per km2 in the mid-Wales study 
region, 3.57 foxes per km2 in the east Midlands region and 3.22 foxes per km2 in the 
East Anglian region. Regional estimates, taking account of non-cullers. farm size and 
presence of a gamekeeper, were made, giving figures of 1.31 foxes killed per km2 in the 

mid-Wales study region, 1.71 per km2 in the east Midlands region and 2.63 per km2 in 

the East Anglian region. A minimum likely cull, which took farmers' overestimates of 
hunt kills into account led to a decrease in these estimates with 0.11 foxes killed per 
km2 in the mid-Wales study region, 0.24 per km2 in the east Midlands region and 0.39 

per km2 in the East Anglian region. Data from this study also indicated that culling 
levels between 1992 and 1996 increased significantly in the mid-Wales and East 

Anglian study regions. 

It should be noted that the frequency of culling indicated by Heydon and Reynolds' 

study is much higher than that found by other studies of this type. This may be, as the 

authors suggest, because the study was more comprehensive than previous ones with a 

greater sampling intensity of the regions covered. However, there could be alternative 

reasons for this difference. One reason is that there was a sampling bias, caused by self- 

selection, in that more farmers and landowners that culled foxes participated in the 

surveys. The authors did undertake a follow-up telephone survey of non-respondents to 

detect such bias, but 16 to 18 per cent of those followed up declined to participate, 

which could still mean that the study was affected by a self-selection bias. 

1.5.3. Effectiveness of fox population management 

A number of studies have addressed the effectiveness of fox management strategies. 

There is a problem, however, in that, in order to judge effectiveness, a clearly defined, 

quantifiable objective is needed, whilst in practice an objective for fox management is 

rarely explicitly stated (Caughley & Sinclair 1994; White et al. 2000a). The objective 

could be to reduce damage by foxes or increase production; or to reduce fox numbers. 

However, these objectives are not necessarily intrinsically linked: a reduction in fox 

numbers will not necessarily translate into a reduction in a perceived problem (Burns et 

al. 2000). In addition, the number of foxes and the significance of the damage they 

cause are difficult to assess, whilst the geographical scale of fox culling is Variable, so 

culling efforts may be deemed successful or unsuccessful depending on the scale at 
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which they are considered (Macdonald et al. 2000). In the main, studies have 

considered the effectiveness of fox control with regard to reducing fox numbers. 

Based on average population demographics, it appears that fox culling levels need to be 
high to limit population growth (over 67 per cent removal in the absence of immigration 

and non-breeding subordinate individuals) (White et al. 2000a). Population models 
indicate that if sub-adults are culled, more moderate cull levels (30 per cent of sub- 

adults removed and 10 per cent of adults) may result in reductions in fox abundance 
(Macdonald et al. 2000). Modelling work indicates that dispersal and the timing of 

culling are important in determining the effectiveness of fox control (Macdonald et al. 
2000; White et al. 2000a). 

According to a study in Scotland (Hewson 1986), non-selective control of foxes (killing 

from October to the end of March, away from breeding dens) neither reduced the 

breeding population, though it may have prevented it from increasing; nor did it reduce 

complaints of lamb-killing. Kolb and Hewson (1980) conclude their study of fox 

populations in Scotland from 1971 to 1976 by stating that it was unlikely that the level 

of control at that time was limiting the fox population of Scotland as a whole. 

Therefore, a far greater expenditure and effort in control than was occurring would be 

necessary to reduce fox populations and maintain them at a low level over large areas 

(Kolb & Hewson 1980). However, destruction of foxes at dens often stops local 

instances of lamb killing and may even be effective if only cubs are killed, as has been 

the case with coyotes in America (Hewson 1986). Macdonald and Johnson (1996) 

argued that culling by hunting with hounds was ineffective in limiting regional fox 

populations. 

Reynolds et al. (1993) conclude their study of two sites in Dorset and on Salisbury Plain 

by stating that fox control had a local impact only on fox numbers and the areas became 

'sinks', with the effect of control being removed every year by immigration of juvenile 

animals. Harding et al. (2001) used data on native water bird populations and red fox 

control in California and population modelling to assess the effectiveness of control to 

protect bird populations. They found control to be effective in the short term, but 

suggested that long-term success may require efforts to control juvenile and immigrant 

foxes. It is often the case that more foxes are killed on an area of land than could 

44 



possibly ever live on it because of immigration (White et al. 2000a). This is further 
illustrated by Jenkins et al. 's (1964) findings at Glen Esk in Angus between 1956 and 
1961, where predator numbers (mainly foxes) were not primarily controlled by 

gamekeepers, as a similar number appeared every year despite predator destruction. In 

addition, culling will set density-dependent processes into action, which tend to 

compensate for the effects of lethal control (Caughley & Sinclair 1994) and may result 
in numbers higher than before control (Van Vuren & Smallwood 1996). Population 

control, therefore, may result in a short-term (and quick-acting) attenuation in the 

problems caused by a pest, but necessitates population reduction to be sustained year 

after year if this effect is to be maintained (Putman 1989). 

In Heydon and Reynolds' (2000a) three-region study, the impact of culling on fox 

populations on a regional (rather than a local) scale was considered. The authors 

compared levels of culling relative to estimated productivity of the population in the 

study regions. They assessed evidence for female pre-natal reproductive suppression, 
believed to be evident only in fox populations at or near carrying capacity. They 

concluded that in the mid-Wales and East Anglian study regions, culling effectively 

reduced fox populations below the carrying capacity of the environment, as the culls in 

these regions were high relative to estimated productivity and they found little evidence 

of female reproductive suppression. In the east Midlands study region, however, the 

fox cull was low relative to estimated productivity and there was evidence of 

reproductive suppression in females. Estimated productivity differed significantly 

between regions. The difference between fox productivity and cull data was only 

statistically significant for the east Midlands region, however. Therefore, the authors' 

interpretation of these results must be treated with some caution. In addition, Heydon 

and Reynolds suggest that the East Anglian region was effectively a `sink' for 

dispersing foxes from other nearby regions, which suggests that fox control is only 

effective if it is continuous in time (as studies of the effectiveness of fox control on a 

local scale have suggested). 

Some control of urban fox populations has taken place in the past, but its effectiveness 

is questionable. In south and southeast London, in 1983, Local Authorities trapped and 

dug out litters of cubs, as well as undertaking some shooting and gassing. This led to no 

significant reduction in the number of family groups each Spring. but a reduction in 
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total numbers of adult foxes (by 20 per cent) and cubs (by 12 per cent) in the population 
(i. e. a mean decrease in family group size) (Harris & Smith 1987a). There was no effect 

on the number of cubs born nor on the number of complaints received from 

householders, despite a cost of £70 per fox to kill 164 foxes (Harris & Saunders 1993). 

Cote and Sutherland (1997) reviewed twenty studies in order to achieve an overall 

perspective on the effectiveness of predator removal in protecting bird populations. 
Although this study was not specifically about foxes, but predators in general, studies 

on fox control were included in the analysis. They found that predator control was 

often effective in fulfilling a game manager's goal of high post-breeding (autumn) 

population sizes, but less frequently achieved a conservationist's objective of keeping 

long-term breeding numbers high. In 75 per cent of declining populations, predator 

removal failed to stem the decline. Reynolds et al. (1998) came to a similar conclusion, 
judging that predators have a significant influence on game bird breeding production 

but effects on breeding density are usually less significant during the breeding season. 

An experimental reduction in predator abundance (foxes, carrion crows and magpies) 

during the nesting period of grey partridges led to a significant increase in the 

proportion of partridges that bred successfully, as well as in the average size of their 

broods, with effects continuing over several years with ongoing predator control 

(Tapper et al. 1996). 

Cote and Sutherland (1997) found that it was difficult to eliminate the effects of 

emigration in judging whether a bird population had increased. Early avian mortality 

was reduced considerably and significantly by predator removal, but on the mainland, 

removal needed to be kept up in the long term in order to produce long-lasting effects. 

They concluded by suggesting that habitat improvement may be a more cost-effective 

way of spending resources. Removal of one predator species was not always effective 

because, in some cases, the empty niche left by one predator may have been filled by 

another. Therefore, control efforts should consider wider predator guild level and 

ecosystem effects, rather than single species alone. 

1.5.4. Other factors influencing fox population densities 

Fox mortality is believed to be caused mostly by humans (Harris & Smith 1987a; Harris 

& Lloyd 1991 ; Reynolds & Tapper 1995), either by deliberate killing or accidentally, 
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via road deaths and poisoning (Chautan et al. 2000). It has been estimated that 100,000 

foxes are killed annually on roads in Britain (Pye-Smith 1997). In a study of fox 

mortality in urban Bristol, the most common cause of death for adult foxes was road 

accidents, whilst death by disease was also important (Harris & Smith 1987b). It is 

difficult to assess the importance of disease and parasitism in influencing fox 

populations, especially in the long-term (Chautan et al. 2000). Sarcoptic mange 
(Sarcoptes scabei) may be important in regulating fox populations. especially at high 

densities. The disease has had dramatic effects on Nordic fox populations, considerably 

reducing their abundance (Lindström et al. 1994; Forchhammer & Asferg 2000), whilst 

it has similarly reduced study populations in Bristol (Baker et al. 2000). It is likely that 

factors vary in the relative magnitude of their importance in influencing fox populations 

according to whether the foxes are in urban or rural areas (Chautan et al. 2000), with 

deliberate killing by humans being more important in the countryside than in towns. 

Apart from human-induced death and disease, fox population numbers are mainly 

influenced by factors related to food supply. This association is illustrated by: the 

correlation between fox population numbers and numbers of field voles (Kolb & 

Hewson 1980; Hewson 1984a); the marked peak in the number of foxes killed in 

Scotland with the advent of myxomatosis in 1955/56 (when there were many ailing or 

dead rabbits), followed by a decrease over the next three years (Hewson & Kolb 1973); 

and the increase in reproductive success and/or cub survival in Scotland with increased 

amounts of carrion due to a severe winter (Hewson & Kolb 1973). It has also been 

suggested that afforestation may bring about local increases in fox numbers due to the 

increases in field vole numbers following ploughing and planting (Hewson 1986). The 

effect of prey availability on fox demographics seems to be more pronounced when 

food resource diversity is low, in winter and in northern regions (Chautan et al. 2000). 

It has been estimated that around 40 per cent of all fox mortality is due to natural factors 

(White et al. 2000a). However, as with information on foxes killed by man, data are 

lacking on the number of foxes dying due to non-human-induced causes. 

Foxes are territorial animals and live in family groups (Harris & Lloyd 1991). The size 

of their territories varies with habitat type, as well as being dependent on food 

availability and the density of foxes (Lloyd 1980; Macdonald 1980; Harris & Lloyd 

1991). Fox population numbers appear to be regulated by the number of territories a 
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particular habitat can support, through changes in their litter sizes and the percentage of 
barren females in a family group (Kolb & Hewson 1980; Harris & Smith 1987b: 

Lindström 1989; Cavallini & Santini 1996; Chautan et al. 2000; Heydon & Reynolds 
2000a). However, for their model of fox population dynamics, Suppo et at. (2000) 

assume that fox fecundity is not influenced by population density because according to 

them, there is a lack of variability in fertility rate across Europe, also supported by 

Harris and Smith (1987a)'s results for Bristol's fox population. The probability of 
dispersal is likely to be influenced by population density (Kolb & Hewson 1980), whilst 

mortality due to disease, fights with other animals and other causes has been shown to 
increase with increasing density (Lloyd 1980; Macdonald 1980; Harris & Smith 1987a). 

Therefore, fox populations are subject to some density-dependent processes that will 

tend to limit them at high densities and lead to population growth when densities are 

reduced. 

1.6. FOXES AND AGRICULTURE IN BRITAIN 

1.6.1. The fox as a pest 

A survey by Baines et al. (1995) asked farmers in Wiltshire to quantify the costs of 

certain mammal species as pests to their farms. In general, the fox was quoted as being 

the fifth most expensive pest (after the public, badgers, rabbits and pigeons), with non- 

dairy farmers reporting losses that were on average second only to the public. Using the 

same data set, but interpreted in terms of the score farmers gave according to the 

financial damage inflicted by pests, foxes were third worst pest (after rabbits and 

badgers) overall and third after corvids and badgers for non-dairy farmers (Baker & 

Macdonald 2000). Of respondents to Macdonald's (1984) survey of farmers in lowland 

England, 30.2 per cent reported experiencing significant damage due to foxes. On 

average, gamekeepers in Wales and the Midlands considered foxes to be their most 

serious pest (Packer & Birks 1999). As discussed earlier, prevention of damage by 

foxes is a major reason why they are culled across Britain. It is the predation of 

newborn lambs, poultry and newborn piglets that brings foxes into conflict with 

farmers, whilst predation on game birds conflicts with game shooting interests. 

However, there is a lack of available information on these predation impacts and the 

factors that influence them, especially for predation on poultry and piglets, whilst there 
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has been no assessment of their cost to farmers, producers and game interests. This 
study aims to address this lack of research. 

The perception of foxes as carriers of disease also makes them a pest in many farmers' 

eyes. In a questionnaire survey of farms in nine regions of England, 45.8 per cent of 
farmers cited the fox's role in spreading disease as one of the reasons why fox control 
should be carried out (Macdonald 1984); whilst a third of farmers surveyed in a study in 
Wiltshire thought foxes should be controlled for this reason (Baker & Macdonald 2000) 

and 10.1 per cent of respondents overall in Heydon and Reynolds' (2000b) study gave 
this as a reason for culling. Thus farmers consider the spread of disease by foxes to be a 
fairly important problem, although in Macdonald's (1984) study, it was not one of the 
three most commonly stated reasons as most important for fox control. Foxes have 
been found to carry a variety of diseases, which they may pass on to livestock, but there 
is very little known about the transfer of parasites from foxes to other animals (Richards 

cat al. 1995; Macdonald et al. 2000; White et al. 2000a). There is no clear evidence that 
foxes have been a significant contributory factor in any disease in Britain and fox 

control specifically to prevent disease transmission is considered unwarranted (White et 

at. 2000a). Because of this lack of evidence to suggest that disease transmission by 

foxes is significant and the lack of available data to assess the impact, it is not further 

investigated in this thesis. 

1.6.2. Collection of data on livestock predation 

There are three main ways of collecting information on predation: manipulative 

experiments, monitoring prey populations during changes in predator density and 

collecting data on the extent of predation in different situations (Reynolds & Tapper 

1996). With regard to livestock predation, these methods can be subdivided and within 

the third category range from questionnaires, surveys and personal interviews through 

domestic animal claims and field post-mortem examinations to direct observation (Hone 

1994). The accuracy and reliability of data increases along this list of methods, as does 

the resource cost (with direct observation of predation being especially difficult) 

(Knowlton et al. 1999), whilst the sample area under consideration is reduced. 

Therefore the decision of which method will be used to study predation requires a 

compromise between these three attributes. For this research, the questionnaire survey 

approach was considered the most appropriate, given that coverage of predation impacts 
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on a national scale with limited resources was required. Data on livestock predation are 
therefore based on the perceptions of those surveyed and throughout the thesis the terms 
`perceived' and `reported' are used as qualifiers to predation loss data because they 
have not been verified as actual loss data. The analysis of perceived loss data can be 
justified by the fact that individuals tend to act on their perceptions, so any preventive 
or reactive actions are likely to be based on these rather than actual losses. 

1.7. AIMS AND OUTLINE OF THESIS 

The fundamental step to effective pest control is determining the pest status of an 

animal (Hone 1994) and there are a number of reasons why the losses caused by pests 

should be assessed (Judenko 1973). It is only by determining the extent and 

significance of damage caused by pests and its associated costs that the need for 

management can be assessed (Reynolds & Tapper 1996; Moore et al. 1999). To this 

end, this thesis aims to assess the problem of fox predation to agricultural interests and 

undertake analysis of population control with the aim of reducing these problems, where 

such analysis is possible. 

In addition to assessing the extent and significance of damage caused by a pest, it is 

important to identify the factors that influence predation impacts. By doing so, 

husbandry and management techniques that may alleviate predation problems can be 

identified. This forms the basis for the implementation of effective preventive 

measures. It also allows targeting of future research into management options for 

damage limitation at the areas and situations where damage is most significant (Moore 

et al. 1999; Stahl et al. 2001; Tourenq et al. 2001). The methods used to effectively 

manage carnivore-livestock conflicts will differ depending on whether attacks are 

evenly distributed spatially or if they are concentrated on a small proportion of holdings 

and it is important to collect data in a variety of habitat and husbandry contexts (Stahl et 

al. 2001). Therefore, one of the aims of data collection for this research was to survey a 

wide range of such contexts wherever possible and to investigate what factors influence 

perceived predation by foxes across Britain. 
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Foxes are one of those animals that Putman (1989) points out are only pests in certain 

contexts and, as is often the case, how they are viewed depends on how individuals are 

personally affected by their actions (Messmer 2000). In addition to their costly impacts. 

foxes have a positive value to many in the British Isles. Therefore, it is not the aim of 

any pest control objective to reduce fox population abundances to zero and alternatives 
to lethal population control are to be preferred in many circumstances. Accordingly, 

this thesis also aims to identify non-lethal measures that aid prevention of fox predation 

through analysis of the husbandry and management factors that influence predation. 

In this thesis, the impact of fox predation is quantified for four sectors of British 

agriculture: sheep farming, free-range poultry production, outdoor pig production and 

game interests. Data were collected through questionnaire surveys of these interest 

groups. The first three chapters of the thesis focus on sheep producers. In Chapter 2, 

the factors influencing fox predation of lambs are assessed, in order to determine those 

situations where the impact of damage is most significant and identify any preventive 

measures that might help reduce these impacts. Chapter 3 involves the development of 

a framework to evaluate the costs of fox predation to sheep farmers in terms of lamb 

losses and preventive measures, in this case indoor housing, based on the analyses of 

Chapter 2. This framework is developed from the theories outlined earlier in Section 

1.3.2 and tested empirically using survey data. In Chapter 4, this analysis is furthered 

by including the costs of fox control. 

Chapter 5 focuses on free-range poultry production and uses the analyses of Chapters 2 

and 3 as a basis for assessing the impact of fox predation on poultry producers. The 

impacts of fox predation on outdoor pig producers and game interests are analysed in 

the same manner in Chapters 6 and 7, with Chapter 7 focusing on the predation of 

pheasants from release pens. In Chapter 8, the overall results of the study are discussed 

and conclusions drawn. Potential approaches for future research are also outlined. 
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CHAPTER 2 

FACTORS INFLUENCING PERCEIVED FOX PREDATION OF 
LAMBS ON SHEEP FARMS 

2.1. INTRODUCTION 

One of the most significant perceived impacts of the fox in Britain is the predation of 
lambs from sheep farms. The Ministry of Agriculture, Fisheries and Food (MAFF 

1996) attributed five per cent of lamb losses to `predators/misadventure', stressing that 

this could include predation by dogs as well as other causes. Various studies in Britain 

involving surveys of sheep farmers have assessed the magnitude of this perceived 

problem (Macdonald 1984; Anon 1993; Macdonald & Johnson 1996; Baker & 

Macdonald 2000; Heydon & Reynolds 2000b). The proportions of farmers reporting 
lamb predation in these studies have varied from 16% of a sample of Wiltshire farmers 

to 60.5% of a sample of Welsh sheep farmers (Baker & Macdonald 2000; Heydon & 

Reynolds 2000b). Other studies have investigated fox predation on farms more directly 

by establishing how lambs have died through post-mortem analysis (Hewson 1984b; 

White et al. 2000b). One of the conclusions to be reached from the research is that, 

although losses of lambs to foxes are generally low, there seems to be a variation in 

losses between farms, with some experiencing fairly high losses. 

Heydon and Reynolds (2000b) carried out a postal survey of farmers in three regions of 

Britain and asked them for information on lamb losses in the last 12 months. They 

found that both the occurrence and scale of perceived lamb losses to foxes were highly 

variable between farms. Average reported losses were between 0.0% and 0.6% for the 

three regions studied, with losses up to 5.2% in the Midlands, 14.5% in East Anglia and 

28.6% in Wales. White et al. (2000a) suggest that fox predation of lambs may be a 

spatially and temporally concentrated problem, whilst Lloyd (1980) reported that heavy 

losses of lambs to foxes may occur on particular nights. 

Various factors, including husbandry, where a farm is situated and the incidence of twin 

births among lambs, have been implicated in influencing differences between farms in 

the magnitude of fox predation on lambs. Lamb losses to foxes are likely to be reduced 
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by lambing ewes indoors, which protects lambs during their vulnerable early days 
(Bryson 1984; White et al. 2000a). Lambs are most at risk from fox predation when 
less than five days old (Hewson 1984b). Warren et al. (2001) identified the age of the 
dam (mother) and the age of the lamb at release as the factors that best explained lamb 

mortality (including predation) in free-ranging flocks in northern Norway. The latter of 
these supports the assertion that lambs are less likely to be predated upon if kept indoors 

after birth. However, it should be noted that a suite of predators, not just foxes, was 
implicated in killing lambs in this study in Norway. 

In Britain, a distinction can be drawn between hill, upland and lowland sheep farms. 

Hill farms tend to be characterised by poor land and a relatively harsh climate, with low 

sheep stocking rates, relatively large flocks and extensive systems of management. 
Lowland farms, on the other hand, tend to have fertile land, a milder climate, high sheep 

stocking rates, relatively small flocks and intensive systems of management, often in a 

mixed farm situation, whilst upland farms fit between the two in terms of the 

favourability of conditions (Cottle & Cottle 1998; MAFF 1999). Consequently, these 

farm types are associated with broad-scale differences in husbandry practices, which, in 

turn, may affect differences in perceptions of the importance of fox predation. For 

example, on lowland farms, where lambs are often born indoors, fox predation is 

generally considered less of a problem than on upland and hill farms (Harris & White 

1994; McDonald et al. 1997; White et al. 2000a). It is unclear whether this is due to the 

difference in weather conditions or in husbandry techniques or whether both of these 

have an effect. In addition, many lowland farms lamb early, before the time that foxes 

start producing cubs (Macdonald 1987), which could mean the timing of lambing helps 

with avoidance of predation, if foxes are more likely to kill lambs when they have cubs 

to feed. However, this effect may be solely due to a coincidence of timing. It has also 

been suggested that forestry plantations in upland and hill areas tend to harbour foxes 

that forage in open hill and rough grazing areas (Lloyd 1980; Chadwick et al. 1997). 

A further influence of husbandry is increasing winter feed available to ewes, which has 

been implicated in reducing the number of lambs reportedly killed by foxes (Burrows 

1968). In a study of two hill farms by White et al. (2000b), the main difference between 

the farms was that on one farm, ewes with multiple lambs were housed when giving 

birth and received supplementary feeding, whereas on the other they were not. It was 
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on the former that lamb mortality due to fox predation was lower. In their study, lambs 
born as twins or triplets were more susceptible to predation. Large litters may be more 
prone to predation because ewes are less vigilant per lamb and lambs tend to be smaller 
(Nash et al. 1996; White et al. 2000b). These results are supported by studies on overall 
lamb mortality (Stevens et al. 1982) and predation of lambs by feral pigs in Australia 
(Choquenot et al. 1997). However, Hewson (1984b) found that predators (both foxes 

and eagles) killed lambs that were slightly larger and in a better condition (estimated by 
fat deposits) than those of a similar age dying due to natural causes throughout the 
lambing season. There was no evidence of whether the predated lambs were diseased or 
not. 

White et al. (2000a) compiled average figures from studies of lamb predation and 
pointed out that the number of lambs believed to have been lost to foxes tends to 
increase in parallel with the overall number of lambs lost, across the studies. This 

suggests the problem is one with the levels of losses generally, rather than predation 

specifically. These overall losses are likely to be a function of husbandry practices. 
However, individual studies have not investigated the relationship between lamb losses 

overall and losses to foxes and whether these two increase in parallel. 

Few studies have considered the link between fox control and predation, probably 
because it is difficult to separate out the causes and effects involved: farmers may only 

control foxes when they feel there is a need, for example when a predation event has 

occurred; whilst it is difficult to set up field experiments to test for effects. A study in 

south-eastern Australia (Greentree et al. 2000), using factorial experimental design, 

found that, although fox control reduced the minimum percentage of lamb carcasses 

identified as killed by foxes, fox control had no influence on lamb production. Hewson 

(1990) observed no increase in the number of lambs lost to foxes when fox control was 

stopped, but there are a few flaws to his study (discussed by Macdonald et al., 2000), 

including the fact that culling was still carried out in areas neighbouring the study site. 

There has also been a lack of research assessing the link between fox population 

densities and lamb losses to foxes. The pattern of lamb losses among regions in 

Heydon and Reynolds' (2000b) study was not mirrored by fox abundance measured in 
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the same three regions (Heydon et al. 2000a; Macdonald et al. 2000), but the degree of 
association between the two was not tested by the authors. 

Studies that have collected data on lamb predation by foxes (or perceived predation) on 
a large scale (a number of farms across several regions), e. g. Heydon and Reynolds 
(2000b) and Macdonald and Johnson (1996), have shown that perceived levels of 
predation tend to vary between regions. Heydon and Reynolds (2000b) found a 
statistically significant difference between regions in the proportion of farmers reporting 
lamb losses to foxes, the highest proportion being in Wales and the lowest in East 
Anglia. There was also a difference in reported lamb losses (as a percentage of lambs), 

losses in Wales and the east Midlands being higher than in East Anglia. The authors 
detected a significant interaction between culling and region, there being higher lamb 

losses on farms where fox culling occurred in Wales and the east Midlands, but in the 

presence of a gamekeeper, losses tended to be lower. In a study of food remains at 396 

fox dens in Scotland from mid-April to late-May 1973-7, lamb carcasses were found at 
dens in all parts of Scotland, but most often in the Highlands and Argyll (Hewson 

1985). In Lochaber, where there were more fox dens with lamb remains than in other 

areas, there were many complaints of foxes killing lambs. However, a high proportion 

of these carcasses are likely to have been scavenged and there was no evidence that 

lamb remains at dens represented predated viable lambs (Hewson 1985). 

In North America, fairly extensive research has been carried out on the problem of 

coyote predation of sheep. Coyote depredation rates are influenced by factors including 

the breed of sheep, husbandry practices (such as confinement and shed lambing), 

predator fences, frightening devices, guard animals, aspects of coyote behaviour, 

environmental factors and coyote control (Robel et al. 1981; Knowlton et al. 1999; 

Wagner & Conover 1999; Andelt & Hopper 2000; Meadows & Knowlton 2000). 

However, there are several important differences in the hunting behaviour of coyotes 

and red foxes, two being that coyotes can hunt in packs and that they can kill adult 

sheep, meaning that inferences from one to the other must be drawn with care. 

Greentree et al. (2000) highlighted the fact that lamb losses to foxes can vary between 

individual flocks or areas in a country, reviewing a couple of studies carried out in 

Australia where high losses were associated with a particular sheep breed type and the 
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proximity of optimal fox habitat (Moore et al. 1966; Coman 1985). They also drew 

attention to the limited evidence that suggests that individual foxes become habituated 

to the killing of lambs (Rowley 1970) and can cause serious losses in individual flocks 
(Turner 1965). It is commonly held belief that a small minority of foxes are responsible 
for lamb predation in Britain (Burns et al. 2000; White et al. 2000a), but although this 

could explain some of the variation between farms in lamb losses, there is scant 
scientific evidence to support the hypothesis. 

Of the studies on fox predation of lambs mentioned above, the large-scale questionnaire 

surveys of farmers have tended to consider perceived predation of lambs only as part of 

a larger study and concentrated on the scale of perceived predation. Except for Heydon 

and Reynolds' (2000b) mention of the influence of region and fox control on perceived 

predation, studies have not addressed the factors that influence differences in perceived 
fox predation of lambs between farms. In addition, no study has assessed the problem 

of fox predation of lambs across Britain on a nation-wide scale and, with the exception 

of Anon (1993), studies have focused on regions with characteristics that are not 

necessarily representative of Britain as a whole. Smaller scale studies have examined 

the factors that influence lamb mortality in Britain, but only one (White et al. 2000b) 

has considered the problem of fox predation specifically. However, White et al. 's 

(2000b) study involved only two farms and was a comparison of the characteristics of 

the lambs that were assumed to have been killed by foxes and of those that did not die, 

rather than a comparison between farms. 

This chapter aims to address the lack of information on factors associated with variation 

in fox predation of lambs between farms across Britain. Assessing the reasons behind 

the fox predation problem is an important part of the process of identifying appropriate 

strategies to manage it. A survey of sheep farmers across Britain was carried out to 

ascertain perceived levels of fox predation of lambs. The data collected from this 

survey were used to find out what factors influence perceived fox predation on sheep 

farms and, therefore, why there are differences between farms across Britain in the 

occurrence and scale of perceived fox predation. As several of these factors were likely 

to be inter-related, the study aimed to identify the most important factors behind the 

variation. 
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2.2. METHODS 

2.2.1. Questionnaire survey of sheep farmers 
In November 1999, questionnaires were sent out, with an explanatory letter and 
Freepost reply envelope, to 2000 members of the National Sheep Association. The 

questionnaire consisted of questions on land-uses surrounding farms, husbandry, losses 

to predation and other causes between birth and weaning at the most recent lambing, fox 

control, production of sheep and costs on the farm (Appendix A). The survey followed 

an earlier pilot survey of 55 Charollais and Blackface sheep farmers to assess the 

suitability of the questions, identify categories for answers, where appropriate, and 

assess the likely response rate. 

2.2.2. Regional representativeness of sample 
In order to check whether the data to be used were representative of the regional 
distribution of sheep farms in Britain, the distribution of sheep farms from the survey 

was compared to the distribution of holdings with sheep from the 1999 MAFF and 
Scottish Executive June Censuses using a chi-square goodness-of-fit test. Every 

response was allocated to a region according to its postcode. Regions were identified 

using a Royal Mail system for grouping by postcode into Scotland, Wales, Northeast, 

Northwest, Midlands, Anglia, Southeast, South and Southwest regions (Table 2.1). 

These regions were then matched up to those in the MAFF and Scottish Executive 

censuses (Table 2.2) and the total number of holdings with sheep calculated for each 

region. 

2.2.3. Relative fox population density estimates 
Relative fox densities were estimated using faecal counts in 444 1-km squares surveyed 

across Britain during 1999 and 2000 (Webbon 2002). Beltran, Delibes and Rau (1991) 

and Cavallini (1994) discuss this technique of density estimation. Two walks of a 

selection of linear features were undertaken in each 1-km square each year. On the first 

walk, fox scats were removed from the linear features and on the second, two to six 

weeks later, the number of new scats counted. Relative densities were calculated as: 

d; =k, n; /wt; 
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where: 

d; = relative density estimate for the ith 1-km square, in total number of scats per 
kilometre square per day 

k, = total number of kilometres of linear features in the ith square 

ni = number of scats found on the second walk along linear features in the ith 

square 

w, = number of kilometres of linear features walked in the ith square 
t; = number of days between walks for the ith square 

Median relative densities were calculated based on nine regions (Table 2.3) and seven 
land class groups (Table 2.4). Land class groups were the same as those used for 

national brown hare and barn owl surveys (Hutchings & Harris 1996; Love et al. 2000), 

based on Bunce (1992). Medians were used due to the non-normal distribution of the 

data. Each farm returning a questionnaire was allocated both a region-based and a land 

class-based density estimate (from here on referred to as `regional fox density' and 
`land class fox density', respectively), depending on the region in which the farm was 

situated and the land class of the Ordnance Survey kilometre grid square (Barr et al. 

1993) in which the central farm buildings were located (determined from their 

postcodes). Grid square references were identified for each farm with an available 

postcode using Matchcode 5 Webnet Demo (Capscan Ltd., London). 

Spearman's rank correlations were used to test the associations between these density 

estimates and the number and percentage of lambs reported killed by foxes on farms, as 

well as the number of foxes killed by different control methods. Non-parametric 

correlation tests were deemed more appropriate for these data than parametric 

correlation as the data were non-normally distributed and because there is a lower 

likelihood of Type I error with non-parametric tests, especially for large sample sizes. 

The associations between the percentage of farms reporting fox predation and fox 

densities in each region and land class group were also tested using rank correlations. 
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Table 2.1: Allocations of postcodes to regions using Royal Mail system 

Region Postcode 

Scotland AB, DD, DG, EH, FK, IV, KA, KW, KY, ML, PA, PH, TD, ZE 
Wales CF, CH, LD, LL, NP, SA, SY 
Northeast BD, DH, D, DN, HG, HU, NE, TS, YO 
Northwest BB, CA, DY, L, LA, OL, SK, TF 
Midlands B, CV, DE, LE, NG, NN, ST, WV 

Anglia MK, NR, PE, SG 

Southeast BN, DA, KT, ME, RH, TN 

South GU, HP, OX, RG, SL, SN, SO, SP 
Southwest BA, BS, DT, EX, GL, HR, PL, TA, TQ, WR 

Table 2.2: Regions defined by postcode and their MAFF census counterparts 

Postcode-defined region Government Office Regions/Counties 

Scotland Scotland 

Wales Wales and Shropshire 

Northeast North East and Yorkshire and the Humber 

Northwest North West 

Midlands East Midlands, Staffordshire, West Midlands (county), 
Warwickshire and Buckinghamshire 

Anglia Eastern 

Southeast London, Surrey, Kent, East Sussex and West Sussex 

South Oxfordshire, Berkshire, Hampshire, Isle of Wight and 
Wiltshire 

Southwest Herefordshire, Worcestershire and South West, except 
Wiltshire 
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Table 2.3: Regions used to calculate relative fox density estimates (Webbon 2002) 

Region Region Counties 
Code 

I North Aberdeenshire, incl. Aberdeen; Angus; Argyll and Bute; 
Scotland Clackmannanshire; Falkirk; Fife; Highlands; Moray; Perth 

and Kinross; Stirling 

2 South Dumfries and Galloway; East Ayrshire; East 
Scotland Dunbartonshire; East Lothian; East Renfrewshire; 

Edinburgh; Glasgow; Inverclyde; Mid Lothian; North 
Ayrshire; North Lanarkshire; Renfrewshire; Scottish 
Borders; South Ayrshire; South Lanarkshire; West 
Dunbartonshire; West Lothian 

3 North Cheshire; Cleveland; Cumbria; Durham; Greater 
England Manchester; Lancashire; Merseyside; North Yorkshire; 

Northumbria; South Yorkshire; Tyne and Wear; West 
Yorkshire 

4 East Cambridgeshire; Essex; Humberside; Lincolnshire; Norfolk; 
England Suffolk 

5 Midlands Derbyshire; Gloucestershire; Hereford and Worcester; 
Leicestershire; Nottinghamshire; Shropshire; Staffordshire; 
Warwickshire; West Midlands 

6 Central Bedfordshire; Buckinghamshire; Greater London; 
England Hertfordshire; Northamptonshire; Oxfordshire 

7 Southwest Avon; Cornwall; Devon; Dorset; Somerset 
England 

8 South Berkshire; East Sussex; Hampshire; Isle of Wight; Kent; 
England Surrey; West Sussex; Wiltshire 

9 Wales Anglesey; Clwyd; Dyfed; Gwent; Gwynedd; Mid 
Glamorgan; Powys; South Glamorgan; West Glamorgan 
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Table 2.4: Land class groups used to calculate relative fox density estimates (Webbon 2002) 

Land class 
Group Code 

Land class 
Group 

Description 

1 Arable I Open, gently sloping, varied agriculture 
2 Arable II Flat, open, intensive agriculture 
3 Arable III Lowlands with mainly arable use 
4 Pastoral IV Undulating country, mainly pasture. Also coastal 

regions 
5 Pastoral V Mainly lowlands with mixed agriculture, 

predominantly pastoral 

6 Marginal upland 
VI 

Rounded hills, semi-improved pasture, moorlands 

7 Upland VII Upper mountain slopes, often moorland or bog 
covered 
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2.2.4. Analyses 

Statistical analyses were used to identify both the factors influencing the occurrence of 

perceived fox predation and the factors influencing the scale of perceived fox predation 
(or the numbers of lambs reported killed by foxes). Appendix B summarises the 

variables used in these analyses. Independent variables were chosen due to a priori 
hypotheses that they were influences on the occurrence or scale of perceived fox 

predation of lambs and from examination of scatter plots of the data. Data were 
transformed where necessary to meet the assumptions of normality of error and 
homogeneity of variance for regression analysis. 

Chi-square tests and logistic regression analyses were used to assess the associations 
between the occurrence of perceived fox predation on a farm and other factors. The 

dependent variable in all logistic regression models was a binary response variable 

(occurrence of perceived predation), coded zero for no reported fox predation of lambs 

on the farm and one for at least one lamb having been reported lost to foxes. This 

variable was also used in the chi-square tests. Univariate analyses were used to 

investigate preliminary relationships in the data and to identify the most significant 

variables for inclusion in a logistic regression model. Chi-square tests were used for all 

analyses involving one other categorical variable and logistic regression for analyses 

using a continuous independent variable or several dummy variables. 

Variables were selected for the overall multiple logistic regression model based on 

decreases in the -2 log likelihood of the model and retention of a significant relationship 

with the occurrence of perceived fox predation, once the effects of other variables were 

included. Variables for which the effects did not show up in univariate analyses were 

also tested in this multivariate approach to ensure no necessary variables were left out of 

the overall model. 

Foi- the analyses on factors influencing the scale of perceived predation, data for farms 

that reported no lamb losses to foxes were removed, leaving 251 data points. The data 

on reported numbers of lambs killed by foxes were then converted to per ewe figures by 

dividing by the number of lambing ewes on the farm. As these data were right-skewed, 

with a variance that increased with the mean, they were log-transformed to reduce 

heterogeneity of variance and meet the assumptions of linear regression. This variable 
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was used as the dependent variable in linear regression analyses identifying the factors 

affecting the perceived numbers of lambs lost to foxes per lambing ewe. Univariate 

regression analyses were used to examine relationships and identify independent 

variables for the overall multiple linear regression model. Independent variables were 
the same as those used in the logistic regression analyses (Appendix B). Only those 

variables that retained a statistically significant relationship with the dependent variable, 
when included with other variables, were kept in this overall model. Variables that it 

was considered might be important, but for which the effects may not have shown up in 

univariate analyses, were also tested in this multivariate approach to ensure no 

necessary variables were left out of the overall model. Partial correlation coefficients 

were used to assess these relationships. Variables were only considered necessary if 

there was an increase in the adjusted R2 of the model on their inclusion and the resultant 

model met the assumptions of linear regression. 

2.2.5. Reliability ratings 

Respondents were asked to rate the reliability of their figures for lamb losses from one 

to five, one being a guess, three an estimate and five accurate figures. To assess how 

the respondents' assessment of the reliability of their figures for lamb losses affected the 

models estimated, the associations between these loss reliability ratings and the 

dependent variables measuring occurrence and scale of fox predation of lambs, as well 

as reported number of lambs killed by foxes, were tested. The loss reliability scores 

were also included in the overall multivariate models estimated. Those scores for which 

there were large enough samples (3,4 and 5) were coded into dummy variables (a 

coding of one meaning this score had been given by the respondent) to allow for their 

inclusion in the models. It was hypothesised that there might be a link between given 

reliability ratings and the size of a farm, with farmers being able to keep track of the 

causes of lamb losses better with fewer sheep. The associations between two farm size 

variables, lambs born and lambing ewes, and reliability rating were therefore tested, via 

Kruskal-Wallis analyses of variance. 
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2.3. RESULTS 

In total 543 questionnaires (27%) were returned: of these, 490 (25%) were used in the 

analyses, 48 were mistargeted and five respondents declined to participate. Mistargeted 
forms included those returned from Northern Ireland and from Scottish islands on which 
foxes are not found. Not all respondents answered all the questions on the survey form 

(due to lack of knowledge on the subject covered or unwillingness to supply the 
information asked for). Therefore the sample sizes differ between analyses. Sample 

sizes are indicated in square brackets in the text. All figures for statistics are quoted to 3 

significant figures or 2 decimal places. Estimated Beta coefficients for independent 

variables in regression analyses are given as `B'. Statistical significance was taken as 
being at or above the 95% level (a = 0.05), i. e. p! -< 

0.05. 

The number of holdings with sheep from the MAFF and Scottish Executive 1999 June 

Census data and the number of questionnaire responses for each postcode-derived 

region were calculated from the available data (Table 2.5 and Figure 2.1). There was a 

statistically significant difference between the regional distribution of the survey sample 

and that of holdings with sheep in the censuses (chi-square goodness-of-fit test: x- _ 

55.8, d. f. = 8, p<0.001 [n = 9]). There were more responses than expected from 

Scotland and Wales, with fewer than expected from Northeast England and the 

Midlands (Table 2.5). 

The sample contained a fairly even number of hill, upland and lowland farms, lowland 

farms being the most numerous (Figure 2.2). There was a large range in the number of 

ewes per holding, from 4 to 4000, with the mean number of ewes per holding being 582 

(S. E. = 28.5) and the median number, 400 (Figure 2.3). 

The figures for reported losses of lambs to foxes, all predators (including foxes), other 

causes and in total between birth and weaning are summarised in Table 2.6. All figures 

are given based on untransformed data. Lamb mortality is given as the percentage of 

lambs said to have been lost to that cause out of the total number of lambs born alive on 

each farm. More than half the respondents (59.4% of 429) reported fox predation of 

lambs at their most recent lambing. The majority of farms reported that they 

experienced low (one per cent or less) mortality of lambs due to fox predation (Figure 
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2.4). However, the problem was perceived to be greater on some individual farms. On 

farms where fox predation was reported, the median percentage of lambs reported killed 

by foxes out of the total born was 1.39%, with a range from 0.06 to 15cI(-. The majority 

of respondents (60.9%) thought the numbers of lambs lost to foxes had not changed 

over the past five years, whilst nearly a quarter of them (23.8%) thought these losses 

had increased (Figure 2.5). 

The reported number of foxes killed per hectare on farms in the last year varied from 

none (on 31 % of farms) to 1.07 killed per hectare on one farm (Figure 2.6). 

Table 2.5: Survey returns and data from 1999 MAFF and Scottish Executive June Censuses on 
sheep holdings by region 

Region Number of survey Number of Expected survey 
responses from holdings with response based on 
region sheep in region June Census data 

Scotland (excluding 116 11270 76 
Shetland, Orkney 
and Eileanan an Iar) 

Wales 170 20962 142 

Northeast 36 8672 59 

Northwest 37 6878 47 

Midlands 21 6610 45 

Anglia 4 1804 12 

Southeast 22 2934 20 

South 13 2051 14 

Southwest 68 10816 73 

Nation-wide Total 487 60727 
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2.3.1. Relative fox population density estimates 

Relative fox density estimates calculated for each region and land class group varied 

from 0 to 1.52 scats per kilometre square per day (Table 2.7 and Table 2.8). It was not 

possible to allocate a regional density estimate to three farms, as location information 

was not available, whilst for 53 farms, no land class information was allocated, due to a 

lack of specific location data. 

Land class fox density was not significantly associated with the number of lambs 

reported killed by foxes (rs = -0.081, p>0.10 [n = 383]), but regional fox density was 

positively correlated with the number of lambs reported killed by foxes (rs = 0.151, p= 

0.002 [n = 424]) (Figure 2.7a). The percentage of lambs born reported killed by foxes 

was also positively associated with regional fox density (rs= 0.108, p=0.028 [n = 419]) 

(Figure 2.7b), which was not the case when using Spearman's rank correlation with land 

class fox density (rs = -0.048, p>0.10 [n = 380]). Neither regional nor land class fox 

density were associated with the number of lambs reported killed by foxes per lambing 

ewe (rs = 0.09 1, p>0.05 [n = 423] and rs = -0.047, p>0.10 [n = 382], respectively). 

Regional fox density was positively correlated both with the number of foxes reported 

killed on a farm and with the number of foxes killed per hectare (rs = 0.150, p=0.001 [n 

= 448] and rS = 0.120, p=0.011 [n = 448] respectively). Land class fox density was not 

significantly associated with either of these variables (rs = 0.010, p>0.05 [n = 402] and 

rs = 0.064, p>0.10 [n = 402], respectively). 

There was a significant association between the percentage of farms reporting fox 

predation in each region and regional fox density (rs= 0.800, p=0.01 [n = 9]), but not 

between the percentage of farms reporting fox predation in each land class group and 

land class fox density (rs = -0.036, p>0.90 [n = 7]). 
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Table 2.7: Relative fox densities based on regions (Webbon 2002) 

Region Code Region N Median relative density 
(scats per kilometre square 
per day) 

I North Scotland 56 0.461 
2 South Scotland 36 0.930 
3 North England 44 0.242 
4 East England 50 0.199 
5 Midlands 52 0.613 
6 Central England 40 0.366 
7 Southwest England 50 1.52 
8 South England 71 0.460 

9 Wales 45 0.639 

Table 2.8: Relative fox densities based on land class groups (Webbon 2002) 

Land class 
Code 

Land class Group N Median relative density 
(scats per kilometre square 
per day) 

1 Arable I 60 0.353 

2 Arable II 113 0.448 

3 Arable III 44 1.19 

4 Pastoral IV 91 0.833 

5 Pastoral V 56 0.775 

6 Marginal upland VI 55 0.449 

7 Upland VII 25 0 
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2.3.2. Factors related to the occurrence of perceived fox predation of lambs 
2.3.2. I. Farm location 

Chi-square tests were used to analyse the association between farm location and the 

occurrence of perceived fox predation of lambs. The effect of `country' was found to be 

significant (x2 = 12.0, d. f. = 2, p=0.002 [n = 425]). Farms in Scotland and Wales 

experienced higher occurrences of reported fox predation than expected and farms in 

England had lower occurrences than expected, illustrated by the cross-tabulation of 
these two variables (Table 2.9). The effect of `region' was also statistically significant 
(x2 = 19.9, d. f. = 8, p=0.011 [n = 425]). The Northwest and Northeast of England had 

lower than expected occurrences of perceived predation. The differences in frequencies 

of reported fox predation of lambs for each postcode region are given in Table 2.10. 

Table 2.9: Cross-tabulation of frequencies of occurrence of perceived fox predation of lambs by 
country within UK 

Country Occurrence of perceived fox predation of lambs N 

No fox predation Fox predation reported 

England 87 88 175 

Wales 57 93 150 

Scotland 29 71 100 

All 173 252 425 

Table 2.10: Cross-tabulation of frequencies of occurrence of perceived fox predation of lambs by 
postcode-derived region 

Region Occurrence of perceived fox predation of lambs N 

No fox predation Fox predation reported 

Southwest 23 35 58 

South 6 5 11 

Southeast 10 12 22 

Midlands 9 8 17 

Wales 57 93 150 

Northwest 17 14 31 

Northeast 18 14 32 

Anglia 4 0 4 

Scotland 29 71 100 

All 173 252 425 
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Table 2.11: Cross-tabulation of frequencies of occurrence of perceived fox predation of lambs by farm type 

Farm type Occurrence of perceived fox predation of lambs N 
No fox predation Fox predation reported 

Lowland 90 85 175 
Upland 57 87 144 
Hill 26 82 108 
All 173 254 427 

The association between farm type and the occurrence of perceived predation was tested 

(x2 = 20.8, d. f. = 2, p<0.001 [n = 427]). The occurrence of reported fox predation on 
hill farms was higher than expected, whilst that on lowland farms was lower than 

expected, illustrated by the table of frequencies (Table 2.11). 

2.3.2.2. Farm size, lambing rates and stocking densities 

The total area of the farm was positively related to the reported occurrence of lamb 

predation by foxes (B = 0.004, Wald = 27.9, p<0.001 [n = 426]), as was the area of 
land on the farm devoted to sheep farming (B = 0.01, Wald = 26.3, p<0.001 [n = 421 ]). 

The number of lambs born and the number of lambing ewes on the farm (both In- 

transformed) were also related to the occurrence of perceived fox predation (B = 0.910, 

Wald = 68.3, p<0.001 [n = 416] and B=0.980, Wald = 91.2, p<0.001 [n = 427], 

respectively). So too were the number of lambs born per lambing ewe (B = -1.71, Wald 

= 23.1, p<0.001 [n = 415]) and whether the farm had more than 250 ewes (B = 1.84, 

Wald = 71.5, p<0.001 [n = 427]). Ewe stocking density was not related to the 

occurrence of perceived fox predation. 

2.3.2.3. Land uses surrounding the farm 

Respondents to the questionnaires were asked to rate various land uses according to 

how much of the land surrounding their farm was taken up by these land uses. The 

land-uses were 'arable', 'livestock', `game-rearing', `forestry', 'village', `urban' and 

`rough grazing' and were each rated from zero to five. A rating of zero meant that this 

land-use took up none of the surrounding land, and a rating of five that it took up a] I the 

surrounding land. Ratings rather than rankings were used for ease of response. to allow 
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respondents to give the same rating to more than one land-use and to allow them to be 
included as covariates in analyses to account for some effect of scale. A category for 
`other', allowing for specification of land-use types that did not fit in to the given 
categories, was also available. However, only 32 (of 477) respondents considered that 
they had any other land-use type in the land surrounding their farm and thirteen 
different types of land-use were given by these respondents, so the sample sizes were 
too small for inclusion in the analyses. 

The rated land-use variables were included individually in regression models, both as 
covariates and as dummy variables coding for the presence or absence of the land-use 

type in surrounding land. Forestry and rough grazing in surrounding land were both 

positively related to the reported occurrence of lamb predation by foxes. These 

relationships were evident whether rated scores were used as the independent variables 
in the regression (forestry a: B=0.231, Wald = 7.22, p=0.007 [n = 415]; rough grazing 

a: B=0.223, Wald = 11.6, p=0.001 [n = 415]) or dummy variables coding for the 

presence or absence in surrounding land of the land-use type in question were used 
(forestry b: B=0.610, Wald = 8.96, p=0.003 [n = 415]; rough grazing b: B=0.688, 

Wald = 11.1, p=0.001 [n = 415]). Arable land in the surroundings was negatively 

related to the occurrence of reported lamb predation, when the rated score was included 

as a covariate (arable a: B= -0.141, Wald = 4.37, p=0.037 [n = 415]). 

2.3.2.4. Lambing indoors and multiple births 

The percentage of ewes lambed indoors (arcs ine-transformed to fit the assumptions of 

regression) was negatively related to the occurrence of perceived predation in a logistic 

regression (B = -0.819, Wald = 24.1, p<0.001 [n = 420]), as was the percentage of 

ewes lambed in lambing pens (arcsine-transformed) (B = -0.339, Wald = 5.90, p= 

0.015). The percentage of ewes with multiple births (also arcs ine-transformed) was 

similarly negatively related to the dependent variable (B = -1.458, Wald = 16.7, p< 

0.001 [n = 421 ]). A dummy variable coding for whether all ewes were lambed indoors 

also showed up the relationship between indoor lambing and occurrence of perceived 

predation (B = -1.166, Wald = 31.0, p<0.001 [n = 428]). The number of days in after 

lambing was negatively related to the occurrence of perceived fox predation (B =- 

0.024, Wald = 10.6, p=0.00 1 [n = 422]). 
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No association was found between ewes with multiple lambs being given 
supplementary feeding and the perceived occurrence of fox predation when tested using 
a chi-square test (x2 = 2.42, d. f. = 1, p>0.05 [n = 419]). However, of the farmers that 

gave information on supplementary feeding and lamb losses to foxes, less than ten per 
cent did not give ewes supplementary feed (38 out of 419). 

2.3.2.5. Timing of lambing 

The month in which lambing took place had an influence over the perceived occurrence 

of predation (x2 = 18.9, d. f. = 5, p=0.002 [n = 428]). March and April had higher than 

expected occurrences of reported fox predation, whilst those for all other months were 
lower than expected (Table 2.12). 

Table 2.12: Cross-tabulation of frequencies of occurrence of perceived fox predation of lambs by 
month lambing took place 

Month of Occurrence of perceived predation of lambs N 
lambing 

No fox predation Fox predation reported 
January 29 24 53 

February 37 35 72 

March 62 119 181 

April 26 60 86 

May to 
November 

7 8 15 

December 13 8 21 

All 174 254 428 

2.3.2.6. Sheep breed 

Dummy variables coding for each sheep breed type (Mountain and Moorland, Grass 

Hill, Longwool, Terminal Sire and Halfbred) were included in a multivariate logistic 

regression model (x2 = 23.0, d. f. = 5, p<0.001 [n = 428]). These variables coded for 

whether each type of sheep breed was on the farm, regardless of whether other types 

were also present. Only the variables coding for Mountain and Grass Hill breeds had 

statistically significant parameter estimates and farms with these breeds reported 

significantly higher occurrences of predation than those with other breeds (B = 0.795, 
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Wald = 8.54, p=0.003 and B=0.635, Wald = 4.45, p=0.035 respectively). A variable 
coding for whether the farm had Scottish Blackface sheep was included alone and this 
was also positively related to the occurrence of perceived predation (B = 1.024, Wald = 
6.89, p=0.009 [n = 422]). 

2.3.2.7. Lamb mortality due to causes other than predation 
The reported number of lambs lost to causes other than predation between birth and 
weaning, included as an independent variable in a logistic regression, was associated 
with the occurrence of perceived fox predation of lambs (B = 0.024, Wald = 23.2, p< 
0.001 [n = 395]). In contrast, the reported number of lambs lost to causes other than 

predation per lambing ewe had a negative association with the dependent variable (B =- 
5.139, Wald = 9.146, p<0.001 [n = 394]). 

2.3.2.8. Fox control and relative fox population density 

The number of foxes killed in the last year on the farm was positively associated with 

the occurrence of reported fox predation (B = 0.145, Wald = 35.0, p<0.001 [n = 396]), 

as was a dummy variable coding for fox control being carried out (B = 1.98, Wald = 
67.7, p<0.001 [n =396]). The number of foxes killed per hectare was not related to the 

dependent variable. Regional fox density was significantly and positively related to the 

occurrence of reported fox predation (B = 0.781, Wald = 4.56, p=0.033 [n = 425]), but 

land class fox density was not related to this dependent variable. 

2.3.3. Model relating the occurrence of perceived fox predation of lambs to farm 
characteristics 

The overall logistic regression model included four variables: whether all the ewes were 

lambed indoors; whether fox control was carried out on the farm; the number of 

lambing ewes (In-transformed); and whether the farm was in Northwest England (Table 

2.13). The initial -2 log likelihood or likelihood ratio x2 (LRX2) (for a model with the 

constant only) was 525.3 and for the fitted model, LRX2 was 347.9. The overall 

predictive accuracy of the model was 79.6% (x2 = 177.3, d. f. = 4, p<0.001 [n = 392]). 

The model correctly predicted the occurrence of fox predation on 87.0% of farms where 

predation had occurred. Lambing all ewes indoors was associated with a lower 

likelihood of perceived fox predation, whilst farms where fox control was carried out 
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tended to have higher occurrences of reported losses to foxes, as did farms with larger 
flocks. Perceived fox predation was less likely to have occurred in Northwest England. 

Multicollinearity was not considered to be a problem in the model as there was no 

evidence of degradation in the fit, whilst estimated standard errors of coefficient,, were 

relatively low (Hosmer & Lemeshow 1989). 

Table 2.13: Parameter estimates and significance test statistics for overall logistic regression model 
describing variation in the occurrence of perceived fox predation of lambs between farms 

Variable B Wald p 
Indoor lambing -1.28 20.1 <0.001 

Fox control carried out 1.27 19.0 <0.001 

Lambing ewes (In-transformed) 0.896 54.8 <0.001 

Northwest -1.33 6.44 0.011 

Constant -4.41 45.7 <0.001 
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2.3.4. Factors related to the scale of perceived fox predation of lambs 
Linear regression analyses were carried out only on data from farms that had reported at 
least one lamb killed by foxes [n = 251], with the logged number of lambs perceived 
killed by foxes per ewe as the dependent variable. Independent variables were the same 
as those used for analyses of the occurrence of perceived predation. 

2.3.4. I. Surrounding land-uses and farm location 

None of the surrounding land-use variables were statistically significantly related to the 

number of lambs perceived killed by foxes per ewe, neither when included in analyses 

as dummy variables nor as covariates. Some of the farm location variables were related 
to this dependent variable (Table 2.14). 

Table 2.14: Parameter estimates and t-test statistics for univariate regression analyses relating 
location variables to the scale of perceived fox predation of lambs 

Factor B t p 
England [n = 248] 0.364 2.68 0.008 

Scotland [n = 248] -0.509 -3.58 <0.001 

Southwest [n = 248] 0.399 2.13 0.034 

South [n = 248] 0.794 1.70 0.090 

Hill [n = 250] -0.247 -1.77 0.078 

Upland [n = 250] -0.245 -1.78 0.076 

Lowland [n = 250] 0.491 3.61 <0.001 

2.3.4.2. Farm size, lambing rates and stocking densities 

The total area of the farm in hectares was negatively related to the number of lambs 

reported killed by foxes per ewe (B = -0.001, t= -4.13, p<0.001 [n = 249]), as was the 

area of land on the farm used for sheep farming (B = -0.001, t= -3.68, p<0.001 [n = 

246]). The number of lambing ewes and the number of lambs born (both In- 

transformed) were similarly related to the dependent variable (B = -0.478, t= -8.25, p< 

0.001 [n = 251] and B= -0.499, t= -8.46, p<0.001 [n = 244], respectively). Farms 

with more than 250 ewes were associated with lower numbers of lambs reported killed 

by foxes per ewe (B = -0.938, t= -6.76, p<0.001 [n = 251 ]), but neither ewe stocking 

density nor the number of lambs born per ewe were related to the dependent variable. 
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2.3.4.3. Lambing indoors and multiple births 

None of the lambing indoors or use of lambing pens variables were related to the scale 
of perceived fox predation. The percentage of ewes that had multiple births was also 
unrelated to the dependent variable, but the supplementary feeding of ewes with 
multiple lambs had an effect (B = -0.579, t= -2.285, p=0.023 [n = 244]). 

2.3.4.4. Timing of lambing 

The month in which lambing took place, included as a fixed factor in a univariate 
analysis of variance, had a significant influence on the number of lambs reported killed 

by foxes per ewe (F = 3.196, d. f. = 5,245, p=0.005 [n = 251]). Lambings in January 

and February were associated with a significantly higher logged number of lambs 

perceived killed (means both = -3.83) than lambings in March and April (means = -4.22 
and -4.33, respectively). Lambings in March and April were associated with a 

significantly lower logged number of lambs perceived killed than lambings in May to 

November and December (means = -3.45 and -3.33, respectively). 

2.3.4.5. Sheep breed 

The type of sheep breed on the farm had an influence on the number of lambs reported 

taken by foxes per ewe (F = 2.29, d. f. = 5,245, p=0.047 [n= 251 ]). Dummy variables 

coding for each breed type were included in a linear regression model. Only the 

coefficient for the variable coding for longwool breeds was significantly different from 

zero with a tendency for reported losses to foxes to be higher on farms with this breed 

type than on those without (B = 0.497, t=2.188, p=0.030). Whether farms had 

Scottish Blackface sheep did not influence perceived losses to foxes. 

2.3.4.6. Lamb mortality due to causes other than predation 

The reported number of lambs lost to causes other than predation between birth and 

weaning was negatively related to the scale of perceived fox predation (B =-0.003, t= 

-2.12, p=0.035 [n = 224]), but the reported number lost to causes other than predation 

per ewe was not significantly associated with the dependent variable. 
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2.3.4.7. Fox control and relative fox population density 

The number of foxes killed on the farm in the last year was not significantly related to 
the number of lambs reported killed by foxes per ewe, but the number of foxes killed 

per hectare was (B = 2.523, t=4.18 1, p<0.001 [n = 239]). Fox control was not 

associated with the number of lambs reported killed by foxes per ewe. Neither regional 

nor land class fox density were related to the number of lambs perceived killed by foxes 

per ewe when included as independent variables in regression models. The same 

conclusion was reached when non-parametric correlation tests were used to analyse 

these associations. 

2.3.5. Model relating the scale of perceived fox predation of lambs to farm 
characteristics 

The most statistically significant variables explaining variation in the logged number of 

lambs reported taken by foxes per ewe were included in an overall linear regression 

model (Table 2.15) (R2 = 0.360, Adjusted R2 = 0.340, F= 18.1, d. f. = 7,225, p<0.001 

[n = 233]). These variables were indoor lambing, number of foxes killed per hectare in 

last year, lambing ewes, whether there was land used for game rearing in the 

surroundings of the farm, whether the farm was in the Northeast region, whether the 

farm was in the Southwest region and whether the farm had longwool type sheep 

breeds. 

Multicollinearity was not a problem in the model, the highest variance inflation factor 

(VIF) being 1.17 and the lowest tolerance 0.854. Lambing ewes indoors was associated 

with lower perceived lamb losses to foxes, whilst larger farms also experienced lower 

reported losses. The magnitude of fox culling was positively related to the scale of 

perceived predation, as were the presence of game rearing in the surroundings of the 

farm and longwool sheep breeds. Losses in Southwest England were higher than 

elsewhere and those in the Northeast lower. 
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Table 2.15: Parameter estimates and t-test statistics for overall multiple linear regression model 
explaining variation in the scale of perceived fox predation of lambs 

Variable B t p 
Indoor lambing -0.507 -4.21 <0.001 
Number of foxes killed per hectare in 
last year 

1.63 3.13 0.002 

Lambing ewes (In-transformed) -0.470 -8.30 <0.001 

Game rearing b 0.401 2.77 0.006 

Northeast -0.440 -1.80 0.074 

Southwest 0.347 2.03 0.043 

Longwool 0.451 2.32 0.021 

Constant -1.25 -3.35 0.001 
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2.3.6. Associations between respondent reliability ratings for lamb losses and 
perceived fox predation of lambs 

Respondents rated the reliability of their figures for lamb losses from one to five, one 
being a guess, three an estimate and five accurate figures. Only 14 of 475 respondents 
rated their figures as being one or two in reliability score; 158 gave a score of three, 128 

a score of four and 175 of five. 

There was a significant difference in the reported number of lambs killed by foxes 
between loss reliability ratings, shown up by including loss reliability rating as the 

grouping variable in a Kruskal-Wallis analysis of variance (including all farms in the 

analysis) (x2 = 39.0, d. f. = 4, p<0.001 [n = 418]). Ratings of 5 had the lowest mean 

rank, indicating that respondents giving a rating of 5 tended to report lower numbers of 
lambs lost to foxes than respondents giving other ratings (Table 2.16). This is also 

shown up by the medians of the data on number of lambs reported killed by foxes for 

each reliability rating (Table 2.17). (The means of the data do not show this up because 

the distribution of the data distorts this figure, there being a few farms with large 

numbers of lambs reported lost to foxes for ratings of 3,4 and 5. ) 

There was a statistically significant association between reliability ratings given by 

respondents and the occurrence of reported fox predation of lambs (x2 = 46.2, d. f. = 2, p 

< 0.001). Only data with loss reliability ratings of 3 or above were included in this 

analysis, as contingency table cells for reliability ratings of 1 and 2 had expected values 

of less than five, which meant the chi-square statistic would be invalid. Ratings of 3 

and 4 were associated with a higher than expected occurrence of reported fox predation 

and ratings of 5 with a lower than expected occurrence, which is shown by the 

frequencies in cells of a cross-tabulation of the two variables (Table 2.18). 

Dummy variables coding for these three loss reliability scores (3,4 and 5) (a coding of 

one meaning this score had been given by the respondent) were included in the overall 

multivariate logistic regression model estimated earlier in three paired combinations 

(Tables 2.19 to 2.21). Multicollinearity would have been a problem if they were all 

included together, as only eight data points did not have reliability scores of 3 or above. 

These analyses show the same relationships as shown up with the chi-squared analysis 
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for ratings of 3 and 5, though neither were statistically significant at the 5ýI% level when 
both were included in the model together. With the effects of other factors taken into 

account, ratings of 4 were associated with lower occurrences of predation (negative B in 
Table 2.21). 

A Kruskal-Wallis test was used to analyse the association between loss reliability rating 
and the dependent variable used for analyses on the perceived scale of predation (logged 

number of lambs perceived killed by foxes per ewe on farms that reported at least one 
lamb killed). This showed that there was a significant difference between loss 

reliability ratings in terms of this variable (x2 = 14.1, d. f. = 4, p=0.007 [n = 249]), 

ratings of 4 and 5 having higher mean ranks than other ratings (Table 2.22). The 

dummy variables coding for reliability ratings of 3,4 and 5 were included in the overall 

multivariate linear regression model for perceived scale of predation estimated above, in 

paired combinations. When included together, neither ratings of 3 nor 4 were 

statistically significant in the model. A rating of 3 had a negative relationship with the 

dependent variable that was just statistically significant at the 10% level, when included 

with a rating of 5 in the model (Table 2.23). Ratings of 4 and 5 were statistically 

significant, at the 5% and 10% levels respectively, and positively related to the 

dependent variable when they were included together (Table 2.24). These results 

indicate that the perceived scale of fox predation was greater for respondents giving 

either of these ratings than for those giving a rating of 3, but that the perceived scale of 

fox predation did not differ significantly between ratings of 4 and ratings of 5. 

There was a significant association between loss reliability ratings 3 to 5 and the 

farm size variables, lambs born and lambing ewes, when all the data were included in a 

Kruskal-Wallis analysis of variance (x2 = 73.5, d. f. = 2, p<0.001 and x2 = 73.5, d. f. = 

2, p<0.001, respectively), with a rating of 5 having a lower mean rank than ratings of 3 

and 4, that of 4 being marginally lower than that of 3. When only data for farms where 

perceived fox predation of lambs occurred were included in the Kruskal-Wallis analysis, 

however, the association between lambs born and reliability rating was only just 

significant (x2 = 6.44, d. f. = 2, p=0.040) and that between lambing ewes and reliability 

rating statistically insignificant (x2 = 5.78, d. f. = 2, p>0.05). Once again, a reliability 

rating of 5 had the lowest mean rank, followed by a rating of 4. 
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Table 2.16: Mean rank in Kruskal-Wallis analysis of variance of number of lambs reported killed 
by foxes for each loss reliability rating, a higher rank indicating numbers of lambs reported killed 
by foxes were higher in this group 

Loss reliability rating N Mean rank 
1 3 288 

2 5 199 

3 131 235 

4 114 241 

5 165 166 

Table 2.17: Median, mean, standard deviation and number in sample of number of lambs reported 
killed by foxes for each loss reliability rating 

Loss reliability rating Median Mean Standard deviation N 

1 8 8.67 6.03 3 

2 2 2.20 1.10 5 

3 5 8.73 16.0 131 

4 5 13.3 24.1 114 

5 0 5.01 10.6 165 

All 3 8.44 17.1 418 

Table 2.18: Cross-tabulation of frequencies of occurrence of perceived fox predation of lambs and 
loss reliability rating 

Loss reliability Occurrence of perceived fox predation of lambs 

rating No fox predation Fox predation reported N 

1 

2 

0 

0 

3 

5 

3 

5 

3 

4 

33 

34 

99 

80 

132 

114 

5 100 65 165 

All 167 252 419 
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Table 2.19: Overall model fit, parameter estimates and significance tests for variables in multiple logistic regression model explaining variation in occurrence of perceived fox predation of lambs, 
including dummy variables coding for reliability ratings of 3 and 4 
Overall fit: Initial LRX2 = 512.0, LRx2 for fitted model = 334.4, x2 = 177.5, d. f. = 6. p< 0.001 [n = 3841 
Variable B Wald p 
Indoor lambing -1.32 19.9 <0.001 
Fox control carried out 1.38 20.7 <0.001 
Lambing ewes 0.782 35.8 <0.001 
Northwest -1.42 6.86 0.009 
Loss reliability rating of 3 0.891 6.11 0.013 
Loss reliability rating of 4 0.138 0.165 0.685 
Constant -4.10 38.5 <0.001 

Table 2.20: Overall model fit, parameter estimates and significance tests for variables in multiple 
logistic regression model explaining variation in occurrence of perceived fox predation of lambs, 
including dummy variables coding for reliability ratings of 3 and 5 

Overall fit: Initial LRX2 = 512.0, LRX2 for fitted model = 331.9, x2 = 180.1, d. f. = 6, p< 
0.001 [n = 384] 

Variable B Wald p 

Indoor lambing -1.30 19.4 <0.001 

Fox control carried out 1.42 21.2 <0.001 

Lambing ewes 0.735 31.7 <0.001 

Northwest -1.328 6.53 0.011 

Loss reliability rating of 3 0.542 2.15 0.143 

Loss reliability rating of 5 -0.562 2.76 0.097 

Constant -3.51 21.8 <0.001 
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Table 2.21: Overall model fit, parameter estimates and significance tests for variables in multiple 
logistic regression model explaining variation in occurrence of perceived fox predation of lambs, 
including dummy variables coding for reliability ratings of 4 and 5 

Overall fit: Initial LRx2 = 512.0, LRX2 for fitted model = 327.1, x2 = 184.8, d. f. = 6, p< 
0.001 [n = 384] 

Variable B Wald p 
Indoor lambing -1.39 21.2 <0.001 
Fox control carried out 1.48 22.4 <0.001 
Lambing ewes 0.726 30.7 <0.001 

Northwest -1.46 7.09 0.008 

Loss reliability rating of 4 -0.978 6.65 0.010 

Loss reliability rating of 5 -1.32 12.9 <0.001 
Constant -2.70 11.8 0.001 

Table 2.22: Mean rank in Kruskal-Wallis analysis of variance of logged number of lambs perceived 
killed by foxes per ewe for each loss reliability rating, a higher rank indicating logged numbers of 
lambs perceived killed by foxes per ewe were higher in this group 

Loss reliability rating N Mean rank 

1 3 112 

2 5 87.4 

3 97 106 

4 80 135 

5 64 144 

83 



Table 2.23: Overall fit, parameter estimates and significance test statistics for variables in linear 
regression model explaining variation in perceived scale of predation of lambs, including variables 
coding for reliability ratings of 3 and 5 
R2 = 0.370, Adjusted R2 = 0.344, F= 14.4, d. f. = 9.221. D<0.001 In = 2311 
Variable B t p 
Indoor lambing -0.468 -3.82 <0.001 
Foxes killed per hectare 1.50 2.80 0.006 

Lambing ewes -0.458 -7.92 <0.001 
Game rearing b 0.420 2.89 0.004 

Northeast -0.477 -1.94 0.054 

Southwest 0.319 1.86 0.064 

Longwool 0.428 2.19 0.030 

Loss reliability rating of 3 -0.224 -1.69 0.092 

Loss reliability rating of 5 -0.003 -0.002 0.999 

Constant -1.24 -3.17 0.002 

Table 2.24: Overall fit, parameter estimates and significance test statistics for variables in linear 

regression model explaining variation in perceived scale of predation of lambs, including variables 
coding for reliability ratings of 4 and 5 

R` = 0.379, Adjusted R` = 0.354, F= 15.0, d. f. = 9,214, < 0.001 [n = 225] 
Variable B t p 

Indoor lambing -0.449 -3.69 <0.001 

Foxes killed per hectare 1.41 2.64 0.009 

Lambing ewes -0.462 -8.05 <0.001 

Game rearing b 0.417 2.89 0.004 

Northeast -0.499 -2.04 0.043 

Southwest 

Longwool 

Loss reliability rating of 4 

Loss reliability rating of 5 

Constant 

0.326 

0.417 

0.336 

0.264 

-1.48 

1.92 

2.15 

2.53 

1.86 

-3.82 

0.056 

0.033 

0.012 

0.064 

<0.001 
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2.4. DISCUSSION 

2.4.1. Data reliability 
2.4.1.1. Accuracy of lamb loss figures 

One of the problems with studying lamb predation by foxes in Britain is that accounts of 
foxes killing healthy lambs tend to be anecdotal (Macdonald & Johnson 1996). In a 
study in west Scotland, Hewson found no visual evidence of foxes killing sheep, eagles 
being seen killing sheep only very occasionally (Hewson 1984b). Diet studies, 
examining scat and stomach contents, have identified sheep as a component of fox diets 
(Lever 1959; Hewson & Leitch 1983), but it is not possible to distinguish between 

sheep carrion and sheep that have been killed by foxes from these remains (Kolb 1996). 
The presence of calliphorid maggots inside fox stomachs suggests at least some of the 

sheep in their diet are eaten as carrion, as does wool in stomachs from areas where there 
have been no complaints of sheep losses, thought to be wool discarded during shearing 
(Lever 1959). Richards (1977) identified the remains of sheep in fox scats and at 
feeding sites in south Devon, but was able to connect all these remains to animals that 
had been buried following natural deaths. 

It is likely that there has been some over-estimation of the number of lambs killed by 

foxes and the occurrence of lamb predation by respondents to this survey, as has 

occurred in previous surveys of this kind (Knowlton et al. 1999; Macdonald et al. 2000; 

White et al. 2000a). The reasons for over-estimation of losses include incorrectly 

assigning carcasses found as fox kills (including those that have been scavenged by 

foxes after death) and assuming missing lambs have been killed when they have died of 

other causes (White et al. 2000a). However, because of resource constraints, a study on 

this scale has to rely on the farmers' judgement of the level of predation they 

experience, despite the likelihood of over-estimation (Macdonald et al. 2000). 

It is not always possible to verify whether a lamb death was due to foxes or not, even in 

the field. Although foxes often exhibit a characteristic manner of killing and 

subsequent treatment of lambs (teeth marks over the shoulder and crushed cervical 

vertebrae, often with decapitation (Harris & Lloyd 1991)), it is not easy to ascertain 

whether a sheep has been scavenged or killed by a fox (Lloyd 1980). The use of the 

size of the gap between canines shown in bite marks does not distinguish between a fox 
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and a medium-sized dog, so is not sufficient evidence to prove fox predation (Swire 
1978; Harris & Lloyd 1991). In both Hewson (1984b) and White et al. 's (2000b) 
studies, which used post-mortem analyses to establish cause of death, a large number of 
lambs went missing so their cause of death was unknown and both sets of authors 
calculated a figure for maximum mortality due to predation, including these lambs. One 
could therefore assume that the figures for predation obtained in this study were 
maximum values of lamb losses to foxes. 

2.4.1.2. Sample bias and comparison with the literature 

The issue of self-selection, or non-response error, is invariably a problem with mail 
surveys because their response rates are typically low. Ideally, in order to minimise or 
identify sources of bias, one would carry out a follow-up of non-respondents to the 

questionnaire (McNeill 1990; Barnett 1991). Unfortunately this was not possible in this 

study, due to data confidentiality issues. Therefore, average figures from this study 

were compared with those in the literature, from both field-based and survey-based 

studies, to assess whether sample characteristics, including occurrence and scale of fox 

predation of lambs, were representative of the population of British sheep farmers as a 

whole. 

The mean and median number of ewes in this survey sample were similar to the UK 

national average flock size of 529 ewes (Cottle & Cottle 1998). Figures from the 

literature on the percentage of lambs killed by foxes compare favourably with those 

from this study (Table 2.6). In Heydon and Reynolds' (2000b) three region study, 

reported lamb losses due to fox predation varied from a median of 0% mortality of 

lambs in East Anglia to a median of 0.6% in Wales, with a range of figures from 0 to 

28.6% of lambs. In a survey of members of the National Sheep Association carried out 

in 1993 by the Field magazine (Anon 1993), the average percentage of lambs lost (out 

of the annual lambing) reported by these sheep farmers was I%, but it was considered 

that some farmers suffered more severe losses. 

Hewson (1984b) quantified lamb mortality due to fox predation in two areas of western 

Scotland between 1976 and 1979. Percentages of the estimated sheep crop confirmed to 

have been killed by foxes in that study were between 0.6 and 1.8% in any one year, with 

24% dying from other causes. Lambs whose cause of death was unknown were 
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included to obtain a maximum figure for predation (by both eagles and foxes) of 5.29 
of the total crop, recorded in 1977. White et al. (2000b) collected data on the numbers 
of lambs killed by foxes, as well as deaths due to other causes, on two Scottish hill 
farms between 1993 and 1996. Rates of predation were between 0.6 and 1.8% on one 
farm and between 0.2 and 1.7% on the other. 

There have also been a number of studies that have considered fox predation on lambs 
in Australia (Saunders et al. 1997; Greentree et al. 2000) and in Norway (Warren & 
Mysterud 1995; Warren et al. 2001). However, due to differences in husbandry 

measures and weather conditions, figures from these studies are unlikely to be 

applicable to the British situation. It should be noted from one of these studies that, 

although estimated losses due to primary fox predation were fairly low, at 1.3%, losses 

could have reached 33% if lambs that would have died anyway as a result of other 
factors had been included in the figures (Saunders et al. 1997). 

Via a questionnaire survey of farmers, Macdonald and Johnson (1996) calculated the 

annual loss of lambs per sheep to quantify perceived damage to lambs by foxes. Losses 

varied amongst the four regions they considered: a mean of 0.0045 lambs per sheep in 

the Midlands and East (for three years' data), 0.0063 lambs per sheep in the North, 

0.0037 in the South and 0.0196 in Wales and the West. It is assumed that these are per 

number of sheep in the flock rather than per ewe figures, so they are not directly 

comparable with those in this study. The mean absolute number of lambs taken per 

flock was lower than that from this study at 1.74 lambs, likely to be because mean flock 

sizes were also lower. 

The proportion of farms out of the total surveyed that reported fox predation (59.3%) 

was higher than the average in the two other studies that give a comparable figure 

(Macdonald 1984; Heydon & Reynolds 2000b). In Macdonald's (1984) survey of ten 

regions of England, an average per year (over the years 1976 to 1978) of 31 % of farms 

on which sheep were kept reported one or more lambs had been lost on their farm to 

foxes. In Heydon and Reynolds' (2000b) survey of farmers in three regions of Britain, 

the overall average was 44.5% of farmers reporting predation by foxes. The differences 

between these results may well be a function of regional differences. Macdonald's 

(1984) survey only encompassed lowland England, whilst Heydon and Reynolds' 
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(2000b) figures varied between the three regions under study, 60.59 of sheep farmers in 
Wales reporting fox predation. In any case, for a comparison of characteristics between 
farms where predation was perceived to have occurred and those where it was not, the 
analysis is valid as long as there are a substantial number of each type of farm in the 

sample, assuming that their other characteristics are representative of the overall 
population. 

Higher than expected responses to the survey were received from Scotland and Wales. 

These were regions where perceived losses of lambs to foxes were more likely to have 

occurred than elsewhere, which probably reflects the fact that farmers were more likely 

to respond if they experienced a problem with fox predation. Because the survey was 
distributed to a random sample of members of a national association, the sample will 

reflect the regional distribution of members of this organisation, which may not be the 

same as that determined from government census statistics. 

2.4.1.3. Respondent reliability ratings 

Reliability ratings given by the respondents provide us with a measure of how closely 

perceptions are likely to match up with reality, if we assume that reliability was 

accurately reported by respondents. Different reliability ratings were associated with 

different levels of the occurrence and scale of perceived predation, which suggests that 

inaccuracy in the figures reported by farmers differs between farms in a fairly consistent 

manner. 

Perceived fox predation was less likely to have occurred where figures for losses were 

considered to be most accurate by respondents (a reliability rating of 5). This can be 

explained by the fact that, given all the difficulties in ascertaining whether a lamb has 

been killed by a fox or not, the perceived cause and number of losses are likely to be 

less reliable where fox predation is thought to have occurred. Reliability ratings were 

also associated with farm size. On farms with fewer sheep, respondents tended to rate 

the reliability of their loss figures higher. These results support the hypothesis that a 

farmer is able to keep track of lamb losses to a greater extent if there are fewer sheep. 

There was a negative relationship between farm size and the scale of perceived 

predation, which explains why the scale of perceived predation was positively 

associated with the reliability ratings. Thus, the indication is that differences in the 
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reliability (and therefore accuracy) of perceived loss figures are associated with 
variation in farm management systems and farm size. 

2.4.2. Farm characteristics influencing the occurrence and scale of perceived fox 
predation of lambs 

2.4.2.1. Farm location and the influence of farm size 
The univariate analyses carried out enable confirmation (or disaffirmation) of 
relationships that have previously been hypothesised. This analysis shows that 
perceived predation by foxes was more likely to have occurred on hill farms, as has 
been suggested in reviews of the topic (Harris & White 1994; McDonald et al. 1997; 
White et al. 2000a). However, in this survey, on farms where fox predation was 
perceived to have occurred, reported losses to foxes were lower on upland and hill 
farms than on lowland farms. In addition, while perceived predation was more likely to 
have occurred in Scotland and Wales (where there are more hill farms), perceived 

numbers of lambs killed by foxes were lower in Scotland and higher on farms in 

England. The reasons for this can be determined from the multivariate analyses. 

A number of variables were significantly related to the occurrence and scale of 

perceived fox predation in univariate analyses, with this no longer being the case when 

they were included with other variables in multivariate models. For some variables, 

such as the percentage of ewes lambed indoors, this was simply because an alternative 

variable that influenced variation in reported predation in the same way had a more 

statistically significant effect. In others, it was because the relationships were in fact 

due to the effects of other variables to which they were related. For example, on 

average there were more sheep on hill farms (mean number of ewes on hill farms = 881, 

mean number on non-hill farms = 476), so when the effect of number of ewes on 

variation in perceived predation was included in the models, the effects of being in a hill 

area and having mountain or grass hill sheep breeds were no longer statistically 

significant. The conclusion to be drawn from this is that the hypothesised relationship 

between a farm's location in terms of it being in a hill, upland or lowland area and 

perceived fox predation was a function of other variables, one being the size of the 

farm. The same appears to be true of lambing in March and April. Lambing at this 

time of year is associated with hill farms, which have larger numbers of sheep, and 

89 



farms that lamb outdoors and the variables that represent both farm size and indoor 
lambing have greater effects on the dependent variable than the month of lambing does. 

This fact can also be used to explain why some factors had effects in directions that 

appear counter-intuitive. One example is the influence of having Scottish Blackface 

sheep on a farm. Because of their mothering skills, one would possibly expect losses to 

Scottish Blackface ewes to be lower than to other breeds, whereas the opposite was the 

case. This is because Scottish Blackface is a hill breed. Unfortunately, due to the large 

number of different breeds and the fact that farms often had more than one breed of 

sheep, the sample size of each was not sufficient to consider breeds separately. which is 

why they were classed together as breed types. Farms with longwool breeds generally 

had higher perceived numbers of lambs taken by foxes than those with other breed 

types. Longwool breeds were traditionally bred for their wool and for producing 

mutton, but are now used for mainly used for crossing (Boatfield 1994; Cottle & Cottle 

1998). They are large-bodied with a high twinning rate (Cottle & Cottle 1998) and are 

suited to good conditions (likely to be on lowland farms) (Boatfield 1994). In general, 

farms with longwool breeds in this sample had slightly smaller flocks. It may be that 

longwool breeds are more prone to predation for one or several of these reasons, or that 

farmers with these breeds perceive the impact of foxes to be greater than those without. 

Alternatively, an association with another variable may be obscuring the real reason 

behind this relationship. 

These associations amongst variables also explain why the directions of relationships 

between farm location variables differed between the two dependent variables. Hill and 

upland farms and farms in Scotland and Wales, both in this survey sample and 

according to the literature (Cottle & Cottle 1998; MAFF 1999), tend to have larger 

numbers of sheep. All variables describing the size of the farm and the number of sheep 

on the farm were positively related to the occurrence of perceived fox predation but 

negatively related to the scale of perceived predation where it occurred. The number of 

lambs born on the farm was an important determinant of the occurrence and scale of 

perceived predation and included in the overall models explaining variation in these two 

variables. The location variables, therefore, just reflect this difference: perceived fox 

predation of lambs was more likely to occur on larger farms but fewer lambs were 

perceived to be lost per ewe when fox predation did occur on larger farms. 
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A couple of studies have highlighted the association between farm size and farmers' 

perceptions of foxes. Baines et al. (1995) found that farms owned by council tenants 
were significantly smaller than farms falling into other ownership categories and that 
council tenants perceived foxes to be a greater pest than did other groups. Produce 
Studies (1995) reported a similar relationship between perceptions of the fox and farm 

size. These results support the negative relationship found in the present study between 
farm size and the scale of perceived predation on farms where predation was reported to 
have occurred. One lamb lost to a fox on a small farm will represent a larger proportion 

per ewe than on a larger farm and this negative relationship shows that the perceived 

number of lambs lost overall to foxes per flock was not proportionally dependent on 
flock size. Landa et al. (1999), on the other hand, found a positive relationship between 

sheep lost to wolverines and overall numbers of sheep grazing in summer on the 

Snohetta plateau in south central Norway over 15 years, losses increasing proportionally 

with sheep numbers. 

That the occurrence of perceived predation was greater on farms where more lambs 

were born could be due to various reasons including foxes being more attracted to farms 

with more lambs or the level of care of individual lambs being lower when there are 

more lambs. Kenward et al. (2001) draw a distinction between the factors that 

encourage a predator to start hunting at a site (site attraction) and the mechanisms that 

make it more rewarding to kill prey there (prey vulnerability) in explaining the 

difference between factors determining the occurrence and scale of predation (in their 

case, for buzzards preying on pheasants). In consideration of the reasons behind the 

associations between farm size variables and the occurrence and scale of perceived fox 

predation, however, the inter-relatedness of farm size to other variables should not be 

forgotten. Thus the associations may not be wholly due to variation in farm size. In 

addition, as the figures are `perceived' losses, differences may simply be a function of 

variation in perceptions. 

The relationships between some of the location variables remained even with the 

inclusion of farm size variables in the model, meaning their effects were independent of 

farm size. Farms in the Northwest postal region of Britain were less likely to have 

reported an occurrence of fox predation than farms elsewhere, whilst farms in the 
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Northeast where perceived fox predation occurred generally reported losing fewer 
lambs than farms elsewhere. Farms in Southwest England generally reported losing 

more lambs to foxes. Macdonald and Johnson (1996) found variation between regions 
in the number of sheep farmers claiming to have seen foxes attacking lambs, with 
53.2% of farmers in the South claiming to have seen an attack and only 17.7% in the 
North doing so. This variation in lamb losses to foxes between regions mirrors 
variation in fox population densities between regions, the highest relative fox density 
being in Southwest England and one of the lowest in North England (Table 2.7). 

2.4.2.2. Relative fox abundance and fox control 
Regional fox density was related to the occurrence of fox predation in univariate 

analyses. The relationship was as hypothesised: a higher likelihood of the occurrence of 

perceived fox predation where relative fox population density was higher. The scale of 

perceived predation was not related to relative fox density, although both the number 

and the percentage of lambs reported killed by foxes were related to regional fox 

density. The scale of perceived predation was positively related to the number of foxes 

killed on the farm per hectare and the occurrence of fox predation was positively related 

to the number of foxes killed on the farm. The reason for these associations could be 

that fox kills are an index of fox population density (Hewson & Kolb 1973; Hewson 

1984a), but it also may be the case that more foxes were killed where they were 

perceived to be more of a problem (Heydon & Reynolds 2000b). 

Determining the relative importance of these two hypotheses is not possible since 

preventive and reactive fox control can not be distinguished from the data collected. It 

should be noted that any interpretation of kill data as an index of fox numbers assumes 

constant culling effort (McDonald & Harris 1999). Unfortunately data on culling effort 

were not available for this data set, but the number of foxes killed on the farm and the 

number killed per hectare were both positively associated with regional fox density. 

That at least some of the fox control carried out was reactive rather than preventive is 

suggested by the positive influence of `fox control carried out' on the occurrence of 

perceived fox predation. This variable was the most statistically significant of the 

variables relating to fox control and was included in the overall model explaining 

variation in the occurrence of perceived fox predation. Both Macdonald and Johnson 

(1996) and Heydon and Reynolds (2000b) identified a similar association between 
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reported damage by foxes and fox control. Heydon and Reynolds (2000b) found that 
experience of predation in the previous year was associated with a higher culling 
frequency only for farms of less than two hundred hectares. This effect could not be 
tested with these data, but farm size could well be a factor affecting the incidence of 
preventive versus reactive control on these farms too. 

2.4.2.3. Surrounding land-uses 

Both forestry and rough grazing land-uses in farm surroundings were related to a higher 
likelihood of perceived fox predation and arable land-uses were associated with a lower 
likelihood of predation. This could be a function of the attractiveness of these habitats 

to foxes: forestry plantations in particular may provide harbourage for foxes in upland 

areas (Lloyd 1980; Chadwick et al. 1997). A more likely explanation of these 

relationships, however, given that they do not hold in the multivariate model, is that 

rough grazing and forestry land-uses are most often found in upland and hill areas, 

whilst arable land is more common in lowland regions. 

The positive association between game rearing in the surroundings and the scale of 

perceived fox predation, with the effects of other factors taken into account, may relate 

in some way to fox management practices in the surroundings. Alternatively, it could 

be that higher numbers of pheasants and other gamebirds mean there is more available 

food for foxes, which encourages them into the area, or that the perceived impact of 

foxes is heightened with game interests nearby. Heydon and Reynolds (2000b) and 

White et al. (2000a) point out that farmers' perceptions of foxes are inherently linked to 

their farming practices. It could therefore be that farmers' perceptions are also linked to 

the practices of their neighbours. Other studies have considered land-uses on the farm 

in question rather than in its surroundings, so are not directly comparable to this one. 

These studies have found game rearing to have an opposite effect to that observed here. 

In Heydon and Reynolds' (2000b) study, perceived losses of lambs were approximately 

halved in the presence of a gamekeeper, whilst Baker and Macdonald (2000) found that 

game-shooting farms were generally less likely to consider the fox a pest. 

2.4.2.4. Husbandry techniques 

The percentage of ewes lambed in lambing pens, the percentage of ewes having 

multiple births and the number of lambs born per ewe were related to the occurrence of 
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perceived fox predation only in univariate analyses. This was due to their association 
with indoor lambing. Using lambing pens was associated with lambing indoors, as were 
a higher percentage of ewes with multiple births and a higher number of lambs born per 
ewe. Generally a higher ewe output is associated with lambing indoors (Bryson 1984), 

as well as with lowland sheep farming (Cottle & Cottle 1998). It was not possible to 

assess whether twins or triplets were more prone to predation with this data set because 

it dealt with between-farm characteristics rather than those between lambs. Indoor 

lambing was important in explaining variation between farms both in terms of the 

occurrence and scale of perceived fox predation. As discussed in the Introduction, other 

authors have hypothesised that this factor is likely to be important (Bryson 1984; Burns 

et al. 2000), whilst coyote predation studies in the U. S. have also found indoor lambing 

to be important in preventing sheep losses, e. g. (Robel et al. 1981). 

Supplementary feeding of ewes with multiple births also had an effect on the scale of 

perceived predation in univariate analyses. Lower numbers of lambs were perceived to 

have been killed by foxes on farms that gave their ewes supplementary feeding, as was 

also found to be the case by Burrows (1968). As discussed, the lack of an effect on the 

occurrence of perceived predation is likely to be due to the low numbers of farmers not 

giving supplementary feeding to ewes with multiple lambs. Supplementary feeding of 

ewes with multiple lambs will mean that their lambs tend to be stronger and therefore 

potentially less prone to predation by foxes. A number of other husbandry practices that 

were not considered here may also be associated with fox predation of lambs. These 

include electric fencing, the number of shepherds per head of sheep and the proximity 

of lambing fields to farm buildings. A further survey of sheep producers was planned to 

assess these and other factors, but was not possible due to the outbreak of foot and 

mouth disease (FMD) in February 2001. 

94 



2.5. CONCLUSIONS 

The use of univariate analyses to identify factors explaining variation in both the 

occurrence and the scale of perceived fox predation enabled the testing of various 
hypotheses concerning whether specific factors have an influence on variation in 

perceived fox predation between farms. However, it was through multivariate analyses 
that the most important factors influencing the dependent variables could be identified. 

These multivariate analyses also enabled the inter-relationships amongst some factors to 
be determined. 

The model explaining variation in the occurrence of perceived predation had a 

predictive accuracy of 80%, which is fairly high for this type of empirical data, but left 

one fifth of the data mis-classified. The model explaining variation in the scale of 

perceived predation also did not fully explain variation in the dependent variable, 

accounting for only 36% of the variation. Incorporation of the respondents' own 

reliability ratings enhanced the amount of variation explained by the models slightly, 

but because the data are based on perceptions, they are likely to be subject to a large 

number of factors, which may be very specific to individual farms and some of which 

may be impossible to measure. Therefore, although it has been possible to identify a 

number of factors that influence perceived fox predation of lambs, the reasons behind 

some of the variation between farms remain unexplained. 

A factor that strongly influenced variation in perceived fox predation between farms 

was lambing indoors. The decisions of whether to lamb indoors and how long to keep 

ewes and lambs in after lambing are under the farmer's control and indoor housing can 

be considered to be a preventive measure against fox predation. However, there are 

costs to indoor housing. The balancing of the benefits of preventing fox predation with 

these costs is the subject of Chapter 3. 
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2.6. SUMMARY 

Lamb predation is one of the most significant perceived impacts of the fox in Britain. 
but the degree to which lamb predation occurs is subject to variation between farms. 
An assessment of the reasons behind the fox predation problem is an important part of 
the process of managing it, but such an investigation has not previously been carried out 
in Britain. 

This chapter aimed to identify factors associated with differences in the occurrence and 
scale of perceived fox predation on sheep farms across Britain. This was done via a 

questionnaire survey of sheep farmers and using field data on relative fox population 
densities on a broad-scale basis. 

Factors associated with variation in the occurrence of perceived fox predation were 
identified using logistic regression analyses and those associated with variation in the 

scale of perceived fox predation via linear regression. The main factors influencing 

variation in both the occurrence and scale of perceived fox predation were generally 

similar. Flock size was an important determinant of perceived fox predation. Fox 

predation was more likely to have occurred on larger farms, but, when it did, fewer 

lambs were perceived lost per ewe. Indoor lambing was associated with a lower 

likelihood of fox predation occurring and lower levels of predation. Various other non- 

management characteristics, including regional location, had an influence on fox 

predation. 

Fox control was positively related to both the scale and occurrence of predation. This 

may be due to a relationship between fox abundance and perceived predation or due to 

reactive behaviour by farmers or a consequence of both of these. 

This study illustrates the importance of multivariate analyses in assessing what factors 

affect perceived fox predation. By identifying some of the causes of variation in 

perceived predation between farms, strategies to manage the predation problem can be 

identified and management can be more targeted. 
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Figure 2.1: Location of the farms of sheep farmer questionnaire respondents by 
postcode-derived region [n = 487] 
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Figure 2.2: Pie-chart showing the percentage of hill, upland and lowland farms in sheep 
farm sample [n = 488] 
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Figure 2.3: Histogram of number of ewes per holding [n = 489] 
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Figure 2.4: Histogram of responses for reported lamb mortality due to foxes [n = 422] 
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Figure 2.5: Histogram of responses to question about changes in number of lambs killed 
by foxes over last five years [n = 470] 
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Figure 2.6: Histogram of reported number of foxes killed per hectare on sheep farms in 
the last year [n = 451 ] 
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Figure 2.7a: Scatter plot of the number of lambs reported killed by foxes against 
regional fox density [n = 427] 
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Figure 2.7b: Scatter plot of the percentage of lambs born reported killed by foxes 

against regional fox density [n = 422] 
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CHAPTER 3 

FINANCIAL ANALYSIS OF FOX PREDATION AND 
PREVENTIVE MEASURES ON SHEEP FARMS 

3.1. INTRODUCTION 

Lamb predation by foxes represents a cost to sheep farmers in terms of loss of stock. If 
the stock lost consists of lambs that would have survived until sold, this cost translates 
to a decrease in production on the farm. A few studies have attempted to estimate the 
magnitude of the costs of lamb predation by foxes, focussing on the total costs of lamb 
losses to farmers on a per farm or per region basis (Produce Studies 1995; Burns et al. 
2000; White et al. 2000a). White et al. (2000b) also estimated total losses in revenue 
due to fox predation, but based losses on data from post-mortem analyses of lambs on 
two Scottish hill farms. These studies have calculated costs by multiplying lamb losses 
by average market prices for lamb and average lamb liveweights. Macdonald and 
Johnson (1996), on the other hand, asked farmers directly about the total cost of foxes to 
them, including both lost stock and the cost of protecting against foxes. 

Techniques for valuing the costs of stock mortality were discussed in Chapter 1, Section 

1.2.2. It is difficult to value lamb losses due to fox predation because animals are not at 

point of sale because they are taken when young. Nevertheless, Taylor et al. (1979) 

argued that the market price for a lamb is the appropriate measure to use for predation 
losses because virtually all significant expenditures for lamb production are fixed. 

Earlier discussion of valuation of stock mortality highlighted the fact that the costs of 

expenditure on preventive measures should be included in an assessment of predation 

costs. In addition, it was indicated that an analytical framework, which considered the 

trade-off between investment in prevention costs and damage avoided, was far more 

useful as a basis for management decisions than a total cost figure for predation losses 

alone. 

As outlined in Chapter I (Section 1.2.3), previous authors have suggested that measures 

to prevent predation could be included in a production model in order to estimate 

optimal management levels (TaYlor et al. 1979). In the case of foxes and sheep farms in 
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Britain, Chapter 2 showed that perceived fox predation of lambs was influenced by farm 
location and management factors and it would therefore be inappropriate to consider the 
influence of population control or other preventive measures on production in isolation. 
In addition to these inputs, those related more directly to production, such as feed, 

capital and labour, should be included in such a model. The paucity of empirical studies 
using sheep production models in the literature (Kirby 2000) makes the estimation of 
such a model difficult. Whilst a production function would include preventive 

measures, a consideration of the cost side of the operation is more easily applicable to 
the problem under consideration. In addition, because fox predation impacts directly on 
lamb losses, information is not lost by estimating the cost function rather than the 

production function, except for in cases where preventive measures have additional 

effects to those on losses. Such additional effects are discussed later in this chapter. 

This chapter aims to develop a model to be used in the identification of a financially 

optimal solution to the problem of preventing lamb predation by foxes at a farm level. 

The preventive measure under consideration is the indoor housing of ewes and lambs at 

and after lambing, identified as an important influence on perceived predation in 

Chapter 2. By combining McInerney et al. (1992) and McInerney's (1996) ideas with 

those of Fankhauser (1995) and Taylor et al. (1979), a theoretical model is developed. 

The model also includes elements of decision theory, as discussed by Norton (1976), 

Mumford and Norton (1984) and Hone (1994), and a logistic risk analysis, used in 

previous studies to predict the risk of specific pest outbreaks and aid decision-making 

on whether to carry out prophylactic treatment (Mutze et al. 1990; Wilson et al. 1996; 

Yuen et al. 1996; Twengström et al. 1998; Lindblad 2001). Data from the survey of 

sheep farms across Britain are used to parameterise the model. The model is used to 

find an optimal management solution from the farmer's point of view, by minimising 

the total costs associated with fox predation, in terms of lamb losses and preventive 

measures. 

3.2. THEORETICAL MODEL 

It is assumed that the farmer aims to maximise profits per ewe from lamb production on 

the farm. Profits will be a function of the number of lambs born and lamb losses 
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between birth and weaning, amongst other factors (Kirby 2000). If it is assumed that all 
lambs surviving to weaning are sold for profit, it can be postulated that a farmer aims to 
maximise the number of lambs surviving to weaning per ewe subject to certain 
constraints. 

The number of lambs surviving to weaning per ewe on the ith farm (W) is equal to the 

number of lambs born per ewe (B) minus the number dying between birth and weaning 
per ewe (D, ): 

WW=B; -D;. (3-1) 

The number of lambs dying between birth and weaning per ewe is made up of lambs 

lost to foxes (F; ), other predators (H; ) and other causes per ewe (O; ): 

D; =F; +H; +O;. (3-2) 

It follows from the above that the farmer aims to minimise lamb losses to foxes per ewe 

in so far as is possible. However, a constraint to this is that the farmer also aims to 

minimise all other costs associated with lamb losses to foxes, one of these being 

expenditure on measures used to prevent lamb losses to foxes. If it is assumed that the 

only objective of these measures is the prevention of losses, then the optimal solution in 

financial terms for the farmer will be a trade-off between lamb losses and expenditure 

on measures that prevent lamb losses. 

As determined in Chapter 2, lamb losses to foxes are a function of preventive measures 

used and other factors (such as the number of lambing ewes and the regional situation of 

the farm): 

F; = f(Mº, Ni, R; ) (3-3) 

where: 
F; = the number of lambs lost to foxes per ewe per year on the ith farm 

111; = preventive measures per ewe per year on the ith farm 
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Ni = number of lambing ewes on the ith farm 
R1 = regional situation of ith farm 

f= function of farm characteristics determining lamb losses 

The above can also be expressed in monetary terms, giving losses as a function of 
expenditure on preventive measures and other variables: 

L1= g(M1, Ni, R; ) 

where: 

(3-4) 

L; = pF; -F; = lamb losses to foxes per ewe per year on the ith farm (£) 

PFi = value of one lamb lost to foxes on the ith farm (£) 

M; = expenditure on preventive measures per ewe per year on the ith farm (£) 

g= function of farm characteristics determining monetary lamb losses 

It is assumed that lamb losses decrease with increasing expenditure on preventive 

measures, but that there are diminishing marginal returns to the investment in 

preventive effort. 

So, g' = aglaM; < 0, and g" = ag'laM; > 0. 

It is assumed that the optimal point for the farmer is that at which total costs (L; + M; ) 

are minimised. 

Analyses in Chapter 2 indicated that the occurrence and the scale of fox predation were 

determined by different combinations of variables. For example, fox population density 

did not influence the level of lamb predation by foxes, but appeared to have an effect on 

the occurrence of predation. In addition, both the percentage of ewes lambed indoors 

and the number of days ewes and lambs were kept in after lambing were associated with 

a lower likelihood of fox predation, but it was only the proportion of ewes indoors that 

affected the scale of predation. The percentage of ewes lambed indoors and the number 

of days they are kept in can be combined into one variable, the number of cwc da\'s 

inside, and this can be estimated in monetary terms to give the expenditure on indoor 
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housing at and after lambing per ewe. Therefore, there are different probabilities of 
lamb predation occurring at different levels of expenditure on indoor housing (Table 

3.1). 

Table 3.1: Predicted association between the probability of lamb predation occurring and 
expenditure on indoor housing 

Expenditure on indoor housing per ewe (£) Predation 
Low High probability 

Medium Medium probability 

High Low probability 

Based on Table 3.1, the expected lamb predation outcomes at various levels of 

expenditure on indoor housing can be calculated, if we know the probability of fox 

predation occurring at different levels of expenditure on indoor housing and the 

expected monetary outcome if predation does occur. These can be derived according to 

various farm characteristics if expenditure on indoor housing, based on the number of 

days and the percentage of ewes inside, is substituted into the regression models 

estimated in Chapter 2 (lamb losses are expressed in monetary terms): 

P(x = 1) = h(Y; "D;, Xi, Ni) 

L; =j(Y;, Ni, R; ) 

where: 

(3-5) 

(3-6) 

P(x = 1) = probability of lamb predation by foxes having occurred on ith farm, 

where x is a binomial variable coded 0 when no fox predation occurred and 1 

when predation occurred on the ith farm 

Y; = expenditure on indoor housing per ewe per day on the ith farm 

D; = number of days ewes and lambs are kept indoors after lambing on the ith 

farm 

Xi = fox population density per hectare on the ith farm 

L, = lamb losses to foxes if fox predation occurs (. v = 1) on ith farm (£) 
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h= function of farm characteristics determining the probability of fox predation 
j= function of farm characteristics determining lamb losses to foxes if fox 

predation occurs 

The variable Y; accounts for the effects of the percentage of ewes that are lambed 
indoors and this is multiplied by the number of days inside (D, ) to account for the effect 
the combination of these variables has on the probability of predation occurring and to 

give the total expenditure on housing per ewe. Y; is a function of the proportion of ewes 
lambed indoors (i. e. the number of ewes indoors per ewe) and the proportion of ewes 
that have multiple births: 

Y; = m(E;, Mi) 

where: 

E; = proportion of ewes lambed indoors 

M; = proportion of ewes having multiple births 

in = function of ewe flock characteristics determining expenditure on housing 

Therefore it is E; and D; that are the control variables: the management variables that the 

farmer changes in order to reduce lamb losses and minimise costs. The proportion of 

ewes having multiple births (M; ) is assumed not to be under the farmer's control. 

The expected loss outcome at defined preventive expenditure levels based on these 

models can be calculated through looking at the pay-off matrix (Table 3.2). The 

expected outcome is calculated by multiplying the pay-off associated with each state of 

nature by the probability of occurrence of this state at a particular expenditure level and 

adding these figures together (Norton 1976; Mumford 1981 b; Hone 1994). For 

example, the expected loss outcome for a farm with a low expenditure on indoor 

housing per ewe would be [(P(x = 01 Y; -D; = low) x 0) + (P(x =1IY; "D; = low) x 

L; (Y; I Y; -D; = low))] or simply [P(x =IIY; -D; = low) x L; (Y; I Y; D; = low)], as the 

outcome is zero if there is no predation. This expected loss outcome is the expected 

gross margin at various levels of expenditure (Norton 1976). 
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Table 3.2: Pay-off matrix indicating lamb loss due to fox predation outcomes according to 
expenditure on indoor housing (Y, -D; ) 

States of nature 
No predation Predation 

Probability of state P(x = 01 Y; "D; = low, P(x =1IY, -D; = low, medium. 
medium, high) high) 

Expenditure Low Zero lamb losses Lamb losses = L, (Y, ý Y; -D; = 
on indoor low) 
housing per 
ewe (£) Medium Zero lamb losses Lamb losses = L; (Y, I Y; -D; = 

medium) 

High Zero lamb losses Lamb losses = L; (Y, ý Y; -D = 
high) 

Because logistic regression estimates a continuous probability function and linear 

regression is also estimated for a continuous dependent variable, we can estimate a 

continuous expected lamb loss outcome, which varies according to preventive 

expenditure, fox population density and other farm characteristics and is analogous to 

equation 3-4 above: 

Z; =g(Y;, Di, Xi, N,, R; )=P(x= 1)xLi 

where: 

Z; = expected lamb loss to foxes per ewe (f) 

The total costs of fox predation per ewe (TC; ) are equal to expenditure on indoor 

housing plus lamb losses to foxes per ewe: 

TC, =Y; "D; +Z; 

(3-7) 

The economic optimum is where these total costs are minimised, where the marginal 

costs of control equal the marginal benefits in terms of reduced lamb losses (Figure 

1.1 b) and, therefore, the partial derivatives of total costs with respect to the proportion 

of c \wwcs lambed indoors and with respect to the number of days inside are equal to zero: 
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3.3. EMPIRICAL ANALYSIS 

Data for estimation of the functions were taken from the survey of sheep farmers across 
Britain (Chapter 2) and the fox density estimates from Webbon (2002) (both are 
discussed in Chapter 2, Section 2.2 Methods). Throughout, the term `per ewe' stands 
for `per lambing ewe'. Data for lamb losses to foxes were taken from the survey data as 
the number of lambs reported killed by foxes per lambing ewe. 

3.3.1. Fox population density estimates 
The data on relative fox population densities used in Chapter 2 were median scat 
densities based on nine regions or seven land classes. Only region-based estimates were 

statistically significantly related to lamb predation by foxes. It was therefore the 

regional fox density estimates that were used for further analyses. It was necessary to 

convert these relative estimates to absolute estimates, in order that fox control could be 

realistically linked into the models in later analysis (Chapter 4). As absolute estimates 

were not available from the data provided by Webbon (2002), an appropriate multiplier 

to convert scats found per kilometre square into absolute densities was estimated from 

the literature. 

Data from fifteen bait marking trials (C. Webbon, pers. comm. ) were used to calculate a 

mean number of fox scats found per day of 0.457. Free-living foxes were fed bait with 

markers in for 14 days and the number of marked scats found in each trial counted by 

volunteers (C. Webbon, pers. comm. ). In each case it was known that a single fox was 

being fed bait (C. Webbon, pers. comm. ). A few estimates for the number of scats one 

fox produces per day were available from the literature: a mean of 6.6 scats per day 

(Lock-le 1959), 5 scats per day (Ryszkowski et al. 1971), 6 scats per day eating fruit and 

rabbit and 2 to 3 eating carrion (Rau 1988). Taking an average scat dry mass of 5.35g 

(C. Webbon, pers. comm. ), a further two estimates were calculated according to figures 

on faeces dry weights emitted per day, of 4.08 (Artois et al. 1987) and 4.67 to 5.61 



(Failu & Griess 1974) scats produced per day. By dividing each of these figures for 

scats produced per day by the number of scats found, a figure for the mean proportion 
of scats produced that are found was calculated. This provided a multiplier for 

converting the number of scats found per day (the relative density estimates) to an 
estimated total number of scats present per day, which was 10.8. The estimated total 

number of scats present per kilometre square per day was calculated for each region 
from the relative density estimates. Absolute fox density estimates were derived by 

dividing by the mean number of scats produced per day by one fox, 4.9. taken from the 
literature cited above (Table 3.3). Densities per kilometre square were converted to per 
hectare estimates by dividing by 100 to enable easy comparison with farm-based 

variables. The assumptions behind the conversion of relative fox densities to absolute 

numbers are discussed further in Chapter 4 (Section 4.5.3.2). 

Table 3.3: Absolute fox density estimates based on regions 

Region Code Region Density estimate (foxes per 1-km 
square) 

1 N Scotland 1.02 

2 S Scotland 2.05 

3 N England 0.53 

4 E England 0.44 

5 Midlands 1.35 

6 Central England 0.81 

7 SW England 3.36 

8 S England 1.01 

9 Wales 1.41 

3.3.2. Monetary valuation of lamb losses to foxes 

The value of lamb losses was calculated as the market value for finished lamb per kg 

liveweight multiplied by the average liveweight of finished lambs sold by the farm 

multiplied by the number of lambs lost. This firstly assumes that all lambs sold would 

have been sold as finishers. There was, however, a large variation in farms, some 

sc llin store lambs, others retaining some of their stock, rather than selling them on as 

finishers. The finished lamb price, however, gives a convenient starting point for 
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valuing losses as, although data on overall production on the farms were available, data 

were not collected on how lambs that were taken by foxes would have been sold. It is 

further assumed that the value of the lamb when it was lost is equal to its value at point 

of sale. Once again there was a lack of data on the age of lambs reported to have been 

taken by foxes, though, as discussed in the Introduction, Taylor et al. (1979) argue that 

the use of market price for valuing lambs is justified by the fact that virtually all 

significant expenditures for lamb production are fixed. 

The market value of finished lamb for 1999 was taken as 92.5p per kg liveweight (Nix 

1999). The average finished liveweight of lambs on the farm was taken as given by 420 

farms. For the remainder of farms for which the data were not available, the liveweight 

was entered as the mean liveweight for that farm type from the rest of the data: 34.9kg 

for hill farms, 38.9kg for upland and 39.5kg for lowland farms. The average market 

value of finished lamb, or the average value of a lamb lost, was calculated for each farm 

using these data. Figures for losses per ewe in monetary terms were then obtained by 

multiplying the total number of lambs reported killed by foxes between birth and 

weaning by this average value, and dividing this by the number of ewes lambing. Table 

3.4 gives summary statistics for lamb losses to foxes. 

In the survey, farmers were asked for their valuation of the costs of lamb losses to foxes 

at their most recent lambing. It was decided, however, that this monetary value was 

unlikely to be as accurate as a value based on reported losses. This was partly because, 

in some cases, respondents were known to have included other costs in addition to those 

of lamb losses to foxes in these figures and it was deemed more appropriate to use a 

standardised method for calculating losses in monetary terms. A further reason for not 

using the respondents' values was that a smaller sample size of farmers gave monetary 

values for lamb losses to foxes than gave figures for the number or percentage of lambs 

they perceived they had lost to foxes. Table 3.4 gives summary statistics for reported 

costs of lamb losses to foxes. 

Values for lamb losses calculated from the data and those given by respondents were 

compared in a paired t-test and the samples did not differ significantly from one another 

(t = -0.929, V. = 334, p>0.05 [n= 335]). However, the correlation between the two 

sets of values was fairly low, when tested parametrically (r = 0.422, p <0.001 [n = 
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335]). The non-parametric correlation coefficient showed up a much greater association 
between the values (rs = 0.947, p<0.001 [n=335]), indicating that the values were 

associated with one another well in relative terms, but less so in absolute terms. The 

calculated value gave a lower valuation of lamb losses to foxes than did the reported 

values. Figure 3.1 shows that this relatively low absolute association between reported 

and estimated costs is mainly due to a few high reported cost values. 

3.3.3. Expenditure on indoor housing 

The costs of indoor housing for sheep include the capital costs of the building, as well 

as the additional costs of extra food and bedding for the sheep and extra veterinary bills, 

as disease spread is more likely in an indoor environment. Capital costs were not 
included here because as fixed costs they should not be included in an analysis based on 

equi-marginality. 

The figures for expenditure on indoor housing were based on the additional 

expenditures on feed and bedding associated with housing indoors. The amounts of 

feed and bedding needed per ewe per day for indoor housing were taken from Bryson 

(1984). In the case of straw bedding, this amount was 0.25kg per indoor ewe per day. 

Figures for the amounts of hay and concentrates were calculated from the amounts 

needed for the two weeks before lambing for a 60kg ewe. No figures were available for 

feed supply for lactating ewes indoors, so these were estimated by calculating the 

percentage difference between gestation and lactation daily nutrient requirements for 

both single- and twin-bearing ewes from the Committee on Animal Nutrition (1995) 

and then multiplying Bryson's (1984) figures up by this amount. This gave figures of 

0.92kg of hay per indoor ewe per day and 0.55kg of concentrates for a single-bearing 

ewe and 0.96kg of concentrates for a twin-bearing ewe per day. The amounts of 

concentrates used per indoor ewe per day were calculated according to the percentage of 

ewes in each flock having multiple births, these ewes being assumed to be twin-bearing: 

0.96 was multiplied by the percentage of ewes having twins and 0.55 by the percentage 

having only single lambs and the two figures added together. 

The prices for hay and straw per kg for 1999 were taken as means from the Ministry of 

Agriculture, Fisheries and Food (MAFF) Hay and Straw Average Prices (Monthly) for 
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England and Wales for 1999. The prices used were those for big-baled wheat straw and 

big bale hay, at £O. 022 and £0.039 per kg, respectively. The price of concentrates was 

calculated as the mean price given by respondents to the survey, at £0.135 per kg. This 

figure is in line with the figure given by Nix (1999) of £0.134 per kg and by Cottle and 

Cottle (1998) of approximately £0.145 per kg. Expenditure on feed and bedding for 

indoor housing was then calculated by multiplying the amounts of feed and bedding 

needed per indoor ewe for each flock by these prices. To get a `per lambing ewe' 

figure, this was multiplied by the number of ewes lambed indoors and then divided by 

the total number of ewes lambing. Therefore, expenditure on indoor housing per ewe 

per day is a function of the proportion of ewes lambed indoors and the proportion of 

ewes having multiple births: 

Y; = E;. Pc(Cs(1 - M; ) + CT"M; ) + E; -PH"H + E; -Ps"S 

Y; = 0.053"M; "E; + 0.118"E1 

where: 

E; = proportion of ewes lambed indoors on the ith farm 

M; = proportion of ewes having multiple births on the ith farm 

PC = price of concentrates per kg (£) (£0.135) 

Cs = amount of concentrates needed for a single lamb-bearing ewe per day (kg) 

(0.55kg) 

CT = amount of concentrates needed for a twin-bearing ewe per day (kg) 

(0.96kg) 

PH = price of hay per kg (£) (£0.039) 

H= amount of hay needed per ewe per day (kg) (0.92kg) 

Ps = price of straw per kg (£) (£0.022) 

S= amount of straw needed per ewe per day (kg) (0.25kg) 

Table 3.4 gives summary statistics for both expenditure on indoor housing per ewe per 

day and total c xpenditure on indoor housing per ewe for the data set. Data on the extra 

costs of veterinary treatment for farms that lambed indoors were not available. A 
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survey of the costs and types of housing for a sample of the original respondents was 

planned, but was not possible due to the outbreak of foot and mouth disease in Britain in 

February 2001. 

Table 3.4: Summary statistics for the cost of lamb losses to foxes per ewe and expenditure on indoor 
housing for the sample 

Value n Mean Median Range 

Cost of lamb losses to foxes per ewe (£) 426 0.56 0.21 0.00-9.40 
(Li) 

Cost of lamb losses to foxes per ewe, 251 0.96 0.58 0.02-9.40 
farms where predation occurred (£) (Li Ix 

= 1) 

Reported cost of lamb losses to foxes per 372 0.71 0.14 0.00-38.46 
ewe (£) 

Reported cost of lamb losses to foxes per 195 1.13 0.48 0.00-38.46 

ewe, farms where predation occurred (£) 

Expenditure on indoor housing per ewe 475 0.10 0.14 0.00-0.17 

per day (£) (Y; ) 

Expenditure on indoor housing per ewe 470 0.99 0.30 0.00-23.43 
(£) (Y; -D; ) 

3.3.4. Specification of model relating expected lamb losses to expenditure on 
indoor housing 

Models for predicting the expected lamb loss outcome due to fox predation according to 

expenditure on indoor housing were estimated using logistic and linear regression. As 

in Chapter 2, logistic regression was used to explain variation in the occurrence of fox 

predation, and therefore predict the probability of predation occurring, and linear 

regression to explain variation in the number of losses per ewe when predation 

occurred, i. e. only including losses of greater than zero. Expenditure on indoor housing 

per ewe (Y; -D, ) and per ewe per day (Y) were tested in the models both as originally 

calculated and In-transformed. The original data included zero figures, which could not 

be logged. A positive constant that was considered to be small compared to overall 

figures, but not so small as to distort the distribution of the data, was therefore added on 

to these data (traditionally 1 is the constant added in such circumstances, but other 

values are acceptable and are preferable if values of the variable being transformed are 

small (Yamamura 1999)). The value of the constant was chosen as that for which the 
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transformed data best fitted the assumptions of the regression model used (A. Grafen. 

pers. comm. ). In both cases, it was 0.001. Of the un-transformed and transformed 

variables, that which produced a model that fitted the data best (in terms of explaining 

more of the variance) and met the assumptions of the model best was used in the final 

model. 

The logistic regression model was based on that in Chapter 2, but included regional fox 

density and expenditure on indoor housing per ewe (In-transformed): 

In [p, /(1-p; )] = ao + al ln(N, ) + a2C; + a3ln(Y; "D; +0.00 1) + a4X; + E1 

where: 

p; = probability of lamb predation by foxes having occurred on ith farm = P(x 

Ni = number of lambing ewes on the ith farm 

C; = dummy variable coding for whether fox control is carried out on ith farm 

Y; -D; = expenditure on indoor housing per ewe on the ith farm, i. e. expenditure 

on indoor housing per ewe per day (Y) x number of days ewes and lambs kept in 

after lambing (D; ) on the ith farm 

ao = constant 

al, a2, a3, a4 = coefficients of the predictor variables ln(N; ), C;, ln(Y; . D; +0.001) 

and X; 

F-; = error term 

The dummy variable coding for whether the ith farm was in Northwest England, which 

was in the model in Chapter 2, was left out of this model because it was collinear with 

fox density. The model had an overall predictive accuracy of 78.9% (Nagelkerke R2 = 

0.484, x2 = 165.3, initial -2 log-likelihood = 501.3, fitted model -2 log-likelihood = 

336.0, V. = 4, p<0.001 [n = 375]). The model correctly predicted the occurrence of 

fox predation on 86.9% of the farms where it occurred. The coefficient estimates and 

significance test statistics for this model are given in Table 3.5. 
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Table 3.5: Coefficient estimates and significance test statistics for logistic regression model 
describing variation in the likelihood of fox predation of lambs (ln[pJ(1 p; )]) 

Variable Estimate of a,, (coefficient) Wald p 

Constant -5.947 62.2 <0.001 
ln(N; ) 0.839 48.0 <0.001 

C1 1.290 19.6 <0.001 

ln(Y1 "D; +0.001) -0.211 13.9 <0.001 

X; 42.0 3.85 0.050 

A dummy coding for whether fox control was carried out or not was substituted for the 

number of foxes killed per hectare in the Chapter 2 linear regression model estimating 

the number of lambs killed by foxes per ewe on farms where predation occurred. This 

was to allow for later consideration of lethal control to reduce fox population densities 

(Chapter 4). In addition, the dependent variable was changed to lamb losses valued in 

monetary terms and expenditure on indoor housing per ewe per day was substituted for 

the indoor lambing dummy variable. Expenditure on indoor housing per ewe per day 

un-transformed resulted in a model that better fitted the data and met the assumptions of 

linear regression better than the variable In-transformed (R2 = 0.347, Adjusted R2 = 

0.326, F= 16.5, d. f. = 7,218, p<0.001 [n = 226]) (Table 3.6): 

In(Li) =bo+biln(N; ) +b2Y; +b3C; +b4AI+b5SW; +b6NEi+b7G; +E ; 

where: 

L; = lamb losses to foxes per ewe (f) at most recent lambing on the ith farm 

(only farms where predation occurred) 

A; = dummy variable coding for whether ith farm has longwool sheep breeds 

SW = dummy variable coding for whether ith farm is in Southwest England 

NE; = dummy variable coding for whether ith farm is in Northeast England 

G; = dummy variable coding for whether land used for game rearing is in 

surroundings of ith farm 

bo = constant 

bi ... 
b7 = coefficients of the predictor variables ln(N; ), Y;, C,, A,, SIi i, NE;, and 

G;. 
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Table 3.6: Coefficient estimates and significance test statistics for linear regression model 
describing variation in the costs of lamb losses to fox predation on farms where predation occurred 
(L; ) 

Variable Estimate of bn (coefficient) t p 

Constant 2.610 6.67 <0.001 
ln(N; ) -0.562 -9.37 <0.001 

Y; -1.918 -2.14 0.034 

C; 0.373 2.27 0.024 

A; 0.430 2.15 0.032 

SW; 0.309 1.79 0.074 

NE; -0.475 -1.89 0.060 

G; 0.415 2.80 0.006 

The logistic regression model estimates the log-odds of fox predation of lambs 

occurring on a farm (Sokal & Rohlf 1995). The log-odds are equal to the probability of 

fox predation occurring logit-transformed (Armitage & Berry 1994). Therefore the 

probability of predation occurring (P(x = 1)) can be calculated from the estimated 

coefficients for the logistic regression, given in Table 3.5: 

1 
P(x =1) _ l+exp(5.95-0.839-1n(N; )-1.29-C1 +0.211"ln(Y; -D; +0.001) 

-42.0"X; ) 

By multiplying this probability by the cost of lamb losses, expected lamb losses due to 

fox predation can be estimated, according to farm characteristics and expenditure on 

indoor housing: 

Z, = P(. v= 1)xexp(2.61-0.562.1n(N; )-1.92"Y,. +0.373"C; +0.430"A; +0.309"SW, 

- 0.475. NE; +0.415"G; ) 

or: 
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Z; =P(x=1)xLi 

where: 

Z; = expected lamb loss to foxes per ewe (£) 

3.4. MODEL OUTPUT 

Figure 3.2 shows the relationship between expected lamb loss to foxes and expenditure 

on indoor housing for the specified model, as outlined above. As hypothesised, lamb 

loss decreases with increases in expenditure on indoor housing, but at a decreasing rate. 
An expenditure on indoor housing per ewe per day (Y) of £0.15 is that which would be 

needed to house 100% of ewes on a farm where 60% of ewes have multiple births, 

whilst an expenditure of £0.08 would house 50% of these ewes. These curves therefore 

illustrate the influence that the number of days for which ewes are housed has on lamb 

losses and there is a steep drop-off in lamb losses with a low amount spent on indoor 

housing (i. e. ewes and lambs kept in for a short time only). Farm characteristics also 

cause upward and downward shifts in the curves. Because the number of lambing ewes 

on the farm affects both the probability of fox predation occurring (P(x)) and the scale 

of the losses to foxes if it does occur (L), but in different directions, the number of 

lambing ewes (N) influences the shape of the curves. Higher numbers of ewes are 

associated with a shallower curve after the initial steep decrease in lamb losses with 

increasing expenditure, whilst lower numbers of ewes result in a steeper curve after the 

initial drop (Figure 3.2). In all cases, the example farms have a fox density of 0.03 per 

hectare. 

Figure 3.3 shows the relationship between total costs and expenditure on indoor housing 

for the same farm types as in Figure 3.2. There is a corresponding steep drop-off in 

total costs at low expenditure levels and the amount that should be spend on indoor 

housing to minimise total costs depends on the input of farm characteristics. This 

amount is shown on the curves as the point at which the curve is parallel to the x-axis 

and corresponds to a range of expenditure levels. Higher optimal expenditure is 

predicted for farms in the Southwest with longwool breeds and game rearing in the 
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surroundings than the other farm types. However, in all cases, ewes and lambs should 
be kept in for less than a day if 100% are housed, as all predicted optimal expenditure 
levels are lower than £0.15. Only for farms in the Southwest with longwool breeds and 

game rearing in the surroundings is there the indication that ewes and lambs should be 

kept in for longer than a day if only 50% are housed. The plots also indicate that the 

optimal expenditure on indoor housing is lower if there are more ewes lambing and 
higher if there are fewer. 

Figure 3.4 shows the association between expenditure on indoor housing and both lamb 

losses and total costs for a farm in the Southwest with 200 lambing ewes and a fox 

density of 0.03 per hectare. It illustrates the fact that at the optimal point (Y. D*) where 

total costs are minimised, there are still expected to be losses of lambs to foxes and that 

lamb losses make up the majority of the total costs. Therefore, the farmer should accept 
lamb losses in order to act in a way that is financially optimal according to this model. 

The expenditure on indoor housing variable combines both expenditure on indoor 

housing per ewe per day, which is dependent on the number of ewes that are lambed 

indoors out of the total flock and the percentage that have multiple births, and the 

number of days ewes and lambs are kept in. Because it is only expenditure on indoor 

housing per ewe per day that influences the scale of lamb losses to foxes, there is a 

difference in both lamb losses and total costs at the same levels of expenditure per ewe 

when the combination of the number of days and expenditure per day differ. In order to 

determine optimal levels of both the proportion of ewes that should be housed and the 

number of days ewes and lambs are housed for, it is necessary to consider Y and D 

separately, which can be done using three dimensional (3-D) plots (Figures 3.5 and 3.6). 

Figure 3.5 shows the same steep drop-off in lamb loss as the previous figures with both 

increasing expenditure on indoor housing per ewe per day (Y) and increasing numbers 

of days inside (D) for the same example farm. Figure 3.6 shows the same variables 

against total cost and shows the financially optimal levels of both indoor housing per 

ewe per day and the number of days ewes are indoors in terms of minimising total costs. 

The optimal point is within the lowest contour on the figure. It can be seen that total 

costs decrease with increasing expenditure on housing per ewe per day, but that, after a 
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sharp drop when ewes are housed for a short time, total costs with respect to the number 
of days inside rise steeply. Expenditure on housing per ewe per day is a function of 
both the proportion of ewes housed and the proportion having multiple births. As it is 

assumed that the proportion of multiple births in a flock is outside the farmer's control. 
this indicates that ewes and lambs should be kept in for only a very short while, but as 

many as possible kept in. 

In this case, the optimal number of days for which ewes and lambs should be kept in 

after lambing is around 0.25 days or 6 hours. If 100% of ewes are housed indoors and 
100% have multiple births, the cost of indoor housing per ewe per day is £0.17 (Section 

3.3.3), which is the maximum possible expenditure. For an average farm, where 60% of 

ewes have multiple births (mean percentage of ewes having multiple births in this data 

set = 58.7% [n = 490]), the cost of housing all ewes indoors per day would be £0.15 per 

ewe. Therefore, farmers should house all their ewes indoors at lambing, but for a few 

hours only after lambing to minimise their costs. Variation in the other variables in the 

model leads to differing values of the optimal level of expenditure on indoor housing, as 

well as in the optimal losses to foxes per ewe in monetary terms and therefore optimal 

total costs. However, for all the farm types considered here, it was optimal in financial 

terms for the producer to house all ewes and lambs for a short time. 

3.5. DISCUSSION 

3.5.1. Data reliability 

The fact that these data are taken from a survey means the model is based on reported 

lamb losses to foxes, rather than actual losses. Because, as discussed in Chapter 2, we 

can not be sure of the reliability of these data, we can not in turn be sure of the results of 

the optimisation that the model based on these data gives. Ideally, actual loss data 

would be used to estimate the model. However, as also discussed in Chapter 2, such 

data are extremely difficult to collect and given the resource constraints of this study, it 

was necessary to base the analysis on reported losses. The estimated losses can be seen 

as estimated average lamb losses to fox predation and, given that reported losses are 

likely to overestimate actual losses at least in some cases (Knowlton et al. 1999; 
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Macdonald et al. 2000; White et al. 2000a), there will be some positive bias in these 
figures. 

The monetary lamb losses estimated are measured gross, rather than net, and therefore 
do not take the extra costs of raising surviving lambs into account (Perry & Randolph 
1999). Despite the argument that the majority of expenditure on lamb production is 

fixed (Taylor et al. 1979), there will be some variable costs in lamb production that 

should be accounted for. For this reason, the monetary losses estimated here will be a 

slight overestimate of the actual cost (overestimation also being likely for additional 

reasons, such as predation not occurring at point-of-sale, discussed above). 

3.5.2. Model criticism 

The Hosmer-Lemeshow goodness-of-fit test for the logistic regression model estimated 
here indicated that the model fitted the data well, as the expected values did not differ 

significantly from the observed values (Hosmer-Lemeshow goodness-of-fit statistic (C) 

= 6.07, d. f. = 8, p=0.639). The studentised residual with the largest value (with respect 

to predicted values) in the sample was -2.35, with ten studentised residuals having 

values greater than two or less than minus two. Whilst the distribution of the residuals 

was not normal (Kolmogorov-Smirnov Z=2.47, p<0.001), a normal distribution of 

residuals is not to be expected when there are continuous covariates in a logistic 

regression model, as there are likely to be few data points with the same covariate 

patterns (Hosmer & Lemeshow 1989). The use of leverage values in assessing the 

degree to which individual data points have influenced the model is complicated for 

logistic regression by the fact that interpretation of leverage values depends on the 

estimated probabilities (or fitted values) (Hosmer & Lemeshow 1989). The maximum 

analogue of Cook's distance, however, was 0.247, suggesting that no points were overly 

influential in estimation of the model. 

The model estimating the cost of lamb losses to foxes fitted the assumption of a normal 

error distribution (Kolmogorov-Smirnov test on standardised residuals, Z=0.664, p= 

0.770), whilst multicollinearity appeared not to be a problem, the highest Variance 

Inflation Factor (VIF) being 1.14 and the lowest tolerance 0.98. The distribution of 

variance appeared homogeneous judging from a plot of the residuals versus fitted values 

(Figure 3.7). When the data were ordered according to ln(lambing ewes) (ln(N)), the 
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Durbin-Watson d-statistic was not statistically significant at 1.82. also the case when 
data were ordered according to ln(Y) (d = 2.10). However, when the data were ordered 

according to the y-variable (ln(L)) the statistic pointed to a positive association between 

neighbouring residuals (d = 0.62). This indicates that the model tends to consistently 

over- or underestimate the true values of the cost of lamb losses at particular y-values, 
but this autocorrelation did not show up when data were ordered according to the 

predicted values (d = 2.04). Other non-linear specifications of the model were 

estimated (by including the continuous variables untransformed in various 

combinations), but the presence of autocorrelation with y was not improved. There 

were no standardised residuals with values of greater than three or less than minus three, 

indicating that the model did not estimate values that were greatly different from those 

observed. No points appeared overly influential in determining the model (maximum 

Cook's distance = 0.08) and, whilst 27 points had leverage values of more than two 

times the mean (mean leverage = 0.03, maximum leverage = 0.12) [n = 226], these 

points did not have outstanding residuals. The RESET test indicated that the form of 

the model was not at fault: upon their inclusion in the model, the squared predicted 

values had a coefficient that was not statistically significant from zero. 

The linear regression model has a relatively low adjusted R-squared value indicating 

that it explained 35% of the variation in lamb losses to foxes, whilst the logistic 

regression explained 48% of the variation in the likelihood of fox predation. Whilst 

there are likely to be a number of influences on lamb losses to foxes that have been left 

unaccounted for, some of this unexplained variation is probably a result of the nature of 

survey data and the amount of error they contain. Gujarati (1995) has argued, along 

with other authors, that the pursuit of high R-squareds in empirical analysis is 

undesirable, as well as unrealistic, and that researchers should be concerned rather with 

the dependability of the estimated regression coefficients. The coefficients for 

independent variables estimated here make logical and theoretical sense and are 

statistically significant at least at the 10% level of significance. However, there is still a 

noteworthy amount of unexplained variation in the data. This means that output from 

the model does not have the specificity to provide individual farmers with definitive 

management guidelines. 
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3.5.3. Model output 
The models estimated support the theoretical prediction of a negative relationship 
between lamb losses to foxes and expenditure on preventive measures (in this case, 
indoor housing). The relationship showed that although losses declined with increasing 

expenditure, this was at a declining rate, due to diminishing marginal returns to 

preventive effort (Figures 3.2,3.4 and 3.5), as predicted for livestock disease losses by 

the loss-expenditure frontier model (McInerney et al. 1992; McInerney 1996). A 

number of other variables affected this relationship significantly. Thus if one compares 
two farms spending the same amount on indoor housing, a farm that carries out fox 

control will experience higher expected lamb losses to foxes per ewe than one on which 

no fox control is carried out, according to this model. The same is true of a farm in the 
Southwest versus one elsewhere, a farm with game rearing in its surroundings and one 

without and a farm with longwool breeds and one without (Figure 3.2). On the other 
hand, a farm in the Northeast experiences lower expected losses than one elsewhere. 
The possible reasons behind the influences of these four variables on lamb predation by 

foxes are discussed in Chapter 2, but one conclusion from that discussion which should 
be mentioned here is that these variables may also be proxies for other farm 

characteristics. In any case, it is clear that, although preventive measures such as indoor 

housing have an influence on lamb losses to foxes, other farm characteristics, which in 

most cases will be beyond the farmers' control in management terms, also cause 

variation in these costs. The influence of the dummy coding for fox control may be due 

to several reasons discussed further in Chapter 2, such as an association with fox 

abundance or reactions to losses in previous years, but there was no evidence that a 

halting of fox control on a particular farm would result in reduced lamb losses to foxes. 

The variable is therefore assumed to be a characteristic of the farm that is outside 

available management options. 

The number of lambing ewes on the farm had a more complicated effect on lamb losses, 

and therefore the minimisation of total costs, than these dummy variables. The number 

of ewes was positively associated with the probability of fox predation occurring, but 

negatively with lamb losses per ewe. Therefore, with a higher number of ewes on the 

farm, the probability of lamb losses was higher, but the number of lambs killed by foxes 

per ewe was lower than on a farm with fewer ewes. A drop in the probability of the 

same order of magnitude on a large and a small farm would result in a smaller 
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difference in expected lamb losses on the large farm. This means that expenditure on 
indoor housing had less of an influence on expected lamb losses, once the initial drop- 

off in losses from zero expenditure had occurred, on larger farms. This initial rapid 
decrease in lamb losses is due to the fact that expenditure on indoor housing per ewe is 
In-transformed in the logistic regression model, which causes a rapid drop in the 

probability of predation occurring when expenditure levels rise from zero. 

Optimisation of the function estimated for the relationship between lamb losses to foxes 

and expenditure on indoor housing per ewe showed that it is worthwhile for an 
`optimising' farmer, who is aiming to minimise his overall costs in terms of lamb losses 

to foxes and expenditure on indoor housing, to spend only a small amount on indoor 

housing for his ewes and lambs after lambing. Although this optimal expenditure point 

varies with the other independent variables in the model, it indicated that all ewes and 
lambs should be kept in for less than a day after lambing. As the first day after lambing 

is when lambs are most vulnerable to fox predation, this result makes intuitive sense. 
The fact that keeping ewes in for a few hours only after lambing was an optimal policy 

can be explained by the hypothesis that it is lambing and its associated smells which 

attract foxes. Therefore, simply lambing ewes indoors where they can not be reached 

(nor lambing sensed) by foxes may be enough of a preventive measure against fox 

predation, without having to keep them in for more than a few hours. The analysis 

indicated that, whilst the number of days for which ewes and lambs were kept indoors 

influenced the probability of fox predation occurring, it did not influence the number of 

lambs lost on farms where predation occurred. It may well be the case, however, that 

the length of time for which ewes and lambs are housed has an effect on the number of 

lambs killed by foxes, which was not detected here, in which case housing ewes for 

more than a few hours may be worthwhile. 

As with the relationship between losses and expenditure, the other variables in the 

model also have a large influence over the optimal levels of total costs (Figure 3.3). On 

farms whose characteristics resulted in higher expected lamb losses than others (such as 

those in the Southwest), a higher optimal expenditure on indoor housing was predicted, 

whilst total costs were also higher at the point where they were minimised. The model 

predicted that a farm with more lambing ewes should spend less on indoor housing than 

one with fewer ewes. This is because the gains from housing more ewes in and/or 
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keeping them in for longer, in terms of reduced expected lamb loss, are lower per penny 
spent on indoor housing for a large than a small farm. 

Levels of expenditure on indoor housing would be higher in reality than those estimated 
from the model because the expenditure in the model does not include the fixed costs- of 
the buildings. Addition of these fixed costs would not change the results of the model 
in physical terms, as marginal costs would not alter. All expenditure levels would 

simply be increased by a constant equivalent to this fixed cost. In practical terms, 
however, this additional fixed cost could mean that the optimal points estimated here 

may not actually be `optimal' for the farmer concerned, as expenditure on indoor 

housing could reach prohibitive levels because of it, due to negative total profits. 

A majority of farms (72.5% out of 480) kept their ewes and lambs indoors for longer 

than one day after lambing and therefore spent a considerable amount more on indoor 

housing than the optimal levels of spend this model suggest. Housing for over a day to 

protect lambs from foxes may be more beneficial (or less expensive) than this model 

indicates for farms where multiple births are common (White et al. 2000b). In addition, 

housing ewes and lambs indoors after lambing has advantages other than preventing fox 

predation, which include increased lamb production per ewe (Bryson 1984). The results 

of this model give the optimal levels of expenditure on indoor housing per ewe 

assuming that the only advantage of indoor housing is lower lamb losses to foxes, which 

for these farms is unlikely to be the case and provides an explanation for farmers 

keeping ewes inside for longer than is `optimal'. If these further advantages of indoor 

housing were taken into account, the optimal amounts of expenditure on indoor lambing 

would be greater, which would have the knock-on effect of reducing optimal lamb 

losses. The framework presented here could be used to model total lamb losses, rather 

than just those to foxes. This would enable such additional advantages of preventive 

measures to be explored. 

The model further assumes that lambs lost to foxes would not have died of another 

cause if they had not been killed by a fox, i. e. lamb losses to foxes are additive. For any 

data set, it is very difficult to determine whether this is the case or not, but it is likely 

that some degree of fox predation of lambs is compensatory, foxes tending to take weak 

or diseased lambs that would have died anyway (Saunders et al. 1997). The association 
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between lamb losses to foxes and indoor housing may therefore be (at least partly) due 

to there being fewer weak or diseased lambs on farms where ewes are lambed indoors. 
A number of other factors are likely to determine lamb weakness and therefore how 

vulnerable lambs are to fox predation, some of which may be those included in this 

model. 

3.6. CONCLUSIONS 

This chapter has presented a method for analysing the costs of fox predation to sheep 
farmers, including both the costs of lamb losses and those of preventive measures, and 

using financial analysis to inform farm management decisions relating to fox predation 

of lambs. The model in its current form does not give output figures that are reliable 

enough to be used for practical farm management, due to the exclusion of variables not 

measured in the study, but it does provide approximate figures and indications of how 

fox predation could be efficiently managed. In addition, it provides a new framework 

for assessing the impact of and preventive measures associated with fox predation. The 

model suggests that the overall costs of lamb predation by foxes could be reduced on 

the majority of farms, but managing lamb losses to foxes efficiently does not 

necessarily mean that fox predation would be prevented completely. The benefits of the 

preventive measure considered here level off with increases in its level of use. 

However, it should be noted that the optimal strategies suggested by models of this kind 

are not necessarily available to all producers (Perry & Randolph 1999). For example, in 

certain lamb production systems in the UK, housing of ewes and lambs is itself 

impractical. Another potential preventive measure used by sheep farmers to avoid fox 

predation of lambs is fox population management, which is considered in Chapter 4. 
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3.7. SUMMARY 

Lamb predation by foxes represents a cost to sheep farms in terms of loss of stock. 
There are a number of ways of valuing the costs of stock mortality, but an evaluation of 
fox predation should also include the costs of preventive measures. Economic analysis 

of fox predation should aid guidance of resource use or farm management decisions. 

A theoretical model is presented, which assumes that lamb losses to foxes are 

negatively related to expenditure on a preventive measure. The model is then estimated 

empirically using data from the questionnaire survey of sheep farmers discussed in 

Chapter 2. The preventive measure considered in the models is the housing of ewes and 
lambs indoors after lambing. 

The models estimated support the theoretical prediction of a negative relationship 
between expenditure on indoor housing and lamb losses to foxes, with diminishing 

marginal returns to expenditure. A number of other variables, which are not generally 

under the farmer's control in management terms, affect this relationship. Optimisation, 

based on cost minimisation, of the estimated function between expenditure and losses 

shows that it is worthwhile for a farmer to keep all ewes and lambs in for less than one 

day after lambing. The majority of farmers in the study are not minimising the costs of 

fox predation. The possible reasons for this are discussed, as are the limitations of the 

model. 

It is concluded that the output from the model is not reliable enough to provide accurate 

figures for informing individual farm management decisions, but that the model is 

accurate in estimating the general relationships between variables and allows us to make 

broad recommendations. The chapter provides a new approach for assessing the costs 

of fox predation of lambs. 
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monetary lamb loss due to fox predation per ewe [n = 335] 
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Figure 3.2: Relationship between expected lamb loss (Z) and expenditure on indoor 
housing per ewe (Y-D) for various values of dummy variables and N (lambing ewes) and 
two different levels of Y (X = 0.03 in all cases), where Y= expenditure on indoor 
housing per ewe per day, X= fox population density per hectare, SW = farm in 
Southwest, A= farm with longwool breeds, G= farm with game-rearing in surroundings 
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Figure 3.3: Relationship between total costs of fox predation (housing plus lamb losses) 

(TC) and expenditure on indoor housing per ewe (Y-D) for various values of dummy 

variables and N (lambing ewes) and two different levels of Y (X = 0.03 in all cases), 
where Y= expenditure on indoor housing per ewe per day, X= fox population density 

per hectare, SW = farm in Southwest, A= farm with longwool breeds, G= farm with 
game-rearing in surroundings 
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Figure 3.5: 3-D plot illustrating the relationship between expected lamb loss to foxes 
per ewe (Z) and both the number of days for which ewes and lambs are housed (D) and 
expenditure on indoor housing per ewe per day (Y) for the estimated model for a farm in 
the Southwest with 200 ewes and 0.03 foxes per hectare (SW = 1, N= 200, X=0.03), 

where Y= (0.053 "M + 0.077)E + 0.041 "E (M = proportion of ewes with multiple births, 
E= proportion of ewes housed indoors) 
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(indoor housing plus lamb loss) per ewe (TC) and both the number of days for which 
ewes and lambs are housed (D) and expenditure on indoor housing per ewe per day (Y) 
for the estimated model for a farm in the Southwest with 200 ewes and 0.03 foxes per 
hectare (SW= 1, N= 200, X= 0.03), where Y= (0.053-M+ 0.077)E + 0.041-E (M= 
proportion of ewes with multiple births, E= proportion of ewes housed indoors) 
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CHAPTER 4 

STATIC FINANCIAL ANALYSIS OF FOX CONTROL ON 
SHEEP FARMS 

4.1. INTRODUCTION 

Prevention of predation of stock is a major reason why foxes are deliberately culled in 

rural areas of Britain (Macdonald 1984; Produce Studies 1995; Macdonald & Johnson 

1996; Baker & Macdonald 2000; Heydon & Reynolds 2000b) and in an Australian 

study, fox control resulted in significant reductions in lamb predation by foxes 

(Greentree et at. 2000). Fox control can therefore be considered to be a preventive 

measure against predation, which, like indoor housing considered in Chapter 3, has 

associated costs. One would assume that a producer aims to maximise the economic 
benefits in terms of reduced livestock losses to foxes he or she gains from fox control. 
The benefits under consideration will depend on the objective of the management, for 

example whether this is to maximise profits, to estimate cost-effective levels of control 
inputs or to satisfy legislation (Birley 1979; Hone 1994). 

The way that pest control is evaluated in an economic framework depends on the 

objectives of the evaluation exercise (Hone 1994). In general, the evaluation of pest 

control aims to aid producers in making decisions of whether to control the pest or not, 

or how much control to carry out, prior to occurrence of pest damage. Much of the 

research on the economics of pest management has focussed on invertebrate and fungal 

pests and, whilst some analogies between invertebrate and vertebrate pests can be 

drawn, many invertebrate pest populations are prone to large fluctuations in density 

over short time frames because of their high reproductive rates. These density 

fluctuations mean that damage by such pests tends to be temporally and spatially highly 

concentrated. Whilst fox populations and damage by foxes are variable over both space 

and time, variations in pest damage by vertebrates are generally less extreme and occur 

over larger scales than those by invertebrates. Control of invertebrate and fungal pests 

tends to be through the use of chemical pesticides. Chemical means are used for the 

management of vertebrates (especially rodents), but the application of such pesticides 

differs from that of chemicals used to control invertebrate pests. 
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The application of decision theory to pest management problems (discussed in Chapter 
I Section 1.2.3) has been advocated as a means to achieving optimal management 
solutions (Shea et al. 2000). Decision support systems (DSSs) with the aim of 
providing an integrated pest management (IPM) approach have been developed to aid 
decision-making for the control of crop pests (Knight 1997), examples of which include 

the Spruce Budworm Decision Support System (MacLean et al. 2001). Such systems 

can be used to predict the level of a pest impact, according to certain factors, and thus 
determine the optimal pest management strategy, given the decision-maker's objectives. 
In many cases, economic objectives, such as profit-maximisation, will be considered. 
The level of control at which the marginal cost of an extra unit of control effort equals 

the marginal benefit of that unit is where the maximum profit is made (Hillebrandt 

1960; Mumford & Norton 1984; Hone 1994; Ramirez & Saunders 1999). The level of 

pest density at this optimal point is termed the Economic Injury Level (or EIL) (Stern et 

al. 1959; Headley 1972; Southwood & Norton 1973). The concepts of the EIL and 

economic thresholds have been applied frequently to entomological pests and marginal 

analysis is also fairly frequently used (Ramirez & Saunders 1999). There is, however, a 

shortage of applications of economic and bioeconomic analysis to vertebrate pest 

management (Hone 1994), despite the fact that the principles of pest management, 

especially integrative approaches, could be applied to vertebrates (Putman 1989). 

It is assumed that by reducing fox population densities or keeping them at stable 

numbers, there will be a reduction in the level of fox predation from that which would 

occur without fox control. As discussed in Chapter 1, whilst fox control may be 

effective in reducing fox populations in the short-term and on a local scale (Reynolds et 

al. 1993), proof of its effectiveness on a regional scale over a longer time scale remains 

open to question. In addition, there has been very little research on the effects of fox 

control on fox predation of livestock, with no studies on this topic in Britain. 

In this chapter the financial model outlined in Chapter 3 is developed further to 

incorporate the effects of fox control to prevent fox predation of lambs. The trade-off 

hctNvvicen the costs of fox control and lamb losses is considered alone and then the trade- 

offs with the costs of indoor housing are incorporated to enable a comparison of these 

preventive measures. 
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4.2. THEORETICAL BACKGROUND 

In order to undertake an economic evaluation of fox management, the relationship 
between damage by foxes and their population density or abundance needs to be 

assessed. In Chapter 3, fox density was incorporated into the logistic regression model 
predicting the occurrence of lamb predation by foxes. As for expenditure on indoor 
housing, it is therefore possible to estimate the expected lamb predation outcomes at 

various fox population densities, by multiplying 3-5 by 3-6 to get 3-7 (the expected 

monetary outcome if predation occurs is not dependent on fox density): 

P(x = 1) = h(Y; "Di, Xi, Ni) 

L, = j(Y,, Ni, R1) 

Zi = g(Y;, D,, X;, Ni, R, ) = P(x = 1) x L; 

where: 

(3-5) 

(3-6) 

(3-7) 

P(x = 1) = probability of lamb predation by foxes having occurred on ith farm 

Y; = expenditure on indoor housing per ewe per day on the ith farm 

D; = number of days ewes and lambs are kept indoors after lambing on the ith 

farm 

X; = fox population density per hectare on the ith farm 

Ni = number of lambing ewes on the ith farm 

L; = lamb losses to foxes if fox predation occurs on ith farm (£) 

R; = regional situation of ith farm 

Z; = expected lamb loss to foxes per ewe (£) 

h= function of farm characteristics determining the probability of fox predation 

j= function of farm characteristics determining lamb losses to foxes if fox 

predation occurs 

g= function of farm characteristics determining expected lamb losses 
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The association between fox population density and lamb losses to foxes is positive. so 
lamb losses decrease with decreasing fox density. If lethal fox control is used to reduce 
fox population density, the fox control cost necessary to achieve a particular decrease in 
fox population density can be compared with the reduction in lamb losses associated 
with this density reduction to determine whether it is worthwhile for a farmer to carry 
out fox control. This assumes that fox control is carried out prior to the lambing event 
and that there is no net fox population gain due to births or immigration between the 
control and lambing events. A further assumption is that there is a functional 

relationship between the cost of fox control and the number of foxes on the farm and 
that the cost of fox control per ewe is negatively related to the number of ewes on the 
farm: 

Ki = m(Q;, N; ) 

where: 

K, = cost of fox control per fox killed, or cost of killing one fox, per ewe on the 

ith farm (£) 

Qi = estimated number of foxes on the ith farm 

Ni = number of lambing ewes on the ith farm 

m= function of fox population numbers and farm characteristics determining 

cost of fox control per fox killed 

It is assumed that control impacts directly on the number of foxes on the farm, in that 

one fox removed from the farm results in one fewer fox on the farm. Thus, control is 

the only factor affecting fox numbers on the farm. 

The marginal control costs, or costs of killing one fox, depend on the number of foxes 

on the farm. The number of foxes on the farm is equal to the initial number of foxes on 

the farm minus the number of foxes killed, which is determined by the fox control 

action. The marginal fox control costs at any level of Q (number of foxes on the farm) 

is determined by the level of Q before thejth fox was killed. Therefore the marginal fox 

control costs can be written as: 
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K. = m(Q° - (J -1)) 

where: 

j= number of foxes killed 

Q,. ° = initial number of foxes on the ith farm 

And the total costs of a particular fox control action are equal to the sum of the marginal 

costs of control at each level of fox abundance from the initial number to one more than 

the final number of foxes: 

j =. j 
T 

V, =YK; 
j=1 

where: 

V; = total costs of fox control per ewe on the ith farm (£) 

jT = total number of foxes killed 

The fox population density on the ith farm can be defined as the number of foxes on the 

ith farm divided by the area of the farm: 

X; =Q/S; 

The total costs of fox predation, in terms of lamb losses and fox control, therefore 

depend on the initial number of foxes on the farm and the final number after control has 

been carried out: 

TCb1 =Z; 
(QT )+v, 

where: 
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TCb; = total costs of fox predation per ewe on the ith farm (£) 

Z; (Qi) 
= expected lamb loss to foxes per ewe on the ith farm (f) at final fox 

population density 

QT = Qo - jT = final number of foxes on the ith farm 

The economic optimum for the farmer, where total costs are minimised, is where the 

marginal lamb losses divided by the marginal costs of fox control are equal to minus 1. 

Because the costs of fox control are estimated as costs of killing one fox (or per fox 

costs), it is only possible to work in `whole fox' units rather than in marginal units. The 

costs of fox control are therefore already available in marginal form. Minimising total 

costs enables us to estimate the optimal number of foxes for the ith farm (Q; *) and from 

this, the optimal number of foxes to be culled given a particular starting fox abundance. 

Total costs are minimised where marginal fox control costs equal marginal expected 

lamb losses (see also Figure 1.1 b): 

Ki(Q; )=-[z; (Q, -1)-zi(Q; )] 

or 

K; (Q; ) 
=-1 [z; (Q, 

-1)-z, (Q, )] 

This is where the marginal total costs, or total costs per fox killed, are equal to zero: 

Kr(Q; )+[Z; (Q; -1)-Z; 
(Qi)] =TCbi(Qi -1)-TCbº(Qi) =0 

At fox abundance levels of greater than Q*, it is worth killing more foxes, as there are 

still net benefits to be gained from fox control: the reduction in lamb losses due to fox 

predation is greater than the cost of fox control; but when there are fewer than Q* foxes, 

fox control is no longer financially profitable for the farmer. Because the function is 

continuous. the value of Q* that solves the above equality is not constrained to integer 

values. Total costs decrease as Q is reduced to Q*, but at Q-values below Q* (i. e. with 

further culling) total costs increase. Therefore, determining whether to stop at a number 
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of foxes short of the optimum or whether to cull to below the optimum depends on the 
relative sizes of the reduction and increment in total costs on either side of Q*. If the 
increase in total costs resulting from killing one fox to take Q below the optimum is 

small relative to the resultant reduction in costs, it is worthwhile for the farmer to cull to 
this level. Optimal fox population levels were determined for a number of different 
farm scenarios, i. e. farms with various characteristics and starting fox populations. 

4.3. EMPIRICAL ANALYSIS 

The model for predicting the expected loss outcome according to fox population 
density, expenditure on indoor housing and other farm characteristics was the same as 

that estimated in Chapter 3: 

2.61-0.562"ln(N; )-1.92. Y; +0.373"C1 +0.430"A1 +0.309"SW; 
exp 

-0.475"NE; +0.415"G; zi _ 
I+exp 5.95-0.839"ln(N; )-1.29"C; +0.211-1n(Y; - Di +0.001)-42.0" 

S; 

where: 

Z; = expected lamb loss to foxes per ewe (£) 

Ni = number of lambing ewes on the ith farm 

Y; = expenditure on indoor housing per ewe per day on the ith farm 

D; = number of days ewes and lambs are kept indoors after lambing on the ith 

farm 

C; = dummy variable coding for whether fox control is carried out on ith farm 

Q; = number of foxes on the ith farm 

Si = area of the ith farm in hectares 

Q/S; = X; = fox population density per hectare on the ith farm 

A; = dummy variable coding for whether ith farm has longwool sheep breeds 

SSV; = dummy variable coding for whether ith farm is in Southwest England 

NE; = dummy variable coding for whether ith farm is in Northeast England 
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G; = dummy variable coding for whether land used for game rearing is in 

surroundings of ith farm 

The model includes the dummy variable coding for whether fox control was carried out, 
as reported by questionnaire respondents. This means that the effects of extant fox 

control policy on the farms were taken into account. Without data from an experimental 

or predator exclusion study, it would not be realistic to discount these effects on the 

system. 

4.3.1. Costs of fox control 
Respondents to the national sheep producer survey (Chapter 2, Section 2.2; Appendix 

B) were asked for figures on the amount they had spent on predator control in the past 

year, either in pounds or days. They were then asked what percentage of this 

expenditure was spent on controlling foxes. For those respondents that gave a figure for 

predator control in pounds, expenditure on fox control was simply calculated as the 

percentage of this given. For respondents that gave a figure in days, a working day of 

eight hours was assumed. Expenditure on control was then taken as the opportunity 

cost of the time spent controlling foxes. Average earnings for a foreman were taken 

from Nix (1999) at £341 for a 47.4-hour week, which is a £7.19 hourly wage. The 

opportunity cost of fox control was calculated as the number of hours spent controlling 

foxes multiplied by this average wage rate. The cost of fox control per fox killed (or the 

cost of killing one fox) was calculated as the expenditure on fox control or opportunity 

cost of fox control (or whichever was the larger of these figures if both were given) 

divided by the number of foxes killed on the farm in the past year (also given by the 

respondents). This was converted to a per ewe figure by dividing by the number of 

ewes lambing. Of those farms that did carry out fox control, 310 out of 451 farms, a 

significant proportion (109) experienced no costs of fox control; foxes being killed by 

individuals other than those farming the sheep, at no cost to the farmer. These farms 

were left out of the samples used to carry out subsequent analyses. The mean cost of 

killing one fox per ewe was £0.117 and the median £0.034, with a range of values from 

£0.001 to £2.48 [n = 166]. 

The total number of foxes on a farm was estimated by multiplying the estimated number 

of foxes pcr hectare by the area of the farm. A mean of 3.43 foxes were estimated to be 
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on farms and a median of 1.17, with a range from 0 to 66 [n = 485]. Models were 
estimated with control cost per fox killed per ewe as the dependent variable and the 

estimated number of foxes on the farm as the independent. The best fitting model also 
included farm area and the number of lambing ewes (R2 = 0.279, Adjusted R` = 0.265. 

F= 20.6, d. f. = 3,160, p<0.001 [n = 164]) (Table 4.1): 

l n(Ki) = co +ci ln(Q, ) +c2Si + c3N; + E; 

where: 

K; = cost of killing one fox per ewe (£) on the ith farm 

Q; = estimated number of foxes on the ith farm 

Si = area of ith farm (hectares) 

N, = number of lambing ewes on the ith farm 

co = constant 

Ci, c2, c3 = coefficients for 1n(Q; ), Si and Ni 

Table 4.1: Coefficient estimates and significance test statistics for linear regression model 
describing variation in the costs of fox control (K; ) 

Variable Estimate of cr, (coefficient) t p 

Constant -2.80 -17.6 <0.001 

In(Q; ) -0.478 -4.12 <0.001 

Si 0.0011 3.28 0.001 

Ni -0.0008 -3.78 <0.001 
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4.4. MODEL OUTPUT 

Figure 4.1 shows the relationship between the cost of controlling one fox per ewe and 
the number of foxes on a farm and farm area for the model ln(K; ) = -2.80 - 0.478-1n(Q, ) 

+ 0.001 1 -Si - 0.0008"N;, control costs being negatively associated with fox numbers and 
the number of lambing ewes and positively with farm area. Table 4.2 shows the pay-off 

matrix for fox control for a farm of 200 hectares with 800 ewes in the Southwest region, 

which has game rearing in its surroundings and 7 foxes on its land (0.035 foxes per 
hectare). Indoor housing for one day is assumed to cost £0.15 per ewe, equivalent to 
housing 100% of ewes with 60% having multiple births. Expected lamb losses per ewe 
decrease with the number of foxes killed, i. e. with fewer foxes on the land. 

Table 4.2: Pay-off matrix illustrating the expected outcomes of fox control in terms of lamb losses 
for a farm of 200 hectares with 800 ewes in the Southwest, with game rearing in its surroundings 
and 7 foxes on its land (density of 0.035 foxes per hectare), where all ewes are lambed indoors and 
kept inside for one day (S = 200, N= 800, SW = 1, G=1, Q° = 7, Xo = 0.035, Y=0.15, D= 1) 

States of nature Expected outcome 

Predation No predation 
(£ lamb losses per 
ewe) 

Outcome of state (£ lamb 
losses per ewe) 

0.491 0 

Number of foxes 0 p=0.822 p=0.178 0.404 
killed 1 p=0.789 p=0.211 0.388 

2 p=0.752 p=0.248 0.370 

3 p=0.711 p=0.289 0.349 

4 p=0.666 p=0.334 0.327 

5 p=0.618 p=0.382 0.304 

6 p=0.567 p=0.433 0.279 

7 p=0.515 p=0.485 0.253 

For a farm with the same characteristics as above (200 hectares, 800 ewes, in the 

Southwest region, game rearing in its surroundings and 7 foxes on its land), the model 

predicts that the optimal point is achieved if just over 2 foxes are left on the farm (Q* 

-1). i. e. if between 4 and 5 foxes are killed (Table 4.3; Figures 4.2 and 4.3). From Table 

4.3 and Figure 4.3. it can be seen that if 4 foxes are killed, the reduction in losses from 

killing this fox is greater than the cost of control (and the marginal lamb loss plus 
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control cost is negative), so it is worthwhile killing it. However, if 5 foxes are killed, 

the benefit of killing this fox is less than the cost (and the marginal lamb loss plus cost 
is just positive), so killing it is not worthwhile. The optimal point, Q*, is just below 5 

foxes killed (Figure 4.3). Comparing the total lamb loss and total costs of fox control 

also shows that this point is optimal, as it is where the total costs are at their lowest and 

marginal conditions are met, illustrated in Figure 4.2. A farm with these particular 

characteristics was chosen for illustrative purposes because all characteristics are within 

a realistic range, including fox population density, whilst the number of foxes on the 

farm is large enough to show a range of values for the number killed. 

Table 4.3: Output of model giving total and marginal benefits and costs of fox control according to 
number of foxes left and number of foxes killed for a 200 hectare farm with 800 ewes in the 
Southwest, with game rearing in its surroundings, where all ewes are lambed indoors and kept 
inside for one day (S = 200, N= 800, SW = 1, G=1, Q° = 7, Xo = 0.035, Y=0.15, D= 1) 

Number of foxes left on farm 7 6 5 4 3 2 1 0 

Number of foxes killed on 0 1 2 3 4 5 6 7 
farm 

Total cost of fox control per 0 0.016 0.032 0.051 0.072 0.096 0.125 0.165 
ewe (£) 

Total cost of lamb losses plus 0.404 0.404 0.403 0.401 0.400 0.400 0.404 0.418 
fox control per ewe (£) 

Marginal lamb loss per ewe if -0.016 -0.018 -0.020 -0.022 -0.024 -0.025 -0.026 
this fox is killed (£) 

Cost of killing this fox per 0.016 0.017 0.019 0.021 0.024 0.029 0.040 

ewe (£) (Marginal cost of fox 
control per ewe) 

Marginal cost of lamb losses <0.000 -0.001 -0.002 -0.001 >0.000 0.004 0.015 

plus fox control per ewe if this 
fox is killed (£) 

Figure 4.4 shows how differences in the characteristics of farms with the same area and 

initial number of foxes (and therefore fox densities) influences the model output. It is 

only worthwhile controlling foxes at all on three of the farm types, but the number of 

foxes that should be killed to minimise costs decreases with increases in the number of 

ewes on the farm. So, for a farm with 1000 ewes, the economically optimal solution is 
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reached if 5 foxes are killed, whilst with 600 ewes, it is at the point where between 5 

and 6 foxes are killed. (It should be noted that the marginal cost of lamb losses plus fox 

control for a farm with 1000 ewes is positive when one fox has been killed, meaning 
that control costs are greater than reductions in losses. Despite this, it is still worthwhile 
for a farmer to carry out further fox control because greater reductions in losses are 

available once 2 foxes are killed. ) 

Figures 4.5a and b illustrate the effect of changes in farm characteristics further, also 

showing the influence of differences in farm area. In all cases, these are for farms that 
lamb all their ewes indoors for one day (Y = 0.15, D= 1), but with all other dummy 

variables set to zero. Both increases in the number of lambing ewes and in the size of 

the farm reduce the number of foxes that should be killed to reach the economically 

optimal point. For these data, the mean number of lambing ewes per hectare of farm 

land was 4.02, so the farms with 4 ewes per hectare are closest in terms of area and 
lambing ewe numbers to the means for the data set. The figures also illustrate how 

differences in the density and number of foxes on the farms influence this optimal point. 
In Figure 4.5a, the number of foxes on the farms is constant at 4 and it is only 

worthwhile for a farmer to control foxes on a farm of 100 hectares with 400 ewes, 

whilst in Figure 4.5b, densities are constant at 0.04 per hectare and it is also only 

worthwhile for farms of 100 hectares with 400 ewes to control foxes. The differences in 

the density and number of foxes on the farm influence the shape of the marginal cost 

curves. 

The number of foxes that a farmer should kill if he or she is aiming to minimise the 

costs of fox control with respect to lamb production varies with the initial number of 

foxes on the farm (or initial population density), but for a farm with a particular set of 

characteristics, there is an optimal number of foxes or fox population density at which 

the cost of killing the next fox is greater than the reduction in losses due to predation to 

be derived from it. 

4.4.1. Modelling the total costs of lamb losses, preventive measures and fox 

control 

This chapter has looked at the total costs of lamb losses plus fox control at fixed levels 

of expenditure on indoor housing, whilst the previous chapter (Chapter 3) considered 
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the effect of expenditure on indoor housing on lamb losses at fixed levels of fox density. 
However, the real situation on the farm will involve a trade-off between all these costs: 

expenditure on housing, costs of fox control and lamb losses; and we can assume that 
the farmer aims to minimise the total costs of all of these. Total costs of fox predation 
are therefore equal to expected lamb loss plus expenditure on indoor housing plus the 

costs of fox control given a particular starting fox density and number of foxes killed: 

TC; (QT)= Z; (QT)+ Yi - Di + V; 

where: 

TC; (Q, T) = total costs of fox predation per ewe on the ith farm (£) at final fox 

population density (Q1T) 

Figure 4.6 shows the influence of expenditure on indoor housing per ewe per day (Y), 

the number of days that ewes and lambs are housed indoors (D) and the number of 

foxes on the farm (Q) on expected lamb loss (Z) for the example farm used above: 200 

hectares (S = 200), 800 lambing ewes (N = 800) in the Southwest (SW = 1) with game 

rearing in the surroundings (G = 1) and a starting density of 0.035 foxes per hectare (X 

= 0.035, Q= 7). From Chapter 3, we know that Y is a function of the proportion of 

ewes housed indoors and the proportion having multiple births. These plots indicate 

that expenditure on indoor housing per ewe (regulated by the proportion of ewes housed 

and the number of days they are kept inside) has a much greater effect on expected lamb 

loss than does a change in the number of foxes on the farm. At the point where nothing 

is spent on indoor housing, expected lamb loss only decreases by about £0.10 (from 

£0.60 to £0.50) per ewe when the number of foxes left on the farm decreases from 7 to 

1. 

Figure 4.7 shows Y and D plotted against the total costs of lamb losses, indoor housing 

and fox control per ewe (TC) for a farm with the same set of characteristics. As in 

Chapter 3, total costs per ewe are minimised where the proportion of ewes lambed 

indoors is maximised, but when they are kept inside for a very short while only. The 

fewer foxes that are left on the farm (i. e. the more that have been killed), the more 
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advantage there is to housing for longer and total costs are minimised further along the 
D-axis at lower Q. This is also shown up by the contours under the 3-D surface. The 

lowest contour in every case (showing points of equal low cost) is the blue one in the 

right-hand corner of each plot. This contour moves away from the corner with 
decreasing Q, showing that housing ewes for longer is advantageous at low Q. 

However, costs are still minimised at D of less than 1 and the plots indicate ewes should 
be kept in for around only 5 hours after lambing. Killing foxes (i. e. causing decreases 

in Q) results in very little change in the total costs, indicating that the cost of control 

almost balances out the savings in lamb losses that a change in Q causes. However. at 
the point where they are minimised, total costs (TC) increase as Q decreases, i. e. when 

more foxes are killed on the farm, which indicates there is no financial advantage to 

carrying out additional fox control to that already carried out on a farm with these 

characteristics. 

4.5. DISCUSSION 

4.5.1. Model criticism 

The assumptions of normality of error and a lack of multicollinearity were well met for 

the model estimating the cost of killing one fox per ewe (K) (Kolmogorov-Smirnov test 

on standardised residuals, Z=0.586, p=0.882; highest VIF = 2.61, lowest tolerance = 
0.38). The maximum Cook's distance was 0.216, indicating no overly influential data 

points, but 17 points had leverages of more than two times the mean (mean leverage = 
0.02, maximum leverage = 0.31) [n = 164]. However, these were not associated with 

outlying residuals, no standardised residuals having values of greater than three or less 

than minus three. The fit of the model was not a problem, when tested using the 

RESET test. 

Whilst there appeared to be no heterogeneity of variance (Figure 4.8), the Durbin- 

Watson d-statistics indicated some associations between the residuals and two of the 

covariates and the v-variable. When the data were ordered according to farm area (or 

Si) d=1.80, which is outside the critical bounds for the statistic. However, when 

ordered according to ln(estimated number of foxes on the farm) or ln(Q, ), d=1.74, 

which is just within the critical area indicating a possible positive association between 

150 



neighbouring residuals at the 5% level of statistical significance (for k=5 and n= 100). 
The same was true when the data were ordered according to the number of lambing 

ewes (N), d=1.59. When the data were ordered according to the y-variable (ln(K; )). a 
statistically significant positive association between neighbouring residuals was shown 
up (d = 0.49), indicating that the model tended to consistently over- or underestimate 
values compared to those observed at similar y-values. When the data were ordered 

according to the predicted value, the d-statistic was outside the bounds for the critical 

values (d = 1.81). Other non-linear specifications of the models, combining In- 

transformed and untransformed variables in a number of combinations, were tested but 

the autocorrelation in the residuals was not improved. 

4.5.2. Model output 

The model estimated for the costs of fox control supported a negative relationship 
between costs and the number of foxes available to be culled (Figure 4.1), as would be 

expected from predator-prey theory. It becomes more difficult (and costly) to catch a 

member of a given prey population the smaller that prey population is (Begon et al. 
1996). This means that, according to the model, it is highly unlikely that a sheep 

producer will eliminate all the foxes on his or her farm. 

The optimisation analysis indicates that for farms with particular characteristics and fox 

numbers, it would be advantageous from a financial perspective for the farmer to 

undertake fox control actions in addition to those currently practised. This tended to be 

the case for farms that were small in area and had fewer lambing ewes, which is 

because, for these data, although fox predation was more likely on farms with more 

ewes, lamb losses per ewe were lower. Thus the reductions in lamb losses due to fox 

control per ewe were lower on farms with more ewes and were less likely to outweigh 

the costs of control. As the costs of control were positively related to farm area, on 

larger farms the predicted lamb loss reductions were also less likely to outweigh the 

costs of control. The dummy variables coding for whether there was land used for 

game rearing in the surroundings of the farm, whether there were longwool breeds on 

the farm and whether the farm was in the Southwest or the Northeast region also 

influenced the output of the models, in terms of whether fox control was worthwhile 

(Figure 4.4). 
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For the sets of farm characteristics for which the output to the model was calculated, it 

appeared that fox control would only be worthwhile on a minority of farms. those of 

smaller area and/or flock sizes, as well as in some cases those in the Southwest or with 

game rearing in the surroundings. In addition, it was not worthwhile to carry out fox 

control at low fox densities, as the costs of control tended to outweigh the benefits (in 

terms of reduced lamb losses to foxes) when there were fewer than a given number of 
foxes on the farm. These farms already had at (or below) the optimal number of foxes 

(Q*)" 

Analysis of the total costs of lamb losses to foxes, indoor housing and fox control per 

ewe indicated that variation in expenditure on indoor housing had a much greater effect 

on lamb losses and variation in total costs than did fox control (Figures 4.6 and 4.7). It 

appeared that the optimal strategy for a farmer aiming to minimise total costs was to 

spend money on housing as many of his ewes as possible for lambing. Keeping ewe 

and lambs in for longer than a few hours was not worthwhile (also shown in Chapter 3 

analyses), whilst fox culling had only a small effect on reducing total costs. 

Incorporating the costs of indoor housing resulted in a shift in the optimal number of 

foxes (Q*) upwards and therefore the optimal cull level decreased (in the case of the 

example farm discussed here, this shift was from 5 to no foxes culled). Therefore, it is 

likely that consideration of the costs of indoor housing means that additional fox control 

is worthwhile on a more limited set of farms than simply looking at the costs of control 

and lamb losses indicated. The difference between the effects of fox control and indoor 

housing is due to their relative effects on losses in the model. Reducing fox density has 

a relatively small effect on expected lamb losses and only influences the probability of 

predation occurring. Expenditure on indoor housing, on the other hand, influences both 

the probability of fox predation and the scale of lamb losses. 

4.5.3. Assumptions and realism of analysis 

4.5.3.1. Fox population density and lamb losses 

The questionnaire data indicated a positive relationship between fox population density 

and the probability of fox predation of lambs. However, because fox population density 

estimates were only available at a regional level and because only perceived loss data 

were collected, the authenticity of this relationship can not be guaranteed. In any case, 

the coefficient estimated here indicates that fox population density has only a weak 
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effect on the probability of fox predation: from Table 4.3, it can be seen that a reduction 
in the number of foxes on a farm with specified characteristics by one (equivalent to a 

reduction in density of 0.005 foxes per hectare) results in a reduction in lamb losses of a 

maximum of only £0.03 per ewe. A problem with the legitimacy of the relationship 
between lamb losses and fox predation estimated here is that expected lamb predation 
by foxes does not decrease to zero when there are no foxes on the farm. However. it 

could be argued that a decrease to zero would result in an unrealistically sharp fall off in 

the probability of fox predation with decreases in fox density, whilst, as the models do 

not advocate reducing fox populations to zero as a financially viable option, it is not 

necessary for them to be wholly reliable at fox levels of zero. Fox predation occurring 

when there are no foxes on a farm could be justified if predation by foxes from 

neighbouring farms occurred. 

The likelihood of some lamb losses to foxes being compensatory is discussed in Chapter 

3 (Section 3.5.3). The fox population density estimates calculated here are within the 

range of those in the literature for various regions of Britain (Insley 1977; Lloyd 1980; 

Macdonald et al. 1981; Hewson 1986; Harris & Lloyd 1991; Heydon et al. 2000), but 

are mostly in the upper end of this range, suggesting they may be slight overestimates. 

Such an overestimate will not affect the estimation of the relationship between fox 

density and predation damage, but the modelled impact of killing a single fox will be 

slightly smaller than it should be. 

4.5.3.2. Ecological considerations 

In using the fox population density estimates to calculate `numbers of foxes on a farm', 

figures were simply multiplied up by the farm area. Foxes are territorial and live in 

family groups (Harris & Lloyd 1991). Therefore, the conversion of density estimates to 

absolute numbers in a given area will depend on a number of factors other than area, 

including the sizes of territories, which will vary with habitat type (Lloyd 1980; 

Macdonald 1980; Harris & Lloyd 1991). However, there have been few attempts to 

determine the relationship between comparative population indices and actual density 

for canid species (Harris & Saunders 1993). The analysis also makes the assumption 

that the fox population on the farm in question will not change between the control 

action and lambing. This assumption holds if lambing (and therefore fox control) 

occurs before foxes produce their young and if immigration of foxes from outside the 
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farm under the control regime is negligible at this time. Lambing generally takes place 
between December and April, whilst the peak birth time for foxes is March (Harris & 

Lloyd 1991). Therefore, for many farms the assumed fox control and lambing will be 

over before this time period. In any case, foxes born in March will not be capable of 

attacking lambs even on farms that lamb later in the year. 

The assumption of no immigration is less likely to hold, however, as foxes will be 

dispersing over these time periods. Local fox control tends to create a `sink' to which 
foxes from outside the area under control will be drawn to replace those that have been 

killed (Reynolds et al. 1993), which explains why some farmers annually kill a greater 

number of foxes than realistically could be resident on their land at one period of time. 

The fact that this analysis fails to account for such immigration is a major shortcoming. 
In addition, it should be noted that because of foxes' territoriality and dispersal habits, 

the effects of fox control by farms neighbouring the one under consideration will also 

influence its resident fox population, as may levels of fox control on a regional scale 

(Heydon & Reynolds 2000b). The lack of a change in fox numbers between the culling 

action and lambing other than due to culling further implies that lethal control is the 

only factor affecting fox abundance on farms. Most fox mortality is thought to be 

induced by man, but not all anthropogenic deaths are due to deliberate control actions, 

road accidents also being a mortality factor (Harris & Lloyd 1991) (Chapter 1, Section 

1.5.4). In addition, natural deaths due to disease, for example, occur. Only one study, 

however, provides quantified data on the relative rates of mortality due to different 

factors and this is for a fox population in urban Bristol (Harris & Smith 1987a). In any 

case, the assumption that culling will be the only influence on fox numbers between the 

culling and lambing events is only likely to hold if there is only a short period of time 

between the two. 

Although fox predation is only a problem for sheep producers at lambing, simply 

controlling foxes before lambing each year with no consideration for what effect this 

control has on fox population dynamics is unlikely to be very cost-effective. Making 

the analysis more biologically realistic would involve modelling the effects of control 

on the population dynamics of the fox as well as incorporating the likelihood of 

immigration in to the model. This would also introduce a time element in to the model, 

in turn making it more complex, whilst a spatial element would also be desirable. The 
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specificity of management information provided by the model will increase with its 

realism. However, in order to make such models realistic a large amount of data is 

required, along with the estimation of a large number of parameters (Choquenot & 

Hone unpublished). Choquenot and Hone (unpublished) suggest that the amount of data 

(and therefore resource cost) required to estimate bioeconomic models grows 

exponentially with their degree of realism. The importance of incorporating population 
dynamics into pest control programs has been recognised (Stenseth & Hansson 1981) 

and a number of studies have assessed the effects of control on fox populations 

theoretically, mostly dealing with the control of rabies, e. g. Anderson et al. (1981), 

Smith and Harris (1991), Selhorst and Müller (1999) and Suppo et al. (2000), but there 

have been few empirical demonstrations of the effects of control on rural fox population 

numbers or dynamics (Chapter 1, Section 1.5.3), with the exceptions of Reynolds et al. 
(1993) and Heydon and Reynolds (2000a). Whilst data are available from urban fox 

populations, e. g. Harris & Smith 1987b, that could form the basis for a population 

model, the applicability of such a model to rural fox populations, and therefore its 

inclusion in an analysis such as this, is questionable. 

4.5.3.3. Costs of fox control 

Because the data on the costs of control were taken as given by respondents to the 

questionnaire, it is impossible to know what is included in these costs, whilst it is 

unlikely that all producers have calculated their costs in the same way. Some producers 

will not have considered the time they spent on fox control as work, so will have 

undervalued it, whilst others will have taken all the equipment and opportunity costs 

into account. In addition, producers will have used a number of different methods of 

control, all of which will differ in their cost-effectiveness. This explains the wide range 

of costs and the relatively low R-squared statistic of the estimated regression model for 

the costs of control. However, although these costs could be considered to be total 

opportunity costs as viewed by the farmer, because they are once again perceived costs, 

the appropriateness of aiming to minimise them can be brought in to question. 

Unfortunately, due to the sensitivity of the issues involved and the fact that there were 

constraints to the length of the questionnaire to encourage high response levels, it was 

not possible to ask for a break-down of the various costs of fox control, including 

equipment and time, nor to determine what types of control each producer used. In any 

case, whether producers would have accurate figures on these available is debatable. 
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The fact that a large number of producers paid nothing for their fox control is also a 

problem for this analysis. Data for farms where control was carried out at no cost to the 
farmer could not be included, but if `free' control is available, there is no limit to the 

number of foxes that should be killed, if, as according to this analysis, the death of each 
fox brings financial benefit in terms of lower lamb losses. In addition, if control can be 

carried out at no cost, this casts doubt on the assumption of this analysis that producers 

will aim to minimise the costs of fox control (in terms of lamb losses and direct costs). 
Rather, a more realistic assumption may be that they are simply aiming to maximise the 
benefits of control (i. e. the reductions in lamb losses to foxes). Some types of control 

may even confer benefits to the producer in themselves if they are deemed to be an 

activity that is enjoyable to engage in. (It should be noted that `free' fox control is 

likely to incur some costs elsewhere, even if not to the farmer in question. ) The 

percentages of farms carrying out fox control at no cost tended to be higher in those 

regions with higher estimated fox population densities (Spearman's rank correlation of 

percentage of farmers reporting fox control at no cost in each region against estimated 
fox density per 1-km square: rs = 0.669, p=0.049 [n = 9]). This supports the negative 

association between fox numbers and the cost of control estimated for the data from 

farms that did put a cost to fox control. 

4.5.3.4. Applicability of analysis 

This analysis assumes the only advantage to the producers of killing foxes is a reduction 

in lamb losses. This may be the case for farms on which sheep production is the only 

activity. Other benefits to fox control for sheep farmers may include a reduction in 

diseases transmitted by foxes (though the risks of transmission of disease by foxes to 

livestock are unknown) (Macdonald et al. 2000; White et al. 2000a). There may also be 

disadvantages, such as reduced predation pressure on rabbit populations, which compete 

for grazing with the sheep (although the effect of fox predation on rabbit populations is 

likely to be small) (White et al. 2000a). In addition, the model may not accurately 

capture the trade-off between the use of indoor lambing and fox control as preventive 

measures against fox predation. Although lambing indoors for a short while was the 

`optimal' strategy here, lambing indoors is not practical under some farm management 

systems and the benefits of fox control are likely to be greater for farmers that do not 

lamb indoors. (These models indicate a small drop in lamb loss with fox culling when 
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no ewes are housed at lambing, but very little change in total costs. ) In this data set, 
fewer than expected producers that lambed all their ewes indoors also carried out fox 

control (chi-square test of association: X2 = 4.50, d. f. = 1, p=0.034 [n = 451 ]). For 

sheep producers with other farming interests, there may be a number of additional 
benefits to fox control. In this data set, sheep farmers with other farming interests were 

more likely to undertake fox control on their land than expected (chi-square test of 

association: x2 = 23.3, d. f. = 1, p<0.001 [n = 439]), which may be due to these added 

advantages. 

If the models can be deemed realistic enough to be applied in the management of fox 

predation of lambs, there remains the problem that, before knowing how many foxes he 

or she should kill on his or her land, the sheep producer needs to know how many foxes 

there are on the land. It would therefore be useful if the model allowed the producer to 

use some indication of fox density, rather than actual numbers, to determine how many 

should be controlled. One way to do this would be to convert fox density estimates 
back to scat densities using the multipliers calculated in Section 3.3.1 and optimal fox 

control levels could be calculated according to these rather than actual fox numbers. 

However, even the determination of scat densities through a scat survey may not be 

practical for many producers, whilst the time taken to carry out such a survey will have 

an opportunity cost for producers. 

4.6. CONCLUSIONS 

This analysis provides a framework for evaluations of livestock predation and 

management of these problems. It allows for the trade-offs between different 

preventive measures to be modelled and indicates the best strategies for a farmer in 

financial terms. The analysis performed here does not give output figures accurate 

enough to inform individual producers on the levels of fox control they should carry 

out, but the basic model could be extended (some suggestions for possible extensions 

are given above) to improve both its accuracy and applicability. The analysis is a step 

towards understanding the association between fox control, fox population density and 

lox predation of stock on which little information is currently available. 
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The analysis assumes that the objective of carrying out fox control for a sheep producer 

is to minimise his or her costs through reduced lamb losses. However, this may not be a 

realistic objective for sheep producers for various reasons, some of which are discussed 

above. An individual's assessment of the performance of a pest control action will 

depend on his or her attitude to risk, as well as their profit motive, whilst their 

objectives may not simply be to minimise costs but, for example, to keep in line with 

the pest control practices of their neighbours (Norton 1976). Because there is 

uncertainty in the model parameters estimated, a strategy that minimises risk or a 

different behavioural approach to the problem may be more appropriate to the farmer's 

goals (Mumford & Norton 1984). The effects of risk can be incorporated in a profit- 

maximising pest control decision-making framework, e. g. Pannell (1990). 
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4.7. SUMMARY 

Prevention of predation of stock is a major reason why foxes are deliberately culled in 

Britain and lethal fox control can be considered as a preventive measure against 

predation with associated costs. This chapter evaluates fox control in an economic 
framework to assess optimal levels of fox control for a sheep producer in financial 

terms. 

The relationship between expected lamb losses and fox population density was 

modelled according to the analysis carried out in Chapter 3. The functional relationship 
between the costs of fox control and fox population levels was estimated using linear 

regression analysis. Optimal levels of fox abundance and fox control according to the 

models were determined using marginal analysis. Fox control levels in these models 

were computed as being additional to a baseline of `current' (at the time the 

questionnaire survey of sheep producers was carried out) levels of control. 

Fox control was more costly the fewer foxes there were on a given farm, whilst the 

benefits of fox control increased the more foxes that were removed. Optimal levels of 

control and therefore whether it was worthwhile for a producer to carry out fox control 

were dependent on farm characteristics, with fox control being more likely to be 

worthwhile on farms with fewer ewes and of smaller areas, as well as on the resident 

number of foxes. Housing ewes and lambs at lambing had a greater effect on reducing 

lamb losses and the total costs of fox predation than did fox culling. 

The analysis provides a framework for use in the evaluation of fox control, which can 

be modified to provide a more rigorous analysis, incorporating, for example, dynamic 

and spatial aspects to fox ecology and control, more reliable cost and loss data and the 

effects of risk. In addition, the analysis provides one of the first assessments of the 

association between fox population density and livestock predation. 
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Figure 4.1: Cost of killing one fox per ewe in terms of the number of foxes on the farm 
for various farm areas and numbers of lambing ewes according to estimated model 
(In(K) = -2.80 - 0.478"ln(Q) + 0.0011 "S - 0.0008-N) (S = farm area in hectares, N= 

number of lambing ewes) 
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Figure 4.2: Total lamb loss due to fox predation, costs of fox control and costs of lamb 
losses plus control for each fox killed from a starting density of 0.035 foxes per hectare 
(7 foxes on the farm, X=0.035, Q= 7) on a 200 hectare farm in the Southwest with 800 

ewes, where all ewes are lambed indoors and kept inside for one day and there is game 
rearing in the surroundings (S = 200, SW = 1, N= 800, Y=0.15, D=1, G= 1). Q* 

marks the optimal point where the total costs of lamb losses plus fox control are 
rnininused. 
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Figure 4.3: Marginal lamb loss due to fox predation, cost of fox control and cost of lamb 
loss plus fox control for each fox killed from a starting density of 0.035 foxes per 
hectare (7 foxes on the farm, X=0.035, Q= 7) on a 200 hectare farm in the Southwest 
with 800 ewes, where all ewes are lambed indoors and kept inside for one day and there 
is game rearing in the surroundings (S = 200, SW = 1, N= 800, Y=0.15, D=1, G= 1). 
Q* marks the optimal point where the total costs of lamb losses plus fox control are 
ii inirnised. 
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Figure 4.4: Marginal cost of lamb losses plus fox control for each fox killed on 200 
hectare farms with a fox population starting density of 0.035 foxes per hectare (7 foxes 
on farm, X=0.035, Q= 7) and various characteristics (Y = expenditure on indoor 
housing per ewe per day, D= number of days inside after lambing, C= dummy variable 
coding for whether fox control is carried out, N= number of lambing ewes, SW = 
dummy variable coding for whether farm is in Southwest England, NE = dummy 
variable coding for whether farm is in Northeast England, G= dummy variable coding 
for whether land used for game rearing is in surroundings) 
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g) Q 

Figure 4.6: 3-D plots for expected lamb loss to foxes per ewe (Z) against both the 
number of days for which ewes and lambs are housed (D) and expenditure on indoor 
housing per ewe per day (Y) for seven different numbers of foxes on the farm (Q) from 

a starting density (()°) of 7 for a 200 hectare farm in the Southwest with 800 ewes and 
game rearing in the surroundings (S = 200, SW = 1, N= 800, G= 1) 
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a)Q=7 

g) Q =1 
Figure 4.7: 3-D plots for total costs of fox predation per ewe (Ti) against both the 
number of days for which ewes and lambs are housed (D) and expenditure on indoor 
housing per ewe per day (Y) for seven different numbers of foxes on the farm (Q) 
from a starting density (0) of 7 for a 200 hectare farm in the Southwest with 800 
ewes and game rearing in the surroundings (S = 200, SW = 1, N= 800, G= 1), 
where 7i =Z+YD+I" 
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Figure 4.8: Plot of standardised residuals against standardised predicted values for In- 

cost of killing the next fox per ewe (K; ) according to the model ln(K) = -2.80 +- 
0.478. ln(Q; ) + 0.0011. S, - 0.0008. N; [n = 164] 
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CHAPTER 5 

IMPACTS OF FOXES ON FREE-RANGE POULTRY 
PRODUCTION 

5.1. INTRODUCTION 

Fox predation of poultry is only possible from free-range units, as intensive, indoor 

units are too secure for fox predation to occur. The main types of poultry farmed in 

Britain are laying hens, table chickens, turkeys, geese and ducks, with the majority of 

these being farmed on intensive units. In a 1992 survey of egg producers in England, 

free-range units made up 19.9% of the sample, but they only accounted for 5.4% of the 

bird capacity (Roberts & Farrar 1993). More recent figures for the proportion of hens 

that are free-range out of the total UK flock are 11 % (FAWC 1997) and 18% (NFU 

2001), with 15% of eggs being produced under free-range systems (DEFRA 2000). 

Free-range table chickens (or broilers) make up a very small proportion of the national 

total (Cottle & Cottle 1998). Free-range turkeys are produced as Traditional Farm 

Fresh (T. F. F. ) turkeys for the Christmas market. Not all Traditional Farm Fresh turkeys 

are produced in a free-range system and Traditional Farm Fresh turkeys make up a 

small proportion of the national turkey flock (1.5 million turkeys) (NFU 2001). All 

geese produced in Britain are kept outdoors during daylight and are therefore effectively 

free-range. They tend to be kept on a fairly small-scale on mixed farms. As with geese, 

duck production is a minor section of the British poultry industry, but the majority of 

ducks are farmed intensively. Free-range egg producers are therefore the largest sector 

of the poultry industry for which fox predation is likely to be a problem. With increased 

consumer concern over animal welfare issues, there has been a marked growth in the 

free-range egg industry in Britain over the last twenty years (Roberts & Farrar 1993). 

This growth is likely to continue, with growth in the free-range turkey and chicken 

production industries also occurring. 

Predation by foxes on poultry can potentially involve high losses because of the 

phenomenon of surplus killing, where a large number of birds are killed by the predator 

but not eaten (Kruuk 1972; White et al. 2000a; DEFRA 2001). Such actions also 

provoke anger in poultry holders because the killings are seen as senseless (Kolb 1996). 
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In a 1995 survey of Wiltshire farmers, more farmers reported losing chickens to foxes 

(42.0% of the sample) than lambs, gamebirds, pigs or other livestock (Baker & 

Macdonald 2000). However, the median flock size in this sample was 16 birds (out of a 

sample of 20), indicating that poultry were not kept on a commercial scale. The 

proportion of farmers that reported predation of free-range chickens by foxes in Heydon 

and Reynolds' (2000b) regional study varied from 48.8% to 77.8% for farmers with 

small flocks (less than 200 birds) according to region, with median reported losses 

varying from 0% to 25% of birds. Losses of up to 100% of the flock were reported. 
The median flock size in this sample was between 17 and 30 birds. The regional 
incidence of losses mirrored fox abundance, being lowest in west Norfolk, highest in the 

east Midlands and intermediate in mid-Wales (Macdonald et al. 2000). Only six 

producers with more than 1000 birds were surveyed and they reported much lower 

losses to foxes, from 0.1 % to 6.0% of birds (Heydon & Reynolds 2000b). 

The association between flock size and poultry losses to foxes has been put down to less 

adequate housing and fencing on small-scale holdings (McDonald et al. 1997; White et 

al. 2000a). Surplus killing may also be less likely to occur in open runs, from which 

losses to foxes may only be of single birds (McDonald et al. 1997), whilst on a large- 

scale unit the killing of a number of birds will be equivalent to the loss of only a small 

percentage of the total flock. In addition to killing birds, foxes may cause birds to 

become stressed, even if they are unable to physically reach them. Such stress can lead 

to smothering and trigger outbreaks of feather pecking (DEFRA 2001) and cause 

deterioration of the meat on the birds or reduce their egg-laying potential. 

Because of the potential threat of fox predation, commercial poultry units tend to use 

exclusion fencing to prevent foxes from reaching their flocks (White et al. 2000a), as 

well as housing birds indoors at night. There are generally three types of fencing used: 

wire and post, wire mesh (often electrified, known as `Flexinet') and strands of 

electrified wire, with combinations of these fence types also used. Fences may be 

permanent or mobile (in that they are easily erected and taken down). DEFRA (2001) 

indicate that flexible electric fencing should be adequate protection against most 

predators and that expensive permanent fencing substantial enough to exclude foxes is 

usually unnecessary. 
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Electric fences have been used to successfully protect birds of conservation interest 

from foxes (Forster 1975; Patterson 1977), as well as in protecting agricultural crops 

and livestock from other `problem' mammals (McKillop & Silby 1988; Hoare 1992; 

Poole & McKillop 1999) and are most likely to be effective for populations 

concentrated in a small area (Reynolds & Tapper 1996; Chadwick et al. 1997). 

However, it appears that foxes may be able to breach electric fences (B. J. Yates, 

Reserve Warden, in Chadwick et al. 1997) and Patterson (1977) suggested that killing 

of individual foxes that learn to cross fences may be necessary or that `novelty' in the 

fence design should be regularly implemented. Fences are costly not only in terms of 
initial outlay, but they must also be regularly maintained and in the case of electric 
fences require a reliable power supply (Artois 1997; DEFRA 2001). Foxes are not the 

only predators of poultry in Britain; stoats, mink and, sometimes, cats, dogs, badgers 

and birds of prey, e. g. Sommer and Vasicek (2000), such as buzzards, also kill poultry 

(DEFRA 2001). Stoats are extremely difficult to fence out reliably (Reynolds & Tapper 

1996), whilst the types of exclosure fencing that it is practical for poultry producers to 

use can not prevent predation from the air. DEFRA (2001) indicate that the siting of 

units is an important influence on the likelihood of predation and suggest that range 

areas should not be sited close to thick cover, such as conifer plantations, as this 

encourages foxes. 

There has been only one assessment of fox predation on poultry on a national scale that 

considered commercial sized units. It was considered that the top 30% most profitable 

free-range poultry units might suffer no losses to foxes at all, whilst with poor flock 

protection losses of up to 2% might occur (R. Kempsey, pers. comm., cited in 

McDonald et al. 1997). The costs of hen losses to all predators nationally in 1993 were 

calculated by multiplying up from estimates by a few experts (McDonald et al. 1997). 

They were put at a maximum of £ 195,000, between a ninth and a seventh of the 

estimated costs of natural mortality losses (£1.3 to £1.7 million) (McDonald et al. 

1997), with an average loss per holding per year to all predation of approximately 

£557.14. The surveys of producers discussed above (Baker & Macdonald 2000; 

Heydon & Reynolds 2000b) involved very few commercial units and only considered 

the problem of perceived fox predation of poultry as part of a larger study. 
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This chapter aims to address this lack of research on fox predation of poultry. Four 

types of free-range poultry producers were surveyed across Britain to assess levels of 
fox predation, as well as husbandry methods and fencing used to prevent losses to 
foxes. These producer types were egg producers, turkey producers, goose producers 

and chicken producers. Duck producers were not considered, the free-range sector 
being a very minor component of the industry. Data from the surveys were used to 

investigate the factors influencing variation in fox predation between farms. Such an 
investigation is important for determining the most appropriate husbandry and 

preventive strategies for the management of fox predation of poultry. The hypothesis 

that there are associations between fox population density, fox control and poultry 

predation was also tested. In addition, the effectiveness of different types of fencing 

was assessed. The costs of fox predation to poultry producers were evaluated and 

analysed in the same framework as the costs to sheep producers in Chapter 3. 

5.2. METHODS 

5.2.1. Questionnaire surveys 

Four separate questionnaire surveys of free-range poultry and egg producers were 

carried out between October 1999 and March 2000. These surveys targeted free-range 

turkey producers, goose producers, chicken producers and egg producers. The 

questionnaires consisted of questions on land-uses surrounding farms, husbandry, 

fencing, fox control, poultry or egg production and bird losses to predation and other 

causes. A number of questions were specific to the type of producer the questionnaire 

was aimed at (Appendix C). The questionnaires were designed to fit on two sides of a 

single A4 sheet of paper. All forms were sent out with an explanatory letter and 

Freepost reply envelope. 

5.2.1.1. Chicken producers 

Forty questionnaires were sent out by West Country Free Range Chicken to their 

growers in October 1999. 

5.2.1.2. Turkey producers 

Forty-two questionnaires were sent out by the Traditional Farmfresh Turkey 

Association to their members in October 1999. A further eleven questionnaires were 
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sent to free-range producers from `Who's Who in the British Turkey Industry' (NFU 
booklet). The survey followed consultation with several producers on the suitability of 
the questions. Non-respondents were telephoned in November 1999 to remind them 

about the survey and to ascertain any response bias. 

5.2.1.3. Egg producers 

One hundred and eighty questionnaires were sent out by the British Free Range Egg 

Producers Association to their members in March 2000. This survey followed a pilot 

survey of Council members of the British Free Range Egg Producers Association to 

assess suitability of questions and likely response rate. 

5.2.1.4. Goose producers 

Forty-four questionnaires were sent out to members of the British Goose Producers 

Association in January 2000. The survey followed a pilot of several producers to test 

the suitability of the questions. Non-respondents to the survey were sent a reminder 
letter and questionnaire in February 2000 and a further reminder in April 2000. Those 

for which a telephone number was available were contacted by telephone so any 

response bias would be picked up. 

5.2.2. Relative fox population density estimates 

Each farm in the data-set was allocated a region-based and a land class-based relative 
fox density estimate (as described in Section 2.2.3) (referred to as regional fox density 

and land class fox density, respectively, from here on), depending on the region in 

which the farm was situated and the land class of the Ordnance Survey 1-kilometre grid 

square in which the central farm buildings were located. Grid square references were 

identified for each farm with an available postcode using Matchcode 5 Webnet Demo 

(Capscan Ltd., London). 

Non-parametric correlation analyses were used to test the associations between relative 

density estimates and the percentages of birds reported killed by foxes, the percentage 

of farms within each region and land class group reporting predation, as well as the 

number of foxes killed on farms. 
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5.2.3. Analyses 

5.2.3.1. Temporal distribution of predation 
Turkey and goose producers were asked in which months from June (when chicks or 

poults are generally bought) to December (when the birds are finished) fox predation 

occurred. Chi-square tests were used to assess whether predation was equally likely in 

all months or whether it had occurred more frequently in some months than others. 

5.2.3.2. Effectiveness of fencing 

Respondents were asked how effective the fence surrounding the area in which their 

birds were kept was in terms of i) preventing foxes from getting in, ii) preventing all 

unwanted animals from getting in and iii) preventing birds from escaping. There were 

three effectiveness levels available for each: i) ineffective (coded 0), ii) somewhat 

effective (coded 1) and iii) very effective (coded 2). It was hypothesised that there 

might be trade-offs between the effectiveness levels of fences at each of these functions. 

This hypothesis was tested by carrying out chi-square tests of association on the 

frequencies of the three effectiveness levels for each prevention function against the 

frequencies of effectiveness levels for each of the other prevention functions. 

In order to test whether different fence types were considered more or less effective, 

two sets of chi-square tests were performed for each preventive function. The first 

tested whether there was a difference between the frequencies of each effectiveness 

level for each fence type and the frequencies that would be expected if effectiveness 

levels were assigned at random (i. e. all had equal frequencies) in order to ascertain 

whether the fence type was generally considered effective or ineffective at the function 

under consideration. The second tested whether there was a difference between the 

frequencies of each effectiveness level for each fence type and the overall frequencies 

of each effectiveness level for that preventive function in the sample, i. e. expected 

values were calculated to be in the same proportions as the sample frequencies. This 

tested whether the fence type was considered to be effective or ineffective at the 

function under consideration more or less often than other fence types. 

5.2.3.3. Factors influencing reported fox predation of chickens 

Sample sizes for individual producer types were considered too small to carry out 

regression analyses to assess whether certain factors were related to the reported 
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occurrence of fox predation on a farm. In addition, geese and turkeys were considered 
to be too different in terms of their susceptibility to fox predation for these samples to 
be pooled. It was decided that the table chicken and laying hen samples could be 

pooled, however, as the prey species in question was the same. 

Chi-square tests and logistic regression analyses were used to assess the associations 
between the occurrence of reported fox predation on a farm and other factors. 

Appendix D summarises the independent variables used in these analyses. The 

dependent variable in all logistic regression models was a binary response variable, 

coded zero for no reported fox predation on the farm and one for at least one bird 

having been reported lost to foxes. This variable was also used in the chi-square tests. 

Univariate analyses were used to determine initial relationships in the data and to 

identify the most significant variables for inclusion in an overall multiple logistic 

regression model. Chi-square tests were used for all analyses involving one other 

categorical variable and logistic regression for analyses using a continuous variable. 
The overall multiple logistic regression model included those variables that retained a 

significant relationship with the occurrence of perceived fox predation once the effects 

of other variables were included. These variables were also selected for not being 

associated with other variables in the analysis (to avoid multicollinearity) and for 

causing a decrease in the -2 log likelihood of the model on their inclusion. Variables 

that were not significant in univariate analyses were also tested in this multivariate 

approach to ensure that no important variables were missed out of the model. 

Because of the high degree of variation in the number of chickens reported killed by 

foxes and the small sample size of the data, it was considered that assessing the factors 

that influenced variation in the scale of chicken predation would not produce useful 

results, nor expand on the conclusions of the logistic regression analyses. 

5.2.4. Modelling the farmers' costs of poultry predation by foxes 

5.2.4.1. Theoretical model 

The theoretical model of Chapter 3 (Section 3.2), which was based on the hypothesis of 

a negative relationship between predation losses and expenditure on preventive 

measures, was used as a basis for analysing the costs of poultry predation by foxes to 

farmers. The preventive measure considered in this case was fencing surrounding 
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poultry pasture. The primary function of fencing is preventing birds from escaping, but 
it is also used to prevent predation losses. If it is assumed that there is a necessary 
minimum basic level of fencing (and therefore expenditure on fencing), it can be 
hypothesised that any additional expenditure will improve the effectiveness of the 
fencing at preventing fox predation. Thus, there will be trade-off between how much 

should be spent on fencing and how much loss due to fox predation should be tolerated. 
This trade-off can be assessed in an economic framework to determine how much it is 

worthwhile for the farmer to spend on fencing. The aim of the farmer is assumed to be 

the minimisation of the total costs of predation plus preventive measures. Poultry loss 

to foxes (in monetary terms) is therefore assumed to be a function of expenditure on the 

preventive measure and various other characteristics of the farm, such as regional 
location: 

Lb1 = f(MF;, R1) 

where: 

Lb; = poultry loss to foxes per bird per year on the ith farm (£) 

MF; = expenditure on fencing per bird per year on the ith farm (£) 

R; = regional location of the ith farm 

f= function of farm characteristics determining poultry losses 

The relationship between poultry losses and preventive expenditure is assumed to be 

negative, with diminishing returns (in terms of reduced losses) to marginal expenditure 

increases, reflecting the assumed trade-off between these two costs, as outlined in 

Chapter 1 and by McInerney (1996) for the loss-expenditure frontier (Figure 1.1). So: 

f =aflaMF; <0, andf'=of/ MF>0. 

The optimal point, where the total costs of fox predation (Lb; + MF; ) are minimised, is 

where marginal poultry losses equal marginal preventive expenditure. 
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5.2.4.2. Valuation of the costs of poultry predation by foxes 

Losses due to fox predation were evaluated in terms of output loss. The proportion of 
birds reported killed by foxes was used in each case as this gave a figure for losses 

relative to flock size. The points in the growing cycle at which birds were presumed 
killed by foxes were not available, as it was considered unlikely that producers would 
be willing or able to reliably provide information on this. Data were available for 

turkey and goose producers on the months in which birds were reported killed, but not 
the numbers reported killed in each case. Therefore, turkey, geese and chickens were 

valued as if killed at point-of-sale. Because the financial loss increases with the age of 
the bird up to the point-of-sale for chickens, turkeys and geese (Williams 1999), the 

output loss in terms of market price will tend to overvalue losses in financial terms 

unless they occur at point-of-sale (McInerney 1987). However, although values for 

(intensively reared) broiler chickens at different ages are available, those for other 

poultry are more difficult to estimate (Williams 1999). 

For turkey producers, output losses were estimated as the proportion of birds killed 

multiplied by the price fetched by the producers for each bird or, if this was not given, 
by the returns for a medium size turkey from Nix (1999) at £ 15.34. For goose 

producers, output losses were estimated as the proportion of birds killed multiplied by 

the price fetched by the producers for each bird at Christmas or, if this was not given, by 

the mean price of a goose from the data (a deadweight price only is available in Nix 

(1999)). Michelmas goose sales were negligible in this sample and, in any case, prices 

did not differ greatly from those for Christmas birds. Output losses to chicken 

producers were estimated as the proportion of birds killed by foxes multiplied by the 

price received per chicken. The price was calculated from West Country Free Range 

Chicken literature as the base payment per bird (£0.316) plus the bonus received for 

reaching weight and feed conversion targets (£O. 253) according to the percentage of 

birds in the flock that reached these. 

Egg-laying hens differ from the other poultry considered here, in that the value of a hen, 

in terms of its egg-laying potential, decreases from point-of-lay to a value of zero at 

end-of-lay. (End-of-lay hens were often sold at cost in 2000, so they actually had a 

negative net value. ) Although a producer loses all the potential eggs to be laid if a bird 

is killed at the start of the laying cycle, there will be savings for the producer in terms of 
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resource costs for keeping the bird and these savings should be taken into account in 

valuing losses. Therefore, output losses due to predation for egg producers were 

calculated in terms of loss of eggs laid minus resource costs. Since losses could occur 

at any time in the laying cycle, it was considered that an average financial loss would lie 

between the output loss at the start- and end-of-lay, i. e. in mid-laying cycle. Such an 

approach was used by Williams (1999), in that he assumed losses of table chickens 
(broilers) to coccidiosis occurred at a mean age of 3 weeks. 

The costs of eggs lost were calculated as the proportion of hens killed by foxes 

multiplied by the average number of eggs per hen housed per year, if given, or by the 

average free-range egg yield of 288 (Nix 1999) multiplied by the price per egg 

(calculated from the price per dozen given or as £0.67 per dozen (Nix 1999)). Egg 

prices will vary according to the type of outlet to which the producers supply their eggs. 

In this sample, 53 producers supplied their eggs to packing stations, 26 direct to 

consumers, 13 to retail outlets, 7 to wholesalers and 1 to another type of outlet (such as 

processors) [n = 57]; the majority of producers supplied more than one type of outlet. 

Given prices for eggs were marginally higher for producers that supplied to retailers 

than for those that supplied to packing stations, but other prices given by producers did 

not vary with supply outlet. The cost of feed was considered to be the only significant 

variable cost (Roberts & Farrar 1993; Nix 1999; Williams 1999). This was taken as 

given by producers and divided by the flock size, if available, or calculated from the 

mean price of feed per ton at £ 137 multiplied by the quantity of feed used per bird at 

0.0472 tons (Nix 1999). In order to calculate the output loss at mid-laying cycle, the 

figures for loss of eggs laid and feed costs were divided by two prior to subtracting one 

from the other. 

Producers were asked to assign a cost to the losses they experienced because of fox 

activity. In the case of turkeys and geese this was in terms of birds killed, as well as in 

terms of meat deterioration caused by stress in the last year, whilst for chickens costs 

were split into the same two categories but the time period considered was the last 

growing period. Egg producers were asked how much they considered foxes had cost 

them in terms of financial loss of eggs laid during the last laying cycle. Estimated 

values for losses due to fox predation were compared to the costs due to fox predation 
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reported by respondents in correlation and paired t-tests in order to assess whether 

producer valuations of predation losses were accurate assessments of output loss. 

5.2.4.3. Valuation of expenditure on fencing 

The costs of fencing surrounding poultry pasture when first purchased were given by 

producers. These costs were converted to 1999 prices using the Retail Price Index (Nix 

1999). These data were only available for those producers that gave both a cost of 
fencing and a year in which the fence was put up. Expenditure on fencing per year was 

calculated by dividing the purchase cost by the estimated life span of a fence (put at 10 

years). Producers were also asked how much maintenance of their fence cost them per 

year and this was added to expenditure on fencing to obtain a total expenditure per 

annum figure. This expenditure per annum was divided by the number of birds on the 

holding over a year to obtain expenditure per bird. The number of birds on the holding 

in a year were taken as given for turkey, goose and egg producers (in each case only one 

flock of birds for growing or laying would be present on the holding in one year). For 

chickens, the total number of birds on the holding in a year was calculated as the 

number of birds at the start of the last growing period multiplied by the number of 

growing periods per year. Expenditure per bird on maintaining the fence only was also 

calculated. 

To assess whether there was an association between expenditure on fencing and the 

occurrence of reported fox predation, both expenditure on fencing and expenditure on 

fence maintenance only were included separately in the best-fit logistic regression 

model explaining variation in the incidence of reported fox predation estimated for the 

chicken and egg producer data (Section 5.2.3.3). 

5.2.4.4. Empirical estimation of the model 

The relationship between poultry losses to foxes and expenditure on fencing was 

assumed to approximate to either a negative exponential or negative power relationship, 

as would be expected if there are diminishing returns to preventive effort. Separate 

modelling of the probability and scale of predation, as carried out in Chapters 3 and 4 

was considered inappropriate for these data because of the small sample size. Therefore 

all data were included in one model. Because of the zeroes in both the poultry loss and 

expenditure on fencing data, a small positive constant was added to both to enable the 

178 



variables to be logged. This constant was chosen according to the principles outlined in 
Section 3.3.4. Four possible forms were tested for the model: 

a) Linear: Lb; l = (30 + (31MF1j 

b) Exponential: Lb11 _ Po x eRIMF 1 

c) Logarithmic: Lb11 = ßo + ßlln(MF1I) 

i. e. ln(Lb1l) = ßo + ß1MF; 1 

d) Log-linear (power): Lbil _ (3a x MF; Iß1 i. e. ln(Lb; j) = ßo + ßlln(MF; 1) 

where: 

Lb; l = poultry loss to foxes per bird per year on the ith farm plus 0.001 

MF; 1 = expenditure on fencing per bird per year on the ith farm plus 0.0001 or 

expenditure on fence maintenance per bird per year on the ith farm plus 0.0001 

Po = constant 

(3I = coefficient for MF, 1 

These forms were tested using linear regression analyses for both total expenditure on 

fencing and expenditure on fence maintenance only. Dummy variables coding for 

producer type were also included in the models to account for variation between 

producer types. 

In order to test for an association between expenditure on preventive measures and the 

effectiveness of fencing, Kruskal-Wallis tests were used to assess whether there was a 

difference in expenditure between effectiveness ratings. In each case, the test variable 

was expenditure on fencing and the grouping variable was the effectiveness rating 

according to the preventive task tested. 
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5.3. RESULTS 

The data from 136 questionnaire forms were used in this analysis, of which 27 were 
from turkey producers, 27 from goose producers, 24 from chicken producers and 58 
from egg producers. Additional to the forms from turkey producers used in the 

analysis, five were returned empty because the producers did not keep free-range 

turkeys, whilst one was not filled in because the respondent was unwilling to participate 
due to confidentiality issues, making the response rate of turkey producers 62.3%. Of 

non-respondents that were telephoned, four were not free-range, one had stopped 
keeping turkeys and one was unwilling to respond because of experiencing no losses to 

foxes. No other non-respondents gave a reason for non-response that could have biased 

the sample. A further six forms were returned from goose producers, of which one was 

an unwilling participant, three were breeding and hatchery farms and two had given up 

geese. The response rate of goose producers was 75.0%. Of those non-respondents for 

whom telephone numbers were available, two had not responded because they no longer 

kept geese (one because of predation by foxes and mink), whilst the majority did not 

give a reason for not responding that would cause a sample bias, one being unwilling to 

reply as they did not have a fox problem and had an electric fence for their cattle. The 

response rate amongst chicken producers was 60.0%, with no returns of empty forms. 

A further four egg producers to the 58 used in the analysis returned forms, giving a 

response rate of 34.4%. These forms were not used in the analysis in one case because 

the respondent was unwilling to participate, two because this was their first flock and 

one because the operation had closed down. 

Not all respondents answered all the questions on the survey form (due to lack of 

knowledge on the subject covered or unwillingness to supply the information asked for). 

Therefore the sample sizes differ between analyses. These are indicated in square 

brackets in the text. All figures for statistics are quoted to 3 significant figures or 2 

decimal places. Estimated Beta coefficients for independent variables in regression 

analyses are given as `B'. Statistical significance was taken as being at the 95% level 

(a = 0.05), i. e. p<0.05. 

The figures for reported losses of turkeys, geese and chickens to foxes, all predators 

(including foxes) and other causes are summarised in Tables 5.1 to 5.4. Bird mortality 

is given as the percentage of birds lost to that cause out of the total number of birds on 
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the holding. In the case of turkeys and geese, this is the total number of birds in August 
(just after chicks have been bought in for growing), for table chickens, it is the average 

number of birds over the past year and for laying hens, the number at the beginning of 
the last laying cycle. The end date of the chicken growing periods varied between 

September and November 1999 (with a median date of 21/10/1999), whilst the end date 

of the laying periods under consideration varied from February 1999 to April 2000 

(with a median of 29/12/1999). 

Table chicken losses were provided for a growing period (with a mean of 8.0 weeks 
length) and laying hen losses for a laying period (which ranged from 45 to 72 weeks in 

length, with a mean of 54.1 weeks). Figures for mortality of chickens due to fox 

predation were standardised to the equivalent of a laying period (54 weeks) for ease of 

comparison (Table 5.3). In order to do this, percentage mortality figures were assumed 

to approximate the probability that fox predation of a particular bird on the farm would 

occur. The probability that a bird would not be predated upon by a fox during the 

growing cycle was calculated from the data for each farm. This probability was raised 

to the power of the number of growing cycles in 54 weeks to determine the probability 

of fox predation of that bird not occurring if a growing cycle were 54 weeks long. This 

figure was taken away from one to determine the probability of fox predation, which 

was converted back into a percentage mortality figure. 

Mean reported bird mortality due to fox predation was below two per cent for all 

producers. However, there was a marked difference between producer types in the 

degree to which they reported experiencing fox predation and in what proportion of 

farms reported fox predation (Figures 5.1 and 5.2). Egg producers reported losing many 

birds to foxes compared to other producer types, whilst egg producers and goose 

producers on average lost the highest proportions of their total flocks. 

Nearly half the respondents of all producer types (47.3%) thought the numbers of birds 

lost to foxes had not changed over the past five years, whilst 22.5% thought these losses 

had increased [n = 1291. Amongst turkey producers, birds were reported to have 

experienced stress due to fox activity a mean of 3.8 times and a median of 2.5 times in 

1998 [n = 22]. Geese were reported to have experienced stress due to foxes 5.3 times 

oil average in 1999, with a median of 3 times [n = 19] and chickens a mean of 0.4 times 

181 



in the last growing period, with a median of zero [n = 19]. Egg producers reported that 

their birds had experienced stress due to fox activity in the last laying cycle a mean of 

5.7 times and a median of once [n = 33]. 

There were differences both within and between producer types in the husbandry 

methods and fence types used (of those that were surveyed), as well as in fox control 

and farm characteristics, such as location and surroundings (Tables 5.5 and 5.6). 
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5.3.1. Relative fox population density estimates 
Land class fox density was negatively correlated with both the percentage (rs = -0.247, p 

= 0.009 [n = 111]) and number (r, = -0.198, p=0.037 [n = 111]) of birds out of the total 
flock reported killed by foxes. There were no statistically significant associations 
between regional fox density and either the number (rs = -0.097, p=0.295 [n = 119]) or 

percentage (rs = -0.109, p=0.239 [n = 119]) of birds reported killed by foxes. The 

percentage of respondents reporting fox predation of birds in each land class group was 

not associated with land class fox density (rs = -0.100, p=0.873 [n = 5]), nor was the 

percentage of respondents reporting predation in each region associated with regional 
fox density (rs = 0.000, p=1.000 [n = 7]). The number of foxes killed on farms was not 

associated with either land class (rs = -0.054, p=0.561 [n = 119]) or regional fox 

density (rs = -0.069, p=0.436 [n = 128]). 

Because of the differences in reported fox predation between producer types, these 

associations were also tested separately for each producer type, with the exception of 

chicken producers, as they were only from one region and two land class groups. 

Neither land class nor regional fox density were associated with the number or 

percentage of birds killed by foxes or with the number of foxes killed for any producer 

type (Table 5.7). Land class fox density was not associated with the percentage of 

turkey producers (rs = -0.800, p=0.200 [n = 4]), goose producers (rs = 0.800, p=0.200 

[n = 4]) or egg producers (rs = 0.05 1, p=0.935 [n = 5]) reporting fox predation in each 

land class group, nor was regional fox density associated with the percentage of turkey 

producers (rs = 0.698, p=0.123 [n = 6]), goose producers (rs = 0.385, p=0.393 [n = 

7]) or egg producers (rs = -0.091, p=0.846 [n = 7]) reporting fox predation in each 

region. 
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5.3.2. Temporal distribution of predation 
Turkey and goose predation incidences were reported by at least one of the surveyed 

producers in every month between June and December (Figure 5.3). Chi-square tests 

revealed no significant differences between the frequencies of occurrence of reported 

predation between months for either turkeys (x2 = 8.29, d. f. = 6, p>0.10 [n = 25]) or 

geese (x2 = 6.5, d. f. = 6, p>0.10 [n = 25]). However, it should be noted that the chi- 

square test is not wholly appropriate for these data, as more than 20% of the expected 

values in each case were less than 5. Amalgamating cells by combining months 
together was considered inappropriate. The results would be highly dependent on 

which months were put together and it appeared from visual examination of 

contingency tables that there were no large differences between months in the frequency 

of reported predation. Losses of turkeys were slightly more likely to have been reported 

as occurring in October and November. 

5.3.3. Effectiveness of fencing 

Respondents classified the fences surrounding the areas on which their birds were kept 

as electric, Flexinet and/or wire and post and a large proportion of producers (44.9%) 

used combinations of these fence types [n = 136]. For analysis, three dummy variables 

were used, which were coded one for respondents with each type of fencing (electric, 

Flexinet and wire and post fencing). Thus producers might be coded one for more than 

one variable, if they used more than one fence type. A further three dummies were used 

to distinguish those producers that used one type of fencing only. These were coded 

one for producers with electric fencing only, Flexinet fencing only or wire and post 

fencing only. 57.4% of producers had electric fencing, 32.4% Flexinet, 44.1 % wire and 

post, 23.5% electric only, 13.2% Flexinet only and 18.4% wire and post only [n = 136]. 

Chi-square tests of association for the effectiveness levels of fences at different 

functions revealed that there was a significant association between effectiveness levels 

for preventing entry of foxes and for preventing entry of unwanted animals (x2 = 79.2, 

d. f. = 4, p<0.001 [n = 132]). There was also an indication of an association between 

effectiveness levels for preventing entry of unwanted animals and preventing escapees 

(x2 = 9.25, d. f. = 4, p=0.055 [n = 131]), but not between those for preventing entry of 

foxes and escapees (x2 = 4.95, d. f. = 4, p>0.10 [n = 133]). However, it should be 
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noted that 22.2% of cells had an expected value of less than 5 for the test of association 
between effectiveness at preventing entry of unwanted animals and escapees. In any 

case, it appeared that rather than there being a trade-off between the effectiveness of 
fences at different functions, effectiveness levels tended to be associated with one 

another for different functions, i. e. a fence that was considered effective at one function 

tended to be considered effective at others too, the opposite also being the case. 

5.3.3.1. Effectiveness at preventing entry of foxes 

Out of all poultry producer respondents to the relevant question, 20.9% reported their 

fence to be ineffective at preventing foxes from entering the area in which birds were 
kept, 44.0% reported their fence to be somewhat effective at this job and 35.1 % 

reported it to be very effective at achieving this [n = 134]. Respondents with electric 

and with Flexinet fencing were more likely to have reported their fences to be effective 

at preventing entry of foxes than would be expected by chance (Table 5.8). Those with 

wire and post fences only reported their fences as being ineffective significantly more 

often than those with other fence types (Table 5.9). If the level of statistical 

significance was relaxed from 5% to 10% further trends in the data were revealed, with 

more respondents with wire and post fences only reporting their fences to be ineffective 

at preventing fox entry than would be expected by chance (Table 5.8) and more 

respondents with electric and Flexinet fencing than those with other fence types 

reporting their fences to be being effective at preventing the entry of foxes (Table 5.9). 

5.3.3.2. Effectiveness at preventing entry of unwanted animals 

Out of all the respondents to the relevant question, 15.2% reported that their fence was 

ineffective at preventing all unwanted animals from entering the area in which birds 

were kept, 45.5% reported that their fence was somewhat effective at this job and 39.4% 

that it was very effective at achieving this [n = 132]. As was the case for preventing the 

entry of foxes, both respondents with electric and Flexinet fences were significantly 

more likely to report their fences as being effective than would be expected by chance 

(Table 5.10). However the frequencies of the three fence effectiveness levels reported 

by respondents with these fence types did not differ from those of the overall sample 

(Table 5.11). A higher proportion of respondents with wire and post fences reported 

their fences as being ineffective at preventing the entry of all unwanted animals than did 

those in the sample overall (Table 5.11). 
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5.3.3.3. Effectiveness at preventing escapees 
Of respondents to the relevant question, 9.0% reported that their fence was ineffective at 

preventing birds from escaping, 39.8% reported that their fence was somewhat effective 

at doing this and 51.1 % that it was very effective at this [n = 133]. With the exception 

of respondents with Flexinet fencing only, a significantly higher proportion of 

respondents reported their fences as being somewhat or very effective at preventing 

birds from escaping than would be expected by chance (Table 5.12). The frequencies of 

fence effectiveness levels reported by respondents did not differ from those of the rest 

of the sample for any of the tested fence types (Table 5.13). 
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5.3.4. Factors influencing reported fox predation of chickens 
5.3.4.1. Univariate analyses 

Few of the factors considered were statistically significantly related to the occurrence of 

reported fox predation. The coefficient estimates and significance test results of 

continuous variables that were significant are given in Table 5.14. Only two categorical 

variables were significantly associated with the likelihood of fox predation, tested with 

chi-square tests of association. Egg producers reported experiencing predation more 

often than expected (and chicken producers significantly less often) (x2 = 19.6, d. f. = 1, 

p <0.001 [n = 72]). A higher than expected number of producers that reported 

experiencing fox predation also carried out fox control, whilst a higher than expected 

number that reported experiencing no predation did not carry out fox control (x2 = 12.4, 

d. f. = 1, p<0.001 [n=69]). 

Table 5.14: Coefficient estimates and significance test statistics for variables that were significantly 
related to the occurrence of reported fox predation of chickens in univariate logistic regression 
analyses 

Variable B Wald p n 

Range area 0.130 10.4 0.001 71 

Stocking density -0.0003 12.1 0.001 69 

Number of chickens reported lost to 
causes other than predation (square- 
root transformed) 

0.050 4.68 0.030 61 

Number of foxes killed on farm in 
last year 

0.094 4.184 0.041 69 

Regional fox density -1.93 13.6 <0.001 70 

Land class fox density -3.83 6.37 0.012 62 

5.3.4.2. Overall logistic regression model 

The associations between the dependent variable and range area, stocking density, 

number of foxes killed, regional and land class fox density were no longer significant 

when the dummy variable coding for egg producers was included in a logistic 

regression model with them. These associations were a result of the differences 

between the chicken producers and egg producers surveyed. Egg producers tended to 

have larger range areas than chicken producers: the mean range area for egg producers 

was 18.9 hectares (S. E. = 2.95) [n = 58] and the mean for chicken producers 2.33 
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hectares (S. E. = 0.74) [n = 23]. However, egg producers tended to have lower stocking 
densities of birds than chicken producers: the mean number of chickens per hectare 

amongst egg producers was 945 (S. E. = 52.1) [n = 55], whilst the mean for chicken 
producers was 9281 (S. E. = 52.1) [n = 24]. Egg producers tended to have killed more 
foxes on their farm than chicken producers (Table 5.6). All chicken producers were in 

the Southwest region of England and therefore had the same relative fox density 

estimate of 1.52 scats per kilometre square, the highest of the estimates, whilst 95.5% of 

chicken producers were in Ordnance Survey grid squares of land class group 4 (Table 

5.5) with a land class-based relative density estimate of 0.833, the second highest of the 

estimates. Because of the strong association between occurrence of predation and being 

an egg producer, all other independent variables were re-tested in a logistic regression 

model with `egg' also included as a dummy to ensure that any relationships had not 
been missed. No further associations with the dependent variable were found. 

The overall model estimated for the occurrence of fox predation of chickens included 

the dummy variable for egg producers, the dummy for fox control being carried out and 

the number of chickens reported lost to causes other than predation (square root- 

transformed) and had a predictive accuracy of 79.3% (-2 log likelihood of fitted model 

= 47.4, x2 = 28.5, d. f. = 3, p<0.001 [n = 58]) (Table 5.15). The model correctly 

predicted predation on 83.8% of the farms where fox predation had occurred. Farms 

that reported losing more chickens to causes other than predation were more likely to 

have reported fox predation, as were farms that carried out fox control and those that 

were egg producers. 

Table 5.15: Coefficient estimates and significance test statistics for overall logistic regression model 
describing variation in the occurrence of reported fox predation of chickens between farms 

Variable B Wald P 

Constant -3.05 10.6 0.001 

Producer is egg producer 2.26 8.62 0.003 

Fox control carried out 1.92 5.29 0.021 

Number of chickens reported lost to 
causes other than predation (square root- 
transformed) 

0.063 3.84 0.050 
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5.3.5. Modelling the farmers' costs of poultry predation by foxes 
The reported costs of fox predation were highest per bird for geese, mainly because 

each bird was valued higher than any of the other poultry types (Table 5.16). There 

appeared to be no association between the reported value of one bird killed by foxes and 
the month in which the bird was killed for turkey and goose producers. Both turkey and 

goose producers reported additional costs in terms of meat deterioration caused by 

stressing of birds by foxes but none of the chicken producers assigned any cost to stress 

caused by foxes. Table 5.16 gives summary statistics for both reported and estimated 

costs of fox predation. Whilst reported costs for turkey and goose producers were 

similar to output loss estimates at low cost levels (i. e. when few birds had been taken), 

they tended to be lower than output losses at high cost levels (Figures 5.4 and 5.5). 

Costs reported by turkey producers were highly correlated with estimated output loss (r 

= 0.879, p<0.001 [n = 24]) and paired sample t-tests indicated that both costs were 

similar (t = 1.53, p=0.139). Costs reported by goose producers were also highly 

correlated with estimated output loss (r = 0.906, p<0.001 [n = 21]) and similar to 

output loss (t = 1.88, p=0.074), although the lack of a difference between reported 

costs and output loss was less convincing than for turkey producers (p < 0.10). 

Reported costs of losses due to fox predation from egg producers tended to be 

somewhere between losses estimated at point-of-lay and those estimated for mid-laying 

cycle, with valuations at mid-cycle being greater than reported losses at high cost levels 

(Figure 5.6). Whilst reported costs were correlated with both point-of-lay and mid- 

laying cycle output losses (r = 0.613, p<0.001 [n = 36] for both), paired t-tests 

indicated that it was the mid-laying cycle estimates that these reported costs were 

similar to (t = 0.126, p=0.901) and that they were significantly lower than point-of-lay 

output loss (t = 2.64, p=0.012). The estimated output losses for mid-laying cycle were 

exactly half those at point-of-lay. A figure for estimated versus reported costs is not 

shown for chicken producers because only six producers considered their losses to foxes 

cost anything [n = 19]. Chicken producers tended to report costs to fox predation that 

were similar to estimated output losses (r = 0.996, p<0.001, t= -0.010, p=0.992 [n = 

18]; those producers that reported costs only: r=0.995, p<0.001, t= -0.009, p=0.993 

[Ii=5J). 
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Although the reported costs of predation were generally similar to estimated costs, 

estimated costs were used in the subsequent model estimation because it was not known 

what had been included in the producers' own assessments and because their value 

appeared to decrease with increases in losses. A standard method of valuing costs was 
therefore considered more appropriate than using reported figures. 

Goose producers tended to spend more on their fencing per bird than other producer 

types, whilst expenditure on fence maintenance per year was on average also greater for 

these producers (Table 5.17). Chicken producers spent the least on their fencing per 
bird (Table 5.17). Figures 5.7 and 5.8 show expenditure on fencing compared to loss 

due to foxes. Output losses due to foxes are given at mid-laying cycle for egg-laying 
hens. There were two outliers in the data with expenditure on fencing per bird of 

greater than £1.00, so only expenditure figures of less than £1.00 are plotted. No 

obvious relationship is apparent between losses and expenditure for either reported or 

estimated losses, nor if the maintenance expenditure on the fence per year is considered 

only. However, there does appear to be some reduction in the variability of losses with 
increasing expenditure on fence maintenance. 

Neither expenditure on fencing per bird per annum nor expenditure on fence 

maintenance only per bird per annum (untransformed or logged) were significantly 

associated with the occurrence of predation for chicken and egg producers only when 

included in the logistic regression model estimated in Section 5.3.4.2. The same was 

true when each was included in a logistic regression model with the dummy variable 

coding for whether producers were egg producers and the same dependent variable. 

There were indications of a positive association between expenditure on fence 

maintenance (log-transformed) and the occurrence of reported fox predation (B = 0.330, 

Wald = 3.63, p=0.057 [n = 50]). 
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Table 5.16: Summary statistics for the reported costs of fox kills, stress and the reported value of 
one bird killed by a fox and for estimated output losses due to fox predation for each poultry 
producer type 

Producer type Variable N Mean Median Range 

Turkey Reported cost of fox kills per 26 0.052 0.003 0- 
bird (£) 0.333 

Reported cost of fox kills and 23 0.122 0.090 0- 
stress per bird (f) 0.533 

Reported value of one bird killed 12 16.75 19.62 1- 
by foxes (£) 31.25 

Estimated output loss due to fox 25 0.147 0.009 0-2.00 
predation per bird (£) 

Goose Reported cost of fox kills per 23 0.326 0.073 0- 
bird (£) 0.950 

Reported cost of fox kills and 13 0.557 0.438 0-1.80 
stress per bird (£) 

Reported value of one bird killed 16 28.75 23.11 5.71- 
by foxes (£) 75.00 

Estimated output loss due to fox 23 0.440 0.165 0-1.84 
predation per bird (£) 

Chicken Reported cost of fox kills per 19 0.000 0.000 0- 
bird (£) 0.020 

Reported cost of fox kills and 17 0.000 0.000 0- 
stress per bird (£) 0.002 

Reported value of one bird killed 5 0.614 0.500 0.50- 
by foxes (£) 1.00 

Estimated output loss due to fox 22 0.000 0.000 0- 
predation per bird (£) 0.002 

Egg Reported cost of losses per bird 42 0.117 0.025 0- 
(£) 0.690 

Reported value of one bird killed 31 6.86 6.00 0- 
by foxes (£) 20.00 

Estimated output loss due to fox 44 0.241 0.050 0-1.50 
predation per bird at start-of-lay 
(£) 

Estimated output loss due to fox 44 0.121 0.025 0-0.75 
predation per bird mid-laying 
cycle (£) 

206 



Table 5.17: Summary statistics for expenditure on fencing per bird per year and for expenditure on 
fence maintenance per bird per year for each poultry producer type 

Producer type Variable N Mean Median Range 
Turkey Expenditure on fencing 15 0.076 0.026 0-0.48 

per bird (£) 

Expenditure on fence 23 0.055 0.020 0-0.33 
maintenance per bird (£) 

Goose Expenditure on fencing 10 0.323 0.208 0.07- 
per bird (£) 1.13 

Expenditure on fence 12 0.124 0.087 0.03- 
maintenance per bird (£) 0.37 

Chicken Expenditure on fencing 14 0.024 0.011 0-0.149 
per bird (£) 

Expenditure on fence 15 0.001 0.000 0-0.003 
maintenance per bird (£) 

Egg Expenditure on fencing 39 0.189 0.053 0.003- 
per bird (£) 5.04 

Expenditure on fence 43 0.026 0.01 0-0.222 
maintenance per bird (£) 

5.3.5.1. Empirical estimation of model 

Table 5.18 gives a summary of the results of regression analyses testing the form of the 

relationship between poultry losses and expenditure on fencing. The poultry output loss 

is taken as the mid-laying cycle figure for laying hens (assumed to provide the most 

accurate estimate of losses). Expenditure on fencing did not have a coefficient that 

differed significantly from zero (p < 0.05) in any of the models estimated. The lowest 

p-value for expenditure on fencing was p=0.080 for expenditure on fence maintenance 

(MFx, j) in the model estimating a power function (log-linear) (ln(Lbil) = Bo + 

B1 ln(MFx; I) + B2Egg; + B3Gs1 + B4Tkl), where the coefficient was a positive figure. 

There were no obvious outliers that could have affected the estimation of a negative 

relationship between poultry losses and fencing expenditure. 

There was no difference in expenditure on fencing or fence maintenance between 

effectiveness ratings for preventing entry of foxes, tested using Kruskal-Wallis analysis 

of variance (x2 = 2.15, d. f. =2p>0.10 [n = 78] and x2 = 0.97, d. f. =2p>0.10 [n = 

93], respectively) or between the ratings for preventing escapees (x2 = 0.31, d. f. =2p> 
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0.10 [n = 78] and x2 = 0.12, d. f. =2p>0.10 [n = 93], respectively). However. there 

was a difference in expenditure on fencing between effectiveness levels at preventing 

entry of unwanted animals that was close to statistical significance (x2 = 5.61, d. f. =2p 

= 0.061 [n = 77]). This suggested that higher expenditure on fencing was associated 

with lower levels of effectiveness (mean rank for rating of 0= 56.4, mean rank for 

rating of 1= 35.8, mean rank for rating of 2= 38.3). This was not the case for 

expenditure on fence maintenance (x2 = 2.20, d. f. =2p>0.10 [n = 92]). 
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5.4. DISCUSSION 

5.4.1. Data reliability 
As was the case for the accuracy of data from the survey of sheep farmers discussed in 

Chapter 2 (Section 2.4.1.1), there is likely to have been some over-estimation of poultry 
losses by respondents to these surveys. One reason for this is that it is difficult to 

establish what has killed birds, especially as a number of predator species could be 

implicated. 

Perhaps a more important issue relating to the reliability of these data is that of self- 

selection and non-response error in survey samples (Oppenheim 1992). The follow-ups 

of goose and turkey producer non-respondents did not reveal an evident response bias in 

these samples. However, such follow-ups were not possible for the chicken and egg 

producers due to data confidentiality issues. The response rate was fairly high for 

chicken producers at 60%, which reduces the level of likely response bias. However, 

that for egg producers was lower at 34% (such a percentage response is to be expected 
for a mail survey with no follow-up (Barnett 1991)) and the existence of response bias 

in this sample can not be ruled out. The existence of such a bias may be a reason why 

egg producers reported experiencing fox predation more than other producer types. 

Although it was pointed out in the covering letter sent with the questionnaires that 

producers without a `fox problem' should also fill in the form, such producers would 

have been less likely to consider the study relevant or of use to them and therefore 

would be less likely to respond. However, Packer and Birks (1999) state that surveys 

conducted by ADAS indicate that the presumption that self-selection of respondents, 

who only reply because of a positive interest in the subject, occurs is unfounded and 

there is no reason to suspect that views of non-respondents differ from those that do 

reply. In any case, for this study, although it is still valid to compare differences 

between farms in whether reported fox predation occurred, differences may occur 

simply because of the lack of respondents with particular characteristics in one group, 

whilst this may not be the case in the overall population. This is especially likely when 

the sample is small. 

Because this is the first large-scale investigation of fox predation on free-range poultry, 

there is a lack of figures on predation in the literature with which the ones 
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from this survey can be compared. However, a few figures for overall mortality are 

available. Overall losses of turkeys (all predation plus other causes) were generally 
lower than the average 8% quoted in the British Poultry Meat Federation's T. F. F. 

Turkey Costings for July 1999 (Table 5.1). Those for free-range egg producers were 

similar to those from Roberts and Farrar (1993) of between 8.3% and 11.6%, depending 

on the profitability of the unit (Table 5.4). The mean mortality rate in a study of 50 

free-range poultry flocks in Germany was 7.2% (Sommer & Vasicek 2000). Heydon 

and Reynolds (2000b) surveyed only six farmers with more than 1000 free-range 

chickens (assumed to be laying hens), for which mortality losses to foxes were between 

0.1 % and 6.0%, also similar to those found here. 

5.4.2. Reported fox predation of poultry 
The high levels of fox predation reported by some respondents in Heydon and 
Reynolds' (2000b) study were not reported here, the highest percentage of birds 

reported lost to foxes out of the flock being 11.3% (of egg-laying hens). However, 

there were only three farms in the sample with flocks of less than 200 birds, two of 

which were turkey producers that did not report any fox predation. (It was the 

respondents with less than 200 birds that reported high levels of predation in Heydon 

and Reynolds' study. ) It was not known how many fox predation events occurred to 

produce the loss levels seen here and therefore not possible to determine whether 

surplus killing of birds occurred. However, from the median numbers of birds reported 

killed by foxes (Tables 5.1 to 5.4), it seems unlikely that most predation events involved 

surplus kills, except perhaps in the case of laying hens. Whilst predation by animals 

other than foxes was not significant for turkey, goose and egg producers (levels of all 

predation do not differ greatly from levels of fox predation in Tables 5.1,5.2 and 5.4), 

predation by other predators accounted for a fair proportion of overall predation losses 

to chicken producers (Table 5.3). There is therefore a possibility that foxes were 

blamed for deaths caused by other animals by the non-chicken producers. 

The differences between producer types in reported losses due to fox predation are 

partly a function of the size of the flocks they keep. Although losses of turkeys to foxes 

were generally higher than those of geese in terms of numbers, percentage mortality of 

geese due to foxes was higher because their flocks were on average around a fifth of the 

size of turkey flocks. Flock size does not account for the fact that a higher percentage 
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of goose producers reported experiencing fox predation than did turkey producers, 
however. Differences in predation levels may be explained by differences in the ease 

with which birds could be caught, reflected both in the differences between the species 

themselves and between producer types in husbandry methods used. Turkey producers 

were more likely than goose producers to have housing available for their birds at all 

times, rather than at night only, and geese tended to be outside for more of the time than 

turkeys (Table 5.5). In addition, only two goose producers used Flexinet fencing, 

compared to nearly 50% of turkey producers. 

The large differences between reported fox predation for chicken and egg producers can 

not be explained by flock size, as both mortality rates and overall numbers of birds 

reported killed are low for chicken producers. There are no obvious differences in the 

husbandry factors assessed, although egg-laying hens tended to be outside for a greater 

proportion of the day than table chickens (Table 5.5). The most obvious difference 

between chicken and egg producers is in the length of time for which birds are kept on 

farms and therefore the length of time during which predation may have taken place. If 

fox predation can be considered to be a random event in time, there will be more 

chances for it to occur in the 54-week long laying cycle of egg producers than the eight 

week growing cycles of chicken producers. However, estimated figures for the 

percentage of chickens that would be lost in a theoretical 54-week growing cycle were 

still lower than losses experienced by egg producers (Tables 5.3 and 5.4). 

The logistic regression analyses carried out indicated that factors related to range area 

and the density of flocks on the ranges were important in explaining differences in the 

occurrence of predation between egg producers and chicken producers. The larger the 

range area the more difficult it is likely to be to maintain the fence enclosing it, which 

may explain why levels of reported predation for egg producers were higher than for 

chicken producers. Egg producers were more likely to have reported their fences as 

being ineffective at preventing foxes and unwanted animals from entering range areas 

than chicken producers (Table 5.5). However, a larger proportion of chicken producers 

reported their fences to be ineffective at preventing escapees than reported their fences 

to be ineffective at preventing foxes or unwanted animals. Therefore, differences in 

fencing and the functions that fencing consequently best fulfils, which it was not 

possible to detect in the data from this survey, may well explain the difference in 
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predation levels between these producer types. Another potential reason for the 
difference is the possible sample bias amongst the egg producers discussed earlier. 

In addition to the differences between the producer types, variation between farms in the 

occurrence of reported chicken predation by foxes was associated with differences in 

whether fox control was carried out and how many birds died of causes other than 

predation on the farm. Fox control was important in explaining variation in the scale of 

perceived predation of lambs on sheep farms (Chapter 2). As discussed there (Section 

2.4.2.2), the positive association between these variables is likely to be a result of 

reactive control to perceived losses, but may also point to a link between fox population 
density and predation or the perception of the fox as a problem (for which no 

association was found in these data). The only apparent association between fox 

density and fox predation was a negative one, but this appeared to be a function of 
differences between producer types, most probably because of the concentration of 

chicken producers in land class group 4. This land class group had the highest fox 

density estimate of those in the poultry sample. No associations were found when 

producer types were considered alone. 

The positive association between the number of chickens lost to causes other than 

predation and reported fox predation suggests that factors relating to the overall care of 

birds may be connected to the likelihood of fox predation occurring. However, this 

association may also reflect a link between flock size and the likelihood of fox 

predation. Farm husbandry characteristics related to housing and the type of fences 

producers used were not significantly associated with the likelihood of reported fox 

predation. However, there was a lack of variation in the sample with respect to housing 

variables, the majority of producers using fixed housing that was available to birds at all 

times of day. 

5.4.3. Effectiveness of fencing 

Electric and Flexinet fences were generally perceived as being effective both at 

preventing foxes and at preventing unwanted animals from entering the areas in which 

birds were kept, whilst wire and post fences tended to be more often perceived as 

ineffective at these functions (although this was not the case where wire and post fences 

used in conjunction with another fence type were also considered). All three fence 

213 



types were thought to be generally effective at preventing birds from escaping. The 

distinction between a `Flexinet' and an `electric' fence is ambiguous for these data. 

Flexinet fences are often electrified meaning that a fence classed as Flexinet in these 
data, but not as `electric', could still have been an electric fence. It is therefore assumed 

that fences classed only as electric were those with electrified wire strands. In any case, 
it is clear that electric fencing is generally perceived as being effective at preventing 
foxes (and other animals) from reaching birds. It should be noted that the exclusion of 
foxes from a given area does not necessarily remove the likelihood of fox activity 

stressing birds. 

5.4.4. Costs of poultry predation by foxes 

Overall, out of all the producer types, goose producers reported the highest costs of fox 

predation per bird (and had the highest estimated costs of fox predation). This was 

partly due to higher valuations of one goose compared to other birds (reflecting the 

relative values and prices of the birds considered) and also due to the high reported 

mortality levels due to fox predation of geese with respect to flock size. Chicken 

producers, on the other hand, reported low mortality levels, their birds had low values 

and therefore the costs of fox predation were lowest out of the four producer types. 

The fact that, in general, reported losses were similar to those estimated for output 

losses indicates that producers tended to value losses as if they had lost a point-of-sale 

bird. As discussed in Chapter 1 (Section 1.2.2), the actual output loss is extremely 

difficult to estimate if an animal is not lost at point-of-sale (McInerney 1987). 

However, a number of producers (especially amongst chicken producers) valued their 

losses as lower than these estimated costs, suggesting they might be taking into account 

the time at which the bird was presumed killed. For goose and turkey producers, the 

scale of losses appeared to influence how these estimated and reported costs compared, 

suggesting that at high loss levels, perceived costs may be based less on market 

valuations of birds. 

In the case of laying hens, two output loss values were calculated for each producer in 

an attempt to take into account some of the variation in time with respect to when losses 

occurred. Loss valuations included the savings in resource expenditure due to the bird's 

death. In the survey, egg producers were asked to value their losses to foxes in terms of 
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financial loss of eggs laid. Because they were not asked to take savings in resource 

expenditure into account, one might expect their valuations of costs to be higher than 

those estimated. This was generally not the case, however, with losses being valued as 
low as zero in some cases. These low valuations may be due to losses being nearer to 

the end-of-lay, or simply because these producers did not consider predation losses 

important, perhaps including them in overall expected mortality, so they therefore cost 

very little in terms of financial loss of eggs laid. Whilst a more rigorous investigation of 

the costs of losses to foxes would take into account the points in the laying (or growing) 

cycle at which birds were lost, different valuation methods would be necessary to 

account for the effects of meat deterioration or reduction in egg production caused by 

the stressing of birds by foxes. However, reliable figures for the number of birds 

affected by and the effects on meat or egg production of stressing by foxes would be 

extremely difficult to collect. The fact that the estimated and reported costs of predation 

tended to match fairly well indicates that assessments of the costs of predator impacts 

based on producers' valuations can be reliable. 

The apparent decrease in the variability of losses due to fox predation with increasing 

expenditure on fence maintenance gives some support to a negative relationship 

between these, which would be expected if fencing is a preventive measure against 

predation. The lack of clear negative relationship is probably due to a number of 

factors, one being that fencing is not solely an anti-fox device (as seen by the 

effectiveness ratings for the three functions of fences considered here). With the 

exception of chicken producers, smaller proportions of respondents in each producer 

group considered their fences to be ineffective at preventing birds from escaping than 

considered their fences to be ineffective at preventing entry of foxes or unwanted 

animals. As one might assume, it appears that preventing escapees is considered to be a 

more important function of fencing than is preventing predation. Therefore additional 

expenditure on fencing might be directed towards this function rather than towards 

preventing predation in a number of cases. In addition, being based on the survey data, 

the costs are not wholly accurate, whilst, for total fencing expenditure, inaccuracies will 

have been caused by the use of a uniform fence lifespan figure. 

Amongst producer groups there appeared to be an association between high costs of fox 

predation and higher expenditure on fencing (goose and egg producers) and vice versa 
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(turkey and chicken producers), if one considers the average figures (Tables 5.16 and 
5.17). The higher expenditure levels associated with the lower fence effectiveness 

rating for preventing entry of unwanted animals also seem to point to a relationship 

opposite to the one that would be expected, but this may simply be because a higher 

proportion of goose producers than producers in the other groups reported their fence to 

be ineffective at preventing entry of unwanted animals. In addition, it should be noted 

that the mean reported cost of fencing for producers with wire and post fencing 

(standardised to per metre costs) was higher, at £3.24 [n = 37], than that for those with 
Flexinet (£1.85 [n = 27]) or electric fencing (£2.45 [n = 49]). Wire and post fencing 

was considered ineffective at preventing entry of foxes more often than were other 

fence types. Therefore, the hypothesised negative association between expenditure on 

preventive measures and predation losses may be unrealistic for poultry production. 

5.5. CONCLUSIONS 

This study was the first to assess fox predation of free-range poultry on commercial 

units on a nation-wide scale (including more than a few farms) and to attempt to 

identify the factors associated with variation in poultry predation between units. The 

analyses identified the use of Flexinet and electric fences as being perceived to be a 

good strategy for preventing losses of birds to foxes. 

The lack of a negative relationship between expenditure on fencing to prevent fox 

predation and the cost of reported losses to foxes meant that a financial analysis of the 

trade-offs between these two costs for poultry producers (similar to that in Chapter 3 for 

sheep farmers) was not possible. It was possible to look at the costs of losses due to fox 

predation in this case and assess their magnitude, but these underestimate the `true' 

costs of fox predation to producers in that they do not include the costs of preventive 

measures. The costs of poultry losses to foxes were generally fairly low in this study. 

However, some producers surveyed experienced high losses with respect to their flock 

size, reported costs of fox kills being up to £0.95 per bird and estimated output losses up 

to £ 1.82 per bird. It appears, from a comparison of the results of the two previous 

studies on poultry predation by foxes (Baker & Macdonald 2000; Heydon & Reynolds 

2000b) with those from this investigation, that non-commercial producers tend to 
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experience higher losses of birds and are more likely to experience fox predation than 

commercial producers. 

5.6. SUMMARY 

Predation by foxes on free-range poultry can involve potentially high losses of birds. 

Losses are thought to be a function of the husbandry methods used on holdings, with 

exclusion fencing being the main way commercial poultry producers prevent fox 

predation. 

This chapter assessed losses to fox predation via a questionnaire survey of the four main 

free-range poultry producer groups in Britain: egg, chicken, turkey and goose producers. 

The association between losses and husbandry methods was investigated, as were the 

effectiveness of fencing and the costs of fox predation to farmers in terms of losses and 

expenditure on fencing. 

Reported losses of birds to foxes varied between the four producer groups, the most 

obvious distinction being between egg and chicken producers. Egg producers reported 

higher likelihoods and levels of fox predation than chicken producers. These may have 

been due to differences in the effectiveness of fences at preventing fox predation, as 

well as sampling error. Differences in the likelihood of reported fox predation between 

farms with chickens were not associated with any of the considered husbandry factors. 

However, electric and Flexinet fences were considered effective at preventing foxes 

from entering the areas in which birds were kept. 

Financial losses due to foxes varied similarly between producer types, with the costs of 

losses as reported by respondents being generally similar to those estimated. The values 

of predation losses are difficult to estimate accurately unless birds are at point-of-sale or 

point-of-lay. A clear association between expenditure on fencing and losses to foxes 

was not apparent, which suggested that the theoretical model of a trade-off between 

losses and preventive expenditure might not be realistic for poultry production. 
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Figure 5.1: Histogram of percentage of flock reported killed by foxes by poultry 
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Figure 5.2: Histogram of percentage of farms that reported fox predation according to 
poultry producer type 
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Figure 5.6: Reported costs of losses of laying hens to foxes per hen compared to 
estimated output losses at point-of-lay and mid-laying cycle due to fox predation per 
hen [n = 45] 
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CHAPTER 6 

IMPACT OF FOXES ON OUTDOOR PIG PRODUCTION 

6.1. INTRODUCTION 

Large-scale outdoor pig production in Britain was first developed in the 1950s by 

Richard Roadnight (Thornton 1988). Commercial pressures and increasing concerns 

about the welfare of animals in intensive systems have led to a rapid rise in the 

production of pigs outdoors in the last fifteen years (Edwards et al. 1994; Potter 1998). 

Around 20-30% of the UK sow population is now kept outdoors (Abbott et al. 1996; 

FAWC 1996; Potter 1998; Sheppard 1998b) and around 18% farrows (or gives birth to 

piglets) outdoors (Sheppard 1998b). Only herds that farrow outdoors experience 

predation of piglets, with some herds said to experience serious losses due to predation, 

principally by foxes (FAWC 1996; Potter 1998). 

There is a wide range in the housing systems and paddock layouts used by outdoor pig 

producers across Britain (Thornton 1988; Cottle & Cottle 1998). Generally herds are 

divided into paddocks according to their age and breeding status. They are provided 

with huts (or arks) for shelter. Sows due to give birth are kept in farrowing paddocks 

and give birth to their piglets in farrowing huts. Farrowing huts usually have fenders to 

keep the litter confined and prevent cross-suckling, whilst some may have rails to 

prevent crushing injuries (Thornton 1988; Cottle & Cottle 1998). Crushing or over- 

laying by the sow is the most common cause of piglet death (Edwards et al. 1994; 

Abbott et al. 1996; Potter 1998; Marchant et al. 2001) and disturbance of sows by foxes 

is said to lead to an increased likelihood of crushing (FAWC 1996; Potter 1998). 

However, whether a crushing incident was caused by fox disturbance will be very 

difficult to assess and evidence for this phenomenon is likely to be anecdotal in nature. 

There have been a number of studies assessing the causes of piglet mortality in outdoor 

herds, e. g. Edwards et al. (1994), although none have addressed the problem of fox 

predation, so information on piglet predation by foxes is largely anecdotal (McDonald 

et al. 1997; Macdonald et al. 2000). A survey of outdoor units in southern England 

indicated that losses of piglets to foxes were generally low, but that some producers 
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might have experienced fairly high levels of piglet mortality, with 31 % of producers 

reporting some predation of piglets by foxes (R. McDonald and S. Harris, unpublished 
data, in White et al., 2000a). In another survey of outdoor units, carried out by Cambac 

JMC Research in 1993/4,20% of units reported a fox problem (H. J. Guise, pers. comm. 
in Macdonald et al., 2000). Predation by corvids, such as hooded crows, can also be a 

major problem for some herds (Edwards et al. 1994; FAWC 1996). 

The use of plastic flaps over hut entrances has been suggested as a preventive measure 

against predation (FAWC 1996), along with electric fencing to prevent foxes from 

entering the farrowing site and a pest control programme (FAWC 1996; Potter 1998; 

Macdonald et al. 2000). However, predator fencing can be a substantial financial 

investment and Macdonald et al. (2000) indicate that occasional fox culling is necessary 

in addition to fencing to prevent fox predation. No scientific studies to date have 

assessed what husbandry factors are associated with fox predation of piglets and there 

has been no quantitative assessment of piglet depredation by foxes in Britain. 

This chapter aims to assess the extent of piglet predation by foxes across Britain and 

identify husbandry, management or other factors influencing variation between farms, 

as for sheep in Chapter 2 and poultry in Chapter 5. The associations between fox 

population density, control and predation are tested. In addition, the costs of fox 

predation to producers in terms of piglet losses and expenditure on fencing are 

evaluated. The hypothesis of a negative relationship between losses and expenditure 

with decreasing marginal returns to expenditure is tested with the aim of finding an 

optimal predation management solution from the farmer's point of view. 

6.2. METHODS 

6.2.1. Questionnaire survey of outdoor pig producers 

A sample of outdoor pig producers was obtained by telephoning pig farmers from a list 

of Soil Association members with pigs and from the Yellow Pages (using 

www. yell. co. uk and searching for `pig farmers' and `pig breeders'). Producers were 

asked whether they farrowed their sows outdoors and, if so, whether they were willing 

to take part in the survey. Further addresses were obtained from Western Quality Pigs 

and Cotswold Pig Development, as well as from a number of individuals upon 
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contacting them. Questionnaires on two sides of an A4 sheet of paper with a 

explanatory letter and Freepost reply envelope were sent to 94 producers in several 
batches between 8`h November and 1'` December 2000. (Producers in regions for which 
the swine fever outbreak of August-November 2000 would have posed problems were 

contacted later than those in other regions. ) The questionnaire consisted of questions on 
land uses surrounding pig paddocks, farrowing, husbandry methods and measures 

associated with arks with possible anti-predator attributes, fencing surrounding 

paddocks, losses of piglets to predation and other causes that year, fox control and 

production of pigs for market on the farm (Appendix E). It was designed with the help 

of a pilot survey of a small number of outdoor producers and Signet pig management 

consultants. A further questionnaire form and reminder letter were sent to non- 

respondents to the survey on the 8th January 2001. 

6.2.2. Relative fox population density estimates 

Each holding in the data set was allocated both a region-based and a land class-based 

relative fox density estimate (termed `regional fox density' and `land class fox density'), 

as described in Sections 2.2.3 and 5.2.2. Non-parametric correlation analyses were used 

to test the associations between relative density estimates and the numbers and 

percentages of piglets reported killed by foxes, the percentage of farms within each 

region and land class group reporting predation, as well as the number of foxes killed on 

farms. 

6.2.3. Factors influencing reported fox predation of piglets 

Chi-square and logistic regression analyses were used to assess the factors associated 

with the occurrence of reported fox predation of piglets. The variables used in these 

analyses are summarised in Appendix F. These were transformed where necessary to 

meet the assumptions of normality of error and homogeneity of variance for regression 

analysis. The dependent variable in all logistic regression models was a binary response 

variable, coded zero for no reported fox predation on the farm and one for at least one 

piglet having been reported lost to foxes. This variable was also used in the chi-square 

tests. Uni- and multivariate analyses were used to assess relationships between the 

dependent variable and the various factors considered. All variables were tested against 

the dependent variable on their own at first. Chi-square tests were used for all analyses 

involving one other categorical variable and logistic regression for analyses with a 
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continuous independent variable. Subsequently all variables were tested once again in a 

model including those variables that were statistically significant at the 5% level (p < 
0.05) in the first round of tests in order to identify an overall multiple logistic regression 

model accounting for variation in the likelihood of reported fox predation. 

6.2.4. Costs of piglet predation by foxes 

6.2.4.1. Theoretical model 

The theoretical model of Chapters 3 (Section 3.2) and 5 (Section 5.2.4) was used as a 
basis for the analysis of the costs of piglet predation to farmers. In the case of pig 

production, the preventive measure considered was fencing surrounding pig paddocks. 

As for poultry, it is assumed that the primary function of fencing is preventing escapees 

and that there is a necessary minimum basic level of fencing (and therefore expenditure 

on fencing), with additional expenditure above this level resulting in improvements in 

the effectiveness of the fencing at preventing fox predation. Piglet losses to foxes in 

monetary terms are assumed to be a function of expenditure on fencing surrounding pig 

paddocks and other farm characteristics (such as location): 

Lai = f(MF,, R; ) 

where 

Lai = piglet losses to foxes per sow per year on the ith farm (£) 

MF; = expenditure on fencing per sow per year on the ith farm (£) 

R; = regional location of the ith farm 

f= function of farm characteristics determining piglet losses to foxes 

(6-1) 

The existence of a negative relationship between losses and expenditure, reflecting the 

trade-off between these two costs of fox predation, is tested, with diminishing returns to 

marginal effort as outlined in Chapter 3 and by McInerney et al. (1992) and McInerney 

(1996) for the loss-expenditure frontier (see Figure 1.1). The total costs of fox 

predation are piglet losses due to fox predation plus expenditure on fencing: 

TC; = La; + MF; 

where: 

(6-2) 
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TC, = total costs of fox predation on the ith farm 

Total costs are minimised where the first derivative of total costs with respect to 

expenditure equals zero. This optimal point is where the first derivative of losses of 

piglets to foxes with respect to expenditure on fencing per sow is equal to minus one; 

where the marginal piglet loss equals the marginal expenditure on preventing piglet 
losses. 

6.2.4.2. Valuation of piglet losses due to fox predation and expenditure on boundary 
fencing 

The value of piglet losses to foxes was estimated as the output loss value of the piglet 

according to the marketed products of the farm. Only losses due to reported predation 

were included, as it was considered that losses due to fox disturbance of a sow were 

unlikely to be reliable. Generally, piglets may be sold at three ages: as weaners at 

weaning (at around 6kg weight), as grown-on weaners (at 25-30kg in weight) and as 
finished pigs (usually sold by deadweight at 50-80kg) (Cottle & Cottle 1998; Sheppard 

1998a; Nix 1999), with outdoor units tending to sell pigs as weaners more often than as 

finishers (Cottle & Cottle 1998; Sheppard 1998b). The price of a weaner at 30kg was 

taken from Nix (1999), as £32.00, but the price of younger weaners was not available. 

The deadweight price of 1 kg finished pig was taken as the mean price for 2000 from 

DEFRA UK Weekly Commodity Prices, at £0.95. The deadweight was calculated as 

0.7 times the liveweight, if this was given (Nix 1999) and the market value of a finisher 

calculated as the average deadweight as given by producers multiplied by the price. 

Because piglets are killed by foxes at a young age, the farmer gains the extra 

expenditure on resources that would have been necessary to produce a weaner or 

finisher. Therefore, resource costs were subtracted from the market price of the 

product. It was assumed that the only resources necessary to produce a piglet prior to it 

being predated are those spent on the sow, as the piglets will be suckling, and that these 

resources are negligible per piglet. Therefore the full resource cost needed to produce a 

weaner or finisher was used here. The only resource considered was feed, other 

variable costs being insignificant in comparison (Sheppard 1998a; Nix 1999) and data 

on these not being available from the survey. The amount of feed used by producers per 

sow or per piglet was extremely variable between holdings and it was considered that 
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using these data would introduce unreliability into the estimates of resource costs. 
Therefore, the amount of feed needed to produce a 30kg weaner was taken from Nix 

(1999) as 0.85 ton (this does not include feed for sows or boars). The amount of feed 

needed to produce a finisher depends on the finishing weight of the animal, whether it is 

a porker, cutter or baconer. Figures for the amount of feed needed for each were taken 
from Nix (1999). The products were classified as porkers if the average finisher 

deadweight given by producers was less than 59kg, as cutters if the deadweight was 
between 60kg and 69kg and as baconers if the average finisher deadweight was greater 
than 69kg. The prices for feed per ton were taken as given by producers and multiplied 
by the amounts of feed needed for each product to calculate the resource cost of 

producing each. 

The output loss for the loss of a weaner and for the loss of a finisher were calculated for 

each farm by subtracting the resource cost from the market value in each case. The 

relative numbers of weaners and finished pigs sold by each holding were calculated 
from the data collected in the survey. The mean value of one piglet for each holding 

was calculated as the proportion of pigs sold as weaners multiplied by the output loss 

value of a weaner plus the proportion of pigs sold as finishers multiplied by the output 

loss value of a finisher. This value was multiplied by the number of piglets reported 
killed by foxes per sow in the last year to give the output loss due to fox predation of 

piglets. 

Expenditure on fencing per year includes the costs of first erecting the fence as spread 

over its life-time and the costs of maintaining the fence per year. The costs of both 

erecting and maintaining fences were reported by 15 respondents. Erection costs were 

converted to 2000 prices using the Retail Price Index (Nix 1999). Costs of erecting 

fences were estimated for a further 15 respondents, who had stated both the type of 

fence they had and its length (or in the case of specialist fox fences both length and 

number of strands). Four respondents did not have fences, only having a hedge or bank 

surrounding their paddocks, for which initial costs were taken as zero. The cost of 

specialist fox fences were calculated by multiplying the mean cost of a specialist fox 

fence per strand per metre in 2000 from those reported by eight respondents (£0.158) by 

the length and number of strands of the fences for which a cost was unavailable. A 

mean cost of permanent wire and post fences per metre in 2000 was also calculated, at 
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£ 1.69 [n = 6], and used to estimate fence costs for those with wire and post fences that 
had provided no cost figures. Data were not collected on the number of strands general 
(i. e. not specialist anti-fox) electric fences had. Therefore the price for electric fencing 

was taken as £0.435 per metre, the average price from a number of electric fence 

suppliers, and multiplied by the length of fence for those with electric fences. Fences 

were assumed to last for ten years, so the costs of erecting the fence were divided by ten 

to give a per year figure. The costs of fence maintenance per year were taken as 

reported [n = 25]. For expenditure on fencing per year, the costs of erecting and 

maintaining the fence were added together, whilst the costs of fence maintenance per 

year were also considered alone. 

To assess whether there was an association between expenditure on fencing and the 

occurrence of reported fox predation, both expenditure on fencing and expenditure on 

fence maintenance only were included separately in the best-fit logistic regression 

model explaining variation in the incidence of reported fox predation (Section 6.2.3). 

Fence expenditure variables were also included alone in logistic regression models with 

the occurrence of reported fox predation as the dependent variable. 

6.2.4.3. Empirical estimation of the model 

Regression analyses were used to estimate the form of the relationship between losses 

of piglets to fox predation and expenditure on fencing. The relationship was expected 

to approximate either a negative exponential or negative power relationship. Therefore 

three functional forms were tested (linear, exponential and power or log-linear): 

a) Linear: 

b) Exponential: 

Lail = (3o + P1MFi1 

Lail = (3o x eß1MFil i. e. ln(Lba) = (3o + ß1MFj 

c) Log-linear (power): Lau = ßo x MFlßl i. e. ln(Lb; l) = (30 + (311n(MFii) 

where: 

Lail = piglet losses to foxes per sow per year on the ith farm +0.1 (£) 
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MF, 1 = expenditure on fencing per sow per year on the ith farm +0.01 (£) 

Because of the necessity for logging the variables and the fact that they both included 

zero values, a positive constant that was considered small in comparison to overall 
figures was added to the data. In the case of loss of piglets, this was 0.1 and in the case 

of expenditure on fencing 0.01. 

The functional form that best fitted the data was used as a basis for a multiple linear 

regression model in which the variables in Appendix F that were significantly related to 

losses to foxes per sow were included. The first derivative of the function estimated 
from the regression model was taken with respect to expenditure on fencing and used to 

find the optimal point in terms of the expenditure on fencing that minimised total costs. 

Optimal total costs (fencing plus piglet losses due to fox predation) were estimated and 

compared with actual total costs of fox predation to estimate the avoidable costs of fox 

predation to each holding. 

6.3. RESULTS 

Of the 315 pig producers contacted by telephone, the majority (61.8%) farrowed their 

herds indoors, whilst 12.7% no longer kept pigs. Only one outdoor producer contacted 

was unwilling to participate in the survey. There were 55 questionnaire forms returned 

through the survey (a response rate of 58.5%), of which 48 were used in analyses and 

seven were returned uncompleted, five because the questionnaire was not relevant to the 

producers concerned. A summary of some of the characteristics of the sample is given 

in Table 6.1. Whilst there were respondents from all regions considered, apart from 

South Scotland, the majority came from East England and the Midlands, with a fair 

proportion from South and Southwest England. These regional biases in outdoor pig 

production mirror those of the National Survey of Pig Production Systems in 1998 

(Sheppard 1998b). 

Not all respondents answered all the questions on the survey form, so the sample sizes 

differ between analyses. These are indicated in square brackets in the text. All figures 

for statistics are quoted to 3 significant figures or 2 decimal places. Estimated Beta 
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coefficients for independent variables in regression analyses are given as `B'. Statistical 

significance was taken as being at the 95% level ((x = 0.05), i. e. p<0.05. 

Table 6.2 provides summary statistics on reported losses of piglets between birth and 
weaning to foxes and other causes and Figure 6.1 illustrates the range in reported piglet 
mortality due to fox predation. Of those that reported losses of piglets to foxes, 38.1 % 

reported losses of less than 1% of piglets born in the last year, the median reported 

mortality loss due to fox predation amongst these producers being 1.5% (range: 0.12- 
5.00) [n = 21]. Median reported losses to foxes per sow amongst producers reporting 
fox predation were 0.263 piglets per sow (range: 0.030-1.11) [n = 20]. More than a 
third of producers (37.2%) considered that the number of piglets killed by foxes over 
the past five years had increased, whilst 34.9% thought it had stayed the same and 
14.0% that there had been a decrease [n = 43]. Table 6.3 gives summary statistics for 

sow numbers, piglets born and fox control. 

6.3.1. Relative fox population density estimates 
Land class fox density was not significantly correlated with either the number of piglets 

reported killed by foxes in the past year (rs = -0.164, p=0.355 [n = 34]), the percentage 

of piglets reported killed by foxes out of the total number born (rs = -0.161, p=0.355 [n 

= 35]) or the number of piglets reported killed by foxes per sow (rs = -0.146, p=0.409 
[n = 34]). There were also no statistically significant associations between regional fox 

density and either the number (rs = 0.138, p=0.417 [n = 37]), percentage (rs = 0.202, p 

= 0.225 [n = 38]) or number per sow (rs = 0.201, p=0.233 [n = 37]) of piglets reported 
killed by foxes. The percentage of respondents reporting fox predation of piglets in 

each land class group was not associated with land class fox density (rs = 0.232, p= 

0.658 [n = 6]), nor was the percentage of respondents reporting predation in each region 

associated with regional fox density (rs = 0.096, p=0.820 [n = 8]). The number of 

foxes killed on farms was not associated with regional fox density (rs = -0.056, p= 

0.718 [n = 44]), but was negatively correlated with land class fox density (rs = -0.374, p 

= 0.015 [n = 42]). 
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Table 6.1: Characteristics of pig producer sample in terms of use of possible anti-predation 
measures, fencing, fox predation, farm surroundings and location and reported fox predation 

Characteristic N Factor levels Percentage of 
respondents (%) 

Possible anti-predation 
measures 

48 Sows and piglets shut in arks 
overnight for first 48 hours after 
farrowing 

8.3 

Piglets retained by fenders in 
front of arks prior to weaning 

72.9 

Plastic flaps on ark entrances 35.4 

Type of fence 48 Specialist fox fence 20.8 
surrounding paddocks Permanent 37.5 

Mobile 12.5 

Wire and post 37.5 

Flexinet 2.1 

Electric 56.3 

Alternative (hedge, bank or 
wall) 

25.0 

Score for effectiveness 48 Ineffective 56.3 
of fence at preventing 
foxes from getting into 

Somewhat effective 31.3 

paddocks Very effective 12.5 

Score for effectiveness 48 Ineffective 29.2 
of fence at preventing 
all unwanted animals 

Somewhat effective 58.3 

from getting into 
paddocks 

Very effective 12.5 

Score for effectiveness 48 Ineffective 10.4 
of fence at preventing 
pigs from esca in 

Somewhat effective 18.8 
g p 

Very effective 70.8 

Incidence of fox 
predation of piglets 
between farrowing and 
weaning 

38 Fox predation reported to have 
occurred in the last year 

55.3 

Incidence of fox 
disturbance of sows 

27 Piglets reported to have died due 
to fox disturbance of sow(s) 

51.9 

Fox control 44 Fox control carried out in last 
year 

77.3 
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Table 6.1 

Month of year in which 21 January 22.9 
losses to foxes reported 
to have occurred 

February 20.8 

March 22.9 

April 25.0 

May 27.1 

June 20.8 

July 20.8 

August 25.0 

September 18.8 

October 18.8 

November 12.5 

December 14.6 

Land uses surrounding 48 Arable 91.7 
paddocks Livestock 45.8 

Game rearing 31.3 

Forestry 54.2 

Village 33.3 

Urban 4.2 

Other (e. g. road) 12.5 

Region in which farm 48 North Scotland 4.2 
is situated (as Table 
2 3) 

North England 10.4 
. East England 29.2 

Midlands 22.9 

Central England 4.2 

Southwest England 10.4 

South England 12.5 

Wales 6.3 

Land class group of 45 1 13.3 
farm land (as Table 
2 4) 

2 35.6 
. 3 4.4 

4 17.8 

5 24.4 

6 4.4 
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Table 6.3: Summary statistics for numbers of sows, piglets born and fox control. 

Variable N Mean Median Minimum Maximum 

Number of sows on holding, on 46 570 440 2 2800 
average 

Number of piglets born in last 43 12973 10000 21 60000 
year 

Number of piglets born per sow 43 20.4 21.7 3.8 27.0 
over year, on average 

Number of piglets born per sow 48 10.7 10.8 8.9 12.0 
at one farrowing, on average 

Number of foxes killed on farm 44 19.5 12.5 0 96 
in last year 
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6.3.2. Factors influencing reported fox predation of piglets 
Few factors were associated with the likelihood of reported fox predation of piglets in 

univariate analyses. The stocking density of sows was positively associated with the 

occurrence of reported fox predation (B = 0.087, Wald = 3.83, p=0.050 [n = 36]). 
Farms where fox control was carried out were more likely than expected to have 

reported fox predation (x2 = 8.89, Fisher's exact p=0.005 [n = 36]). There were 
indications of other relationships in the data when the level of statistical significance 

was relaxed to 10%. The total number of sows (In-transformed) was positively 

associated with the occurrence of reported fox predation at this level of significance (B 

= 0.336, Wald = 3.64, p=0.056 [n = 38]). This was also the case for the number of 
foxes killed on the farm (B = 0.051, Wald = 3.50, p=0.061 [n = 36]). Farms in the 
East England region were less likely than expected to have reported fox predation (x2 = 
3.41, p=0.065 [n=38]). 

Whether farms carried out fox control was the only variable to remain statistically 

significant (p < 0.05) on the inclusion of other variables in the model. However the 

ability of the model to predict no fox predation on farms where no fox predation was 

reported increased (from 46.7% to 73.3%) on inclusion of the dummy variable coding 
for a farm being in East England. The overall predictive accuracy of the model did not 

change, however, remaining at 75.0%, and the estimated coefficient for East England 

was only significantly different from zero at the 10% level (-2 log likelihood of Model 1 

= 36.7, x2 = 12.2, d. f. = 2, p=0.02 [n = 36]) (Table 6.4). 

Table 6.4: Coefficient estimates and significance test results for multivariate logistic regression 
model 1 explaining variation in the occurrence of reported fox predation of piglets 

Variable B Wald p 
Constant -1.71 1.08 0.115 

East England -1.45 2.73 0.098 

Fox control carried out 3.12 6.81 0.009 

There was a slight positive association between whether farms carried out fox control 

and whether they had a village in their surroundings (x2 = 3.34, Fisher's exact p (one- 

sided) = 0.069 [n = 44]), as well as between carrying out fox control and the number of 
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sows on the holding (Mann-Whitney U= 58.5, Z= -3.12, p=0.002 [n = 44]). A second 
best-fit model (Model 2) was estimated without the dummy coding for whether fox 

control was carried out to avoid any multicollinearity between variables. Model 2 did 

not have as high a predictive accuracy as Model 1, at 73.7%, but had a higher chi-square 

value and included more of the observations (-2 log likelihood of Model 2= 36.9, x2 = 
15.4, d. f. = 3, p=0.002 [n = 38]) (Table 6.5). The model correctly predicted no fox 

predation on 64.7% of farms where no predation occurred. It included the total number 

of sows on the holding, whether the farm was in East England and whether the farm had 

a village in its surroundings. Farms with villages in their surroundings were more likely 

to have experienced fox predation of piglets. 

Table 6.5: Coefficient estimates and significance test results for multivariate logistic regression 
model 2 explaining variation in the occurrence of reported fox predation of piglets 

Variable B Wald p 
Constant -1.76 2.46 0.117 

East England -3.14 6.09 0.014 

Total number of sows (In-transformed) 0.462 4.16 0.041 

Village b 2.32 3.20 0.074 

6.3.3. Costs of piglet predation by foxes 

Over half of the respondents (27) produced at least some finished pigs and 19 produced 

finished pigs exclusively (n = 42). Summary statistics for the estimated and reported 

costs of losses due to fox predation are given in Table 6.6. Generally reported costs 

were similar to output losses (Figure 6.2). However, losses tended to be valued as lower 

by respondents when they had lost large numbers of piglets. Reported costs of piglet 

losses and estimated values were compared in paired t-tests and correlation tests. 

Estimated output loss was correlated with reported costs (r = 0.511, p=0.003 [n = 32]) 

and the two samples did not differ significantly (t = -1.30, p=0.205 [n = 32]). These 

results indicate that the estimated costs are close to producers' assessments of losses and 

therefore are likely to reflect their behavioural actions with respect to losses and 

expenditure. Estimated rather than reported losses were used in subsequent analyses 

because there was a higher sample size for estimated losses and because of the fact that 

a standard technique was used to estimate costs, which was not the case for producer 

reported costs. 
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Table 6.6: Summary statistics of estimated and reported costs of piglet losses to foxes per sow per 
year 

Value n Mean Median Range 

Estimated output loss (£) 36 9.51 0.96 0- 73.06 

Reported costs (£) 33 4.31 0.00 0- 33.33 

Table 6.7: Summary statistics of expenditure on fence maintenance and total expenditure on 
fencing per sow per year 

Value n Mean Median Range 

Expenditure on fence maintenance (£) 25 2.64 0.36 0- 40.00 

Total expenditure on fencing (£) 24 5.25 0.88 0- 46.51 

As was the case for losses to foxes, expenditure on fencing per sow was highly variable 

between producers (Table 6.7). Scatter plots gave the indication that a loss-expenditure 

type relationship could be expected for these data, as predicted (Figures 6.3 and 6.4). 

However, there was a noticeable outlier within the data for both total fence costs and 

fence maintenance costs, data point 14 (marked on Figures 6.3 and 6.4), whilst a further 

data point (12) had a very high expenditure on fencing per sow (also marked on Figures 

6.3 and 6.4). 

Neither the cost of fencing per sow per annum nor the cost of fence maintenance only 

per sow per annum (untransformed or logged) were significantly associated with the 

occurrence of predation when included in the logistic regression model estimated in 

Section 6.3.2. The same was true when each was included alone in a logistic regression 

model with the same dependent variable. 

6.3.3.1. Empirical estimation of the model 

All functional forms fitted indicated negative relationships between piglet loss and 

expenditure on fencing, but none were statistically significant (Table 6.8). Removal of 

data points 12 and 14 allowed an exponential model (Lail = bo x ebIMFi) for which the 

significance level was below 5% to be fitted, with the costs of fence maintenance as the 

dependent variable (Table 6.8). The removal of these data points was justified by the 

fact that they were outliers to the remainder of the data and overly influential in the fit 
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of models estimated (Cook's distance of data point 12 for model fitted with data point 

14 removed from data set = 80.9, Leverage = 0.93, mean leverage = 0.05; Cook's 

distance of data point 14 for model fitted with data point 12 removed from data set = 
6.57, Leverage = 0.69, mean leverage = 0.05). Expenditure on both fencing and fence 

maintenance was double that of the next highest spender for data point 12, the same 

being true for fence maintenance for data point 14. 
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Piglet loss was logged, after the addition of 0.1, in order to estimate an exponential 
functional form in linear regression. The best-fit model included the dummy variables 
coding for whether a farm had a village in its surroundings, whether the farm was in the 
East England region, whether it was in the Midlands region and whether an electric 
paddock boundary fence was used, in addition to expenditure on fence maintenance (R2 

= 0.730, Adjusted R2 = 0.626, F=7.03, d. f. = 5,13, p=0.002 [n = 19]) (Table 6.9): 

ln(La1l) =bo+b1MF; +b2V1+b3Eas, +b4Mid; +b5EL; +c; 

where 

Lail = piglet loss to foxes per sow per year on the ith farm +0.1 (f) 

MFl = expenditure on fence maintenance per sow per year on the ith farm (£) 

V; = dummy variable coding for whether ith farm has a village in its 

surroundings 

Eas; = dummy variable coding for whether ith farm is in East England region 
Midi = dummy variable coding for whether ith farm is in Midlands region 
EL; = dummy variable coding for whether electric boundary fencing is used on 
ith farm 

bo = constant 

bl 
... b5 = coefficients for MF, V,, Eas;, Midi and EL; 

F-; = error term 

Table 6.9: Coefficient estimates and significance test statistics for multiple linear regression model, 
with piglet loss to foxes per sow as the dependent variable, ln(La1l) = bo + b1MF; + b2V1 + b3Eas; + 
b4Mid; + b5EL; without data points 12 and 14 

Coefficient Estimate of coefficient S. E. of estimate t p 
bo 2.33 0.718 3.24 0.006 

b, -1.26 0.310 -4.07 0.001 

b2 2.30 0.746 3.08 0.009 

b1 -2.63 0.901 -2.92 0.012 

b4 -2.58 1.03 -2.50 0.027 

b5 -1.72 0.786 -2.18 0.048 
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Figure 6.5 shows the relationship between piglet losses and expenditure on fencing 

according to this model and how variation in the dummy variables (farm location and 
use of electric fencing) influences this relationship. The relationship between loss and 
expenditure for farms with a village in their surroundings but none of the other dummy 

variable characteristics is not shown because losses in this case were much greater than 
in the others. Therefore including it would make distinction between other curves 
difficult. The dummy variables influence the magnitude of the effect expenditure on 
fencing has on piglet losses. For example, on farm with a village in its surroundings (V 

= 1) and electric fencing surrounding its pig paddocks (EL = 1), each penny spent on 
fencing has a substantial effect on losses, whereas on a farm in the Midlands (Mid = 1) 

with electric fencing (EL = 1), increases in preventive expenditure have very little effect 

on losses. 

The aim of this analysis is to determine the optimal level of expenditure on fence 

maintenance per sow per year (MF*) that minimises total costs. The first derivative of 

the function obtained from the regression with respect to MF, is: 

aLa 
i 1.26e 2.33-1.26"MF. +2.30"V. -2.63"Eas1-2.58"Mid. -1.72"ELý -- aMFi 

The optimal point in terms of minimising the total costs of fox predation is where this 

first derivative is equal to -1, which is where: 

MF; = 2.03 + 0.794(2.30V1- 2.63Easi - 2.58Mid1 - 1.72ELi) 

From the optimal expenditure on fence maintenance (MF; *), it is possible to calculate 

the optimal loss of piglets the producer should accept (Lai*), by substituting MF, * into 

the loss-expenditure function determined above. MF, * depends on the values of the 

dummy variables (V;, Eas;, Midi and ELF), but Lai* remains constant at all values of V;, 

Eas;, Mid; and EL; (Table 6.10). (The La * values in Table 6.10 differ slightly due to the 

fact that figures of four significant figures were used in the calculations and subsequent 

rounding-up results in slightly different values. ) Because La is an exponential function 

of MF, aLa/aMF is dependent on the value of La and constant at constant values of La. 

Therefore, at aLa/aMF = -1, La is constant. Figure 6.6 shows the relationship between 
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total costs and expenditure on fencing, illustrating the optimal point where total costs 

are minimised, for three different sets of farm characteristics (MF*). It shows that, 

whilst expenditure up to the optimal point does not make much difference to total costs 

on a farm with an electric fence, total costs increase steeply above this point. For farms 

with the other two sets of characteristics illustrated (one with no dummy characteristics 

and the other in East England (Eas = 1) with a village in its surroundings (V = 1)), 

spending on fence maintenance results in steep reductions in total costs up to close to 

the point where they are minimised. 

According to this model, in some cases it is not worthwhile for the producer to spend 

anything on fence maintenance, indicated by the negative values of MF1 * for variations 
in farm location (Table 6.10). As would be expected from this result, the large majority 

of producers in the sample have higher total costs of fox predation (piglet losses plus 
fence maintenance) than the estimated optimal total cost (Figure 6.7). (Avoidable costs 

were calculated by taking negative expenditure figures as zeros, as it is not possible to 

spend negative amounts of money. ) 

Table 6.10: Variation in optimal expenditure on fence maintenance per sow per year (MF1*) and 
optimal losses of piglets the farmer should accept per sow per year (La; *) with the values of V,, Eas;, 
Mid; and EL1 according to the model ln(La; 1) = 2.33 - 1.26"MF1 + 2.30" V, - 2.63"Eas1 - 2.58-Midi - 
1.72-EL; 

Value of V, Value of East Value of Midi Value of ELL MF, * (£) Lai* (£) 

0 0 0 0 2.031 0.694 

0 1 0 0 -0.060 0.695 

1 0 0 0 3.856 0.693 

1 1 0 0 1.765 0.694 

0 0 1 0 -0.002 0.695 

1 0 1 0 1.809 0.694 

0 0 0 1 0.668 0.694 

0 1 0 1 -1.423 0.695 

1 0 0 1 2.494 0.693 

1 1 0 1 0.403 0.694 

0 0 1 1 -1.378 0.695 

1 0 1 1 0.447 0.694 
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6.4. DISCUSSION 

6.4.1. Data reliability 
A couple of studies have addressed the accuracy of producer-recorded causes of pre- 

weaning mortality in piglets (Vaillancourt et al. 1990; Christensen & Svensmark 1997). 

These have indicated that there tends to be variation between producers in their ability 
to assess mortality causes, as well as variation amongst mortality causes in how well 
they can be identified or are likely to be mis-classified. Mortality due to predation was 

not a cause that was specifically assessed, but these studies indicate that producer 
diagnoses of causes of death can be unreliable (Vaillancourt et al. 1990). Rare mortality 

causes with primarily internal signs tended to be most mis-classified in one study 
(Christensen & Svensmark 1997). As fox predation is likely to leave external signs on 

piglets, it would not fall into this category. However, for the reasons outlined elsewhere 
in this thesis, predation losses will often be overestimated. Foxes sometimes carry 

piglets away from farms (Lloyd 1980), but, as is the case with lambs, foxes may be 

blamed for taking missing animals when they have been taken by another animal or go 

missing for some other reason. Edwards et al. (1994) point out that it is difficult to 

attribute piglet deaths to one sole cause and the ultimate cause of death may not be the 

most important mortality factor. Therefore piglets of low viability or that become 

hypothermic are more liable to be crushed (Edwards et al. 1994) and, one would 

assume, be predated upon. Bird predation of piglets was a problem on Edwards et al. 's 

(1994) study unit and they indicate that, whilst fox predation is a recognised problem, 

losses due to predation by birds may have been underestimated, which is potentially the 

case for these data. 

Various studies from the literature provide figures on overall pre-weaning piglet 

mortality in outdoor systems to which those from this survey can be compared in order 

to assess their representativeness. Mean piglet mortality was slightly lower at 10.9% 

than that determined in two other studies based on survey data, for which the figures 

were 12.1 % (Abbott et al. 1996) and 12.9% (Sheppard 1998a). It was considerably 

lower than on Edwards et al. (1994)'s study farm, where mean mortality was 20%, but 

this figure includes piglets born dead. Mortality in a Iowan study comparing different 

farrowing hut types ranged from 3.7% to 21.6% with a mean of 10.5% (Honeyman et 
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al. 1999), whilst that of outdoor piglets in Britain is put at 10.6%, on average (MLC 

1997). Figures from this study are therefore at the bottom end of the range of piglet 

mortality losses, but are comparable with those available from other studies indicating 

that the sample is representative in terms of loss figures. 

Despite the fact that it was made clear both during telephone conversations with 

producers and on the covering letters accompanying survey forms that both producers 

with and without a `fox problem' should reply, there is likely to have been a bias in the 

survey sample towards producers that considered this issue important. The herd size 

distribution of holdings was compared to that from the National Survey of Pig 

Production Systems using a chi-square test and found to differ significantly to that 

which would be expected if they were the same (x2 = 20.8, d. f. = 6, p=0.002 [n = 7]). 

There were more small holdings and more large holdings than expected. This may in 

part reflect a change in the structure of outdoor production since 1998, but also indicates 

that the herds surveyed here may not be fully representative of those in England and 

Wales. 

6.4.2. Reported piglet predation by foxes 

As was found for other producer types (Chapters 2 and 5), fox predation generally 

resulted in low reported losses on the majority of farms, but some farms reported 

experiencing high losses, of more than one piglet per sow per year in two cases. 

Despite the potential problems with birds predating upon piglets, reported predation by 

animals other than foxes was generally insignificant, mean and median losses due to all 

predation being very similar to those for fox predation only. 

Relative fox density was not an influence on reported fox predation, but whether fox 

control was carried out was. This appeared not to be a reflection of positive 

associations between fox control and fox density, the only association found between 

these being a negative one. Other reasons for this could be that fox control is reactive or 

that it is ineffective in achieving the aim of reducing piglet losses. Some of the reasons 

for associations between fox control and losses have been discussed earlier (Chapter 2) 

and these associations will be discussed further in Chapter 8, as they were a feature of 

all the data sets. 
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None of the assessed husbandry factors were associated with the likelihood of reported 
fox predation having occurred. Rather, the occurrence of reported fox predation was 

associated with non-management factors, such as farm location and herd size. It may be 

that any associations between predation and the husbandry methods considered here are 

obscured by regional and other variation between holdings. Farms in East England 

were less likely to have reported experiencing fox predation of piglets, East England 

also being the region with the lowest of the relative fox density estimates. Whilst this 

may be a coincidence, it may reflect an association between fox density and fox 

predation or between the abundance of foxes and the perception of the fox as a problem. 

An explanation for reported predation being more likely to have occurred where villages 

were in the proximity of the farms is not immediately apparent. However, it may be 

that foxes are blamed for predation by dogs (kills by medium-sized dogs and foxes are 

indistinguishable from teeth marks (Swire 1978; Harris & Lloyd 1991)), given that dogs 

are more likely to be present near villages, or possibly that fox numbers are higher in 

and around villages. Farms with more sows were more likely to have experienced fox 

predation of piglets. With a larger herd size, the likelihood of at least one piglet having 

been predated by a fox (or believed to have been predated by a fox) will be higher than 

on farms with few piglets. In addition, smaller herds may be more protected from fox 

predation because a higher degree of surveillance by producers and farm workers per 

piglet is possible. 

6.4.3. Costs of piglet predation by foxes 

Although husbandry factors were not associated with the occurrence of reported fox 

predation of piglets, expenditure on fence maintenance was negatively related to piglet 

losses. The lack of a relationship between total expenditure on fencing and piglet losses 

is probably due to inaccuracies in the estimation of this expenditure. A number of 

producers had not given the cost of their fence when first erected and the data that were 

collected about the fences were not specific enough to accurately estimate these costs on 

an individual basis. It could also be the case that expenditure on fence maintenance 

more accurately captures the extra expenditure needed to fence out foxes than total 

expenditure on fencing does. 

As predicted, losses were reduced with increasing expenditure, but at a declining rate. 

The analysis indicated that, in some cases, it was not worth spending on fence 
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maintenance to prevent fox predation and that the majority of producers were 

experiencing avoidable costs to fox predation. The major reason for this is that fencing 

has a number of functions other than preventing fox predation, the most obvious being 

to keep pigs in. Therefore, although it may not be worthwhile financially to spend 

money on fence maintenance to keep foxes out, this does not mean it is not worth 
fencing at all. Rather, it indicates that it is not worth spending more on fencing than 

would be spent if losses to fox predation were not taken into account. In addition, 
because it is expenditure on fence maintenance that is considered here rather than 

expenditure on fencing overall, it can not be assumed that nothing should be spent on 
fencing at all to prevent fox predation in these cases. The use of electric fencing also 

resulted in lower piglet losses to foxes indicating that the expenditure variable did not 

account for all the effects of fencing in terms of reducing fox predation. This will at 
least be in part because electric fencing is not necessarily more expensive to maintain 

than other fencing types. This association reveals electric fencing to be an effective 

preventive measure against fox predation of piglets. 

Both piglet losses and expenditure on fencing were based on figures reported by 

respondents. As discussed previously (Chapter 3 Section 3.5.1), there are a number of 

problems with using reported data in an economic model such as this. These figures 

will not be wholly accurate, whilst the criteria that individual producers have taken into 

account when reporting the amount they spent on fence maintenance in the previous 

year are unknown. A further problem with the model is that fox predation may be a 

compensatory rather than an additive mortality factor for piglets. This is supported by 

the fact that piglets are unlikely to die from one sole cause, as discussed earlier, and 

complicates the assessment of the loss of piglets due to fox predation. If piglet losses 

due to fox predation were not wholly compensatory, the minimisation of predation 

losses would seem an advantageous strategy for producers to adopt, as the direct loss of 

suckling pigs results in a loss of profit (Thornton 1988). Nevertheless, McOrist et al. 

(1997) suggest that the impact of serious mortality may be less important to advanced 

sectors of the pig industry than production diseases. 

A problem that foxes may pose to outdoor pig producers, which was not considered 

here, is their involvement in disease spread. Pigs are probably susceptible to more 

diseases than any other livestock species (Cottle & Cottle 1998) and foxes may be 
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carriers of some of these. For example, Enemark et al. (2000) suggest that Trichinella 
infection in Danish foxes might constitute a serious risk for the expanding outdoor pig 
sector. The risk of disease spread to livestock by foxes in Britain is unknown, but is 

generally considered to be relatively low (Macdonald et al. 2000; White et al. 2000a). 

6.4.4. Model criticism 
A number of tests were performed to assess whether the regression model of piglet 
losses due to fox predation against expenditure on fence maintenance and the various 
dummy variables (ln(Lall) = 2.04 - 1.17"MF; + 2.18"V, - 2.58"Eas; - 2.18-Midi - 
1.60-EL; + c) fitted the assumptions of regression and therefore whether the model was 

appropriate. The hypothesis that the error was normally distributed could not be 

rejected, tested using a Kolmogorov-Smirnov test of the goodness-of-fit of the 

standardised residuals from the regression to a normal distribution (Z = 0.506, p=0.960 
[n = 19]). A plot of standardised residuals against predicted values revealed no obvious 
heterogeneity of variance. However, this was difficult to ascertain with such a small 

sample. A Levene's test of equality of error variances was performed and the null 
hypothesis that the variance was homogeneous was not rejected at the 5% level of 

significance (F = 2.77, d. f. 8,10, p=0.067 [n = 19]). There was no cause to suspect 

multicollinearity between variables, the highest Variance Inflation Factor (VIF) being 

1.29 and the lowest Tolerance 0.776. No points appeared overly influential in 

determination of the model (maximum Cook's distance = 0.325, maximum centred 

Leverage = 0.496, mean Leverage = 0.263) with no standardised residuals having values 

of greater than two or less than minus two. 

The Durbin-Watson d-statistic for the model, when data were sorted according to 

expenditure on fence maintenance, suggested there may be a problem with the form of 

the model fitted in that there was potentially a negative autocorrelation between 

residuals (d = 2.81,4 - ducrit = 2.23,4 - dLc,; t = 3.44 at (X = 0.01 (n = 19, k= 5), i. e. d is 

within the critical region). The d-statistic calculated for the model when data were 

ordered according to the y-variable indicated that the model consistently over- or 

underestimated the true values of piglet losses at particular y-values (d = 1.39, duc'jc = 

1.77, dLc,; t = 0.56 at a=0.01 (n = 19, k= 5), d is within the critical region), but this was 

not the case when data were ordered according to predicted value (d = 1.83). This may 

be a symptom of the small number of data points in the sample for the regression 
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meaning that heterogeneity of variance is more likely across the fitted values and that 
there will be very few data points with the same covariate patterns. The model 

explained over 70% of the variance in piglet losses (R2 = 0.730) and all the estimated 

coefficients were significant at least at the 5% level (Table 6.9). 

The small size of the sample of pig producers for which this model was estimated is 

also a problem for using the results of the model in generalising to outdoor pig 

producers in Britain. In the overall sample for which data were available, 40713 sows 

were surveyed, which is approximately 30% of the herd of outdoor sows in England and 
Wales, based on figures from the National Survey of Pig Production Systems in 1998 

(Sheppard 1998b). This sample therefore should be fairly representative of outdoor 

producers across the country, given that producers from all regions, except South 

Scotland, were represented, if the presence of a sample bias can be disregarded. 

However, as discussed earlier, the size distribution of holdings appeared not to be 

representative. Herd size was a significant factor affecting reported fox predation, but 

not piglet losses. Therefore the fact that small and large farms may have been over- 

represented in the sample compared to farms nationally may not be important for 

determining the applicability and generality of results. 

6.5. CONCLUSIONS 

It was possible to apply the loss-expenditure approach to the data collected on losses of 

piglets to foxes on outdoor units. This enabled electric fencing to be identified as a 

preventive measure against fox predation, as well as suggesting that fox predation was 

not significant enough a problem to warrant expenditure to prevent it on a number of 

farms. There were limitations with the data, in that the sample size was small and that 

they contained potential inaccuracies, meaning that specific output figures from the 

model should be interpreted with caution. Although logistic regression analyses did not 

identify any management or husbandry factors linked to fox predation, they identified 

those farm characteristics that were associated with reported predation. These enable 

the identification of farms where foxes are (or are perceived to be) a problem, at which 

measures to reduce these problems could be targeted. 
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SUMMARY 

Some outdoor pig producers are said to experience serious losses of piglets to foxes. 

However, whilst studies have assessed pre-weaning mortality in outdoor herds, none 
have addressed the problem of fox predation. This chapter aimed to investigate levels 

of fox predation, assess what husbandry and management factors are associated with 
fox predation of piglets in Britain and evaluate the costs of fox predation to pig 

producers. 

A questionnaire survey of outdoor pig producers was carried out and these data used to 

investigate the association between fox population density and piglet predation, as well 

as the factors affecting the occurrence of reported fox predation on farms via 

correlation, chi-square and logistic regression analyses. The theoretical model of 
Chapter 3 was used as a basis for analysing the costs of piglet predation by foxes, in 

terms of piglet losses and fencing costs. 

Reported fox predation of piglets was generally low for most producers, but over half 

the producers surveyed (54%) reported at least one piglet killed by a fox. Fox control 

was associated with a higher likelihood of fox predation and farm location factors were 

also important. In addition, farms with larger herds were more likely to have 

experienced predation. 

Although none of the assessed husbandry factors were associated with the occurrence of 

reported fox predation, there was a negative relationship between expenditure on 

boundary fence maintenance and piglet losses. Assessment of the trade-off between 

expenditure and losses in an economic framework enabled electric fencing to be 

identified as an effective measure against fox predation, as well as indicating that some 

producers should not spend anything on fence maintenance specifically to prevent fox 

predation. 

As with all survey data, the reliability of the loss and expenditure data collected here is 

unlikely to be completely accurate. However, the analyses enabled the economic 

efficiency of fencing to prevent fox predation to be assessed. In addition, the 

characteristics of farms where fox predation is more likely to be (or be perceived to be) 

a problem were identified, which can be used to target measures to reduce these 

problems on individual holdings. 
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Figure 6.1: Histogram of responses for reported piglet mortality due to fox predation [n 
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Figure 6.2: Reported costs of piglet losses to foxes per sow compared to estimated 
output loss due to fox predation per sow [n = 32] 
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Figure 6.3: Total costs of fencing per sow per year compared with output loss due to fox 

predation [n = 21], data points 12 and 14 are marked 
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Figure 6.4: Costs of fence maintenance per sow per year compared with output loss due 
to fox predation [n = 21 ], data points 12 and 14 are marked 
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Figure 6.5: Relationship between piglet losses to foxes and expenditure on fence 
maintenance with variation in farm characteristics, according to the model, ln(La11) _ 
2.04 - 1.17"MF1 + 2.18"V, - 2.58"Eas; - 2.18-Midi - 1.60-EL; (V = farm has village in 
surroundings, Eas = farm in East England, Mid = farm in Midlands, EL = electric 
fencing used) 

258 

0 0.5 1 1.5 2 2.5 



12 

10 

4a 

aý g 

3 
0 

ö6 

I 

4° 
ö4 

u 
i 

2 

0 

Expenditure on fence maintenance per sow per year (£) (MF) 

0 V=0, Fas=0, Mid=0, EL=0 V= 1, Eas = 1, Mid = 0, EL =0 

-0 V=0, Eas=0, Mid=0, EL=1 

Figure 6.6: Relationship between total costs of fox predation and expenditure on fence 
maintenance with variation in farm characteristics, showing the point where total costs 
are minimised in each case, marked MF* (V = farm has village in surroundings, Eas = 
farm in East England, Mid = farm in Midlands, EL = electric fencing used) 

259 

0 0.5 1 1.5 2 2.5 3 



4.5 

4 

3.5 

3 

2.5 

2 

z 
1.5 

0.5 

0 

o 
ýcP ýý 

° 
ýcP , ýcP ýcP 

ýoýcP 
ýcP 

o 
°dý°cA°cP 

ýý°dý 

Difference between actual and optimal total costs of piglet 
predation by foxes (awidable costs) (£) 

Figure 6.7: Histogram of the avoidable costs, or differences between actual and 
estimated optimal total costs, of fox predation to pig producers (including the costs of 
piglet losses and the costs of boundary fence maintenance) [n = 21 ] 

260 



CHAPTER 7 

IMPACTS OF FOXES ON GAME INTERESTS: PREDATION 
ON RELEASED PHEASANTS 

7.1. INTRODUCTION 

Foxes are one of the most serious predators of game birds in Britain and they are 

considered by gamekeepers to be one of the most significant pests to their interests 

(Packer & Birks 1999; McDonald, unpublished data, in White et al., 2000a). Species 

vulnerable to fox predation include pheasants, grey partridges, red-legged partridges, 

red grouse and black grouse. Whilst foxes have an impact on wild game populations, 

e. g. grey partridge (Potts & Vickerman 1974; Tapper et al. 1996), red grouse (Moss et 

al. 1990; Hudson 1992; Tapper 1992; Macdonald et al. 1999) and pheasants (Hill & 

Robertson 1988), the long-term effects of predators on the decline of wild game 

populations are ambiguous (Jenkins et al. 1964; Märestrom et al. 1988; Reynolds & 

Tapper 1995; Baines 1996; Kauhala et al. 2000; Macdonald et al. 2000; Kauhala 2001) 

and it is unlikely that there is one sole cause for such declines (White et al. 2000a). For 

example, in the case of the grey partridge, the intensification of agriculture has been the 

principal factor behind this species' decline over the last 100 years (Potts 1986; Smith 

1999), changes in farming practices and habitat management also being important in the 

decline of both grouse species (Potts 1986; Hudson 1992; Baines 1996). Disease is 

another important determinant of grouse density and productivity (Duncan et al. 1979; 

Hudson 1992). 

One of the problems with studies on the effects of fox predation on wild game 

populations is that they have tended to investigate the impacts of a number of predators 

rather than focus on foxes, e. g. Jenkins et al. (1964), Märestrom et al. (1988), Hudson et 

al. (1992) and Tapper et al. (1996). It appears that whilst fox predation can account for 

the deaths of a substantial proportion of resident wild game bird populations, game 

birds are generally a small component of fox diets (Hill & Robertson 1988; Lovari & 

Parigi 1995; Reynolds, unpublished data, in Macdonald et al., 2000), but are more 

important to foxes in years when rodent numbers are low (Leckie et al. 1998). The 

significance of the impact of foxes on wild game shoots will depend on the objectives of 
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the manager with respect to game bird populations, for example, whether population 

sizes are to be maximised in the short-term or long-term or whether bag quality rather 

than quantity is preferred. 

The most serious predation impact of foxes for game shooting in terms of numbers of 
birds killed, and therefore in economic terms, is on reared game (Smith 1999) (although 

the potential long-term effects on wild game populations are highly significant in 

conservation terms). Pheasants make up the majority of the national annual shooting 

bag of those ground-nesting game birds that are vulnerable to fox predation (Cobham 

Resource Consultants 1983), the importance of pheasants as a game bird having 

increased dramatically during the 20th century from making up around 15% of all game 

birds shot at the turn of the century to more than 55% in the 1980s (Tapper 1992). This 

increase was primarily due to an increase in the number of birds reared and released for 

driven shoots, as the wild pheasant population is unlikely to have increased over this 

period (Tapper 1999). It appears that the numbers of pheasants shot have not increased 

in proportion with increases in the numbers released, however (Hill & Robertson 1988). 

Although the management of wild pheasants is fairly common in Norfolk, where they 

may contribute up to 50% of the bag, game-shooting relies heavily on reared birds 

(Bingham 1993). In a survey of British gamekeepers in 1998, the majority of which 

were located in England, 80% of respondents worked on shoots classified as relying 

primarily on released pheasants (McDonald & Harris 1999). 

The majority of pheasants are released into release pens as poults, at an age of six to 

seven weeks, in July or August prior to the start of the pheasant shooting season in 

November (Game Conservancy 1983; Hill & Robertson 1988). It has been estimated 

that 20 million pheasants are released each year and 12 million are shot, implying there 

is an annual mortality of 40% of released birds (Anon 1997), although a number of 

birds that are not shot will join the wild population (White et al. 2000a). Whilst bad 

weather, road kills, disease and pen deaths account for some of this mortality, the major 

cause of pheasant death is predation, with foxes being their main predator (Hill & 

Robertson 1988; Robertson 1997). Hand-reared birds generally experience their 

greatest mortality between release and the start of the shooting season (Hill & 

Robertson 1988). In a study of pheasants released on an estate in Co. Kildare, Ireland, 

foxes accounted for 93% of the losses due to predation (Robertson 1988) and 64% of 
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total losses (Hill & Robertson 1988), whilst, in Hampshire, losses to foxes comprised 
80% of birds killed by predators (M. Gill, unpublished data, in Hill and Robertson 

1988). Foxes were responsible for the majority of mammalian kills of pheasants in a 

study of poult mortality from 32 release pens in southern England (Kenward et al. 
2001). Although foxes tended to cache or remove kills, they left feathers that had been 

bitten through the shaft (Kenward et al. 2001), an indication of fox predation (Harris & 

Lloyd 1991). 

Most pheasants are released into permanent, large, open-topped pens sited in woodland 

habitats (Game Conservancy Trust 1996). They remain in the pens until able to fly out, 

which may be up to a few weeks after release, but still return to the pens after this time 

through one-way entrances in the netting, especially at night to roost (Hill & Robertson 

1988; Game Conservancy Trust 1996). Because of the vulnerability of poults to 

predation in the release pens, gamekeepers use various anti-predator measures at their 

pens (Game Conservancy Trust 1996; Packer & Birks 1999). These include fox grids 

over entrances to prevent foxes from entering (though cubs and small adults may still be 

able to pass these), extra wire netting at the top of the pen to act as an anti-fox or anti- 

predator fringe, extra wire netting at the bottom to prevent digging under (this may be 

dug-in or penned down), electric fencing, a `wall' of fox snares around the pen and 

scarers, such as flashing lights (Hill & Robertson 1988; Game Conservancy Trust 1996; 

Packer & Birks 1999; Kenward et al. 2001). 

Losses from release pens are likely to be affected by factors including how well pens 

are constructed, the habitat within the pen and predator control in the vicinity (Hill & 

Robertson 1988). Pheasants are particularly vulnerable to birds of prey in the release 

pens (Hill & Robertson 1988; Game Conservancy Trust 1996), though these losses may 

be of little significance in comparison to overall losses to foxes (Hill & Robertson 

1988). Losses to birds of prey are affected by the amount of cover inside pens (Lloyd 

1975; Kenward et al. 2001), whilst predation by buzzards is more likely to occur where 

more birds are released (Kenward et al. 2001). Released bird losses tend to be highest 

during the period when they first emerge from the pens and before they are able to roost 

in trees properly, fox predation being especially high at this time (Hill & Robertson 

1988). However, if they are able to breach pen defences, mammalian predators may 

carry out mass kills of birds within pens (Game Conservancy Trust 1996), for which the 
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financial costs can equate to more than just the birds killed, as pheasants may flee and 
not return to the pen area (Balharry & Macdonald 1999). 

Whilst some shoots rear their own pheasants for release, a large number are reared 
intensively on commercial game farms. As with poultry, game birds are also subject to 
fox predation during this rearing stage and game farms or individual rearers must invest 

in measures to prevent predation from having an impact (Game Conservancy 1983; 

McGill 1999). However, the majority of losses of breeding adults are due to disease 

(Pennycott 2000). 

Pheasants are primarily released for driven shoots, which rely on high densities of birds 

to produce large bags for sportsmen paying fees. Driven shoots involve a line of beaters 

driving the quarry to the sportsmen or guns. The main income of such shoots comes 
from shooting fees, carcass sales being insignificant (SAC 2001), a slump in pheasant 

prices in 2000 making income from sales even lower (NFU 2000). Rough shoots 

generally involve wild birds, as densities of birds do not have to be as high as for driven 

shoots. They are less commercially valuable than driven shoots, but often provide 

indirect revenue to rural communities. The fees paid for a day's shooting are dependent 

on the number of birds shot or the bag size, this being agreed beforehand with the guns. 

Thus the shoot owner or manager will maximise profits through maximising the number 

of birds shot. 

A number of studies have assessed predation of released pheasants by both mammalian 

and avian predators, including foxes, e. g. Lloyd (1975), Kenward (1977), Robertson 

(1988), Hill and Robertson (1988), Sodeikat et al. (1995), Packer and Birks (1999) and 

Kenward et al. (2001). Research by Baker and Macdonald (2000) involved asking 

farmers if they had experienced losses of gamebirds to foxes and assessing how this was 

associated with fox control and perceptions of the fox as a pest. However, no studies to 

date have addressed what factors affect fox predation of released pheasants or the 

effectiveness of preventive measures and fox population control. In addition, studies 

have not considered variation in predation of pheasants on a regional scale. 

This chapter assesses the problem of fox predation of released pheasants for driven 

shoots. Only losses of birds from release pens were considered. Although fox 
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predation is likely to be the cause of some losses of birds once they have left the pens 

completely, a field study would be the best way of assessing this problem. This is also 

true of predation of wild birds. Data for this chapter were collected via a survey of 

gamekeepers, in order that variation in pheasant predation by foxes across Britain could 
be considered. Analyses were carried out to assess the factors associated with reported 
fox predation of pheasants from release pens, including fox population density. The 

costs of pheasant predation, as well as preventive measures and fox control, to shoots 

were considered in the economic framework developed in Chapter 3 and the hypothesis 

of a negative relationship between losses and preventive expenditure tested. In addition, 

associations between fox control and fox density on shoots were considered. 

7.2. METHODS 

7.2.1. Questionnaire survey of gamekeepers and estates 

On the 13th October 2000,202 questionnaires with an explanatory letter and Freepost 

envelope were sent directly to contacts from the Yellow Pages, The Field, Shooting 

Times and Hotbarrels (www. hotbarrels. com). Searches were performed on the Yellow 

Pages web-site (www. yell. co. uk) for `Gamekeepers', `Estate Managers' and `Stately 

Homes' to obtain addresses, whilst in the case of The Field, Shooting Times and 

Hotbarrels, addresses of shoots or estates were taken directly from advertisements. In a 

few cases, where only telephone numbers were available, calls were made beforehand to 

obtain addresses and permission to send questionnaires. The questionnaire consisted of 

questions on the types of shoots run and area of shoot, land-uses surrounding shoots, 

fox control, pheasant release pens and losses to predation and other causes from release 

pens that year (Appendix G). The questionnaires were designed to fit on two sides of a 

single A4 sheet of paper. Reminder questionnaires and letters were sent to non- 

respondents on the 21st November 2000. 

7.2.2. Relative fox population density estimates 

Each holding in the data-set was allocated a region-based and a land class-based relative 

fox density estimate, termed `regional fox density' and `land class fox density' (as 

described in Sections 2.2.3 and 5.2.2). Non-parametric correlation analyses were used 

to test the associations between relative density estimates and the numbers and 
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percentages of pheasants (out of the total released) reported killed by foxes and the 

percentage of shoots within each region and land class group reporting predation. 

7.2.3. Factors influencing reported fox predation of pheasants from release pens 
Statistical analyses were used to assess whether factors on which information was 
collected were associated with the occurrence of reported fox predation of pheasants 
from release pens and the scale of reported fox predation. The variables used in these 

analyses are summarised in Appendix H. Data were transformed where necessary to 

meet the assumptions of normality of error and homogeneity of variance for linear 

regression. Chi-square tests and logistic regression analyses were used to assess the 

associations between the occurrence of reported fox predation on a holding and other 
factors. The dependent variable in all logistic regression models was a binary response 

variable, coded zero for no reported fox predation of pheasants from pens and one for at 
least one bird having been reported killed by foxes. This variable was also used in the 

chi-square tests. Uni- and multivariate analyses were used to assess relationships 
between the dependent variable and the various factors considered. All variables were 

tested against the dependent variable on their own at first. Chi-square tests were used 
for all analyses involving one other categorical variable and logistic regression for 

analyses using a continuous variable. Subsequently all variables were tested once again 
in a model including those variables that were statistically significant in the first round 

of tests in order to identify an overall multiple logistic regression model accounting for 

variation in the likelihood of reported fox predation. 

Where predation occurred, linear regression models were applied to examine 

relationships between the variables under consideration (Appendix H) and the 

proportion of pheasants killed out of those released on shoots where fox predation 

occurred. Data for holdings where no losses to foxes occurred were removed. This 

dependent variable was natural log-transformed to reduce the right skew of the data 

distribution. Initially all variables were tested against the dependent variable in 

univariate regression analyses. They were then included in a model with those variables 

that were statistically significantly associated with the dependent variable on their own, 

enabling an overall linear regression model to be identified. 
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7.2.4. Costs of pheasant predation by foxes from release pens 
7.2.4.1. Theoretical model 
The theoretical model of Chapters 3 (Section 3.2) and 5 (Section 5.2.4) was used as a 
basis for analysing the costs of pheasant predation by foxes from release pens to shoots. 
Two preventive measures were considered: fox control by gamekeepers on the shoot 
(assumed to be a measure preventing foxes from being in the vicinity of the pens) and 
release pen design characteristics used to prevent fox predation. Losses of pheasants to 
foxes (in monetary terms) were assumed to be a function of expenditure on the 

preventive measure(s) and various other characteristics of the shoot, such as regional 
location: 

Lc; = f(MFi, R1) 

where: 

Lc; = pheasant loss to foxes from release pens per bird released per year on the 
ith shoot (£) 

MF; = expenditure on preventive measures per bird released per year on the ith 

shoot (£) 

R; = regional location of the ith shoot 

f= function of shoot characteristics determining pheasant losses to foxes from 

release pens 

The hypothesis is that the relationship between pheasant losses and preventive 

expenditure is negative, with diminishing returns (in terms of losses) to marginal 

expenditure increases, reflecting the assumed trade-off between these two costs, as 

outlined in Chapter 3 and by McInerney (1996) for the loss-expenditure frontier (Figure 

I. 1). It is assumed that the shoot manager or owner aims to minimise the total costs of 

fox predation of pheasants, which are equal to pheasant losses to foxes plus expenditure 

on the preventive measure(s). The optimal point where this is achieved is where 

marginal pheasant losses equal marginal preventive expenditure. 
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7.2.4.2. Valuation of pheasant losses due to fox predation from release pens 
It was assumed that pheasants killed by foxes in release pens would have survived to be 

shot, if they had not been killed. This assumption is not wholly realistic because, as 
discussed in the Introduction, mortality of released pheasants is high and birds that were 

reported killed by foxes may have died later from another cause other than shooting. 
Therefore estimates of a pheasant's value, as calculated here, will be positively biased. 

The value of a pheasant when it is shot was estimated from data on the prices of driven 

shoots with respect to daily pheasant bags. The prices per gun for a day's shooting, the 

number of guns and the pheasant bag of 33 pheasant shoots across Britain were taken 

from Hotbarrels. com. The total income from a day's shoot was calculated by 

multiplying the price per gun by the number of guns. This total income per shoot day 

was regressed against the pheasant bag to estimate the value of a shot pheasant. The 

region in which the shoot was in was also included as a dependent variable, as was the 

number of guns. (The market price of a pheasant carcass was considered an unrealistic 

measure of its value. Market prices for pheasants are low and their main value lies in 

the shooting fees, as discussed earlier. ) The value of a shot pheasant will overestimate 

the value of a pheasant taken from a release pen. An alternative to using this value is to 

use the price of a poult when they are bought in. The price of a seven week old 

pheasant poult is around £2.50. This value, however, will underestimate the true value 

of the pheasant partly because it does not include the extra resource cost up to the point 

that the pheasant was killed. Both the value at shooting and the value of a poult were 

multiplied by the proportion of pheasants reported killed by foxes out of the total 

released to obtain two estimates of the losses of predation by foxes per pheasant 

released in monetary terms. 

7.2.4.3. Expenditure on fox control by gamekeepers 

Expenditure on fox control was estimated as a proportion of the cost of employing 

gamekeepers on the shoot. Respondents were asked how many full-time, part-time and 

casual gamekeepers were employed on their shoot. One data point was removed from 

the sample, for a shoot where no gamekeepers were employed and only one fox was 

killed. Expenditure on employing gamekeepers was calculated as £17,725 per annum 

for a full-time keeper (equivalent to a foreman's wage in Nix, 1999). Employer's 

National Insurance contributions were added to this by taking off the earnings threshold 

of £4385 and taking 12.2% of this remainder (f 1627), giving a total expenditure of 
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£19,352. Hourly wages for part-time and casual workers were taken from Nix (1999) as 
£4.36 and £3.69 respectively. Part-time workers were assumed to work a 16-hour week 
for 52 weeks of the year and casual workers a 39-hour week for 12 weeks of the year. 
These calculations meant the expenditure on employing a part-time keeper was £3628 

per annum and that of employing a casual keeper £ 1727 per annum. The total 

expenditure on employing gamekeepers on the shoot was estimated by adding up the 

expenditures on employing full-time, part-time and casual keepers according to the 

numbers of each employed. This total expenditure was converted to the expenditure on 
fox control by taking the percentage of their time that keepers spent on fox control (as 

given by respondents). This was divided by the number of pheasants released to give 

the expenditure on keeper fox control per pheasant released. 

7.2.4.4. Expenditure on release pens and associated preventive measures 
A height of release pen netting of 1.8m was assumed (as per Game Conservancy 

recommended minimum netting height (Game Conservancy Trust 1996)), with an extra 
30cm at the top for an anti-fox fringe and another extra 30cm for dug-in or penned- 
down netting (Game Conservancy Trust 1996). Mean prices for netting per metre were 

calculated from a number of suppliers, according to the height of netting required: £1.04 

per metre for a height of 1.8m; £ 1.22 per metre for a height of 2.1 m (i. e. either an anti- 

fox fringe or dug-in or penned-down netting); and £1.39 per metre for a height of 2.4m 

(i. e. an anti-fox fringe and dug-in or penned-down netting). Information on whether 

pens had an anti-fox fringe and dug-in or penned-down netting were taken as given in 

the survey. The total length of netting used was multiplied up from the length of netting 

allowed per bird as given, or as 1m per poult if less than 500 poults were released in 

each pen and 0.6m per poult if 500 or more birds were in each pen (Game Conservancy 

1983), by multiplying by the number of pheasants released. (The number of birds 

released per pen was calculated by dividing the number of pheasants released by the 

number of pens. ) Expenditure on netting for pens was calculated by multiplying this 

total length of netting by the price per metre, according to the estimated amount used, 

and this was divided by the number of years for which pens were expected to last (as 

given) to give a per year figure. 

Expenditure on electric fencing (for those shoots that used this on their pheasant release 

pens, as stated by respondents) was taken as the mean for polywire from a number of 
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electric fence suppliers at £0.10 per metre for a three strand fence multiplied by the 

number of metres of netting as calculated above. To this was added the price of an 

energiser, at £55 per pen for pens with less than 260m of fencing and £85 per pen for 

pens with 260m or more. (The amount of fencing per pen was calculated as the total 

netting length divided by the number of pens. ) This figure was also divided by the 

number of years pens were expected to last to give a per year expenditure figure. 

For respondents using fox grids over the pen entrances, it was assumed that there would 

be one entry point per 50m of netting or, if pens used less than 200m of netting, four 

entrances per pen (as is advised by the Game Conservancy (Game Conservancy Trust 

1996)). The mean price for a fox grid, from two suppliers, was £8.00 and this was 

multiplied by the assumed number of fox grids and then divided by the expected 

lifespan of the pens. It was assumed that 20 snares would be used per pen for snare 

walls (for those respondents stating they used snare walls) and that snares were bought 

new each year. The price of one snare was taken as £2.30 (£ l . 30 for the snare and 

£ 1.00 for the tealer), the mean price from two suppliers. 

Flashing lights, used as scarers, and radios (also scarers as stated by some respondents 

under `other' measures used to prevent foxes from entering pens) were assumed to last 

three years. Two flashing lamps were assumed to be used per pen at a mean price of 

£9.50 per lamp (taken from two suppliers) and one radio was assumed to be used per 

pen at a price of £ 10. These were multiplied up by the number of pens for those 

respondents using these measures and divided by the number of years they were 

assumed to last. Those respondents that used Renardine to deter foxes were assumed to 

buy one 5L bottle per year, at a mean price of £25. 

Total expenditure on pens and preventive measures was calculated by adding up 

expenditure on netting, electric fencing, fox grids, snares, scarers and deterrents and this 

was divided by the number of pheasants released to give a figure per pheasant released. 

Expenditure on pen preventive measures only was also calculated by only including the 

extra costs of release pen netting for dug-in or penned down netting and anti-fox 

fringes, i. e. not the cost of the standard 1.8m of netting, in the calculation. 
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Expenditure on keeper control, expenditure on release pens and preventive measures 

and the two of these added together (both untransformed and log-transformed) were 
included separately in the estimated best-fit logistic regression and linear regression 

models explaining variation in the likelihood and scale of fox predation of pheasants, 

respectively, to assess whether expenditure on preventive measures was directly related 

to fox predation. 

7.2.4.5. Empirical estimation of the model 

The relationship between pheasant losses to foxes and expenditure on preventive 

measures was assumed to approximate either a negative exponential or negative power 

relationship. Four possible forms were tested for the model: linear, exponential, 

logarithmic and log-linear or power: 

a) Linear: 

b) Exponential: 

c) Logarithmic: 

d) Log-linear (power): 

where: 

Lcij = (3o + ß1MF; 

Lci1=13oxe P1 MF 
i 

Lcil = ßo + ßlln(MF, ) 

Lci1=13oxMF, ß1 

i. e. ln(Lc, l) = Po + (3IMF, 

i. e. ln(Lc; l) = (30 + ß11n(MF; ) 

Lc;, = pheasant loss to foxes from release pens per bird released per year on the 

ith shoot (£) plus 0.01 

(3o = constant 
ß1 = coefficient for MF; 

Models were estimated for pheasant losses and expenditure on keeper fox control, 

expenditure on release pens and preventive measures, expenditure on pen preventive 

measures only and expenditure on keeper fox control plus release pens. A small 

positive constant (0.01) was added to pheasant loss values to allow for logging. The 
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pheasant loss values for shot birds rather than poults were used, the difference between 

these two values being only in scaling, both having been estimated for the same loss 

data. 

Given the assumption that both fox control and pheasants pens and associated 

preventive measures were used to prevent fox predation of pheasants from pens, a trade- 

off between expenditure on these two would be expected. The association between 

expenditure on the two preventive measures was tested using correlation analyses. 

7.2.5. Fox control and estimated relative fox density 

The associations between the number of foxes killed on the shoot and the number of 

foxes killed per hectare and relative fox density estimates were tested via parametric 

and non-parametric (Spearman's rank) correlation tests. The associations between total 

expenditure on keeper fox control and expenditure on keeper fox control per fox killed 

and relative fox densities and the number of foxes killed were tested in a similar 

manner. The number of foxes killed per hectare was calculated by dividing the number 

of foxes killed on the shoot by the area of the shoot (as given), whilst expenditure on 

keeper fox control per fox killed was calculated by dividing the figure estimated earlier 

for expenditure on keeper fox control by the number of foxes killed on the shoot (as 

given). 
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7.3. RESULTS 

The data from 62 questionnaires were used in this analysis. An additional 29 forms 

were returned uncompleted. Of these, 18 were sent back by estates for whom the form 

was not relevant because they did not run commercial shoots, two because the 
information needed to fill in the form was unavailable, one because the respondent was 

unwilling to take part in the survey for political reasons and one due to time constraints, 

whilst for seven forms, the reasons are unknown. The response rate to the questionnaire 

was therefore 45.0%. Because of the sensitive nature of this study topic, especially to 

gamekeepers, the returns were not expected to be high. A number of telephone calls 

were received from recipients of questionnaires concerned with data confidentiality and 

other issues with respect to the study. 

Of these 62 respondents, not all answered all the questions on the survey form, meaning 

that sample sizes differ between analyses. Sample sizes are given in square brackets in 

the text. Estimated Beta coefficients for independent variables in regression analyses 

are given as `B'. All figures for statistics are quoted to 3 significant figures or 2 

decimal places. Statistical significance was taken as being at or above the 95% level ((x 

= 0.05), i. e. p<0.05. 

Most respondents (55) ran driven shoots, 22 ran walked up shoots, 7 dogging and 27 

duck-flighting [n = 60]. Various characteristics of the sample, including preventive 

measures used on pens, location and experience of fox predation, are summarised in 

Table 7.1 according to the percentage of respondents with those characteristics. 

Statistics summarising reported deaths of pheasants in pens to all causes, all predation 

and fox predation only are given in Table 7.2. Mortality of pheasants is given as the 

number of pheasants that were reported to have died due to that cause out of the total 

released. Summary statistics for data on pheasants released, shoot areas, the numbers of 

foxes killed on shoots and fox kills in comparison to losses due to other causes are in 

Table 7.3. Figure 7.1 illustrates the range in pheasant mortality due to fox predation. 

The majority of respondents (45.8%) thought that the number of pheasants killed by 

foxes in release pens over the past five years had not changed, while equal proportions 

(22.0% in each case) thought that there had been an increase or a decrease in these 

numbers [n = 59]. 
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Table 7.1: Characteristics of game interest sample in terms of use of various release pen preventive 
measures, land uses surrounding shoots, location and reported fox predation of pheasants in release 
pens 

Characteristic N Factor levels Percentage of 
respondents (% ) 

Preventive measures used 59 Overhanging anti-fox fringe 37.3 
on release pens Electric fencing 61.0 

Fox grids over entrances 72.9 

Dug-in or penned down 
netting 

83.1 

Snare walls 30.5 

Flashing lights (scarers) 22.0 

Other (chemical repellent, 
scarers (incl. radios), etc. ) 

22.0 

Radio as scarer (as stated 
under 'other') 

13.6 

Score for effectiveness of 58 Ineffective 3.4 
release pens at preventing 
foxes from getting in Somewhat effective 31.0 

Very effective 65.5 

Score for effectiveness of 57 Ineffective 12.3 
release pens at preventing 
all unwanted animals from 

Somewhat effective 40.4 

getting in Very effective 47.4 

Land uses surrounding 62 Arable 83.9 
shoot Livestock 82.3 

Game rearing 43.5 

Forestry 82.3 

Village 46.8 

Urban 12.9 

Other 16.1 

Region in which shoot is 62 North Scotland 25.8 

situated (as Table 2.3) South Scotland 9.7 

North England 16.1 

East England 14.5 

Midlands 14.5 

Southwest England 8.1 

South England 6.5 

Wales 4.8 

274 



Table 7.1 

Land class group of shoot 62 1 8.1 
(as Table 2.4) 

2 22.6 

3 17.7 

4 12.9 

5 25.8 

6 8.1 

7 4.8 

Fox predation of 
pheasants from release 
pens 

44 Fox predation reported to 
have occurred in last year 

63.6 
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Table 7.2: Summary statistics on reported losses of pheasants from release pens due to fox 
predation, all predation and other causes. Figures in parentheses are standard errors of the means. 

Cause of mortality Fox predation All predation All causes 
Number of pheasants Mean (S. E. ) 105 (30.8) 203 (37.1) 249 (46.4) 
reported died 

Median 18.5 113 168 

Range 0-879 0-1000 0-1500 

n 44 46 45 
Reported pheasant Mean (S. E. ) 1.39 (0.39) 6.17 (1.48) 6.67 (1.43) 
mortality (%) Median 0.50 2.81 4.04 

Range 0-13.3 0-50 0-62.5 

n 42 46 47 

Percentage of respondents reported 
no pheasants lost 

36.4 
[n = 44] 

6.5 
[n = 46] 

2.2 
[n = 45] 

Percentage of respondents reported 
more than 10 pheasants lost 

56.8 
[n = 44] 

84.8 
[n = 46] 

91.1 
[n = 45] 

Table 7.3: Summary statistics for pheasants released, shoot area, foxes killed on shoot and losses to 
foxes as percentages out of totals 

Variable N Mean Standard Minimum Maximum 
Deviation 

Number of pheasants 51 5375 5470 40 28000 
released 

Age of pheasants at release 59 7.09 1.16 5 12 
(weeks) 

Area of shoot (hectares) 61 2217 3297 30 22680 

Number of foxes killed on 59 57.4 45.7 1 200 
shoot in last year 

Number of foxes killed per 58 0.059 0.089 0 0.635 
hectare in last year 

Fox kills as percentage of 38 19.9 24.0 0 80 
total reported pheasant 
losses 

Fox kills as percentage of 40 35.3 35.6 0 100 
reported pheasant losses to 
predators 
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7.3.1. Relative fox population density estimates 
Land class fox density was not significantly correlated with either the number of 

pheasants in release pens reported killed by foxes in that year (rs = -0.256, p=0.093 [n 

= 44]) or the percentage of pheasants reported killed by foxes out of the total released (rs 

= -0.252, p=0.107 [n = 42]). There were also no statistically significant associations 
between regional fox density and either the number (rs = -0.093, p=0.549 [n = 44]) or 

percentage of pheasants reported killed by foxes (rs = 0.036, p=0.822 [n = 42]). The 

percentage of respondents reporting fox predation of birds in each land class group was 

not associated with land class fox density (rs = -0.691, p=0.086 [n = 7]), though there 

were indications of a negative relationship between these two. The percentage of 

respondents reporting predation in each region was not associated with regional fox 

density (rs = -0.240, p=0.568 [n = 8]). 

7.3.2. Factors influencing fox predation of pheasants from release pens 

Of the 62 respondents for which data were available, 59 gave figures for released 

pheasants on their shoot, whilst 44 reported the amount of fox predation they considered 

had occurred from their pens that year. 

Only three of the variables tested were significantly associated with the occurrence of 

reported fox predation of pheasants. The number of birds released (square-root- 

transformed) was included in a univariate logistic regression model and allowed the 

likelihood of reported fox predation to be predicted with an accuracy of 72.5% (x2 = 

1 1.9, -2 log likelihood of model = 39.9, p=0.00 1 [n = 40]). Reported fox predation of 

pheasants tended to have occurred at a higher frequency where an above average 

numbers of birds were released (B = 0.047, Wald = 7.91, p=0.005; B (constant) 

2.10, Wald = 4.66, p=0.03 1). Predation was more likely to have occurred than 

expected where snare walls were used (x2 = 9.43, d. f. = 1, p=0.002 (Fisher's exact test) 

[n = 44]) and where radios were used as a preventive measure at pens (x2 = 4.76, d. f. _ 

1, p=0.037 (Fisher's exact test) [n = 44]). 

Predation was less likely than expected to have been reported on holdings in the 

Midlands region (x2 = 4.64, d. f. = 1, p=0.051 (Fisher's exact test) [n = 44]), though 

this was just statistically insignificant at the 5% level. 
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Inclusion of Midlands in the model with the number of birds released (square-root- 

transformed) increased its predictive accuracy to 77.5% (x2 = 15.9, -2 log likelihood of 

model = 35.9, p<0.001 [n = 40]) (Table 7.4). Neither of the dummies for preventive 

measures used on pens were statistically significant when included in a model with the 

number of birds released. The model correctly predicted fox predation on 84.6% of 
holdings on which predation occurred. 

Table 7.4: Coefficient estimates and significance test statistics for logistic regression model with 
best accuracy for predicting the likelihood of reported fox predation of pheasants 

Variable B Wald P 
Constant -1.93 3.38 0.066 

Number of pheasants released (square- 
root-transformed) 

0.05 7.14 0.008 

Midlands -2.47 3.30 0.069 

With respect to the scale of reported fox predation, few variables were significantly 

associated with the dependent variable. The number of pheasants reported to have died 

of causes other than predation (square-root-transformed) was positively associated with 

the dependent variable (B = 0.057, t=2.45, p=0.024 [n = 21]), as was the percentage 

of pheasants reported died of other causes (aresine-transformed) (B = 4.69, t=2.55, p= 

0.020 [n = 21]). 

The model that best explained variation in the scale of reported predation, judged on the 

adjusted R2, included the percentage of pheasants reported died of other causes (arcsine- 

transformed), the number of foxes killed per hectare on the shoot in the last year, 

whether the shoot was in the Southwest of England, whether it was in Wales and 

whether it was in Eastern England (R2 = 0.83, Adjusted R2 = 0.77, F= 13.0, p<0.001 

[n = 19]) (Table 7.5). The two continuous variables were not correlated (r = -0.04, p> 

0.10) and the hypothesis that the error was normally distributed could not be rejected 

(Kolmogorov-Smirnov test of distribution of residuals: z=0.657, p>0.10). There was 

also no pattern apparent in the residuals when plotted against fitted values, so the model 

fitted the assumptions of regression. Losses of pheasants tended to be higher on farms 

where more foxes had been killed per hectare, in the Southwest and in Wales, whilst 

they tended to be lower in East England. 
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Table 7.5: Coefficient estimates and t-test statistics for best-fit linear regression model explaining 
variation in the scale of reported fox predation of pheasants 

Variable B t p 
Constant -5.78 -26.3 <0.001 
Percentage of pheasants reported died 
from causes other than predation (arcsine- 
transformed) 

4.40 3.16 0.007 

Foxes killed per hectare in last year 7.34 2.29 0.039 

Southwest England 0.930 2.88 0.013 

East England -1.21 -2.48 0.028 

Wales 1.83 3.53 0.004 
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7.3.3. Costs of pheasant predation by foxes from release pens 
Pheasant bag was positively associated with income per shoot day, with an estimated 
coefficient of 21.40 (R2 = 0.910, Adjusted R2 = 0.908, F= 335.1, p<0.001 [n = 35]) 

(Table 7.6). Neither region (dummies coding for England and Scotland) nor the number 

of guns on the shoot were statistically significant when also included in the model. 
Therefore pheasants shot on all the estates in the sample were taken as having the same 

value, of £21.40, since the constant in the regression analysis also did not statistically 

significantly differ from zero. Summary statistics for estimated pheasant losses due to 

predation by foxes from release pens based on values of shot birds and poults, 

expenditure on keeper fox control per pheasant released and expenditure on release pens 

and preventive measures per pheasant released are given in Table 7.7. 

Table 7.6: Coefficient estimates and t-test statistics for linear regression model of pheasant bag 
against total income per shoot day 

Variable B t p 

Constant -135.9 -0.456 0.651 

Pheasant bag 21.40 18.30 <0.001 

Table 7.7: Summary statistics of values of pheasant losses and expenditure on keeper fox control 
and release pens and preventive measures 

Value n Mean Median Range 

Pheasant losses (shot bird value) due to fox 37 0.334 0.107 0.00- 
predation from release pens per pheasant 2.853 
released (£) 

Pheasant losses (poult value) due to fox 37 0.039 0.013 0.00- 
predation from release pens per pheasant 0.333 
released (£) 

Expenditure on keeper fox control per pheasant 45 2.201 0.923 0.065- 

released per year (£) 15.482 

Expenditure on release pens and preventive 50 0.381 0.186 0.046- 

measures per pheasant released per year (f) 5.441 

Expenditure on pen preventive measures only 50 0.142 0.073 0.00- 

per pheasant released per year (£) 1.634 

Expenditure on keeper fox control plus release 45 2.603 1.367 0.127- 

pens and preventive measures per pheasant 15.59 

released per year (£) 
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Whilst there appeared to be a decrease in the variance of costs of pheasant predation 

with increasing expenditure on keeper fox control per pheasant released and release 

pens and preventive measures, there was no obvious relationship between losses and 

expenditure, there being a number of shoots on which both losses and expenditure on 

control or preventive measures were low (Figures 7.2,7.3,7.4 and 7.5). Neither 

expenditure on keeper fox control per pheasant released, expenditure on release pens 

and preventive measures per pheasant released nor the two of these added together 

(when untransformed or logged) were statistically significant in either the logistic or 

linear regression models estimated in Section 7.3.2, either when included alone or in 

multivariate models. 

7.3.3.1. Empirical estimation of the model 

The relationship between pheasant losses and preventive expenditure was not 

significant for any of the model forms estimated (Table 7.8). The estimated ß- 

coefficient for expenditure on keeper fox control was negative in all cases, as for the 

hypothesised model, but not statistically significant. There were no overly influential 

outliers in the data (Cook's distance > 1), except in the case of data points 12 and 51 in 

the models for losses against expenditure on pens and preventive measures and against 

expenditure on pen preventive measures only (marked on Figures 7.3 and 7.4). 

However, the relationship between pheasant losses and preventive expenditure remained 

statistically insignificant with a low R2 when these data points were removed from the 

data set. 

There was no significant association between expenditure on fox control and 

expenditure on release pens and associated preventive measures (r = -0.054, p=0.723; 

rs = 0.221, p=0.144 [n = 45]) (Figure 7.6). 
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Table 7.8: Model output for regression models with pheasant losses to foxes (plus 0.01) as the 
dependent variable, Lc;, = f(MF1) 

Independent 
variable 

Model 
form 

R2 n F p (3o ßl 

Expenditure on Linear 0.00 33 0.00 0.988 0.380 -0.001 
keeper fox control Exponential 0.00 33 0.12 0.733 0.128 -0.049 

Log 0.00 33 0.03 0.860 0.376 -0.014 
Power 0.01 33 0.43 0.515 0.114 -0.154 

Expenditure on Linear 0.01 36 0.25 0.618 0.314 0.055 
release pens and 
preventive 

Exponential 0.02 36 0.73 0.398 0.083 0.291 

measures Log 0.03 36 0.86 0.361 0.484 0.093 

Power 0.03 36 0.86 0.361 0.148 0.291 

Expenditure on Linear 0.00 35 0.01 0.933 0.351 -0.031 
pen preventive 
measures 

Exponential 0.01 35 0.44 0.510 0.088 0.739 

Log 0.01 35 0.19 0.670 0.442 0.039 

Power 0.02 35 0.67 0.418 0.174 0.225 

Expenditure on Linear 0.00 30 0.03 0.856 0.351 0.008 
keeper fox control 

lus ens and 
Exponential 0.00 30 0.00 0.954 0.109 0.008 

p p 
preventive Log 0.00 30 0.01 0.933 0.373 -0.080 
measures Power 0.04 30 0.14 0.715 0.114 -0.102 
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7.3.4. Fox control and estimated relative fox density 
In most cases the majority of foxes killed on the shoot were killed by lamping (use of a 
lamp and rifle at night) (mean percentage of foxes killed by this method out of total 
killed on shoot = 58.3%), with snaring and shooting by day being the next two most 
common methods (mean percentage of foxes killed by these methods out of total = 
17.9% and 14.2%, respectively). Table 7.3 includes summary statistics on the numbers 

of foxes culled. 

There were no significant (p < 0.05) associations between the number of foxes killed in 

total or per hectare on the shoot and either regional or land class fox densities according 
to the correlation tests performed. Expenditure on fox control per fox killed was 

negatively associated with regional fox density (r = -0.298, p=0.028; rs = -0.403, p= 
0.003 [n = 54]) and with the number of foxes killed per hectare (r = -0.231, p=0.099; rs 

= -0.402, p=0.003 [n = 52]), but not with land class fox density (r = -0.137, p=0.324; 

rs = -0.129, p=0.354 [n = 54]) nor the total number of foxes killed on the shoot (r =- 
0.242, p=0.081; rs = -0.188, p=0.178 [n = 53]). Total expenditure on keeper fox 

control was negatively associated with regional fox density (r = -0.317, p=0.019; rs =- 
0.405, p=0.002 [n = 55]) and to a lesser extent with land class fox density (r = -0.230, 
p=0.09 1; rs = -0.27 1, p=0.045 [n = 55]). Total expenditure on fox control was 

positively associated with the number of foxes killed on the shoot (r = 0.426, p=0.002; 

rS = 0.432, p=0.001 [n = 52]), but not with the number of foxes killed per hectare (r =- 
0.095, p=0.509; rs = -0.190, p=0.182 [n = 51 ]). 

The negative relationship between expenditure on keeper fox control per fox killed and 

regional fox density would be expected if it becomes more difficult to kill foxes with 

decreasing fox densities. Estimated absolute fox density estimates were calculated as in 

Chapter 3 (Section 3.3.1). The functional form of the relationship between expenditure 

on keeper fox control per fox killed and regional fox density was estimated using 

regression analysis and found to approximate a power relationship, as was also the case 

for sheep farms in Chapter 4 (R2 = 0.15, Adjusted R2 = 0.13, F=9.04, p=0.004 [n = 

53]) (Table 7.9). However, in Chapter 4, the dependent variable accounted for the 

number of ewes on the farm, whilst the total number of foxes on the farm was estimated 

rather than the density. Figure 7.7 shows the relationship between these variables both 

for the actual and fitted data. It should be noted that a number of variables other than 
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fox density will influence expenditure on keeper control per fox killed, many of which 

will be specific to individual shoots. 

Table 7.9: Estimated coefficients and t-test statistics for relationship between regional fox density 
(log-transformed) and expenditure on keeper fox control per fox killed (log-transformed) 

Variable Estimated coefficient S. E. t p 
Constant 4.34 0.147 29.5 <0.001 
Regional fox density per -0.758 0.252 -3.01 0.004 
km2 (log-transformed) 

7.4. DISCUSSION 

7.4.1. Data reliability 

As with all animal kills, it is often difficult to judge whether a fox or other predator has 

killed a pheasant or whether the bird was scavenged. Jenkins et al. (1964) found that 

differentiation between fox and wild cat kills of red grouse in Scotland was difficult and 

Kenward et al. (2001) indicated that pheasant kills by birds of prey, such as buzzards, 

may be mistakenly attributed to foxes because foxes scavenge some of these kills 

(Kenward 1977). For these data, average reported pheasant predation was lower than in 

other studies. Only one study provides figures for losses from release pens, where 9.5% 

of poults were killed by all predators and 3.2% by foxes (Kenward et al. 2001), higher 

than the averages for these data, but at the low end of the data ranges. Kenward et al. 's 

(2001) study was carried out in Dorset and losses in this study were higher in the 

Southwest, which may explain this difference. In addition, it is not clear from the data 

collected here how much predation occurred outside release pens. This is a fault of the 

survey design. For Kenward et al. 's (2001) study, gamekeepers searched both the pens 

and their vicinity for dead pheasants. In a study of pheasants released in Germany, 30% 

of the birds died in the first 32 days after release and of these, 44% of deaths were 

attributed to foxes, equivalent to a mortality of 14% due to fox predation (Sodeikat et al. 

1995). Other studies are not comparable with the results of this one because pheasant 

predation was considered over a longer time frame. 
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7.4.2. Reported fox predation of pheasants from release pens 
Reported losses of pheasants to foxes in this study were generally low in percentage 
terms and a significant proportion of respondents (36%) did not report any fox predation 
of poults from pens. However some high losses were reported, whilst predation overall 

was a significant mortality factor for pheasants. In addition, although average 

percentage losses of birds to foxes were low, the average numbers of birds lost were 
fairly high considering that losses would only have accrued over a short time period of a 
few weeks. Other studies, such as Robertson (1988) and M. Gill (unpublished data, in 

Hill and Robertson, 1988), observed much higher losses to foxes than those reported 
here and foxes are probably the most significant predator of pheasants outside the pens 
(Hill & Robertson 1988; White et al. 2000a). Therefore this study does not take into 

account the full impact of fox predation on released pheasants. Unlike the other 

producer types surveyed in this thesis, gamekeepers expect predation of pheasants 

released into the wild to occur. Minimisation of losses will be attempted, but it should 

not be expected that losses could be as low as those experienced by these other 

producers. 

There was some evidence for a negative association between relative fox density and 

fox predation of pheasants, which is the opposite direction to that which would be 

expected. A number of reasons could be put forward to explain this. The most likely of 

these is that the relative density estimates were not an accurate measure of fox densities 

on the ground. The high degree of fox control generally carried out on these holdings is 

likely to have affected the fox population density they support. Therefore, relative fox 

density estimates based on medians for land class groups are unlikely to accurately 

reflect actual fox densities in these cases. The association may reflect a link between 

land class type and the likelihood and/or scale of fox predation or perceptions of the fox 

as a pest. However, it was not significant at the 5% level of significance (only at 10%), 

whilst neither relative density nor land class groups were included in the overall models 

explaining variation in the scale and likelihood of reported fox predation. It is therefore 

more likely that the univariate correlation reflects an underlying association with 

another variable or that there was a Type 1 error. In addition, it should be noted that the 

land class group for the shoot as a whole was taken as that of the estate offices or central 

buildings (for which the postcode was available). As shoots were on average over 10 
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square kilometres in area (median shoot area = 1215 hectares), they may well have 

comprised more than one land class type. 

In a study assessing the factors affecting buzzard predation on released pheasants, 

predation by buzzards was more likely to have been recorded at release pens with a 
large number of pheasants (Kenward et al. 2001). The number of birds released was 

also an important factor determining the likelihood of fox predation here. However, in 

this case, it was the total number of birds released, rather than the number per pen that 

was important. This association may simply reflect the fact that the more pheasants 
there are available to be predated upon, the more likely one is to be taken by a fox, 

especially because the number of pheasants released was not an important factor in 

determining the amount of fox predation reported. The number of pheasants released 

was positively associated with the number per pen (the number released divided by the 

number of release pens used) (r = 0.769, p<0.001 [n = 51 ]) and foxes may also be 

more attracted to pens with larger numbers of pheasants. Kenward et al. (2001) 

distinguish between site attraction and prey vulnerability in explaining the difference 

between factors determining whether predation takes place and the proportion of 

pheasants killed. 

Rather than the number released, the percentage of birds that died of causes other than 

predation was important in explaining variation in the proportion of pheasants killed by 

foxes. Losses to foxes were higher where overall losses were higher. This implies that 

there is a link between overall mortality and fox predation, perhaps reflecting an 

association between predation and the health status of birds or their general ability to 

survive. Alternatively, respondents may have been considering losses over different 

time frames and the association reflects the fact that more birds were lost overall and 

also more lost to foxes over time. All the loss figures are subject to the perceptions of 

the respondents. Therefore, it can be hypothesised that a gamekeeper who reports high 

losses overall might also report relatively high losses to foxes. 

Regional factors affected both the likelihood that fox predation had occurred and the 

levels of predation. The lower likelihood of predation in the Midlands and lower levels 

of predation in East England may reflect higher regional fox control effort in these areas 

(Heydon & Reynolds 2000b). Higher reported loss levels in the Southwest may relate 
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to the high relative fox abundance in this region. However, this regional variation may 
instead reflect other regional differences, which result in differences in losses of 
pheasants to foxes and/or differences in the perceptions of the fox as a pheasant 
predator. It is likely that differences in the habitats within pens will also have affected 
both the likelihood of fox predation and the numbers of losses, as is the case for 

predation by birds of prey (Lloyd 1975; Hill & Robertson 1988; Game Conservancy 
Trust 1996; Kenward et al. 2001), although this will probably be a more significant 
factor for aerial than ground predators. Data were not available on the habitat within 
pens, this being a difficult variable to assess through a questionnaire survey. 

As was observed in the data sets for other producer types, fox control (in this case, the 

number of foxes killed per hectare) was positively associated with reported losses to 
foxes. Whether such an association is likely to reflect the influence of fox population 
density on losses, if fox cull density is a reliable population index, or reflect the use of 

reactive control is discussed in Chapter 2, Section 2.4.2.2. Previous studies have 

discussed reactive fox control by farmers (Baker & Macdonald 2000; Heydon & 

Reynolds 2000b), but reactive control by gamekeepers has not been considered. It 

seems less likely that control by gamekeepers would be reactive to pheasant losses than 

control by livestock and poultry farmers is to their losses. One reason for this is that fox 

control is part of a gamekeepers' job. Another is that figures for fox culling supplied 
here were for the last year, that for which the data on released pheasant losses were also 

provided, so the total annual cull is unlikely to capture reaction to these losses. 

7.4.3. Costs of fox predation of pheasants from release pens 

Use of the value of a shot bird resulted in a much higher valuation of pheasant losses to 

foxes than that for the poult price (nearly ten times the value). The true value lies 

somewhere between these two, but the costs of losses to foxes may be higher than those 

based on pheasant kills if birds have been unavailable for shooting because they fled 

after the predation event (Balharry & Macdonald 1999). Losses of pheasants to foxes 

after they have left the pens will also increase costs. However, neither of these 

additional losses could be estimated for these data. The difference in the valuation of 

pheasant losses only leads to a difference in total cost estimates and did not influence 

subsequent analyses because it only affected the scaling of values. The wide range in 

pheasant losses per bird released reflected the range of reported percentage loss figures. 
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There was also a large degree of variation in expenditure on keeper fox control and 

expenditure on release pens and preventive measures per pheasant released. 

The lack of an association between expenditure on fox control and losses to foxes 

indicates that fox control was not a measure to prevent losses of pheasants to foxes from 

release pens. There could be a number of reasons for this. One is that fox control is 

carried out primarily to keep fox numbers down in the vicinity of release pens and the 

rest of the shoot in order to prevent foxes from predating upon pheasants once they have 

left the pens. Fox control is also carried out to prevent predation of wild birds. 

Therefore it could be argued that a significant relationship between pheasant losses from 

release pens and expenditure on control would not be expected. It may also be that the 

calculation of expenditure was not accurate enough to enable identification of any such 

relationships. However, across the data set, there was no negative association between 

foxes killed on shoots and losses, nor was there a link between fox densities and losses 

that could support an association between expenditure on fox control and losses. The 

effect that control has will be dependent on the starting density of foxes on the shoot, so 

without these associations or an accurate measure of fox densities on the ground it is 

difficult to accurately model the link between fox control and losses in any case. 

The fact that there was no trade-off between expenditure on release pen preventive 

measures and pheasant losses is less easy to explain. Whilst it may be that the costings 

for these variables were not very accurate, the only associations between dummy 

variables coding for the use of these preventive measures and variation in either the 

occurrence or scale of reported fox predation were positive (for snare walls and radios). 

It may be that variation in other factors between shoots, such as pen habitat, was too 

great for such a trade-off between expenditure and losses to show up. In addition, these 

loss figures probably include pheasants killed outside pens, which would not be 

expected to be affected by the pen construction. Despite this lack of an apparent trade- 

off between preventive measures and losses, 65% of respondents considered their pens 

to be very effective at preventing foxes from entering them (and only 3.4% believed 

they were ineffective). Most of these measures associated with pens, such as electric 

fencing, anti-predator fringes and scarers, are used to prevent predation by a range of 

predators including foxes (Game Conservancy Trust 1996; Packer & Birks 1999), so are 

likely to have additional financial benefits that may explain their use. If expenditure on 
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fox control and on pens were both considered to be measures to prevent fox predation at 
pens, a trade-off between the two would be expected, but there appeared to be no such 
financial trade-off for these data. 

One problem with analysing these data in a financial framework is that shoots are less 
likely to be run with the aim of maximising profit and minimising costs than the other 
producer types considered in this thesis. In some cases, their objectives may not 
involve economic considerations at all. A further issue with the costs considered here is 

whether the fees paid by sportsmen, which reflect the general shooting experience rather 
than the values of shot birds alone, are a valid assessment of the losses to the shoot in 

terms of predated birds. 

7.4.4. Fox control and fox density 

Despite the lack of relationships in the expected directions between fox density or fox 

control and pheasant losses, the associations between expenditure on fox control and 
both fox density and the number of foxes killed fitted those expected from theory. Fox 

control was less costly per fox killed in regions with higher fox densities and on shoots 

where more foxes were killed per hectare, whilst the more foxes that were killed, the 

more it cost in total. The fitted relationship between control expenditure and fox 

density was non-linear (Figure 7.7), indicating diminishing decreases in expenditure per 
fox killed with increasing fox density, it becoming progressively more difficult (and 

therefore more costly) to kill foxes the fewer of them there are. Although these relative 
fox density estimates may not reflect actual densities on shoots well, as discussed 

earlier, the regional estimates do reflect relative differences between regions in fox 

density. Therefore, whilst there is considerable variation in the expenditure on fox 

control per fox killed in each region, the over-riding link between the costs of control 

and fox density is still apparent. Holding-specific density estimates would enable this 

relationship to be more accurately assessed. The relationship at least supports the 

accuracy of the valuation of fox control expenditure. 

7.5. CONCLUSIONS 

The factors that influence variation in fox predation of pheasants from release pens did 

not appear to be those that were under potential management by gamekeepers or shoot 

289 



owners. Reducing the number of birds in each pen may decrease the likelihood of fox 

predation, whilst having healthier birds is also likely to be an important factor 

determining losses. However, these recommendations are only indistinctly indicated by 

the analyses, it being unclear what determines the influences of the number of birds 

released and the percentage dying of causes other than predation. The fact that the 

effect of fox control appeared to act in a direction counter to that which would be 

expected and that expenditure on fox control was not related to losses suggests that fox 

control is not hugely important in preventing losses of pheasants from pens. The same 

was true of preventive measures used on pens. An experimental set-up might be more 

conducive to assessing the effects of these measures in reducing fox predation and it 

would also enable the effects of habitat within pens to be investigated. The analyses 

carried out enabled regional factors to be identified as important influences on fox 

predation of pheasants. The data indicated that kills by foxes are less important that 

those by other predators when pheasants are in or in close proximity to their pens, but 

that foxes can cause significant losses on individual holdings. 
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7.6. SUMMARY 

Foxes are one of the most serious predators of game birds in Britain and their most 

significant impact in terms of the numbers of birds killed is on released pheasants. This 

chapter considered fox predation of pheasants from release pens, attempting to identify 

the causes of variation in predation between shoots and to carry out a financial analysis 

to assess the costs of fox predation of pheasants. 

A survey of gamekeepers across Britain was carried out to provide data for the analyses 

and these were combined with relative fox density data. 

Predation by animals other than foxes was an important mortality factor for these birds. 

Although 36% of respondents reported losing no birds to foxes, some holdings 

experienced significant losses with up to 13% of birds reported killed by foxes. Losses 

to foxes are also likely to be significant once birds have left the pens. 

Regional factors and fox control were associated with differences in losses due to fox 

predation, as were the number of birds released and pheasant mortality due to other 

causes. 

Shoots that spent more on their release pens and associated preventive measures did not 

experience losses any lower than those spending less. The same was true for 

expenditure on fox control. Whilst fox control may be carried out for reasons other than 

preventing predation from release pens, the reason for a lack of a link between 

preventive measures and pheasant predation from pens is less clear. An experimental 

study would probably be able to address these issues more effectively. 
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Figure 7.1: Histogram of responses for reported pheasant mortality due to fox predation 
[n = 42] 
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Figure 7.2: Losses of pheasants to foxes from release pens per pheasant released 
compared with expenditure on keeper fox control per bird released [n = 33] 
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Figure 7.3: Losses of pheasants to foxes from release pens per pheasant released 
compared with expenditure on release pens and preventive measures per bird released [n 
= 36] 
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Figure 7.4: Losses of pheasants to foxes from release pens per pheasant released 
compared with expenditure on pen preventive measures per bird released [n = 36] 
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Figure 7.5: Losses of pheasants to foxes from release pens per pheasant released 
compared with expenditure on keeper fox control plus release pens and preventive 
measures per bird released [n = 33] 
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Figure 7.6: Comparison of expenditure on the two preventive measures considered 
(pheasant pens and associated preventive measures and fox control) [n = 45] 
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Figure 7.7: Association between keeper control expenditure per fox killed and regional 
fox density both for actual data and relationship modelled with regression analysis [n = 
53] 
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CHAPTER 8 

OVERALL DISCUSSION AND CONCLUSIONS 

The aims of this thesis were to assess the impacts of foxes on agricultural interests in 

Britain, to identify the factors influencing them and to analyse the costs of foxes with 

regard to these impacts in an economic framework through financial analyses. 

8.1. PREDATION LOSSES TO FOXES 

In terms of livestock, poultry and pheasant losses to foxes, the over-riding trend was 

one of the majority of holdings reporting low levels of fox predation and a few 

individuals reporting significant losses due to foxes. Such variation in depredation 

levels associated with various factors, such as farm characteristics and predator control, 

has also been observed for other livestock predators by Nass et al. (1984), Cozza et al. 

(1996), Knowlton et al. (1999), Landa et al. (1999), Vos (2000) and Stahl et al. (2001). 

Some of the high loss figures may be attributed to overestimation by respondents to the 

survey and specific figures at the top end of losses may be inaccurate. However, the 

fact that this overall pattern of few high loss figures was similar across all the producer 

types indicates that it is genuine. The best data set in terms of sample size was that for 

sheep producers, the sample size being a reflection of the higher number of sheep 

producers in Britain relative to the other groups surveyed. Because this data set was the 

largest, it was possible to undertake more thorough analyses on it than the other data 

sets and the results obtained from analyses are likely to be more robust. 

8.1.1. Factors influencing fox predation 

There was a wide range in reported losses due to fox predation and in all cases a 

significant proportion of respondents reported no fox predation. It appeared that the 

processes determining the occurrence and scale of fox predation differed, possibly 

because the mechanisms determining whether a predator starts to hunt at a site differ 

from those that make it rewarding to kill prey there (Kenward et al. 2001). Therefore, 

analyses were split to assess factors influencing the occurrence of fox predation and 

those influencing the scale of predation on farms where it was reported to have 
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occurred. Such predation impacts are often influenced by a combination of factors 

(Stahl et al. 2001) and the analyses performed here illustrated the importance of using 

multivariate techniques when investigating influences on predation to avoid 
inappropriate management recommendations. In several cases, most notably lamb 

predation, a number of factors that appeared important in univariate analyses were not 

so when other effects were accounted for. 

Flock or herd size is an important influence on variation in predation by vertebrate 

species other than foxes (for example, Nass et al. 1984; Landa et al. 1999; Mech et al. 

2000; Vos 2000) and for all the producer interests surveyed here, the numbers of 

animals potentially available to be predated upon or the number dying of other causes 

were associated with perceived fox predation. In the case of the occurrence of reported 

fox predation, these associations were positive, indicating either that foxes are more 

attracted to holdings with larger numbers of potential prey or simply that with a larger 

number of stock available the probability of at least one being predated is increased. 

Positive associations between total losses and flock or herd size can be explained by the 

functional response of the predator to prey density. However, flock size was taken into 

account here in the loss data prior to analysis (i. e. all figures were per ewe, per sow, 

etc. ) because it is the loss relative to flock size rather than total losses that is important 

to producers. Therefore an association between losses and flock or herd size indicates 

whether losses tend to be proportional to flock size or not. In the case of sheep, they 

were not, with foxes tending to take fewer lambs per ewe on larger farms. Losses were 

also disproportionate to flock size for pheasants (if the number of birds dying from 

other causes can be taken as a proxy for the number available to kill), but in this case 

more pheasants were lost where there were more birds. This difference is probably due 

to the fact that a fox is likely to kill only one lamb at a given predation event, but it may 

kill a large number of pheasants due to the phenomenon of surplus killing. That foxes 

kill proportionally more pheasants when there are more of them available may be due to 

an increased likelihood of repeat visits when there are a large number of pheasants. 

In the cases of predation of chickens and predation of pheasants, an alternative 

explanation for the positive associations between predation and losses to other causes is 

that holdings where overall losses were high tended to experience high fox predation 
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losses or were more likely to experience predation. This indicates that husbandry and 
management factors may be involved in determining the occurrence or levels of fox 

predation, even for these producer types for which no such influences were 
demonstrated. 

Regional differences in perceptions of fox predation were evident in all cases, except for 

poultry, where differences between producer types were more important in explaining 

variation between holdings. Generally, the occurrence and scale of reported fox 

predation mirrored relative fox abundance amongst regions, being high in the Southwest 

and low in North and East England. 

The identification of factors influencing fox predation enables the targeting of both 

measures to alleviate problems and future research into management options for damage 

limitation to the areas and situations where damage is most significant (Moore et al. 
1999; Stahl et al. 2001; Tourenq et al. 2001). This study identified effective preventive 

measures for fox predation in two cases: indoor housing for sheep and electric fencing 

for pigs. The reasons behind the influence of non-management factors on predation 

should also be investigated to determine whether they could be manipulated by changes 

in husbandry or control techniques. Losses of livestock, poultry and game are likely to 

be a function of a number of variables that are very specific to individual farms and 

could not be assessed here, such as the skill of individual stockmen and gamekeepers. 

This is one reason why there was so much unexplained variation in the data sets. 

8.1.2. Fox control, abundance and predation 

The reactive nature of fox control in Britain to livestock losses has been noted by other 

researchers, including Baker and Macdonald (2000) and Heydon and Reynolds (2000b). 

With the exception of the game estates surveyed, which all carried out fox control, all 

the producer groups surveyed here were more likely to have experienced loss of stock to 

foxes if they carried out fox control and there was a positive association between 

pheasant losses and fox kills on game estates. If the aim of population control is to 

reduce livestock losses, these associations between fox culling and losses appear 

counter-intuitive. One problem with citing reactive control as the reason for these 

positive associations between control and predation losses is that in most cases fox 

control data were given for the same year as loss data. It is not known what the level of 
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predation would be without fox control, but it is possible that the disruption of fox 

populations by fox control results in a higher likelihood of predation of livestock and 
game. The `sink' created by local fox control tends to draw in immigrants (Reynolds et 
al. 1993; Tapper et al. 1996) and these immigrants may be less able to target their 

natural prey because they are in an unfamiliar environment and are therefore more 
likely to prey upon livestock. 

Macdonald et al. (2000) suggest that farmers' objectives with regard to fox control are 
driven by the amount of damage that it is perceived would occur in the absence of 

control. As indicated earlier, since perceptions tend to be the determinants of actions, 

the cause and effect behind these links between carrying out fox control and the number 

of foxes killed and perceptions of the fox as a pest can not be determined for these data. 

Only for the sheep producer data were there associations between fox kills and fox 

abundance and between fox abundance and lamb losses, which could explain these 

counter-intuitive relationships in terms of more foxes being killed where they are more 

abundant and, in turn, more lambs being killed by foxes where there are higher numbers 

of foxes. The fact that the data are perceived losses also complicates this relationship, 

as perceptions of the fox as a problem are also likely to be linked to the number of foxes 

there are. As discussed earlier (Chapter 1), there is a lack of data in the literature 

linking predator abundance and damage caused. Therefore, it is not unexpected that 

such links were only observed here in one data set, especially given the fact that the fox 

population data were not holding-specific. It should be noted that, because associations 

were not found between predation of these species and fox abundance, it does not mean 

such associations do not exist. However, without these damage-density relationships, 

an analysis of the effectiveness of fox control was not possible for predation of pigs, 

poultry and pheasants. 

It is widely believed that specific individuals or `rogue' foxes are the cause of much of 

the predation of lambs (Chadwick et al. 1997; Burns et al. 2000), but there is little 

evidence to back up this belief (Rowley 1970). `Problem individuals' have been cited 

as the cause of livestock predation hotspots by a number of authors, e. g. Mizutani 

(1993) and Sacks et al. (1999), but there is debate as to whether such individuals 

actually exist (Linnell et al. 1999). If such a phenomenon does occur the indiscriminate 
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culling of foxes to reduce their abundance is unlikely to be effective in reducing damage 

and it will be changes in the numbers of these `rogue' individuals rather than in total fox 

numbers that influence predation (Greentree et al. 2000). It can be hypothesised, 

however, that the number of `problem' individuals is positively related to overall fox 

abundance. If so, as long as fox control is effective in reducing fox abundance, it will 
be effective in reducing the number of `problem' individuals, if these individuals are as 

susceptible to culling techniques as other foxes (but `problem' coyotes, for example, 

often are not, Knowlton et al. 1999). The control of itinerant foxes is more difficult to 

deal with, as the abundance of such foxes is unlikely to be related to overall fox density, 

although it may well be linked to the level of control (i. e. disturbance). 

8.2. COSTS OF FOX PREDATION 

The costs of fox predation to agricultural producers and game interests in Britain 

comprise both those directly associated with loss of stock and the cost of preventive 

measures, including fox control, if this can be considered effective at preventing 

damage. Only in two cases, outdoor pig and sheep producers, were preventive measures 

associated with lower losses of stock, as hypothesised. In these cases, it was possible to 

look at the total costs of predation and to assess how predation might be managed more 

efficiently in financial terms. The analyses indicated that it was not economically 

worthwhile for producers to eliminate predation losses from their farms completely and 

that losses should be tolerated to a certain extent, as farmers and consumers did with 

pest damage in general in the early 1900s (Fall & Jackson 1998). The analyses 

illustrated the importance of assessing a pest's impact in terms of avoidable costs. If it 

is not possible to reduce predation to zero, a total cost figure for predation losses alone 

is of limited use for informing management decisions. In the cases of both the indoor 

housing of sheep and fencing for pigs, the increment in the benefits of expenditure on 

these preventive measures decreased steeply with increasing expenditure and it was 

only worthwhile for the farmer to spend a small amount specifically to limit fox 

predation. 

It was only possible to assess the costs of fox control and the link between fox control 

and predation for sheep producers, where the model indicated that additional fox control 
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was only worthwhile financially on small farms or those with certain specific 

characteristics. In addition, the indication was that housing ewes indoors was an 

economically more efficient strategy for reducing lamb loss than was additional fox 

control to that already carried out. As discussed previously, the data collected here did 

not enable the drawing of management guidelines specific enough to aid individual 

producers, but the framework developed for these analyses could be usefully applied to 

other vertebrate pest species, as well as for future analyses of fox impacts with other 
data sets. It should be noted that, as the aim of the economic analyses was to identify 

the best strategy to deal with predation and not to calculate the exact monetary value of 

predation losses, the use of imperfect data does not necessarily detract from the results 
(Morris 1999). 

One of the hypotheses tested here was that spending more on preventive measures 

results in reduced losses due to predation, which appeared not to be the case for fox 

predation of poultry and game. More expensive fencing is not necessarily more 

effective at preventing predation and a number of other factors, such as the level of 

maintenance, are likely to also be important. Perhaps the main difficulty with assessing 

preventive measures for fox predation is that these measures tend to have multiple uses, 

including preventing predators other than foxes and losses in general. Whilst the total 

cost approach taken here was the most appropriate, given the limitations of available 

data and the fact that the aim of the thesis was to concentrate on fox predation solely, it 

is likely that focusing on the production side of the system would provide further insight 

into the association between predation and prevention. There will also be economic 

effects (from the farmer's point of view) of having other livestock on farms, for 

example, on a mixed farm a producer may carry out fox control to protect his chickens 

which has the knock-on effect of also preventing predation of lambs. A whole farm 

approach would capture such effects, but would not only require a complex modelling 

approach (because of the many interactive components of agricultural systems, 

Mizutani 1999), but also a large amount of data from individual farms. 
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8.3. DATA RELIABILITY 

8.3.1. Questionnaire survey data 

All analyses were based on the use of questionnaire data. The drawbacks of using such 
data have been outlined elsewhere in the thesis, the major ones being related to response 
biases in the sample population and errors and unreliability in the data provided. 
Determining whether fox predation was the cause of death for livestock or game 

animals is generally difficult even for experts in this field and a number of respondents 

to the surveys carried out here indicated that figures for losses due to predation were 

completely unknown. The accuracy of producer-recorded causes of death has been 

brought into question by studies on piglet mortality (Vaillancourt et al. 1990; 

Christensen & Svensmark 1997). Moore et al. (1999) ground-truthed a sample of 

badger damage reports from a questionnaire survey in England and Wales and found 

information on damage to be generally accurate, except in the case of alleged predation 

incidents. In these cases, the ground-truthing proved difficult and in the majority of 

cases there was only circumstantial evidence that badgers were to blame for livestock 

deaths. Other authors have outlined the difficulties of finding animals that have been 

predated and the fact that even when found their state often makes it impossible to 

determine the cause of death with certainty (Lloyd 1980; Hewson 1984b; Edwards et al. 

1994; Landa et al. 1999; White et al. 2000b). 

Further uncertainty in determining the impact of fox predation lies in whether animals 

that were killed by foxes would have died later from another cause (Greentree et al. 

2000) and therefore whether fox predation has a compensatory or additive effect overall 

with regard to other mortality. In the case of red grouse, a study in the late 1950s 

indicated that it was `surplus' birds without territories that were most vulnerable to 

predation (Jenkins et al. 1964). However, such an effect may well not be standard 

across all prey species, nor across holdings with livestock or game vulnerable to fox 

predation. For example, two studies on predation of grouse with caecal nematode 

infections produced opposite results, one arguing that grouse with higher worm burdens 

were more likely to be predated than those with low burdens (Hudson et al. 1992) and 

the other indicating the opposite (Moss et al. 1990). 
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The contentiousness of the issue of fox management in Britain at this time resulted in 
difficulties in undertaking the questionnaire surveys and is likely to have been a further 

influence on responses. However, the resource costs and limited geographical ranges of 

other techniques for studying predation, such as field post-mortem studies (Hone 1994; 

Knowlton et al. 1999), meant that, despite its drawbacks, the questionnaire survey 

approach was the most appropriate one to use for this study, given that data from a 

relatively large number of holdings was required. 

8.3.2. Fox population density estimates 
As indicated by the discussion in Chapter 1, there is a lack of data available on fox 

population densities across Britain. In addition, the techniques used to determine fox 

abundance (and canid population numbers in general), which are generally based on 

relative density indices, have their inherent problems (Harris & Saunders 1993). 

Macdonald et al. (1998) recommended that the monitoring of fox populations in Britain 

would be best achieved through the use of standardised spotlight counts. However, 

there are a number of difficulties associated with applying this method on a large scale, 

not least the resource cost and the fact that such a technique is unsuitable for unskilled 

volunteers, whose help is essential in carrying out a national survey (Webbon 2002). 

Webbon (2002) therefore chose the faecal count technique as the most appropriate for 

collecting information on fox densities across Britain. In that it directly provides a 

relative fox density estimate, there is no problem in assessing the association between 

predation and population density using faecal count data. However, the difficulty in 

using the data here lies in the fact that it was only possible to base estimates on a small 

number of region or land class groups and that data had to be aggregated. Ideally, a fox 

population density estimate would be available for every holding for which data were 

collected in order that the two might be directly referenced to one another. However, 

there was not a more specific and accurate fox population density data set than the one 

used available for Britain. 

8.4. WIDER ECONOMIC IMPACTS OF FOX PREDATION 

In addition to the costs considered here, foxes also have beneficial impacts on British 

agricultural interests. Potentially, they are pest controllers for arable farmers and 
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foresters, since rabbits and rodents are important components of fox diet and also 
significant pests (Hewson & Leitch 1983; Macdonald 1984; Harris & Lloyd 1991; Kolb 

1994; McKillop et al. 1996; Chadwick et al. 1997). Despite the large numbers of 

rabbits that are killed by foxes, it is unlikely that foxes have a significant impact on 

rabbit populations or the damage they cause, except where rabbit numbers are already 
low (Trout & Tittensor 1989; Newsome 1990; Pech et al. 1992). Nevertheless, foxes 

may prevent dramatic increases in rabbit abundance (Banks et al. 1998; Banks 2000; 

Trout et al. 2000). The impacts of fox predation on populations of other pest species 

are uncertain. 

To those that engage in fox hunting, the fox is a quarry and its pursuit provides them 

with a benefit through enjoyment of the sporting activity. In addition, the activity 

provides social contacts both for those involved and those who let the hunt on their 

land, usually farmers, as well as the collection and disposal of fallen livestock by hunt 

kennels, often carried out free or at a subsidised price (Baines et al. 1995). 

The effects of fox predation are not only felt by agricultural producers and game 

interests. Through predation on species of conservation importance, especially ground- 

nesting birds, foxes can also be considered to be a pest to conservation interests. 

Examples include golden plover (Parr 1993), ringed plover (Pienkowski 1984), avocets 

(Chadwick et al. 1997), eider duck (Wilson 1990), curlews (Bealey et al. 1999; Grant et 

al. 1999) and terns (Kruuk 1972; Patterson 1977), but fox predation of lapwings was not 

considered a significant mortality factor in two studies (Baines 1990; Seymour 1999). 

In addition to ground-nesting birds, fox predation may be important in determining hare 

population sizes (Reynolds & Tapper 1995; Tapper et al. 1996). 

Fox control is carried out on many coastal nature reserves to safeguard vulnerable bird 

populations (Reynolds 1998). However it is difficult to separate out the effects of foxes 

and other factors on wild animal populations (White et al. 2000a). Foxes are unlikely to 

have an effect on robust populations, i. e. they probably would not cause an initial 

decline in a species, but may affect it significantly once this decline has occurred 

(Newsome 1990; Smith 1999). Although long-term bird breeding numbers tend not to 

experience increases following predator control actions (Cote & Sutherland 1997), the 

effectiveness of fox control in realising conservation benefits is uncertain and the 
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actions of a number of predator species tends to complicate the conclusions of predator 

exclusion experiments with regard to fox predation alone. 

8.5. FUTURE WORK 

There are a number of different areas in which this work could be extended: different 

specifications could be tried for the models; the analyses and framework developed here 

could be applied elsewhere; further data on fox population dynamics and the effects of 

fox population management could be collected; other aspects of management and 

farmer behaviour could be considered; and the wider economic impacts of foxes 

assessed. 

The likelihood of predation occurring and the scale of predation when it did occur were 

considered as separate processes for the analysis of the costs of lamb predation by 

foxes. However, due to the small sample sizes for the other producer types, one 

analysis was used to look at the scale of losses when assessing the trade-off between 

losses and preventive expenditure for these other data. A useful extension of these 

analyses would be to model the occurrence of predation separately for these data sets 

too. Comparing the output of such a model with that produced here would enable us to 

ascertain whether different mechanisms determine the likelihood and scale of predation. 

However, larger data sample sizes than those available for this study would be desirable 

for the application of such an analysis. 

The models developed in Chapters 3 and 4 could be used to assess the management of 

vertebrate pest populations other than foxes. Their data requirements are relatively low, 

but they are potentially applicable to a range of situations where either optimal 

management strategies or the avoidable costs of pest actions need to be identified. The 

analyses could also be extended to consider other forms of preventive measure for fox 

predation, as well as to assess the relative cost-effectiveness of different forms of fox 

control, if it were possible to collect data on these. 

Given less constrained resource funding, the impact of foxes on agricultural interests in 

Britain could be more accurately assessed and subsequent analyses of such data would 
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enable robust strategies for the management of fox predation to be identified. 

Additional field studies to those already carried out on lamb predation in Scotland 

(Hewson 1984b; White et al. 2000b) would enable the collection of accurate data on fox 

predation. Nevertheless, unless a large number of holdings across different regions of 
Britain were involved, it would be difficult to make broad-scale management 

recommendations from such data. Large-scale manipulative experiments over several 

geographical regions are desirable to evaluate fox control and its impact on fox 

abundance and predation (Greentree et al. 2000; Macdonald et al. 2000; White et al. 
2000a). However, a scientifically rigorous assessment of this type would be unfeasible 
in Britain because of the large number of replicates it would require (Greentree et al. 
2000; Macdonald et al. 2000), whilst it would be difficult to account for the effects of 
immigration. Data on the dynamics of rural fox populations and the effect of population 

management on these dynamics are generally lacking and even small-scale studies 

would provide a useful advancement of our knowledge in this area. 

In addition to information on the impacts of fox control on fox abundance and damage, 

alternatives to lethal control should also be considered. Potential alternatives include 

reproductive control (discussed by Artois 1997; Bradley et al. 1997; Pech et al. 1997; 

McLeod and Saunders 2001; Marks et al. 2001 and Saunders et al. 2002) and the 

manipulation of the behaviour that brings the fox into conflict with man (Putman 1989), 

through conditioned taste aversion, supplementary or diversionary feeding and habitat 

management, for example (Van Vuren & Smallwood 1996; Baker & Macdonald 1999; 

White et al. 2000a). Given the controversial nature of the use of lethal control for foxes 

in Britain, research into alternatives should be encouraged. However, there are ethical, 

technical and legal problems associated with fertility control, in particular, and none of 

these non-lethal control methods have yet been successfully used to reduce wild fox 

populations or predation. White et al. (2000a) outline some of the difficulties 

associated with using these techniques in the field. 

To individual livestock holders the relative risk of the adverse effects of action (or 

inaction) is usually an important component of decision-making in addition to economic 

criteria (Norton 1976; Pannell 1990; Morris 1999; Chilonda & Van Huylenbroeck 

2001). In fact, pest control is sometimes undertaken without any regard for the 

economics of the situation and it is often perceptions rather than the actual situation that 
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determine actions (Mumford 1981a; Mumford 1981b; Mumford & Norton 1984; Allen 

& Sparkes 2001). It is therefore important to take these attitudes to risk into account 

when assessing preventive and control actions (Chilonda & Van Huylenbroeck 2001). 

Risk and decision models have been applied to crop pest management, e. g. Rossing et 

al. (1994), but neglected for the analysis of vertebrate pest control. The fact that many 
farmers seem to adopt a fixed control strategy with regard to foxes indicates that 

behavioural decision models may provide a more appropriate economic model than one 

of cost-minimisation only. 

Foxes are not the only predators of livestock, poultry and game in Britain and a number 

of the techniques used to manage fox predation will also effectively prevent predation 
by some of these other species. Therefore predation management should not focus 

solely on foxes and an overall assessment of control should include the effects of all the 

predators that cause losses. The results of studies by Dion et al. (1999) and Risbey et 

al. (2000) illustrate how concentrating control on certain predator species may not solve 

(and can exacerbate) a predation problem. It is also important to consider the spatial 

effects of any control action and the effects that an action on one farm has on those 

surrounding it (Bicknell 1993). It would be interesting to consider how group 

management systems (i. e. several landowners acting together) would affect predation 

impacts, e. g. Bhat et al. (1996). The temporal distribution of losses due to fox predation 

should also be assessed in order to determine whether producers experience the same 

levels of losses over time (Knowlton et al. 1999). 

An overall assessment of fox management, its effectiveness and worth, should take into 

account all the costs and benefits of fox predation and fox activity to society in Britain. 

Such benefits include the non-use and existence values the fox has to those whose lives 

would be less satisfying if foxes were not present (as discussed for wildlife in the U. S. 

by Conover, 1997a & b). A full economic analysis would necessitate a large amount of 

data collection and the quantification of all these benefits and costs. Messmer (2000) 

outlines the inadequacy of data available to assess the social and economic losses 

caused by wildlife. Even when only considering the costs of fox predation to 

agriculture, an economic analysis would investigate the effects of these on society in 

general, including the externality effects of fox control actions, rather than solely 

focusing on the costs to farmers. The humaneness and acceptability of control actions 
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(both lethal and non-lethal) are also important issues (Reynolds & Tapper 1996; Reiter 

et al. 1999; Heydon & Reynolds 2000; Macdonald et al. 2000; White et al. 2000a). 

Bicknell (1993) argues that individual, self-interested behaviour by landowners is 

unlikely to provide pest management services at a level that is acceptable to society. due 

to externalities and the fact that pest management has some public-good properties, in 

that the benefits and costs that arise from it often accrue to individuals other than those 

paying for it. She also outlines the facts that pest management actions may impact on 

markets for agricultural products and that the benefits of pest control to conservation 
interests are extremely difficult to quantify in monetary terms. 

A further problem is that the costs and benefits of wildlife impacts are not distributed 

evenly across different sectors of society and the burden of dealing with costly impacts 

tends to fall to a great extent on the agricultural community (Messmer 2000). This 

necessitates the transfer of the economic benefit of wildlife from the national to the 

local scale where the loss is incurred, as discussed by Vickery et al. (1994) with regard 

to brent goose management in Britain. However, there is often little support amongst 

the general public for compensating individuals and companies that suffer wildlife 

damage (Reiter et al. 1999). Vickery et al. (1994) along with other authors have also 

intimated that the problem of brent goose management is largely political rather than 

ecological or economic, which is also likely to be the case for foxes in Britain. 

The fox has interactions with a number of different economic sectors in Britain and, as a 

top carnivore and generalist predator, ecological interactions with many species. 

Assessing the overall costs and benefits of fox management to society is a fundamental 

step to achieving efficient management strategies and is especially important given the 

controversy and differing opinions surrounding fox management in this country and the 

diversity of stakeholders involved. 
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APPENDIX A 

Questionnaire form for sheep producer survey 
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IMPACT OF FOXES ON SHEEP FARMING 

1. What is the total area of your farm? 1 

2. What percentage of this area is used for the following types 

Sheep Dairy cattle Beef cattle 

3. How many paid employees are there on your farm? 

Full-time Part-time (less than 16 hours a week) 

4. Please rate the following land uses from 0 to 5, according t( 

they take up (0 = none of the surrounding land, 5= all of the su 

more than one land use. Arable 
I1 

Livestock 

Village o Urban 

Other 17 Please state: 

5. Is your farm hill, upland or lowland? 
Hill Upland 

6. What breed(s) are your sheep? F 

of farming? 

Arable Other 
f 

Casual (less than 6 months of year) 

how much of the land surrounding your farm 

rounding land). You may give the same rating to 
:1 

Game rearing 
II 

Forestry 
a 

warn thorn nn uni it hn 

AT YOUR MOS I HtUtN I LAMUING 

8. On what date did lambing begin? Day/Month/Year 

9. How many ewes were lambing? 

10. a) Did you lamb your ewes indoors? 

Yes, all ewes Yes, but only some ewes 
F-]=> 

Please answer (b) No 

b) If only some, how many and why these ewes? 

Number (OR) % Why? 

11. How many days were ewes and lambs kept indoors for after lambing? days 

12. a) Did you lamb your ewes in lambing pens? 
Yes, all ewes 

LI Yes, but only some ewes 
F Please answer (b) No 

b) If only some, how many and why these ewes? 

Number I- I 
(OR) %I Why? 

13. How many ewes had multiple births? Number (OR) % 

14. Did ewes with multiple lambs receive supplementary feeding during pregnancy? Yes 
FI 

No 
a 

15. How many lambs were born alive? Number 
7 

16. (Please only include losses of live sheep and estimate numbers if you do not know exact figures) 

Between birth and weaning, how many lambs: Number (OR) Percentage (of those born alive) 

were killed by predators (including foxes)? 

were killed just by foxes? 

died from other causes? 

17. Please tick the appropriate box to rate between 1 and 5 how reliable you believe the above figures for lamb 
losses to be (1 - guess, 3= estimate, 5= accurate figures): 

ltitititf ::: ] 

18. How does the number of lambs lost to foxes this year compare to losses in a typical year on your farm? 

Below average 
a Average El Above average 

Please turn ove 



19. Has there been a change In the number of lambs killed by foxes over the past five years? 

A decrease 
a 

No change 
a 

An incrca. sc1 Don't know 

20. How much do you consider losses to foxes cost you at this most recent lambing? £ 

Inclualn shootin and lam in trapping, terriers ands spades, snaring and hunting with hounds) 

21. How many foxes, if any, were killed on your farm in the last 12 months? foxes 

22. Has there been a change In the number of foxes killed on your farm over the past five years? 
A decrease a No change 

a An increase a Don't know a 

23. What was the cost of all your predator control In the last year? £ (OR) days 

24. What proportion of this was spent on fox control? 1/ 
25. Has the amount you spend on fox control changed over the past five years? 

Dvcrcascdf-] No change F-I Increased L)on't know 

26. Have you seen signs of any of the following animals (other than your own) on your farm over the last 12 
months? (Please tick. ) 

Stoats/weasels Mink Badgers Foxes Cats Dogs 

All I lures will remain 
months? 

Finished lambs stoles Draft ewes I Culls 

? we Iambs for breedin --« 6 months old) ýrý- Fwe lambs for breeding (at I year old) 

Wool (kg) I 
3. What was the average Ilveweight of your finished lambs? kg , 
9. How many sheep qualified for the Hill Livestock Compensatory Allowance (HLCA)? 

0. How many sheep qualified for the Sheep Annual Premium (SAP)? 
L 

1. Please tick If you are in a Less Favoured Area (LFA) and/or qualify as Severely Disadvantaged. 

LIA (Liss I': v nireil Areal 
[1 

Severely I)isadvanragedl n 

2. Do you pay rent or grazing costs? Yes n No n 

3. What percentage of your farm Income comes from sheep farming? (Please tick one box) 

l. css Ihnn 25`G Aiounul Around 50'7 [j Around 75% 10070 

4. It you are able, please supply me with figures for the following, even approximate, for your farm in 1999. These will 
help mo estimate the costs of sheep production for the economic side of my research into fox impacts. 

Total annual farm overheads 
Number of replacement ewes and shearlings/gimmer hoggs purchased 

Amount of concentrates used (please specify units, e. g. £, kg, Ib) F 

Amount of bought forage used (please specify units) 

Amount of fertiliser used (please specify units) 

Vet and medical expenses 

If you would be willing to answer some more detailed questions for my study, please tick this box Li 

Please give me your name, telephone number and postcode in case I need to contact you about your form. I will not 
pass this information on to anyone else. If you prefer to remain anonymous (unless you ticked the box above), please 
give just your postcode and parish (it known) so I can check the rough location of your farm. 

Name Telephone number 

Postcode 
_ 

Parish 

Thank you very much for your help. Please send this form back in the enclosed FREEPOST envelope, or to my 
address on the letter, and feel free contact me if you have any comments or queries. 



APPENDIX B 
Summary of the variables and codes used in Chapters 2,3 and 4 

analyses 

Variable Description 

Occurrence of perceived Binary response variable, coded 0 for farms where no 
predation fox predation of lambs was reported and 1 for farms 

where at least one lamb was reported killed by foxes 
Number of lambs Continuous dependent variable, reported number of 
perceived killed by foxes lambs killed by foxes on farms where at least one lamb 
per ewe was reported killed, divided by the number of lambing 

ewes and In-transformed 

Country Single digit code: 1= England, 2= Wales, 3= Scotland 
Region Single digit code for region according to postcode (Table 

1): 1= Southwest, 2= South, 3= Southeast, 4= 
Midlands, 5= Wales, 6= Northwest, 7= Northeast, 8= 
Anglia, 9= Scotland 

Farm type Single digit code: 1= lowland, 2= upland, 3= hill 

England Dummy variable, coded 1 for farms in England 

Wales Dummy variable, coded 1 for farms in Wales 

Scotland Dummy variable, coded 1 for farms in Scotland 

Southwest Dummy variable, coded 1 for farms in the Southwest 
postcode region 

South Dummy variable, coded 1 for farms in the South 
postcode region 

Southeast Dummy variable, coded 1 for farms in the Southeast 
postcode region 

Midlands Dummy variable, coded 1 for farms in the Midlands 
postcode region 

Northwest Dummy variable, coded 1 for farms in the Northwest 
postcode region 

Northeast Dummy variable, coded 1 for farms in the Northeast 
postcode region 

Anglia Dummy variable, coded 1 for farms in the East Anglia 

postcode region 

Hill Dummy variable, coded 1 for hill farms 

Upland Dummy variable, coded 1 for upland farms 

Lowland Dummy variable, coded 1 for lowland farms 

Total area of farm Continuous variable, area of farm in hectares 
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Area of land used for Continuous variable, area of land on farm devoted to 
sheep farming sheep farming, in hectares 

Lambs born Continuous variable, number of lambs born on farm at 
most recent lambing, In-transformed 

Lambing ewes Continuous variable, number of ewes lambing at most 
recent lambing, In-transformed 

Lambs born per ewe Continuous variable, number of lambs born on farm at 
most recent lambing per lambing ewe 

More than 250 ewes Dummy variable, coded 1 for farms with more than 250 
ewes 

Ewe stocking density Continuous variable, number of ewes per hectare of land 
used for sheep farming 

Arable a Score on scale of 0 to 5 for amount of land in 
surroundings of farm taken up by arable land-uses (0 = 
none of the surrounding land, 5= all of the surrounding 
land) 

Livestock a Score on scale of 0 to 5 for amount of land in 
surroundings of farm used for livestock (0 = none of the 
surrounding land, 5= all of the surrounding land) 

Game rearing a Score on scale of 0 to 5 for amount of land in 
surroundings of farm used for game rearing (0 = none of 
the surrounding land, 5= all of the surrounding land) 

Forestry a Score on scale of 0 to 5 for amount of land in 
surroundings of farm used for forestry (0 = none of the 
surrounding land, 5= all of the surrounding land) 

Village a Score on scale of 0 to 5 for amount of land in 
surroundings of farm taken up by village land-uses (0 = 
none of the surrounding land, 5= all of the surrounding 
land) 

Urban a Score on scale of 0 to 5 for amount of land in 

surroundings of farm taken up by urban land-uses (0 = 
none of the surrounding land, 5= all of the surrounding 
land) 

Rough grazing a Score on scale of 0 to 5 for amount of land in 

surroundings of farm used for rough grazing (0 = none 
of the surrounding land, 5= all of the surrounding land) 

Arable b Dummy variable, coded 1 for farms with arable land in 

their surroundings 

Livestock b Dummy variable, coded 1 for farms with land used for 
livestock in their surroundings 

Game rearing b Dummy variable, coded 1 for farms with land used for 

game rearing in their surroundings 
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Forestry b Dummy variable, coded 1 for farms with land used for 
forestry in their surroundings 

Village b Dummy variable, coded 1 for farms with village(s) in 
their surrounding land 

Urban b Dummy variable, coded 1 for farms with urban land-uses 
in their surroundings 

Rough grazing b Dummy variable, coded 1 for farms with land used for 
rough grazing in their surroundings 

Percentage of ewes Continuous variable, percentage of ewes lambed indoors 
lambed indoors out of all ewes lambing, arcsine transformed 
Percentage of ewes Continuous variable, percentage of ewes lambed in pens 
lambed in lambing pens out of all ewes lambing, arcsine transformed 

Percentage of ewes with Continuous variable, percentage of ewes that had 
multiple births multiple births out of all ewes lambing, arcsine 

transformed 

Indoor lambing Dummy variable, coded 1 for farms where all ewes were 
lambed indoors 

Days in Continuous variable, number of days for which ewes and 
lambs kept in after lambing 

Supplementary feeding Dummy variable, coded 1 for farms where ewes with 
multiple lambs received supplementary feeding during 
pregnancy 

Month of lambing Single digit code for month in which lambing took place: 
1= January, 2= February, 3= March, 4= April, 5= 
May to November, 6= December (some months pooled 
to increase sample sizes and no farms lambed in June, 
July or August) 

Mountain and Moorland Dummy variable, coded 1 for farms with mountain and 
moorland sheep breed(s) 

Grass Hill Dummy variable, coded 1 for farms with grass hill sheep 
breed(s) 

Longwool Dummy variable, coded 1 for farms with longwool sheep 
breed(s) 

Terminal Sire Dummy variable, coded 1 for farms with terminal sire 
sheep breed(s) 

Halfbred Dummy variable, coded 1 for farms with halfbred sheep 
breed(s) 

Scottish Blackface Dummy variable, coded 1 for farms with Scottish 
Blackface sheep 

Number of lambs reported Continuous variable 
lost to causes other than 
predation 
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Number of lambs reported Continuous variable, number of lambs reported lost to 
lost to causes other than causes other than predation divided by number of 
predation per lambing ewe lambing ewes 

Number of foxes killed on Continuous variable 
farm in last year 

Number of foxes killed Continuous variable, number of foxes killed on farm in 
per hectare in last year last year divided by area of farm (in hectares) 

Fox control carried out Dummy variable, coded 1 for farms where foxes were 
killed by various control measures 

Region-based relative fox Continuous variable with 9 levels 
density 

Land class-based relative Continuous variable with 7 levels 
fox density 
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APPENDIX C 

Questionnaire forms for free-range poultry producer surveys 
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IMPACT OF FOXES ON TURKEY PRODUCERS 

1. How large is the turkey range area on your farm? hectares (OR) acres 
2. How many paid employees are there on your farm? 

Full-time Part-time 
I1 

Casual 
(less than 16 hours a week) (less than 6 months of year) 

3. Please rate the following land uses from 0 to 5, according to how much of the land surrounding your farm 

they take up (0 = none of the surrounding land, 5= most of the surrounding land). You may give the same rating to 

more than one land use. 

Arable 
II 

Livestock II 
Garne rearing 

II 
Forestry 

Village El Urban a 

Other Please state: 

4. How many turkeys were there on your farm in August 1998? 

5. Do you have fixed or mobile housing for your turkeys? Fixed F7 Mobile 

6. Is housing available at all times or only at night? All times a Night only 1 -1 

7. What proportion of a 24 hour day are the turkeys outside for, on average? (Please tick most appropriate box) 

0-250/v 26-509(, % 
f 51-75% 76-1001/o jI 

8. How long do you grow your turkeys for? weeks 

9. In what month did you buv your i oults in 1998? 

10. How effective is the fence surrounding your turkey range area at: Very effective Somewhat effective Inefl 

i) preventing foxes from getting into the range area? 
1: 1 Q 

ii) preventing all unwanted animals from getting into the area? 
QQQ 

iii) preventing turkeys from escaping? QQQ 

11. What type of fence surrounds your turkey range area? Please tick all that apply. If none of the below, 

please state any alternative method you use to prevent turkey losses. 

Permanent perimeter fence Q (OR) Mobile Q 

Electric 
Q 

(OR) Wire and post 
Q 

(OR) Flexinet 
Q 

Alternative 

12. In what year was the fence first used? 

3. How much did the fence cost when first purchased? 

4. What length is the fence? metres 

5. How much does maintenance of the fence cost per year? £ 

6. Have you seen signs of any of the following animals (other than your own) on your farm over the last 12 

months? (Please tick. ) 

Stoats/weasels Mink Badgers Foxes Cats Dogs 

ve 



include losses of live 

17. How many turkeys: Number (OR) 

were killed by predators (including foxes)? 

were killed by foxes? 
I' 

died from other causes? 

18. Please tick the most appropriate box to rate between 1 and 5 how reliable yc 
losses to be (1 = guess, 3= estimate, 5= accurate figures): 

Jun Jul Aug Sept 

19. During which month(s) were turkeys killed (please tick)? 

ý20. Has there been a change in the number of turkeys killed by foxes over the past five 

A decrease No chaniýc 
r-1 

An increase 
a 

Don't know 

'21. On how many occasions did turkeys experience stress due to fox activity in 1998? 

22. How much do you consider that foxes cost you in 1998: 

In terms of turkeys killed? £ 

In terms of meat deterioration caused by stress? E 

23. How do these costs compare to those of a typical year on your farm? 

Below average Averig; a Ahove average 

(of turkeys on tu r mm) 

the above figures for 

Nov Dec 

INFORMATION ON FOX CONTROL MEASURES 
(Including shooting and tamping, trapping, terriers and spades, snaring and hunting with hounds) 

24. How many foxes, if any, were killed on your farm in 1998? foxes 

25. Has there been a change in the number of foxes killed on your farm over the past five years? 
A decrease No cii ie 

1-1 
An increase Don't know 

26. What was the cost of all your predator control in 1998? E[ (OR) days 

27. What proportion of this was spent on fox control? (Y, LI 

28. Has the amount you spend on fox control changed over the past five years? 
1"\. 11-..... 111 1^I t. _ ,. 1_.... .. 1............,.. 1 

1- - 
1-1 -_. _- , ___ ... 1^1 

TURKEY PRODUCTION ON YOUR FARM IN 19 (All supplied figures will remain totally confidential. ) 
29. How many turkeys were sold at Christmas and at what average market price each? 

Nuýnbcr ulcl \vu i. c in ii kct hricc t 

30. What was the average Ilveweight of turkeys sold? lb (OR)' kg 

31. How many chicks did you buy from breeders and at what average price each? 
Number bouhhl Average price, [ 

j 

If you would be willing to answer some more detailed questions for my study, please tick this box 
Q 

Please give me your name in case I need to contact you about your form. I will not pass this information onto anyone 
else. If you prefer to remain anonymous (unless you ticked the box above), please just give your postcode and parish 
(if known) so I can check the rough location of your farm. 

Name 

Postcode Parish 

Thank you very much for your help. Please send this form back In the FREEPOST envelope enclosed or to my 
address below and feel free contact me if you have any comments or queries. 

Rebecca Moberly, Environment Department, University of York, FREEPOST NEA8324, York YO10 5ZZ 
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IMPACT OF FOXES ON GOOSE PRODUCERS 

How large is the area of goose paddocks on your farm? II hectares (OR) II aortic 
2. How many paid employees are there on your farm? 

Full-time 
11 

Part-time 
I 

Casual 
(less than 16 hours a week) (less than 6 months of year) 

3. Please rate the following land uses from O to 5, according to how much of the land surrounding your farm 

they take up (0 = none of the surrounding land, 5= all of the surrounding land). You may give the same rating to 

more than one land use. 
Arable 

II 
Livestock II 

Game rearing 
II 

Forestry 

Village Urban 

Other F-I Please state: 

in your farm in Auoust 1999? 

I 

5. Do you have fixed or mobile housing for your geese? Fixed I Mobile 

6. Is housing available at all times or only at night? All times Night only F1 

7. What proportion of a 24 hour day are the geese outside for, on average? (Please tick most appropriate box) 

0-25% 26-50% 
I 

51-75% 
I 

76-100% 
El 

8. In what month did you buy your geese in 1999? 

9. How long do you grow your geese for? II 
weeks 

TION BY FOXES ON YOUR FARM IN 1999 (Please only include losses of live geese) 

v many geese: Number (OR) Percentage (of geese on farm) 

were killed by predators (including foxes)? 
II 

were killed by foxes? II II 

died from other causes? IJ (J 

1. Please tick the most appropriate box to rate between 1 and 5 how reliable you believe the above figures for 
losses to be (1 = guess, 3= estimate, 5= accurate figures): 12345 

Jun Jul Au Set Oct Nov Dec 

12. During which month(s) were geese killed (please tick)? 

13. Has there been a change in the number of geese killed by foxes over the past five years? 

A decrease 
II 

No change 
II 

An increase 
L] 

Don't know 

14. On how many occasions did geese experience stress due to fox activity in 1999? 

15. How much do you consider that foxes cost you in 1999: 

In terms of geese killed? £ 

In terms of meat deterioration caused by stress? £ 

16. How do these costs compare to those of a typical year on your farm? 

Below average 
F--] Average 

[1 Above aver ag, c 
a 

17. Have you seen signs of any of the following animals (other than your own) on your farm over the last 12 

months? (Please tick. 
Cats U Dogs 



INFORMATION ON FOX CONTROL MEASURES 
(Including shooting and and snaring and hunting with hounds) 

18. How many foxes, If any, were killed on your farm In 1999? foxes 

19. Has there been a change In the number of foxes killed on your farm over the past five years? 
A dcri : iisr 

a 
No change An incii"ase 

a 
Uuu'r know 

1-1 

20. What was the cost of all your predator control in 1999? £ (OR) days 
C 

21. What proportion of this was spent on fox control? 

22. Has the amount you spend on fox control changed over the past five years? 

here rtirtl 
LL1 

No ch; uigc Increased 
LLI 

Don't know 
El 

23. How effective is the fence surrounding your goose paddocks at: Very eFI ctive Somewhat eftectivc 
I) preventing foxes from getting Into the paddocks? 

QQ 

il) preventing all unwanted animals from getting In? QQ 

III) preventing geese from escaping? 
QQ 

24. What type of fence surrounds your goose paddocks? Please tick all that apply. If none of the belt 

state any alternative method you use to prevent goose losses. 

I'runnurnt i) 6111(trr trncc Q M�hIlc Q 

I'. Irciric Q 
Wire and post 

Q 
f'Icxinit Q 

AIIcrr ttivu 

25. In what year was the fence first used? L 

26. How much did the fence cost when first purchased? 
27. What length Is the fence? 

26. How much does maintenance of the fence cost per year? 

rnctres 

1. 

I 

GOOSE PRODUCTION ON YOUR FARM IN 1999 It you are able, please supply me with figures for the following, even 
; ylt i-rini; ito These will h(, ll) with the economic side of nay research into fox impacts. All figures will remain totally 

.. - 111.11Y avvov wer. Sulu at MIanannaa onv at wnor arora v marROi pncv eacn anu iivewei nur 

'Jun ht i ', old lI Avcntre iuvkrI prier £ Avcripr liveweiýht Ih 

30. How many geese werrd sold at Christmas and at what average market price each and livewel ht? 

Nuinikl srlcl l Avcr. iyi luurket hiiee I. Aver; ilrc livewciFhl lh 

31. How many chicks wereTbou ht and at what average price each? 

Nwiilwr l mphl 

F] 

Avrr; iyv- mire f 
1= 

32. How much feed did you buy In 1999 and/or how much do you spend on feed? 

Almuni nI keul Iplcaw. " stufe Ih/k} tow 
II 

lust of It-rd £ 

33. What proportion of the total annual costa on your farm are spent in goose production? 

If you would be willlny to ; answer some more detailed questions for my study, please tick this box 
u 

and 
write your name and telephone number below. 
Otherwise, please dust tell me what parish your farm Is In (If known) so I can check Its rough location. 

Name Telephone number 

Parish 

Thank you very much for your help. Please send this form back In the enclosed FREEPOST envelope, or to my 
address below, and feel free to contact me If you have any comments or queries. 

Rebecca Mobcily, linviionme"t I)epartnx: nt, university of York, I RI: IiI'OS'1" NF A8324, York Y010 572 
'tel. 01904 434074 Fax. 01904 43299 Email: RI, M I06C)york. ac. uk 



IMPACT OF FOXES ON FREE-RANGE CHICKEN GROWERS 

1. What is the area of chicken pasture on your farm? II hectares (OR) acres 
2. How many paid employees are there on your farm? 

Full-time 
I 

Part-time 
I1 

Casual 

(less than 16 hours a week) (less than 6 months of year) 

3. Please rate the following land uses from 0 to 5, according to how much of the land surrounding your farm 

they take up (0 = none of the surrounding land, 5= most of the surrounding land). You may give the same rating to 

more than one land use. 
Arable a Livestock 17 Game rearing 

a Forestry 

Village Town a City 

Other F-I Please state: 

A LI..... w. w. a.. wMiwlrw raw ". wrw ý4. wrw w. ý .. w.. r 1.. r. « w.. w.. w u.. i. w .w ýAAOý) ,. 1..,. 1.. x..... 

5. Is indoor housing for your chickens available at all times or onl at night? 
All times [ Night only 

6. What proportion of a 24 hour day are the chickens outside for, on average? (Please tick most appropriate box) 

0-25% 0 26-50% 51-751'/o 76-100% [-1 
7. How long do you grow your chickens for? weeks 

6. At what age are chickens given access to free range? 
L 

weeks 

9. What is the average liveweight of your chickens when fully grown? 
C] 

lh 

10. When did your most recent completed growing period end? Day/Month/Year 

FENCING 
11. How effective is the fence surrounding your chicken pasture at: Very 

i) preventing foxes from getting into the pasture? 
ii) preventing all unwanted animals from getting into the pasture? 

iii) preventing chickens from escaping? 

12. What type of fence surrounds your chicken pasture? Please tick all that 

state any alternative method you use to prevent hen losses. 

Permanent^imeter fence Mobile 

ply. If none 

Electric u Wire and Post U Flexinet 

Alternative 

3. In what year was the fence first used? 

4. How much did the fence cost when first purchased? 

5. What length is the fence? 

6. How much does maintenance of the fence cost per year? 

affective Ineffective 

the below, please 

i 

ll1CCres 

t. Have you seen signs of any of the following animals (other than your own) on your farm over the last 12 

months? (Please tick. ) 

Stoats/weasels F-I Mink Fj Badgers LI Foxesu Cats U Dogs 



ý ,ýý wý ýaýý; s . mr 
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ý'ý'ý 
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,VýF4I '42#, 

ýý 

9 many chickens: 

were killed by predators (including foxes)? 

were killed by foxes? 

died from other causes? 

19. Please tick the most appropriate box to rate between 1 and 5 how reliable you believe the above figures for 

losses to be (1 = guess, 3= estimate, 5= accurate figures): 12345 

20. Has there been a change in the number of chickens killed by foxes over the past five years? 
A decrease a No change An increase Don't know F7 

21. On how many occasions did chickens experience stress due to fox activity, during the most recent growing 

period? 
22. How much do you consider that foxes cost you during the most recent growing period: 

In terms of chickens killed? £ 
In terms of meat deterioration caused by stress? C y.,,, y23. 

How do these costs compare to those of a typical growing period on your farm? `''` 

INFORMATION ON FOX CONTROL MEASURES 
mciua n. 9 ssnooung and tamping, trapping, terriers and spades, snaring and huntin with hounds 

24. How many foxes, if any, were killed on your farm in 1998? foxes 

25. Has there been a change in the number of foxes killed on your farm over the past five years? 

A decrease 
1-1 

No change An increase Don't know 

26. What was the cost of all predator control in 1998? £ (OR) days Ii 

27. What proportion of this was spent on fox control? << 

1-------1 

28. Has the amount you spend on fox control changed over the past five years? 
Decreased No chant! e increased Don't know F-I 

This information will be useful for the economic side of 

29. How many chickens were sold at the end of the most recent growing period? 
30. What percentage of these received bonus payments for reaching weight and feed convers 

lh 

If you would be willing to answer some more detailed questions for my study, please tick this box 

Please give me your name, telephone number and postcode in case I need to contact you about your form.. Iýwill not 
pass this information on to anyone else. If you prefer to remain anonymous (unless you ticked the box above), please 
give just your postcode and parish (if known) so I can check the rough location of your farm. 

Name Telephone number 
Postcode Parish 

Thank you very much for your help. Please send this form back in the enclosed FREEPOST envelope and feel 
free contact me if you have any comments or queries. 

Rebecca Moberly, Environment Department, University of York, FREEPOST NEA8324, York YO10 5ZZ 
Tel. 01904 434074 Fax. 01904 432998 Emafl: RLM106@york. ac. uk 



nib 

THE IMPACT OF FOXES ON FREE RANGE EGG PRODUCERS 

How large is the area of chicken pasture on your farm? j hectares (OR) acres 

How many paid employees are there on your farm? 

Full-time 
fI 

Part-time (less than 16 hours a week) 
1 

Casual less than 6 months of year) 

Please rate the following land uses from 0 to 5, according to how much of the land surrounding your farm 

they take up (0 = none of the surrounding land, 5= all of the surrounding land). You may give the same rating to 

more than one land use. 

Arable 
II 

Livestock 
a 

Forestry 
a 

Game rearing 
C 

Village I Urban I Other Please state: 

4How many laying hens were there on your unit at the start of the last laying cycle? 

5. What type of outlet do you supply your eggs to? (Please tick all that apply. ) 

Packing station 
a 

Wholesalers 
a 

Retailers/caterers 

Direct to consumers (i. e. employees and general public) 
El 

Other (e. g. sales to a 
UHY 

6. Do you have fixed or mobile housing for your hens? Fixed Mobile I 

7. Is housing available at all times or only at night? All times 
II 

Night only 
F- 

8. What proportion of a 24 hour day are the hens outside for, on average? (Please tick most appropriate box) 

0-25% 
II 

26-50% 5 1-75% 
II 

76-100% 

9. ' What is your average number of eggs per hen housed per year'? eggs 

10. How often do you replace your hen stock? Every weeks 

11. How many weeks do your hens lay for? weeks 

12. How long is your turn-around period between production cycles? weeks 

13. When did your most recent laying cycle finish? Day/Month/Year- 



PREDATION BY FOXES ON YOUR FARM t}'lease only include losses of live hens) 

21. When did your most recent (finished) laying cycle start? Day/Month/Year 

22. During the most recent finished laying cycle, how many hens: Numher (OR) Percentage (of hens on farm) 

were killed by predators (including foxes)? I II 

were killed by foxes? ý--ý I 

died from other causes? L_I LI 

23. Please tick the most appropriate box to rate between 1 and 5 how reliable you believe the above figures for 
losses to be (1 = guess, 3= estimate, 5= accurate figures): 12345 

24. Has there been a change in the number of chickens killed by foxes over the past five years? 
A tkcreasr 

F] No ch: inge 
F] An increase F] Don't know F-I 

25. On how many occasions did hens experience stress due to fox activity, during the last laying cycle? 

26. How much do you consider that foxes cost you during this most recent laying cycle in terms of financial 

loss of eggs laid? £ 

27. How do these costs compare to those of a typical laying cycle on your farm? 

Below average Average Ahove average 

INFORMATION ON FOX CONTROL MEASURES 

ZU- now many foxes, it any, were killed on your farm in the last 12 months? L___ Foxes 

29. Has there been a change in the number of foxes killed on your farm over the past five ears? 
A (lccre: is(. 

I-] Noy rh; int'c 
1-1 An increase EI Ikro'i know 

30. What was the cost of all your predator control in the last year? £ (OR) days 

31. What proportion of this was spent on fox control? 

32. Has the amount ou spend on fox control changed over the past five years? 
Ihriý; r: ýýI Nuýtiaiuýu EI Iný: rc; ýý. cýl 

ýý 
Don I know 

EGG PRODUCTION ON YOUR FARM If you are able, please supply me with figures for the following, even 
;i proxim, ite. These will help with the economic side of my research into fox impacts. All figures will remain totally 
cýýnfnfuntini. 
33. How many eggs were sold in the last 12 months and at what average market price per dozen? 

Niiniht r , ld in; ti kct lu ice )irr iluzi'n 1: 

34. How many replacement pullets did you buy in the last 12 months and at what average price each? 

Nimil rr huu)'lit Aver. tgi price each L 

35. How much feed did you buy in the last 12 months and/or how much do you spend on feed? 

AluuUnl ul Iri il (lilr, i, t ý, I; Uc II. /k}, /Itillllc. ti) (ar, I ýi i-v tL 

36. What proportion of the total annual costs on your farm are spent in egg production? % 

If you would be willing to answer some more detailed questions for my study, please tick this box 

Please give me your name, telephone number and postcode in case I need to contact you about your form. I will not 
pass this information on to anyone else. If you prefer to remain anonymous (unless you ticked the box above), please 
give just your postcode and parish (if known) so I can check the rough location of your farm. 
Name Telephone number ---- 
Postcode Parish 

Thank you very much for your help. Please send this form back in the enclosed FREEPOST envelope, or to my 
address below, and feel free to contact me if you have any comments or queries. 

Rebecca Moberly, Environment Department, University of York, FREEPOST NEA8324, York YO10 5ZZ 

Tel. 01904 434074 Fax. 01904 432998 Email: RLM106@york. ac. uk 



APPENDIX D 

Summary of the variables and codes used in Chapter 5 logistic 
regression analyses for chicken and egg producer data 

Variable Description 

Range area Continuous variable, area of chicken pasture, in hectares 

Flock size Continuous variable, number of birds on farm, for 
chicken producers: average number of chickens in 1999: 
for egg producers: number of laying hens at start of last 
laying cycle 

Stocking density Continuous variable, number of birds per hectare of 
chicken pasture 

Arable b Dummy variable, coded 1 for farms with arable land in 
their surroundings 

Livestock b Dummy variable, coded 1 for farms with land used for 
livestock in their surroundings 

Game rearing b Dummy variable, coded 1 for farms with land used for 
game rearing in their surroundings 

Forestry b Dummy variable, coded 1 for farms with land used for 
forestry in their surroundings 

Village b Dummy variable, coded 1 for farms with village(s) in 
their surrounding land 

Urban b Dummy variable, coded 1 for farms with urban land-uses 
in their surroundings 

Rough grazing b Dummy variable, coded 1 for farms with land used for 

rough grazing in their surroundings 

Fixed housing Dummy variable, coded 1 for producers with fixed 
housing for chickens 

Housing available at all Dummy variable, coded 1 for producers with housing 
times available at all times, rather than at night only 

Time outside Single digit code for proportion of a 24 hour day 

chickens are outside for on average, 1= 0-25%, 2= 26- 
50%, 3= 51-75%, 4= 76-100% 

Permanent Dummy variable, coded 1 for producers with permanent 
perimeter fence round chicken pasture 

Mobile Dummy variable, coded 1 for producers with mobile 
fencing round chicken pasture 

Electric Dummy variable, coded 1 for producers with electric 
fencing round chicken pasture 

323 



Flexinet Dummy variable, coded 1 for producers with Flexinet 
fencing round chicken pasture 

Wire and post Dummy variable, coded 1 for producers with wire and 
post fencing round chicken pasture 

Electric only Dummy variable, coded 1 for producers only with 
electric fencing round chicken pasture 

Flexinet only Dummy variable, coded 1 for producers only with 
Flexinet fencing round chicken pasture 

Wire and post only Dummy variable, coded 1 for producers only with wire 
and post fencing round chicken pasture 

Number of chickens Continuous variable, number of chickens reported lost to 
reported lost to causes causes other than predation, square-root transformed to 
other than predation reduce right skew of original variable 
(square-root transformed) 

Proportion of chickens Continuous variable, number of chickens reported lost to 
reported lost to causes causes other than predation divided by flock size, 
other than predation arcs ine-transformed 

Number of foxes killed on Continuous variable, number of foxes killed in 1998 for 
farm in last year chicken producers, number of foxes killed in last 12 

months for egg producers 

Fox control carried out Dummy variable, coded 1 for farms where foxes were 
killed by various control measures 

Region-based relative fox Continuous variable with 9 levels 
density 

Land class-based relative Continuous variable with 7 levels 
fox density 
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APPENDIX E 

Questionnaire form for outdoor pig producer survey 
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IMPACT OF FOXES ON OUTDOOR PIG PRODUCTION 

1. How large is the area of your pig paddocks? 1 hectares (or) acres 
2. How many paid employees are there on your farm? 

Full-time Part-time Casual 
(less than 16 hours a week) (less than 6 months of year) 

3. Please rate the following land uses from 0 to 5, according to how much of the land surrounding your pig 
paddocks they take up (0 = none of the surrounding land, 5= most of the surrounding land). You may give the 

same rating to more than one land use. 

Arable 
17 

Livestock 
I1 

Game rearing[ Forestry 
L 

Village 17 Urban 

Other Please state: 

4. How many sows (including served gilts) are there, on average, on your holding? sows 

HUSBANDRY 

5. How many times a year, on average, does each of your sows farrow? QQ 
times 

6. How many sows farrow per week, on average? sows 
7. How many piglets are born alive per sow, on average? piglets 

8. Are sows and piglets shut in their arks overnight for the first 48 hour period after farrowing? Yes 
Q 

No Q 

9. Are piglets retained by fenders in front of the arks prior to weaning? Yes 
Q 

No 
Q 

10. Do arks have plastic flaps over their entrances? Yes Q No Q 

11. What percentage of your sow stock do you replace per year? % 

12. What percentage of your boar stock do you replace per year? % 

13. How effective is the fence surrounding your paddocks at: Very effective Somewhat effective Ineffective 

i) preventing foxes from getting into the paddocks? 
QQQ 

ii) preventing all unwanted animals from getting in? QQQ 

iii) preventing pigs from escaping? QQQ 

14. a) Do you use a specialist fox fence? Yes 
Q= 

please answer (b) and (c) No 
Q= 

please answer (d) 

b) What is the height of the fence? metres/centimetres (or) feet/inches 

c) How many strands does it have? strands 

d) What other type of boundary fence surrounds your paddocks? Please tick all that apply. If none of the 
below, please state any alternative method you use to prevent pig losses. 

Permanent perimeter fence Mobile 

Electric ' ý`` Wire and post Hexinet 

Alternative: 

15. In what year was the fence first used? 

16. How much did the fence cost when first purchased? 

17. What length is the fence? 

i 17 

metres 

18. How much does maintenance of the fence cost per year? 



In the past year, how many piglets have been born on your farm? 

(Please only include losses of live pl 
Between farrowing and weaning, how many piglets: Nimil 

died, In total? 
F- 

were killed by predators (Including foxes)? 

were killed by foxes? 

died due to fox disturbance of a sow? 

1. Please tick the most appropriate box to rate between 1 and 5 how reliab 
piglet losses to be (1 = guess, 3= estimate, 5= accurate figures): 

piglets 

Percentage (of those born alive) 

During which month(s) were pigs killed by foxes? (Please circle) 

J, uý IITM. u Air M. iy Jun Jul Awl Sep Oct 1 Nov Dec T 
23. How much do you consider losses to foxes cost you in the last year? E 

'p4. Has there been a change In the number of iglets killed by foxes over the past five years? 
A rleerrasr fJ No dr, rntc An increase Don't know FI 

`25. Have you seen signs of any of the following animals (other than your own) on your farm over the last 12 
11, months? (Please tick. ) 

sl( its/weasels 
[1 

Mitik 
] 

l1wigers Foxes ('ats 
El 

Dugs 

INFORMATION ON FOX CONTROL MEASURES 
jncludit(shooting and lar piny, trapping, terriers and spades, snaring and hunting with hounds) 

. 26. How many foxes, if any, were killed on your farm in the last year? Boxes 
'. 7. Has there been a change In the number of foxes killed on your farm over the past five years? 

A rlcovii No change An inne lse 
n 

Don't know 
a 

28. What was the cost of all your predator control In the last year? t (or) clays 
Cý 

29. What proportion of this was spent on fox control? 

'00. Has the amount of time and money you s end on fox control changed over the past five years? 
I>rrrc, r:, rrl 

(I No cli Inge J F-71 Increased f1 Don't knr w 

PIG PRODUCTION ON YOUR FARM 
Ij you , ue able to, pleir!. e !. ul, l, ly me with fiqures for the following, even approximate. These will help with the economic 

....,.. 11.1... 7 ......., . v...... ý 

WcancrN (al 

Stoics 

iniNlicrs 

lvciage Iivewcight 

Average. Uvewcight kg 

Avcragc liveweight k 

at average iiveweight? 

Iloars for cull 
II 

Sows for cull 
] 

32. How much food did you buy in the last 12 months and/or how much did you s end on feed? 

Amur nl ii Icril (IpIt'usc si; i(i Ih/k}, /(on) I ("I" 'I i Ice l (, 
-J 

33. What proportion of the total annual costs on your farm are spent in pig production? '/, 

Thank you very much for your help. Please send this form back in the FREEPOST envelope, or to my 
R IH ra Moberly, FnvinmIu(. nl I)clpailnirnl, I nip i"11v' I \' ik, FRIA11O. S l' NI, AK324, York YOlO 5"!. % 
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Questionnaire form for survey of game interests 
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IMPACT OF FOXES ON GAME INTERESTS 

I. What is the area of your shoot? hectares (or) acres 

2. Please rate the following land uses from 0 to 5, according to how much of the land surrounding your shoot 

they take up (0 = none of the surrounding land, 5= most of the surrounding land). You may give the same rating to 

more than one land use. 

Arable 
Q 

Livestock 
Q 

Game rearing 
Q 

Forestry 
Q 

Village 
Q 

Urban 

Other 
Q 

Please state: 

3. How many of the following birds were shot in the last year? 

Pheasant Grey Partridge Red Grouse 

Duck Geese French (Red-leg) Partridge 

4. What type(s) of shoot do you run? (Please tick) 

5. How many foxes were killed on your shoot in the last year? foxes 

6. How many or what percentage of these foxes were killed by each of the following methods in the last year? 

Number 
I 

(or) % 

Camping (shooting at (light) I-I 

Shooting by day 
I-- 

with rifles 
r--] 

(and/or) shotguns (Please tick) 

Snaring 
II 

Please state `other' method 

7. What percentage of the fox kills were made in each of these seasons last year? 

Spring Summer Autumn Winter 
(March-May) (June-August) 

] 
(September-November) (December-Februar 

8. Has there been a change in the number of foxes killed on your shoot over the past five years? 

A decrease 
a 

No change 
a An increase 

[ Don't know 
a 

9. How many gamekeepers are employed on the shoot? (Please include yourself, if applicable. ) 

Dull time Part-time Casual 
(less than 16 hours a week) (less than 6 months of year) 

10. How much of their time do the keepers spend on fox control? %I 

11. Has the amount of time spent on fox control changed over the past five years? 

l)ecrcase(l 
II No change 

II Increased 
rI Don't know 

12. Do you shoot ground game on shoot days? Yes u No IJ 

, Cý 

Please turn overt 



13. How many pheasant release pens do you have? 

14. How effective are the release pens at: V 

i) preventing foxes from getting into the pens? 
ii) preventing all unwanted animals from getting into the pens? 

15. What measures do you employ to prevent foxes from entering pens? 

Ovcrh; ing, ing nnli Jinx fringe [J lilectric leneing 

hig-in or pegged clown nellilig . 
[] Saure walls 

01 liers (please stale) 

16. What length of perimeter netting do you allow per bird? 

17. How long do you expect your pens to last? 

pens 

ve Somewhat effective Ineffective 

QQ 

tick) 

Pox grids over entrances 

(or) 

(Please only include losses of live pheasants) 

18. How many pheasants were released into pens? pheasants 

19. How old were the pheasants when released into pens? weeks 

20. How many pheasants in the release pens: Number (or) %(ofpheasant chicks) 

died, in total? 
II 

were killed by predators (Including foxes)? 

were killed by foxes? 

21. Please tick the most appropriate box to rate between 1 and 5 how reliable you believe the above figures for 
losses to be (1 = guess, 3= estimate, 5= accurate figures): 

, 
1_ý_2 345 

22. Has there been a change in the number of pheasants killed by foxes In release pens over 

years? A ilcoc, i, e 
fI Nuchanýa 

f 
An inclea. se 

E-1 
Don't knov 

3. Do you sell your shooting by bird or by day? (Please tick) By bird By day El 

4. How many shooting days do you have a year? days 
I 

LLI 

5. How many guns do you have per shoot day? grins 

6. What proportion of the estate or holding's revenue Is accounted for by shooting? (Please tick one box) 

, es,; than) `% II Notin(i 25% II Aroimd5D 
_.. _. _ý 

Aruunil 75°/ 100'%, 

! 7. Please (livo the estate or holding's postcode and parish (it known) so I can check its rough location. 

'ostcode 
[l 

Parish 
l 

! 8. Please tick this box if you have long-term records on fox control and/or pheasant losses you would be 
willing to let me use for my study 

Thank you very much for your help. Please send this form back In the enclosed FREEPOST envelope or to my 
address below and feel free contact me If you have any comments or queries. 

Rebecca Moberly, linvirunincnt I)epartment, University of York, FREEPOST NEA8324, York YO10 5ZZ 
'Fe l. 01904 434074 Fax. 0 19(4 432998 Email: RLM106@york. ac. uk 
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